

Lecture Notes in Computer Science 3669
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Gerth Stølting Brodal Stefano Leonardi (Eds.)

Algorithms –
ESA 2005

13th Annual European Symposium
Palma de Mallorca, Spain, October 3-6, 2005
Proceedings

13

Volume Editors

Gerth Stølting Brodal
University of Aarhus
BRICS, Department of Computer Science
IT-parken, Åbogade 34, 8200 Århus N, Denmark
E-mail: gerth@daimi.au.dk

Stefano Leonardi
Università di Roma ”La Sapienza”
Dipartimento di Informatica e Sistemistica
Via Salaria 113, 00198 Rome, Italy
E-mail: Stefano.Leonardi@dis.uniroma1.it

Library of Congress Control Number: 2005932856

CR Subject Classification (1998): F.2, G.1-2, E.1, F.1.3, I.3.5, C.2.4, E.5

ISSN 0302-9743
ISBN-10 3-540-29118-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29118-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11561071 06/3142 5 4 3 2 1 0

Preface

This volume contains the 75 contributed papers and the abstracts of the three
invited lectures presented at the 13th Annual European Symposium on Algo-
rithms (ESA 2005), held in Palma de Mallorca, Spain, October 3–6, 2005. The
three distinguished invited speakers were Giuseppe F. Italiano, Cristopher Moore
and Joseph (Seffi) Naor.

Since 2002, ESA has consisted of two tracks, with separate program commit-
tees, which dealt respectively with

– the design and mathematical analysis of algorithms (the “Design and Analy-
sis” track);

– real-world applications, engineering and experimental analysis of algorithms
(the “Engineering and Applications” track).

Previous ESAs in the current two track format were held in Rome, Italy
(2002); Budapest, Hungary (2003); and Bergen, Norway (2004). The proceedings
of these symposia were published as Springer’s LNCS volumes 2461, 2832, and
3221 respectively.

Papers were solicited in all areas of algorithmic research, including but not
limited to algorithmic aspects of networks, approximation and on-line algo-
rithms, computational biology, computational geometry, computational finance
and algorithmic game theory, data structures, database and information re-
trieval, external memory algorithms, graph algorithms, graph drawing, machine
learning, mobile computing, pattern matching and data compression, quantum
computing, and randomized algorithms. The algorithms could be sequential,
distributed, or parallel. Submissions were especially encouraged in the area of
mathematical programming and operations research, including combinatorial
optimization, integer programming, polyhedral combinatorics, and semidefinite
programming.

Each extended abstract was submitted to one of the two tracks. The extended
abstracts were read by at least three referees each, and evaluated on their quality,
originality, and relevance to the symposium. The program committee of the
Design and Analysis track met at the “Universitat Politècnica de Catalunya”
on June 4–5, 2005. The Engineering and Applications track held an electronic
program committee meeting. The Design and Analysis track selected 55 out of
185 submissions. The Engineering and Applications track selected 20 out of 59
submissions.

VI Preface

The program committees of the two tracks consisted of:

Design and Analysis track

Dimitris Achlioptas Microsoft Research
Michael Bender Stony Brook
Alberto Caprara Bologna
Friedrich Eisenbrand MPI Saarbrücken
Luisa Gargano Salerno
Andrew Goldberg Microsoft Research
Haim Kaplan Tel-Aviv
Jochen Könemann Waterloo
Stefano Leonardi (Chair) Rome “La Sapienza”
Kirk Pruhs Pittsburgh
Edgar Ramos Urbana-Champaign
Adi Rosèn The Technion, Haifa
Maria Serna Barcelona
Christian Sohler Paderborn
Emo Welzl ETH Zürich
Berthold Vöcking RWTH Aachen

Engineering and Applications Track

Jon Bentley Avaya
Gerth Stølting Brodal (Chair) Aarhus
Hervé Brönnimann Brooklyn Poly
Adam L. Buchsbaum AT&T
Riko Jacob ETH Zürich
Richard Ladner Washington
Sotiris Nikoletseas Patras
Jordi Petit Barcelona
Bettina Speckmann Eindhoven
Subhash Suri Santa Barbara
Sivan Toledo Tel-Aviv

ESA 2005 was held along with the fifth Workshop on Algorithms in Bioinfor-
matics (WABI 2005), the third workshop on Algorithmic MeThods and Models
for Optimization of RailwayS (ATMOS 2005), and the third Workshop on Ap-
proximation and Online Algorithms (WAOA 2005) in the context of the com-
bined conference ALGO 2005. The conference started right after the Solar Eclipse
of October 3rd, 2005. The organizing committee of ALGO 2005 consisted of:

Carme Alvarez
Josep Llúıs Ferrer (Co-chair)
Llorenc Huguet
Magdalena Payeras

Preface VII

Jordi Petit
Maria Serna (Co-chair)
Oriol Serra
Dimitrios M. Thilikos

all from the Universitat Politècnica de Catalunya, Barcelona.
ESA 2005 was sponsored by EATCS (the European Association for Theo-

retical Computer Science), the Universitat Politècnica de Catalunya, the Uni-
versitat de les Illes Balears, and the Ministerio de Educación y Ciencia. The
EATCS sponsorship included an award of EUR 500 for the author of the best
student paper at ESA 2005. The winner of this prize was Piotr Sankowski for
his paper Shortest Paths in Matrix Multiplication Time. The best student paper
was jointly awarded by both Track A and Track B program committees.

Gerth Stølting Brodal and Stefano Leonardi would like to thank Guido
Schäfer for his assistance in handling the submitted papers and these
proceedings.

We hope that this volume offers the reader a selection of the best current
research on algorithms.

July 2005 Gerth Stølting Brodal and Stefano Leonardi

Organization

Referees

Manuel Abellanas
Ittai Abraham
Marcel Ackermann
Micah Adler
Jochen Alber
Susanne Albers
Helmut Alt
Carme Alvarez
Christoph Ambühl
Nir Andelman
Reid Andersen
Sigrun Andradottir
Shoshana Anily
Jan Arne Telle
Tetsuo Asano
Albert Atserias
Enzo Auletta
Franz Aurenhammer
Giorgio Ausiello
Yossi Azar
Helge Bals
Evripides Bampis
Nikhil Bansal
Amotz Bar-Noy
Lali Barriere
Paul Beame
Luca Becchetti
Richard Beigel
Robert Berke
Marcin Bienkowski
Philip Bille
Markus Bläser
Maria Blesa
Johannes Blömer
Christian Blum
Vincenzo Bonifaci
Olaf Bonorden
Stephen Boyd

Andreas Brandstadt
Joshua E. Brody
Peter Brucker
Cristoph Buchheim
Luciana Salete Buriol
Gruia Calinescu
Ioannis Caragiannis
Sunil Chandran
Shuchi Chawla
Joseph Cheriyan
Steve Chien
Jana Chlebikova
Marek Chrobak
Ken Clarkson
Jens Clausen
Andrea Clementi
Graham Cormode
Derek Corneil
Péter Csorba
Artur Czumaj
Peter Damaschke
Valentina Damerow
Gabriel de Dietrich
Roberto De Prisco
Mauro Dell’Amico
Erik Demaine
Xiaotie Deng
Olivier Devillers
Luc Devroye
Miriam Di Ianni
Zanoni Dias
Josep Diaz
Adrian Dumitrescu
Christian Duncan
Miroslaw Dynia
Jeff Edmonds
Pavlos Efraimidis
Arno Eigenwillig

X Organization

Ioannis Emiris
David Eppstein
Leah Epstein
Jeff Erickson
Thomas Erlebach
Guy Even
Qizhi Fang
Martin Farach-Colton
Sándor Fekete
Jon Feldman
Wenceslas Fernandez de la Vega
Paolo Ferragina
Guillaume Fertin
Amos Fiat
Faith Fich
Simon Fischer
Aleksei Fishkin
Rudolf Fleischer
Fedor Fomin
Dean Foster
Dimitris Fotakis
Gereon Frahling
Gianni Franceschini
Thomas Franke
Leonor Frias
Stefan Funke
Martin Furer
Bernd Gärtner
Martin Gairing
David Gamarnik
Naveen Garg
Leszek Gasieniec
Cyril Gavoille
Joachim Gehweiler
Panos Giannopoulos
Joachim Giesen
Seth Gilbert
Ioannis Giotis
Andreas Goerdt
Jens Gramm
Fabrizio Grandoni
Sudipto Guha
Jens Gustedt
Michel Habib
Torben Hagerup

Magns Halldorsson
Dan Halperin
Mikael Hammar
Sariel Har-Peled
Jason Hartline
Nick Harvey
Rafael Hassin
Herman Haverkort
Laura Heinrich-Litan
Pavol Hell
Christoph Helmberg
Kris Hildrum
Thanh Minh Hoang
Michael Hoffmann
Cor Hurkens
John Iacono
Nicole Immorlica
Sandy Irani
Alon Itai
Kazuo Iwama
Kamal Jain
Jeannette Jansen
Klaus Jansen
Wojciech Jawor
Wojtek Jawor
David Johnson
Sham Kakade
Christos Kaklamanis
Bahman Kalantari
Iyad Kanj
Howard Karloff
Marek Karpinski
Andreas Karrenbauer
Hans Kellerer
Claire Kenyon
Lutz Kettner
Tracy Kimbrel
Ralf Klasing
Jon Kleinberg
Christian Knauer
Stephen Kobourov
Stavros Kolliopoulos
Spyros Kontogiannis
Miroslaw Korzeniowski
Elias Koutsoupias

Organization XI

Dariusz Kowalski
Evangelos Kranakis
Dieter Kratsch
Shankar Krishnan
Alexander Kulikov
Piyush Kumar
Jaroslaw Kutylowski
Eduardo Sany Laber
Gad Landau
Andre Lanka
Lap Chi Lau
Sören Laue
Adam Letchford
Asaf Levin
Ami Litman
Alex Lopez-Ortiz
Zvi Lotker
Christos Makris
Gregorio Malajovich
Dahlia Malkhi
Carlo Mannino
Giovanni Manzini
Gitta Marchand
Alberto Marchetti-Spaccamela
Vangelis Markakis
Chip Martel
Conrado Martinez
Domagoj Matijevic
Alexander May
Ernst Mayr
Kurt Mehlhorn
Joao Meidanis
Jiantao Meng
Uli Meyer
Daniele Micciancio
Tova Milo
Joe Mitchell
Dieter Mitsche
Michael Molloy
Shlomo Moran
S. Muthukrishnan
Umberto Nanni
Giri Narasimhan
Alantha Newman
Sotiris Nikoletseas

Joseph O’Rourke
Yoshio Okamoto
Martin Otto
Leonidas Palios
Belen Palop
Alessandro Panconesi
Mihai Patrascu
Christophe Paul
Andrzej Pelc
David Peleg
Warren Perger
Julian Pfeifle
Sylvain Pion
David Pisinger
Greg Plaxton
Valentin Polishchuk
Sheung-Hung Poon
H. Prodinger
Yuval Rabani
Harald Räcke
Dror Rawitz
Andreas Razen
Yossi Richter
Romeo Rizzi
Liam Roddity
Heiko Röglin
Udi Rotics
Salvador Roura
Stefan Rührup
Leo Rüst
Wojciech Rytter
Cenk Sahinalp
Carla Savage
Gabriel Scalosub
Guido Schäfer
Christian Scheideler
Baruch M. Schieber
Christian Schindelhauer
Stefan Schirra
Falk Schreiber
Rüdiger Schultz
Andreas S. Schulz
Marinella Sciortino
Raimund Seidel
Sandeep Sen

XII Organization

Maria Serna
Jay Sethuraman
Jiri Sgall
Hadas Shachnai
Nira Shafrir
Ori Shalev
Micha Sharir
Bruce Shepherd
Gennady Shmonin
Riccardo Silvestri
Dan Simon
Steve Skiena
Martin Skutella
Sagi Snir
Aravind Srinivasan
Miloš Stojaković
Ileana Streinu
C. R. Subramanian
Maxim Sviridenko
Chaitanya Swamy
Tibor Szabó
Amnon Ta-Shama
Kunal Talwar
Hisao Tamaki
Arik Tamir
Monique Teillaud
Kavitha Telikepalli
Prasad Tetali
Dimitrios M. Thilikos
Robin Thomas
Karsten Tiemann
Sivan Toledo
Enrico Tronci
Elias Tsigaridas
Levent Tuncel
Walter Unger

Ugo Vaccaro
Jan Vahrenhold
Gabriel Valiente
Marc van Kreveld
René van Oostrum
Rob van Stee
Lieven Vandenbergh
Suresh Venkatasubramanian
Elad Verbin
Kiem-Phong Vo
Klaus Volbert
Tjark Vredeveld
Uli Wagner
Tandy Warnow
Birgitta Weber
Oren Weimann
Ron Wein
Matthias Westermann
Udi Wieder
Gordon Wilfong
David Williamson
Gerhard Woeginger
Nicola Wolpert
Fatos Xhafa
Mutsunori Yagiura
Koichi Yamazaki
Baiyu Yang
Chee Yap
Martin Zachariasen
Giacomo Zambelli
Christos Zaroliagis
Lisa Zhang
Martin Ziegler
Philipp Zumstein
Uri Zwick

Table of Contents

Designing Reliable Algorithms in Unreliable Memories
Irene Finocchi, Fabrizio Grandoni, Giuseppe F. Italiano 1

From Balanced Graph Partitioning to Balanced Metric Labeling
Joseph Naor . 9

Fearful Symmetries: Quantum Computing, Factoring, and Graph
Isomorphism

Cristopher Moore . 10

Exploring an Unknown Graph Efficiently
Rudolf Fleischer, Gerhard Trippen . 11

Online Routing in Faulty Meshes with Sub-linear Comparative Time
and Traffic Ratio

Stefan Rührup, Christian Schindelhauer . 23

Heuristic Improvements for Computing Maximum Multicommodity
Flow and Minimum Multicut

Garima Batra, Naveen Garg, Garima Gupta . 35

Relax-and-Cut for Capacitated Network Design
Georg Kliewer, Larissa Timajev . 47

On the Price of Anarchy and Stability of Correlated Equilibria of
Linear Congestion Games

George Christodoulou, Elias Koutsoupias . 59

The Complexity of Games on Highly Regular Graphs
Konstantinos Daskalakis, Christos H. Papadimitriou 71

Computing Equilibrium Prices: Does Theory Meet Practice?
Bruno Codenotti, Benton McCune, Rajiv Raman,
Kasturi Varadarajan . 83

Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut
Branch Decompositions

Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender,
Fedor V. Fomin . 95

XIV Table of Contents

An Algorithm for the SAT Problem for Formulae of Linear Length
Magnus Wahlström . 107

Linear-Time Enumeration of Isolated Cliques
Hiro Ito, Kazuo Iwama, Tsuyoshi Osumi . 119

Finding Shortest Non-separating and Non-contractible Cycles for
Topologically Embedded Graphs

Sergio Cabello, Bojan Mohar . 131

Delineating Boundaries for Imprecise Regions
Iris Reinbacher, Marc Benkert, Marc van Kreveld,
Joseph S.B. Mitchell, Alexander Wolff . 143

EXACUS: Efficient and Exact Algorithms for Curves and Surfaces
Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert,
Lutz Kettner, Kurt Mehlhorn, Joachim Reichel, Susanne Schmitt,
Elmar Schömer, Nicola Wolpert . 155

Min Sum Clustering with Penalties
Refael Hassin, Einat Or . 167

Improved Approximation Algorithms for Metric Max TSP
Zhi-Zhong Chen, Takayuki Nagoya . 179

Unbalanced Graph Cuts
Ara Hayrapetyan, David Kempe, Martin Pál, Zoya Svitkina 191

Low Degree Connectivity in Ad-Hoc Networks
Luděk Kučera . 203

5-Regular Graphs are 3-Colorable with Positive Probability
J. Dı́az, G. Grammatikopoulos, A.C. Kaporis, L.M. Kirousis,
X. Pérez, D.G. Sotiropoulos . 215

Optimal Integer Alphabetic Trees in Linear Time
T.C. Hu, Lawrence L. Larmore, J. David Morgenthaler 226

Predecessor Queries in Constant Time?
Marek Karpinski, Yakov Nekrich . 238

An Algorithm for Node-Capacitated Ring Routing
András Frank, Zoltán Király, Balázs Kotnyek . 249

On Degree Constrained Shortest Paths
Samir Khuller, Kwangil Lee, Mark Shayman . 259

Table of Contents XV

A New Template for Solving p-Median Problems for Trees in
Sub-quadratic Time

Robert Benkoczi, Binay Bhattacharya . 271

Roll Cutting in the Curtain Industry
Arianna Alfieri, Steef L. van de Velde, Gerhard J. Woeginger 283

Space Efficient Algorithms for the Burrows-Wheeler Backtransformation
Ulrich Lauther, Tamás Lukovszki . 293

Cache-Oblivious Comparison-Based Algorithms on Multisets
Arash Farzan, Paolo Ferragina, Gianni Franceschini,
J. Ian Munro . 305

Oblivious vs. Distribution-Based Sorting: An Experimental Evaluation
Geeta Chaudhry, Thomas H. Cormen . 317

Allocating Memory in a Lock-Free Manner
Anders Gidenstam, Marina Papatriantafilou, Philippas Tsigas 329

Generating Realistic Terrains with Higher-Order Delaunay
Triangulations

Thierry de Kok, Marc van Kreveld, Maarten Löffler 343

I/O-Efficient Construction of Constrained Delaunay Triangulations
Pankaj K. Agarwal, Lars Arge, Ke Yi . 355

Convex Hull and Voronoi Diagram of Additively Weighted Points
Jean-Daniel Boissonnat, Christophe Delage . 367

New Tools and Simpler Algorithms for Branchwidth
Christophe Paul, Jan Arne Telle . 379

Treewidth Lower Bounds with Brambles
Hans L. Bodlaender, Alexander Grigoriev, Arie M.C.A. Koster 391

Minimal Interval Completions
Pinar Heggernes, Karol Suchan, Ioan Todinca, Yngve Villanger 403

A 2-Approximation Algorithm for Sorting by Prefix Reversals
Johannes Fischer, Simon W. Ginzinger . 415

Approximating the 2-Interval Pattern Problem
Maxime Crochemore, Danny Hermelin, Gad M. Landau,
Stéphane Vialette . 426

XVI Table of Contents

A Loopless Gray Code for Minimal Signed-Binary Representations
Gurmeet Singh Manku, Joe Sawada . 438

Efficient Approximation Schemes for Geometric Problems?
Dániel Marx . 448

Geometric Clustering to Minimize the Sum of Cluster Sizes
Vittorio Bilò, Ioannis Caragiannis, Christos Kaklamanis,
Panagiotis Kanellopoulos . 460

Approximation Schemes for Minimum 2-Connected Spanning
Subgraphs in Weighted Planar Graphs

André Berger, Artur Czumaj, Michelangelo Grigni, Hairong Zhao 472

Packet Routing and Information Gathering in Lines, Rings and Trees
Yossi Azar, Rafi Zachut . 484

Jitter Regulation for Multiple Streams
David Hay, Gabriel Scalosub . 496

Efficient c-Oriented Range Searching with DOP-Trees
Mark de Berg, Herman Haverkort, Micha Streppel 508

Matching Point Sets with Respect to the Earth Mover’s Distance
Sergio Cabello, Panos Giannopoulos, Christian Knauer,
Günter Rote . 520

Small Stretch Spanners on Dynamic Graphs
Giorgio Ausiello, Paolo G. Franciosa, Giuseppe F. Italiano 532

An Experimental Study of Algorithms for Fully Dynamic Transitive
Closure

Ioannis Krommidas, Christos Zaroliagis . 544

Experimental Study of Geometric t-Spanners
Mohammad Farshi, Joachim Gudmundsson . 556

Highway Hierarchies Hasten Exact Shortest Path Queries
Peter Sanders, Dominik Schultes . 568

Preemptive Scheduling of Independent Jobs on Identical Parallel
Machines Subject to Migration Delays

Aleksei V. Fishkin, Klaus Jansen, Sergey V. Sevastyanov,
René Sitters . 580

Table of Contents XVII

Fairness-Free Periodic Scheduling with Vacations
Jǐŕı Sgall, Hadas Shachnai, Tami Tamir . 592

Online Bin Packing with Cardinality Constraints
Leah Epstein . 604

Fast Monotone 3-Approximation Algorithm for Scheduling Related
Machines

Annamária Kovács . 616

Engineering Planar Separator Algorithms
Martin Holzer, Grigorios Prasinos, Frank Schulz, Dorothea Wagner,
Christos Zaroliagis . 628

Stxxl : Standard Template Library for XXL Data Sets
Roman Dementiev, Lutz Kettner, Peter Sanders 640

Negative Cycle Detection Problem
Chi-Him Wong, Yiu-Cheong Tam . 652

An Optimal Algorithm for Querying Priced Information: Monotone
Boolean Functions and Game Trees

Ferdinando Cicalese, Eduardo Sany Laber . 664

Online View Maintenance Under a Response-Time Constraint
Kamesh Munagala, Jun Yang, Hai Yu . 677

Online Primal-Dual Algorithms for Covering and Packing Problems
Niv Buchbinder, Joseph Naor . 689

Efficient Algorithms for Shared Backup Allocation in Networks with
Partial Information

Yigal Bejerano, Joseph Naor, Alexander Sprintson 702

Using Fractional Primal-Dual to Schedule Split Intervals with Demands
Reuven Bar-Yehuda, Dror Rawitz . 714

An Approximation Algorithm for the Minimum Latency Set Cover
Problem

Refael Hassin, Asaf Levin . 726

Workload-Optimal Histograms on Streams
S. Muthukrishnan, M. Strauss, X. Zheng . 734

Finding Frequent Patterns in a String in Sublinear Time
Petra Berenbrink, Funda Ergun, Tom Friedetzky 746

XVIII Table of Contents

Online Occlusion Culling
Gereon Frahling, Jens Krokowski . 758

Shortest Paths in Matrix Multiplication Time
Piotr Sankowski . 770

Computing Common Intervals of K Permutations, with Applications
to Modular Decomposition of Graphs

Anne Bergeron, Cedric Chauve, Fabien de Montgolfier,
Mathieu Raffinot . 779

Greedy Routing in Tree-Decomposed Graphs
Pierre Fraigniaud . 791

Making Chord Robust to Byzantine Attacks
Amos Fiat, Jared Saia, Maxwell Young . 803

Bucket Game with Applications to Set Multicover and Dynamic Page
Migration

Marcin Bienkowski, Jaros�law Byrka . 815

Bootstrapping a Hop-Optimal Network in the Weak Sensor Model
Mart́ın Farach-Colton, Rohan J. Fernandes, Miguel A. Mosteiro 827

Approximating Integer Quadratic Programs and MAXCUT in
Subdense Graphs

Andreas Björklund . 839

A Cutting Planes Algorithm Based Upon a Semidefinite Relaxation for
the Quadratic Assignment Problem

Alain Faye, Frédéric Roupin . 850

Approximation Complexity of min-max (Regret) Versions of Shortest
Path, Spanning Tree, and Knapsack

Hassene Aissi, Cristina Bazgan, Daniel Vanderpooten 862

Robust Approximate Zeros
Vikram Sharma, Zilin Du, Chee K. Yap . 874

Optimizing a 2D Function Satisfying Unimodality Properties
Erik D. Demaine, Stefan Langerman . 887

Author Index . 899

Designing Reliable Algorithms in Unreliable
Memories�

Irene Finocchi1, Fabrizio Grandoni1, and Giuseppe F. Italiano2

1 Dipartimento di Informatica, Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy

{finocchi, grandoni}@di.uniroma1.it
2 Dipartimento di Informatica, Sistemi e Produzione,

Università di Roma “Tor Vergata”, Via del Politecnico 1, 00133 Roma, Italy
italiano@disp.uniroma2.it

Abstract. Some of today’s applications run on computer platforms with
large and inexpensive memories, which are also error-prone. Unfortu-
nately, the appearance of even very few memory faults may jeopardize
the correctness of the computational results. An algorithm is resilient to
memory faults if, despite the corruption of some memory values before
or during its execution, it is nevertheless able to get a correct output at
least on the set of uncorrupted values. In this paper we will survey some
recent work on reliable computation in the presence of memory faults.

1 Introduction

The inexpensive memories used in today’s computer platforms are not fully secure,
and sometimes the content of a memory unit may be temporarily or permanently
lost or damaged. This may depend on manufacturing defects, power failures, or en-
vironmental conditions such as cosmic radiation and alpha particles [15,23,30,32].
Unfortunately, even very few memory faults may jeopardize the correctness of the
underlying algorithms, and thus the quest for reliable computation in unreliable
memories arises in an increasing number of different settings.

Many large-scale applications require the processing of huge data sets that
can easily reach the order of Terabytes: for instance, NASA’s Earth Observing
System generates Petabytes of data per year, while Google currently reports to
be indexing and searching over 8 billion Web pages. In all such applications pro-
cessing massive data sets, there is an increasing demand for large, fast, and inex-
pensive memories, at any level of the memory hierarchy: this trend is witnessed,
e.g., by the large popularity achieved in recent years by commercial Redundant
Arrays of Inexpensive Disks (RAID) systems [7,18], which offer enhanced I/O
bandwidths, large capacities, and low cost. As the memory size becomes larger,
however, the mean time between failures decreases considerably: assuming stan-
dard soft error rates for the internal memories currently on the market [30],

� Work supported by the Italian MIUR Project ALGO-NEXT “Algorithms for the
Next Generation Internet and Web: Methodologies, Design and Experiments”.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 1–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 I. Finocchi, F. Grandoni, and G.F. Italiano

a system with Terabytes of memory (e.g., a cluster of computers with a few
Gigabytes per node) would experience one bit error every few minutes. Error
checking and correction circuitry added at the board level could contrast this
phenomenon, but would also impose non-negligible costs in performance and
money: hence, it is not a feasible solution when speed and cost are both at
prime concern.

A different application domain for reliable computation is fault-based crypt-
analysis. Some recent optical and electromagnetic perturbation attacks [4,29]
work by manipulating the non-volatile memories of cryptographic devices, so
as to induce very timing-precise controlled faults on given individual bits: this
forces the devices to output wrong ciphertexts that may allow the attacker to de-
termine the secret keys used during the encryption. Differently from the almost
random errors affecting the behavior of large size memories, in this context the
errors are introduced by a malicious adversary that can assume some knowledge
of the algorithm’s behavior.

In order to protect the computation against destructive memory faults, data
replication would be a natural approach. However, it can be very inefficient
in highly dynamic contexts or when the objects to be managed are large and
complex: copying such objects can indeed be very costly, and in some cases we
might not even know how to do this (for instance, when the data is accessed
through pointers, which are moved around in memory instead of the data itself,
and the algorithm relies on user-defined access functions). In these cases, we
can assume neither the existence of ad hoc functions for data replication nor
the definition of suitable encoding mechanisms to maintain a reasonable storage
cost. Instead, it makes sense to assume that it is the algorithms themselves in
charge of dealing with memory faults.

Informally, we have a memory fault when the correct value that should be
stored in a memory location gets altered because of a failure. We say that an
algorithm is resilient to memory faults if, despite the corruption of some memory
values before or during its execution, the algorithm is nevertheless able to get a
correct output (at least) on the set of uncorrupted values. In this paper we survey
some recent work on the design and analysis of resilient algorithms by focusing on
the two basic problems of sorting and searching, which are fundamental in many
large scale applications. For instance, the huge data sets processed by Web search
engines are typically stored in low cost memories by means of inverted indices
which have to be maintained sorted for fast document access: for such large data
structures, even a small failure probability can result in few bit flips in the index,
that may become responsible of erroneous answers to keyword searches [16].
In Section 2 we will discuss different models and approaches proposed in the
literature to cope with unreliable information. In Section 3 we will highlight a
faulty memory model and overview known results and techniques.

2 Models and Related Work

The problem of computing with unreliable information or in the presence of
faulty components dates back to the 50’s [33]. Due to the heterogeneous nature

Designing Reliable Algorithms in Unreliable Memories 3

of faults (e.g., permanent or transient) and to the large variety of components
that may be faulty in computer platforms (e.g., processors, memories, network
nodes or links), many different models have been proposed in the literature. In
this section we will briefly survey only those models that appear to be most
relevant to the problem of computing with unreliable memories.

The Liar Model. Two-person games in the presence of unreliable information
have been the subject of extensive research since Rényi [28] and Ulam [31] posed
the following “twenty questions problem”:

Two players, Paul and Carole, are playing the game. Carole thinks of a
number between one and one million, which Paul has to guess by asking
up to twenty questions with binary answers. How many questions does
Paul need to get the right answer if Carole is allowed to lie once or twice?

Many subsequent works have addressed the problem of searching by asking ques-
tions answered by a possibly lying adversary [1,6,11,12,19,24,25,26]. These works
consider questions of different formats (e.g., comparison questions or general yes-
no questions such as “Does the number belong to a given subset of the search
space?”) and different degrees of interactivity between the players (in the adap-
tive framework, Carole must answer each question before Paul asks the next
one, while in the non-adaptive framework all questions must be issued in one
batch). We remark that the problem of finding optimal searching strategies has
strong relationships with the theory of error correcting codes. Furthermore, dif-
ferent kinds of limitations can be posed on the way Carole is allowed to lie: e.g.,
fixed number of errors, probabilistic error model, or linearly bounded model in
which the number of lies can grow proportionally with the number of questions.
Even in the very difficult linearly bounded model, searching is now well under-
stood and can be solved to optimality: Borgstrom and Kosaraju [6], improving
over [1,11,25], designed an O(log n) searching algorithm. We refer to the excellent
survey [26] for an extensive bibliography on this topic.

Problems such as sorting and selection have instead drastically different
bounds. Lakshmanan et al. [20] proved that Ω(n log n + k · n) comparisons are
necessary for sorting when at most k lies are allowed. The best known O(n log n)
algorithm tolerates only O(log n/ log log n) lies, as shown by Ravikumar in [27].
In the linearly bounded model, an exponential number of questions is necessary
even to test whether a list is sorted [6]. Feige et al. [12] studied a probabilis-
tic model and presented a sorting algorithm correct with probability at least
(1 − q) that requires Θ(n log(n/q)) comparisons. Lies are well suited at model-
ing transient ALU failures, such as comparator failures. Since memory data get
never corrupted in the liar model, fault-tolerant algorithms may exploit query
replication strategies. We remark that this is not the case in faulty memories.

Fault-Tolerant Sorting Networks. Destructive faults have been first inves-
tigated in the context of fault-tolerant sorting networks [2,21,22,34], in which
comparators can be faulty and can possibly destroy one of the input values. As-
saf and Upfal [2] present an O(n log2 n)-size sorting network tolerant (with high
probability) to random destructive faults. Later, Leighton and Ma [21] proved

4 I. Finocchi, F. Grandoni, and G.F. Italiano

that this bound is tight. The Assaf-Upfal network makes Θ(log n) copies of each
item, using data replicators that are assumed to be fault-free.

Parallel Computing with Memory Faults. Multiprocessor platforms are
even more prone to hardware failures than uniprocessor computers. A lot of
research has been thus devoted to deliver general simulation mechanisms of
fully operational parallel machines on their faulty counterparts. The simula-
tions designed in [8,9,10,17] are either randomized or deterministic, and operate
with constant or logarithmic slowdown, depending on the model (PRAM or
Distributed Memory Machine), on the nature of faults (static or dynamic, deter-
ministic or random), and on the number of available processors. Some of these
works also assume the existence of a special fault-detection register that makes
it possible to recognize memory errors upon access to a memory location.

Implementing Data Structures in Unreliable Memory. In many applica-
tions such as file system design, it is very important that the implementation
of a data structure is resilient to memory faults and provides mechanisms to
recover quickly from erroneous states. Unfortunately, many pointer-based data
structures are highly non-resilient: losing a single pointer makes the entire data
structure unreachable. This problem has been addressed in [3], providing fault-
tolerant versions of stacks, linked lists, and binary search trees: these data struc-
tures have a small time and space overhead with respect to their non-fault-
tolerant counterparts, and guarantee that only a limited amount of data may be
lost upon the occurrence of memory faults.

Blum et al. [5] considered the following problem: given a data structure re-
siding in a large unreliable memory controlled by an adversary and a sequence of
operations that the user has to perform on the data structure, design a checker
that is able to detect any error in the behavior of the data structure while
performing the user’s operations. The checker can use only a small amount of
reliable memory and can report a buggy behavior either immediately after an
errant operation (on-line checker) or at the end of the sequence (off-line checker).
Memory checkers for random access memories, stacks and queues have been pre-
sented in [5], where lower bounds of Ω(log n) on the amount of reliable memory
needed in order to check a data structure of size n are also given.

3 Designing Resilient Algorithms

Memory faults alter in an unpredictable way the correct values that should be
stored in memory locations. Due to such faults, we cannot assume that the value
read from a memory location is the same value that has been previously written
in that location. If the algorithm is not prepared to cope with memory faults, it
may take wrong steps upon reading of corrupted values and errors may propagate
over and over. Consider for instance mergesort: during the merge step, errors may
propagate due to corrupted keys having value larger than the correct one. Even
in the presence of very few faults, in the worst case as many as Θ(n) keys may
be out of order in the output sequence, where n is the number of keys to be

Designing Reliable Algorithms in Unreliable Memories 5

merged. There are even more subtle problems with recursive implementations:
if some parameter or local variable in the recursion stack (e.g., an array index)
gets corrupted, the mergesort algorithm may recurse on wrong subarrays and
entire subsequences may remain unordered.

3.1 The Faulty Memory Model

Memory faults may happen at any time during the execution of an algorithm, at
any memory location, and even simultaneously. The last assumption is motivated
by the fact that an entire memory bank may dismiss to work properly, and thus
all the data contained in it may get lost or corrupted at the same time. In order
to model this scenario, in [14] we introduced a faulty-memory random access
machine, i.e., a random access machine whose memory locations may experience
memory faults which corrupt their content. In this model corrupted values are
indistinguishable from correct ones. We also assumed that the algorithms can
exploit only O(1) reliable memory words, whose content gets never corrupted:
this is not restrictive, since at least registers can be considered fault-free.

Let δ denote an upper bound on the total number of memory faults that can
happen during the execution of an algorithm (note that δ may be a function of
the instance size). We can think of the faulty-memory random access machine as
controlled by a malicious adaptive adversary: at any point during the execution
of an algorithm, the adversary can introduce an arbitrary number of faults in
arbitrary memory locations. The only adversary’s constraint is not to exceed
the upper bound δ on the number of faults. If the algorithm is randomized, we
assume that the adversary has no information about the sequence of random
values.

In the faulty-memory model described above, if each value were replicated
k times, by majority techniques we could easily tolerate up to (k − 1)/2 faults;
however, the algorithm would present a multiplicative overhead of Θ(k) in terms
of both space and running time. This implies, for instance, that in order to be
resilient to O(

√
n) faults, a sorting algorithm would require O(n3/2 log n) time

and O(n3/2) space. The space may be improved using error-correcting codes,
but at the price of a higher running time.

3.2 Resilient Sorting and Searching

It seems natural to ask whether it is possible to design algorithms that do not
exploit data replication in order to achieve resilience to memory faults: i.e., algo-
rithms that do not wish to recover corrupted data, but simply to be correct on
uncorrupted data, without incurring any time or space overhead. More formally,
in [14] we considered the following resilient sorting and searching problems.

– Resilient sorting: we are given a set of n keys that need to be sorted. The
values of some keys may be arbitrarily corrupted during the sorting process.
The problem is to order correctly the set of uncorrupted keys.

– Resilient searching: we are given a sequence of n keys on which we wish to
perform membership queries. The keys are stored in increasing order, but

6 I. Finocchi, F. Grandoni, and G.F. Italiano

some keys may be corrupted and thus may occupy wrong positions in the
sequence. Let x be the key to be searched for. The problem is either to find
a key equal to x, or to determine that there is no correct key equal to x.

In both cases, this is the best that we can achieve in the presence of memory
faults. For sorting, we cannot indeed prevent keys corrupted at the very end of
the algorithm execution from occupying wrong positions in the output sequence.
For searching, memory faults can make the searched key x appear or disappear
in the sequence at any time.

We remark that one of the main difficulties in designing efficient resilient
sorting and searching algorithms derives from the fact that positional informa-
tion is no longer reliable in the presence of memory faults: for instance, when we
search an array whose correct keys are in increasing order, it may be still possi-
ble that a faulty key in position i is smaller than some correct key in position j,
j < i, thus guiding the search towards a wrong direction.

Known Results and Techniques. In [14] we proved both upper and lower
bounds on resilient sorting and searching. These results are shown for deter-
ministic algorithms that do not make use of data replication and use only O(1)
words of reliable memory. We remark that a constant-size reliable memory may
be even not sufficient for a recursive algorithm to work properly: parameters, lo-
cal variables, return addresses in the recursion stack may indeed get corrupted.
This is however not a problem if the recursion can be simulated by an iterative
implementation using only a constant number of variables.

With respect to sorting, we proved that any resilient O(n log n) comparison-
based deterministic algorithm can tolerate the corruption of at most O(

√
n log n)

keys. This lower bound implies that, if we have to sort in the presence of
ω(

√
n log n) memory faults, then we should be prepared to spend more than

O(n log n) time. We also designed a resilient O(n log n) comparison-based sort-
ing algorithm that tolerates O((n log n)1/3) memory faults. The algorithm is
based on a bottom-up iterative implementation of mergesort and hinges upon
the combination of two merging subroutines with quite different characteristics.
The first subroutine requires optimal linear time, but it may be unable to sort
correctly all the uncorrupted keys (i.e., some correct elements may be in a wrong
position in the output sequence). Such errors are recovered by using the second
subroutine: this procedure may require more than linear time in general, but
is especially efficient when applied to unbalanced sequences. The crux of the
approach is therefore to make the disorder in the sequence returned by the first
subroutine proportional to the number of memory faults that happened during
its execution: this guarantees that the shorter sequence received as input by the
second subroutine will have a length proportional to the actual number of cor-
rupted keys, thus limiting the total running time. The gap between the upper
and lower bounds for resilient sorting has been recently closed in [13], by design-
ing an optimal resilient comparison-based sorting algorithm that can tolerate
up to O(

√
n log n) faults in O(n log n) time. In [13] we also prove that, in the

special case of integer sorting, there is a randomized algorithm that can tolerate

Designing Reliable Algorithms in Unreliable Memories 7

up to O(
√

n) faults in expected linear time. No lower bound is known up to this
time for resilient integer sorting.

With respect to searching, in [14] we designed an O(log n) time searching al-
gorithm that can tolerate up to O(

√
log n) memory faults and we proved that any

O(log n) time deterministic searching algorithm can tolerate at most O(log n)
memory faults. The lower bound has been extended to randomized algorithms
in [13], where we also exhibit an optimal randomized searching algorithm and
an almost optimal deterministic searching algorithm that can tolerate up to
O((log n)1−ε) memory faults in O(log n) worst-case time, for any small positive
constant ε.

References

1. J. A. Aslam and A. Dhagat. Searching in the presence of linearly bounded errors.
Proc. 23rd ACM Symp. on Theory of Computing (STOC’91), 486–493, 1991.

2. S. Assaf and E. Upfal. Fault-tolerant sorting networks. SIAM J. Discrete Math.,
4(4), 472–480, 1991.

3. Y. Aumann and M. A. Bender. Fault-tolerant data structures. Proc. 37th IEEE
Symp. on Foundations of Computer Science (FOCS’96), 580–589, 1996.

4. J. Blömer and J.-P. Seifert. Fault based cryptanalysis of the Advanced Encryption
Standard (AES). Proc. 7th International Conference on Financial Cryptography
(FC’03), LNCS 2742, 162–181, 2003.

5. M. Blum, W. Evans, P. Gemmell, S. Kannan and M. Naor. Checking the correct-
ness of memories. Proc. 32th IEEE Symp. on Foundations of Computer Science
(FOCS’91), 1991.

6. R. S. Borgstrom and S. Rao Kosaraju. Comparison based search in the presence
of errors. Proc. 25th ACM Symp. on Theory of Computing (STOC’93), 130–136,
1993.

7. P. M. Chen, E. L. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-
performance, reliable secondary storage. ACM Computing Surveys, 26(2), 145–185,
1994.

8. B. S. Chlebus, A. Gambin and P. Indyk. PRAM computations resilient to memory
faults. Proc. 2nd Annual European Symp. on Algorithms (ESA’94), LNCS 855,
401–412, 1994.

9. B. S. Chlebus, A. Gambin and P. Indyk. Shared-memory simulations on a faulty-
memory DMM. Proc. 23rd International Colloquium on Automata, Languages and
Programming (ICALP’96), 586–597, 1996.

10. B. S. Chlebus, L. Gasieniec and A. Pelc. Deterministic computations on a PRAM
with static processor and memory faults. Fundamenta Informaticae, 55(3-4), 285–
306, 2003.

11. A. Dhagat, P. Gacs, and P. Winkler. On playing “twenty questions” with a liar.
Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms (SODA’92), 16–22, 1992.

12. U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information.
SIAM Journal on Computing, 23, 1001–1018, 1994.

13. I. Finocchi, F. Grandoni and G. F. Italiano. Optimal resilient sorting and searching
in the presence of memory faults. Manuscript, 2005.

14. I. Finocchi and G. F. Italiano. Sorting and searching in the presence of memory
faults (without redundancy). Proc. 36th ACM Symposium on Theory of Computing
(STOC’04), 101–110, 2004.

8 I. Finocchi, F. Grandoni, and G.F. Italiano

15. S. Hamdioui, Z. Al-Ars, J. Van de Goor, and M. Rodgers. Dynamic faults in
Random-Access-Memories: Concept, faults models and tests. Journal of Electronic
Testing: Theory and Applications, 19, 195–205, 2003.

16. M. Henzinger. The past, present and future of Web Search Engines. Invited talk.
31st Int. Coll. Automata, Languages and Programming, Turku, Finland, July 12–16
2004.

17. P. Indyk. On word-level parallelism in fault-tolerant computing. Proc. 13th Annual
Symp. on Theoretical Aspects of Computer Science (STACS’96), 193–204, 1996.

18. R. H. Katz, D. A. Patterson and G. A. Gibson, Disk system architectures for high
performance computing, Proceedings of the IEEE, 77(12), 1842–1858, 1989.

19. D. J. Kleitman, A. R. Meyer, R. L. Rivest, J. Spencer, and K. Winklmann. Coping
with errors in binary search procedures. Journal of Computer and System Sciences,
20:396–404, 1980.

20. K. B. Lakshmanan, B. Ravikumar, and K. Ganesan. Coping with erroneous infor-
mation while sorting. IEEE Trans. on Computers, 40(9):1081–1084, 1991.

21. T. Leighton and Y. Ma. Tight bounds on the size of fault-tolerant merging and
sorting networks with destructive faults. SIAM Journal on Computing, 29(1):258–
273, 1999.

22. T. Leighton, Y. Ma and C. G. Plaxton. Breaking the Θ(n log2 n) barrier for sorting
with faults. Journal of Computer and System Sciences, 54:265–304, 1997.

23. T. C. May and M. H. Woods. Alpha-Particle-Induced Soft Errors In Dynamic
Memories. IEEE Trans. Elect. Dev., 26(2), 1979.

24. S. Muthukrishnan. On optimal strategies for searching in the presence of errors.
Proc. 5th ACM-SIAM Symp. on Discrete Algorithms (SODA’94), 680–689, 1994.

25. A. Pelc. Searching with known error probability. Theoretical Computer Science, 63,
185–202, 1989.

26. A. Pelc. Searching games with errors: Fifty years of coping with liars. Theoretical
Computer Science, 270, 71–109, 2002.

27. B. Ravikumar. A fault-tolerant merge sorting algorithm. Proc. 8th Annual Int.
Conf. on Computing and Combinatorics (COCOON’02), LNCS 2387, 440–447,
2002.

28. A. Rényi. A diary on information theory, J. Wiley and Sons, 1994. Original pub-
lication: Napló az információelméletröl, Gondolat, Budapest, 1976.

29. S. Skorobogatov and R. Anderson. Optical fault induction attacks. Proc. 4th Inter-
national Workshop on Cryptographic Hardware and Embedded Systems (CHES’02),
LNCS 2523, 2–12, 2002.

30. Tezzaron Semiconductor. Soft errors in electronic memory - a white paper, URL:
http://www.tezzaron.com/about/papers/Papers.htm, January 2004.

31. S. M. Ulam. Adventures of a mathematician. Scribners (New York), 1977.
32. A.J. Van de Goor. Testing semiconductor memories: Theory and practice, ComTex

Publishing, Gouda, The Netherlands, 1998.
33. J. Von Neumann, Probabilistic logics and the synthesis of reliable organisms from

unreliable components. In Automata Studies, C. Shannon and J. McCarty eds.,
Princeton University Press, 43–98, 1956.

34. A. C. Yao and F. F. Yao. On fault-tolerant networks for sorting. SIAM Journal on
Computing, 14, 120–128, 1985.

From Balanced Graph Partitioning to Balanced
Metric Labeling

Joseph Naor

Computer Science Department, Technion, Haifa 32000, Israel and Microsoft Research,
One Microsoft Way, Redmond, WA 98052

naor@cs.technion.ac.il

Abstract. The Metric Labeling problem is an elegant and powerful
mathematical model capturing a wide range of classification problems
that arise in computer vision and related fields. In a typical classifica-
tion problem, one wishes to assign labels to a set of objects to optimize
some measure of the quality of the labeling. The metric labeling prob-
lem captures a broad range of classification problems where the quality
of a labeling depends on the pairwise relations between the underlying
set of objects, as described by a weighted graph. Additionally, a metric
distance function on the labels is defined, and for each label and each
vertex, an assignment cost is given. The goal is to find a minimum-cost
assignment of the vertices to the labels. The cost of the solution consists
of two parts: the assignment costs of the vertices and the separation costs
of the edges (each edge pays its weight times the distance between the
two labels to which its endpoints are assigned). Metric labeling has many
applications as well as rich connections to some well known problems in
combinatorial optimization.

The balanced metric labeling problem has an additional constraint re-
quiring that at most � vertices can be assigned to each label, i.e., labels
have capacity. We focus on the case where the given metric is uniform and
note that it already captures various well-known balanced graph parti-
tioning problems. We discuss (pseudo) approximation algorithms for the
balanced metric labeling problem, and focus on several important tech-
niques used for obtaining the algorithms. Spreading metrics have proved
to be very useful for balanced graph partitioning and our starting point
for balanced metric labeling is a linear programming formulation that
combines an embedding of the graph in a simplex together with spread-
ing metrics and additional constraints that strengthen the formulation.
The approximation algorithm is based on a novel randomized rounding
that uses both a randomized metric decomposition technique and a ran-
domized label assignment technique. At the heart of our approach is the
fact that only limited dependency is created between the labels assigned
to different vertices, allowing us to bound the expected cost of the solu-
tion and the number of vertices assigned to each label, simultaneously.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, p. 9, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fearful Symmetries: Quantum Computing,
Factoring, and Graph Isomorphism

Cristopher Moore

Computer Science Department and Department of Physics and Astronomy,
University of New Mexico, Albuquerque NM 87131

moore@cs.unm.edu

Historically, the idea of symmetry has played a much greater role in physics
than in computer science. While computer scientists typically work against an
adversary, physicists are brought up to believe in the benevolence of nature, and
to believe that the answers to natural questions are often as simple—and as
symmetric—as they possibly could be. Indeed, symmetry is intimately linked to
every branch of physics, from classical conservation laws to elementary particles
to special and general relativity.

Recently, symmetry has appeared in a new branch of computer science,
namely quantum computing. The mathematical embodiment of symmetry is
a group, and Shor’s celebrated factoring algorithm works by looking for symme-
tries in a particular function defined on the multiplication group Z∗

n of integers
mod n. Similarly, if we could find symmetries in functions on the group Sn of
permutations of n objects, we could solve the Graph Isomorphism problem.

Without relying on any of the physics behind quantum computing, I will
briefly describe Shor’s algorithm, and how it uses the quantum Fourier transform
to find periodicities in a function. I will then explain how both factoring and
Graph Isomorphism can be reduced to the Hidden Subgroup Problem, and what
it means to take the Fourier transform of a function on a nonabelian group (that
is, a group where ab and ba are not necessarily the same) such as Sn. This leads
us to the rich and beautiful world of representation theory, which has been used
to prove that random walks on groups—such as shuffling a pack of cards—are
rapidly mixing.

After we carry out the quantum Fourier transform, there are various types
of measurements we can perform: weak measurement, where we learn just the
“name” of a representation; strong measurement, where we observe a vector
inside this representation; and even entangled measurements over the tensor
product of states resulting from multiple queries. An enormous amount of
progress has been made over the past year on how much computational power
these types of measurement give us, and which cases of the Hidden Subgroup
Problem they allow us to solve. Much work remains to be done, and I will con-
clude by trying to convey the flavor of this frontier in quantum algorithms.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, p. 10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Exploring an Unknown Graph Efficiently�

Rudolf Fleischer1 and Gerhard Trippen2

1 Fudan University, Shanghai Key Laboratory of Intelligent Information Processing,
Department of Computer Science and Engineering, Shanghai, China

fleischer@acm.org
2 The Hong Kong University of Science and Technology, Hong Kong,

Department of Computer Science
trippen@cs.ust.hk

Abstract. We study the problem of exploring an unknown, strongly
connected directed graph. Starting at some node of the graph, we must
visit every edge and every node at least once. The goal is to minimize
the number of edge traversals. It is known that the competitive ratio
of online algorithms for this problem depends on the deficiency d of
the graph, which is the minimum number of edges that must be added
to make the graph Eulerian. We present the first deterministic online
exploration algorithm whose competitive ratio is polynomial in d (it is
O(d8)).

1 Introduction

Exploring an unknown environment is a fundamental problem in online robotics.
Exploration means to draw a complete map of the environment. Since all de-
cisions where to proceed with the exploration are based on local (or partial)
information, the exploration problem falls naturally into the class of online algo-
rithms [7,12]. The quality of an online algorithm is measured by the competitive
ratio which is the worst-case quotient of the length of the path traveled by the
online algorithm and the length of the shortest path that can visit the entire
environment.

The exploration problem has been studied for various restrictions on the
online algorithm (power of local sensors, fuel consumption, etc.) and many types
of environment: directed graphs with a single robot [1,10,16] or with cooperating
robots [4], planar graphs when we only need to visit all nodes [15], undirected
graphs when we must regularly return to the starting point [2], and polygonal
environments with obstacles [9] or without obstacles [14]. Similarly, the search
problem has been studied for some of these environments [3,5,6,18].

In this paper, we study the online exploration problem for strongly connected
directed graphs. We denote a graph by G = (V, E), where V is the set of n nodes
� The work described in this paper was partially supported by the RGC/HKUST

Direct Allocation Grant DAG03/04.EG05 and by a grant from the German Academic
Exchange Service and the Research Grants Council of Hong Kong Joint Research
Scheme (Project No. G-HK024/02-II).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 11–22, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

12 R. Fleischer and G. Trippen

and E is the set of m edges. The deficiency d of the graph is is the minimum
number of edges that must be added to make the graph Eulerian. A node with
more outgoing than incoming edges is a source, and a node with more incoming
than outgoing edges is a sink.

Initially, we only know the starting node s. We do not know n, m, d, or any
part of G except the outdegree of s. We can traverse edges only from tail to
head. We say an edge (node) becomes visited when we traverse (discover) it for
the first time. At any time, we know all the visited nodes and edges, and for any
visited node we know the number of unvisited edges leaving the node, but we
do not know the endpoints of the unvisited edges.

The cost of an exploration tour is defined as the number of traversed edges.
The Chinese Postman Problem describes the offline version of the graph explo-
ration problem [11]. For either undirected or directed graphs the problem can be
solved in polynomial time. For mixed graphs with both undirected and directed
edges the problem becomes NP-complete [17]. We always need at least m edge
traversals to visit all edges (and nodes) of a graph, and there exist graphs with
deficiency d that require Ω(dm) edge traversals [1].

In the online problem, we may have the choice of leaving the current node
on a visited or an unvisited edge. If there is no outgoing unvisited edge, we say
we are stuck at the current node.

For undirected graphs, the online exploration problem can easily be solved by
DFS, which is optimally 2-competitive [10]. The problem becomes more difficult
for strongly connected directed graphs. Deng and Papadimitriou [10] gave an
online exploration algorithm that may need dO(d)m edge traversals. They also
gave an optimal 4-competitive algorithm for the special case d = 1, and they
conjectured that in general there might be a poly(d)-competitive online explo-
ration algorithm. For large d, i.e., d = Ω(nc) for some c > 0, this is true because
DFS never uses more than O(min{nm, m+dn2}) edge traversals [16] (as actually
do most natural exploration algorithms [1]). The best known lower bounds are
Ω(d2m) edge traversals for deterministic and Ω(d2m/ log d) edge traversals for
randomized online algorithms [10].

Albers and Henzinger [1] gave a first improvement to the Deng and Papadim-
itriou algorithm. They presented the Balance algorithm which can explore a
graph of deficiency d with dO(log d)m edge traversals. They also showed that this
bound is tight for their algorithm. To show the difficulty of the problem they also
gave lower bounds of 2Ω(d)m edge traversals for several natural exploration algo-
rithms as Greedy, Depth-First, and Breadth-First. For Generalized Greedy
they gave a lower bound of dΩ(d)m edge traversals.

No randomized online graph exploration algorithm has ever been analyzed,
but in an earlier paper we presented an experimental study of all known deter-
ministic and randomized algorithms [13]. The experiments basically show that
on random graphs the simple greedy strategies work very well, in particular
much better than the deterministic algorithms with better worst-case bounds.

In this paper we give the first poly(d)-competitive online graph exploration al-
gorithm. The main idea of our algorithm is to finish chains (i.e., newly discovered

Exploring an Unknown Graph Efficiently 13

paths) in a breadth-first-search manner, and to recursively split off subproblems
that can be dealt with independently because they contain new cycles which
we can use to relocate without using other edges. We prove that our algorithm
needs at most O(d8m) edge traversals.

This paper is organized as follows. In Section 2, we review some of the old
results which we use for our new algorithm in Section 3. We analyze the com-
petitive ratio of the algorithm in Section 4, and we close with some remarks in
Section 5.

2 Basics

If a node has no unvisited outgoing edges, we call it finished. Similarly, a path
is finished if it contains no unfinished nodes. Note that we must traverse any
path at least twice. The first time when we discover it, and then a second time
to finish all nodes on the path. But some paths must be traversed more often.
If we get stuck while exploring some new path or after just finishing a path, we
must relocate to another unfinished path. Bounding these relocation costs is the
main difficulty in the design of an efficient online exploration algorithm.

A graph is Eulerian if there exists a round trip visiting each edge exactly
once. The simple greedy algorithm used for testing whether a graph is Eulerian
[8, Problem 22-3] will explore any unknown Eulerian graph with at most 2m edge
traversals. In fact, this algorithm is optimal [10]. We simply take an unvisited
edge whenever possible. If we get stuck (i.e., reach a node with no outgoing
unvisited edges), we consider the closed walk (it must be a cycle) just visited and
retrace it, stopping at nodes that have unvisited edges, applying this algorithm
recursively from each such node. This algorithm has no relocation costs (because
we never get stuck). In fact, it is easy to see that no edge will be traversed more
than twice. The reason for this is that the recursive explorations always take
place in completely new parts of the graph. Our new algorithm for arbitrary
graphs will use a similar feature.

For non-Eulerian graphs, when exploring a new path the start node will
become a new source of the currently known subgraph and the node where we
get stuck is either a newly discovered sink or a source of the currently known
subgraph (which therefore is not a source of G). Therefore, at any time the
explored subgraph has an equal number of sources and sinks (counting multiple
sources and sinks with their respective multiplicity). We maintain a matching
of the sources and sinks in the form of tokens [1]. Initially, each sink of G has a
token uniquely describing the sink (for example, we could use numbers 1, . . . , d,
because the number of tokens must equal the deficiency of G [1]). We can only
get stuck when closing a cycle (as in the Eulerian case), or at a node with a
token. In the former case, we proceed as in the Eulerian greedy algorithm. In
the latter case, we say we trigger the token and we move it to the start node
of the path we just followed before getting stuck (which is a new sink of the
explored subgraph).

The concatenation of all paths triggering a token τ , which is a path from the
current token node to its corresponding sink, is denoted by Pτ . Initially, Pτ is

14 R. Fleischer and G. Trippen

an empty path. Similarly, τP denotes the token at the start node of a path P (if
there is a token). We note that tokens are not invariably attached to a certain
path. Instead, we will often rearrange tokens and their paths.

Although G is strongly connected, it is unavoidable that in the beginning our
explored subgraph is not strongly connected. Albers and Henzinger described in
[1, Section 3.3] a general technique that allows any exploration algorithm to as-
sume w.l.o.g. that at any time the explored subgraph of G is strongly connected.
In particular in the beginning we know an initial cycle C0 containing s. For this
assumption, we have to pay a penalty of a factor of d2 in the competitive ratio.
Basically, the algorithm must be restarted d times at a different start node, each
time with a penalty factor of d for not knowing a strongly connected subgraph,
before we can guarantee that our known subgraph is strongly connected. We will
also make this assumption. To be more precise, we assume that in the beginning
we know an initial cycle C0 containing the start node s, and we can reach s from
any token that we may discover.

3 The Algorithm

3.1 High-Level Description

We divide the graph into clusters. Intuitively, a cluster is a strongly connected
subgraph of G that can be explored independently of the rest of G (although
clusters created at different stages of the algorithm may overlap). If a cluster L
was created while we were working on cluster K, then we say L is a subcluster of
K, and L is a child of K in the cluster tree S. Each cluster K has an initial cycle
CK . The root cluster K0 of S corresponds to the initial cycle C0 containing the
start node s. Fig. 1 shows a generic partition of a graph into recursive subclusters.

G

K1

K2

K3K1,1 K1,2

C0

Fig. 1. A generic partition of a graph into recursive subclusters

From [1] we borrow the concept of a token tree. Actually, we need a token
forest. For each cluster K there is a token tree TK , with the initial cycle CK of
the cluster as root (this node does not correspond to a token). We denote the
top-level token tree corresponding to K0 by T0. For each token there will be one
node in one of the token trees of the token forest. Also, for each cluster there
will be one node, called a cluster node, in one token tree.

Exploring an Unknown Graph Efficiently 15

When we are currently in the process of finishing a path Pτ and trigger
another token π in the same token tree, then we say τ becomes the owner of π.
The token trees represent this ownership relation: a parent token is the owner
of all its child tokens. The children are always ordered from left to right in the
order in which they appear on the parent token path. If π belongs to a different
token tree than τ , then π will become the child of some cluster node containing
τ , but the token will as usually move to vτ , the node where we started exploring
the new path that ended in π.

If π is a predecessor of τ in the token tree we cannot simply change the own-
ership. Instead, we create a new subcluster L whose initial cycle CL intuitively
spans the path from π to τ in the token tree. If CL uses the initial part of a
token path Pγ (i.e., γ is lying on CL) at the time L is created as a subcluster of
K (there will always be at least one such token), γ becomes an active member
of L and its corresponding token tree node will move from TK to TL. In K, γ
will become an inactive member. Also, TK will get a new cluster node represent-
ing L containing all the new active member tokens of L. Thus, a token can be
member of several clusters, but only the most recently created of these clusters
will contain a node for the token in its token tree. Initially, all tokens are active
members of the initial cluster K0.

The number of tokens in a cluster node is the weight of this node. A cluster
node is always connected to its parent by an edge of length equal to its weight.

We will maintain the invariant that any token path Pτ always consists of an
unfinished subpath followed by a finished subpath, where either subpath could
be empty. Since the finished subpath is not relevant for our algorithm or the
analysis, we will from now on use Pτ to denote only the unfinished subpath
which we call the token path of τ . We say a token is finished if its token path is
empty. When we start finishing a path, called the current chain, we always finish
it completely before doing something else, i.e., if we explore a new path and get
stuck we immediately return to the current chain and continue finishing it. We
say a cluster is finished if all nodes of its token tree are finished, otherwise it is
active.

The clusters will be processed recursively, i.e., if a new cluster L is created
while we are working in cluster K we will immediately turn to L after finishing
the current chain (in K) and only resume the work in K after L has been finished.
Thus, in S exactly the clusters on the rightmost path down from the root are
active, all other clusters are finished.

When we start working on a new cluster K, we process its token tree TK BFS-
like. Usually, the initial cycle (i.e., the root of TK) will be partially unfinished
when we enter K, so this is usually the first chain to finish. When the next token
in TK (according to BFS) is τ and Pτ is unfinished, Pτ becomes the current chain
that we are going to finish next. Then we continue with the next token to the
right, or the leftmost token on the next lower level if τ was the rightmost token
on its level. TK will dynamically grow while we are working on K, but only
below the level of the current chain.

16 R. Fleischer and G. Trippen

We classify the edges of a cluster as native, adopted, or inherited. If a cluster
K is created, it inherits the edges on the initial cycle CK from its parent cluster.
An edge is native to cluster K if it was first visited while traversing a new path
that triggered a token whose token tree node was then moved to TK (note that
we can trigger tokens in a cluster K while working in some other cluster). Only
active clusters can acquire new native edges, and edges are always finished while
we are working in the cluster to which they are native. If a cluster is finished,
all its native edges are adopted by its parent cluster.

A token π is a forefather of a token τ if there exists a cluster L such that π
and τ are members of L, and either π or a cluster node containing π lies on the
path from the root to τ or a cluster node containing τ . Note that an ordinary
ancestor of a node in a token tree is also a forefather.

3.2 Finishing a Chain

Assume we are currently working in cluster K. To finish the current chain C = Pτ

we relocate to the node currently holding the token τ and then move along C.
Whenever we reach an unfinished node v we explore a new path P by repeatedly
choosing arbitrary unvisited outgoing edges until we get stuck at some node w.
We distinguish three cases.

(1) If v = w, then we cut C at v, add P to C (see Fig. 2), and continue finishing C
at v, first finishing the subpath P . This is like the greedy Eulerian algorithm.

C

P

v
C

P

v v
⇒

τ τ

Fig. 2. Case (1): we found a loop P in C, and we extend C by P

(2) If v �= w and w holds a token π which is not a forefather of τ (if w holds
several such tokens, we choose an arbitrary one), we extend the token path
Pπ by prepending the new path P and moving π to v (see Fig. 3).

For the update of the token trees we have to consider a few cases. Let
L be the lowest ancestor (in S) of the current cluster K in which both π
and τ are members. If τ is an active member of L, let zτ be the node τ in
L; otherwise, let zτ be the cluster node in L containing τ . If π is an active
member of L, then we move in TL the node π together with its subtree as
a new child below zτ ; otherwise, let zπ be the cluster node in L containing
π corresponding to some subcluster Lπ. We destroy Lπ by rearranging the
tokens and token paths in Lπ such that π becomes the root of the token tree
of Lπ (instead of the initial cycle). Then we can move this new token tree as
a new child below zτ . All native edges of Lπ are adopted by L.

In all cases, if zτ is a cluster node, we also keep as additional information
in node π its true ownership (in case the subcluster zτ needs to be destroyed
later, see below).

Exploring an Unknown Graph Efficiently 17

C

P

v

C ′

Pπ

w
π

C

v

C ′

Pπ

w

w

π

τ

τ

Fig. 3. Case (2): we extend the token path Pπ starting in w by prepending P to Pπ.
The token π moves from w to v, and C becomes the new owner of π.

vπ

D

D

TLπ

πP

τ1τ2

π

T

τ4 τ7

1

τ3

3

π

2

τ5

vπ
π

P

1

3

2

4

5

5

6

6

7

7

τ4

τ1τ2

τ6 τ3

τ5

4

CL

TL

zτ

zπ

τ6 τ7

CL

TL

zτ

π

τ4 τ7 τ1τ2

τ6 τ3

τ5

Fig. 4. How to destroy a cluster. Top: The numbers 1, . . . , 7 denote the tokens
τ1, . . . , τ7. Since τ6 and τ7 correspond to paths leading outside Lπ, they are not members
of Lπ; instead, they are members of L and children of the cluster node zπ (which
contains π) in some ancestor cluster L. A new path P from somewhere outside Lπ

triggers π in Lπ. vπ is the position of π at the time Lπ was created with initial cycle
D (in bold). Bottom: π has moved to the start point of P . Lπ was rearranged to
yield a new tree T with root π. Note that this tree now contains the tokens τ6 and τ7.
Finally, T becomes a new child of zτ in TL.

The crucial observation when destroying Lπ is that the token path Pπ was
crossing the initial cycle D of Lπ in some node vπ at the time Lπ was created.
But then we can include the cycle D into Pπ and create a new token tree T
for Lπ with root π by cutting off the subtree rooted at π, moving all children
of D as children below π, and deleting the node D. We can do this because
there exists a path only using edges of Lπ (and its recursive subclusters)
from D to every member of Lπ. If zπ happens to have children, we must also

18 R. Fleischer and G. Trippen

TK

τ2

π

CK

τ5

τ

τ3

τ4

C1

C2

C5

P

τ

5

1
w

v

C3

C4

3
4

z

π

CL

TL

τ5

TK

KL

CK

τπ

4

τ4

τ3

τ2

C0

2

C6

6

τ1

τ6

C1

C2

C5

Cτ

5

1
w

v

C3

C4

3
4

z

π

C0

2

C6

6

τ1 τ6

C

P

Fig. 5. Creating a cluster. Top: The new path P starting at v triggers π, which is
an ancestor of τ in TK . Bottom: We delete π and τ from TK and create a subcluster
L with initial cycle D = (w, τ2, τ5, z, v, w) (in bold). The cluster node KL in TK has
weight 4.

include these children in T by adding them as children of their owners. See
Fig. 4 for an example.

Then we relocate to v and continue finishing the current chain C.
(3) If v �= w and w holds a token π which is a forefather of τ (if w holds several

such tokens, we choose an arbitrary one), we cannot move the subtree rooted
at π below τ . Instead, we either create a new cluster or extend the current
cluster. Note that it can happen that π = τ .

We distinguish a few cases. If π is an ancestor of τ in TK , then we just
closed a cycle D containing v and w. The part of D from w to v consists
of edges that are initial parts of the token paths of all predecessors of τ up
to π, see Fig. 5. We shorten all these token paths by moving the respective
tokens along D to the node that originally held the next token. Thus, all
these token paths now start on D. We create a new subcluster L with initial
cycle CL = D. All the member tokens of L become children of D. Note that
these tokens lie on a path from π to τ in TK . We cut off the subtree rooted at
π and replace it by a new cluster node KL containing the member tokens of
L. The edge connecting this new node to TK has length equal to its weight
(i.e., the number of member tokens of L). Thus, it is on the same level as
previously τ . If any of the member tokens of L had children in TK that did
not become member of L, we move these subtrees as children below KL.
The reason for this is that these subtrees correspond to token paths that do
not end in L, so we should finish these paths within K and not within L
(otherwise, relocation might become too expensive).

Exploring an Unknown Graph Efficiently 19

The description above assumed that none of the nodes in TK between π
and τ are cluster nodes. If there are cluster nodes on this path, we must first
destroy these clusters (similarly as in case (2)) before we can create the new
subcluster. Fig. 6 shows an example.

CM

TM

C3

C6

Cτ

w

v

C4

C5

4
5

z

TK

KM

CK

τπ

7

τ5

τ4

C0

2

C7

8

7
C8

C1
C3

C6

C

τ

6
3

π

w

v

C4

C5

4
5

z

TK

KL

CK

4

τ5

τ4

C0

2

C7
8

7
C8

τ0

τ

τ8

τ2 τ8τ7

⇒

C2

π

C1
C2

1

1

6
3

τ1

τ3

τ6

τ1

Fig. 6. Creating a cluster where the initial cycle contains a cluster node KL of weight
4. After destroying L, we can create a new cluster M of weight 7.

Even more complicated is the case if π is contained in a cluster node in
TK , or if π is an active member of a cluster higher up in the recursion than
the current cluster. In the latter case we actually extend the current cluster
by including the forefather tokens up to π. Details of these constructions are
left to the full version of this paper.

Before we start working recursively on the new subcluster L we must first
finish the current chain C (in the current cluster K), i.e., we relocate to v.
If we trigger a token that is a forefather of KD or a token contained in KD,
we must extend L, see Fig. 7 for an example of the latter case. In that case,
the chain that just triggered the token will be extended so that it starts on
CL, i.e., it will now contain some part of C. Note that these edges must have
been recently discovered in K, i.e., originally they have been native to K,
but now they become native to L instead of K. This is equivalent to what
would happen if we discovered this new chain Pτ2 while finishing D in L.

20 R. Fleischer and G. Trippen

D

CL

TL

τ1 τ2

1

τ3
3

2

τ4

C

C2

4

C3

C1

D

1

3

2

C

C5

C2

4
5

C3

C1

CL

TL

τ1 τ2 τ3

τ4

CK

TK

τ5

KL

CK

TK

τ5

KL

Fig. 7. Top: While finishing C (with token τ4), we just created a subcluster L with
initial chain D (in bold). Bottom: Before working on L we must finish C, where we
trigger τ5 and then τ2 on D. We switch τ2 and τ4, making the subpath of C between
the two nodes part of Pτ2 and its edges native to L. Then we continue finishing C

which now starts at τ4.

4 The Analysis

To analyze the total relocation cost, we count how often an edge can be used in
a relocation.

Lemma 1. At any time, any token tree TK has at most d levels below the root,
and each level can contain at most d nodes. ��

Lemma 2. If we are currently working at a node on level h, then all nodes above
level h are finished. In particular, we never move an unfinished node onto level
h or above. ��

Lemma 3. A cluster can have at most O(d3) subclusters.

Proof. We finish at most d2 chains by Lemmas 1 and 2. When we have finished
a chain, this chain may have induced at most one subcluster. This subcluster
can be extended at most d − 1 times. ��

Lemma 4. A cluster can only inherit native or adopted edges from its parent
cluster.

Proof. Edges on the initial cycle are inherited from the parent, but never inher-
ited by a subcluster. ��

Lemma 5. An edge can be native, inherited, or adopted in at most O(d3) clus-
ters.

Exploring an Unknown Graph Efficiently 21

Proof. An edge e can be native to only one cluster. e can only be adopted if its
cluster is finished or destroyed. If all member tokens of a cluster K move into a
subcluster L, K can never be destroyed. As soon as L is finished or destroyed, K
is also finished, i.e., K adopts L’s edges but it will not use them for relocations
in K. Thus, each time e is adopted by an active cluster, this new cluster must
have more member tokens than the previous one, i.e., e can be adopted by at
most d active clusters higher up in the recursion tree. In each of these d clusters,
e can be inherited by at most O(d2) subclusters because an edge can only appear
in one subcluster on each of the d levels of the token tree, which then may be
extended d−1 times. It cannot be inherited a second time by any sub-subclusters
by Lemma 4. ��
Lemma 6. Not counting relocations within subclusters, at most O(d3) reloca-
tions suffice to finish a cluster.

Proof. We finish the token tree using BFS. We have d2 relocations after having
finished a chain. While we are finishing a chain, we may trigger at most d different
tokens. It may happen that the same token is triggered several times in which
case it moves along the current chain. The cost of all these relocations is the
same as if we had only triggered the token once, namely at the last instance.
Thus, we have at most d3 relocations due to getting stuck after exploring a new
path. By Lemma 3, we must also relocate to and from O(d3) subclusters. ��
Lemma 7. Each edge is used in at most O(d6) relocations.

Proof. This follows basically from Lemmas 5 and 6, except for those relocations
where we trigger a token outside of the current cluster. In that case, we must
follow some path down the cluster tree to relocate to the current chain. However,
this happens only once for each token because afterwards the token is in the
current cluster and we can relocate locally (and these costs are already accounted
for). All the relocations then form an inorder traversal of the cluster tree, i.e.,
each edge in each cluster is used only a constant number of times. Since an edge
can appear in O(d3) clusters by Lemma 5 and we have d tokens, each edge is
used at most O(d4) times for these relocations. ��
Theorem 1. Our algorithm is O(d8)-competitive.

Proof. The assumption that we always know a strongly connected explored sub-
graph costs us another factor of O(d2) in the compeittive ratio [1]. ��

5 Conclusions

We presented the first poly(d)-competitive algorithm for exploring strongly con-
nected digraphs. The bound of O(d8) is not too good and can probably be
improved. For example, the d2-penalty for the start-up phase seems too high be-
cause some of the costs are already accounted for in other parts of our analysis.
Lemma 5 seems overly pessimistic. If a cluster is extended, it does not really

22 R. Fleischer and G. Trippen

incur additional costs for an edge, we could just make the cluster larger and
continue as if nothing had happened. Also, destroying a cluster when a member
gets triggered seems to be unnatural.

References

1. S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM Journal
on Computing, 29(4):1164–1188, 2000.

2. B. Awerbuch, M. Betke, R. Rivest, and M. Singh. Piecemeal graph exploration by
a mobile robot. Information and Computation, 152(2):155–172, 1999.

3. E. Bar-Eli, P. Berman, A. Fiat, and P. Yan. Online navigation in a room. Journal
of Algorithms, 17(3):319–341, 1994.

4. M. A. Bender and D. K. Slonim. The power of team exploration: Two robots
can learn unlabeled directed graphs. In Proceedings of the 35th Symposium on
Foundations of Computer Science (FOCS’94), pages 75–85, 1994.

5. P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosén, and M. Saks. Randomized
robot navigation algorithms. In Proceedings of the 7th ACM-SIAM Symposium on
Discrete Algorithms (SODA’96), pages 75–84, 1996.

6. A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain.
SIAM Journal on Computing, 26(1):110–137, 1997.

7. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge, England, 1998.

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, Cambridge, MA, and London, England, 2. edition, 2001.

9. X. Deng, T. Kameda, and C. H. Papadimitriou. How to learn an unknown envi-
ronment. Journal of the ACM, 45:215–245, 1998.

10. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal of Graph
Theory, 32:265–297, 1999.

11. J. Edmonds and E. L. Johnson. Matching, Euler tours and the Chinese postman.
Mathematical Programming, 5:88–124, 1973.

12. A. Fiat and G. Woeginger, editors. Online Algorithms — The State of the Art.
Springer Lecture Notes in Computer Science 1442. Springer-Verlag, Heidelberg,
1998.

13. R. Fleischer and G. Trippen. Experimental studies of graph traversal algorithms.
In Proceedings of the 2nd International Workshop on Experimental and Efficient
Algorithms (WEA’03). Springer Lecture Notes in Computer Science 2647, pages
120–133, 2003.

14. F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration problem.
SIAM Journal on Computing, 31(2):577–600, 2001.

15. B. Kalyanasundaram and K. R. Pruhs. Constructing competitive tours from local
information. Theoretical Computer Science, 130:125–138, 1994.

16. S. Kwek. On a simple depth-first search strategy for exploring unknown graphs. In
Proceedings of the 5th Workshop on Algorithms and Data Structures (WADS’97).
Springer Lecture Notes in Computer Science 1272, pages 345–353, 1997.

17. C. H. Papadimitriou. On the complexity of edge traversing. Journal of the ACM,
23(3):544–554, 1976.

18. C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical
Computer Science, 84:127–150, 1991.

Online Routing in Faulty Meshes with
Sub-linear Comparative Time and Traffic Ratio

Stefan Rührup ∗ and Christian Schindelhauer ∗∗

Heinz Nixdorf Institute, University of Paderborn, Germany
{sr, schindel}@uni-paderborn.de

Abstract. We consider the problem of routing a message in a mesh
network with faulty nodes. The number and positions of faulty nodes is
unknown. It is known that a flooding strategy like expanding ring search
can route a message in the minimum number of steps h while it causes a
traffic (i.e. the total number of messages) of O(h2). For optimizing traffic
a single-path strategy is optimal producing traffic O(p + h), where p is
the perimeter length of the barriers formed by the faulty nodes. There-
fore, we define the comparative traffic ratio as a quotient over p + h
and the competitive time ratio as a quotient over h. Optimal algorithms
with constant ratios are known for time and traffic, but not for both. We
are interested in optimizing both parameters and define the combined
comparative ratio as the maximum of competitive time ratio and com-
parative traffic ratio. Single-path strategies using the right-hand rule for
traversing barriers as well as multi-path strategies like expanding ring
search have a combined comparative ratio of Θ(h). It is an open ques-
tion whether there exists an online routing strategy optimizing time and
traffic for meshes with an unknown set of faulty nodes. We present an on-
line strategy for routing with faulty nodes providing sub-linear combined

comparative ratio of h
O

(√
log log h

log h

)
.

1 Introduction

The problem of routing in mesh networks has been extensively studied. Even if
the mesh contains faulty nodes, standard routing techniques can be applied. But
as an online problem, where the location of faulty nodes is unknown, this task
becomes challenging, because some communication overhead has to be invested
for the exploration of the network and it is not clear, how much exploration is
worth the effort. With this formulation of the problem, online route discovery
gets related to graph exploration and motion planning problems. The definition
of an appropriate measure for analyzing the efficiency and the design of an
algorithm that beats known routing techniques is the contribution of this paper.
∗ DFG Graduiertenkolleg 776 “Automatic Configuration in Open Systems”.

∗∗ Supported by the DFG Sonderforschungsbereich 376: “Massive Parallelität: Algorith-
men, Entwurfsmethoden, Anwendungen.” and by the EU within the 6th Framework
Programme under contract 001907 “Dynamically Evolving, Large Scale Information
Systems” (DELIS).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 23–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

24 S. Rührup and C. Schindelhauer

We consider the problem of routing (i.e. route discovery) in a mesh network
with faulty nodes. If a node fails, then only the direct neighbors can detect this
failure. The information about a failure can be spread in the network, but this
produces unnecessary communication overhead, if there is no demand for routing
a message. Therefore we concentrate on a reactive route discovery, which implies
that the locations of the faulty nodes are not known in advance: The routing
algorithm has no global knowledge and must solve the problem online, i.e. it
can send a message in a promising direction but it does not know whether the
target can be reached or the message gets stuck in a labyrinth of faulty nodes.
As groups of faulty nodes can obstruct a path leading to the target, we call them
barriers. If there are barriers, the routing algorithm has to perform some kind of
exploration, i.e. some paths are possibly dead ends so that other paths have to be
investigated. This exploration can be done sequentially which is time-consuming
or in parallel which increases the traffic (i.e. the total number of messages used).

An example for a sequential strategy is the following barrier traversal algo-
rithm: (1.) Follow the straight line connecting source and target node. (2.) If a
barrier is in the way, then traverse the barrier, remember all points where the
straight line is crossed, and resume step 1 at that crossing point that is nearest
to the target. This algorithm needs O(h + p) steps, where h is the length of the
shortest barrier-free path and p the sum of the perimeter lengths of all barriers.
This bound holds also for the traffic, because this is a single-path strategy. One
can show, that this traffic bound is optimal. An example for a multi-path strat-
egy is expanding ring search, which is nothing more than to start flooding with
a restricted search depth and repeat flooding while doubling the search depth
until the destination is reached. This strategy is asymptotically time-optimal,
but it causes a traffic of O(h2), regardless of the presence of faulty nodes.

We observe that both approaches are efficient with respect to either time or
traffic. The problem is to find an appropriate measure to address both the time
and the traffic efficiency. We introduce the combined comparative ratio, which
is motivated by the following two observations: The first observation is that the
shortest barrier-free path can be lengthened by adding faulty nodes that cause
a detour; this affects the time behavior. We use the so-called competitive ratio
[4] which compares the performance of the algorithm with the optimal offline
solution: The competitive time ratio is the ratio of routing time and optimal
time. The second observation is that additional barriers increase the exploration
costs; this affects the traffic efficiency. Here, by a comparison with the best offline
strategy the exploration costs would be disregarded. So we use a comparative
ratio which compares the traffic caused by the algorithm with the online lower
bound for traffic of O(h + p). Finally, the combined comparative ratio is the
maximum of time and traffic ratio. These ratios are defined in Section 3.

Under this measure the disadvantages of the two strategies described above,
namely that time is optimized at the expense of the traffic or vice versa, can
be expressed: Both strategies have a linear combined comparative ratio. In this
paper we present an algorithm that has a sub-linear combined comparative ratio.
The algorithm is described and analyzed in Section 4.

Online Routing in Faulty Meshes 25

1.1 Related Work

The routing problem in computer networks, even if restricted to two-dimensional
meshes, can be investigated under various aspects, like fault-tolerance, reliability
of the message delivery, message size, complexity of a pre-routing stage etc. In
this paper we focus on fault-tolerance, routing as an online problem, competitive
analysis, and traffic efficiency with respect to the difficulty of the scenario. These
aspects are not only regarded in the field of networking.

A similar model is used by Zakrevski and Karpovski [19]. They also inves-
tigate the routing problem for two-dimensional meshes under the store-and-
forward model and present a routing algorithm that is based on constructing
fault-free rectangular clusters in an offline pre-routing stage. Connections be-
tween these clusters are stored in a graph which is used in the routing stage.

Wu [17] presents algorithms for two-dimensional meshes which use only local
information and need no pre-routing stage. The faulty regions in the mesh are
assumed to be be rectangular blocks. In [18] Wu and Jiang present a distributed
algorithm that constructs convex polygons from arbitrary fault regions by ex-
cluding nodes from the routing process. This is advantageous in the wormhole
routing model, because it helps to reduce the number of virtual channels. We
will not deal with virtual channels and deadlock-freedom as we consider the
store-and-forward model. Faulty mesh networks have been studied in the field
of parallel computing, e.g. by Cole et al. [6]. Here, the ability of a network to
tolerate faults and emulate the original network is studied. The general goal
is the construction of a routing scheme rather than performing an online path
selection.

The problem of finding a target in an unknown environment has been inves-
tigated in position-based routing as well as in online robot motion planning.

Position-based routing is a reactive routing used in wireless networks, where
the nodes are equipped with a positioning system, such that a message can be
forwarded in the direction of the target (see [12] for a survey). Due to the limited
range of the radio transceivers, there are local minima and messages have to be
routed around void regions (an analog to the fault regions in the mesh network).
There are various single-path strategies, e.g. [8,5,9]. Position-based strategies
have been mainly analyzed in a worst case setting, i.e. the void regions have been
constructed such that the connections form a labyrinth. In this case the benefit of
a single-path strategy, namely the traffic efficiency compared to flooding, ceases.
The algorithm presented in this paper is a compromise of single-path routing
and flooding. By analyzing the time in a competitive manner and by including
the perimeters of fault regions we can express performance beyond the worst
case point of view. This paper improves the results of the authors presented in
[15] where a combined comparative ratio of O(h1/2) has been shown.

In online robot motion planning, the task is to guide a robot from a start
point to a target in a scenario with unknown obstacles. This is analogous to the
position-based routing problem, except for the possibility to duplicate messages
in networks. The motion planning problem for an unknown environment is also
known as “online searching” or “online navigation” (see [2] for a survey). It has

26 S. Rührup and C. Schindelhauer

been addressed by Lumelsky and Stepanov [11] that the performance of naviga-
tion strategies depends on the obstacles in the scenario. The proposed strategies
are also suitable for traversing mazes. In such cases, and also in some position-
based routing strategies, the well known right-hand rule is used: By keeping the
right hand always in touch of the wall, one will find the way out of the maze.
See [10,14] for an overview of maze traversal algorithms. Analog to the network
model with rectangular fault blocks described in [17], there are robot navigation
strategies for obstacles of rectangular or polygonal shape. A competitive analysis
of such algorithms is presented by Papadimitriou and Yannakakis [13] and Blum,
Raghavan and Schieber [3], where the ratio of the length of the path chosen by
the algorithm and the shortest barrier-free path is considered as performance
measure. This complies with the most common definition of the competitive
ratio. Lumelsky and Stepanov [11] as well as Angluin, Westbrook and Zhu [1]
use a modified competitive measure that uses the sum of the perimeters of the
obstacles in the scene instead of the optimal path length as a benchmark. In this
paper we use the competitive ratio for the length of the routing path — which
is, here, regarded as routing time. For the induced traffic, we use a comparative
measure that credits the cost of exploring new obstacles (which in fact every
online algorithm has to pay) to the algorithm (cf. Section 3).

The problem studied in this paper has a strong relation to online search and
navigation problems. However, it is not clear how unbounded parallelism can be
modelled for robot navigation problems in a reasonable way — usually naviga-
tion strategies are only considered for a constant number of robots. Therefore,
we consider a mesh network with faulty parts as underlying model, which en-
ables us to study the impact of parallelism on the time needed for reaching the
destination.

2 Barriers, Borders and Traversal

In this paper we consider a two-dimensional mesh network with faulty nodes.
The network is defined by a set of nodes V ⊆ N × N and a set of edges E :=
{(v, w) : v, w ∈ V ∧ |vx − wx| + |vy − wy| = 1}. A node v is identified by its
position (vx, vy) ∈ N × N in the mesh. There is no restriction on the size of the
network, because we analyze time and traffic with respect to the position of the
given start and target node in the network. We will see that the major impact
on the efficiency of the routing algorithm is not given by the size of the network.

We assume a synchronized communication: Each message transmission to a
neighboring node takes one time step. For multi-hop communication we assume
the messages to be transported in a store-and-forward fashion. We also assume
that the nodes do not fail while a message is being transported — otherwise a
node could take over a message and then break down. However, there is no global
knowledge about faulty nodes. Only adjacent nodes can determine whether a
node is faulty.

Important Terms and Definitions: The network contains active (function-
ing) and faulty nodes. Faulty nodes which are orthogonally or diagonally neigh-

Online Routing in Faulty Meshes 27

boring form a barrier. A barrier consists only of faulty nodes and is not con-
nected to or overlapping with other barriers. Active nodes adjacent to faulty
nodes are called border nodes. All the nodes in the neighborhood (orthogonally
or diagonally) of a barrier B form the perimeter of B. A path around a barrier
in (counter-)clockwise order is called a right-hand (left-hand) traversal path, if
every border node is visited and only nodes in the perimeter of B are used.
The perimeter size p(B) of a barrier B is the number of directed edges of the
traversal path. The total perimeter size is p :=

∑
i∈N

p(Bi). The perimeter size
is the number of steps required to send a message from a border node around
the barrier and back to the origin, whereby each border node of the barrier is
visited. It reflects the time consumption of finding a detour around the barrier.

3 Competitive and Comparative Ratios

When designing online algorithms one typically asks for the best solution an
algorithm can provide online or even offline. The comparison of the performance
of an (online) algorithm with the performance of an optimal offline algorithm is
called competitive analysis (see [4]). In faulty mesh networks the offline algorithm
has global knowledge and can deliver the message on the shortest barrier-free
path (we denote the length of this path with h). Therefore, both the offline traffic
and the offline time bound is h. Comparing the traffic of an online algorithm with
this lower bound yields a competitive ratio that is not very informative because it
disregards the cost of exploration. In fact every online algorithm produces traffic
of Ω(h + p) in some worst case situation: Consider a scenario where the faulty
nodes form long corridors (containing active nodes). The source node sees only
the entrances of these corridors. Yet, only one corridor leads to the target; the
others are dead ends. Every online routing strategy has to examine the corridors
(i.e. explore all the barriers), because in the worst case the exit is at the corridor
which is examined as the last. This consideration leads to a lower traffic bound
of Ω(h+p), regardless whether the exploration is done sequentially or in parallel.

The optimal time behavior depends on the type of strategy: A single-path
strategy has to traverse the barriers sequentially. This leads to a lower time
bound of Ω(h + p) for all single-path strategies. A multi-path strategy like ex-
panding ring search (repeated flooding with increasing search depth) can do this
exploration in parallel. The trivial lower bound of Ω(h) can be achieved using
such a strategy.

Time Traffic
Online lower bound, single-path Ω(h + p) Ω(h + p)
Online lower bound, multi-path Ω(h) Ω(h + p)
Best offline solution h h

For the time analysis, we use the performance of the best offline algorithm as a
benchmark. Regarding time, the best offline performance is of the same order as
the online lower bound.

28 S. Rührup and C. Schindelhauer

Definition 1. An algorithm A has a competitive ratio of c, if ∀x ∈ I : CA(x) ≤
c · Copt(x), where I is the set of all instances of the problem, CA(x) the cost of
algorithm A on input x and Copt(x) the cost of an optimal offline algorithm on
the same input.

Definition 2. Let h be the length of the shortest barrier-free path between source
and target. A routing algorithm has competitive time ratio Rt := T/h if the
message delivery is performed in T steps.

Regarding traffic, a comparison with the best offline behavior would be unfair,
because no online algorithm can reach this bound. So, we define a comparative
ratio based on a class of instances of the problem, which is a modification of
the comparative ratio introduced by Koutsoupias and Papadimitriou [7]: In this
paper, we compare the algorithm A w.r.t. the competing algorithm B using
the cost of each algorithm in the worst case of a class of instances instead of
comparing both algorithms w.r.t. a particular instance that causes the worst case
ratio. The reason is the following: On the one hand for every online algorithm
A there is a placement of barriers with perimeter size p such that A is forced to
pay extra cost O(p) (cf. the labyrinth scenario described above). On the other
hand in the class of online algorithms there is always one algorithm B that uses
the path which is the shortest path in this particular scenario. Therefore B has
extra knowledge of the scenario.

Definition 3. An algorithm A is has a comparative ratio f(P), if

∀p1 . . . pn ∈ P : max
x∈IP

CA(x) ≤ f(P) · min
B∈B

max
x∈IP

CB(x),

where IP is the set of instances with can be described by the parameter set P ,
CA(x) the cost of algorithm A and CB(x) the cost of an algorithm B from the
class of online algorithms B.

With this definition we address the difficulty that is caused by a certain class
of scenarios that can be described in terms of the two parameters h and p.
For any such instance the online traffic bound is minB∈B maxx∈I{h,p} CB(x) =
Θ(h + p). Note, that for any choice of a scenario one can find an optimal offline
algorithm:maxx∈I{h,p} minB∈B CB(x) = h. This requires the modification of the
comparative ratio in [7] in order to obtain a fair measure. So, we use the online
lower bound for traffic to define the comparative traffic ratio.

Definition 4. Let h be the length of the shortest barrier-free path between source
and target and p the total perimeter size. A routing algorithm has comparative
traffic ratio RTr := M/(h + p) if the algorithm needs altogether M messages.

Under these ratios we can formalize the intuition telling that flooding as a multi-
path strategy performs well in mazes and badly in open space, while some
single-path strategy performs well in open space, but bad in mazes. The fol-
lowing table shows the competitive time ratio Rt and the comparative traffic
ratio RTr of a single-path and a multi-path strategy. We consider the barrier

Online Routing in Faulty Meshes 29

traversal algorithm described in Section 1 as traffic-optimal single-path strategy,
and expanding ring search as time-optimal multi-path strategy.

Multi-path Rt RTr

General O(h)
h

O(h2)
h+p

Open space (p < h) O(1) O(h)
Maze (p = h2) O(1) O(1)

Single-path Rt RTr

General O(h+p)
h

O(h+p)
h+p

Open space (p < h) O(1) O(1)
Maze (p = h2) O(h) O(1)

This comparison shows that by these basic strategies the time is optimized at
the expense of the traffic or vice versa. To address both the time and the traffic
efficiency, we define the combined comparative ratio:
Definition 5. The combined comparative ratio is the maximum of the compet-
itive time ratio and the comparative traffic ratio: Rc := max{Rt,RTr}
For both strategies compared above this ratio is linear, i.e. Rc = O(h).

4 The Algorithm

The basic idea of the routing algorithm is to use flooding only if necessary. There-
for we identify regions where flooding is affordable. This is done by a subdivision
(partitioning) of a quadratic search area into smaller squares. Messages are sent
in parallel to each square using only paths on the borders of the squares. If a
message on such a path encounters a barrier, it tries to circumvent the barrier in
the interior of a square. However, if too many barrier nodes are detected while
traversing the border of the barrier, then the algorithm floods the whole square.

4.1 Incremental BFS

We observe that flooding defines a bread-first search (BFS) tree by the message
paths. The BFS tree contains all the active nodes that are reachable from the
root node. Obviously, both the size and the depth of the BFS tree are bounded
by the number of nodes in the network. We use an incremental BFS which works
in log d(T) iterations, where d(T) is the depth of the BFS tree T : In the i-th
iteration BFS is started with a search depth restricted to 2i.

In every iteration i we observe open paths and closed paths in the tree. Open
paths are paths with length larger than 2i where the exploration is stopped after
2i steps because of the search depth restriction. Closed paths end in a leaf of
the tree. In the next iteration (assumed that the target is not found in this
iteration) we do not need to investigate nodes on closed paths again. Thus, we
have to remember and revisit only open paths for continuing the search. The
following lemma shows that the steps needed for this BFS strategy are linear in
the size of the tree.

Lemma 1. Given a tree T , let Ti denote a sub-graph of T which contains all
paths from the root to a leaf with length greater than 2i, which are pruned at depth
2i−1. Then for all trees T with depth d(T) it holds

∑log d(T)
i=0 s(Ti) ≤ 3 s(T),

where s(T) denotes the size of the tree, i.e. the number of nodes.

A proof is given in [16].

30 S. Rührup and C. Schindelhauer

4.2 The Online Frame Multicast Problem

In the following we define a multicast problem for a quadratic mesh network.
The solution of this problem leads to the solution of the routing problem.

Definition 6. The frame of a g × g mesh is the set of framing nodes F =
{v ∈ Vg×g : vx ∈ {1, g} ∨ vy ∈ {1, g}}. For a g × g mesh and a set of entry
nodes s1, . . . , sk ∈ F , the frame multicast problem is to multicast a message
(starting from the entry nodes) to all nodes u on the frame which are reachable,
i.e. u ∈ F ∧ ∃si : dist(si, u) ≤ g2 where dist(si, u) denotes the length of the
shortest barrier-free path from si to u.

Definition 7. Given a g×g mesh with entry nodes s1, . . . , sk which are triggered
at certain time points t1, . . . , tk. A routing scheme is called c-time-competitive
if for each active node u on the frame of the mesh a message is delivered to u in
at most mini∈[k]{ti + c · dist(si, u)} steps where dist(si, u) denotes the length of
the shortest barrier-free path from si to u.

Obviously, a simple flooding algorithm is 1-time-competitive. But it needs O(g2)
messages, regardless whether few or many barrier nodes are involved. With the
following algorithm we can reduce the traffic with only constant factor slow
down.

The Traverse and Search Algorithm: The basic idea of the Traverse and
Search algorithm for the online frame multicast problem is to traverse the frame
and start a breadth-first search if a barrier obstructs the traversal. The algorithm
works as follows:

The message delivery is started at each of the entry nodes as soon as they
are triggered. An entry node s sends two messages in both directions along the
frame, i.e. a message is forwarded to both neighboring frame nodes (if present)
that is in turn forwarded to other frame nodes (frame traversal). If the message is
stopped because of a barrier (i.e. a frame node is faulty) then a flooding process
is started in order to circumvent the barrier and return to the frame. We call
the nodes that coordinate the flooding process exploration nodes (cf. Figure 2).

For the flooding process we use the idea of the incremental BFS described in
Section 4.1, i.e. flooding is started in consecutive rounds until the newly found
barriers are small or until the flooded area cannot be extended anymore. In the
i-th round the search depth is restricted to 2i+1. This is sufficient to circumvent
a single faulty frame node in the first round (i = 1). If in round i the number
of border nodes bi is greater than a constant fraction of the search depth α2i

with 0 < α < 1 then flooding is re-started in the next round with doubled search
depth. Therefor it is necessary to report the number of flooded border nodes (i.e.
active nodes adjacent to barrier nodes) to the entry node. These reply messages
are sent to the entry node using the reverse of the flooding paths, which are
defined by the BFS tree. At the branching points of the BFS tree the replies from
all branches are collected and merged. This collection process behaves like the
BFS in reverse time order. So, the traffic for collecting information corresponds
to the forward search of BFS and is increased only by a factor of 2.

Online Routing in Faulty Meshes 31

barrier

perimeter

t

s

Fig. 1. Optimal routing path from s

to t in a mesh network with faulty
nodes (black)

e1s

e2

Fig. 2. Execution of the Traverse and Search
Algorithm. Entry node s, exploration nodes
e1, e2, explored nodes: light background, occu-
pied nodes: dark background.

The open paths (see Section 4.1) in the BFS tree are used for flooding a
greater area in the next round. If only small barriers are discovered then the
flooding process is aborted. Then the flooded frame nodes at which the search
depth is reached continue the frame traversal. In some situations the flooding
process is started concurrently from different locations. So we have to ensure that
the same regions are not flooded too often by different entry nodes. Otherwise the
traffic would disproportionately increase. But if we refrain from flooding a region
twice then the flooded regions of one entry node can block the flooding process
of another entry node, which would affect the time behavior. Our solution to
this problem is as follows: When a node is flooded for the first time, it is marked
as explored. When it is flooded for the second time (because it is part of an open
path in the BFS tree) it is marked as occupied. Explored nodes may be explored
again by other exploration nodes, but it is forbidden to flood any occupied node
again. These two marks are only valid for a specific round of the BFS, that
corresponds to a specific search depth. This way we only forbid to flood a region
twice with the same search depth.

Lemma 2. The Traverse and Search algorithm is O(1)-time-competitive.

Lemma 3. Given a g × g mesh with total perimeter size p. The Traverse and
Search algorithm produces traffic O(g + min{g2 log g, p2 log g}).
Proof sketch: The time and traffic analysis is based on the following ideas: If
we cannot approximate the shortest path by simply traversing the frame then
we use the incremental BFS which has a linear asymptotic behavior. Thus, we
achieve a constant competitive time ratio. The bound for the number of messages
is derived as follows: We allow to flood an area that is quadratic in the number
of discovered border nodes. But this area is also bounded by the size of the g×g

32 S. Rührup and C. Schindelhauer

mesh. The search from concurrent entry points costs a logarithmic factor. The
traversal of the frame costs additional g messages. Complete proofs for Lemma 2
and Lemma 3 are given in [16].

4.3 Grid Subdivision

In order to reduce traffic asymptotically while keeping a constant competitive
time behavior, we subdivide an area into smaller squares and apply the Traverse
and Search algorithm in each square of this grid subdivision. This technique can
be used instead of flooding, which is used by the incremental BFS.

Lemma 4. Given a g1 × g1 mesh with total perimeter size p. For all g0 with
1 ≤ g0 ≤ g1 there is a O(1)-time-competitive algorithm for the online frame
multicast problem with traffic O(g1

2

g0
+ p · g0 log g0).

A proof is given in [16].

This leads to a modified Traverse and Search algorithm, which is similar to the
algorithm described in Section 4.2 except for the BFS: The multicast process is
started with the level-1 square and begins with the frame traversal. If a barrier
prevents a frame node from proceeding with the frame traversal, the frame node
becomes exploration node and starts the modified BFS, which we call level-1
BFS. The flooding process now uses only the nodes on the grid, i.e. only the
frame nodes of level-0 squares are “flooded”, whereas the interior of the frames
is controlled by the Traverse and Search algorithm on level 0.

The level-1 BFS tree which is defined by the flooding process consists only
of level-0 frame nodes. Especially the leaves of the tree are frame nodes, namely
the entry nodes of level-0 squares, because at such points the control is given
to the Traverse and Search algorithm on level 0. The BFS-tree will be used
for gathering information (newly found border nodes and open paths) for the
coordinating level-1 entry nodes.

4.4 Recursive Subdivision

A further reduction of the traffic can be achieved, if we use the subdivision
technique to replace the flooding phase of the Traverse and Seach Algorithm
and apply this technique recursively.

Let � be the number of recursive subdivisions, g� the edge length of a top
level square. Beginning with the top-level squares, each gi × gi square is sub-
divided into squares with edge length gi−1 (i = 1, ..., �). On the lowest level
the Traverse and Search algorithm is applied, which produces a traffic of g0 +
min{g0

2 log g0, p
2 log g0}, where p is the perimeter size in the g0 × g0 square.

Traffic in the gi × gi square is caused by the trials of surrounding the square and
— if the number of thereby observed border nodes is too large — by covering
the corresponding area with gi−1 × gi−1 sub-squares.

We use the following notation: tr� denotes the traffic induced by a single
g� × g� square; Tr�(a) denotes the traffic of an area a which is dissected by
level-� squares. Define G(�) :=

∑�
i=1

gi

gi−1

∏�
j=i log gj + g0

∏�
i=0 log gi.

Online Routing in Faulty Meshes 33

Theorem 1. Given a g × g mesh with total perimeter size p. For all gi with
1 ≤ g0 ≤ ... ≤ g� there is a O(c�)-time-competitive algorithm for the online
frame multicast problem with traffic O(g2

g�
+ p · G(�)).

A proof is given in [16]. Note, that the recursive subdivision of an area a with �
levels produces traffic Tr�(a) = O(a

g�
+ p · G(�)).

4.5 Expanding Grid

The solution of the frame multicast problem enables us to solve the routing prob-
lem: For routing a message from s to t, we first define four connected quadratic
subnetworks in the environment of s and t which are connected (see Figure 3);
then we apply the modified Traverse and Search algorithm to the quadratic sub-
networks to route a message. Again we use the idea of expanding ring search:
We begin with a small, restricted region which is enlarged if the target cannot
be reached because of a barrier (see Figure 4).

Theorem 2. Given a mesh network of arbitrary size, a source node s and a
target node t. There is a O(c�)-time-competitive routing algorithm with traffic
O(h2/g� + p · G(�)), where h is the shortest possible hop distance between s and
t, and p the total perimeter size; g� and G(�) are defined as in Section 4.4.

A proof is given in [16].

Theorem 3. For g� = Θ(h) and gi = h
(i+1)
(�+1) , i = 0, ..., �−1 the algorithm of The-

orem 2 needs time h·c
√

log h
log log h and causes traffic O

(
h + p

√
log h

log log h h

√
4 log log h

log h

)
.

Proof. We set gi := h(i+1)/(�+1) so that gi/gi−1 = h1/(�+1):
G(�) =

∑�
i=1 h

1
�+1

∏�
j=i log h

j+1
�+1 + h

1
�+1

∏�
i=0 log h

i+1
�+1 ≤ (� + 1)h

1
�+1 log�+1 h.

In order to minimize this term we set h
1

�+1 = log�+1 h. By using
√

log h
log log h = �+1

we obtain the traffic of the routing algorithm. ��
Corollary 1. The routing algorithm of Theorem 3 has competitive time ratio of

c

√
log h

log log h and comparative traffic ratio of O
(√

log h
log log h h

√
4 log log h

log h

)
, yielding a

sub-linear combined comparative ratio of h
O

(√
log log h

log h

)
, which is in o(hε) for all

ε > 0.

s
t

Fig. 3. Search area with grid subdivision

t
s

ba
rr

ie
r

Fig. 4. Enlargement of the search area

34 S. Rührup and C. Schindelhauer

References

1. Dana Angluin, Jeffery Westbrook, and Wenhong Zhu. Robot navigation with range
queries. In Proc. of the 28th Annual ACM Symposium on Theory of Computing,
pages 469–478, 1996.

2. Piotr Berman. On-line searching and navigation. In Amos Fiat and Gerhard J.
Woeginger, editors, Online Algorithms: The State of the Art, volume 1442 of Lecture
Notes in Computer Science, pages 232–241. Springer, 1998.

3. Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar
geometric terrain. SIAM Journal on Computing, 26:110–137, 1997.

4. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

5. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.

6. R. J. Cole, B. M. Maggs, and R. K. Sitaraman. Reconfiguring Arrays with Faults
Part I: Worst-case Faults. SIAM Journal on Computing, 26(16):1581–1611, 1997.

7. Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive analysis.
SIAM Journal on Computing, 30(1):300–317, 2000.

8. E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In
Proc. 11th Canadian Conference on Computational Geometry, pages 51–54, 1999.

9. F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal geometric
mobile ad-hoc routing. In Proc. of the 6th int. Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, pages 24–33, 2002.

10. Vladimir J. Lumelsky. Algorithmic and complexity issues of robot motion in an
uncertain environment. Journal of Complexity, 3(2):146–182, 1987.

11. Vladimir J. Lumelsky and Alexander A. Stepanov. Path-planning strategies for
a point mobile automaton moving amidst unknown obstacles of arbitrary shape.
Algorithmica, 2:403–430, 1987.

12. M. Mauve, J. Widmer, and H. Hartenstein. A survey on position-based routing in
mobile ad hoc networks. IEEE Network Magazine, 15(6):30–39, November 2001.

13. Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a
map. In Proc. of the 16th Int. Colloq. on Automata, Languages, and Programming
(ICALP’89), pages 610–620. Elsevier Science Publishers Ltd., 1989.

14. N. Rao, S. Kareti, W. Shi, and S. Iyenagar. Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms. Technical report, Oak Ridge Na-
tional Laboratory, 1993. ORNL/TM-12410.

15. Stefan Rührup and Christian Schindelhauer. Competitive time and traffic analysis
of position-based routing using a cell structure. In Proc. of the 5th IEEE Interna-
tional Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks
(IPDPS/WMAN’05), page 248, 2005.

16. Stefan Rührup and Christian Schindelhauer. Online routing in faulty meshes with
sub-linear comparative time and traffic ratio. Technical report, University of Pader-
born, 2005. tr-rsfb-05-076.

17. Jie Wu. Fault-tolerant adaptive and minimal routing in mesh-connected multicom-
puters using extended safety levels. IEEE Transactions on Parallel and Distributed
Systems, 11:149–159, February 2000.

18. Jie Wu and Zhen Jiang. Extended minimal routing in 2-d meshes with faulty
blocks. In Proc. of the 1st Intl. Workshop on Assurance in Distributed Systems
and Applications (in conjuction with ICDCS 2002), pages 49–55, 2002.

19. Lev Zakrevski and Mark Karpovsky. Fault-tolerant message routing for multipro-
cessors. In Parallel and Distributed Processing, pages 714–730. Springer, 1998.

Heuristic Improvements for Computing
Maximum Multicommodity Flow and

Minimum Multicut

Garima Batra, Naveen Garg�, and Garima Gupta

Indian Institute of Technology Delhi, New Delhi, India

Abstract. We propose heuristics to reduce the number of shortest path
computations required to compute a 1+ε approximation to the maximum
multicommodity flow in a graph. Through a series of improvements we
are able to reduce the number of shortest path computations significantly.
One key idea is to use the value of the best multicut encountered in
the course of the algorithm. For almost all instances this multicut is
significantly better than that computed by rounding the linear program.

1 Introduction

We consider the problem of computing the maximum multicommodity flow in
a given undirected capacitated network with k source-sink pairs. The algorithm
with the best asymptotic running time for this problem is due to Fleischer [1]
and computes a 1 + ω approximation to the maximum multicommodity flow
in time O((m/ω)2 log m). A closely related quantity is the minimum multicut
in the graph which is NP-hard to compute and for which there is an O(log k)-
approximation algorithm [3].

In this paper we will be concerned with ways of implementing these algo-
rithms so as to reduce the running time in practice. The algorithm of Fleischer
is a combinatorial algorithm and similar such algorithms have been proposed
for maximum concurrent flow and min-cost maximum concurrent flow and have
been the subject of much experimentation [9],[8] and [4]. However, to the best of
our knowledge there has been no attempt at a similar study for computing the
maximum multicommodity flow. In theory, the maximum multicommodity flow
problem can be solved by casting it as a maximum concurrent flow problem. It is
not clear why this would also be a good approach in practice. In fact we believe
that such is not the case; one reason for this is that even the choice of length
functions, a key aspect of these potential reduction algorithms, are not the same
for maximum concurrent flow and maximum multicommodity flow.

The novelty of our approach to reduce the running time for computing max-
imum multicommodity flow lies in our use of the minimum multicut to speed up
the computation. This has the added advantage that we get a multicut which
� Work done as part of the “Approximation Algorithms” partner group of MPI-

Informatik, Germany.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 35–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

36 G. Batra, N. Garg, and G. Gupta

is much better than the one which would have been obtained by following the
algorithm of [3]. We believe that this idea could also be incorporated for the com-
putation of maximum concurrent flow and would yield, both a faster algorithm
for computing the flow and a better approximation of the sparsest cut.

The paper is organised as follows. In Section 2 we provide a brief outline of
the combinatorial algorithm for computing the maximum multicommodity flow
and the approximation algorithm for the minimum multicut. In Section 3, we
propose modifications to these algorithms. In Section 4 we present the results of
our experiments and we conclude in Section 5 with a discussion of the results.

2 Overview of Existing Literature

In this section we provide a quick overview of the algorithm proposed by [2] and
[1] for computing the maximum multicommodity flow and the algorithm of [3]
for computing a small multicut.

We are given an undirected graph G = (V, E), a capacity function c : E →
R+ and k source-sink pairs (si, ti), 1 ≤ i ≤ k and we wish to find k flow functions
fi : E → R+ such that the flow of each commodity is conserved at every node
other than its source and sink and the total flow through an edge e,

∑k
i=1 fi(e)

is at most the capacity of e. The objective is to maximize the total flow routed.
The dual of this problem is the minimum multicut problem in which we wish to
find a collection of edges of minimum total capacity whose removal disconnects
each si − ti pair. It is easy to see that the maximum multicommodity flow is
at most the minimum multicut. It is also known that the minimum multicut is
no more than 4 ln(k + 1) times the maximum flow and that there are instances
where it is as large as c log k times the maximum flow.

To compute the maximum multicommodity flow we associate a length func-
tion l : E → R+ where l(e) = eεf(e)/c(e) where f(e) is the flow through e, c(e)
is the capacity of e and ε is a constant which determines how close the flow
computed is to the optimum. Define an s − t path as a path between a source
and the corresponding sink. The algorithm proceeds in a sequence of iterations.
In each iteration, we find the shortest s− t path, say P , and route flow equal to
the minimum capacity edge on P , along this path. The edge lengths are updated
and the process repeated until the length of the shortest s− t path exceeds n1/ε.
Fleischer’s modification to the above algorithm was to consider the commodities
in a round robin manner and route commodity j until the shortest sj − tj path
has length more than α(1 + ε), where α is the length of the shortest s − t path.
With this modification the theoretical bound on the running time reduces by
a factor k. This is because, while earlier we were doing k shortest path com-
putations to route flow along one path, with Fleischer’s modification we need
roughly one shortest path computation for every routing of flow. Since the flow
obtained in this manner is not feasible, we scale the flow through each edge by
the maximum congestion. To prove that this flow is close to the maximum, we
compare it to a feasible solution to the dual linear program. The assignment of
lengths to the edges gives a solution to the dual linear program and its value

Heuristic Improvements for Computing Maximum Multicommodity Flow 37

equals D/α where D =
∑

e∈E l(e)c(e) and α is the length of the shortest s − t
path.

The computation of the multicut starts with an optimum (or a near optimum)
solution to the dual linear program and does a rounding of the edge lengths
using a region-growing procedure first proposed by Leighton and Rao [7]. The
region growing procedure is essentially a shortest path computation from a source
vertex. At each step of this computation we compare the total capacity of the
edges with endpoint in the region to the total volume (l(e)c(e)) of edges inside
the region and stop growing the region when the capacity of the cut is no more
than ln(k + 1) times the volume of the region. We continue by picking a source
vertex which is still connected to the corresponding sink and growing a region
around it. The multicut so obtained has capacity at most 4 ln(k + 1) times the
value of the dual solution.

3 Heuristics for Improving Running Time

In this section we present some heuristics which help reduce the total number
of shortest path computations. Since most of the time required for computing a
maximum multicommodity flow is spent in finding shortest paths, this reduces
the overall running time.

We first observe that in the Garg-Könemann procedure the initial edge
lengths are uniform. It is also possible to assign each edge an initial length
which is inversely proportional to its capacity. In fact this is the length assign-
ment for the maximum concurrent flow problem. It is surprising that the initial
length assignment has a significant effect on the running time in practice. Our
experiments in Section 4 demonstrate that it is better to choose uniform initial
lengths.

3.1 Modification to Fleischer’s Work: Algorithm A

After finding the shortest path for an si − ti pair we route enough flow along the
path so that its length exceeds α(1 + ε). This is similar to the idea of Fleischer,
except that we now adopt it for each path. Note that the amount of flow routed
along a path can be much more than the minimum capacity edge on the path.
After routing flow along this path we find the next shortest si−ti path and only if
its length exceeds α(1+ ε) do we proceed to the next commodity. The algorithm
terminates when the feasible flow found is at least 1/(1 + ω) times the value
of the dual solution which is the smallest value of D/α seen in any iteration.
This is clearly better than running the algorithm for a predetermined number of
iterations which might be much larger than the number of iterations needed for
getting the primal and dual solutions within (1+ω) of each other. The algorithm
obtained with these modifications will be referred to as Algorithm A.

3.2 Modification to Garg-Könemann’s Work: Algorithm B

In the analysis of the approximation guarantee of the previous algorithm we only
use the fact that the length of the path along which flow is routed is at most

38 G. Batra, N. Garg, and G. Gupta

neεF/β where F is the total flow routed and β is the best dual solution obtained
so far. This fact can be used to route flow along any path whose length is less
than neεF/β. In particular, we find the shortest path and continue routing flow
along it as long as its length is less than neεF/β . Note that as we route flow along
the path both F and β change; this fact is incorporated in the computation of
the amount of flow that can be routed along this path. After exhausting the path
we recompute the shortest path between the same source-sink pair and continue.
We refer to this modification to Algorithm A as Algorithm B.

3.3 Better β Updation: Algorithm C

In the case of a single commodity the maximum flow equals the minimum s − t
cut which is the same as the optimum solution to the dual linear program. In the
course of shortest path computations, using Dijkstra’s algorithm, we encounter
certain s − t cuts. By keeping track of the minimum capacity of such cuts we
obtain an alternate bound on β. Our next modification to Algorithm B is to
choose the smaller of the two upper bounds as the value of β in the expression
neεF/β. We refer to this modified algorithm as Algorithm C. This algorithm
also reports the minimum s − t cut it encountered. Our results in Section 4
demonstrate that this cut is quite close to the flow computed and that this
method of updating β outperforms, by huge margins, our earlier method of
updating β.

3.4 Aggressive Routing: Algorithm D

Instead of routing flow along a path till its length exceeds neεF/β , as we do in
Algorithms B and C, we can route flow along a path till its length exceeds D/β.
This modification is also valid for computing the maximum multicommodity flow
and the theoretical bound continues to hold as is borne out by the analysis of
the approximation guarantee. Algorithm C uses the value of the minimum s− t
cut encountered during each Dijkstra computation, to obtain a tighter upper
bound on the value of β for the single commodity flow problem. For multiple
commodities, the value of the capacity of a multicut is an upper bound on β.
A crude approximation to the multicut is the union of all si − ti cuts. Thus
by keeping track of the best si − ti cut encountered and taking the sum of the
capacity of these cuts we get a method of updating β. Algorithm D for multiple
commodities incorporates this method for updating β as well as the best D/α
value encountered in an iteration, enabling us to route flow more aggressively to
achieve a reduction in the number of Dijkstra computations.

3.5 Conservative Approach: Algorithm E

The aggressive approach of Algorithm D might lead to a very large amount of
flow being routed on a path due to which one of the edges of the path becomes
the edge with maximum congestion and this leads to a reduction in the feasible
flow routed. This contradicts our intention of sending large amounts of flow at
each step so as to decrease the number of iterations required to reach maxi-
mum flow. To balance these two aspects we send an amount of flow equal to

Heuristic Improvements for Computing Maximum Multicommodity Flow 39

max(f1, min(f2, f3)) where f1, f2, f3 are the amounts of flow which when routed
along this path would cause the length of the path to exceed α(1 + ε), the con-
gestion to exceed the maximum congestion and the length of the path to exceed
D/β respectively. The justification of this choice is as follows. We do not want
the maximum congestion to increase or the length of the path to exceed D/β.
However, it is acceptable to let the length of the path increase to α(1 + ε) since
we are only routing flow along a path whose length is at most 1 + ε times the
shortest s − t path. We refer to the above algorithm as Algorithm E.

3.6 β Updation Using Set Cover: Algorithm F

For multiple commodities it makes sense to obtain a tighter upper bound on
β by computing a good approximation to the minimum multicut. We do this
by keeping track of the capacity and the si − ti pairs separated by all cuts en-
countered in the course of shortest path computations. Note that this number is
polynomially bounded since the number of shortest path computations required
by the algorithm is polynomial and in each shortest path computation we en-
counter only n different cuts. We then run the greedy algorithm for set cover on
this collection of cuts. Here the sets are the cuts, their cost is the capacity of
the cut and the elements they cover are the si − ti pairs separated by the cut.
This set-cover computation is done at the end of each round. Algorithm F is
a modification of Algorithm E for multiple commodities and incorporates this
method of updating β in addition to the other two methods that were part of
Algorithm E. Algorithm F also reports the best multicut that it finds using this
method.

3.7 Using Optimum β: Algorithm G

Our final algorithm, which we refer to as Algorithm G is the same as Algorithm
F but with the initial value of β set to the optimum value. As a consequence
there is no update of β in any iteration. While the optimum value of β is not
known in advance and so this algorithm cannot be implemented, our intention
of experimenting with this algorithm is to see how the running time would have
changed if we had known the optimum dual solution.

4 Experiments and Results

We computed the number of shortest path computations required by Algorithms
A, B, C, D, E, F and G to achieve a 1.01 approximation to the maximum
(multicommodity) flow for 4 classes of graphs.

1. GRID(n, k): These are n×n grids with edge capacities being random numbers
in the range [0.2,1.2]. The k source sink pairs are chosen randomly.

2. GENRMF(a, b): The generator for this family of graphs was developed by Gold-
farb and Grigoriadis [5]. The graph has b square grids each of size a×a. The
edges of the grids have unit capacities. The nodes of one grid are connected
to those of the next grid by a random matching and the capacities of these

40 G. Batra, N. Garg, and G. Gupta

edges are randomly chosen from the range [1, 100]. The source and sink are
the lower left corner vertex of the first grid and the upper right corner vertex
of the last grid respectively.

3. NETGEN(n, m, k): These are the graphs generated by the NETGEN genera-
tor [6]. Here n is the number of nodes, m the number of edges and k the
number of commodities. The edges were assigned capacities in the range
[1,100].

4. CLIQUE(a, b, k): These graphs were designed to get a small value of the min-
imum multicut. They are obtained by taking b cliques, each containing a
nodes. There is a randomly selected edge between every pair of cliques,
thereby forming a clique of cliques. The k source-sink pairs are also chosen
randomly. Each edge is assigned a capacity which is a random number in
the range [0.2,1.2].

Table 1 shows how the number of shortest path computations change with
the choice of initial edge lengths when Algorithm A is run on graphs from the
NETGEN family. These results prompted us to do the rest of the experiments with
uniform initial edge lengths. Tables 2, 3 and 4 show the number of shortest path

Table 1. The effect of initial length on running time of Algorithm A for graphs from
the NETGEN family

(n,m) Length = 1 Length = 1/c(e)

200,1300 20863 247043
200,1500 24225 145499
200,2000 20317 84203
300,3000 29031 124334
300,4000 8694 32305
500,3000 15636 75085

500,20000 44722 531365
1000,10000 13527 98804
1000,20000 20911 148013

Table 2. Maximum Flow computation on graphs from the GRID family

n Alg. A Alg. B Alg. C Alg. D Alg. E Best s-t cut
Flow

10 9283 5391 64 18 104 1.005
15 9591 10159 71 22 519 1.007
20 15620 13465 111 31 809 1.008
25 15904 7736 56 17 313 1.010
30 8874 8929 83 25 346 1.010
35 9630 8808 71 21 295 1.009
40 18022 11273 106 26 585 1.010
45 21077 11120 84 21 608 1.007
50 10522 6900 56 18 383 1.006

Heuristic Improvements for Computing Maximum Multicommodity Flow 41

Table 3. Maximum Flow computation on graphs from the GENRMF family

n Alg. A Alg. B Alg. C Alg. D Alg. E Best s-t cut
Flow

5,5 58908 73513 1402 267 1233 1.009
6,5 951711 154111 2432 616 1686 1.010
7,5 113649 262430 2696 660 1037 1.010
8,5 168566 333785 2718 1371 2718 1.010
9,5 205094 487650 4562 921 1974 1.010

10,5 250071 628899 7502 2254 3880 1.010
11,5 323942 905905 8030 2493 4529 1.009
12,5 383308 1110290 11375 2890 5871 1.010
13,5 531897 1302604 15080 4906 6143 1.010
14,5 559427 1782664 17276 4378 7064 1.010
15,5 679675 1868791 16422 12632 7395 1.010

Table 4. Maximum Flow computation on graphs from the NETGEN family

n Alg. A Alg. B Alg. C Alg. D Alg. E Best s-t cut
Flow

200,1300 20863 19426 246 62 512 1.009
200,1500 24225 36624 425 91 438 1.007
200,2000 20317 20506 292 51 370 1.006
300,3000 17848 37516 479 101 336 1.008
300,4000 8694 10792 47 9 197 1.008
500,3000 15636 13105 122 31 341 1.009

500,20000 44722 125430 1258 162 870 1.010
1000,10000 13527 15902 193 31 218 1.008
1000,20000 20911 31148 340 45 688 1.009

Table 5. Maximum multicommodity flow computation on graphs from the GRID family

n Alg. A Alg. D Alg. E Alg. F Alg. G η χ

10,5 316910 116248 108122 108122 27157 1.108 1.749
11,5 104731 25823 939 939 1068 1.006 1.087
12,5 372285 3971 111567 4465 3592 1.010 2.415
13,5 451465 283054 207653 219404 78521 1.057 2.782
14,5 581499 407020 581499 349233 122850 1.187 1.464

15,10 651400 477166 424879 429275 210060 1.275 1.881
16,10 1265081 1002172 978359 978359 401593 1.262 2.200
17,10 1204609 865802 765781 768940 221279 1.180 2.806
18,10 1623639 1278925 1226415 1385144 848565 1.043 1.705
19,10 2337653 299574 1705738 285099 285338 1.010 2.999
20,10 880087 579862 282074 282057 187999 1.022 4.495

computations required to compute (single commodity) maximum flow in GRID,
GENRMF and NETGEN graphs by the algorithms A, B, C, D and E. Each row of
the tables also shows the factor by which the smallest s − t cut encountered

42 G. Batra, N. Garg, and G. Gupta

Table 6. Maximum multicommodity flow computation on graphs from the NETGEN

family

n Alg. A Alg. D Alg. E Alg. F Alg. G η χ

100,1000,10 965771 308996 39975 41173 40617 1.010 5.284
200,1300,15 1784704 814611 658623 646371 531710 1.073 5.952
200,1500,15 1230462 443499 340084 337862 3398146 1.043 5.262
200,2000,20 884969 87481 382410 382410 382410 1.054 6.867
300,4000,15 2901211 1461092 983566 971744 789900 1.034 6.270
500,3000,30 3521900 7044 14581 1821097 13867 1.010 1.631

700,30000,50 814082 414352 277310 277310 173382 1.020 3.878

Table 7. Maximum multicommodity flow computation on graphs from the CLIQUE

family

n Alg. A Alg. D Alg. E Alg. F Alg. G η χ

10,2,2 9187 6 4288 6 6 1.000 5.400
20,3,4 28990 280 12799 2199 1768 3.902 2.874
30,3,5 27160 67 13126 206 206 1.009 4.751

30,15,5 81418 53998 50796 39601 5011 1.792 3.084
50,5,5 40736 15676 20880 17193 4736 1.777 1.205

50,10,5 112955 273659 71222 47203 27507 1.487 3.324
100,10,10 877342 713805 520835 459512 362520 1.907 2.031
100,20,10 799180 783664 623439 637390 497888 2.037 3.268
150,15,5 88452 615498 47227 37574 14878 1.877 0.647

200,20,10 855318 2094486 626616 626616 524377 2.121 3.293
250,20,10 426379 1833822 341886 319136 178170 2.232 3.631

during the course of the shortest path computations exceeds the value of the
flow computed. This entry was obtained from a run of Algorithm E. Tables 5, 6
and 7 show the number of shortest path computations required to compute max-
imum multicommodity flow in GRID, NETGEN and CLIQUE graphs by algorithms
A, D, E, F and G. Once again, each row of the tables also shows how close the
smallest multicut obtained by the greedy algorithm is to the value of the flow
computed. In addition, we compare the value of the multicut obtained by the
rounding technique in [3] with that of the smallest multicut obtained by the
greedy algorithm. In tables 5,6, 7 the second last column, labeled η, is the ratio
of the best multicut found by our algorithm to the value of the flow computed.
The last column, labeled χ, is the ratio of the multicut found by our algorithm
to the multicut computed using the approach in [3].

5 Discussion and Conclusions

For the single commodity max flow computation, the approach of updating β
using the minimum s − t cut encountered in the shortest path computations

Heuristic Improvements for Computing Maximum Multicommodity Flow 43

yields significant improvements in running time as shown by the performance of
Algorithms C, D and E. A reduction in the number of Dijkstra computations
is observed as we move from Algorithm C to D, routing flow more exhaustively
through individual paths. The deterioration in the performance of Algorithm
E as compared to Algorithms C and D can be attributed to the fact that we
are being a bit more conservative in E since we do not route so much flow on
a path as to increase the maximum congestion. One would be tempted to go
with the more aggressive approach of Algorithm D but our experiments with
multiple commodities illustrate that such an aggressive approach has its pitfalls.
When the amount of flow routed on a path is not constrained by the maximum
congestion of an edge in the graph we find instances where the number of shortest
path computations required is much larger than in Algorithm A. Of course, there
are also instances where such an aggressive approach is much much better than
Algorithm A. We found it very hard to predict whether this aggressive approach
would work well on an instance or not and hence settled for the more conservative
routing scheme.

Further, for almost all instances the best s− t cut encountered is close to the
value of the maximum flow and in all instances the best dual solution is given
by the best s − t cut encountered and not by the best D/α solution.

For multiple commodities, for most instances we see a progressive reduction
in the number of shortest path computations as we move from algorithms A to
E to F and finally G. In some instances the differences are very pronounced as
in CLIQUE(10,2,2) or CLIQUE(20,3,4).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5000 10000 15000 20000 25000 30000

Dijkstra calls

D/alphaBeta

Flow

Flow
Beta

D/alpha

Fig. 1. A plot of D/α and the feasible flow in each iteration for Algorithm A

44 G. Batra, N. Garg, and G. Gupta

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000 2500

Dijkstra calls

D/alpha

Flow

Beta

Flow
D/alpha

Beta

Fig. 2. A plot of D/α and the feasible flow in each iteration for Algorithm F

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000 12000 14000

Dijkstra calls

D/alpha

SetCover

SetCover
D/alpha

Fig. 3. A plot of D/α and the multicut obtained by greedy set-cover in each iteration
of Algorithm F

Heuristic Improvements for Computing Maximum Multicommodity Flow 45

To understand the behavior of Algorithm E we plotted the values of D/α
and the feasible flow in each iteration (Figure 2) for the instance CLIQUE(20,3,4).
While in the case of Algorithm A these plots (Figure 1) were smooth reflecting
a continuous change in the values of D/α and the feasible flow, for Algorithm E
we find the value of D/α increasing in small spikes which, interestingly enough,
correspond to step increases in the value of the feasible flow. These iterations
correspond to the scenarios where the amount of flow routed is constrained by
the D/β bound on the length of the path. As expected a fair bit of flow gets
routed in these iterations and our constraint that the maximum congestion of
an edge not increase leads to much of this flow reflecting as a feasible flow. We
found this behavior in varying degrees in all instances.

Figure 3 shows a plot of D/α and the multicut obtained by running the
greedy algorithm for set-cover for the instance CLIQUE(50,10,5). As can be seen,
in the initial iterations, D/α is much larger than the multicut found and so the
value of β is determined by the multicut. This leads to frequent iterations where
the flow is routed along a path till it gets a length of D/β; this can be seen by
the numerous spikes in the plot. In the later iterations the value of D/α becomes
less than the best multicut and starts determining β. Now flow is routed only
till the path length exceeds α(1 + ε) and this corresponds to the smooth nature
of the plot.

In all instances, the multicut computed by running the greedy set-cover al-
gorithm on the cuts encountered is significantly better than the multicut com-
puted by the region growing procedure of [3]. We believe that even theoretically
it should be possible to argue that the multicut obtained in this manner is no
more than O(log k) times the maximum multicommodity flow.

References

1. L. Fleischer. Approximating fractional multicommodity flow independent of the
number of commodities. SIAM J. Discrete Math., 13:505520, 2000.

2. N. Garg and J. Konemann. Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. In Proceedings, IEEE Symposium on Foun-
dations of Computer Science, pages 300309, 1998.

3. N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut
theorems and their applications. SIAM J. Comput., 25(2):235251, 1996.

4. A.V. Goldberg, J.D. Oldham, S. Plotkin, and C. Stein. An implementation of a com-
binatorial approximation algorithm for for minimum-cost multicommodity flows. In
Proceedings, MPS Conference on Integer Programming and Combinatorial Opti-
mization, 1998.

5. D. Goldfarb and M.D. Grigoriadis. A computational comparison of the dinic and
network simplex methods for maximum flow. Annals of Operations Research, 13:83
123, 1988.

6. D. Klingman, A. Napier, and J. Stutz. Netgen: A program for generating large scale
capacitated assignment, transportation and minimum cost flow network problems.
Management Science, 20:814821, 1974.

46 G. Batra, N. Garg, and G. Gupta

7. F. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with application to approximation algorithms. In
Proceedings, IEEE Symposium on Foundations of Computer Science, pages 422431,
1988.

8. T. Leong, P. Shor, and C. Stein. Implementation of a combinatorial multicommodity
flow algorithm. In Network flows and matchings, Volume 12 of DIMACS series in
Discrete Mathematics and Theoretical Computer Science, pages 387405. American
Mathematical Society, 1993.

9. T. Radzik. Experimental study of a solution method for the multicommodity flow
problem. In Workshop on Algorithm Engineering and Experiments, pages 79102,
2000.

Relax-and-Cut for Capacitated Network Design

Georg Kliewer and Larissa Timajev�

Department of Computer Science, University of Paderborn, Germany
{Georg.Kliewer, timajev}@upb.de

Abstract. We present an evaluation of a Lagrangean-based branch-and-
bound algorithm with additional valid inequalities for the capacitated
network design problem. The focus is on two types of valid inequalities,
the cover inequalities and local cuts. We show how these inequalities can
be considered in a Lagrangean relaxation without destroying the compu-
tationally simple structure of the subproblems. We present an extensive
computational study on a large set of benchmark data. The results show
that the presented algorithm outperforms many other exact and heuris-
tical solvers in terms of running time and solution quality.

1 Introduction

The task of network design occurs in several applications in transportation and
telecommunication. In long-term planning the structure of the network is de-
fined. We define the nodes and edges of the network as well as capacities for
them. The network is constructed by installing roads, bus lines or communica-
tion cables. The purpose for the network usage can be multifarious. The operator
may want to transport goods on a road network, passengers in a flight network,
or he has to route phone calls through the network. Several properties of the
network determine the suitability for the application case, like robustness in the
case of failures or extra capacities for fluctuating demand. In mid-term plan-
ning steps, other resources are dealt with - e.g. trucks, airplanes, drivers, and
crews. The objective whilst generating routes and schedules is cost efficiency.
In short-term planning physical entities and persons with concrete attributes
(e.g. maintenance, vacation) must be considered. During operation the network
is subject to several irregularities or failures. The task is to react to them by
preserving cost efficiency.

The network design problem considered in this paper has several input data
and degrees of planning. First, the set of nodes and potential edges is given. Sec-
ond, the transportation demand, which must be routed through the network, is
defined. Fixed costs for the installation of edges and variable costs for the trans-
portation of commodities on edges, define the objective function. The network
is a capacitated one - the edge capacity may not be exceeded by the routing.

Solution methods which can be used for network design depend heavily on
the size of the problem, it’s structure and side constraints. Exact methods and
� This work was partly supported by the German Science Foundation (DFG) project

”Optimization in networks” under grant MO 285/15-2.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 47–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 G. Kliewer and L. Timajev

metaheuristics build the two main method classes. We are using branch-and-
bound based methods for solving the network design problem. Depending on the
setting, the algorithm can be stopped prior to termination, or some variables are
fixed, such that we can not guarantee that the solutions found are optimal. In
such cases the algorithm turns into a heuristical one.

1.1 Related Work

An overview of the field of network design is given in [BMM97, MW84, Cra00].
The capacitated network design problem as solved in this paper was first defined
in [GC94, CFG01]. Several heuristic approaches for this problem formulation are
presented in [CGF00], [GCG03], [GCG04], [CGH04]. In [HY00], a Lagrangian-
relaxation based branch-and-bound algorithm is presented. In [SKK02a] we have
presented Lagrangian cardinality cuts and coupled variable fixing algorithms
in a similar algorithmic approach. Recently, several valid inequalities for the
network design problem were discussed in [CCG03]. Relax-and-cut algorithms
are presented in [Gui98, RG05].

1.2 Contribution

The contribution of this paper is threefold. First, we describe our implementa-
tion of a complete branch-and-bound system where the Lagrangian-relaxation is
solved by a subgradient search or bundle-method. Second, we develop two valid
inequality types for the network design problem. And third, we incorporate the
inequalities in the branch-and-bound algorithm, obtaining the relax-and-cut al-
gorithm.

The results obtained in numerical experiments show that our system outper-
forms other solvers like CPLEX in the exact setting. The heuristic configuration
outperforms other heuristic algorithms in terms of solution quality and running
time. The presented cuts are valuable and improve the systems performance
significantly.

The paper is organized as follows. In the next section we formalize the mathe-
matical model for the network design problem. Then we describe how additional
cuts can be considered in Lagrangian relaxation without destroying the struc-
ture of the subproblem. Hereafter we investigate cover inequalities and local
cuts. In the results section we draw comparisons between other solvers for the
network design problem and between several configurations of our system. In
the appendix comprehensive result data can be found for reference purposes.

2 The Capacitated Network Design Problem

The capacitated network design problem is defined as a mixed-integer linear
problem. An optimal subset of arcs of a network G = (N ,A) must be found such
that a given transport demand can be accommodated within in the network. The
demand is defined as an origin-destination pair (one commodity). One unit of
a commodity k ∈ C can be transported via arc (i, j) for a cost ck

ij . The total

Relax-and-Cut for Capacitated Network Design 49

demand for commodity k is rk. The installation costs are defined for each arc
(i, j) as fij which must be paid if any commodity is using this arc. Additionally,
there is a capacity uij on each arc that limits the total amount of flow that can
be routed via (i, j).

For all arcs (i, j) ∈ A and commodities k ∈ C, let dk
ij = min{rk, uij} be the

maximal amount which can be routed. Define bk
i as

bk
i =

⎧⎨⎩rk, if i = origin of k
−rk, if i = destination of k
0 else

Using variables xk
ij for the flows and yij for the design decisions, the mixed-

integer linear optimization problem for the capacitated network design is defined
as follows:

zCNDP = min
∑
ij

∑
k

ck
ijx

k
ij +

∑
ij

fijyij

s.t.
∑

j:(i,j)∈A
xk

ij −
∑

j:(j,i)∈A
xk

ji = bk
i ∀ i ∈ N , ∀ k ∈ C (1)∑

k∈C
xk

ij ≤ uij yij ∀ (i, j) ∈ A (2)

xk
ij ≤ dk

ijyij ∀ (i, j) ∈ A, ∀k ∈ C (3)
xk

ij ≥ 0 ∀ (i, j) ∈ A, ∀k ∈ C (4)
yij ∈ {0, 1} ∀ (i, j) ∈ A (5)

The objective function is to minimize the sum of variable transport costs for
commodities and fixed costs for arc installations.

Inequalities in (1) build |N ||C| flow constraints, which define each node as
an origin, destination or transport node.

In (2) we obtain |A| capacity constraints. They couple the flow variables x
with design variables y. The |A||C| additional capacity constraints in (3) are
redundant for all valid and optimal solutions of the model. They are called the
strong constraints because they improve the LP-bound significantly. The |A||C|
non-zero constraints for the flow variables in (4) and |A| integer constraints in
(5) complete the model.

2.1 Lagrangian Relaxation

If we relax the flow constraints (1) we obtain the following Lagrangian relaxation.
For each of the |C||N | flow constraints we propose a Lagrange-multiplier ωk

i .
For a fixed ω ∈ R|C||N| the knapsack relaxation is

zR(ω) = min
∑

k∈C
∑

(i,j)∈A ck
ijx

k
ij +

∑
(i,j)∈A fijyij

+
∑

k∈C
∑

i∈N ωk
i

(∑
j:(i,j)∈A xk

ij −
∑

j:(j,i)∈A xk
ji − bk

i

)
subject to constraints (2)–(5).

50 G. Kliewer and L. Timajev

After reformulation we obtain:

zR(ω) = min
∑

(i,j)∈A
[∑

k∈C(ck
ij + ωk

i − ωk
j)xk

ij + fijyij

]
−∑

k∈C
∑

i∈N ωk
i bk

i

s.t. ∑
k∈C xk

ij ≤ uijyij

xk
ij ≤ dk

ijyij ∀k ∈ C
xk

ij ≥ 0 ∀k ∈ C
yij ∈ {0, 1}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∀(i, j) ∈ A.

(1)

The occuring subproblems decompose independently for each arc and are rela-
tively simple fractional knapsack problems. They can be solved very fast by a
greedy algorithm.

There are two different optimization algorithms for the Lagrangian multiplier
problem: the subgradient search method and the bundle method. Besides our
own implementation of the subgradient search method we have integrated the
bundle method solver of Antonio Frangioni [Fra97, CFG01] into our system.

2.2 System Architecture

The implemented system for the capacitated network design problem uses the
branch-and-bound and the relax-and-cut algorithm. Both are using the knap-
sack Lagrangian relaxation (and the additional cuts respectively). As already
mentioned, subgradient search or bundle method solvers can be used for the
calculation of the lower bounds in the branch-and-bound nodes. Two variable
branching strategies and several exact and heuristic variable fixing algorithms
are available. The description of these system components lies beyond the scope
of this paper. Details can be found in [SKK02a, SKK02b]. The focus here is on
the relax-and-cut algorithm and the implemented valid inequalities.

3 Relax-and-Cut for CNDP

In this section we describe how the Lagrangian-relaxation based branch-and-
bound algorithm can be extended to use valid inequalities for the capacitated
network design problem. The first type of the inequalities is based on the follow-
ing idea. The capacity of a network cut which separates origins and destinations
of some commodities must be large enough to route the transport demand of
these commodities. The second type uses a set of the integer design variables
and cuts off some nodes of the branch-and-bound tree with high costs. To pre-
serve the computational structure of the subproblems and to avoid destroying
the simplicity, the cuts are not inserted into the subproblems. New Lagrangian
multipliers are defined and we add them to the objective function.

3.1 Cover Inequalities

In every network cut (S, S̄) in G there are arc subsets C ⊆ (S, S̄) with the
property that the overall arc capacity in (S, S̄) \ C is not sufficient for routing

Relax-and-Cut for Capacitated Network Design 51

from S to S̄. In this case at least one arc from the set C must be opened to
obtain a valid solution.

For a given cutset inequality
∑

(i,j)∈(S,S̄) uijyij ≥ r(S,S̄) let Y(S,S̄) be the set

of y values s.t.: Y(S,S̄) =
{
y ∈ {0, 1}|(S,S̄)| :

∑
(i,j)∈(S,S̄) uijyij ≥ r(S,S̄)

}
.

We denote an arc set C ⊆ (S, S̄) as a cover for (S, S̄) if the capacity of
(S, S̄) \ C is not sufficient:

∑
(i,j)∈(S,S̄)\C uij < r(S,S̄).

The cover is a minimal cover if it is sufficient to open any arc of the arc set
to cover the demand:

∑
(i,j)∈(S,S̄)\C uij + upq ≥ r(S,S̄). ∀(p, q) ∈ C

Proposition 1. Let C ⊆ (S, S̄) be a cover of (S, S̄). For each y ∈ Y(S,S̄) and
therefore for every valid solution the cover inequality is valid:

∑
(i,j)∈C yij ≥ 1.

In case C is minimal, the inequality defines a facet of Y ′
(S,S̄)

=
Y(S,S̄) ∩

{
y : yij = 1 ∀(i, j) ∈ (S, S̄) \ C

}
and is a (|C| − 1)-dimensional facet of

conv(Y(S,S̄)).
For separation of the cover inequalities we use a similar heuristic for a binary

knapsack problem as in [CCG03]. After separation we start a lifting procedure
to strengthen the inequalities. Due to space limitations we omit the description
of the algorithms here.

3.2 Local Cuts

The second type of cuts is a generalization of a classical reduced cost variable
fixing procedure. If a tight upper bound for the CNDP is known, it is an easy
task to check whether a variable yij can still be set to 0 or 1 without worsening
the lower bound too much.

Let (A0,A1,A∗) be a branch-and-bound node. Hereby A0 is the set of arcs
which are fixed to 0 (resp. A1 to 1) and A∗ is the set of unfixed arcs. Denote the
reduced costs for the design variable yij as ĝij . The Lagrangian objective can be
written as: zR(ω) = min

y∈{0,1}|A∗|

∑
(i,j)∈A∗

ĝijyij +
∑

(i,j)∈A1

ĝij − ωT b

If the best known valid solution has the costs z̄CNDP , we can show:

Proposition 2. a) Let T+ ⊆ {(i, j) ∈ A∗ : ĝij > 0} be the subset with positive
reduced costs, s.t. zR(ω) + ĝpq + ĝrs ≥ z̄CNDP ∀ (p, q), (r, s) ∈ T+ with (p, q) �=
(r, s).

All valid solutions which are in the subtree of the current node and have more
than one variable from T+ equal to one have at least the cost value z̄CNDP . For
this reason we can add the following cuts which are locally valid for the given
subtree:

∑
(i,j)∈T+

yij ≤ 1
b) Similar cuts can be proposed for the set T- ⊆ {(i, j) ∈ A∗ : ĝij < 0}:∑

(i,j)∈T- yij ≥ |T-| − 1

3.3 Relax-and-Cut Algorithm

Cutting planes algorithms are often used to strength the LP-relaxation in a root
node of a branch-and-bound tree. In cases where valid inequalities are defined in

52 G. Kliewer and L. Timajev

every search node, one obtains the branch-and-cut algorithm. In this section we
discuss a similar technique (relax-and-cut) in a Lagrangian-relaxation setting.
For an overview on relax-and-cut algorithms see for example [Gui98, RG05].

In the following illustrative example, the mixed-integer linear problem

(P) zP =min cT x

s.t. Ax ≥ b (2)
x ∈ X = {x ∈ Zn : Dx ≥ q}. (3)

consists of two types of constraints: the simple constraints (3) and the compli-
cated constraints (2).

The Lagrangian relaxation of (2) gives us the following model: zLR(ω) =
min{cT x + ωT (b − Ax) : x ∈ X}

This problem can be solved easily for a given ω ≥ 0. Now we propose a family
of valid inequalities αkT x ≥ βk, k ∈ K which can reduce the gap between
the optimal value zP and the optimal value zLM of the Lagrangian multiplier
problem: zLM = max{zLR(ω) : ω ≥ 0}

During the subgradient search method or the bundle method we generate
violated inequalities αkT x ≥ βk, k ∈ K. For these cuts we define new Lagrangian
multipliers νk. In later iteration, the penalty value νk(βk−αkT x) is inserted into
the Lagrangian objective function. Thus the Lagrangian multiplier problem (3.3)
receives new variables νk ≥ 0 and a potentially larger optimal value zLM . The
question is in which cases the introduced cuts lead to a higher value zLM .

The Lagrangian multiplier problem has the same optimal objective value as
the following problem:

(L) zL = min{cT x : Ax ≥ b, x ∈ conv(X)}.
The updated problem with a cut is:

(L′) z′L = min{cT x : Ax ≥ b, αT x ≥ β, x ∈ conv(X)}.
The feasible regions of (L) und (L′) are shown in Figure 1.

Ax b≥

optx(P)

optx(L)

≥Dx q

(conv X)

c

Ax b≥

≥Dx q

(conv X)

c

optx(P)

optx(L’)

αT x ≥ β

Ax b≥

x

≥Dx q

(conv X)

c optx(L1)
optx(L2)

optx=

optx(P)

α x ≥ β2T

α1Tx ≥ β

� 2

1

(L)

Fig. 1. The feasible sets of (L) and (L′) with the cut αT x ≥ β. Efficient and inefficient
cuts for zLM .

The cut αT x ≥ β is an efficient cut if all the optimal solutions of (L) are
separated by the cut.

Relax-and-Cut for Capacitated Network Design 53

Let x∗ ∈ X be the optimal solution of the Lagrangian subproblem (3.3) and
Q the feasible region of (L). Since every point in Q∩X is feasible for (P), points
of X , which are separated by a valid inequality for (P), are outside of Q. This
means that by separating x∗ by a cut αT x ≥ β it holds x∗ �∈ Q. For this reason
it is not clear whether we cut off some points from Q or not (see also [Gui98]).

In Figure 1 we see two cuts αkT x ≥ βk, k = 1, 2 which separate x∗ from (P).
The first one cuts off the optimal solution of (L). The second cut is inefficient -
it does not improve the bound zLM .

In the relax-and-cut algorithms we are looking for violated cuts which cut
off the current Lagrangian solution x∗. It is impossible to check whether the cut
is efficient because we do not know the optimal Lagrangian solution during one
iteration of the subgradient search or bundle method optimization. Nevertheless,
there are a lot of successful applications of the relax-and-cut algorithm in the
literature. See for example applications for steiner tree problems in [Luc92],
the weighted clique problem in [HFK01] and the vehicle routing problem in
[MLM04]. In this work we show that the relax-and-cut algorithm is also successful
for the capacitated network design problem.

4 Numerical Results

The evaluation of the presented algorithms is carried out on a series of bench-
marks which are widely used for the capacitated network design problem. In
table 1 we can see the problem characteristics. The description of the problem
data generator can be found in [CFG01].

Table 1. Benchmark data instances

Canad-R1 Canad-R2 PAD Canad-C
Number of nodes 10 20 12-24 20-30
Number of arcs 35-83 120-318 50-440 230-700
Number of commodities 10-50 40-200 50-160 40-400
Number of instances 72 81 41 31

The instances from Canad-R1 and PAD can be solved to optimality. The
sets Canad-R2 and Canad-C are solved partially. For many instances optimal
solutions are still unknown. In such cases we give the best known lower and
upper bounds. The tables in the appendix contain all the details concerning the
benchmark instances and the objective values.

4.1 Experiments

The experiments in this paper were carried out on a Pentium III processor with
3 GHz and 1 Gbyte memory. For the experiments in Figure 4 we used Pentium
III processor with 850 MHz and 512 Mbyte memory.

54 G. Kliewer and L. Timajev

In order to make the results less sensitive to some outliers in our experi-
ments, we are using the concept of performance profiles. Let S be the set of the
approaches to compare to. Let P be the set of the benchmark instances and tp,s

the time of the approach s for solving the problem p. The performance profile
of the approach s′ ∈ S on the set P is the function Qs′(r). It is defined as the
number of instances in P which were solved in time r ·min{tp,s : s ∈ S} or faster
(see [DM02]):

Qs′(r) =
∣∣∣{p ∈ P : tp,s′

min{tp,s:s∈S} ≤ r
}∣∣∣ .

Experiment 1: Comparison of the Exact Methods. In Figure 2 we use the
benchmark set PAD. The performance profiles of CPLEX 9.0, the subgradient
based solver NDBB, and the bundle-based solver NDBC are shown. The task
was to compute the optimal solution of the given CNDP problem instance.

We can see that the NDBC solver is the better solver in this comparison.
The running time on the whole benchmark and also the mean performance ratio
is better. The cumulative distribution of the performance profiles confirm this
result.

Experiment 2: Comparison Against Other Heuristical Solvers. In
Figure 3 we present the results on the benchmark set Canad-C. The re-
sults of the following solvers were obtained from the authors of the pa-
pers: TABU-ARC and TABU-CYCLE [GCG03], TABU-PATH [CGF00], PATH-
RELINKING [GCG04], SS/PL/ID [CGH04].

The heuristical variable fixing in NDBC were first presented in [HY00] and
were adapted in our project to be used with a bundle method solver. It was
stopped in these experiments after 600 seconds for each instance. The exact
variant of the NDBC solver was stopped after 1800 seconds. We compared
the solution quality obtained by the approaches. The cumulative distributions
show the plots for the two variants of the CPLEX 9.0 solver. The first one was
configured to obtain good solutions as fast as possible and was stopped after 600
seconds for each instance. The standard CPLEX 9.0 branch-and-cut algorithm
ran for 14400 seconds.

As a result we can conclude that the heuristical version of the NDBC solver
delivers the best solution quality compared to all other solvers. It also outper-
forms the other solvers in terms of running time.

Experiment 3: Impact of the Cuts in the Relax-and-Cut Algorithm.
This is the comparison of four different configurations of the NDBC solver.

Configuration Generation of cuts
NDBC 00 both cuts types are not generated,
NDBC 01 only the cover cuts are generated,
NDBC 10 only local cuts are generated,
NDBC 11 both cuts types are generated.

In Figure 4 we used a subset of the benchmark CANAD-R2. We can observe
that the cover cuts reduce the running time by 23% and the number of generated
nodes by half. The best configuration is the one with both types of cuts.

Relax-and-Cut for Capacitated Network Design 55

PAD benchmark

.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 2 3 4 5 6 7 8 9 10

un
d

gr
öß

er

performance ratio

cu
m

u
la

ti
ve

 d
is

tr
ib

u
ti

o
n

CPLEX 9.0 (2.72) NDBBSolver (4.85) NDBCSolver (1.83)

CPLEX 9.0 NDBB NDBC
running time in sec 3684.40 9329.80 1941.34
time factor 1.90 4.81 1.00
Ø performance ratio 2.72 4.85 1.83

Fig. 2. Experiment 1: Comparison of the exact methods

CANAD-C

0

5

10

15

20

25

30

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

solution quality in % (to the best lower bound)

n
u

m
b

er
 o

f
p

ro
b

le
m

 in
st

an
ce

s

CPLEX 600sec CPLEX 14400sec NDBC Alpha 600sec
NDBC 1800sec TABU-PATH (m2) TABU-ARC (400) (m2)
 SS/PL/ID (400) (m1) TABU-CYCLE (m1) PATH-RELINKING (m1)

Fig. 3. Experiment 2: Comparison against other heuristical solvers

Experiment 4: Impact of the Cuts in the Heuristical Setting. In Figure 5
we can observe that the cover cuts also significantly improve the solution quality.
The local cuts are not effective in this setting. The results are nearly identical
for a configuration with or without them.

56 G. Kliewer and L. Timajev

CANAD-R2 time

0

3

6

9

12

15

18

21

1 10 100

performance ratio

n
u

m
b

er
 o

f
p

ro
b

le
m

in

st
an

ce
s

00 01 10 11

CANAD-R2 number of nodes

0

3

6

9

12

15

18

21

1 10 100

performance ratio

n
u

m
b

er
 o

f
p

ro
b

le
m

in

st
an

ce
s

00 01 10 11

time Ø performance ratio nodes Ø performance ratio
NDBC 00 65752.58 3.15 272377 3.57
NDBC 01 50308.22 1.22 137039 1.12
NDBC 10 68700.64 4.07 275880 3.66
NDBC 11 47274.12 1.18 137707 1.11

Fig. 4. Experiment 3: Impact of the cuts in the relax-and-cut algorithm

CANAD-C

0
3
6
9

12
15
18
21
24
27
30

0.10 1.00 10.00

solution quality in %

cu
m

u
la

ti
ve

 d
is

tr
ib

u
ti

o
n

00 01

Fig. 5. Experiment 4: Impact of the cuts in the heuristical setting

Relax-and-Cut for Capacitated Network Design 57

5 Conclusion

Our experimental evaluation shows that the newly presented relax-and-cut al-
gorithm in the NDBC solver, outperforms other exact solvers on the PAD
benchmark and all the heuristical solvers on the benchmark CANAD-C. To
our knowledge, this is the most efficient solver for the capacitated network de-
sign problem.

The incorporation of cover inequalities and local cuts in the relax-and-cut
algorithm improves the overall performance significantly.

While many of the system components, namely the subgradient solver, the
bundle method solver, the relax-and-cut algorithm itself, and the presented cuts
for CNDP are conceptually not new, this work makes a valuable contribution.
The overall system is a demonstration of what is currently possible in the area
of capacitated network design.

The results also show that research on some additional cuts for CNDP could
improve the performance of the relax-and-cut algorithm even further.

Acknowledgements

We would like to express our gratitude to Antonio Frangioni for providing the
bundle method solver for our system and to Bernard Gendron for providing the
benchmark data and the numerical results of other approaches for comparisons.

References

[BMM97] A. Balakrishnan, T. Magnanti, and P. Mirchandani. Network design.
Annotated Bibliographies in Combinatorial Optimization, pages 311–334,
1997.

[CCG03] M. Chouman, T.G. Crainic, and B. Gendron. A cutting-plane algorithm
based on cutset inequalities for multicommodity capacitated fixed charge
network design. Technical report, Centre for Research on Transportation,
Montreal, Canada, 2003.

[CFG01] T.G. Crainic, A. Frangioni, and B. Gendron. Bundle-based relaxation
methods for multicommodity capacitated fixed charge network design
problems. Discrete Applied Mathematics, 112:73–99, 2001.

[CGF00] T.G. Crainic, M.. Gendreau, and J.M. Farvolden. A simplex-based tabu
search method for capacitated network design. INFORMS Journal on
Computing, 12(3):223–236, 2000.

[CGH04] T.G. Crainic, B. Gendron, and G. Hernu. A slope scaling/Lagrangean
perturbation heuristic with long-term memory for multicommodity fixed-
charge network design. Journal of Heuristics, 10(5):525–545, 2004.

[Cra00] T.G. Crainic. Service network design in freight transportation. European
Journal of Operational Research, 122:272–288, 2000.

[DM02] E.D. Dolan and J.J. More. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201 – 213, 2002.

[Fra97] A. Frangioni. Dual Ascent Methods and Multicommodity Flow Problems.
PhD thesis, Dipartimento di Informatica, Universit di Pisa, 1997.

58 G. Kliewer and L. Timajev

[GC94] B. Gendron and T.G. Crainic. Relaxations for multicommodity capaci-
tated network design problems. Technical report, Center for Research on
Transportation, Montreal, Canada, 1994.

[GCG03] I. Ghamlouche, T.G. Crainic, and M. Gendreau. Cycle-based neighbour-
hoods for fixed-charge capacitated multicommodity network design. Op-
erations research, 51(4):655–667, 2003.

[GCG04] I. Ghamlouche, T.G. Crainic, and M. Gendreau. Path relinking, cycle-
based neighbourhoods and capacitated multicommodity network design.
Annals of Operations research, 131(1–4):109–133, 2004.

[Gui98] M. Guignard. Efficient cuts in lagrangean ’relax-and-cut’ schemes. Eu-
ropean Journal of Operational Research, 105:216–223, 1998.

[HFK01] M. Hunting, U. Faigle, and W. Kern. A lagrangian relaxation approach
to the edge-weighted clique problem. European Journal of Operational
Research, 131(1):119–131, 2001.

[HY00] K. Holmberg and D. Yuan. A lagrangean heuristic based branch-and-
bound approach for the capacitated network design problem. Operations
Research, 48:461–481, 2000.

[Luc92] Abilio Lucena. Steiner problem in graphs: Lagrangian relaxation and
cutting planes. In COAL Bulletin, volume 21, pages 2–8. Mathematical
Programming Society, 1992.

[MLM04] C. Martinhon, A. Lucena, and N. Maculan. Stronger k-tree relaxations for
the vehicle routing problem. European Journal of Operational Research,
158(1):56–71, 2004.

[MW84] T.L. Magnanti and R.T. Wong. Network design and transportation plan-
ning: Models and algorithms. Transportation Science, 18(1):1–55, 1984.

[RG05] T. Ralphs and M. Galati. Decomposition and dynamic cut generation in
integer programming. Technical report, Lehigh University, PA, 2005. To
appear in Mathematical Programming.

[SKK02a] M. Sellmann, G. Kliewer, and A. Koberstein. Lagrangian cardinality cuts
and variable fixing for capacitated network design. In R. Moehring and
R. Raman, editors, Proceedings of the 10th Annual European Symposium
on Algorithms (ESA), Springer, LNCS 2461, pages 845–858, 2002.

[SKK02b] M. Sellmann, G. Kliewer, and A. Koberstein. Lagrangian cardinality
cuts and variable fixing for capacitated network design. Technical report
tr-ri-02-234, University of Paderborn, 2002.

On the Price of Anarchy and Stability of
Correlated Equilibria of Linear Congestion

Games�,��,� � �

George Christodoulou and Elias Koutsoupias

National and Kapodistrian University of Athens,
Department of Informatics and Telecommunications

{gchristo, elias}@di.uoa.gr

Abstract. We consider the price of stability for Nash and correlated
equilibria of linear congestion games. The price of stability is the opti-
mistic price of anarchy, the ratio of the cost of the best Nash or correlated
equilibrium over the social optimum. We show that for the sum social
cost, which corresponds to the average cost of the players, every linear
congestion game has Nash and correlated price of stability at most 1.6.
We also give an almost matching lower bound of 1 +

√
3/3 = 1.577.

We also consider the price of anarchy of correlated equilibria. We
extend existing results about Nash equilibria to correlated equilibria and
show that for the sum social cost, the price of anarchy is exactly 2.5, the
same for pure and mixed Nash and for correlated equilibria. The same
bound holds for symmetric games as well. We also extend the results
about Nash equilibria to correlated equilibria for weighted congestion
games and we show that when the social cost is the total latency, the
price of anarchy is (3 +

√
5)/2 = 2.618.

1 Introduction

Recently, a new vigorous subfield of computer science emerged which studies
how the viewpoint and behavior of users affects the performance of computer
networks or systems, by modeling the situation as a game.

One of the most important questions in game theory is what is the correct
solution concept of a game. There are many proposals but three types of equi-
libria stand out in the literature of non-cooperative game theory. The first and
stronger equilibrium occurs when there are dominant strategies, in which each
player has an optimal strategy independently of what the other players do. Un-
fortunately not every game has such a solution (and sometimes even if it has

� Research supported in part by the IST (FLAGS, IST-2001-33116) programme.
�� Research supported in part by the programme EΠEAEK II under the

task “ΠYΘAΓOPAΣ-II: ENIΣXYΣH EPEYNHTIKΩN OMAΔΩN ΣTA
ΠANEΠIΣTHMIA (project title: Algorithms and Complexity in Network The-
ory)” which is funded by the European Social Fund (75%) and the Greek Ministry
of Education (25%).

� � � Research supported in part by the programme ΠENEΔ 2003 of General Secretariat
for Research and Technology (project title: Optimization Problems in Networks).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 59–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

60 G. Christodoulou and E. Koutsoupias

one, as in the case of the game of prisoner’s dilemma, it may lead to unexpected
solutions). The second and the most well-known equilibrium is the Nash equi-
librium, whose existence is assured for every finite game by the famous theorem
by Nash. The third type of equilibria is the notion of correlated equilibrium,
introduced by Aumann [1], and which is almost as widely studied as the Nash
equilibria; recently, this kind of equilibria is the focus of computational studies
(see for example [22,21]).

A correlated strategy for a game is a probability distribution over all the
possible pure strategy profiles. One can interpret the situation as follows: there
is a trusted mediator who performs the random experiment and announces the
resulted strategies to each player in private. The players although they know the
distribution, they are not informed about the outcome of the experiment but
just about their own strategy. They may choose to follow or not the mediator’s
advice according to their utility function. A correlated strategy is a correlated
equilibrium if no player has any reason to unilaterally disobey to the mediator’s
advice. Roughly speaking this paradigm is also an interpretion for mixed Nash
equilibria with the exception that the distribution is formed by independent ran-
dom experiments (one for each player) over the possible pure strategies for each
player. That, is Nash equilibria is the rank 1 restriction of correlated equilibria.

The three types of equilibria (dominant, Nash, and correlated) are related by
inclusion: the set of Nash equilibria contains the dominant strategies and the set
of correlated equilibria contains all Nash equilibria. Thus, by Nash’s theorem,
the existence of correlated equilibria is also guaranteed for every finite game.

One of the main tools in the study of selfish behavior is the price of anarchy
[14,20], a measure that compares the worst case performance Nash equilibrium
to that of the optimal allocation. Naturally, the concept of the price of anarchy
extends to correlated equilibria. If we know only that the players play at some
equilibrium, the price of anarchy bounds the deterioration of system performance
due to selfish behavior. On the other hand, there is the optimistic point of view
in which the players are guided to play at the best Nash equilibrium. Especially
with correlated equilibria, the latter makes much more sense: The mediator who
selects the probability distribution, the correlated equilibrium, and presents it to
the players, can select the correlated equilibrium with minimum system cost. In
other words, one can view correlated equilibria as a mechanism for enforcing good
behavior on selfish users. The optimistic price of anarchy of the best equilibrium
is also called price of stability [3].

In this paper we consider the price of anarchy and stability of Nash and
correlated equilibria of congestion games, a class of games which suitably models
traffic networks and abstracts well many game-theoretic situations in networks
and systems. Congestion games, introduced by Rosenthal [23], provide a common
framework for almost all previous studies of price of anarchy which originated
in [14] and [26]. Congestion games have the fundamental property that a pure
Nash equilibrium always exists. In [18], it is proved that congestion games (also
called potential games) are characterized by a potential: the local optima of the
potential correspond exactly to pure Nash equilibria (see [8] for computational
issues related to this issue).

On the Price of Anarchy and Stability of Correlated Equilibria 61

Whether one studies the price of anarchy or the price of stability, a critical
matter is the definition of the social optimum: the system allocation mostly
desired by the system designer. From the system designers point of view there
are two natural notions of social cost: the maximum or the average (or sum)
cost among the players. For the original model of parallel links or machines in
[14], the social cost was the maximum cost among the players, which is equal
to the makespan. For the Wardrop model studied by Roughgarden and Tardos
[26], the social cost was the average player cost. A third social cost is the total
latency which is the sum of squares of the loads on each facility. For unweighted
games this is identical to the average (or sum) cost among the players.

Here we deal mainly with the average social cost but we also consider the
maximum social cost and the total latency social cost (for weighted congestion
games). We also consider the price of anarchy of the natural subclass of sym-
metric congestion games, where the available actions are the same for all the
players.

1.1 Our Results

We study linear general—not only network—congestion games with cost (la-
tency) functions of the form fe(k) = aek + be with nonnegative coefficients. We
focus mainly on the sum social cost which is the sum of the cost of all players and
we consider all types of equilibria: dominant strategies, pure and mixed Nash
equilibria, and correlated equilibria.

These equilibria are related by inclusion and this hierarchy allows us to look
for the strongest possible results. In particular, when we obtain a lower bound
on the price of stability or the price of anarchy for dominant strategies, this
lower bound holds for all types of equilibria. (It is important to emphasize that
this holds for the price of stability because a strong dominant strategy implies
unique Nash and correlated equilibrium). And on the other end, when we obtain
an upper bound for correlated equilibria, this holds for all types of equilibria.
Interestingly—but not entirely unexpectantly—such general results are easier to
prove in some cases (when we are not distracted by the additional structure of
the specific subproblems).

This is an additional reason for studying the price of stability and anarchy of
correlated equilibria. Not only correlated equilibria is a natural well-motivated
and well-studied class of equilibria, but it is also an appropriate (and compu-
tationally feasible) generalization of Nash equilibria which allows some of the
results to be simplified and strengthened.

Price of Stability: For linear congestion games we give an upper bound of 1.6
for Nash and correlated equilibria (Theorem 1). Although bounding directly
the price of stability seems hard—after all, we need to bound the best not the
worst equilibrium—we resort to a clever trick by making use of the potential
of congestion games. More specifically, instead of bounding the cost of the best
equilibrium, we bound the cost of the pure Nash equilibrium which has minimum
potential. Since every local optimum of the potential corresponds to a pure
Nash equilibrium (by the handy theorem of Rosenthal [23,18]), such a Nash
equilibrium is guaranteed to exist. In fact, the proof of Theorem 1 does not even

62 G. Christodoulou and E. Koutsoupias

need to consider the Nash equilibrium with minimum potential. All we need to
consider is that the potential of the Nash equilibrium is less than the potential
of the optimal strategies.

We give a non-trivial lower bound of 1 +
√

3
3 ≈ 1.577 for dominant strate-

gies (Theorem 2). This is a surprisingly strong result: It states in the strongest
possible way that for some games, selfishness deteriorates the efficiency of some
systems by approximately 58%. It is also perhaps the most technical part of this
work. Naturally, both the upper and lower bounds hold for all types of equilibria
(dominant strategies, pure and mixed Nash, and correlated equilibria). An open
problem is to close the small gap between 1.577 and 1.6. We believe that our
lower bound is tight, but our upper bound approach cannot reach this bound
without substantial restructuring.

We also observe that for the max social cost (i.e., the maximum cost among
the players) the price of stability is Θ(

√
N) (Theorem 3). This follows by a minor

modification to the lower bound (about pure Nash equilibria) given in [4].
Price of anarchy: For linear congestion games, we extend some of the results

of our STOC’05 paper [4] on the price of anarchy. There we showed bounds on
Nash equilibria which we extend here to correlated equilibria. At the same time
we strengthen the bounds. More specifically, we show that the correlated price
of anarchy of the sum social cost is 2.5 for the asymmetric case (Theorem 4) and
5N−2
2N+1 for the symmetric case (Theorem 5), where N is the number of players.
Since in [4], we had matching lower bounds for pure Nash equilibria, these are
also tight bounds for pure and mixed Nash and correlated equilibria.

We also extend the results of [2] about the price of anarchy of Nash equilibria
for weighted linear congestion games when the social cost is the total latency:
The price of anarchy of correlated equilibria is 3+

√
5

2 ≈ 2.618 (Theorem 6).
Although we prove a more general result, our proof is substantially simpler.

With these results we resolve many open problems in this area, although
there are plenty of them left. Our results together with the existing literature
suggest an intriguing dichotomy between the sum (or average) social cost and
the maximum social cost. For the sum social cost, the price of anarchy of pure
Nash equilibria (or even of dominant strategies, if they exist) is almost equal to
the price of anarchy of the much larger class of mixed Nash equilibria and even
correlated equilibria. On the contrary, for the max social cost, pure Nash equi-
libria have much smaller price of anarchy than mixed Nash equilibria. Relevant
to this meta-theorem is the fully-mixed-conjecture, which first appeared in [16],
and states that for every game of the original model of [14], the fully mixed Nash
equilibrium has the worst price of anarchy among all Nash equilibria.

1.2 Related Work

The closer works in spirit, results, and techniques are the STOC’05 papers [4,2].
Both these papers study the price of anarchy of pure and mixed Nash equi-
libria for linear congestion games and congestion games with polynomial delay
functions. In particular, both papers show that price of anarchy of pure Nash
equilibria of linear congestion games is 2.5 for the average social cost (and the
total latency cost which is identical in this case). Paper [4] also shows that the

On the Price of Anarchy and Stability of Correlated Equilibria 63

same bound holds also for symmetric games for both the average and the max-
imum social cost but it gets up to Θ(

√
N) for the maximum social cost (in the

general case). It also gives a 2.618 bound for mixed equilibria and the average
social cost. On the other hand, [2] considers weighted congestion games for the
total latency social cost and shows that the price of anarchy for both pure and
mixed equilibria is 2.618.

The study of the price of anarchy was initiated in [14], for (weighted) conges-
tion games of m parallel links. The price of anarchy for the maximum social cost
is proved to be Ω(log m

log log m), while in [16,13,7] they proved Θ(log m
log log m). In [7], they

extended the result to m parallel links with different speeds and showed that
the price of anarchy is Θ(log m

log log log m). In [6], more general latency functions are
studied, especially in relation to queuing theory. For the same model of parallel
links, [10] and [15] consider the price of anarchy for other social costs.

In [28], they give bounds for the case of the average social cost for the parallel
links model. For the same model and the maximum social cost, [11] showed
that the price of anarchy is Θ(log N/ log log N) (a similar, perhaps unpublished,
result was obtained by the group of [28]). The case of singleton strategies is also
considered in [12] and [15]. In [9], they consider the mixed price of anarchy of
symmetric network weighted congestion games, when the network is layered.

The non-atomic case of congestion games was considered in [26,27] where
they showed that for linear latencies the average price of anarchy is 4/3. They
also extended this result to polynomial latencies. Furthermore, [5,25] considered
the social cost of maximum latency.

2 The Model

A congestion game is a tuple (N, E, (Si)i∈N , (fe)e∈E) where N = {1, . . . , n} is
the set of players, E is a set of facilities, Si ⊆ 2E is a collection of pure strategies
for player i: a pure strategy Ai ∈ Si is a set of facilities, and finally fe is a cost
(or latency) function associated with facility e. We are concerned with linear cost
functions: fe(k) = ae ·k+be for nonnegative constants ae and be. A pure strategy
profile A = (A1, . . . , An) is a vector of strategies, one for each player. The cost
of player i for the pure strategy profile A is given by ci(A) =

∑
e∈Ai

fe(ne(A)),
where ne(A) is the number of the players using e in A. A pure strategy profile
A is a Nash equilibrium if no player has any reason to unilaterally deviate to
another pure strategy: ∀i ∈ N, ∀s ∈ Si ci(A) ≤ ci(A−i, s), where (A−i, s) is
the strategy profile produced if just player i deviates from Ai to s.

The social cost of A is either the maximum cost of a player Max(A) =
maxi∈N ci(A) or the average of the players’ costs. For simplicity, we consider
the sum of all costs (which is N times the average cost) Sum(A) =

∑
i∈N ci(A).

These definitions extend naturally to the cases of mixed and correlated strategies
(with expected costs, of course).

A mixed strategy pi for a player i, is a probability distribution over his pure
strategy set Si. A correlated strategy q for a set of players, is any probability
distribution over the set S of possible combinations of pure strategies that these
players can choose, where S = ×i∈NSi. Given a correlated strategy q, the ex-

64 G. Christodoulou and E. Koutsoupias

pected cost of a player i ∈ N is ci(q) =
∑

s∈S q(s)ci(s). A correlated strategy q
is a correlated equilibrium if q satisfies the following

ci(q) ≤
∑
s∈S

q(s)ci(s−i, δi(si)), ∀i ∈ N, ∀δi(si) : Si → Si

A congestion game is symmetric (or single-commodity) if all the players
have the same strategy set: Si = C. We use the term “asymmetric” (or multi-
commodity) to refer to all games (including the symmetric ones).

The correlated price of anarchy of a game is the worst-case ratio, among
all correlated equilibria, of the social cost over the optimum social cost, opt =
minP∈S sc(P).

PA = sup
q is a corr. eq.

sc(q)
opt

The correlated price of stability of a game is the best-case ratio, among all
correlated equilibria, of the social cost over the optimum.

PS = inf
q is a corr. eq.

sc(q)
opt

When we refer to the price of stability (resp. anarchy) of a class of games, we
mean the maximum (or supremum) price of stability (resp. anarchy) among all
games in the class.

In weighted congestion games, each player controls an amount of traffic wi,
and the cost of a facility e depends on the total load on the facility. For this
case, some of our results involve the total latency social cost. For a pure strategy
profile A ∈ S, the total latency is defined as C(A) =

∑
e∈E θe(A) · fe(θe(A)).

Notice that the sum and the total latency social costs coincide for unweighted
congestion games.

3 The Correlated Price of Stability of Congestion Games

In this section we study the price of stability of congestion games with linear
cost functions of the form fe(x) = ae · x + be, with non-negative coefficients ae

and be. We will use the following simple lemma:

Lemma 1. For every nonnegative integers α, β it holds: αβ+2β−α ≤ 1
8a2+2β2.

Given a strategy profile A of a congestion game, we denote by Φ(A) the potential
of A, using the potential function introduced in [23]: Φ(A) =

∑
e∈E

∑ne(A)
i=1 fe(i).

The potential has the nice property that when Φ(A) is a local optimum, then A
is a pure Nash equilibrium. To establish an upper bound on the price of stability,
we simply bound the price of anarchy of the subclass of Nash equilibria whose
potential does not exceed the potential of the optimal allocation. Clearly, by the
property of the potential, this subclass of Nash equilibria is not empty.

Theorem 1. Let A be a pure Nash equilibrium and P be any pure strategy
profile such that Φ(A) ≤ Φ(P), then Sum(A) ≤ 8

5Sum(P). This shows that the
correlated price of stability is at most 1.6.

On the Price of Anarchy and Stability of Correlated Equilibria 65

Proof. For every pure strategy profile X = (X1, . . . , XN) we have

Sum(X) =
∑
i∈N

ci(X) =
∑
i∈N

∑
e∈Xi

fe(ne(X)) =
∑
e∈E

ne(X)fe(ne(X))

=
∑
e∈E

(aen
2
e(X) + bene(X))

where ne(X) is the number of the players in the allocation X that use e. We
compute the potential for a strategy profile X :

Φ(X) =
∑
e∈E

ne(X)∑
i=1

fe(i) =
∑
e∈E

ne(X)∑
i=1

(ae · i + be) =
1
2
Sum(X) +

1
2

∑
e∈E

(ae + be)ne(X).

From the potential inequality Φ(A) ≤ Φ(B), we have

Sum(A) +
∑
e∈E

(ae + be)ne(A) ≤ Sum(P) +
∑
e∈E

(ae + be)ne(P),

from which we obtain

Sum(A) ≤
∑
e∈E

(ae(ne(P)2 + ne(P) − ne(A)) + be(2ne(P) − ne(A))). (1)

From the Nash inequality we have that for every player i and for every strategy
Pi, it holds ci(A) ≤ ci(A−i, Pi) ≤

∑
e∈Pi

fe(ne(A) + 1). If we sum for all players
we get

Sum(A) ≤
∑
e∈E

ne(P)fe(ne(A)+1) =
∑
e∈E

aene(A)ne(P)+
∑
e∈E

(ae+be)ne(P). (2)

So if we sum (1) and (2), and use Lemma 1, we get

2Sum(A) ≤
∑
e∈E

ae(ne(A)ne(P) + n2
e(P) + 2ne(P) − ne(A)) + be(3ne(P) − ne(A))

≤
∑
e∈E

ae(
1
8
n2

e(A) + 3n2
e(P)) +

∑
e∈E

be(3ne(P) − ne(A))

≤ 1
8
Sum(A) + 3Sum(P)

and the theorem follows. ��

3.1 Lower Bound

We now provide an almost matching lower bound.

Theorem 2. There are linear congestion games whose dominant equilibrium —
and therefore the Nash and correlated equilibria— have price of stability of the
Sum social cost approaching 1+

√
3/3 ≈ 1.577 as the number of players N tends

to infinity.

66 G. Christodoulou and E. Koutsoupias

Proof. We describe a game of N players with parameters α, β, and m which we
will fix later to obtain the desired properties. Each player i has two strategies
Ai and Pi, where the strategy profile (A1, . . . , AN) will be the equilibrium and
(P1, . . . , PN) will have optimal social cost.

There are 3 types of facilities:

– N facilities αi, i = 1, . . . , N , each with cost function f(k) = αk. Facility αi

belongs only to strategy Pi.
– N(N − 1) facilities βij , i, j = 1, . . . , N and i �= j, each with cost f(k) = βk.

Facility βij belongs only to strategies Ai and Pj .
–

(
N
m

)
facilities γS , one for each subset S of {1, . . . , N} of cardinality m and

with cost function f(k) = k. Facility γS belongs to strategy Ai iff i �∈ S and
to strategy Pj iff j ∈ S.

We will first compute the cost of every player and every strategy profile. By
symmetry, we need only to consider the cost costA(k) of player 1 and the cost
costP (k) of player N of the strategy profile (A1, . . . , Ak, Pk+1, . . . , PN). We could
count the cost that every facility contributes to costA(k) and costP (k), but
this results in complicated sums. A simpler way is to resort to probabilities
and consider the contribution of a random facility of each of the 3 types. For
example, consider a random facility γS which is used by player 1, i.e. 1 �∈ S.
The probability that player j = k + 1, . . . , N uses this facility is equal to the
probability that j ∈ S which is equal to m/(N − 1). Also the probability that
player i = 2, . . . , k uses the facility is equal to the probability that i �∈ S which
is equal to (N − 1−m)/(N − 1). Therefore the expected number of players that
use the facility γS is

1 + (N − k)
m

N − 1
+ (k − 1)

N − 1 − m

N − 1
=

kN + mN − 2km + m − k

N − 1
.

Taking into account that there are
(
N−1

m

)
such facilities, the contribution of type

3 facilities to the cost costA(k) of player 1 is
(
N−1

m

)
kN+mN−2km+m−k

N−1 . With
similar but simpler considerations we compute the contribution to costA(k) of
facilities of the second type to be (2N − k − 1)β. Therefore,

costA(k) = (2N − k − 1)β +
(

N − 1
m

)
kN + mN − 2km + m − k

N − 1
.

Similarly, we compute

costP (k) = α + (N + k − 1)β +
(

N − 1
N − m

)
kN + mN − 2km − m + k

N − 1
.

(In fact by symmetry, and with the exception of the term α, the cost costP (k)
results from costA(k) when we replace k and m by N−k and N−m, respectively.)

We now want to select the parameters α and β so that the strategy profile
(A1, . . . , AN) is dominant. Equivalently, at every strategy profile (A1, . . . , Ak,

On the Price of Anarchy and Stability of Correlated Equilibria 67

Pk+1, . . . , PN), player i, i = 1, . . . , k, has no reason to switch to strategy Pi.
This is expressed by the constraint

costA(k) ≤ costP (k − 1), for every k = 1, . . . , N . (3)

Magically, all these constraints are satisfied by equality when

α =
(

N

m

)
N2 − 2m − 2Nm + N

2N
, and β =

(
N

m

)
N2 + 4m2 − 4Nm − N

2N(N − 1)
,

as one can verify with straightforward, albeit tedious, substitution. (The mystery
disappears when we observe that both costA(k) and costP (k) are linear in k.)

In summary, for the above values of the parameters α and β, we obtain the
desired property that the strategy profile (A1, . . . , AN) is a dominant strategy.
If we increase α by any small positive ε, inequality (3) becomes strict and the
dominant strategy is unique (therefore unique Nash and correlated equilibrium).

We now want to select the value of the parameter m so that the price
of anarchy of this equilibrium is as high as possible. The price of anarchy is
costA(N)/costP (0) which for the above values of α and β can be simplified to

pa =
3N2 + 6m2 − 8Nm − N

2N2 + 6m2 − 6Nm − 2m
.

For m/N ≈ 1/2 − √
3/6, the price of anarchy tends to pa = 1 +

√
3/3 ≈ 1.577,

as N tends to infinity. ��
The above lower bound is based on asymmetric games. It is open whether a
similar result can be obtained for symmetric games.

Theorem 3. The price of stability for dominant strategies for asymmetric con-
gestion games and for maximum social cost is Θ(

√
N).

Proof. A minor modification of the example in the lower bound in [4] works. We
simply add a small term ε to the bad Nash equilibrium case, in order to turn the
strategies into dominant ones. On the other hand, the price of stability cannot
be more that the pure price of anarchy of which shown in [4] to be O(

√
N). ��

4 The Correlated Price of Anarchy of Congestion Games

We now turn our attention to the correlated price of anarchy of congestion games,
again for linear cost functions of the form fe(x) = ae · x + be, with non-negative
coefficients ae and be. We consider the sum (or average) social cost. The following
is a simple fact which will be useful in the proof of the next theorem.

Lemma 2. For every pair of nonnegative integers α, β, it holds β(α + 1) ≤
1
3α2 + 5

3β2.

Theorem 4. The correlated price of anarchy of the average social cost is 5
2 .

68 G. Christodoulou and E. Koutsoupias

Proof. The lower bound is established in [2,4] (for pure equilibria). To estab-
lish the upper bound, let q be a correlated equilibrium and P be an optimal
(or any other) allocation. The cost of player i at the correlated equilibrium is
ci(q) =

∑
s∈S q(s)ci(s) =

∑
s∈S q(s)

∑
e∈si

fe(ne(s)). We want to bound the
expected social cost, the sum of the expected costs of the players: Sum(q) =∑

i ci(q) =
∑

s∈S q(s)
∑

e∈E ne(s)fe(ne(s)), with respect to the optimal cost
Sum(P) =

∑
i ci(P) =

∑
e∈E ne(P)fe(ne(P)). At the correlated equilibrium

ci(q) =
∑
s∈S

q(s)
∑
e∈si

fe(ne(s)) ≤
∑
s∈S

q(s)
∑
e∈Pi

fe(ne(s−i, Pi))

≤
∑
s∈S

q(s)
∑
e∈Pi

fe(ne(s) + 1)

where (s−i, Pi) is the usual notation in Game Theory to denote the allocation
that results when we replace si by Pi. If we sum over all players i, we can bound
the expected social cost as

Sum(q) ≤
∑
i∈N

∑
s∈S

q(s)
∑
e∈Pi

fe(ne(s) + 1) =
∑
s∈S

q(s)
∑
e∈E

ne(P)fe(ne(s) + 1)

=
∑
s∈S

q(s)
∑
e∈E

(ae(ne(P)(ne(s) + 1) + bene(P))

≤
∑
s∈S

q(s)
∑
e∈E

(ae(
1
3
n2

e(s) +
5
3
n2

e(P)) + bene(P))

=
1
3
Sum(q) +

5
3
Sum(P)

where the second inequality follows from Lemma 2. ��
For the symmetric games the correlated price of anarchy is also 5/2. In fact, as
the next theorem establishes, it is slightly less: 5N−2

2N+1 . This is tight, as a matching
lower bound for pure Nash equilibria in [4] shows.

Theorem 5. The average correlated price of anarchy of symmetric congestion
games with linear cost functions is 5N−2

2N+1 .

4.1 Asymmetric Weighted Games

In this subsection we assume that the social cost is the total latency and we
even allow players to have weights. The main theorem of this subsection was
first proved in [2] for mixed Nash equilibria. Here we generalize it to correlated
equilibria. Our proof is shorter and in our opinion simpler, but it borrows a lot
of ideas from [2]. We will need the following lemma:

Lemma 3. For every non negative real α, β, it holds αβ + β2 ≤
√

5−1
4 α2 +√

5+5
4 β2.

Theorem 6. For linear weighted congestion games, the correlated price of an-
archy of the total latency is at most 3+

√
5

2 ≈ 2.618.

On the Price of Anarchy and Stability of Correlated Equilibria 69

Proof. Let q be a correlated equilibrium and P be an optimal (or any other)
allocation. The cost of player i at the correlated equilibrium is ci(q) =∑

s∈S q(s)ci(s) =
∑

s∈S q(s)
∑

e∈si
fe(θe(s)), where θe(s) is the total load on

the facility e for the allocation s. We want to bound the expected total latency:
C(q) = E[

∑
e∈E lefe(le)] =

∑
s∈S q(s)

∑
e∈E θe(s)fe(θe(s)), where le is a ran-

dom variable indicating the actual load on the facility e, with respect to the
optimal cost C(P) =

∑
e∈E θe(P)fe(θe(P)). At the correlated equilibrium

ci(q)=
∑
s∈S

q(s)
∑
e∈si

fe(θe(s))≤
∑
s∈S

q(s)
∑
e∈Pi

fe(θe(s−i, Pi)) ≤
∑
s∈S

q(s)
∑
e∈Pi

fe(θe(s)+wi)

where (s−i, Pi) is the usual notation in Game Theory to denote the allocation
that results when we replace si by Pi. If we multiply this inequality with wi we
get ∑

s∈S
q(s)

∑
e∈si

fe(θe(s))wi ≤
∑
s∈S

q(s)
∑
e∈Pi

fe(θe(s) + wi)wi

If we sum over all players i, the left part of the inequality is the expected total
latency C(q), that we can bound, with the help of Lemma 3, as

C(q) =
∑
i∈N

∑
s∈S

q(s)
∑
e∈si

fe(θe(s))wi =
∑
s∈S

q(s)
∑
e∈E

θe(s)fe(θe(s))

≤
∑
i∈N

∑
s∈S

q(s)
∑
e∈Pi

fe(θe(s) + wi)wi

=
∑
i∈N

∑
s∈S

q(s)
∑
e∈Pi

(ae(θe(s) + wi) + be)wi

≤
∑
s∈S

q(s)(
∑
e∈E

ae(θe(s)θe(P) + θ2
e(P)) +

∑
e∈E

beθe(P)

≤
∑
s∈S

q(s)(
∑
e∈E

ae(
√

5 − 1
4

θ2
e(s) +

√
5 + 5
4

θ2
e(P)) +

∑
e∈E

beθe(P)

≤
√

5 − 1
4

C(q) +
√

5 + 5
4

C(P)

and the theorem follows. ��

References

1. R. Aumann. Subjectivity and correlation in randomized games. Journal of Math-
ematical Economics,1, pages 67-96, 1974.

2. B. Awerbuch, Y. Azar and A. Epstein. The Price of Routing Unsplittable Flow.
37th Annual ACM STOC, pages 57-66, 2005.

3. E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler and T. Rough-
garden. The Price of Stability for Network Design with Fair Cost Allocation. In
45th Annual IEEE FOCS, pages 59-73, 2004.

4. G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion
games. 37th Annual ACM STOC, pages 67-73, 2005.

70 G. Christodoulou and E. Koutsoupias

5. J. R. Correa, A. S. Schulz and N. S. Moses. Computational Complexity, Fairness,
and the Price of Anarchy of the Maximum Latency Problem. In Proceedings of the
10th Int. Conf. IPCO, pages 59-73, 2004.

6. A. Czumaj, P. Krysta, B. Vöcking. Selfish traffic allocation for server farms. In
Proceedings on 34th Annual ACM STOC, pages 287-296, 2002.

7. A. Czumaj and B. Vöcking. Tight Bounds for Worst-case Equilibria. In Proceedings
of the 13th Annual ACM-SIAM SODA, pp. 413–420, January 2002.

8. A. Fabrikant, C. Papadimitriou, and K. Tulwar. On the complexity of pure equi-
libria. In Proceedings of the 36th Annual ACM STOC, pages 604–612, June 2004.

9. D. Fotakis, S. C. Kontogiannis and P. G. Spirakis. Selfish Unsplittable Flows. In
Proceedings of the 31st ICALP, pages 593-605, 2004.

10. M. Gairing, T. Lücking, M. Mavronicolas and B. Monien. The Price of Anarchy
for Polynomial Social Cost. In Proceedings of the 29th MFCS, pages 574-585, 2004.

11. M. Gairing, T. Lücking, M. Mavronicolas and B. Monien. Computing Nash equi-
libria for scheduling on restricted parallel links. In Proceedings of the 36th Annual
ACM STOC, pages 613-622, 2004.

12. M. Gairing, T. Lücking, M. Mavronicolas, B. Monien and M. Rode. Nash Equilibria
in Discrete Routing Games with Convex Latency Functions. In Proceedings of the
31st ICALP, pages 645-657, 2004.

13. E. Koutsoupias, M. Mavronicolas, and P. Spirakis. Approximate Equilibria and
Ball Fusion. In Proceedings of the 9th SIROCCO, 2002

14. E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proceedings of
the 16th Annual STACS, pages 404-413, 1999.

15. T. Lücking, M. Mavronicolas, B. Monien and M. Rode. A New Model for Selfish
Routing. In Proceedings of the 21st Annual STACS, pages 547-558, 2004.

16. M. Mavronicolas and P. G. Spirakis. The price of selfish routing. In Proceedings
on 33rd Annual ACM STOC, pages 510-519, 2001.

17. I. Milchtaich. Congestion Games with Player-Specific Payoff Functions. Games
and Economic Behavior 13, pages 111-124, 1996.

18. D. Monderer and L. S. Shapley. Potential Games. Games and and Economic
Behavior 14, pages 124-143, 1996.

19. M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
20. C. H. Papadimitriou. Algorithms, games, and the Internet. In Proceedings of the

33rd Annual ACM STOC, pages 749-753, 2001.
21. C. H. Papadimitriou. Computing Correlated Equilibria in Multiplayer Games. 37th

Annual ACM STOC, pages 49-56, 2005.
22. C. H. Papadimitriou and T. Roughgarden. Computing Equilibria in Multi-Player

Games. In Proceedings of the 16th Annual ACM-SIAM SODA, pages 82-91, 2005.
23. R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. In-

ternational Journal of Game Theory, 2:65-67, 1973.
24. T. Roughgarden. The price of anarchy is independent of the network topology.

Journal of Computer and System Sciences, 67(2), pages 341–364, Sep. 2003.
25. T. Roughgarden. The maximum latency of selfish routing. In Proceedings of the

15th Annual ACM-SIAM SODA, pages 980-981, 2004.
26. T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM,

49(2):236-259, 2002.
27. T. Roughgarden and E. Tardos. Bounding the inefficiency of equilibria in

nonatomic congestion games. Games and Economic Behavior, 47(2):389-403, 2004.
28. S. Suri, C. D. Tóth and Y. Zhou. Selfish load balancing and atomic congestion

games. In Proceedings of the 16th annual ACM SPAA, pages 188-195, 2004.

The Complexity of Games on Highly
Regular Graphs

Konstantinos Daskalakis and Christos H. Papadimitriou�

UC Berkeley, Computer Science Division, Soda Hall, Berkeley, CA 94720
{costis, christos}@cs.berkeley.edu

Abstract. We present algorithms and complexity results for the prob-
lem of finding equilibria (mixed Nash equilibria, pure Nash equilibria and
correlated equilibria) in games with extremely succinct description that
are defined on highly regular graphs such as the d-dimensional grid; we
argue that such games are of interest in the modelling of large systems
of interacting agents. We show that mixed Nash equilibria can be found
in time exponential in the succinct representation by quantifier elimi-
nation, while correlated equilibria can be found in polynomial time by
taking advantage of the game’s symmetries. Finally, the complexity of
determining whether such a game on the d-dimensional grid has a pure
Nash equilibrium depends on d and the dichotomy is remarkably sharp:
it is solvable in polynomial time (in fact NL-complete) when d = 1, but
it is NEXP-complete for d ≥ 2.

1 Introduction

In recent years there has been some convergence of ideas and research goals be-
tween game theory and theoretical computer science, as both fields have tried to
grapple with the realities of the Internet, a large system connecting optimizing
agents. An important open problem identified in this area is that of computing
a mixed Nash equilibrium; the complexity of even the 2-player case is, aston-
ishingly, open (see, e.g., [9,15]). Since a mixed Nash equilibrium is always guar-
anteed to exist, ordinary completeness techniques do not come into play. The
problem does fall into the realm of “exponential existence proofs” [11], albeit
of a kind sufficiently specialized that, here too, no completeness results seem to
be forthcoming. On the other hand, progress towards algorithms has been very
slow (see, e.g., [10,7]).

We must mention here that this focus on complexity issues is not understood
and welcome by all on the other side. Some economists are mystified by the
obsession of our field with the complexity of a problem (Nash equilibrium) that
arises in a context (rational behavior of agents) that is not computational at
all. We believe that complexity issues are of central importance in game theory,
and not just the result of professional bias by a few computer scientists. The
reason is simple: Equilibria in games are important concepts of rational behavior
� Supported by NSF ITR Grant CCR-0121555 and by a Microsoft Research grant.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 71–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

72 K. Daskalakis and C.H. Papadimitriou

and social stability, reassuring existence theorems that enhance the explanatory
power of game theory and justify its applicability. An intractability proof would
render these existence theorems largely moot, and would cast serious doubt on
the modelling power of games. How can one have faith in a model predicting
that a group of agents will solve an intractable problem? In the words of Kamal
Jain: “If your PC cannot find it, then neither can the market.”

However, since our ambition is to model by games the Internet and the
electronic market, we must extend our complexity investigations well beyond
2-person games. This is happening: [2,4,5,12,10] investigate the complexity of
multi-player games of different kinds. But there is an immediate difficulty: Since
a game with n players and s strategies each needs nsn numbers to be specified
(see Section 2 for game-theoretic definitions) the input needed to define such a
game is exponentially long. This presents with two issues: First, a host of tricky
problems become easy just because the input is so large. More importantly,
exponential input makes a mockery of claims of relevance: No important problem
can need an astronomically large input to be specified (and we are interested in
large n, and of course s ≥ 2). Hence, all work in this area has focused on certain
natural classes of succinctly representable games.

One important class of succinct games is that of the graphical games proposed
and studied by Michael Kearns et al. [4,5]. In a graphical game, we are given a
graph with the players as nodes. It is postulated that an agent’s utility depends
on the strategy chosen by the player and by the player’s neighbors in the graph.
Thus, such games played on graphs of bounded degree can be represented by
polynomially many (in n and s) numbers. Graphical games are quite plausible
and attractive as models of the interaction of agents across a large network
or market. There has been a host of positive complexity results for this kind of
games. It has been shown, for example, that correlated equilibria (a sophisticated
equilibrium concept defined in Section 2) can be computed in polynomial time
for graphical games that are trees [4], later extended to all graphical games [10].

But if we are to study truly large systems of thousands or millions of inter-
acting agents, it is unrealistic to assume that we know the arbitrarily complex
details of the underlying interaction graph and of the behavior of every single
player — the size of such description would be forbidding anyway. One possibil-
ity, explored brilliantly in the work of Roughgarden and Tardos [14], is to assume
a continuum of behaviorally identical players. In the present paper we explore
an alternative model of large populations of users, within the realm of graph-
ical games. Imagine that the interaction graph is perhaps the n × n grid, and
that all players are locally identical (our results apply to many highly regular
topologies of graphs and the case of several player classes). The representation
of such a game would then be extremely succinct: Just the game played at each
locus, and n, the size of the grid. Such games, called highly regular graph games,
are the focus of this paper. For concreteness and economy of description, we
mainly consider the homogeneous versions (without boundary phenomena) of
the highly regular graphs (cycle in 1 dimension, torus in 2, and so on); however,

The Complexity of Games on Highly Regular Graphs 73

both our positive and negative results apply to the grid, as well as all reasonable
generalizations and versions (see the discussion after Theorem 4).

We examine the complexity of three central equilibrium concepts: pure Nash
equilibrium, mixed Nash equilibrium and the more general concept of correlated
equilibrium. Pure Nash equilibrium may or may not exist in a game, but, when it
does, it is typically much easier to compute than its randomized generalization
(it is, after all, a simpler object easily identified by inspection). Remarkably, in
highly regular graph games this is reversed: By a symmetry argument combined
with quantifier elimination [1,13], we can compute a (succinct description of
a) mixed Nash equilibrium in a d-dimensional highly regular graph game in
exponential time (see theorem 2; recall that the best known algorithms for even
2-player Nash equilibria are exponential in the worst case). In contrast, regarding
pure Nash equilibria, we establish an interesting dichotomy: The problem is
polynomially solvable (and NL-complete) for d = 1 (the cycle) but becomes
NEXP-complete for d ≥ 2 (the torus and beyond). The algorithm for the cycle
is based on a rather sophisticated analysis of the cycle structure of the Nash
dynamics of the basic game. NEXP-completeness is established by a generic
reduction which, while superficially quite reminiscent of the tiling problem [6],
relies on several novel tricks for ensuring faithfulness of the simulation. Finally,
our main algorithmic result states that a succinct description of a correlated
equilibrium in a highly regular game of any dimension can be computed in
polynomial time.

2 Definitions

In a game we have n players 1, . . . , n. Each player p, 1 ≤ p ≤ n, has a finite set
of strategies or choices, Sp with |Sp| ≥ 2. The set S =

∏n
i=1 Si is called the set

of strategy profiles and we denote the set
∏

i�=p Si by S−p. The utility or payoff
function of player p is a function up : S → N. The best response function of
player p is a function BRup : S−p → 2Sp defined by

BRup(s−p) � {sp ∈ Sp|∀s′p ∈ Sp : up(s−p; sp) ≥ up(s−p; s′p)}
that is, for every s−p ∈ S−p, BRup(s−p) is the set of all strategies sp of player p
that yield the maximum possible utility given that the other players play s−p.

To specify a game with n players and s strategies each we need nsn numbers,
an amount of information exponential in the number of players. However, players
often interact with a limited number of other players, and this allows for much
more succinct representations:

Definition 1. A graphical game is defined by:

– A graph G = (V, E) where V = {1, . . . , n} is the set of players.
– For every player p ∈ V :

• A non-empty finite set of strategies Sp

• A payoff function up :
∏

i∈N (p) Si → N
(
N (p)�{p}∪{v∈V |(p, v) ∈ E}

)

74 K. Daskalakis and C.H. Papadimitriou

Graphical games can achieve considerable succinctness of representation. But
if we are interested in modelling huge populations of players, we may need, and
may be able to achieve, even greater economy of description. For example, it
could be that the graph of the game is highly regular and that the games played
at each neighborhood are identical. This can lead us to an extremely succinct
representation of the game - logarithmic in the number of players. The following
definition exemplifies these possibilities.

Definition 2. A d-dimensional torus game is a graphical game with the follow-
ing properties:

– The graph G = (V, E) of the game is the d-dimensional torus:
• V = {1, . . . , m}d

• ((i1, . . . , id), (j1, . . . , jd)) ∈ E if there is a k ≤ d such that:

jk = ik ± 1(modm) and jr = ir, for r �= k

– All the md players are identical in the sense that:
• they have the same strategy set Σ = {1, . . . , s}
• they have the same utility function u : Σ2d+1 → N

Notice that a torus game with utilities bounded by umax requires s2d+1 log |umax|
+ log m bits to be represented.

A torus game is fully symmetric if it has the additional property that the utility
function u is symmetric with respect to the 2d neighbors of each node. Our
negative results will hold even for this special case, while our positive results
will apply to all torus games. We could also define torus games with unequal
sides and grid games: torus games where the graph does not wrap around at
the boundaries, and so d + 1 games must be specified, one for the nodes in the
middle and one for each type of boundary node. Furthermore, there are the fully
symmetric special cases for each. It turns out that very similar results would
hold for all such kinds.

Consider a game G with n players and strategy sets S1, . . . , Sn. For every
strategy profile s, we denote by sp the strategy of player p in this strategy profile
and by s−p the (n− 1)-tuple of strategies of all players but p. For every s′p ∈ Sp

and s−p ∈ S−p we denote by (s−p; s′p) the strategy profile in which player p plays
s′p and all the other players play according to s−p. Also, we denote by Δ(A) the
set of probability distributions over a set A and we’ll call the set

∏n
i=1 Δ(Si) set

of mixed strategy profiles of the game G. For a mixed strategy profile σ and a
mixed strategy σ′

p of player p, the notations σp, σ−p and (σ−p; σ′
p) are analogous

to the corresponding notations for the strategy profiles. Finally, by σ(s) we’ll
denote the probability distribution in product form σ1(s1)σ2(s2) . . . σn(sn) that
corresponds to the mixed strategy profile σ.

Definition 3. A strategy profile s is a pure Nash equilibrium if for every player
p and strategy tp ∈ Sp we have up(s) ≥ up(s−p; tp).

The Complexity of Games on Highly Regular Graphs 75

Definition 4. A mixed strategy profile σ of a game G = 〈n, {Sp}1≤p≤n,
{up}1≤p≤n〉 is a mixed Nash equilibrium if for every player p and for all mixed
strategies σ′

p ∈ Δ(Sp) the following is true: Eσ(s)[up(s)] ≥ E(σ−p,σ′
p)(s)[up(s)],

where by Ef(s)[up(s)], f ∈ Δ(S), we denote the expected value of the payoff
function up(s) under the distribution f .

Definition 5. A probability distribution f ∈ Δ(S) over the set of strategy pro-
files of a game G is a correlated equilibrium iff for every player p, 1 ≤ p ≤ n,
and for all i, j ∈ Sp, the following is true:∑

s−p∈S−p

[up(s−p; i) − up(s−p; j)]f(s−p; i) ≥ 0

Every game has a mixed Nash Equilibrium [8] and, therefore, a correlated
equilibrium, since, as can easily be checked, a mixed Nash equilibrium is a cor-
related equilibrium in product form. However, it may or may not have a pure
Nash equilibrium.

The full description of an equilibrium of any kind in a torus game would re-
quire an exponential (doubly exponential in the correlated case) number of bits.
Accordingly, our algorithms shall always output some kind of succinct represen-
tation of the equilibrium, from which one can generate the equilibrium in output
polynomial time. In other words, a succinct representation of an equilibrium (or
any other object) x is a string y such that |y| is polynomial in the input size and
x = f(y) for some function f computable in time polynomial in |x| + |y|.

3 An Algorithm for Mixed Nash Equilibria

We start with a theorem due to Nash [8].

Definition 6. An automorphism of a game G = 〈n, {Sp}, {up}〉 is a permuta-
tion φ of the set

⋃n
p=1 Sp along with two induced permutations of the players ψ

and of the strategy profiles χ, with the following properties:

– ∀p, ∀x, y ∈ Sp there exists p′ = ψ(p) such that φ(x) ∈ Sp′ and φ(y) ∈ Sp′

– ∀s ∈ S, ∀p : up(s) = uψ(p)(χ(s))

Definition 7. A mixed Nash equilibrium of a game is symmetric if it is invari-
ant under all automorphisms of the game.

Theorem 1. [8]Every game has a symmetric mixed Nash equilibrium.

Now we can prove the following:

Theorem 2. For any d ≥ 1, we can compute a succinct representation of a
mixed Nash equilibrium of a d-dimensional torus game in time polynomial in
(2d)s, the size of the game description and the number of bits of precision re-
quired.

76 K. Daskalakis and C.H. Papadimitriou

Proof. Suppose we are given a d− dimensional torus game G = 〈m, Σ, u〉 with
n = md players. By theorem 1, game G has a symmetric mixed Nash equilibrium
σ. We claim that in σ all players play the same mixed strategy. Indeed for
every pair of players p1, p2 in the torus, there is an automorphism (φ, ψ, χ) of
the game such that ψ(p1) = p2 and φ maps the strategies of player p1 to the
same strategies of player p2. (In this automorphism, the permutation ψ is an
appropriate d-dimensional cyclic shift of the players and permutation φ always
maps strategies of one player to the same strategies of the player’s image.) Thus
in σ every player plays the same mixed strategy.

It follows that we can describe σ succinctly by giving the mixed strategy σx

that every player plays. Let’s suppose that Σ = {1, 2, . . . , s}. For all possible
supports T ⊆ 2Σ, we can check if there is a symmetric mixed Nash equilib-
rium σ with support T n as follows. Without loss of generality let’s suppose that
T = {1, 2, . . . , j} for some j, j ≤ s. We shall construct a system of polynomial
equations and inequalities with variables p1, p2, . . . , pj , the probabilities of the
strategies in the support.

Let us call El the expected payoff of an arbitrary player p if s/he chooses the
pure strategy l and every other player plays σx. El is a polynomial of degree 2d
in the variables p1, p2, . . . , pj . Now σx is a mixed Nash equilibrium of the game
if and only if the following conditions hold (because of the symmetry, if they
hold for one player they hold for every player of the torus):

El = El+1, ∀l ∈ {1, . . . , j − 1}
Ej ≥ El, ∀l ∈ {j + 1, . . . , s}

We need to solve s simultaneous polynomial equations and inequalities of de-
gree 2d in O(s) variables. It is known [13] that this problem can be solved in
time polynomial in (2d)s, the number of bits of the numbers in the input and
the number of bits of precision required. Since the number of bits required to
define the system of equations and inequalities is polynomial in the size of the
description of the utility function, we get an algorithm polynomial in (2d)s, the
size of the game description and the number of bits of precision required. ��

4 A Polynomial Algorithm for Correlated Equilibria

Theorem 3. Given a torus game G, we can compute a succinct representation
of a correlated equilibrium in time polynomial in the description of the game.

Proof. Suppose d is the dimension of the torus on which the game is defined and
m is its size. We will compute a function in the neighborhood of an arbitrary
player p and then show how this function can be extended to a correlated equi-
librium of the game in output polynomial time. The construction is easier when
m is a multiple of 2d+1, and thus we shall assume first that this is the case. We
rewrite the defining inequalities of a correlated equilibrium as follows:

The Complexity of Games on Highly Regular Graphs 77

∀i, j :
∑

sneigh∈Σ2d

[u(sneigh; i) − u(sneigh; j)]
∑

soth∈Σmd−2d−1

f(soth; sneigh; i) ≥ 0

(1)

⇔ ∀i, j :
∑

sneigh∈Σ2d

[u(sneigh; i) − u(sneigh; j)]fp(sneigh; i) ≥ 0 (2)

where fp is the marginal distribution corresponding to player p and its 2d neigh-
bors. Easily, we can construct a linear program that finds a non-negative function
fp satisfying inequalities (2). To ensure that the linear program will return a non
identically zero solution, if such a solution exists, we require all variables to be
in [0, 1] and the objective function tries to maximize their sum. Also, let us for
now add O(s2d+1 · (2d+1)!) symmetry constraints to the linear program so that
the function defined by its solution is symmetric with respect to its arguments.
It will be clear later that O(s2d+1 · 2d) constraints are enough.

We proved in section 3 that G has a mixed Nash equilibrium in which all
players play the same mixed strategy and, thus, a correlated equilibrium in
product form and symmetric with respect to all the players. Therefore, our linear
program has at least one non-zero feasible solution which (after normalization)
defines a probability distribution g(s0, s1, . . . , s2d) over the set Σ2d+1 which is
symmetric with respect to its arguments. We argue that every such distribution
can be extended by an output polynomial algorithm to a correlated equilibrium
for the game G, provided m is a multiple of 2d+1. We, actually, only need
to show that we can construct a probability distribution f ∈ Δ(Σmd

) with the
property that the marginal distribution of the neighborhood of every player is
equal to the probability distribution g. Then, by the definition of g, inequalities
(1) will hold and, thus, f will be a correlated equilibrium of the game.

We first give the intuition behind the construction: g can be seen as the joint
probability of 2d + 1 random variables X0, X1, . . . , X2d; if we can “tile” the d-
dimensional torus with the random variables X0, X1, . . . , X2d in such a way that
all the 2d+1 random variables appear in the neighborhood of every player, then
we can define probability distribution f as the probability distribution that first
draws a sample (l0, l1, ..., l2d) according to g and then assigns strategy li to all
players that are tiled with Xi for all i. This way the marginal distribution of f
in every neighborhood will be the same as g (since g is symmetric).

We now show how this can be done in a systematic way. Let us fix an arbi-
trary player of the torus as the origin and assign orientation to each dimension,
so that we can label each player x with a name (x1, x2, . . . , xd) ∈ {1, . . . , m}d.
The configurations of strategies in the support of f will be in a one-to-one cor-
respondence with the configurations in the support of g. Specifically, for every
configuration s = (ls0, ls1, . . . , ls2d) in the support of g, we include in the sup-
port of f the configuration in which every player (x1, x2, . . . , xd) plays strategy
ls(x1+2x2+3x3+...+dxd mod 2d+1). So we define the support of f to be:

Sf = {s ∈ Σmd |∃(ls0, l
s
1, . . . , l

s
2d) ∈ Sg s.t. sx = l(x1+2x2+3x3+...+dxd mod 2d+1)}

78 K. Daskalakis and C.H. Papadimitriou

and the distribution itself to be f(s) = g(ls0, l
s
1, . . . , l

s
2d), if s ∈ Sf , and 0 other-

wise.1 From the definition of f it follows easily that the marginal distribution of
every player’s neighborhood is equal to g. This completes the proof. Additionally,
we note that for our construction to work we don’t need g to be fully symmetric.
We only need it to be equal to O(2d) out of the total number of O((2d + 1)!)
functions that result by permuting its arguments. So the number of symmetry
constraints we added to the linear program can be reduced to O(s2d+1 · 2d).

To generalize this result to the case in which m is not a multiple of 2d+1,
let us first reflect on the reason why the above technique fails in the case where
m is not a multiple of 2d + 1. If m is not a multiple of 2d + 1, then it is not
hard to see that, given an arbitrary probability distribution g defined in the
neighborhood of one player, we cannot always find a probability distribution on
the torus so that its marginal in the neighborhood of every player is the same
as g, even if g is symmetric. Thus, instead of starting of with the computation
of a probability distribution in the neighborhood of one player, we compute a
probability distribution h with an augmented number of arguments. Let’s call
υ = m mod 2d+1. Probability distribution h will have the following properties:

– it will have 2 × (2d + 1) arguments
– it will be symmetric with respect to its arguments (we’ll relax this require-

ment later in the proof to get fewer symmetry constraints for our linear
program)

– the marginal distribution fp of the first 2d + 1 arguments will satisfy in-
equalities (2); then, because of the symmetry of the function, the marginal
of every ordered subset of 2d+1 arguments will satisfy inequalities (2)

Again, the existence of a probability distribution h with the above properties
follows from the existence of a symmetric mixed Nash equilibrium in which all
players play the same mixed strategy. Moreover, such a distribution can be found
in polynomial time by solving the linear program that corresponds to the above
constraints. To conclude the proof we show how we can use h to produce a
correlated equilibrium in output polynomial time. Before doing so, we make the
following observations (again let us consider an arbitrary player as the origin
and assign orientation to each dimension so that every player x has a name
(x1, x2, . . . , xd) ∈ {1, . . . , m}d):

– Probability distribution h can be seen as the joint probability distribution of
2×(2d+1) random variables X0, X1, . . . , X2d, Z0, Z1, ..., Z2d. If we can “tile”
the d-dimensional torus with these random variables in such a way that the
neighborhood of every player contains 2d+1 distinct random variables, then
this tiling implies a probability distribution on the torus with the property
that the marginal of every player’s neighborhood is equal to fp and thus is
a correlated equilibrium.

1 In terms of tiling the d-dimensional torus with the random variables X0, X1, . . . , X2d,
our construction assigns variable X0 to the origin player and then assigns variables
periodically with step 1 in the first dimension, step 2 in the second dimension etc.

The Complexity of Games on Highly Regular Graphs 79

– Given 2d+1 random variables, we can use the tiling scheme described above
to tile any d-dimensional grid in such a way that every neighborhood of
size i has i distinct random variables. However, if we “fold” the grid to form
the torus this property might not hold if m is not a multiple of 2d + 1; there
might be player with at least one coordinate equal to 1 or m (who before
was at the boundary of the grid) whose neighborhood does not have 2d + 1
distinct random variables.

Following this line of thought, if we can partition the players of the d-dimensional
torus in disjoint d-dimensional grids and we tile every grid with a set of random
variables so that every two neighboring grids are tiled with disjoint sets of ran-
dom variables, then we automatically define a tiling with the required properties.
To do so, we partition the d-dimensional torus in 2d grids Γt, t ∈ {0, 1}d, where
grid Γt is the subgraph of the d-dimensional torus induced by players with names
(x1, x2, . . . , xd), where xi ∈ {1, 2, . . . , m − (2d + 1 + υ)} if the i-th bit of t is 0
and xi ∈ {m − (2d + 1 + υ) + 1, . . . , m} if the i-th bit of t is 1. For every grid
Γt, let’s call n (Γt) the number of 1’s in t. The following observation is key to
finishing the proof:

Lemma 1. If two grids Γt, Γt′ are neighboring then n (Γt) = n (Γt′) + 1 or
n (Γt) = n (Γt′) − 1.

Using lemma 1, we can tile the d-dimensional torus as follows: if a grid Γt has
even n (Γt) then use random variables X0, X1, . . . , X2d and the tiling scheme
described above to tile it; otherwise use random variables Z0, Z1, . . . , Z2d to tile
it. This completes the proof. Again, note that we only need h to be equal to O(d)
out of the total number of O((2×(2d+1))!) functions that result by permuting its
arguments; so we need a polynomial in the game complexity number of symmetry
constraints. ��

5 The Complexity of Pure Nash Equilibria

We show our dichotomy result: Telling whether a d-dimensional torus game has
a pure Nash equilibrium is NL-complete if d = 1 and NEXP-complete if d > 1.

5.1 The Ring

Theorem 4. Given a 1-dimensional torus game we can check whether the game
has a pure Nash equilibrium in polynomial time; in fact the problem is nonde-
terministic logarithmic space complete.

Proof. Given such a game we construct a directed graph T = (VT , ET) as follows.

VT = {(x, y, z) | x, y, z ∈ Σ : y ∈ BRu(x, z)}
ET = {(v1, v2) | v1, v2 ∈ VT : v1y = v2x ∧ v1z = v2y}

The construction of graph T can be done in time polynomial in s and |VT | =
O(s3). Thus, the adjacency matrix AT of the graph has O(s3) rows and columns.
Also, due to the construction it is easy to see that the following is true.

80 K. Daskalakis and C.H. Papadimitriou

Lemma 2. The input game has a pure Nash equilibrium iff there is a closed
walk of length m in T .

Checking whether there exists a closed walk of length m in graph T can easily
be done in polynomial time, for example by finding Am

T using repeated squaring.
We briefly sketch why it can be done in nondeterministic logarithmic space.

There are two cases: If m is at most polynomial in s (and, thus, in the size of
T), then we can guess the closed walk in logarithmic space, counting up to m.
The difficulty is when m is superpolynomial in s, and we must guess the closed
walk of length m in space log log m, that is, without counting up to m. We
first establish that every such walk can be decomposed into a short closed walk
of length q ≤ s6, plus a set of cycles, all connected to this walk, and of lengths
c1, . . . , cr (each cycle repeated a possibly exponential number of times) such that
the greatest common divisor of c1, . . . , cr divides m − q. We therefore guess the
short walk of T of length q, guess the r cycles, compute the greatest common
divisor of their lengths g = gcd(c1, . . . , cr) in logarithmic space, and then check
whether g divides m−q; this latter can be done by space-efficient long division, in
space log g and without writing down m− q. Finally, NL-completeness is shown
by a rather complicated reduction from the problem of telling whether a directed
graph has an odd cycle, which can be easily shown to be NL-complete. ��
The same result holds when the underlying graph is the 1-dimensional grid (the
path) with some modifications to the proof. We, also, note that the problem has
the same complexity for several generalizations of the path topology such as the
ladder graph and many others.

5.2 The Torus

The problem becomes NEXP-complete when d > 1, even in the fully symmetric
case. The proof is by a generic reduction.

Theorem 5. For any d ≥ 2, deciding whether there exists a pure Nash equilib-
rium in a fully symmetric d-dimensional torus game is NEXP-complete.

Proof. A non-deterministic exponential time algorithm can choose in O(md)
nondeterministic steps a pure strategy for each player, and then check the equilib-
rium conditions for each player. Thus, the problem belongs to the class NEXP.

Our NEXP-hardness reduction is from the problem of deciding, given a one-
tape nondeterministic Turing machine M and an integer t, whether there is a
computation of M that halts within 5t − 2 steps. We present the d = 2 case,
the generalization to d > 2 being trivial. Given such M and t, we construct the
torus game GM, t with size m = 5t + 1. Intuitively, the strategies of the players
will correspond to states and tape symbols of M , so that a Nash equilibrium
will spell a halting computation of M in the “tableau” format (rows are steps
and columns are tape squares). In this sense, the reduction is similar to that
showing completeness of the tiling problem: Can one tile the m × m square by
square tiles of unit side and belonging to certain types, when each side of each
type comes with a label restricting the types that can be used next to it? Indeed,

The Complexity of Games on Highly Regular Graphs 81

each strategy will simulate a tile having on the horizontal sides labels of the form
(symbol, state) whereas on the vertical sides (state, action). Furthermore,
each strategy will also be identified by a pair (i, j) of integers in {0, 1, . . . , 4},
standing for the coordinates modulo 5 of the node that plays this strategy; the
necessity of this, as well as the choice of 5, will become more clear later in the
proof. Superficially, the reduction now seems straightforward: Have a strategy
for each tile type, and make sure that the best response function of the players
reflects the compatibility of the tile types. There are, however, several important
difficulties in doing this, and we summarize the principal ones below.

Difficulty 1. In tiling, the compatibility relation can be partial, in that no tile
fits at a place when the neighbors are tiled inappropriately. In contrast, in
our problem the best response function must be total.

Difficulty 2. Moreover, since we are reducing to fully symmetric games, the util-
ity function must be symmetric with respect to the strategies of the neigh-
bors. However, even if we suppose that for a given 4-tuple of tiles (strategies)
for the neighbors of a player there is a matching tile (strategy) for this player,
that tile does not necessarily match every possible permutation-assignment
of the given 4-tuple of tiles to the neighbors. To put it otherwise, symmetry
causes a lack of orientation, making the players unable to distinguish among
their ‘up’, ‘down’, ‘left’ and ‘right’ neighbors.

Difficulty 3. The third obstacle is the lack of boundaries in the torus which
makes it difficult to define the strategy set and the utility function in such
a way as to ensure that some “bottom” row will get tiles that describe the
initial configuration of the Turing machine and the computation tableau will
get built on top of that row.

It is these difficulties that require our reduction to resort to certain novel
stratagems and make the proof rather complicated. Briefly, we state here the
essence of the tricks and we refer the reader to the full report [16] for further
details:

Solution 1. To overcome the first difficulty, we introduce three special strategies
and we define our utility function in such a way that (a) these strategies are
the best responses when we have no tile to match the strategies of the neigh-
bors and (b) no equilibria of the game can contain any of these strategies.

Solution 2. To overcome the second difficulty we attach coordinates modulo 5
to all of the tiles that correspond to the interior of the computation tableau
and we define the utility function in such a way that in every pure Nash
equilibrium a player who plays a strategy with coordinates modulo 5 equal
to (i, j) has a neighbor who plays a strategy with each of the coordinates (i±
1, j±1 mod 5). This implies (through a nontrivial graph-theoretic argument)
that the torus is “tiled” by strategies respecting the counting modulo 5 in
both dimensions.

Solution 3. To overcome difficulty 3, we define the side of the torus to be 5t + 1
and we introduce strategies that correspond to the boundaries of the com-
putation tableau and are best responses only in the case their neighbors’

82 K. Daskalakis and C.H. Papadimitriou

coordinates are not compatible with the counting modulo 5. The choice of
side length makes it impossible to tile the torus without using these strategies
and, thus, ensures that one row and one column (at least) will get strategies
that correspond to the boundaries of the computation tableau. ��

6 Discussion

We have classified satisfactorily the complexity of computing equilibria of the
principal kinds in highly regular graph games. We believe that the investigation
of computational problems on succinct games, of which the present paper as well
as [3] and [12,10] are examples, will be an active area of research in the future.
One particularly interesting research direction is to formulate and investigate
games on highly regular graphs in which the players’ payoffs depend in a natural
and implicit way on the players’ location on the graph, possibly in a manner
reflecting routing congestion, facility location, etc., in a spirit similar to that of
non-atomic games [14].

References

1. G. E. Collins “Quantifier elimination for real closed fields by cylindrical algebraic
decomposition,” Springer Lecture Notes in Computer Science, 33, 1975.

2. A. Fabrikant, C. H. Papadimitriou, K. Talwar “The Complexity of Pure Nash
Equilibria,”STOC, 2004.

3. L. Fortnow, R. Impagliazzo, V. Kabanets, C. Umans “On the complexity of succinct
zero-sum games,” IEEE Conference on Computational Complexity, 2005.

4. S. Kakade, M. Kearns, J. Langford, and L. Ortiz “Correlated Equilibria in Graph-
ical Games,” ACM Conference on Electronic Commerce, 2003.

5. M. Kearns, M. Littman, S. Singh “Graphical Models for Game Theory,” UAI, 2001.
6. H. Lewis, C. H. Papadimitriou “Elements of the Theory of Computation,” Prentice-

Hall, 1981.
7. R. J. Lipton, E. Markakis “Nash Equilibria via Polynomial Equations,” LATIN,

2004.
8. J. Nash “Noncooperative games,” Annals of Mathematics, 54, 289–295, 1951.
9. C. H. Papadimitriou “Algorithms, Games, and the Internet,” STOC, 2001.

10. C. H. Papadimitriou “Computing correlated equilibria in multiplayer games,”
STOC, 2005.

11. C. H. Papadimitriou “On the Complexity of the Parity Argument and Other Inef-
ficient Proofs of Existence,” J. Comput. Syst. Sci., 48(3), 1994.

12. C. H. Papadimitriou, T. Roughgarden “Computing equilibria in multiplayer
games,” SODA, 2005.

13. J. Renegar “On the Computational Complexity and Geometry of the First-Order
Theory of the Reals, I, II, III,” J. Symb. Comput., 13(3), 1992.

14. T. Roughgarden, E. Tardos “How bad is selfish routing?,” J. ACM, 49(2), 2002.
15. R. Savani, B. von Stengel “Exponentially many steps for finding a Nash equilibrium

in a bimatrix game,” FOCS, 2004.
16. http://www.eecs.berkeley.edu/∼costis/RegularGames.pdf

Computing Equilibrium Prices: Does Theory
Meet Practice?

Bruno Codenotti1, Benton McCune2, Rajiv Raman2, and Kasturi Varadarajan2

1 Toyota Technological Institute at Chicago, Chicago IL 60637
bcodenotti@tti-c.org

2 Department of Computer Science, The University of Iowa,
Iowa City IA 52242

{bmccune, rraman, kvaradar}@cs.uiowa.edu

Abstract. The best known algorithms for the computation of market
equilibria, in a general setting, are not guaranteed to run in polynomial
time. On the other hand, simple poly-time algorithms are available for
various restricted - yet important - markets.

In this paper, we experimentally explore the gray zone between the
general problem and the poly-time solvable special cases. More precisely,
we analyze the performance of some simple algorithms, for inputs which
are relevant in practice, and where the theory does not provide poly-time
guarantees.

1 Introduction

The market equilibrium problem (in its exchange version) consists of finding
prices and allocations (of goods to traders) such that each trader maximizes
her utility function and the market clears (see Section 2 for precise definitions).
A fundamental result in economic theory states that, under mild assumptions,
market clearing prices exist [1].

Soon after this existential result was shown, researchers started analyzing
economic processes leading to the equilibrium. The most popular of them takes
the name of tâtonnement, and consists of updating the current price of each
good based on its excess demand. Unfortunately, the tâtonnement process, in its
differential version, only converges under restrictive assumptions, such as gross
substitutability [2].

The failure of tâtonnement to provide global convergence stimulated a sub-
stantial amount of work on the computation of the equilibrium. Scarf and some
coauthors developed pivotal algorithms which search for an equilibrium within
the simplex of prices [25,12]. Unlike tâtonnement, these algorithms always reach
a solution, although they lack a clear economic interpretation and they can be
easily seen to require exponential time, even on certain simple instances.

Motivated by the lack of global convergence of tâtonnement, and by the lack
of a clear economic interpretation for Scarf’s methods, Smale developed a global
� The first author is on leave from IIT-CNR, Pisa, Italy. Work by the second and

fourth authors was supported by NSF CAREER award CCR-0237431.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 83–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

84 B. Codenotti et al.

Newton’s method for the computation of equilibrium prices [28]. His approach
provides a price adjustment mechanism which takes into account all the com-
ponents of the Jacobian of the excess demand functions. However, Smale’s tech-
nique does not come with polynomial time guarantees, and its behavior, when
the current price is far from equilibrium, does not seem to be analyzable. For
this reason, most solvers based on Newton’s method, including PATH, the solver
used in Section 4.2 and which is available under the popular GAMS framework,
do a line search within each Newton’s iteration, in order to guarantee that some
progress is made even far from equilibrium (see [14]).

This state of affairs motivated theoretical computer scientists to investigate
whether the problem could be solved in polynomial time. The computational
complexity of the general market equilibrium problem turns out to be tightly
connected to that of finding fixed points in quite arbitrary settings [23]. So poly-
nomial time algorithms for the general case would have a wide impact on several
related computational issues, including that of finding a Nash equilibrium for a
two person nonzero sum game, and it is unclear whether they exist. Therefore,
the current theoretical work has been devoted to isolating restrictive yet impor-
tant families of markets for which the problem can be solved in polynomial time
[10,18,5,8,9,30]. The most important restrictions for which polynomial time algo-
rithms have been discovered arise either when the traders have utility functions
that satisfy a property known as gross substitutability or when the aggregate de-
mand satisfies a property known as the weak axiom of revealed preferences (see
[6] for a review).

In this paper we continue the work started in [7], and experimentally analyze
and compare several approaches, evaluating their performance on market settings
that are significantly more versatile and flexible than those used in [7].

Our main findings are the following -

1. For certain choices of market types, the PATH solver exhibits a large vari-
ance in performance and often fails to converge when applied to exchange
economies with nested CES functions; this phenomenon is in sharp contrast
with what is observed in [7] for CES functions. Still, the solver does a rea-
sonably good job for most market types. When production is added to the
mix, however, it becomes relatively easier to find market types where PATH
exhibits poor performance.

2. The tâtonnement algorithm also often fails to converge for certain market
types with nested CES functions, although it generally converges for most
market types. This is another setting where the transition from CES to
nested CES functions is a significant one: indeed it was shown in [7] that
tâtonnement is generally convergent on exchange economies with CES func-
tions.

3. The welfare adjustment process is almost always convergent on CES ex-
change economies, where the proportionality of initial endowments is slightly
distorted by taxation. Even when the initial endowments are farthest from
being proportional, the process converges, although with a significantly larger
number of iterations, for all but a few market types.

Computing Equilibrium Prices: Does Theory Meet Practice? 85

2 Market Models, Definitions, and Background

Let us consider m economic agents which represent traders of n goods. Let Rn
+

denote the subset of Rn with all nonnegative coordinates. The j-th coordinate in
Rn will stand for good j. Each trader i has a concave utility function ui : Rn

+ →
R+, which represents her preferences for different bundles of goods, and an initial
endowment of goods wi = (wi1, . . . , win) ∈ Rn

+. At given prices π ∈ Rn
+, trader

i will sell her endowment, and get the bundle of goods xi = (xi1, . . . , xin) ∈ Rn
+

which maximizes ui(x) subject to the budget constraint π ·x ≤ π ·wi, where x ·y
denotes the inner product between x and y. Let Wj =

∑
i wij denote the total

amount of good j in the market.
An equilibrium is a vector of prices π = (π1, . . . , πn) ∈ Rn

+ at which there
is a bundle x̄i = (x̄i1, . . . , x̄in) ∈ Rn

+ of goods for each trader i such that the
following two conditions hold: (i) For each good j,

∑
i x̄ij ≤ Wj and (ii) For each

trader i, the vector x̄i maximizes ui(x) subject to the constraints π · x ≤ π · wi

and x ∈ Rn
+.

The celebrated result of Arrow and Debreu [1] states that, under mild as-
sumptions, such an equilibrium exists. A special case occurs when the initial
endowments are collinear, i.e., when wi = δiw, δi > 0, so that the relative
incomes of the traders are independent of the prices. This special case is equiv-
alent to the Fisher model, which is a market of n goods desired by m utility
maximizing buyers with fixed incomes.

A utility function u(·) is homogeneous (of degree one) if it satisfies u(αx) =
αu(x), for all α > 0. A homothetic utility function is a monotonic transforma-
tion of a homogeneous utility function. A homothetic utility function represents
consumers’ preferences of the following kind: a bundle x is preferred to a bundle
y if and only if the bundle αx is preferred to the bundle αy, for all α > 0.

A CES (constant elasticity of substitution) utility function is a homogeneous
function of the form u(xi) = (

∑
j(aijxij)ρ)1/ρ, where −∞ < ρ < 1 but ρ �= 0.

In all of these definitions, aij ≥ 0. The parameter σ = 1/(1 − ρ) is called the
elasticity of substitution of the utility function u.

As ρ tends to 1 (resp. 0, −∞), the CES utility function tends to a linear
(resp. Cobb-Douglas, Leontief) utility function ([3], page 231).

A nested CES function fromRn
+ → R is defined recursively: (1) Any CES func-

tion is a nested CES function; and (2) if g : Rt
+ → R is a t-variate CES function,

and h1, . . . , ht are n-variate nested CES functions, then f = g(h1(), . . . , ht()) is a
nested CES function. A nested CES function may be visualized using a tree-like
structure, where at each node of the tree we have a CES function.

Nested CES functions are used extensively to model both production and
consumption in applied general equilibrium: We refer the reader to the book by
Shoven and Whalley [27] for a sense of their pervasiveness.

3 Theory vs Practice

Theoretical work on the market equilibrium problem has shown that the com-
putational tools needed to find a market equilibrium must have the ability to

86 B. Codenotti et al.

compute fixed points. However there are simple techniques (as well as polynomial
time algorithms) which can provably solve some special instances. In practice, the
range of applicability of these techniques might be significantly larger than what
theory guarantees. In the words of Herbert Scarf, it might be a prudent strategy
to try a simple technique like the price adjustment mechanism even though this
is not guaranteed to converge with certainty [26].

We now show how to put Scarf’s words to work, and describe some scenarios
to which our experiments are tailored.

How Common Are Hard Instances? The celebrated SMD Theorem (see [21], pp.
598-606) states the essentially arbitrary nature of the market excess demand. In
the light of this result, neither the identification of instability phenomena [24],
nor that of simple economies with multiple equilibria [16] come as surprises. On
the other hand, it is relevant to understand how common these phenomena are,
and when they represent intrinsic computational hurdles as opposed to barriers
to our current understanding of the problem.

In this paper, we conduct our experiments using nested CES functions. The
transition from CES (used in [7]) to nested CES functions allows us to model
more elaborate consumer behavior. We will also see that these functions make it
much easier to generate hard instances, for which, e.g., the PATH solver exhibits
significant variations in computational performance.

Welfare Adjustment Schemes. A family of computational techniques follows from
Negishi’s characterization of the market equilibrium as the solution to a welfare
maximization problem, where the welfare function is a positive linear combina-
tion of the individual utilities [22].

Let α = (α1, . . . , αm) ∈ �m, where αi > 0, be any vector. Consider the
allocations that maximize, over xi ∈ Rn

+, the function
∑m

i=1 αiui(xi) subject to
the constraint that

∑
i xij ≤ ∑

i wij .
The optimal allocations x̄i are called the Negishi welfare optimum at the

welfare weights αi. Let π = (π1, . . . , πn) ∈ Rn
+, where the “dual price” πj is

the Lagrangian multiplier associated with the constraint in the program corre-
sponding to the j-th good. Define Bi(α) = π · wi − π · x̄i, the budget surplus
of the i-th trader at prices π and with allocation x̄i. Define fi(α) = Bi(α)/αi,
and f(α) = (f1(α), . . . , fm(α)). Negishi [22] shows that there is a vector α∗ such
that f(α∗) = 0 and the corresponding dual prices constitute an equilibrium for
the economy.

This characterization suggests an approach for finding an equilibrium by a
search in the space of Negishi weights. This approach, which is complementary to
the traditional price space search, is elaborated by Mantel in [20], where the au-
thor shows that if the utility functions are strictly concave and log-homogeneous,
and generate an excess demand that satisfies gross substitutability, then we have
∂fi(α)

∂αi
< 0 and ∂fj(α)

∂αi
> 0 for j �= i. This is the analog of gross substitutability in

the “Negishi space.” He also shows that a differential welfare-weight adjustment
process, which is the equivalent of tâtonnement, converges to the equilibrium in
these situations.

Computing Equilibrium Prices: Does Theory Meet Practice? 87

The Distortion Induced by Taxation. The transition from equilibrium theory to
applied equilibrium requires certain distortions to be taken into account. Such
distortions include the presence of transaction costs, transportation costs, tariffs,
and taxes; these elements affect the equilibrium conditions and sometimes change
some mathematical and economic properties of the problem. For instance, in
models with taxes and tariffs one typically loses the Pareto optimality of the
equilibrium allocations.

We now consider the effect that ad valorem taxes can have on certain ex-
change economies, and in Section 4.4 we will analyze some related computational
consequences.

The stage for an exchange economy with ad valorem taxes is the following
(see [19], pp. 2127-2128). Let τj ≥ 0 be the tax associated with good j, and let
θi ≥ 0 with

∑
i θi = 1 be given.

The demand of the i-th consumer problem is to maximize ui(xi) subject to
the budget constraint

∑
j πj(1 + τj)xij ≤ ∑

j πjwij + θiR and x ∈ Rn
+, where

θiR is a lump sum returned to consumer i after the collection of taxes.
The equilibrium conditions involve, in addition to the maximization above,

market clearance (for each good j,
∑

i x̄ij =
∑

i wij), and the requirement that
R should equal the amount collected from the taxation, i.e.,

R =
∑

j

πjτj

∑
i

xij .

We now show that an equilibria for such an economy are in a one-to-one
correspondence to equilibria in an exchange economy without taxes, where the
traders have a different set of initial endowments.

From market, clearance it follows that the tax revenue at equilibrium must be
R =

∑
j πjτj

∑
i xij =

∑
j πjτj

∑
i wij . We can therefore eliminate the require-

ment R =
∑

j πjτj

∑
i xij by plugging in R =

∑
j πjτj

∑
i wij in the budget

constraint of each trader. The right hand side of the budget constraint for the
i’th trader is then

∑
j πj(wij + θiτj

∑
i wij).

After dividing and multiplying each term of this expression by 1 + τj , the
budget constraint can be rewritten as∑

j

πj(1 + τj)xij ≤
∑

j

πj(1 + τj)w
′
ij , where w

′
ij =

wij

1 + τj
+ θi

τj

1 + τj

∑
i

wij .

Note that
∑

i w
′
ij =

∑
i wij for each j. We have therefore reduced the equi-

librium in the original economy to an equilibrium in a pure exchange economy,
where the i-th trader now has an initial endowment w′

i: (π1, . . . , πn) is an equi-
librium for the original economy if and only if ((1 + τ1)π1, . . . , (1 + τn)πn) is an
equilibrium for the pure exchange economy.

Therefore an exchange economy with ad valorem taxes E is equivalent to
an exchange economy without taxes E

′
where the initial endowments have been

redistributed, and the total amounts of goods in E
′
is the same as in E.

One interesting case where this phenomenon carries negative computational
consequences is that of exchange economies with collinear endowments and ho-

88 B. Codenotti et al.

mothetic preferences. In this setting an equilibrium can be computed in polyno-
mial time by convex programming [8], based on certain aggregation properties
of the economy [13]. The redistribution of endowments associated with taxa-
tion clearly destroys the collinearity of endowments, and thus the aggregation
properties. (Notice that it might even induce multiple equilibria [29].)

In Section 4.4 we experimentally analyze a welfare adjustment scheme applied
to certain economies where the collinear endowments receive various degrees of
distortion.

4 Experimental Results

4.1 The Computational Environment and the Market Types

The experiments have been performed on a machine with an AMD Athlon, 64
bit, 2202.865 Mhz processor, 2GB of RAM, and running Red Hat Linux Release
3, Kernel Version - 2.4.21-15.0.4.

We ran our experiments on two level nested CES functions, where there are
three equal size nests for all the agents. For most cases, we assigned the same
elasticity of substitution to all the bottom nests; unless stated otherwise, this is
assumed in what follows. We ran our experiments on various types of markets
using generators that output consumers with different types of preferences and
endowments. For reasons of space, the definitions of the different market types
are not included in this version of the paper, and can be found in the expanded
version available at the first author’s website.

4.2 The Performance of an Efficient General Purpose Solver

In this section, we present the outcomes of the experiments we have carried out
with the PATH solver available under GAMS/MPSGE.

PATH is a sophisticated solver, based on Newton’s method, which is the
most used technique to solve systems of nonlinear equations [11,14]. Newton’s
method constructs successive approximations to the solution, and works very well
in the proximity of the solution. However, there are no guarantees of progress
far from the solution. For this reason, PATH combines Newton’s iterations with
a line search which makes sure that at each iteration the error bound decreases,
by enforcing the decrease of a suitably chosen merit function. This line search
corresponds to a linear complementarity problem, which PATH solves by using
a pivotal method [14].

Our experiments have the goal of studying the performance of GAMS/PATH
for exchange and production economies with nested CES functions, with an
eye on the sensitivity of PATH to specific market types and parameter ranges
of interest. This will allow us to set proper grounds in order to compare the
performance of PATH with that of the other approaches we have implemented.

For exchange economies with CES functions, the performance of PATH over
a wide range of endowment and preference types is quite consistent and does not
vary significantly [7]. On the contrary, in the case of nested CES functions, there

Computing Equilibrium Prices: Does Theory Meet Practice? 89

are market types for which we have observed a significant variation in terms of
performance. In particular, we could generate many instances where the solver
either failed to converge to an equilibrium or took a very long time to do so.

This phenomenon is exemplified by the data reported in Figure 1(b), which
depicts the results on a market with 50 traders and 50 goods. The top and bottom
elasticities range from 0.1 to 2 (in steps of 0.1), and we ran 5 experiments for each
combination. The running times are plotted as a function of the ratio between
the top and the bottom elasticity of substitution. Notice that the special case of
CES functions corresponds to x = 1 on the graphs.

In addition to being sensitive to the market type, the performance of PATH
also depends on the ratio between the top and the bottom elasticity. When
the top elasticities are smaller than the bottom elasticities, the running time is
consistently short. On the contrary, for the market type above, when the top
elasticities are larger than the bottom elasticities, PATH often does not con-
verge to an equilibrium. Figure 1(a) shows the outcomes of a similar experiment
executed on a different market type, for which the solver performed better.

In general, only a few market types are capable of generating the behavior
shown in Figure 1(b).

We also investigated the performance of PATH when production, modeled
by nested CES functions, is added. The addition of production causes significant
variation in the performance of PATH, even in the parameter ranges for which
PATH does consistently well for the exchange model. This is strikingly noticeable
in Figure 2, which clearly shows how the addition of production significantly
worsens the performance of PATH.

4.3 Tâtonnement for Exchange Economies

In its continuous version, the tâtonnement process is governed by the differential
equation system: dπi

dt = Gi(Zi(π)) for each i = 1, 2, · · · , n, where Gi() is some

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

200

250

300

Sigma Ratio

T
Im

e
(s

ec
o

n
d

s)

PATH on an Exchange Economy with Market Type (2,2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

200

250

300

350

Sigma Ratio

T
im

e
(s

ec
o

n
d

s)

PATH on an Exchange Economy with Market Type (10,9)

(a) (b)

Fig. 1. Performance of PATH on exchange economies with 50 consumers and 50 goods
– modeled by nested CES functions. The graphs show the running time vs the ratio
between top and bottom elasticities. (a) A market of type (2,2) (b) An market of type
(10,9).

90 B. Codenotti et al.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

5

10

15

20

25

30

Sigma Ratio

T
im

e
(s

ec
o

n
d

s)

PATH on an Exchange Economy for Market Type (2,2)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

50

100

150

200

250

300

350

400

Sigma Ratio

T
im

e
(s

ec
o

n
d

s)

PATH on a Production Economy for Market Type (2,2)

(a) (b)

Fig. 2. A comparison of PATH on exchange and production models. The graphs show
the running time vs the ratio between top and bottom elasticities. (a) An exchange
economy of type (2,2) with 100 traders and goods. (b) A production economy with 50
consumers, producers, consumers goods, and factors. Initial endowments of consumer
goods and preferences for them are both of type 2.

continuous, sign-preserving function and the derivative πi is with respect to
time. The continuous version of tâtonnement is more amenable to analysis of
convergence and it is this process that was shown to be convergent by Arrow,
Block and Hurwicz [2] markets satisfying GS. We refer the reader to [7] for a
more detailed introduction to tâtonnement.

In our implementation of tâtonnement, the starting price vector is (1, · · · , 1).
Let πk be the price vector after k iterations (price updates). In iteration k + 1,
the algorithm computes the excess demand vector Z(πk) and then updates each
price using the rule πk+1

i ← πk
i + ci,k · Zi(πk).

One specific choice of ci,k that we have used in many of our experiments is

ci,k = πk
i

i·maxj |Zj(πk)| . This choice ensures that |ci,k · Zi(π)| ≤ πk
i and therefore π

continues to remain nonnegative. Also noteworthy is the role of i that ensures
that the “step size” diminishes as the process approaches equilibrium.

The results of the experiments are summarized in Figures 3 and 4, which
show the number of iterations and percentage of failures averaged over the runs
for all endowment matrices. This choice was motivated by the fact that the
changes in the initial endowments did not seem to have any significant impact
on the performance.

While the tâtonnement scheme typically converges for markets with CES
utility functions [7], it exhibits a significant variation when applied to exchange
economies with nested CES utility functions. Such variation is a function of the
ratio between the top and bottom values of the parameter σ. The tâtonnement
process tend to have failures or to be very slow especially when the top elasticities
are smaller than the bottom elasticities, and for certain types of markets, as can
be seen from Table 4.

Notice that this is the opposite phenomenon of what we observed for PATH
in Figure 1(b).

Computing Equilibrium Prices: Does Theory Meet Practice? 91

Preference Type σtop

σbot
< 1 CES σtop

σbot
> 1

0 992.8 782.6 470.3
1 1230 927 474.1
2 1214 1749 806.7
3 1426 1118 604

Fig. 3. Number of iterations of tâtonnement for different types of markets. Here the
number of iterations has been averaged over the four different types of endowments.

Preference Type σtop

σbot
< 1 CES σtop

σbot
> 1

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
5 6.9 0 0
6 33.0 0 1.1
7 1.1 0 0
8 6.8 0 0

Fig. 4. Percentage of failures of the tâtonnement process for different types of markets.
Here the runs have been averaged over the four different types of endowment matrices.

4.4 Welfare Adjustment

In the spirit of the welfare adjustment scheme, and the work of Jain et al. [18]
and Ye [30], we implemented an algorithm for computing the equilibrium for an
exchange market that uses an algorithm for the Fisher setting as a black box.

The algorithm starts off from an arbitrary initial price π0, and computes a
sequence of prices as follows. Given πk, the algorithm sets up a Fisher instance
by setting the money of each trader to be ei = πk · wi, where wi is the i-th
trader’s initial endowment. (The goods in the Fisher instance are obtained by
aggregating the initial endowment wi of each trader.) Let πk+1 be the price
vector that is the solution of the Fisher instance. If πk+1 is within a specified
tolerance of πk, we stop and return πk+1. (One can show that πk+1 must be an
approximate equilibrium.) Otherwise, we compute πk+2 and proceed.

We tested our iterative algorithm for an exchange economy where traders
have CES utility functions, with a particular attention to instances which can
be viewed as distortions of collinear endowments produced by taxation. More
precisely, we ran extensive experiments, on initial endowments chosen as wi(β) =
βei + (1 − β)γiw, where ei denotes the i-th unit vector, w is the vector of all
1s, γi ≥ 0, and

∑
i γi = 1. For β = 0, the endowments are collinear and the

theory guarantees that π2, the price generated after the second step, gives the
equilibrium price. For β = 1, the endowments are such that the income of the i-
th trader equals the price of the i-th good, and we are as far as one can conceive

92 B. Codenotti et al.

from the independence of incomes on prices. Any intermediate configuration,
in particular when β is small, can be viewed as a distortion from collinearity
induced by taxation.

In Figure 5 we report some typical data we have obtained. The graph shows
the number of iterations as a function of β, for several economies with 25 goods
and 25 traders. For values of β not too close to 1, the number of iterations is
consistently below a very small constant. Very similar results have been obtained
for other input settings.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Preference (beta)

Ite
ra

tio
ns

Beta vs Iterations : Preference type 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

16

18

20

Preference (beta)

Ite
ra

tio
ns

Beta vs Iterations : Preference type 10

(a) (b)

Fig. 5. Instances with 25 goods and 25 traders. The graphs show the number of
iterations vs the value of β. (a) Random preferences. (b) Preferences are anti-diagonal
with asymmetric noise.

Elasticity Number of Failures Average Number of iterations
0.1 5 58.6
0.2 6 96.75
0.3 1 84.33

Fig. 6. The number of failures (out of 10) for a run of the iterative Fisher algorithm
on a CES exchange market with 25 traders and goods, preference type 2, and diagonal
endowments. The third column shows the average number of Fisher iterations over the
successful runs.

We also ran algorithms to test convergence as a function of the elasticities of
substitution, with β = 1 for markets with preference type 2. The table in Figure
6 shows the number of failures and the average number of iterations (when the
algorithm converged). The elasticities ranged from 0.1 to 1.0 with a step of 0.1.
The algorithm always converged when the elasticities were larger than 0.3. The
runs are averaged over 10 randomly generated markets, for each value of the
elasticity. The endowment and elasticities are of type 9 and 2, respectively. As
we see from the table, the algorithm always converges beyond an elasticity of
0.3.

Computing Equilibrium Prices: Does Theory Meet Practice? 93

References

1. K.J. Arrow and G. Debreu, Existence of an Equilibrium for a Competitive Econ-
omy, Econometrica 22 (3), pp. 265–290 (1954).

2. K. J. Arrow, H. D. Block, and L. Hurwicz. On the stability of the competitive
equilibrium, II. Econometrica 27, 82–109 (1959).

3. K.J. Arrow, H.B. Chenery, B.S. Minhas, R.M. Solow, Capital-Labor Substitution
and Economic Efficiency, The Review of Economics and Statistics, 43(3), 225–250
(1961).

4. A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A user’s guide, The Scientific
Press, South San Francisco (1988).

5. B. Codenotti, S. Pemmaraju, and K. Varadarajan, On the Polynomial Time Com-
putation of Equilibria for Certain Exchange Economies. SODA 2005.

6. B. Codenotti, S. Pemmaraju, and K. Varadarajan, The computation of market
equilibria, ACM SIGACT News, Volume 35, Issue 4, 23-37 (December 2004).

7. B. Codenotti, B. McCune, S. Pemmaraju, R. Raman, K. Varadarajan, An exper-
imental study of different approaches to solve the market equilibrium problem,
ALENEX 2005.

8. B. Codenotti and K. Varadarajan, Efficient Computation of Equilibrium Prices for
Markets with Leontief Utilities. ICALP 2004.

9. B. Codenotti, B. McCune, K. Varadarajan, Market Equilibrium via the Excess
Demand Function. STOC 2005.

10. N. R. Devanur, C. H. Papadimitriou, A. Saberi, V. V. Vazirani, Market Equilibrium
via a Primal-Dual-Type Algorithm. FOCS 2002, pp. 389-395. (Full version with
revisions available on line, 2003.)

11. S.P. Dirkse and M.C. Ferris, A pathsearch damped Newton method for computing
general equilibria, Annals of Operations Research p. 211-232 (1996).

12. B. C. Eaves and H. Scarf, The Solution of Systems of Piecewise Linear Equations,
Mathematics of Operations Research, Vol. 1, No. 1, pp. 1-27 (1976).

13. E. Eisenberg, Aggregation of Utility Functions. Management Sciences, Vol. 7 (4),
337–350 (1961).

14. M. C. Ferris and T. S. Munson. Path 4.6. Available on line at http://www.gams.
com/solvers/path.pdf.

15. V. A. Ginsburgh and J. L. Waelbroeck. Activity Analysis and General Equilibrium
Modelling, North Holland, 1981.

16. S. Gjerstad, Multiple Equilibria in Exchange Economies with Homothetic, Nearly
Identical Preference, University of Minnesota, Center for Economic Research, Dis-
cussion Paper 288, 1996.

17. M. Hirota, On the Probability of the Competitive Equilibrium Being Globally
Stable: the CES Example, Social Sciences Working Paper 1129, Caltech (2002).

18. K. Jain, M. Mahdian, and A. Saberi, Approximating Market Equilibria, Proc.
APPROX 2003.

19. T.J. Kehoe, Computation and Multiplicity of Equilibria, in Handbook of Mathe-
matical Economics Vol IV, pp. 2049-2144, Noth Holland (1991).

20. R. R. Mantel, The welfare adjustment process: its stability properties. International
Economic Review 12, 415-430 (1971).

21. A. Mas-Colell, M. D. Whinston, J. R. Green, Microeconomic Theory, Oxford Uni-
versity Press, 1995.

22. T. Negishi, Welfare Economics and Existence of an Equilibrium for a Competitive
Economy, Metroeconomica 12, 92-97 (1960).

94 B. Codenotti et al.

23. C.H. Papadimitriou, On the Complexity of the Parity Argument and other In-
efficient Proofs of Existence, Journal of Computer and System Sciences 48, pp.
498-532 (1994).

24. H. Scarf, Some Examples of Global Instability of the Competitive Equilibrium,
International Economic Review 1, 157-172 (1960).

25. H. Scarf, The Approximation of Fixed Points of a Continuous Mapping, SIAM J.
Applied Math., 15, pp. 1328-1343 (1967).

26. H. Scarf, Comment on “On the Stability of Competitive Equilibrium and the Pat-
terns of Initial Holdings: An Example”, International Economic Review, 22(2) 469-
470 (1981).

27. J.B. Shoven, J. Whalley, Applying General Equilibrium, Cambridge University
Press (1992).

28. S. Smale, A convergent process of price adjustment, Journal of Mathematical Eco-
nomics, 3 (1976), pp. 107–120.

29. J. Whalley, S. Zhang, Tax induced multiple equilibria. Working paper, University
of Western Ontario (2002).

30. Y. Ye, A Path to the Arrow-Debreu Competitive Market Equilibrium, Discussion
Paper, Stanford University, February 2004. To appear in Mathematical Program-
ming.

Efficient Exact Algorithms on Planar Graphs:
Exploiting Sphere Cut Branch Decompositions�

Frederic Dorn1, Eelko Penninkx2, Hans L. Bodlaender2, and Fedor V. Fomin1

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{frederic.dorn, fedor.fomin}@ii.uib.no

2 Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{epennink, hansb}@cs.uu.nl

Abstract. Divide-and-conquer strategy based on variations of the
Lipton-Tarjan planar separator theorem has been one of the most com-
mon approaches for solving planar graph problems for more than 20
years. We present a new framework for designing fast subexponential
exact and parameterized algorithms on planar graphs. Our approach
is based on geometric properties of planar branch decompositions ob-
tained by Seymour & Thomas, combined with new techniques of dynamic
programming on planar graphs based on properties of non-crossing par-
titions. Compared to divide-and-conquer algorithms, the main advan-
tages of our method are a) it is a generic method which allows to attack
broad classes of problems; b) the obtained algorithms provide a better
worst case analysis. To exemplify our approach we show how to obtain
an O(26.903

√
nn3/2 +n3) time algorithm solving weighted Hamiltonian

Cycle. We observe how our technique can be used to solve Planar
Graph TSP in time O(210.8224

√
nn3/2 + n3). Our approach can be used

to design parameterized algorithms as well. For example we introduce
the first 2O(

√
k)kO(1) · nO(1) time algorithm for parameterized Planar

k−cycle by showing that for a given k we can decide if a planar graph
on n vertices has a cycle of length ≥ k in time O(213.6

√
k
√

k n + n3).

1 Introduction

The celebrated Lipton-Tarjan planar separator theorem [18] is one of the basic
approaches to obtain algorithms with subexponential running time for many
problems on planar graphs [19]. The usual running time of such algorithms is
2O(

√
n) or 2O(

√
n log n), however the constants hidden in big-Oh of the exponent

are a serious obstacle for practical implementation. During the last few years a
lot of work has been done to improve the running time of divide-and-conquer
type algorithms [3, 4].

� This work was partially supported by Norges forskningsr̊ad project 160778/V30,
and partially by the Netherlands Organisation for Scientific Research NWO (project
Treewidth and Combinatorial Optimisation).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 95–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

96 F. Dorn et al.

One of the possible alternatives to divide-and-conquer algorithms on pla-
nar graphs was suggested by Fomin & Thilikos [12]. The idea of this approach is
very simple: compute treewidth (or branchwidth) of a planar graph and then use
the well developed machinery of dynamic programming on graphs of bounded
treewidth (or branchwidth)[5]. For example, given a branch decomposition of
width � of a graph G on n vertices, it can be shown that the maximum indepen-
dent set of G can be found in time O(2

3�
2 n). The branchwidth of a planar graph

G is at most 2.122
√

n and it can be found in time O(n3) [22] and [13]. Putting
all together, we obtain an O(23.182

√
nn + n3) time algorithm solving Indepen-

dent Set on planar graphs. Note that planarity comes into play twice in this
approach: First in the upper bound on the branchwidth of a graph and second in
the polynomial time algorithm constructing an optimal branch decomposition.
A similar approach combined with the results from Graph Minors [20] works for
many parameterized problems on planar graphs [8]. Using such an approach to
solve, for example, Hamiltonian cycle we end up with an 2O(

√
n log n)nO(1) algo-

rithm on planar graphs, as all known algorithms for this problem on graphs of
treewidth � require 2O(� log �)nO(1) steps. In this paper we show how to get rid
of the logarithmic factor in the exponent for a number of problems. The main
idea to speed-up algorithms obtained by the branch decomposition approach is
to exploit planarity for the third time: for the first time planarity is used in
dynamic programming on graphs of bounded branchwidth.

Our results are based on deep results of Seymour & Thomas [22] on geometric
properties of planar branch decompositions. Loosely speaking, their results imply
that for a graph G embedded on a sphere Σ, some branch decompositions can be
seen as decompositions of Σ into discs (or sphere cuts). We are the first describing
such geometric properties of so-called sphere cut branch decompositions. Sphere
cut branch decompositions seem to be an appropriate tool for solving a variety of
planar graph problems. A refined combinatorial analysis of the algorithm shows
that the running time can be calculated by the number of combinations of non-
crossing partitions. To demonstrate the power of the new method we apply it to
the following problems.

Planar Hamiltonian Cycle. The Traveling Salesman Problem (TSP)
is one of the most attractive problems in Computer Science and Operations Re-
search. For several decades, almost every new algorithmic paradigm was tried
on TSP including approximation algorithms, linear programming, local search,
polyhedral combinatorics, and probabilistic algorithms [17]. One of the first
known exact exponential time algorithms is the algorithm of Held and Harp
[14] solving TSP on n cites in time 2nnO(1) by making use of dynamic program-
ming. For some special cases like Euclidean TSP (where the cites are points
in the Euclidean plane and the distances between the cites are Euclidean dis-
tances), several researchers independently obtained subexponential algorithms of
running time 2O(

√
n·logn)nO(1) by exploiting planar separator structures (see e.g.

[15]). Smith & Wormald [23] succeed to generalize these results to d-space and
the running time of their algorithm is 2dO(d) ·2O(dn1−1/d log n)+2O(d). Until very re-
cent there was no known 2O(

√
n)nO(1)-time algorithm even for a very special case

Efficient Exact Algorithms on Planar Graphs 97

of TSP, namely Planar Hamiltonian Cycle. Recently, Dĕıneko et al. [7] ob-
tained a divide-and-conquer type algorithm of running time roughly 2126

√
nnO(1)

for this problem. Because their goal was to get rid of the logarithmic factor in
the exponent, they put no efforts in optimizing their algorithm. But even with
careful analysis, it is difficult to obtain small constants in the exponent of the
divide-and-conquer algorithm due to its recursive nature.

In this paper we use sphere cut branch decompositions not only to obtain
a O(26.903

√
nn3/2 + n3) time algorithm for Planar Hamiltonian Cycle, but

also the first 2O(
√

n)nO(1) time algorithm for a generalization, Planar Graph
TSP, which for a given weighted planar graph G is a TSP with distance metric
the shortest path metric of G.

Parameterized Planar k-cycle. The last ten years were the evidence of a rapid
development of a new branch of computational complexity: Parameterized Com-
plexity (see the book of Downey & Fellows [9]). Roughly speaking, a parame-
terized problem with parameter k is fixed parameter tractable if it admits an
algorithm with running time f(k)|I|β . Here f is a function depending only on
k, |I| is the length of the non-parameterized part of the input and β is a con-
stant. Typically, f is an exponential function, e.g. f(k) = 2O(k). During the last
two years much attention was paid to the construction of algorithms with run-
ning time 2O(

√
k)nO(1) for different problems on planar graphs. The first paper

on the subject was the paper by Alber et al. [1] describing an algorithm with
running time O(270

√
kn) for the Planar Dominating Set problem. Different

fixed parameter algorithms for solving problems on planar and related graphs are
discussed in [3, 4, 8]. In the Planar k-Cycle problem a parameter k is given
and the question is if there exists a cycle of length at least k in a planar graph.
There are several ways to obtain algorithms solving different generalizations of
Planar k-Cycle in time 2O(

√
k log k)nO(1), one of the most general results is

Eppstein’s algorithm [10] solving the Planar Subgraph Isomorphism prob-
lem with pattern of size k in time 2O(

√
k log k)n. By making use of sphere cut

branch decompositions we succeed to find an O(213.6
√

kk n +n3) time algorithm
solving Planar k-Cycle.

2 Geometric Branch Decompositions of Σ-Plane Graphs

In this section we introduce our main technical tool, sphere cut branch decom-
positions, but first we give some definitions.

Let Σ be a sphere (x, y, z : x2 + y2 + z2 = 1). By a Σ-plane graph G we
mean a planar graph G with the vertex set V (G) and the edge set E(G) drawn
(without crossing) in Σ. Throughout the paper, we denote by n the number of
vertices of G. To simplify notations, we usually do not distinguish between a
vertex of the graph and the point of Σ used in the drawing to represent the
vertex or between an edge and the open line segment representing it. An O-arc
is a subset of Σ homeomorphic to a circle. An O-arc in Σ is called noose of
a Σ-plane graph G if it meets G only in vertices. The length of a noose O is

98 F. Dorn et al.

|O ∩ V (G)|, the number of vertices it meets. Every noose O bounds two open
discs Δ1, Δ2 in Σ, i.e. Δ1 ∩ Δ2 = ∅ and Δ1 ∪ Δ2 ∪ O = Σ.

Branch Decompositions and Carving Decompositions. A branch decom-
position 〈T, μ〉 of a graph G consists of an un-rooted ternary (i.e. all internal
vertices of degree three) tree T and a bijection μ : L → E(G) between the set L
of leaves of T to the edge set of G. We define for every edge e of T the middle
set mid(e) ⊆ V (G) as follows: Let T1 and T2 be the two connected components of
T \{e}. Then let Gi be the graph induced by the edge set {μ(f) : f ∈ L∩V (Ti)}
for i ∈ {1, 2}. The middle set is the intersection of the vertex sets of G1 and G2,
i.e., mid(e) := V (G1) ∩ V (G2). The width bw of 〈T, μ〉 is the maximum order of
the middle sets over all edges of T , i.e., bw(〈T, μ〉) := max{|mid(e)| : e ∈ T }. An
optimal branch decomposition of G is defined by the tree T and the bijection μ
which together provide the minimum width, the branchwidth bw(G).

A carving decomposition 〈T, μ〉 is similar to a branch decomposition, only
with the difference that μ is the bijection between the leaves of the tree and the
vertex set of the graph. For an edge e of T , the counterpart of the middle set,
called cut set cut(e), contains the edges of the graph with end vertices in the
leaves of both subtrees. The counterpart of branchwidth is carvingwidth.

We will need the following result.

Proposition 1 ([12]). For any planar graph G, bw(G) ≤ √
4.5n ≤ 2.122

√
n.

Sphere Cut Branch Decompositions. For a Σ-plane graph G, we define
a sphere cut branch decomposition or sc-branch decomposition 〈T, μ, π〉 as a
branch decomposition such that for every edge e of T there exists a noose Oe

bounding the two open discs Δ1 and Δ2 such that Gi ⊆ Δi∪Oe, 1 ≤ i ≤ 2. Thus
Oe meets G only in mid(e) and its length is |mid(e)|. Clockwise traversal of Oe

in the drawing of G defines the cyclic ordering π of mid(e). We always assume
that the vertices of every middle set mid(e) = V (G1) ∩ V (G2) are enumerated
according to π.

The following theorem provides us with the main technical tool. It follows al-
most directly from the results of Seymour & Thomas [22] and Gu & Tamaki [13].
Since this result is not explicitly mentioned in [22], we provide some explanations
below.

Theorem 1. Let G be a connected Σ-plane graph of branchwidth ≤ � without
vertices of degree one. There exists an sc-branch decomposition of G of width ≤ �
and such a branch decomposition can be constructed in time O(n3).

Proof. Let G be a Σ-plane graph of branchwidth ≤ � and with minimal vertex
degree ≥ 2. Then, I(G) is the simple bipartite graph with vertex V (G) ∪ E(G),
in which v ∈ V (G) is adjacent to e ∈ E(G) if and only if v is an end of e in G.
The medial graph MG of G has vertex set E(G), and for every vertex v ∈ V (G)
there is a cycle Cv in MG with the following properties:

Efficient Exact Algorithms on Planar Graphs 99

1. The cycles Cv of MG are mutually edge-disjoint and have union MG;
2. For each v ∈ V (G), let the neighbors of v in I(G) be w1, . . . , wt enumerated

according to the cyclic order of the edges {v, w1}, . . . , {v, wt} in the drawing
of I(G); then Cv has vertex set {w1, . . . , wt} and wi−1 is adjacent to wi (1 ≤
i ≤ t), where w0 means wt.

In a bond carving decomposition of a graph, every cut set is a bond of the
graph, i.e., every cut set is a minimal cut. Seymour & Thomas ((5.1) and (7.2)
[22]) show that a Σ-plane graph G without vertices of degree one is of branch-
width ≤ � if and only if MG has a bond carving decomposition of width ≤ 2�.
They also show (Algorithm (9.1) in [22]) how to construct an optimal bond carv-
ing decompositions of the medial graph MG in time O(n4). A refinement of the
algorithm in [13] give running time O(n3). A bond carving decomposition 〈T, μ〉
of MG is also a branch decomposition of G (vertices of MG are the edges of G)
and it can be shown (see the proof of (7.2) in [22]) that for every edge e of T
if the cut set cut(e) in MG is of size ≤ 2�, then the middle set mid(e) in G is
of size ≤ �. It is well known that the edge set of a minimal cut forms a cycle in
the dual graph. The dual graph of a medial graph MG is the radial graph RG.
In other words, RG is a bipartite graph with the bipartition F (G) ∪ V (G). A
vertex v ∈ V (G) is adjacent in RG to a vertex f ∈ F (G) if and only if the vertex
v is incident to the face f in the drawing of G. Therefore, a cycle in RG forms
a noose in G.

To summarize, for every edge e of T , cut(e) is a minimal cut in MG, thus
cut(e) forms a cycle in RG (and a noose Oe in G). Every vertex of MG is in
one of the open discs Δ1 and Δ2 bounded by Oe. Since Oe meets G only in
vertices, we have that Oe ∩ V (G) = mid(e). Thus for every edge e of T and the
two subgraphs G1 and G2 of G formed by the leaves of the subtrees of T \ {e},
Oe bounds the two open discs Δ1 and Δ2 such that Gi ⊆ Δi ∪ Oe, 1 ≤ i ≤ 2.

Finally, with a given bond carving decomposition 〈T, μ〉 of the medial graph
MG, it is straightforward to construct cycles in RG corresponding to cut(e),
e ∈ E(T), and afterwards to compute ordering π of mid(e) in linear time. ��

Non-crossing Matchings. Together with sphere cut branch decompositions,
non-crossing matchings give us the key to our later dynamic programming ap-
proach. A non-crossing partitions (ncp) is a partition P (n) = {P1, . . . , Pm} of
the set S = {1, . . . , n} such that there are no numbers a < b < c < d where
a, c ∈ Pi, and b, d ∈ Pj with i �= j. A partition can be visualized by a circle
with n equidistant vertices on it’s border, where every set of the partition is rep-
resented by the convex polygon with it’s elements as endpoints. A partition is
non-crossing if these polygons do not overlap. Non-crossing partitions were intro-
duced by Kreweras [16], who showed that the number of non-crossing partitions
over n vertices is equal to the n-th Catalan number:

CN(n) =
1

n + 1

(
2n

n

)
∼ 4n

√
πn

3
2
≈ 4n (1)

100 F. Dorn et al.

A non-crossing matching (ncm) is a special case of a ncp, where |Pi| = 2 for
every element of the partition. A ncm can be visualized by placing n vertices on
a straight line, and connecting matching vertices with arcs at one fixed side of
the line. A matching is non-crossing if these arcs do not cross. The number of
non-crossing matchings over n vertices is given by:

M(n) = CN(
n

2
) ∼ 2n

√
π(n

2)
3
2
≈ 2n (2)

3 Planar Hamiltonian Cycle

In this section we show how sc-branch decompositions in combination with ncm’s
can be used to design subexponential parameterized algorithms. In the Planar
Hamiltonian Cycle problem we are given a weighted Σ-plane graph G =
(V, E) with weight function w : E(G) → N and we ask for a cycle of minimum
weight through all vertices of V . We can formulate the problem in a different
way: A labelling H : E(G) → {0, 1} is Hamiltonian if the subgraph GH of G
formed by the edges with positive labels is a spanning cycle. Find a Hamiltonian
labelling H minimizing

∑
e∈E(G) H(e) ·w(e). For an edge labelling H and vertex

v ∈ V (G) we define the H-degree degH(v) of v as the sum of labels assigned to
the edges incident to v. Though the use of labellings makes the algorithm more
sophisticated, it is necessary for the understanding of the latter approach for
Planar Graph TSP. Let 〈T, μ, π〉 be a sc-branch decomposition of G of width
�. We root T by arbitrarily choosing an edge e, and subdivide it by inserting a
new node s. Let e′, e′′ be the new edges and set mid(e′) = mid(e′′) = mid(e).
Create a new node root r, connect it to s and set mid({r, s}) = ∅. Each internal
node v of T now has one adjacent edge on the path from v to r, called parent
edge eP , and two adjacent edges towards the leaves, called left child eL and right
child eR. For every edge e of T the subtree towards the leaves is called the lower
part and the rest the residual part with regard to e. We call the subgraph Ge

induced by the leaves of the lower part of e the subgraph rooted at e. Let e be an
edge of T and let Oe be the corresponding noose in Σ. The noose Oe partitions
Σ into two discs, one of which, Δe, contains Ge.

We call a labelling P [e] : E(Ge) → {0, 1} a partial Hamiltonian labelling if the
subgraph GP[e] induced by the edges with positive labels satisfies the following
properties:

• For every vertex v ∈ V (Ge) \ Oe, the P [e]-degree degP[e](v), i.e. the sum of
labels assigned by P [e] to the edges incident to v, is two.

• Every connected component of GP[e] has two vertices in Oe with degP[e](v) =
1 for e �= {r, s}; For e = {r, s}, GP[e] is a cycle.

Observe that GP[e] forms a collection of disjoint paths, and note that every
partial Hamiltonian labelling of G{r,s} is also a Hamiltonian labelling.

For dynamic programming we need to keep for every edge e of T the infor-
mation on which vertices of the disjoint paths of GP[e] of all possible partial

Efficient Exact Algorithms on Planar Graphs 101

Hamiltonian labellings P [e] hit Oe ∩ V (G) and for every vertex v ∈ Oe ∩ V (G)
the information if degP[e](v) is either 0, or 1, or 2.

And here the geometric properties of sc-branch decompositions in combina-
tion with ncm’s come into play. For a partial Hamiltonian labelling P [e] let P
be a path of GP[e]. We scan the vertices of V (P)∩Oe according to the ordering
π and mark with ’1[’ the first and with ’1]’ the last vertex of P on Oe. We also
mark by ’2’ the other ’inner’ vertices of V (P)∩Oe. If we mark in such a way all
vertices of V (GP[e])∩Oe, then given the obtained sequence with marks ’1[’, ’1]’,
’2’, and ’0’, one can decode the complete information on which vertices of each
path of V (GP[e]) hit Oe. This is possible because Oe bounds the disc Δe and
the graph GP[e] is in Δe. The sets of endpoints of every path are the elements
of an ncm. Hence, with the given ordering π the ’1[’ and ’1]’ encode an ncm.

For an edge e of T and corresponding noose Oe, the state of dynamic pro-
gramming is specified by an ordered �-tuple te := (v1, . . . , v�). Here, the variables
v1, . . . , v� correspond to the vertices of Oe ∩ V (G) taken according to the cyclic
order π with an arbitrary first vertex. This order is necessary for a well-defined
encoding for the states when allowing v1, . . . , v� to have one of the four val-
ues: 0, 1[, 1], 2. Hence, there are at most O(4�|V (G)|) states. For every state, we
compute a value We(v1, . . . , v�). This value is equal to W if and only if W is the
minimum weight of a partial Hamiltonian labelling P [e] such that:

1. For every path P of GP[e] the first vertex of P ∩Oe in π is represented by 1[

and the last vertex is represented by 1] . All other vertices of P ∩ Oe are
represented by 2.

2. Every vertex v ∈ (V (Ge) ∩ Oe) \ GP[e] is marked by 0.

We put W = +∞ if no such labelling exists. For every vertex v the numerical
part of its value gives degP[e](v).

To compute an optimal Hamiltonian labelling we perform dynamic program-
ming over middle sets mid(e) = O(e) ∩ V (G), starting at the leaves of T and
working bottom-up towards the root edge. The first step in processing the mid-
dle sets is to initialize the leaves with values (0, 0), (1[, 1]). Then, bottom-up,
update every pair of states of two child edges eL and eR to a state of the parent
edge eP assigning a finite value WP if the state corresponds to a feasible partial
Hamiltonian labelling.

Let OL, OR, and OP be the nooses corresponding to edges eL, eR and eP . Due
to the definition of branch decompositions, every vertex must appear in at least
two of the three middle sets and we can define the following partition of the set
(OL∪OR∪OP)∩V (G) into sets I := OL∩OR∩V (G) and D := OP ∩V (G)\I (I
stands for ’Intersection’ and D for ’symmetric Difference’). The disc ΔP bounded
by OP and including the subgraph rooted at eP contains the union of the discs
ΔL and ΔR bounded by OL and OR and including the subgraphs rooted at eL

and eR. Thus |OL ∩OR ∩OP ∩V (G)| ≤ 2. The vertices of OL ∩OR ∩OP ∩V (G)
are called portal vertices.

We compute all valid assignments to the variables tP = (v1, v2, . . . , vp) cor-
responding to the vertices mid(eP) from all possible valid assignments to the

102 F. Dorn et al.

variables of tL and tR. For a symbol x ∈ {0, 1[, 1], 2} we denote by |x| its ’nu-
merical’ part. We say that an assignment cP is formed by assignments cL and
cR if for every vertex v ∈ (OL ∪ OR ∪ OP) ∩ V (G):

1. v ∈ D: cP (v) = cL(v) if v ∈ OL ∩ V (G), or cP (v) = cR(v) otherwise.
2. v ∈ I \ OP : (|cL(v)| + |cR(v)|) = 2.
3. v portal vertex: |cP (v)| = |cL(v)| + |cR(v)| ≤ 2.

We compute all �-tuples for mid(eP) that can be formed by tuples corre-
sponding to mid(eL) and mid(eR) and check if the obtained assignment corre-
sponds to a labelling without cycles. For every encoding of tP , we set WP =
min{WP , WL + WR}.

For the root edge {r, s} and its children e′ and e′′ note that (Oe′ ∪ Oe′′) ∩
V (G) = I and O{r,s} = ∅. Hence, for every v ∈ V (GP[{r,s}]) it must hold
that degP[{r,s}](v) is two, and that the labellings form a cycle. The optimal
Hamiltonian labelling of G results from mint{r,s}{Wr}.

Analyzing the algorithm, we obtain the following lemma.

Lemma 1. Planar Hamiltonian Cycle on a graph G with branchwidth �
can be solved in time O(23.292��n + n3).

Proof. By Theorem 1, an sc-branch decomposition T of width ≤ � of G can be
found in O(n3).

Assume we have three adjacent edges eP , eL, and eR of T with |OL| = |OR| =
|OP | = �. Without loss of generality we limit our analysis to even values for �,
and for simplicity assume there are no portal vertices. This can only occur if
|I| = |D ∩ OL| = |D ∩ OR| = �

2 .
By just checking every combination of �-tuples from OL and OR we obtain

a bound of O(�42�) for our algorithm.
Some further improvement is apparent, as for the vertices u ∈ I we want the

sum of the {0, 1[, 1], 2} assignments from both sides to be 2.
We start by giving an expression for Q(�, m): the number of �-tuples over

� vertices where the {0, 1[, 1], 2} assignments for vertices from I is fixed and
contains m 1[’s and 1]’s. The only freedom is thus in the �/2 vertices in D ∩OL

and D ∩ OR, respectively:

Q(�, m) =

�
2 ,2∑

i=m%2

(�
2

i

)
2

�
2−iCN(

i + m

2
) (3)

This expression is a summation over the number of 1[’s and 1]’s in D ∩ OL

and D∩OR, respectively. The starting point is m%2 (m modulo 2), and the 2 at
the top of the summation indicates that we increase i with steps of 2, as we want
i+m to be even (the 1[’s and 1]’s have to form a ncm). The term

(�
2
i

)
counts the

possible locations for the 1[’s and 1]’s, the 2
�
2−i counts the assignment of {0, 2}

to the remaining �/2− i vertices, and the CN(i+m
2) term counts the ncm’s over

the 1[’s and 1]’s. As we are interested in exponential behaviour for large values
of � we ignore that i + m is even, and use that CN(n) ≈ 4n:

Efficient Exact Algorithms on Planar Graphs 103

Q(�, m) ≈
�
2∑

i=0

(�
2

i

)
2

�
2−i2i+m = 2

�
2+m

�
2∑

i=0

(�
2

i

)
= 2�+m (4)

We can now count the total cost of forming an �-tuple from OP . We sum over i:
the number of 1[’s and 1]’s in the assignment for I:

C(�) =

�
2∑

i=0

(�
2

i

)
2

�
2−iQ(�, i)2 (5)

Straightforward calculation by approximation yields:

C(�) ≈
�
2∑

i=0

(�
2

i

)
2

�
2−i22�+2i = 2

5�
2

�
2∑

i=0

(�
2

i

)
2i = 2

5�
2 3

�
2 = (4

√
6)� (6)

By Proposition 1 and Lemma 1 we achieve the running time O(26.987
√

nn3/2+
n3) for Planar Hamiltonian Cycle.

3.1 Forbidding Cycles

We can further improve upon the previous bound by only forming encodings
that don’t create a cycle. As cycles can only be formed at the vertices in I with
numerical part 1 in both OL and OR, we only consider these vertices. Note that
within these vertices both in OL and OR every vertex with a 1] has to be paired
with a 1[, whereas a 1[could be paired with a 1] that lies in D. We encode
every vertex by a {1[, 1]}2 assignment, where the first corresponds to the state
in OL, and the second to the state in OR. For example |1[1[, 1]1]| corresponds to
a cycle over two vertices. We obtain the following combinatorial problem: given
n vertices with a {1[, 1]}2 assignment to every vertex, how many combinations
can be formed that induce no cycles and pair every 1] with a 1[at the same side?

Exact counting is complex, so we use a different approach. We try to find
some small z such that |B(b)| is O(zn). Let B(i) denote the set of all feasible
combinations over i vertices: B(0) = ∅, B(1) = {|1[1[|}, B(2) = {|1[1[, 1[1[|,
|1[1[, 1]1[|, |1[1[, 1[1]|}, etc. Note that |1[1[, 1]1]| is not included in B(2) as this is
a cycle. We map all items of B(i) to a fixed number of classes C1, . . . , Cm and
define xi = {xi1, . . . , xim}T as the number of elements in each class.

Suppose we use two classes: C1 contains all items | . . . , 1[1[|, and C2 contains
all other items. Note that adding 1]1] to items from C1 is forbidden, as this will
lead to a cycle. Addition of 1[1[to items from C2 gives us items of class C1.
Addition of 1[1] or 1]1[to either class leads to items of class C2, or can lead to

infeasible encodings. These observations show that A =
(

1 1
2 3

)
. As the largest

real eigenvalue of A is 2 +
√

3, we have z ≤ 3.73205.
Using these two classes eliminated all cycles over two consecutive vertices.

By using more classes we can prevent larger cycles, and obtain tighter bounds
for z. With only three classes we obtain z ≤ 3.68133. This bound is definitely
not tight, but computational research suggests that z is probably larger than
3.5. By using the value 3.68133 for z we obtain the following result:

104 F. Dorn et al.

Theorem 2. Planar Hamiltonian Cycle is solvable in O(26.903
√

nn3/2 + n3).

4 Variants

In this section we will discuss results on other non-local problems on planar
graphs.

Longest Cycle on Planar Graphs. Let C be a cycle in G. For an edge e of
sc-branch decomposition tree T , the noose Oe can affect C in two ways: Either
cycle C is partitioned by Oe such that in Ge the remains of C are disjoint paths,
or C is not touched by Oe and thus is completely in Ge or G \ E(Ge).

With the same encoding as for Planar Hamiltonian Cycle, we add a
counter for all states te which is initialized by 0 and counts the maximum number
of edges over all possible vertex-disjoint paths represented by one te. In contrast
to Planar Hamiltonian Cycle, we allow for every vertex v ∈ I that |cL(v)|+
|cR(v)| = 0 in order to represent the isolated vertices. A cycle as a connected
component is allowed if all other components are isolated vertices. Then all
other vertices in V (G) \ V (GP) of the residual part of T must be of value 0.
Implementing a counter Z for the actual longest cycle, a state in tP consisting of
only 0’s represents a collection of isolated vertices with Z storing the longest path
in GP without vertices in mid(e). At the root edge, Z gives the size of the longest
cycle. Thus, Planar Longest Cycle is solvable in time O(27.223

√
nn3/2+ n3).

k-Cycle on Planar graphs is the problem of finding a cycle of length at least
a parameter k. The algorithm on Longest Cycle can be used for obtaining
parameterized algorithms by adopting the techniques from [8, 11].

Before we proceed, let us remind the notion of a minor. A graph H obtained
by a sequence of edge-contractions from a graph G is said to be a contraction
of G. H is a minor of G if H is the subgraph of a some contraction of G. Let
us note that if a graph H is a minor of G and G contains a cycle of length ≥ k,
then so does G.

We need the following combination of statements (4.3) in [21] and (6.3) in [20].

Theorem 3 ([20]). Let k ≥ 1 be an integer. Every planar graph with no (k×k)-
grid as a minor has branchwidth ≤ 4k − 3.

It easy to check that every (
√

k × √
k)-grid, k ≥ 2, contains a cycle of length

≥ k − 1. This observation combined with Theorem 3 suggests the following pa-
rameterized algorithm. Given a planar graph G and integer k, first compute the
branchwidth of G. If the branchwidth of G is at least 4

√
k + 1 − 3 then by Theo-

rem 3, G contains a (
√

k + 1 ×√
k + 1)-grid as a minor and thus contains a cycle

of length ≥ k. If the branchwidth of G is < 4
√

k + 1 − 3 we can find the longest
cycle in G in time O(213.6

√
k
√

k n + n3). We conclude with the following theorem.

Theorem 4. Planar k-Cycle is solvable in time O(213.6
√

k
√

k n + n3).

By standard techniques (see for example [9]) the recognition algorithm for
Planar k-Cycle can easily be turned into a constructive one.

Efficient Exact Algorithms on Planar Graphs 105

Planar Graph TSP. In the Planar Graph TSP we are given a weighted
Σ-plane graph G = (V, E) with weight function w : E(G) → N and we are
looking for a shortest closed walk that visits all vertices of G at least once.
Equivalently, this is TSP with distance metric the shortest path metric of G.
The algorithm for Planar Graph TSP is very similar to the algorithm for
Planar Hamiltonian Cycle so we mention here only the most important
details. Every shortest closed walk in G corresponds to the minimum Eulerian
subgraph in the graph G′ obtained from G by adding to each edge a parallel edge.
Since every vertex of an Eulerian graph is of even degree we obtain an Eulerian
labelling E : E(G) → {0, 1, 2} with the subgraph GE of G formed by the edges
with positive labels is a connected spanning subgraph and for every vertex v ∈ V
the sum of labels assigned to edges incident to v is even. Thus the problem is
equivalent to finding an Eulerian labelling E minimizing

∑
e∈E(G) E(e) · w(e).

In contrast to the approach for Planar Hamiltonian Cycle, the parity
plays an additional role in dynamic programming, and we obtain a bit more
sophisticated approach.

Theorem 5. Planar Graph TSP is solvable in time O(210.8224
√

nn3/2 +n3).

5 Conclusive Remarks

In this paper we introduce a new algorithm design technique based on geometric
properties of branch decompositions. Our technique can be also applied to con-
structing 2O(

√
n) ·nO(1)-time algorithms for a variety of cycle, path, or tree sub-

graph problems in planar graphs like Hamiltonian Path, Longest Path, and
Connected Dominating Set, and Steiner Tree among others. An interest-
ing question here is if the technique can be extended to more general problems,
like Subgraph Isomorphism. For example, Eppstein [10] showed that Planar
Subgraph Isomorphism problem with pattern of size k can be solved in time
2O(

√
k log k)n. Can we get rid of the logarithmic factor in the exponent (maybe

in exchange to a higher polynomial degree)?
The results of Cook & Seymour [6] on using branch decomposition to ob-

tain high-quality tours for (general) TSP show that branch decomposition based
algorithms work much faster than their worst case time analysis shows.

Together with our preliminary experience on the implementation of a similar
algorithm technique for solving Planar Vertex Cover in [2], we conjecture
that sc-branch decomposition based algorithms perform much faster in practice.

References

[1] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier,
Fixed parameter algorithms for dominating set and related problems on planar
graphs, Algorithmica, 33 (2002), pp. 461–493.

[2] J. Alber, F. Dorn, and R. Niedermeier, Experimental evaluation of a tree
decomposition-based algorithm for vertex cover on planar graphs, Discrete Applied
Mathematics, 145 (2005), pp. 219–231.

106 F. Dorn et al.

[3] J. Alber, H. Fernau, and R. Niedermeier, Graph separators: a parameterized
view, Journal of Computer and System Sciences, 67 (2003), pp. 808–832.

[4] , Parameterized complexity: exponential speed-up for planar graph problems,
Journal of Algorithms, 52 (2004), pp. 26–56.

[5] H. L. Bodlaender, A tourist guide through treewidth, Acta Cybernet., 11 (1993),
pp. 1–21.

[6] W. Cook and P. Seymour, Tour merging via branch-decomposition, INFORMS
Journal on Computing, 15 (2003), pp. 233–248.

[7] V. G. Dĕıneko, B. Klinz, and G. J. Woeginger, Exact algorithms for the
Hamiltonian cycle problem in planar graphs, Oper. Res. Lett., (2005), p. to appear.

[8] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos, Subex-
ponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs, in 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
New York, 2004, ACM, pp. 823–832.

[9] R. G. Downey and M. R. Fellows, Parameterized complexity, Springer-Verlag,
New York, 1999.

[10] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, Jour-
nal of Graph Algorithms and Applications, 3 (1999), pp. 1–27.

[11] F. Fomin and D. Thilikos, Dominating sets in planar graphs: Branch-width
and exponential speed-up, in 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), New York, 2003, ACM, pp. 168–177.

[12] , A simple and fast approach for solving problems on planar graphs, in
21st Annual Symposium on Theoretical Aspects of Computer Science (STACS),
vol. 2996 of Lecture Notes in Comput. Sci., Berlin, 2004, Springer, pp. 56–67.

[13] Q.-P. Gu and H. Tamaki, Optimal branch-decomposition of planar graphs in
O(n3), in 32nd International Colloquium on Automata, Languages and Program-
ming (ICALP), 2005, p. to appear.

[14] M. Held and R. M. Karp, A dynamic programming approach to sequencing
problems, Journal of SIAM, 10 (1962), pp. 196–210.

[15] R. Z. Hwang, R. C. Chang, and R. C. T. Lee, The searching over separators
strategy to solve some NP-hard problems in subexponential time, Algorithmica, 9
(1993), pp. 398–423.

[16] G. Kreweras, Sur les partition non croisées d’un circle, Discrete Mathematics,
1 (1972), pp. 333–350.

[17] E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, eds., The traveling
salesman problem, John Wiley & Sons Ltd., Chichester, 1985.

[18] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM
Journal on Applied Mathematics, 36 (1979), pp. 177–189.

[19] , Applications of a planar separator theorem, SIAM Journal on Computing,
9 (1980), pp. 615–627.

[20] N. Robertson, P. Seymour, and R. Thomas, Quickly excluding a planar graph,
Journal of Combinatorial Theory Series B, 62 (1994), pp. 323–348.

[21] N. Robertson and P. D. Seymour, Graph minors. X. Obstructions to tree-
decomposition, Journal of Combinatorial Theory Series B, 52 (1991), pp. 153–190.

[22] P. Seymour and R. Thomas, Call routing and the ratcatcher, Combinatorica,
15 (1994), pp. 217–241.

[23] W. D. Smith and N. C. Wormald, Geometric separator theorems and applica-
tions, in The 39th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 1998), IEEE Computer Society, 1998, pp. 232–243.

An Algorithm for the SAT Problem for
Formulae of Linear Length

Magnus Wahlström�

Department of Computer and Information Science,
Linköping University, SE-581 83 Linköping, Sweden

magwa@ida.liu.se

Abstract. We present an algorithm that decides the satisfiability of
a CNF formula where every variable occurs at most k times in time
O(2N(1−c/(k+1)+O(1/k2))) for some c (that is, O(αN) with α < 2 for every
fixed k). For k ≤ 4, the results coincide with an earlier paper where we
achieved running times of O(20.1736N) for k = 3 and O(20.3472N) for
k = 4 (for k ≤ 2, the problem is solvable in polynomial time). For
k > 4, these results are the best yet, with running times of O(20.4629N)
for k = 5 and O(20.5408N) for k = 6. As a consequence of this, the same
algorithm is shown to run in time O(20.0926L) for a formula of length
(i.e. total number of literals) L. The previously best bound in terms of
L is O(20.1030L). Our bound is also the best upper bound for an exact
algorithm for a 3sat formula with up to six occurrences per variable,
and a 4sat formula with up to eight occurrences per variable.

1 Introduction

The boolean satisfiability problem, and its restricted variants, is one of the most
well-studied classes of NP-complete problems. In the general case of formulae
in conjunctive normal form with no restrictions on the clauses, or the number
of appearances of the variables, no algorithm that decides satisfiability in time
O(αN) with α < 2 for N variables is believed to exist. Nevertheless, there are
a number of algorithms that improve on the trivial O(2N) in this case. With N
variables and M clauses, an algorithm was recently published [6] that runs in
expected time O(2N(1−1/α)) where α = log(M/N)+O(log log M), and previously
an algorithm that runs in expected time O(2N(1−c/

√
N)) for a constant c was

known [4]. We see that the former bound is stronger when M is polynomial in
N , while the latter bound is stronger for formulae with very many clauses. For a
deterministic algorithm, there is one that runs in time O(2N(1−1/ log2 2M)) [5, 13].
Additionally, there is an algorithm by Hirsch [9] that runs in time O(20.3090M),
which is a better bound when M ≤ 3N .

In addition to this, there are of course a large number of results for restricted
versions of the problem. Most notable of these restricted versions is k-sat where
� The research is supported by CUGS – National Graduate School in Computer Sci-

ence, Sweden.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 107–118, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

108 M. Wahlström

a clause may have at most k literals. This is polynomial for k = 2 and NP-
complete for k > 2 [8], and the best results for general k are a probabilistic
algorithm with running time in O((2−2/k)N) [12] and a deterministic algorithm
in time O((2 − 2/(k + 1))N) [3]. For k = 3, there are stronger results, with a
probabilistic algorithm which runs in time O(1.3238N) [10] and a deterministic
one which runs in time O(1.473N) [1].

In this paper, we increase the toolbox with an algorithm that has the strongest
bound so far for formulae where the total length L (i.e. the total number of literals
in the formula) is linear in N . Our algorithm is simple and deterministic, and
with k = L/N it runs in time O(2N(1−c/(k+1)+O(1/k2))) for a constant c, for any
CNF formula (with the exception that no variables with a single occurrence are
allowed when L < 4N). This result is an extension of the work in [14], where a
running time of O(20.1736(L−2N)) is proven. The precise upper bounds for low k
are O(20.1736N) when k = 3, O(20.3472N) when k = 4, O(20.4629N) when k =
5, and O(20.5408N) when k = 6; after this, the times follow the general pattern
closely, with c ≈ 3. The previously strongest bound in terms of l was by Hirsch,
with an algorithm that runs in time O(20.1030L) [9]. Our new bounds are stronger
than Hirsch’s for every value of L and N , and especially so when L/N increases,
as our bound tends to 2N while Hirsch’s keeps increasing. In terms of L alone,
our analysis proves a bound of O(20.0926L) for any CNF formula.

The key to these results is the method of analysis, introduced in the #2sat
analysis in [2]. By analysing the behaviour of the algorithm in terms of both
N and L, simultaneously, we are able to prove stronger bounds on the running
time, even in terms of N or L alone, than what is easily achieved by a more
classical analysis. This improvement is due to the extra information contained
in the relative values of L and N , which allows us to distinguish cases with short
and long formulae in the analysis. In the current algorithm, we use the algorithm
from [14] for a strong bound when L is low (strongest when every variable occurs
exactly three times, and L = 3N), and derive bounds progressively closer to
O(2N) when L is longer, by measuring the speedup that is caused by having [14]
as a base case (in essence, the lower the quotient L/N is, the faster we will reach
a situation where the algorithm of [14] can be usefully applied).

In Section 2, we present some standard concepts used in the paper. In Section
3 we present the algorithm. Section 4 contains precise descriptions of the method
of analysis and the upper bound on the running time expressed in L and N , and
Section 5 contains the analysis where we prove that this bound on the running
time is valid. Finally, Section 6 concludes the paper with some discussion about
the results.

Due to the length restriction, some proofs have been omitted.

2 Preliminaries

A sat instance is a boolean CNF formula F , with no restrictions on the clause
lengths. A k-sat instance is a sat instance where no clause contains more than k
literals; a clause with exactly k literals is a k-clause. The problem instances that

An Algorithm for the SAT Problem for Formulae of Linear Length 109

are considered in this paper belong to the general sat class, without restrictions
on clause lengths. V ars(F) is the set of all variables that occur in F .

Regarding notation, if v is a variable then v and ¬v are its positive and
negative literals, respectively, and if l is the literal ¬v then ¬l is the literal v. |C|
for a clause C denotes the number of literals in C (also called the length of C),
and a clause (l ∨ C) for some literal l and clause C is the clause that contains
all literals of C plus the literal l. Similarly, (l∨C ∨D) for literal l and clauses C
and D would be the clause containing l plus every literal occurring in C or D.
Unless explicitly stated otherwise, the clauses C, D must be non-empty.

If l is a literal of a variable occurring in F , F [l] is the formula one gets if
every clause C in F that contains l, and every occurrence of ¬l in other clauses,
is removed. For a set A of literals, F [A] is the result of performing the same
set of operations for every literal l′ ∈ A. Note that F [l] and F [A] may contain
empty clauses.

For a variable v ∈ V ars(F), define the degree d(v, F) of v in F to be the
number of occurrences of either v or ¬v in the clauses of F . Usually, the formula
is understood from the context, and d(v) is used. d(F) is the maximum degree
of any v ∈ V ars(F), and F is k-regular if d(v) = k for every v ∈ V ars(F). A
variable v where v occurs in a clauses and ¬v occurs in b clauses is an (a, b)-
variable, in which case v is an a-literal and ¬v a b-literal. If b = 0, then v is a
pure literal (similarly, if a = 0 then ¬v is a pure literal). We will usually assume,
by symmetry, that a ≥ b, so that e.g. a 1-literal is usually a negative literal ¬v.
If d(v) = 1, then v is a singleton.

The neighbours of a literal l are all literals l′ such that some clause C in F
contains both l and l′. If a clause C contains a literal of both variables a and b,
then a and b co-occur in C.

We write L = L(F) for the length of F and N = N(F) for the number of
variables in F (i.e. L(F) =

∑
v∈V ars(F) d(v, F) and N(F) = |V ars(F)|).

We use the classic concept of resolution [7]. For clauses C = (a ∨ l1 ∨ . . . ∨ ld)
and D = (¬a ∨ m1 ∨ . . . ∨ me), the resolvent of C and D by a is the clause (l1 ∨
. . .∨ ld ∨m1 ∨ . . .∨me), shortened to remove duplicate literals. If this new clause
contains both v and ¬v for some variable v, it is said to be a trivial resolvent.

For a formula F and a variable v occurring in F , DPv(F) is the formula where
all non-trivial resolvents by v have been added to F and all clauses containing
the variable v have been removed from F . Resolution is the process of creating
DPv(F) from F .

We also use backwards resolution. If a formula F contains two clauses C1 =
(C ∨D), C2 = (C ∨E) where D and E share no literals, DP−1

C1,C2
is the formula

where C1 and C2 have been replaced by clauses (¬a ∨ C), (a ∨ D), (a ∨ E) for a
fresh variable a.

3 The Algorithm

The algorithm MiddegSAT used in this article is based on LowdegSAT from
[14], modified to give better worst-case performance for formulae with L > 4N .

110 M. Wahlström

The algorithm is given in Figure 1. It is shown as a list of cases, where the
earliest case that applies is used, e.g. case 8 is only used if none of cases 0–7
apply. Case 0 is a base case. Cases 1–7 are reductions, and case 8 is a branching.
Case 9, finally, calls the algorithm from [14] when L/N is low enough.

Algorithm MiddegSAT(F)
Case 0: If F = ∅, return 1. If ∅ ∈ F , return 0.
Case 1: If F is not in standard form (see text), standardise it, return MiddegSAT (F).
Case 2: If there is some 1-clause (l) ∈ F , return MiddegSAT (F [l]).
Case 3: If there is a pure literal l in F , return MiddegSAT (F [l]).
Case 4: a) If there is a 2-clause (l1 ∨ l2) and a clause D = (l1 ∨ ¬l2 ∨ C) in F
for some possibly empty C, construct F ′ from F by deleting ¬l2 from D and return
MiddegSAT (F ′).
b) If there are 2-clauses C1 = (l1 ∨ l2) and C2 = (¬l1 ∨ ¬l2), create F ′ from F by
replacing all occurrences of l2 by ¬l1 and all occurrences of ¬l2 by l1, and removing
C1 and C2. Return MiddegSAT (F ′).
Case 5: If there is a variable x in F with at most one non-trivial resolvent, return
MiddegSAT (DPx(F)).
Case 6: If there is a variable x in F with d(x) = 3 such that resolution on x is
admissible (see def. 1), return MiddegSAT (DPx(F)).
Case 7: If there are two clauses C1 = (C ∨ D), C2 = (C ∨ E) such that backwards
resolution on C1, C2 is admissible (see def. 1), return MiddegSAT (DP−1

C1,C2
(F)).

Case 8: If L(F) > 4N(F), pick a variable x of maximum degree. If some literal of x,
assume ¬x, occurs only in a single clause (¬x∨l1∨ . . .∨lk), return MiddegSAT (F [x])∨
MiddegSAT (F [{¬x,¬l1, . . . ,¬lk}]). If both x and ¬x occur in at least two clauses,
return MiddegSAT (F [x])∨ MiddegSAT (F [¬x]).
Case 9: Otherwise, return LowdegSAT (F).

Fig. 1. Algorithm for sat when most variables have few occurrences

We say that a formula F ′ is the step t-reduced version of F if F ′ is the result
of applying the reductions in cases 0–t, in the order in which they are listed,
until no such reduction applies anymore. F ′ is called step t-reduced (without
reference to F) if no reduction in case t or earlier applies (i.e. F is step t-
reduced if MiddegSAT (F) reaches case t + 1 without applying any reduction).
A synonym to step 7-reduced is fully reduced.

Standardising a CNF formula F refers to applying the following reductions
as far as possible:

1. Subsumption: If there are two clauses C, D in F , and if every literal in C
also occurs in D, then D is subsumed by C. Remove D from F .

2. Trivial or duplicate clauses: If F contains several copies of some clause C,
then C is a duplicate clause. If there is a clause C in F such that both literals
v and ¬v occur in C for some variable v, then C is a trivial clause. In both
cases, remove C from F .

3. Multi-occurring literals: If there is a clause C in F where some literal l occurs
more than once, remove all but one of the occurrences of l from C.

A formula F where none of these reductions apply is said to be in standard form.

An Algorithm for the SAT Problem for Formulae of Linear Length 111

Definition 1. Let F be a step 5-reduced CNF formula, and let F ′ be the step
5-reduced version of DPx(F), for some variable x in F . Let k = �L(F)/N(F)�,
ΔL = L(F) − L(F ′) and ΔN = N(F) − N(F ′). We say that resolution on x
in F is admissible if k ≤ 4 and ΔL ≥ 2ΔN , or if k = 5 and ΔL ≥ ΔN , or
if k > 5 and ΔL ≥ 0. For backwards resolution, if there are two clauses C1 =
(C ∨D), C2 = (C ∨E) in F , let F ′ be the step 5-reduced version of DP−1

C1,C2
(F).

Backwards resolution on C1, C2 is admissible if k ≤ 4 and ΔL > 2ΔN , or if
k = 5 and ΔL > ΔN .

Once the function f(F) is defined in Section 4, it will be clear that this definition
guarantees that f(F) ≥ f(F ′) when resolution is admissible, and that f(F) >
f(F ′) when backwards resolution is admissible.

Lemma 1. MiddegSAT (F) correctly determines the satisfiability of a CNF for-
mula F .

4 Method of Analysis

For the analysis of the worst-case running time of MiddegSAT , we use an adap-
tion of the method used for the #2sat algorithm in [2]. At its core is the method
of Kullmann [11], described below, using a measure f(F) of the complexity of a
formula F , but the construction of f is special enough that it deserves attention
of its own. This measure is described in the rest of this section.

Regarding Kullmann’s method, in the form we use it here, let F be a fully
reduced formula, and assume that MiddegSAT applied to F branches into for-
mulas F1, . . . , Fd. Let F ′

i be the fully reduced version of Fi for i = 1, . . . , d. The
branching number of this branching is τ(f(F)− f(F ′

1), . . . , f(F)− f(F ′
d)), where

τ(t1, . . . , td) is the unique positive root to the equation
∑

i x−ti = 1. If α is
the biggest branching number for all branchings that can occur in MiddegSAT ,
then the running time of the algorithm for a formula F is O(αf(F)). For a more
detailed explanation, see Kullmann’s paper.

Normally, when using a measure such as N(F) or L(F), this is fairly straight-
forward: You locate the case of the algorithm that gets the highest branching
number α, and thus prove that the running time is in O(αN) or O(αL). This
worst-case branching would usually be independent of the value of the parame-
ter; as long as N(F) is large enough, the exact value of it contains very little
information about the branchings that can occur.

However, in this paper, f(F) = f(L(F), N(F)) depends on both the total
length and the number of variables in a formula, and the combination of L(F)
and N(F) does contain information about the possible branchings: when L(F) >
k ·N(F), we know that at least one variable has at least k+1 occurrences. Since
we choose a variable of maximum degree in the algorithm, this means that we
get not one global worst case, but a sequence of worst cases, depending on the
degree we can guarantee. We want the bound O(αf(F)) for some constant α to
be as tight as possible for every combination of large enough values for L and
N . We also want the measure to be easy to use.

112 M. Wahlström

To get this, we let f(L, N) be a piecewise linear function, so that for any
worst-case situation, f(F)−f(F ′) = a(N(F)−N(F ′))+b(L(F)−L(F ′)), where
the parameters a, b depend on the situation (with the natural restriction that
f must be continuous). In essence, we define that every worst-case branching
number for a formula F with L literals and N variables is 2, so that the running
time for any F is in O(2f(L(F),N(F))), and we then derive the proper measure f
so that this holds.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Worst-case running time expressed as O(2cN) depending on L/N (c on verti-
cal axis, L/N on horizontal axis) for Hirsch’s algorithm (top line) and MiddegSAT
(bottom line)

In this particular case, we use the algorithm LowdegSAT [14] to get a running
time of O(1.1279L−2N) when L ≤ 4N , or O(20.1736N) when F is 3-regular and
O(20.3472N) when L = 4N (these bounds are proven in [14]), and in the rest
of the analysis, the improvement over 2N depends on the distance to this easy
section. That is, defining the section of F to be �L(F)/N(F)�, when the section
of F is k, the components of f are N and L − (k − 1)N , where the latter is the
distance to the next lower (easier) section. The definitions are as follows:

f(L, N) = fk(L, N) if k − 1 ≤ L/N ≤ k (1)
fk(L, N) = χk−1N + (L − (k − 1)N)bk (2)

χ0 = 0 (3)
χk = χk−1 + bk (4)

An Algorithm for the SAT Problem for Formulae of Linear Length 113

For convenience, f(F) = f(L(F), N(F)) for a formula F , and when branching
from a formula F to a fully reduced formula F ′, we sometimes write Δf(F) for
f(F) − f(F ′) (and correspondingly for ΔL and ΔN).

The values of bk are chosen so that the worst-case branching number for
a fully reduced formula F with �L/N� = k is 2, as mentioned. For k ≤ 4,
LowdegSAT from [14] is used, with a worst-case running time of O(αL(F)−2N(F))
where α = τ(4, 8) ≈ 1.1279, so b3 and b4 must be chosen so that this coincides
with O(2f(F)). For k ≥ 5, bk are chosen according to the worst-case branchings
identified in Section 5. However, the definitions of bk are given here, before the
analysis, to simplify the presentation. Note that no cyclic reference occurs, as
these definitions are presented without reference to the running time. In other
words, f(F) is defined here, and the running time of O(2f(F)) for a fully reduced
formula F is proven in Section 5.

The definitions of bk are as follows:

b1 = b2 = 0 (5)
τ(4b3, 8b3) = 2 (6)
τ(4b4, 8b4) = 2 (7)

τ(χ4 + 3b5, 3χ4 + 3b5) = 2 (8)
τ(χk−1 + 5bk, χk−1 + (2k − 3)bk) = 2 for k ≥ 6 (9)

For b3 to b5, there are analytical solutions. For bk with k ≥ 6, we will need
numerical approximations. Both of these are given later in this section.

As stated, f(L, N) is a piecewise linear function. Each section (k − 1)N <
L ≤ kN is associated with a linear function fk with a parameter bk, and the
worst-case running time for any F within the section is O(2f(kN,N)) = O(2χkN).
If a form fk(L, N) = akN + bkL is desired, it can easily be derived from the
definitions that ak = χk−1 − (k − 1)bk. We will proceed to give some limits on
the size of the parameters, but first we need to state a lemma on the behaviour
of the τ function.

Lemma 2. If 0 < d < a ≤ b, τ(a − d, b + d) > τ(a, b).

Proof. This is a direct consequence of Lemma 8.5 of [11].

Table 1. Approximate values for the parameters in fk(L, N) = akN + bkL and χk =
k
i=1 bi, and worst-case running time in each section

k ak bk χk Running time
3 −0.347121 0.173560 0.173560 O(20.1736N) ≈ O(1.1279N)
4 −0.347121 0.173560 0.347121 O(20.3472N) ≈ O(1.2721N)
5 −0.115707 0.115707 0.462828 O(20.4629N) ≈ O(1.3783N)
6 0.073130 0.077940 0.540768 O(20.5408N) ≈ O(1.4548N)
7 0.188505 0.058710 0.599478 O(20.5995N) ≈ O(1.5152N)
8 0.278738 0.045820 0.645298 O(20.6453N) ≈ O(1.5641N)
9 0.352328 0.036621 0.681920 O(20.6820N) ≈ O(1.6043N)
10 0.411685 0.030026 0.711946 O(20.7120N) ≈ O(1.6381N)

114 M. Wahlström

Lemma 3. The following hold for the parameters ak, bk and χk.

• b3 = b4 = (log2(
√

5 + 1) − 1)/4 and a3 = a4 = −2b3

• b5 = 2b3/3 and a5 = −b5

• For k ≥ 4, ak < ak+1 < 1, bk > bk+1 > 0, χk < χk+1 < 1, and ak > 0 for
k ≥ 6.

The following lemma allows us to use Δfk as a replacement for Δf when
looking for worst cases.

Lemma 4. If L ≥ 2N , then f(L, N) ≤ fk(L, N) for all k. Thus, if �L/N� = k,
and if L ≥ 2N and L′ ≥ 2N ′, then f(L, N)− f(L′, N ′) ≥ fk(L, N)− fk(L′, N ′).

Next, we give the asymptotic growth of χk.

Lemma 5. χk = 1 − c/(k + 1) + O(1/k2) for some c.

Finally, we show the relation between the bound O(2χkN) and a bound of
the form O(2αL).

Lemma 6. f(L, N) ≤ 0.0926L for all L and N , with a maximum f(L, N)/L
value occurring when L = 5N .

Approximate values for the various variables, and the running time, for sec-
tions up to k = 10, are given in Table 1. The running times are also illustrated
graphically in Figure 2, along with the previously best bound for a comparable
algorithm, Hirsch’s algorithm with an O(20.10297L) running time [9], included for
comparison. The proof that MiddegSAT (F) has a running time in O(2f(F)) is
in Section 5.

5 The Analysis

In this section, we analyse the running time of the algorithm, for increasing
values of �L/N� (i.e. increasing sections). More properly, we prove that every
branching that can occur in MiddegSAT has a branching number of at most 2,
when using the measure f(L, N) defined in the previous section. In Section 5.1
we prove this for L ≤ 4N (which coincides with the LowdegSAT algorithm of
[14]). In Section 5.2, we take care of the case 4N < L ≤ 5N , and in Section 5.3,
we prove it for every L > 5N .

5.1 Up to Four Occurrences per Variable

Theorem 1 (LowdegSAT). If F is a CNF formula with L(F) ≤ 4N(F) and no
singletons, then LowdegSAT (F) decides the satisfiability of F in time O(2f(F)).

Proof. Theorem 1 of [14] proves this for O(1.1279L(F)−2N(F)), which coincides
with O(2f(F)) when L(F) ≤ 4N(F).

Lemma 7. If F is a fully reduced CNF formula with N variables and L literals,
where L ≤ 3N , then MiddegSAT (F) decides the satisfiability of F in time
O(2χ3N). If L ≤ 4N , the time is O(2χ4N).

Proof. MiddegSAT applies algorithm LowdegSAT in this case, and the running
time for LowdegSAT is known from Theorem 1.

An Algorithm for the SAT Problem for Formulae of Linear Length 115

5.2 Five Occurrences per Variable

In this section, f5(L, N) = a5N + b5L is used, with a5 = −b5 and b5 = 2/3 · b3 ≈
0.115707. We will need to prove that τ(χ4 +3b5, 3χ4 +3b5) = 2 is the worst-case
branching.

Lemma 8. If F is a step 5-reduced formula with �L/N� = 5, the following hold:

1. If there is a clause (l ∨ C) in F , where l is a 1-literal, the variable of l is of
degree 3, and |C| ≤ 2, then resolution on l is admissible.

2. If there are two clauses (l1 ∨ l2 ∨C) and (l1 ∨ l2 ∨D) in F , where l1 or l2 is
a literal of a variable of degree 3, then backwards resolution on these clauses
is admissible.

Since a5 + b5 = 0, the only pitfall when evaluating branchings in this sec-
tion is a variable that has all its occurrences within the clauses removed by an
assignment x or ¬x (or assignments ¬x,¬l1, . . . ,¬ld if ¬x is a 1-literal). This
limits the number of cases that we have to consider in the following result.

Lemma 9. If F is a fully reduced CNF formula and �L/N� = 5, the worst-
case branching number for MiddegSAT when applied to F is τ(χ4 + 3b5, 3χ4+
3b5) = 2.

Proof. Let x be the variable we branch on (d(x) ≥ 5). It can be realised that if
there is a 2-clause (x∨ l), then at least two literals of l occur in clauses without
¬x. That is, as a5 and b5 cancel each other out, a 2-clause contributes at least
b5 to both branches, while a 3-clause contributes 2b5 to one branch. By Lemma
2, a 2-clause only occurs in a worst case if it causes a higher imbalance in Δf .

Regarding the complications arising from having a5 < 0, the only case where
Δf could decrease due to an unexpectedly high ΔN is when a variable has
all its occurrences among literals already accounted for, and thus disappears
from F without an assignment. For most of this proof, this can only occur if
some variable v, d(v) ≥ 4, has all its occurrences with the literal x (or ¬x),
which requires that x occurs in at least four 3-clauses, with a minimum Δf of
(d(x) + 8)b5 + 3a5 in the branch x, while the minimum Δf when x is a 3-literal
occurring in no 2-clauses is (d(x) + 6)b5 + a5. No new worst-case branchings
are introduced by this case. When there are other cases where a variable can
disappear, these are addressed specifically.

To start with, assume that ¬x is a 1-literal. In the branch with assignment
¬x, x contributes at least 5b5 + a5, and each neighbour of ¬x with degree d
contributes at least db5 + a5. Let C be the clause with ¬x. If |C| ≥ 3, Δf in
this branch is at least 8b5. Otherwise, assume that C = (¬x∨ y) and let D be a
clause where ¬y appears. D contains at least one literal not of variable x or y.
If d(y) = 3, |D| ≥ 4; otherwise, D may contain only one further literal. In either
case, the minimum reduction in f(F) is again 8b5, and no further variables can
disappear without also increasing ΔL. x is at least a 4-literal, and as noted above,
the minimum reduction is 10b5. τ(8b5, 10b5) = τ((5 + 1/3)b3, (6 + 2/3)b3) < 2.

116 M. Wahlström

Next, assume that ¬x is a 2-literal. If ¬x is involved in two 2-clauses, branch
¬x will reduce f(F) by at least 6b5, and branch x by at least 12b5, counting the
contributions from the variables of the 2-clauses and the neighbours of x that do
not appear in these 2-clauses. τ(6b5, 12b5) = τ(4b3, 8b3) = 2. If ¬x is involved in
one 2-clause, the branching number is τ(7b5, 11b5) < 2, and with no 2-clauses,
τ(8b5, 10b5) < 2. Having d(x) > 5 will not yield any harder cases. Expressing
the worst case in χ4 and b5, we have τ(χ4 + 3b5, 3χ4 + 3b5) = 2.

5.3 Six or More Occurrences per Variable

In all further sections, ak and bk are both positive, and the worst-case branchings
all appear when there are no 2-clauses. For L ≤ 10N , we need to prove this
section by section. When L > 10N , we can give a general proof.

Lemma 10. For a fully reduced CNF formula F , let k = �L/N�. If k > 5,
then the worst-case branching number for MiddegSAT when applied to F is
τ(χk−1 + 5bk, χk−1 + (2k − 3)bk) = 2.

Proof. Assume that we are branching on variable x, in section k, and d(x) = k.
First, let ¬x be a 2-literal, involved in zero, one or two 2-clauses. With no 2-
clauses, we get a reduction of (k +4)bk +ak in branch ¬x, and (3k−4)bk +ak in
branch x. With ak = χk−1− (k−1)bk, we get a branching of (χk−1 +5bk, χk−1 +
(2k − 3)bk), which has a branching number of 2 by definition of bk.

For a 2-clause (¬x∨y), the statements in Lemma 9 still hold, and assignment
y in branch x adds a further 2bk + ak, independently of reductions due to other
assignments and clauses containing x. We find that with ¬x being involved in
one 2-clause the branching is (χk−1 + 4bk, 2χk−1 + kbk) and with two 2-clauses,
(χk−1 + 3bk, 3χk−1 + 3bk).

If ¬x is instead a 1-literal, assume that the clause containing ¬x is (¬x∨l∨C)
for some possibly empty C, where l is a literal of the variable y. If d(y) ≥ 4, the
reduction from variables x and y alone in the ¬x branch is at least (k+4)bk+2ak.
If d(y) = 3, and l is a 2-literal, then the clause D where ¬l appears is at least a
5-clause, with at least three literals not of variables x and y, for a reduction of
at least (k+6)bk +2ak. If d(y) = 3 and l is a 1-literal, then |C| ≥ 3 and counting
only the assignments we have a reduction of at least (k + 12)bk + 5ak. In all of
these cases, the reduction in the ¬x branch is stronger than the (k + 3)bk + ak

we get from a 2-literal ¬x not involved in any 2-clauses, and the reduction in
the branch x is no weaker than in this case, as x must appear in at least one
more clause.

We have three remaining branchings for each value of k. Note that
τ(χ7, 3χ7) < 2 already, so when L > 7N , the case with two 2-clauses can be
excluded as a worst case. Similarly, τ(χ10, 2χ10) < 2, so when L > 10N , we
can see immediately that the case where ¬x is a 2-literal and not involved
in any 2-clauses is the worst case. For the sections up to those points, we
need to evaluate the branching number case by case. Doing so, we find that
τ(χk−1 + 4bk, 2χk−1 + kbk) < 2 and τ(χk−1 + 3bk, 3χk−1 + 3bk) < 2 for every
k ≥ 6. This concludes the proof.

An Algorithm for the SAT Problem for Formulae of Linear Length 117

Now that we know that the branching number is at most 2 for every section
of L/N , we can give the general theorem.

Theorem 2. If F is a CNF formula where either L(F) ≥ 4N(F) or F is free
of singletons, then the running time of MiddegSAT (F) is in O(2f(F)), where f
is the function defined in Section 4.

Proof. For a fully reduced F , it follows from the lemmas in this section. If
L(F) < 4N(F) and F contains no singletons, it follows from Theorem 1. If
L(F) ≥ 4N(F), we see that the process of applying the reductions never increases
fk(F) (where k is the section that F belongs to).

Corollary 1. The running time of MiddegSAT (F), without any restrictions
on F , is in O(20.0926L(F)) regardless of the value for N(F).

Proof. By Lemma 6 in Section 4, f(L, N) ≤ 0.0926L for all L and N . If F ′ is the
step 3-reduced version of F , L(F ′) ≤ L(F), and by Theorem 2, the running time
of MiddegSAT (F ′) will be in O(2f(F ′)), and by extension also in O(20.0926L(F)).

6 Conclusions

We have presented an algorithm for determining the satisfiability of a CNF
formula F of length L and with N variables in time O(20.4629N) if �L/N� = 5, in
time O(20.5408N) if �L/N� = 6, and in general in time O(2N(1−c/(k+1)+O(1/k2))) if
�L/N� = k. This builds on our previous result, where an algorithm for the same
problem, with the restriction that F contains no single-occurring variables, was
presented, running in time O(20.1736N) when �L/N� = 3 and time O(20.3472N)
when �L/N� = 4. We also showed the limit of O(20.0926L) for the running time for
every value of L/N . These are all the strongest known bounds for this problem,
improving on the previous bound O(20.1030L) by Hirsch [9].

These results provide further proof of the usefulness of our method of analysis,
introduced in [2], where the running time of an algorithm is analysed in terms
of two properties (here, N and L) in such a way that the upper bound on the
total running time is stronger.

This paper does not address the topic of an algorithm with an upper bound
on the running time characterised by N and M , but better than O(2N) (where
M is the number of clauses in a formula). Something in this vein should be
possible.

References

[1] Tobias Brueggemann and Walter Kern. An improved deterministic local search
algorithm for 3-SAT. Theoretical Computer Science, 329(1–3):303–313, 2004.

[2] Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström. Counting models for
2SAT and 3SAT formulae. Theoretical Computer Science, 332(1-3):265–291, 2005.

118 M. Wahlström

[3] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Klein-
berg, Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A de-
terministic (2−2/(k+1))n algorithm for k-SAT based on local search. Theoretical
Computer Science, 289(1):69–83, 2002.

[4] Evgeny Dantsin, Edward A. Hirsch, and Alexander Wolpert. Algorithms for SAT
based on search in Hamming balls. In Proceedings of the 21st Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2004), volume 2996 of
Lecture Notes in Computer Science, pages 141–151. Springer, 2004.

[5] Evgeny Dantsin and Alexander Wolpert. Derandomization of Schuler’s algorithm
for SAT. In Proceedings of the 7th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT 2004), pages 69–75, 2004.

[6] Evgeny Dantsin and Alexander Wolpert. An improved upper bound for SAT.
Technical Report TR05-030, Electronic Colloquium on Computational Complex-
ity, 2005.

[7] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, 1960.

[8] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[9] Edward A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated
Reasoning, 24(4):397–420, 2000.

[10] Kazuo Iwama and Suguru Tamaki. Improved upper bounds for 3-SAT. In Pro-
ceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2004), page 328, 2004.

[11] Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. The-
oretical Computer Science, 223:1–72, 1999.

[12] Uwe Schöning. A probabilistic algorithm for k-SAT based on limited local search
and restart. Algorithmica, 32(4):615–623, 2002.

[13] Rainer Schuler. An algorithm for the satisfiability problem of formulas in con-
junctive normal form. Journal of Algorithms, 54(1):40–44, 2005.

[14] Magnus Wahlström. Faster exact solving of SAT formulae with a low number of
occurrences per variable. In Proceedings of the Eighth International Conference
on Theory and Applications of Satisfiability Testing (SAT-2005), 2005.

Linear-Time Enumeration of Isolated Cliques

Hiro Ito, Kazuo Iwama, and Tsuyoshi Osumi

Department of Communications and Computer Engineering, School of Informatics,
Kyoto University, Kyoto 606-8501, Japan

{itohiro, iwama, osumi}@kuis.kyoto-u.ac.jp

Abstract. For a given graph G of n vertices and m edges, a clique S

of size k is said to be c-isolated if there are at most ck outgoing edges
from S. It is shown that this parameter c is an interesting measure which
governs the complexity of finding cliques. In particular, if c is a constant,
then we can enumerate all c-isolated maximal cliques in linear time, and
if c = O(log n), then we can enumerate all c-isolated maximal cliques
in polynomial time. Note that there is a graph which has a superlinear
number of c-isolated cliques if c is not a constant, and there is a graph
which has a superpolynomial number of c-isolated cliques if c = ω(log n).
In this sense our algorithm is optimal for the linear-time and polynomial-
time enumeration of c-isolated cliques.

1 Introduction

Clique-related problems are all hard: For example, finding a maximum clique is
not only NP-hard but also inapproximable within a factor of n(1−ε) [10]. The
problem is W[1]-hard and hence it is probably not fixed-parameter tractable [6].
The problem is of course solvable if we can enumerate all maximal cliques, but
there are too many maximal cliques in general [14]. The situation is much the
same if we relax cliques to dense subgraphs [3,4,13]. Why is this so hard? One
intuitive reason is that a boundary between inside and outside of a clique is not
clear. Then, otherwise, the problem should be easier.

In this paper, we consider isolated cliques and isolated dense subgraphs. For
a given graph G, a vertex subset S of size k (and also its induced subgraph
G(S)) is said to be c-isolated if G(S) is connected to its outside via at most ck
edges. The number c is sometimes called the isolation factor. Apparently, the
subgraph is more isolated if the isolation factor is smaller. Our main result in
this paper shows that for a fixed constant c, we can enumerate all c-isolated
maximal cliques (including a maximum one if any) in linear time.

The notion of isolation appears in several different contexts. For example,
clustering Web pages into “communities” has been drawing a lot of research at-
tention recently [8,9,11,15]. Among others, Flake, Lawrence, and Giles [8] define
a community as a set of members (Web pages) such that each member has more
links to other members than to non-members. If we use our definition (isolated
cliques) for a community, then it has to be not only isolated from the outside
but also tightly coupled inside. Presumably members in such a community have

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 119–130, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

120 H. Ito, K. Iwama, and T. Osumi

some uniqueness in common, such as being engaged in an unusual (even crimi-
nal) business; it would help a lot in a certain situation if we can enumerate all
such communities quickly.

Our Contribution. As mentioned earlier, the most important result in this pa-
per is a linear-time enumeration of c-isolated cliques for a fixed constant c. Note
that we can prove that there is a graph which has a superlinear number of
c-isolated cliques if the isolation factor is not a constant and therefore the condi-
tion that the isolation factor be a constant is tight for linear-time enumeration.
For a nonconstant c, our algorithm still works as it is but its time complexity
increases, e.g., in polynomial time for c = O(log n). We also show that there is a
graph which has a superpolynomial number of c-isolated cliques if c = ω(log n).
Thus the isolation factor can be regarded as a measure of the complexity for
enumerating cliques.

For a dense subgraph, we consider what we call a pseudo-clique whose aver-
age and minimum degrees must be at least some designed values. Enumerating
isolated pseudo-cliques can be done in polynomial time for a wide range of pa-
rameter values. We also show a fairy tight condition on the parameter values for
the polynomial enumeration.

Related Work. Here is a brief review of clique-related results: Recall that the
problem of finding a maximum clique is hard to approximate within a factor
of n1−ε [10]. For heuristic algorithms, see [12]. For the enumeration of maximal
cliques, [5] includes a nice survey. For the most recent results, see [17]. For clique
covers and clique partitions, see [16]. The problem of finding dense subgraphs is
also called the maximum edge subgraph problem. This problem has been also
popular, but known upper bounds for its approximation factor are not small
either, for instance, O(n

1
3 log n) [3] and (n

2k
+ 1

2)2 (k is the size of the subgraph)
[4]. However, if the original graph is dense, then there is a PTAS for this problem
[2]. The problems are in P for restricted subclasses like constant-degree graphs
and bounded tree-width graphs.

2 Definitions and Summary of Results

For a graph G = (V, E) such that |V | = n and |E| = m, a clique is a subgraph
S of G such that every pair of vertices in S has an edge between them. A clique
S is said to be c-isolated if |E(S, G − S)| < ck, where c ≥ 1, k is the number
of vertices in S and E(GA, GB) denotes the set of edges connecting the two
subgraphs GA and GB directly, i.e., the set of edges (v1, v2) such that v1 is in
GA and v2 in GB . Edges in E(S, G − S) are called outgoing edges. For a vertex
v, d(v) denotes the degree of v and N(v) denotes the set of vertices which are
adjacent to v. N [v] = N(v) ∪ {v}. Clearly d(v) = |N(v)| = |N [v]| − 1 for any
v ∈ V . Sometimes, N [v] also denotes the subgraph induced by N [v]. Unless
otherwise stated, a clique in this paper means a maximal clique.

Theorem 1. For a given graph G of n vertices and m edges and an integer
c ≥ 1, all c-isolated cliques can be enumerated in time O(c522cm).

Linear-Time Enumeration of Isolated Cliques 121

Corollary 1. All c-isolated cliques can be enumerated in linear time if c is con-
stant, and in polynomial time if c = O(log n).

Theorem 2. Suppose that f(n) is an increasing function not bounded by any
constant. Then there is a graph of n vertices and m edges for which the number
of f(n)-isolated cliques is super-linear in n+m. Furthermore if f(n) = ω(log n),
there is a graph of n vertices and m edges for which the number of f(n)-isolated
cliques is super-polynomial in n + m.

Both proofs are given in Sec. 3. Note that the graph G may include cliques
which are not c-isolated (not included in the output of the algorithm).

A pseudo-clique with average degree α and minimum degree β, denoted by
PC(α, β), is a set V ′ ⊆ V such that the subgraph induced by V ′ has an average
degree of at least α and a minimum degree of at least β. We always use k for the
size of the subgraph and thus a pseudo clique is given like PC(0.9k, 0.5k). The
c-isolation condition is the same as before, i.e., the number of outgoing edges
must be less than ck. We assume the isolation factor is always a constant for
pseudo-cliques. Also a pseudo-clique usually means a maximal pseudo-clique.

Theorem 3. Suppose that f(n) is an increasing function not bounded by any
constant and 0 < ε < 1 is a constant. Then there are two graphs GA and GB of
n vertices such that the number of 1-isolated PC(k − f(k), kε) for GA and the
number of 1-isolated PC(k − kε, k

f(k)) for GB are both super-polynomial.

If we use a bit stronger condition for α of GA and β of GB , then it is not
hard to show a polynomial-time enumeration: If we have β = c1k for a constant
c1 (< 1), then we have a polynomial-time enumeration for any α (but at least
c1k of course). A polynomial-time enumeration is also possible if α = k − c2 for
a constant c2 (≥ 1) and β = kε. Notice that the restrictions for β of GA and α of
GB are rather weak, which requires the other parameter to be almost equal to
k for polynomial-time enumeration. Then what happens if the restrictions for α
and β are both fairy strong? As the following theorems show, polynomial-time
enumeration becomes possible for a wider range of parameters.

Theorem 4. For any ε > 0 there is a graph of n vertices for which the number
of 1-isolated

PC
(
k − (log k)1+ε, k

(log k)1+ε

)
is super-polynomial.

Theorem 5. There is a polynomial-time algorithm which enumerates all c-
isolated PC(k − log k, k

log k
).

Proofs of Theorems 3–5 are omitted here from the space limitation.

3 Enumeration of Isolated Cliques

3.1 Basic Ideas

Before giving the proof of Theorem 1, we describe the basic ideas behind our
algorithm. The following lemma is easy but important.

122 H. Ito, K. Iwama, and T. Osumi

Lemma 1. For any c-isolated clique C, there is a vertex (called a pivot) in the
clique which has less than c edges outgoing from C. (obvious from the definition
of c-isolation.)

For notational simplicity let č be the maximum integer less than c, i.e., č =
c−1 if c is an integer and č = �c� otherwise. If we can spend polynomial (instead
of linear) time, then the proof is easy: By Lemma 1 it is enough to examine,
for each vertex v, whether or not v is a pivot. To do so, we consider every set
C(v) ⊆ N [v] such that |N [v]|− |C(v)| ≤ č, and examine whether C(v) induces a
c-isolated clique. Note that the number of such C(v)’s is polynomial since č ≤ c
is a constant.

Our linear time algorithm also adopts the same strategy, i.e., we scan each
vertex vi and enumerate all c-isolated cliques whose pivots are vi. Namely our
goal is to enumerate all c-isolated cliques by removing at most c − 1 vertices
from N(vi). We call this subroutine PIVOT(vi). In order to make the algorithm
run in linear time, we have to overcome two major difficulties:

(i) How to delete č vertices: The above naive algorithm does this blindly,
but in fact, we can enumerate all maximal cliques that are obtained by removing
at most constant number of vertices, in linear time, by using an FTP technique
for the vertex-cover problem.

(ii) How to save vertex scan: It is important how many times the ad-
jacency list of each vertex is scanned, which often dominates the computation
time. Although our algorithm may scan ω(1) times for some vertices, they can
be amortized to be O(1) on average. For this purpose, we remove apparently
useless vertices from N [vi], by using only degree information, before scanning
their adjacency lists.

PIVOT(vi) consists of the following three stages (see Section 3.2 for details).

– Trimming stage (T-stage): We remove vertices which are apparently un-
qualified for components of desired c-isolated cliques. In this stage, (i) we
first trim vertices by using degree data only (O(1) time for every vertex),
and then (ii) scan adjacency lists (O(d(v)) time for every vertex v). During
this stage, we exit from PIVOT(vi), whenever we find out that vi never be
a pivot, for several reasons like more than č vertices have been removed. Af-
ter the first trimming, each of the remaining vertices has O(cd(vi)) degree;
and the set of vertices having at most hth lowest indices in the remaining
vertices of N [vi] has O(c3h) outgoing edges. These conditions are crucial to
guarantee that each adjacency list is scanned O(1) (amortized) times in the
entire algorithm.

– Enumerating stage (E-stage): We enumerate all maximal cliques by re-
moving at most č vertices except vi from the remaining vertex set, and obtain
at most a constant number of cliques.

– Screening stage (S-stage): We test all maximal cliques obtained above
and select legal c-isolated cliques. For checking maximality of them, some
c-isolated cliques that have been already found must be used. However, we
will see that the number of such c-isolated cliques is also constant and thus
linearity of the algorithm is not damaged.

Linear-Time Enumeration of Isolated Cliques 123

3.2 Proof of Theorem 1

For a given graph G = (V, E), we assume that all vertices are sorted by their
degrees as d(v1) ≤ d(v2) ≤ · · · ≤ d(vn). We also assume that the adjacency list
of each vertex vi is sorted by the indices of the adjacent vertices of vi in an
increasing order, i.e., the adjacent vertices of vi appear in an increasing order of
their indices by tracing the adjacency list of vi. Note that if a given graph does
not satisfy these conditions, we can make the graph satisfy them in linear time
by using the bucket sort. Note that a c-isolated clique may have more than one
pivots. However by introducing the above assumption, we can restrict the pivot
to be the vertex that has the minimum index in the clique.

Let k = |N [vi]| for notational simplicity. Let N−(vi) ⊆ N(vi) be the set of
vertices with indices lower than i in N(vi). Since the pivot has the minimum
index in the clique, N−(vi) is removed from the candidate of elements of c-
isolated cliques whose pivot is vi. Moreover from Lemma 1, if |N−(vi)| > č,
then vi cannot be a pivot of any c-isolated clique, and it can be skipped, i.e., we
immediately exit from PIVOT(vi).

In the following, we always use C = {vi1 , vi2 , . . . , vik′
} (k′ ≤ k) to denote

the set of candidates for vertices of c-isolated cliques whose pivots are vi, where
i = i1 < i2 < · · · < ik′ . Let Ch ⊆ C be {vi1 , vi2 , . . . , vih

} for h ≤ k′. We start
from C = N [vi]−N−(vi). We can still remove at most c′ = č− (k − k′) vertices
from C for a possible c-isolated clique.

Trimming Stage: We can remove vertices that violate one of the following con-
ditions without losing any c-isolated cliques:

(a) d(vij
) < (c + 1)k′,

(b) vij
∈ C has less than ck′ edges outgoing from C,

(c) vij
∈ C has at least k′ − c′(= k − č) adjacent vertices in C.

The necessity of (b) is obvious from the definition of c-isolated cliques. The
necessity of (c) is obtained from that we want to get cliques by deleting at most
c′ − 1 vertices from C. Condition (a) is implied from (b), and thus test (a) may
seem meaningless. However, it is important since test (a) can be done by using
only the value of degrees, i.e., it is done in O(1) time for each vertex, and all
remaining vertices after applying test (a) have degree O(ck′). Thus we apply test
(a) first for all vertices in C.

Furthermore, we should not apply tests (b) and (c) hastily. Because Ch may
have Ω(k′h) (i.e., Ω(k′) per vertex) outgoing edges even if it satisfies (a)–(c).
We want to limit the number of outgoing edges by O(h) (O(1) per vertex),
which is again important to guarantee the linear computation time. We can
delete at most č vertices, each of which may have less than ck′ outgoing edges.
Thus we can estimate that the upper-bound of the number of outgoing edges is
čck′ + ck′ = c(č + 1)k′ < c(c + 1)k′ = O(k′). Thus we introduce the following
test.

(d)
∑

vij
∈C

d(vij
) < c(c + 1)k′.

124 H. Ito, K. Iwama, and T. Osumi

Thus after test (a), we apply test (d), and then apply tests (b) and (c) for
vi2 , vi3 , . . ., vik′

in this order. If the number of deleted vertices becomes c, then
we break PIVOT(vi), since vi cannot be a pivot.

Enumerating Stage: Now, C = {vi1 , vi2 , . . . , vik′
} is the set of vertices remaining

after the above tests, where i = i1 < i2 < · · · < ik′ (k − c < k′ ≤ k). We try to
find (maximal) cliques by removing at most c′ = č − (k − k′) < c vertices from
C. We can observe the next:

(A) C has Ω(k′(k′ − c)) edges.

This means that C is “dense,” and hence we can construct the complement graph
C of C in O(||C|| + ck′) time, where ||C|| is the number of edges in C. Here is
a fundamental graph property:

(B) If C′ ⊆ C is a clique, C − C′ is a vertex-cover of C.

From the property (B), enumerating maximal cliques C′ ⊆ C that can be
obtained by removing at most č vertices is equivalent to enumerating minimal
vertex-covers with at most č vertices in C. Moreover, enumerating vertex-cover
with at most č vertices in C can be done in O((1.39)čč2 + ||C||) = O((1.39)cc2 +
ck′ + ||C||) time (e.g. see, [7]). Note that vi must not be removed, since we are
looking for c-isolated cliques whose pivots are vi.

Screening Stage: Let Qi be the set of obtained cliques in the enumerating stage.
We should check for each clique in Qi whether it satisfies the condition of a c-
isolated clique and maximality. Checking c-isolation is trivial, since the number
of cliques in Qi is constant (at most 2č). For checking maximality, it may seems
that we must compare every C′ ∈ Qi with all other C′′ ∈ Qj (j ≤ i) which have
been already obtained. Fortunately, we do not need such brute force comparison,
since we have the following property (Let N−(vi) = {vi′1

, vi′2
, . . . , vi′p

}):
(C) C′ ∈ Qi is not included in C′′ ∈ Qj if j /∈ {i′1, i′2, . . . , i′p}.
The proof is straightforward since C′ ∈ Qi has vi but C′′ ∈ Qj (j /∈
{i′1, i′2, . . . , i′p}) does not. From the property (C), it is enough to compare C′ ∈ Qi

with C′′ ∈ Qj (j ∈ {i′1, i′2, . . . , i′p}). The number of the latter cliques is less than
č2č (note that p = |N−(vi)| ≤ č), and hence the comparison can be done in
O(c22c||C||) time.

Now, a pseudo-code of this algorithm is shown as Table 1.

Estimation of Computation Time: First, we investigate the computation time of
the trimming stage. Tests (a) and (d) uses O(1) time for every vij

∈ C ⊆ N [vi],
i.e., O(d(vi)) time for every PIVOT(vi), and hence tests (a) and (d) requires at
most linear time in the entire algorithm.

Tests (b) and (c) are more complicated, since they require scanning adjacency
lists of vij

∈ C. Let C(vi) be the set of vertices remaining after test (a). For
estimating how many times we need the scan, we must note that tests (b) and

Linear-Time Enumeration of Isolated Cliques 125

Table 1. The algorithm which enumerates all c-isolated cliques

procedure I-CLIQUES(c,G)
1 Sort all vertices by their degrees and renumber their indices;
2 Sort their adjacency lists by their indices;
3 for i := 1 to n do; call PIVOT(vi); end for;

end procedure;

procedure PIVOT(vi)
11 if |N−(vi)| ≤ č then
12 Construct C = N [vi] − N−(vi) = {vi1 , . . . , vik

} (i = i1 < · · · < ik);
13 T-stage ∀vij

∈ C, apply test (a) and remove it it violates the condition;
14 if C doesn’t satisfy (d) then return;
15 for j := 2 to k do
16 if vij

breaks conditions (b) or (c) then
17 Remove vij

from C;
18 if |C| < k − č then return;
19 end if ;
20 end for;
21 E-stage Construct the complement graph C of C;
22 Enumerate all vertex covers C′′ ⊆ C of C with |C′′| ≤ c′;
23 comment c′ = č − (d(vi) − |C|);
24 Qi := {clique C′ = C − C′′ | C′′ is obtained in Line 15};
25 S-stage Check all cliques in Qi and remove cliques which don’t satisfy the

condition of c-isolation, from Qi;
26 Compare ∀C, C′ ∈ Qi and remove not maximal ones from Qi

27 for j := 1 to p do comment N−(vi) = {vi′1
, vi′2

, . . . , vi′p
};

28 Compare all elements in Qi with Qi′
j

and remove not maximal
ones from Qi

29 end for;
30 Output all elements in Qi;
31 end if ;

return;
end procedure;

(c) may be broken in the middle of the for-loop at Line 18. Let P (vi) be the set
of vertices to which tests (a) and (b) are applied. P (vi) can be divided into the
following two subsets: Pg(vi) ⊆ P (vi) (reps., Pb(vi) ⊆ P (vi)) is the set of good
vertices which pass the tests (b) and (c) (resp., bad vertices which are rejected
by tests (b) or (c)). Clearly |Pb(vi)| ≤ č. Furthermore, we let Pp(vi) ⊆ Pg(vi)
be the set of vertices having 1st, 2nd, . . ., and (2c)th smallest indices in Pg(vi).
For notational simplicity, we sometimes express as C(vi) = C, Pb(vi) = Pb,
Pb(vi) = Pb, |C(vi)| = k′, |Pg(vi)| = g, and |Pb(vi)| = b. Fig. 1 illustrates the
relation of them (circles and crosses represent vertices in V , and crosses mean
vertices that are not adjacent to vi or removed before tests (b) and (c)).

Clearly for every vij
∈ P (vi), its adjacency list is scanned constant times,

and for the other vertices v /∈ P (vi) their adjacency lists are never scanned,
in PIVOT(vi). Let P−1 be the reverse function of P , i.e., P−1(vj) = {vi | vj ∈

126 H. Ito, K. Iwama, and T. Osumi

vi

2c

C vi()P vi()

Pg vi()

Pb vi()

Pp (hutched area)vi()

v1 vn

Fig. 1. Relation of C(vi), P (vi), Pg(vi), Pb(vi), and Pp(vi)

P (vi)}, and D(vj) = |P−1(vj)|. Namely, D(vj) shows how many times vj appears
in P (v1), P (v2), . . ., P (vn). Thus the value of

D =
n∑

i=1

∑
vj∈P (vi)

d(vj) =
n∑

j=1

D(vj)d(vj) (1)

expresses the computation time required for tests (b) and (c).
Next, we estimate computation time of E-stage and S-stage. As mentioned

before, they require O(c22c||Pg||+1.39cc2 +cg+ ||Pg||) time for each PIVOT(vi),
where ||Pg|| means the number of edges of the induced subgraph by Pg.

Here, we also let P−1
g (vj) = {vi | vj ∈ Pg(vi)}, Dg(vj) = |P−1

g (vj)|, and

Dg =
n∑

i=1

∑
vj∈Pg(vi)

d(vj) =
n∑

j=1

Dg(vj)d(vj). (2)

Clearly ||Pg|| ≤ Dg, and hence the computation time required in E-stage and
T-stage is O(c22cDg) through the entire algorithm. Thus together with (1), we
obtaine the following lemma.

Lemma 2. The computation time of I-CLIQUES(c,G) is O(D + c22cDg). (Ob-
vious from the above discussion.) 	

We first compute the value of D.

Lemma 3. For a vertex vi ∈ V and a pair of vertices vj , vj′ ∈ P (vi), we have
d(vj′) ≤ (c + 1)d(vj) and d(vj) ≤ (c + 1)d(vj′). (Obvious from that vj and vj′

passed test (a).)

Lemma 4. D < c(c + 1)m + Dg.

Proof:

D=
n∑

j=1

D(vj)d(vj)=
n∑

i=1

∑
vj∈P (vi)

d(vj)=
n∑

i=1

⎛⎝ ∑
vj∈Pg(vi)

d(vj) +
∑

vj∈Pb(vi)

d(vj)

⎞⎠ .

From Lemma 3 and the fact that |Pb(vi)| < c, we have
∑

vj∈Pb(vi)
d(vj) <

c(c + 1)d(vi). Thus

D =
n∑

j=1

D(vj)d(vj) <

n∑
i=1

∑
vj∈Pg(vi)

d(vj) + c(c + 1)
n∑

i=1

d(vi) = Dg + c(c + 1)m.

	

Linear-Time Enumeration of Isolated Cliques 127

We next compute the value of Dg. The next lemma shows how many edges
are outgoing from Pg(vi).

Lemma 5. |E(Pg(vi), V − C(vi))| < c(2c + 3)max{|Pg(vi)|, c}.
Proof: If k′ < 2c, from condition (d) we obviously obtain |E(Pg(vi), V −
C(vi))| < 2c2(c + 1) < c2(2c + 3), which satisfies the desired inequality. Thus
we suppose k′ ≥ 2c and |E(Pg, V − C)| ≥ c(2c + 3)g. Then by considering the
condition (c),

∑
vj∈Pg

d(vj) ≥ g(k′ − c) + c(2c + 3)g = g{k′ + 2c(c + 1)}, and
hence d(vig

) ≥ k′ + 2c(c + 1), where vig
is the vertex having the largest index in

Pg. This implies that each of vj ∈ C −Pg has also degree at least k′ + 2c(c + 1),
i.e., has at least k′ + 2c(c + 1)− (k′ − 1) = k′ + 2c2 + 2c + 1 edges outgoing from
C. Thus

|E(C, V − C)| ≥ |E(C − P, V − C)| + |E(Pg , V − C)|
≥ (k′ − g − b)(2c2 + 2c + 1 + 1) + g(k′ + 2c2 + 2c)
= 2c(c + 1)(k′ − b) + g(k′ − 1) + (k′ − b) ≥ 2c(c + 1)(k′ − c)

≥ 2c(c + 1)
k′

2
(since k′ ≥ 2c)

= c(c + 1)k′,

contradicting the condition (d). 	

Lemma 6.

∑
vj∈Pg(vi)

Dg(vj) < 2c2(c + 3)|Pg(vi)|.
Proof:

Dg(vi) = |P−1
g (vj)| ≤ |P−1

g (vj) ∩ (C(vi) − P (vi))| + |P−1
g (vj) ∩ Pg(vi)|

+|P−1
g (vj) ∩ Pb(vi)| + |P−1

g (vj) ∩ (V − C(vi))|.
The values of the four terms are computed as follows.

P−1
g (vj) ∩ (C(vi) − P (vi)): All vertices vj′ ∈ C(vi) − P (vi) have larger indices

than any vj ∈ P (vi). The pivot has the smallest index in the c-isolated clique,
and thus any vertex vj′ ∈ C(vi) − P (vi) cannot be a pivot of a c-isolated
clique including any vj ∈ P (vi). Therefore |P−1

g (vj) ∩ (C(vi) − P (vi))| = 0.
P−1

g (vj) ∩ Pg(vi): All vertices in Pg(vi) passed test (c) and has at least k − c
adjacent vertices in N [vi]. Moreover, if v has more than c adjacent vertices
with indices lower than v’s index, it is skipped at Line 11. From this we
can observe that only vertices in Pp(vi) can be pivots. Therefore |P−1

g (vj)∩
Pg(vi)| ≤ 2c.

P−1
g (vj) ∩ Pb(vi): |Pb(vi)| ≤ c, which obviously means |P−1

g (vj) ∩ Pb(vi)| ≤ c.
P−1

g (vj) ∩ (V − C(vi)): From Lemma 5,∑n
j=1 |P−1

g (vj) ∩ (V − C(vi))| < c(2c + 3)max{|Pg(vi)|, c}.
Thus we obtain:

∑
vj∈Pg(vi)

Dg(vj) < (2c+c)|Pg(vi)|+c(2c+3)max{|Pg(vi)|, c}
≤ 2c(c + 3)max{|Pg(vi)|, c} ≤ 2c2(c + 3)|Pg(vi)|. 	

We now introduce S = {vj | Dg(vj) ≤ 4c2(c + 3)}. The following property
holds on S. (Notice that 4c2(c+3) is the twice the value of the coefficient of the
right-hand side of the inequality in Lemma 6.)

128 H. Ito, K. Iwama, and T. Osumi

Lemma 7. For any vi ∈ V , at least a half of elements in Pg(vi) are in S.

Proof: Assume that less than a half of Pg(vi) are in S for a vertex vi, i.e., more
than a half of vertices vj in Pg(vi) has Dg(vj) value greater than 4c2(c+3). Thus∑

vj∈Pg(vi)
Dg(vj) > 2c2(c + 3)|Pg(vi)|, contradicting Lemma 6. 	

Now we are ready to bound the value of Dg.

Lemma 8. Dg ≤ 4c2(c + 2)(c + 3)m

Proof:

Dg =
n∑

j=1

Dg(vj)d(vj) =
n∑

i=1

∑
vj∈Pg(vi)

d(vj)

≤
n∑

i=1

∑
vj∈Pg(vi)∩S

(c + 2)d(vj) (since Lemmas 3 and 7)

= (c + 2)
∑
s∈S

Dg(s)d(s) ≤ (c + 2){4c2(c + 3)}
∑
s∈S

d(s) (since Lemma 7)

≤ 4c2(c + 2)(c + 3)m.

	

From Lemmas 2, 4, and 8, the time complexity of I-CLIQUES(c,G) is

O(D + c22cDg) = O(c(c + 1)m + (1 + c22c)Dg)
= O((1 + c22c)4c2(c + 2)(c + 3)m) = O(c522cm).

Therefore, Theorem 1 is proved.

3.3 Proof of Theorem 2

Let f(n), or simply f , be an arbitrary unbounded increasing function of n.
We consider the following graph Gf of n vertices. Gf consists of a number of
connected components, which are called blocks. All blocks are isomorphic, and
each block has f vertices (thus the number of blocks is n/f). Let x and y be non-
decreasing functions of n such that f = xy. Each block (see Fig. 2) is a complete
y-partite graph, where each part (Xi, i = 1, . . . , y) consists of x vertices.

We can easily verify that the following vertex set C is a maximum clique:

C = {x1, x2, . . . , xy | x1 ∈ X1, x2 ∈ X2, . . . , xy ∈ Xy}.
C consists of k = y vertices. The number of edges between C and V − C is

(x − 1)(y − 1)y ≤ (xy)y = fk.

Thus C is an f -isolated clique. The number of such C’s in a block is Q = xy ,
and the number of edges in a block is m < 1

2 (xy)2 = 1
2f2. Thus the ratio of the

number of f -isolated cliques to the input data size of Gf is

Q

m
>

2xy

f2
. (3)

Linear-Time Enumeration of Isolated Cliques 129

X1 X2 Xy

x

Fig. 2. A block of the graph Gf in the proof of Theorem 2

Since f is an unbounded increasing function, we can make (3) be an increasing
function, i.e., Q is superliner by letting x = y =

√
f . Furthermore, if f =

ω(log n), by letting y = log n and x = f/ logn we can make Q/m ≥ xlog n/f2 be
superpolynomial. Therefore Theorem 2 is proved.

4 Concluding Remarks

It is probably possible to improve our enumeration algorithm so that it can save
space usage. To this end, we need to assume that we can make a random access
to the input data and also need to avoid sorting. We have started experiments
although they are preliminary at this moment. Our test data is so-called the
inter-site graph consisting of some 6M Web pages and (much more) links among
them. We have found 6974 1-isolated cliques of size from 2 to 32 fairy quickly.

References

1. J. Abello, A. L. Buchsbaum, and J. R. Westbrook: A functional approach to ex-
ternal graph algorithms, Algorithmica, 32 (2002) 437–458.

2. S. Arora, D. R. Karger and M. Karpinski: Polynomial time approximation schemes
for dense instances of NP-hard problems, In Proceedings of the 27th ACM Sym-
posium on Theory of Computing (1995) 284–293.

3. Y. Asahiro, R. Hassin and K. Iwama: Complexity of finding dense subgraph, Dis-
crete Applied Mathematics, 121, Issue 1-3 (2002) 15–26.

4. Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama: Greedily finding a dense
subgraph, J. Algorithms, 34 (2000) 203–221.

5. I. Bomze: The Maximum Clique Problem, Handbook of Combinatorial Optimiza-
tion (Supplement Volume A), Kluwer, 1999.

6. R. Downey, M. Fellows: Fixed-Parameter Tractability and Completeness II: On
Completeness for W[1]. Theor. Comput. Sci. 141(1 & 2) (1995) 109-131.

7. R. G. Downey and M. R. Fellows: Parametrized Complexity, Springer, 1999.
8. G. W. Flake, S. Lawrence, and C. L. Giles: Efficient identification of web communi-

ties, In Proceedings of the Sixth International Conference on Knowledge Discovery
and Data Mining (ACM SIGKDD-2000), 150–160, Boston, MA, ACM Press (2000).

9. D. Gibson, J. M. Kleinberg and P. Raghavan: Inferring web communities from link
topology, UK Conference on Hypertext (1998) 225–234.

130 H. Ito, K. Iwama, and T. Osumi

10. J. H̊astad: Clique is hard to approximate within n1−ε, Acta Mathematica 182
(1999) 105–142.

11. X. He, H. Zha, C. Ding, and H. Simon: Web document clustering using hyperlink
structures, Tech. Rep. CSE-01-006, Department of Computer Science and Engi-
neering, Pennsylvania State University (2001).

12. D. Johnson and M. Trick (Eds.): Cliques, Coloring, and Satisfiability: Second DI-
MACS Implementation Challenge, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Vol. 26, American Mathematical Society (1996).

13. G. Kortsarz and D. Peleg: On choosing a dense subgraph, In Proceedings of the
34th Annual IEEE Symposium on Foundation of Computer Science (1993) 692–
701.

14. J. Moon and L. Moser: On cliques in graphs, Israel Journal of Mathematics, 3
(1965) 23–28.

15. P. K. Reddy and M. Kitsuregawa: An approach to relate the web communities
through bipartite graphs, In Proceedings of The Second International Conference
on Web Information Systems Engineering (2001) 301–310.

16. H. U. Simon: On approximate solutions for combinatorial optimization problems,
SIAM J. Disc. Math. 3 (1990) 294–310.

17. K. Makino and T. Uno: New algorithms for enumerating all maximal cliques, Pro-
ceedings of the 9th Scandinavian Workshop on Algorithm Theory, LNCS, 3111
(2004) 260–272.

Finding Shortest Non-separating and
Non-contractible Cycles for Topologically

Embedded Graphs

Sergio Cabello1,� and Bojan Mohar2,��

1 Department of Mathematics, Institute for Mathematics,
Physics and Mechanics, Slovenia
sergio.cabello@imfm.uni-lj.si

2 Department of Mathematics, Faculty of Mathematics and Physics,
University of Ljubljana, Slovenia
bojan.mohar@fmf.uni-lj.si

Abstract. We present an algorithm for finding shortest surface non-
separating cycles in graphs with given edge-lengths that are embedded
on surfaces. The time complexity is O(g3/2V 3/2 log V +g5/2V 1/2), where
V is the number of vertices in the graph and g is the genus of the sur-
face. If g = o(V 1/3−ε), this represents a considerable improvement over
previous results by Thomassen, and Erickson and Har-Peled. We also
give algorithms to find a shortest non-contractible cycle in O(gO(g)V 3/2)
time, improving previous results for fixed genus.

This result can be applied for computing the (non-separating) face-
width of embedded graphs. Using similar ideas we provide the first near-
linear running time algorithm for computing the face-width of a graph
embedded on the projective plane, and an algorithm to find the face-
width of embedded toroidal graphs in O(V 5/4 log V) time.

1 Introduction

Cutting a surface for reducing its topological complexity is a common technique
used in geometric computing and topological graph theory. Erickson and Har-
Peled [9] discuss the relevance of cutting a surface to get a topological disk in
computer graphics. Colin de Verdière [5] describes applications that algorithmi-
cal problems involving curves on topological surfaces have in other fields.

Many results in topological graph theory rely on the concept of face-width,
sometimes called representativity, which is a parameter that quantifies local
planarity and density of embeddings. The face-width is closely related to the
edge-width, the minimum number of vertices of any shortest non-contractible
cycle of an embedded graph [17]. Among some relevant applications, face-width

� Partially supported by the European Community Sixth Framework Programme un-
der a Marie Curie Intra-European Fellowship.

�� Supported in part by the Ministry of Higher Education, Science and Technology of
Slovenia, Research Project L1–5014–0101–04 and Research Program P1–0297.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 131–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

132 S. Cabello and B. Mohar

plays a fundamental role in the graph minors theory of Robertson and Seymour,
and large face-width implies that there exists a collection of cycles that are far
apart from each other, and after cutting along them, a planar graph is obtained.
By doing so, many computational problems for locally planar graphs on gen-
eral surfaces can be reduced to corresponding problems on planar graphs. See
[17, Chapter 5] for further details. The efficiency of algorithmical counterparts
of several of these results passes through the efficient computation of face-width.

The same can be said for the non-separating counterparts of the width pa-
rameters, where the surface non-separating (i.e., nonzero-homologous) cycles are
considered instead of non-contractible ones. In this work, we focus on what may
be considered the most natural problem for graphs embedded on surfaces: finding
a shortest non-contractible and a shortest surface non-separating cycle. Our re-
sults give polynomial-time improvements over previous algorithms for low-genus
embeddings of graphs (in the non-separating case) or for embeddings of graphs
in a fixed surface (in the non-contractible case). In particular, we improve pre-
vious algorithms for computing the face-width and the edge-width of embedded
graphs. In our approach, we reduce the problem to that of computing the dis-
tance between a few pairs of vertices, what some authors have called the k-pairs
shortest path problem.

1.1 Overview of the Results

Let G be a graph with V vertices and E edges embedded on a (possibly non-
orientable) surface Σ of genus g, and with positive weights on the edges, repre-
senting edge-lengths. Our main contributions are the following:

– We find a shortest surface non-separating cycle of G in O(g3/2V 3/2 logV +
g5/2V 1/2) time, or O(g3/2V 3/2) if g = O(V 1−ε) for some constant ε > 0.
This result relies on a characterization of the surface non-separating cycles
given in Section 3. The algorithmical implications of this characterization
are described in Section 4.

– For any fixed surface, we find a shortest non-contractible cycle in O(V 3/2)
time. This is achieved by considering a small portion of the universal cover.
See Section 5.

– We compute the non-separating face-width and edge-width of G in
O(g3/2V 3/2 + g5/2V 1/2) time. For fixed surfaces, we can also compute the
face-width and edge-width of G in O(V 3/2) time. For graphs embedded on
the projective plane or the torus we can compute the face-width in near-
linear or O(V 5/4 logV) time, respectively. This is described in Section 6.

Although the general approach is common in all our results, the details are
quite different for each case. The overview of the technique is as follows. We find a
set of generators either for the first homology group (in the non-separating case)
or the fundamental group (in the non-contractible case) that is made of a few
geodesic paths. It is then possible to show that shortest cycles we are interested in
(non-separating or non-contractible ones) intersect these generators according to

Finding Shortest Non-separating and Non-contractible Cycles 133

certain patterns, and this allows us to reduce the problem to computing distances
between pairs of vertices in associated graphs.

We next describe the most relevant related work, and in Section 2 we intro-
duce the basic background. The rest of the sections are as described above.

1.2 Related Previous Work

Thomassen [20] was the first to give a polynomial time algorithm for finding
a shortest non-separating and a shortest non-contractible cycle in a graph on
a surface; see also [17, Chapter 4]. Although Thomassen does not claim any
specific running time, his algorithm tries a quadratic number of cycles, and for
each one it has to decide if it is non-separating or non-contractible. This yields a
rough estimate O(V (V +g)2) for its running time. More generally, his algorithm
can be used for computing in polynomial time a shortest cycle in any class C
of cycles that satisfy the so-called 3-path-condition: if u, v are vertices of G and
P1, P2, P3 are internally disjoint paths joining u and v, and if two of the three
cycles Ci,j = Pi ∪ Pj (i �= j) are not in C, then also the third one is not in C.
The class of one-sided cycles for embedded graphs is another relevant family of
cycles that satisfy the 3-path-condition.

Erickson and Har-Peled [9] considered the problem of computing a planariz-
ing subgraph of minimum length, that is, a subgraph C ⊆ G of minimum length
such that Σ \ C is a topological disk. They show that the problem is NP-hard
when genus is not fixed, provide a polynomial time algorithm for fixed surfaces,
and provide efficient approximation algorithms. More relevant for our work, they
show that a shortest non-contractible (resp. non-separating) loop through a fixed
vertex can be computed in O(V logV + g) (resp. O((V + g) logV)) time, and
therefore a shortest non-contractible (resp. non-separating) cycle can be com-
puted in O(V 2 logV + V g) (resp. O(V (V + g) logV)) time. They also provide
an algorithm that in O(g(V + g) logV) time finds a non-separating (or non-
contractible) cycle whose length is at most twice the length of a shortest one.

Several other algorithmical problems for graphs embedded on surfaces have
been considered. Colin de Verdière and Lazarus [6,7] considered the problem of
finding a shortest cycle in a given homotopy class, a system of loops homotopic
to a given one, and finding optimal pants decompositions. Eppstein [8] discusses
how to use the tree-cotree partition for dynamically maintaining properties from
an embedded graph under several operations. Very recently, Erickson and Whit-
tlesey [10] present algorithms to determine a shortest set of loops generating the
fundamental group. Other known results for curves embedded on topological
surfaces include [2,3,16,21]; see also [18,19] and references therein.

2 Background

Topology. We consider surfaces Σ that are connected, compact, Hausdorff topo-
logical spaces in which each point has a neighborhood that is homeomorphic to
R2; in particular, they do not have boundary. A loop is a continuous function of
the circle S1 in Σ. Two loops are homotopic if there is a continuous deformation

134 S. Cabello and B. Mohar

of one onto the other, that is, if there is a continuous function from the cylinder
S1 × [0, 1] to Σ such that each boundary of the cylinder is mapped to one of
the loops. A loop is contractible if it is homotopic to a constant (a loop whose
image is a single point); otherwise it is non-contractible. A loop is surface sepa-
rating (or zero-homologous) if it can be expressed as the symmetric difference of
boundaries of topological disks embedded in Σ; otherwise it is non-separating.
In particular, any non-separating loop is a non-contractible loop. We refer to
[13] and to [17, Chapter 4] for additional details.

Representation of Embedded Graphs. We will assume the Heffter-Edmonds-
Ringel representation of embedded graphs: it is enough to specify for each vertex
v the circular ordering of the edges emanating from v and for each edge e ∈ E(G)
its signature λ(e) ∈ {+1,−1}. The negative signature of e tells that the selected
circular ordering around vertices changes from clockwise to anti-clockwise when
passing from one end of the edge to the other. For orientable surfaces, all the
signatures can be made positive, and there is no need to specify it. This repre-
sentation uniquely determines the embedding of G, up to homeomorphism, and
one can compute the set of facial walks in linear time.

Let V denote the number of vertices in G and let g be the (Eurler) genus of
the surface Σ in which G is embedded. It follows from Euler’s formula that G
has Θ(V + g) edges. Asymptotically, we may consider V + g as the measure of
the size of the input.

We use the notation G C for the surface obtained by cutting G along a cycle
C. Each vertex v ∈ C gives rise to two vertices v′, v′′ in G C. If C is a two-
sided cycle, then it gives rise to two cycles C′ and C′′ in G C whose vertices
are {v′ | v ∈ V (C)} and {v′′ | v ∈ V (C)}, respectively. If C is one-sided, then it
gives rise to a cycle C′ in G C whose length is twice the length of C, in which
each vertex v of C corresponds to two diagonally opposite vertices v′, v′′ on C′.
The notation G C naturally generalizes to G C, where C is a set of cycles.

Distances in Graphs. In general, we consider simple graphs with positive edge-
weights, that is, we have a function w : E → R+ describing the length of the
edges. In a graph G, a walk is a sequence of vertices such that any two consecutive
vertices are connected by an edge in G; a path is a walk where all vertices are
distinct; a loop is a walk where the first and last vertex are the same; a cycle is
a loop without repeated vertices; a segment is a subwalk. The length of a walk
is the sum of the weights of its edges, counted with multiplicity.

For two vertices u, v ∈ V (G), the distance in G, denoted dG(u, v), is the
minimum length of a path in G from u to v. A shortest-path tree from a vertex
v is a tree T such that for any vertex u we have dG(v, u) = dT (v, u); it can be
computed in O(V logV + E) = O(V logV + g) time [12], or in O(V) time if
g = O(V 1−ε) for any positive, fixed ε [14]. When all the edge-weights are equal
to one, a breadth-first-search tree is a shortest-path tree.

We assume non-negative real edge-weights, and our algorithms run in the
comparison based model of computation, that is, we only add and compare (sums
of) edge weights. For integer weights and word-RAM model of computation,
some logarithmic improvements may be possible.

Finding Shortest Non-separating and Non-contractible Cycles 135

Width of Embeddings. The edge-width ew(G) (non-separating edge-width ew0(G))
of a graph G embedded in a surface is defined as the minimum number of vertices
in a non-contractible (resp. surface non-separating) cycle. The face-width fw(G)
(non-separating face-width fw0(G)) is the smallest number k such that there exist
facial walks W1, . . . ,Wk whose union contains a non-contractible (resp. surface
non-separating) cycle.

2.1 k-Pairs Distance Problem

Consider the k-pairs distance problem: given a graph G with positive edge-
weights and k pairs (s1, t1), . . . , (sk, tk) of vertices of G, compute the distances
dG(si, ti) for i = 1, . . . , k. Djidjev [4] and Fakcharoenphol and Rao [11] (slightly
improved by Klein [15] for non-negative edge-lengths) describe data structures
for shortest path queries in planar graphs. We will need the following special
case.

Lemma 1. For a planar graph of order V , the k-pairs distance problem can be
solved in O(min{V 3/2 + k

√
V , V log2 V + k

√
V log2 V }) time.

For a graph G embedded on a surface of genus g, there exist a set S ⊂ V (G)
of size O(

√
gV) such that G− S is planar. It can be computed in time linear in

the size of the graph [8]. Since G − S is planar, we can then use the previous
lemma to get the following result.

Lemma 2. The k-pairs distance problem can be solved in O(
√
gV (V logV +g+

k)) time, and in O(
√
gV (V + k)) time if g = O(V 1−ε) for some ε > 0.

Proof. (Sketch) We compute in O(V + g) time a vertex set S ⊂ V (G) of size
O(
√
gV) such that G − S is a planar graph. Making a shortest path tree from

each vertex s ∈ S, we compute all the values dG(s, v) for s ∈ S, v ∈ V (G).
We define the restricted distances dS

G(si, ti) = mins∈S{dG(si, s)+dG(s, ti)}, and
compute for each pair (si, ti) the value dS

G(si, ti)
If si and ti are in different connected components of G − S, it is clear that

dG(si, ti) = dS
G(si, ti). If si, ti are in the same component Gj of G − S we have

dG(si, ti) = min{dGj (si, ti), dS
G(si, ti)}. We can compute dGj (si, ti) for all the

pairs (si, ti) in a component Gj using Lemma 1, and the lemma follows because
each pair (si, ti) is in one component. �

3 Separating vs. Non-separating Cycles

In this section we characterize the surface non-separating cycles using the con-
cept of crossing. Let Q = u0u1 . . . uku0 and Q′ = v0v1 . . . vlv0 be cycles in the
embedded graph G. If Q,Q′ do not have any common edge, for each pair of
common vertices ui = vj we count a crossing if the edges ui−1ui, uiui+1 of Q
and the edges vj−1vj , vjvj+1 of Q′ alternate in the local rotation around ui = vj ;
the resulting number is cr(Q,Q′). If Q,Q′ are distinct and have a set of edges E′

in common, then cr(Q,Q′) is the number of crossings after contracting G along

136 S. Cabello and B. Mohar

E′. If Q = Q′, then we define cr(Q,Q′) = 0 if Q is two-sided, and cr(Q,Q′) = 1
if Q is one-sided; we do this for consistency in later developments.

We introduce the concept of (Z2-)homology; see any textbook of algebraic
topology for a comprehensive treatment. A set of edges E′ is a 1-chain; it is
a 1-cycle if each vertex has even degree in E′; in particular, every cycle in the
graph is a 1-cycle, and also the symmetric difference of 1-cycles is a 1-cycle. The
set of 1-cycles with the symmetric difference operation + is an Abelian group,
denoted by C1(G). This group can also be viewed as a vector space over Z2 and
is henceforth called the cycle space of the graph G. If f is a closed walk in G, the
edges that appear an odd number of times in f form a 1-cycle. For convenience,
we will denote the 1-cycle corresponding to f by the same symbol f .

Two 1-chains E1, E2 are homologically equivalent if there is a family of facial
walks f1, . . . , ft of the embedded graph G such that E1 + f1 + · · · + ft = E2.
Being homologically equivalent is an equivalence relation compatible with the
symmetric difference of sets. The 1-cycles that are homologically equivalent to
the empty set, form a subgroup B1(G) of C1(G). The quotient group H1(G) =
C1(G)/B1(G) is called the homology group of the embedded graph G.

A set L of 1-chains generates the homology group if for any loop l in G, there
is a subset L′ ⊂ L such that l is homologically equivalent with

∑
l′∈L′ l′. There

are sets of generators consisting of g 1-chains. It is known that any generating
set of the fundamental group is also a generating set of the homology group
H1(G).

If L = {L1, . . . , Lg} is a set of 1-cycles that generate H1(G), then every Li

(1 ≤ i ≤ g) contains a cycle Qi such that the set Q = {Q1, . . . , Qg} generates
H1(G). This follows from the exchange property of bases of a vector space since
H1(G) can also be viewed as a vector space over Z2.

A cycle in G is surface non-separating if and only if it is homologically equiv-
alent to the empty set. We have the following characterization of non-separating
cycles involving parity of crossing numbers.

Lemma 3. Let Q = {Q1, . . . , Qg} be a set of cycles that generate the homology
group H1(G). A cycle Q in G is non-separating if and only if there is some cycle
Qi ∈ Q such that Q and Qi cross an odd number of times, that is, cr(Q,Qi) ≡ 1
(mod 2).

Proof. Let f0, . . . , fr be the 1-cycles that correspond to the facial walks. Then
f0 = f1 + · · · + fr and Q ∪ {f1, . . . , fr} is a generating set of C1(G). If C is a
1-cycle, then C =

∑
j∈J Qj +

∑
i∈I fi. We define crC(Q) as the modulo 2 value

of ∑
j∈J

cr(Q,Qj) +
∑
i∈I

cr(Q, fi) =
∑
j∈J

cr(Q,Qj) mod 2.

It is easy to see that crC : C1(G) → Z2 is a homomorphism. Since cr(Q, fi) = 0
for every facial walk fi, crC determines also a homomorphism H1(G) → Z2.

If Q is a surface separating cycle, then it corresponds to the trivial element
of H1(G), so every homomorphism maps it to 0. In particular, for every j,
cr(Q,Qj) = crQj (Q) = 0 mod 2.

Finding Shortest Non-separating and Non-contractible Cycles 137

Let Q be a non-separating cycle and consider G̃ = G Q. Take a vertex v ∈ Q,
which gives rise to two vertices v′, v′′ ∈ G̃. Since Q is non-separating, there is a
simple path P in G̃ connecting v′, v′′. The path P is a loop in G (not necessarily
a cycle) that crosses Q exactly once.

Since Q generates the homology group, there is a subset Q′ ⊂ Q such
that the loop P and

∑
Qi∈Q′ Qi are homological. But then 1 = crP (Q) =∑

Qi∈Q′ cr(P,Qi) mod 2, which means that for some Qi ∈ Q′, it holds
cr(P,Qi) ≡ 1 (mod 2). �

4 Shortest Non-separating Cycle

We use the tree-cotree decomposition for embedded graphs introduced by Epp-
stein [8]. Let T be a spanning tree of G rooted at x ∈ V (G). For any edge
e = uv ∈ E(G) \ T , we denote by loop(T, e) the closed walk in G obtained
by following the path in T from x to u, the edge uv, and the path in T
from v to x; we use cycle(T, e) for the cycle obtained by removing the re-
peated edges in loop(T, e). A subset of edges C ⊆ E(G) is a cotree of G if
C∗ = {e∗ ∈ E(G∗) | e ∈ C} is a spanning tree of the dual graph G∗. A tree-cotree
partition of G is a triple (T,C,X) of disjoint subsets of E(G) such that T forms
a spanning tree of G, C is cotree of G, and E(G) = T ∪C ∪X . Euler’s formula
implies that if (T,C,X) is a tree-cotree partition, then {loop(T, e) | e ∈ X} con-
tains g loops and it generates the fundamental group of the surface; see, e.g., [8].
As a consequence, {cycle(T, e) | e ∈ X} generates the homology group H1.

Let Tx be a shortest-path tree from vertex x ∈ V (G). Let us fix any tree-
cotree partition (Tx, Cx, Xx), and let Qx = {cycle(Tx, e) | e ∈ Xx}. For a cycle
Q ∈ Qx, let QQ be the set of cycles that cross Q an odd number of times. Since
Qx generates the homology group, Lemma 3 implies that

⋃
Q∈Qx

QQ is precisely
the set of non-separating cycles. We will compute a shortest cycle in QQ, for
each Q ∈ Qx, and take the shortest cycle among all them; this will be a shortest
non-separating cycle.

We next show how to compute a shortest cycle in QQ for Q ∈ Qx. Firstly,
we use that Tx is a shortest-path tree to argue that we only need to consider
cycles that intersect Q exactly once; a similar idea is used by Erickson and Har-
Peled [9] for their 2-approximation algorithm. Secondly, we reduce the problem
of finding a shortest cycle in QQ to an O(V)-pairs distance problem.

Lemma 4. Among the shortest cycles in QQ, where Q ∈ Qx, there is one that
crosses Q exactly once.

Proof. (Sketch) Let Q0 be a shortest cycle in QQ for which the number
Int(Q,Q0) of connected components of Q ∩ Q0 is minimum. We claim that
Int(Q,Q0) ≤ 2, and therefore cr(Q,Q0) = 1 because QQ is the set of cycles
crossing Q an odd number of times, and each crossing is an intersection. Using
the 3-path-condition and that the cycle Q is made of two shortest paths, it is
not difficult to show that Int(Q,Q0) ≥ 3 cannot happen. �

138 S. Cabello and B. Mohar

Lemma 5. For any Q ∈ Qx, we can compute a shortest cycle in QQ in
O((V logV + g)

√
gV) time, or O(V

√
gV) time if g = O(V 1−ε).

Proof. Consider the graph G̃ = G Q, which is embedded in a surface of Euler
genus g − 1 (if Q is a 1-sided curve in Σ) or g − 2 (if Q is 2-sided). Each vertex
v on Q gives rise to two copies v′, v′′ of v in G̃.

In G, a cycle that crosses Q exactly once (at vertex v, say) gives rise to a path
in G̃ from v′ to v′′ (and vice versa). Therefore, finding a shortest cycle in QQ

is equivalent to finding a shortest path in G̃ between pairs of the form (v′, v′′)
with v on Q. In G̃, we have O(V) pairs (v′, v′′) with v on Q, and using Lemma 2
we can find a closest pair (v′0, v

′′
0) in O((V log V + g)

√
gV) time, or O(V

√
gV)

if g = O(V 1−ε). We use a single source shortest path algorithm to find in G̃ a
shortest path from v′0 to v′′0 , and hence a shortest cycle in QQ. �

Theorem 1. Let G be a graph with V vertices embedded on a surface of genus
g. We can find a shortest surface non-separating cycle in O((gV logV +g2)

√
gV)

time, or O((gV)3/2) time if g = O(V 1−ε).

Proof. Since
⋃

Q∈Qx
QQ is precisely the set of non-separating cycles, we find a

shortest non-separating cycle by using the previous lemma for each Q ∈ Qx, and
taking the shortest among them. The running time follows because Qx contains
O(g) loops. �

Observe that the algorithm by Erickson and Har-Peled [9] outperforms our
result for g = Ω(V 1/3 log2/3 V). Therefore, we can recap concluding that a short-
est non-separating cycle can be computed in O(min{(gV)3/2, V (V + g) logV })
time.

5 Shortest Non-contractible Cycle

Like in the previous section, we consider a shortest-path tree Tx from vertex
x ∈ V (G), and we fix a tree-cotree partition (Tx, Cx, Xx). Consider the set of
loops Lx = {loop(Tx, e) | e ∈ Xx}, which generates the fundamental group with
base point x. By increasing the number of vertices to O(gV), we can assume that
Lx consists of cycles (instead of loops) whose pairwise intersection is x. This can
be shown by slightly modifying G in such a way that Lx can be transformed
without harm.

Lemma 6. The problem is reduced to finding a shortest non-contractible cycle
in an embedded graph G̃ of O(gV) vertices with a given set of cycles Qx such that:
Qx generates the fundamental group with basepoint x, the pairwise intersection
of cycles from Qx is only x, and each cycle from Qx consists of two shortest
paths from x plus an edge. This reduction can be done in O(gV) time.

Proof. (Sketch) The first goal is to change the graph G in such a way that the
loops in Lx will all become cycles. Then we handle the pairwise intersections
between them. The procedure is as follows. Consider a non-simple loop l0 in

Finding Shortest Non-separating and Non-contractible Cycles 139

Lx whose repeated segment P0 is shortest, and replace the vertices in P0 in
the graph as shown in Figure 1. We skip a detailed description since it involves
much notation, but the idea should be clear from the figure. Under this trans-
formation, the rest of loops (or cycles) in Lx remain the same except that their
segment common with P0 is replaced with the corresponding new segments. We
repeat this procedure until Lx consists of only cycles; we need O(g) repetitions.
This achieves the first goal, and the second one can be achieved doing a similar
transfomation if we consider at each step the pair of cycles that have a longest
segment in common. �

x = v0

v1

vk−1

vk

vk+1
v′k+1

e

x = v0

v1

vk−1

vk

vk+1
v′k+1

e

v′1

v′k−1

v′k

Fig. 1. Changing G such that a loop l0 ∈ Lx becomes a cycle. The edges viv
′
i have

length 0.

Therefore, from now on, we only consider scenarios as stated in Lemma 6. Let
Q∗ be the set of shortest non-contractible cycles in G̃. Using arguments similar
to Lemma 4, we can show the following.

Lemma 7. There is a cycle Q ∈ Q∗ that crosses each cycle in Qx at most twice.

Consider the set D = Σ Qx and the corresponding graph GP = G̃ Qx.
Since Qx is a set of cycles that generate the fundamental group and they only
intersect at x, it follows that D is a topological disk, and GP is a planar graph.
We can then use D and GP as building blocks to construct a portion of the
universal cover where a shortest non-contractible cycle has to lift.

Theorem 2. Let G be a graph with V vertices embedded on a surface of genus
g. We can find a shortest non-contractible cycle in O(gO(g)V 3/2) time.

Proof. According to Lemma 6, we assume that G̃ has O(gV) vertices and we are
given a set of cycles Qx that generate the fundamental group with base point x,
whose pairwise intersection is x, and such that each cycle of Qx consists of two
shortest paths plus an edge. Moreover, because of Lemma 7, there is a shortest
non-contractible cycle crossing each cycle of Qx at most twice.

Consider the topological disk D = Σ Qx and let U be the universal cover
that is obtained by gluing copies of D along the cycles in Qx. Let GU be the

140 S. Cabello and B. Mohar

universal cover of the graph G̃ that is naturally embedded in U . The graph GU

is an infinite planar graph, unless Σ is the projective plane P2, in which case GU

is finite.
Let us fix a copy D0 of D, and let U0 be the portion of the universal cover U

which is reachable from D0 by visiting at most 2g different copies of D. Since each
copy of D is adjacent to 2|Qx| ≤ 2g copies of D, U0 consists of (2g)2g = gO(g)

copies of D. The portion GU0 of the graph GU that is contained in U0 can be
constructed in O(gO(g)gV) = O(gO(g)V) time. We assign to the edges in GU0

the same weights they have in G.
A cycle is non-contractible if and only if its lift in U finishes in different copies

of the same vertex. Each time that we pass from a copy of D to another copy we
must intersect a cycle in Qx. Using the previous lemma, we conclude that there
is a shortest non-contractible cycle whose lift intersects at most 2|Qx| = O(g)
copies of D. That is, there exists a shortest non-contractible cycle in G whose
lifting to U starts in D0 and is contained GU0 .

We can then find a shortest non-contractible cycle by computing, for each
vertex v ∈ D0, the distance in GU0 from the vertex v to all the other copies of v
that are in GU0 . Each vertex v ∈ D0 has O(gO(g)) copies in GU0 . Therefore, the
problem reduces to computing the shortest distance in GU0 between O(gO(g)V)
pairs of vertices. Since GU0 is a planar graph with O(gO(g)V) vertices, we can
compute these distances using Lemma 1 in O(gO(g)V

√
gO(g)V) = O(gO(g)V 3/2)

time. �

Observe that, for a fixed surface, the running time of the algorithm is
O(V 3/2). However, for most values of g as a function of V (when g ≥ c log V

log log V

for a certain constant c), the near-quadratic time algorithm by Erickson and
Har-Peled [9] is better.

6 Edge-Width and Face-Width

When edge-lengths are all equal to 1, shortest non-contractible and surface non-
separating cycles determine combinatorial width parameters (cf. [17, Chapter 5]).
Since their computation is of considerable interest in topological graph theory,
it makes sense to consider this special case in more details.

6.1 Arbitrary Embedded Graphs

The (non-separating) edge-width ew(G) (and ew0(G), respectively) of an embed-
ded graph G is the minimum number of vertices in a non-contractible (surface
non-separating) cycle, which can be computed by setting w(e) = 1 for all edges
e in G and running the algorithms from previous sections. For computing the
(non-separating) face-width fw(G) (and fw0(G), respectively) of an embedded
graph G, it is convenient to consider its vertex-face incidence graph Γ : a bi-
partite graph whose vertices are faces and vertices of G, and there is an edge
between face f and vertex v if and only if v is on the face f . The construction of
Γ takes linear time from an embedding of G, and it holds that fw(G) = 1

2ew(Γ)

Finding Shortest Non-separating and Non-contractible Cycles 141

and fw0(G) = 1
2ew0(Γ) [17]. In this setting, since a breadth-first-search tree is a

shortest-path tree, a log factor can be shaved off.

Theorem 3. For a graph G embedded in a surface of genus g, we can compute
its non-separating edge-width and face-width in O(g3/2V 3/2+g5/2V 1/2) time and
its edge-width and face-width in O(gO(g)V 3/2) time.

Although in general it can happen that ew(G) = Ω(V), there are non-trivial
bounds on the face-width fw(G). Albertson and Hutchinson [1] showed that the
edge-width of a triangulation is at most

√
2V . Since the vertex-face graph Γ has

a natural embedding in the same surface as G as a quadrangulation, we can add
edges to it to obtain a triangulation T , and conclude that fw(G) = 1

2ew(Γ) ≤
ew(T) ≤

√
2V .

6.2 Face-Width in the Projective Plane and the Torus

For the special cases when G is embedded in the projective plane P2 or the torus
T, we can improve the running time for computing the face-width. The idea is
to use an algorithm for computing the edge-width whose running time depends
on the value ew(G). We only describe the technique for the projective plane.

Lemma 8. Let G be a graph embedded in P2. If ew(G) ≤ t, then we can compute
ew(G) and find a shortest non-contractible cycle in O(V log2 V + t

√
V log2 V)

time.

Proof. (Sketch) Since the sphere is the universal cover of the projective plane
P2, we can consider the cover of G on the sphere, the so-called double cover DG

of the embedding of G, which is a planar graph. Each vertex v of G gives rise
to two copies v, v′ in DG, and a shortest non-contractible loop passing through
a vertex v ∈ V (G) is equivalent to a shortest path in DG between the vertices v
and v′.

We compute in O(V logV) time a non-contractible cycle Q of G of length
at most 2ew(G) ≤ 2t [9]. Any non-contractible cycle in G has to intersect Q at
some vertex, and therefore the problem reduces to find two copies v, v′ ∈ DG of
the same vertex v ∈ Q that minimize their distance in dG. This requires |Q| ≤ 2t
pairs of distances in DG, which can be solved using Lemma 1. �

Like before, consider the vertex-face incidence graph Γ which can be con-
structed in linear time. From the bounds in Section 6.1, we know that the edge-
width of Γ is O(

√
V), and computing the face-width reduces to computing the

edge-width of a graph knowing a priori that ew(Γ) = 2fw(G) = O(
√
V). Using

the previous lemma we conclude the following.

Theorem 4. If G is embedded in P2 we can find fw(G) in O(V log2 V) time.

For the torus, we have the following result, whose proof we omit.

Theorem 5. If G is embedded in T we can find fw(G) in O(V 5/4 logV) time.

142 S. Cabello and B. Mohar

References

1. M. O. Albertson and J. P. Hutchinson. On the independence ratio of a graph. J.
Graph Theory, 2:1–8, 1978.

2. T. K. Dey and S. Guha. Transforming curves on surfaces. J. Comput. Syst. Sci.,
58:297–325, 1999. Preliminary version in FOCS’95.

3. T. K. Dey and H. Schipper. A new technique to compute polygonal schema for 2-
manifolds with application to null-homotopy detection. Discrete Comput. Geom.,
14:93–110, 1995.

4. H. Djidjev. On-line algorithms for shortest path problems on planar digraphs. In
WG’96, volume 1197 of LNCS, pages 151–165, 1997.

5. É. Colin de Verdière. Shortening of curves and decomposition of surfaces. PhD
thesis, University Paris 7, December 2003.

6. É. Colin de Verdière and F. Lazarus. Optimal system of loops on an orientable
surface. In FOCS 2002, pages 627–636, 2002. To appear in Discrete Comput.
Geom.

7. É. Colin de Verdière and F. Lazarus. Optimal pants decompositions and shortest
homotopic cycles on an orientable surface. In GD 2003, volume 2912 of LNCS,
2004.

8. D. Eppstein. Dynamic generators of topologically embedded graphs. In SODA
2003, pages 599–608, 2003.

9. J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. Discrete
Comput. Geom., 31:37–59, 2004. Preliminary version in SoCG’02.

10. J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology genera-
tors. In SODA 2005, 2005.

11. J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest
paths, and near linear time. In FOCS 2001, pages 232–242, 2001.

12. M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34:596–615, 1987. Preliminary version
in FOCS’84.

13. A. Hatcher. Algebraic Topology. Cambridge University Press, 2001.
14. M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algo-

rithms for planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997.
15. P. N. Klein. Multiple-source shortest paths in planar graphs. In SODA 2005, 2005.
16. F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust. Computing a canonical

polygonal schema of an orientable triangulated surface. In SOCG 2001, pages
80–89, 2001.

17. B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins University Press,
Baltimore, 2001.

18. A. Schrijver. Disjoint circuits of prescribed homotopies in a graph on a compact
surface. J. Combin. Theory Ser. B, 51:127–159, 1991.

19. A. Schrijver. Paths in graphs and curves on surfaces. In First European Congress
of Mathematics, Vol. II, volume 120 of Progr. Math., pages 381–406. Birkhäuser,
1994.

20. C. Thomassen. Embeddings of graphs with no short noncontractible cycles. J.
Combin. Theory, Ser. B, 48:155–177, 1990.

21. G. Vegter and C. K. Yap. Computational complexity of combinatorial surfaces. In
SOCG 1990, pages 102–111, 1990.

Delineating Boundaries for Imprecise Regions�

Iris Reinbacher1, Marc Benkert2, Marc van Kreveld1, Joseph S. B. Mitchell3,
and Alexander Wolff2

1 Institute of Information and Computing Sciences, Utrecht University
{iris, marc}@cs.uu.nl

2 Dept. of Comp. Science, Karlsruhe University
i11www.ira.uka.de/algo/group

3 Department of Applied Mathematics and Statistics,
State University of New York at Stony Brook

jsbm@ams.sunysb.edu

Abstract. In geographic information retrieval, queries often use names
of geographic regions that do not have a well-defined boundary, such as
“Southern France.” We provide two classes of algorithms for the problem
of computing reasonable boundaries of such regions, based on evidence of
given data points that are deemed likely to lie either inside or outside the
region. Our problem formulation leads to a number of problems related
to red-blue point separation and minimum-perimeter polygons, many of
which we solve algorithmically. We give experimental results from our
implementation and a comparison of the two approaches.

1 Introduction

Geographic information retrieval is concerned with information retrieval for spa-
tially related data, including Web searching. Certain specialized search engines
allow queries that ask for things (hotels, museums) in the (geographic) neigh-
borhood of some named location. These search engines cannot use the stan-
dard term matching on a large term index, because the user is not interested
in the term “neighborhood” or “near”. When a user asks for Web pages on
museums near Utrecht, not only Web pages that contain the terms “museum”
and “Utrecht” should be found, but also Web pages of museums in Amers-
foort, a city about 20 kilometers from Utrecht. Geographic search engines require
ontologies—geographic databases—to be able to answer such queries. The on-
tologies store all geographic information, including coordinates and geographic
concepts. Geographic search engines also require a combined spatial and term
index to retrieve the relevant Web pages efficiently.

Besides specifying neighborhoods, users of geographic search engines may also
use containment and directional concepts in the query. Furthermore, the named
location need not be a city name or region with well-specified, administrative
boundaries. A typical query could ask for campgrounds in Northern Portugal, or
� This research is supported by the EU-IST Project No. IST-2001-35047 (SPIRIT)

and by grant WO 758/4-2 of the German Science Foundation (DFG).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 143–154, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

144 I. Reinbacher et al.

specify locations such as Central Mexico, the Bible Belt, or the British Midlands.
The latter two are examples of named regions for which no exact boundaries
exist. The extent of such a region is in a sense in the minds of the people. Every
country has several such imprecise regions.

Since geographic queries may ask for Web pages about castles in the British
Midlands, it is useful to have a reasonable boundary for this imprecise region.
This enables us to find Web pages for locations in the British Midlands that
mention castles, even if they do not contain the words British Midlands. We
need to store a reasonable boundary for the British Midlands in the geographic
ontology during preprocessing, and use query time for searching in the spatial
part of the combined spatial and term index.

To determine a reasonable boundary for an imprecise region we can use the
Web once again. The enormous amount of text on all Web pages can be used
as a source of data; the idea of using the Web as a geo-spatial database has
appeared before [11]. A possible approach is using so-called trigger phrases. For
any reasonable-size city in the British Midlands, like Nottingham, it is quite
likely that some Web page contains a sentence fragment like “. . . Nottingham,
a city in the British Midlands, . . . ”, or “Nottingham is located in the British
Midlands. . . ”. Such sentence fragments give a location that is most likely in the
British Midlands, while other cities like London or Cardiff, which do not appear
in similar sentence fragments, give locations that are not in the British Midlands.
Details of using trigger phrases to determine locations inside or outside a region
to be delineated can be found in [1]. Obviously the process is not very reliable,
and false positives and false negatives are likely to occur.

We have arrived at the following computational problem: given a set of “in-
side” points (red) and a set of “outside” points (blue), determine a reasonable
polygon that separates the two sets. Imprecise regions generally are not thought
of as having holes or a tentacle-shaped boundary, but rather a compact shape.
Therefore, possible criteria for such a polygon are: The red points are inside and
the blue points are outside the polygon, which is simply connected and has small
perimeter. Other shape measures for polygons that are used in geography [12],
e.g. the compactness ratio, can also be applied.

In computational geometry, various red-blue separation algorithms exist; see
[14] for a survey. Red-blue separation by a line can be solved by two-dimensional
linear programming in O(n) time for n points. Red-blue separation by a line with
k misclassified points takes O((n+ k2) log k) expected time [5]. Other fixed sep-
aration shapes, e.g. strips, wedges, and sectors, have also been considered [14].
For polygonal separators, a natural choice is the minimum-perimeter polygon
that separates the bichromatic point set. This problem is NP-hard (by reduc-
tion from Euclidean traveling salesperson [6]); polynomial-time approximation
schemes follow from the m-guillotine method of Mitchell [10] and from Arora’s
method [3]. Minimum-link separation has also received attention [2].

In this paper we present two approaches to determine a reasonable polygon
for a set of red and blue points. Based on these approaches we define and solve
various algorithmic problems. The first approach takes a red polygon with blue

Delineating Boundaries for Imprecise Regions 145

and red points inside, and tries to adapt the polygon to get the blue points
outside while keeping the red points inside. We show that for a red polygon with
n vertices and only one blue point inside, the minimum perimeter adaptation
can be computed in O(n) time. For the case of one blue and O(n) red points
inside, an O(n logn)-time algorithm is presented. If there are m blue points but
no red points inside, an O(m3n3)-time algorithm is given. If there are m red and
blue points inside, we give an O(Cm log m · n)-time algorithm, for some constant
C. These results are given in Section 2. The second approach changes the color
of points to obtain a better shape of the polygon. Different recoloring strategies
and algorithms are presented in Section 3. The implementation and test results
on several data sets for both approaches are given in Section 4.

2 Adaptation Method

In the adaptation method, we start with a polygon P and adapt it until all
blue points inside P are no longer inside, or the shape has to be changed too
dramatically. By choosing P initially as an α-shape (see [7] for a definition), with
α chosen such that e.g. 90% of the red points lie inside P , we can determine an
appropriate initial shape and remove red outliers (red points outside P) in the
same step. The parameter α can also be chosen based on “jumps” in the function
that maps α to the perimeter of the initial polygon that we would choose. Once
P is computed, the remaining problem is to change P so that the blue points
are no longer inside. The resulting polygon P ∗ should be contained in P and its
perimeter should be minimum. In this section we discuss the algorithmic side
of this problem. In practice it may be better for the final shape to allow some
blue points inside, which then would be considered misclassified. Some of our
algorithms can handle this extension.

2.1 One Blue Point Inside P

First, we assume that there is only one blue point b inside P . The optimal,
minimum-perimeter polygon P ∗ inside P has the following structure:

Lemma 1. An optimal polygon P ∗ is a—possibly degenerate—simple polygon
that (i) has b on its boundary, and (ii) contains all edges of P , except one.

We call a simple polygon degenerate, if there are vertices that appear more
than once on its boundary. We consider two versions of the problem: the special
case where P contains only one point (namely b), and the general case where P
contains b and a number of red points.

One Blue and No Red Points Inside P . Let b be the only point in the
interior of P and let e = v1v2 be the edge of P that is not an edge of P ∗. The
boundary of the polygon P ∗ contains a path F ∗ that connects v1 and v2 via b.
The path F ∗ consists of a shortest geodesic path between b and v1, and between
b and v2. Note that these paths can contain red points other than v1 and v2

which are concave vertices of P , see Figure 1 (left). In the optimal solution P ∗,
the path F ∗ and the edge e have the following additional properties.

146 I. Reinbacher et al.

b

v1 v2

b

v1 v2

b

v1 v2

F ∗ F ∗

P P ∗

e e

Fig. 1. Left: the path F ∗ if R = ∅. Middle: the case R �= ∅. Right: P ∗ for R �= ∅.

Lemma 2. (i) The path F ∗ is a simple funnel. (ii) The base e of the funnel F ∗

is partially visible from b.

We use the algorithm of Guibas et al. [8] to find the shortest path from the
point b to every vertex v of the polygon. For every two adjacent vertices vi and
vi+1 of the polygon, we compute the shortest paths connecting them to b. The
algorithm of Guibas et al. [8] can find all these paths in O(n) time. For each
possible base edge and corresponding funnel, we add the length of the two paths
and subtract the length of the edge between vi and vi+1 to get the value of the
perimeter change for this choice. We obtain the following result.

Theorem 1. For a simple polygon P with n vertices and with a single point b
inside, we can compute in O(n) time the minimum-perimeter polygon P ∗ ⊆ P ,
that contains all vertices of P , and that has b on its boundary.

One Blue and Several Red Points Inside P . Let R be the set of the red
points in the interior of P . Assume that its size is O(n). We need to adapt the
algorithm given before to take the red points into account. We first triangulate
the polygon P . Ignoring the red points R, we compute all funnels F from b to
every edge e of P . We get a partitioning of P into O(n) funnels with disjoint
interiors. In every funnel we do the following: If there are no red points inside
F , we just store the length of the funnel without its base edge. Otherwise, we
need to find a shortest path πmin from one endpoint of the base edge to b and
back to the other endpoint of the base edge, such that all red points in R still
lie inside the resulting polygon P ∗.

The shortest path πmin inside some funnel F with respect to a set R ∩ F
of red points consists of two chains which, together with the base edge e, again
forms a funnel F ∗, see Figure 1 (middle). This funnel is not allowed to contain
points of R ∩ F . We need to consider all possible ways of making such funnels,
which involves partitioning the points of R ∩ F into two subsets. Fortunately,
the red points of R ∩ F can only appear as reflex points on the funnel F ∗, and
therefore we can use an order of these points. For ease of description we let e
be horizontal. Then F has a left chain and a right chain. The optimal funnel
F ∗ also has a left chain and a right chain, such that all points of R ∩ F lie
between the left chains of F and F ∗ and between the right chains of F ∗ and F .
We extend the two edges of F incident to b, so that they end on the base edge
e. This partitions F into three parts: a left part, a middle triangle, and a right
part. In the same way as the first claim of Lemma 2, we can show that all points

Delineating Boundaries for Imprecise Regions 147

of R ∩ F in the left part must be between the left chains of F and F ∗, and all
points of R∩F in the right part must be between the right chains of F ∗ and F .
The points of R∩F in the middle triangle are sorted by angle around b. Let the
order be r1, . . . rh, counterclockwise.

Lemma 3. There is an i such that the points r1, . . . , ri lie between the left chains
of F and F ∗, and ri+1, . . . , rh lie between the right chains of F ∗ and F .

We iterate through the h + 1 possible partitions that can lead to an opti-
mal funnel F ∗, and maintain the two chains using a dynamic convex-hull algo-
rithm [4]. Every next pair of chains requires a deletion of a point on one chain
and an insertion of the same point on the other chain. We maintain the length
of the path during these updates to find the optimal one.

As to the efficiency, finding all shortest paths from b to all vertices of P takes
linear time for a polygon. Assigning the red points of R to the funnels takes
O(n log n) time using either plane sweep or planar point location. Sorting the h
red points inside F takes O(h log h) time, and the same amount of time is taken
for the dynamic convex hull part. Since each red point of R appears in only one
funnel, the overall running time is O(n logn).

Theorem 2. For a simple polygon P with n vertices, a point b in P , and a
set R of O(n) red points in P , we can compute the minimum-perimeter polygon
P ∗ ⊆ P that contains all vertices of P and all red points of R, and that has b
on its boundary, in O(n log n) time.

2.2 Several Blue Points Inside P

When there are more blue points inside P , we use other algorithmic techniques.
We first deal with the case of only blue points inside P and give a dynamic-
programming algorithm. Then we assume that there is a constant number of
blue and red points inside P , and we give a fixed-parameter tractable algorithm.

Several Blue and No Red Points Inside P . We sketch the dynamic-
programming solution for the case that there are only blue points inside P .
Details are given in the full version [13]. Let B be the set of blue points and let
P ∗ be the optimal solution with no points of B inside, see Figure 2, left. The
difference P \ P ∗ defines a set of simple polygons called pockets. Each pocket
contains one edge of P , which is called the lid of the pocket.

The structure of the solution is determined by a partitioning of the blue points
into groups. Blue points are in the same group if they are on the boundary of
the same pocket, or inside it. All blue points on the boundary of a pocket are
convex for the pocket and concave for P ∗.

The dynamic-programming solution is based on the idea that if uv is a diago-
nal of P ∗ between two red vertices of P , then the solutions in the two subpolygons
to either side of the diagonal are independent. If uv is a diagonal of P ∗ between
a red point u of P and a blue point v of B, and we know the lid of the pocket
that v is part of, then the solutions in the two subpolygons are also independent.

148 I. Reinbacher et al.

pocket lid

u

v

v w
x

y

Fig. 2. Structure of an optimal subpolygon if only blue points are inside P (left), and if
blue and red points are inside (right). Blue points are shown as white disks, red points
as black disks.

Similarly, if u and v are both blue, we need to know both lids of both pockets.
Therefore, optimal solutions to subproblems are characterized by a function with
four parameters. This function gives the length of the optimal subpolygon up to
the diagonal uv (if applicable, with the specified pockets).

The recursion needed to set up dynamic programming takes the diagonal uv
and possibly, the lid specifications, and tries all possibilities for a point w such
that triangle uvw is part of a triangulation that gives an optimal subpolygon
up to uv for this set of parameters. If uw and vw are also diagonals, we need
the smaller optimal solutions up to these two diagonals and add the lengths. To
compute a function value, we must try O(n) choices for w, and if w is a blue
point, we also need to choose the lid of the pocket, giving another O(n) choices.
Hence, it takes O(n2) time to determine each of the O(n4) function values needed
to compute the optimal polygon.

Theorem 3. For a simple polygon P with n vertices and O(n) blue points inside
it, we can compute a minimum-perimeter polygon P ∗ ⊆ P in O(n6) time. If there
are m = Ω(n) blue points, the running time is O(m3n3).

Several Blue and Red Points Inside P . We next give an algorithm that
can handle k red and blue points inside a red polygon P with n vertices. The
algorithm is fixed-parameter tractable: it takes O(Ck log k · n) time, where C is
some constant.

Let R and B be the sets of red and blue points inside P , respectively, and let
k = |R| + |B|. The structure of the solution is determined by a partitioning of
R ∪B into groups, see Figure 2, right. One group contains points of R∪B that
do not appear on the boundary of P ∗. In Figure 2, right, this group contains
v, w, x, and y. For the other groups, the points are in the same group if they lie
on the same chain that forms a pocket, together with some lid. On this chain,
points from B must be convex and points from R must be concave for the pocket.
Besides points from R ∪B, the chain consists of geodesics between consecutive
points from R∪B. For all points in the group not used on chains, all points that
come from B must be in pockets, and all points that come from R may not be
in pockets (they must lie in P ∗).

For a fixed-parameter tractable algorithm, we try all options for R ∪ B. To
this end, we generate all permutations of R∪B, and all splits of each permutation
into groups. The first group can be seen as the points that do not contribute to
any chain. For any other group, we get a sequence of points (ordered) that lie

Delineating Boundaries for Imprecise Regions 149

in this order on a chain. We compute the full chain by determining geodesics
between consecutive points, and determine the best edge of P to replace by this
chain (we need one more geodesic to connect to the first point and one to connect
to the last point of the chain). We repeat this for every (ordered) group in the
split permutation.

Theorem 4. For a simple polygon P with n vertices, and k red and blue points
inside it, we can compute a minimum-perimeter polygon P ∗ ⊆ P in O(Ck log k ·n)
time, for some constant C.

3 Recoloring Methods

In the adaptation method, we changed the boundary of the red region to bring
blue points to the outside. However, if a blue point p is surrounded by red points,
it may have been classified wrongly and recoloring it to red may lead to a more
natural boundary of the red region. Similarly, red points surrounded by blue
points may have been classified wrongly and we can recolor them to blue.

In this section we present methods for recoloring the given points, i.e. assign-
ing a new inside-outside classification. The starting point for our methods is as
follows: We are given a set P of n points, each of which is either red or blue.
We first compute the Delaunay Triangulation DT(P) of P . In DT(P), we color
edges red if they connect two red points, blue if they connect two blue points,
and green otherwise. A red point is incident only to red and green edges, and a
blue point is incident only to blue and green edges. To formalize that a point is
surrounded by points of the other color, we define:

Definition 1. Let the edges of DT(P) be colored as above. Then the green angle
φ of p ∈ P is
– 360◦, if p is only incident to green edges,
– 0◦, if p has at most one radially consecutive incident green edge,
– the maximum turning angle between two or more radially consecutive inci-

dent green edges otherwise.

We recolor points only if their green angle φ is at least some threshold value Φ.
Note that if Φ has any value below 180◦, there is a simple example where there
is no termination. So we assume in any case that Φ ≥ 180◦; a suitable value for
the application can be found empirically. After the algorithm has terminated,
we define the regions as follows. Let M be the set of midpoints of the green
edges. Then, each Delaunay triangle contains either no point or two points of
M . In each triangle that contains two points of M , we connect the points by a
straight line segment. These segments define the boundary between the red and
the blue region. Note that each point of M on the convex hull of the point set
is incident to one boundary segment while the other points of M are incident to
exactly two boundary segments. Thus, the set of boundary segments consists of
connected components that are either cycles, or chains that connect two points
on the convex hull. We define the perimeter of the separation to be the total
length of the boundary cycles and chains.

150 I. Reinbacher et al.

Observation 1. If we can recolor a blue point to be red, then we do not destroy
this option if we first recolor other blue points to be red. We also cannot create
possibilities for coloring points red if we have only colored other points blue.

We can now describe our first recoloring method, the preferential scheme. We
first recolor all blue points with green angle φ ≥ Φ red, and afterwards, all red
points with green angle φ ≥ Φ blue. It can occur that points that are initially
blue become red, and later blue again. However, with our observation we can
see that no more points can be recolored. Hence, this scheme leads to at most a
linear number of recolorings. As this scheme gives preference of one color over
the other, it is not fair and therefore not satisfactory. It would for example be
better to recolor by decreasing green angle, since we then recolor points first
that are most likely to be misclassified.

Another scheme is the true adversary scheme, where an adversary may re-
color any point with green angle φ ≥ 180◦. For this scheme we do not have a
termination proof, nor do we have an example where termination does not occur.

3.1 The Angle-and-Perimeter Scheme

In the angle-and-perimeter scheme, we require for a point to be recolored, in
addition to its green angle being larger than Φ ≥ 180◦, that this recoloring
decreases the perimeter of the separating polygon(s). Since we are interested
in a small perimeter polygon, this is a natural choice. When there are several
choices of recoloring a point, we select the one that has the largest green angle.

Theorem 5. The number of recolorings in the angle-and-perimeter recoloring
scheme is at least Ω(n2) and at most 2n − 1.

To implement the algorithm efficiently, we maintain the subset of points that
can be recolored, sorted by decreasing green angle, in a balanced binary search
tree. We extract the point p with largest green angle, recolor it, and recolor the
incident edges. This can be done in time linear in the degree of p. We must
also examine the neighbors of p. They may get a different green angle, which we
must recompute. We must also test if recoloring a neighbor still decreases the
perimeter length. This can be done for each neighbor in time linear in its degree.

Theorem 6. The running time for the angle-and-perimeter recoloring algorithm
is O(Z · n logn), where Z denotes the actual number of recolorings.

3.2 The Angle-and-Degree Scheme

In the angle-and-degree scheme we use the same angle condition as before, com-
plemented by requiring that the number of green edges decreases. For any red
(blue) point p, we define δ(p) to be the difference between the number of green
edges and the number of red (blue) edges incident to p. We recolor a point p if
its green angle φ is at least some threshold Φ and its δ-value is larger than some
threshold δ0 ≥ 1. We always choose the point with largest δ-value, and among
these, the largest green angle. In every recoloring the number of green edges in
DT (P) decreases, so we get a linear number of recolorings.

Delineating Boundaries for Imprecise Regions 151

Theorem 7. The angle-and-degree recoloring algorithm requires O(n2 logn)
time.

4 Experiments

In cooperation with our partners in the SPIRIT project [9] we got four data
sets: Eastanglia (14, 57), Midlands (56, 52), Southeast (51, 49), and Wales (72,
54). The numbers in parentheses refer to the numbers of red and blue points
in each data set, respectively. The red points were determined by Web searches
using www.google.uk in Sept.’04 and trigger phrases such as “located in the
Midlands” and then extracting the names of the corresponding towns and cities
in the search results. The coordinates of the towns were looked up in the SPIRIT
ontology. Finally the same ontology was queried with an axis-parallel rectangle
20% larger than the bounding box of the red points. The blue points were defined
to be those points in the query result that were not red. The exact procedure is
described in [1]. More experimental results are described in the full version [13].

We have implemented both the adaptation and the recoloring method, and
we show and discuss a few screen shots. Figure 3 features the adaptation method
for two different values of α. The corresponding radius-α disk can be found in the
lower right corner of each subfigure. Regarding the recoloring method we give an
example of the angle scheme and of the angle-and-degree scheme, see Figure 4. In
each figure blue points are marked by white disks and red points by black disks.
Due to the alpha shape that is used as initial region in the adaptation method,
the area of the resulting region increases with increasing α, see Figure 3. We
found that good values of α have to be determined by hand. For smaller values
of α, the alpha shape is likely to consist of several components, which leads to
strange results, see Figure 3 (left). Here, the largest component captures Wales
quite well, but the other components seem to make not much sense. For larger
values of α the results tend to change very little, because then the alpha shape
becomes similar to the convex hull of the red points. However, the value of α
may not be too large since then outliers are joined in the α-shape and cause
strange effects. For example, in Figure 3 (right) Wales has an enormous extent.
When the initial value of α was well-chosen, the results matched the region quite
well for all data sets.

For the basic recoloring method we found the best results for values of Φ
that were slightly larger than 180◦, say in the range 185◦–210◦. Larger values of
Φ severely restrict color changes. This often results in a long perimeter of the
red region, which is not very natural. However, the results strongly depended
on the quality of the input data. Figure 4 shows this effect: Although Wales is
contained in the resulting region, the region is too large. Too many points were
falsely classified positive. The quality of the Eastanglia data was better, thus
the resulting region nearly matches the typical extent of Eastanglia.

For a small degree threshold, say δ0 ≤ 4, the angle-and-degree scheme yields
nearly the same results as the angle scheme, as points having a green angle larger
than 180◦ are likely to have a positive δ-value. For increasing values of δ0 the

152 I. Reinbacher et al.

Fig. 3. Regions for Wales computed by the adaptation method. The α-values are shown
as radius-α disks in the lower right corner.

Fig. 4. Region for Wales computed by the angle scheme (Φ = 185◦, left) and for
Eastanglia computed by the angle-and-degree scheme (Φ = 200◦ and δ0 = 4, right)

results depend less and less on the angle threshold Φ. If a point has a δ-value
above 4, then its green angle is usually large anyway. However, if the main goal
is not the compactness of the region, or if the input is reasonably precise, larger
values of δ0 can also yield good results, see Figure 4 (right) where only the two
light-shaded points were recolored.

For random data Figure 5 shows how the number of recolorings (y-axis)
depends on the angle threshold Φ (left, x-axis) for sets of size n = 800 and on
the number of points (right, x-axis) for a fixed angle threshold of Φ = 210◦.
In both graphs, a data point represents the average number of recolorings over
30 instances. The error bars show the minimum and maximum total number of
recolorings that occurred among the 30 instances. For n = 800 the data sets were
generated by picking 400 blue points and 100 red points uniformly distributed
over the unit square. Then, another 300 red points were uniformly distributed
over a radius-1/4 disk centered on the square. It is interesting to see that the
number of recolorings seems to scale perfectly with the number of points.

The strength of the recoloring method is its ability to eliminate false positives
provided that they are not too close to the target region. Since the differences
between the various schemes we investigated seem to be small, a scheme that is
easy to implement and terminates quickly can be chosen, e.g. the preferential-red
or preferential-blue scheme.

154 I. Reinbacher et al.

partially supported by the NSF (CCR-0098172, ACI-0328930, CCF-0431030),
NASA (NAG2-1620), Metron Aviation, and the US-Israel Binational Science
Foundation (2000160).

We thank Subodh Vaid, Hui Ma, and Markus Völker for implementation,
Paul Clough and Hideo Joho for providing the data, and Emo Welzl for useful
ideas.

References

1. A. Arampatzis, M. van Kreveld, I. Reinbacher, C. B. Jones, S. Vaid, P. Clough,
H. Joho, and M. Sanderson. Web-based delineation of imprecise regions.
Manuscript, 2005.

2. E. M. Arkin, J. S. B. Mitchell, and C. D. Piatko. Minimum-link watchman tours.
Inform. Process. Lett., 86(4):203–207, May 2003.

3. S. Arora and K. Chang. Approximation schemes for degree-restricted MST and
red-blue separation problem. Algorithmica, 40(3):189–210, 2004.

4. G. S. Brodal and R. Jacob. Dynamic planar convex hull. In Proc. 43rd IEEE
Sympos. Found. Comput. Sci., pages 617–626, 2002.

5. T. M. Chan. Low-dimensional linear programming with violations. In Proc. 43rd
IEEE Symp. on Foundations of Comput. Sci. (FOCS’02), pages 570–579, 2002.

6. P. Eades and D. Rappaport. The complexity of computing minimum separating
polygons. Pattern Recogn. Lett., 14:715–718, 1993.

7. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, 1987.

8. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-
time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2:209–233, 1987.

9. C. Jones, R. Purves, A. Ruas, M. Sanderson, M.Sester, M. van Kreveld, and
R. Weibel. Spatial information retrieval and geographical ontologies – an overview
of the SPIRIT project. In Proc. 25th Annu. Int. Conf. on Research and Develop-
ment in Information Retrieval (SIGIR 2002), pages 387–388, 2002.

10. J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput., 28:1298–1309, 1999.

11. Y. Morimoto, M. Aono, M. Houle, and K. McCurley. Extracting spatial knowl-
edge from the Web. In Proc. IEEE Sympos. on Applications and the Internet
(SAINT’03), pages 326–333, 2003.

12. D. O’Sullivan and D. J. Unwin. Geographic Information Analysis. John Wiley &
Sons Ltd, 2003.

13. I. Reinbacher, M. Benkert, M. van Kreveld, J. S. Mitchell, and A. Wolff. Delineating
boundaries for imprecise regions. Tech. Rep. UU–CS–2005–026, Utrecht University.

14. C. Seara. On Geometric Separability. PhD thesis, UPC Barcelona, 2002.

EXACUS: Efficient and Exact Algorithms for Curves
and Surfaces

Eric Berberich1, Arno Eigenwillig1, Michael Hemmer2, Susan Hert3, Lutz Kettner1,
Kurt Mehlhorn1, Joachim Reichel1, Susanne Schmitt1, Elmar Schömer2,

and Nicola Wolpert1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Johannes-Gutenberg-Universität Mainz, Germany

3 Serials Solutions, Seattle, WA., USA

Abstract. We present the first release of the EXACUS C++ libraries. We aim
for systematic support of non-linear geometry in software libraries. Our goals are
efficiency, correctness, completeness, clarity of the design, modularity, flexibility,
and ease of use. We present the generic design and structure of the libraries, which
currently compute arrangements of curves and curve segments of low algebraic
degree, and boolean operations on polygons bounded by such segments.

1 Introduction

The EXACUS-project (Efficient and Ex-
act Algorithms for Curves and Surfaces1)
aims to develop efficient, exact (the math-
ematically correct result is computed), and
complete (for all inputs) algorithms and im-
plementations for low-degree non-linear ge-
ometry. Exact and complete methods are available in the algebraic geometry commu-
nity, but they are not optimized for low-degree or large inputs. Efficient, but inexact and
incomplete methods are available in the solid modeling community. We aim to show
that exactness and completeness can be obtained at a moderate loss of efficiency. This
requires theoretical progress in computational geometry, computer algebra, and numer-
ical methods, and a new software basis. In this paper, we present the design of the EX-
ACUS C++ libraries. We build upon our experience with CGAL [12,22] and LEDA [25].

CGAL, the Computational Geometry Algorithms Library, is the state-of-the-art in
implementing geometric algorithms completely, exactly, and efficiently. It deals mostly
with linear objects and arithmetic stays within the rational numbers.

Non-linear objects bring many new challenges with them: (1) Even single objects,
e.g., a single algebraic curve, are complex, (2) there are many kinds of degeneracies, (3)
and point coordinates are algebraic numbers. It is not clear yet, how to best cope with
these challenges. The answer will require extensive theoretical and experimental work.

 Partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project
No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces).

1 http://www.mpi-inf.mpg.de/EXACUS/

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 155–166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 E. Berberich et al.

Therefore, we aim for a crisp and clear design, flexibility, modularity, and ease of use
of our libraries.

The EXACUS C++ libraries compute arrangements of curves and curve segments
of low algebraic degree, and boolean operations on polygons bounded by such seg-
ments. The functionality of our implementation is complete. We support arcs going to
infinity and isolated points. We deal with all degeneracies, such as singularities and
intersections of high multiplicity. We always compute the mathematically correct re-
sult. Important application areas are CAD, GIS and robotics. The recent Open Source
release contains the full support for conics and conic segments, while existing imple-
mentations for cubic curves and a special family of degree four curves are scheduled for
later releases. We work currently on extending our results to arrangements of general-
degree curves in the plane [29] and quadric surfaces in space and boolean operations on
them [4].

Here, we present the generic design and the structure of the EXACUS C++ libraries.
The structure of the algorithms and algebraic methods is reflected in a layered archi-
tecture that supports experiments at many levels. We describe the interface design of
several important levels. Two interfaces are improvements of interfaces in CGAL, the
others are novelties. This structure and design has proven valuable in our experimental
work and supports future applications, such as spatial arrangements of quadrics.

2 Background and Related Work

The theory behind EXACUS is described in the following series of papers: Berberich et
al. [3] computed arrangements of conic arcs based on the LEDA [25] implementation
of the Bentley-Ottmann sweep-line algorithm [2]. Eigenwillig et al. [10] extended the
sweep-line approach to cubic curves. A generalization of Jacobi curves for locating tan-
gential intersections is described by Wolpert [31]. Berberich et al. [4] recently extended
these techniques to special quartic curves that are projections of spatial silhouette and
intersection curves of quadrics and lifted the result back into space. Seidel et al. [29]
describe a new method for general-degree curves. Eigenwillig et al. [9] extended the
Descartes algorithm for isolating real roots of polynomials to bit-stream coefficients.

Wein [30] extended the CGAL implementation of planar maps to conic arcs with an
approach similar to ours. However, his implementation is restricted to bounded curves
(i.e. ellipses) and bounded arcs (all conic types), and CGAL’s planar map cannot han-
dle isolated points. He originally used Sturm sequences with separation bounds and
switched now to the Expr number type of CORE [21] to handle algebraic numbers.

Emiris et al. [11] proposed a design for a support of non-linear geometry in CGAL

focusing on arrangements of curves. Their implementation was limited to circles and
had preliminary results for ellipsoidal arcs. Work on their kernel has continued but is not
yet available. Their approach is quite different from ours: They compute algebraic num-
bers for both coordinates of an intersection point, while we need only the x-coordinate
as algebraic number. On the other hand, they use statically precomputed Sturm se-
quences for algebraic numbers of degree up to four, an approach comparing favorably
with our algebraic numbers. However, their algorithm for arrangement computations
requires evaluations of the curve at points with algebraic numbers as coordinates.

EXACUS: Efficient and Exact Algorithms for Curves and Surfaces 157

CONIX(CnX) CUBIX(CbX) QUADRIX(QdX)
SWEEPX (SoX)

NUMERIX (NiX)
Library Support (LIS)

BOOST GMP CORE LEDA CGAL QT

Fig. 1. Layered architecture of the EXACUS C++ libraries (with their name abbreviations)

The libraries MAPC [23] and ESOLID [8] deal with algebraic points and curves and
with low-degree surfaces, respectively. Both libraries are not complete, e.g., require
surfaces to be in general position.

Computer algebra methods, based on exact arithmetic, guarantee correctness of their
results. A particularly powerful method related to our problems is Cylindrical Algebraic
Decomposition invented by Collins [6] and subsequently implemented (with numerous
refinements). Our approach to curve and curve pair analyses can be regarded as a form
of cylindrical algebraic decomposition of the plane in which the lifting phase has been
redesigned to take advantage of the specific geometric setting; in particular, to keep the
degree of algebraic numbers low.

3 Overview and Library Structure

The design of the 94.000 lines of source code and documentation of the EXACUS

C++ libraries follows the generic programming paradigm with C++ templates, as it
is widely known from the Standard Template Library, STL [1], and successfully used in
CGAL [12,5,19]. We use concepts2 from STL (iterators, containers, functors) and CGAL

(geometric traits class, functors) easing the use of the EXACUS libraries. C++ templates
provide flexibility that is resolved at compile-time and hence has no runtime overhead.
This is crucial for the efficiency and flexibility at the number type level (incl. machine
arithmetic), however, is insignificant at higher levels of our design. In particular, a large
part of our design can also be realized in other paradigms and languages.

EXACUS uses several external libraries: BOOST (interval arithmetic), GMP and
CORE (number types), LEDA (number types, graphs, other data structures, and graph-
ical user interface), CGAL (number types and arrangements), and Qt (graphical user
interface). Generic programming allows us to avoid hard-coding dependencies. For ex-
ample, we postpone the decision between alternative number type libraries to the final
application code.

We organized the EXACUS libraries in a layered architecture, see Figure 1, with
external libraries at the bottom and applications at the top. In between, we have li-

2 A concept is a set of syntactical and semantical requirements on a template parameter, and a
type is called a model of a concept if it fulfills these requirements and can thus be used as an
argument for the template parameter [1].

158 E. Berberich et al.

brary support in LIS, number types, algebraic and numerical methods in NUMERIX,
and the generic implementation of a sweep-line algorithm and a generic generalized
polygon that supports regularized boolean operations on regions bounded by curved
arcs in SWEEPX. Furthermore, SWEEPX contains generic algebraic points and seg-
ments (GAPS). It implements the generic and curve-type independent predicates and
constructions for the sweep-line algorithm.

In this paper, we focus on the interface design between NUMERIX, SWEEPX,
GAPS, and the applications. Descriptions of the application layer can be found
in [3,10,4].

4 NUMERIX Library

The NUMERIX library comprises number types, algebraic constructions to build types
from types, such as polynomials (over a number type), vectors, and matrices, and a
tool box of algorithms solving linear systems (Gauss-Jordan elimination), computing
determinants of matrices (Bareiss and division-free method of Berkowitz [26]), gcds,
Sylvester and Bézout matrices for resultants and subresultants, isolating real roots of
polynomials (Descartes algorithm), and manipulating algebraic numbers. We import the
basic number types integer, rationals and (optionally) real expressions from LEDA [25],
GMP [17] and CORE [21], or EXT [28]. We next discuss core aspects of NUMERIX.

Number Type Concepts and Traits Classes: We aim for the Real RAM model of com-
putation. An effective realization must exploit the tradeoff between expressiveness and
efficiency of different number type implementations. In EXACUS, we therefore provide
a rich interface layer of number type concepts as shown in Figure 2. It allows us to
write generic and flexible code with maximal reuse. All number types must provide
the construction from small integers, in particular from 0 and 1. IntegralDomain,
UFDomain, Field, and EuclideanRing correspond to the algebraic concepts with
the same name. FieldWithSqrt are fields with a square root operator. The concept
IntegralDomainWithoutDiv also corresponds to integral domains in the algebraic
sense; the distinction results from the fact that some implementations of integral do-
mains, e.g., CGAL::MP Float, lack the (algebraically always well defined) integral di-
vision. A number type may be ordered or not; this is captured in the RealComparable
concept, which is orthogonal to the other concepts. The fields Q and ZZ/pZZ are ordered
and not ordered respectively.

The properties of number types are collected in appropriate traits classes. Each
concrete number type NT knows the (most refined) concept to which it belongs; it is
encoded in NT traits<NT>::Algebra type. The usual arithmetic and comparison
operators are required to be realized via C++ operator overloading for ease of use.

Assignable

DefaultConstructible

EqualityComparable
Field

UFDomain

FieldWithSqrt

STL

STL

STL

IntegralDomainIntegralDomainWithoutDiv
EuclideanRing

Fig. 2. The number type concepts in EXACUS. They refine three classical STL concepts.

EXACUS: Efficient and Exact Algorithms for Curves and Surfaces 159

The division operator is reserved for division in fields. All other unary (e.g., sign)
and binary functions (e.g., integral division, gcd) must be models of the standard STL

AdaptableUnaryFunction or AdaptableBinaryFunction concept and local to a
traits class (e.g., NT traits<NT>::Integral div). This allows us to profit maximally
from all parts in the STL and its programming style.

Design Rationale: Our interface extends the interface in CGAL [12,5,19,22] that only
distinguishes EuclideanRing, Field, and FieldWithSqrt. The finer granularity is
needed for the domain of curves and surfaces, in particular, the algebraic numbers and
algorithms on polynomials. We keep the arithmetic and comparison operators for ease
of use. Their semantic is sufficiently standard to presume their existence and compliance
in existing number type libraries for C++. For the other functions we prefer the trouble-
free and extendible traits class solution; this was suggested by the name-lookup and
two-pass template compilation problems experienced in CGAL.

Polynomials: The class Polynomial<NT> realizes polynomials with coefficients of
type NT. Depending on the capabilities of NT, the polynomial class adapts internally
and picks the best implementation for certain functions (see below for an example).
The number type NT must be at least of the IntegralDomainWithoutDiv concept.
For all operations involving division, the IntegralDomain concept is required. Some
functions require more, for example, the gcd-function requires NT to be of the Field
or UFDomain concept. In general, the generic implementation of the polynomial class
encapsulates the distinction between different variants of functions at an early level and
allows the reuse of generic higher-level functions.

The Algebra type of Polynomial<NT> is determined via template meta-
programming by the Algebra type of NT. It remains the same except in the case of
EuclideanRing, which becomes a UFDomain, and both field concepts, which become
an EuclideanRing. NT can itself be an instance of Polynomial, yielding a recursive
form of multivariate polynomials. In our applications, we deal only with polynomials
of small degree (so far at most 16) and a small number of variables (at most 3) and
hence the recursive construction is appropriate. Some convenience functions hide the
recursive construction in the bi- and trivariate case.

We use polynomial remainder sequences (PRS) to compute the gcd of two poly-
nomials (uni- or multivariate). Template meta-programming is used to select the kind
of PRS: Euclidean PRS over a field and Subresultant PRS (see [24] for exposition and
history) over a UFD. An additional meta-programming wrapper attempts to make the
coefficients fraction-free, so that gcd computation over the field of rational numbers is
actually performed with integer coefficients and the Subresultant PRS (this is faster).
Gcd computations are relatively expensive. Based on modular resultant computation,
we provide a fast one-sided probabilistic test for coprimality and squarefreeness that
yields a significant speedup for non-degenerate arrangement computations [18]. We
offer several alternatives for computing the resultant of two polynomials: via the Subre-
sultant PRS or as determinant of the Sylvester or Bézout matrix [15, ch. 12]. Evaluating
a Bézout determinant with the method of Berkowitz [26] can be faster than the Subre-
sultant PRS for bivariate polynomials of small degrees over the integers. The Bézout
determinant can also express subresultants, see e.g. [16,20].

160 E. Berberich et al.

Algebraic Numbers: The Algebraic real class represents a real root of a square-free
polynomial. The representation consists of the defining polynomial and an isolating
interval, which is an open interval containing exactly one root of the polynomial. Ad-
ditionally, the polynomial is guaranteed to be non-zero at the endpoints of the interval.
As an exception, the interval can collapse to a single rational value when we learn that
the root has this exact rational value.

We use the Descartes Method [7,27] to find isolating intervals for all real roots of
a polynomial. We have a choice of different implementations, of which Interval Des-
cartes [9] and Sturm sequences are ongoing work. We cross link all real roots of a
polynomial, such that, for example, if one number learns how to factorize the defining
polynomial, all linked numbers benefit from that information and simplify their repre-
sentation. We learn about such factorizations at different occasions in our algorithms,
e.g., if we find a proper common factor in the various gcd computations.

Interval refinement is central to the Descartes Method, to the comparison of al-
gebraic numbers, and to some algorithms in the application layer [10]. We expose
the refinement step in the following interface: refine() bisects the isolating interval.
strong refine(Field m) refines the isolating interval until m is outside of the closed
interval. refine to(Field lo, Field hi) intersects the current interval with the
isolating interval (lo, hi). The global function refine zero against refines an isolat-
ing interval against all roots of another polynomial. The member function x.rational
between(y) returns a rational number between the two algebraic reals x and y. Here,
it is desirable to pick a rational number of low-bit complexity.

5 SWEEPX Library

The SWEEPX library provides a generic sweep-line algorithm and generalized poly-
gon class that supports regularized boolean operations on regions bounded by curved
arcs. We based our implementation on the sweep-line algorithm for line-segments from
LEDA [25], which handles all types of degeneracies in a simple unified event type. We
extended the sweep-line approach with a new algorithm to reorder curve segments con-
tinuing through a common intersection point in linear time [3] and with a geometric
traits class design for curve segments, which we describe in more detail here.

1 1

2As input, we support full curves and, for conics, also arbitrary
segments of curves, but both will be preprocessed into potentially
smaller sweepable segments suitable for the algorithm. A sweep-
able segment is x-monotone, has a constant arc number in its inte-
rior (counting without multiplicities from bottom to top), and is free of one-curve events
(explained in the next section) in its interior.

The geometric traits class defines the interface between the generic sweep-line al-
gorithm and the actual geometric operations performed in terms of geometric types,
predicates, and constructions, again realized as functors.3 The idea of geometric traits
classes goes back to CGAL [12,5]. Our set of requirements is leaner than the geomet-
ric traits class in CGAL’s arrangement and planar map classes [13], however, feedback
from Emiris et al. [11] and our work is leading to improvements in CGAL’s interface.

3 We omit here the access functions for the functors for brevity, see [12] for the details.

EXACUS: Efficient and Exact Algorithms for Curves and Surfaces 161

A geometric traits class following the CurveSweepTraits 2 concept needs a type
Point 2, representing end-points as well as intersection points, and a type Segment 2,
representing curve segments. In STL terminology, both types have to be default-con-
structible and assignable, and are otherwise opaque types that we manipulate only
through the following predicates, accessors, and constructions. Observe the compact-
ness of the interface.

Predicates:
• Compare xy 2 and Less xy 2 lexicographically compare two points, the former

with a three-valued return type and the latter as a predicate.
• Is degenerate 2 returns true if a segment consists only of one point.
• Do overlap 2 tells whether two segments have infinitely many points in common

(i.e., intersect in a non-degenerate segment).
• Compare y at x 2 returns the vertical placement of a point relative to a segment.
• Equal y at x 2 determines if a point lies on a segment (equivalent to testing
Compare y at x 2 for equality, but may have a more efficient implementation).

• Multiplicity of intersection computes the multiplicity of an intersection
point between two segments. It is used in the linear-time reordering of segments
and hence used only for non-singular intersections.

• Compare y right of point determines the ordering of two segments just after
they both pass through a common point. It is used for the insertion of segments
starting at an event point.

Accessors and Constructions:
• Source 2 and Target 2 return the source and target point of a curve segment.
• Construct segment 2 constructs a degenerate curve segment from a point.
• New endpoints 2 and New endpoints opposite 2 replace the endpoints of a

curve segment with new representations and return this new segment. The latter
functor also reverses the orientation of the segment. They are used in the initializa-
tion phase of the sweep-line algorithm where equal end-points are identified and
where the segments are oriented canonically from left to right [25].

• Intersect 2 constructs all intersection points between two segments in lexico-
graphical order.

• Intersect right of point 2 constructs the first intersection point between two
segments right of a given point. It is used only for validity checking or if caching is
disabled.

We also offer a geometric traits class for CGAL’s planar map and arrangement classes,
actually implemented as a thin adaptor for GAPS described next. Thus, we immediately
get traits classes for CGAL for all curve types available in EXACUS. Our traits class sup-
ports the incremental construction and the sweep-line algorithm in CGAL. This solution
is independent of LEDA.

6 Generic Algebraic Points and Segments (GAPS)

The generic point and segment types are essentially derived from the idea of a cylin-
drical algebraic decomposition of the plane and a number type for x-coordinates, while

162 E. Berberich et al.

y-coordinates are represented implicitly with arc numbers on supporting curves. Study-
ing this more closely [10], one can see that all predicates and constructions from the
previous section can be reduced to situations with one or two curves only.

The software structure is now as follows: The application libraries provide a curve
analysis and a curve pair analysis, which depend on the actual curve type. Based on
these analyses, the GAPS part of SWEEPX implements the generic algebraic points and
segments with all predicates and constructions needed for the sweep-line algorithm,
which is curve-type independent generic code. Small adaptor classes present the GAPS

implementation in suitable geometric traits classes for the sweep-line implementation
in SWEEPX or the CGAL arrangement.

GAPS requires two preconditions; squarefreeness of the defining polynomial and
coprimality of the defining polynomials in the curve pair analysis. We allow to defer the
check to the first time at which any of the analysis functions is called. The application
libraries may impose further restrictions on the choice of a coordinate system. If a
violation is detected, an exception must be thrown that is caught outside SWEEPX.
The caller can then remove the problem and restart afresh. CONIX does not restrict
the choice of coordinate system. CUBIX and QUADRIX assume a generic coordinate
system to simplify the analysis, see [10,4] for details.

We continue with curve and curve pair analysis, and how we handle unboundedness.

Curve Analysis: A planar curve is defined as zero set of a bivariate squarefree integer
polynomial f . We look at the curve in the real affine plane per x-coordinate and see
arcs at varying y-values on the fictitious vertical line x = x0 at each x-coordinate x0.
At a finite number of events, the number and relative position of arcs changes. Events
are x-extreme points, singularities (such as self-intersections and isolated points) and
vertical asymptotes (line components, poles).

The result of the curve analysis is a description of the curve’s geometry at these
events and over the open intervals of x-coordinates between them. This description is
accessible through member functions in the AlgebraicCurve 2 concept. It consists of
the number of events, their x-coordinates given as algebraic numbers, the number of
arcs at events and between them, an inverse mapping from an x-coordinate to an event
number, and it gives details for each event in objects of the Event1 info class.

(0,0)

(2,2)

(0,2)
The Event1 info class describes the topology of a curve over an event

x-coordinate x0. The description answers four questions on the local topology
of the curve over the corresponding x-coordinate: (1) How many real arcs
(without multiplicities) intersect the (fictitious) vertical line x = x0? (2) Does
the curve have a vertical line component at x0? (3) Is there a vertical asymptote
at x0, and how many arcs approach it from the left and right? (4) For any
intersection point of the curve with the vertical line x = x0, how many real
arcs on the left and right are incident to it? In the example figure, (0,0) stands for an
isolated point, (0,2) for a left x-extreme point or cusp, and (2,2) for a singular point.

Curve Pair Analysis: We study ordered pairs of coprime planar algebraic curves f and
g. Similar to the curve analysis, we look at the pair of curves in the real affine plane per
x-coordinate and see arcs of both curves at varying y-values above each x-coordinate.
At a finite number of events, the number and relative position of arcs changes: There

EXACUS: Efficient and Exact Algorithms for Curves and Surfaces 163

are intersections at which arcs of both curves run together, there are one-curve events,
and there are events that are both.

The result of the curve pair analysis is a description of the curves’ geometry at
these events and over the open intervals of x-coordinates between them. This descrip-
tion is accessible through member functions in the AlgebraicCurvePair 2 concept.
It consists of various mappings of event numbers to indices of roots in the resultants
res(f , fy), res(g,gy), and res(f ,g), to x-coordinates and reverse, and it gives details for
each event in objects of the Event2 slice class.

An Event2 slice is a unified representation of the sequence of arcs over some
x-coordinate x0, be there an event or not [10,4]. A slice of a pair (f ,g) at x0 describes
the order of points of f and g lying on the fictitious vertical line x = x0, sorted by
y-coordinate. Points are counted without multiplicities.

arc no.

1

2
f g

0 0 0

1

1

pos.

f
g

x0Let the arc number of a point on f be its rank in the
order amongst all points of f on x = x0, and respectively
for points on g. Let the position number of a point on f
or g be its rank in the order amongst all points of f ∪g on
x = x0. All ranks are counted, starting at 0, in increasing
order of y-coordinates. An important function in the slice
representation is the mapping of arc numbers, used in the
point and sweepable segment representations, to position
numbers, used to compare y-coordinates of points on different curves f and g. For the
example in the figure, this mapping will tell us that the second point of g is the third
amongst all points (w.r.t. y-coordinates), i.e., it maps arc number 1 to position 2.

Unbounded Curves and Segments: The implementation is not restricted to bounded
curves and segments. We define symbolic “endpoints” at infinity, such that unbounded
curves and segments, e.g., the hyperbola xy−1 = 0 or any part of it, can be included in
a uniform representation of sweepable segments. We use two techniques, compactifi-
cation and symbolic perturbation: We add minus- and plus-infinity symbolically to the
range of x-coordinate values. Then, we perturb x-coordinates to represent “endpoints”
of curves that approach a pole and unbounded “endpoints” of vertical lines and rays. Let
ε > 0 be an infinitesimal symbolic value. We perturb the x coordinate of an endpoint of
a curve approaching a pole from the left by−ε , the lower endpoint of a vertical line by
−ε2, the upper endpoint of a vertical line by ε2, and an endpoint of a curve approaching
a pole from the right by ε . We obtain the desired lexicographic order of event points.

We also extend the curve analyses with the convention that for x-coordinates of
minus- or plus-infinity we obtain the number and relative position of arcs before the
first or after the last event, respectively. Note that this is not ”infinity” in the sense of
projective geometry.

7 Evaluation and Conclusion

The libraries are extensively tested and benchmarked with data sets showing runtime be-
havior, robustness, and completeness. In particular for completeness we manufactured
test data sets for all kinds of degeneracies [3,10,4]. A preliminary comparison [14] be-
tween Wein [30], Emiris et al. [11], and us showed that our implementation was the

164 E. Berberich et al.

only robust and stable and almost always the fastest implementation at that time. In par-
ticular, the other implementations could not handle large random instances, degenerate
instances of several ellipses intersecting in the same point or intersecting tangentially,
and instances of ellipses with increasing bit-size of the coefficients. A new comparison
is planned when the other implementations have stabilized.

Data set Segs Vertices Halfedges SoX CGAL

random30 266 2933 11038 6.7 8.0
random60 454 11417 44440 27.7 34.6
random90 680 26579 104474 67.5 81.2

The report [14] also contains a com-
parison of our sweep-line algorithm with
the CGAL sweep-line algorithm used for
the planar map with intersections. We
briefly summarize the result in the table that shows running times in seconds of both
implementations measured for three random instances of cubic curves of 30, 60, and 90
input curves respectively on a Pentium IIIM at 1.2 GHz, Linux 2.4, g++ 3.3.3, with -O2
-DNDEBUG, LEDA 4.4.1, and CGAL 3.0.1.

Profiling the executions on the “random30” instance exhibits a clear difference in
the number of predicate calls. The dominant reason for this is certainly reordering by
comparison (CGAL) as opposed to reordering by intersection multiplicities (SoX).

Additionally, we report the running time of a
hand-constructed instance: a pencil of 18 curves
intersecting in five distinct points, in four of
them with multiplicity 2, and nowhere else. Here
SoX::sweep curves() can exhibit the full ben-
efit of linear-time reordering; 1.7 seconds for SoX
and 4.3 seconds for CGAL.

All experiments show an advantage for our
implementation. We took care not to use exam-
ples that would penalize the CGAL implementa-
tion with the interface mapping to the CUBIX im-
plementation (see [14]), but the implementations are too complex to allow a definitive
judgment on the relative merits of the two implementations based on above numbers.

We conclude with a few remarks on efficiency: Arithmetic is the bottleneck, so we
use always the simplest possible number type, i.e., integers where possible, then ra-
tionals, LEDA real or CORE, and algebraic numbers last. However, using LEDA reals
naively, for example, to test for equality or in near equality situations, can be quite
costly, which happened in the first CONIX implementation, and using algebraic num-
bers or a number type that extends rationals with one or two fixed roots instead can
be beneficial. The released CONIX implementation has been improved considerably
following the ideas developed for the CUBIX implementation. Furthermore, we use
caching of the curve analysis and we compute all roots of a polynomial at once. All
roots of the same polynomial are cross linked, and if one root happens to learn about
a factorization of the polynomial, all other roots will also benefit from the simplified
representation. We use modular arithmetic as a fast filter test to check for inequality.

So far we have almost exclusively worked with exact arithmetic and optimized its
runtime. Floating-point filters have been only used insofar that they are integral part of
some number types. More advanced filters are future work.

EXACUS: Efficient and Exact Algorithms for Curves and Surfaces 165

We use the sweep-line algorithm for computing arrangements, but since arithmetic
is the obvious bottleneck, it might pay off to consider incremental construction with its
lower algebraic degree in the predicates and the better asymptotic runtime.

CGAL plans a systematic support for non-linear geometry. We contribute to this
effort with our design experience and implementations presented here.

Acknowledgements

We would like to acknowledge contributions by Michael Seel, Evghenia Stegantova,
Dennis Weber, and discussions with Sylvain Pion.

References

1. M. H. Austern. Generic Programming and the STL. Addison-Wesley, 1998.
2. J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersec-

tions. IEEE Trans. Comput., C-28(9):643–647, September 1979.
3. E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and E. Schömer. A compu-

tational basis for conic arcs and boolean operations on conic polygons. In ESA 2002, LNCS
2461, pages 174–186, 2002.

4. E. Berberich, M. Hemmer, L. Kettner, E. Schömer, and N. Wolpert. An exact, complete and
efficient implementation for computing planar maps of quadric intersection curves. In Proc.
21th Annu. Sympos. Comput. Geom., pages 99–106, 2005.

5. H. Brönnimann, L. Kettner, S. Schirra, and R. Veltkamp. Applications of the generic pro-
gramming paradigm in the design of CGAL. In M. Jazayeri, R. Loos, and D. Musser, editors,
Generic Programming—Proceedings of a Dagstuhl Seminar, LNCS 1766, pages 206–217.
Springer-Verlag, 2000.

6. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompo-
sition. In Proc. 2nd GI Conf. on Automata Theory and Formal Languages, volume 6, pages
134–183. LNCS, Springer, Berlin, 1975. Reprinted with corrections in: B. F. Caviness and J.
R. Johnson (eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition, 85–121.
Springer, 1998.

7. G. E. Collins and A.-G. Akritas. Polynomial real root isolation using Descartes’ rule of sign.
In SYMSAC, pages 272–275, 1976.

8. T. Culver, J. Keyser, M. Foskey, S. Krishnan, and D. Manocha. Esolid - a system for exact
boundary evaluation. Computer-Aided Design (Special Issue on Solid Modeling), 36, 2003.

9. A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, and N. Wolpert. A Des-
cartes algorithm for polynomials with bit-stream coefficients. In Proc. 8th Int. Workshop on
Computer Algebra in Scient. Comput. (CASC), LNCS. Springer, 2005. to appear.

10. A. Eigenwillig, L. Kettner, E. Schömer, and N. Wolpert. Complete, exact, and efficient
computations with cubic curves. In Proc. 20th Annu. Sympos. Comput. Geom., pages 409–
418, 2004. accepted for Computational Geometry: Theory and Applications.

11. I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, and E. P. Tsigaridas. Towards and open
curved kernel. In Proc. 20th Annu. Sympos. Comput. Geom., pages 438–446, 2004.

12. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL,
the computational geometry algorithms library. Softw. – Pract. and Exp., 30(11):1167–1202,
2000.

13. E. Flato, D. Halperin, I. Hanniel, O. Nechushtan, and E. Ezra. The design and implementation
of planar maps in CGAL. ACM Journal of Experimental Algorithmics, 5, 2000. Special Issue,
selected papers of the Workshop on Algorithm Engineering (WAE).

166 E. Berberich et al.

14. E. Fogel, D. Halperin, R. Wein, S. Pion, M. Teillaud, I. Emiris, A. Kakargias, E. Tsigari-
das, E. Berberich, A. Eigenwillig, M. Hemmer, L. Kettner, K. Mehlhorn, E. Schömer, and
N. Wolpert. Preliminary empirical comparison of the performance of constructing arrange-
ments of curved arcs. Technical Report ECG-TR-361200-01, Tel-Aviv University, INRIA
Sophia-Antipolis, MPI Saarbrücken, 2004.

15. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, Resultants and Multi-
dimensional Determinants. Birkhäuser, Boston, 1994.

16. R. N. Goldman, T. W. Sederberg, and D. C. Anderson. Vector elimination: A technique
for the implicitization, inversion, and intersection of planar parametric rational polynomial
curves. CAGD, 1:327–356, 1984.

17. T. Granlund. GNU MP, The GNU Multiple Precision Arithmetic Library, version 2.0.2, 1996.
18. M. Hemmer, L. Kettner, and E. Schömer. Effects of a modular filter on geometric applica-

tions. Technical Report ECG-TR-363111-01, MPI Saarbrücken, 2004.
19. S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. An adaptable and extensible geom-

etry kernel. In Proc. 5th Workshop on Algorithm Engineering (WAE’01), LNCS 2141, pages
76–91, Arhus, Denmark, August 2001. Springer-Verlag.

20. X. Hou and D. Wang. Subresultants with the Bézout matrix. In Proc. Fourth Asian Symp. on
Computer Math. (ASCM 2000), pages 19–28. World Scientific, Singapore New Jersey, 2000.

21. V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A core library for robust numeric and
geometric computation. In Proc. 15th Annu. Sympos. Comput. Geom., pages 351–359, 1999.

22. L. Kettner and S. Näher. Two computational geometry libraries: LEDA and CGAL. In J. E.
Goodman and J. O’Rourke, editors, Handbook of Disc. and Comput. Geom., pages 1435–
1463. CRC Press, second edition, 2004.

23. J. Keyser, T. Culver, D. Manocha, and Shankar Krishnan. MAPC: A library for efficient and
exact manipulation of algebraic points and curves. In Proc. 15th Annu. Sympos. Comput.
Geom., pages 360–369, 1999.

24. R. Loos. Generalized polynomial remainder sequences. In B. Buchberger, G. E. Collins, and
R. Loos, editors, Computer Algebra: Symbolic and Algebraic Computation, pages 115–137.
Springer, 2nd edition, 1983.

25. K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric Computing.
Cambridge University Press, Cambridge, UK, 2000.

26. G. Rote. Division-free algorithms for the determinant and the pfaffian: algebraic and combi-
natorial approaches. In H. Alt, editor, Computational Discrete Mathematics, pages 119–135.
Springer-Verlag, 2001. LNCS 2122.

27. F. Rouillier and P. Zimmermann. Efficient isolation of polynomial’s real roots. J. Comput.
Applied Math., 162:33–50, 2004.

28. S. Schmitt. The diamond operator – implementation of exact real algebraic numbers. In
Proc. 8th Internat. Workshop on Computer Algebra in Scient. Comput. (CASC 2005), LNCS.
Springer, 2005. to appear.

29. R. Seidel and N. Wolpert. On the exact computation of the topology of real algebraic curves.
In Proc. 21th Annual Symposium on Computational Geometry, pages 107–115, 2005.

30. R. Wein. High level filtering for arrangements of conic arcs. In ESA 2002, LNCS 2461, pages
884–895, 2002.

31. N. Wolpert. Jacobi curves: Computing the exact topology of arrangements of non-singular
algebraic curves. In ESA 2003, LNCS 2832, pages 532–543, 2003.

Min Sum Clustering with Penalties

Refael Hassin and Einat Or

Department of Statistics and Operations Research, Tel Aviv University,
Tel Aviv, 69978, Israel

{hassin, eior}@post.tau.ac.il

Abstract. Traditionally, clustering problems are investigated under the
assumption that all objects must be clustered. A shortcoming of this
formulation is that a few distant objects, called outliers, may exert a
disproportionately strong influence over the solution. In this work we
investigate the k-min-sum clustering problem while addressing outliers
in a meaningful way.

Given a complete graph G = (V, E), a weight function w : E → IN0

on its edges, and p → IN0 a penalty function on its nodes, the penalized
k-min-sum problem is the problem of finding a partition of V to k + 1
sets, {S1, . . . , Sk+1}, minimizing

∑k
i=1 w(Si)+p(Sk+1), where for S ⊆ V

w(S) =
∑

e={i,j}⊂S we, and p(S) =
∑

i∈S pi.
We offer an efficient 2-approximation to the penalized 1-min-sum

problem using a primal-dual algorithm. We prove that the penalized 1-
min-sum problem is NP-hard even if w is a metric and present a random-
ized approximation scheme for it. For the metric penalized k-min-sum
problem we offer a 2-approximation.

1 Introduction

Traditionally clustering problems are investigated under the assumption that all
objects must be clustered. A significant shortcoming of this formulation is that
a few very distant objects, called outliers, may exert a disproportionately strong
influence over the solution. In this work we investigate the k-min-sum clustering
problem while addressing outliers in a meaningful way.

Given a complete graph G = (V,E), and a weight function w : E → IN0,
on its edges, let w(S) =

∑
e={i,j}⊂S we. The k-min-sum problem is the problem

of finding a partition of V to k sets, {S1, . . . , Sk}, as to minimize
∑k

i=1 w(Si).
This problem is NP -hard even for k = 2 [8], and has no known constant ap-
proximation ratio for k > 2 unless P=NP (k-coloring can be reduced to k-
min-sum. However if w is a metric, then there is a randomized PTAS for any
fixed k [4]. In the following we generalize the k-min-sum problem and allow
outliers that are not clustered. Let p→ IN0 denote the penalty function on the
nodes of G. For S ⊆ V let p(S) =

∑
i∈S pi. The penalized k-min-sum clus-

tering problem (we denote this problem by kPMS, and use PMS to denote
1PMS.) is the problem of finding k disjoint subsets S1, . . . , Sk ⊆ V minimizing∑k

i=1 w(Si) +
∑

v∈V \∪k
i=1Si

pv. The formulation of the kPMS makes no assump-
tions regarding the amount of outliers.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 167–178, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

168 R. Hassin and E. Or

2 Related Work

PMS is related to the minimum l-dispersion problem (lMDP), which is the
problem of finding a subset V ′ ⊂ V of cardinality l that minimizes w(V ′). While
in PMS the relation between the penalties and the weight on the edges deter-
mines the size of the cluster, in (lMDP) the size of the cluster is predetermined.
PMS with uniform penalties is the Lagrangian relaxation of lMDP. The algo-
rithm in Section 5.4 could be adapted to give a 2-approximation for metric lMDP
(using k = 1). The PTAS we present in Section 5 for metric PMS is correct for
metric lMDP if l ∈ O(n), while for l ∈ o(n) the problem of finding a PTAS
remains open since a metric sample cannot be taken from the cluster. The min-
imum l-dispersion problem, has a max{n(ε− 1

3), k
2n} approximation rate by

Feige, Kortsarz and Peleg [5], and the metric case of the maximization version
of lMDP has 2-approximation [10].

A 2−approximation for PMS follows directly from the approximation frame-
work presented in [9]. A modeling of outliers for the location problems k-median,
and uncapacitated facility location is presented in [1,12].

Randomized PTAS for metric max-cut by Fernandez de la Vega and Kenyon
[2], metric min-bisection by Fernandez de la Vega, Karpinski and Kenyon [3],
metric 2-min-sum by Indyk [11,4], and metric k-min-sum for fixed k by Fernan-
dez de la Vega et al [4], were presented in recent years. In [4] the approximation
algorithm for 2-min-sum uses the PTAS of [2] for max-cut when the clusters
are not well separated, i.e the weight of the cut is not much greater than the
weight of the clusters. In [3] the min-bisection is addressed. In this case the
two sides of the bisection are not well separated, since the cut is minimized, and
the problem of good estimation of the distance of a node to each side of the
bisection arises. A natural approach to the problem is to use a sample of each
side of the bisection as the basis of the estimation. It is proved that a sampling
method referred to as metric sampling gives good enough estimation. A metric
sample is taken from each side of the bisection. In addition to good estimation
the hybrid partitioning method is used in the algorithm presented in [3].

3 Our Contribution

We prove that PMS is NP -hard even if w is a metric. We offer an efficient
2-approximation to PMS using a primal-dual algorithm. A randomized approx-
imation scheme for the metric PMS where the ratio between the minimal and
the maximal penalty is bounded, is presented, based on methods used to ap-
proximate min-bisection and 2-min-sum [3,4]. While the approach in [4] is a
PTAS for metric PMS when the cluster includes most of the nodes, it gives poor
results if the cluster is smaller. The approach in [3] is the basis for a PTAS
for metric PMS where the cluster and the set of non-clustered points are both
large, but it gives poor approximation if one of the parts is small. Therefore we
present a combination of the two approaches. For the metric kPMS we offer a
2-approximation by generalizing [7].

Min Sum Clustering with Penalties 169

4 Efficient 2-Approximation for PMS

The linear programming relaxation of PMS, LP − primal, is:

Minimize
∑

e∈E wexe +
∑

i∈V piyi

yi + yj + xe ≥ 1 ∀e = {i, j} ∈ E,
xe ≥ 0 ∀e = {i, j} ∈ E,
yi ≥ 0 ∀i ∈ V.

LP -primal has half integral basic solutions [9], and a 2-approximation algo-
rithm is presented in [9] for a family of problems with the same type of constraints
with time complexity O(mn log(n2

m)) where m = |E|, which in a case of a full
graph is O(n3). We present a 2-approximation algorithm, denoted by PD, with
time complexity O(n2).

Let δ(i) = {e ∈ E| e = {i, j} ∈ E, j ∈ V }. The dual of the relaxation
LP − dual is:

Maximize
∑

e∈E Re

Re ≤ we ∀e ∈ E,∑
e∈δ(i) Re ≤ pi ∀i ∈ V,

Re ≥ 0 ∀e ∈ E.

A maximal solution to LP -dual is a feasible solution that satisfies the follow-
ing property: An increase in any variable Re, e ∈ E, results in a non feasible so-
lution. Algorithm PD given in Figure 4 has time complexity O(n2) since an arbi-
trary maximal solution to LP -dual can be found by removing nodes from V until
all nodes contribute to the weight of the cluster a value smaller than their penalty.

PD
input
1. A complete graph G = (V, E).
2. A function w : E → IN [the length of the edge {i, j}]
3. A function p : V → IN [the penalty for not covering i]
output
A cluster C.
begin
Find a maximal solution to the dual problem.

C := V \ {i ∈ V |∑e∈δ(i) R̂e = pi}.
return C
end PD

Fig. 1. PD

Claim. Algorithm PD returns a 2-approximation to PMS.

Proof. Denote the value of the approximation by apx =
∑

e={i,j}∈C we +∑
i∈V \C pi, the value of the dual relaxation by dual =

∑
e∈E Re, and the

170 R. Hassin and E. Or

optimal solution by opt. We now show that apx ≤ 2
∑

e∈E Re Consider an
edge e = {i, j} ∈ E. If i and j are in V \ C, then

∑
e∈δ(i) Re = pi, and∑

e∈δ(j) Re = pj, and hence Re is charged in apx at most twice, once in pi

and once in pj . If i ∈ V \ C and j ∈ C then Re is charged in apx only once
in pi. If i ∈ C and j ∈ C then Re = we is charged in apx only once. We get:
apx ≤ 2

∑
e∈E Re = 2dual ≤ 2opt. ��

5 Metric PMS

5.1 Hardness Proof

Claim. PMS is NP-hard even if w is a metric and pv = p for every v ∈ V .

The proof to claim 5.1 is by reduction from the l-clique problem.

5.2 Randomized PTAS for Uniform Penalties

In th following we assume the penalties are uniform, i.e. pv = p for every v ∈ V .
We use the following notation: opt - the value of the optimal solution. apx - the
value of the approximation. C∗ - the cluster in the optimal solution and P ∗ =
V \ C∗. For A,B ⊂ V : w(A,B) =

∑
a∈A

∑
b∈B w(a, b), w(u,B) = w({u}, B),

w̄(A,B) = w(A,B)
|A||B| , w(A) = 1

2w(A,A), w̄(A) = w(A,A)
|A|2 . du = w(u, V), and DC =

w(C, V).

Definition 1. [3] A metric sample of U is a random sample {u1, . . . , ut} of
U with replacement, where each ui is obtained by picking a point u ∈ U with
probability du

DU
.

For |C∗| ≤ 1
ε2 the problem can be solved by exhaustive search in polynomial

time, hence in the following we assume |C∗| > 1
ε2 .

An intuitive approach to the problem would be to take a random sample of
C∗ , use it to estimate the distance of each vertex from C∗, and then form a
cluster from the vertices closest to the sample. This approach fails, in general,
because the distance between the points entered to the cluster was not estimated
and it is part of the weight of the cluster.

The algorithm presented below is based on two approaches to approximation
schemes for partitioning problems. For the case where |C∗| ≤ εn we choose
C = ∅. Since the penalty is uniform and |P ∗| ≥ (1 − ε)n, this is a (1 + 2ε) −
approximation.

For the case where |P ∗| ≤ εn we use a method presented in [11,4] for the
metric 2-min sum problem. In general, the method in [4] is to find a rep-
resenting vertex of the cluster, use it to estimate the distance between every
vertex and the cluster, and add the close vertices to the cluster. This approach
works because the number of vertices misplaced in the cluster is bounded by
|P ∗| ≤ εn. This method is used in [4] for metric 2-min sum problem for the
case where one of the clusters is much greater than the other and the clusters

Min Sum Clustering with Penalties 171

are well separated, that is, the maximum cut is much greater than the weight
of the clusters. In MSCP , C∗ and P ∗ are not necessarily well separated, but
as will be proved bellow, an algorithm based on this method is a PTAS when
|P ∗| ≤ εn. We denote this part of our algorithm by UC.

For the case where |C∗| > εn and |P ∗| > εn we encounter the following diffi-
culties: A large random sample of C∗ is not enough to estimate, with sufficient
accuracy, the distance w(v, C∗). This problem was addressed and solved in [3]
by taking a metric sample which enables to estimate w(v, C∗) accurately. But
good estimation of w(v, C∗) is not enough. Consider the following instance of
MSCP : V = A ∪B where |A| = |B| = n, all distances in A and between A and
B are 1, the distances between points of B are 2, and p = n − 1. The optimal
solutions are C∗ = A, and C∗ = (A\{v})∪{u} for every v ∈ A and u ∈ B. Note
that for every sample T of A, w(v, T) = w(u, T) where v ∈ A and u ∈ B. Adding
to the cluster points closer to the sample may lead to adding only points of B,
resulting in a poor approximation. The distance between the points added to
the sample should also be considered. We consider the distances between the
added points using the hybrid partition method presented by [6] and used in [3].
The use in [3] is for the creation of a cut, whereas we create a cluster and hence
the analysis is different.

Our algorithm for the case where C∗ > εn and P ∗ > εn begins by taking a
metric sample T of size O(ln(n)

ε4) from V , and by exhaustive search find T ∗ =
C∗∩T and use it to estimate w(v, C∗) for every v ∈ V . Let êv denote the estimate
of w(v, C∗), and let C denote the cluster returned by the algorithm. We consider
only the vertices with êv ≤ (1 + ε)p as candidates for C. We partition these
vertices into the following two sets, C−ε = {v ∈ V | êv ≤ p(1 − ε)} and C±ε =
{v ∈ V | p(1−ε) ≤ êv ≤ p(1+ε)}. We assume C−ε ⊂ C∗ and hence add it to C. We
then use the hybrid partition method on the set C±ε, meaning that we randomly
partition C±ε to r = 1

ε sets of equal size V1, . . . , Vr. Assume we know |Vj∩C∗| for
j = 1, . . . , r (these are found by exhaustive search). The algorithm begins with
C = T ∗∪C−ε, and then goes over Vj , j = 1, . . . , r and adds to C the set Cj of the
lj vertices with smallest values of c̄(v) =

∑
k<j w(v, Ck)+ r−(j−1)

r (êv−w(v, C−ε))
from Vj . This step considers the distances between part of the vertices added
to C and ensures good approximation. We denote this part of the algorithm by
BC. Our algorithm calls the two algorithms UC and BC presented below, and
returns the best solution.

Let C denote the cluster returned by the algorithm. Let P = V \ C.
We will analyze the following three cases separately:

Case 1: |C∗| < εn.
Case 2: |P ∗| < εn.
Case 3: |C∗| ≥ εn and |P ∗| ≥ εn.

In our analysis we assume that ε is sufficiently small (for example, ε < 1
8).

Theorem 1. If |C∗| < εn then apx ≤ (1 + 2ε)opt.

Proof. In this case opt ≥ (n−|C∗|)p ≥ n(1− ε)p, and apx ≤ apxUC ≤ np, which
yields apx

opt ≤
1

1−ε ≤ 1 + 2ε for ε ≤ 1
2 . ��

172 R. Hassin and E. Or

UC
begin
C := ∅, apx UC := np, l = |C∗|. [l is found by exhaustive search.]
for every v ∈ V . [v is considered the vertex defining the cluster]

C := l nodes of V with the smallest values of l · w(u, v).
apx := w(C) + (n − l)p.
if apx < apx UC

then
apx UC := apx, UCmin := C.

end if
end for
return UCmin, apx UC
end UC

Fig. 2. UC

For Case 2, |P ∗| < εn, we use the following lemma proved in [4] for the case
where w(C)+w(P) ≤ ε2w(V). Here we do not make this assumption. Note that
w̄(C∗) = 2w(C∗)

|C∗|2 and w̄(C∗)|C∗| = 2w(C∗)
|C∗| is the average value of w(v, C∗) for

v ∈ C∗ and hence there is a vertex z ∈ C∗ for which w(z, C∗) ≤ 2w(C∗)
|C∗| .

Lemma 1. Assume |P ∗| < εn. Let z ∈ C∗ such that w(z, C∗) ≤ 2w(C∗)
|C∗| . Let C

consist of the |C∗| nodes in V with the smallest values of w(v, z). Then:

1. w(C \ C∗, C∗)− w(C∗ \ C,C∗) ≤ 4ε
1−εw(C∗).

2. w(C∗ \ C) ≤ ε
1−εw(C∗).

3. w(C \ C∗) ≤ 3ε
1−ε (

4ε
1−ε + 3)w(C∗).

We omit the proof of the lemma, but it relies on the following outcome of the
triangle inequality, which is used throughout this extended abstract, for any sets
X,Y, Z ⊂ V ,

|Z|w(X,Y) ≤ |X |w(Y, Z) + |Y |w(X,Z). (1)

Theorem 2. If |P ∗| < εn then apx ≤ (1 + 32ε)opt.

Proof. We may assume that the vertex z ∈ C that defined the cluster satisfies
z ∈ C∗, w(z, C∗) ≤ 2w(C∗)

|C∗| and that |C| = |C∗|. If this is not the case then
the bound may only improve. Under these assumptions we may use the bounds
presented by Lemma 1 to bound the approximation ratio. Let X = C∗ \ C and
Y = C \ C∗, then

apx− opt = [w(Y,C∗ ∩ C)− w(X,C∗ ∩ C)] + [w(Y)− w(X)]
= [w(Y,C∗)− w(Y,X)]− [w(X,C∗)− w(X,X)] + [w(Y)− w(X)]
≤ w(Y,C∗)− w(X,C∗) + w(X,X) + w(Y)− w(Y,X)− w(X)

≤ 4ε
1− ε

w(C∗) +
ε

1− ε
w(C∗) +

3ε
1− ε

(
4ε

1− ε
+ 3

)
w(C∗)− w(Y,X)

≤ (1 + 32ε)w(C∗) ≤ (1 + 32ε)opt.

Min Sum Clustering with Penalties 173

BC
begin

D̂C∗ := {(1 + ε)j | (1 + ε)j ≤ DC∗ < (1 + ε)j+1}.
[we do not know D̂C∗ but we find it by exhaustive search.]
r := 1

ε
. [w.l.o.g r is an integer.]

Take a metric sample T of V , |T | = 8 ln(4n)

ε4
.

l = |C∗|. [l is found by exhaustive search.]
T ∗ := C∗ ∩ T . [T ∗ is found by exhaustive search.].
∀v ∈ V , êv := D̂C∗

|T∗|
∑

u∈T∗
w(v,u)

du
.

C−ε := {v ∈ V | êv ≤ p(1 − ε)}.
if |C−ε| ≥ l

then Add to BCmin l vertices of C−ε with the smallest value of êv.
return BCmin and apx BC.

end if
C0 := T ∗ ∪ C−ε, P0 := T \ T ∗.
C±ε := {v ∈ V | p(1 − ε) ≤ êv ≤ p(1 + ε)}.
Partition C±ε randomly into r sets V1, . . . , Vr of equal size (as possible).
Let lj := |Vj ∩ C∗|, j = 1, . . . , r. [l1, . . . , lr are found by exhaustive search.]
for j = 1, . . . , r

∀v ∈ Vj , c̄(v) :=
∑

k<j w(v, Ck) + r−(j−1)
r

(êv − w(v, C−ε)).
Cj := lj vertices v ∈ Vj with smallest values of c̄(v).

end for
BCmin = ∪jCj, apx BC = w(BCmin) + (n − l)p.
return BCmin, apx BC
end BC

Fig. 3. BC

The last inequality holds for ε < 1
8 . ��

For Case 3, |C∗| ≥ εn and |P ∗| ≥ εn, we use the following lemma:

Lemma 2. [3] Let t be given and U ⊂ V . Let T = {u1, . . . , ut} be a metric
sample of U of size t. Consider a fixed vertex v ∈ V,

Pr
[
|w(v, U)− ev| ≤ εw(v, U)

]
≥ 1− 2e−tε2/8

and moreover,

E
[
|w(v, U) − ev|

]
≤ 2√

t
w(v, U),

where ev = DU

t

∑
u∈T

w(v,u)
du

.

Remark 1. For simplicity we assume in the following that DC∗ = D̂C∗, implying
ev = êv for every v ∈ V . Since DC∗

D̂C∗
< 1 + ε, the real value of the solution is at

most 1 + ε times the value of the solution under this assumption.

174 R. Hassin and E. Or

Lemma 3. Let T be a metric sample of V where |T | ≥ 1
ε4 , and let C ⊂ V where

|C| ≥ εn. Then T ∩C is a metric sample of C, and
Pr

[
|T ∩C| ≥ ε2|T |

]
≥ 1− ε.

Proof. Clearly C ∩ T is a metric sample of C. It is sufficient to prove the bound
on |T ∩C| for the boundary case |C| = εn and |P | = |V \C| = (1− ε)n. By (1)
with X = Y = P and Z = C w̄(P) ≤ 2w̄(C,P). Therefore,

DP = (1 − ε)n [εnw̄(C,P) + ((1− ε)n− 1)w̄(P)]
≤ (1 − ε)n2 [ε + 2(1− ε)] w̄(C,P)
= [ε + 2(1− ε)]K.

Also, DC ≥ (1 − ε)εn2w̄(C,P) = εK, and by the metric sample definition,

Pr[ui ∈ C/ui ∈ T] ≥ DC

DC + DP
≥ ε

ε + ε + 2(1− ε)
=

ε

2
.

The number of vertices from C in T stochastically dominates the binomial
random variable X ∼ B(|T |, ε

2) and by the Central Limit Theorem, for |T | ≥ 1
ε4

and ε ≤ 0.2, Pr[X ≥ 2εE[X]] ≥ 1− ε. ��

Let C+ε := {v ∈ V | ev ≤ p(1 + ε)},

Lemma 4. Let |T | = 8 ln(4n)
ε4 .

1. Pr
[(
|T ∩ C∗| ≥ 8 ln(4n)

ε2

)
∧ (w(v, C∗) ≤ 2p ∀v ∈ C+ε)

]
≥ 3

4 (1 − ε).

2. E
[
|P ∗ ∩ C−ε|

]
≤ 1 and E[w(C,P ∗ ∩ C−ε)] ≤ 4εopt.

3. E
[
|C∗ \ C+ε|

]
≤ 1 and E[w(C∗ \ C+ε, C

∗)] ≤ εopt.

In the following we assume that C−ε ⊆ C∗ and that C∗ ⊆ C+ε. It follows
from the third part of Lemma 4 that with probability 3

4 (1 − ε) the expected
weight of the errors due to this assumption are O(εopt).

The following lemma is based on the deterministic analysis in [3]. For j =
1, . . . , r, let C∗

j = C∗ ∩ Vj , and let Ij denote the following left part of the hybrid
partitioning:

Ij = (
⋃
k≤j

Ck) ∪ (
⋃
k>j

C∗
k).

Under the assumptions C−ε ⊂ C∗ and C∗ ∈ C+ε, I0 = C∗ and Ir = C. For
j = 1, . . . , r, consider the points that are classified differently in Ij and Ij−1. Let
Xj := C∗

j \ Cj = {x1, . . . , xm} and Yj := Cj \ C∗
j = {y1, . . . , ym}.

Lemma 5.

E
[
w(Ij) − w(Ij−1)

] ≤ +
∑

u∈Xj∪Yj

E
[∣∣∣w(u,

⋃
k≥j−1

C∗
k) − r − j + 1

r
w(u, C∗ ∩ C±ε)

∣∣∣
+

r − j + 1
r

|w(u, C∗) − eu|
]

+ E[w(Yj , Xj)].

Min Sum Clustering with Penalties 175

Proof.

w(Ij) − w(Ij−1) = w(Yj , Ij−1 \ Xj) + w(Yj) − [w(Xj , Ij−1 \ Xj) + w(Xj)]

= w(Yj , Ij−1) − w(Xj , Ij−1) + w(Yj) + w(Xj) − w(Yj , Xj)

≤
|Yj |∑
i=1

[w(yi, Ij−1) − w(xi, Ij−1)] + w(Yj, Xj)

≤
|Yj |∑
i=1

[w(yi, Ij−1) − c̄(yi) + c̄(xi) − w(xi, Ij−1)] + w(Yj , Xj)

≤
∑

u∈Xj∪Yj

|w(u, Ij−1) − c̄(u)| + w(Yj , Xj) (2)

The first inequality is due to (1) with X = Y = Yj , Z = Xj and |Xj | = |Yj |,
giving w(Yj) ≤ w(Xj , Yj). Similarly, w(Xj) ≤ w(Xj , Yj). The second inequality
holds since c̄(yi) ≤ c̄(xi).

Under the assumption êv =ev, c̄(u)=
∑

k<j w(u,Ck)+ r−(j−1)
r (eu−w(u,C−ε)),

|w(u, Ij−1) − c̄(u)| =
∣∣∣w(u,

⋃
k≥j−1

C∗
k) − r − j + 1

r
[eu − w(u, C−ε)]

∣∣∣
=

∣∣∣w(u,
⋃

k≥j−1

C∗
k) − r − j + 1

r

[
eu + w(u, C∗ ∩ C±ε) − w(u, C∗)

]∣∣∣
≤

∣∣∣w(u,
⋃

k≥j−1

C∗
k) − r − j + 1

r
w(u, C∗ ∩ C±ε)

∣∣∣
+

r − j + 1
r

|w(u, C∗) − eu|. (3)

Substituting (3) into (2) and drawing expectation on both sides completes the
proof of the lemma. ��

Theorem 3. If |C∗| ≥ εn and |P ∗| ≥ εn, then with probability of at least 1− ε,
apx ≤ (1 + 52ε)opt.

Remark 2. It is sufficient to show that apx ≤ (1 + 52ε)opt with any constant
probability, and obtaining an 1 − ε probability by running the algorithm a poly-
nomial number of times and choosing the best solution.

Proof. In the following we assume for every v ∈ C+ε

w(v, C∗) ≤ 2p, (4)

and |T ∩ C∗| ≥ 8 ln(4n)
ε2 . By the first part of Lemma 4, these assumptions hold

with probability 3
4 (1− ε).

Fix u ∈ Xj ∪ Yj and let Zu = w(u,
⋃

k≥j−1 C
∗
k) =

∑
k≥j−1 w(u,C∗

k). Since
C±ε is partitioned randomly into V1, . . . , Vr, E[Zu] = r−j+1

r w(u,C∗ ∩ C±ε) and
Zu =

∑
s∈C∗∩C±ε

w(u, s)As, where {As} i.i.d.r.v’s with Pr[As = 1] = r−j+1
r

and zero with the complementary probability.

176 R. Hassin and E. Or

We use (1) with X = {u}, Y = {s} and Z = C∗, (4), and the fact that
w(s, C∗) ≤ p for s ∈ C∗, to obtain for every u ∈ C±ε,

w(u, s) ≤ w(u,C∗) + w(s, C∗)
|C∗| ≤ 3p

|C∗| . (5)

We use Hoeffding’s inequality for Zu =
∑

s∈C∗∩C±ε
w(u, s)As :=

∑
s∈C∗∩C±ε

Qs,
where Qs, for every s ∈ C∗ ∩ C±ε, is nonnegative and bounded by bs = 3p

|C∗| , to
obtain

E
[
|Zu − E[Zu]|

]
≤

√
π
∑

s∈C∗∩C±ε
9p2

2|C∗|2 ≤ 4p
|C∗| 12

,

and therefore, for every u ∈ Xj ∪ Yj ,

E
[∣∣w(u,

⋃
k≥j−1

C∗
k)− r − j + 1

r
w(u,C∗ ∩ C±ε)

∣∣] = E
[
|Zu − E[Zu]|

]
≤ 4p
|C∗| 12

. (6)

By the second part of Lemma 2, 4 and the assumption |T ∩ C∗| ≥ 8 ln(4n)
ε2 , for

every u ∈ Xj ∪ Yj ,

E
[
|w(u,C∗)− eu|

]
≤ 2w(u,C∗)√

|T ∩ C∗|
≤ εw(u,C∗)√

2 ln(4n)
≤ εp√

ln(4n)
. (7)

Substituting (6) and (7) in (3), we get for every u ∈ Xj ∪ Yj

|w(u, Ij−1)− c̄(u)| ≤ 4p
|C∗| 12

+
r − j + 1

r

(
εp√

ln(4n)

)
(8)

≤ 4p
|C∗| 12

+
εp√

ln(4n)
.

Since Vj are determined randomly, in expectation l1 = · · · = lr = ε|C∗ ∩ C±ε|.
Therefore E

[
|Yj |

]
= E

[
|Xj |

]
≤ εmin{|C∗ ∩ C±ε|, |P ∗|}. Substituting (8) into

Lemma 5,

E[w(Ij)− w(Ij−1)] ≤ E

⎡⎣w(Yj , Xj) +
∑

u∈Xj∪Yj

(
4p
|C∗| 12

+
εp√

ln(4n)

)⎤⎦
= E(w(Yj , Xj)) + 2E|Yj |

[
4p
|C∗| 12

+
εp√

ln(4n)

]
≤ E(w(Yj , Xj)) + 10ε2|P ∗|p. (9)

The second inequality holds since |C∗| ≥ 1
ε2 and |P ∗| ≥ 1

ε2 (else the optimal
solution can be found by exhaustive search), and E

[
|Yj |

]
≤ ε|P ∗|. Let x ∈ Xj

and y ∈ Yj .

Min Sum Clustering with Penalties 177

Summing (5) over all x ∈ Xj and y ∈ Yj , and since E
[
|Yj |

]
= E

[
|Xj |

]
≤

εmin{|C∗ ∩ C±ε|, |P ∗|} we get

E[w(Xj , Yj)] ≤
E
[
|Yj |

]
E
[
|Xj |

]
3p

|C∗| ≤ 3ε2|P ∗|p ≤ 3ε2opt. (10)

Substituting (10) into (9) and noting that opt ≥ |P ∗|p,

E[w(Ij)− w(Ij−1)] ≤ 13ε2opt. (11)

Summing (11) over j = 1, . . . , r = 1
ε gives,

E[w(C) − w(C∗)] = E[w(Ir)− w(I0)] ≤ 13εopt. (12)

Using Markov’s inequality for a constant K ≥ 52 completes the proof of the
theorem: With probability 3

4 (1− ε),

Pr [w(C) − w(C∗) ≤ Kεopt)] ≥ 1− E[w(C) − w(C∗)]
Kεopt

≥ 1− 13
K
≥ 3

4
. ��

Corollary 1. With probability of at least 1−ε the algorithm returns an (1+52ε)
approximation to MSCP in O(n

1
ε +2 ln(n)) time.

5.3 Non Uniform Penalties

The algorithm can be generalized to the case where the ratio between the max-
imal penalty and the minimal penalty is bounded, by exhaustively searching for
the number of nodes from each cost, in an optimal cluster. An approximation
ratio smaller then 2 for the case of general penalties remains open.

5.4 2-Approximation for Metric kPMS

In this section we generalize [7], which offers a 2-approximation for the metric
k-min-sum problem for a fixed k. First we define the minimum star partition
problem (SPP). Given a graph G = (V,E) (SPP) requires to find k+1 distinct
nodes {vi}k+1

i=1 ∈ V and a partition of V into K + 1 disjoint sets {S1, . . . , Sk+1}
such that

∑K
u=1 liw(vi, Si) +

∑
v∈Sk+1

w(z, v) is minimized. SPP can be solved
in polynomial time by solving a transportation problem presented in [7]. We
suggest the following algorithm:

– Create a new graph G′ = (V ′, E′) by adding a node z to V . V ′ = V ∪ {z},
E′ = E ∪ {(v, z) v ∈ V }, and w(v, z) = pv for every i ∈ V .

– Denote by S∗ the value of the optimal solution to the SPP problem on G′

and let {S∗
1 , . . . , S

∗
k+1} be its optimal partitioning.

– Find the sets {S∗
1 , . . . , S

∗
k+1} using the method presented in [7], and return

the the optimal partition {S∗
1 , . . . , S

∗
k+1}.

178 R. Hassin and E. Or

Let apx =
∑k

u=1 w(S∗
i) +

∑
v∈S∗

k+1
pi. Let O1, . . . , Ok+1 denote an optimal

partition for the kPMS problem, and denote its value by opt.

Claim. apx ≤ 2opt.

Proof. Let w(xi, Oi) = mint∈Oiw(t, Oi). Then, 2opt ≥
∑k

u=1

∑
t∈Oi

liw(t, xi) +∑
j∈Ok+1

pj ≥
∑K

u=1 liw(vi, S
∗
i) +

∑
v∈S∗

K+1
w(z, v) = S∗. By the triangle in-

equality S∗ ≥ apx and we conclude 2opt ≥ apx. ��

References

1. M. Charikar, S. Khuller, D.M. Mount, and G. Narasimhan, “Algorithms for facility
location problems with outliers”, SODA (2001), 642-651.

2. W. Fernandez de la Vega, and C. Kenyon, “A randomized approximation scheme
for metric MAX-CUT”, J. Comput. Science 63 (2001), 531-541.

3. W. Fernandez de la Vega, M. Karpinski and C. Kenyon, “Approximation schemes
for metric bisection and partitioning”, SODA (2004).

4. W. Fernandez de la Vega, M. Karpinski, C. Kenyon and Y. Rabani, “Approxima-
tion schemes for clustering problems”, Proc. 35th ACM STOC (2003).

5. U. Feige, G. Kortsarz and D. Peleg, “The dense k-subgraph problem”, Algorithmica,
(2001), 410-421.

6. O. Goldreich, S. Goldwasser and D. Ron, “Property testing and its connection to
learning and approximation”, Proc. 37th IEEE FOCS (1996), 339-348.

7. Guttmann-Beck, N. and R. Hassin, “Approximation algorithms for min-sum p-
clustering”, Discrete Applied Mathematics 89 (1998), 125-142.

8. M.R. Garey and D.S. Johnson “Computers and Intractability”,Freeman (1979).
9. Hochbaum, D.S., “Solving integer programs over monotone inequalities in three

variables: a framework for half integrality and good approximation”, European
Journal of Operational Research 140 (2002), 291-321.

10. R. Hassin, S. Rubinstein and A. Tamir, “Approximation algorithm for maximum
dispersion”, Operations research letters 21, (1997),133-137.

11. Indyk, P., “A sublinear time approximation scheme for clustering in metric spaces”,
40th Symposium on Foundations of Computer Science, 1999, 154-159.

12. G. Xu, J. Xu, “An LP rounding algorithm for approximating uncapacitated facility
location problem with penalties [rapid communication]”,Information Processing
Letters, 94, 3 (2005), 119-123.

Improved Approximation Algorithms for Metric
Max TSP�

Zhi-Zhong Chen�� and Takayuki Nagoya

Dept. of Math. Sci., Tokyo Denki Univ., Hatoyama, Saitama 350-0394, Japan
{chen, nagoya}@r.dendai.ac.jp

Abstract. We present two polynomial-time approximation algorithms
for the metric case of the maximum traveling salesman problem. One of
them is for directed graphs and its approximation ratio is 27

35
. The other

is for undirected graphs and its approximation ratio is 7
8
− o(1). Both

algorithms improve on the previous bests.

1 Introduction

The maximum traveling salesman problem (MaxTSP) is to compute a maximum-
weight Hamiltonian circuit (called a tour) in a given complete edge-weighted
(undirected or directed) graph. Usually, MaxTSP is divided into the symmetric
and the asymmetric cases. In the symmetric case, the input graph is undirected;
we denote this case by SymMaxTSP. In the asymmetric case, the input graph
is directed; we denote this case by AsymMaxTSP. Note that SymMaxTSP can
be trivially reduced to AsymMaxTSP.

A natural constraint one can put on AsymMaxTSP and SymMaxTSP is the
triangle inequality which requires that for every set of three vertices u1, u2, and
u3 in the input graph G, w(u1, u2) ≤ w(u1, u3)+w(u3, u2), where w(ui, uj) is the
weight of the edge from ui to uj in G. If we put this constraint on AsymMaxTSP,
we obtain a problem called metric AsymMaxTSP. Similary, if we put this con-
straint on SymMaxTSP, we obtain a problem called metric SymMaxTSP.

Both metric SymMaxTSP and metric AsymMaxTSP are Max-SNP-hard [1]
and there have been a number of approximation algorithms known for them
[5,3,4]. In 1985, Kostochka and Serdyukov [5] gave an O(n3)-time approxima-
tion algorithm for metric SymMaxTSP that achieves an approximation ratio
of 5

6 . Their algorithm is very simple and elegant. Tempted by improving the
ratio 5

6 , Hassin and Rubinstein [3] gave a randomized O(n3)-time approxima-
tion algorithm for metric SymMaxTSP whose expected approximation ratio is
7
8 − o(1). This randomized algorithm was recently (partially) derandomized by
Chen et al. [2]; their result is a (deterministic) O(n3)-time approximation algo-
rithm for metric SymMaxTSP whose approximation ratio is 17

20 − o(1). In this
paper, we completely derandomize the randomized algorithm, i.e., we obtain
� The full version can be found at http://rnc.r.dendai.ac.jp/˜chen/papers/metric.pdf.

�� Supported in part by the Grant-in-Aid for Scientific Research of the Ministry of
Education of Japan.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 179–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

180 Z.-Z. Chen and T. Nagoya

a (deterministic) O(n3)-time approximation algorithm for metric SymMaxTSP
whose approximation ratio is 7

8 − o(1). Our algorithm also has the advantage
of being easy to parallelize. Our derandomization is based on the idea of Chen
et al. [2] and newly discovered properties of a folklore partition of the edges
of a 2n-vertex complete undirected graph into 2n− 1 perfect matchings. These
properties may be useful elsewhere. In particular, one of the properties says
that if G = (V,E) is a 2n-vertex complete undirected graph and M is a perfect
matching of G, then we can partition E −M into 2n− 2 perfect matchings M1,
. . . , M2n−2 among which there are at most k2 − k perfect matchings Mi such
that the graph (V,M ∪Mi) has a cycle of length at most 2k for every natural
number k. This property is interesting because Hassin and Rubinstein [3] prove
that if G and M are as before and M ′ is a random perfect matching of G, then
with probability 1− o(1) the multigraph (V,M ∪M ′) has no cycle of length at
most

√
n. Our result shows that instead of sampling from the set of all perfect

matchings of G, it suffices to sample from M1, . . . , M2n−2. This enables us to
completely derandomize their algorithm.

As for metric AsymMaxTSP, Kostochka and Serdyukov [5] gave an O(n3)-
time approximation algorithm that achieves an approximation ratio of 3

4 . Their
result remained the best in two decades until Kaplan et al. [4] gave a polynomial-
time approximation algorithm whose approximation ratio is 10

13 . The key in their
algorithm is a polynomial-time algorithm for computing two cycle covers C1 and
C2 in the input graph G such that C1 and C2 do not share a 2-cycle and the sum
of their weights is at least twice the optimal weight of a tour of G. They then
observe that the multigraph formed by the edges in 2-cycles in C1 and C2 can be
split into two subtours of G. In this paper, we show that the multigraph formed
by the edges in 2-cycles in C1 and C2 together with a constant fraction of the edges
in non-2-cycles in C1 and C2 can be split into two subtours of G. This enables
us to improve Kaplan et al.’s algorithm to a polynomial-time approximation
algorithm whose approximation ratio is 27

35 .

2 Basic Definitions

Throughout this paper, a graph means a simple undirected or directed graph
(i.e., it has neither multiple edges nor self-loops), while a multigraph may have
multiple edges but no self-loops.

Let G be a multigraph. We denote the vertex set of G by V (G), and denote
the edge set of G by E(G). For a subset F of E(G), G − F denotes the graph
obtained from G by deleting the edges in F . Two edges of G are adjacent if they
share an endpoint.

Suppose G is undirected. The degree of a vertex v in G is the number of edges
incident to v in G. A cycle in G is a connected subgraph of G in which each
vertex is of degree 2. A cycle cover of G is a subgraph H of G with V (H) = V (G)
in which each vertex is of degree 2. A matching of G is a (possibly empty) set
of pairwise nonadjacent edges of G. A perfect matching of G is a matching M of
G such that each vertex of G is an endpoint of an edge in M .

Improved Approximation Algorithms for Metric Max TSP 181

Suppose G is directed. The indegree of a vertex v in G is the number of edges
entering v in G, and the outdegree of v in G is the number of edges leaving v in
G. A cycle in G is a connected subgraph of G in which each vertex has indegree 1
and outdegree 1. A cycle cover of G is a subgraph H of G with V (H) = V (G)
in which each vertex has indegree 1 and outdegree 1. A 2-path-coloring of G is a
partition of E(G) into two subsets E1 and E2 such that both graphs (V (G), E1)
and (V (G), E2) are collections of vertex-disjoint paths. G is 2-path-colorable if it
has a 2-path-coloring.

Suppose G is undirected or directed. A path in G is either a single vertex of G
or a subgraph of G that can be transformed to a cycle by adding a single (new)
edge. The length of a cycle or path C is the number of edges in C. A k-cycle is
a cycle of length k. A 3+-cycle is a cycle of length at least 3. A tour (also called
a Hamiltonian cycle) of G is a cycle C of G with V (C) = V (G). A subtour of G
is a subgraph H of G which is a collection of vertex-disjoint paths.

A closed chain is a directed graph that can be obtained from an undirected
k-cycle C with k ≥ 3 by replacing each edge {u, v} of C with the two directed
edges (u, v) and (v, u). Similarly, an open chain is a directed graph that can be
obtained from an undirected path P by replacing each edge {u, v} of P with
the two directed edges (u, v) and (v, u). An open chain is trivial if it is a single
vertex. A chain is a closed or open chain. A partial chain is a subgraph of a
chain.

For a graph G and a weighting function w mapping each edge e of G to
a nonnegative real number w(e), the weight of a subset F of E(G) is w(F) =∑

e∈F w(e), and the weight of a subgraph H of G is w(H) = w(E(H)).

3 New Algorithm for Metric AsymMaxTSP

Throughout this section, fix an instance (G,w) of metric AsymMaxTSP, where
G is a complete directed graph and w is a function mapping each edge e of G to
a nonnegative real number w(e).

Let OPT be the weight of a maximum-weight tour in G. Our goal is to
compute a tour in G whose weight is large compared to OPT . We first review
Kaplan et al.’s algorithm and define several notations on the way.

3.1 Kaplan et al.’s Algorithm

The key in their algorithm is the following:

Theorem 1. [4] We can compute two cycle covers C1, C2 in G in polynomial
time that satisfy the following two conditions:

1. C1 and C2 do not share a 2-cycle. In other words, if C is a 2-cycle in C1
(respectively, C2), then C2 (respectively, C1) does not contain at least one
edge of C.

2. w(C1) + w(C2) ≥ 2 ·OPT .

182 Z.-Z. Chen and T. Nagoya

Let G2 be the subgraph of G such that V (G2) = V (G) and E(G2) consists of
all edges in 2-cycles in C1 and/or C2. Then, G2 is a collection of vertex-disjoint
chains. For each closed chain C in G2, we can compute two edge-disjoint tours
T1 and T2 (each of which is of length at least 3), modify C1 by substituting T1 for
the 2-cycles shared by C and C1, modify C2 by substituting T2 for the 2-cycles
shared by C and C2, and further delete C from G2. After this modification of
C1 and C2, the two conditions in Theorem 1 still hold. So, we can assume that
there is no closed chain in G2.

For each i ∈ {1, 2}, let Wi,2 denote the total weight of 2-cycles in Ci, and
let Wi,3 = w(Ci) −Wi,2. For convenience, let W2 = 1

2 (W1,2 + W2,2) and W3 =
1
2 (W1,3 +W2,3). Then, by Condition 2 in Theorem 1, we have W2 +W3 ≥ OPT .
Moreover, using an idea in [5], Kaplan et al. observed the following:

Lemma 1. [4] We can use C1 and C2 to compute a tour T of G with w(T) ≥
3
4W2 + 5

6W3 in polynomial time.

Since each nontrivial open chain has a 2-path-coloring, we can use G2 to
compute a tour T ′ of G with w(T ′) ≥ W2 in polynomial time. Combining this
observation, Lemma 1, and the fact that W2 + W3 ≥ OPT , the heavier one
between T and T ′ is of weight at least 10

13OPT .

3.2 Details of the New Algorithm

The idea behind our new algorithm is to improve the second tour T ′ in Kaplan
et al.’s algorithm so that it has weight at least W2 + 1

9W3. The tactics is to
add some edges of 3+-cycles in Ci with Wi,3 = max{W1,3,W2,3} to G2 so that
G2 remains 2-path-colorable. Without loss of generality, we may assume that
W1,3 ≥ W2,3. Then, our goal is to add some edges of 3+-cycles in C1 to G2 so
that G2 remains 2-path-colorable.

We say that an open chain P in G2 spoils an edge (u, v) of a 3+-cycle in
C1 if u and v are the two endpoints of P . Obviously, adding a spoiled edge to
G2 destroys the 2-path-colorability of G2. Fortunately, there is no 3+-cycle in
C1 in which two consecutive edges are both spoiled. So, let C1, . . . , C� be the
3+-cycles in C1; we modify each Cj (1 ≤ j ≤ �) as follows (see Figure 1):

– For every two consecutive edges (u, v) and (v, x) of Cj such that (u, v) is
spoiled, replace (u, v) by the two edges (u, x) and (x, v). (Comment: We call
(u, x) a bypass edge of Cj , call the 2-cycle between v and x a dangling 2-
cycle of Cj , and call v the articulation vertex of the dangling 2-cycle. We
also say that the bypass edge (u, x) and the dangling 2-cycle between v and
x correspond to each other.)

We call the above modification of Cj the bypass operation on Cj . Note that
applying the bypass operation on Cj does not decrease the weight of Cj because
of the triangle inequality. Moreover, the edges of Cj not contained in dangling
2-cycles of Cj form a cycle. We call it the primary cycle of Cj . Note that Cj may
have neither bypass edges nor dangling 2-cycles (this happens when Cj has no
spoiled edges).

Improved Approximation Algorithms for Metric Max TSP 183

Fig. 1. (1) A 3+-cycle Cj (formed by the one-way edges) in C1 and the open chains (each
shown by a two-way edge) each of which has a parallel edge in Cj . (2) The modified Cj

(formed by the one-way edges), where bypass edges are dashed and dangling 2-cycles
are painted.

Let H be the union of the modified C1, . . . , C�, i.e., let H be the directed
graph with V (H) =

⋃
1≤j≤� V (Cj) and E(H) =

⋃
1≤j≤� E(Cj). We next show

that E(H) can be partitioned into three subsets each of which can be added to
G2 without destroying its 2-path-colorability. Before proceeding to the details of
the partitioning, we need several definitions and lemmas.

Two edges (u1, u2) and (v1, v2) of H form a critical pair if u1 and v2 are the
endpoints of some open chain in G2 and u2 and v1 are the endpoints of another
open chain in G2 (see Figure 2). Note that adding both (u1, u2) and (v1, v2) to
G2 destroys its 2-path-colorability. An edge of H is critical if it together with
another edge of H forms a critical pair. Note that for each critical edge e of H ,
there is a unique edge e′ in H such that e and e′ form a critical pair. We call
e′ the rival of e. An edge of H is safe if it is not critical. A bypass edge of H is
a bypass edge of a Cj with 1 ≤ j ≤ �. Similarly, a dangling 2-cycle of H is a
dangling 2-cycle of a Cj with 1 ≤ j ≤ �. A dangling edge of H is an edge in a
dangling 2-cycle of H .

u u

v v

1 2

12

Fig. 2. A critical pair formed by edges (u1, u2) and (v1, v2)

Lemma 2. No bypass edge of H is critical.

Lemma 3. Fix a j with 1 ≤ j ≤ �. Suppose that an edge e of Cj is a critical
dangling edge of H. Let C be the dangling 2-cycle of Cj containing e. Let e′ be
the rival of e. Then, the following statements hold:

1. e′ is also an edge of Cj .
2. If e′ is also a dangling edge of H, then the primary cycle of Cj consists of

the two bypass edges corresponding to C and C′, where C′ is the dangling
2-cycle of Cj containing e′.

184 Z.-Z. Chen and T. Nagoya

3. If e′ is not a dangling edge of H, then e′ is the edge in the primary cycle of
Cj whose head is the tail of the bypass edge corresponding to C.

Lemma 4. Fix a j with 1 ≤ j ≤ � such that the primary cycle C of Cj contains
no bypass edge. Let u1, . . . , uk be a cyclic ordering of the vertices in C. Then,
the following hold:

1. Suppose that there is a chain P in G2 whose endpoints appear in C but not
consecutively (i.e., its endpoints are not connected by an edge of C). Then,
at least one edge of C is safe.

2. Suppose that every edge of C is critical. Then, there is a unique Cj′ with
j′ ∈ {1, . . . , �} − {j} such that (1) the primary cycle C′ of Cj′ has exactly
k vertices and (2) the vertices of C′ have a cyclic ordering v1, . . . , vk such
that for every 1 ≤ i ≤ k, ui and vk−i+1 are the endpoints of some chain in
G2. (See Figure 4.)

Now we are ready to describe how to partition E(H) into three subsets each
of which can be added to G2 without destroying its 2-path-colorability. We use
the three colors 0, 1, and 2 to represent the three subsets, and want to assign each
edge of E(H) a color in {0, 1, 2} so that the following conditions are satisfied:

(C1) For every critical edge e of H , e and its rival receive different colors.
(C2) For every dangling 2-cycle C of H , the two edges in C receive the same

color.
(C3) If two adjacent edges of H receive the same color, then they form a 2-cycle

of H .

To compute a coloring of the edges of H satisfying the above three conditions,
we process C1, . . . , C� in an arbitrary order. While processing Cj (1 ≤ j ≤ �),
we color the edges of Cj by distinguishing four cases as follows (where C denotes
the primary cycle of Cj):

Case 1: C is a 2-cycle. Then, C contains either one or two bypass edges. In the
former (respectively, latter) case, we color the edges of Cj as shown in Figure 3(2)
(respectively, Figure 3(1)). Note that the colored edges satisfy Conditions (C1)
through (C3) above.

Case 2: Every Edge of C is Critical. Then, by Lemma 2, C contains no bypass
edge. Let j′ be the integer in {1, . . . , �} − {j} such that Cj′ satisfies the two
conditions (1) and (2) in Statement 2 in Lemma 4. Then, by Lemma 3 and
Statement 2 in Lemma 4, neither Cj nor Cj′ has a bypass edge or a dangling
2-cycle. So, the primary cycle of Cj (respectively, Cj′) is Cj (respectively, Cj′)
itself. We color the edges of Cj and Cj′ simultaneously as follows (see Figure 4).
First, we choose one edge e of Cj , color e with 2, and color the rival of e with 0.
Note that the uncolored edges of Cj form a path Q. Starting at one end of
Q, we then color the edges of Q alternatingly with colors 0 and 1. Finally, for
each uncolored edge e′ of Cj′ , we color it with the color h ∈ {1, 2} such that
the rival of e′ has been colored with h − 1. Note that the colored edges satisfy
Conditions (C1) through (C3) above.

Improved Approximation Algorithms for Metric Max TSP 185

Fig. 3. Coloring Cj when its primary cycle is a 2-cycle

Fig. 4. Coloring Cj and Cj′ when all their edges are critical

Case 3: Neither Case 1 nor Case 2 Occurs and No Edge of Cj Is a Critical
Dangling Edge of H. Then, by Lemma 2 and Statement 1 in Lemma 4, C contains
at least one safe edge. Let e1, . . . , ek be the edges of C, and assume that they
appear in C cyclically in this order. Without loss of generality, we may assume
that e1 is a safe edge. We color e1 with 0, and then color the edges e2, . . . ,
ek in this order as follows. Suppose that we have just colored ei with a color
hi ∈ {0, 1, 2} and we want to color ei+1 next, where 1 ≤ i ≤ k − 1. If ei+1 is a
critical edge and its rival has been colored with (hi + 1) mod 3, then we color
ei+1 with (hi + 2) mod 3; otherwise, we color ei+1 with (hi + 1) mod 3. If ek is
colored 0 at the end, then we change the color of e1 from 0 to the color in {1, 2}
that is not the color of e2. Now, we can further color each dangling 2-cycle C′

of Cj with the color in {0, 1, 2} that has not been used to color the two edges of
C incident to the articulation vertex of C′. Note that the colored edges satisfy
Conditions (C1) through (C3) above.

Case 4: Neither Case 1 Nor Case 2 Occurs and Some Edge of Cj Is a Critical
Dangling Edge of H. For each dangling edge e of H with e ∈ E(Cj), we define
the partner of e to be the edge e′ of C leaving the articulation vertex u of the
dangling 2-cycle containing e, and define the mate of e to be the bypass edge e′′

of Cj entering u (see Figure 6). We say that an edge e of Cj is bad if e is a critical
dangling edge of H and its partner is the rival of another critical dangling edge
of H . If Cj has a bad edge e, then Statement 3 in Lemma 3 ensures that Cj

is as shown in Figure 5 and can be colored as shown there without violating
Conditions (C1) through (C3) above.

186 Z.-Z. Chen and T. Nagoya

Fig. 5. Cj (formed by the one-way edges) and its coloring when it has a bad edge e

Fig. 6. The rival, the mate, and the partner of a critical dangling edge e of H together
with the opponent of the partner of e

So, suppose that Cj has no bad edge. We need one more definition (see
Figure 6). Consider a critical dangling edge e of H with e ∈ E(Cj). Let e′ and
e′′ be the partner and the rival of e, respectively. Let e′′′ be the edge of C entering
the tail of e′′. Let P be the open chain in G2 whose endpoints are the tails of e′

and e′′. We call e′′′ the opponent of e′. Note that e′ �= e′′′ because the endpoints
of P are the tail of e′ and the head of e′′′. Moreover, if e′ is a critical edge of
H , then the rival of e′ has to be e′′′ because e is not bad and P exists. In other
words, whenever an edge of C has both its rival and its opponent, they must
be the same. Similarly, if e′′′ is a critical edge of H , then its rival has to be e′.
Obviously, neither e′ nor e′′′ can be the rival or the mate of a critical dangling
edge of H (because Cj has no bad edge).

Now, let e1, . . . , eq be the edges of C none of which is the rival or the mate
of a critical dangling edge of Cj . We may assume that e1, . . . , eq appear in C
cyclically in this order. Without loss of generality, we may further assume that
e1 is the partner of a critical dangling edge of H . Then, we color e1 with 0,
and further color e2, . . . , eq in this order as follows. Suppose that we have just
colored ei with a color hi ∈ {0, 1, 2} and we want to color ei+1 next, where
1 ≤ i ≤ q − 1. If ei+1 is a critical edge of H and its rival or opponent has
been colored with (hi + 1) mod 3, then we color ei+1 with (hi + 2) mod 3;
otherwise, we color ei+1 with (hi +1) mod 3. Note that the colored edges satisfy
Conditions (C1), (C2), (C3) above, because the head of eq is not the tail of e1.

We next show how to color the rival and the mate of each critical dangling
edge of Cj . For each critical dangling edge e of Cj , since its partner e′ and the
opponent of e′ have been colored, we can color the rival of e with the color of e′

and color the mate of e with a color in {0, 1, 2} that is not the color of e′. Note
that the colored edges satisfy Conditions (C1) through (C3) above, because e′

and its opponent have different colors.

Improved Approximation Algorithms for Metric Max TSP 187

Finally, for each dangling 2-cycle D of Cj , we color the two edges of D with
the color in {0, 1, 2} that has not been used to color an edge incident to the
articulation vertex of D. Note that the colored edges satisfy Conditions (C1)
through (C3) above, because the rival of each critical dangling edge e of H has
the same color as the partner of e does. This completes the coloring of Cj (and
hence H).

We next want to show how to use the coloring to find a large-weight tour
in G. For each i ∈ {0, 1, 2}, let Ei be the edges of H with color i. Without
loss of generality, we may assume that w(E0) ≥ max{w(E1), w(E2)}. Then,
w(E0) ≥ 1

3W1,3 (see the beginning of this subsection for W1,3). Consider the
undirected graph U = (V (G), F1 ∪ F2), where F1 consists of all edges {v1, v2}
such that (v1, v2) or (v2, v1) is an edge in E0, and F2 consists of all edges {v3, v4}
such that v3 and v4 are the endpoints of an open chain in G2. We further assign a
weight to each edge of F1 as follows. We first initialize the weight of each edge of
F1 to be 0. For each edge (v1, v2) ∈ E0, we then add the weight of edge (v1, v2)
to the weight of edge {v1, v2}. Note that for each i ∈ {1, 2}, each connected
component of the undirected graph (V (G), Fi) is a single vertex or a single edge
because of Condition (C3) above. So, each connected component of U is a path
or a cycle. Moreover, each cycle of U contains at least three edges of F1 because
of Condition (C1) above. For eacy cycle D of U , we mark exactly one edge
{v1, v2} ∈ F1 in D whose weight is the smallest among all edges {v1, v2} ∈ F1 in
D. Let E3 be the set of all edges (v1, v2) ∈ E0 such that {v1, v2} is marked. Then,
w(E3) ≤ 1

3w(E0). Consider the directed graph G′
2 obtained from G2 by adding

the edges of E0−E3. Obviously, w(G′
2) ≥ (W1,2+W2,2)+ 1

9W1,3. Moreover, G′
2 is

a collection of partial chains and hence is 2-path-colorable. So, we can partition
the edges of G′

2 into two subsets E′
1 and E′

2 such that both graphs (V (G), E′
1) and

(V (G), E′
2) are subtours of G. The heavier one among the two subtours can be

completed to a tour of G of weight at least 1
2 (W1,2+W2,2)+ 1

18W1,3 ≥W2+ 1
9W3.

Combining this with Lemma 1, we now have:

Theorem 2. There is a polynomial-time approximation algorithm for
AsymMaxTSP achieving an approximation ratio of 27

35 .

4 New Algorithm for Metric SymMaxTSP

Throughout this section, fix an instance (G,w) of metric SymMaxTSP, where
G is a complete undirected graph with n vertices and w is a function mapping
each edge e of G to a nonnegative real number w(e). Because of the triangle
inequality, the following fact holds (see [2] for a proof):

Fact 1. Suppose that P1, . . . , Pt are vertex-disjoint paths in G each containing
at least one edge. For each 1 ≤ i ≤ t, let ui and vi be the endpoints of Pi. Then,
we can use some edges of G to connect P1, . . . , Pt into a single cycle C in linear
time such that w(C) ≥

∑t
i=1 w(Pi) + 1

2

∑t
i=1 w({ui, vi}).

Like Hassin and Rubinstein’s algorithm (H&R2-algorithm) for the problem,
our algorithm computes two tours T1 and T2 of G and outputs the one with

188 Z.-Z. Chen and T. Nagoya

the larger weight. The first two steps of our algorithm are the same as those of
H&R2-algorithm:

1. Compute a maximum-weight cycle cover C. Let C1, . . . , Cr be the cycles in
G.

2. Compute a maximum-weight matching M in G.

Lemma 5. [2] In linear time, we can compute two disjoint subsets A1 and A2

of
⋃

1≤i≤r E(Ci)−M satisfying the following conditions:

(a) For each j ∈ {1, 2}, each connected component of the graph (V (G),M ∪Aj)
is a path of length at least 1.

(b) For each j ∈ {1, 2} and each i ∈ {1, . . . , r}, |Aj ∩ E(Ci)| = 1.

For a technical reason, we will allow our algorithm to use only 1 random
bit (so we can easily derandomize it, although we omit the details). The third
through the seventh steps of our algorithm are as follows:

3. Compute two disjoint subsets A1 and A2 of
⋃

1≤i≤r E(Ci) −M satisfying
the two conditions in Lemma 5.

4. Choose A from A1 and A2 uniformly at random.
5. Obtain a collection of vertex-disjoint paths each of length at least 1 by

deleting the edges in A from C; and then connect these paths into a single
(Hamiltonian) cycle T1 as described in Fact 1.

6. Let S = {v ∈ V (G) | the degree of v in the graph (V,M ∪ A) is 1} and
F = {{u, v} ∈ E(G) | {u, v} ⊆ S}. Let H be the complete graph (S, F). Let
� = 1

2 |S|. (Comment: |S| is even, because of Condition (a) in Lemma 5.)
7. Let M ′ be the set of all edges {u, v} ∈ F such that some connected com-

ponent of the graph (V,M ∪A) contains both u and v. (Comment: M ′ is a
perfect matching of H because of Condition (a) in Lemma 5.)

Lemma 6. [2] Let α = w(A1 ∪ A2)/w(C). For a random variable X, let E [X]
denote its expected value. Then, E [w(F)] ≥ 1

4 (1 − α)(2�− 1)w(C).

The next lemma shows that there cannot exist matchings of large weight in
an edge-weighted graph where the weights satisfy the triangle inequality:

Lemma 7. For every perfect matching N of H, w(N) ≤ w(F)/�.

The following is our main lemma whose proof is omitted for lack of space:

Lemma 8. We can partition F −M ′ into 2� − 2 perfect matchings M1, . . . ,
M2�−2 of H in linear time satisfying the following condition:

– For every natural number q, there are at most q2 − q matchings Mi with
1 ≤ i ≤ 2� − 2 such that the graph (S,M ′ ∪Mi) has a cycle of length at
most 2q.

Now, the eighth through the thirteenth steps of our algorithm are as follows:

Improved Approximation Algorithms for Metric Max TSP 189

8. Partition F −M ′ into 2�−2 perfect matchings M1, . . . , M2�−2 of H in linear
time satisfying the condition in Lemma 8.

9. Let q = � 3
√
��. Find a matching Mi with 1 ≤ i ≤ 2� − 2 satisfying the

following two conditions:
(a) The graph (S,M ′ ∪Mi) has no cycle of length at most 2q.
(b) w(Mi) ≥ w(Mj) for all matchings Mj with 1 ≤ j ≤ 2�− 2 such that the

graph (S,M ′ ∪Mj) has no cycle of length at most 2q.
10. Construct the graph G′

i = (V (G),M ∪ A ∪ Mi). (Comment: Mi ∩ (M ∪
A) = ∅ and each connected component of G′

i is either a path, or a cycle of
length 2q + 1 or more.)

11. For each cycle D in G′
i, mark exactly one edge e ∈ Mi ∩ E(D) such that

w(e) ≤ w(e′) for all e′ ∈Mi ∩ E(D).
12. Obtain a collection of vertex-disjoint paths each of length at least 1 by

deleting the marked edges from G′
i; and then connect these paths into a

single (Hamiltonian) cycle T2 as described in Fact 1.
13. If w(T1) ≥ w(T2), output T1; otherwise, output T2.

Theorem 3. There is an O(n3)-time approximation algorithm for metric
SymMaxTSP achieving an approximation ratio of 7

8 −O(1/ 3
√
n).

Proof. Let OPT be the maximum weight of a tour in G. It suffices to prove
that max{E [w(T1)], E [w(T2)]} ≥ (7

8 − O(1/ 3
√
n))OPT . By Fact 1, E [w(T1)] ≥

(1− 1
2α + 1

4α)w(C) ≥ (1 − 1
4α)OPT .

We claim that |S| ≥ 1
3n. To see this, consider the graphs GM = (V (G),M)

and GA = (V (G),M ∪ A). Because the length of each cycle in C is at least 3,
|A| ≤ 1

3n by Condition (b) in Lemma 5. Moreover, since M is a matching of
G, the degree of each vertex in GM is 0 or 1. Furthermore, GA is obtained by
adding the edges of A to GM . Since adding one edge of A to GM increases the
degrees of at most two vertices, there exist at least n − 2|A| ≥ 1

3n vertices of
degree 0 or 1 in GA. So, by Condition (a) in Lemma 5, there are at least 1

3n
vertices of degree 1 in GA. This establishes that |S| ≥ 1

3n. Hence, � ≥ 1
6n.

Now, let x be the number of matchings Mj with 1 ≤ j ≤ 2�−2 such that the
graph (S,M ′ ∪Mi) has a cycle of length at most 2q. Then, by Lemmas 7 and 8,
the weight of the matching Mi found in Step 9 is at least (1− x+1

�)·w(F)· 1
2�−2−x .

So, w(Mi) ≥ 1
� · (1−

�−1
2�−2−q2+q) ·w(F) because x ≤ q2 − q. Let Ni be the set of

edges of Mi marked in Step 11. Then, w(Mi −Ni) ≥ q
q+1 ·

�−q2+q−1
�(2�−2−q2+q) · w(F).

Hence, by Lemma 6 and the inequality � ≥ 1
6n, we have E [w(Mi − Ni)] ≥

1
4 (1− α)(1 −O(1/ 3

√
n))w(C).

Obviously, E [w(T2)] ≥ E [w(M ∪ A)] + E [w(Mi − Ni)] ≥ (1
2 −

1
2n)OPT +

1
2αw(C) + E [w(Mi − Ni)]. Hence, by the last inequality in the previous para-
graph, E [w(T2)] ≥ (3

4 + 1
4α − O(1/ 3

√
n))OPT . Combining this with the in-

equality E [w(T1)] ≥ (1 − 1
4α)OPT , we finally have E [max{w(T1), w(T2)}] ≥

(7
8 −O(1/ 3

√
n))OPT .

The running time of the algorithm is dominated by the O(n3) time needed
for computing a maximum-weight cycle cover and a maximum-weight matching.

190 Z.-Z. Chen and T. Nagoya

References

1. A. I. Barvinok, D. S. Johnson, G. J. Woeginger, and R. Woodroofe. Finding Maxi-
mum Length Tours under Polyhedral Norms. Proceedings of the Sixth International
Conference on Integer Programming and Combinatorial Optimization (IPCO), Lec-
ture Notes in Computer Science, 1412 (1998) 195–201.

2. Z.-Z. Chen, Y. Okamoto, and L. Wang. Improved Deterministic Approximation
Algorithms for Max TSP. To appear in Information Processing Letters.

3. R. Hassin and S. Rubinstein. A 7/8-Approximation Approximations for Metric
Max TSP. Information Processing Letters, 81 (2002) 247–251.

4. H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation Algo-
rithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs. Pro-
ceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
pp. 56–75, 2003.

5. A. V. Kostochka and A. I. Serdyukov. Polynomial Algorithms with the Estimates 3
4

and 5
6

for the Traveling Salesman Problem of Maximum (in Russian). Upravlyaemye
Sistemy, 26 (1985) 55–59.

Unbalanced Graph Cuts

Ara Hayrapetyan1,�, David Kempe2,��, Martin Pál3,� � �, and Zoya Svitkina1,†

1 Dept. of Computer Science, Cornell University
{ara, zoya}@cs.cornell.edu

2 Dept. of Computer Science, University of Southern California
dkempe@usc.edu

3 DIMACS Center, Rutgers University
mpal@dimacs.rutgers.edu

Abstract. We introduce the Minimum-size bounded-capacity cut
(MinSBCC) problem, in which we are given a graph with an identified
source and seek to find a cut minimizing the number of nodes on the
source side, subject to the constraint that its capacity not exceed a pre-
scribed bound B. Besides being of interest in the study of graph cuts,
this problem arises in many practical settings, such as in epidemiology,
disaster control, military containment, as well as finding dense subgraphs
and communities in graphs.

In general, the MinSBCC problem is NP-complete. We present an
efficient (1

λ
, 1

1−λ
)-bicriteria approximation algorithm for any 0 < λ < 1;

that is, the algorithm finds a cut of capacity at most 1
λ
B, leaving at most

1
1−λ

times more vertices on the source side than the optimal solution with
capacity B. In fact, the algorithm’s solution either violates the budget
constraint, or exceeds the optimal number of source-side nodes, but not
both. For graphs of bounded treewidth, we show that the problem with
unit weight nodes can be solved optimally in polynomial time, and when
the nodes have weights, approximated arbitrarily well by a PTAS.

1 Introduction

Graph cuts are among the most well-studied objects in theoretical computer sci-
ence. In the most pristine form of the problem, two given vertices s and t have to
be separated by removing an edge set of minimum capacity. By a fundamental
result of Ford and Fulkerson [16], such an edge set can be found in polyno-
mial time. Since then, many problems have been shown to reduce to graph cut
problems, sometimes quite surprisingly (e.g. [19]). One way to view the Min-Cut
Problem is to think of “protecting” the sink node t from the presumably harmful
node s by way of removing edges: the capacity of the cut then corresponds to
the cost of edge removals. This interpretation in turn suggests a very natural
variant of the graph cut problem: given a node s and a bound B on the total edge
removal cost, try to “protect” as many nodes from s as possible, while cutting

� Supported in part by NSF grant CCR-0325453.
�� Work done while supported by an NSF graduate fellowship.

� � � Supported by NSF grant EIA 02-05116, and ONR grant N00014-98-1-0589.
† Supported in part by NSF grant CCR-0325453 and ONR grant N00014-98-1-0589.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 191–202, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

192 A. Hayrapetyan et al.

at most a total edge capacity of B. In other words, find an s-t cut of capacity at
most B, minimizing the size of the s-side of the cut. This is the Minimum-size
bounded-capacity cut (MinSBCC) problem that we study.

Naturally, the MinSBCC problem has direct applications in the areas of
disaster, military, or crime containment. In all of these cases, a limited amount
of resources can be used to monitor or block the edges by which the disaster
could spread, or people could escape. At the same time, the area to which the
disaster is confined should be as small as possible. For instance, in the firefighter’s
problem [6], a fixed small number of firefighters must confine a fire to within a
small area, trying to minimize the value of the property and lives inside.

Perhaps even more importantly, the MinSBCC problem arises naturally in
the control of epidemic outbreaks. While traditional models of epidemics [4] have
ignored the network structure in order to model epidemic diseases via differential
equations, recent work by Eubank et al. [7,9], using highly realistic large-scale
simulations, has shown that the graph structure of the social contacts has a
significant impact on the spread of the epidemic, and crucially, on the type of
actions that most effectively contain the epidemic. If we assume that patient 0,
the first infected member of the network, is known, then the problem of choosing
which individuals to vaccinate in order to confine the epidemic to a small set of
people is exactly the node cut version of the MinSBCC problem.

Besides the obvious connections to the containment of damage or epidemics,
the MinSBCC problem can also be used for finding small dense subgraphs and
communities in graphs. Discovering communities in graphs has received much at-
tention recently, in the context of analyzing social networks and the World Wide
Web [14,20]. It involves examining the link structure of the underlying graph so
as to extract a small set of nodes sharing a common property, usually expressed
by high internal connectivity, sometimes in combination with small expansion.
We show how to reduce the community finding problem to MinSBCC.

Our Results. Formally, we define the MinSBCC problem as follows. Given an
(undirected or directed) graph G = (V,E) with edge capacities ce, source and
sink nodes s and t, as well as a total capacity bound (also called the budget) B,
we wish to find an s-t cut (S, S), s ∈ S of capacity no more than B, which leaves
as few nodes on the source side as possible. We will also consider a generalization
in which the nodes are assigned weights wv, and the objective is to minimize the
total node weight

∑
v∈S wv, subject to the budget constraint. 1

We show in Sections 2 and 4.2 that MinSBCC is NP-hard on general graphs
with uniform node weights, and on trees with non-uniform node weights. We
therefore develop two (1

λ ,
1

1−λ)-bicriteria approximation algorithms for MinS-
BCC, where 0 < λ < 1. These algorithms, in polynomial time, find a cut (S, S)
of capacity at most 1

λB, such that the size of S is at most 1
1−λ times that of

S∗, where (S∗, S∗) is the optimal cut of capacity at most B. The first algorithm
obtains this guarantee by a simple rounding of a linear programming relaxation

1 Some of our motivating examples and applications do not specify a sink; this can
be resolved by adding an isolated sink to the graph.

Unbalanced Graph Cuts 193

of MinSBCC. The second one bypasses solving the linear program by running
a single parametric maximum flow computation and is thus very efficient [17].
It also has a better guarantee: it outputs either a (1

λ , 1)-approximation or a
(1, 1

1−λ)-approximation, thus violating at most one of the constraints by the cor-
responding factor. The analysis of this algorithm is based on the same linear
programming formulation of MinSBCC and its Lagrangian relaxation.

We then investigate the MinSBCC problem for graphs of bounded treewidth
in Section 3. We give a polynomial-time algorithm based on dynamic program-
ming to solve MinSBCC optimally for graphs of bounded treewidth with unit
node weights. We then extend the algorithm to a PTAS for general node weights.

Section 4 discusses the reductions from node cut and dense subgraph prob-
lems to MinSBCC. We conclude with directions for future work in Section 5.

Related Work. Minimum cuts have a long history of study and form part of
the bread-and-butter of everyday work in algorithms [1]. While minimum cuts
can be computed in polynomial time, additional constraints on the size of the
cut or on the relationship between its capacity and size (such as its density)
usually make the problem NP-hard.

Much recent attention has been given to the computation of sparse cuts,
partly due to their application in divide-and-conquer algorithms [24]. The sem-
inal work of Leighton and Rao [22] gave the first O(log n) approximation algo-
rithm for sparsest and balanced cut problems using region growing techniques.
This work was later extended by Garg, Vazirani, and Yannakakis [18]. In a recent
breakthrough result, the approximation factor for these problems was improved
to O(

√
log n) by Arora, Rao, and Vazirani [2].

A problem similar to MinSBCC is studied by Feige et al. [11,12]: given a
number k, find an s-t cut (S, S) with |S| = k of minimum capacity. They obtain
an O(log2 n) approximation algorithm in the general case [11], and improve the
approximation guarantees when k is small [12].

MinSBCC has a natural maximization version MaxSBCC, where the goal
is to maximize the size of the s-side of the cut instead of minimizing it, while still
obeying the capacity constraint. This problem was recently introduced by Svitk-
ina and Tardos [25]. Based on the work of Feige and Krauthgamer [11], Svitkina
and Tardos give an (O(log2 n), 1)-bicriteria approximation which is used as a
black box to obtain an approximation algorithm for the min-max multiway cut
problem, in which one seeks a multicut minimizing the number of edges leaving
any one component. The techniques in [25] readily extend to an (O(log2 n), 1)-
bicriteria approximation for the MinSBCC problem.

Recently, and independently of our work, Eubank, et al [8] also studied the
MinSBCC problem and gave a weaker (1 + 2λ, 1+ 2

λ)-bicriteria approximation.

2 Bicriteria Approximation Algorithms

We first establish the NP-completeness of MinSBCC.

Proposition 1. The MinSBCC problem with arbitrary edge capacities and
node weights is NP-complete even when restricted to trees.

194 A. Hayrapetyan et al.

Proof. We give a reduction from Knapsack. Let the Knapsack instance
consist of items 1, . . . , n with sizes s1, . . . , sn and values a1, . . . , an, and let the
total Knapsack size be B. We create a source s, a sink t, and a node vi for each
item i. The node weight of vi is ai, and it is connected to the source by an edge
of capacity si. The sink t has weight 0, and is connected to v1 by an edge of
capacity 0. The budget for the MinSBCC problem is B.

The capacity of any s-t cut is exactly the total size of the items on the t-side,
and minimizing the total node weight on the s-side is equivalent to maximizing
the total value of items corresponding to nodes on the t-side.

Now, we turn our attention to our main approximation results, which are
the two (1

λ ,
1

1−λ)-bicriteria approximation algorithms for MinSBCC on general
graphs. For the remainder of the section, we will use δ(S) to denote the capacity
of the cut (S, S) in G. We use S∗ to denote the minimum-size set of nodes such
that δ(S∗) ≤ B, i.e. (S∗, V \ S∗) is the optimum cut of capacity at most B.

The analysis of both of our algorithms is based on the following linear pro-
gramming (LP) relaxation of the natural integer program for MinSBCC. We
use a variable xv for every vertex v ∈ V to denote which side of the cut it is on,
and a variable ye for every edge e to denote whether or not the edge is cut.

Minimize
∑

v∈V xv

subject to xs = 1
xt = 0
ye ≥ xu − xv for all e = (u, v) ∈ E∑

e∈E ye · ce ≤ B
xv, ye ≥ 0

(1)

2.1 Randomized Rounding-Based Algorithm

Our first algorithm is based on randomized rounding of the solution to (1).

Algorithm 1. Randomized LP-rounding algorithm with parameter λ
1: Let (x∗, y∗) be the optimal solution to LP (1).
2: Choose � ∈ [1 − λ, 1] uniformly at random.
3: Let S = {v | x∗

v ≥ �}, and output S.

Theorem 1. The Randomized Rounding algorithm (Algorithm 1) outputs a set
S of size at most 1

1−λ times the LP objective value. The expected capacity of the
cut (S, S) is at most 1

λB.

Proof. To prove the first statement of the theorem, observe that for each v ∈ S,
x∗

v ≥ � ≥ 1− λ. Therefore
∑

v∈V x∗
v ≥

∑
v∈S x∗

v ≥ (1− λ)|S|.
For the second statement, observe that � is selected uniformly at random

from an interval of size λ. Furthermore, an edge e = (u, v) will be cut only if
� lies between x∗

u and x∗
v. The probability of this happening is thus at most

Unbalanced Graph Cuts 195

|x∗
u−x∗

v |
λ ≤ y∗

e

λ . Summing over all edges yields that the expected total capacity
of the cut is at most

∑
e

cey∗
e

λ ≤ 1
λB. Notice, that the above algorithm can be

derandomized by trying all values l = x∗
v, since there are at most |V | of those.

2.2 A Parametric Flow-Based Algorithm

Next, we show how to avoid solving the LP, and instead compute the cuts directly
via a parametric max-flow computation. This analysis will also show that in fact,
at most one of the two criteria is approximated, while the other is preserved.

Algorithm Description: The algorithm searches for candidate solutions among
the parametrized minimum cuts in the graph Gα, which is obtained from G by
adding an edge of capacity α from every vertex v to the sink t (introducing
parallel edges if necessary). Here, α is a parameter ranging over non-negative
values. Observe that the capacity of a cut (S, S) in the graph Gα is α|S|+ δ(S),
so the minimum s-t cut in Gα minimizes α|S|+ δ(S).

Initially, as α = 0, the min-cut of Gα is the min-cut of G. As α increases,
the source side of the min-cut of Gα will contain fewer and fewer nodes, until
eventually it contains the single node {s}. All these cuts for the different values
of α can be found efficiently using a single run of the push relabel algorithm.
Moreover, the source sides of these cuts form a nested family S0 ⊃ S1 ⊃ ... ⊃ Sk

of sets [17]. (S0 is the minimum s-t cut in the original graph, and Sk = {s}) .
Our solution will be one of these cuts Sj .

We first observe that δ(Si) < δ(Sj) if i < j; for if it were not, then Sj would
be a superior cut to Si for all values of α. If δ(Sk) ≤ B, then, of course, {s} is
the optimal solution. On the other hand, if δ(S0) > B, then no solution exists.
In all other cases, choose i such that δ(Si) ≤ B ≤ δ(Si+1). If δ(Si+1) ≤ 1

λB,
then output Si+1; otherwise, output Si.

Theorem 2. The above algorithm produces either (1) a cut S− such that
δ(S−) ≤ B and |S−| ≤ 1

1−λ |S∗|, or (2) a cut S+ such that δ(S+) ≤ 1
λB and

|S+| ≤ |S∗|.
Proof. For the index i chosen by the algorithm, we let S− = Si and S+ = Si+1.
Hence, δ(S−) ≤ B ≤ δ(S+).

First, observe that |S+| ≤ |S∗|, or else the parametric cut procedure would
have returned S∗ instead of S+. If S+ also satisfies δ(S+) ≤ 1

λB, then we are
done. In the case that δ(S+) > 1

λB, we will prove that |S−| ≤ 1
1−λ |S∗|.

Because S+ and S− are neighbors in our sequence of parametric cuts, there
is a value of α, call it α∗, for which both are minimum cuts of Gα∗

. Applying the
Lagrangian Relaxation technique, we remove the constraint

∑
e yece ≤ B from

LP (1) and put it into the objective function using the constant α∗.

Minimize α∗ ·
∑

v∈V xv +
∑

e∈E ye · ce

subject to xs = 1
xt = 0
ye ≥ xu − xv for all e = (u, v) ∈ E
xv, ye ≥ 0

(2)

196 A. Hayrapetyan et al.

Lemma 1. LP (2) has an integer optimal solution.

Proof. Recall that in Gα∗
we added edges of capacity α∗ from every node to the

sink. Extend any solution of LP (2) to these edges by setting ye = xv − xt = xv

for the newly added edge e connecting v to t. We claim that after this extension,
the objective function of LP (2) is equivalent to

∑
e∈Gα∗ yec

′
e, where c′e is the

edge capacity in the graph Gα∗
. Indeed, this claim follows from observing that

the first part of the objective of LP (2) is identical to the contribution that the
newly added edges of Gα∗

are making towards
∑

e∈Gα∗ yec
′
e.

Consider a fractional optimal solution (x̂, ŷ) to LP (2) with objective function
value L∗ =

∑
e∈Gα∗ ŷec

′
e. As this is an optimal solution, we can assume without

loss of generality that ye = max(0, xu − xv) for all edges e = (u, v). So if we
define wx =

∑
u,v:xu≥x≥xv

c′uv, then L∗ =
∫ 1

0 wxdx.
Also, for any x ∈ (0, 1), we can obtain an integral solution to LP (2) whose

objective function value is wx by rounding x̂v to 0 if it is no more than x, and
to 1 otherwise (and setting yuv = max(0, xu − xv)). Since this process yields
feasible solutions, we know that wx ≥ L∗ for all x. On the other hand, L∗ is a
weighted average (integral) of wx’s, and hence in fact wx = L∗ for all x, and any
of the rounded solutions is an integral optimal solution to LP (2).

Notice that feasible integral solutions to LP (2) correspond to s-t cuts in Gα∗
.

Therefore, by Lemma 1, the optimal solutions to LP (2) are the minimum s-t
cuts in Gα∗

. In particular, S+ and S− are two such cuts. From S+ and S−, we
naturally obtain solutions to LP (2), by setting x+

v = 1 for v ∈ S+ and x+
v = 0

otherwise, with y+
e = 1 if e is cut by (S+, S+), and 0 otherwise (similarly for

S−). By definition of α∗, both (x+, y+) and (x−, y−) are then optimal solutions
to LP (2). Thus, their linear combination (x∗, y∗) = � ·(x+, y+)+(1−�)·(x−, y−)
is also an optimal feasible solution. Choose � such that

� ·
∑

e∈E y+
e ce + (1− �) ·

∑
e∈E y−e ce = B. (3)

Such an � exists because our choice of S− and S+ ensured that δ(S−) ≤
B ≤ δ(S+). For this choice of �, the fractional solution (x∗, y∗), in addition
to being optimal for the Lagrangian relaxation, also satisfies the constraint∑

e y
∗
ece ≤ B of LP (1) with equality, implying that it is optimal for LP (1)

as well. Crudely bounding the second term in Equation (3) by 0, we obtain that
δ(S+) =

∑
e∈E y+

e ce ≤ B
� .

As we assumed that δ(S+) > B
λ , we conclude that � < λ. Because (x∗, y∗) is

an optimal solution to LP (1), it provides the lower bound
∑

v x
∗
v ≤ |S∗|, and the

fact that x∗
v ≥ (1− �)x−

v now implies that |S−| =
∑

v∈V x−
v ≤

|S∗|
1−� ≤

1
1−λ · |S∗|.

Hence, in this case, S− meets the capacity constraint, and exceeds the optimal
size by at most a factor of 1

1−λ .

Both of the above algorithms can be extended with simple modifications to
allow for node weights in addition to edge capacities.

Unbalanced Graph Cuts 197

3 Bounded Treewidth

As we saw in Section 2, the MinSBCC problem is NP-complete even on trees
when both node weights and edge capacities are allowed. However, if all nodes
have unit weights, then the problem can be solved in polynomial time for graphs
of bounded treewidth, via a dynamic programming algorithm. In order to present
the intuition behind our algorithm, we first describe it for trees, and then extend
it to graphs of bounded treewidth (see [19] for a review of tree decompositions).

3.1 An Algorithm for Trees

We root the tree at the source node s and direct all edges away from s. When
all edges have capacity 1, then clearly, only edges incident with s should be cut.
They must include the edge on the unique s-t path, and in addition, the edges
to the roots of the largest subtrees. Choosing these B edges gives the smallest
possible size for the s-side of the cut.

For the case of general edge capacities, consider the tree Tv rooted at a node
v, together with the edge ev into v. We define the quantity ak

v to be the smallest
total capacity of edges in Tv that must be cut if at most k nodes of Tv are to
be included in the source side of the cut. Notice that a0

v = cev . Also, as the sink
must always be excluded, we have ak

t = cet for all k.
For a leaf v, we have a0

v = cev , and ak
v = 0 for k > 0. For an internal node

v with children v1, . . . , vd, we can either cut the edge ev into v, or otherwise
include v and solve the problem recursively for the children of v, hence

ak
v = min

(
cev , min

k1≥0,...,kd≥0:
∑

ki=k−1

∑
i

aki
vi

)
for k > 0, v �= t.

Note that the optimal partition into ki’s can be found in polynomial time by a
nested dynamic programming subroutine that uses optimal partitions of each k
into k1 . . . kj in order to calculate the optimal partition into k1 . . . kj+1.

Once we have computed ak
s at the source s for all values of k, we simply pick

the smallest k∗ such that ak∗
s ≤ B.

3.2 An Algorithm for Graphs with Bounded Treewidth

Recall [19] that a graph G = (V,E) has treewidth θ if there exists a tree T , and
subsets Vw ⊆ V of nodes associated with each vertex w of T , such that:

1. Every node v ∈ V is contained in some subset Vw.
2. For every edge e = (u, v) ∈ E, some set Vw contains both u and v.
3. If ŵ lies on the path between w and w′ in T , then Vw ∩ Vw′ ⊆ Vŵ.
4. |Vw| ≤ θ + 1 for all vertices w of the tree T .

The pair (T, {Vw}) is called a tree decomposition of G, and the sets Vw will be
called pieces. It can be shown that for any two neighboring vertices w and w′ of
the tree T , the deletion of Vw ∩ Vw′ from G disconnects G into two components,
just as the deletion of the edge (w,w′) would disconnect T into two components.

198 A. Hayrapetyan et al.

We assume that we are given a tree decomposition (T, {Vw}) for G with
treewidth θ [5]. To make sure that each edge of the original graph is accounted
for exactly once by the algorithm, we partition the set E by mapping each edge
in it to one of the nodes in the decomposition tree. In other words, we associate
with each node w ∈ T a set Ew ⊆ E ∩ (Vw × Vw) of edges both of whose
endpoints lie in Vw, such that each edge appears in exactly one set Ew; if an
edge lies entirely in Vw for several nodes w, we assign it arbitrarily to one of
them. We will identify some node r of the tree T with s ∈ Vr as being the root,
and consider the edges of T as directed away from r.

Let W ⊆ T be the set of nodes in the subtree rooted at some node w,
EW =

⋃
u∈W Eu, and VW =

⋃
u∈W Vu. Also, let U,U ′ ⊆ Vw be arbitrary disjoint

sets of nodes. We define ak
w(U,U ′) to be the minimum capacity of edges from

EW that must be cut by any set S ⊆ VW such that S ⊇ U , S∩U ′ = ∅, the sink t
is not included in S (i.e., t /∈ S), and |S \U | ≤ k. But for the extension regarding
the sets U and U ′, this is exactly the same quantity we were considering in the
case of trees. Also, notice that the minimum size of any cut of capacity at most
B is the smallest k for which ak−1

r ({s}, ∅) ≤ B.
Our goal is to derive a recurrence relation for ak

w(U,U ′). At any stage, we
will be taking a minimum over all subsets that meet the constraints imposed by
the size k and the sets U,U ′. We therefore write Sk

w(U,U ′) = {S | U ⊆ S ⊆
Vw, S ∩U ′ = ∅, t /∈ S, |S| ≤ k}. The size of Sk

w(U,U ′) is O(2θ). The cost incurred
by cutting edges assigned to w is denoted by βw(S) =

∑
e∈Ew∩e(S,Vw\S) ce, and

can be computed efficiently.
If w is a leaf node, then we can include up to k additional nodes, so long as

the constraints imposed by the sets U and U ′ are not violated. Hence,

ak
w(U,U ′) = min

S∈Sk
w(U,U ′)

βw(S).

For a non-leaf node w, let w1, . . . , wd denote its children. We can include an
arbitrary subset of nodes, so long as we add no more than k nodes, and do not
violate the constraints imposed by the sets U and U ′. The remaining additional
nodes can then be divided among the children of w in any way desired. Once
we have decided to include (or exclude) a node v ∈ Vw, this decision must be
respected by all children, i.e., we obtain different sets as constraints for the
children. Notice that any node v contained in the pieces at two descendants of
w must also be in the piece at w itself by property 3 of a tree decomposition.
Also, by the same property, any node v from Vw that is not in Vwi (for some
child wi of w) will not be in the piece at any descendant of wi, and hence the
information about v being forbidden or forced to be included is irrelevant in the
subtree rooted at wi. We hence have the following recurrence:

ak
w(U,U ′) = min

S∈Sk
w(U,U′)

min
{ki}:

∑
ki=k−|S\U|

(
βw(S) +

d∑
i=1

aki
wi

(S ∩ Vwi , (Vw \ S) ∩ Vwi)
)
.

As before, for any fixed set S, the minimum over all combinations of ki values
can be found by a nested dynamic program.

Unbalanced Graph Cuts 199

By induction over the tree, we can prove that this recursive definition actually
coincides with the initial definition of ak

w(U,U ′), and hence that the algorithm
is correct. The computation of ak

w(U,U ′) takes time O(d · k · 2θ) = O(n2 · 2θ).
For each node, we need to compute O(n2 · 4θ) values, so the total running time
is O(n4 · 8θ), and the space requirement is O(n2 · 4θ). To summarize, we have
proved the following theorem:

Theorem 3. For graphs of treewidth bounded by θ, there is an algorithm that
finds, in polynomial time O(8θn4), an optimal MinSBCC.

3.3 A PTAS for the Node-Weighted Version

We conclude by showing how to extended the above algorithm to a polynomial-
time approximation scheme (PTAS) for MinSBCC with arbitrary node weights.

Suppose we want a (1 + 2ε) guarantee. Let S∗ denote the optimal solution
and OPT denote its value. We first guess W such that OPT ≤ W ≤ 2 OPT
(test all powers of 2). Next, we remove all heavy nodes, i.e. those whose weight is
more than W . We then rescale the remaining node weights wv to w′

v := �wvn
εW �.

Notice that the largest node weight is now at most n
ε . Hence, we can run the

dynamic programming algorithm on the rescaled graph in polynomial time.
We now bound the cost of the obtained solution, which we call S. The scaled

weight of the solution S∗ is at most
∑

v∈S∗�wvn
εW � ≤ n

εW OPT+n (since |S∗| ≤ n).
Since S∗ is a feasible solution for the rescaled problem, the solution S found by
the algorithm has (rescaled) weight no more than that of S∗. Thus, the original
weight of S is at most (OPT + εW). Considering that W ≤ 2 OPT , we obtain
the desired guarantee, namely that the cost of S is at most (1 + 2ε)OPT .

4 Applications

4.1 Epidemiology and Node Cuts

Some important applications, such as vaccination, are phrased much more nat-
urally in terms of node cuts than edge cuts. Here, each node has a weight wv,
the cost of including it on the s-side of the cut, and a capacity cv, the cost of
removing (cutting) it from the graph. The goal is to find a set R ⊆ V , not con-
taining s, of capacity c(R) not exceeding a budget B, such that after removing
R, the connected component S containing s has minimum total weight w(S).

This problem can be reduced to (node-weighted) MinSBCC in the standard
way. First, if the original graph G is undirected, we bidirect each edge. Now,
each vertex v is split into two vertices vin and vout; all edges into v now enter
vin, while all edges out of v now leave vout. We add a directed edge from vin to
vout of capacity cv. Each originally present edge, i.e., each edge into vin or out
of vout, is given infinite capacity. Finally, vin is given node weight 0, and vout is
given node weight wv. Call the resulting graph G′.

Now, one can verify that (1) no edge cut in G′ ever cuts any originally present
edges, (2) the capacity of an edge cut in G′ is equal to the node capacity of a

200 A. Hayrapetyan et al.

node cut in G, and (3) the total node weight on the s-side of an edge cut in G′ is
exactly the total node weight in the s component of the corresponding node cut
in G. Hence an approximation algorithm for MinSBCC carries to node-cuts.

4.2 Graph Communities

Identifying “communities” has been an important and much studied problem for
social or biological networks, and more recently, the web graph [14,15]. Different
mathematical formalizations for the notion of a community have been proposed,
but they usually share the property that a community is a node set with high
edge density within the set, and comparatively small expansion.

It is well known [21] that the densest subgraph, i.e., the set S maximizing
c(S)
|S| := c(S,S)

|S| can be found in polynomial time via a reduction to Min-Cut. On
the other hand, if the size of the set S is prescribed to be at most k, then the
problem is the well-studied densest k-subgraph problem [3,10,13], which is known
to be NP-complete, with the best known approximation ratio of O(n1/3−ε) [10].
We consider the converse of the densest k-subgraph problem, in which the density
of the subgraph is given, and the size has to be minimized.

The definition of a graph community as the densest subgraph has the disad-
vantage that it lacks specificity. For example, adding a high-degree node tends
to increase the density of a subgraph, but intuitively such a node should not be-
long to the community. The notion of a community that we consider avoids this
difficulty by requiring that a certain fraction of a community’s edges lie inside
of it. Formally, let an α-community be a set of nodes S with c(S)

d(S) ≥ α, where
d(S) is the sum of degrees of nodes in S. This definition is a relaxation of one
introduced by Flake et al. [14] and is used in [23]. We are interested in finding
such communities of smallest size.

The problem of finding the smallest α-community and the problem of finding
the smallest subgraph of a given density have a common generalization, which
is obtained by defining a node weight wv which is equal to node degree for the
former problem and to 1 for the latter. We show how to reduce this general
size minimization problem to MinSBCC in an approximation-preserving way.
In particular, by applying this reduction to the densest k-subgraph problem, we
show that MinSBCC is NP-hard even for the case of unit node weights.

Given a graph G = (V,E) with edge capacities ce, node weights wv, and a
specified node s ∈ V , we consider the problem of finding the smallest (in terms
of the number of nodes) set S containing s with c(S)

w(S) ≥ α. (The version where
s is not specified can be reduced to this one by trying all nodes s.) We modify
G to obtain a graph G′ as follows. Add a sink t, connect each vertex v to the
source s with an edge of capacity d(v) :=

∑
u c(v,u), and to the sink with an edge

of capacity 2αwv. The capacity for all edges e ∈ E stays unchanged.

Theorem 4. A set S ⊆ V with s ∈ S has c(S)
w(S) ≥ α if and only if (S, S ∪ {t})

is an s-t cut of capacity at most 2c(V) = 2
∑

e∈E ce in G′.

Unbalanced Graph Cuts 201

Notice that this implies that any approximation guarantees on the size of S
carry over from the MinSBCC problem to the problem of finding communities.
Also notice that by making all node weights and edge capacities 1, and setting
α = k−1

2 , a set S of size at most k satisfies c(S)
w(S) ≥ α if and only if S is a k-

clique. Hence, the MinSBCC problem is NP-hard even with unit node weights.
However, the approximation hardness of Clique does not carry over, as the
reduction requires the size k to be known.

Proof. The required condition can be rewritten as c(S)− αw(S) ≥ 0. As

2
(
c(S)− αw(S)

)
= 2c(V)−

(
c(S, S) +

∑
v∈S

d(v) + 2αw(S)
)
,

we find that S is an α-community iff c(S, S)+
∑

v∈S d(v)+2αw(S) ≤ 2c(V). The
quantity on the left is the capacity of the cut (S, S∪{t}), proving the theorem.

5 Conclusion

In this paper, we present a new graph-theoretic problem called the minimum-
size bounded-capacity cut problem, in which we seek to find unbalanced cuts
of bounded capacity. Much attention has already been devoted to balanced and
sparse cuts [24,22,18,2]; we believe that unbalanced cut problems will pose an
interesting new direction of research and will enhance our understanding of graph
cuts. In addition, as we have shown in this paper, unbalanced cut problems have
applications in disaster and epidemics control as well as in computing small dense
subgraphs and communities in graphs. Together with the problems discussed in
[11,12,25], the MinSBCC problem should be considered part of a more general
framework of finding unbalanced cuts in graphs.

This paper raises many interesting questions for future research. The main
open question is how well the MinSBCC problem can be approximated in a
single-criterion sense. At this time, we are not aware of any non-trivial upper
or lower bounds for its approximability. The work of [11,25] implies a (log2 n, 1)
approximation — however, it approximates the capacity instead of the size, and
thus cannot be used for dense subgraphs or communities. Moreover, obtain-
ing better approximation algorithms will require using techniques different from
those in this paper, since our linear program has a large integrality gap.

Further open directions involve more realistic models of the spread of diseases
or disasters. The implicit assumption in our node cut approach is that each social
contact will always result in an infection. If edges have infection probabilities, for
instance based on the frequency or types of interaction, then the model becomes
significantly more complex. We leave a more detailed analysis for future work.

Acknowledgments. We would like to thank Tanya Berger-Wolf, Venkat Gu-
ruswami, Jon Kleinberg, and Éva Tardos for useful discussions.

202 A. Hayrapetyan et al.

References

1. R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice Hall, 1993.
2. S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and

graph partitioning. In STOC, 2004.
3. Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense

subgraph. Journal of Algorithms, 34, 2000.
4. N. Bailey. The Mathematical Theory of Infectious Diseases and its Applications.

Hafner Press, 1975.
5. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small

treewidth. SIAM J. on Computing, 25:1305–1317, 1996.
6. M. Develin and S. G. Hartke. Fire containment in grids of dimension three and

higher, 2004. Submitted.
7. S. Eubank, H. Guclu, V.S.A. Kumar, M.V. Marathe, A. Srinivasan, Z. Toroczkai,

and N. Wang. Modelling disease outbreaks in realistic urban social networks.
Nature, 429:180–184, 2004.

8. S. Eubank, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, and N. Wang. Structure
of social contact networks and their impact on epidemics. AMS-DIMACS Special
Volume on Epidemiology.

9. S. Eubank, V.S.A. Kumar, M.V. Marathe, A. Srinivasan, and N. Wang. Structural
and algorithmic aspects of massive social networks. In SODA, 2004.

10. U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. In STOC,
1993.

11. U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum
bisection. SIAM J. on Computing, 31:1090–1118, 2002.

12. U. Feige, R. Krauthgamer, and K. Nissim. On cutting a few vertices from a graph.
Discrete Applied Mathematics, 127:643–649, 2003.

13. U. Feige and M. Seltser. On the densest k-subgraph problem. Technical report,
The Weizmann Institute, Rehovot, 1997.

14. G. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-organization of the web
and identification of communities. IEEE Computer, 35, 2002.

15. G. Flake, R. Tarjan, and K. Tsioutsiouliklis. Graph clustering techniques based
on minimum cut trees. Technical Report 2002-06, NEC, Princeton, 2002.

16. L. Ford and D. Fulkerson. Maximal flow through a network. Can. J. Math, 1956.
17. G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow

algorithm and applications. SIAM J. on Computing, 18:30–55, 1989.
18. N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-

(multi)cut theorems and their applications. SIAM J. on Computing, 1996.
19. J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley, 2005.
20. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for

emerging cyber-communities. In WWW, 1999.
21. E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehard

and Winston, 1976.
22. F.T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their

use in designing approximation algorithms. Journal of the ACM, 46, 1999.
23. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and

identifying communities in networks. Proc. Natl. Acad. Sci. USA, 2004.
24. D. Shmoys. Cut problems and their application to divide-and-conquer. In

D. Hochbaum, editor, Approximation Algorithms for NP-hard problems, pages 192–
235. PWD Publishing, 1995.

25. Z. Svitkina and E. Tardos. Min-max multiway cut. In APPROX, 2004.

Low Degree Connectivity in Ad-Hoc Networks

Luděk Kučera�

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
ludek@kam.ms.mff.cuni.cz

http://kam.mff.cuni.cz/ ludek

Abstract. The aim of the paper is to investigate the average case behav-
ior of certain algorithms that are designed for connecting mobile agents
in the two- or three-dimensional space. The general model is the follow-
ing: let X be a set of points in the d-dimensional Euclidean space Ed,
d ≥ 2; r be a function that associates each element of x ∈ X with a
positive real number r(x). A graph G(X, r) is an oriented graph with
the vertex set X, in which (x, y) is an edge if and only if ρ(x, y) ≤ r(x),
where ρ(x, y) denotes the Euclidean distance in the space Ed. Given a set
X, the goal is to find a function r so that the graph G(X, r) is strongly
connected (note that the graph G(X, r) need not be symmetric). Given
a random set of points, the function r computed by the algorithm of the
present paper is such that, for any constant δ, the average value of r(x)δ

(the average transmitter power) is almost surely constant.

1 Introduction

A motivation of a problem described in the abstract is obvious: elements of X can
be mobile agents or sensors in the plane or 3D space that have transmitters and
receivers; we assume uniform sensitivity of receivers and possibility of varying
the power of transmitters that determines the reach of a transmitter, denoted
by the function r. Due to space limitation, only most important references are
presented in the present abstract, and the reader is directed e.g. to [7] for a
detailed history of the problem.

It is known that the power necessary to induce the intensity of the electromag-
netic field equal to the sensitivity of receivers in the distance r is proportional to
rδ for certain δ. One measure of resources used to create a connected network is
the sum of powers of all transmitters of agents in X , i.e. P (X, r) =

∑
x∈X rd(x),

and we would try to create a strongly connected graph G(X, r) using a function
r minimizing P (X, r). It was proved [1] that the problem to decide whether for
a given x and P there is a function r such that P (X, r) ≤ P is NP-hard for any
d ≥ 2, and, unless P=NP, there is no polynomial time approximation scheme for
d ≥ 3 (the existence of PTAS for d = 2 is still open).

� Work supported by European Commission - Fet Open project DELIS IST-001907
“Dynamically Evolving Large Scale Information Systeme” and by the Czech Ministry
of Education, Youth and Sports Project MSM0021620838.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 203–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

204 L. Kučera

It was also proved in [1] that if d = 2, Ω(nδ), whereδ is the smallest distance
of two different elements of X , is the lower bound for the problem, and there is
a polynomial time algorithm that constructs a function r such that P (X, r) =
O(Δ2), whereΔ is the largest distance among two elements. As a consequence,
if points are within a square of side L, then there is r such that P (X, r) =
O(L2), i.e. it is at most proportional to the area of the square. Similar bounds
could be expected for larger dimension d. In the present paper we are going to
investigate the case when X is a collection of N points distributed uniformly and
independently at random in the d-dimensional cube [0, L)d. In such a case it has
been proved for d = 2 in [1] that Ω(L2) is a lower bound for P (X, r), which means
that the expected behavior of the algorithm presented in [1] is asymptotically
tight. However, the algorithm requires global knowledge of a configuration and
information that often is not available, e.g. the coordinates of points.

In view of the nature of the main application, simple local methods are
required to solve the problem. The simplest model is a threshold method: in the
case r is constant, i.e. r(x) is the same for all nodes x. There is the smallest r0

such that the corresponding graph is connected. Unfortunately, the total power
of such a network is too high, when compared to the bound derived in [1], because
it is obviously

r0 ≥ max
uinX

min v ∈ X, v �= uρ(u, v),

and the mean of the max-min expression on the right side, the largest nearest-
neighbor distance, for a uniformly and independently distributed random set X
is Θ(L d

√
logN/N), which means that P (X, Tr0(X)) is likely to be Θ(Ld log N),

much larger that the O(Ld) bound that follows from [1].
The explication is quite simple and follows from the expected evolution of

connectivity of Tr(X) as r increases. There are two threshold values of r. If r is
smaller than the first threshold, components of the graph are likely to be small.
For r between the thresholds the graph is likely to have one giant component
(more than one half of nodes), but also a large number of smaller components.
Finally, above the second threshold the graph is likely to be connected. The
giant component threshold corresponds to O(Ld) power, while the connectivity
threshold corresponds to O(Ld log N) power. This means that the connectivity
threshold is too large for most nodes - increasing the power of nodes in the
giant component (interconnected using low power) is not necessary and only
creates undesirable interference among transmitters and complicates wavelength
assignment.

A similar effect can be observed for many other random situations. The
Erdös-Rényi random graph Gn, p is almost surely highly disconnected for p <<
1/n, has one giant component for 1 < p < logn/n, and it is likely to be con-
nected for p > logn/n. The gap between the giant component threshold and the
connectivity threshold is also quite large.

It is well known that random D-regular graphs of Erdös-Rényi type are likely
to be connected for any D ≥ 3. Let us therefore consider the following model,
called a neighborhood model, which is a geometrical analogy of a regular graph:
given a random set X of points of the d-dimensional unit cube and a number

Low Degree Connectivity in Ad-Hoc Networks 205

D (which might depend on the size of X), N̂D(X) is a collection of all oriented
pairs (x, y) of elements of X such that y is among the D nearest neighbors of
x. This graph is obviously equal to R(X, r), where r(x) is the distance of x and
its D-th nearest neighbor. Since the relation is asymmetric in general, we also
define two symmetric variants: (x, y) ∈ ND(X) if either (x, y) and/or (y, x) is in
N̂D(X), and (x, y) ∈ N̄D(X) if both (x, y) and (y, x) are in N̂D(X). Obviously
N̄D(X) ⊆ N̂D(X) ⊆ ND(X).

Unfortunately, it was proved in [7] that if D is smaller than 0, 074 logn, then
even (X,ND(X)) is likely to be disconnected, which means that the solution
obtained by the algorithm is asymptotically as bad as for the threshold model.

The aim of the paper is investigate another algorithm, which is a modification
of the neighborhood model and makes use of the fact that the giant component
is likely to appear for small degrees of vertices of a random geometric graph.
The algorithm works in rounds until a connected graph is obtained, and the i-th
round is as follows:

In the i-th round, every vertex x, which is not yet in the giant component,
increases the power of its transmitter to reach the i-th nearest point y of the set
X , and asks y to increase power, if necessary, to be able to call back.

The idea of the algorithm is that a constant degree is sufficient to obtain a
giant component; moreover, the number of nodes that are outside the giant com-
ponent decreases exponentially with their degree, and therefore only a very small
proportion of vertices increases their degree (the number of vertices within the)
reach of their transmitter) to larger values, and therefore the average transmitter
power is constant.

There is one technical problem connected with the algorithm: a node x out-
side the giant component asks its i-th neighbor to adjust the power to be able
to reach x, and the neighbor might happen to be in the giant component. In
this way even vertices of the giant component increase degrees. However, we will
show that the number of vertices that are not in the interior of the giant compo-
nent (not sufficiently far from outside vertices) is quite small, and therefore this
feature of the algorithm does not asymptotically increase the power to create a
connected network.

The paper does not address the question of communication protocols nec-
essary to implement the algorithm. Let us mention e.g. that a synchronized
action of all agents is assumed in the analysis, and even though it is conjectured
that an asynchronous version has essentially the same properties, this and many
other problems remain open. On the other hand it is clear that the algorithm is
well-adapted for distributed protocols using local information only.

2 The Algorithm

Given x ∈ X , denote by ngbh(x, i) the i-th nearest neighbor of x (and we put
ngbh(x, 0) = x); moreover, if ∈ X , then n(X, r, x) will denote the size of the
strong component of x in G(X, r):

As mentioned above, the following algorithm is investigated in the paper

206 L. Kučera

begin;
d← 0;
for all x ∈ X do r(x) = 0;
while G(X, r) is not strongly connected do begin

d← d + 1;
for all x ∈ X do compute n(X, r, x);
for all x ∈ X do begin

y = ngbh(x, d);
if x and y are in different components and n(X, r, x) ≤ n(X, r, y) then begin

r(x) ← ρ(x, ngbh(x, d));
if r(y) < r(x) then r(y) ← r(x);
end;

end;
end;

end.

The increase of r(x) in the first line of the body of the if x and y . . . statement
will be called an active increase, while the increase of r(y) is passive. Note that if
x is in the giant component, then either y is also in the giant component or the
component of y is smaller than that of x, and therefore r(x) no more increases
actively.

The main goal of the paper is to prove the next theorem

Theorem 1. Given a set of N points distributed uniformly and independently
at random in the cube [0, L)d, where L is a fixed positive real number, then∑

x∈X rd(x) = O(Ld), where r is the function computed by the above algorithm.

3 Outline of Analysis

While the analysis of the algorithm will be given for the Euclidean space of a
general dimension d, we will first explain the structure of the proof for d = 2 to
make it easier to understand our method. A situation to be analyzed consists of
N points randomly distributed in a uniform and independent way in the square
[0, L) × [0, L) (the cube[0, L)d in general - the use of semi-closed intervals is
purely formal and avoids intersection of subsquares used for a tessalation of the
cube).

It is possible to prove that, with large probability, during the whole compu-
tation of the algorithm the degree of any vertex remains bounded by c log N and
the power of any vertex is at most c′Ld log N/N for certain constants c, c′. There-
fore it is sufficient to prove the O(Ld) bound to the sum of powers of vertices
from a certain set A that involves all but O(N/ log N) vertices of X , because
the sum of the power of exceptional vertices outside of A would be O(Ld).

We will use a technique called de-Poissonization that will be described later,
see also e.g. [5].

A great technical advantage of a Poisson process is that random events in
disjoint regions of the square are independent. As already mentioned, we will

Low Degree Connectivity in Ad-Hoc Networks 207

use a Poisson process of such intensity, that the expected number of generated
points is N . Given an integer Q, the square is divided into K×K disjoint blocks,
where K is chosen in such a way that the expected number of points generated in
one block is approximately Q. The set of blocks corresponds to a square lattice
K = {0, . . . , K/1}×{0, . . . , K/1}. Each block is in turn divided into 7×7 square
cells of the same size, see Fig.1. Consequently, the expected number of points
generated in each cell is approximately Q7−2. We will say that a cell is open
if there is at least one point generated by a Poisson process in a cell, but the
number of such points is at most 2Q7−2 (i.e. about twice the expectation). A
block is called open if all its cells are open.

Fig. 1. Two blocks and their cells

The structure of blocks translates a Poisson process in the square area of the
Euclidean space into a Bernoulli process in the lattice K, which independently
opens sites of the lattice with certain probability. The lattice percolation theory
will be used to prove that high number of open sites of the lattice means that a
very large connected cluster of open sites is likely to exist.

Let X be a set generated by a Poisson process, D = 2Q+1. Define a symmet-
ric relation R̄ on X as follows: given x, y ∈ X (x, y) ∈ R̄ iff y is among D nearest
neighbors (with respect to the Euclidean distance) of x and in the same time x
is among the D nearest neighbors of y. Note that if x belongs to an open block
B, the D nearest neighbors of x must involve at least one point of X outside of
B, because an open block could contain at most 2Q points of X . Moreover, if
x is in the central cell of B (black in Fig. 1), the distance from x to any other
point of the central cell or a cell that has a common face with the central cell
(gray in Fig. 1) is smaller than the distance from x to any point outside of B.
Therefore all points of the central cell and neighboring cells must be among the
D nearest neighbors of a point of the central cell of an open block.

It follows that points in the central cell of an open block form a clique of the
graph (X, R̄). Moreover, if two open blocks are neighbors, see Fig. 2, than the
same argument could be applied to all 6 cells that are between the central cells
of the blocks (gray in Fig. 2) to prove that the union of points in these cells form
a connected subset of X in the graph (X, R̄), because each such cell is in the
middle of a collection of 7×7 open cells. Finally, let us suppose that all 8 blocks
that are around an open block B (4 blocks sharing a face with B and 4 blocks
meeting B by corners) are open as well. Such a block B and the corresponding
lattice site will be called ∗-open. It is clear that in such a case all cells of B are

208 L. Kučera

surrounded by 7 × 7 open cells, and therefore all points of X in the block B
form a connected component of (X, R̄) (cliques within the cells and all possible
connections among points of two neighboring cells).

Fig. 2. Connection of the center cells of two neighboring blocks

We will adapt known results of the percolation theory to prove that if Q
increases, the number of lattice sites, which are not ∗-open sites of the largest
cluster of open sites of the lattice, is very small. This does not imply directly a
similar result about the size of the largest component of the graph (X, R̄). First,
even if the number of closed blocks is small, such blocks could contain in general
an arbitrary number of points of X , because no upper bound is imposed on a
block that is not open. Therefore we will prove directly that the number of cells
that contain more than s ≥ 2Q7−2 Poisson points decreases exponentially with
s and therefore the number of points in such cells is not too important, because∑

s sc−s is convergent for any constant 0 < c < 1.
Moreover, any open lattice site corresponds to at least a clique of points of

the central cell of the corresponding block, and if two open lattice sites are con-
nected in the lattice, than the corresponding central cliques are connected via
paths through cells between the central cells of the blocks. Hence connectivity
in the lattice translates into connectivity in the geometric graph, but the com-
ponent corresponding to a connected cluster of open sites of the lattice need not
contain all points of the corresponding blocks. However, all points of blocks that
correspond to ∗-open sites of a cluster do belong to a component of the geomet-
ric graph, and therefore a connected cluster with a large number of ∗-open sites
does correspond to a large component of the graph (X, R̄).

4 Lattices

Given positive integers K and d, we denote by {0, . . . , K − 1}d the set of all
d-tuples (i1, . . . , id), where i1, . . . , id ∈ {0, . . . , K − 1}. If i = (i1, . . . , id) and
j = (j1, . . . , jd) are two d-tuples of integers (not necessarily from {0, . . . , K−1}d),
then we write i− j = (i1 − j1, . . . , id − jd), ||i||1 = |i1|+ · · · + |id| and ||i||∞ =
max(i1, . . . , id).

A Bernoulli process with probability p in a finite set A is a random subset B
of the set A such that the probability that a given a ∈ A belongs to B is 1 − p
and these probabilities are independent for different elements of A. Elements of

Low Degree Connectivity in Ad-Hoc Networks 209

B are called open, elements of A − B are called closed. Note that p is used to
denote the probability that an element is closed.

Given two sites i, j ∈ {), . . . , K/1}d, we say that they are neighbors (∗-
neighbors, resp.), if ||i − j||1 ≤ 1 (||i − j||∞ ≤ 1, resp.) Given a set C ⊆
{0, . . . , K − 1}d, we say that C is connected if for each two i, j ∈ C there is
a sequence i(0), . . . , i(k) of elements of C such that i(m−1) and i(m) are neighbors
for m = 1, . . . , k. A ∗-interior of C is the seto of all sites i ∈ C such that all
∗-neighbors of i are elements of C as well. A cluster (or a component) of a set
B ⊆ {0, . . . , K/1}d is any connected subset C ⊆ B such that c′ is not connected
for any C ⊂ C′ ⊂ B.

The following theorem is a generalization of a percolation bound proved by
[2] (see also [5], Theorem 9.8):

Theorem 2. There exist C > 0, c > 0 andp0 > 0 such that for each positive
integers K, d, and a real p, log−1 K < p < p0, if sites of the lattice {0, . . . , K −
1}d are independently set to be open with probability 1 − p, then the probability
that the ∗-interior of the largest open cluster has at least Kd(1 − Cp) elements
is at least 1− e−c(K/ log K)d−1

.

The meaning of the theorem is that, with large probability, the number of
“bad” sites that are either closed or open, but in smaller clusters or outside of
the ∗-interior of the largest cluster is at most C times the number of closed sites,
and C does not depend on other parameters (others than the dimension d).

Outline of Proof: If p is the probability that a site of the lattice is closed, the
expected number of closed sites is Kdp and using e.g. the Chernoff bound, it is
possible to prove that it is very unlikely that there are more than 2Kdp closed
sites. Each closed site can be a ∗-neighbor of at most 3d − 1 open sites, and
therefore all but at most 2 · 3d+1Kdp sites of the largest open cluster are in the
∗-interior. It is therefore sufficient to prove the bound for the largest cluster and
then to increase C by 2 · 3d+1 to get the bound for the ∗-interior.

The main difference of the above theorem and the result of [2] is that the
latter shows that for a fixed (i.e. not dependent on K) ε > 0 there is a fixed but
unspecified p0 > 0 such that if p < p0, then the size of the largest open cluster
is at least Kd(1 − ε) with very large probability (of the same order as in the
theorem above), while we assume that p can be chosen as min(p0, ε/C) for some
constant C no matter if ε is fixed or dependent on K. The proof of the theorem
is practically identical with the proof of the result of [2], as presented in [5], it
is only necessary to check details of the bounds to the distribution of the size of
the closed ∗-connected cluster containing the origin in the infinite d-dimensional
lattice with sites closed independently with probability p (and slightly modify
the probability bounds).Let Y be the size of such a cluster. p should be chosen
so that the two following propositions are satisfied (see [5], page 186):
Prob(Y = n) ≤ 2−n, and
E(Y d/(d−1)) < δ1ε/2, where δ1 = ((1− (2/3)1/d)(2d))d/(d−1).

210 L. Kučera

We will show that this is satisfied if

p ≤ p0 = min
(

δ1ε

2γΓ
,

1
2Γ

)
, where γ =

∞∑
i=0

)i + 1)d/(d−1), Γ = 23d

.

The proof of both propositions is based on Peierls argument [4] (see also
[5], Lemma 9.3), that we cite in a restricted form: The number of n-element
∗-connected subsets of the d-dimensional infinite lattice is at most 23dn = Γ n.

Given a fixed n-element subset of the infinite lattice, and assuming that the
probability that a site is closed is p, and these probabilities are independent,
the probability that all its elements are closed is pn. Together with the Peierls
bound, the probability of the existence of a closed n-element set containing the
origin (i.e.Prob(Y = n)) is at most (Γp)n ≤ 2−n. Moreover

E(Y d/(d−1)) =
∞∑

n=0

nd/(d−1)Prob(Y = n) =
∞∑

n=1

nd/(d−1)(Γp)n ≤

≤ Γp
∞∑

i=0

(i + 1)d/(d−1)2−i = γΓp ≤ δ1ε

2
.

It is therefore sufficient to choose C in the theorem equal to δ1/(2γΓ).
The restriction p logK ≥ 1 is used to obtain sufficiently strong probability

bound that follows from the proof given in [2]. ♣

5 Poisson Process and De-Poissonization

The technique of de-Poissonization is a very useful tool when investigating prop-
erties of a random set of N points in a rectangular or otherwise shaped subset of
the Euclidean space. While very general (but also very complicated) theorems
could be found e.g. in [5], it can be shown that it is quite easy to prove a result
that is sufficient for purposes of the present paper. Essentially a uniform contin-
uous Poisson process is executed with λ chosen in such a way that N is the most
likely size of the set generated by the process, and the process is independently
repeated c

√
N times for a sufficiently large constant c, which guarantees that,

with large probability, at least once is generated a set of N points. Hence, if
the output of the Poisson process has certain property P with probability 1− p,
where p = o(

√
N), then the probability that all repetitions of the process have

the property P is at least 1 − pc
√

N = 1 − o(1), which gives a lower bound for
the probability that a random set of N points has the property P . Details will
be given in a full paper.

6 The Analysis of the Algorithm

Suppose that Q is a positive real number. Choose an odd integer J such that√
3 + d < (J − 1)/2. If d = 2, 345, it is sufficient to choose (JK)d subcubes of

Low Degree Connectivity in Ad-Hoc Networks 211

side size �, called cells; the cell C(i1, . . . , id) where i1, . . . , id ∈ {0, . . . , JK − 1},
is the collection of all points x = (x1, . . . , xd) such that xk − �ik

∈ [0, �) for each
k = 1, . . . , d. A lattice cell is any cell of the form C(Jj1 +(J−1)/2, . . . , Jjd

+(J−
1)/2), where j1, . . . , jd are non-negative integers smaller than K. A distance of
two cells B(i1, . . . , id) and B(i′1, . . . , i

′
d) is

∑d
k=1 |ik − i′k| and their ∗-distance is

max(|i1 − i′1|, . . . , id − i′d|).
A block around a cell C is a union of all cells in ∗-distance at most (J − 1)/2

from C. C is called the central cell of the block around C. A lattice block is
any block around a lattice cell. Each block around a lattice cell is clearly a
hypercube formed by Jd cells, the cell C being in the middle of the block. A
block around a general cell, which is close to the boundary of the hypercube
might contain less cells. Note that different lattice blocks are disjoint and that
the hypercube [0, L)d is the union of all lattice blocks. A block around a lattice
cell C(Jj1 + (J − 1)/2, . . . , Jjd

+ (J − 1)/2) will be denoted by B(j1, . . . , jd).
This notation gives a one-to-one correspondence of lattice blocks and sites of the
lattice {), . . . , K − 1}d.

We will say that two different lattice blocks are neighbors (∗neighbors, resp.)
if the distance (∗-distance, resp.) of their central cells is J . Note that a block
B has generally (and at most) 2d neighbors (that share a face with B) and 2d

∗-neighbors (that have at least a common corner with B).
Given a finite set X of points of the hypercube [0, L)d, we say that a cell

C is open (with respect to X) if C contains at least one and at most 2QJ−d

elements of X . A block is open if all its cells are open. In this way a set X also
determines open sites of the lattice {), . . . , K − 1}d. Note that a Poisson process
in the hypercube is transformed in this way to a Bernoulli process in the lattice.

Let R̂ be the following relation on the set X : (x, y) ∈ R̂ iff y is among
the D nearest neighbors of x from the set X , and define R̄ by (x, y) ∈ R̄ iff
(x, y), (y, x) ∈ R̂.

Let C be a cell, B be a block around C. Suppose that B is open. Let x be an
element of C. Since B is open, it contains at most D − 1 elements, and at least
one point z among the D nearest neighbors of x is outside of B. The distance
between x and such a point z is at least �(J − 1)/2 and therefore all points of X
that are at distance at most �

√
3 + d from x are among the D nearest neighbors

of x. Such points involve all points of X that belong to the cell C and to any
cell which is in distance 1 from C. In other words, if the block around C is open,
points of X in C form a clique of the graph (X, R̄) and if x ∈ C and y is a point of
X in a cell in distance 1 from C, then (x, y) ∈ R̂. In Fig. 1, (x, y) ∈ R̂ whenever
x is in a black cell and y is either in a black cell or a grey cell of the same block.

Now let us suppose that B′ and B′′ are two open lattice blocks that are
neighbors. This means that their central cell C(i′1, . . . , i′d) and C(i′′1 , . . . , i′′d) are
such that there is k, |i′k − i′′k| = J and i′r = i′′r for r �= k. Consider the central
cells of the blocks and any cell that is between them, i.e. a cell C(i1, . . . , id) such
that ir = i′r for r �= k and ik is between the numbers i′k and i′′k. It is clear that
a block around any such cell is open, because it is contained in the union of the
blocks B′ and B′′. Therefore points of X in any such cell forms a clique of R̄ and

212 L. Kučera

are R̄-connected with any point in a neighboring cell of this collection, which
means that points of X in those cells form a connected subset of (X, R̄).

Finally, let us suppose that B is an open lattice block and all blocks that
are its ∗-neighbors are open as well. In this case a block around any cell of B
is open, because it is included in the union of the block B and its ∗-neighbors.
This means that all elements of X that belong to the block B form a connected
subset, because each such point is R̄-connected to any point of X in its and
neighboring cells.

As a consequence, given an open connected cluster in the lattice {), . . . , K −
1}d, there is a component of the graph (X, R̄), which contains all points of X
that are either in the central cell of a lattice block corresponding to a site of
the cluster and/or in any cell of a lattice block corresponding to a site of the
∗-interior of the cluster.

Let us now estimate the probability that a cell is open with respect to a
Poisson process of intensity λ = NL−d (which guarantees that the expected size
of the generated set is N). Note that the probability that a block is not open is
equal to the sum of the probabilities that its cells are not open, i.e. at most Jd

times more than the bound given by the following theorem.

Theorem 3. The probability that a cell is not open with respect to a Poisson
process of intensity λ = NL−d is at most eq + 2e(e/4)q, where q = QJ−d.

Proof. It is

λ�d = N
�d

Ld
= N

Ld

JdKdLd
=

NQ

JdN
= QJ−d = q.

The probability that a cell receives m points is

pm =
(λ�d)m

m!
e−λ�d

=
qm

m!
e−q.

The probability that no point falls into the cell is p0 = e−q. If m ≥ 2q,
2pm+1 ≤ pm and therefore pm + pm+1 + · · · ≤ 2pm. Finally if m = �2q�, then
m! ≥ (m/e)m and

pm ≤ qm

m!
e−q ≤

(qe

m

)m

≤
(e

2

)m

e−q = em−q2−m ≤ e2q+1−q2−2q = e
(e

4

)q

.

Note that q = (D − 1)/2. Given a constant k, there is c > 0 such that if
D ≥ c log N , then e−q + 2e(e/4)q = O(N−(1+k)) and therefore the expected
number of closed cells is O(N−k). Using Markov inequality, the probability that
there is a closed cell is O(N−k) as well. In such a case the relation R̄ is connected
with high probability, and the same is true for the result of binomial process (with
slightly smaller probability), using the de-Poissonization theorem.

Theorem 4 makes it also possible to estimate the size of the largest component
of the geometric random graph (X,ND(X)) for a random set X of N points of
the cube [0, L)d.

Low Degree Connectivity in Ad-Hoc Networks 213

Theorem 4. There exist constants c > 1 and q > 0 such that, with probability
1− o(1), if cD < q log N , then the size of the largest component of (X,ND(X)),
where X is a set of N points distributed uniformly and independently at random
in the cube [0, L)d, is at least N(1−O(κD)), where κ =

√
e/4.

Outline of Proof: In view of Theorem 3, it is sufficient to prove the theorem
with the probability bound 1 − o(N−1/2) for the case when X is the result of
a Poisson process in [0, L)d with intensity λ = NL−d. In this proof we will not
exactly compute probabilities of events, but in all cases such probabilities could
be bounded by Chernoff bound that is strong enough for purposes of the proof.

Choose Q so that 2JdQ + 1 = D, denote q = QJ−d. Note that q = (D −
1)/2. Consider a partition into Kd blocks as defined in the beginning of this
section. The probability that a block is not open is O(κD) in view of Theorem
4. If κD > log−1 K, it follows from Theorem 2 that at most KdCκD lattice
sites are open sites that are not in the ∗-interior of the largest cluster, and the
corresponding open blocks contain at most 2JdQKDCκD = 2JdNCκD elements
of X . As mentioned above, all remaining points of open blocks belong to one
large connected component of the graph. The expected number of closed blocks
is at most KdκD ≥ Nd/ log K ≥ ND/ logN , and therefore the Chernoff bound
shows that, with very large probability, the number of closed blocks is less than
2KdκD. The number of open cells in closed blocks is therefore bounded by
2JdKdκD and the number of nodes of the graph in such open cells is therefore
at most 4QKdκD = 4NκD. The number of nodes in closed cells cannot be
bounded by a direct use of the same method, as there is no upper bound to the
number of graph nodes in such a cell.

However, the probability pk that a given cell contains k ≥ 2QJ−d elements
of X is qke−q/k!, the expected number of such cells is (KJ)dpk, and either
k(KJ)dpk is very small or the Chernoff bound shows that the actual number of
such cells is very likely to be at most 2(KJ)dpk and therefore there are at most
2k(KJ)dpk nodes of the graph in such cells. If k ≥ 2q, then

(k + 1)pk+1

kpk
=

k + 1
k

q

k + 1
≤ 4

3
1
2

=
2
3
,

and therefore the number of nodes of the graph in all closed cells is very likely
to be at most∑

k>2q

2k(KJ)dpk = 2(KJ)dp2q
1

1− 2/3
= 6(KJ)dp2q = 6

N

q
p2q ≤ 6Nκq,

which proves the theorem. ♣

Theorem 5. Given x ∈ X, let D(x) be the smallest D such that x belongs to
a giant component of (X, N̄D(X)), �(x) be the distance of x and its D(x)-th
nearest neighbor. There is a constant c such that the expectation of the sum∑

x∈X(D(x) + 1)�d(x) is at most cLd.

The proof of the theorem follows easily from the previous theorem that bounds
the number of points outside of the largest component of (X, N̄D(X)) for a given

214 L. Kučera

D, but its proof is not given in this abstract. Now, let us suppose that (x, y) ∈
ND(X). If x and y are in the same component of N̄D−1(X), then (x, y) need not
be added to the graph, because it would not change the structure of connected
components. Let x and y belong to different components, and assume without
loss of generality that the component of x is not larger than the component of
y. Then the algorithm increases r(x) to involve y among neighbours of x and,
if necessary, increases r(y) to add the edge (y, x) as well. Thus, the structure of
components of the graph created by the algorithm remains at least as coarse as
the structure of components of N̄D−1(X). Note that the term (D(x) + 1) in the
sum is used to cope with the fact that a passive increase of r(y) is charged to
the account of x. All this proves Theorem 1.

7 Experiments

Experiments performed on different uniform random subsets of a square con-
firmed what was already observed many years ago: six [3] or eight [6] is a magic
number of neighbors that are sufficient to obtain a connected network in prac-
tically all instances. Theoretical results are mostly of asymptotic nature, but
it seems from simulations that many millions of nodes would be necessary to
get a non-negligible probability of generating a single small isolated cluster in
a network where each node connects to 6 nearest neighbors. However, it is also
clear that connecting to 4 or 5 nearest neighbors is sufficient to obtain a giant
component that covers most vertices, and therefore the algorithm presented in
Section 2 would use smaller average degree of a network than could be obtained
by constant degree algorithm. Complete results of experiments will be presented
in the full version of the paper.

References

1. Clementi, A., Penna, P., Silvestri, R., On the Power Assignment Problem in Radio
Networks, Mobile Networks and Applications, 9 (2004), 125-140.

2. Deuschel, J.-D., Pisztora, A., Surface order large deviations fo high-density perco-
lation, Probability Theory and Related Fields, 104 (1996), 467-482.

3. Kleinrock, L., Silvester, J.A., Optimum transmission radii for packet radio networks
or why six is a magic number, IEEE Nat. Telecommun. Conf., 1978, pp. 4.3.1-4.3.5.

4. Peierls, R., On Ising’s model of ferromagnetism, Proceedings of the Cambridge Philo-
sophical Society, 36, 477-481.

5. Penrose M., Random Geometric Graphs, Oxford University Press, 2003.
6. Takagi, H., Kleinrock, L., Optimal transmission ranges for randomly distributed

packet radioterminals, IEEE Trans. Commun., COM-32 (1984), 246-257.
7. Xue, F., Kumar, P.R., The number of neighbors needed for connectivity of wireless

networks, Wireless Networks, 10 (2004), 169-181.

5-Regular Graphs are 3-Colorable
with Positive Probability�

J. Dı́az1, G. Grammatikopoulos2,3, A.C. Kaporis2, L.M. Kirousis2,3, X. Pérez1,
and D.G. Sotiropoulos4

1 Universitat Politècnica de Catalunya, Departament de Llenguatges i Sistemes
Informàtics, Campus Nord – Ed. Omega, 240, Jordi Girona Salgado,

1–3, E-08034 Barcelona, Catalunya
{diaz, xperez}@lsi.upc.edu

2 University of Patras, Department of Computer Engineering and Informatics,
GR-265 04 Patras, Greece

{grammat, kaporis, kirousis}@ceid.upatras.gr
3 Research Academic Computer Technology Institute,

P.O. Box 1122, GR-261 10 Patras, Greece
4 University of Patras, Department of Mathematics, GR-265 04 Patras, Greece

dgs@math.upatras.gr

Abstract. We show that uniformly random 5-regular graphs of n ver-
tices are 3-colorable with probability that is positive independently of n.

1 Introduction

The problem of finding the chromatic number of a graph has been a cornerstone
in the field of discrete mathematics and theoretical computer science. Recall that
the chromatic number of a graph is the minimum number of colors needed to
legally color the vertices of the graph, where a coloring is legal if no two adjacent
vertices share the same color. The problem is trivial for two colors but became
difficult for three or more colors. Due to the difficulty of the problem, a large
effort has been made in looking into structural properties of the problem, in
the hope of finding more efficient procedures which apply to larger families of
graphs.

An active line of research has been the characterization of classes of graphs
due to their chromatic number. In particular, intense effort has been devoted to

� The 1st, 2nd, 4th and 5th authors are partially supported by Future and Emerging
Technologies programme of the EU under contract 001907 “Dynamically Evolving,
Large-Scale Information Systems (DELIS)”. The 1st author was partially supported
by the Distinció de la Generalitat de Catalunya per a la promoció de la recerca, 2002.
The 3rd and 4th authors are partially supported by European Social Fund (ESF),
Operational Program for Educational and Vacational Training II (EPEAEK II), and
particularly Pythagoras. Part of the research of the 4th author was conducted while
visiting on a sabbatical the Departament de Llenguatges i Sistemes Informàtics of
the Universitat Politècnica de Catalunya.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 215–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

216 J. Dı́az et al.

the study of the chromatic number on random structures. One active approach
consists in finding the threshold pk of k-colorability for the binomial model
Gn,pk

. An early result in this line is presented in [10], where it is shown that,
for any d ∈ N, d > 0, ∃k ∈ N such that asymptotically almost surely (a.a.s.) the
chromatic number of Gn,d/n is either k or k+1. Recall that a sequence of events
En holds a.a.s. if limn→∞ Pr [En] = 1. Further results on the particular threshold
p3 for 3-colorability can be found in the introduction of [2].

A related approach is to consider the chromatic number of random d-regular
graphs (i.e., graphs for which every vertex has degree d). For a comprehensive
review on random regular graphs, the reader is referred to [14].

For d ≥ 6, a simple counting argument shows that d-regular graphs are not
3-colorable, a.a.s. In fact, Molloy and Reed [12] proved that 6-regular graphs
have chromatic number at least 4, a.a.s. Achlioptas and Moore [2] proved that
4-regular graphs have chromatic number 3 with uniform positive probability
(w.u.p.p.), where a sequence of events En holds w.u.p.p. if lim infn→∞ Pr [En] >
0. The proof was algorithmic in the sense that a backtracking-free algorithm
based on Brelaz’ heuristic was designed and shown to produce a 3-coloring
w.u.p.p. Subsequently, Achlioptas and Moore [3] showed that a.a.s. the chro-
matic number of a d-regular graph (d ≥ 3) is k or k + 1 or k+ 2, where k is the
smallest integer such that d < 2k log k. They also showed that if furthermore
d > (2k − 1) log k, then a.a.s. the chromatic number is either k + 1 or k + 2.
This result however gives no information for the chromatic number of either
4-regular or 5-regular graphs, apart from the known fact that a.a.s. the former
have chromatic number either 3 or 4 and, the latter either 3 or 4 or 5. Shi and
Wormald [13] showed that a.a.s. the chromatic number of a 4-regular graph is
3, that a.a.s. the chromatic number of a 6-regular graph is 4 and that a.a.s. the
chromatic number of a 5-regular graph is either 3 or 4. They also showed that
a.a.s. the chromatic number of a d-regular graph, for all other d up to 10, is
restricted to a range of two integers.

The above results leave open the question of whether the chromatic number
of a 5-regular graph can take the value 3 w.u.p.p., or perhaps even a.a.s.

On the other hand, building on a statistical mechanics analysis of the space
of truth assignments of the 3-SAT problem, which has not been shown yet to
be mathematically rigorous, and Survey Propagation (SP) algorithm for 3-SAT
inspired by this analysis (see e.g. [11] and the references therein), Krza̧ka�la et al.
[9] provided strong evidence that 5-regular graphs are a.a.s. 3-colorable by a SP
algorithm. They also showed that the space of assignments of three colors to the
vertices (legal or not) consists of clusters of legal color assignments inside of which
one can move from point to point by steps of small Hamming distance. However,
to go from one cluster to another by such small steps, it is necessary to go through
assignments of colors that grossly violate the requirement of legality. Moreover,
the number of clusters that contain points with energy that is a local, but not
global, minimum is exponentially large. As a result, local search algorithms are
easily trapped into such local minima. These considerations left as the only

5-Regular Graphs are 3-Colorable with Positive Probability 217

plausible alternative to try to prove that 5-regular graphs are 3-colorable w.u.p.p.
in an analytic way.

In this paper, we solve in the positive the question, showing that 5-regular
graphs are 3-colorable w.u.p.p. The technique used is the Second Moment Method:
Let X be a non-negative random variable (r.v.), then

Pr [X > 0] ≥ (E (X))2

E (X2)
. (1)

Thus, if this ratio is Θ(1), then we have that X > 0 w.u.p.p. This well known
technique (see Remark 3.1 in [8]) was used by Achiloptas and Naor [4] to solve
the long standing open problem of computing the two possible values of the
chromatic number of a random graph.

To apply the Second Moment Method, we work under the configuration model
(see [6]) and consider the r.v. X that counts a special type of colorings, which we
call the stable balanced 3-colorings. In Section 2, we give exact expressions for the
first and second moments of X , as sums of terms where each term consists of the
product of polynomial (in n) and exponential terms. In Section 3 we compute
the asymptotic values of those exact expressions, which turned out to be a non-
trivial task. We show that E(X2) = O((E(X))2), so that the probability in (1)
is uniformly positive. Finally, the result is transferred from configurations to
random 5-regular graphs.

An important remaining open question that we are working on is the ex-
tension of our result to a.a.s. It is plausible that an affirmative answer to the
question can be obtained by concentration results similar to those in [3].

2 Exact Expressions for the First and Second Moments

Everywhere in this paper n will denote a positive integer divisible by 6. Asymp-
totics are always in terms of n.

In the sense of the configuration model (see, e.g., [6] or [14]), let Cn,5 be the
probability space of 5-regular configurations, obtained by considering a set of n
vertices, labelled 1, . . . , n, for each of these vertices a set of 5 semi-edges, labelled
1, . . . , 5, and a uniform random perfect matching of all 5n semi-edges. Each pair
of semi-edges according to the matching defines one edge of the configuration.
Definition 1. A 3-coloring of a configuration G ∈ Cn,5 is called stable if for
every vertex v and every color i = 0, 1, 2, either v itself or one of its neighbors
are colored by i. Equivalently, for no single vertex v can we change its color
without the appearance of an edge with the same color at its endpoints. A 3-
coloring is called balanced if for each i = 0, 1, 2, the number of vertices with
color i is n/3.
Given a configuration G ∈ Cn,5, let SG be the class of balanced stable 3-colorings
of G. Let X be the random variable that counts the number of balanced stable
3-colorings of Cn,5. Then, the following equations can be easily shown:

|{G | G ∈ Cn,5}| =
(5n)!

25n/2(5n/2)!
, E (X) =

|{(G, C) | G ∈ Cn,5, C ∈ SG}|
|{G | G ∈ Cn,5}| , (2)

218 J. Dı́az et al.

E
(
X2

)
=

|{(G, C1, C2) | G ∈ Cn,5, C1, C2 ∈ SG}|
|{G | G ∈ Cn,5}| . (3)

2.1 First Moment

Below we assume we are given a configuration G and a balanced stable 3-coloring
C on G. The arithmetic in the indices is modulo 3. We start by giving some useful
terminology and notation:

Definition 2. A 1-spectrum s is an ordered pair of non-negative integers, s =
(s−1, s1), such that s−1 + s1 = 5 and s−1, s1 > 0.

Notice that there are four 1-spectra. They are intended to express the distribu-
tion of the five edges stemming from a given vertex according to the color of
their other endpoint. Formally, a vertex v of color i is said to have 1-spectrum
s = (s−1, s1), if s−1 out of its five edges are incident on vertices of color i − 1
and the remaining s1 edges are incident on vertices of color i+ 1. The condition
s−1, s1 > 0 expresses the fact that the 3-coloring is a stable one.

For each i = 0, 1, 2 and 1-spectrum s, we denote by d(i; s) the scaled (with
respect to n) number of vertices of G which are colored by i and have 1-spectrum
s. Then,

∑
s d(i; s) = 1/3 and therefore

∑
i,s d(i; s) = 1.

Let N1 = |{(G,C) | G ∈ Cn,5, C ∈ SG}|. Given any two colors i and j,
observe that there are exactly 5n/6 edges connecting vertices with color i and
j, respectively.

Given a fixed sequence (d(i; s)n)i,s that corresponds to a balanced stable 3-
coloring, let us denote by

(
n

(d(i;s)n)i,s

)
the multinomial coefficient that counts the

number of ways to distribute the n vertices into classes of cardinality d(i; s)n for
all possible values of i and s. Let also

(
5
s

)
stand for

(
5

s−1

)
=

(
5
s1

)
.

By a counting argument, we have that

N1 =
∑

d(i;s)i,s

(
n

(d(i; s)n)i,s

)⎛⎝∏
i,s

(
5
s

)d(i;s)n
⎞⎠(

5n

6
!
)3

, (4)

where the summation above is over all possible sequences (d(i; s))i,s that corre-
spond to balanced stable 3-colorings.

2.2 Second Moment

Below we assume we are given a configuration G and two balanced stable 3-
colorings C1 and C2 on G. For i, j = 0, 1, 2, let V j

i be the set of vertices colored
with i and j with respect to colorings C1 and C2, respectively. Let nj

i = |V j
i |/n,

and let Ej
i be the set of semi-edges whose starting vertex is in V j

i . Also, for
r, t ∈ {−1, 1}, let Ej,t

i,r be the set of semi-edges in Ej
i which are matched with

one in Ej+t
i+r . Let mj,t

i,r = |Ej,t
i,r |/n. We have that

∑
r,t m

j,t
i,r = 5nj

i ,
∑

i,j n
j
i = 1,

and therefore
∑

i,j,r,t m
j,t
i,r = 5. And, since matching sets of semi-edges should

have equal cardinalities, we also have that mj,t
i,r = mj+t,−t

i+r,−r.

5-Regular Graphs are 3-Colorable with Positive Probability 219

Definition 3. A 2-spectrum s is an ordered quadruple of non-negative integers,
s = (s−1

−1, s
1
−1, s

−1
1 , s1

1), such that s−1
−1 +s1

−1 +s−1
1 +s1

1 = 5 and (s−1
−1 +s1

−1)(s
−1
1 +

s1
1)(s

−1
−1 + s−1

1)(s1
−1 + s1

1) > 0.

Notice that the number of 2-spectra is 36. Let v be a vertex in V j
i . Vertex v

is said to have 2-spectrum s = (s−1
−1, s

1−1, s
−1
1 , s1

1) if st
r out of its five edges,

r, t ∈ {−1, 1}, are incident on vertices in V j+t
i+r . The condition (s−1

−1 + s1
−1)(s

−1
1 +

s1
1)(s

−1
−1 + s−1

1)(s1−1 + s1
1) > 0 expresses the fact that both C1 and C2 are stable.

For each i, j = 0, 1, 2 and 2-spectrum s, we denote by d(i, j; s) the scaled
number of vertices which belong to V j

i and have 2-spectrum s. We have:∑
s

st
r d(i, j; s) = mj,t

i,r,
∑

s

d(i, j; s) = nj
i and therefore

∑
i,j,s

d(i, j; s) = 1.

Throughout this paper we refer to the set of the nine numbers nj
i as the set of

the overlap matrix variables. We also refer to the set of the thirty-six numbers
mj,t

i,r as the set of the matching variables. Finally, we refer to the 9×36 numbers
d(i, j; s) as the spectral variables.

Let N2 = |{(G,C1, C2) | G ∈ Cn,5, C1, C2 ∈ SG|. Given a fixed sequence
(d(i, j; s)n)i,j,s that corresponds to a pair of balanced stable 3-colorings, let us
denote by

(
n

(d(i,j;s)n)i,j,s

)
the multinomial coefficient that counts the number

of ways to distribute the n vertices into classes of cardinality d(i, j; s)n for all
possible values of i, j and s. Let also

(
5
s

)
stand for

(
5

s−1
−1,s1

−1,s−1
1 ,s1

1

)
(the distinction

from a similar notation for 1-spectra will be obvious from the context). Now, by
an easy counting argument, we have:

N2 =
∑

d(i,j;s)i,j,s

⎧⎨⎩
(

n

(d(i, j; s)n)i,j,s

)⎛⎝∏
i,j,s

(
5
s

)d(i,j;s)n
⎞⎠(∏

i,j,r,t

((mj,t
i,rn)!)

1
2

)⎫⎬⎭ , (5)

where the summation above is over all possible sequences (d(i, j; s))i,j,s that
correspond to pairs of balanced stable 3-colorings.

3 Asymptotics

In this section we will show that E(X2) = O((E(X))2). An immediate conse-
quence of this is that 5-regular configurations have a balanced stable 3-coloring
and hence a generic 3-coloring w.u.p.p.

By applying Stirling approximation to formulae (2), (4) and (5), we get:

E (X) ∼
∑

d(i;s)i,s

f1(n, d(i; s)i,s)

⎛⎝6− 5
2
∏
i,s

((
5
s

)
d(i; s)

)d(i;s)
⎞⎠n

, (6)

E
(
X2) ∼

∑
d(i,j;s)i,j,s

f2(n, d(i, j; s)i,j,s)

⎡⎣5− 5
2
∏
i,j,s

((
5
s

)
d(i, j; s)

)d(i,j;s)(∏
i,j,r,t

(mj,t
i,r)

1
2 m

j,t
i,r

)⎤⎦n

, (7)

220 J. Dı́az et al.

where f1 and f2 are functions that are sub-exponential in n and also depend
on the sequences d(i; s)i,s and d(i, j; s)i,j,s, respectively. By a result similar to
Lemma 3 in [3], by using a standard Laplace-type integration technique, we can
prove that the Moment Ratio is asymptotically positive if

(E(X))2 E(X2), i.e. ln((E(X))2) ∼ ln(E(X2)). (8)

Let M1 be the maximum base 6−5/2
∏

i,s

(
(5

s)
d(i;s)

)d(i;s)

as d(i; s)i,s ranges over all

possible sequences that correspond to balanced stable 3-colorings. Analogously,
let M2 be the maximum base

5−5/2

(∏
i,j,s

(
(5s)

d(i,j;s)

)d(i,j;s)
)(∏

i,j,r,t (mj,t
i,r)

1
2 m

j,t
i,r

)
.

From the equations (6) and (7) one can immediately deduce that the relation
(8) is true if (M1)2 = M2. We need to compute the exact values of M1 and M2.

3.1 First Moment: Computing M1

Let f =
∏

i,s

(
(5

s)
d(i;s)

)d(i;s)

be a real function of 12 non-negative real variables

d(i; s) defined over the polytope
∑

s d(i; s) = 1/3, where i = 0, 1, 2 and s runs
over 1-spectra. The following lemma follows from the application of elementary
analysis techniques and the computation of Lagrange multipliers.

Lemma 1. The function ln f is strictly convex. Let D1 =
∑

i,s

(
5
s

)
= 3 × 30.

The function f has a maximizer at the point where d(i; s) = (5
s)
D1

, ∀i, s.
By direct substitution, we obtain:

Lemma 2. M1 = 6−5/2
(∏

i,sD
d(i,s)
1

)
=

(
1
6

)5/2D1 =
√

25
24 .

From the above and from (6), we get:

Theorem 1. The expected number of balanced stable 3-colorings of a random
5-regular configuration approaches infinity as n grows large.

3.2 Second Moment: Computing M2

Let F =

(∏
i,j,s

(
(5s)

d(i,j;s)

)d(i,j;s)
)(∏

i,j,r,t (mj,t
i,r)

1
2 m

j,t
i,r

)
(9)

be a real function of non-negative real variables d(i, j; s) (where i, j = 0, 1, 2,
r, t = −1, 1 and s runs over 2-spectra) defined over the polytope determined by:∑

j,s

d(i, j; s) = 1/3, ∀i;
∑
i,s

d(i, j; s) = 1/3, ∀j and mj,t
i,r = mj+t,−t

i+r,−r, (10)

where mj,t
i,r =

∑
s s

t
r d(i, j; s). Notice that F is a function of 9× 36 variables.

5-Regular Graphs are 3-Colorable with Positive Probability 221

We will maximize F in three phases. In the first one, we will maximize F
assuming the matching variables mj,t

i,r are fixed constants such that their values
are compatible with the polytope over which F is defined. Thus we will get a
function Fm of the 36 matching variables mj,t

i,r. At the second phase we will
maximize Fm assuming that the nine overlap matrix variables 5nj

i =
∑

r,t m
j,t
i,r

are fixed constants compatible with the domain of the matching variables. Thus
we will get a function Fn of the overlap matrix variables. The preceding two
maximizations will be done in an analytically exact way. Observe that since we
consider balanced 3-colorings, Fn depends only on the values of four n’s. We will
maximize Fn by going through its 4-dimensional domain over a fine grid. Let
us point out that the maximizations above will not be done ex nihilo. Actually,
we know (see below) the point where we would like the maximizer to occur.
Therefore all we do is not find the maximizer but rather prove that it is where
we want it to be. The proof of the next lemma is done by direct substitution.

Lemma 3. Let D2 =
∑

i,j,s

(
5
s

)
= 9 × 900 and let d(i, j; s) =

(
5
s

)
/D2, ∀i, j, s.

Then the value of the base 5−5/2F at the above values of d(i, j; s)i,j,s is equal to
(M1)2 = 25/24.

We call the sequence d(i, j; s) =
(
5
s

)
/D2 the barycenter. Barycenter as well we

call the corresponding point in the domain of Fm, i.e. the point mj,t
i,r = 5/36,

∀i, j, r, t. Finally, barycenter also we call the corresponding point in the domain
of Fn, i.e. the point nj

i = 1/9, ∀i, j. We will see, by direct substitutions, that
the functions 5−5/2Fm and 5−5/2Fn as well take the value (M1)2 = 25/24 at
their corresponding barycenters. Therefore, after computing Fm and Fn, all that
will remain to be proved is that Fn has a maximizer at its barycenter nj

i = 1/9,
i, j = 0, 1, 2. Below, we compute the functions Fm and Fn and then we show that
the barycenter is a maximizer for Fn by sweeping its 4-dimensional domain.

From the Spectral to the Matching Variables. Everywhere below we as-
sume that the 36 matching variables mj,t

i,r are non-negative and moreover take
only values for which there exist 9× 36 spectral non-negative variables d(i, j, s)
such that

mj,t
i,r =

∑
s

st
r d(i, j; s), i, j = 0, 1, 2, r, t = −1, +1. (11)

and such that the equations in (10) hold. It is not hard to see that the above
restrictions on the matching variables are equivalent to assuming that ∀i, j =
0, 1, 2 and ∀r, t = −1, 1,

mj,t
i,r = mj+t,−t

i+r,−r,
∑
i,r,t

mj,t
i,r = 5/3,

∑
j,r,t

mj,t
i,r = 5/3 and (12)

mj,t
i,r ≥ 0, mj,t

i,r +mj,−t
i,r ≤ 4(mj,t

i,−r +mj,−t
i,−r), mj,t

i,r +mj,t
i,−r ≤ 4(mj,−t

i,r +mj,−t
i,−r). (13)

Fix such values for the mj,t
i,r. To maximize the function F given by equation (9)

over the polytope described in (10) for the fixed values of the matching variables
mj,t

i,r, i, j = 0, 1, 2, r, t = {−1, 1}, it is sufficient to maximize the function F
subject to the 36 constraints in (11). We call this maximum Fm.

222 J. Dı́az et al.

Since for different pairs of (i, j), i, j = 0, 1, 2, neither the variables d(i, j; s)
nor the constraints in (11) have anything in common, and since the matching
variables are fixed, it is necessary and sufficient to maximize separately for each
i, j = 0, 1, 2 the function Fi,j =

∏
s

((
5
s

)
/d(i, j; s)

)d(i,j;s)
, subject to the four

constraints:
∑

s s
t
r d(i, j; s) = mj,t

i,r, r, t = −1, 1. We will use Lagrange multipliers
to maximize the logarithm of these functions. Notice that the functions lnFi,j

are strictly convex. We define the following function:

Φ(x, y, z, w) = (x+y+z+w)5−(x+y)5−(x+z)5−(y+w)5−(z+w)5+x5+y5+z5+w5.

Also for each of the nine possible pairs (i, j), i, j = 0, 1, 2, consider the 4 × 4
system:

∂ Φ(μj,−1
i,−1 , μj,1

i,−1, μ
j,−1
i,1 , μj,1

i,1)

∂μj,t
i,r

μj,t
i,r = mj,t

i,r, r, t = −1, 1, (14)

where μj,t
i,r denote the 36 unknowns of these nine 4 × 4 systems. Applying the

method of the Lagrange multipliers, we get

Lemma 4. Each of the nine systems in (14) has a unique solution. Moreover
in terms of the solutions of these systems

Fm =
∏

i,j,r,t

(
(mj,t

i,r)
1
2

μj,t
i,r

)m
j,t
i,r

.

By the above Lemma, we have computed in an analytically exact way the func-
tion Fm. Notice that the function Fm is a function of the 36 matching variables
mj,t

i,r, i, j = 0, 1, 2 and r, t = −1, 1, over the domain given by (12) and (13).
However its value is given through the solutions of the systems in (14), which
have a unique solution.

From the Matching to the Overlap Matrix Variables. We assume now
that we fix nine non-negative overlap matrix variables nj

i such that
∑

i n
j
i = 1/3,

∀j and
∑

j n
j
i = 1/3, ∀i. Using again multiple Lagrange multipliers, we will

find the maximum, call it Fn, of the function Fm given in Lemma 4 under the
constraints:∑

r,t

mj,t
i,r = 5nj

i , and mj,t
i,r = mj+t,−t

i+r,−r, for i, j = 0, 1, 2 and r, t = {−1, 1}. (15)

assuming in addition that the mj,t
i,r satisfy the inequalities in (13). We consider

the latter inequality restrictions not as constraints to be dealt with Lagrange
multipliers, but as restrictions of the domain of Fm that must be satisfied by the
maximizer to be found.

We will need that the function lnFm over the polytope determined by the
constraints (15) (for fixed values of the variables nj

i) is strictly convex. To show
this it is sufficient to fix an arbitrary i, j = 0, 1, 2 and show that the 4-variable

function ln
(∏

r,t

(
(mj,t

i,r)
1
2 /μj,t

i,r

)mj,t
i,r

)
, subject to the single linear constraint

5-Regular Graphs are 3-Colorable with Positive Probability 223∑
r,t m

j,t
i,r = nj

i , is strictly convex. To show the latter, we computed the Hessian
and its LPMD’s after solving the single linear constraint for one of its variables
(thus we obtained a function of three variables). Notice that the value of the
function under examination is given through the unique solutions of a 4 × 4
system. The Hessian and the LPMD’s were analytically computed in terms of
these solutions by implicit differentiation of the equations of the system. The
strict convexity then would follow if we showed that at every point of the domain
of this 3-variable function, the LPMD’s were non-zero and of alternating sign.
We demonstrated this by going over this domain over a fine grid and computing
at all its points the LPMD’s. The values of the LPMD’s that we got were safely
away from zero and with the desired algebraic sign. Notice that although to
prove the convexity of the function lnFm , subject to the constraints in (15), we
relaxed the constraints mj,t

i,r = mj+t,−t
i+r,−r, the latter ones are essential for correctly

computing Fn.
To apply Lagrange multipliers, we have to find the partial derivatives of the

function lnFm =
∑

i,j,r,t (1
2m

j,t
i,r lnmj,t

i,r − mj,t
i,r lnμj,t

i,r). In fact, after a few
manipulations, we obtain:

Lemma 5.
∑
r′,t′

mj,t′
i,r′

∂ ln μj,t′
i,r′

∂mj,t
i,r

=
1
5
, and thus ∂ ln Fm

∂mj,t
i,r

=
3
10

+
1
2

ln mj,t
i,r − ln μj,t

i,r

By applying now the technique of multiple Lagrange multipliers, we get:

Lemma 6. Consider the 45× 45 system with unknowns μj,t
i,r and xj

i :⎧⎪⎪⎨⎪⎪⎩
∂

∂μj,t
i,r

Φ(μj,−1
i,−1 , μj,1

i,−1, μ
j,1
i,1 , μj,−1

i,1) μj,t
i,r = μj,t

i,r μj+t,−t
i+r,−r xj

i xj+t
i+r,

5nj
i =

∑
r,t

(
μj,t

i,r μj+t,−t
i+r,−r xj

i xj+t
i+r

)
,

i, j = 0, 1, 2,
r, t = −1, 1.

This system has a unique solution. Moreover in terms of the solution of this
system:

Fn =
∏
i,j

(xj
i)

5n
j
i .

So we have computed in an analytically exact way the function Fn. Since solving
the 45× 45 system in Lemma 6 when nj

i = 1/9, i, j = 0, 1, 2 is trivial, we get by
direct substitution:

Lemma 7. The value of 5−5/2Fn at the barycenter ni,j = 1/9, i, j = 0, 1, 2 is
equal to (M1)2 = 25/24. Therefore the value of Fn at the barycenter is > 58.2309.

Therefore all that it remains to be proved is that the function Fn maximizes at
the barycenter.

From the Overlap Matrix Variables to the Conclusion. We have to prove
the function Fn maximizes at the barycenter. Since we have assumed that the 3-
coloring is balanced, i.e. ∀i,

∑
j n

j
i = 1/3 and ∀j,

∑
i n

j
i = 1/3, the domain of Fn

has four degrees of freedom, all in the range [0, 1/3]. We swept over this domain

224 J. Dı́az et al.

going over the points of a grid with 200 steps per dimension. The sweeping
avoided a thin layer (of width 1/1000) around the boundary (the points in the
domain where at least one of the nj

i = 0), because at the boundary the derivative
of the original function F is infinity, thus no maximum occurs there. Moreover,
we have computed the Hessian at the barycenter and proved that it is negative
definite so in an neighborhood of the barycenter Fn is convex, and we know that
Fn will be smaller than at the barycenter. At all points where we got a value
for Fn greater than 58, we made an additional sweep at their neighborhood of
step-size 1/7500 (all these points where close the barycenter). Nowhere did we
get a value greater than the value at the barycenter. To solve the 45×45 systems
efficiently, we designed a fast search algorithm based on an algorithm by Byrd
et al. [7]. We also devised a way to select good starting points for each system,
whose basic principle was to select for each successive system a starting point
that belonged to the convex hull of the solutions to the previous systems. The
algorithm was implemented in Fortran and run on the IBM’s supercomputer
in the Barcelona Supercomputing Center, which consists of 2.268 dual 64-bit
processor blade nodes with a total of 4.536 2.2 GHz PPC970FX processors.
Therefore,

Theorem 2. Random 5-regular configurations are 3-colorable with uniformly
positive probability.

In order to transfer this result to random 5-regular graphs, we need to consider
the restriction of Cn,5 to simple configurations (i.e. those without loops and
multiple edges). We write Pr∗ and E∗ to denote probability and expectation
conditional to the event “G ∈ Cn,5 is simple”. By using similar techniques to
the ones developed in [5] (see also Theorem 2.6 in [14]), we get:

Lemma 8. Let C be any fixed balanced 3-coloring of n vertices. Then,
Pr [G is simple | C is stable coloring of G] is bounded away from 0, indepen–
dently of C and n.

From this lemma, we obtain: E∗ (X) = Θ(E (X)) and E∗ (X2
)

= O
(
E
(
X2

))
.

Therefore, Pr∗ [X > 0] ≥ (E∗ (X))2

E∗ (X2)
= Θ(1), and we can conclude:

Theorem 3. The chromatic number of random 5-regular graphs is 3 with uni-
formly positive probability.

Acknowledgement

We wish to thank D. Achlioptas and C. Moore for their essential help at all
phases of this research, without which we would not have obtained the results of
this work. We are also indebted to N.C. Wormald for his useful suggestions and
we are thankful to the Barcelona Supercomputing Center and in particular to
David Vicente for the help in running the optimization programs on the Mare
Nostrum supercomputer.

5-Regular Graphs are 3-Colorable with Positive Probability 225

References

1. D. Achlioptas and C. Moore. The asymptotic order of the random k-SAT threshold.
In: Proc. 43th Annual Symp. on Foundations of Computer Science (FOCS), 126–
127, 2002.

2. D. Achlioptas and C. Moore. Almost all graphs with degree 4 are 3-colorable.
Journal of Computer and Systems Sciences 67(2), 441–471, 2003.

3. D. Achlioptas and C. Moore. The chromatic number of random regular graphs.
In: Proc. 7th International Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems (APPROX) and 8th International Workshop on
Randomization and Computation (RANDOM) (Springer, LNCS, 2004) 219–228.

4. D. Achlioptas and A. Naor. The two possible values of the chromatic number of a
random graph. In: 36th Symposium on the Theory of Computing (STOC), 587–593,
2004.

5. B. Bollobás. A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. European Journal of Combinatorics 1, 311–316, 1980.

6. B. Bollobás. Random Graphs. Academic Press, London-New York, 1985.
7. R.H. Byrd, P. Lu and J. Nocedal. A limited memory algorithm for bound con-

strained optimization. SIAM Journal on Scientific and Statistical Computing 16(5),
1190–1208, 1995.

8. S. Janson, T.
Luczak and A. Ruciński. Random Graphs. John Wiley, 2000.
9. F. Krza̧ka
la, A. Pagnani and M. Weigt. Threshold values, stability analysis and

high-q asymptotics for the coloring problem on random graphs. Phys. Rev. E 70,
046705 (2004).

10. T.
Luczak. The chromatic number of random graphs Combinatorica 11, 45–54,
1991.

11. M. Mézard and R. Zecchina. Random K-satisfiability: from an analytic solution to
a new efficient algorithm. Phys.Rev. E 66, 056126 (2002).

12. M. Molloy. The Chromatic Number of Sparse Random Graphs. Master’s Thesis,
University of Waterloo, 1992.

13. L. Shi and N. Wormald. Colouring random regular graphs Research Report CORR
2004-24, Faculty of Mathematics, University of Waterloo, 2004.

14. N.C. Wormald. Models of random regular graphs. In: J.D. Lamb and D.A. Preece,
eds., Surveys in Combinatorics (London Mathematical Society Lecture Notes Se-
ries, vol. 267, Cambridge U. Press, 1999) 239–298.

Optimal Integer Alphabetic Trees in
Linear Time

T.C. Hu1, Lawrence L. Larmore2,�, and J. David Morgenthaler3

1 Department of Computer Science and Engineering,
University of California, San Diego CA 92093, USA

hu@cs.ucsd.edu
2 Department of Computer Science, University of Nevada, Las Vegas NV 89154, USA

larmore@cs.unlv.edu
3 Applied Biosystems, Foster City CA 94404, USA

jdm123@gmail.com

Abstract. We show that optimal alphabetic binary trees can be con-
structed in O(n) time if the elements of the initial sequence are drawn
from a domain that can be sorted in linear time. We describe a
hybrid algorithm that combines the bottom-up approach of the original
Hu-Tucker algorithm with the top-down approach of Larmore and Przy-
tycka’s Cartesian tree algorithms. The hybrid algorithm demonstrates
the computational equivalence of sorting and level tree construction.

1 Introduction

Binary trees and binary codes are fundamental concepts in computer science,
and have been intensively studied for over 50 years. In his 1952 paper, Huffman
described an algorithm for finding an optimal code that minimizes the average
codeword length [1]. Huffman coding is a classic, well known example of binary
tree or binary code optimization, and has led to an extensive literature [2]. The
problem of computing an optimal Huffman code has Θ(n log n) time complexity,
but requires only O(n) time if the input is already sorted.

The problem of finding an optimal search tree where all data are in the leaves,
also called an optimal alphabetic binary tree (OABT), was originally proposed
by Gilbert and Moore [3], who give an O(n3) time algorithm based on dynamic
programming, later refined by Knuth to O(n2) [4]. The first of several related
O(n log n) time algorithms, the Hu-Tucker algorithm (HT), was discovered in
1971 [5]. Similar algorithms with better performance in special cases, though all
O(n log n) time in the general case, are given in [6–9]. Different proofs of the
correctness of these algorithms appear in [10–13].

We give a new algorithm for the OABT problem that takes advantage of
additional structure of the input to allow construction of an OABT in O(n)
time if weights can be sorted in linear time, e.g., if the weights are all integers in
a small range. Our algorithm combines the bottom-up approach of the original
� Research supported by NSF grant CCR-0312093.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 226–237, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimal Integer Alphabetic Trees in Linear Time 227

Hu-Tucker algorithm [5] with the top-down approach of Larmore and Przytycka’s
Cartesian tree algorithms [9].

Klawe and Mumey reduced sorting to Hu-Tucker based algorithms, resulting
in a Ω(n logn) lower bound for such level tree based solutions [8]. Larmore and
Przytycka related the complexity of the OABT problem to the complexity of
sorting, and gave an O(n

√
logn) time algorithm for the integer case when sorting

requires only O(n) time [9]. Their Cartesian tree based algorithm provided new
insight into the structure of the OABT problem, which we elaborate here. Our
new algorithm requires sorting O(n) items, which together with the reduction
given by Klawe and Mumey [8], shows the computational equivalence of sorting
and level tree construction.

2 Problem Definition and Earlier Results

Recall the definitions used in the Hu-Tucker algorithm [11]. We wish to construct
an optimal alphabetic tree T from an initial ordered sequence of weights S =
{s1, . . . , sn}, given as n square nodes. The square nodes will be the leaves of T ,
and retain their linear ordering. An optimal tree has minimal cost subject to
that condition, defining the cost of tree T as:

cost(T) =
n∑

i=1

sili

where li is the distance from si to the root.
The first phase of the Hu-Tucker algorithm combines the squares to form

internal nodes of a level tree. The second and third phases use the level tree
to create an OABT in O(n) time. The internal nodes created during the first
(combination) phase are called circular nodes, or circles, to differentiate them
from the square nodes of the original sequence. The weight of a square node
is defined to be its original weight in the initial sequence, while the weight of
a circular node is defined to be the sum of the weights of its children. The
level tree is unique if there are no ties, or if a consistent tie-breaking scheme
(such as the one given in [12]) is adopted. Algorithms that use the level tree
method produce the same level tree, although the circular nodes are computed in
different orders. The (non-deterministic) level tree algorithm (LTA) given below
generalizes those algorithms. As an example, the Hu-Tucker algorithm is an LTA
where the circular nodes are constructed in order of increasing weight.

We remark that circular nodes have also been called packages [9], crossable
nodes [8], and transparent nodes [12].

The index of each square node is its index in the initial sequence, and the
index of any node of the level tree is the smallest index any leaf descendant. We
will refer to square nodes as si, circular nodes as ci and nodes in general as vi,
where i is the index of the node. By an abuse of notation, we also let vi denote
the weight of the node vi. If two weights are equal, we use indices as tie-breakers.
See [12] for the detailed description of this tie-breaking scheme.

228 T.C. Hu, L.L. Larmore, and J.D. Morgenthaler

Initially, we are given the sequence of items which are all square nodes. As
the algorithm progresses, nodes are deleted and circular nodes are inserted into
the node sequence.

Definition 1. Two nodes in a node sequence are called a compatible pair if all
nodes between them are circular nodes. We write (va, vb) to represent the pair
itself, and also, by an abuse of notation, the combined weight of the pair, va +vb.

Definition 2. A compatible pair of nodes (vb, vc) is a locally minimum compat-
ible pair, written lmcp(vb, vc), when the following is true: va > vc for all other
nodes va compatible with vb and vb < vd for all other nodes vd compatible with
vc. By an abuse of notation, we will use lmcp(vb, vc) to refer to the pair of nodes
and also to their combined weight.

2.1 The Hu-Tucker Algorithm and LTA

We now describe the Hu-Tucker Algorithm [5]. Define Combine(va, vb) to be
the operation that deletes va and vb from S and returns the new circular node
ca = (va, vb). (Note that if va is a circular node, then the new node will have the
same name as its left child, but that will not cause confusion in the algorithm
since the child will be deleted from the node sequence.)

Hu-Tucker Algorithm returns the OABT for S = {s1, . . . , sn}.
1. While S contains more than one node:

1.1. Let (va, vb) be the least weight compatible pair in S.
1.2. Insert ca = Combine(va, vb) into S at the same position as va.

2. Let c∗ be the single circular node remaining in S.
3. For each 1 ≤ i ≤ n, let di be the depth of si in the tree rooted at c∗.
4. Let T be the unique alphabetic tree whose leaves are s1, . . . sn such that, for

each i, the depth of si in T is di.
5. Return T.

The tree rooted at c∗ is the level tree of the original sequence. The level tree
can be constructed by combining locally minimal compatible pairs in any order.
Thus, we generalize HT to the level tree algorithm (LTA) as follows:

Level Tree Algorithm(LTA) returns the OABT for S = {s1, . . . , sn}.
1. While S contains more than one node:

1.1. Let (va, vb) be any lmcp in S.
1.2. Insert ca = Combine(va, vb) into S.

2. Let c∗ be the single node remaining in S.
3. For each 1 ≤ i ≤ n, let di be the depth of si in the tree rooted at c∗.
4. Let T be the unique alphabetic tree whose leaves are s1, . . . sn such that, for

each i, the depth of si in T is di.
5. Return T .

In the insertion step of LTA, namely step 1.2 above, the new circular node ca

is placed in the position vacated by its left child. However, LTA gives the correct
level tree if ca is placed anywhere between leftWall(ca) and rightWall(ca), where

Optimal Integer Alphabetic Trees in Linear Time 229

leftWall(ca) is the nearest square node to the left of ca whose weight is greater
than ca, and rightWall(ca) is the nearest square node to the right of ca whose
weight is greater than ca. We will place fictitious infinite squares s0 and s∞ at
either end of the initial sequence, as described in Section 2.2, so leftWall(ca) and
rightWall(ca) are always defined. The choices in LTA do not alter the level tree,
but may change the order in which the circular nodes are computed [6–8].

LTA consists of n − 1 iterations of the main loop. Its time complexity is
dominated by the amortized time to execute one iteration of this loop. The Hu-
Tucker algorithm takes O(n log n) to construct the level tree, because it requires
O(log n) time to find the minimum compatible pair and update the structure.

Since the number of possible level trees on a list of length n is 2Θ(n log n),
the time complexity of LTA, in the decision tree model of computation, must be
Ω(n logn) in general. Our algorithm, also a deterministic version of LTA, makes
use of O(n)-time sorting for integers in a restricted range, and takes O(n) time
to construct the OABT, provided all weights are integers in the range 0 . . . nO(1).

In our algorithm, we do not necessarily actually insert a circular node into
the node sequence. Instead, we make use of data structures which are associated
with certain parts of the sequence, which we call mountains and valleys (see
Section 2.2). Each circular node is virtually in the correct position, and our data
structures ensure that we can always find a pair of nodes which would have been
a locally minimal compatible pair if the nodes had actually been inserted.

During the course of the algorithm, nodes can be moved from one data struc-
ture to another before being combined, and nodes are also sorted within data
structures. We achieve overall linear time by making sure that the combined time
of all such steps amortizes to O(1) per node, and that the next locally minimal
compatible pair can always be found in O(1) time.

The contribution of this paper is that by restricting the Cartesian tree (see
Section 2.3) to mountains we reduce the complexity of the integer algorithm
given in [9] from O(n

√
logn) to linear.

2.2 Mountains and Valleys

Any input sequence contains an alternating series of pairwise local minima (the
lmcps) and local maxima, which we call mountains. It is the mountains and their
structure that enable us to relocate each new circle in constant amortized time.

“Dual” to the definition of locally minimal compatible pair, we define:

Definition 3. A compatible pair of square nodes (sd, se) is a locally maximum
adjacent pair if its weight is greater than all other compatible pairs containing
either element.

Definition 4. A mountain is the larger of a locally maximum adjacent pair of
nodes in the initial weight sequence. If node si is a mountain, we also label it Mi.

We extend the initial sequence S by adding two “virtual” mountains s0 = M0

and s∞ = M∞ of infinite weight to the ends. Write S+ for the resulting extended
weight sequence. The virtual mountains are never combined, but are only for
notational convenience, giving us a uniform definition of “valley” in S+.

230 T.C. Hu, L.L. Larmore, and J.D. Morgenthaler

Definition 5. A valley is a subsequence of the initial weights between and in-
cluding two adjacent mountains in the extended weight sequence S+. We label
the valley formed by mountains Mi and Mj as V (Mi,Mj). The top of valley
V (Mi,Mj) is its minimum mountain min{Mi,Mj}, while the bottom is its lmcp.

Valleys (or the equivalent easy tree [9]) are a basic unit of the combination
phase. All nodes within a single valley can be combined in linear time (see Sec-
tion 3). During the combination phase of our algorithm, we repeatedly compute
the minimum compatible pair in each valley; As nodes combine, this pair may
not be an lmcp. To handle this situation, we first generalize locally minimum
compatible pair to apply to any subsequence.

Definition 6. Let Sp
i = (vi, vj , . . . , vp) be a subsequence of nodes. Then the

minimum compatible pair of Sp
i , written mcp(i, p), is the compatible pair of

minimum weight: mcp(i, p) = min
{
(va, vd)| i ≤ a < d ≤ p

}
Note that if mcp(i, p) does not contain either vi or vp, it must be an lmcp.

That is, the local minimum in the subsequence is also a local minimum in the
full sequence because we must see a full ‘window’ of four nodes in order to apply
the definition of lmcp. If mcp(i, p) includes either end, we cannot do so. This
fact motivates the use of valleys in our algorithm, and the need to distinguish
mountains for special handling.

2.3 Cartesian Trees

The Cartesian tree data structure is originally described in [14]. Larmore and
Przytycka base their OABT algorithms on Cartesian trees over the entire input
sequence [9], but here we will limit the tree to contain only mountains. We
recursively define the Cartesian tree of any sequence of weights:

Definition 7. The Cartesian tree for an empty sequence is empty. The root of a
Cartesian tree for a non-empty sequence is the maximum weight, and its children
are the Cartesian trees for the subsequences to the right and left of the root.

We construct the Cartesian tree of the sequence of mountains. We label mountain
Mi’s parent in the Cartesian tree as p(Mi).

2.4 Algorithm Overview

At each phase of our algorithm, nodes in every valley are combined independently
as much as possible. Any new circular node which is greater than the top of its
valley is stored in a global set U for later distribution.

When no more combinations are possible, we remove all mountains which
have fewer than two children in the Cartesian tree (that is always more than
half the mountains) and move the contents of the global set of circles U to sets
associated with the remaining mountains. As mountains are removed, their asso-
ciated sets are combined and sorted to facilitate the next round of combinations.

Optimal Integer Alphabetic Trees in Linear Time 231

3 Single Valley LTA

This section gives an LTA for a single valley containing only one lmcp, to improve
the reader’s intuition. We use a queue of circles in each valley to help find each
new lmcp in turn. We label this queue Qf,g for valley V (Mf ,Mg). Rather than
adding the circles back into the sequence, we put them into the queue instead.
For purposes of operation Combine, we consider the queue to be a part of the
sequence, located at the index of its initial circle.

Single Valley LTA computes an optimal level tree in linear time since
constant work is performed for each iteration. Only the main loop differs from
the general LTA given above, so we omit steps 2–5.

Single Valley LTA for S+ containing single valley V (M0,M∞).
1. While the sequence S contains more than one node:

1.1. Let lmcp(va, vb) be the result of Valley MCP for valley V (M0,M∞).
1.2. Add ca = Combine(va, vb) to the end of Q0,∞.

A little bookkeeping helps us determine each lmcp in constant time. We only
need to consider the six nodes at the bottom of the valley in order to find the
next lmcp. These six nodes are the valley’s active nodes. Let the bottom two
nodes on Qi,j be cx and cy, if they exist, where cx < cy. Any nodes that do not
exist (e.g. the queue contains only one node) are ignored.

Subroutine Valley MCP returns mcp(i, j) for valley V (Mi,Mj).
1. Let sa be the square left adjacent to Qi,j.
2. Let sf be the square right adjacent to Qi,j .
3. Return min

{
(sa, sa−1), (sa, cx), (cx, cy), (cx, sf), (sf , sf+1), (sa, sf)

}
, ignor-

ing any pairs with missing nodes. In addition, we require a > i (otherwise
ignore sa−1), and f < j (otherwise ignore sf+1).1

Single Valley LTA relies on the fact that each lmcp must be larger than
the last within a valley. It also solves the Huffman coding problem in linear time
if the input is first sorted [11].

4 Multiple Valleys

Consider the operation of Single Valley LTA for an input sequence containing
more than one valley. We can independently combine nodes in each valley only
to a certain point. When the weight of a new circle is greater than one of the
adjacent mountains, that circle no longer belongs in the current valley’s queue,
and must be exported, to use the terminology of [9]. But the valley into which
the circle must be imported does not yet exist. Eventually, when the mountain
between them combines, two (or more) valleys will merge into a new valley. If
its adjacent mountains both weigh more than the new circle, this valley will
import the circle. Mountains separate valleys in a hierarchical fashion, concisely
represented by a Cartesian tree.
1 The additional restrictions ensure that we stay within the valley.

232 T.C. Hu, L.L. Larmore, and J.D. Morgenthaler

4.1 Cartesian Tree Properties

For the k initial valleys separated by the nodes of this Cartesian tree, we have
k − 1 latent valleys that will emerge as mountains combine. Adding the initial
valleys as leaves to the Cartesian tree of mountains yields a full binary tree of
nested valleys with root V (M0,M∞). The internal nodes of this valley tree (the
mountains) precisely correspond to the merged valleys created as our algorithm
progresses. A mountain node branches in the Cartesian tree if its children are
both mountains. Our algorithm takes advantage of the following property of
Cartesian trees:

Property 1. Between each pair of adjacent leaf nodes in a Cartesian tree, there
is exactly one branching node. Proof is by construction.

This property implies that for k leaves, there are k− 1 branching nodes in a
Cartesian tree. A tree may have any number of additional internal nodes with a
single child, which we call non-branching nodes. Our algorithm handles each of
these three types of mountains differently, so we will take a closer look at their
local structure.

Consider three adjacent mountain Mh,Mi, and Mj, where h < i < j. We
can determine the type of mountain Mi in the Cartesian tree by comparing its
weight to the weights of its two neighbors. There are three cases:

– If Mh > Mi < Mj , then Mi is a leaf in the Cartesian tree.
– If Mh < Mi > Mj , then Mi is a branching node separating two active regions.
– If Mh < Mi < Mj , or Mh > Mi > Mj, then Mi is a non-branching node

and the top of the valley separating Mi and its larger neighbor.

An active region is the set of all the valleys between two adjacent branching
nodes. During execution of our algorithm, the active regions of each iteration
will form single valleys in the next iteration. To bound the number of iterations
our algorithm must execute, we need one additional Cartesian tree property. Let
|C| be the number of nodes in tree C. As every non-empty binary tree C contains
between 1 and �|C|/2� leaves, with the help of Property 1 we have:

Property 2. Cartesian tree C contains fewer than |C|/2 branching nodes.

4.2 Filling a Valley

The structure of the mountains and valleys creates two transition points during
the combination phase in each valley. The first is the export of the first circle.
Before that point, all nodes stay within a valley and new circles are added to
its queue. After the first transition point, all new circles are exported until the
valley is eliminated. The removal of an adjacent mountain is the second transition
point, which merges the current valley with one or more of its neighbors. After
each combination, we maintain the following valley invariants needed by Valley
MCP. Each valley V (Mi,Mj) must contain:

– Two adjacent mountains.
– A possibly empty sorted queue of circles Qi,j , with all circles < min{Mi,Mj}.
– A cursor pointing into Qi,j , initialized to point to the front of the queue.

Optimal Integer Alphabetic Trees in Linear Time 233

– A possibly empty pairwise monotonic decreasing subsequence of squares to
the right of Mi.

– A possibly empty pairwise monotonic increasing subsequence of squares to
the left of Mj.

First, we note that while mcp(i, j) < min{Mi,Mj}, a valley is isolated and
we define the following subroutine Initial Fill to reach the first transition
point. We call this subroutine the first time we handle a new valley, whether
that valley appears in the initial sequence or after merging.

As new valleys are created, they will be prepopulated with a sorted queue
containing imported circles. We will use the cursor to help us insert newly created
circles into this queue in case it contains circles larger than the next lmcp.

Subroutine Initial Fill for valley V (Mi,Mj).
1. Find the initial lmcp(va, vb) in V (Mi,Mj).
2. While lmcp(va, vb) < min{Mi,Mj}:

2.1. Insert ca = Combine(va, vb) into Qi,j , advancing the cursor as needed.
2.2. Let lmcp(va, vb) be the result of Valley MCP for valley V (Mi,Mj).

Notice that Initial Fill is nearly the same as Single Valley LTA. We
have added a stronger condition on the while loop, and we need to use the cursor
to merge new circles into the queue. We now show how to fill a valley:

Subroutine Fill Valley returns queue of circles Q for valley V (Mi,Mj).
1. Call Initial Fill for V (Mi,Mj).
2. Create empty queue Q.
3. While min{Mi,Mj} �∈

{
Valley MCP for V (Mi,Mj)

}
:

3.1. Add ca = Combine(Valley MCP for V (Mi,Mj)) to end of Q.
4. Return Q.

After Fill Valley returns, the top of the valley, min{Mi,Mj}, is an element
of mcp(i, j), and we say that valley V (Mi,Mj) is full. Combining or otherwise
removing the minimum mountain requires merging valleys and reestablishing
the necessary valley invariants, and also handling the exported queue of circles.
For each mountain Mi, we will store the circles imported by its corresponding
latent valley in an unsorted set Ui, where cs ∈ Ui =⇒ Mi < cs < p(Mi). When
a new valley is created, this set will become its imported queue Q.

4.3 Merging Valleys

For valley V (Mi,Mj), mcp(i, j) is an lmcp if it does not contain Mi or Mj, since
nodes inside a valley, i.e., between the mountains, cannot be compatible with any
outside the valley (lemma 5 in [11]). However, the mountains themselves each
participate in two valleys, thus these nodes are compatible with other nodes
outside the single valley subsequence {Mi, . . . ,Mj}.

First, consider a mountain Mi smaller than its neighbors Mh and Mj . Mi

must be a leaf in the Cartesian tree of mountains, and after adjacent valleys
V (Mh,Mi) and V (Mi,Mj) are full, Mi ∈ mcp(h, i) and Mi ∈ mcp(i, j). We are

234 T.C. Hu, L.L. Larmore, and J.D. Morgenthaler

ready to merge these two valleys into V (Mh,Mj) by combining the mountain.
Note that mcp(h, j) = min

{
mcp(h, i),mcp(i, j)

}
, which will form an lmcp if it

does not contain Mh or Mj . To explain the combination of valleys, we start with
this leaf mountain case where Mh �∈ mcp(h, j) and Mj �∈ mcp(h, j).

Two Valley Case. When both valleys adjacent to leaf mountain Mi are full,
we merge them into a single new valley and establish the valley invariants needed
by Valley MCP. Subroutine Merge Two Valleys provides the bookkeeping
for the merge. The result is new valley V (Mh,Mj), ready to be filled. Merge
Two Valleys requires that both valleys are full, and so each contain at most
one node (square or circle) smaller than and compatible with Mi. In addition,
the lmcp may not contain two mountains; this omitted three valley case is in
fact even simpler.

Subroutine Merge Two Valleys returns set of circles W for mountain Mi.
1. Create empty set W.
2. Let V (Mh,Mi) and V (Mi,Mj) be the valleys to the left and right of Mi.
3. Merge queues Qh,i and Qi,j , each of which contains at most one circle, to

create Qh,j. Initialize a new cursor to point to the front of Qh,j.
4. Sort Ui, the imported circles for the new valley, and add to the end of Qh,j .
5. Find the smallest node vmin compatible with Mi from among the only three

possible: the front of Qh,j, or the squares left or right adjacent to Mi.
6. Let circle cm = Combine(vmin,Mi), assuming vmin is to the left of Mi.
7. Create new valley V (Mh,Mj) with Qh,j, removing Mi, Ui, V (Mh,Mi) and

V (Mi,Mj) from further consideration.
8. If circle cm < min{Mh,Mj} then:

8.1. Insert cm into Qh,j , advancing the cursor as needed.
else:

8.2. Add cm to W.
9. Return W.

4.4 Removing Non-branching Mountains

In this section we explain the removal of non-branching mountains. These moun-
tains are adjacent to one larger and one smaller neighbor, and lie between a
branching mountain and a leaf mountain, or at either end of the sequence.

For example, consider valley V (Mi,Mj), where Mi < Mj . Once V (Mi,Mj)
is full, we remove mountain Mi by either combining it or turning it into a
normal square. When Mi no longer separates its adjacent valleys, we merge
them into one. This process continues repeatedly until a single valley separates
each adjacent branching and leaf mountain.

Since a full valley contains at most one node smaller than the minimum
mountain Mi, we need to consider three cases. Let Mh < Mi < Mj, and let sa

and sd be the squares left and right adjacent to Mi, respectively.

1. The filled valley has an empty queue and no square smaller than Mj . Then
Mi is no longer a mountain, as sa < Mi < sd. We make Mi into a normal

Optimal Integer Alphabetic Trees in Linear Time 235

square si by removing the mountain label. Square si becomes part of the
pairwise monotonic increasing sequence of squares to the left of Mj.

2. The filled valley contains a single square sd smaller than Mi. So sd < Mi <
vb for all vb compatible with sd. If sa > sd, then Mi and sd must form
lmcp(Mi, sd). Combining lmcp(Mi, sd) lets us connect the pairwise mono-
tonic increasing subsequence of squares to the left of Mi with the subse-
quence to the left of Mj , forming a single pairwise increasing subsequence.
Otherwise, we can convert Mi into a normal square node as in the case above.

3. The filled valley contains a single circle cd. This is case is similar to the
previous case, but may require that we convert cd into a pseudo-square. We
can treat this circle as though it were square because it is smaller than either
neighbor and must combine before its transparency has any effect.

Subroutine Remove Mountain removes non-branching, internal nodes from
the Cartesian tree. Without loss of generality, assume that the left adjacent
mountain Mh < Mi, while the right adjacent mountain Mj > Mi.

Subroutine Remove Mountain returns set of circles W for mountain Mi.
1. Create empty set W.
2. Let (Mi, va) = mcp(i, j).
3. If (Mi, va) is an lmcp then:2

3.1. Add ci = Combine(Mi, va) to W.
else:

3.2. Rename Mi to si and remove Mi from other data structures.
3.3. If Qi,j is not empty, convert remaining circle into a pseudo-square.

4. Add Ui to Uh.
5. Create new valley V (Mh,Mj), removing Ui, V (Mh,Mi) and V (Mi,Mj).
6. Return W.

When Remove Mountain completes, mountain Mi has been removed from
the sequence and many valley invariants established for the newly created valley.
The missing invariants involve Qh,j, which we will postpone creating until we
have merged all the valleys between adjacent branching mountains. All that is
needed is to sort Uh, which occurs in subroutine Merge Two Valleys.

5 K Valley LTA

Let Ĉ be the Cartesian tree formed from the mountains in the original sequence.
Each node of Ĉ separates two valleys in that sequence. As mentioned earlier,
we call a non-leaf node in Ĉ with a single child a non-branching node. Our final
algorithm shrinks Ĉ by removing at least half of the nodes at each iteration.
When all the nodes of Ĉ have been combined, we compute the level tree using
Initial Fill. The input sequence S+ is the extended sequence created by adding
two nodes of infinite weight to either end of the original sequence S.

K Valley LTA computes level tree for S+.

1. Compute the Cartesian tree Ĉ from the k − 1 mountains in the original S.
2. Create a global empty set U, and an empty set Ui for each mountain Mi.
2 (Mi, va) is an lmcp if and only if sb > va for the square node sb to the left of Mi.

236 T.C. Hu, L.L. Larmore, and J.D. Morgenthaler

3. While Ĉ contains more nodes:
3.1. For each valley V (Mi,Mj) in the current sequence:

3.1.1. Add Q = Fill Valley for V (Mi,Mj) to U.
3.2. For each non-branching mountain Mi in Ĉ:

3.2.1. Add W = Remove Mountain for Mi to U.
3.2.2. Delete all the mountains combined in the previous step from Ĉ.

3.3. Use Static Tree Set Union (see below) to place U ’s circles into the Ui.
3.4. For each leaf mountain Mj in Ĉ:

3.4.1. Add W = Merge Two Valleys for Mj to U.
4. Use the sorted set from the final step 3.3 to create Q0,∞ and call Initial

Fill for V (M0,M∞). The final circle remaining between M0 and M∞ is the
root of the level tree.

Static Tree Set Union (STSU) is a specialized version of the Union-Find prob-
lem that applies to a tree, and computes a sequence of link and find operations
in linear time [15]. We can use this algorithm to find the set Ui in which each
circle in global set U belongs in linear time if we first sort U together with the
mountains remaining in Ĉ.

We apply the approach described in [9], first initializing the family of named
sets with a singleton set for each node of Ĉ. We attach each circle of U to Ĉ as
a child of its exporter, the argument of the call to Remove Mountain where it
was created. Next, we sort all the nodes of this extended tree by weight to create
sorted list L′. Processing nodes of L′ in increasing weight order, we execute a
sequence of link and find operations in O(n) time as follows:

– If the current node is Mj, perform link(Mj), which adds the contents of
the set containing Mj to the set containing p(Mj), then deletes the old set
containing Mj.

– If the current node is circle cm, perform find(cm), obtaining the set containing
mountain p(cm). That set is named with the minimum ancestor mountain
Mj in Ĉ that dominates cm. Determine whether cm is to the right or left of
Mj . Add cm to the Ui of the mountain child on that side of Mj .

6 Complexity

The algorithm is dominated by sorting, which occurs in steps 3.3 and 3.4.1 We
now show that the algorithm sorts only O(n) nodes.

Lemma 1. The STSU in step 3.3 sorts O(n) nodes altogether.

Proof. Initially |Ĉ| = k < n
2 . By Property 2, we remove at least half the moun-

tains at each iteration of step 3. Thus, over all iterations, at most 2k < n
mountains are sorted. No circle is sorted more than once by step 3.3, since set
U contains only newly created circles. The total of all circles sorted by step 3.3
is therefore less than n. Over all steps 3.3, we sort a total of less than 2n items.

Lemma 2. Step 3.4.1 sorts O(n) nodes altogether.

Proof. Each Ui is sorted at most once. Each circle appears in only one Ui being
sorted, as it is moved to some Qa,b after sorting.

Optimal Integer Alphabetic Trees in Linear Time 237

Theorem 1. K Valley LTA sorts O(n) weights.

Proof. No other sorting is performed; apply lemmas 1 and 2.

Theorem 2. For weights taken from an input domain that can be sorted in
linear time, an optimal alphabetic binary tree can be constructed in O(n) time.

Proof. All other operations are linear in the size of the input. Proof follows from
Theorem 1 and the linear creation of the OABT from the level tree.

7 Conclusion

We have given an algorithm to construct optimal alphabetic binary trees in time
bounded by sorting. This algorithm shows that sorting and level tree construc-
tion are equivalent problems, and leads to an O(n) time solution to the integer
alphabetic binary tree problem for integers in the range 0 . . . nO(1).

References

1. Huffman, D.A.: A method for the construction of minimum redundancy codes.
Proceedings of the IRE 40 (1952) 1098–1101

2. Abrahams, J.: Code and parse trees for lossless source encoding. In: Proceedings
Compression and Complexity of Sequences. (1997) 146–171

3. Gilbert, E.N., Moore, E.F.: Variable length binary encodings. Bell System Tech-
nical Journal 38 (1959) 933–968

4. Knuth, D.E.: Optimum binary search tree. Acta Informatica 1 (1971) 14–25
5. Hu, T.C., Tucker, A.C.: Optimal computer search trees and variable-length alpha-

betic codes. SIAM Journal on Applied Mathematics 21 (1971) 514–532
6. Garsia, A.M., Wachs, M.L.: A new algorithm for minimal binary search trees.

SIAM Journal on Computing 6 (1977) 622–642
7. Hu, T.C., Morgenthaler, J.D.: Optimum alphabetic binary trees. In: Combinatorics

and Computer Science: 8th Franco-Japanese and 4th Franco-Chinese Conference.
Lecture Notes in Computer Science, volume 1120, Springer-Verlag (1996) 234–243

8. Klawe, M.M., Mumey, B.: Upper and lower bounds on constructing alphabetic
binary trees. SIAM Journal on Discrete Mathematics 8 (1995) 638–651

9. Larmore, L.L., Przytycka, T.M.: The optimal alphabetic tree problem revisited.
Journal of Algorithms 28 (1998) 1–20

10. Hu, T.C.: A new proof of the T-C algorithm. SIAM Journal on Applied Mathe-
matics 25 (1973) 83–94

11. Hu, T.C., Shing, M.T.: Combinatorial Algorithms, Second Edition. Dover (2002)
12. Karpinski, M., Larmore, L.L., Rytter, W.: Correctness of constructing optimal

alphabetic trees revisited. Theoretical Computer Science 180 (1997) 309–324
13. Ramanan, P.: Testing the optimality of alphabetic trees. Theoretical Computer

Science 93 (1992) 279–301
14. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for ge-

ometry problems. In: Proceedings of the 16th ACM Symposium on Theory of
Computation. (1984) 135–143

15. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences 30 (1985) 209–221

Predecessor Queries in Constant Time?

Marek Karpinski� and Yakov Nekrich��

Abstract. In this paper we design a new static data structure for
batched predecessor queries. In particular, our data structure supports
O(

√
log n) queries in O(1) time per query and requires O(nε

√
log n) space

for any ε > 0. This is the first o(N) space and O(1) amortized time
data structure for arbitrary N = Ω(nε

√
log n) where N is the size of the

universe. We also present a data structure that answers O(log log N) pre-
decessor queries in O(1) time per query and requires O(nε log log N) space
for any ε > 0. The method of solution relies on a certain way of searching
for predecessors of all elements of the query in parallel.

In a general case, our approach leads to a data structure that supports
p(n) queries in O(

√
log n/p(n)) time per query and requires O(np(n))

space for any p(n) = O(
√

log n), and a data structure that supports
p(N) queries in O(log log N/p(N)) time per query and requires O(np(N))
space for any p(N) = O(log log N).

1 Introduction

Given a set A of integers, the predecessor problem consists in finding for an
arbitrary integer x the biggest a ∈ A such that a ≤ x. If x is smaller than
all elements in A, a default value is returned. This fundamental problem was
considered in a number of papers, e.g., [AL62], [EKZ77], [FW94], [A95], [H98],
[AT00], [BF02], [BCKM01]. In this paper we present a static data structure that
supports predecessor queries in O(1) amortized time.

In the comparison model, if only comparisons between pairs of elements
are allowed, the predecessor problem has time complexity O(log n), where n
is the number of elements. A standard information-theoretic argument proves
that �logn� comparisons are necessary. This lower bound had for a long time
been believed to be also the lower bound for the integer predecessor problem.
However in [E77], [EKZ77] a data structure supporting predecessor queries in
O(log logN) time, where N is the size of the universe, was presented. Fusion
trees, presented by Fredman and Willard [FW94], support predecessor queries
in O(

√
logn) time, independently of the size of the universe. This result was

further improved in other important papers, e.g., [A95], [AT00],[BF02]. In the
paper of Beame and Fich [BF02], it was shown that any data structure using

� Dept. of Computer Science, University of Bonn. E-mail marek@cs.uni-bonn.de. Work
partially supported by a DFG grant, Max-Planck Research Prize, and IST grant
14036 (RAND-APX).

�� Dept. of Computer Science, University of Bonn. E-mail yasha@cs.uni-bonn.de. Work
partially supported by IST grant 14036 (RAND-APX).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 238–248, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Predecessor Queries in Constant Time? 239

nO(1) words of (logN)O(1) bits, requires Ω(
√

logn/ log logn) query time in the
worst case. In [BF02] the authors also presented a matching upper bound and
transformed it into a linear space and O(

√
logn/ log logn) time data structure,

using the exponential trees of Andersson and Thorup [A96],[AT00].
Ajtai, Fredman and Komlòs [AFK84] have shown that if word size is nΩ(1),

then predecessor queries have time complexity O(1) in the cell probe model
([Y81]). Obviously, there exists a O(N) space and O(1) query time static data
structure for the predecessor queries. Brodnik, Carlsson, Karlsson, and Munro
[BCKM01] presented a constant time and O(N) space dynamic data structure.
But their data structure uses an unusual notion of the word of memory: an
individual bit may occur in a number of different words.

While in real-time applications every query must be processed as soon as it
is known to the data base, in many other applications we can collect a number of
queries and process the set of queries simultaneously. In this scenario, the size of
the query set is also of interest. Andersson [A95] presented a static data structure
that uses O(nε log n) space and answers log n queries in time O(log n log logn).
Batched processing is also considered in e.g., [GL01], where batched queries to
unsorted data are considered.

In this paper we present a static data structure that uses O(np(n)) space and
answers p(n) queries in O(

√
logn) time, for any p(n) = O(

√
logn). In particular,

we present a O(nε
√

log n) space data structure that answers
√

logn queries in
O(
√

logn) time. The model used is RAM model with word size b, so that the
size of the universe N = 2b. To the best of our knowledge, this is the first
algorithm that uses o(N) space and words with O(logN) bits, and achieves
O(1) amortized query time for arbitrary N = Ω(nε

√
log n).

If the universe is bounded (e.g., log logN = o(
√

logn)), our approach leads to
a O(np(N)) space data structure that answers p(N) queries in time O(log logN)
, where p(N) = O(log logN). Thus, there exists a data structure that answers
log logN queries in O(log logN) time and uses O(nε log log N) space. For instance,
for N = nlogO(1) n, there is a O(nε log log n) space and constant amortized time
data structure.

The main idea of our method is to search in a certain way for predecessors
of all elements of the query set simultaneously. We reduce the key size for all
elements by multiple membership queries in the spirit of [BF02]. When the key
size is sufficiently small, predecessors can be found by multiple comparisons.

After some preliminary definitions in Section 2, we give an overview of our
method in Section 3. In Section 3 a O(n2

√
log n+2) space and O(1) amortized

time data structure is also presented. We generalize this result and describe its
improvements in Section 4.

2 Preliminaries and Notation

In this paper we use the RAM model of computation that supports addition,
multiplication, division, bit shifts, and bitwise boolean operations in O(1) time.
Here and further w denotes the word size; b denotes the size of the keys, and

240 M. Karpinski and Y. Nekrich

we assume without loss of generality that b is a power of 2. Query set Q =
{x1, x2, . . . , xq} is the set of elements whose predecessors should be found. Left
and right bit shift operations are denoted with � and � respectively, i.e. x �
k = x ·2k and x� k = x÷2k, where ÷ is the integer division operation. Bitwise
logical operations are denoted by AND, OR, XOR, and NOT. If x is a binary
string of length k, where k is even, xu denotes the prefix of x of length k/2, and
xl denotes the suffix of x of length k/2.

In the paper of Beame and Fich [BF02], it is shown how multiple member-
ship queries, can be answered simultaneously in O(1) time, if the word size is
sufficiently large. The following statement will be extensively used in our con-
struction.

Lemma 1. Given sets S1, S2, . . . , Sq such that |Si| = ni, Si ⊂ [0, 2b − 1], and
q ≤

√
w
b , there is a data structure that uses O(bq

∏q
i=1 2�log ni�+1) bits, can be

constructed in O(q
∏q

i=1 2�log ni�+1) time, and answers q queries p1 ∈ S1?, p2 ∈
S2?, . . . , pq ∈ Sq? in O(1) time.

This Lemma is a straightforward extension of Lemma 4.1 in [BF02].
A predecessor query on a set S of integers in the range [0, 2b − 1] can be

reduced in O(1) time to a predecessor query on set S′ with at most |S| elements
in the range [0, 2b/2 − 1]. This well known idea and its variants are used in van
Emde Boas data structure [E77], x-fast trie [W83], as well as in the number of
other important papers, e.g.,[A95],[A96], [AT00].

In this paper the following (slightly modified) construction will be used. Con-
sider a binary trie T for elements of S. Let T0 = T . Let H(S) be the set of non-
empty nodes of T0 on level b/2. That is, H(S) is the set of prefixes of elements
in S of length b/2. If |S| ≤ 4, elements of S are stored in a list and predecessor
queries can obviously be answered in constant time. Otherwise, a data structure
that answers membership queries e′ ∈ H(S)? in constant time is stored. Using
hash functions, such a data structure can be stored in O(n) space. A recursively
defined data structure (D)u contains all elements of H(S). For every e′ ∈ H(S)
data structure (D)e′ is stored; (D)e′ contains all length b/2 suffixes of elements
e ∈ S, such that e′ is a prefix of e. Both Du and all De′ contain keys in the
range [0, 2b/2− 1]. (S)u and (S)e′ denote the sets of elements in (D)u and (D)e′

respectively. For every node v of the global tree T that corresponds to an element
stored in a data structure on some level, we store v.min and v.max, the minimal
and maximal leaf descendants of v in T . All elements of S are also stored in a
doubly linked list, so that the predecessor pred(x) of every element x in S can
be found in constant time.

Suppose we are looking for a predecessor of x ∈ [0, 2b − 1]. If xu ∈ H(S), we
look for a predecessor of xl in Dxu. If xl is smaller than all elements in Dxu , the
predecessor of x is pred(xu.min). If xu �∈ H(S), the predecessor of x is m.max,
where m is the node in T corresponding to the predecessor of xu in D0. Using i
levels of the above data structure a predecessor query with key length b can be
reduced to a predecessor query with key length b/2i in O(i) time. We will call
data structures that contain keys of length b/2i level i data structures, and the
corresponding sets of elements will be called level i sets.

Predecessor Queries in Constant Time? 241

It was shown before that if a word size w is bigger than bk, then predecessor
queries can be answered in O(log n/ log k) time with help of packed B-trees
of Andersson [A95] (see also [H98]). Using the van Emde Boas construction
described above, we can reduce the key size from w to w/2

√
log n in O(

√
logn)

time. After this, the predecessor can be found in O(log n/
√

logn) = O(
√

logn)
time ([A95]).

3 An O(1) Amortized Time Data Structure

We start with a global overview of our algorithm. During the first stage of our
algorithm

√
logn predecessors queries on keys xi ∈ [0, 2b − 1] are reduced in a

certain way to
√

logn predecessor queries in [0, 2b/2
√

log n − 1]. The first phase is
implemented using the van Emde Boas [E77] construction described in Section 2.
But by performing multiple membership queries in spirit of [BF02] we can reduce
the size of the keys for all elements of the query set in parallel. During the second
stage we find the predecessors of

√
logn elements from [0, 2b/2

√
log n − 1]. Since

2
√

log n elements can be now packed into one machine word, we can use the packed
B-trees of Andersson and find the predecessor of an element of the query set in
O(log n/ log(2

√
log n)) = O(

√
logn) time. We follow the same approach, but we

find the predecessors of all elements of the query set in parallel. This allows us
to achieve O(

√
logn) time for

√
logn elements, or O(1) amortized time.

The main idea of the algorithm presented in this paper is to search for prede-
cessors of

√
logn elements simultaneously. By performing multiple membership

queries, as described in Lemma 1, the key size of
√

logn elements can be reduced
from b to b/2

√
log n in O(

√
logn) time. When the size of the keys is sufficiently

reduced, the predecessors of all elements in the query set can be quickly found.
If key size b < w/2

√
log n, the packed B-tree of degree 2

√
log n can be used to find

the predecessor of a single element in O(
√

logn) time. In our algorithm, we use
a similar approach to find predecessors of all

√
logn elements in O(

√
logn) time.

In the following lemma we show, how
√

logn queries can be answered in
O(
√

logn) time, if the word size is sufficiently large, that is w = Ω(b log n).
Later in this section we will show that the same time bound can be achieved in
the case w = Θ(b)

Lemma 2. If word size w = Ω(b logn), where b is the size of the keys, there
exists a data structure that answers

√
logn predecessor queries in O(

√
logn)

time, requires space O(n2
√

log n+2), and can be constructed in O(n2
√

log n+2) time.

Proof. Suppose we look for predecessors of elements x1, x2, . . . , xp with p =√
logn. The algorithm consists of two stages :

Stage 1. Range reduction. During this stage the size of all keys is simulta-
neously reduced by multiple look-ups.
Stage 2. Finding predecessors. When the size of the keys is small enough,
predecessors of all keys can be found by multiple comparisons in packed B-trees.
Stage 1. We start by giving a high level description; a detailed description will

242 M. Karpinski and Y. Nekrich

be given below. Since the word size w is logn times bigger than the key size b,√
logn membership queries can be performed “in parallel“ in O(1) time. There-

fore, it is possible to reduce the key size by a factor 2 in O(1) time simultaneously
for all elements of the query set.

The range reduction stage consists of
√

logn rounds. During round j the key
size is reduced from b/2j−1 to b/2j. By b′ we denote the key size during the
current round; <u> denotes the string of length b with value u.

Let X =<x1 > . . . < xq > be a word containing all elements of the cur-
rent query set. We set X1 =<x1

1 > . . . < x1
q >, where x1

i = xi, and we set
S1

i = S for i = 1, . . . , q. During the first round we check whether prefixes of
x1, x2, . . . , xq of length b/2 belong to H(S), i.e. we answer multiple membership
query (x1

1)
u ∈ H(S1

1)?, (x1
2)

u ∈ H(S1
2)?, . . . , (x1

q)
u ∈ H(S1

q)?. If (xi)u �∈ H(S1
i),

H(S1
i) is searched for the predecessor of (xi)u, otherwise S(xi)u must be searched

for the predecessor of (xi)l.
Now consider an arbitrary round j. At the beginning of the j-th round, we

check whether some of the sets Sj
1 , S

j
2 , . . . , S

j
q contain less than five elements. For

every i, such that |Sj
i | ≤ 4, <xj

i> is deleted from the query set. After this we per-
form a multiple membership query (xj

1)
u ∈ H(Sj

1)?, (x
j
2)

u ∈ H(Sj
2)?, . . . , (x

j
q)u ∈

H(Sj
q)?. We set Xj+1 =<xj+1

1 > . . . <xj+1
q >, where xj+1

i = (xj
i)

u if xj
i �∈ H(Sj

i),
otherwise xj+1

i = (xj
i)

l. Sj+1
i = H(Sj

i), if xj
i �∈ H(Sj

i), and Sj+1
i = (Sj

i)(xi)u , if
xj

i ∈ H(Sj
i).

Detailed Description of Stage 1. Words Xj consist of q words of size b for
q ≤

√
logn. Let set tuple Si

1, S
i
2, . . . , S

i
q be an arbitrary combination of sets of el-

ements of level i data structures (the same set can occur several times in a set tu-
ple). For every q ∈ [1,

√
logn] and every set tuple Sj

i1
, Sj

i2
, . . . , Sj

iq
, where Sj

ik
are

sets on level j, data structure D(Sj
i1
, Sj

i2
, . . . , Sj

iq
) is stored. D(Sj

i1
, Sj

i2
, . . . , Sj

iq
)

consists of :

1. mask M(Sj
i1
, Sj

i2
, . . . , Sj

iq
) ∈ [0, 2q−1]. The (q+1− t)-th least significant bit

of M(Sj
i1
, Sj

i2
, . . . , Sj

iq
) is 1, iff |Sj

it
| ≤ 4.

2. word MIN(Sj
i1
, Sj

i2
, . . . , Sj

iq
) =<m1 ><m2 > . . . < mq >, where mk =

min(Sj
ik

) is the minimal element in Sj
ik

3. if M(Sj
i1
, Sj

i2
, . . . , Sj

iq
) = 0, data structure L(Sj

i1
, Sj

i2
, . . . , Sj

iq
), which allows

to answer multiple queries x1 ∈ H(Sj
i1

)?, x2 ∈ H(Sj
i2

)?, . . . , xq ∈ H(Sj
iq

)?.
4. Array DEL with q elements; DEL[t] contains a pointer to data structure

D(Sj
i1
, . . . , Sj

it−1
, Sj

it+1
, . . . , Sj

iq
).

5. Array NEXT with less than
∏q

k=1 4|Sj
ik
| elements;

For every F ∈ [0, 2q−1], list LIST [F] is stored; LIST [F] contains all indices
i, such that the (q+1− i)-th least significant bit of F is 1. We store a one-to-one
hash function c : C → [0, 2q − 1], where C is the set of integers v ∈ [0, 2qb − 1],
such that the ib-th bit of v is either 1 or 0, and all other bits of v are 0. List
BACKLIST [F] contains all indices i, such that the (q+1−i)b-th least significant
bit of c−1(F) is 1.

Predecessor Queries in Constant Time? 243

Consider a round j, and suppose that the current set tuple is Sj
1 , S

j
2 , . . . , S

j
q .

For every element i of LIST [M(Sj
1, S

j
2, . . . , S

j
q)] we do the following:

1.xj
i is extracted from Xj . We set A := (Xj � (b(q − i)))AND(1b′) and find

the predecessor of A in Sj
i . The predecessor of xj

i in Sj
i can be found in constant

time, since |Sj
i | ≤ 4.

2. We delete xj
i from Xj by Xj := (Xj AND 1(b(q−i)))+ ((Xj � (q− i+1)b)�

(q − i)b), and decrement q by 1.

Then we extract all xj
k such that xj

k < MIN(Sj
k). We perform a multiple com-

parison of Xj with MIN(Sj
i1
, Sj

i2
, . . . , Sj

iq
) and store the result in word C, such

that the (q + 1 − k)b-th bit of C is 1 if and only if xj
k < min(Sj

k). Details will
be given in the full version of this papers. We compute f = c(C) and process
every element of BACKLIST [f] in the same way as elements of LIST [F] were
processed.

Now a multiple query (xj
1)

u ∈ H(Sj
1)?, (x

j
2)

u ∈ H(Sj
2)?, . . . , (x

j
q)u ∈ H(Sj

q)?.
must be processed. We compute Xj AND (0b−b′1b′/20b′/2)q and bit shift the
result b′/2 bits to the right to get (Xj)u. The resulting word (Xj)u con-
sists of the prefixes of length b′/2 of elements xj

1, x
j
2, . . . , x

j
q. Using (Xj)u and

L(Sj
1, S

j
2 , . . . , S

j
q), query (xj

1)
u ∈ H(Sj

1)?, (x
j
2)

u ∈ H(Sj
2)?, . . . , (x

j
q)

u ∈ H(Sj
q)?

can be answered in O(1) time. The result is stored in word R such that the
(q+ 1− i)b-th least significant bit of R is 1, iff (xj

i)
u ∈ H(Sj

i), and all other bits
of R are 0. We also construct word (Xj)l that consists of suffixes of xj

1, x
j
2, . . . x

j
q

of length b′/2. (Xj)l is computed by (Xj)l = Xj AND (0b−b′/21b′/2)q. We com-
pute the words R′ = (R � (b − 1)) × 1b and R′′ = R′ XOR 1qb. Now we can
compute Xj+1 = (X l AND R′′) + (Xu AND R′).

The pointer to the next data structure can be computed in a similar way.
Let h1, h2, . . . , hq be hash functions for the sets Sj

1, S
j
2 , . . . , S

j
q . As shown in

the proof of Lemma 1, word P = h1(x
j
1)h2(x

j
2) . . . hq(xj

q) can be computed in
constant time. For every such P , we store in NEXT [P] a pointer to data struc-
ture D(Sj+1

1 , Sj+1
2 , . . . , Sj+1

q)), such that Sj+1
i = H(Sj

i), if xj
i �∈ H(Sj

i), and
Sj+1

i = (Sj
i)(xi)u , if xj

i ∈ H(Sj
i). Array NEXT has less than

∏q
k=1 4|Sj

ik
| ele-

ments.
After

√
logn rounds, the range of the key values is reduced to [0, 2b/(2

√
log n)

− 1].

Stage 2. Finding Predecessors. Now we can find the predecessors of ele-
ments using the approach of packed B-trees (cf. [H98],[A95]). Since more than√

logn2
√

log n keys fit into a machine word, each of current queried values can be
compared with 2

√
log n values from the corresponding data structure. Hence after

at most
√

log n rounds the search will be completed. In this paper we consider an
extension of the approach of packed B-trees for a simultaneous search in several
data structures, called a multiple B-tree.

Let p =
√

logn and t = 2
√

logn. Consider an arbitrary combination of level
p sets Sp

i1
, . . . , Sp

iq
and packed B-trees Ti1 , Ti2 , . . . , Tiq for these sets. Nodes of

244 M. Karpinski and Y. Nekrich

Tij have degree min(2
√

log n, |Sp
ij
|). The root of a multiple B-tree contains all

elements of the roots of packed B-trees for Sp
i1
, . . . , Sp

iq
. Every node of the multiple

B-tree that contains nodes n1, n2, . . . nq has at most (2
√

log n)q children, which
correspond to all possible combinations of children of n1, n2, . . . nq (only non-leaf
nodes among n1, . . . , nq are considered). Thus a node of the multiple B-tree on the
level k is an arbitrary combination of nodes of packed B-trees for sets Sp

i1
, . . . , Sp

iq

on level k. In every node v, word Kv is stored. If node v corresponds to nodes
v1, v2, . . . , vq of packed B-trees with values v1

1 , . . . , v
t
1, v

1
2 , . . . , v

t
2, . . . , v

1
q , . . . , v

t
q

respectively, then Kv = 0v1
10v

2
1 . . . 0v

t
1 0v

1
q0v2

q . . . 0v
t
q. Values v1

i , . . . , v
t
i , for

i = 1, . . . , q, are stored in Kv in an ascending order. In every node we also
store an array CHILD with 2n elements. Besides that in every node v an array
DEL(v)[] and mask M(v) ∈ [0, 2q+1−1] are stored; they have the same purpose
as the array DEL and mask M in the first stage of the algorithm: the (q+1−k)-
th least significant bit of M(v) is 1, iff the node of Tik

stored in v is a leaf node.
The height of the multiple B-tree is O(

√
logn).

Now we show how every component of X can be compared with 2
√

log n values
in constant time. Let X =<x1><x2> . . . <xq> be the query word after the
completion of Stage 1. Although the length of <xi> is b, the actual length of
the keys is b′, and b′ is less than b/(2

√
log n). Let s = 2

√
log n(b′ + 1), s < b. We

construct the word X ′ = ≺x1 ≺x2 . . .≺xq , where ≺xi = (0 � xi �
)2

√
log n

, and � xi � is a string of length b′ with value xi. To achieve this, we
copy X , shift the copy b′ +1 bits to the left, and add the result to X . The result
is copied, shifted 2b′ + 2 bits to the left, and so on. We repeat this

√
logn times

to obtain 2
√

log n copies of each key value xi.
To compare values stored in X ′ with values stored in node v, we compute

R = (Kv − X ′)AND W , where W is a word every (b′ + 1)-th bit of which is
1, and all other bits are 0. Let R be the set of possible values of R. Since
values v1

i , . . . , v
t
i are sorted, |R| = (2

√
log n)

√
log n = n. Hence, a hash function

r : R → [1, 2n] (one for all nodes) can be constructed. The search continues
in a node v′ = CHILD[r(R)]. Since the height of multiple B-tree is O(

√
log n),

predecessors are found in O(
√

logn) time.

Space Analysis. First we analyze the space used during the Stage 1. In an ar-
bitrary data structure D(Sj

i1
, Sj

i2
, . . . , Sj

iq
), L(Sj

i1
, Sj

i2
, . . . , Sj

iq
) and array NEXT

use O(
∏q

k=1 4|Sj
ik
|) space, mask M(Sj

i1
, Sj

i2
, . . . , Sj

iq
) uses constant space, and ar-

ray DEL uses O(q) space. Hence, D(Sj
i1
, Sj

i2
, . . . , Sj

iq
) uses O(

∏q
k=1 4|Sj

ik
|) space.

The total space for all data structures D(Sj
i1
, Sj

i2
, . . . , Sj

iq
) is

O(
∑

i1 ∈ [1, g],
. . . ,
iq ∈ [1, g]

q∏
k=1

4|Sj
ik
|) (1)

where g is the total number of sets Sj
i . Since Sj

1 + Sj
2 + . . . ≤ n2j, the total

number of terms in sum (1) does not exceed (n2j)q. Every product
∏q

k=1 4|Sj
ik
|

is less than nq22q. Hence the sum (1) is smaller than n2q2(j+2)q. Summing up by

Predecessor Queries in Constant Time? 245

j = 1, . . . ,
√

logn, we get
∑√

log n
q=1

∑√
log n

j=1 n2q2(j+2)q ≤
∑√

log n
q=1 n2q2(

√
log n+3)q.

The last expression does not exceed n2
√

log n2(
√

log n+3)
√

log n+1 = O(n2
√

log n+2).
Therefore the total space used by all data structures in stage 1 is O(n2

√
log n+2).

Now consider a multiple B-tree for a set tuple Sp
i1
, Sp

i2
, . . . , Sp

iq
. Every leaf

in this multiple B-tree corresponds to some combination of elements from
Sp

i1
, Sp

i2
, . . . , Sp

iq
. Hence, the number of leaves is O(

∏q
k=1 |S

p
ik
|), and the total

number of nodes is also O(
∏q

k=1 |S
p
ik
|). Using the same arguments as above,

the total number of elements in all multiple B-trees can be estimated as∑√
log n

q=1 n2q2(p+2)q = O(n2
√

log n+2). Hence, the total space is O(n2
√

log n+2).
A data structure D(Sj

i1
, Sj

i2
, . . . , Sj

iq
) used in stage 1 can be constructed in

O(
∏q

k=1 4|Sj
ik
|) time. Hence, all D(Sj

i1
, Sj

i2
, . . . , Sj

iq
) for fixed j and q can be

constructed in O(n2q2(j+2)q), and all data structures for the stage 1 can be
constructed in O(n2

√
log n+2) time. A multiple B-tree for set tuple Sp

i1
, Sp

i2
, . . . , Sp

iq

can be constructed in O(
∏q

k=1 |S
p
ik
|) time. Therefore, all multiple B-trees can be

constructed in O(n2
√

log n+2) time.

Now we consider the case when a machine word contains only b bits.

Theorem 1. If word size w = Θ(b), where b is the size of the keys, there is
a data structure that answers

√
logn predecessor queries in O(

√
logn) time,

requires space O(n2
√

log n+2), and can be constructed in O(n2
√

log n+2) time.

Proof. Using the van Emde Boas construction described in Section 2, the key
size can be reduced from b to b/ logn in log logn

√
log n time. However, we can

speed-up the key size reduction by multiple queries. When the key size is reduced
to k/ logn, predecessors can be found using Lemma 2.

The key size reduction for elements x1, x2, . . . , xq consists of log logn + 1
rounds. During the i-th round, the length of the keys b′ is reduced from b/2i−1

to b/2i. Hence, during the i-th round w/b′ > 2i−1, and 2(i−1)/2 membership
queries can be performed in constant time. Our range reduction procedure is
similar to the range reduction procedure of Stage 1 of Lemma 2, but we do
not decrease q if some data structure becomes small, and parameter q grows
monotonously. Roughly speaking, the number of keys that are stored in a word
and can be queried in constant time grows monotonously. For q ≤ 2(j−1)/2

and every Sj
i1
, . . . , Sj

iq
, where Sj

ik
are arbitrary sets on level j, data structure

D(Sj
i1
, Sj

i2
, . . . , Sj

iq
) described in Lemma 2 is stored.

The range reduction consists of log logn + 1 rounds. At the beginning of
round j, keys xj

1, . . . , x
j
q are stored in

√
logn/2(j−1)/2 words. Let t = 2(j−1)/2.

For simplicity, we assume that all words Xj
i contain t keys during each

round. Consider an arbitrary word Xj
i = xj

(i−1)t+1, x
j
(i−1)t+2, . . . , x

j
it, where

i = 1, . . . ,
√

logn/2(j−1)/2. In the same way as in Lemma 2, words (Xj
i)u

and (Xj
i)l can be computed. Using the corresponding data structure L, query

(x1)u ∈ H(Sj
i1

)?, (x2)u ∈ H(Sj
i2

)?, . . . , (xq)u ∈ H(Sj
iq

)? can be answered in
constant time, and Xj+1 can also be computed in constant time. At the end

246 M. Karpinski and Y. Nekrich

of round j, such that j = 0(mod 2), elements are regrouped. That is, we
duplicate the number of keys stored in one word. Since the key size has de-
creased by factor 4 during the two previous rounds, word Xj

i is of the form
03b′′xj

(i−1)t+10
3b′′xj

(i−1)t+2 . . . 0
3b′′xj

it, where b′′ = b′/4 and xj
k ∈ {0, 1}b′′. We

construct for each Xj
i a word X̃j

i of the form xj
(i−1)t+1x

j
(i−1)t+2 . . . x

j
it. First

Xj
i is multiplied with (0tb′−11)t to get X

j

i . Then we perform bitwise AND
of X

j

i with a word (0tb′1b′)t and store the result in X̂j
i . X̂j

i is of the form
xj

(i−1)t+10
tb′+3b′′xj

(i−1)t+20
tb′+3b′′ . . . 0tb′+3b′′xj

it. We can obtain X̃j
i from X̂j

i ; de-
tails will be provided in the full version of the paper. Finally, we duplicate
the number of keys in a word by setting Xj+1

i = (X̃j
2i � tb′) + X̃j

2i+1, for
i = 1, . . . ,

√
logn/2(j)/2+1.

Therefore, after every second round the number of words decreases by fac-
tor 2. The total number of operations is 2O(

√
logn)

∑�(�log log n�/2)�
i=1

1
2i−1 =

O(
√

logn). Space requirement and construction time can be estimated in the
same way, as in the proof of Lemma 2.

4 Other Results

In this section we describe several extensions and improvements of Theorem 1.

Theorem 2. For p(n) = O(
√

logn), there exists a data structure that answers
p(n) predecessor queries in time O(

√
logn), uses space O(n2p(n)+2), and can be

constructed in time O(n2p(n)+2)

Proof Sketch. The proof is analogous to the proof of Theorem 1, but query set
Q contains p(n) elements.

Corollary 1. For any ε > 0, there exists a data structure that answers
√

logn
predecessor queries in time O(

√
logn), uses space O(nε

√
log n), and can be con-

structed in time O(nε
√

log n).

Proof. Set p(n) = (ε/2)
√

logn− 4 and apply Theorem 2.

Corollary 2. For any ε > 0 and p(n) = O(
√

log n), there exists a data structure
that answers p(n) predecessor queries in time O(

√
logn), uses space O(nεp(n)),

and can be constructed in time O(nεp(n)).

If the key size b is such that log b = o(
√

logn) (i.e. log logN = o(
√

log n)), then
a more space efficient data structure can be constructed.

Theorem 3. For p(N) = O(log logN), there exists a data structure that an-
swers p(N) predecessor queries in time O(log logN), uses space O(n2p(N)+2),
and can be constructed in time O(n2p(N)+2).

Proof Sketch. The proof is analogous to the proof of Theorem 1, but query
set Q contains p(n) elements. We apply log logN rounds of the Stage 1 (range
reduction stage) from the proof of Theorem 1. After this, the current key size b′

equals to 1 for all elements of the query set, and predecessors can be found in a
constant time.

Predecessor Queries in Constant Time? 247

Corollary 3. For any ε > 0, there exists a data structure that answers log logN
predecessor queries in time O(log logN), uses space O(nε log log N), and can be
constructed in time O(nε log log N).

Corollary 4. For any ε > 0 and p(N) = O(log logN), there exists a data
structure that answers p(N) predecessor queries in time O(log logN), uses space
O(nεp(N)), and can be constructed in time O(nεp(N)).

5 Conclusion

In this paper we constructed new data structures for predecessor queries. These
data structures allow us to answer predecessor queries faster than the lower
bound of [BF02] at the cost of higher space requirements.

Suppose that n elements are stored in data structure A in sorted order, and
query set Q also contains n elements. Using an integer sorting algorithm (e.g.
[H02]), we can sort n elements of query set Q in O(n log logn) time, then merge
them with elements of A, and find predecessors of elements from Q in O(log logn)
time per query.

An existence of a linear (or polynomial) space data structure, which can
answer p = o(n) queries in time o(

√
logn/ log log n) per query is an interesting

open problem.

References

[AL62] G. M. Adelson-Velskii, E.M. Landis, An algorithm for the organization
of information, Dokladi Akademii Nauk SSSR, 146(2):1259-1262, 1962.

[AFK84] M. Ajtai, M. L. Fredman, J. Komlòs, Hash Functions for Priority
Queues, Information and Control 63(3): 217-225 (1984).

[ABR01] S. Alstrup, G. S. Brodal, T. Rauhe, Optimal static range reporting in
one dimension, STOC 2001, pp. 476-482.

[A95] A. Andersson, Sublogarithmic Searching without Multiplications, FOCS
1995, pp. 655-663.

[A96] A. Andersson, Faster Deterministic Sorting and Searching in Linear
Space, FOCS 1996, pp. 135-141

[AHNR95] A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Sorting in linear time?
STOC 1995, pp. 427-436.

[AT00] A. Andersson, M. Thorup, Tight(er) worst-case bounds on dynamic
searching and priority queues, STOC 2000, pp. 335-342.

[AT02] A. Andersson, M. Thorup, Dynamic Ordered Sets with Exponen-
tial Search Trees, The Computing Research Repository (CoRR),
cs.DS/0210006: (2002). Available at http://arxiv.org/abs/cs.DS/

0210006.
[BF02] P. Beame, F. E. Fich, Optimal Bounds for the Predecessor Problem and

Related Problems, J. Comput. Syst. Sci. 65(1): 38-72 (2002).
[BCKM01] A. Brodnik, S. Carlsson, J. Karlsson, J. I. Munro, Worst case constant

time priority queue, SODA 2001, pp. 523-528.

248 M. Karpinski and Y. Nekrich

[CW79] L. Carter, M. N. Wegman, Universal Classes of Hash Functions. J.
Comput. Syst. Sci. 18(2): 143-154 (1979).

[E77] P. van Emde Boas, Preserving Order in a Forest in Less Than Logarith-
mic Time and Linear Space, Inf. Process. Lett. 6(3): 80-82 (1977)

[EKZ77] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and Implementation of
an Efficient Priority Queue, Mathematical Systems Theory 10: 99-127
(1977)

[FW94] M. L. Fredman, D. E. Willard, Trans-Dichotomous Algorithms for Min-
imum Spanning Trees and Shortest Paths, J. Comput. Syst. Sci. 48(3):
533-551 (1994).

[H98] T. Hagerup, Sorting and Searching on the Word RAM, STACS 1998,
pp. 366-398.

[H02] Y. Han, Deterministic sorting in O(n log log n) time and linear space,
STOC 2002,pp. 602-608

[GL01] B. Gum, R. Lipton, Cheaper by the Dozen: Batched Algorithms. 1st
SIAM International Conference on Data Mining, 2001
Available at http://www.math.grin.edu/ gum/papers/batched/

[M84] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching,
Springer 1984.

[PS80] W. J. Paul, S. Simon, Decision Trees and Random Access Machines,
International Symposium on Logik and Algorithmic, Zürich, pp 331-340,
1980.

[W83] D. E. Willard, Log-Logarithmic Worst-Case Range Queries are Possible
in Space Theta(N), Inf. Process. Lett. 17(2): 81-84 (1983)

[W84] D. E. Willard, New Trie Data Structures Which Support Very Fast
Search Operations, J. Comput. Syst. Sci. 28(3): 379-394 (1984).

[Y81] A. C.-C. Yao Should Tables Be Sorted?, J. ACM 28(3): 615-628 (1981).

An Algorithm for Node-Capacitated
Ring Routing

András Frank, Zoltán Király, and Balázs Kotnyek

Egerváry Research Group of MTA-ELTE, Department of Operations Research,
Department of Computer Science, Communication Networks Laboratory,

Eötvös University, Pázmány P. s. 1/c. Budapest, Hungary, H-1117�

{frank, kiraly, kotnyekb}@cs.elte.hu

Abstract. A strongly polynomial time algorithm is described to solve
the node-capacitated routing problem in an undirected ring network.

1 Introduction

Based on a theorem of Okamura and Seymour [7], the half-integer relaxation of
the edge-capacitated routing problem in a ring network can be solved in poly-
nomial time. In [2] it is described a sharpening of the theorem of Okamura
and Seymour and this gave rise to a polynomial time algorithm for the routing
problem in rings. In [3], the node-capacitated routing problem in ring networks
was considered along with its fractional relaxation, the node-capacitated mul-
ticommodity flow problem. For the feasibility problem, Farkas’ lemma provides
a characterization for general undirected graphs asserting, roughly, that there
exists such a flow if and only if the so-called distance inequality holds for ev-
ery choice of distance functions arising from nonnegative node-weights. For ring
networks, [3] improved on this (straightforward) result in two ways. First, inde-
pendent of the integrality of node-capacities and demands, it was shown that it
suffices to require the distance inequality only for distances arising from (0-1-2)-
valued node-weights, a requirement called the double-cut condition. Second, for
integral node-capacities and demands, the double-cut condition was proved to
imply the existence of a half-integral multicommodity flow. An algorithm was
also developed in [3] to construct a half-integer routing or a violating double-
cut. A half-integer routing could then be used to construct a(n integral) routing
which, however, may have slightly violated the node-capacity constraint: the
violation at each node was proved to be at most one. Such a routing may be
completely satisfactory from a practical point of view, especially when the ca-
pacities are big. Nevertheless the problem to decide algorithmically whether or
not there is a routing remained open in [3].

In the present work we develop a strongly polynomial algorithm to construct a
routing in a node-capacitated ring network, if there is one. The algorithm is based
� Research supported by the Hungarian National Foundation for Scientific Research,

OTKA T037547 and by European MCRTN Adonet, Contract Grant No. 504438.
The authors are also supported by Ericsson Hungary.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 249–258, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

250 A. Frank, Z. Király, and B. Kotnyek

on a rather tricky reduction to the edge-capacitated routing. The reduction can
be carried out algorithmically with the help of the Fourier-Motzkin elimination.
Though the FM-algorithm is not polynomial in general, we apply it to a specially
structured matrix where it is even strongly polynomial. We include this version
of the FM-algorithm in Section 4.

These problems are important from both theoretical and practical point of
view. For example, telecommunication network routing problems form the main
source of practical demand of this type of problems. In particular, the present
work was originally motivated by engineering investigations in the area of so
called passive optical networks.

Let G = (V,E) be a simple undirected graph called a supply graph, let
H = (V, F) be a so-called demand graph on the same node set. Suppose that
a nonnegative demand value h(f) is assigned to every demand edge f ∈ F and
a nonnegative capacity g(e) is assigned to every supply edge e ∈ E. We will say
that an integer-valued function g is Eulerian if dg(v) :=

∑
[g(e) : e incident

to v] is even for each node v. By a path P we mean an undirected graph
P = (U,A) where U = {u1, u2, . . . , un}, A = {e1, . . . , en−1}, and ei = uiui+1,
i = 1, . . . , n− 1. The edge-set A of a path P is denoted by E(P) while its node
set by V (P). Nodes u1 and un are called the end-nodes of P while the other
nodes of P are called internal nodes and their set is denoted by I(P). We say
that a path P connects its end-nodes and that P uses an edge e if e ∈ E(P).

For a demand edge f ∈ F , let Pf denote the set of paths of G connecting
the end-nodes of f and let P := ∪(Pf : f ∈ F). By a path-packing we mean
a function x : P → R+. A path P for which x(P) > 0 is said to belong to or
determined by x. We say that x fulfills or meets the demand if∑

[x(P) : P ∈ Pf] = h(f)

holds for every f ∈ F . In this case the path-packing x is also called a routing
(of the demands). The occupancy ox(e) and ox(v) of a supply edge e ∈ E and
of a node v ∈ V is defined, respectively, by

ox(e) :=
∑

[x(P) : P ∈ P , e ∈ E(P)] and

ox(v) :=
∑

[x(P) : P ∈ P , v ∈ I(P)].

We stress that the paths ending at v are not counted in the occupancy of v.
A path-packing x is called feasible with respect to the edge-capacity, or,
in short, edge-feasible if

ox(e) ≤ g(e) (1)

holds for every supply edge e.
Sometimes we are given a capacity function c : V → R+ on the node set

V rather than on E. A path-packing x is called feasible with respect to
node-capacity, in short, node-feasible if

ox(v) ≤ c(v) (2)

An Algorithm for Node-Capacitated Ring Routing 251

holds for every vertex v ∈ V . Inequality (1) and (2) are called, respectively, the
edge- and the node-capacity constraints.

The edge- or node-capacitated multicommodity flow problem, respec-
tively, consists of finding an edge- or node-feasible path-packing fulfilling the
demand. It is sometimes called the fractional routing problem. If x is required
to be integer-valued, we speak of an integer multicommodity flow problem
or a routing problem (we also use the notion of integral routing for routing if
we want to stress integrality). If 2x is required to be integer-valued, we speak of
a half-integral multicommodity flow problem or a half-integral routing
problem. If each demand and each capacity is one, and x is also required to be
(0–1)-valued, then we speak of an edge-disjoint or node-disjoint paths prob-
lem. That is, the edge-disjoint (node-disjoint) paths problem can be formulated
as deciding if there is a path in G for each demand edge f ∈ F connecting its
end-nodes so that these |F | paths are edge-disjoint (internally node-disjoint).

By a ring (=cycle =circuit) we mean an undirected graph G = (V,E) where
V = {v1, v2, . . . , vn}, E = {e1, . . . , en}, and ei = vivi+1, i = 1, . . . , n. [Notation:
vn+1 = v1.] We will intuitively think that nodes of G are drawn in the plane
in a counter-clockwise cyclic order. Note that for rings Pf has only two paths
for any f ∈ F . The edge-capacitated half-integral version were solved earlier
by Okamura and Seymour [7], while its integer-valued counter-part by the first
named author of the present work [2]. (Actually, both results concerned graphs
more general than rings.)

The node-capacitated routing problem for rings is the main concern of the
present work. The solvability of the half-integral routing problem was completely
characterized in [3]. This gave rise to a sufficient condition for the solvability of
the routing problem, while the one of finding a necessary and sufficient condition
and of constructing an algorithm to compute an integral routing, if one exists,
remained open. In this paper, based on some of the ideas of [3], we develop a
fully combinatorial, strongly polynomial solution algorithm. Although a good
characterization may be derived with the help of the algorithm, its present form
is not particularly attractive and finding an appropriate simplification requires
further research. We must note, that the node-capacitated routing problem is
more general than the edge-capacitated one. To see this, put a new vertex on
each edge, and assign the original capacity of the edge to this new vertex.

For a subset X ⊂ V , the set of edges of G with exactly one end-node in X is
called a cut of G. The capacity of a cut (with respect to a capacity function g) is
the sum of capacities of (supply) edges in the cut and is denoted by dg(X). The
demand on a cut (with respect to a demand function h) is the sum of demands
of demand edges with exactly one end-node in X and is denoted by dh(X).

2 The Edge-Cut Criterion for Edge-Capacitated Routing

A conceptually easy necessary condition for the solvability of the edge-capacitated
multicommodity flow problem is the so-called edge-cut criterion which re-
quires that the demand on every cut cannot exceed its capacity, that is,

252 A. Frank, Z. Király, and B. Kotnyek

dg(X) ≥ dh(X) (3)

for every subset X ⊆ V. Inequality (3) will be called the edge-cut inequality.
An important special case when the edge-cut criterion is sufficient is due to
H. Okamura and P. D. Seymour [7].

Theorem 1 (Okamura and Seymour). Suppose that (i) the supply graph G
is planar, (ii) the end-nodes of demand edges are all in the outer face of G, (iii)
g and h are integer-valued and g + h is Eulerian; then the edge-cut criterion
is necessary and sufficient for the the solvability of the edge-capacitated routing
problem.

It is known and not difficult to prove anyway that the edge-cut criterion holds
if (3) is required only for those subsets X for which both X and V −X induce
a connected subgraph of G. Therefore the theorem of Okamura and Seymour
specializes to rings as follows.

Corollary 2. If G is a ring, g and h are integer-valued and g + h is Eulerian,
the edge-capacitated routing problem has an integral solution if and only if the
edge-cut inequality

g(ei) + g(ej) ≥ Lh(ei, ej) holds whenever 1 ≤ i < j ≤ n (4)

where Lh(ei, ej) denotes the total demand through the cut determined by ei and
ej.

Note that there are polynomial algorithms [9][10][8] for this edge-capacitated
ring routing problem. Based on algorithm in [9] the second named author devel-
oped an algorithm [4] with running time O(n2). Our method makes use of such
an algorithm as a subroutine.

3 Node-Capacitated Ring Routing

Suppose that G = (V,E) is a ring endowed with an integral node-capacity
function c : V → Z+. We assume that the demand graph H = (V, F) is complete.
Let h : F → Z+ be an integral demand function. Our main goal is to describe
an algorithm to construct a node-capacitated routing satisfying the demands, if
one exists.

It is well-known that in digraphs the node-disjoint version of the Menger
theorem can be derived form its edge-disjoint counterpart by a straightforward
node-splitting technique. Therefore it is tempting to try to reduce the node-
capacitated ring-routing problem to its well-solved edge-capacitated version. A
transformation, however, which is as simple as the one in the Menger theorem,
is unlikely to exist since in the edge-capacitated multicommodity flow problem
in rings a simple edge-cut criterion is necessary and sufficient for the solvability,
while the node-capacitated version was shown in [3] to require a significantly
more complex necessary and sufficient condition, the so-called double-cut con-
dition. Still, the approach of [3] showed that such a reduction, though not so

An Algorithm for Node-Capacitated Ring Routing 253

cheaply, is possible. A further refinement of that approach will be the key to the
present algorithm.

We start with an easy simplification that has appeared already in [3]. For
completeness, we include its proof.

Claim 3. Given c and h, there is an Eulerian demand function h′ so that the
routing problem is solvable with respect to c and h if and only if it is solvable
with respect to c and h′.

Proof. Let vi and vi+1 be two subsequent nodes in the ring. As a one-edge path
connecting vi and vi+1 has no inner node, increasing the demand between them
does not affect the solvability of the routing problem.

If dh(v) is not even everywhere, then there are two nodes vi and vj so that
both dh(vi) and dh(vj) are odd and so that dh(vl) is even for each l with
i < l < j. We can then increase by one the h-values on all demand edges
vivi+1, vi+1vi+2 , . . . , vj−1vj and this way both dh(vi) and dh(vj) get even while
all other dh(vl)-values remain even for i < l < j. By repeating this procedure,
we obtain the desired Eulerian demand function h′. •

Therefore we will assume throughout that

h is Eulerian. (5)

Note that for an Eulerian demand function the demand on every cut is even.

Theorem 4. Let h be Eulerian and g : E → Z+ an integral edge-capacity func-
tion such that

g is Eulerian, (6)

g satisfies the edge-cut criterion (7)

and
g(ei−1) + g(ei) ≤ dh(vi) + 2c(vi) for every vi ∈ V. (8)

Then there is an edge-feasible integral routing (with respect to g) meeting the
demand h, and every such routing is node-feasible. Conversely, if there is a
node-feasible integral routing that meets h, then there is an Eulerian function
g : E → Z+ satisfying the edge-cut criterion and (8).

Proof. Let us start with the easier second part and let x be a node-feasible
routing. For e ∈ E, define g(e) :=

∑
[x(P) : e ∈ P ∈ P], that is, intuitively, g(e)

denotes the number of paths using e. Obviously g satisfies the edge-cut criterion
(as x is an edge-feasible routing with respect to g). Let vi be any node of G
and let α :=

∑
[x(P) : P ∈ P , vi is an inner node of P]. The paths counted in

the sum use both ei and ei−1 while the paths determined by x that end at vi

use exactly one of ei and ei−1. Therefore g(ei−1) + g(ei) = dh(vi) + 2α, and this
implies (8) since α ≤ c(vi). Since dh(vi) is even it also follows that g(ei−1)+g(ei)
is even.

254 A. Frank, Z. Király, and B. Kotnyek

To see the first part, let g be a function satisfying the hypothesis of the
theorem. As both g and h are Eulerian, so is g + h, and hence Corollary 2
ensures the existence of an edge-feasible routing x (with respect to edge-capacity
function g.) Suppose now that x is an arbitrary edge-feasible routing. We want
to show that x is node-feasible as well, with respect to node-capacity function
c. To see this, let us consider an arbitrary node vi.

Let α denote the sum of x-values of those paths ending at vi and using ei,
and let β denote the sum of x-values of those paths ending at vi and using ei−1.
Finally, let γ be the sum of x-values of those paths using vi as an inner node.

Then α+β = dh(vi). We have γ+α ≤ g(ei) and γ+β ≤ g(ei−1). By combining
these with (8), we obtain α + β + 2γ ≤ g(ei−1) + g(ei) ≤ dh(vi) + 2c(vi) ≤
α + β + 2c(vi), from which γ ≤ c(vi) follows, that is, x is indeed node-feasible
with respect to c.

The second part is obvious, if x is a node-feasible integral routing, then take
g(ei) = ox(ei) for each i. •

By Theorem 4, the node-capacitated ring-routing problem can be reduced
to the edge-capacitated case if one is able to compute the capacity function g
described in the theorem. To this end, introduce a nonnegative variable z(i) for
each g(ei). Consider the inequality system

z(i− 1) + z(i) ≤ dh(vi) + 2c(vi) for every vi ∈ V (9)

and
z(i) + z(j) ≥ Lh(ei, ej) for every 1 ≤ i < j ≤ n. (10)

The parity requirement in Theorem 4 may be satisfied in two ways, since every
righthand-side is even. Either each z(i) is even or else each z(i) is odd. The
algorithm handles these alternatives separately.

The system (9) and (10) has a solution so that z is even-integer-valued if and
only if the system

z′(i− 1) + z′(i) ≤ (dh(vi) + 2c(vi))/2 for every vi ∈ V (11)

and
z′(i) + z′(j) ≥ Lh(ei, ej)/2 for every 1 ≤ i < j ≤ n (12)

has a nonnegative integral solution, and z(i) = 2z′(i).
The system (9) and (10) has a solution so that z is odd-integer-valued if and

only if the system

z′′(i− 1) + z′′(i) ≤ (dh(vi) + 2c(vi)− 2)/2 for every vi ∈ V (13)

and
z′′(i) + z′′(j) ≥ (Lh(ei, ej)− 2)/2 for every 1 ≤ i < j ≤ n (14)

has a nonnegative integral solution, and z(i) = 2z′′(i) + 1.
Both the inequality system described for z′ and the one for z′′ have the

following form. The right-hand side is integral and each inequality contains at

An Algorithm for Node-Capacitated Ring Routing 255

most two variables. In each inequality the coefficients of the variables has ab-
solute value one. The integral solvability of such an inequality system can be
decided in strongly polynomial time by a straightforward modification of the
Fourier-Motzkin elimination algorithm. Therefore with two separate applications
of the FM-algorithm we are able to decide if any of the systems {(11),(12)} and
{(13),(14)} has a nonnegative integral solution and compute one if it exists. If
none of these systems has such a solution then we may conclude that the original
node-capacitated ring-routing problem has no integral solution. If one of them
has a solution, we can calculate the appropriate (either odd-integer-valued or
even-integer-valued) vector z satisfying inequalities (9) and (10), and determine
an integral routing with respect to edge-capacities g(ei) = z(i). We may use
the O(n2) algorithm of [4] for this purpose, so together with the FM algorithm
described in the next section the total running time is O(n3). By Theorem 4
such an edge-feasible routing exists and it is also node-feasible.

For completeness, we include the original FM-algorithm and then we derive
its strongly polynomial variation for “simple” matrices.

4 Fourier-Motzkin Elimination

The Fourier-Motzkin elimination is a finite algorithm to find a solution to a
linear inequality system Qx ≤ b, that is, to find an element of the polyhedron
R := {x ∈ Rn : Qx ≤ b}. It consists of two parts. In the first part, it eliminates
the components of x one by one by creating new inequalities. In the second part,
it proceeds backward and computes the components of a member of R. Geomet-
rically, one elimination step may be interpreted as determining the polyhedron
obtained from R by projecting along a coordinate axis.

Let Q be a m × n matrix (m ≥ 1, n ≥ 2). For any index set L of the rows
of Q let LQ denote the corresponding submatrix of Q. The i’th row of Q is
denoted by iq. In order to find a solution to the system Qx ≤ b, we may assume
that the first column q1 of Q is (0,±1)-valued since multiplying an inequality
by a positive constant does not effect the solution set. Let I, J,K denote the
index sets of rows of Q for which the value q1(i) is +1,−1 or 0, respectively.
Define a matrix Q[1] which contains all rows of KQ, as follows. For every choice
of indices i ∈ I and j ∈ J , let iq +j q be a row of Q[1] and let this row be
denoted by [ij]q. This means that in case I or J is empty, Q[1] is simply KQ. In
general Q[1] has m− (|I|+ |J |) + |I||J | rows. Note that the first column of Q[1]

consists of zeros. The right-hand side vector b[1] is obtained analogously from b.
Let R[1] := {x : x(1) = 0, Q[1]x ≤ b[1]}.
Proposition 5. The projection of R along the first coordinate is R[1], that is,
by turning zero the first component of any solution to

Qx ≤ b (15)
yields a solution to

Q[1]x ≤ b[1], (16)
and conversely, the first coordinate of any solution to (16) may be suitably
changed in order to get a solution to (15).

256 A. Frank, Z. Király, and B. Kotnyek

Proof. The first part follows directly from the construction of Q[1] and b[1] since
every row of (Q[1], b[1]) is a nonnegative combination of the rows of (Q, b).

To see the second part, let z be a solution to (16). For a number α, let zα

denote the vector arising from z by changing its first component to α. If J is
empty, that is, the first column of Q has no negative element, then by choosing α
small enough, zα will be an element of R. (Namely, α := mini∈I{b(i)−i q ·z} will
do.) Analogously, if I is empty, then α may be chosen suitably large. Suppose
now that neither I nor J is empty. For any i ∈ I, j ∈ J, iq ·z+ jq ·z = [ij]q ·z ≤
b(i) + b(j) implies that jq · z − b(j) ≤ b(i)− iq · z and hence

max
j∈J

{jq · z − b(j)} ≤ min
i∈I
{b(i)− iq · z}. (17)

Therefore there is a number α with

max
j∈J

{jq · z − b(j)} ≤ α ≤ min
i∈I
{b(i)− iq · z}. (18)

We claim that vector zα is a solution to (15). Indeed, for an index h ∈ K, the
first component of hq is zero, so hq · zα = hq · z ≤ b(h). If h ∈ I, that is,
hq(1) = 1, then the second inequality in (18) implies hq · zα = hq · z +α ≤ b(h).
Finally, if h ∈ J , that is, hq(1) = −1, then the first inequality of (18) implies
hq · zα = hq · z − α ≤ b(h). •

Fourier-Motzkin Elimination for Simple Matrices
Let us call a (0,±1)-valued matrix Q simple if each row contains at most two
nonzero entries and the rows are distinct. Note that a simple matrix with n
columns can have at most 2n+ 2 · n(n− 1)/2 + n(n− 1) + 1 = 2n2 + 1 rows.

We show how the FM-elimination above may easily be turned to a strongly
polynomial algorithm for computing an integral solution of Qx ≤ b in case Q is
simple and b is integral.

As Q is simple, each row of Q[1] has at most two nonzero entries. If a row
of Q[1] has exactly one nonzero element, then this element is ±2 or ±1, while a
row with two nonzero entries is (0,±1)-valued. Q[1] is not necessarily simple but
it may easily be simplified without changing the integral solution set as follows.

First replace any inequality of type 2x(1) ≤ β or −2x(1) ≤ β by x(1) ≤ !β/2"
or −x(1) ≤ !β/2", respectively. Then, if some inequalities with identical lefthand
sides remained, then we keep only the one defining the strongest inequality (that
is, for which the corresponding righthand side is the smallest). Let Q[2] and b[2]

denote the derived lefthand and righthand sides respectively.

Theorem 6. Any integral solution to

Qx ≤ b (19)

yields an integral solution to
Q[2]x ≤ b[2], (20)

and conversely, the first coordinate of any integral solution to (20) may be suit-
ably changed to another integer α in order to get an integral solution to (19).

An Algorithm for Node-Capacitated Ring Routing 257

Calculating Q[2] and b[2] as well as determining the appropriate α value takes
O(n2) steps.

Proof. We follow the lines of the proof of Proposition 5. The first part follows
again from the construction. For the second part one must observe that as the
righthand and lefthand side of inequality (18) are now integers, we may choose
α to be also an integer.

With appropriate organization, one elimination step as well as determining
the appropriate α value can be carried out in O(n2) steps. Instead of storing Q
and b we store three matrices PP, PM and MM . Set PP (k, l) = b(i) if there is
a row iq in Q, where Q(i, k) = 1 and Q(i, l) = 1 and Q(i, j) = 0 for j �= k, j �= l;
and set PP (k, l) =∞ if no such row exists. Similarly, PM(k, l) = b(i) if there is a
row iq in Q, where Q(i, k) = 1, Q(i, l) = −1 (and set PM(k, l) = ∞ otherwise);
and MM(k, l) = b(i) if there is a row iq in Q, where Q(i, k) = −1, Q(i, l) = −1
(and set MM(k, l) = ∞ otherwise). Observe, for example, that indices in J
can be determined examining the first column of MM and of PM . Using these
quantities, PP [2], PM [2] and MM [2] corresponding to Q[2] and b[2] can be easily
calculated in O(n2) time. Determining α in O(n2) is straightforward (as in O(n2)
time Q and b can be recovered from PP, PM and MM). •

Summarizing, the overall complexity of the FM-elimination for simple ma-
trices can be carried out in O(n3) steps.

5 Conclusion

The edge-capacitated routing problem (that is, the integral multicommodity
flow problem) was solved earlier by Okamura and Seymour in the special case
when the supply graph is planar, the terminal nodes are in one face, and dg +
dh is even integer-valued. The algorithmic answer is particularly simple in the
special case when the supply graph is a circuit (ring). The node-capacitated
routing problem for a ring was considered in [3] where a characterization and
an algorithm was given for half-integer solvability. The present work describes
a strongly polynomial time algorithm for the routing problem in ring networks.
The algorithm consists of first determining a suitable edge-capacity function
g so that the edge-capacitated routings with respect to g are exactly the node-
capacitated routings. Such a g could be computed with a variation of the Fourier-
Motzkin elimination for simple matrices in O(n3) time. Next, calculating an
edge-feasible routing with respect to function g is a relatively easy task (in
O(n2) time by the algorithm of [4]).

References

1. L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton
NJ. (1962)

2. A. Frank, Edge-disjoint paths in planar graphs, J. of Combinatorial Theory, Ser.
B. No. 2 (1985), pp. 164-178.

258 A. Frank, Z. Király, and B. Kotnyek

3. A. Frank, B. Shepherd, V. Tandon, and Z. Végh, Node-capacitated ring routing,
Mathematics of Operations Research, 27, 2. (2002) pp. 372-383.

4. Z. Király, An O(n2) algorithm for ring routing, Egres Technical Reports, TR-2005-
10, see http://www.cs.elte.hu/egres/, (2005).

5. R.H. Möhring and D. Wagner, Combinatorial Topics in VLSI Design, in: An-
notated Bibliographies in Combinatorial Optimization, (M. Dell’ Amico, F. M.
Maffioli, S. Martello, eds.), John Wiley, (1997) pp. 429-444.

6. K. Onaga and O. Kakusho, On feasibility conditions of multicommodity flows in
Networks, IEEE Trans. Theory, Vol. 18 (1971) pp. 425-429.

7. H. Okamura and P.D. Seymour, Multicommodity flows in planar graphs, J. Com-
binatorial Theory, Ser. B, 31 (1981) pp. 75-81.

8. H. Ripphausen-Lipa, D. Wagner and K. Weihe, Survey on Efficient Algorithms for
Disjoint Paths Problems in Planar Graphs, DIMACS-Series in Discrete Mathemat-
ics and Theoretical Computer Science, Volume 20 on the “Year of Combinatorial
Optimization” (W. Cook and L. Lovász and P.D. Seymour eds.), AMS (1995) pp.
295-354.

9. A. Schrijver, P. Seymour, and P. Winkler, The ring loading problem, SIAM J.
Discrete Math. Vol. 11, No 1. (1998) pp. 1-14.

10. D. Wagner and K. Weihe, A linear-time algorithm for edge-disjoint paths in planar
graphs, Combinatorica 15 (1995) pp. 135-150.

On Degree Constrained Shortest Paths

Samir Khuller�, Kwangil Lee, and Mark Shayman��

1 Department of Computer Science, University of Maryland,
College Park, MD 20742, USA

Tel: (301) 405-6765, Fax: (301) 314-9658
samir@cs.umd.edu

2 Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742, USA

kilee88@yahoo.com
3 Department of Electrical and Computer Engineering, University of Maryland,

College Park, MD 20742, USA
Tel: 301-405-3667, Fax: 301-314-9281

shayman@glue.umd.edu

Abstract. Traditional shortest path problems play a central role in both
the design and use of communication networks and have been studied
extensively. In this work, we consider a variant of the shortest path prob-
lem. The network has two kinds of edges, “actual” edges and “potential”
edges. In addition, each vertex has a degree/interface constraint. We wish
to compute a shortest path in the graph that maintains feasibility when
we convert the potential edges on the shortest path to actual edges. The
central difficulty is when a node has only one free interface, and the un-
constrained shortest path chooses two potential edges incident on this
node. We first show that this problem can be solved in polynomial time
by reducing it to the minimum weighted perfect matching problem. The
number of steps taken by this algorithm is O(|E|2 log |E|) for the single-
source single-destination case. In other words, for each v we compute the
shortest path Pv such that converting the potential edges on Pv to actual
edges, does not violate any degree constraint. We then develop more ef-
ficient algorithms by extending Dijkstra’s shortest path algorithm. The
number of steps taken by the latter algorithm is O(|E||V |), even for the
single-source all destination case.

1 Introduction

The shortest path problem is a central problem in the context of communication
networks, and perhaps the most widely studied of all graph problems. In this
paper, we study the degree constrained shortest path problem that arises in the
context of dynamically reconfigurable networks. The objective is to compute
shortest paths in the graph, where the edge set has been partitioned into two
classes, such that for a specified subset of vertices, the number of edges on the
� Research supported by NSF grants CCR-0113192 and CCF-0430650.

�� Research partially supported by AFOSR under contract F496200210217.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 259–270, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

260 S. Khuller, K. Lee, and M. Shayman

path that are incident to it from one of the classes is constrained to be at most
one.

This work is motivated by the following application. Consider a free space
optical (FSO) network [14]. Each node has a set of D laser transmitters and D
receivers. If nodes i and j are in transmission range of each other, a transmitter
from i can be pointed to a receiver at j and a transmitter from j can be pointed
to a receiver at i, thereby creating a bidirectional optical communication link
between i and j. If i and j are within transmission range of each other, we say
that a potential link exists between them. If there is a potential link between i
and j and they each have an unused transmitter/receiver pair, then an actual
link can be formed between them. We will refer to a transmitter/receiver pair
on a node as an interface. Thus, a potential link can be converted to an actual
link if each of the nodes has an available interface.

We consider a sequential topology control (design) problem for a FSO net-
work. The network initially consists entirely of potential links. Requests arrive
for communication between pairs of nodes. Suppose that shortest path routing
is used. When a request arrives for communication between nodes vs and vt, a
current topology exists that consists of the actual links that have thus far been
created, along with the remaining potential links. We wish to find a shortest path
in this topology consisting of actual and potential links with the property that
any potential link on the path can be converted to an actual link. This means
that if the path contains a potential link from node i to node j, i and j must
each have a free interface. Therefore, when searching for a shortest path, we can
delete all potential links that are incident on a node that has no free interfaces.
However, deleting these potential links still does not reduce the routing problem
to a conventional shortest path problem. This is because if the path contains
a pair of consecutive potential links (i, j), (j, k), the intermediate node j must
have at least two free interfaces[7].

As an example, suppose the current topology is given in Figure 1(a) where
the solid lines are actual links and the dotted lines are potential links. Suppose
each node has a total of two interfaces. If a request arrives for a shortest path
between nodes 1 and 7, the degree constraint rules out the path 1−6−7 because
node 6 has only one free interface. The degree constrained shortest path from 1
to 7 is 1− 2− 3− 4− 5− 6− 7.

In addition to showing that the degree constrained shortest path problem
cannot be reduced to a conventional shortest path problem by deleting potential
links incident on nodes without free interfaces, the example illustrates two other
features of this problem. Firstly, the union of the set of constrained shortest
paths originating at a node need not form a tree rooted at that node. For all
shortest paths from node 1, other than to node 7, we can construct a shortest
path tree as shown in Figure 1(b). However, node 7 cannot be added to this tree.
Secondly, since the constrained shortest path from 1 to 6 is the single hop path
1 − 6 and not 1− 2 − 3 − 4 − 5− 6, it follows that a sub-path of a constrained
shortest path need not be a (constrained) shortest path.

On Degree Constrained Shortest Paths 261

(a) Example Network (b) Shortest Path Tree

Fig. 1. Degree Constrained Shortest Path Problem

The problem is formally described as follows. We have a network with two
kinds of edges (links), ‘actual’ and ‘potential’. We refer to these edges as green
and red edges respectively. We denote green edges by S and red edges by R.
Let E = S ∪ R, where E is the entire edge set of the graph. We are required
to find the shortest path from vs to vt. Edge eij denotes the edge connecting
vi and vj . The weight of edge eij is wij . Green edges S represent actual edges,
and red edges R represent potential edges. We denote a path from vs to vt by
Pt = {vs, v1, · · · , vt} and its length | Pt |. The problem is to find a shortest path
P ∗

t from a source node vs to a destination node vt. However, each vertex has an
degree constraint that limits the number of actual edges incident to it by D. If
there are D green edges already incident to a vertex, then no red edges incident
to it may be chosen, and all such edges can safely be removed from the graph.
If the number of green edges is ≤ D− 2 then we can choose up to two red edges
incident to this vertex. In this case, a shortest path is essentially unconstrained
by this vertex, as it can choose up to two red edges. The main difficulty arises
when a vertex already has D− 1 green edges incident to it. In this case, at most
one red edge incident to this vertex may be chosen. Hence, if a shortest path
were to pass through this vertex, the shortest path must choose at least one
green edge incident to this vertex.

In this paper, we study algorithms for the Degree Constrained Shortest Path
problem. We propose two algorithms for finding a shortest path with degree
constraints. First, we show how to compute a shortest paths between a pair of
vertices by employing a perfect matching algorithm. However, in some cases we
wish to compute single source shortest paths to all vertices. In this case, the
matching based algorithm is slow as we have to run the algorithm for every pos-
sible destination vertex. The second algorithm is significantly faster and extends
Dijkstra’s shortest path algorithm when all edge weights are non-negative. The
rest of this paper is organized as follows. In Section 2, we show how to use a
perfect matching algorithm to compute the shortest path. The complexity of this
algorithm is O(|E|2 log |E|) from a source to a single destination. In Section 3 we
propose an alternate shortest path algorithm by extending Dijkstra’s algorithm.
We introduce the degree constrained shortest path algorithm in Section 4. Sec-
tion 5 analyzes and compares the complexity of these algorithms. Its complexity
is O(|E||V |) from a source not only to one destination but to all destinations.

262 S. Khuller, K. Lee, and M. Shayman

Finally, we conclude the paper in Section 6. We would also like to note that
even though we describe the results for the version where all the nodes have the
same degree constraint of D, it is trivial to extend the algorithm to the case when
different nodes have different degree constraints.

While the shortest path problem with degree constraints has not been studied
before, considerable amount of work has been done on the problems of computing
bounded degree spanning trees for both weighted and unweighted graphs. In this
case, the problems are NP -hard and thus the focus of the work has been on the
design of approximation algorithms [4,10,3]. In addition, Gabow and Tarjan [6]
addressed the question of finding a minimum weight spanning tree with one node
having a degree constraint.

2 Perfect Matching Approach

One solution for the degree constrained shortest path problem is based on a
reduction to the minimum weight perfect matching problem. We define an in-
stance of a minimum weight perfect matching problem as follows. Each node v
has a constraint that at most δv red edges can be incident on it from the path.
If node v has D green edges incident on it, then δv = 0. When node v has D− 1
green edges, then δv = 1; otherwise, δv = 2. When δv = 0 we can safely delete
all red edges incident to v. We now reduce the problem to the problem of com-
puting a minimum weight perfect matching in a new graph G′. For each vertex
x ∈ V − {vs, vt} we create two nodes x1 and x2 in G′, and add a zero weight
edge between them. We retain vs and vt as they are.

For each edge exy ∈ E we create two new vertices vexy and ve′
xy

(called edge
nodes) and add a zero weight edge between them. We also add edges from vexy

to x1 and x2, each of these has weight wxy/2. When x = vs or x = vt, we simply
add one edge from vexy to x. We also add edges from ve′

xy
to y1 and y2, with

each such edge having weight wxy/2. Finally, for any red edges (u, x) and (x, y)
with δx = 1 we delete the edges from ve′

ux
to x1 and from vexy to x1.

Theorem 1. A minimum weight perfect matching in G′ will yield a shortest
path in G connecting vs and vt with the property that for any vertex v on the
path, no more than δv red edges are incident on v.

The running time of the minimum weight perfect matching algorithm is
O(|V ′|(|E′|+|V ′| log |V ′|)) [5][2]. Since |V ′| is O(|V |+|E|) and |E′| is O(|E|+|V |)
we get a running time of O(|E|2 log |E|) (we assume that |E| ≥ |V |, otherwise
the graph is a forest, and the problem is trivial).

3 Shortest Path Algorithm

In this section, we develop an algorithm for finding degree constrained shortest
paths using an approach similar to Dijkstra’s shortest path algorithm.

On Degree Constrained Shortest Paths 263

3.1 Overview of the Algorithm

In Dijkstra’s algorithm, shortest paths are computed by setting a label at each
node. The algorithm divides the nodes into two groups: those which it designates
as permanently labeled and those that it designates as temporarily labeled. The
distance label d of any permanently labeled node represents the shortest dis-
tance from the source to that node. At each iteration, the label of node v is its
shortest distance from the source node along a path whose internal nodes are all
permanently labeled. The algorithm selects a node v with a minimum temporary
label, makes it permanent, and reaches out from that node, i.e., scans all edges
of the node v to update the distance labels of adjacent nodes. The algorithm
terminates when it has designated all nodes as permanent.

Let Z denote the set of nodes vx satisfying
∑

exy∈S exy = D − 1. In other
words, Z is the set of nodes where there is only one interface available for edges
in R. Hence any shortest path passing through vx ∈ Z must exit on a green edge
if it enters using a red edge. If the shortest path to vx enters on a green edge,
then it can leave on any edge. We start running the algorithm on the input graph
with red and green edges. However, if a shortest path enters a vertex using a red
edge, and the node is in Z then we mark it as a “critical” node. We have to be
careful to break ties in favor of using green edges. In other words, when there are
multiple shortest paths, we prefer to choose the one that ends with a green edge.
So a path terminating with a red edge is used only if it is strictly better than the
shortest known path. A shortest path that cuts through this node may not use
two red edges in sequence. Hence, we only follow edges in S (green edges) out
of this critical vertex. In addition, we create a shadow node v′x for each critical
node vx. The shadow node is a vertex that has directed edges to all the red
neighbors of vx, other than the ones that have been permanently labeled. The
shadow node’s distance label records the length of a valid (alternate) shortest
path to vx with the constraint that it enters vx on a green edge. (Note that the
length of this path is strictly greater than the distance label of vx, due to the
tie breaking rule mentioned earlier.)

Let C denote the set of critical nodes. When vc ∈ C, then only edges in
S leaving vc may be used to get a valid shortest path through vc. To reach a
neighbor vj such that ecj ∈ R, vc needs an alternate shortest path p+

sc, where
parent(vc) = vp′ , vp′ ∈ p+

sc and ep′c ∈ S . We re-define the degree constraint
shortest path problem as a shortest path problem which computes shortest valid
paths for all nodes in V , and alternate shortest valid paths for nodes in C.

In fact, the edges from v′c to the red neighbors of vc are directed edges so
they cannot be used to obtain a shortest path to v′c. The corresponding critical
node vc retains its neighbors with green edges, and the red edge to its parent.

The set ancestor(vi) is the set of all vertices on a shortest valid path from
vs to vi, including the end-nodes of the path. Let V be the set of vertices in the
graph, and V ′ be the set of shadow vertices that were introduced.

Definition 1. Let vi, vj ∈ V ∪ V ′ and vc ∈ C with (eij ∈ S) ∨ (eij ∈ R ∧
vi, vj �∈ C). A node pair (vi, vj) ∈ gateway(c) if vc ∈ ancestor(vi), and vc �∈
ancestor(vj).

264 S. Khuller, K. Lee, and M. Shayman

This means that there always exists a possible alternate path to a critical
node through a gateway node pair since P ∗

j (shortest path from source to j)
does not include the critical node vc. If vi’s neighbor vj is a critical node and it
is connected to it with a red edge, then this node pair cannot be a legal gateway
node pair. A similar problem occurs when vi is critical and the edge connecting
them is red.

A virtual link e′jc = (vj , v
′
c) is created for inverse sub-path (p∗ci ∪ {eij})−1,

where (vi, vj) ∈ gateway(c) (p∗ci is the portion of the shortest path P ∗
i). With

shadow nodes and virtual links, we can maintain the data structure uniformly.
When nodes are labeled by the algorithm, it is necessary to check if these

nodes form a gateway node pair or not. For this purpose, we define a data
structure called CL, the Critical node List. For all nodes, vc ∈ CL(i) if vc ∈
ancestor(vi) and vc ∈ C. So, CL(i) maintains all critical node information along
the shortest path from vs to vi. By comparing CL(i) and CL(j), we know a node
pair (vi,vj) is a gateway pair for vc if (vc ∈ CL(i) and vc �∈ CL(j)).

3.2 Algorithm

The degree constrained shortest path algorithm using critical node sets is devel-
oped in this sub-section. The algorithm itself is slightly involved, and the example
in the following section will also be useful in understanding the algorithm. In
fact, the algorithm modifies the graph as it processes it. We also assume that the
input graph is connected. Step 1 is to initialize the data structure. The difference
with Dijkstra’s algorithm is that it maintains information on two shortest paths
for each vertex according to link type. Step I.1 initializes the data structure for
each node. We use pred to maintain predecessor (parent node) information in
the tree. Step I.2 is for the initialization of the source. The label value is set to
0. Step I.3 is for the initialization of the permanently labeled node set (P) and
the queue for the shortest path computation (Q).

Step 2 consists of several sub-steps. First, select a vertex node with minimum
label in Q (Step 2.1) and permanently label it (Step 2.2). The label of each node
d[y] is chosen as the minimum of the green edge and red edge labels. If the green
edge label is less than or equal to the red edge label, we select the path with the
green edge and its critical node set (Step 2.3.1). Otherwise, we choose a red edge
path (Step 2.4.1). If the path with the red edge is shorter than that with the
green edge and the number of green edges incident on vy is D−1 (vy ∈ Z), then
vy becomes a critical node (Step 2.4.2.1). In Step 2.5, we define CL; its initial
value is the same as its parent node. After the node is identified as a critical
node, then CL will be changed later (Step 2.6.2).

The decision of whether a node is a critical node or not is made when a node
is permanently labeled. When a node vy is identified as a critical node, a shadow
node v′y is created as shown in Steps 2.6.3 through 2.6.6. In Step 2.6 we also
choose the neighbors according to the node type. A critical node has neighbors
with green edges and its shadow node has directed edges to the neighbors to
which the critical node had red edges, if the neighbor has not been permanently
labeled as yet (Step 2.6.7). Otherwise, the node can have neighbors with any

On Degree Constrained Shortest Paths 265

type of edges (Step 2.7.1). However, Step 2.7.1 specifies an exception to not add
neighbors to which there is a red edge if the neighbor is a critical node. Consider
a situation when a non-critical node vi has a red edge to a critical node vc. Since
vc is a critical node, vc is already permanently labeled. Note that vi cannot be a
neighbor of vc, but a neighbor of v′c, by definition. Later, when vi is permanently
labeled and is a non-critical node, we do not wish to have vc in vi’s list. For this
reason, we check if a neighbor node with a red edge is a critical node or not.
Since vi is permanently labeled, there is no shorter path in the graph including
path through v′c. All legal neighbor information is maintained by data structure
adj. Note that the graph we construct is actually a mixed graph with directed
and undirected edges, even though the input graph was undirected.

Step 2.8 examines the neighbors of a permanently labeled node. It consists
of two parts. Step 2.8.3 updates labels for all neighbor nodes in adj. This proce-
dure is similar to Dijkstra’s algorithm. The only difference is that label update
is performed based on link type. Step 2.8.4 is the update for shadow nodes by
using procedure UpdateSNode. If vy cannot be a part of the shortest path for
its neighbor vx, then we should check if it can be a gateway node pair or not.
If so, we should update labels of all possible shadow nodes. Step P.1 considers
only permanently labeled nodes in order to check if it can be a gateway node
pair. The reason is that we cannot guarantee that the computed path for shadow
nodes through its (temporarily labeled) neighbors would be shortest path since
the path for temporarily labeled node could be changed at any time. So, shadow
nodes in two different sub-trees are considered at the same time. Steps 2.8.4.1.1
and 2.8.4.1.2 compute the path for shadow nodes for all critical nodes along the
path P ∗

x and P ∗
y . We finally delete vy from the Q (Step 2.9).

Comments:
d[x] = min(d[x][green], d[x][red])
d[y′][red] = ∞ for all shadow nodes vy′

Z is the set of nodes with only one free interface
P is the set of permanently labeled nodes
Q is a Priority Queue with vertices and distance labels
C is the set of critical nodes
V ′ is the set of shadow nodes

I.0 Procedure Initialize
I.1 for each vx ∈ V
I.1.1 d[x] ← d[x][green] ← d[x][red] ←∞
I.1.2 pred[x] ← pred[x][green] ← pred[x][red] ← null
I.1.3 CL[x] ← ∅
I.1 endfor
I.2 d[s] ← d[s][green] ← d[s][red] ← 0
I.3 P, V ′, C ← ∅ Q ← V
I.0 End Procedure

266 S. Khuller, K. Lee, and M. Shayman

Degree Constrained Shortest Path Algorithm
INPUT : G = (V,E) and source vs and E = S ∪R
OUTPUT: G′ = (V ∪ V ′, E′) with pred giving shortest path information
1 call Initialize
2 while NotEmpty(Q)
2.1 vy ← argvx∈Q min d[x] Exit if d[y] = ∞
2.2 P ← P ∪ {vy}
2.3 if d[y][green] ≤ d[y][red] then // vy’s shortest path enters on a green edge//
2.3.1 pred[y] ← pred[y][green]
2.4 else //vy ’s shortest path enters using a red edge //
2.4.1 pred[y] ← pred[y][red]
2.4.2 if vy ∈ Z then //vy has only one free interface //
2.4.2.1 C ← C ∪ {vy}
2.4.2 endif
2.3 endif
2.5 if pred[y] is not null then
2.5.1 CL[y] ← CL[pred[y]] //copy critical list from parent //
2.5 endif
2.6 if vy ∈ C then // processing a critical node //
2.6.1 adj[y] ← vx, ∀vx, exy ∈ S //add green neighbors //
2.6.2 CL[y] ← CL[y] ∪ {vy}
2.6.3 V ′ ← V ′ ∪ {v′

y} // create a shadow node //
2.6.4 Q ← Q ∪ {v′

y}
2.6.5 d[y′] ← d[y′][green] ← d[y′][red] ← ∞
2.6.6 pred[y′][green] ← pred[y′][red] ← null
2.6.7 adj[y′] ← vx,∀vx, eyx ∈ R ∧ vx /∈ P
2.7 else if vy ∈ V then // processing a non-critical node //
2.7.1 adj[y] ← {vx|(eyx ∈ S) ∨ (eyx ∈ R ∧ vx �∈ C)}
2.7.2 adj[y] ← adj[y] ∪ {v′

x|(eyx ∈ R ∧ vx ∈ C ∧ v′
x ∈ P)}

2.6 endif
2.8 for ∀vx ∈ adj[y]
2.8.1 if eyx ∈ S then index ← green
2.8.2 else if eyx ∈ R then index ← red
2.8.1 endif
2.8.3 if d[x][index] > d[y] + wyx, vx �∈ P then
2.8.3.1 d[x][index] ← d[y] + wyx

2.8.3.2 pred[x][index] ← {vy}
2.8.3.3 d[x] ← min(d[x][green], d[x][red])
2.8.4 else
2.8.4.1 if vx ∈ P then
2.8.4.1.1 call UpdateSNode(vy, vx)
2.8.4.1.2 call UpdateSNode(vx, vy)
2.8.4.1 endif
2.8.1 endif
2.8 endfor
2.9 Delete [Q, vy]
2 endwhile

On Degree Constrained Shortest Paths 267

P.0 Procedure UpdateSNode(vm, vn)
P.1 for each vi ∈ CL[m] − CL[n] and v′

i �∈ P
P.1.1 if d[i′][green] > d[n] + wnm + d[m] − d[i] then
P.1.1.1 d[i′][green] ← d[n] + wnm + d[m]− d[i] //encodes a path from vn to vi//
P.1.1.2 pred[i′][green] ← {vn}
P.1.1.3 CL[i′] ← CL[n]
P.1.1.4 d[i′] ← d[i′][green]
P.1.1.5 d[i′][red] ← ∞
P.1.1.6 E′ ← E′ ∪ {e′ni′}
P.1.1 endif
P.1 endfor
P.0 End Procedure

4 Detailed Example

Consider the graph shown in Figure 2. The source vertex is vs. Our goal is to compute
shortest valid paths from the source to all vertices in the graph. We now illustrate how
the algorithm computes shortest valid paths and shortest alternate paths (for critical
nodes). Suppose that the nodes in Z = {vc, vf , vb, va}, and we can pick at most one
red edge incident to any of these nodes in a shortest path.

Initially, we have Q = {vs, vc, vb, vd, vf , va, ve}. The first row of the table shows the
distance labels of each vertex in V when we start the while loop in Step 2. In fact, we
show the status of the queue and the distance labels each time we start a new iteration
of the while loop. In the table, for each node we denote the shortest path lengths ending
with a green/red edge as x/y.

Iteration vs vc vb vd vf va ve v′
c v′

b v′
f

1 (vy = vs) 0/0 ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞ ∞/∞
2 (vy = vc) 0/0 ∞/5 ∞/9 7/∞ ∞/∞ ∞/∞ ∞/∞
3 (vy = vd) 0/0 ∞/5 55/9 7/∞ ∞/∞ 15/∞ ∞/∞ ∞/∞
4 (vy = ve) 0/0 ∞/5 55/9 7/∞ ∞/∞ 15/∞ 8/∞ ∞/∞
5 (vy = vb) 0/0 ∞/5 11/9 7/∞ ∞/∞ 15/∞ 8/∞ ∞/∞
6 (vy = v′

b) 0/0 ∞/5 11/9 7/∞ ∞/∞ 15/∞ 8/∞ 59/∞ 11/∞
7 (vy = va) 0/0 ∞/5 11/9 7/∞ ∞/∞ 15/16 8/∞ 59/∞ 11/∞
8 (vy = v′

c) 0/0 ∞/5 11/9 7/∞ ∞/∞ 15/16 8/∞ 26/∞ 11/∞
9 (vy = vf) 0/0 ∞/5 11/9 7/∞ ∞/31 15/16 8/∞ 26/∞ 11/∞
10 (vy = v′

f) 0/0 ∞/5 11/9 7/∞ ∞/31 15/16 8/∞ 26/∞ 11/∞ ∞/∞

1. (Iteration 1): Q = {vs, vc, vb, vd, vf , va, ve}
vy = vs. Add vs to P . Since vs is not critical, we set pred[s] = null in Step 2.3.1.
CL[vs] = ∅. We define adj[s] = {vd, vc, vb} in Step 2.7.1. In Step 2.8 we now update
the distance labels of vd, vc, vb. Since none of these nodes are in P , we do not call
procedure UpdateSNode. The updated distance labels are shown in the second row.

2. (Iteration 2): Q = {vc, vb, vd, vf , va, ve}
vy = vc. Add vc to P . Since vc is critical (shortest path enters using a red edge,
and vc ∈ Z) we add vc to C. We define pred[c] = vs. We also define CL[c] = {vc}.
Since vc is critical, in Step 2.6 we define adj[c] = {va, vb}. Note that we do not add
vf to adj[c] since the edge (vc, vf) is in R. We also create a shadow node v′

c and

268 S. Khuller, K. Lee, and M. Shayman

5 7

9 1

3

15

10

5

(c)

Input Graph

Critical nodes

Shadow nodes

5 7

1

3

50

10
5

5

9

Edges in R

Edges in S

(a) 5 7

1

3

50

10
5

5

9

(b)

vb

vd

ve

v′b

v′c

vc

va

vf

vs

Shortest path tree in G′

vs

vd

ve

vb

vc

vf

va
vs

vd

ve

vb

vc

vf

va

Alternate path to vb

Fig. 2. Example to illustrate algorithm

add it to Q and V ′. We define adj[c′] = {vf}. We now update the distance labels
of va and vb in Step 2.8. The updated distance labels are shown in the third row.

3. (Iteration 3): Q = {vb, vd, vf , va, ve, v
′
c}

vy = vd. Add vd to P . Define pred[d] = vs. CL[d] = ∅. In Step 2.7.1 we define
adj[d] = {ve}. We update the distance label of ve in Step 2.8 The updated distance
labels are shown in the fourth row.

4. (Iteration 4): Q = {vb, vf , va, ve, v
′
c}

vy = ve. Add ve to P . We define pred[e] = vd. CL[e] = ∅. In Step 2.7.1 we define
adj[e] = {vb}. We update the distance label of vb in Step 2.8. The updated distance
labels are shown in the fifth row.

5. (Iteration 5): Q = {vb, vf , va, v′
c}

vy = vb. Add vb to P . Since vb is critical (shortest path enters using a red edge, and
vb ∈ Z) we add vb to C. We define pred[b] = vs. CL[b] = {vb}. Since vb is critical,
in Step 2.6 we define adj[b] = {vc, ve}. We also create a shadow node v′

b and add

On Degree Constrained Shortest Paths 269

it to Q and V ′. We define adj[b′] = {va}. In Step 2.8, since both vc and ve are
in P we call UpdateSNode(vb, vc), UpdateSNode(vc, vb) and UpdateSNode(vb, ve)
UpdateSNode(ve, vb). Consider what happens when we call UpdateSNode(vb, vc),
UpdateSNode(vc, vb). We update the distance label of v′

b to 55. We also define
pred[b′] = vc. At the same time we update the distance label of v′

c to 59 and
define pred[c′] = vb. Consider what happens when we call UpdateSNode(vb, ve)
UpdateSNode(ve, vb).
We update the distance label of v′

b to 11 and re-define pred[b′] = ve. The updated
distance labels are shown in the sixth row.

6. (Iteration 6): Q = {vf , va, v′
c, v

′
b}

vy = v′
b. Add v′

b to P . We define pred[b′] = ve. CL[b′] = ∅. Recall that adj[b′] =
{va}. (Since this is a shadow node, note that it is not processed in Step 2.6 or Step
2.7). In Step 2.8 we let vx = va. However, this does not affect d[a] which has value
15, even though it updates d[a][red]. The updated distance labels are shown in the
seventh row.

7. (Iteration 7): Q = {vf , va, v′
c}

vy = va. Add va to P . Define pred[a] = vc and CL[a] = {vc}. Since va ∈ V and
is not critical, in Step 2.7.1 we define adj[a] = {vc}. In Step 2.7.2, we add v′

b to
adj[a]. In Step 2.8, we make calls to UpdateSNode(va, vc), UpdateSNode(vc, va)
and UpdateSNode(va, v′

b), UpdateSNode(v′
b, va). The first two calls do not do

anything. The second two calls update d[c′] to be 11 + 5 + 15 − 5 = 26 (Step
P.1.1.1). We also define pred[c′][green] = v′

b. The updated distance labels are
shown in the eighth row.

8. (Iteration 8): Q = {vf , v′
c}

vy = v′
c. We add v′

c to P and this node is not critical. We define pred[c′] = v′
b.

We also define CL[c′] = ∅. Recall that adj[c′] = {vf}. (Since this is a shadow
node, note that it is not processed in Step 2.6 or Step 2.7). In Step 2.8 we update
d[f] = 31. The updated distance labels are shown in the ninth row.

9. (Iteration 9): Q = {vf}
vy = vf . We add vf to P . This node is identified as critical since it is in Z. We
also define CL[f] = ∅. We create a shadow node v′

f . However, vf has no green
neighbors so adj[f] = ∅. We add v′

f to V ′ and adj[f ′] = ∅. The updated distance
labels are shown in the tenth row.

10. (Iteration 10): Q = {v′
f}

We exit the loop since d[f ′] = ∞.

Due to space limitations, we omit the proof of the algorithm and the complexity
analysis completely.

Acknowledgments

We thank Julian Mestre and Azarakhsh Malekian for useful comments on an earlier
draft of the paper.

References

1. Ravindra K. Ahuja , Thomas L. Magnanti, James B. Orlin, “Network Flows:
Theory, Algorithms and Applications”, Prentice Hall, 1993.

2. W. Cook, A. Rohe, “Computing Minimum Weight Perfect Matchings”, INFORMS
Journal of Computing, 1998.

270 S. Khuller, K. Lee, and M. Shayman

3. S. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari and N. Young, “A Network-
Flow technique for finding low-weight bounded-degree spanning trees”, Journal of
Algorithms, Vol 24, pp 310–324 (1997).

4. M. Fürer and B. Raghavachari, “Approximating the minimum degree Steiner tree
to within one of optimal”, Journal of Algorithms, Vol 17, pp 409–423 (1994).

5. H. N. Gabow, “Data structures for weighted matching and nearest common ances-
tors with linking”, Proc. of the ACM-SIAM Symp. on Discrete Algorithms, pages
434–443, 1990.

6. H. N. Gabow and R. E. Tarjan, “Efficient algorithms for a family of matroid
intersection problems”, Journal of Algorithms, Vol 5, pp 80-131 (1984).

7. P. Gurumohan, J. Hui “Topology Design for Free Space Optical Network”, ICCCN
’2003, Oct. 2003

8. Z. Huang, C-C. Shen, C. Srisathapornphat and C. Jaikaeo, “Topology Control
for Ad Hoc Networks with Directional Antennas”, ICCCN ’2002, Miami, Florida,
October 2002.

9. A. Kashyap, K. Lee, M. Shayman “Rollout Algorithms for Integrated Topology
Control and Routing in Wireless Optical Backbone Networks” Technical Report,
Institute for System Research, University of Maryland, 2003.

10. J. Könemann and R. Ravi, “Primal-dual algorithms come of age: approximating
MST’s with non-uniform degree bounds”, Proc. of the 35th Annual Symp. on The-
ory of Computing, pages 389–395, 2003.

11. S. Koo, G. Sahin, S. Subramaniam, “Dynamic LSP Provisioning in Overlay, Aug-
mented, and Peer Architectures for IP/MPLS over WDM Networks”, IEEE IN-
FOCOM , Mar. 2004.

12. K. Lee, M. Shayman, “Optical Network Design with Optical Constraints in Multi-
hop WDM Mesh Networks”, ICCCN’04, Oct. 2004.

13. E. Leonardi, M. Mellia, M. A. Marsan, “Algorithms for the Logical Topology Design
in WDM All-Optical Networks”, Optical Networks Magazine, Jan. 2000, pp. 35-
46.

14. N.A.Riza, “Reconfigurable Optical Wireless”, LEOS ’99 , Vol.1, Nov. 1999, pp.
8-11.

A New Template for Solving p-Median Problems
for Trees in Sub-quadratic Time

(Extended Abstract)

Robert Benkoczi1 and Binay Bhattacharya2

1 School of Computing Queen’s University Kingston, ON, Canada K7L 3N6
2 School of Computing Science, Simon Fraser University,

Burnaby, BC, Canada V5A 1S6

Abstract. We propose an O(n logp+2 n) algorithm for solving the well-
known p-Median problem for trees. Our analysis relies on the fact that p
is considered constant (in practice, very often p << n). This is the first
result in almost 25 years that proposes a new algorithm for solving this
problem, opening up several new avenues for research.

1 Introduction

The p-Median problem is one of several problems considered fundamental for
the field of combinatorial optimization. It has a rich history dating back to the
17-th century when it was posed as a mathematical puzzle most probably by
French mathematician Pierre de Fermat [12]. Today, there is a huge amount of
literature dedicated to the p-Median problem (see the survey of Hale et al. [19]).

For a graph G = (V,E) with vertex weights and edge lengths, the p-Median
problem seeks to identify a subset of p vertices called facilities or medians, so that
the sum of the weighted distances from each vertex in G to the closest median is
minimized. It was shown by Kariv and Hakimi in [23] that the p-Median problem
is NP-complete even for planar graphs with unit edge length and with maximum
vertex degree 3. Moreover, Lin and Vitter [24,25] showed that approximating
p-Median is as hard as approximating dominating set and set cover, and there-
fore, it is unlikely that there exist constant factor approximation algorithms for
these problems. However, their result applies to general instances of the problem
where the distance (cost) between pairs of locations does not satisfy the triangle
inequality. For the planar or graph p-Median, constant factor approximations
are possible and many algorithms have been proposed [22,10,31,3,2].

When the input graph is a tree, an interval, or a circular arc graph, the
p-Median problem is solved in polynomial time and the best algorithms known
to date have a running time of O(pn2) (Tamir [29]), O(pn log n) (Bespamyatnikh
et al. [7]), and O(pn2 logn) [7] respectively. When p ∈ {1, 2, 3}, it is possible to
design algorithms that are even more efficient. For trees, the 1-Median can be
solved easily in O(n) time (Goldman et al. [15,16]), the 2-Median in O(n log n)
time (Gavish et al. [14] and Breton [9]), and the 3-Median in O(n log3 n) time
(Benkoczi et al. [6,5]). Tamir’s p-Median algorithm for trees [29] is in fact a slight
modification of a straightforward dynamic programming approach proposed by

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 271–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

272 R. Benkoczi and B. Bhattacharya

Kariv and Hakimi [23] more than twenty years ago. With his modification, Tamir
was able to prove a tighter upper bound on the running time of the dynamic pro-
gramming method improving Kariv and Hakimi’s result from O(p2n2) to O(pn2).
Surprisingly, no other results are known for the p-Median problem on trees.
Our Results. In this paper, we describe a new algorithm to solve the p-Median
problem on trees. As long as p is considered fixed, our algorithm has a running
time that is sub-quadratic in n, where n represents the number of vertices of
the tree. This is the first improvement on the solution to the p-Median problem
in a context where several similar optimization problems on trees with previous
quadratic complexity have been solved more efficiently. Shah, Langerman, and
Lodha [28] considered the problem of placing filters in multicast trees and pro-
posed an O(n log n) algorithm based on a modified dynamic programming model.
Shah and Farach-Colton [27] took the same dynamic programming paradigm and
solved the uncapacitated facility and minimum cost coverage problems in trees
again in O(n logn) time. However, the authors were unable to extend their result
on the p-Median problem. Our method is still based on a dynamic programming
formulation, but we use a totally different approach of working with the cost
functions which gives us a time complexity of O(n logp+2 n). It is still not known
whether a p-Median algorithm for trees with a running time sub-quadratic in n
exists when p is not fixed.

Solving optimization problems defined on trees is important for several rea-
sons. First, algorithms on trees can be used in deriving approximation algorithms
for other more general problem instances [30]. For this reason, there is a grow-
ing interest now in studying the relationship between tree metrics and arbitrary
metrics [4,13]. Second, our result advances the research towards finding ways to
exploit the special structure present in other types of graphs such as the par-
tial k-trees [26]. These are graphs which have a configuration resembling that
of a tree. There are few published results concerning facility location problems
in partial k-trees and many issues are still open. Among the articles that con-
sidered the structure of special graphs we mention the work of Gurevich and
Stockmeyer [18] on the continuous minimum cover problem, Hassin and Tamir
[20] on uncapacitated facility location (UFL) and p-center problems in partial
2-trees, Granot and Skorin-Kapov [17] on UFL.

Our paper is organized as follows. In Section 2 we describe the general idea
behind dynamic programming algorithms for the p-Median problem. The time
complexity of this approach is quadratic in n. We explain the modification of
Shah et al. [28,27] that leads to sub-quadratic performance for solving problems
like UFL. We then introduce our own approach which leads to sub-quadratic
running time for the p-Median problem on balanced binary trees. With the help
of a tree decomposition structure which is presented in Section 3, we show in
Section 4 how we can extend our results to arbitrary trees.

2 The General Approach

We consider a rooted binary tree T = (V,E) with vertex weights and edge
lengths. If the given tree is not rooted or binary, we can root it at an arbitrary

A New Template for Solving p-Median Problems 273

vertex or make it binary by adding a linear number of vertices and edges of
weight zero as in [29]. For vertex v ∈ V let w(v) be its weight; similarly, for edge
e ∈ E, let l(e) be its length. We denote the tree distance between vertices u and
v by d(u, v). Let Fp be an arbitrary set of p medians of T . The cost of having
Fp as median set is,

C(Fp) =
∑
z∈Fp

c(z) +
∑
v∈V

w(v) d(v, Fp),

where c(z) is an additional cost incurred for considering vertex z as one of the
medians and d(v, Fp) = minz∈Fp d(v, z) is the tree distance from v to the closest
median in Fp. We say that v is served (covered) by the closest median in Fp.
This cost model is identical with that used by Tamir [29] and generalizes the
usual p-Median cost function for which c(z) = 0, ∀z ∈ V . The p-Median problem
is to compute

min
Fp⊆V
|Fp|=p

C(Fp).

C(Fp) is also called the objective function.
The classical dynamic programming algorithms to solve the p-Median prob-

lem in trees [23,29] compute recursively bottom-up a set of cost functions asso-
ciated with the subtrees of T . The cost functions represent the contribution to
the objective function of only the vertices in the given subtree. Starting from the
leaves of T for which the cost functions have trivial values, a set of cost func-
tions for the entire tree is computed and the optimal p-Median solution is given
by the minimum cost function from this set. The correctness of the dynamic
programming algorithm is insured by the following condition.

Optimality Condition. Consider Fp to be an optimal median set for the ob-
jective function C(Fp). Out of the p medians from Fp, assume that q are located
in subtree Tv. Denote by Gq these q vertices (Gq = Fp ∩ Tv), and denote by z
the median covering v, the root of Tv. Then Gq is an optimal q-Median for Tv

under the constraint that vertex z is a median covering v.

This condition suggests a definition for the cost functions of the dynamic
programming algorithm. Every cost function has three parameters. (1) v ∈ V is
the root of the subtree (Tv) for which the cost function is computed, (2) q ∈ Z+

is the number of medians to be located optimally inside Tv, and (3) z ∈ V is the
median constrained to cover v; if z ∈ Tv, then z is one of the optimal q medians of
Tv. The value returned by the cost function is the minimum cost of the q-Median
problem on subtree Tv with the restriction that vertex z given as parameter is
one of the medians and it covers root v. To simplify our exposition later on,
we use two notations for the cost functions, depending on where parameter z
is chosen from. We use IN(v, q, z) if z is a vertex from Tv and OUT (v, q, z)
if z ∈ T \ Tv. Clearly then, the optimal solution of the p-Median problem is
obtained from

min
z∈T

IN(r, p, z), where r is the root of T .

274 R. Benkoczi and B. Bhattacharya

(b)(a)

z

v

vl vr

v

vl vr

z

Gq

Fp

Fig. 1. Cost functions defined for subtree Tv. The shaded area represents the vertices
in T covered by z. Case (a) z ∈ Tv; case (b) z ∈ T \ Tv.

Since the optimal choice for z is not known beforehand, we need to compute
cost functions for all z ∈ V at every subtree Tv, which amounts to O(pn2)
cost functions in total. To reduce the time complexity of the algorithm to a
function sub-quadratic in n, we use a simple observation made by Shah et al.
[28]. They observed that the value of function OUT (v, q, z) does not depend on
z but on the distance from z to v. Recall that z ∈ T \ Tv in this case and the
additive cost c(z) is not accounted for by function OUT . Therefore, we can work
with continuous cost function OUT (v, q, α), where α is the distance from v to
the external median and belongs to the range [0,∞). Dynamic programming
with this kind of continuous cost functions was named undiscretized dynamic
programming by Shah et al. [28].

The algorithm remains essentially the same. Function OUT (v, q, α) is ob-
tained recursively by adding and taking the minimum of several functions com-
puted for the children of v. It can be shown that function OUT (v, q, α) is piece-
wise linear and concave, and thus addition and minimum operations take time
proportional to the total number of linear pieces of the functions involved. The
number of linear pieces is called the complexity of the cost function. For unca-
pacitated facility location, Shah et al. [27] proved that the complexity is linear
in the size of the subtree for all cost functions. They used a data structure to
store cost functions that allows all operations to be performed in time linear in
the complexity of the smaller function and logarithmic in the complexity of the
larger one. As consequence, the running time of their algorithms is O(n log n).
However, they could not apply their method to the p-Median problem because
the cost functions have too many parameters.

Our approach is different. We use no special data structure to store our cost
functions and all operations on them are proportional to the sum of the complex-
ities of the functions involved. If the complexity of cost function OUT (v, q, α) is
bounded by some increasing function f(|Tv|, q) with two parameters, then the

A New Template for Solving p-Median Problems 275

total running time of our procedure becomes at least O(h f(n, p)) where h is
the height of the tree. In Section 4 we sketch the proof for an upper bound of
O(n logp−2 n) on f(n, p). For balanced binary trees, h is O(log n). Thus, we can
show a running time of O(n logp−1 n) for our algorithm on balanced binary trees.

To accommodate arbitrary trees, we preprocess the given tree in a data struc-
ture called spine decomposition. This is a new data structure that allows us to
treat any set of trees as if they were of logarithmic height. In the following sec-
tion we give a brief description of the spine decomposition and in Section 4 we
show how to define the cost functions in order to utilize the properties of our
decomposition. Finally, we review the main steps we took in proving the time
complexity of O(n logp+2 n) and space complexity of O(n logp n) for our general
algorithm.

3 The Spine Decomposition (SD) of Trees

In a decomposition of a tree we partition the input tree T into two or more
subtrees called the components. Each component is then partitioned recursively.
This recursive process can be traced by the recursion tree. The depth of the
recursion tree is logarithmic. In the literature, there exist several tree decompo-
sitions, perhaps the best known being the centroid decomposition [11]. In the
centroid decomposition, the partition in two components is determined by the
existence of a special vertex in a tree called the centroid of the tree.

Our decomposition, the spine decomposition (SD) [6,5], uses a path to direct
the partition of the input tree. This makes it suitable for computation tasks
involving components of the tree that interact with one another. A very similar
decomposition was proposed independently by Boland [8]. There also exist other
decompositions that are suitable for our purposes, for example the top-trees
proposed by Holm et al. ([21] and [1]). However, we feel that SD is more intuitive
for the type of problems we are solving here.

We now describe the SD structure (see Fig. 2). Consider a binary tree T
rooted at a vertex rT . We select a path from rT to a leaf in T such that the
next vertex in this path always follows the child with the most number of leaves
hanging from it. Formally, if v0 = rT , v1, ... vk are the vertices on the path, if
p(v) denotes the parent of v, and if Nl(v) denotes the number of leaves that have
v as ancestor, then we always have Nl(vi+1) ≥ Nl(ui) where ui is the other child
of node vi. We call path v0, v1, . . . vk a spine and use notation π(v0, vk). If we
remove the spine from T we obtain a set of at most k disconnected components
which are each recursively decomposed. Let T (ui) be one of these components
rooted at ui where ui is adjacent to spine vertex vi but is not itself a spine
vertex.

Let λ(vi) denote the number of leaves of T (ui). We construct a binary search
tree with vertices vi as leaves and we associate it with the spine. Thus the leaves
of the search tree and the spine vertices of π(v0, vk) are the same (or one can
consider a one to one mapping between them). The root of the search tree is
linked to the spine vertex of the parent spine, i.e. the root of the search tree for

276 R. Benkoczi and B. Bhattacharya

135132111

Txj+1

Txj

T (ui)

xj+1

xj−1

rT

xj

ui vi

sSD

Fig. 2. A typical spine decomposition; spines are shown in thick lines, search trees
as thin lines and components are outlined by dashed lines; the numbers beside spine
vertices at the top-most spine give the number of leaves of T for the corresponding SD
component

the spine of T (ui) is linked to vi. The search tree is balanced by weight λ(vi)
associated with leaf vi such that components with many leaves (and thus many
recursive spines) are closer to the root of the search tree. Once all the search trees
for all spines are constructed, any tree traversal is performed through the search
trees and not through the links of the original tree T . A search tree traversal can
begin at root sSD of the search tree of the top-most spine; then the search tree is
traversed until leaf vi on the spine is reached; the next search tree node visited is
the root of the search tree constructed for T (ui). In this way, the paths in several
search trees are concatenated, and we can talk about one super-path through
search trees connecting any two search tree nodes1. We denote the super-path
between search tree nodes x and y by σ(x, y). Two important properties of the
SD are mentioned here without proof because of space constraints. Full proofs
are provided in [5].

Theorem 1. The length (number of edges) of any super-path σ(x, y) in the SD
is O(log n) where n is the number of vertices of the input tree T .

Theorem 2. The construction algorithm for the SD has time complexity O(n).
The storage space complexity of the data structure for the SD is also O(n).

It is interesting to point out here that although both our spine decomposition
and the centroid decomposition have linear time construction algorithms, the
algorithm for SD is simpler than the one for the centroid decomposition.
1 Note that any vertex of the input tree T is also a leaf of some search tree.

A New Template for Solving p-Median Problems 277

4 The p-Median Template

We now describe a dynamic programming algorithm for the p-Median problem
on trees that runs in time sub-quadratic in n. Our algorithm follows the steps
outlined in Section 2 but associates the cost functions with the nodes of search
trees in the SD. Each such node corresponds to a subtree of T . The algorithm
can be sketched as follows:

– Transform input tree T into binary tree as in [29].
– Construct the spine decomposition of T .
– Traverse the decomposition and compute the cost functions bottom-up, as

sketched in the following paragraphs.
– Return the cost function with minimum value computed for the root of the

spine decomposition.

To exploit the balanced structure of the SD we define the cost functions differ-
ently than in Section 2. In this section we will describe each cost function and
we will illustrate the recursive computation of one of them (for lack of space).
But first, we introduce the notation for the subtrees of T that are associated
with the nodes of the SD.

For a given search tree node x (Fig. 3 - a), let (i) Tx – small subtree; it is the
subtree of T induced by all vertices v that contain x in the super-path from v to
the root sSD of the decomposition and (ii) T (xR) – big subtree; it is the subtree
of T rooted at xR in the usual sense. The cost functions for node x are obtained
from the cost functions computed for its two children y and t in the search tree
(Fig. 3 - a). To insure that the dynamic programming algorithm runs in time
sub-quadratic in n, the cost functions should have a complexity linear – ignoring
logarithmic factors – in the size of the small subtrees. Only then we can hope
to obtain a sub-quadratic algorithm if we implement addition and minimum of
cost functions in time linear in the sum of their complexities.

Before we explain how we satisfy this requirement, we introduce the notion
of split edge [14,9,6]. A solution to the p-Median problem is a set of p vertices of
T , but it can also be viewed as a collection of p−1 edges of T . If these edges are
removed (split), the tree gets disconnected into p components and the optimal
1-Medians of each component form together the p-Median set that is solution to
the original p-Median problem. We can thus seek to compute optimal split edges
instead of optimal medians. We are going to define our cost functions in terms
of split edges because there are special cases that we need to consider during the
computation of cost functions which occur when one or more split edges fall on
the spine. If we work with medians only, these cases are difficult to model.

As presented in Section 2, we have two types of cost functions: discrete (a
given median is forced to cover a special vertex of the given subtree) and contin-
uous (an external median is forced to cover a special vertex of the given subtree).
We use the following notation.

1. IBU = Inside Big Unconstrained (similar to function IN)
IBUR

(
x, j, z

)
returns the optimal cost of T (xR) if j split edges (and thus

j + 1 medians) are selected in T (xR). The facility covering xR is vertex z

278 R. Benkoczi and B. Bhattacharya

chosen only from Tx. In this way, the number of values for cost function
IBUR

(
x, j, z

)
is proportional to the size of Tx and not T (xR). The cost of

the optimal p-Median solution for T can be retrieved from

min
z∈T

IBUR

(
sSD, p− 1, z

)
.

Hence, our goal is to evaluate IBUR

()
at the SD root node sSD.

2. OBU = Outside Big Unconstrained (similar to function OUT).
Function OBUR

(
x, j, α

)
returns the cost of subtree T (xR) when j spine

edges are chosen from Tx but some may be chosen from the spine. If a split
edge is on the spine (see Fig. 3 (b)) then the outside median cannot cover
the portion towards the leaf of the spine and cost functions OBUR

()
cannot

be used recursively. In this case, we need to compute value Copt illustrated
in the figure which is the optimal q-Median of the subtree separated by the
split edge for q ∈ {1, . . . p− 1}. This is in fact the requirement most difficult
to satisfy in our algorithm. Note that we force the split edges to belong to
Tx and thus constrain the complexity of the function to depend on the size
of the small subtree.

3. OSC = Outside Small Constrained.
OSCR

(
x, j, α

)
returns the optimal cost of Tx if j split edges are chosen from

Tx, none of them on the spine, and the closest external median is at distance
α from xR and covers xR. Function OSCL

(
x, j, α

)
is the same except that

the external median is at distance α from xL, and covers xL.

(a) (b)

...

...

......

...

...
T (xR)

v0

root

Tx

split
edge

xL

y t

Copt

αxL xR

xx

xR

Fig. 3. Defining the cost functions for SD node x; Case (b) for OBUR

()
when the

rightmost split edge is on the spine

We illustrate now the recursive formula used in calculating IBUR

(
x, j, z

)
for

a node x of the SD that is not a spine vertex (see Fig. 3 (a)). If median z comes

A New Template for Solving p-Median Problems 279

from the right subtree (Tt) then the value of the cost function remains unchanged
from what was computed at node t according to the definition of IBUR

()
. If z

comes from the left subtree (Ty) then we need to add the contribution of vertices
in Tt which is returned by function OSCL

()
.

IBUR

(
x, j, z

)
=

⎧⎨⎩IBUR

(
t, j, z

)
, if z ∈ Tt

min
0≤q≤j

{
IBUR

(
y, q, z

)
+ OSCL

(
t, j − q, d(z, tL)

)}
, if z ∈ Ty

(1)
When node x is on spine, the formula is more involved and requires evaluating
OBUR

(
x, j, α

)
at different values of α. A complete presentation of all calculations

is beyond the scope of this paper.
From (1) and the rest of the formulae used to compute cost functions, we ob-

tain a recurrence relation for a function denoted f : Z×Z → R that represents an
upper bound on the complexity of the continuous cost functions OBUR

(
x, j, α

)
and OSCR

(
x, j, α

)
. The upper bound f(|Tx|, j) is in terms of the size of the

small subtree (Tx) and the number of split edges (j) given as parameter in the
cost function.

Lemma 1. For any node x of the SD of T ,

f(|Tx|, j) ≤

⎧⎪⎪⎨⎪⎪⎩
1, if j = 0
|Tx| − 1, if j = 1

c|Tx| log |Tx|
(
1 + c log |Tx|

)j−2

, if j ≥ 2,

(2)

where c and j are constant.

The recurrence relation and the proof of Lemma 1 are not included due to space
constraints.

Using Lemma 1, Theorem 1, and the fact that subtrees Tx for different nodes
x situated at the same distance from the SD root sSD are disjoint, the following
can be proved.

Theorem 3. Our algorithm has space complexity O(n logp−2 n+ SCopt(n)) and
running time complexity O(n logp−1 n + n log3 n + nTCopt(n)), where p ≥ 3 is a
constant, TCopt(n) is the time complexity for computing Copt in Fig. 3 (b) and
SCopt(n) is the extra space required by the method that computes Copt.

The Challenge. The challenge in our algorithm is to compute value Copt (Fig. 3
(b)) for every edge of T being split and for every value q ∈ {1, . . . p− 1} in sub-
linear time in the size of the subtree being split. We sketch here our approach.

Consider Fig. 4. We want to compute value Copt (an optimal q-Median so-
lution on tree T (vi)). Vertex vi is the spine vertex incident to the split edge
towards the leaf. In the optimal solution vi is served by some median z ∈ T (vi).
Assume that z falls in subtree Ty for some SD node y. Notice that there are only
O(log n) such nodes y which are hanging on the left of of the path from vi to

280 R. Benkoczi and B. Bhattacharya

the root of the search tree. Then, we can represent cost function IBUR

(
y, j, z

)
for all z ∈ Ty as a point in distance-cost space (see Fig. 4). We can compute in
a preprocessing step the lower convex hull of this set of points. It can be shown
that the convex hull can be used in a binary search procedure to return the
optimal z ∈ Ty that covers vi. The only requirement is to efficiently maintain
the convex hull as a new split edge is selected to the right of the current vi. This
maintenance amounts to adding a continuous cost function OSCL

()
to the set

of points in the convex hull. Since the function is piecewise linear and concave,
we need to consider eliminating some points on the hull that have become reflex
points. The procedure can be done in time proportional to the number of points
eliminated and takes a total time polylogarithmic in n. The details are omitted
from the conference version of this paper (see also [5]).

...

x

xR

T (vi)

xL vi

z

y

IBUR

(
y, j, z

)

d(z, vi)

Fig. 4. Computing the optimal q-Median on subtree T (vi) in polylogarithmic time

Theorem 4. The p-Median problem in trees can be solved, for any constant p
in time O(n logp+2 n) and space O(n logp n).

5 Conclusion

In this paper we give the first algorithm for solving the p-Median problem in
trees, for constant p, that is significantly different than the almost 25 years old
dynamic programming algorithm of Kariv and Hakimi which was improved by
Tamir in 1996. For constant values of p, it is asymptotically better than the best
known O(pn2) procedure of Tamir. However, if p is not constant, we do not know
whether sub-quadratic algorithms still exist. We conjecture that it is possible to
solve the p-Median problem in less than O(pn2) even when p is not fixed.

A New Template for Solving p-Median Problems 281

References

1. S. Alstrup, J. Holm, and M. Thorup. Maintaining center and median in dynamic
trees. In In Proc. 7-th SWAT, volume 1851 of LNCS, pages 46–56, 2000.

2. S. Arora, P. Raghavan, and S. Rao. Approximation schemes for euclidean k-
medians and related problems. In Proc. 30th Annual ACM Symposium on Theory
of Computing (STOC’98), pages 106–113, 1998.

3. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Mungala, and V. Pandit. Local
seach heuristic for k-median and facility location problems. In Proc. 33rd Annual
ACM Symposium on Theory of Computing, pages 21–29, 2001.

4. Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proc. STOC,
pages 183–193, 1998.

5. Robert Benkoczi. Cardinality constrained facility location problems in trees. PhD
thesis, School of Computing Science, Simon Fraser University, Burnaby, BC,
Canada, May 2004.

6. R.R. Benkoczi, B.K. Bhattacharya, M. Chrobak, L. Larmore, and W. Rytter.
Faster algorithms for k-median problems in trees. In B. Rovan and P. Vojtáš,
editors, Proc. 28th International Symposium on Mathematical Foundations of Com-
puter Science, volume LNCS 2747, pages 218–227, 2003.

7. Sergei Bespamyatnikh, Binay Bhattacharya, M. Keil, David Kirkpatrick, and
M. Segal. Efficient algorithms for centers and medians in interval and circular-
arc graphs. NETWORKS, 39(3):144–152, 2002.

8. R.P. Boland. Polygon visibility decompositions with applications. PhD thesis, Uni-
versity of Ottawa, Ottawa, Canada, 2002.

9. D. Breton. Facility location optimization problems in trees. Master’s thesis, School
of Computing Science, Simon Fraser University, Canada, 2002.

10. M. Charikar and S. Guha. Improved combinatorial algorithms for facility location
and k-median problems. In Proc. 40th Symposium on Foundations of Computer
Science (FOCS’99), pages 378–388, 1999.

11. R. Cole and U. Vishkin. The accelerated centroid decomposition technique for
optimal parallel tree evaluation in logarithmic time. Algorithmica, 3:329–346, 1988.

12. Z. Drezner, K. Klamroth, A. Sch obel, and G.O. Wesolowsky. Facility Location: Ap-
plications and Theory, chapter The Weber Problem, pages 1–36. Springer-Verlag,
2002.

13. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. In Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, 2003.

14. R. Gavish and S. Sridhar. Computing the 2-median on tree networks in O(n log n)
time. Networks, 26:305–317, 1995.

15. A.J. Goldman. Optimal center location in simple networks. Trans. Sci., 5:212–221,
1971.

16. A.J. Goldman and C.J. Witzgall. A localization theorem for optimal facility place-
ment. Trans. Sci., 1:106–109, 1970.

17. Daniel Granot and Darko Skorin-Kapov. On some optimization problems on k-trees
and partial k-trees. Discrete Applied Mathematics, 48(2):129–145, 1994.

18. Y. Gurevich, L. Stockmeyer, and U. Vishkin. Solving NP-hard problems on graphs
that are almost trees and an application to facility location problems. Journal of
the ACM, 31(3):459–473, 1984.

19. Trevor S. Hale and Christopher R. Moberg. Location science research: A review.
Annals of Operations Research, 123:21–35, 2003.

282 R. Benkoczi and B. Bhattacharya

20. R. Hassin and A. Tamir. Efficient algorithms for optimization and selection on
series-parallel graphs. SIAM Journal of Algebraic Discrete Methods, 7:379–389,
1986.

21. Jacob Holm and Kristian de Lichtenberg. Top-trees and dynamic graph algorithms.
Technical Report 17, Univ. of Copenhagen, Dept. of Computer Science, 1998.

22. K. Jain and V. Vazirani. Primal-dual approximation algorithms for metric facility
location and k-median problems. Manuscript, March 1999.

23. O. Kariv and S.L. Hakimi. An algorithmic approach to network location problems
II: The p-medians. SIAM Journal on Applied Mathematics, 37:539–560, 1979.

24. J.-H. Lin and J.S. Vitter. Approximation algorithms for geometric median prob-
lems. Information Processing Letters, 44:245–249, 1992.

25. J.-H. Lin and J.S. Vitter. ε-approximations with minimum packing constraint viola-
tion. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
pages 771–782, 1992.

26. N. Robertson and P.D. Seymour. Graph minors. I. excluding a forest. J. Com-
bin. Theory Ser. B, 35:39–61, 1983.

27. R. Shah and M. Farach-Colton. Undiscretized dynamic programming: faster algo-
rithms for facility location and related problems on trees. In Proc. 13th Annual
Symposium on Discrete Algorithms (SODA), pages 108–115, 2002.

28. R. Shah, S. Langerman, and S. Lodha. Algorithms for efficient filtering in content-
based multicast. In Proc. 9th Annual European Symposium on Algorithms (ESA),
pages 428–439, 2001.

29. A. Tamir. An O(pn2) algorithm for the p-median and related problems on tree
graphs. Operations Research Letters, 19:59–64, 1996.

30. A. Tamir, D. Pérez-Brito, and J.A. Moreno-Pérez. A polynomial algorithm for the
p-centdian problem on a tree. Networks, 32:255–262, 1998.

31. M. Thorup. Quick k-median, k-center, and facility location for sparse graphs. In
28th International Colloqium on Automata, Languages and Programming, volume
2076 of Lecture Notes in Computer Science, pages 249–260, Crete, Greece, 2001.

Roll Cutting in the Curtain Industry
(Extended Abstract)

Arianna Alfieri1, Steef L. van de Velde2, and Gerhard J. Woeginger3

1 Dipartimento dei Sistemi di Produzione ed Economia dell’Azienda,
Polytechnic University of Torino, Torino, Italy

2 Rotterdam School of Management, Erasmus University,
Rotterdam, The Netherlands

3 Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. We study the problem of cutting a number of pieces of the
same length from n rolls of different lengths so that the remaining part of
each utilized roll is either sufficiently short or sufficiently long. A piece is
sufficiently short, if it is shorter than a pre-specified threshold value δmin,
so that it can be thrown away as it cannot be used again for cutting future
orders. And a piece is sufficiently long, if it is longer than a pre-specified
threshold value δmax (with δmax > δmin), so that it can reasonably be
expected to be usable for cutting future orders of almost any length. We
show that this problem, faced by a curtaining wholesaler, is solvable in
O(n log n) time by analyzing a non-trivial class of allocation problems.

1 Introduction

The one-dimensional stock cutting problem to minimize trim loss continues to be
a challenging day-to-day optimization problem for many companies in a variety
of industries, with the first contributions tracing back to the seminal papers by
Gilmore and Gomory (1961, 1963); see for instance the editorial of the recent
featured issue of European Journal Operational Research on cutting and packing
(Wang and Wäscher, 2002).

In this paper, we study the optimization of roll cutting faced by a curtaining
wholesaler and distributor. An important subproblem is to cut a number of pieces
of the same length from n rolls of different lengths so that the remaining part
of each utilized roll is either sufficiently short so that it can be thrown away (as
it cannot be used again for cutting future orders), or sufficiently long so that it
can reasonably be expected to be usable for cutting future orders of almost any
length. Mathematically, ‘sufficiently short’ means shorter than a pre-specified
threshold value δmin, and ‘sufficiently long’ means longer than a pre-specified
threshold value δmax, with δmax > δmin.

This problem comes close to a roll cutting problem in the clothing industry
introduced by Gradǐsar et al. (1997). Two main differences play a role (and some
smaller ones, also). First, in their problem, an order consists of pieces of differ-
ent lengths; and second, no maximum threshold value applies—effectively, this

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 283–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

284 A. Alfieri, S.L. van de Velde, and G.J. Woeginger

means that in their case δmax = δmin. Gradǐsar et al. (1997) present a heuris-
tic for this problem with a compelling computational performance; Gradǐsar et
al. (1999) presented an improved heuristic for the same problem. No proof was
given, but we claim that this problem can be easily shown to be NP-hard by a
reduction from Knapsack (Garey and Johnson, 1979).

In contrast, we will prove that our problem with equal-length pieces is solv-
able in O(n logn) time. We begin, however, by giving the practical context and
motivation, along with a detailed description, of our roll cutting problem.

2 Problem Description: The Practical Context

The curtaining wholesaler is carrying a wide assortment of curtain material,
folded on fabric rolls (we refer to them as folded rolls), of different design, color,
and fabric quality. The width of a fabric roll is standardized. Of each curtain
material, the wholesaler has a number of rolls in stock. Usually, parts of each
roll are unusable due to weaving faults. The location of each weaving fault is
determined and recorded by scanning the rolls upon delivery by the manufac-
turers. Hence, each roll effectively can be seen as a number of (virtual) sub-rolls
of different lengths.

The retailers in turn usually have a more limited assortment of curtain mate-
rial on display; they only carry samples and catalogues to show to their customers
(usually households). The customer typically orders a number of pieces of a spe-
cific curtain material, either all of the same length, or a number or pieces of two,
maybe three different lengths. The retailers consolidate these customer orders
and order periodically, usually weekly, from the wholesaler, to minimize delivery
costs. The wholesaler has split up its service area into five regions and delivers
each region once per week. Accordingly, the activities performed by the whole-
saler that add value in this supply chain include bulk breaking, stock keeping,
cutting, and distributing.

All in all, the cutting problem that the wholesaler is struggling with is a
wide variety of (end-customer) orders, with each order consisting of a number of
pieces to be cut from the same curtain material. From the wholesaler’s perspec-
tive, there are few opportunities for consolidating customer orders; for a specific
curtain material, there is usually no more than one customer order per day.

With respect to trim loss, the wholesaler seeks a cutting pattern for each
order such that the remaining part of each utilized (virtual) roll after cutting is
either longer than a given threshold value δmax, or smaller than a given threshold
value δmin, smaller than the smallest order length. In the first case, the remaining
part is still usable for cutting future orders of almost any length; in the second
case, the remaining part is so small that it can best be thrown away as it can
never be used again. This company procedure precludes the endless stocking of
obsolete or almost obsolete rolls. Note that trim loss is not the only concern
for the wholesaler with respect to the cutting pattern for each order. In fact,
due to the unusable parts of rolls, using a folded roll may result in two or more
remaining parts that each need to be folded and stocked.

Roll Cutting in the Curtain Industry 285

Two types of problem instances can be distinguished: One in which the pieces
to be cut need all be of the same length; and one in which this is not so. In the
latter case, usually only a very small number of varying lengths need to be cut.

The second type of problem, the one with different lengths, can easily be
shown to be NP hard by a reduction from BIN PACKING (Garey and Johnson,
1979). To see this, note that the question whether it is possible to pack m items
of size l1, . . . , lm into n bins of length 1 is equivalent to the question whether
it is possible to cut m pieces of lengths l1, . . . , lm from n rolls R1, . . . , Rn all
of length 1. The values of dmax and dmin are then immaterial. We also claim
that this second type of problem (with general dmax and dmin) is solvable by
a straightforward pseudopolynomial-time dynamic programming algorithm, just
like the bin packing problem is. The development of the algorithm is completely
standard and also quite tedious, however, and for this reason we have not in-
cluded it in our paper.

The remainder of this paper is devoted to the analysis of the first type of
problem: the roll cutting problem for pieces of equal length. This problem is
much more intriguing than it may seem on first sight. The complexity of this
problem is not only of interest of its own, it is also a highly relevant roll cutting
problem in this industry. Moreover, the problem itself can represent a variety
of other real-life applications, such as, for example, capacity allocation on a
batch processing multi-machine station. We prove that this problem is solvable
in O(n log n) time for any number of pieces to be cut, where n is the number
of fabric rolls. To arrive at this result, we analyze a certain allocation problem
in Sections 3 and 4. In particular, we prove that a special non-trivial case is
solvable in polynomial time. Then, in Section 5 we show that our roll cutting
problem with pieces of equal length is in turn a special case of this special case.

3 A Taxonomy of Allocation Problems

In this section we introduce and discuss a number of resource allocation problems
that fit into the framework of Ibaraki & Katoh (1988). Three of these allocation
problems are NP-hard, whereas the remaining two problems are polynomially
solvable. In Section 5, we will show that the cutting problem described in Sec-
tion 2 forms a special case of one of the two polynomially solvable allocation
problems. Our most general problem is the following integer allocation problem:

Problem: Integer Allocation Problem (IAP)

Instance: An integer S. Feasible regionsR1, . . . ,Rn, where every region
Rk is specified as a collection of closed intervals over the non-negative
real numbers. The left and right endpoints of all intervals are integers,
and the left-most interval in Rk starts at 0.

Question: Do there exist n integers x1, . . . , xn with xk ∈ Rk (k =
1, . . . , n) that add up to S?

Note that the stated constraints on the intervals of Rk are not restrictive at all:
As the values xk must be integers, we may as well restrict ourselves to intervals

286 A. Alfieri, S.L. van de Velde, and G.J. Woeginger

whose endpoints are integers. And by appropriately shifting a regionRk and the
value S, we can enforce that the left-most interval in Rk indeed starts at 0.

The special case of the IAP where every feasible region consists of exactly t
closed intervals is denoted by t-IAP. It is straightforward to see that the 1-IAP
is solvable in polynomial time. In this paper, we will mainly concentrate on the
following formulation of the 2-IAP.

Problem: 2-IAP

Instance: An integer S. Non-negative integers α1, . . . , αn, β1, . . . , βn,
and γ1, . . . , γn that satisfy βk ≤ γk for k = 1, . . . , n.

Question: Do there exist n integers x1, . . . , xn that add up to S and that
satisfy xk ∈ Rk with Rk = [0; αk]∪ [αk + βk; αk + γk] for k = 1, . . . , n?

By setting αk ≡ 0 and βk ≡ γk for k = 1, . . . , n, the question simplifies to
whether there exist integers xk ∈ {0, βk} that add up to the goal sum S. This
simplification is precisely the classical Subset-Sum problem (Garey & Johnson,
1979). Therefore, problems 2-IAP and IAP both are NP-hard in the ordinary
sense. Furthermore, they can be solved in pseudo-polynomial time by dynamic
programming.

We introduce some more notations around the 2-IAP. For k = 0, . . . , n, we
define the values Ak =

∑k
j=1 αk and Bk =

∑k
j=1 βk. For 0 ≤ k ≤ � ≤ n, we

define Ck,� to be the sum of the k largest values among the � numbers γ1, . . . , γ�.
Note that for 1 ≤ k ≤ � ≤ n− 1 we have

Ck,�+1 = max {Ck,�, Ck−1,� + γ�+1} . (1)

Definition 1. An instance of 2-IAP is called a Small Gaps instance, if it
satisfies the following two conditions:

αk + βk ≤ αk+1 + βk+1 for 1 ≤ k ≤ n− 1 (2)

and

β�+1 ≤ A� −Ak−1 −Bk−1 + Ck,� + 1 for 1 ≤ k ≤ � ≤ n− 1. (3)

Note that in the 2-IAP the feasible range Rk for variable xk consists of the two
intervals [0; αk] and [αk + βk; αk + γk] that are separated by a gap of length
βk. The name “small gaps instance” results from the upper bounds on these gap
lengths imposed by (3). The conditions in (2) are rather soft, and can be reached
by a simple renumbering step. The conditions in (3) put hard upper bounds on
the values βk, and are actually quite restrictive.

The main result of our paper is the following theorem on Small Gaps instances
that will be proved in Section 4.

Theorem 2. Small Gaps instances of 2-IAP can be solved in O(n2) time.

Figure 1 summarizes the five optimization problems of this section: A directed
arc represents that the lower problem is a special case of the upper problem.
Problems with a solid frame are NP-complete, and problems with a dashed
frame are solvable in polynomial time.

Roll Cutting in the Curtain Industry 287

IAP

1-IAP 2-IAP

Subset SumSmall Gaps

���������

���������

���������

���������

Fig. 1. Five optimization problems. NP-complete problems have a solid frame, poly-
nomially solvable problems have a dashed frame.

4 A Polynomial Time Algorithm for Small Gaps
Instances

This section is entirely devoted to a proof of Theorem 2, and to the combinatorics
of small gaps instances.

We start with some more notation. For two intervals U = [u′; u′′] and V =
[v′; v′′], we denote by U + V the interval [u′ + v′; u′′ + v′′], that is, the interval
consisting of all values u + v with u ∈ U and v ∈ V . For 0 ≤ k ≤ � ≤ n we
introduce the interval

Ik,� = [Ak + Bk; A� + Ck,�]. (4)

The following two Lemmas 3 and 4 investigate the combinatorics of small gaps
instances. Their statements will lead us to a polynomial time algorithm.

Lemma 3. Let I be a small gaps instance of 2-IAP, let T be an integer, and let
1 ≤ k ≤ � ≤ n− 1. Then T ∈ Ik,�+1 if and only if

(a) there exist integers T ′ ∈ Ik,� and x′ ∈ [0; α�+1] with T = T ′ + x′, or
(b) there exist integers T ′′ ∈ Ik−1,� and x′′ ∈ [α�+1 + β�+1; α�+1 + γ�+1] with

T = T ′′ + x′′.

Proof. Omitted in this extended abstract. ��

Lemma 4. Let I be a small gaps instance of 2-IAP, and let 0 ≤ � ≤ n. Then
there exist � integers xk ∈ Rk (k = 1, . . . , �) that add up to the goal sum S, if
and only if S is contained in one of the � + 1 intervals Ik,� with 0 ≤ k ≤ �.

288 A. Alfieri, S.L. van de Velde, and G.J. Woeginger

Proof. The proof is done by induction on �. For � = 0, there is nothing to prove.
For the inductive step from � to � + 1, the inductive assumption yields that a
goal sum S can be written as the sum of � + 1 integers xk ∈ Rk, if and only if
S can be written as the sum T + x�+1 where T is contained in one of the � + 1
intervals Ik,� with 0 ≤ k ≤ � and where x�+1 ∈ R�+1. Hence, the goal sum S
must be contained in one of the � + 1 intervals Ik,� + [0; α�+1] with 0 ≤ k ≤ �,
or in one of �+ 1 intervals Ik,� + [α�+1 + β�+1; α�+1 + γ�+1] with 0 ≤ k ≤ �. We
will show that the union of these 2(� + 1) intervals coincides with the union of
the � + 2 intervals Ik,�+1 with 0 ≤ k ≤ � + 1.

First, we note that the interval I0,� + [0; α�+1] equals the interval I0,�+1.
Secondly, the interval I�,�+[α�+1+β�+1; α�+1+γ�+1] equals the interval I�+1,�+1.
Finally, Lemma 3 yields for 1 ≤ k ≤ � that the union of the two intervals
Ik,� + [0; α�+1] and Ik−1,� + [α�+1 + β�+1; α�+1 + γ�+1] coincides with the
interval Ik,�+1. This completes our proof. ��

By setting � := n in Lemma 4, we see that in a small gaps instance of 2-
IAP the set of representable goal sums can be written as the union of at most
n + 1 intervals. This linear bound is in strong contrast to the combinatorics of
arbitrary (not necessarily small gaps) instances of 2-IAP, where we usually face
the union of an exponential number of intervals: For example, the instance with
αk ≡ 0 and βk ≡ γk ≡ 3k for k = 1, . . . , n is not a small gaps instance, and the
set of representable goal sums can not be written as the union of less than 2n

intervals.
For small gaps instances, the bound of n + 1 on the number of intervals

is in fact best possible, as illustrated by the following example: Consider an
instance I∗ of 2-IAP where αk ≡ 1 and βk ≡ γk ≡ n + 2 for k = 1, . . . , n. Then
condition (2) is satisfied, since αk +βk = n+3 = αk+1 +βk+1 for 1 ≤ k ≤ n−1.
Moreover, condition (3) is satisfied since for 1 ≤ k ≤ � < n

β�+1 = n + 2 ≤ n + �− k + 3 = A� −Ak−1 −Bk−1 + Ck,�.

Therefore, instance I∗ is a small gaps instance. The set of representable goal
sums can be written as the union of the n + 1 intervals Ik,n = [k(n + 1) +
k; k(n + 1) + n] where k = 0, . . . , n, but obviously cannot be written as the
union of fewer intervals.

Lemma 5. For a small gaps instance of 2-IAP, we can decide in O(n) time
whether its answer is YES or NO.

Proof. By Lemma 4, the problem boils down to deciding whether the value S is
contained in one of the intervals Ik,n = [Ak + Bk; An + Ck,n] with 0 ≤ k ≤ n.
Note that some of these intervals may overlap each other. However, their left
endpoints form a non-decreasing sequence, and also their right endpoints form
a non-decreasing sequence.

We determine the maximum index m for which S ≥ Am+Bm holds. This can
be done in O(n) time by repeatedly computing Aj+1 + Bj+1 in O(1) time from
Aj + Bj . Then S is contained in the union of all intervals Ik,n with 0 ≤ k ≤ n,

Roll Cutting in the Curtain Industry 289

if and only if S is contained in the interval Im,n, if and only if S ≤ An + Cm,n

holds. It is straightforward to determine An in O(n) time. The value Cm,n can be
determined in O(n) time by computing the m-largest number among γ1, . . . , γn

according to the O(n) time algorithm of Blum, Floyd, Pratt, Rivest & Tarjan
(1972). ��

Lemma 6. For a small gaps instance of 2-IAP with answer YES, we can com-
pute the corresponding xk values in O(n2) time.

Proof. In a preprocessing phase, we compute and store all the values Ak for
k = 0, . . . , n. Since Ak+1 = Ak + αk+1, this can be done in O(1) time per value
and in O(n) overall time for all values. Analogously, we determine and store all
the values Bk in O(n) overall time. With the help of (1), all values Ck,� with
0 ≤ k ≤ � ≤ n can be determined and stored in O(n2) overall time.

In the main phase, we first determine the interval Ij(n),n that contains the
goal sum S. This can be done in linear time according to Lemma 5. Then we
distinguish three cases:

1. j(n) = 0 holds.
Since I0,n equals I0,n−1 + [0; αn], we may fix variable xn at a value x∗

n ∈
[0; αn] such that Sn−1 = S − x∗

n ∈ I0,n−1.
2. j(n) = n holds.

Since In,n equals In−1,n−1 + [αn + βn; αn + γn], we may fix variable xn at
a value x∗

n ∈ [αn + βn; αn + γn] such that Sn−1 = S − x∗
n ∈ In−1,n−1.

3. 1 ≤ j(n) ≤ n− 1 holds.
By Lemma 3 interval Ij(n),n equals the union of the two intervals Ij(n),n−1 +
[0; αn] and Ij(n)−1,n−1 + [αn + βn; αn + γn]. We can either fix variable xn

at a value x∗
n ∈ [0; αn] such that Sn−1 = S − x∗

n ∈ Ij(n),n−1, or we can fix
variable xn at x∗

n ∈ [αn+βn; αn+γn] such that Sn−1 = S−x∗
n ∈ Ij(n)−1,n−1.

In either case, we define the index j(n− 1) so that Sn−1 ∈ Ij(n−1),n−1.

In all three cases, we compute the left and right endpoints of the corresponding
intervals Ik,n−1. Since the endpoints of these intervals only depend on the values
Ak, Bk, and Ck,n, this can be done in O(1) time by using the data stored in the
preprocessing phase.

All in all, we have reduced the problem from an n-dimensional instance with
variables x1, . . . , xn and goal sum S ∈ Ij(n),n to an (n− 1)-dimensional instance
with variables x1, . . . , xn−1 and goal sum Sn−1 ∈ Ij(n−1),n. We repeat this pro-
cedure step by step, where the kth step reduces the dimension to n−k by fixing
variable xn−k+1 at some value in Rn−k+1. Since the computation time in every
step is O(1), the overall running time of the main phase is O(n). ��

This completes the proof of Theorem 2. Let us briefly sketch (without proofs)
how the running time in Lemma 6 can be improved to O(n logn): The main issues
are the computations around the values Ck,�. These computations contribute
O(n2) to the preprocessing phase, whereas the rest of the preprocessing phase
is O(n). In the main phase, there are O(n) steps that cost O(1) time per step.

290 A. Alfieri, S.L. van de Velde, and G.J. Woeginger

Every step in the main phase uses one or two of these values Ck,�. The values Ck,�

used in consecutive steps are closely related; if some step uses Cj(k),k , then its
successor step can only use Cj(k)−1,k−1 and/or Cj(k),k−1. The speed-up results
from using a balanced binary search tree as an underlying data structure (see
for instance Cormen, Leiserson, & Rivest, 1990). In the preprocessing phase, all
numbers γ1, . . . , γn are inserted into this binary search tree; this costs O(n log n)
preprocesing time. In every step of the main phase, we delete one number γk from
the search tree, and appropriately update the information stored in the internal
vertices of the tree. This costs O(log n) time per update, and also allows us to
determine the relevant values Cj(k)−1,k−1 and/or Cj(k),k−1 in O(log n) time. All
in all, this yields a time complexity of O(n log n) for the main phase.

5 The Roll Cutting Problem with Equal-Length Pieces

We return to the roll cutting problem described in Section 2. An instance of
our roll cutting problem consists of n rolls R1, . . . , Rn of (real, non-trivial, not
necessarily integer) lengths p1, . . . , pn from which S pieces of length 1 need to
be cut. Note that we have normalized the piece length at 1. Furthermore, there
are two real thresholds δmin and δmax with δmin < δmax. From each roll Rk, we
may cut a number xk of pieces of length 1, provided that one of the following
two situations occurs:

– The remaining length of roll Rk satisfies pk−xk ≤ δmin. Then the remaining
length is sufficiently small, and the roll can be thrown away without incurring
a major trim loss.

– The remaining length of roll Rk satisfies pk−xk ≥ δmax. Then the remaining
length is sufficiently large, and the roll can be reused for future cuttings.

Hence, the only forbidden values for xk are those with δmin < pk − xk < δmax.
The roll cutting problem is to decide whether it is possible to find integral values
x1, . . . , xn such that:

n∑
k=1

xk = S, and (5)

pk − xk ≤ δmin or pk − xk ≥ δmax, for all k = 1, . . . , n, (6)

pk − xk ≥ 0, for all k = 1, . . . , n. (7)

Next, we will show that the roll cutting problem specified in (5)–(7) can be
considered as a special case of the 2-IAP. To see this, we define for k = 1, . . . , n
the integer values

αk = !pk − δmax"
βk = �pk − δmin� − !pk − δmax"
γk = !pk" − !pk − δmax".

Roll Cutting in the Curtain Industry 291

Here we use !z" to denote the largest integer less or equal to z, and �z� to denote
the smallest integer greater or equal to z. Hence, the number xk of pieces to be
cut from roll Rk should either be smaller than or equal to αk (to ensure that
the remaining roll has length at least δmax), or it should be larger than or equal
to αk + βk (to ensure that the remaining has length at most δmin). The value
αk + γk refers to the maximum number of pieces that can be cut from roll Rk.

Note that for some rolls Rk it might happen that γk < βk. For instance, if
δmin = 0.4 and δmax = 5 then a roll Rk with length pk = 10.5 will yield the values
αk = 5, βk = 6, γk = 5, and then γk < βk holds. This is an exceptional case
that can only occur for δmin < 1. In such a case the interval [αk + βk; αk + γk]
becomes empty, and the feasible region for xk boils down to the single interval
[0; αk]. Rolls Rk with γk < βk are called exceptional roles, and the remaining
rolls Rk with γk ≥ βk ≥ 0 are called standard roles. The standard rolls form the
so-called core instance of the roll cutting instance. We assume that the rolls in
the core instance are indexed in order of non-decreasing lengths, so that they
satisfy:

δmax ≤ p1 ≤ p2 ≤ · · · ≤ pn. (8)

Lemma 7. A roll cutting instance with goal value S possesses a solution, if and
only if S can be written as S = S1 + S2, where

– S1 is an integer with 0 ≤ S1 ≤ E, where E is the sum of the αk values of
all the exceptional rolls;

– S2 is an integer, such that the core instance with goal value S2 possesses a
solution. ��

In other words, solving a roll cutting instance essentially boils down to solving
the corresponding core instance. The following two lemmas show that every core
instance in fact is a small gaps instance.

Lemma 8. For every core instance, there exist two non-negative integers β∗

and γ∗ with β∗ ≤ γ∗ such that βk ∈ {β∗, β∗ +1} and γk ∈ {γ∗, γ∗ + 1} holds for
all 1 ≤ k ≤ n.

Proof. Omitted in this extended abstract. ��

Lemma 9. Every core instance is a small gaps instance.

Proof. Omitted in this extended abstract. ��

Once we know that core instances are small gap instances, the theory developed
in Section 4 together with Lemma 7 easily yields the following central result.

Theorem 10. Roll cutting instances can be solved in O(n logn) time.

Proof. First of all, we determine the corresponding core instance in O(n) time.
Then a simple O(n log n) sorting step ensures the chain of inequalities in (8) for
the core instance.

292 A. Alfieri, S.L. van de Velde, and G.J. Woeginger

Our next goal is to speed up the preprocessing phase in Lemma 6: Most steps
in this preprocessing phase take O(n) time, except for the expensive computation
of the values Ck,� which takes O(n2) time. We replace this expensive computation
step by the following faster computation step: By Lemma 8, the γk can only take
two values γ∗ and γ∗ + 1. We define F [k] (k = 1, . . . , n) to be the number of
occurrences of the value γ∗+1 among the integers γ1, . . . , γk. It is straightforward
to compute all values F [k] in O(n) overall time (if γk+1 = γ∗, then F [k + 1] =
F [k]; and if γk+1 = γ∗ + 1, then F [k + 1] = F [k] + 1). Note that Ck,� =
k · γ∗ + min{k, F [k]} holds for all 0 ≤ k ≤ � ≤ n. Consequently, whenever the
main phase needs to access a value Ck,�, we can compute it in O(1) time from
the precomputed values F [k].

Lemma 4 and Lemma 7 imply that the roll cutting instance with goal value S
possesses a solution, if and only if there exists an integer S2 with S−E ≤ S2 ≤ S,
that is contained in one of the intervals Ik,n = [Ak + Bk; An + Ck,n] with
0 ≤ k ≤ n. As a consequence of the above preprocessing phase, we can compute
all intervals Ik,n in O(n) time and intersect them with the interval [S−E; S]. If
all intersections are empty, then there is no solution. If one of these intersections
is non-empty, then there exists a solution. In that case, the corresponding xk

values can be computed in O(n) overall time as described in Lemma 6. ��

References

1. M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, and R.E. Tarjan (1972).
Time bounds for selection. Journal of Computer and System Sciences 7, 448–461.

2. T.H. Cormen, C.E. Leiserson, and R.L. Rivest (1990). Introduction to Algo-
rithms. MIT Press.

3. M.R. Garey and D.S. Johnson (1979). Computers and Intractability. W.H. Free-
man and Co., New York.

4. P.C. Gilmore and R.E. Gomory (1961). A linear programming approach to the
cutting stock problem. Operations Research 9, 849-859.

5. P.C. Gilmore and R.E. Gomory (1961). A linear programming approach to the
cutting stock problem. Part II. Operations Research 11, 863-888.

6. M. Gradišar, J. Jesenko and G. Resinovič (1997). Optimization of roll cutting
in clothing industry. Computers and Operations Research 24, 10, 945-953.

7. M. Gradišar, M. Kljajić, G. Resinovič, and J. Jesenko (1999). A sequential
heuristic procedure for one-dimensional cutting. European Journal of Operational
Research 114, 3, 557-568.

8. T. Ibaraki and N. Katoh (1988). Resource allocation problems: Algorithmic ap-
proaches. MIT Press, Cambridge, USA.

9. P.Y. Wang and G. Wäscher (2002). Editorial – cutting and packing. European
Journal of Operational Research 141, 2, 239-240.

Space Efficient Algorithms for the
Burrows-Wheeler Backtransformation

Ulrich Lauther and Tamás Lukovszki

Siemens AG, Corporate Technology,
81730 Munich, Germany

{Ulrich.Lauther, Tamas.Lukovszki}@siemens.com

Abstract. The Burrows-Wheeler transformation is used for effective
data compression, e.g., in the well known program bzip2. Compression
and decompression are done in a block-wise fashion; larger blocks usually
result in better compression rates. With the currently used algorithms
for decompression, 4n bytes of auxiliary memory for processing a block
of n bytes are needed, 0 < n < 232. This may pose a problem in embed-
ded systems (e.g., mobile phones), where RAM is a scarce resource. In
this paper we present algorithms that reduce the memory need without
sacrificing speed too much.

The main results are: Assuming an input string of n characters, 0 <
n < 232, the reverse Burrows-Wheeler transformation can be done with
1.625 n bytes of auxiliary memory and O(n) runtime, using just a few
operations per input character. Alternatively, we can use n/t bytes and
256 t n operations. The theoretical results are backed up by experimental
data showing the space-time tradeoff.

1 Introduction

The Burrows-Wheeler transformation (BWT) [6] is at the heart of modern, very
effective data compression algorithms and programs, e.g., bzip2 [13]. BWT-based
compressors usually work in a block-wise manner, i.e., the input is divided into
blocks and compressed block by block. Larger block sizes tend to result in better
compression results, thus bzip2 uses by default a block size of 900,000 bytes and
in its low memory mode still 100,000 bytes. The standard algorithm for decom-
pression (reverse BWT) needs auxiliary memory of 4 bytes per input character,
assuming 4-byte computer words and thus n < 232. This may pose a problem in
embedded systems (say, a mobile phone receiving a software patch over the air
interface) where RAM is a scarce resource. In such a scenario, space requirements
for compression (8n bytes when a suffix array [10] is used to calculate the for-
ward BWT) is not an issue, as compression is done on a full fledged host. In the
target system, however, cutting down memory requirements may be essential.

1.1 The BWT Backtransformation

We will not go into details of the BW-transformation here, as it has been de-
scribed in a number of papers [2,4,6,7,8,11] and tutorials [1,12] nor do we give a

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 293–304, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

294 U. Lauther and T. Lukovszki

proof of the reverse BWT algorithm. Instead, we give the bare essentials needed
to understand the problem we solve in the following sections. The BWT (con-
ceptually) builds a matrix whose rows contain n copies of the n character input
string, row i rotated i steps. The n strings are then sorted lexicographically and
the last column is saved as the result, together with the ”primary index”, i.e.,
the index of the row that contains - after sorting - the original string. The first
column of the sorted matrix is also needed for the backtransformation, but it
needs not to be saved, as it can be reconstructed by sorting the elements of
the last column. (Actually, as we will see, the first column is also needed only
conceptually.)

Figure 1 shows the first and
last columns resulting from the
input string ”CARINA”. The
arrow indicates the primary in-
dex. Note that we have num-
bered the occurrences of each
character in both columns, e.g.,
row 2 contains the occurrence 0
of character ”A” in L, row 5 con-
tains occurrence 1. We call these
numbers the rank of the charac-
ter within column L.

F L

A N A0

base

: 00 0

1 A 1

2 C 0

3 I 0

4 N 0

R5 0

0C
A 0

R 0

I 0

A 1

C : 2

I : 3

N : 4

R : 5

rank

Fig. 1. First (F) and last (L) column for the
input string ”CARINA”

To reconstruct the input string, we start at the primary index in L and
output the corresponding character, ”A”, whose rank is 0. We look for A0 in
column F , find it at position 0 and output ”N”. Proceeding in the same way,
we get ”I”, ”R”, ”A”, and eventually ”C”, i.e., the input string in reverse order.
The position in F for a character/rank pair can easily be found if we store for
each character of the alphabet the position of its first occurrence in F ; these
values are called base in Figure 1.

This gives us a simple algorithm when the vectors rank and base are available:

int h = primary_index;

for (int i = 0; i < n; i++) {

char c = L[h];

output(c);

h = base[c] + rank[h];

}

The base-vector and rank can easily be calculated with one pass over L and
another pass over all characters of the alphabet. (We assume an alphabet of 256
symbols throughout this paper.)

for (int i = 0; i < 256; i++) base[i] = 0;

for (int i = 0; i < n; i++) {

char c = L[i];

rank[i] = base[c];

base[c]++;

}

Space Efficient Algorithms for the Burrows-Wheeler Backtransformation 295

int total = 0;

for (int i = 0; i < 256; i++) {

int h = base[i];

base[i] = total;

total += h;

}

These algorithms need O(n) space (n words for the rank-vector) and O(n)
time. Alternatively, we could do without precalculation of rank-values and cal-
culate rank[h] whenever we need it, by scanning L and counting occurrences of
L[h]. This would give us O(1) space and O(n2) time.

The question, now, is: is there a data structure that needs significantly less
than n words without increasing run time excessively?

In this paper we present efficient data structures and algorithms solving
following problems:

Rank Searching: The input must be preprocessed into a data structure, such
that for a given index i, it supports a query for rank(i). This query is referred
to as rank-query.

Rank-Position Searching: The input must be preprocessed into a data struc-
ture, such that for a given character c and rank r, it supports a query for index
i, such that rank(i) = r. This query is referred to as rank-position-query. (This
allows traversing L and F in the direction opposite to that discussed so far,
producing the input string in forward order).

1.2 Computation Model

As computation model we use a random access machine (RAM) (see e.g., in
[3]). The RAM allows indirect addressing, i.e., accessing the value at a relative
address, given by an integer number, in constant time. In this model it is also
assumed that the length of the input n can be stored in a computer word.
Additionally, we assume that the size |A| of the alphabet A is a constant, and
particularly, |A| − 1 can be stored in a byte. Furthermore, we assume that a bit
shift operation in a computer word, word-wise and and or operations, converting
a bit string stored in a computer word into an integer number and vice-versa
and algebraic operations on integer numbers (’+’, ’-’, ’*’, ’/’, ’mod’, where ’/’
denotes the integer division with remainder) are possible in constant time.

1.3 Previous Results

In [14] Seward describes a slightly different method for the reverse BWT by
handling the so-called transformation vector in a more explicit way. He presents
several algorithms and experimental results for the reverse BWT and answering
rank-queries (more precisely, queries ”how many symbols x occur in column L
up to position i?”, without the requirement L[i] = x). A rigorous analysis of the
algorithms is omitted in [14]. The algorithms described in [14], basis and bw94
need 5n bytes of memory storage and support a constant query time; algoritm

296 U. Lauther and T. Lukovszki

MergedTL needs 4n bytes if n is limited to 224 and supports a constant query
time. The algorithm indexF needs 2.5n bytes if n < 220 and O(log |A|) query
time. The algorithms tree and treeopt build 256 trees (one for each symbol) on
sections of the vector L. They need 2n and 1.5n bytes, respectively, if n < 220 and
support O(log(n/Δ)+cxΔ) query time, where Δ is a given parameter depending
on the allowed storage and cx is a relatively big multiplicator which can depend
on the queried symbol x.

1.4 Our Contributions

We present a data structure which supports answering a rank-query Q(i) in
O(1) time using n(�−1

8 + w|A|
2�) bytes, where w denotes the length of a computer

word in bytes, and |A| is the size of the alphabet. If |A| ≤ 256 and w = 4 (32
bit words), by setting � ∈ {12, 13}, we obtain a data structure of 13

8 n or 1.625
bytes. For w = 2 we get a data structure of 25

16n or 1.5625 bytes. Thus, the space
requirement is strictly less than that of the trivial data structure, which stores
the rank for each position as an integer in a computer word and that of the
methods in [14] with constant query time. The preprocessing needs O(n) time
and O(|A|) working storage.

We also present data structures of n bytes, where we allow at most L = 29

sequential accesses to a data block of L bytes. Because of caching and hardware
prefetching mechanism of todays processors, with this data structure we obtain
a reasonable query time.

Furthermore, we present a data structure, which supports answering a rank-
query Q(i) in O(t) time using t random accesses and c · t sequential accesses to
the memory storage, where c is a constant, which can be chosen, such that the
speed difference between non-local (random) accesses and sequential accesses
is utilized optimally. The data structure needs n(8+|A| log ct)

8ct + n|A|w
ct2 bytes. For

t = ω(1), this results in a sub-linear space data structure, e.g., for t = Θ(n1/d)
we obtain a data structure of 1

dn
1−1/d|A|(1 + o(1)) bytes. The preprocessing

needs O(n) time and O(|A|) working storage.
After this, we turn to the inverse problem, the problem of answering rank-

position-queries. We present a data structure of n(|A|(�+8w)
2� + �) bits, which

supports answering rank-position-queries in O(log(n/2�)) time. The preprocess-
ing needs O(n) time and O(|A| + 2�) working storage. For � = 13, we obtain a
data structure of 14 3

8 · n bits.
Finally, we present experimental results, that show that our algorithms per-

form quite well in practice. Thus, they give significant improvement for decom-
pression in embedded devices for the mentioned scenarios.

1.5 Outline of the Paper

In Section 2 we describe various data structures supporting rank-queries. Sec-
tion 3 is dedicated to data structures for rank-position-queries. In Section 4 we
present experimental results for the reverse BWT. Finally, in Section 5 we give
conclusions and discuss open problems.

Space Efficient Algorithms for the Burrows-Wheeler Backtransformation 297

2 Algorithms for Rank-Queries

Before we describe the algorithm we need some definitions. For a string S of
length n (i.e. of n symbols) and integer number i, 0 ≤ i < n we denote by S[i]
the symbol of S at the position (or index) i, i.e., the index counts from 0. For
a string S and integers 0 ≤ i, j < n, we denote by S[i..j] the substring of S
starting at index i and ending at j, if i ≤ j, and the empty string if i > j.
S[i..i] = S[i] is the symbol at index i. The rank of symbol S[i] at the position
i is defined as rank(i) := |{j : 0 ≤ j < i, S[j] = S[i]}|, i.e., the rank of the kth
occurrence of a symbol is k − 1.

2.1 A Data Structure of 13
8

· n Bytes

We divide the string S into n′ = �n/L� blocks, each of L = 2� consecutive
symbols (bytes). L will be determined later. (The last block may contain less
than L symbols.) The jth block B[j] of the string S, 0 ≤ j < n′, starts at the
position j · L, i.e. B[j] = S[j · L .. min{n, (j + 1)L} − 1].

In our data structure, for each block B[j], 0 ≤ j < n′ and each symbol x ∈ A,
we store an integer value b[j, x], which contains the number of occurrences of
symbol x in blocks B[0], ..., B[j], i.e. in S[0..L(j + 1) − 1]. In the following we
assume b[−1, x] = 0, x ∈ A, but there is no need to store these values explicitly.
For storing the values b[j, x], 0 ≤ j < n′, x ∈ A, we need n′|A| = �n/L�|A|
computer words, i.e. �n/L�8w|A| bits.

Additionally, for each index i, 0 ≤ i < n, we store the reduced rank r[i]
of the symbol x = S[i], r[i] = rank(i) − b[i/L− 1, x]. Then a rank query Q(i)
obviously can be answered by reporting the value b[i/L− 1, x] + r[i]. Note that
0 ≤ r[i] < L, and thus, each r[i] can be stored in � bits. We can save an additional
bit (or equivalently, double the block size), if we define the reduced rank r[i] in
a slightly different way:

r[i] =
{
rank(i)− b[i/L− 1, x] if i mod L < L/2,
b[i/L, x]− rank(i)− 1 otherwise.

For storing the whole vector r, we need n · (�− 1) bits.

Storage Requirement: The storage requirement for storing r[i] and b[j, x],
0 ≤ i < n, 0 ≤ j < n′, x ∈ A is n(� − 1 + 8w|A|

L) = n(� − 1 + 8w|A|2−�) bits.
We obtain the continuous minimum of this expression at the point, in which the
derivative is 0. Thus, we need 1 + 8w|A|2−�(− ln 2) = 0. After reorganizing this
equality, we obtain

2−� =
1

8w|A| ln 2
and thus

� = log(8w|A|) + log ln 2.

Since |A| ≤ 256, for w = 4 (32 bit words), the continuous minimum is reached
in � ≈ 3 + 2 + 8 − 0.159. Setting � = 12 or � = 13 (and the block size L = 4096
or L = 8192, respectively), the size of the data structure becomes 13

8 n bytes.

298 U. Lauther and T. Lukovszki

Computing the Values b[j, x] and r[i]: The values b[j, x], 0 ≤ j < n′, x ∈ A,
can be computed in O(n) time using O(|A|) space by scanning the input as
follows. We maintain an array b0 of |A| integers, such that after processing the
ith symbol of the input string S, b0[x] will contain the number of occurrences of
symbol x in S[0..i]. At the beginning of the algorithm we initialize each element
of b0 to be 0. We can maintain the above invariant by incrementing the value of
b0[x], when we read the symbol x. After processing the symbol at a position i
with i ≡ −1 mod L, i.e. after processing the last symbol in a block, we copy the
array b0 into b[i/L].

The values of r[i], 0 ≤ i < n, are computed in a second pass, when all the
b-values are known. Here, we maintain an array r0 of |A| integers, such that
just before processing the ith symbol of the input string S, r0[x] will contain
the number of occurrences of symbol x in S[0..i − 1]. Thus, we can set r[i] =
r0[x] − b[i/L− 1, x] or r[i] = b[i/L]− r0[x] − 1, respectively. At the beginning
of the algorithm we initialize each element of r0 to be 0. We can maintain the
above invariant by incrementing the value of r0[x], after reading the symbol x.

Clearly, the above algorithm needs O(n) time and O(|A|) working storage
(for the arrays b0 and r0).

Answering a Query Q(i): If we have the correct values for r[i] and b[j, x],
0 ≤ i < n, 0 ≤ j < n′, x ∈ A, then a query Q(i), 0 ≤ i < n can be answered
easily by determining the symbol x = S[i] in the string S and combining the
reduced rank r[i] with the appropriate b-value:

rank(i) =
{
r[i] + b[i/L, x] if i mod L < L/2,
b[i/L + 1, x]− r[i]− 1 otherwise.

This sum can be computed using at most 2 memory accesses and a constant
number of unit time operations on computer words. Summarizing the results of
this section we obtain the following.

Theorem 1. Let S be a string of length n. S can be preprocessed into a data
structure which supports answering a rank query Q(i) in O(1) time. The data
structure uses n(� − 1 + 8w|A|/2�) bits, where w is the number of bytes in a
computer word. For |A| ≤ 256, w = 4, and � ∈ {12, 13}, the size of the data
structure is 13

8 n bytes. The preprocessing needs O(n) time and O(|A|) working
storage.

Remark: If the maximum number of occurrences of any symbol in the input
is smaller than the largest integer that can be stored in a computer word, i.e.
n < 2p and p < 8w, then we can store the values of b[j, x] using p bits instead
of a complete word. Then the size of the data structure is n(� − 1 + p|A|

2�) bits.
For instance, for p = 16 we obtain a data structure of n 25

16 bytes, and for p = 24
one of n 51

32 bytes.

Utilizing Processor Caching – Data Structure of ≤ n Bytes: The pro-
cessors in modern computers use caching, hardware prefetching, and pipelining
techniques, which results in significantly higher processing speed, if the algorithm

Space Efficient Algorithms for the Burrows-Wheeler Backtransformation 299

accesses consecutive computer words than in the case of non-local accesses (re-
ferred to as random accesses). In case of processor caching, when we access a
computer word, a complete block of the memory will be moved into the proces-
sor cache. For instance, in Intel Pentium 4 processors, the size of such a block
(the so-called L2 cache line size) is 128 bytes (see, e.g. [9]). Using this feature,
we also obtain a fast answering time, if we get rid of storing the values of r[i],
but instead of this, we compute r[i] during the query by scanning the block (of L
bytes) containing the string index i. More precisely, it is enough to scan the half
of the block: the lower half in increasing order of indices, if i mod L < L/2, and
the upper half in decreasing order of indices, otherwise. In that way we obtain
a data structure of size n|A|w/L bytes.

Theorem 2. Let S be a string of length n. S can be preprocessed into a data
structure D(S), which supports answering a rank query Q(i) by performing 1
random access to D(S) (and to S) and at most L/2 sequential accesses to S.
The data structure uses n|A|w/L bytes, where w is the length of a computer word
in bytes. The preprocessing needs O(n) time and O(|A|) working storage.

For |A| ≤ 256, w = 4 and L = 210, the size of the data structure is n bytes. If
n < 2p, p < 8w, then we get a data structure of n bytes by using a block size of
L = p|A|/8 bytes.

2.2 A Sub-linear Space Data Structure

In this Section we describe a sub-linear space data structure for supporting rank-
queries in strings in O(t) time for t = ω(1).

Similarly to the data structure described in Section 2.1, we divide the string
S into n∗ = � n

c·t� blocks, each of size L = c · t bytes, where c is a constant.
(The constant c can be determined for instance, such that the effect of processor
caching and pipelining is being exploited optimally).

We store the values b∗[j, x], where b∗[j, x] is the number of occurrence of
symbol x ∈ A in the jth block. The value of b∗[j, x] is stored as a bit-string
of !log ct" + 1 bits. Note that 0 ≤ b∗[j, x] ≤ L. Let b′[j, x] = b∗[j, x] mod L.
Then 0 ≤ b′[j, x] ≤ L, and thus, each b′[j, x] can be stored in log ct" + 1 bits.
Furthermore, the value of b∗[j, x] can be reconstructed from the value of b′[j, x]
in constant time: if b′[j, x] = 0 and an arbitrary symbol (say the first symbol) of
block B[j] is equal to x, then b∗[j, x] = L, otherwise b∗[j, x] = b′[j, x]. For this
test, we store in c[j] the first symbol in B[j], for each block B[j]. Storing b∗[j, x]
and c[j], for 0 ≤ j < � n

c·t� and x ∈ A needs n·(8+|A| log cn)
c·t bits, i.e. n·(8+|A| log cn)

8·c·t
bytes.

Additionally to the linear space data structure, the blocks are organized in
n̂ = � n

cṫ2
� super-blocks, such that each super-block contains t consecutive blocks.

We compute the values of b̂[k, x], for 0 ≤ k < � n
c·t2 � and x ∈ A, such that b̂[k, x]

contains the number of occurrences of symbol x in the super-blocks 0, ..., k. These
values are stored as integers. Storing all values needs n·|A|

c·t2 computer words.

300 U. Lauther and T. Lukovszki

The values of b∗[j, x] and b̂[k, x], 0 ≤ j < n∗, 0 ≤ k < n̂, x ∈ A can be
computed in O(n) time using O(|A|) space by scanning the input string S in a
similar way as in Section 2.1.

Answering a Query: Using this data structure, a query Q(i) can be answered
as follows. Let B̂ be the super-block containing the query position i, i.e. B̂ is the
super-block with index k = i/(c·t2). Let B be the block containing the position i,
i.e. B is the block with index j∗ = i/(c · t). Let x = S[i]. The query Q(i) can
be answered by summing b̂[k − 1, x] and the values of b∗[j, x], for each index j
of a block in the super-block B̂, such that j < j∗, i.e. (i/(c · t2)) · t ≤ j < j∗.
Then we scan the block B and compute the rank r[i] of S[i] in block B during
the query time (by scanning the half of the block, as described in the previous
section). Then

rank(i) = r[i] + b̂[i/(c · t2)− 1, x] +
i/(c·t)−1∑

j=(i/(c·t2))·t
b∗[j, x].

Since we have one random access to the value b̂[k − 1, x], at most t random
accesses to the values of b∗[j, x], and c · t/2 sequential accesses to the input
string, we can perform a rank-query in O(t) time.

Summarizing the description, we obtain:

Theorem 3. Let S be a string of length n. S can be preprocessed into a data
structure which supports answering a rank-query Q(i) in O(t) time. The data
structure uses n(|A|(8+log ct)

ct + 8w|A|
ct2) bits. For t = ω(1), it uses (n·(8+|A| log ct)

ct)(1+
o(1)) bits. The preprocessing needs O(n) time and O(|A|) working storage.

Note, that for a block size of L = ct = 29 bytes and t ≥ 16
7 w, we obtain a data

structure of n bytes. With other words, we can guarantee a data structure of n
bytes using smaller blocks than in Section 2.1 to the cost of t random storage
accesses.

Corollary 1. Let S be a string of length n. S can be preprocessed into a data
structure of n bytes, which for t ≥ 16

7 w, supports answering a rank-query Q(i)
in O(t) time using t random accesses and ct/2 sequential accesses. The prepro-
cessing needs O(n) time and O(|A|) working storage.

If we allow in Theorem 3, for instance, a query time O(n1/d), then we can store
the value of b∗[j, x] in log n

d bits and the whole matrix b∗ in 1
dn

1−1/d|A| computer
words.

Corollary 2. Let S be a string of length n. S can be preprocessed into a data
structure which supports answering a rank-query Q(i) in O(n1/d) time. The data
structure uses 1

dn
1−1/d|A|(1 + o(1)) computer words. The preprocessing needs

O(n) time and O(|A|) working storage.

3 An Algorithm for Rank-Position-Queries

In this Section we consider the inverse problem of answering rank-queries, the
problem of answering rank-position-queries. A rank-position-query Q∗(x, k), x ∈

Space Efficient Algorithms for the Burrows-Wheeler Backtransformation 301

A, r ∈ IN0, reports the index 0 ≤ i < n in the string S, such that S[i] = x and
rank(i) = k, if such an index exist, and ”no index” otherwise. We show, how to
preprocess S into a data structure of n(|A|w

L + �
8) bytes, which supports answering

rank-position-queries in O(log(n/L)) time.
We divide the string S into n′ = �n/L� blocks, each containing L = 2�

consecutive symbols. The rank-position-query Q∗(x, k) will work in two steps:

1. Find the block B[j], which contains the index of the kth occurrence of x in
S, and determine k0 the overall number of occurrences of x in the blocks
B[0], ..., B[j − 1].

2. Find the relative index i′ of the k′(:= k− k0)th occurrence of x within B[j],
if i′ exists, and return with index i = i′ + jL, and return with ”no index”
otherwise.

Data Structure for Step 1: For each block B[j], 0 ≤ j < n′ and each symbol
x ∈ A, we store an integer value b[j, x], which contains the overall number of
occurrences of symbol x in blocks B[0], ..., B[j − 1], i.e. in S[0 .. jL − 1]. For
storing the values b[j, x], 0 ≤ j < n′, x ∈ A, we need n′|A| = �n/L�|A| computer
words, i.e. �n/L�8w|A| bits. The values of all b[j, x] can be computed in O(n)
time using O(|A|) working storage.

Let j be the largest number, such that b[j, x] < k. Then B[j] is the block,
which contains the index of the kth occurrence of x, if S contains at least k
occurrences of x, and B[j] is the last block otherwise. We set k0 = b[j, x]. Using
this data structure, Step 1 can be performed in O(log(n/L)) time by logarithmic
search for determining j.

Data Structure for Step 2: For each block B[j], 0 ≤ j < n′ and each symbol
x ∈ A, we store a sorted list p[j, x] of relative positions of the occurrences of
symbol x in B[j], i.e. if B[j][i′] = x, 0 ≤ i′ < L, then p[j, x] contains an element
for i′. The relative index i′ of the k′th occurrence of x in B[j] is the k′th element
of the list p[j, x]. Note, that the overall number of list elements for a block B[j]
is L and each relative position can be stored in � bits. Therefore, we can store all
lists for B[j] in an array a[j] of L elements, where each element of a[j] consists
of � bits. Additionally, for each 0 ≤ j < n′ and x ∈ A, we store in s[j, x] the
start index of p[j, x] in a[j]. Since 0 ≤ s[j, x] < L, s[j, x] can be stored in �
bits. Therefore, the storage requirement of storing a[j] and s[j, x], 0 ≤ j < n′,
x ∈ A, is n� + n�|A|/L bits. These values can be computed in O(n) time using
O(L+ |A|) working storage. (First we scan B[j] and build linked lists for p[j, x]:
for 0 ≤ i′ < n′, if B[j][i′] = x, then we append a list element for i′ to p[j, x]. Then
we compute a[j] and s[j, x] for each x ∈ A from the linked lists.) Let k′ = k−k0.
Then the index i′ of the k′th occurrence of symbol x in B[j] can be computed
in O(1) time: i′ = a[j][s[j, x] + k′ − 1], if s[j, x] + k′ < s[j, x + 1], where x + 1 is
the symbol following x in the alphabet A. Otherwise, we return ”no index”.

Summarizing the description of this Section we obtain the following.

Theorem 4. Let S be a string of length n and L = 2�. S can be preprocessed
into a data structure which supports answering a rank-position-query Q∗(x, k)

302 U. Lauther and T. Lukovszki

in O(log(n/L)) time. The data structure uses n(8w|A|
L + � + �|A|

L) bits, where w
is the number of bytes in a computer word. For |A| ≤ 256, w = 4, and � = 12,
the size of the data structure is 14 3

4 ·n bits, and for � = 13 it is 14 3
8 ·n bits. The

preprocessing needs O(n) time and O(|A| + L) working storage.

Remark: If we do not store the values of p[j, x], but instead of this, we compute
the relative index of the k′th occurrence of x for Q∗(x, k) during the query time,
we can obtain a sub-linear space data structure at the cost of longer query times.

4 Experimental Results

As each rank value is used exactly once in the reverse BWT, the space and
runtime requirements depend solely on the size of the input, not on its content
- as long as we ignore caching effects. Therefore, we give a first comparison of
algorithms based on only one file. We used a binary file with 2542412 characters
as input. Experiments were carried out on a 1 GHz Pentium III running Linux
kernel 2.4.18 and using g++-3.4.1 for compilations. When implementing the 13

8 n
data structure we choose the variant with L = 213, where the rank values are
stored in 12 bits (1.5 bytes). That allows reasonably fast access without too
much bit fiddling. Our BWT-based compressor does no division into chunks for
compression; the whole file is handled in one piece. The following table shows
space and runtime requirements for various algorithms. The reported values refer
just to the reverse BWT step, not to complete decompression. The row ”4 byte
rank value” contains the results for the straightforward data structure, where
the rank value is maintained as a 4 byte integer for each position. The other
rows show results for the algorithms discussed.

Table 1. Space and time requirement of the reverse BWT algorithms

Algorithm Space Runtime
[byte/input char] [sec/Mbyte]

4 byte rank values 4 0.371
12 bit rank fields, 8192 fields per block 1.625 0.561
no rank fields, 1024 characters per block 1 3.477
no rank fields, 2048 characters per block 0.5 6.504

We can see that the increase in run time when we avoid fully precalculated
rank-values is moderate (about 50%). Here we remark that in our implemen-
tation the reverse BWT with 4 byte rank values takes about 60% of the of
the total decompression time. Thus, the increase in total decompression time is
about 30%. Even without any rank-fields and one block of counts for every 1024
input characters (resulting in 256 search steps on average for each rank com-
putation) the increase in time for the reverse BWT is less than ten fold. In an
embedded system where decompressed data are written to slow flash memory,
writing to flash might dominate the decompression time.

Space Efficient Algorithms for the Burrows-Wheeler Backtransformation 303

To further consolidate results, we give run times for the three methods for
the files of the Calgary Corpus [15], which is a standard test suite and collection
of reference results for compression algorithms (see e.g., in [5]). As runtimes were
too low to be reliably measured for some of the files, each file was run ten times.
Table 2 summarizes the running times.

Table 2. Runtime of the reverse BWT algorithms in [sec/Mbyte] with the files of the
Calgary Corpus

File size 4n byte 13
8

n byte n byte
[bytes] data structure data structure data structure

paper5 11954 0.175 0.351 2.632
paper4 13286 0.158 0.316 2.683
obj1 21504 0.195 0.341 2.536
paper6 38105 0.196 0.358 2.642
progc 39611 0.185 0.371 2.594
paper3 46526 0.180 0.361 2.682
progp 49379 0.191 0.361 2.718
paper1 53161 0.178 0.355 2.702
progl 71646 0.205 0.381 2.795
paper2 82199 0.255 0.344 2.768
trans 93695 0.201 0.392 2.652
geo 102400 0.287 0.410 2.601
bib 111261 0.283 0.415 2.790
obj2 246814 0.259 0.442 2.885
news 377109 0.350 0.551 3.128
pic 513216 0.259 0.323 3.735
book2 610856 0.388 0.580 3.459
book1 768771 0.430 0.649 3.796

Table 2 shows that the normalized running times increase with increasing
file sizes. This effect can be explained as the result of caching. Since the order of
indices in consecutive rank-queries can be an arbitrary permutation of [0, ..., n−
1], the number of page faults in the L1- and L2-caches becomes higher for bigger
inputs.

5 Conclusions

We showed in this paper how the memory requirement of the reverse Burrows-
Wheeler transformation can be reduced without decreasing the speed too much.
This transformation is used e.g. in the well known program bzip2. Decreasing
the memory requirement for decompression may be essential in some embedded
devices (e.g., mobile phones), where RAM is a scarce resource.

We showed that the reverse BWT can be done with 1.625 n bytes of auxiliary
memory and O(n) runtime. Alternatively, we can use n/t bytes and 256 t n

304 U. Lauther and T. Lukovszki

operations. We also presented several time-space tradeoffs for the variants of
our solution. These results are based on our new data structures for answering
rank-queries and rank-position-queries. The theoretical results are backed up by
experimental data showing that our algorithms work quite well in practice.

The question, if the space requirement of the data structures for rank-queries
and rank-position-queries can be further reduced in our computational model, is
still open. Improvements on the presented upper bounds have a practical impact.
The problems of establishing lower bounds and improved time-space tradeoffs
are open, as well.

References

1. J. Abel. Grundlagen des Burrows-Wheeler-Kompressionsalgorithmus (in german).
Informatik - Forschung und Entwicklung, 2003. http://www.data-compression.
info/JuergenAbel/Preprints/Preprint Grundlagen BWCA.pdf.

2. Z. Arnavut. Generalization of the BWT transformation and inversion ranks. In
Proc. IEEE Data Compression Conference (DCC ’02), page 447, 2002.

3. M.J. Atallah, editor. Algorithms and Theory of Computation Handbook. CRC Press,
1999.

4. B. Balkenhol and S. Kurtz. Universal data compression based on the Burrows-
Wheeler transformation: Theory and practice. IEEE Trans. on Computers,
23(10):1043–1053, 2000.

5. T.C. Bell, J.G. Cleary, and I.H. Witten. Text Compression. Prentice Hall, Engle-
wood Cliffs, NJ, 1990.

6. M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algorithm.
Tech. report 124, Digital Equipment Corp., 1994. http://gatekeeper.research.
compaq.com/pub/DEC/SRC/research-reports/abstracts/src-rr-124.html.

7. P. Fenwick. Block sorting text compression – final report. Technical report, De-
partment of Computer Science, The University of Auckland, 1996. ftp://ftp.cs.
auckland.ac.nz/pub/staff/peter-f/TechRep130.ps.

8. P. Ferragina and G. Manzini. Compression boosting in optimal linear time using
the Burrows-Wheeler transform. In Proc. 15th ACM-SIAM Symposium on Discrete
Algorithms (SODA’04), pages 655–663, 2004.

9. Tom’s hadware guide. http://www.tomshardware.com/cpu/20001120/p4-01.html.
10. U. Manber and E. Meyers. Suffix arrays: A new method for on-line string searches.

SIAM Journal on Computing, 22:935–948, 1993.
11. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,

48(3):407–430, 2001.
12. M. Nelson. Data compression with the Burrows-Wheeler transform. Dr. Dobb’s

Journal, 9, 1996.
13. J. Seward. Bzip2 manual, http://www.bzip.org/1.0.3/bzip2-manual-1.0.3.html.
14. J. Seward. Space-time tradeoffs in the inverse B-W transform. In Proc. IEEE Data

Compression Conference (DCC ’01), pages 439–448, 2001.
15. I.H. Witten and T.C. Bell. The Calgary Text Compression Corpus. available via

anonymous ftp at: ftp.cpcs.ucalgary.ca/pub/projects/text.compression.corpus.

Cache-Oblivious Comparison-Based Algorithms
on Multisets

Arash Farzan1, Paolo Ferragina2, Gianni Franceschini2, and J. Ian Munro1

1 School of Computer Science, University of Waterloo
{afarzan, imunro}@uwaterloo.ca

2 Department of Computer Science, University of Pisa
{ferragin, francesc}@di.unipi.it

Abstract. We study three comparison-based problems related to mul-
tisets in the cache-oblivious model: Duplicate elimination, multisorting
and finding the most frequent element (the mode). We are interested
in minimizing the cache complexity (or number of cache misses) of algo-
rithms for these problems in the context under which cache size and block
size are unknown. We give algorithms with cache complexities within a
constant factor of the optimal for all the problems. In the case of de-
termining the mode, the optimal algorithm is randomized as the de-
terministic algorithm differs from the lower bound by a sublogarithmic
factor. We can achieve optimality either with a randomized method or if
given, along with the input, lg lg of relative frequency of the mode with
a constant additive error.

1 Introduction

The memory in modern computers consists of multiple levels. Traditionally, al-
gorithms were analyzed in a flat random-access memory model (RAM) in which
access times are uniform. However, the ever growing difference between access
times of different levels of a memory hierarchy makes the RAM model ineffective.
Hierarchical memory models have been introduced to tackle this problem. These
models usually suffer from the complexity of having too many parameters which
result in algorithms that are often too complicated and hardware dependant.

The cache-aware (DAM) model [1] is the simplest of hierarchical memory
models, taking into account only two memory levels. On the first level, there is
a cache memory of size M which is divided into blocks of size B; on the second
level there is an arbitrarily large memory with the same block size. A word must
be present in the cache to be accessed. If it is not in the cache, we say a cache
miss/fault has occurred, and in this case the block containing the requested word
must be brought in from the main memory. In case, all blocks in the cache are
occupied, a block must be chosen for eviction and replacement. Thus, a block
replacement policy is necessary for any algorithm in the model.

The cache-oblivious model, which was introduced by Frigo et al. [2], is a
simple hierarchical memory model and differs from the DAM model in that
it avoids any hardware configuration parametrization, and in particular it is

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 305–316, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

306 A. Farzan et al.

not aware of M,B. This makes cache-oblivious algorithms independent of any
hardware configuration. The block replacement policy is assumed to be the off-
line optimal one. However, using a more realistic replacement policy such as
the least recently used policy (LRU) increases the number of cache misses by
only a factor of two if the cache size is also doubled [3]. It is known that if an
algorithm in this model performs optimally on this two-level hierarchy, it will
perform optimally on any level of a multiple-level hierarchy.

Cache complexity of an algorithm is the number of cache misses the algorithm
causes or equivalently the number of block transfers it incurs between these
two levels. In this paper, our concern is with the order of magnitude of the
cache complexities of algorithms and we ignore constant factors. Following a
usual practice in studying sorting problems, we make the so called tall cache
assumption, that is, we assume the cache has size M = Ω(B2). Work complexity
of an algorithm is the complexity of the number of operations performed and,
since here we focus on comparison-based problems, the work complexity is the
number of comparisons the algorithm performs.

We will study three problems regarding the searching and sorting in multisets,
namely duplicate elimination, sorting and determining the mode. A multiset is
a generalization of a set in which repetition is allowed, so we can have several
elements with the same key value. Suppose we are given a multiset of size N with
k distinct elements whose multiplicities are N1, . . . , Nk and set f = maxi Ni.The
problem of reducing the original multiset to the set of distinct elements is called
duplicate elimination. The problem of sorting the elements of the multiset is
called multisorting. The problem of finding the most frequent element (the mode)
in a multiset, is called determining the mode.

Sorting can be studied in two models: In the first model, elements are such
that one of the two equal elements can be removed and then later on, it can be
copied back from the remained one. In this model, we can keep only one copy of
an element and throw away duplicates as encountered. However, in the second
model, elements cannot be deleted and regenerated as elements are viewed as
complex objects with some satellite data in addition to their key values. By
multisorting, then, we infer the second, more difficult problem.

Munro and Spira [4] studied these problems in the comparison model and
showed tight lower and upper bounds for them. These results are summarized in
Table 1. Later, Arge et al. [5] proved how the lower bounds in the comparison
model can be turned into lower bounds in the cache-aware model. They used the
method to obtain lower bounds for the problems of determining the mode and
duplicate elimination. For the multisorting problem, we use the lower bound on
duplicate elimination as duplicate elimination can be reduced to multisorting in
linear complexity. The theorem in [5] also yields the same lower bound for mul-
tisorting as for duplicate elimination. A lower bound in the cache-aware model
is certainly a lower bound in cache oblivious model as well. The lower bounds
are summarized in Table 1. Note that there is an obvious lower bound of N

B ,
necessary to read the input, associated with all the problems which contributes

Cache-Oblivious Comparison-Based Algorithms on Multisets 307

to the max terms in the entries of the table. From now on, in this paper, we will
assume the other term is always dominant.

Arge et al.[5] give optimal cache-aware algorithms for the problems of dupli-
cate elimination and determining the mode. Their techniques are heavily de-
pendant on the knowledge of values of M,B. Their algorithm for duplicate
elimination and determining the mode are adaptations of the mergesort and
the distribution sort and at each run merges M/B sublists or breaks a lists
into M/B sublists respectively. In the following sections, we give optimal cache-
oblivious algorithms that all match the lower bounds. The optimal algorithm for
determining the mode is randomized. The deterministic algorithm differs from
the complexity lower bound of a sublogarithmic factor or requires “a little hint”.

Table 1. The lower bounds in the comparison model and the cache-oblivious model

Comparisons I/Os

Multisorting N log N −∑k
i=1 Ni log Ni max

{
N
B

log M
B

N
B

−∑k
i=1

Ni
B

log M
B

Ni,
N
B

}
Duplicate Elimination N log N −∑k

i=1 Ni log Ni max
{

N
B

log M
B

N
B

−∑k
i=1

Ni
B

log M
B

Ni,
N
B

}
Determining the Mode N log N

f
max

{
N
B

log M
B

N
f

, N
B

}

2 Duplicate Elimination

Our duplicate removal technique is an adaptation of the lazy funnelsort [6] which
sorts a set of (distinct) values. Hence, we first give a quick overview of the method
in Section 2.1 and then present our modifications in Section 2.2.

2.1 Funnelsort

To sort a set of (distinct) values, Frigo et al. [2] proposed funnelsort which can be
described as a cache-oblivious version of the mergesort. In funnelsort, the set of
N input values are first divided into N1/3 subsequences each of size N2/3. Each
subsequence is sorted recursively and then the sorted subsequences are merged
by a data structure which is referred to as a N1/3-funnel.

A k-funnel is indeed a k-way merger that takes k sorted subsequences, merges
them, and outputs the sorted sequence. A k-funnel has an output buffer of size
k3 and k input buffers. As Figure 1 illustrates, a k-funnel is built recursively out
of
√
k
√
k-funnels (at the bottom) and one

√
k-funnel (on the top). There are√

k intermediate buffers of size 2k3/2 each. They are FIFO queues that form the
output buffers of the lower funnels and the input buffers of the top funnel. It
can be proved by induction that a k-funnel occupies O

(
k2

)
space.

A k-funnel works recursively as follows. The k-funnel must output k3 elements
at any invocation. To do this, the top funnel is invoked many times outputting
k3/2 values at each invocation. Therefore the top funnel is eventually executed
k3/2 times to get k3 elements. Before each invocation though, the k-buffer checks

308 A. Farzan et al.

U

Buffers

L1 L√
k

Fig. 1. ([2]) Recursive structure
of a k-funnel

Total buffer size K2
Buffers of size K3/2

Fig. 2. ([7]) Structure of a lazy k-funnel

all its input buffers to see if they are more than half full. If any buffer is less than
half full, the associated bottom funnel is invoked to fill-up its output buffer.

Later, Brodal et al.[6] simplified funnels by introducing the notion of lazy
funnelsort. Their modification consists of relaxing the requirement that all input
buffers must be checked before each invocation. Rather, a buffer is filled up on
demand, when it runs empty. This simplifies the description of a funnel and as
we will see in next sections, it also makes the analysis easier.

In the lazy funnelsort, a k-funnel can be thought of as a complete binary tree
with k leaves in which each node is a binary merger and edges are buffers. A
tree of size S is laid out recursively in memory according to the van Emde Boas
layout ([8]): The tree is cut along the edges at half height. The top tree of size√
S is recursively laid out first and it is followed by

√
S bottom trees in order

that are also laid out recursively. The sizes of the buffers can be computed by the
recursive structure of a funnel. As it is illustrated in Figure 2, in a k-funnel the
middle edges (at half height) have size k3/2. The sizes of the buffers in the top
and bottom trees (which are all

√
k-funnels) are recursively smaller. The buffers

are stored along with the trees in the recursive layout of a funnel. For the sake
of consistency, we suppose there is an imaginary buffer at the top of the root
node to which the root merger outputs. The size of this buffer is k3 (this buffer
is not actually stored with the funnel). The objective is to fill up this buffer. At
any node, we perform merging until either of the two input buffers run empty.
In such a case, the merger suspends and control is given to the associated child
to fill up the buffer recursively (the child is the root of its subtree).

The cache complexity analysis of a lazy k-funnel follows an amortized argu-
ment. Consider the largest value s such that an s-funnel along with one block
from each of its input buffers fits in the cache memory. It is easy to see that
under the tall cache assumption s = Ω(M1/4) and s = O(M1/2). The whole
k-funnel can be considered as a number of s-funnels that are connected by some
large buffers among them. The sizes of these buffers are at least s3. We denote
these buffers as large buffers (see Figure 3).

An s-funnel fits entirely in cache memory and once completely loaded it does
not cause any extra cache misses during its working. An s-funnel has size s2

and thus it takes only O
(
s2/B + s

)
cache faults to load it in memory (that is

if we exclude the cache misses that may occur when an s-funnel make use of its
input and output buffers). Though it outputs s3 elements, thus the amortized

Cache-Oblivious Comparison-Based Algorithms on Multisets 309

s−funnels

Fig. 3. The funnel can be considered as a number of s-funnels connected by buffers

cost per element that enters in the funnel is O (1/B). However, in the event that
its input buffers run empty, an s-funnel will have to stop and give control to its
lower subfunnels. In that case, the funnel might get evicted from the memory
and when its input buffers are filled up again, it must be reloaded into memory.
We have to account for these cache faults as well. Every time a buffer runs empty,
it is filled up with at least s3 elements. The cost of reloading the s-funnel can be
charged to these s3 elements. In the very last invocation a funnel might not be
able to output sufficiently many elements, but we can simply charge the cost to
the previous invocation (there exists at least one). Each element is thus charged
O (1/B) in each of the large buffers. Since there are Θ (logM N) such buffers,
the total charge is O

(
N
B logM N

)
which is optimal. The work complexity can be

calculated similarly to be O (N logN).

2.2 Duplicate Removal by Funnels

As it was mentioned previously, our duplicate elimination is an adaptation of
the lazy funnelsort. We introduce a constraint on a binary merger: When the
two elements on top of the two input buffers of a binary merger are equal, one
of them is appended to a memory zone devoted to contain the duplicates. In the
end we obtain the set of distinct elements with all the duplicate elements laying
in a separate zone in no particular order.

We first show that the work complexity of the above mentioned algorithm for
duplicate elimination is optimal, i.e. O (N logN −

∑
i Ni logNi). Being a binary

merging algorithm, we would spend N logN comparisons on finding the total
ordering of the multiset, if elements were all pairwise distinct[4]. Therefore, we
need only to show that by removal of duplicates, we save

∑
i Ni logNi number of

comparisons. Consider the set E of duplicates of an element ij (|E| = Nj). At any
comparison of two elements in E, one of them is removed immediately, thus there
can be at most Nj comparisons among elements of E. As it was shown by Munro
et al.[4], this implies a saving of Nj logNj −Nj in the number of comparisons.
Hence, in total we have a saving of

∑
i Ni logNi−

∑
i Ni. So the total comparisons

is N logN −
∑

i Ni logNi +
∑

i Ni = O (N logN −
∑

i Ni logNi).
Now we show that the cache complexity of the algorithm also matches the

lower bound shown in Section 1. The analysis is essentially the same as that of
the cache complexity of funnelsort in Section 2.1, with the difficulty now that it

310 A. Farzan et al.

is no longer true that it does exist at least one invocation of an s-funnel, with
s = Ω(M1/4) and s = O(M1/2), having in input at least s3 elements.

As depicted in Fig. 2, a k-funnel can be seen as a complete binary tree with
k leaves, where every internal node is a binary merger and every edge is a buffer.
The whole recursive algorithm can be then abstracted as a complete binary tree
T with buffers on the edges. We know that every recursive call corresponds to
a t-funnel, for some t, having t input buffers of size t2 each (possibly containing
less than t2 elements because of duplicate removal) and an output buffer of
size t3. Given this view, the topmost (1/3) logN levels of T correspond to the
N1/3-funnel which is the last one executed in the algorithm. The leaves of this
funnel have input buffers of size N2/3, which are filled up by the N2/9-funnels
corresponding to the next (2/9) logN levels of T . These funnels are executed
before the top one. The other levels of T are defined recursively.

To evaluate the cost of our algorithm’s recursion, we observe that when the
funnels constituting T are fully confined within main memory no extra I/O
occurs. These small funnels lie in the bottommost l = Θ(logM) levels of T , and
they have sizes between M2/3 and M . The larger funnels above the small ones
in T thus contain O(N/M2/3) overall binary mergers. Since we know that an
s-funnel takes O(s+ s2/B) extra I/Os to perform its duplicate elimination task,
every binary merger in this funnel pays O(1 + s/B) extra I/Os. Summing over
all the binary mergers of the larger funnels we have that the cache complexity
of loading and using these s-funnels is O(N/M2/3)O(1 + s/B) = O(N/B). This
shows that the cache complexity of an element entering in a s-funnel is O (1/B).

By considering the path an element takes from a leaf of T to its root, we
have that the element enters a number of s-funnels which is proportional to the
number of comparisons it participates in divided by Ω (logM). Since the overall
number of comparisons in the algorithm is N logN −

∑
i Ni logNi, the number

of element entrances into s-funnels is O((1/ logM)) of that. But, as we argued,
every element entrance in an s-funnel costs O(1/B) and hence:

Theorem 1. The cache complexity of the duplicate removal algorithm matches
the lower bound and is O

(
N
B log M

B

N
B −

∑k
i=1

Ni

B log M
B
Ni

)
.

3 Multisorting

In this section, we will show how to sort a multiset within a constant factor of
the optimal number of I/Os. We will match the lower bound presented in Section
1 which is the same as the lower bound for duplicate elimination.

The algorithm consists of two phases. The first phase is duplicate elimination,
the second phase is based on a “reverse” application of a funnel now oriented
to elements distribution rather than to elements merging. The distribution of
elements does not preserve the original ordering of the duplicates and thus the
resulting algorithm is an unstable sort. We run the duplicate elimination algo-
rithm to discover all the distinct elements in the multiset and to count their
multiplicities as follows. We associate a counter to each element which is initial-
ized to one in the beginning. When two duplicates are compared, one of them

Cache-Oblivious Comparison-Based Algorithms on Multisets 311

is appended to a memory zone devoted to contain the duplicates and we add its
counter value to the counter of the element remained. Knowing the sorted or-
der of the distinct elements and their multiplicities, we can easily figure out the
boundaries of duplicates in the sorted multiset: The sorted multiset will be com-
posed of subsequences A1A2 . . . Am where Ar consists entirely of duplicates of
element ir. By a scan over the sorted distinct elements, we find out the beginning
and ending positions of each duplicate sequence Ai in the sorted multiset.

For the second phase, we need the concept of k-splitter. A k-splitter is a
binary tree with k leaves. Each internal node v of a splitter is composed by an
input buffer, a pivot p(v) and a pointer to a contiguous memory portion Z(v)
outside the k-splitter where the duplicates of p(v) will be moved as soon as
they meet with the pivot. The root of the splitter, and leaves are, respectively,
the input and the output buffers of the whole k-splitter. The buffers associated
with the root and the leaves have sizes O(k3) and O(k2), respectively, and are
considered external entities, just like the Z(v), and they will not be accounted
as space occupied by the whole k-splitter. As for the internal nodes, the choice
of the size of their buffers, and the layout in memory of a k-splitter, is done as in
the case of a k-funnel and therefore the space occupied is O(k2) (only the buffers
and pivots associated with internal nodes are accounted). When an internal node
v is invoked, the elements of its buffer are partitioned and sent to its two children
according to the results of comparisons with p(v). The duplicates of the pivot
are immediately moved into Z(v). The process involving v stops when its buffer
is empty, or if the buffer of at least one of its children is full: in the first case
the control is returned to the parent of v, in the second case the child (children)
corresponding to the full buffer(s) is (are) invoked. The root is marked as “done”
when there are no more elements in its buffer. Any node other than the root is
marked as “done” when there are no more elements in its buffer and its parent
has been marked as done. The splitters we use are not necessarily complete
splitters. Thus we have to process each output buffer of a splitter recursively by
other splitters (this corresponds to the top-level recursion from funnelsort).

We are ready now to sketch the second phase of our multisorting algorithm.
Recall that the first phase produced two sequences, one containing the sorted
set of distinct elements and the other one with the remaining duplicates in
no particular order. Let us denote respectively with A and B these sequences.
Moreover, for each element e we have counted its multiplicity n(e). The second
phase consists of three main steps.

1. With a simple scan of A a sequence C = A1A2 . . . Am is produced. For any
i, Ai has n(A[i]) positions, its first position is occupied by A[i] and any
other position contains a pointer to the first location of subsequence Ai. Let
D = E1E2 . . . Em be a contiguous memory portion divided into subarrays Ei

of size n(A[i]). In the end, D will contain the sorted multiset. Finally, we let
F = G1G2 . . .Gm be a contiguous memory portion divided into subarrays
Gi of size n(A[i]).

2. Using C we construct a splitter S of height at most (1/3) logN (not neces-
sarily a complete splitter) and we invoke it. Let Aj be the subsequence of

312 A. Farzan et al.

C that includes the N/2-th location (we need O(1) I/Os to find j). If j > 1
or j < m then we have the element Aj [1] as the pivot of the root of the
splitter. This step is applied recursively to the sequences C′ = A1 . . . Aj−1

and C′′ = Aj+1 . . . Am (at least one of them exists). That recursive process
stops when the maximal tree S of pivots of height (1/3) logN is built (not
necessarily a complete binary tree) or when there are no more sequences Aj .
Note that each internal node v of S is associated to a subsequence Aj (the
one from which p(v) has been taken). Let t be the number of internal nodes
of S, let j1, j2 . . . jt be the indices (in increasing order) of the sub-sequences
Aj of C chosen in the process above, and let vjr be the internal node of S
that has Ajr [1] as pivot. The memory zone Z(vjr) devoted to contain the
duplicates of vjr , is Ejr . The input buffer of the root of S is B (the one that
contains the duplicates after the first phase). The buffer of the leaf u that is
the right (resp. left) child of a node vjr of S is Bu = Gjr+1Gjr+2 . . .Gjr+1−1

(resp. Bu = Gjr−1+1Gjr−1+2 . . . Gjr−1). Finally, the sizes of the buffers of
all the internal nodes and their layout in memory are chosen as we already
discussed above when we gave the definition of k-splitter. Now, the splitter
is ready and can be invoked.

3. Recursive steps. For any output buffer of the splitter S we apply Step 2 recur-
sively. Let u be a leaf of S and let us suppose that is the right child of a node
vjr of S (the left-child case is analogous). In the recursive call for u we have
that Bu =Gjr+1Gjr+2 . . . Gjr+1−1 plays the role of B, Ejr+1Ejr+2 . . . Ejr+1−1

plays the role of D, and Ajr+1Ajr+2 . . . Ajr+1−1 plays the role of C. After
the recursive steps, D contains the sorted multiset.

The analysis is similar to the one for the duplicate elimination problem, and
it can be shown that we get the same optimal I/O-bound. We omit the details
of the proof here. Though we mention the observations necessary to obtain the
complexity. The first step is a simple scan and requires O(N/B) I/Os. In the
second step, the splitter S can be divided in s-splitters pretty analogously to the
case of s-mergers. The third step, as mentioned earlier, corresponds to the top-
level recursion of funnelsort by Frigo et al.[2]. Similar to a funnel, a recursive
call operates in a contiguous region of memory and all accesses are confined
to this region. As soon as the size of this region drops below M , the region is
entirely present in the cache memory and we incur no more cache faults thereon.
It can also be shown that all the “spurious” I/O’s— like the O(1) accesses for
the construction of any node in the splitter or the O(s + s2/B) accesses needed
to load a s-splitter— give again O(N/B) I/Os.

Theorem 2. The cache complexity of the multisorting algorithm matches the
lower bound and is O

(
N
B log M

B

N
B −

∑k
i=1

Ni

B log M
B
Ni

)
.

4 Determining the Mode

In this section, we study the problem of determining the most occurring element
(mode) in a multiset. The cache-aware algorithm [5] for the problem is funda-

Cache-Oblivious Comparison-Based Algorithms on Multisets 313

mentally dependant on knowledge of values of M,B and seems impossible to
make cache-oblivious. We will take two approaches: Deterministic and Random-
ized. The upper bound we achieve in the randomized approach matches the lower
bound for finding the mode as was mentioned in Section 1, essentially because
we can use samples to get a “good enough” estimate of the relative frequency of
the mode (i.e. f/N). However, the deterministic approach can be in the worst
case an additive term of O

(
N
B log logM

)
away from the lower bound.

4.1 Deterministic Approach

The key idea is to use as a basic block a cache-efficient algorithm for finding “fre-
quent” elements that occur more often than a certain threshold in the multiset.
We then repeatedly run the algorithm for a spectrum of thresholds to hunt the
most frequent element. Let us first precisely define what we mean by a “frequent”
element.

Definition 1. We call an element C-frequent if and only if it occurs more than
N
C times in a multiset of size N (i.e. if its relative frequency is at least 1/C).

The algorithm works in two phases. In the first phase, we try to find a set of
at most C candidates that contains all the C-frequent elements. There may also
be some other arbitrarily infrequent elements in our list of candidates. In the
second phase, we check the C candidates to determine their exact frequencies.
Note that, by definition, the number of C-frequent elements cannot exceed C.

Phase 1. The key idea in this phase is essentially what Misra [9] used. We
find and remove a set of t (t ≥ C) distinct elements from the multiset. The
resulting multiset has the property that those elements that were C-frequent in
the original multiset are still C-frequent in the reduced multiset. Thus, we keep
removing sets of at least C distinct elements from the multiset, one at a time,
until the multiset has no longer more than C distinct elements. The C-frequent
elements in the original multiset must be also present in the final multiset.

We scan the multiset in groups of C elements (there are N/C such groups) by
maintaining an array of C “candidates” which is initially empty and eventually
will hold as many as C distinct values. Each element in this array also has a
counter associated with it which shows the number of occurrences of the element
seen so far. As soon as the number of elements in this array goes over C, we
downsize the array by removing C distinct elements. More precisely, for each
group G of C elements from the multiset, we first sort the elements in G and also
sort the elements in the candidates array. This can be done by using any method
of cache-oblivious sorting by pretending that the elements are all distinct. Then,
we merge the two sorted arrays into another array T ensuring that we keep only
the distinct elements. T may contain up to 2C elements. At this time we remove
groups of at least C distinct elements to downsize T to at most C elements.
This is done by sorting T according to the value of the counters (not the value
of elements), and by finding the C + 1 largest counter mC+1. All elements with
a counter value less than mC+1 are thrown away, and the counter of the other

314 A. Farzan et al.

elements is decreased by mC+1. One can easily see that this is equivalent to
repeatedly throwing away groups of at least C distinct elements from T one at
a time. The candidates array is then set to T , and the process continues on the
next group of C elements from the multiset. At the end, the candidates array
contains all possible C-frequent elements in the multiset; however, as mentioned,
it may also contain some other arbitrary elements.

Phase 2. This phase is similar to the first phase, except that the candidates
array remains intact throughout this phase. We first zero out all the counters
and sort the array using any method of cache-oblivious sorting for sets. We then
consider N/C groups of C elements from the multiset one at a time; we first
sort the C elements for each group, and by doing a scan of the lists as in the
merge sort, we can count how many times each of the candidates occur in the
group. We accumulate these counts so that after considering the final group, we
know the multiplicities of the candidates in the whole multiset. We finally keep
all elements whose counters are more than N/C and discard the rest. Cache
complexity of both phases are the same and one can see the major task is N/C
executions of sorting C elements. Therefore:

Lemma 1. In a multiset of size N , C-frequent elements and their actual mul-
tiplicities can be determined with cache complexity O

(
N
B max{1, logM

B
C}

)
.

Now we show how the frequent finding algorithm can be used in our hunt
for the mode. We repeatedly apply Lemma 1 for a series of increasing values
of C to determine whether there is any C-frequent element in the multiset.
The first time some C-frequent elements are found, we halt the algorithm and
declare the most frequent among them as the mode. The algorithm in Lemma
1 is executed in rounds as C goes doubly exponentially for the following values
of C in order: C = 221

, 222
, . . . , 22i

, . . . , 22�lg lg n�
. At the end of each round, we

either end up empty-handed or we find some C-frequent elements. In the former
case, the algorithm continues with the next value of C. In the latter case, we
declare the most frequent of the C-frequent elements to be the mode, and the
algorithm halts. Note that the algorithm of Lemma 1 also produces the actual
multiplicities of the C-frequent elements, thus finding the most frequent element
among the C-frequent ones requires only a pass of the at most C elements to
select the element with the maximum multiplicity.

The cache complexity of the algorithm can be analyzed as follows. Let us
denote by f the frequency of the mode. The cache complexity of the algorithm
is the sum of cache complexity of the algorithm in Lemma 1 over different values
of C up to 22lg lg (N/f)+1

, where we find the mode. Hence, the cache complexity is

lg lg (N/f)+1∑
j=1

O

(
N

B
max

{
1, logM

B
22j

})
=O

(
max

{
N

B
log log

N

f
,
N

B
log M

B

N

f

})
.

It is clear to see that the following cache oblivious upper bound can be in the
worst case an additive term of O

(
N
B log logM

)
larger than the lower bound:

Cache-Oblivious Comparison-Based Algorithms on Multisets 315

Theorem 3. The cache complexity of the deterministic algorithm for determin-
ing the mode is O

(
max

{
N
B log M

B

N
f , N

B log log N
f

})
. ��

It is worthy to note that the slightest hint on the size of memory or the
relative frequency of the mode would result in an optimal algorithm. Given the
value of M , we can tailor the program so it skips from values of C smaller than
M and starts from C = M . Thus, as a by-product, we have an optimal cache-
aware algorithm which is simpler than the existing one in Arge et al. [5]. Also,
knowing the value of lg lg N

f with a constant additive error helps us to jump
start from the right value for C. Furthermore, given an element, we can confirm
with an optimal cache complexity whether it is indeed the mode. Let us define
having a hint on a value v as knowing lg lg v within a constant additive error:

Theorem 4. Given a hint on the value of memory size or relative frequency of
the mode (i.e. M or N/f), the cache complexity of the deterministic algorithm
for determining the mode matches the lower bound and is O

(
N
B log M

B

N
f

)
.

4.2 Randomized Approach

We still use the C-frequent finder algorithm, but instead of starting from small
values of C and squaring it at each step, we will estimate a good value for C
using randomized sampling techniques. The sample must be large enough to
produce a good estimate, with high confidence. It must also be small enough so
that working with the sample does not dominate our cost. We have a high degree
of latitude in choosing the sample size. Something around N1/3 is reasonable.

Sample generation takes N1/3 random I/Os which is less than N/B. We can
also afford to sort these sampled elements as sorting N1/3 elements takes O

(
N
B

)
cache misses. After sorting the sample, we scan and find the mode in the sample
with frequency p. The estimate of the frequency of the mode in the multiset is
f ′ = pN2/3. Consequently we start by finding C-frequent elements for C = N

f ′ .
If there is no C-frequent element, we square C and re-run the algorithm for the
new value of C and so on.

Let us now sketch the analysis the cache complexity of the randomized algo-
rithm. Clearly, if our estimate for the mode is precise, then the cache complexity
of the algorithm matches the lower bound. However undershoot or overshoot
are possible: We may underestimate the value of f (i.e. f ′ < f), or we may
overestimate the value of f (i.e. f ′ > f). In the former case, we find the mode
on the first run of the frequent element finder algorithm, but as the value of C
is greater than what it should be, the cache complexity of the algorithm can be
potentially larger. In the latter case, multiple runs of the frequent finder algo-
rithm is likely; Therefore, potentially we can have the problem of too many runs
as in the deterministic approach. Details are omitted in this paper, nevertheless
using Chernoff tail bounds, one can show that the probability of our estimate
being too far from the real value is small enough so that the extra work does
not effect the expected asymptotic cache complexity:

316 A. Farzan et al.

Theorem 5. The expected cache complexity of the randomized algorithm for de-
termining the mode matches the lower bound and is O

(
max

{
N
B log M

B

N
fB , N

B

})
.

5 Conclusion

We studied three problems related to multisets in the cache-oblivious model:
duplicate removal, multi-sorting, and determining the mode. We presented the
known lower bounds for the cache complexity of each of these problems. Deter-
mining the mode has the lower bound of Ω

(
N
B log M

B

N
f

)
where f is the mul-

tiplicity of the most frequent element and M is the size of the cache and B is
size of a block in cache. The lower bound for the cache complexity of duplicate
removal and multi-sorting is Ω

(
N
B log M

B

N
B −

∑k
i=1

Ni

B log M
B

Ni

B

)
.

The cache complexities of our algorithms match the lower bounds asymp-
totically. Only exception is the problem of determining the mode where our
deterministic algorithm can be an additive term of O

(
N
B log logM

)
away from

the lower bound. However, the randomized algorithm matches the lower bound.

References

1. Aggarwal, A., Vitter, J.S.: The I/O complexity of sorting and related problems. In:
ICALP Proceedings. Volume 267 of LNCS., Springer-Verlag (1987) 467–478

2. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: FOCS Proceedings, IEEE Computer Society Press (1999) 285–297

3. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2) (1985) 202–208

4. Munro, I., Spira, P.: Sorting and searching in multisets. SIAM Journal on Computing
5 (1976) 1–8

5. Arge, L., Knudsen, M., Larsen, K.: A general lower bound on the I/O-complexity of
comparison-based algorithms. In: In Proceedings of WADS, Springer-Verlag (1993)

6. Brodal, Fagerberg: Cache oblivious distribution sweeping. In: ICALP. (2002)
7. Demaine, E.D.: Cache-oblivious algorithms and data structures. In: Lecture Notes

from the EEF Summer School on Massive Data Sets. Lecture Notes in Computer
Science, BRICS, University of Aarhus, Denmark (2002)

8. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-trees. In
IEEE, ed.: Annual Symposium on Foundations of Computer Science 2000, IEEE
Computer Society Press (2000) 399–409

9. Misra, J., Gries, D.: Finding repeated elements. Science of Computer Programming
2 (1982) 143–152

Oblivious vs. Distribution-Based Sorting:
An Experimental Evaluation

Geeta Chaudhry� and Thomas H. Cormen��

Dartmouth College Department of Computer Science
{geetac, thc}@cs.dartmouth.edu

Abstract. We compare two algorithms for sorting out-of-core data on
a distributed-memory cluster. One algorithm, Csort, is a 3-pass obliv-
ious algorithm. The other, Dsort, makes two passes over the data and
is based on the paradigm of distribution-based algorithms. In the con-
text of out-of-core sorting, this study is the first comparison between the
paradigms of distribution-based and oblivious algorithms. Dsort avoids
two of the four steps of a typical distribution-based algorithm by making
simplifying assumptions about the distribution of the input keys. Csort
makes no assumptions about the keys. Despite the simplifying assump-
tions, the I/O and communication patterns of Dsort depend heavily on
the exact sequence of input keys. Csort, on the other hand, takes ad-
vantage of predetermined I/O and communication patterns, governed
entirely by the input size, in order to overlap computation, communica-
tion, and I/O. Experimental evidence shows that, even on inputs that
followed Dsort’s simplifying assumptions, Csort fared well. The running
time of Dsort showed great variation across five input cases, whereas
Csort sorted all of them in approximately the same amount of time. In
fact, Dsort ran significantly faster than Csort in just one out of the five
input cases: the one that was the most unrealistically skewed in favor of
Dsort. A more robust implementation of Dsort—one without the simpli-
fying assumptions—would run even slower.

1 Introduction

This paper demonstrates the merit of oblivious algorithms for out-of-core sort-
ing on distributed-memory clusters. In particular, we compare the performance
of Csort, a 3-pass oblivious algorithm that makes no assumptions about the
input distribution, to that of Dsort, a 2-pass distribution-based algorithm that
makes strong simplifying assumptions about the input distribution. This dif-
ference makes Csort a more robust algorithm for sorting real out-of-core data.
Because Csort is oblivious, its I/O and communication patterns are not affected

� Supported by National Science Foundation Grant IIS-0326155 in collaboration with
the University of Connecticut.

�� Supported in part by DARPA Award W0133940 in collaboration with IBM and in
part by National Science Foundation Grant IIS-0326155 in collaboration with the
University of Connecticut.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 317–328, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

318 G. Chaudhry and T.H. Cormen

by the input distribution or the exact input sequence. In Dsort, on the other
hand, the I/O and communication patterns show a strong sensitivity to the
input sequence, even when it adheres to the assumed input distribution. An
added benefit of Csort’s predetermined I/O and communication patterns is that
it is much simpler to implement. We ran experiments with five 128-GB datasets,
ranging from the more favorably skewed (for Dsort) to the less favorably skewed.
There was no significant variation in the running time of Csort for these inputs,
demonstrating that its running time is determined primarily by the input size.
Dsort ran no faster than Csort, except in the two most-favorably biased cases;
the difference was marginal in one of these two cases. One downside of using
Csort is that the maximum problem size that it can handle is often smaller than
what Dsort can handle.

The problem of sorting massive data comes up in several applications such
as geographical information systems, seismic modeling, and Web-search engines.
Such out-of-core data typically reside on parallel disks. We consider the setting
of a distributed-memory cluster, since it offers a good price-to-performance ratio
and scalability. The high cost of transferring data between disk and memory, as
well as the distribution of data across disks of several machines, makes it quite
a challenge to design and implement efficient out-of-core sorting programs. In
addition to minimizing the number of parallel disk accesses, an efficient imple-
mentation must also overlap disk I/O, communication, and computation.

Along with merging-based algorithms, distribution-based algorithms form
one of the two dominant paradigms in the literature for out-of-core sorting on
distributed-memory clusters. An algorithm of this paradigm proceeds in three or
four steps. The first step samples the input data and decides on P−1 splitter ele-
ments, where P is the number of processors in the cluster. The second step, given
the splitter elements, partitions the input into P sets S0, S1, . . . , SP−1, such that
each element in Si is less than or equal to all the elements in Si+1. The third step
sorts each partition. The sorted output is just the sequence 〈R0, R1, . . . , RP−1〉,
where Ri is the sorted version of Si. We refer to the first, second, and third steps
as the sampling step, the partition step, and the sort step, respectively. There is
often a fourth step to ensure that the output is perfectly load-balanced among
the P processors. In order to give Dsort every possible advantage when com-
paring it to Csort, its implementation omits the sampling and load-balancing
steps.

In previous work, we have explored a third way—distinct from merging-based
and distribution-based algorithms—of out-of-core sorting: oblivious algorithms.
An oblivious sorting algorithm is a compare-exchange algorithm in which the
sequence of comparisons is predetermined [1,2]. For example, algorithms based
on sorting networks [1,3] are oblivious algorithms.

A distribution-based algorithm, when adapted to the out-of-core setting of
a distributed-memory cluster, generates I/O and communication patterns that
vary depending on the data to be sorted. Due to this input dependence, the
programmer ends up spending much of the effort in handling the effects of data
that might lead to “bad” I/O and communication patterns. We know of two

Oblivious vs. Distribution-Based Sorting: An Experimental Evaluation 319

implementations of out-of-core sorting on a cluster [4,5]. Both are distribution-
based, and both sidestep one of the principal challenges of the sampling step of
a distribution-based sort: locating the kth smallest of the input keys for k equal
to N/P, 2N/P, . . . (P − 1)N/P (a classical problem in order statistics). We refer
to these k elements as equi-partition splitters. Solving this problem in an out-of-
core setting is cumbersome [6]. Not surprisingly, therefore, both of the existing
implementations assume that the P − 1 equi-partition splitters are known in
advance, eliminating the sampling and load-balancing steps altogether.

An oblivious algorithm, when adapted to an out-of-core setting, generates
I/O and communication patterns that are entirely predetermined, depending
only on the input size. In previous work, we have developed several implemen-
tations based on the paradigm of oblivious algorithms [7,8,9,10].

The comparison between Csort and Dsort is novel. To the best of our knowl-
edge, this work is the first experimental evaluation that compares these two
paradigms in the context of out-of-core sorting on distributed-memory clusters.1

Moreover, both Csort and Dsort run on identical hardware, and both use similar
software: MPI [12,13] for communication and UNIX file system calls for I/O.
Both are implemented in C and use the standard pthreads package for overlap-
ping I/O, communication, and computation.

There are several reasons that we did not compare Csort to NOW-Sort [4,14],
the premier existing implementation of a distribution-based algorithm:

– NOW-Sort is built on top of active messages and GLUnix, and we wanted
to use software that is more standard. (Our nodes run Red Hat Linux and
use MPI for communication.)

– There are several differences in the hardware that NOW-Sort targets and
the hardware of modern distributed-memory clusters.

– Finally, NOW-Sort does not produce output in the standard striped ordering
used by the Parallel Disk Model (PDM) [15]. As Figure 1 shows, the PDM
stripes N records2 across D disks D0, D1, . . . DD−1, with N/D records stored
on each disk. The records on each disk are partitioned into blocks of B records
each. Any disk access (read or write) transfers an entire block of records
between the disks and memory. We use M to denote the size of the internal
memory, in records, of the entire cluster, so that each processor can hold
M/P records.
PDM ordering balances the load for any consecutive set of records across
processors and disks as evenly as possible. A further advantage to producing
sorted output in PDM ordering is that the resulting algorithm can be used
as a subroutine in other PDM algorithms. Implementing our own version of
a distribution-based sort removes all these differences, allowing for a fairer
comparison.

1 There are some existing comparisons of parallel sorting programs for an in-core
setting, e.g., [11].

2 The data being sorted comprises N records, where each record consists of a key and
possibly some satellite data.

320 G. Chaudhry and T.H. Cormen

P0 P1 P2 P3
D0 D1 D2 D3 D4 D5 D6 D7

stripe 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
stripe 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
stripe 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
stripe 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Fig. 1. The layout of N = 64 records in a parallel disk system with P = 4, B = 2, and
D = 8. Each box represents one block. The number of stripes is N/BD = 4. Numbers
indicate record indices.

Experimental results on a Beowulf cluster show that Csort, even with its
three disk-I/O passes, sorts a 128-GB file significantly faster than Dsort in two
of the five cases. There is a marginal difference in the running times in two of the
remaining three cases, one in the favor of Dsort and the other in Csort’s favor.
In the last case, Dsort is distinctly faster than Csort. These results show that
the performance of Csort is competitive with Dsort. Csort, therefore, would fare
even better compared to a generalized version of Dsort, that is, one that does
not assume that the equi-partition splitters are known in advance and that does
not ensure load-balanced output.

The remainder of this paper is organized as follows. Section 2 describes the
original columnsort algorithm and summarizes Csort. Section 3 presents the de-
sign of Dsort, along with notes on the 2-pass implementation. Section 4 analyzes
the results of our experiments. Finally, Section 5 offers some closing comments.

2 Csort

In this section, we briefly review the columnsort algorithm [16]. After summa-
rizing a 4-pass out-of-core adaptation, we briefly describe Csort, our 3-pass im-
plementation. Our previous papers [7,8] contain the details of these implemen-
tations.

Columnsort sorts N records arranged as an r × s matrix, where N = rs,
r is even, s divides r, and r ≥ 2s2. When columnsort completes, the matrix is
sorted in column-major order. Columnsort proceeds in eight steps. Steps 1, 3,
5, and 7 are all the same: sort each column individually. Each of steps 2, 4, 6,
and 8 performs a fixed permutation on the matrix entries:

– Step 2: Transpose and reshape: Transpose the r × s matrix into an s × r
matrix. Then “reshape” it back into an r × s matrix by interpreting each
row as r/s consecutive rows of s entries each.

– Step 4: Reshape and transpose: This permutation is the inverse of that of
step 2.

– Step 6: Shift down by r/2: Shift each column down by r/2 positions, wrapping
the bottom half of each column into the top half of the next column. Fill the
top half of the leftmost column with −∞ keys, and create a new rightmost
column, filling its bottom half with ∞ keys.

– Step 8: Shift up by r/2: This permutation is the inverse of that of step 6.

Oblivious vs. Distribution-Based Sorting: An Experimental Evaluation 321

A 4-Pass Implementation. In our adaptation of columnsort to an out-of-core
setting on a distributed-memory cluster, we assume that D, the number of disks,
equals P , the number of processors.3 We say that a processor owns the one disk
that it accesses. The data are placed so that each column is stored in contiguous
locations on the disk owned by a single processor. Columns are distributed among
the processors in round-robin order, so that Pj , the jth processor, owns columns
j, j + P, j + 2P , and so on.

Throughout this paper, we use buffers that hold exactly β records. For out-
of-core columnsort, we set β = r. We assume that each processor has enough
memory to hold a constant number, g, of such β-record buffers. In other words,
M/P = gβ = gr, implying that β = r = M/Pg. In both Csort and Dsort, each
processor maintains a global pool of g memory buffers, where g is set at the start
of each run of the program.

Each pass reads records from one part of each disk and writes records to a
different part of each disk.4 Each pass performs two consecutive steps of column-
sort. That is, pass 1 performs steps 1 and 2, pass 2 performs steps 3 and 4,
pass 3 performs steps 5 and 6, and pass 4 performs steps 7 and 8. Each pass is
decomposed into s/P rounds. Each round processes the next set of P consecu-
tive columns, one column per processor, through a pipeline of five stages. This
pipeline runs on each processor. In each round on each processor, an r-record
buffer travels through the following five stages:

Read Stage: Each processor reads a column of r records from the disks that
it owns into the buffer associated with the given round.

Sort Stage: Each processor locally sorts, in memory, the r records it has just
read.

Communicate Stage: Each record is destined for a specific column, depend-
ing on which even-numbered columnsort step this pass is performing. In
order to get each record to the processor that owns this destination column,
processors exchange records.

Permute Stage: Having received records from other processors, each processor
rearranges them into the correct order for writing.

Write Stage: Each processor writes a set of r records onto the disks that it
owns.

Because we implemented the stages asynchronously, at any one time each
stage could be working on a buffer from a different round. We used threads in
order to provide flexibility in overlapping I/O, computation, and communication.
In the 4-pass implementation, there were four threads per processor. The sort,
communicate, and permute stages each had their own threads, and the read and
3 Our implementation of Csort can handle any positive value of D as long as D di-

vides P or P divides D; we assume that D = P in this paper. In our experimental
setup, each node has a single disk, so that D = P .

4 We alternate the portions read and written from pass to pass so that, apart from
the input and output portions, we need just one other portion, whose size is that of
the data.

322 G. Chaudhry and T.H. Cormen

write stages shared an I/O thread. The threads operate on r-record buffers, and
they communicate with one another via a standard semaphore mechanism.

Csort: The 3-Pass Implementation. In Csort, we combine steps 5–8 of
columnsort—passes 3 and 4 in the 4-pass implementation—into one pass. In the
4-pass implementation, the communicate, permute, and write stages of pass 3,
along with the read stage of pass 4, merely shift each column down by r/2 rows
(wrapping the bottom half of each column into the top half of the next column).
We replace these four stages by a single communicate stage. This reduction in
number of passes has both algorithmic and engineering aspects; for details, see
[7,8].

3 Dsort

In this section, we outline the two passes of Dsort: Pass 1 executes the partition
step, and pass 2 executes the sort step, producing output in PDM order. We
continue to denote the number of records to be sorted as N , the number of
processors as P , and the amount of memory per processor as M/P . As in Csort,
g is the number of buffers in the global pool of buffers on each processor and
β = M/Pg denotes the size of each buffer, in records.

3.1 Pass 1 of Dsort: Partition and Create Sorted Runs

Pass 1 partitions the N input records into P partitions of N/P records each.
After pass 1 completes, each processor has the N/P records of its partition.
Similar to NOW-Sort, Dsort requires that the P − 1 equi-partition splitters are
known in advance.

The Five Stages of Each Round. Similar to the passes of Csort, pass 1
of Dsort is decomposed into rounds. Each round processes the next set of P
buffers, one β-record buffer per processor, through a pipeline of five stages. In
our implementation, each of the five stages has its own thread. Below, we describe
what each processor (Pi, for i = 0, 1, . . . , P − 1) does in the five stages.

Read Stage: Processor Pi reads β records from the disk that it owns into a
buffer. Hence, a total of βP records are read into the collective memory of
the cluster.

Permute Stage: Given the splitter elements, processor Pi permutes the just-
read β records into P sets, Ui,0, Ui,1, . . . , Ui,P−1, where the records in set Ui,j

are destined for processor Pj . Note that, even though the entire input is equi-
partitioned, these P sets need not be of the same size.

Communicate Stage: Processor Pi sends all the elements in set Ui,j to pro-
cessor Pj , for j = 0, 1, . . . , P − 1. At the end of this stage, each processor
has received all the records that belong to its partition, out of the total of
βP records that were read in collectively.
The communicate stage is implemented in three substages:

Oblivious vs. Distribution-Based Sorting: An Experimental Evaluation 323

– In the first substage, processor Pi sends the size of set Ui,j to each
processor Pj , so that Pj knows how many records it will receive from Pi.

– In the second substage, each processor sends P messages, one per pro-
cessor. The message destined for processor Pj contains all the records in
set Ui,j .

– After the second substage, a processor might receive significantly more
records than it can hold in its internal memory. The third substage,
therefore, proceeds in a loop over the following three steps: allocate a
buffer, keep receiving messages until the buffer fills up, and send the
buffer on to the next stage. The performance of this stage depends on
the input data, even with the assumption that the overall input is equi-
partitioned. Since a processor may fill a non-integral number of buffers, it
might be left with a partially full buffer at the end of this final substage.
This partially full buffer is then used as the starting buffer (for the third
substage of the communicate stage) of the next round. The only buffers
that go on to the next stage are either full or empty.

Sort Stage: For each full buffer that reaches this stage, processor Pi sorts the
elements in the buffer. All buffers, whether full or empty, are passed on to
the next stage.

Write Stage: Every buffer reaching this stage is either full and sorted, or
empty. Processor Pi writes each full buffer reaching this stage to the disk
that it owns. This stage then recycles one buffer back to the read stage, and
it releases all others back into memory.

At the end of pass 1, each processor has the N/P records that belong to
its partition. Furthermore, these N/P records are stored on the disk of the
corresponding processor as N/βP sorted runs of β records each.

3.2 Pass 2 of Dsort: Merge Sorted Runs and Create Striped Output

Pass 2 of Dsort executes the sort stage of distribution-based sorting. Each pro-
cessor uses an (N/βP)-way merge sort to merge the N/βP runs of β records
each, and it communicates with the other processors to produce output in striped
PDM order. Our implementation of pass 2 has four threads: read, merge, com-
municate, and write. Unlike pass 1, in which each thread received buffers from
the thread of the preceding stage and sent buffers to the thread of the succeeding
stage, the threads of pass 2 are not as sequential in nature. We describe how
each thread operates.

Read Thread: Each processor starts out with N/βP sorted runs on its disk.
Each run has β records, or β/B blocks, assuming that B, the block size,
divides β, the buffer size.
– Wait for a request of the form (rx, hy, loc), meaning that the yth block hy

of the xth sorted run rx is to be read into the memory location loc.
– Read in the yth block of the xth run, and copy the B records to the

specified memory location loc.
– Signal the merge thread.

324 G. Chaudhry and T.H. Cormen

Since the N/βP runs are being merged using an (N/βP)-way merge sort, the
order in which the various blocks of the sorted runs are required depends
on the rate at which each run is being consumed by the merge sort. For
example, it is possible that on a given processor, the first run starts with a
record whose key value is greater than all the key values in the second run.
In this scenario, all blocks of the second run are brought into memory before
the first run has exhausted even a single record. Feedback from the merge
thread, therefore, is essential for the read thread to bring in blocks in an
efficient sequence.

Merge Thread: The merge thread initially requests some fixed number, say l,
of blocks from each of the N/βP sorted runs. This number l depends on the
amount of memory available on each processor. It is essential to always have
more than one block per run in memory, so that the merging process is not
repeatedly suspended because of delays in disk reads. The main task of the
merge thread is to create one single sorted run out of the N/βP sorted runs
produced after pass 1. It starts out by acquiring an output buffer, say buff 0,
and starting an (N/βP)-way merge that puts the output into buff 0. This
merging procedure continuously checks for the following two conditions:
– The output buffer buff 0 is full. In this case, the merge thread sends the

buffer to the communicate thread and acquires another buffer from the
pool of buffers.

– The current block, say hy, of records from some run rx has been ex-
hausted. The merge thread sends a request to the read thread to get the
next block of run rx. Note that, since we always keep l blocks from each
run in memory, the block that is requested is hx+l. After issuing a request
for block hx+l, the merge thread waits to make sure that block hx+1, the
next block of ry needed to continue the merging, is in memory.

Communicate Thread: For each buffer that this thread receives, it spreads
out the contents to all other processors, for striped PDM output. In other
words, blocks h0, hP , h2P , . . . are sent to processor P0, blocks h1, hP+1, h2P+1, . . .
are sent to processor P1, and so on, until processor PP−1, which receives
blocks hP−1, h2P−1, h3P−1, After the communicate thread receives one
buffer’s worth of data from all the other processors, it sends the buffer to
the write thread.

Write Thread: The write thread writes out the β records in the buffer out to
the disk owned by the processor and releases the buffer back into the pool
of buffers.

4 Experimental Results

This section presents the results of our experiments on Jefferson, a Beowulf
cluster that belongs to the Computer Science Department at Dartmouth. We
start with a brief description of our experimental setup. Next, we explain the
five types of input sequences on which we ran both Csort and Dsort. Finally, we
present an analysis of our experimental runs.

Oblivious vs. Distribution-Based Sorting: An Experimental Evaluation 325

4.1 Experimental Setup

Jefferson is a Beowulf cluster of 32 dual 2.8-GHz Intel Xeon nodes. Each node
has 4 GB of RAM and an Ultra-320 36-GB hard drive. A high-speed Myrinet
connects the network. At the time of our experiments, each node ran Redhat
Linux 8.0. We use the C stdio interface for disk I/O, the pthreads pack-
age of Linux, and standard synchronous MPI calls within threads. We use the
ChaMPIon/Pro package for MPI calls.

In all our experiments, the input size is 128 GB, the number of processors
is 16, the block size is 256 KB; the record size is 64 bytes; and g, the size of the
global pool of buffers, is 3. Since the record size is 64 bytes, N is 231 records
and B is 212 records. For all cases but one, we use 128-MB buffers (i.e., β = 221

records). For Dsort, the memory requirement of the worst-case input type was
such that we had to use 64-MB buffers; the experiment crashed if we used 128-
MB buffers. In the case of Dsort, we set the parameter l of pass 2 to be 3.5

4.2 Input Generation

As we mentioned before, even with equi-partition splitters known in advance,
the I/O and communication patterns of Dsort depend heavily on the exact input
sequence. More specifically, as explained in Section 3.1, the performance of each
round of pass 1 of Dsort depends on how evenly the βP records of that round
are split among the P processors. In the best case, in each round, each processor
would receive exactly β records. In the worst case, all βP records in each round
would belong to the partition of a single processor.

In each of our five input types, the following is true: In each round, all βP
keys are such that q out of the P processors receive βP/q records each. In each
round, therefore, P − q processors receive no records. The five types of inputs
are characterized by the following five values of q: 1, 2, 4, 8, and 16. For each
round of any input type, the q processors that receive the βP records are chosen
randomly, subject to the constraint that over all N/βP rounds, each processor
receives N/P records. The smaller the value of q, the worse the load balance
of each round and the longer Dsort takes to sort the input. Note that q = P
represents a highly unrealistic input sequence, one where the data are perfectly
load balanced across the P processors in every round, in addition to the overall
input being perfectly balanced across the processors. Even values of q strictly
less than P represent unrealistic scenarios in which the data destined for the
q processors are perfectly load balanced across those q processors every time.
Thus, our experiments are, if anything, tilted in favor of Dsort.

4.3 Results

Figure 2 shows the running times of Dsort and Csort for 128 GB of input data.
Each plotted point in the figure represents the average of three runs. Variations in
running times were relatively small (within 5%). The horizontal axis is organized

5 The parameters g and l were set experimentally, to elicit the best performance.

326 G. Chaudhry and T.H. Cormen

1 2 4 8 16

1000

1500

2000

2500

Parameter q

S
ec

on
ds

Dsort
Csort

Fig. 2. Observed running times of Dsort and Csort for the five values of q: q = 16 is the
most favorable case for Dsort, and q = 1 is the least favorable. These timings are for
the following setting of parameters: P = 16, N = 231 records or 128 GB, and β = 221

records or 128 MB, for 64-byte records.

2 4 8 16
300

400

500

600

700

800

900

1000

1100

Parameter q

S
ec

on
ds

Pass one of Dsort
Pass two of Dsort

Fig. 3. Observed running times of the two passes of Dsort for four values of q: 2, 4,
8, and 16. These timings are for the following setting of parameters: P = 16, N = 231

records or 128 GB, and β = 221 records or 128 MB, for 64-byte records.

by the five values of q, with q = 16 and q = 1 being the best and worst cases for
Dsort, respectively.

As mentioned before, the running time of Csort exhibits negligible variation
across the various values of q, demonstrating that Csort’s predetermined I/O and
communication patterns do indeed translate into a running time that depends
almost entirely on the input size. Dsort shows much variation across the various
values of q. As Figure 2 shows, Csort runs much faster for two of the five inputs
(q = 1 and q = 2). In two of the remaining three cases (q = 4 and q = 8), the
difference in the running times is marginal. Dsort runs significantly faster in the
most favorable case (q = 16).

The variation in the running times of Dsort is due to differences in the perfor-
mance of Pass 1. As explained in Section 3.1, the performance of the communi-

Oblivious vs. Distribution-Based Sorting: An Experimental Evaluation 327

cate and write stages is highly sensitive to the exact input sequence. Specifically,
the lower the value of q, the more uneven are the I/O and communication pat-
terns of each round, and therefore, the longer each round takes to complete. We
ran Dsort for four values of q, and for each run, we observed the running time of
each of the two passes. Figure 3 demonstrates that, across all four values of q,
there is little variation in the performance of pass 2. The performance of pass 1,
on the other hand, varies greatly with the value of q, thus substantiating our
claim that pass 1 is responsible for the variation in the running times of Dsort.

5 Conclusion

This paper presents the first study that compares the paradigm of distribution-
based algorithms to that of oblivious algorithms, in the context of out-of-core
sorting on distributed-memory clusters. We do so by comparing the performance
of two algorithms: Csort and Dsort. Below, we summarize the main differences
between Csort and Dsort:

– Csort is a 3-pass oblivious algorithm, and Dsort is a 2-pass distribution-based
algorithm.

– Dsort assumes that the the equi-partition splitters are known in advance,
thereby obviating the need for the sampling and load balancing steps. To
sort all inputs, a distribution-based sort must remove this assumption, ne-
cessitating at least one more pass over the data. Csort makes no assumptions
about the input distribution.

– The running time of Dsort, even when the input follows the above mentioned
assumption, varies greatly with the exact input sequence. This variation
arises because the I/O and communication patterns of Dsort are sensitive
to the input sequence. The running time of Csort, on the other hand, varies
negligibly with the input sequence. Our experimental results demonstrate
this difference. This difference also makes Csort much simpler to implement.

– Dsort can handle problem sizes larger than those that Csort can handle.
Csort can sort up to β3/2

√
P/2 records (512 GB of data in our setup),

whereas Dsort can sort up to β2P/B records (2 TB in our setup).

Both Csort and Dsort are implemented using identical software, and they
run on identical hardware. The results of our experiments show that Csort fares
well compared to Dsort. On three out of five inputs, Csort runs faster. On one of
the remaining two inputs, the difference between the running times of Csort and
Dsort is marginal. Dsort runs significantly faster on the other remaining input,
the one which represents the rather unrealistic case of q = 16.

In future work, we would like to implement a distribution-based algorithm
that makes no assumptions about the input distribution and compare its perfor-
mance with that of an oblivious algorithm. We also plan to continue our efforts
toward designing new oblivious algorithms and engineering efficient implemen-
tations of them.

328 G. Chaudhry and T.H. Cormen

References

1. Knuth, D.E.: Sorting and Searching. Volume 3 of The Art of Computer Program-
ming. Addison-Wesley (1973)

2. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann (1992)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
second edn. The MIT Press and McGraw-Hill (2001)

4. Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Culler, D.E., Hellerstein, J.M., Pat-
terson, D.A.: High-performance sorting on networks of workstations. In: SIG-
MOD ’97. (1997)

5. Graefe, G.: Parallel external sorting in Volcano. Technical Report CU-CS-459-90,
University of Colorado at Boulder, Department of Computer Science (1990)

6. Vitter, J.S.: External memory algorithms and data structures: Dealing with MAS-
SIVE DATA. ACM Computing Surveys 33 (2001) 209–271

7. Chaudhry, G., Cormen, T.H., Wisniewski, L.F.: Columnsort lives! An efficient
out-of-core sorting program. In: Proceedings of the Thirteenth Annual ACM Sym-
posium on Parallel Algorithms and Architectures. (2001) 169–178

8. Chaudhry, G., Cormen, T.H.: Getting more from out-of-core columnsort. In: 4th
Workshop on Algorithm Engineering and Experiments (ALENEX 02). (2002) 143–
154

9. Chaudhry, G., Cormen, T.H., Hamon, E.A.: Parallel out-of-core sorting: The third
way. (Cluster Computing) To appear.

10. Chaudhry, G., Cormen, T.H.: Slabpose columnsort: A new oblivious algorithm for
out-of-core sorting on distributed-memory clusters. (Algorithmica) To appear.

11. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha,
M.: An experimental analysis of parallel sorting algorithms. Theory of Computing
Systems 31 (1998) 135–167

12. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI—The
Complete Reference, Volume 1, The MPI Core. The MIT Press (1998)

13. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,
Snir, M.: MPI—The Complete Reference, Volume 2, The MPI Extensions. The
MIT Press (1998)

14. Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Culler, D.E., Hellerstein, J.M., Pat-
terson, D.A.: Searching for the sorting record: Experiences in tuning NOW-Sort.
In: 1998 Symposium on Parallel and Distributed Tools (SPDT ’98). (1998)

15. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory I: Two-level memo-
ries. Algorithmica 12 (1994) 110–147

16. Leighton, T.: Tight bounds on the complexity of parallel sorting. IEEE Transac-
tions on Computers C-34 (1985) 344–354

Allocating Memory in a Lock-Free Manner�

Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas

Department of Computer Science and Engineering,
Chalmers University of Technology, SE-412 96 Göteborg, Sweden

{andersg, ptrianta, tsigas}@cs.chalmers.se

Abstract. The potential of multiprocessor systems is often not fully re-
alized by their system services. Certain synchronization methods, such
as lock-based ones, may limit the parallelism. It is significant to see
the impact of wait/lock-free synchronization design in key services for
multiprocessor systems, such as the memory allocation service. Efficient,
scalable memory allocators for multithreaded applications on multipro-
cessors is a significant goal of recent research projects.

We propose a lock-free memory allocator, to enhance the parallelism
in the system. Its architecture is inspired by Hoard, a successful concur-
rent memory allocator, with a modular, scalable design that preserves
scalability and helps avoiding false-sharing and heap blowup. Within
our effort on designing appropriate lock-free algorithms to construct this
system, we propose a new non-blocking data structure called flat-sets,
supporting conventional “internal” operations as well as “inter-object”
operations, for moving items between flat-sets.

We implemented the memory allocator in a set of multiprocessor sys-
tems (UMA Sun Enterprise 450 and ccNUMA Origin 3800) and studied
its behaviour. The results show that the good properties of Hoard w.r.t.
false-sharing and heap-blowup are preserved, while the scalability proper-
ties are enhanced even further with the help of lock-free synchronization.

1 Introduction

Some form of dynamic memory management is used in most computer programs
for multiprogrammed computers. It comes in a variety of flavors, from the tradi-
tional manual general purpose allocate/free type memory allocator to advanced
automatic garbage collectors.

In this paper we focus on conventional general purpose memory alloca-
tors (such as the “libc” malloc) where the application can request (allocate)
arbitrarily-sized blocks of memory and free them in any order. Essentially a
memory allocator is an online algorithm that manages a pool of memory (heap),
e.g. a contiguous range of addresses or a set of such ranges, keeping track of
which parts of that memory are currently given to the application and which
parts are unused and can be used to meet future allocation requests from the

� This work was supported by computational resources provided by the Swedish Na-
tional Supercomputer Centre (NSC).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 329–342, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

330 A. Gidenstam, M. Papatriantafilou, and P. Tsigas

application. The memory allocator is not allowed to move or otherwise disturb
memory blocks that are currently owned by the application.

A good allocator should aim at minimizing fragmentation, i.e. minimizing the
amount of free memory that cannot be used (allocated) by the application. Inter-
nal fragmentation is free memory wasted when the application is given a larger
memory block than it requested; and external fragmentation is free memory that
has been split into too small, non-contiguous blocks to be useful to satisfy the
requests from the application. Multi-threaded programs add some more compli-
cations to the memory allocator. Obviously some kind of synchronization has to
be added to protect the heap during concurrent requests. There are also other
issues outlined below, which have significant impact on application performance
when the application is run on a multiprocessor [1]. Summarizing the goals, a
good concurrent memory allocator should (i) avoid false sharing, which is when
different parts of the same cache-line end up being used by threads running
on different processors; (ii) avoid heap blowup, which is an overconsumption of
memory that may occur if the memory allocator fails to make memory deallo-
cated by threads running on one processor available to threads running on other
processors; (iii) ensure efficiency and scalability, i.e. the concurrent memory al-
locator should be as fast as a good sequential one when executed on a single
processor and its performance should scale with the load in the system.

The Hoard [2] concurrent memory allocator is designed to meet the above
goals. The allocation is done on the basis of per-processor heaps, which avoids
false sharing and reduces the synchronization overhead in many cases, improving
both performance and scalability. Memory requests are mapped to the closest
matching size in a fixed set of size-classes, which bounds internal fragmentation.
The heaps are sets of superblocks, where each superblock handles blocks of one
size class, which helps in coping with external fragmentation. To avoid heap
blowup freed blocks are returned to the heap they were allocated from and
empty superblocks may be reused in other heaps.

Regarding efficiency and scalability, it is known that the use of locks in syn-
chronization is a limiting factor, especially in multiprocessor systems, since it
reduces parallelism. Constructions which guarantee that concurrent access to
shared objects is free from locking are of particular interest, as they help to
increase the amount of parallelism and to provide fault-tolerance. This type of
synchronization is called lock-/wait-free, non-blocking or optimistic synchroniza-
tion [3,4,5,6]. The potential of this type of synchronization in the performance of
system-services and data structures has also been pointed out earlier, in [7,4,8].

The contribution of the present paper is a new memory allocator based on
lock-free, fine-grained synchronization, to enhance parallelism, fault-tolerance
and scalability. The architecture of our allocation system is inspired by Hoard,
due to its well-justified design decisions, which we roughly outlined above. In
the process of designing appropriate data structures and lock-free synchroniza-
tion algorithms for our system, we introduced a new data structure, which we
call flat-set, which supports a subset of operations of common sets, as well as
“inter-object” operations, for moving an item from one flat-set to another in a

Allocating Memory in a Lock-Free Manner 331

lock-free manner. The lock-free algorithms we introduce make use of standard
synchronization primitives provided by multiprocessor systems, namely single-
word Compare-And-Swap, or its equivalent Load-Linked/Store-Conditional .

We have implemented and evaluated the allocator proposed here on common
multiprocessor platforms, namely an UMA Sun Enterprise 450 running Solaris
9 and a ccNUMA Origin 3800 running IRIX 6.5. We compare our allocator
with the standard “libc” allocator of each platform and with Hoard (on the
Sun system, where we had the original Hoard allocator availableusing standard
benchmark applications to test the efficiency, scalability, cache behaviour and
memory consumption behaviour. The results show that our system preserves
the good properties of Hoard, while it offers a higher scalability potential, as
justified by its lock-free nature.

In the next section we provide background information on lock- and wait-free
synchronization (throughout the paper we use the terms non-blocking and lock-
free interchangeably). Earlier and recent related work is discussed in section 7,
after the presentation of our method and implementation, as some detail is
needed to relate these contributions.

2 Background: Non-blocking Synchronization

Non-blocking implementations of shared data objects are an alternative to the
traditional solution for maintaining the consistency of a shared data object (i.e.
for ensuring linearizability [9]) by enforcing mutual exclusion. Non-blocking syn-
chronization allows multiple tasks to access a shared object at the same time,
but without enforcing mutual exclusion [3,4,5,6,10]. Non-blocking synchroniza-
tion can be lock-free or wait-free. Lock-free algorithms guarantee that regardless
of the contention caused by concurrent operations and the interleaving of their
steps, at each point in time there is at least one operation which is able to
make progress. However, the progress of other operations might cause one spe-
cific operation to take unbounded time to finish. In a wait-free algorithm, every
operation is guaranteed to finish in a bounded number of its own steps, re-
gardless of the actions of concurrent operations. Non-blocking algorithms have
been shown to have significant impact in applications [11,12], and there is also
a library, NOBLE [13], containing many implementations of non-blocking data
structures.

One of the most common synchronization primitives used in lock-free syn-
chronization is the Compare-And-Swap instruction (also denoted CAS), which
atomically executes the steps described in Fig. 1. CAS is available in e.g. SPARC
processors. Another primitive which is equivalent with CAS in synchronization
power is the Load-Linked/Store-Conditional (also denoted LL/SC) pair of instruc-
tions, available in, e.g. MIPS processors. LL/SC is used as follows: (i) LL loads
a word from memory. (ii) A short sequence of instructions may modify the value
read. (iii) SC stores the new value into the memory word, unless the word has
been modified by other process(es) after LL was invoked. In the latter case the
SC fails, otherwise the SC succeeds. Another useful primitive is Fetch-And-Add

332 A. Gidenstam, M. Papatriantafilou, and P. Tsigas

atomic CAS(mem : pointer to integer;
new, old : integer) return integer

tmp := *mem;
if tmp == old then

mem := new; / CAS succeeded */
return tmp;

atomic FAA(mem : pointer to integer;
increment : integer) return integer

tmp := *mem;
*mem := tmp + increment;
return tmp;

Fig. 1. Compare-And-Swap (denoted CAS) and Fetch-And-Add (denoted FAA)

(also denoted FAA), described in Fig. 1. FAA can be simulated in software using
CAS or LL/SC when it is not available in hardware.

An issue that sometimes arises in connection with the use of CAS, is the
so-called ABA problem. It can happen if a thread reads a value A from a shared
variable, and then invokes a CAS operation to try to modify it. The CAS will (un-
desirably) succeed if between the read and the CAS other threads have changed
the value of the shared variable from A to B and back to A. A common way to
cope with the problem is to use version numbers of b bits as part of the shared
variables [14]. An alternative method to cope with the ABA problem is to in-
troduce special NULL values. This method is proposed and used in a lock-free
queue implementation in [15]. An appropriate garbage-collection mechanism,
such as [16], can also solve the problem.

3 The New Lock-Free Memory Allocator: Architecture

The architecture of our lock-free memory allocator is inspired by Hoard[2], which
is a well-known and practical concurrent memory allocator for multiprocessors.

The memory allocator provides allocatable memory of a fixed set of sizes,
called size-classes. The size of memory requests from the application are rounded
upwards to the closest size-class. To reduce false-sharing and contention, the
memory allocator distributes the memory into per-processor heaps. The man-
aged memory is handled internally in units called superblocks. Each superblock
contains allocatable blocks of one size-class. Initially all superblocks belong to the
global heap. During an execution superblocks are moved to per-processor heaps
as needed. When a superblock in a per-processor heap becomes almost empty
(i.e. few of its blocks are allocated) it is moved back to the global heap. The
superblocks in a per-processor heap are stored and handled separately, based on
their size-class. Within each size-class the superblocks are kept sorted into bins
based on fullness(cf. Fig. 2(a)). As the fullness of a particular superblock changes
it is moved between the groups. A memory request (malloc call) first searches
for a superblock with a free block among the superblocks in the “almost full”
fullness-group of the requested size-class in the appropriate per-processor heap.
If no suitable superblock is found there, it will proceed to search in the lower
fullness-groups, and, if that, too, is unsuccessful, it will request a new superblock
from the global heap. Searching the almost full superblocks first reduces external
fragmentation. When freed (by a call to free) an allocated block is returned to
the superblock it was allocated from and, if the new fullness requires so, the
superblock is moved to another fullness-group.

Allocating Memory in a Lock-Free Manner 333

flat−set

...

Global heap

Fu
lln

es
s

gr
ou

p

Per−processor heap

Size class

Fu
lln

es
s

gr
ou

p
Size class

Per−processor heap

Size class

(a) The organization of the global and per-processor heaps.

current

free_count

...

old_pos

op_id

head

size_class

new_pos

Non−blocking flat−set
Superblock

(b) A non-blocking flat-set and

a superblock.

Fig. 2. The architecture of the memory allocator

4 Managing Superblocks: The Bounded Non-blocking
Flat-Sets

Since the number of superblocks in each fullness-group varies over time, a suit-
able collection-type data structure is needed to implement a fullness-group.
Hoard, which uses mutual-exclusion on the level of per-processor heaps, uses
linked-lists of superblocks for this purpose, but this issue becomes very different
in a lock-free allocator. While there exist several lock-free linked-list implemen-
tations, e.g. [17,18,14], we cannot apply those here, because not only do we want
the operations on the list to be lock-free, but we also need to be able to move
a superblock from one set to another without making it inaccessible to other
threads during the move. To address this, we propose a new data structure we
call a bounded non-blocking flat-set, supporting conventional “internal” opera-
tions (Get Any and Insert item) as well as “inter-object” operations, for moving
an item from one flat-set to another.

To support “inter”-flat-set operations it is crucial to be able to move su-
perblocks from one set to another in a lock-free fashion. The requirements that
make this difficult are: (i) the superblock should be reachable for other threads
even while it is being moved between flat-sets, i.e. a non-atomic first-remove-
then-insert sequence is not acceptable; (ii) the number of shared references to
the superblock should be the same after a move (or set of concurrent move
operations) finish.

Below we present the operations of the lock-free flat-set data structure and
the lock-free algorithm, move, which is used to implement the “inter-object” op-
eration for moving a reference to a superblock from one shared variable (pointer)
to another satisfying the above requirements.

4.1 Operations on Bounded Non-blocking Flat-Sets

A bounded non-blocking flat-set provides the following operations: (i) Get Any ,
which returns any item in the flat-set; and (ii) Insert, which inserts an item into
the flat-set. An item can only reside inside one flat-set at the time; when an item
is inserted into a flat-set it is also removed from its old location. The flat-set data

334 A. Gidenstam, M. Papatriantafilou, and P. Tsigas

structure consists of an array of M shared locations set.set[i], each capable of
holding a reference to a superblock, and a shared index variable set.current. The
data structure and operations are shown in Fig. 3 and are briefly described below.

The index variable set.current is used as a marker to speed up flat-set oper-
ations. It contains a bit used as an empty flag for the flat-set and a index field
that is used as the starting point for searches, both for items and for free slots.
The empty flag is set by a Get Any operation that discovers that the flat-set is
empty, so that subsequent Get Any operations know this; the Insert operation
and successful Get Any operations clear the flag. The empty flag is not always set
when the flat-set is empty as superblocks can be moved away from the flat-set at
any time, but it is always cleared when the flat-set is nonempty. The Insert op-
eration scans the array set.set[i] forward from the position marked by set.current
until it finds an empty slot. It will then attempt to move the superblock refer-
ence to be inserted into this slot using the Move operation (described in detail
below). The Get Any operation first reads set.current to check the empty flag. If
the empty flag is set, Get Any returns immediately, otherwise it starts to scan
the array set.set[i] backwards from the position marked by set.current, until it
finds a location that contains a superblock reference. If a Get Any operation has
scanned the whole set.set[i] array without finding a reference it will try to set the
empty flag for the flat-set. This is done at line G13 using CAS and will succeed
if and only if set.current has not been changed since it was read at line G2. This
indicates that the flat-set is empty so Get Any sets the empty flag and returns
failure. If, on the other hand, set.current has changed between line G2 and G13,
then either an Insert is in progress or has finished during the scan (line I6 and
I9) or some other Get Any has successfully found a superblock during this time
(line G10), so Get Any should redo the scan. To facilitate moving of superblocks
between flat-sets via Insert Get Any returns both a superblock reference and a
reference to the shared location containing it.

4.2 How to Move a Shared Reference: Moving Items Between
Flat-Sets

The algorithm supporting the operation Move moves a superblock reference sb
from a shared location from to a shared location to. The target location (i.e.
to) is known via the Insert operation. The algorithm requires the superblock to
contain an auxiliary variable mv info with the fields op id, new pos and old pos
and all superblock references to have a version field (cf. Fig 3).

A move operation may succeed by returning SB MOVED OK or fail (abort)
by returning SB MOVED (if the block has been moved by another overlapping
move) or SB NOT MOVED (if the to location is occupied). It will succeed if it
is completed successfully by the thread that initiated it or by a helping thread.
To ensure the lock-free property, the move operation is divided into a number
of atomic suboperations. A move operation that encounters an unfinished move
of the same superblock will help the old operation to finish before it attempts
to perform its own move. The helping procedure is identical to steps 2 - 4 of the
move operation described below.

Allocating Memory in a Lock-Free Manner 335

type superblock ref {// fits in one machine word
ptr : integer 16; version : integer 16;};

/* superblock ref utility functions. */
function pointer(ref : superblock ref)
return pointer to superblock
function version(ref : superblock ref)
return integer 16
function make sb ref(sb : pointer to superblock,

op id : integer 16) return superblock ref
type flat-set info {// fits in one machine word
index : integer; empty : boolean; version : integer;};
function Get Any(set : in out flat-set,

sb : in out superblock ref,
loc : in out pointer to superblock ref)

return status
i, j : integer; old current : flat-set info;

begin
G1 loop
G2 old current := set.current;
G3 if old current.empty then
G4 return FAILURE;
G5 i := old current.index;
G6 for j := 1 .. set.size do
G7 sb := set.set[i];
G8 if pointer(sb) /= null then
G9 loc := &set.set[i];
G10 set.current := (i, false);// Clear empty flag
G11 return SUCCESS;
G12 if i == 0 then i := set.size - 1 else i–;
G13 if CAS(&set.current, old current,
G14 (old current.index, true)) == old current
G15 then
G16 return FAILURE;
function Insert(set : in out flat-set,

sb : in superblock ref,
loc : in out pointer to superblock ref)

return status
i, j : integer;

begin
I1 loop
I2 i := (set.current.index + 1) mod set.size;
I3 for j := 1 .. set.size do
I4 while pointer(set.set[i]) == null do
I6 set.current := (i, false);
I7 case Move(sb, loc, &set.set[i]) is
I8 when SB MOVED OK:
I9 set.current := (i, false);
I10 loc := &set.set[i];
I11 return SB MOVED OK;
I12 when SB MOVED:
I13 return SB MOVED;
I14 when others:
I15 end case;
I16 i := (i + 1) mod set.size;
I17 if set.set not changed since prev. iter. then
I18 return FAILURE; /* The flat-set is full. */
function Get Block(sb : in superblock ref)
return block ref

nb, nh : block ref;
begin
GB1nb := sb.freelist head;
GB2while nb /= null do
GB3 nh := CAS(&sb.freelist head,
GB4 nb, nb.next);
GB5 if nh == nb.next then
GB6 FAA(&sb.free block cnt, -1);
GB7 break;
GB8 nb := sb.freelist head;
GB9 return nb;

structure flat-set {
size : constant integer; current : flat-set info;
set[size] : array of superblock ref;};

structure superblock {
mv info : move info;
freelist head : pointer to block;
free block cnt : integer;};

structure move info {
op id : integer 16;
new pos : pointer to superblock ref;
old pos : pointer to superblock ref;};

type block ref { // fits in one machine word
offset : integer 16; version : integer 16;};

procedure Put Block(sb : in superblock ref,
bl : in block ref)

oh : block ref;
begin
PB1 loop
PB2 bl.next := sb.freelist head;
PB3 oh := CAS(&sb.freelist head, bl.next, bl)
PB4 if oh == bl.next then break;
PB5 FAA(&sb.free block cnt, 1);
function Move(sb : in superblock ref,

from : in pointer to superblock ref,
to : in pointer to superblock ref)

return status
new op, old op : move info;
cur from : superblock ref;

begin
M1 /* Step 1: Initiate move. */
M2 loop
M3 old op := Load Linked(&sb.mv info);
M4 cur from := *from;
M5 if pointer(cur from) /= pointer(sb) then
M6 return SB MOVED;
M7 if old op.from == null then // No cur. operation.
M8 new op := (version(cur from), to, from);
M9 if Store Conditional(&sb.mv info, new op)
M10 then break;
M11 else
M12 Move Help(make sb ref(pointer(sb), old op.op id),
M13 old op.old pos,
M14 old op.new pos);
M15 return Move Help(cur from, from, to);
function Move Help(sb : in superblock ref,

from : in pointer to superblock ref,
to : in pointer to superblock ref)

return status
old, new, res : superblock ref; mi : move info;

begin
H1 /* Step 2: Update ”TO”. */
H2 old := *to;
H3 new := make sb ref(sb, version(old) + 1);
H4 res := CAS(to, make sb ref(null, version(old)), new)
H5 if pointer(res) /= pointer(sb) then
H6 /* To is occupied, abandon this operation. */
H7 mi := Load Linked(&sb.mv info);
H8 if mi == (version(sb), to, from) then
H9 mi := (0, from, null);
H10 Store Conditional(&sb.mv info, mi);
H11 return SB NOT MOVED;
H12 /* Step 3: Clear ”FROM”. */
H13 CAS(from, sb, make sb ref(null, version(sb) + 1));
H14 /* Step 4: Remove operation information.*/
H15 mi := Load Linked(&sb.mv info);
H16 if mi == (version(sb), to, from) then
H17 mi := (0, to, null);
H18 Store Conditional(&sb.mv info, mi);
H19 return SB MOVED OK;

Fig. 3. The flat-set data structures and operations Get Any and Insert, the superblock
data structures and operations Get block and Put Block and the superblock Move op-
eration.

336 A. Gidenstam, M. Papatriantafilou, and P. Tsigas

1. A Move(sb, from, to) is initiated by atomically registering the operation. This
is done by Load-Linked/Store-Conditional operations which sets sb.mv info to
(version(sb), to, from) iff the read value of sb.mv info.from was null, which
indicates that there are no ongoing move of this superblock. If the read value
of sb.mv info.op id was nonzero, then there is an ongoing move that needs to
be helped before this one can proceed. If the reference to the superblock dis-
appears from from before this move has been registered, this move operation
is abandoned and returns SB MOVED.

2. If the current value of to is null then to is set to point to the superblock while
simultaneously increasing its version. Otherwise this move is abandoned since
the destination is occupied and the information about the move is removed
from the superblock (as in step 4) and SB NOT MOVED is returned.

3. If from still contains the expected superblock reference (i.e. if no one else
has helped this move) from is set to null while increasing its version.

4. If the move information is still in the superblock (i.e. if no one else has
helped the move to complete) it is removed and the move operation returns
SB MOVED OK.

In the presentation here and in the pseudo-code in Fig. 3 we use the atomic
primitive CAS to update shared variables that fit in a single memory word,
but other atomic synchronization primitives, such as LL/SC could be used as
well. The auxiliary mv info variable in a superblock might need to be larger
than one word. To handle that we use the lock-free software implementation
of Load-Linked/Store-Conditional for large words by Michael [19] which can
be implemented efficiently from the common single-word CAS. Some hardware
platforms provide a CAS primitive for words twice as wide as the standard word
size, which may also be used for this.

The correctness proof of the algorithm is omitted due to space constraints;
it can be found in [20].

5 Managing the Blocks Within a Superblock

The allocatable memory blocks within each superblock are kept in a lock-free
IBM free-list [21]. The IBM free-list is essentially a lock-free stack implemented
from a single-linked-list where the push and pop operations are done by a CAS
operation on the head-pointer. To avoid ABA-problems the head-pointer con-
tains a version field. Each block has a header containing a pointer to the su-
perblock it belongs to and a next pointer for the free-list. The two free-list op-
erations Get Block and Put Block are shown in Fig. 3. The free blocks counter,
sb.free block cnt, is used to estimate the fullness of a superblock.

6 Performance Evaluation

Systems. The performance of the new lock-free allocator has been measured on
a two multiprocessor systems: (i) an UMA Sun Enterprise 450 with 4 400MHz

Allocating Memory in a Lock-Free Manner 337

UltraSPARC II (4MB L2 cache) processors running Solaris 9; (ii) a ccNUMA
SGI Origin 3800 with 128 (only 32 could be reserved) 500Mhz MIPS R14000
(8MB L2 cache) processors running IRIX 6.5.

Benchmarks. We used three common benchmarks to evaluate our memory
allocator: The Larson [2,1,22] benchmark simulates a multi-threaded server ap-
plication which makes heavy use of dynamic memory. Each thread allocates and
deallocates objects of random sizes (between 5 to 500 bytes) and also transfers
some of the objects to other threads to be deallocated there. The benchmark
result is throughput in terms of the number of allocations and deallocations per
second which reflects the allocator’s behaviour with respect to false-sharing and
scalability, and the resulting memory footprint of the process which should re-
flect any tendencies for heap blowup. We measured the throughput during 60
(30 on the Origin 3800 due to job duration limits) second runs for each number
threads.

The Active-false and passive-false [2,1] benchmarks measure how the allo-
cator handles active (i.e. directly caused by the allocator) respective passive (i.e.
caused by application behaviour) false-sharing. In the benchmarks each thread
repeatedly allocates an object of a certain size (1 byte) and read and write to
that object a large number of times (1000) before deallocating it again. If the
allocator does not take care to avoid false-sharing several threads might get ob-
jects located in the same cache-line which will slow down the reads and writes
to the objects considerably. In the passive-false benchmark all initial objects are
allocated by one thread and then transfered to the others to introduce the risk of
passive false-sharing when those objects are later freed for reuse by the threads.
The benchmark result is the total wall-clock time for performing a fixed number
(106) of allocate-read/write-deallocate cycles among all threads.

Implementation. 1 In our memory allocator we use the CAS primitive (im-
plemented from the hardware synchronization instructions available on the re-
spective system) for our lock-free operations. To avoid ABA problems we use
the version number solution ([14], cf. section 2). We use 16-bit version numbers
for the superblock references in the flat-sets, since for a bad event (i.e. that a
CAS of a superblock reference succeeds when it should not) to happen not only
must the version numbers be equal but also that same superblock must have
been moved back to the same location in the flat-set, which contains thousands
of locations. We use superblocks of 64KB to have space for version numbers in
superblock pointers. We also use size-classes that are powers of two, starting
from 8 bytes. This is not a decision forced by the algorithm; a more tightly
spaced set of size-classes can also be used, which would further reduce internal
fragmentation at the cost of a larger fixed space overhead due to the preallo-
cated flat-sets for each size-class. Blocks larger than 32KB are allocated directly
from the operating system instead of being handled in superblocks. Our imple-
mentation uses four fullness-groups and a fullness-change-threshold of 1

4 , i.e. a

1 Our implementation is available at http://www.cs.chalmers.se/∼dcs/nbmalloc.html.

338 A. Gidenstam, M. Papatriantafilou, and P. Tsigas

superblock is not moved to a new group until its fullness is more than 1
4 outside

its current group. This prevents superblocks from rapidly oscillating between
fullness-groups. Further, we set the maximum size for the flat-sets used in the
global heap and for those in per-processor heaps to 4093 superblocks each (these
values can be adjusted separately).

Results. In the evaluation we compare our allocator with the standard “libc”
allocator of the respective platform using the above standard benchmark appli-
cations. On the Sun platform, for which we had the original Hoard allocator
available, we also compare with Hoard (version 3.0.2). To the best of our knowl-
edge, Hoard is not available for ccNUMA SGI IRIX platform.

The benchmarks are intended to test scalability, fragmentation and false-
sharing, which are the evaluation criteria of a good concurrent allocator, as
explained in the introduction. When performing these experiments our main
goal was not to optimize the performance of the lock-free allocator, but rather
to examine the benefits of the lock-free design itself. There is plenty of room for
optimization of the implementation.

The results from the two false-sharing benchmarks, shown in Fig. 4, show
that our memory allocator, and Hoard, induce very little false-sharing. The stan-
dard “libc” allocator, on the other hand, suffers significantly from false-sharing
as shown by its longer and irregular runtimes. Our allocator shows consistent
behaviour as the number of processors and memory architecture changes.

The throughput results from the Larson benchmark, shown in Fig. 4, show
that our lock-free memory allocator has good scalability, not only in the case
of full concurrency (where Hoard also shows extremely good scalability), but
also when the number of threads increases beyond the number of processors. In
that region, Hoard’s performance quickly drops from its peak at full concurrency
(cf. Fig. 4(e)). We can actually observe more clearly the scalability properties of
the lock-free allocator in the performance diagrams on the SGI Origin platform
(Fig. 4(f)). There is a linear-style of throughput increase when the number of
processors increases (when studying the diagrams recall we have up to 32 proces-
sors available on the Origin 3800). Furthermore, when the load on each processor
increases beyond 1, the throughput of the lock-free allocator stays high. In terms
of absolute throughput, Hoard is superior to our lock-free allocator, at least on
the Sun platform where we had the possibility to compare them. This is not
surprising, considering that it is very well designed and has been around enough
time to be well tuned. An interesting conclusion is that the scalability of Hoard’s
architecture is further enhanced by lock-free synchronization.

The results with respect to memory consumption, Fig. 4(g,h), show that
for the Larson benchmark the memory usage (and thus fragmentation) of the
non-blocking allocator stays at a similar level to Hoard and that the use of per-
processor heaps with thresholds, while having a larger overhead than the “libc”
allocator, still have almost as good scalability with respect to memory utilization
as a single heap allocator.

Moreover, that our lock-free allocator shows a very similar behaviour in
throughput on both the UMA and the ccNUMA systems is an indication that

Allocating Memory in a Lock-Free Manner 339

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

#threads

Ru
nt

im
e

(s
ec

on
ds

).
Benchmark: Active−False (4−way Sun/SPARC).

Standard libc
Non−blocking malloc
Hoard

(a) Active-False: Sun SPARC 4 CPUs

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

#threads

Ru
nt

im
e

(s
ec

on
ds

).

Benchmark: Active−False (128−way SGI/Mips).

Standard libc
Non−blocking malloc

(b) Active-False: SGI MIPS 32(/128) CPUs

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

#threads

Ru
nt

im
e

(s
ec

on
ds

).

Benchmark: Passive−False (4−way Sun/SPARC).

Standard libc
Non−blocking malloc
Hoard

(c) Passive-False: Sun SPARC 4 CPUs

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

#threads

Ru
nt

im
e

(s
ec

on
ds

).

Benchmark: Passive−False (128−way SGI/Mips).

Standard libc
Non−blocking malloc

(d) Passive-False: SGI MIPS 32(/128) CPUs

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14
x 10

5

#threads

Th
ro

ug
hp

ut
 (#

m
em

or
y

re
qu

es
ts

 p
er

 s
ec

on
d)

Benchmark: Larson (4−way Sun/SPARC).

Standard libc
Non−blocking malloc
Hoard

(e) Throughput: Sun SPARC 4 CPUs

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

#threads

Th
ro

ug
hp

ut
 (#

m
em

or
y

re
qu

es
ts

 p
er

 s
ec

on
d)

Benchmark: Larson (128−way SGI/Mips).

Standard libc
Non−blocking malloc

(f) Throughput: SGI MIPS 32(/128) CPUs

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

#threads

Av
er

ag
e

m
em

or
y

co
ns

um
pt

io
n

(M
B)

.

Benchmark: Larson (4−way Sun/SPARC).

Standard libc
Non−blocking malloc
Hoard

(g) Memory consumption: Sun SPARC 4 CPUs

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

#threads

Av
er

ag
e

m
em

or
y

co
ns

um
pt

io
n

(M
B)

.

Benchmark: Larson (128−way SGI/Mips).

Standard libc
Non−blocking malloc

(h) Memory consumption: SGI MIPS 32(/128)

CPUs

Fig. 4. Results from the benchmarks

340 A. Gidenstam, M. Papatriantafilou, and P. Tsigas

there are few contention hot-spots, as these tend to cause much larger perfor-
mance penalties on NUMA than on UMA architectures.

7 Other Related Work

Recently Michael presented a lock-free allocator [23] which, like our contribution,
is loosely based on the Hoard architecture. Our work and Michael’s have been
done concurrently and completely independently, an early version of our work is
in the technical report [20]. Despite both having started from the Hoard architec-
ture, we have used two different approaches to achieve lock-freeness. In Michael’s
allocator each per-processor heap contains one active (i.e. used by memory re-
quests) and at most one inactive partially filled superblock per size-class, plus an
unlimited number of full superblocks. All other partially filled superblocks are
stored globally in per-size-class FIFO queues. It is an elegant algorithmic con-
struction, and from the scalability and throughput performance point of view
it performs excellently, as is shown in [23], in the experiments carried out on a
16-way POWER3 platform. By further studying the allocators, it is relevant to
note that: Our allocator and Hoard keep all partially filled superblocks in their
respective per-processor heap while the allocator in [23] does not and this may
increase the potential for inducing false-sharing. Our allocator and Hoard also
keep the partially filled superblocks sorted by fullness and not doing so, like the
allocator in [23] does, may imply some increased risk of external fragmentation
since the fullness order is used to direct allocation requests to the more full su-
perblocks which makes it more likely that less full ones becomes empty and thus
eligible for reuse. The allocator in [23], unlike ours, uses the first-remove-then-
insert approach to move superblocks around, which in a concurrent environment
could affect the fault-tolerance of the allocator and cause unnecessary allocation
of superblocks since a superblock is invisible to other threads while it is being
moved. As this is work that has been carried out concurrently and indepen-
dently with our contribution, we do not have any measurements of the impact
of the above differences, however this is interesting to do as part of future work,
towards further optimization of these allocators.

Another allocator which reduces the use of locks is LFMalloc [7]. It uses a
method for almost lock-free synchronization, whose implementation requires the
ability to efficiently manage CPU-data and closely interact with the operating
system’s scheduler. To the best of our knowledge, this possibility is not directly
available on all systems. LFMalloc is also based on the Hoard design, with the
difference in that it limits each per-processor heap to at most one superblock of
each size-class; when this block is full, further memory requests are redirected to
the global heap where blocking synchronization is used and false-sharing is likely
to occur. However, a comparative study with that approach can be worthwhile,
when it becomes available for experimentation.

Earlier related work is the work on non-blocking operating systems by Mas-
salin and Pu [8,24] and Greenwald and Cheriton [4,25]. They, however, made
extensive use of the 2-Word-Compare-And-Swap primitive in their algorithms.

Allocating Memory in a Lock-Free Manner 341

This primitive can update two arbitrary memory locations in one atomic step
but is not available in current systems and expensive to do in software.

8 Discussion

The lock-free memory allocator proposed in this paper confirms our expectation
that fine-grain, lock-free synchronization is useful for scalability under increasing
load in the system. To the best of our knowledge, this, together with the allocator
which was independently presented in [23] are also the first lock-free general
allocators (based on single-word CAS) in the literature. We expect that this
contribution will have an interesting impact in the domain of memory allocators.

Acknowledgements

We would like to thank H̊akan Sundell for interesting discussions on non-blocking
methods and Maged Michael for his helpful comments on an earlier version of
this paper.

References

1. Berger, E.D.: Memory Management for High-Performance Applications. PhD
thesis, The University of Texas at Austin, Department of Computer Sciences (2002)

2. Berger, E., McKinley, K., Blumofe, R., Wilson, P.: Hoard: A scalable memory
allocator for multithreaded applications. In: ASPLOS-IX: 9th Int. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems. (2000)
117–128

3. Barnes, G.: A method for implementing lock-free shared data structures. In: Proc.
of the 5th Annual ACM Symp. on Parallel Algorithms and Architectures, SIGACT
and SIGARCH (1993) 261–270 Extended abstract.

4. Greenwald, M., Cheriton, D.R.: The synergy between non-blocking synchronization
and operating system structure. In: Operating Systems Design and Implementa-
tion. (1996) 123–136

5. Herlihy, M.: Wait-free synchronization. ACM Transaction on Programming and
Systems 11 (1991) 124–149

6. Rinard, M.C.: Effective fine-grain synchronization for automatically parallelized
programs using optimistic synchronization primitives. ACM Transactions on Com-
puter Systems 17 (1999) 337–371

7. Dice, D., Garthwaite, A.: Mostly lock-free malloc. In: ISMM’02 Proc. of the 3rd
Int. Symp. on Memory Management. ACM SIGPLAN Notices, ACM Press (2002)
163–174

8. Massalin, H., Pu, C.: A lock-free multiprocessor OS kernel. Technical Report
CUCS-005-91 (1991)

9. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12 (1990)
463–492

342 A. Gidenstam, M. Papatriantafilou, and P. Tsigas

10. Hoepman, J.H., Papatriantafilou, M., Tsigas, P.: Self-stabilization of wait-free
shared memory objects. Journal of Parallel and Distributed Computing 62 (2002)
766–791

11. Tsigas, P., Zhang, Y.: Evaluating the performance of non-blocking synchronisa-
tion on shared-memory multiprocessors. In: Proc. of the ACM SIGMETRICS
2001/Performance 2001, ACM press (2001) 320–321

12. Tsigas, P., Zhang, Y.: Integrating non-blocking synchronisation in parallel appli-
cations: Performance advantages and methodologies. In: Proc. of the 3rd ACM
Workshop on Software and Performance (WOSP’02), ACM press (2002) 55–67

13. Sundell, H., Tsigas, P.: NOBLE: A non-blocking inter-process communication
library. In: Proc. of the 6th Workshop on Languages, Compilers and Run-time
Systems for Scalable Computers. Lecture Notes in Computer Science, Springer
Verlag (2002)

14. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: Proc. of the 14th
Annual ACM Symp. on Principles of Distributed Computing (PODC ’95), ACM
(1995) 214–222

15. Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent fifo
queue for shared memory multiprocessor systems. In: Proc. of the 13th annual
ACM symp. on Parallel algorithms and architectures, ACM Press (2001) 134–143

16. Michael, M.M.: Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In: Proc. of the 21st annual symp. on Principles of
distributed computing, ACM Press (2002) 21–30

17. Harris, T.L.: A pragmatic implementation of non-blocking linked lists. In: Proc.
of the 15th Int. Conf. on Distributed Computing, Springer-Verlag (2001) 300–314

18. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: Proc. of the 14th Annual ACM Symp. on Parallel Algorithms and Architectures
(SPAA-02), ACM Press (2002) 73–82

19. Michael, M.M.: Practical lock-free and wait-free LL/SC/VL implementations using
64-bit CAS. In: Proc. of the 18th Int. Conf. on Distributed Computing (DISC).
(2004)

20. Gidenstam, A., Papatriantafilou, M., Tsigas, P.: Allocating memory in a lock-free
manner. Technical Report 2004-04, Computing Science, Chalmers University of
technology (2004)

21. IBM: IBM System/370 Extended Architecture, Principles of Operation. (1983)
Publication No. SA22-7085.

22. Larson, P.P.Å., Krishnan, M.: Memory allocation for long-running server applica-
tions. In: ISMM’98 Proc. of the 1st Int. Symp. on Memory Management. ACM
SIGPLAN Notices, ACM Press (1998) 176–185

23. Michael, M.: Scalable lock-free dynamic memory allocation. In: Proc. of SIG-
PLAN 2004 Conf. on Programming Languages Design and Implementation. ACM
SIGPLAN Notices, ACM Press (2004)

24. Massalin, H.: Synthesis: An Efficient Implementation of Fundamental Operating
System Services. PhD thesis, Columbia University (1992)

25. Greenwald, M.B.: Non-blocking synchronization and system design. PhD thesis,
Stanford University (1999)

Generating Realistic Terrains with Higher-Order
Delaunay Triangulations

Thierry de Kok, Marc van Kreveld, and Maarten Löffler

Institute of Information and Computing Sciences,
Utrecht University, The Netherlands
{takok, marc, mloffler}@cs.uu.nl

Abstract. For hydrologic applications, terrain models should have few
local minima, and drainage lines should coincide with edges. We show
that triangulating a set of points with elevations such that the num-
ber of local minima of the resulting terrain is minimized is NP-hard for
degenerate point sets. The same result applies when there are no de-
generacies for higher-order Delaunay triangulations. Two heuristics are
presented to reduce the number of local minima for higher-order Delau-
nay triangulations, which start out with the Delaunay triangulation. We
give efficient algorithms for their implementation, and test on real-world
data how well they perform. We also study another desirable drainage
characteristic, namely few valley components.

1 Introduction

A fundamental geometric structure in computational geometry is the triangu-
lation. It is a partitioning of a point set or region of the plane into triangles.
A triangulation of a point set P partitions the convex hull of P into triangles
whose vertices are exactly the points of P . The most common triangulation of
a set of points is the Delaunay triangulation. It has the property that for every
triangle, the circumcircle through its vertices does not contain any points inside.
It maximizes the smallest angle over all possible triangulations of the point set.

If the points all have an associated attribute value like elevation, then a
triangulation defines a piecewise linear interpolant. Due to the angle property,
triangles in a Delaunay triangulation are generally well-shaped and are suit-
able for spatial interpolation. When using triangulations for terrain modeling,
however, one should realize that terrains are formed by natural processes. This
implies that there are linear depressions (valleys) formed by water flow, and very
few local minima occur [15,17]. Local minima can be caused by erroneous trian-
gulation: an edge may stretch from one side of a valley to the opposite side. Such
an edge is an artificial dam, and upstream from the dam in the valley, a local
minimum appears. See Figure 1 (left). It is often an artifact of the triangulation.
Therefore, minimizing local minima is an optimization criterion for terrain mod-
eling. In extension, the contiguity of valley lines is also a natural phenomenon.
Valleys do not start and stop halfway a mountain slope, but the Delaunay tri-
angulation may contain such artifacts. Hence, a second optimization criterion is
minimizing the number of valley line components.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 343–354, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

344 T. de Kok, M. van Kreveld, and M. Löffler

Terrain modeling in GIS is used for morphological processes like drainage
and erosion, or for hazard analysis like avalanches and landslides. Local minima
and undesirable valley lines can influence the computation of these processes,
leading to unreliable outcomes. This motivates our study for the construction of
realistic terrains by avoiding local minima and artifact valleys.

An alternative to deal with local minima is flooding. Here a local minimum
and its surroundings are elevated until a height at which a local minimum does
not appear anymore (pit filling) [9–11]. Such methods help to create terrains
with better drainage characteristics, or to define a drainage basin hierarchy, but
it is clear that other artifacts are introduced at the same time. Furthermore, this
approach does not respect the given input elevations.

Returning to planar triangulations, there are many different ways in which
one can define the quality of a triangulation of a set of points. A criterion that is
always important for triangulations is the nice shape of the triangles. This can
be formalized in several ways [2,3]. In this paper, nice shape is formalized by
higher-order Delaunay triangulations [7]. They provide a class of triangulations
that are all reasonably well-shaped, depending on a parameter k.

Definition 1. A triangle in a point set P is order-k if its circumcircle contains
at most k points of P . A triangulation of a set P of points is an order-k Delau-
nay triangulation if every triangle of the triangulation is order-k (see Figure 1
(middle)).

So a Delaunay triangulation is an order-0 Delaunay triangulation. For any
positive integer k, there can be many different order-k Delaunay triangulations.
The higher k, the more freedom to eliminate artifacts like local minima, but the
worse the shape of the triangles can become.

This paper discusses triangulations of a point set P of which elevations are
given for terrain modeling. In Section 2 we concentrate on minimizing local min-
ima. We show that over all possible triangulations, minimizing local minima is

CC ′

u

v

Fig. 1. Left, an artificial dam and local minimum in a terrain. Middle, an order-2
Delaunay triangulation, with two triangles and their circumcircles, showing the order.
Right, the useful order of the edge uv is 3, the maximum of the number of points inside
C or C′.

Generating Realistic Terrains with Higher-Order Delaunay Triangulations 345

NP-hard. This result relies heavily on degenerate point sets. For order-k De-
launay triangulations, NP-hardness can also be shown for non-degenerate point
sets, for k = Ω(nε) and k ≤ c · n, for some 0 < ε < 1 and some 0 < c < 1.
(For k = 1, an O(n log n) time algorithm that minimizes local minima was given
in [7].) Then we discuss two heuristics for reducing local minima in order-k De-
launay triangulations, the flip and hull heuristics, and their efficiency. The latter
was introduced before in [7]; here we give a more efficient algorithm. Then we
compare the two heuristics experimentally on various terrains. We only examine
orders 0 up to 8; higher orders are less interesting in practice since the interpo-
lation quality may be less good, and artifacts may appear in visualization.

In Section 3 we extend our study to deal with valley line components as
well. It appears that the removal of local minima actually can create artifact
valley lines, especially for the flip heuristic. Two solutions are presented for this
problem. We give a method to remove isolated valley edges, and to extend valley
line components so that they join with other valley line components. In short,
we try to reduce the number of valley line components, leading to the valley
heuristic. We complement our methods by experiments on various terrains.

Section 4 gives the conclusions and lists several directions for further research.

2 Minimizing the Number of Local Minima

The next subsection shows NP-hardness of minimizing local minima in two set-
tings. Subsections 2.2 and 2.3 present the flip and hull heuristics and contain a
running time analysis. Both heuristics can be implemented in O(nk2 +nk logn)
time, where n is the number of points and k is the order of the higher-order
Delaunay triangulation. For the hull heuristic this is an improvement over the
O(nk3 + nk logn) time bound of Gudmundsson et al. [7].

We define the useful order of an edge as the lowest order of a triangulation
that includes this edge. In [7] it was shown that the useful order is actually
defined by the number of points in one of two circles, see Figure 1 (right). Let
uv be the edge whose useful order we wish to determine, and assume without
loss of generality that uv is vertical. Let C (and C′) be the circle that passes
through u and v, with leftmost (resp. rightmost) center, and which does not
contain in its interior any point left (resp. right) of the line through u and v. If k
is the maximum of the number of points inside C and C′, then the useful order
of edge uv is k.

2.1 NP-Hardness of Minimizing Local Minima

For a set P of n points in the plane, it is easy to compute a triangulation that
minimizes the number of local minima if there are no degeneracies (no three
points on a line). Assume p is the lowest point. Connect every q ∈ P\{p} with
p to create a star network with p as the center. Complete this set of edges to a
triangulation in any way. Since every point but p has a lower neighbor, no point
but p can be a local minimum. Hence, this triangulation is one that minimizes
the number of local minima. When degeneracies are present, minimizing the
number of local minima is NP-hard.

346 T. de Kok, M. van Kreveld, and M. Löffler

Theorem 1. Let P be a set of n points in the plane, and assume that the points
have elevations. It is NP-hard to triangulate P with the objective to minimize
the number of local minima of the polyhedral terrain.

Proof. (Sketch; full proof in full paper [5]) By reduction from maximum size
non-intersecting subset in a set of line segments [1]. Let S be any set of n line
segments in the plane, and assume all 2n endpoints are disjoint (this can easily
be enforced by extending segments slightly). We place extra points (shields) in
between two endpoints of different line segments. For each segment of S, assign
one endpoint elevation 1 and the other 2. Assign elevation 3 to shields. Now
minimizing local minima is the same as maximum non-intersecting subset in
S. ��

Based on the construction in the proof above, we can show NP-hardness of
minimizing the number of local minima for higher-order Delaunay triangulations
even when no degeneracies exist.

Corollary 1. Let P be a set of n points in the plane such that no three points of
P lie on a line, and assume that the points have elevations. For any 0 < ε < 1 and
some 0 < c < 1, it is NP-hard to compute an order-k Delaunay triangulation that
minimizes the number of local minima of the polyhedral terrain for nε ≤ k ≤ c·n.

Proof. (Sketch; full proof in full paper [5]) Start out with the proof of the theorem
above, but move each shield s slightly to break collinearity. The move should be
so small that the circle through the two endpoints of different line segments for
which s was is shield, and through s itself, is huge. Then place many extra points
to make sure that these huge circles contain many points, effectively causing that
the useful order of the edge between two endpoints that may not be connected
is larger than allowed. ��

2.2 The Flip Heuristic

Given a value of k, the flip heuristic repeatedly tests whether the diagonal of a
convex quadrilateral in the triangulation can be flipped. It will be flipped if two
conditions hold simultaneously: (i) The two new triangles are order-k Delaunay
triangles. (ii) The new edge connects the lowest point of the four to the opposite
point. A flip does not necessarily remove a local minimum, but cannot create
one, and it can make possible that a later flip removes a local minimum.

Our algorithm to perform the flips starts with the Delaunay triangulation and
k′ = 1, then does all flips possible to obtain an order-k′ Delaunay triangulation,
then increments k′ and repeats. This continues until k′ = k.

We first analyze the maximum number of flips possible, and then we discuss
the efficiency of the heuristic.

Lemma 1. If an edge ab is in the triangulation, then the flip heuristic will never
have an edge cd later with min(c, d) ≥ min(a, b) that intersects ab.

An immediate consequence of the lemma above is that an edge that is flipped
out of the triangulation cannot reappear. There are at most O(nk) pairs of points
in a point set of n points that give order-k Delaunay edges [7].

Generating Realistic Terrains with Higher-Order Delaunay Triangulations 347

Lemma 2. The flip heuristic to reduce the number of local minima performs at
most O(nk) flips.

To implement the flip heuristic efficiently, we maintain the set of all convex
quadrilaterals in the current triangulation, with the order of the two triangles
that would be created if the diagonal were flipped. The order of a triangle is the
number of points in the circumcircle of the vertices of the triangle. Whenever a
flip is done, we update the set of convex quadrilaterals. At most four are deleted
and at most four new ones are created by the flip. We can find the order of the
incident triangles by circular range counting queries. Since we are only interested
in the count if the number of points in the circle is at most k, we implement
circular range counting queries by point location in the order-(k + 1) Voronoi
diagram [14], taking O(log n+k) time per query after O(nk logn) preprocessing
time. We conclude:

Theorem 2. The flip heuristic to reduce the number of local minima in order-k
Delaunay triangulations on n points takes O(nk2 + nk logn) time.

2.3 The Hull Heuristic

The second heuristic for reducing the number of local minima is the hull heuristic.
It was described by Gudmundsson et al. [7], and has an approximation factor
of Θ(k2) of the optimum. The hull heuristic adds a useful order-k Delaunay
edge e if it reduces the number of local minima. This edge may intersect several
Delaunay edges, which are removed; the two holes in the triangulation that
appear are retriangulated with the constrained Delaunay triangulation [4] in
O(k log k) time. These two polygonal holes are called the hull of this higher-
order Delaunay edge e. The boundary of the hull consists of Delaunay edges
only. No other higher-order Delaunay edges will be used that intersects this hull.
This is needed to guarantee that the final triangulation is order-k. It is known
that two useful order-k Delaunay edges used together can give an order-(2k− 2)
Delaunay triangulation [8], which is higher than allowed. Here we give a slightly
different implementation than in [7]. It is more efficient for larger values of k.

Assume that a point set P and an order value k are given. We first compute
the Delaunay triangulation T of P , and then compute the set E of all useful
order-k Delaunay edges, as in [7], in O(nk logn + nk2) time. There are O(nk)
edges in E, and for each we have the lowest order k′ ≤ k for which it is a useful
order-k′ Delaunay edge.

Next we determine the subset P ′ ⊆ P of points that are a local minimum in
the Delaunay triangulation. Then we determine the subset E′ ⊆ E of edges that
connect a point of P ′ to a lower point. These steps trivially take O(nk) time.

Sort the edges of E′ by non-decreasing order. For every edge e ∈ E′, traverse
T to determine the edges of T that intersect e. If any one of them is not a
Delaunay edge or is a marked Delaunay edge, then we stop and continue with
the next edge of E′. Otherwise, we remove all intersected Delaunay edges and
mark all Delaunay edges of the polygonal hole that appears. Then we insert e
and retriangulate the hull, the two polygons to the two sides of e, using the

348 T. de Kok, M. van Kreveld, and M. Löffler

Table 1. Results of the flip/hull heuristic for orders 0–8

0 1 2 3 4 5 6 7 8
Calif. Hot Springs 47/47 43/43 33/31 29/26 25/20 24/19 23/18 21/18 18/16
Wren Peak 45/45 37/37 31/31 27/27 24/22 23/21 21/20 19/20 19/20
Quinn Peak 53/53 44/44 36/36 31/29 26/25 24/23 23/21 21/20 20/19
Sphinx Lakes 33/33 27/27 22/22 20/19 19/18 17/16 15/12 12/9 11/9

Delaunay triangulation constrained to the polygons. We also mark these edges.
Finally, we remove edges from E′: If the inserted edge e made that a point p ∈ P
is no longer a local minimum, then we remove all other edges from E′ where p
is the highest endpoint.

Due to the marking of edges, no edge e ∈ E′ will be inserted if it intersects
the hull of a previously inserted edge of E′. Every edge of E′ that is not used in
the final triangulation is treated in O(log n+ k) time, and every edge of E′ that
is used in the final triangulation is treated in O(log n + k log k) time.

Theorem 3. The hull heuristic to reduce the number of local minima in order-k
Delaunay triangulations on n points takes O(nk2 + nk logn) time.

The full paper [5] shows examples where the flip and hull heuristics may not
give the minimum number of local minima, even for order 2.

2.4 Experiments

Table 1 shows the number of local minima obtained after applying the flip and
hull heuristics to four different terrains. The terrains roughly have 1800 vertices.
The vertices were chosen by random sampling 1% of the points from elevation
grids. Adjacent vertices with the same elevation required special attention.

The values in the table show that higher-order Delaunay triangulations in-
deed can give significantly fewer local minima than the standard Delaunay tri-
angulation (order-0). This effect is already clear at low orders, indicating that
many local minima of Delaunay triangulations may be caused by having chosen
the wrong edges for the terrain (interpolation).

The difference in local minima between the flip and hull heuristics shows that
the hull heuristic usually is better, but there are some exceptions.

To test how good the results are, we also tested how many local minima
of each terrain cannot be removed simply because there is no useful order-k
Delaunay edge to a lower point. It turned out that the hull heuristic found
an optimal order-k Delaunay triangulation in all cases except for five, where
one local minimum too many remained. In four of these cases the flip heuristic
heuristic found an optimal order-k Delaunay triangulation. In one case (Wren,
order-6) it is not clear; a triangulation with 19 local minima may exist.

3 Minimizing the Number of Valley Edge Components

In a triangulation representing a terrain, there are three types of edges: ridge or
difluent edges, normal or transfluent edges, and valley or cofluent edges [6,12,18].

Generating Realistic Terrains with Higher-Order Delaunay Triangulations 349

These edges are used to delineate drainage basins and other hydrological charac-
teristics of terrains. Flow on terrains is usually assumed to take the direction of
steepest descent. This is a common assumption used in drainage network mod-
eling [16,18]. Assuming no degeneracies (including horizontal triangles), every
point on the terrain has a unique direction of steepest descent, except local min-
ima. Hence, a flow path downward in the terrain can be defined for any point.
The direction of steepest descent at a vertex can be over an edge or over the
interior of a triangle. Flow on a triangle is always normal to the contour lines
on that triangle.

Ridge edges are edges that do not receive flow from any point on the terrain.
The incident triangles drain in a direction away from this edge. Valley edges
are edges that receive flow from (part of) both incident triangles; they would
be ridge edges if the terrain were upside down. Normal edges receive flow from
(part of) one incident triangle and drain to the other. Valley edges can be used
to define the drainage network, and ridge edges can be used for the drainage
basins, also called catchment areas [12]. Many more results on drainage in GIS
exist; it is beyond the scope of this paper to review it further.

Just like local minima in a triangulation for a terrain are often artifacts,
so are isolated valley edges, and sequences of valley edges that do not end in
a local minimum. In the latter case, flow would continue over the middle of a
triangle, which usually does not correspond to the situation in real terrains. If
channeled water carves a valley-like shape in a terrain, then the valley does not
suddenly stop, because the water will stay channeled. This is true unless the
surface material changes, or the terrain becomes nearly flat [13]. Besides being
unrealistic, isolated valley edges may influence the shape of drainage basins [12].

We define a valley (edge) component to be a maximal set of valley edges such
that flow from all of these valley edges reaches the lowest vertex incident to these
valley edges. A valley component necessarily is a rooted tree with a single target
that may be a local minimum. Figure 2 shows an example of a terrain with three
valley components; the valley edges are shown by the direction of flow, numbers
indicate the identity of each component, and squares show local minima. In this
example, the direction of steepest descent from the vertex where components 1
and 2 touch is over the edge labeled 1 to the boundary. Component 3 ends in a
vertex that is not a local minimum; flow proceeds over a triangle.

By the discussion above, the drainage quality of a terrain is determined by
the number of local minima, and the number of valley edge components that

1

1

2 2
2

2

3

3

Fig. 2. Example of a terrain with three valley edge components

350 T. de Kok, M. van Kreveld, and M. Löffler

Table 2. Statistics for four terrains. For each terrain, counts for the Delaunay triangu-
lation are given, and for the outcome of the flip and hull heuristics for order 8. The last
row gives the number of valley edge components that do not end in a local minimum.
Numbers between brackets are the additional numbers for the terrain boundary.

Quinn flip-8 hull-8 Wren Peak flip-8 hull-8
Edges 5210 5210 5210 5185 5185 5185
Valley edges 753 862 684 799 860 761
Local minima 53 (12) 20 (9) 19 (6) 45 (17) 19 (12) 19 (17)
Valley components 240 289 224 259 270 247
Not min. ending 173 (8) 246 (15) 191 (8) 185 (18) 218 (23) 199 (18)

Sphinx flip-8 hull-8 Hot Springs flip-8 hull-8
Edges 5179 5179 5179 5234 5234 5234
Valley edges 675 830 627 853 964 807
Local minima 33 (16) 11 (11) 9 (16) 47 (20) 18 (16) 16 (20)
Valley components 261 313 244 249 256 231
Not min. ending 213 (5) 285 (9) 218 (7) 179 (11) 210 (17) 190 (13)

do not end in a local minimum. The sum of these two numbers immediately
gives the total number of valley edge components. We will attempt to reduce
this number with a new heuristic called the valley heuristic. But first we analyze
how many valley edges and valley components appear in the results of the flip
and hull heuristics.

3.1 Consequences of the Flip and Hull Heuristics on the Valleys

The flip and hull heuristics can remove local minima of triangulations, and there-
fore they seem more realistic as terrains. However, the heuristics may create
valley edges, including isolated ones. This is especially true for the flip heuristic.
We examined the triangulations obtained from the experiments of Subsection 2.4
and analyzed the number of valley edges and valley components.

Table 2 shows statistics on four terrains. Local minima on the boundary are
not counted, but their number is shown separately in brackets. The same is
true for valley components that end on the boundary of the terrain, but not in
a local minimum. Note that local minima on the boundary may not have any
valley component ending in it. We can see that the flip heuristic has increased
the number of valley edges considerably, whereas the hull heuristic decreased
this number. The same is true for the number of valley components. Another
observation from the table is that there are many valley edge components. The
average size is in all cases between 2 and 4 edges. This shows the need for further
processing of the triangulation, or for a different heuristic.

3.2 The Valley Heuristic

We apply two methods to improve the drainage quality of the terrain. Firstly,
isolated valley edges can sometimes be removed by a single flip or useful order-k
edge insertion, reducing the number of valley components. Secondly, if a valley

Generating Realistic Terrains with Higher-Order Delaunay Triangulations 351

edge has a lower endpoint whose direction of steepest descent goes over a triangle,
then the valley component can sometimes be extended downhill and possibly be
connected to another valley component, which reduces the number of valley
components. We observe:

Observation 1. (i) For a convex quadrilateral in a terrain, at most one diago-
nal is a valley edge. (ii) If in a triangle in a terrain, two edges are valley edges,
then their common vertex is not the highest vertex of that triangle. (iii) A flip
in a convex quadrilateral affects at most five edges (for being valley or not).

To remove an isolated valley edge, five candidate flips can take care of this: the
valley edge itself, and the four other edges incident to the two triangles incident
to the valley edge. A flip can potentially remove one isolated valley edge but
create another one at the same time; such a flip is not useful and termination
of the heuristic would not be guaranteed. Any flip changes the flow situation at
four vertices. There are many choices possible when to allow the flip and when
not. We choose to flip only if the flow situation of the four vertices of the convex
quadrilateral does not change, except for the removal of the isolated valley edge,
and the two new triangles are order-k Delaunay. In particular, a flip may not
create new valley edges. It is undesirable to change any valley component in an
unintended way. Algorithmically, identifying isolated valley edges and flipping
them, if possible, can be done in O(nk logn) time.

To extend a valley component downward, we take its lowest endpoint v and
change the triangulation locally to create the situation that v has a direction of
steepest descent over a valley edge to a lower vertex. We do this regardless of
the situation that v is a local minimum, or v has its direction of steepest descent
over the interior of some triangle. We only do this with flips. For every triangle
incident to v, we test if it is part of a convex quadrilateral vpwq, and if so, we
test if the flip of pq to vw yields two order-k Delaunay triangles, vw is a valley
edge, w is lowest of vpwq, the steepest descent from v is to w, and no valley
components are interrupted at p or q.

Throughout the algorithm, any vertex can be lowest point of a valley com-
ponent at most twice. First as the lower endpoint of an isolated valley edge,
and once more by extending valley components. Once a vertex is in a valley
component with more than two edges, it will stay in such a component. Hence,
there will only be O(n) flips. Using point location in the order-(k + 1) Voronoi
diagram, we conclude:

Theorem 4. The valley heuristic to reduce the number of valley components in
order-k Delaunay triangulations on n points takes O(nk logn) time.

3.3 Experiments

The two ways of reducing the number of valley components were applied to the
Delaunay triangulation, and to the outcomes of the flip and hull heuristics. We
show the results in Table 3 for order 8 only. In fact, the table shows the outcome
of applying the valley heuristic (with order 8) to all outcomes of Table 2.

352 T. de Kok, M. van Kreveld, and M. Löffler

Table 3. Statistics for four terrains when applying the valley heuristic (order 8) to the
Delaunay triangulation and the order-8 outcome of the flip and hull heuristics

Quinn flip-8 +v hull-8 +v Wren Peak flip-8 +v hull-8 +v
Edges 5210 5210 5210 5185 5185 5185
Valley edges 686 762 641 743 798 712
Local minima 35 (12) 20 (10) 19 (12) 31 (16) 19 (12) 19 (16)
Valley components 147 189 144 167 208 169
Not min. ending 102 (5) 148 (13) 115 (5) 112 (16) 161 (19) 126 (16)

Sphinx flip-8 +v hull-8 +v Hot Springs flip-8 +v hull-8 +v
Edges 5179 5179 5179 5234 5234 5234
Valley edges 597 729 565 790 895 759
Local minima 20 (16) 11 (11) 9 (16) 28 (19) 18 (16) 16 (19)
Valley components 157 212 155 169 187 161
Not min. ending 125 (5) 191 (4) 133 (6) 118 (13) 148 (11) 123 (12)

Fig. 3. Visualization of the valley edges and local minima of the Sphinx data set. Left,
the Delaunay triangulation, and right outcome of hull-8 followed by the valley heuristic.

We observe that the valley heuristic succeeds in reducing the number of val-
ley components considerably in all cases. The reduction is between 20% and 40%
for all triangulations. There is no significant difference in reduction between the
three types of triangulations. The valley heuristic by itself also reduces the num-
ber of local minima, as can be expected. The number of valley components is
lowest when applying the valley heuristic to the outcome of the hull heuristic,
and sometimes when applying the valley heuristic directly to the Delaunay trian-
gulation. Further examination of the outcome shows that the largest reduction
in the number of valley components comes from the removal of isolated valley
edges. This accounts for roughly 60% to 80% of the reduction.

One terrain (Delaunay triangulation) and the outcome after the valley heuris-
tic applied to the outcome of hull-8 is shown in Figure 3 for the Sphinx data set.
Images of the outcomes of the other heuristics and for other data sets are given
in the full paper [5].

Generating Realistic Terrains with Higher-Order Delaunay Triangulations 353

4 Conclusions and Further Research

We examined the computation of triangulations for realistic terrains using
higher-order Delaunay triangulations. The realistic aspect is motivated by hy-
drologic and other flow applications, perhaps the most important reason for
terrain modelling. Realistic terrains have few local minima and few valley edge
components.

Theoretically, we showed that triangulating with the minimum number of
local minima is NP-hard due to alignment of points. For order-k Delaunay tri-
angulations we obtain the same result in non-degenerate cases for k = Ω(nε)
and k ≤ c · n. The case of constant orders but at least 2 remains open.

We presented two heuristics (one new, one old) to remove local minima, an-
alyzed their efficiency, and implemented them. It turns out that higher-order
Delaunay triangulations exist with considerably fewer local minima for low or-
ders already, and the hull heuristic is better at computing them. We tested orders
0 up to 8. Often we obtain an optimal order-k Delaunay triangulation. The hull
heuristic creates fewer valley edges and valley edge components than the flip
heuristic. We also presented the valley heuristic to reduce the number of valley
edge components. The experiments and images suggest that the valley heuristic
applied to the outcome of the hull heuristic gives the best results.

It is possible to devise a valley heuristic that inserts useful order-k edges,
similar to the hull heuristic, but now to reduce the number of valley components.
Furthermore, it is possible to integrate minimizing local minima and reducing
valley components in one heuristic. We leave this for future work.

It would also be interesting to extend the research to computing high quality
drainage basins, or a good basin hierarchy. However, it is not clear how this
quality should be defined, nor how it should be combined with local minima and
valley components used in this paper. Finally, other criteria than higher-order
Delaunay triangulations can be used to guarantee a good shape of the triangles.
Again we leave this for future research.

References

1. P.K. Agarwal and N.H. Mustafa. Independent set of intersection graphs of convex
objects in 2D. In Proc. SWAT 2004, number 3111 in LNCS, pages 127–137, Berlin,
2004. Springer.

2. M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, and T. S. Tan. Edge insertion
for optimal triangulations. Discrete Comput. Geom., 10(1):47–65, 1993.

3. M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In D.-Z. Du
and F. K. Hwang, editors, Computing in Euclidean Geometry, volume 4 of Lecture
Notes Series on Computing, pages 47–123. World Scientific, Singapore, 2nd edition,
1995.

4. L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97–108, 1989.
5. T. de Kok, M. van Kreveld, and M. Löffler. Generating realistic terrains with

higher-order Delaunay triangulations. Technical Report CS-UU-2005-020, Institute
of Information and Computing Sciences, 2005.

354 T. de Kok, M. van Kreveld, and M. Löffler

6. A.U. Frank, B. Palmer, and V.B. Robinson. Formal methods for the accurate
definition of some fundamental terms in physical geography. In Proc. 2nd Int.
Symp. on Spatial Data Handling, pages 583–599, 1986.

7. J. Gudmundsson, M. Hammar, and M. van Kreveld. Higher order Delaunay trian-
gulations. Comput. Geom. Theory Appl., 23:85–98, 2002.

8. J. Gudmundsson, H. Haverkort, and M. van Kreveld. Constrained higher order
Delaunay triangulations. Comput. Geom. Theory Appl., 30:271–277, 2005.

9. M.F. Hutchinson. Calculation of hydrologically sound digital elevation models. In
Proc. 3th Int. Symp. on Spatial Data Handling, pages 117–133, 1988.

10. S.K. Jenson and C.M. Trautwein. Methods and applications in surface depression
analysis. In Proc. Auto-Carto 8, pages 137–144, 1987.

11. Y. Liu and J. Snoeyink. Flooding triangulated terrain. In P.F. Fisher, editor,
Developments in Spatial Data Handling, proc. 11th Int. Sympos., pages 137–148,
Berlin, 2004. Springer.

12. M. McAllister and J. Snoeyink. Extracting consistent watersheds from digital river
and elevation data. In Proc. ASPRS/ACSM Annu. Conf., 1999.

13. C. Mitchell. Terrain Evaluation. Longman, Harlow, 2nd edition, 1991.
14. E.A. Ramos. On range reporting, ray shooting and k-level construction. In Proc.

15th Annu. ACM Symp. on Computational Geometry, pages 390–399, 1999.
15. B. Schneider. Geomorphologically sound reconstruction of digital terrain surfaces

from contours. In T.K. Poiker and N. Chrisman, editors, Proc. 8th Int. Symp. on
Spatial Data Handling, pages 657–667, 1998.

16. D.M. Theobald and M.F. Goodchild. Artifacts of TIN-based surface flow modelling.
In Proc. GIS/LIS, pages 955–964, 1990.

17. G.E. Tucker, S.T. Lancaster, N.M. Gasparini, R.L. Bras, and S.M. Rybarczyk.
An object-oriented framework for distributed hydrologic and geomorphic modeling
using triangulated irregular networks. Computers and Geosciences, 27:959–973,
2001.

18. S. Yu, M. van Kreveld, and J. Snoeyink. Drainage queries in TINs: from local to
global and back again. In M.J. Kraak and M. Molenaar, editors, Advances in GIS
research II: Proc. of the 7th Int. Symp. on Spatial Data Handling, pages 829–842,
1997.

I/O-Efficient Construction of Constrained
Delaunay Triangulations

Pankaj K. Agarwal1,�, Lars Arge1,2,��, and Ke Yi1,� � �

1 Department of Computer Science, Duke University, Durham, NC 27708, USA
{pankaj, large, yike}@cs.duke.edu

2 Department of Computer Science, University of Aarhus, Aarhus, Denmark
large@daimi.au.dk

Abstract. In this paper, we designed and implemented an I/O-efficient
algorithm for constructing constrained Delaunay triangulations. If the
number of constraining segments is smaller than the memory size, our
algorithm runs in expected O(N

B
logM/B

N
B

) I/Os for triangulating N
points in the plane, where M is the memory size and B is the disk block
size. If there are more constraining segments, the theoretical bound does
not hold, but in practice the performance of our algorithm degrades
gracefully. Through an extensive set of experiments with both synthetic
and real data, we show that our algorithm is significantly faster than
existing implementations.

1 Introduction

With the emergence of new terrain mapping technologies such as Laser altime-
try (LIDAR), one can acquire millions of georeferenced points within minutes
to hours. Converting this data into a digital elevation model (DEM) of the un-
derlying terrain in an efficient manner is a challenging important problem. The
so-called triangulated irregular network (TIN) is a widely used DEM, in which a
terrain is represented as a triangulated xy-monotone surface. One of the popular
methods to generate a TIN from elevation data—a cloud of points in R3—is to
project the points onto the xy-plane, compute the Delaunay triangulation of the
projected points, and then lift the Delaunay triangulation back to R3. However,
in addition to the elevation data one often also has data representing various
linear features on the terrain, such as river and road networks, in which case
one would like to construct a TIN that is consistent with this data, that is,

� Supported in part by NSF under grants CCR-00-86013, EIA-01-31905, CCR-02-
04118, and DEB-04-25465, by ARO grants W911NF-04-1-0278 and DAAD19-03-
1-0352, and by a grant from the U.S.–Israel Binational Science Foundation.

�� Supported in part by the US NSF under grants CCR–9984099, EIA–0112849, and
INT–0129182, by ARO grant W911NF-04-1-0278, and by an Ole Rømer Scholar-
ship from the Danish National Science Research Council.

� � � Supported by NSF under grants CCR-02-04118, CCR–9984099, EIA–0112849, and
by ARO grant W911NF-04-1-0278.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 355–366, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

356 P.K. Agarwal, L. Arge, and K. Yi

where the linear features appear along the edges of the TIN. In such cases it is
desirable to compute the so-called constrained Delaunay Triangulation (CDT)
of the projected point set with respect to the projection of the linear features.
Roughly speaking, the constrained Delaunay triangulation of a point set P and
a segment set S is the triangulation that is as close to the Delaunay triangu-
lation of P under the constraint that all segments of S appear as edges of the
triangulation.

The datasets being generated by new mapping technologies are too large
to fit in internal memory and are stored in secondary memory such as disks.
Traditional algorithms, which optimize the CPU efficiency under the RAM model
of computation, do not scale well with such large amounts of data. This has led
to growing interest in designing I/O-efficient algorithms that optimize the data
transfer between disk and internal memory. In this paper we study I/O-efficient
algorithms for planar constrained Delaunay triangulations.

Problem Statement. Let P be a set of N points in R2, and let S be a set of
K line segments with pairwise-disjoint interiors whose endpoints are points in
P . The points p, q ∈ R2 are visible if the interior of the segment pq does not
intersect any segment of S. The constrained Delaunay triangulation CDT(P, S)
is the triangulation of S that consists of all segments of S, as well as all edges
connecting pairs of points p, q ∈ P that are visible and that lie on the boundary
of an open disk containing only points of P that are not visible from both p and
q. CDT(P, ∅) is the Delaunay triangulation of the point set P . Refer to Figure 1.
For clarity, we use segments to refer to the “obstacles” in S, and reserve the
term “edges” for the other edges in the triangulation CDT(P, S).

We work in the standard external memory model [2]. In this model, the
main memory holds M elements and each disk access (or I/O) transmits a block
of B elements between main memory and continuous locations on disk. The
complexity of an algorithm is measured in the total number of I/Os performed,
while the internal computation cost is ignored.

Related Results. Delaunay triangulation is one of the most widely studied prob-
lems in computational geometry; see [5] for a comprehensive survey. Several
worst-case efficient O(N logN) algorithms are known in the RAM model, which

s

(a)

s

(b)

s

(c)

Fig. 1. (a) The point set P of 7 points and segment set S of 1 segment s. (b) DT(P) =
CDT(P, ∅). (c) CDT(P, S).

I/O-Efficient Construction of Constrained Delaunay Triangulations 357

are based on different standard paradigms, such as divide-and-conquer and
sweep-line. A randomized incremental algorithm with O(N logN) expected run-
ning time was proposed in [12]. By now efficient implementations of many of the
developed algorithms are also available. For example, the widely used software
package triangle, developed by Shewchuk [16], has implementations of all three
algorithms mentioned above. Both CGAL [7] and LEDA [14] software libraries
also offer Delaunay triangulation implementations.

By modifying some of the algorithms for Delaunay triangulation, O(N logN)
time RAM-model algorithms have been developed for constrained Delaunay tri-
angulations [8,15]. However, these algorithms are rather complicated and do
not perform well in practice. A common practical approach for computing
CDT(P, S), e.g. used by triangle [16], is to first compute DT(P) and then
add the segments of S one by one and update the triangulation.

Although I/O-efficient algorithms have been designed for Delaunay triangu-
lations [10,11,13], no I/O-efficient algorithm is known for the constrained case.

Our Results. By modifying the algorithm of Crauser et al. [10] we develop
the first I/O-efficient constrained Delaunay triangulation algorithm. It uses
O(N

B logM/B
N
B) I/Os expected, provided that |S| ≤ c0M , where c0 is a constant.

Although our algorithm falls short of the desired goal of having an algorithm
that performs O(N

B logM/B
N
B) I/Os irrespective of the size of S, it is useful for

many practical situations. We demonstrate the efficiency and scalability of our
algorithm through an extensive experimental study with both synthetic and real-
life data. Compared with existing constrained Delaunay triangulation packages,
our algorithm is significantly faster on large datasets. For example it can process
10GB of real-life LIDAR data using only 128MB of main memory in roughly
7.5 hours! As far as we know, this is the first implementation of constrained
Delaunay triangulation algorithm that is able to process such a large dataset.
Moreover, even when S is larger than the size of main memory, our algorithm
does not fail, but its performance degrades quite gracefully.

2 I/O-Efficient Algorithm

Let P be a set of N points in R2, and let S be a set of K segments with pairwise-
disjoint interiors whose endpoints lie in P . Let E be the set of endpoints of
segments in S. We assume that points of P are in general position. For simplicity
of presentation, we include a point p∞ at infinity in P . We also add p∞ to
E. Below we describe an algorithm for constructing CDT(P, S) that follows
the framework of Crauser et al. [10] for constructing Delaunay triangulations.
However, we first introduce the notion of extended Voronoi diagrams, originally
proposed by Seidel [15], and define conflict lists and kernels.

Extended Voronoi Diagrams. We extend the plane to a more complicated surface
as described by Seidel [15]. Imagine the plane as a sheet of paper Σ with the
points of P and the segments of S drawn on it. Along each segment s ∈ S we
“glue” an additional sheet of paper Σs, which is also a two-dimensional plane,

358 P.K. Agarwal, L. Arge, and K. Yi

onto Σ; the sheets are glued only at s. These K + 1 sheets together form a
surface ΣS . We call Σ the primary sheet, and the other sheets secondary sheets.
P “lives” only on the primary sheet Σ, and a segment s ∈ S “lives” in the
primary sheet Σ and the secondary sheet Σs. For a secondary sheet Σs, we
define its outer region to be the set of points that do not lie in the strip bounded
by the two lines normal to s and passing through the endpoints of s.

Assume the following connectivity on ΣS : When “traveling” in ΣS , whenever
we cross a segment s ∈ S we must switch sheet, i.e., when traveling in a secondary
sheet Σs and reaching the segment s we must switch to the primary sheet Σ, and
vice versa. We can define a visibility relation using this switching rule. Roughly
speaking, two points x, y ∈ ΣS are visible if we can draw a line segment from x to
y on ΣS following the above switching rule. More precisely, x and y are visible if:
x, y ∈ Σ and the segment xy does not intersect any segment of S; x, y ∈ Σs and
the segment xy does not intersect s; x ∈ Σ, y ∈ Σs and the segment xy crosses
s but no other segment; or x ∈ Σs, y ∈ Σt, and the segment xy crosses s and t
but no other segment. For x, y ∈ ΣS , we define the distance d(x, y) between x
and y to be the length of the segment connecting them if they are visible, and
d(x, y) =∞ otherwise.

For p, q, r ∈ ΣS , if there is a point y ∈ ΣS so that d(p, y) = d(q, y) = d(r, y),
then we define the circumcircle C(p, q, r;S) = {x ∈ ΣS | d(x, y) = d(p, y)}.
Otherwise C(p, q, r;S) is undefined. Note that portions of C(p, q, r;S) may lie
on different sheets of ΣS . We define D(p, q, r;S) to be the open disk bounded
by C(p, q, r;S), i.e., D(p, q, r, ; s) = {x ∈ ΣS | d(x, y) < d(p, y)}. Refer to Fig-
ure 2(a). Using the circumcircle definition, the constrained Delaunay triangula-
tion can be defined in the same way as standard Delaunay triangulations, i.e.,
CDT(P, S) consists of all triangles uvw, u, v, w ∈ P , whose circumcircles do
not enclose any point of P . We define the extended Voronoi region of a point
p ∈ P as EV(p, S) = {x ∈ ΣS | d(x, p) ≤ d(x, q), ∀q ∈ P}, and the extended
Voronoi diagram of P (with respect to S) as EVD(P, S) = {EV(p, S) | p ∈ P}.
Seidel [15] showed that CDT(P, S) is the dual of EVD(P, S), in the sense that
an edge pq appears in CDT(P, S) if and only if EV(p, S) and EV(q, S) share

c

e

d

a

b

g

f

(a)

a
b

c

d

e

f

g

(b)

a
b

c

d

e

f

g

(c)

Fig. 2. (a) For the point set of Figure 1(a), a portion of D(a, b, d; S) lies in the pri-
mary sheet (unshaded), the other portion lies in the secondary sheet Σbe (shaded). (b)
CDT(P, S) (solid lines) and the portion of EVD(P, S) (dashed lines) that lies in the
primary sheet. (c) The portion of EVD(P, S) (dashed lines) that lies in the secondary
sheet Σbe.

I/O-Efficient Construction of Constrained Delaunay Triangulations 359

an edge. Refer to Figure 2(b) and 2(c). This duality relation will be useful in
extending the algorithm by Crauser et al. [10] to computing CDT(P, S).

Conflict Lists and Kernels. Let R ⊆ P be a subset of points such that E ⊆ R.
Let e = pq be an edge of CDT(R,S), and letpqu andpqv be the two triangles
adjacent to e. (Since p∞ ∈ R, each edge is adjacent to two triangles.) We define
the conflict list [9] of e, denoted by P|e ⊆ P , as the set of points of P that lie in
D(p, q, u;S) ∪ D(p, q, v;S). If there exists a point p′ ∈ P|e, then at least one of
pqu and pqv does not appear in CDT(R ∪ {p′}, S).

One basic step in our algorithm will be to compute a triangulation of each P|e
and then merge the results together to form CDT(P, S). Let Ie = {e} if e ∈ S,
and ∅ otherwise. Then the triangulation we will compute for P|e is CDT(P|e, Ie).
In order to identify the triangles of CDT(P|e, Ie) that appear in CDT(P, S),
we define the notion of the kernel of e, denoted by τ(e), which is contained in
EV(p, S)∪EV(q, S). A point x ∈ EV(p, S) (resp. x ∈ EV(q, S)) lies in τ(e) if the
ray −→px (resp. −→qx) intersects the common edge between EV(p, S) and EV(q, S).
Refer to Figure 3. Note that the kernel of an edge e can be determined with
knowing only e and its two adjacent triangles in CDT(R,S).

g

τ(bp∞)

f

a
b

c

d

e
τ(ad)

τ(bc)

(a)

a
b

c

d

g
e

f

(b)

Fig. 3. (a) The kernels of edges ad, bc, and bp∞. (b) The kernel of the edge be; the
darker part lies in the primary sheet, and the lighter part lies in the secondary sheet
Σbe.

The following properties of conflict lists and kernels, whose proofs are omitted
from this abstract, lead to a recursive algorithm for computing CDT(P, S).

(i) The interiors of τ(e), e ∈ CDT(R,S) are pairwise disjoint.
(ii) {τ(e) | e ∈ CDT(R,S)} covers the points of ΣS that do not lie in an outer

region.
(iii) Let E ⊆ R ⊆ P . For any edge e ∈ CDT(R,S) and for any u, v, w ∈ P|e

such that C(u, v, w;S) is defined with ξ being the center, if ξ ∈ τ(e) and
D(u, v, w; Ie) ∩ P|e = ∅, then D(u, v, w;S) ∩ P = ∅.

(iv) Let E ⊆ R ⊆ P . For any uvw ∈ CDT(P, S) with circumcenter ξ, if
e is the edge of CDT(R,S) such that ξ ∈ τ(e), then u, v, w ∈ P|e and
D(u, v, w; Ie) ∩ P|e = ∅.

360 P.K. Agarwal, L. Arge, and K. Yi

These properties imply that if we have computed CDT(R,S), we can com-
pute CDT(P, S) by repeating the following steps for each e ∈ CDT(R,S): Com-
pute CDT(P|e, Ie) and report a triangle uvw ∈ CDT(P|e, Ie) if the center of
C(u, v, w; Ie) lies inside τ(e). Below we describe how to do this efficiently.

Our Algorithm. As mentioned, the overall structure of our algorithm is the same
as that of the algorithm of Crauser et al. [10]. We call a subset R ⊆ P a p-sample
if R is obtained by choosing each point of P with probability p. We choose a
sequence of subsets of P , called a gradation:

P1 ⊆ P2 ⊆ · · · ⊆ Pl = P,

where E ⊆ P1 and Pi \E is a (B/M)-sample of Pi+1 \E. P1 is small enough so
that CDT(P1, S) can be computed in main memory.

Initially, our algorithm constructs CDT(P1, S) using an internal memory al-
gorithm. Then we scan P and for each point p ∈ P \ P1 determine the edges of
CDT(P1, S) that it is in conflict with; for each such edge e, we generate an (e, p)
pair. In the end we sort these pairs to create the conflict lists for all the edges
of CDT(P1, S).

Next, we proceed in l−1 rounds. In the i-th round, we are given CDT(Pi, S)
and the conflict lists for all the edges of CDT(Pi, S), and construct CDT(Pi+1, S)
and the conflict lists for the edges of CDT(Pi+1, S) (the conflict lists need not
be generated for the last round). This is accomplished by the following steps.

1. For each edge e of Ti = CDT(Pi, S), we scan its conflict list and determine
Pi+1|e.

2. We consider each Pi+1|e in turn:
2.1 Let te = �|Pi+1|e|/c1(M/B)�. We first take a 1/(c2te log te)-sample Ye

of Pi+1|e; we add the four vertices of the two adjacent triangles of e if
they are not chosen in the sample. Then we compute Te = CDT(Ye, Ie)
using an internal memory algorithm. Next for each edge e′ of Te we
determine (Pi+1|e)|e′ by scanning Pi+1|e on disk. If for any e we have
|(Pi+1|e)|e′ | > c1M/B, we repeat this step by taking a new sample Ye.

2.2 For each edge e′ of Te, we load (Pi+1|e)|e′ into memory and compute
Te′ = CDT((Pi+1|e)|e′ , Ie′). We report only the triangles of Te′ that have
their circumcircles centered inside τ(e)∩τ(e′). We then scan P|e to build
the conflict lists for these triangles (unless this is the last round). We do
so by allocating one main memory block for each of the O(M

B) triangles
and writing points to the relevant block as they are processed; when a
block is full it is written to disk.

3. After all edges of CDT(Pi, S) have been processed, Ti+1 = CDT(Pi+1, S)
is simply all the triangles reported in Step 3. The conflict list for an edge
of CDT(Pi+1, S) is simply the union of the conflict lists of its two adjacent
triangles.

Analysis of I/O. We wish to follow the analysis of Crauser et al. [10] that is
based on the bounds on the expected size of the conflict lists and their higher

I/O-Efficient Construction of Constrained Delaunay Triangulations 361

moments [9]. However, unlike [10], Pi is not a completely random sample of Pi+1

in our case, which makes the analysis more complicated. Nevertheless, we can
prove similar bounds on the expected size of conflict lists. The following lemma
summarizes the main technical result, whose proof is given in the full version of
the paper.

Lemma 1. Let R be a p-sample of P \ E. For any constant integer c ≥ 1,

E

⎡⎣ ∑
e∈CDT(R∪E,S)

|P|e|c
⎤⎦ = O

(
|R ∪ E|

pc

)
.

In our algorithm, Pi \ E is a pi-sample of P \ E, therefore,

E

[∑
e∈Ti

|P|e|c
]

= O

(
|E|+ |Pi \ E|

pc
i

)
= O

(
|E|
pc

i

+
|P \ E|
pc−1

i

)
, (1)

Assuming |E| ≤ c1M , we have that |E| ≤ c′1E[|Pi − E|] for all i, which means
that “on average” at least a constant fraction of the samples in Pi are random.
In this case (1) becomes O(N/pc−1

i). Setting c = 1 yields that the expected total
size of the conflict lists is linear.

Since the conflict list size is expected linear, the initialization step of our
algorithm takes expected O(N

B logM/B
N
B) I/Os. In each round, Step 1 takes

O(N
B) I/Os, and since Step 2.1 is repeated only a constant number of times with

high probability, the total cost of Step 2 is O
(∑

e∈Ti
te log te ·

|P|e|
B

)
with high

probability. Using (1) we can argue that the expected value of this expression is
O(N

B), with details left in the full version of the paper. Summing this expected
cost over all rounds of the algorithm, we obtain the following.

Theorem 1. The constrained Delaunay triangulation of a set of N points R2

and a set of segments S can be computed in O(N
B logM/B

N
B) expected I/Os,

provided that |S| ≤ c0M , where c0 is a constant.

3 Experiments

Simplified Algorithm and Implementation Details. We implemented and exper-
imented with a simplified version of the theoretical algorithm described in Sec-
tion 2. The main observation behind our simplification is that one round of the
multi-round theoretical algorithm is enough to handle most real-world datasets.
Even if we only have 128MB of main memory, which is more than the amount of
memory needed to triangulate 0.1 million points, about (105)2 = 1010 points can
be processed with just one round. This naturally leads to the following simple
and practical algorithm:

1. Compute a random sample P1 of P of size c ·max{K,
√
N} that includes all

endpoints of segments in S, where c is a constant.

362 P.K. Agarwal, L. Arge, and K. Yi

2. Construct CDT(P1, S) in memory using the triangle package.
3. For each point p ∈ P in turn we determine the edges that p is in conflict with,

generating a pair (e, p) for each such edge e ∈ CDT(P1, S). We then sort all
these pairs to construct the conflict list P|e for each edge e. If any conflict
list is larger than M , we restart the algorithm and take a new sample.

4. For each edge e ∈ CDT(P1, S) in turn we load its conflict list P|e into memory
and construct CDT(P|e, Ie) using the triangle package. Then we report all
the triangles whose circumcenters are inside τ(e).

Note that since we compute CDT(P1, S) in Step 2, we require that both K
and

√
N are smaller than the memory size.

Since Step 3 is the only nontrivial step in the algorithm, we describe it in a
little more detail. We first scan through the input points, and find conflicting
edges with CDT(P1, S) kept in internal memory. To find the edges in conflict
with a point p (internal memory) efficiently, it is sufficient to find all triangles in
conflict with p; uvw is in conflict with p if p ∈ D(u, v, w;S). Since all triangles
in conflict with p are connected, we simply first locate the triangle containing p
and then perform a BFS search to find all triangles that are in conflict with p.
Rather than using a complicated (internal memory) point location structure to
find the triangle of CDT(P1, S) containing p, we pre-sort all points according to
the Hilbert space-filling curve, which has high spatial locality, and use a simple
point-location algorithm while processing the points in Hilbert order: To locate
a point p, we start from the triangle γ where the previous point was located
and “walk towards” p by traversing all triangles intersected by the line segment
from the centroid of γ to p. Since the locations of consecutive points are likely
to be very close (due to the Hilbert ordering), we in practice perform each point
location query in constant time. At the end of Step 3 we sort the list of edge-point
pairs.

In practice, the efficiency of our simplified algorithm mainly depends on
the total size of the conflict lists. The theoretical analysis in Section 2 shows
that the expected total size is linear and in practice the constant is roughly
9. We reduce the total conflict size and thus improve the overall efficiency of
the algorithm by combining several adjacent edges into a single “edge group”,
computing the conflict list for each edge group, and solving the subproblem for
each edge group. Nevertheless, some technical subtleties need to be taken care
of when implementing this idea, which we explain in details in the full version.

Experimental Setup and Datasets. We implemented our simplified constrained
Delaunay triangulation algorithm in C++ using TPIE [4]. We used double to
store the coordinates of each point. For experimentation, we used a 2.4GHz Intel
XEON machine with hyperthreading, running Linux with kernel 2.4.5-smp, and
a local disk system consisting of four 10000RPM 72GB SCSI disks in RAID-0
configuration. The machine had 1GB main memory, but we restricted it to use
only 128MB of memory in order to obtain a large data size to memory size ratio.
All input, output and temporary files were stored on the local disk system.

We experimented with both synthetic and real-life data. For the synthetic
data, we used four different distributions that have been used to evaluate the

I/O-Efficient Construction of Constrained Delaunay Triangulations 363

Fig. 4. Sample datasets of 1000 points from uni-
form distribution with segments

Fig. 5. LIDAR data

performance of Delaunay triangulation algorithms: uniform, normal, Kuzmin,
and line singularity. See [6] for a definition of these distributions. Due to lack
of space, we only report results on the uniform distribution in this abstract.
Complete experiment results can be found in the full version of the paper.

After generating a point set P from one of the distributions, we generate
the segment set S as follows: To obtain a segment s ∈ S, we first choose one
endpoint uniformly at random from P . With some probability α we choose the
other endpoint uniformly at random from P ; with probability 1−α we choose it
uniformly at random from the endpoints of the segments already in S. We add s
to S if it does not intersect any other segment in S and the length of s is smaller
than some threshold δ. In our experiments we fixed α = 0.2. An example of the
segments generated this way are shown in Figure 4.

Our real-life datasets consist of LIDAR data for the Neuse River Basin of
North Carolina [1]. This data consist of points p = (x, y, z) in R3 and to obtain
a point set P in R2 we simply used the x and y coordinates. We broke the data
into a number of “tiles” geographically, and concatenated different subsets of the
tiles together to create 9 datasets of increasing sizes. For the segments S, we used
road data segments obtained from the TIGER/Line data [17]. The numbers of
points and segments of the datasets are listed in Table 1; the last dataset covers
the entire Neuse River Basin and has half of billion points. A portion of the
LIDAR data is shown in Figure 5.

Delaunay Triangulation Experiments. We first investigate the performance of
our algorithm when S = ∅, that is, when we are computing standard Delaunay
triangulations. We compared our external memory algorithm (EM) with the

Table 1. The number of points and segments in each dataset of the Neuse River Basin

Dataset 1 2 3 4 5 6 7 8 9
points (million) 16.8 27.7 44.5 58.5 90.8 116.2 163.1 257.1 503.7

segments (thousand) 19.5 27.8 55.7 44.9 50.5 77.3 137.3 627.1 755.0
Input file size (MB) 336 554 890 1176 1816 2324 3262 5142 10074

364 P.K. Agarwal, L. Arge, and K. Yi

(internal memory) divide-and-conquer (D&C) and incremental (INC) algorithm
as implemented in the triangle package [16]. Since it is known that pre-sorting
the points along some space-filling curve improves the performance of D&C and
especially INC greatly with modern memory hierarchies [3], we sorted the points
along the Hilbert curve in all our experiments. If the points are not sorted, D&C
starts thrashing and takes more than 10 hours to complete on a dataset of only
5 million points; INC starts thrashing on an even smaller dataset of 2 million
points. The time used to perform the Hilbert curve sort is not included in the
computation times reported below.

The experimental results of our experiments on the uniform distribution with
datasets of sizes varying from 106 to 107 are shown in Figure 6. Note that the
128MB main memory can only hold the data structure for triangulating roughly
1 million points. The results from the other distributions are similar. In all
experiments, INC performs best. Its running time is almost linear in the data size
because its data structure is visited in a highly local manner. The running time
of our EM algorithm is around 20% worse than INC because of the overhead in
the conflict lists. Although the D&C algorithm is faster than the two algorithms
as long as the dataset fits in main memory, as soon as the dataset size grows
larger, its performance quickly degenerates.

Constrained Delaunay Triangulation Experiments. Next we compared our EM
algorithm with the algorithm (INC) implemented in triangle [16], which first
constructs a Delaunay triangulation on the input points P (using the INC algo-
rithm discussed above), and then inserts all the segments in S one by one. As
before we pre-sorted the points by Hilbert values; we sorted the segments by the
Hilbert value of one of their endpoints.

The running times of our first set of experiments on the uniform distribution
are shown in Figure 7. We fixed the number of points to be 107 and generated
up to 105 segments, each of length at most δ = 0.003. The range of the number
of segments are chosen to resemble the segment-to-point ratios of the real-life
LIDAR datasets, as well as larger ratios. The experimental results show that

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

points (million)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

D&C
INC
EM

Fig. 6. Delaunay triangulation re-
sults on uniform distribution

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

segments (× 103)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

INC
EM

Fig. 7. Constrained Delaunay tri-
angulation results on uniform dis-
tribution

I/O-Efficient Construction of Constrained Delaunay Triangulations 365

our EM algorithm performs significantly better than INC. The main reason for
this is probably that while our algorithm incrementally inserts points in a small
constrained Delaunay triangulation in memory (CDT(P1, S)), the INC algorithm
incrementally inserts segments in a much larger (and larger than main memory)
constrained Delaunay triangulation containing all the points.

The performance of the EM algorithm starts to (very slowly) degenerate at
around 60,000 segments. This can be explained by the fact that the memory
usage of the algorithm almost only depends on the sample size |P1|; at K =
60, 000 the sample is about the size of the main memory (we use about 5MB per
10,000 points, and sample 3K points; the system daemons use at least 30MB).
Although in theory our algorithm only works when the sample fits in internal
memory, we see that thrashing does not happen when this assumption is violated.
Instead the performance of the algorithm degrades quite gracefully because the
algorithm has a very local memory access pattern. Note that as the number of
segments approaches N , our algorithm will degenerate into INC.

Next we investigated how the segment length affects performance. Using 107

points from the uniform distribution, we generated 10,000 segments with varying
δ from 0.001 to 0.1 using only segments of length between δ/2 and δ. The results
of the experiments with these datasets are given in Figure 8. The results show
that the running times of both algorithms are relatively unaffected by segment
length. Maybe somewhat counter-intuitively, the running time of EM decreases
as the segments get longer. This is probably because while longer segments
increase the time to triangulate the sample, they also reduce the conflict list size
somewhat.

The running times of our experiments with the LIDAR datasets are shown
in Figure 9. Note that the smallest LIDAR dataset is larger than the largest of
our synthetic dataset, thus, due to insufficient address space on a 32-bit machine
(there is a 4GB limit on the address space for each process), we were unable to
run INC except on the smallest dataset. In Figure 9 we show a breakdown of
the running time of the EM algorithm into different phases: triangulating the

1 2 4 8 10 20 40 80
0

200

400

600

800

1000

1200

1400

δ (× 10−3)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

INC
EM

Fig. 8. Constrained Delaunay trian-
gulation results with varying segment
lengths

Fig. 9. Constrained Delaunay trian-
gulation results on real datasets

366 P.K. Agarwal, L. Arge, and K. Yi

samples, generating the conflict lists, sorting the conflict lists, and building the
sub-triangulations. Except on the last two datasets, the total running time is
dominated by the last three phases, which essentially depends on the number
of points. On the last two datasets, the number of segments is much larger
than in the other datasets, and the time spent on building CDT(P1, S) starts to
be significant. However, since P1 is still much smaller than the entire dataset,
our algorithm is still much faster than building the entire constrained Delaunay
triangulation directly.

References

1. North Carolina Flood Mapping Program. http://www.ncfloodmaps.com.
2. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.
3. N. Amenta, S. Choi, and G. Rote. Incremental constructions con brio. In Proc.

19th Annu. ACM Sympos. Comput. Geom., pages 221–219, 2003.
4. L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-efficient data structures

using TPIE. In Proc. European Symposium on Algorithms, pages 88–100, 2002.
5. F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack and J. Urrutia,

editors, Handbook of Computational Geometry, pages 201–290. Elsevier Science
Publishers B.V. North-Holland, Amsterdam, 2000.

6. G. E. Blelloch, G. L. Miller, J. C. Hardwick, and D. Talmor. Design and imple-
mentation of a practical parallel Delaunay algorithm. Algorithmica, 24(3):243–269,
1999.

7. The CGAL Reference Manual, 1999. Release 2.0.
8. L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97–108, 1989.
9. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational

geometry, II. Discrete Comput. Geom., 4:387–421, 1989.
10. A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos. Randomized

external-memory algorithms for some geometric problems. International Journal
of Computational Geometry & Applications, 11(3):305–337, June 2001.

11. M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory
computational geometry. In Proc. IEEE Symposium on Foundations of Computer
Science, pages 714–723, 1993.

12. L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction
of Delaunay and Voronoi diagrams. Algorithmica, 7:381–413, 1992.

13. P. Kumar and E. A. Ramos. I/O-efficient construction of voronoi diagrams. Tech-
nical report, 2002.

14. K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, UK, 2000.

15. R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams with obsta-
cles. Computer Science Division, ??, June 1989. UC Berkeley.

16. J. R. Shewchuk. Triangle: engineering a 2d quality mesh generator and Delaunay
triangulator. In First Workshop on Applied Computational Geometry. Association
for Computing Machinery, May 1996.

17. TIGER/LineTM Files, 1997 Technical Documentation. Washington, DC, Septem-
ber 1998. http://www.census.gov/geo/tiger/TIGER97D.pdf.

Convex Hull and Voronoi Diagram of Additively
Weighted Points

Jean-Daniel Boissonnat and Christophe Delage

INRIA Sophia-Antipolis, 2004, route des lucioles,
06902 Sophia-Antipolis cedex, France

{Jean-Daniel.Boissonnat, Christophe.Delage}@sophia.inria.fr
http://www-sop.inria.fr/

Abstract. We provide a complete description of dynamic algorithms for
constructing convex hulls and Voronoi diagrams of additively weighted
points of Rd. We present simple algorithms and provide a description
of the predicates. The algorithms have been implemented in R3 and ex-
perimental results are reported. Our implementation follows the CGAL
design and, in particular, is made both robust and efficient through the
use of filtered exact arithmetic.

1 Introduction

In this paper, we provide a complete description of dynamic algorithms for con-
structing convex hulls and Voronoi diagrams of additively weighted points of
Rd. The algorithms have been implemented in R3 and experimental results are
reported.

Our motivation comes from the fact that weighted points can be considered as
hyperspheres when the weights are positive and is twofold. On one hand, spheres
are non linear objects and, besides the combinatorial and algorithmic questions,
numerical and robustness issues deserve a careful investigation, which has not
been fully done yet. On the other hand, spheres are objects of major concern in
various fields, most notably structural biology, and effective implementations of
basic geometric algorithms for spheres are needed.

We first revisit the problem of computing the convex hull of n weighted
points of Rd. This problem has already been solved optimally [1,2]. We present
a simpler fully dynamic algorithm and provide a complete description of all the
predicates for any d.

We then consider the construction of additively weighted Voronoi diagrams.
It is known that the construction of such diagrams reduces to intersecting a
power diagram in Rd+1 with half-cones [3]. We are not aware of robust imple-
mentations of this algorithm. Other algorithms have been recently designed and
implemented in the planar case [4,5]. In R3, we are only aware of two prototype
implementations, one by Will [6] for computing a single cell, and one by Kim
et al. [7] that computes the entire diagram. None of these implementations is
provably robust. Moreover, the algorithm by Kim et al. assumes that the graph
of the edges of each cell is connected, which is not true in general.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 367–378, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

368 J.-D. Boissonnat and C. Delage

We apply our result on the construction of the convex hull of additively
weighted points to the construction of a Voronoi cell in the Voronoi diagram of
n additively weighted points. The construction, which makes use of inversion, is
close to the algorithm of [2]. The main contribution of this work is to provide
a full analysis of the predicates involved, a thorough treatment of the degen-
erate cases, and a CGAL implementation. Our predicates, when specialized to
the planar case (d = 2), are simpler and of lower degree than the best predi-
cates known so far [8,9]. Our implementation follows the CGAL design and, in
particular, is made both robust and efficient through the use of filtered exact
arithmetic.

The paper is organized as follows. In section 2, we establish a new corre-
spondence between convex hulls of additively weighted points in Rd and power
diagrams of spheres of Rd, from which we deduce an algorithm to construct such
hulls. In section 3, we recall a similar correspondence for a cell in the Voronoi
diagram of additively weighted points and present an algorithm for constructing
such a cell. In section 4, we describe the predicates. In section 5, we show how
to handle the degenerate cases. In section 6, we report on experimental results.
Finally, we conclude in section 7.

In the sequel, a weighted point, or site for short, of Rd is a pair s = (p, w)
where p is a point of Rd, and w is a real number, we refer to p and w as the
center and the weight of the site, respectively. When w is positive, we also call a
weighted point a hypersphere. Given a set n hyperspheres Σ = {σ1, . . . , σn} of
Rd, σi = (ci, ri), the power of a point x ∈ Rd to σi is dP (σi, x) = (x − ci)2 − r2

i

and the power diagram of Σ, noted P(Σ), is the subdivision of Rd consisting of
the n cells P (σ1), . . . , P (σn) where P (σi) = {x ∈ Rd, dP (σi, x) � dP (σj , x), j =
1, . . . , n}. We write P (σ1, . . . , σk) = P (σ1) ∩ . . . ∩ P (σk). When non empty,
P (σ1, . . . , σk) is a face of P(Σ), of dimension d − k + 1 if the hyperspheres are
in general position.

2 Convex Hull of Additively Weighted Points

Let S = {s1, . . . , sn} be a set of weighted points of Rd. We write si = (pi, wi),
i = 0, . . . , n. We consider first the case where all the weights wi are non negative,
i.e. the sites are hyperspheres. The convex hull of S, CH(S), is the smallest
closed convex subset of Rd containing all the hyperspheres of S. A supporting
hyperplane H of S is a hyperplane tangent to at least one of the hyperspheres
of S, and such that all the hyperspheres of S lie in the same half-space limited
by H . A facet of CH(S) of circularity k, 0 � k < d, is the portion of ∂CH(S)
that consists of the points whose supporting hyperplanes are tangent to a same
subset of d − k hyperspheres. For d = 3, faces of circularity 0 are planar faces
tangent to three hyperspheres, faces of circularity 1 are conical patches tangent
to two hyperspheres, and faces of circularity 2 are spherical patches contained
in some si.

From Power Diagrams to Convex Hulls of Hyperspheres. Let Π be
a supporting hyperplane tangent to k hyperspheres, and m be the unit normal

Convex Hull and Voronoi Diagram of Additively Weighted Points 369

vector of Π pointing away from S. As there is exactly one supporting hyperplane
that has a given oriented normal, m defines Π uniquely. Π is a supporting
hyperplane tangent to s1, . . . , sk if and only if:

m · (pi − p1) = w1 − wi, 1 � i � k (1)
m · (pi − p1) < w1 − wi, k < i � n (2)

We rewrite (2) as follows:

m · (pi − p1) < w1 − wi

⇐⇒ −m · p1 − w1 < −m · pi − wi

⇐⇒ (m− p1)2 − (p2
1 + 2w1) < (m− pi)2 − (p2

i + 2wi) ,

(1) can be rewritten the same way. Thus, denoting r2
i = p2

i + 2wi, σi = (pi, ri)
and Σ = {σ1, . . . , σk}, this is equivalent to m being in the open (d−k+1)-face of
P (σ1, . . . , σk) in the power diagram P(Σ). As m belongs to the unit hypersphere
S = {x ∈ Rd : ‖x‖ = 1}, we have proven

Lemma 1. The k-faces of P(Σ) ∩ S are in 1-1 correspondence with the facets
of circularity k of ∂CH(S).

The above construction works also when some or all wi are negative. Although
a geometric interpretation in terms of convex hull is then missing, the result of
our construction is called the convex hull of the weighted points, or AWCH for
short, by analogy to the case of positive weights.

We now present a static algorithm and an incremental algorithm for contr-
sucting a AWCH. The affine hull of a face f is denoted aff(f). We say that a
k-face f ′ is a sub-face of a (k + 1)-face f (and conversely that f is a super-face
of f ′) when f ′ ⊆ f . For a face f and a sub-face f ′ of f , H(f, f ′) denotes the
halfspace of aff(f) bounded by aff(f ′) that contains f . For instance, when f is a
1-face (a line segment), f ′ is one of its endpoints, and H(f, f ′) is the ray issued
from f ′ that contains f . We assume that the si are in general position so that
we do not have any degeneracy. Degeneracies will be considered in section 5.

Static Algorithm. The algorithm first constructs the power diagram P(Σ)
and then determines, for each face f of P(Σ), whether f intersects S or not. The
result is stored in tag[f]:

– tag[f] = ∅ if and only if aff(f) is outside S,
– tag[f] = * if and only if f does not intersect S but aff(f) intersects S,
– tag[f] = ⊕ if and only if f intersects S,
– tag[f] = , if and only if f is inside S.

Assuming we know tag[f ′] for each sub-face f ′ of f , we compute tag[f] as follows:

1. If aff(f) does not intersect S, then tag[f] = ∅,
2. else, if for each sub-face f ′ of f , tag[f ′] = ,, then, by convexity of f , tag[f] =
,,

370 J.-D. Boissonnat and C. Delage

3. else, if there is a sub-face f ′ of f such that tag[f ′] = , or tag[f ′] = ⊕, then,
by connexity of f , tag[f] = ⊕.

4. else, if for each sub-face f ′ of f , tag[f ′] = ∅, and aff(f)∩S ⊆ H(f, f ′), then
f intersects S and tag[f] = ⊕,

5. else, tag[f] = *.

Assume w.l.o.g. that f = P (σ1, . . . , σk) and f ′ = P (σ1, . . . , σk+1). This algo-
rithm needs to evaluate the two following geometric predicates.

k-RadicalIntersection(f) determines whether aff(f) is outside S or not.
k-RadicalSide(f, f ′) determines whether aff(f) ∩ S ⊂ H(f, f ′), assuming
that aff(f) intersects S and aff(f ′) is outside S.

To computes the tags, we proceed by induction on the dimension of the faces.
This takes a time proportional to the size of the diagram. It follows that the time
complexity of the algorithm is upbounded by the time complexity of a power di-
agram algorithm. Hence, our algorithm computes the additively weighted convex
hull of n sites in O

(
n logn + n�d

2 �
)

time.

Incremental Algorithm. We now present an incremental alogrithm for com-
puting the additively weighted convex hull. We use an incremental algorithm
for constructing the power diagram, and we attach to each face f the number
num[f] of its sub-faces that are tagged ⊕. Updating the power diagram when
inserting a new hypersphere in the power diagram amounts to creating some new
faces, deleting some faces, and replacing some faces by smaller ones. In this last
case, a face f is replaced by a smaller face f̄ ⊂ f that is incident to the cell of
the new hypersphere. f̄ is called a cut face. Notice that a cut face of dimension
less than d has exactly one new subface. We denote by m the number of deleted
faces plus the number of new faces.

1. For a new face f , num[f] is easily computed by looking at all its sub-faces.
This can be done in time proportional to m.

2. We now update num[f̄] for a cut face f̄ . We set num[f̄] = num[f]. Then
num[f̄] is decremented by the number of the sub-faces of f that are deleted,
and updated according to the tag of the new and cut sub-faces of f̄ . This
can be done in the following way. When the tag of a face f ′ changes, or f ′

is deleted, we update num[f] for each super -face f of f ′. Updating num[f̄]
therefore takes O(m) time.

3. We update tag[f̄] for a cut k-face f̄ , k > 1. We compute tag[f̄] from num[f̄]
and tag[f ′], where f ′ is the new sub-face f ′ of f̄ . As f̄ is a cut face, tag[f̄]
differs from tag[f] only when tag[f] = ⊕. If num[f̄] is positive, then tag[f̄] =
⊕. Now, if num[f̄] is 0, only the relative interior of f̄ can intersect S. Hence
– if tag[f ′] = ∅, then we update tag[f̄] according to the outcome of k-

RadicalSide(f̄ , f ′)
– otherwise, as the set of the sub-faces of f̄ is connected (f̄ is of dimension

at least 2), f̄ has the same tag as f ′.
For a cut 1-face f̄ , we compute tag[f̄] directly. Updating the tag of a cut
face takes a constant time.

Convex Hull and Voronoi Diagram of Additively Weighted Points 371

The incremental algorithm for constructing an additively weighted convex hull
has therefore the same complexity as the incremental algorithm that computes
the associated power diagram. When the sites are inserted in random order, the
expected time complexity of our algorithm is therefore O

(
n logn + n�d

2 �
)
.

Practical Complexity. Under realistic assumptions, our algorithms perfom
better than in the worst case. First, according to our experiments (see section
6), the number of hyperspheres with a non empty cell in the power diagram
is usually proportional to the number of points h on the additively weighted
convex hull. In that case, the running time for n insertions is O

(
n log h + h� d

2�
)
.

Moreover, h is typically much smaller than n. It is known that the convex hull of
a set of n points uniformly distributed inside a sphere of R3 has O(

√
n) points on

its convex hull. The same result holds trivially for spheres with the same radius.
In R3, assuming that the number of cells in the power diagram is proportional
to h and that h is O(

√
n), the complexity of our algorithm is O(n log n).

3 Additively Weighted Voronoi Diagram

The additively weighted distance, denoted d+, from a point m of Rd to a site
si = (pi, wi) is d+(si,m) = ‖pi −m‖ −wi. Considering the set S = {s1, . . . , sn}
of sites, the additively weighted Voronoi cell of si, V (si) is:

V (si) =
{
m ∈ Rd | ∀j, d+(si,m) � d+(sj ,m)

}
.

It is possible that V (si) = ∅: this happens when ∀m ∈ Rd, ∃j, d+(sj ,m) �
d+(si,m). In that case, we say that si is hidden by sj . When dealing with
hyperspheres (i.e. wi, wj > 0), si is hidden by sj when si ⊆ sj . The additively
weighted Voronoi diagram, or AWVD for short, of S, noted V(S), is the cell
complex whose d-cells are the V (si).

The construction of a single cell of the diagram reduces to computing an
additively weighted convex hull, via an inversion. More precisely, the cell of s1

in V(S) is combinatorially equivalent to the additively weighted convex hull of
S′ = {s′1, . . . , s′n}, where s′1 is centered at the origin and has weight 0, s′i is
centered at pi−p1

αi
and has weight wi−w1

αi
, αi = (pi−p1)2− (wi−w1)2, i = 2 . . . n.

This scheme only works when s1 is not hidden by, nor does it hide any other site
si. See [2] for details.

Using the construction of a single cell as a subroutine, we can compute the
whole diagram in a fully dynamic manner. All the Voronoi cells are stored in a
data structure with pointers between the corresponding elements. In this data
structure, Γ (s) denotes the set of neighbors of s and Γs(s′) the set of neighbors
of s that are also neighbors of s′. Two sites s and s′ are called neighbors if V (s)
and V (s′) share a (d − 1)-face. We add to the data structure an infinite cell,
which is actually the plain additively weighted convex hull of the sites. That
way, we handle unbounded faces, and sites lying on the convex hull seamlessly.

In order to keep track of the hidden sites, we keep, for each site s, a list
hidden[s] of the sites s hides. We now describe the three main ingredients needed
to update an additively weighted Voronoi diagram.

372 J.-D. Boissonnat and C. Delage

Localization. Given a point m of Rd and a starting site s, this procedure,
called Locate(m, s), returns the cell of the diagram in which m lies. This is
done by means of a simple walk: if a neighbor s′ is closer to m than s, jump
to s′ and we iterate; otherwise, m belongs to the cell of s and we stop. This
localization algorithm requires only one predicate: given two sites s1 and s2,
determine if a query point m is closer to s1 than to s2. This predicate is called
SideOfBisector.

Insertion. The insertion procedure needs to decide whether a site s1 hides
another site s2 : we call this predicate IsTrivial(s1, s2). To avoid ambiguities
when considering diagrams of different sets of sites, we introduce the following
notation. Given a set of sites S and s, s′ ∈ S, we denote VS(s) the cell of s in
the additively weighted Voronoi diagram of S, and VS(s, s′) = VS(s) ∩ VS(s′).
A site s /∈ S is in conflict with s′ ∈ S if and only if VS(s′) �= VS∪{s}(s′). Notice
that only the non-hidden sites of S may be in conflict with s. The conflict graph
of a site s /∈ S is G = (X,E) where X ⊆ S is the set of sites in conflict with s,
and xy ∈ E if and only if VS(x, y) ∩ VS∪{s}(s) �= ∅. In other words, the conflict
graph of s is the dual of the restriction of V(S) to VS∪{s}(s).

Lemma 2. The conflict graph of s is connected.

Proof. Given two sites x and y in the conflict graph G of some s, we take px in
VS(x)∩VS∪{s}(s) and py in VS(y)∩VS∪{s}(s). As VS∪{s}(s) is arc connected, we
can follow a path from px to py in VS∪{s}(s), and each time we cross a (d−1)-face
of the diagram, we follow the corresponding edge of G. This gives a path from
x to y in G. ��

The first insertion (i.e. the insertion in an empty diagram) is easy: we just
create a new cell covering all Rd. Once there is a least one site in the diagram,
the insertion procedure of a new site s is the following.

1. Locate the center of s, let s′ be the site such that the center of s lies in V (s′).
2. If s is hidden by s′, then add s to hidden[s′].
3. Else, s′ is a vertex in the conflict graph G of s, so we walk on G, starting

from s′, and for each s′′ in G:
– if s′′ is hidden by s, add s′′ to hidden[s],
– else, insert s in V (s′′) and s′′ in V (s).

Removal. Removing a site s from a diagram is straightforward. Firstly, remove
s from the cells adjacent to V+(s), Secondly, let {s1, . . . , sk} be the neighbors of
s; for all 1 � i, j � k, i �= j, insert si into the cell of sj to rebuild the hole made
by the removal of s. And finally, insert all the sites s was hiding.

Complexity. The localization algorithm described here takes time linear in the
size of the diagram, which can be improved to randomized logarithmic time by
using a hierarchical data structure as in [4].

Convex Hull and Voronoi Diagram of Additively Weighted Points 373

The construction of the Voronoi diagram of n sites performs O(n) localiza-
tions, and constructs O(n) additively weighted convex hulls of O(n) sites. The
overall time to construct the Voronoi diagram of n sites is therefore:

O
(
n logn + n

(
n logn + n� d

2 �
))

= O
(
n2 log n + n� d

2�+1
)

.

Which gives, for d = 3, O
(
n3

)
. This bound can be improved under the following

assumptions:

1. O(
√
n) sites appear on the additively weighted convex hull of S,

2. the sites have O(1) neighbors,
3. the underlying power diagram of every Voronoi cell has O(s) non-hidden

points, where s is the number of neighbors of the cell.

Those assumptions are not too restrictive, and happen to be satisfied on a variety
of input data (see section 6.) Assumptions 1 and 3 implies that the construction
of the infinite cell (i.e. the AWCH) take O(n logn) time. Assumptions 2 and 3
implies that we construct O(n) finite cells of size O(1), and that it takes O(n)
time. This leads to an expected running time of O(n log n), for constructing the
additively weighted Voronoi diagram.

4 Predicates

We consider a set S = {s1, . . . , sn} of sites, where si is centered at pi, and
has weight wi. If each input data is a b-bit integer, the size of each monomial
occuring in a predicate is upper bounded by 2(b+1)d. Moreover, let v be the
number of variables that occur in a predicate; for the predicates considered in this

Table 1. Predicate degree summary

Algorithm AWCH AWVD
Dimension 2 3 d > 3 2 3 d > 3
IsTrivial 2 2 2
SideOfBisector 4 4 4
Orientation 2 3 d 4 5 d + 2
PowerTest 3 4 d + 1 5 6 d + 3
1-RadicalIntersection 2 2 2 6 6 6
2-RadicalIntersection 4 8 8 8 16 16
3-RadicalIntersection 6 12 10 20
k-RadicalIntersection, 1 < k < d 4k 4k + 8
d-RadicalIntersection 2d 2d + 4
1-RadicalSide 1 1 1 3 3 3
2-RadicalSide 3 3 3 7 7 7
3-RadicalSide 5 5 9 9
k-RadicalSide, 1 < k � d 2k − 1 2k + 3
Maximum degree 4 8 4d − 4 8 16 4d + 4

374 J.-D. Boissonnat and C. Delage

paper, v is a constant. It follows that a predicate of degree d requires precision
p � d(b+1+log v). Here, the predicates are polynomials in the unknowns pi, wi,
and the algebraic degree of each of them is given. In addition to the predicates
mentioned in section 2 and 3, we need the two well-known predicates that are
needed to construct the power diagram: Orientation and PowerTest.

Predicates IsTrivial and SideOfBisector are detailed in [10] for d = 2,
and are straightforward to extend to arbitary dimension. IsTrivial is of degree
2, and SideOfBisector is of degree 4. Basic linear algebra provides explicit
formulas for the other predicates. The maximum degree of the predicates for the
AWCH is 4 in 2D, 8 in 3D, and in general, 4d−4 in dimension d. The maximum
degree of the predicates for the AWVD is 8 in 2D, 16 in 3D, and in general,
4d+ 4 in dimension d. See Table 1. This compares very well to the predicates of
the algorithm for the additively weighted Voronoi diagram of [4], detailed in [8],
which have a maximal degree of 16 for d = 2.

5 Degenerate Cases

Additively Weighted Convex Hull. Here, we show how to handle degen-
eracies in the algorithm for the convex hull of additively weighted points. We
call a case degenerate when some predicate returns 0, instead of “positive” or
“negative”. A simple way of dealing with these cases is to carefully choose a
non-zero sign to be returned by a predicate when it evaluates to 0.

– Predicates Orientation or PowerTest return zero when Σ is not in gen-
eral position. Any standard perturbation scheme will work for us.

– When predicate k-RadicalIntersection returns 0, some (d − k)-flat is
tangent to S (it intersects S but not the open ball bounded by S.) We can
consider that this (d− k)-flat lies outside S.

– Predicate k-RadicalSide(f, f ′) returns 0 when the projection of the origin
on aff(f) is on aff(f ′). In that case, both aff(f) and aff(f ′) intersects S, or
both do not intersect S. As predicate k-RadicalSide is only called when
aff(f) intersects S and aff(f ′) does not, this predicate is never called on
degenerate inputs.

Additively Weighted Voronoi Diagram. In the case of the additively
weighted Voronoi diagram, the previous perturbation scheme does not work.
Indeed, as we compute the Voronoi cells separately, we not only need to re-
solve degeneracies in each cell, but also to ensure that consistent decisions are
taken when we compute the neighboring cells. A set of sites S is called de-
generate when there exists k + 1 sites of S s0, . . . , sk, 1 � k < d, such that
V (s0, . . . , sk) is not empty and is of dimension strictly less than d − k. When
an input is non-degenerate, any small enough perturbation will let the combi-
natorial structure of the Voronoi diagram unchanged. For a face f , we define
L(f) = {s ∈ S : f ⊆ V (s)}. If a degeneracy {s0, . . . , sk} is minimal (i.e. if
{s0, . . . , sk} \ {si} is not degenerate for 0 � i � k) then perturbing the weight
of any site in L(V (s0, . . . , sk) will remove the degeneracy.

Convex Hull and Voronoi Diagram of Additively Weighted Points 375

Given a degenerate input {s0, . . . , sk}, finding a minimal degeneracy is easy:
w.l.o.g. we check if {s0, . . . , sk−1} is still degenerate. As V (s0, . . . , sk) �= ∅,
V (s0, . . . , sk−1) has dimension at least 1. A degeneracy of dimension m � 1 in
the intersection between the unit hypersphere and a power diagram can only
appear if two (m+1)-faces of the power diagram are equal, which can be tested
with the Orientation and PowerTest predicates.

Now, we can handle the degeneracies in our algorithm by means of
symbolic perturbations. When faced with a predicate that returns zero on
{s0, . . . , sk}, we find a minimal degeneracy {s0, . . . , sk′} and perturb one site, in
L(V (s0, . . . , sk′)), say si, i.e. we replace wi by wi + ε. The predicates are now
polynomials in ε and we need to evaluate the sign of the non-zero coefficient
of smallest degree. Notice that this scheme does not increase the degree of the
predicates since the perturbation is linear. It can occur that some predicate re-
turns zero, and the Voronoi diagram is not degenerate, and thus some site gets
perturbed unnecessarily.

To ensure consistency from one cell to another, we just need to choose the
site to perturb in a way that is independent of the site whose cell is under
construction when we detect the degeneracy. One way to do that is to choose the
smallest site according to some global ordering (for instance, the lexicographical
order on the centers.)

6 Experimental Results

We have implemented both our algorithms for constructing the convex hull
and the Voronoi diagram of weighted points in R3. The implementations use
CGAL 3.1, mainly its 3D regular triangulations (see [11]), which are the du-
als of the power diagrams. While not yet fully optimized, this implementation
already follows the CGAL standard of genericity and robustness. The predi-
cates are dynamically filtered to avoid problems of precision in degenerate, or
near-degenerate, cases. We plan to have the code included in the CGAL library
soon. The running times are obtained on a Athlon running at 1333MHz, with
133MHz DDR-SDRAM memory and 256KB of L2 cache.

On Fig. 1, the degenerate input is a set of sites randomly chosen in a cube,
with their weight equal to their height, so that all the sites are tangent to the
lower face of the cube and the non-degenerate input is a set of sites uniformly
distributed inside a sphere, the weights uniformly distributed in an interval.

On Fig. 2, the input comes from a direct application of our algorithm. The
sites have their centers on a surface and the weights are of the form − lfs(x)

k where
lfs(x) is an approximation of the local feature size of the surface at x, and k is
a parameter. This kind of diagram has been used to efficiently compute a sizing
field, for 3D meshing (see [12] for details). On Fig. 2, k = 1 on the left and
k = 0.3 on the right.

Both algorithms are incremental, and as such, their running time is likely to
depend on the insertion order. Fig. 1 and 2 show three insertion orders: sites with
small weights first, sites with large weights first, and random. In all cases, the

376 J.-D. Boissonnat and C. Delage

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 5 10 15 20 25 30 35

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of input spheres (in thousands)

increasing weight
decreasing weight

random

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of input spheres (in thousands)

increasing weight
decreasing weight

random

degenerate input non-degenerate input

Fig. 1. Additively Weighted convex hull benchmarks, all using filtered predicates, for
various input, and insertion order

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 5 10 15 20 25 30 35

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of input spheres (in thousands)

increasing weight
decreasing weight

random

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of input spheres (in thousands)

increasing weight
decreasing weight

random

no hidden site 8,369 non-hidden sites

Fig. 2. Additively weighted Voronoi diagram benchmarks using filtered predicates for
various input sizes, numbers of hidden sites, and insertion orders

algorithms are faster when the sites are inserted in order of decreasing weights.
The reason is that a site with a larger weight tends to have more neighbors, and
thus, tends to take longer to insert. The difference is even greater when there
are many hidden spheres.

A screenshot is shown in Figure 3, where one cell is represented by meshing
its boundary. Our implementation computes all the edges of the cell (i.e. facets
of circularity 1 in the underlying convex hull), and sample them. Then, each face
of the cell (i.e. each facet of circularity 2 in the convex hull) is approximated
using the meshing algorithm of [13]. We plan to have the code included in the
cgal library soon.

In our experiments, we observed a remarkable phenomenon: almost all the
spheres that do not contribute to the additively weighted convex hull are hidden
(i.e. have empty cells) in the underlying power diagram. This also occur when
the AWCH are cells of an additively weighted Voronoi diagram. In no Voronoi
cell the examples shown here, the number of cells in the power diagram is more

Convex Hull and Voronoi Diagram of Additively Weighted Points 377

Fig. 3. A screenshot of one cell of a 3D additively weighted Voronoi diagram

than seven times the number of neighbors of the Voronoi cell. Moreover, for only
1% of the Voronoi cells, the number of cells in the underlying power diagram is
more than twice the number of neighbors in the Voronoi diagram. Although this
observation does not hold in general —it is possible to construct n spheres such
that only O(1) of them contribute to the convex hull, while all of them appear
in the power diagram— this makes our algorithms efficient in practice.

7 Conclusion

We have presented fully robust implementations of two algorithms for construct-
ing the convex hull and the Voronoi diagram of additively weighted points (and
hyperspheres). To the best of our knowledge, no certified algorithms existed
previously.

This work does not settle the main open question in this area : what is the
combinatorial complexity of the Voronoi diagram of n additively weighted points
in Rd? Tight bounds are only known for d = 2 and odd dimensions. We hope
that experimenting with our code may provide new insights such as the one
mentionned in section 6 that eventually will help improving the combinatorial
bounds.

References

1. Boissonnat, J.D., Cérézo, A., Devillers, O., Duquesne, J., Yvinec, M.: An algorithm
for constructing the convex hull of a set of spheres in dimension d. Comput. Geom.
Theory Appl. 6 (1996) 123–130

378 J.-D. Boissonnat and C. Delage

2. Boissonnat, J.D., Karavelas, M.: On the combinatorial complexity of Euclidean
Voronoi cells and convex hulls of d-dimensional spheres. In: Proc. 14th ACM-
SIAM Sympos. Discrete Algorithms (SODA). (2003) 305–312

3. Aurenhammer, F., Imai, H.: Geometric relations among Voronoi diagrams. Geom.
Dedicata 27 (1988) 65–75

4. Karavelas, M., Yvinec, M.: Dynamic additively weighted voronoi diagrams in 2d.
In: Proc. 10th European Symposium on Algorithms. (2002) 586–598

5. Kim, D.S., Kim, D., Sugihara, K.: Updating the topology of the dynamic voronoi
diagram for spheres in euclidean d-dimensional space. Computer-Aided Design 18
(2001) 541–562

6. Will, H.M.: Fast and efficient computation of additively weighted Voronoi cells
for applications in molecular biology. In: Proc. 6th Scand. Workshop Algorithm
Theory. Volume 1432 of Lecture Notes Comput. Sci., Springer-Verlag (1998) 310–
321

7. Kim, D.S., Cho, Y., Kim, D., Bhak, J., Lee, S.H.: Euclidean voronoi diagram of
3d spheres and applications to protein structure analysis. In Sugihara, K., ed.: 1st
International Symposium on Voronoi Diagrams in Science and Engineering. (2004)

8. Karavelas, M.I., Emiris, I.Z.: Root comparison techniques applied to computing
the additively weighted Voronoi diagram. In: Proc. 14th ACM-SIAM Sympos.
Discrete Algorithms (SODA). (2003) 320–329

9. Anton, F.: Voronoi diagrams of semi-algebraic sets. Ph.d. thesis, University of
British Columbia (2004)

10. Karavelas, M.I., Emiris, I.Z.: Predicates for the planar additively weighted Voronoi
diagram. Technical Report ECG-TR-122201-01, INRIA Sophia-Antipolis (2002)

11. : The CGAL Manual. (2004) Release 3.1.
12. Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational tetrahedral

meshing. In: SIGGRAPH. (2005)
13. Boissonnat, J.D., Oudot, S.: Provably good surface sampling and approximation.

In: Proc. 1st Symp. on Geometry Processing. (2003) 9–18

New Tools and Simpler Algorithms for
Branchwidth�

Christophe Paul1 and Jan Arne Telle2

1 CNRS - LIRMM, Montpellier, France
paul@lirmm.fr

2 Department of Informatics, University of Bergen, Norway
telle@ii.uib.no

Abstract. We provide new tools, such as k-troikas and good subtree-
representations, that allow us to give fast and simple algorithms comput-
ing branchwidth. We show that a graph G has branchwidth at most k if
and only if it is a subgraph of a chordal graph in which every maximal
clique has a k-troika respecting its minimal separators. Moreover, if G
itself is chordal with clique tree T then such a chordal supergraph exists
having clique tree a minor of T . We use these tools to give a straight-
forward O(m+n+ q2) algorithm computing branchwidth for an interval
graph on m edges, n vertices and q maximal cliques. We also prove a
conjecture of F. Mazoit [13] by showing that branchwidth is polynomial
on a chordal graph given with a clique tree having a polynomial number
of subtrees.

1 Introduction
Branchwidth and treewidth are connectivity parameters of graphs and when-
ever one of these parameters is bounded by some fixed constant on a class of
graphs, then so is the other [14]. Since many graph problems that are in general
NP-hard can be solved in linear time on such classes of graphs both treewidth
and branchwidth have played a large role in many investigations in algorithmic
graph theory. Recently there has been a focus on branchwidth [6,5,4,7,8] to give
e.g. good heuristics for the travelling salesman problem and fast parameterized
algorithms for various types of optimization problems. These algorithms always
involve a stage that constructs a branch-decomposition with small branchwidth,
and another stage solving the problem using the decomposition by a running
time depending heavily on that branchwidth. Efficient algorithms computing
optimal branch-decompositions, like we give in this paper, could therefore be
the crucial factor that can make or break the application.

The study of branchwidth has not enjoyed the rich toolbox that treewidth has
with its connections to k-trees, chordal graphs of maximum clique size, intersec-
tion graphs of subtrees of a tree etc. We try to rectify this in the current paper,
by introducing various new tools like k-troikas, k-good chordal graphs and good
subtree representations, whose definitions will follow later. To give an example
� Research conducted while the second author was on sabbatical at LIRMM.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 379–390, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

380 C. Paul and J.A. Telle

using only standard terminology, we remark that using these tools we arrive at a
succinct expression of the common basis of treewidth and branchwidth: For any
k ≥ 2 a graph G on vertices v1, v2, ..., vn has branchwidth at most k (treewidth
at most k − 1) if and only if there is a cubic tree T with subtrees T1, T2, ..., Tn

such that if vi and vj adjacent then subtrees Ti and Tj share at least one edge
(node) of T , and each edge (node) of T is shared by at most k of the subtrees
(replace underlined words by the words in parenthesis.)

The understanding of branchwidth of special graph classes is relatively lim-
ited. We give a brief overview of the literature. In a paper from 1994 Seymour and
Thomas showed that branchwidth is NP-complete in general, and followed this
by their celebrated ratcather method computing branchwidth of planar graphs
in polynomial time [15]. In 1997 Bodlaender and Thilikos used fairly brute-force
methods to give a linear-time algorithm deciding if a graph has branchwidth at
most some constant k [1] and a very elegant algorithm for graphs of branchwidth
3 [2]. Then in 1999 Kloks, Kratochvil and Müller [12,11] pushed into new territory
by showing that branchwidth is NP-complete already for split graphs and bipartite
graphs, with the bulk of their paper being an O(n3 logn) algorithm for branch-
width of interval graphs with the comment that ”it is somewhat surprising that
this algorithm is by no means straightforward and its correctness proof requires a
nontrivial proof.” In contrast, using our branchwidth tools for the case of interval
graphs we arrive at a straightforward O(n2) algorithm whose self-contained cor-
recteness proof is easy to follow. In fact, our algorithm has runtime O(m+n+ q2)
for an interval graph on m edges, n vertices and q maximal cliques. In a recent in-
vestigation Mazoit gave a polynomial-time algorithm for branchwidth of circular-
arc graphs and conjectured that branchwidth can be computed in polynomial-time
for chordal graphs given with a clique tree having a polynomial number of subtrees
[13]. We prove his conjecture in this paper. Indeed, it follows by a generalization
of the interval graph algorithm since we show a structural property stating that
branchwidth of a chordal graph with clique tree T can be found by considering
chordal supergraphs whose clique tree is a minor of T .

In Section 2 we give some standard definitions. In Section 3 we use subtree-
representations to characterize graphs of branchwidth k as subgraphs of chordal
graphs. In Section 4 we study the central new concept of k-troikas in a purely set-
theoretic setting. In Section 5 we give a simple algorithm computing branchwidth
for interval graphs and more generally for chordal graphs with a clique tree
having a polynomial number of subtrees.

2 Standard Definitions

We consider simple undirected and connected graphs G with vertex set V (G)
and edge set E(G). We denote G subgraph of H by G ⊆ H which means that
V (G) = V (H) and E(G) ⊆ E(H). For a set A ⊆ V (G), G(A) denotes the
subgraph of G induced by the vertices in A. A is called a clique if G(A) is
complete. The set of neighbors of a vertex v in G is N(v) = {u | uv ∈ E(G)}.
A vertex set S ⊂ V (G) is a separator if G(V (G) \ S) is disconnected. Given two
vertices u and v, S is a u, v-separator if u and v belong to different connected

New Tools and Simpler Algorithms for Branchwidth 381

components of G(V (G) \ S). A u, v-separator S is minimal if no proper subset
of S separates u and v. In general, S is a minimal separator of G if there exist
two vertices u and v in G such that S is a minimal u, v-separator. A graph is
chordal if it contains no induced cycle of length ≥ 4. In a clique tree of a chordal
graph G the nodes are in 1-1 correspondence with the maximal cliques of G and
the set of nodes whose maximal cliques contain a given vertex form a subtree.
For further terminology, see e.g. [10]. We usually refer to nodes of a tree and
vertices of a graph.

A branch-decomposition (T, μ) of a graph G is a tree T with nodes of degree
one and three only, together with a bijection μ from the edge-set of G to the
set of degree-one nodes (leaves) of T . For an edge e of T let T1 and T2 be
the two subtrees resulting from T \ {e}, let G1 and G2 be the graphs induced
by the edges of G mapped by μ to leaves of T1 and T2 respectively, and let
mid(e) = V (G1) ∩ V (G2). The width of (T, μ) is the size of the largest mid(e)
thus defined. For a graph G its branchwidth bw(G) is the smallest width of any
branch-decomposition of G. 1

3 Good Subtree-Representations

Definition 1. A subtree-representation R = (T, {T1, T2, ..., Tn}) is a pair where
T is a tree with vertices of degree at most three and T1, T2, ..., Tn are subtrees of
T . Its edge intersection graph EI(R) has vertex set {v1, v2, ..., vn} and edge set
{vivj : Ti and Tj share an edge of T}, while its vertex intersection graph V I(R)
has the same vertex set but edge set {vivj : Ti and Tj share a node of T}. For a
node u of T , we call the set of vertices Xu = {vi : Ti contains u} the bag of u,
and {Xu : u ∈ V (T)} the bags of R.

With the above terminology we can easily move between the view of a subtree-
representation R as a tree T with a set of subtrees {T1, T2, ..., Tn} or as a tree T
with a set of bags {Xu : u ∈ V (T)}. When manipulating the latter we must simply
ensure that for any vertex in EI(R) the set of bags containing that vertex corre-
sponds to a set of nodes of T inducing a subtree, i.e. a connected subgraph.

Definition 2. The edge-weight of subtree-representation R = (T, {T1, ..., Tn})
is the maximum, over all edges uv of T , of the number of subtrees in {T1, ..., Tn}
that contain edge uv. R is a good subtree-representation if EI(R) = V I(R).

We are in this paper only interested in the edge intersection graphs of subtree-
representations having bounded edge-weight k. We start by showing that we can
restrict ourselves to good subtree-representations if we want.

Lemma 1. For any subtree-representation R of edge-weight k there exists a good
subtree-representation R′ of edge-weight k with EI(R) = EI(R′) = V I(R′).
1 The graphs of branchwidth 1 are the stars, and constitute a somewhat pathological

case. To simplify we therefore restrict attention to graphs having branchwidth k ≥ 2,
in other words our statements are correct only for graphs having at least two vertices
of degree more than one.

382 C. Paul and J.A. Telle

Lemma 2. A graph G has branchwidth at most k ⇔ there is a good subtree-
representation R of edge-weight at most k with G ⊆ EI(R).

Proof: ⇒: Take a branch-decomposition (T, μ) of G of width k, i.e. |mid(e)| ≤ k
for each e ∈ E(T). We construct a subtree-representation R = (T ′, S) of edge-
weight k with G ⊆ EI(R). T ′ is constructed from T by for each leaf l of T
adding a new leaf l′ and making it adjacent to l. For vertex a ∈ V (G) consider
the smallest spanning subtree of T containing all leaves of T that are mapped
by μ to an edge incident with a. The subtree Ta will be this subtree augmented
by leaf l′ for each leaf l of T that it contains. This completes the description of
R = (T ′, {Ta : a ∈ V (G)}. For any two adjacent vertices {a, b} of G we have
μ−1(l) = {a, b} for some leaf l of T , and thus the subtrees corresponding to a and
b share the edge ll′ of T ′ which implies that G ⊆ EI(R). If vertex a has subtree
Ta containing edge e of T , then there are edges incident with a mapped to leaves
in both subtrees of T arising from deleting the edge e, and thus a ∈ mid(e). But
this means that the edge-weight of R is at most k. If R is not good then we can
make it good by applying Lemma 1.
⇐: Let R = (T, S) be a good subtree-representation R of edge-weight at most

k with G ⊆ EI(R). We construct a branch-decomposition (T ′, μ) of G with width
k. Associate each edge ab of G with an edge e of T such that the subtrees Ta and
Tb corresponding to a and b both contain e. Subdivide the tree edge e by as many
new nodes as there are edges of G associated to e, thus creating for each edge ab
associated to e a new tree node eab. Furthermore, add a new leaf node lab, make
it adjacent to eab and set μ(ab) = lab. Let T ′′′ be the tree we have constructed
so far. It contains T as a minor. Consider the smallest spanning subtree T ′′ of
T ′′′ having the set of leaves {lab : ab ∈ E(G)}. Iteratively contract edges of T ′′

incident to a vertex of degree two until all inner vertices have degree three. The
resulting tree is T ′. Note that as we constructed T ′ from T in stages we could
at each stage have updated the subtree Ta corresponding to vertex a to a new
subtree T

′
a so that we would still have a subtree-representation R′ = (T ′, S′) with

G ⊆ EI(R′). For example, T
′
a should contain every ’subdivision node’ on a tree

edge f if Ta contained f , it should contain lab for any edge ab incident with a,
and it should naturally shrink if it contained a removed leaf or contracted edge.
Moreover, (T ′, S′) has edge-weight at most k since never during this process
did we increase the edge-weight beyond what it was. T ′ has nodes of degree
one and three only and μ is a bijection between its leaves and the edges of
G so (T ′, μ) is a branch-decomposition of G. It remains to show that it has
width k, i.e. that for any edge e of T ′ we have |mid(e)| ≤ k. We claim that
mid(e) ⊆ {a : T

′
a contains edge e}. Consider a ∈ mid(e). There must exist two

leaves lab, lac of T ′, one in each of the two subtrees of T ′\e, such that a ∈ μ−1(lab)
and a ∈ μ−1(lac). Since the subtree T

′
a of a contains both lab and lac it must

also contain e. �
We introduce the concept of k-troikas2 which is a central tool in our investi-

gation of branchwidth.
2 A troika is a horse-cart drawn by three horses, and when the need arises any two of

them should also be able to pull the cart.

New Tools and Simpler Algorithms for Branchwidth 383

Definition 3. A k-troika (A,B,C) of a set X are 3 subsets of X, called the three
parts, such that |A| ≤ k, |B| ≤ k, |C| ≤ k, and A ∪ B = A ∪ C = C ∪ B = X.
(A,B,C) respects S1, S2, ..., Sq if any Si, 1 ≤ i ≤ q is contained in at least one
of A,B or C.

Definition 4. A k-good chordal graph is a chordal graph in which every maxi-
mal clique X has a k-troika respecting the minimal separators contained in X.

Theorem 1. A graph G has branchwidth at most k ⇔ G is subgraph of a k-good
chordal graph

R′

R

P

R W

UQ X AX AX

X ∩ Y

BY BY Y

Y ∩ U

BU

U

CU AU

CY

Y ∩ V

BV V

CV

AV

AY

Y ∩ W BW

W

CW AW

X ∩ R

AR

R

X ∩ Q

AQ Q CQ

BQ

BX

X ∩ PAP

P BP

CP CRBR

CX

X Y V

Fig. 1. On right a clique tree of a k-good chordal graph H with k-troika of any maximal
clique M being (AM , BM , CM). On left, the constructed subtree-representation R′ of
edge-weight k such that H ⊆ EI(R′). The square nodes correspond to the ternary
subtree associated with clique Y and the grey nodes to the ternary subtree associated
to clique X. Both ternary subtrees share the leaf X ∩ Y where they connect.

Proof: ⇒: By Lemma 2 there exists a good subtree-representation R of edge-
weight k with G ⊆ EI(R) = V I(R). Since V I(R) is a vertex intersection graph
of subtrees of a tree it is a chordal graph [9], and H = EI(R) = V I(R) will
indeed be our chordal graph H having G as a subgraph. By the Helly property
of (vertex) intersection of subtrees of a tree, every maximal clique of H is a
bag Xu for some node u of the tree. If |Xu| ≤ k then it clearly has a k-troika
respecting any subset, so let us assume |Xu| > k. Since any pair a, b of nodes
from Xu is adjacent in H , we must have {a, b} contained also in one of the
neighboring bags. Let the intersection of Xu and the bags of its three neighbors
be A,B and C. This means that any two of A,B,C must have union Xu since
if for example a ∈ Xu but a �∈ A ∪B then we would be forced to have C = Xu,
since C would have to contain a and all its neighbors in Xu contradicting the
fact that R has edge-weight k. Any minimal separator S of the chordal graph
H is the intersection of two maximal cliques corresponding to two bags Xu, Xv.
If we assume A = Xu ∩Xw, for w the neighbor of u on the path from u to v in
T , then we have S = Xu ∩Xv ⊆ A since the subtree corresponding to a vertex
a ∈ (Xu ∩Xv) \A would be disconnected.

384 C. Paul and J.A. Telle

⇐: Consider any clique tree of the k-good chordal graph H containing G. In
fact this can be viewed as a pair R = (T, S) just as our subtree-representations
with H = V I(R) and every bag inducing a maximal clique of H , except that
nodes of T can have degree larger than 3. We construct from this a subtree-
representation R′ = (T ′, S′) of edge-weight k with G ⊆ H ⊆ EI(R′) which by
Lemma 2 and Lemma 1 will imply that G has branchwidth at most k. Let X
be a maximal clique whose node in T has q neighbors corresponding to maximal
cliques Z1, Z2, ..., Zq, and let (A,B,C) be the k-troika of X respecting minimal
separators X ∩ Z1, ..., X ∩ Zq. This means there exists a partition PA, PB , PC

of {1, 2, ..., q} such that X ∩ Zi ⊆ A for i ∈ PA, X ∩ Zi ⊆ B for i ∈ PB ,
X ∩ Zi ⊆ C for i ∈ PC . For maximal clique X we construct a ternary subtree
as follows: We have a central node with bag X adjacent to three paths: one
path with max{1, |PA|} bags A, one path with max{1, |PB|} bags B and one
with max{1, |PC |} bags C. For each i ∈ {1, 2, ..., q} we have a leaf-node with bag
X∩Zi as neighbor of a node on these paths, e.g. if i ∈ PA the leaf-node should be
the neighbor of a node with bag A, if i ∈ PB then B, and if i ∈ PC then C, such
that q of the nodes on the 3 paths get one leaf each. (see Figure 1). Construct
such a ternary subtree for each maximal clique X , i.e. for each node of T . Then,
for each pair of maximal cliques X,Y that are bags of two neighboring nodes in
T we identify the following two leaves into a single node: X ∩ Y in the subtree
constructed for X and Y ∩X in the subtree constructed for Y . The resulting tree
T ′ has no node of degree more than three and together with bags as indicated
it forms the subtree-representation R′ = (T ′, S′). R′ has edge-weight at most
k since any part of a k-troika has size at most k. We show that H ⊆ EI(R′).
For any edge ab ∈ E(H) we have {a, b} ⊆ X for some maximal clique X . The
k-troika (A,B,C) of X has the property that any vertex a ∈ X must be in two
out of A,B,C, so that we must have {a, b} contained in one of A,B or C. Thus
the edge ab is in EI(R′) and H ⊆ EI(R′). �

4 k-Troikas

This section will be devoted to a study of the conditions under which a set X
has a k-troika respecting a given set of subsets. As with branchwidth, we restrict
attention to the case k ≥ 2. These conditions on the given sets, which will turn
out to be testable by simple algorithms, will in conjunction with Theorem 1 be
useful for designing algorithms computing branchwidth of graphs.

Observation 1. If X has a k-troika respecting S1, S2, ..., Sq then |Si| ≤ k for
each 1 ≤ i ≤ q and |X | ≤ !3k/2".

The above is obvious, every subset must be of size at most k since it must
be contained in a part of size at most k, and the fact that every pair of parts
must have union X means that every element of X must belong to at least two
parts which implies 2|X | ≤ 3k. Note that the case of respecting a single subset
is trivial, the necessary and sufficient conditions are that the subset has at most
k elements and |X | ≤ !3k/2". Likewise, if |S1 ∪ S2 ∪ ... ∪ Sq| ≤ k then G has a

New Tools and Simpler Algorithms for Branchwidth 385

k-troika respecting S1, S2, ..., Sq precisely when |X | ≤ !3k/2" since we may as
well view the union of all the subsets as a single subset.

4.1 k-Troikas Respecting Two Subsets

In this section we consider conditions under which a set X has a k-troika respect-
ing two subsets S1, S2. As mentioned above we assume that |S1 ∪ S2| > k and
also wlog that any k-troika (A,B,C) respecting S1, S2 has S1 ⊆ A and S2 ⊆ B.
Note that if X has a k-troika respecting S1, S2 then it has one where no element
of X belongs to all three parts. This motivates the following definition.

Definition 5. A k-tripartition of a set X is a partition of X into three (disjoint)
partition classes, such that the sum of sizes of any two partition classes is at most
k. A k-tripartition (T1, T2, T3) of X respects S1, S2 if S1∩S2 ⊆ T3, S1 ⊆ T1∩T3,
and S2 ⊆ T2 ∩ T3.

Observation 2. If (T1, T2, T3) is a k-tripartition of X then (T1∪T3, T2∪T3, T2∪
T1) is a k-troika of X, and the former respects S1, S2 iff the latter does. Con-
versely, if (A,B,C) is a k-troika of X with A∩B∩C = ∅ then (A∩C,B∩C,B∩A)
is a k-tripartition of X, and the former respects S1, S2 iff the latter does (as-
suming |S1 ∪ S2| > k as discussed above).

In view of this observation, when it comes to k-troikas respecting two subsets
S1, S2 we need only consider those that arise from k-tripartitions. In Observation
1 we gave some obviously necessary conditions on |X |, |S1|, |S2|. What other
necessary conditions do we have? Note that if |X | = 3k/2 and k is even then
only a ’balanced’ k-tripartition with each partition class having k/2 vertices will
do. Since we must have S1 ∩ S2 ⊆ T3 the case where |S1 ∩ S2| > k/2 therefore
implies a stronger size restriction on X . The best we could hope for is to set
T3 = S1 ∩ S2 and put k− |S1 ∩ S2| vertices into each of T1 and T2 which yields:

Observation 3. If X has a k-troika respecting S1, S2 then |X | ≤ |S1 ∩ S2| +
2(k − |S1 ∩ S2|) = 2k − |S1 ∩ S2|

Note that we did not need to preface this observation by the condition ”if
|S1 ∩ S2| > k/2” since |X | ≤ !3k/2" and |S1 ∩ S2| ≤ k/2 together imply |X | ≤
2k− |S1 ∩ S2|. As the next theorem shows, these obviously necessary conditions
are also sufficient (ONCAS).

Theorem 2. A set X has a k-troika respecting S1, S2 (assume |S1 ∪S2| > k) if
and only if |X | ≤ !3k/2", |S1| ≤ k, |S2| ≤ k and |X | ≤ 2k − |S1 ∩ S2|

Corollary 1. The smallest k such that X has a k-troika respecting S1, S2 is
max{|S1|, |S2|, �2|X |/3�,min{|S1 ∪ S2|, (�|X |+ |S1 ∩ S2|)/2�}} and can be com-
puted in constant time given |S1|, |S2|, |X |, |S1 ∩ S2|.

Note that |S1 ∪ S2| is easily found from |S1|, |S2|, |S1 ∩ S2|. The two terms
inside the minimum covers the two cases where the resulting smallest k-troika
(A,B,C) has either S1 ∪ S2 ⊆ A or S1 ⊆ A and S2 ⊆ B, respectively. Let us
remark that for the interval graph algorithm the above Corollary suffices, since
we then only deal with 2 minimal separators for each maximal clique.

386 C. Paul and J.A. Telle

4.2 k-Troikas Respecting q Subsets

We first consider the case of a set X respecting three subsets S1, S2, S3 and
denote by L the elements of X not belonging to any subset and by Ui, 1 ≤ i ≤ 3
the elements belonging to Si only: L = X \ (S1 ∪ S2 ∪ S3), U1 = S1 \ (S2 ∪ S3),
U2 = S2 \ (S1 ∪ S3), U3 = S3 \ (S2 ∪ S1) (see Figure 2).

A

1 U2

U3

LL RL

FL

S2

S3

S1

F1

L1

F2

2

R3L3

R

C

B

U

Fig. 2. Venn diagram of a set X consisting of the 6 circles S1, S2, S3, FL, LL, RL. If X

has k-troika (A, B, C) respecting S1, S2, S3 then we may as well require S1 ∩S2 ∩S3 =
A∩B∩C. The sets A,B, C are illustrated using the dotted lines at 2, 6 and 10 o’clock,
e.g. A contains elements between 6 and 2 o’clock. Elements belonging to only one of
the Si sets are named Ui and further partitioned in two parts by the dotted lines.

Lemma 3. X has a k-troika A,B,C with S1 ⊆ A,S2 ⊆ B,S3 ⊆ C ⇔ the
following system of linear equations in 5 non-negative integer variables a, b, c, d, e
has a solution:

a ≤ |U1|; b ≤ |U2|; c ≤ |U3|; d + e ≤ |L|
|S3|+ |U2|+ a− b + d + e ≤ k

|S1|+ |U3|+ |L|+ b− c− e ≤ k

|S2|+ |U1|+ |L| − a + c− d ≤ k

The only other possibility is that the union of two of the subsets is at most
k and in this case we may appeal to the conditions for respecting two subsets,
giving:

Lemma 4. X has a k-troika respecting S1, S2, S3 ⇔ it has one satisfying the
conditions of Lemma 3 or it has one where either S1 ∪ S2, S3 or S1 ∪ S3, S2 or
S2 ∪ S3, S1 satisfies the conditions of Lemma 2.

To respect q > 3 subsets we simply note that since each subset must be
contained in one of the three parts of the k-troika, there must exist a partition
of the subsets into three classes such that every subset in the same class is
contained in the same part.

New Tools and Simpler Algorithms for Branchwidth 387

Theorem 3. X has a k-troika respecting S1, S2, ..., Sq ⇔ there exists a partition
of {1, 2, ..., q} into three classes P1, P2, P3 such that by Lemma 4 X has a k-troika
respecting the 3 subsets W1 =

⋃
i∈P1

Si, W2 =
⋃

i∈P2
Si, W3 =

⋃
i∈P3

Si.

Since a set of size q has 3q partitions into three classes we have:

Corollary 2. In time O(poly(|X |)3q) we can decide if a set X has a k-troika
respecting subsets S1, S2, ..., Sq.

5 Algorithms Computing Branchwidth

Throughout this section G is a chordal graph with m edges, n vertices, maximal
cliques {X1, X2, . . .Xq}, having a clique-tree TG with nodes {1, 2, ..., q} such
that node i corresponds to maximal clique Xi. Mazoit [13] conjectured that
branchwidth is computable in polynomial-time for any chordal graph given with
a clique tree having polynomially many subtrees. We will prove his conjecture,
but along the way we also give a fast algorithm for the case of interval graphs,
i.e. when the clique tree is a path. We first define a merged supergraph of G
which is obtained by taking certain sets of maximal cliques that are connected
in TG and merging each set into a larger clique.

Definition 6. H is a merged supergraph of G if there exists a partition of
TG into subtrees {H1 . . . Hh} (each node j ∈ V (TG) belongs to one and only
one subtree Hi) such that the set of maximal cliques in H is: {X ′

i = ∪j∈HiXj}
(1 � i � h).

It is straightforward to see that a merged supergraph H of a chordal graph
G is chordal with clique-tree TH built by making maximal cliques X ′

i and X ′
j

adjacent iff Hi and Hj contains two adjacent nodes of TG, in other words TH is
a minor of TG. We first show that to find the branchwidth k of G it suffices to
search for k-good chordal graphs among the merged supergraphs of G.

Lemma 5. Let G be a chordal graph of bw(G) = k and let H be a k-good chordal
supergraph of G. Let X be a maximal clique of G whose neighboring maximal
cliques in TG are X1, X2 . . . Xl. If X does not have a k-troika respecting the
minimal separators in X, then there exists Xi (1 � i � l) such that Xi ∪X is a
clique in H.

Lemma 6. A chordal graph G has bw(G) � k ⇔ there exists a k-good chordal
graph H that is a merged supergraph of G.
Proof: ⇐: By Theorem 1 the existence of a k-good chordal graph H that is a
merged supergraph of G implies that bw(G) � k.
⇒: By induction on the number q of maximal cliques of G. If G has at most

2 maximal cliques, then Lemma 5 establishes the claim. Assume by induction
that the property holds for any chordal graph of branchwidth k having q ≥ 2
maximal cliques. If G is not a k-good chordal graph, then it has a maximal
clique X which does not have a k-troika respecting the minimal separators X1∩

388 C. Paul and J.A. Telle

X,X2 ∩ X, . . . ,Xl ∩ X , where X1 . . . Xl are the neighbors of X in the clique
tree TG. Since G has branchwidth k it has some k-good chordal supergraph in
which, by Lemma 5, some neighbor Xj (1 ≤ j ≤ l) has been merged with X
into a bigger clique. But then consider the merged supergraph of G arising from
merging exactly X and Xj into one clique. It has q − 1 maximal cliques and by
the induction hypothesis there is a k-good chordal graph H which is a merged
supergraph of G′ and therefore also of G. �

5.1 Branchwidth of Interval Graphs

A graph is an interval graph iff it enjoys a consecutive clique arrangement (cca)
that is an ordering of its maximal cliques C = (X1, . . .Xq) such that for any
vertex x, the maximal cliques containing x occur consecutively. From any lin-
ear time interval graph recognition algorithm such a cca can be computed (see
e.g. [3]). It is well known that for any 1 < i � q, the set Si = Xi−1 ∩ Xi is a
minimal separator. Let S1 = Sq+1 = ∅ be dummy separators. Let us denote by
Xi,j = ∪i�g�jXg (1 � i � j � q) a merged set of consecutive cliques.

Given a cca CG = (X1 . . .Xq) of an interval graph G, a merged supergaph
H of G has caa CH = (X ′

1 . . .X
′
h) with h ≤ q such that for any 1 � i � h,

X ′
i = Xli,ri with l1 = 1, li = ri−1 + 1 for i > 1 and rh = q. Note that a merged

supergraph of an interval graph is also an interval graph.
Our algorithm first computes for each pair 1 ≤ i ≤ j ≤ q the smallest value

K[i, j] such that if we merge the consecutive cliques Xi,j into one big clique, it
will have a K[i, j]-troika respecting Si and Sj+1. Then by simple dynamic pro-
gramming it computes the best way of merging various such sets into a merged
supergraph, see Figure 3. Incrementally, in step j, we optimize over the possible
cutoff points 1 ≤ i ≤ j that define the ’rightmost’ merged set of cliques Xi,j . We
prove correctness before considering the running time.

Pre-processing (see below) to find |Si|, |Xi|, |Si ∩ Sj |, |Xi,j |
For 1 ≤ i ≤ j ≤ q + 1 Do Compute K[i, j] by the formula of Corollary 1
A[0] = 0
For j = 1 to q Do A[j] = min{max{A[i − 1], K[i, j]} : 0 < i � j}

Fig. 3. Computation of bw(G) = A[q] for interval graph G

Theorem 4. The computed value A[q] is the branchwidth of interval graph G.
Proof: Let us prove by induction that, for 1 � i � q, A[i] = bw(Gi) where Gi

is the graph induced by X1,i with an extra dummy vertex xi adjacent to Si+1.
By Corollary 1 K[i, j] is the minimum such that set Xi,j has a K[i, j]-troika
respecting Si and Sj+1. As A[1] = K[1, 1], X1 has a A[1]-troika respecting S2.
Therefore {x1}∪S2 also has a A[1]-troika respecting S2. Theorem 1 implies that
bw(G1) = A[1]. Assume that A[j−1] = bw(Gj−1) for j > 1. Let Hj be the merged

New Tools and Simpler Algorithms for Branchwidth 389

supergraph of Gj such that bw(Gj) = bw(Hj). Then by Lemma 5 the maximal
clique Xj is contained in Hj in a maximal clique X ′ = Xi,j for some 1 � i � j.
It therefore follows from Lemma 6, that bw(Gj) � max{A[i−1],K[i, j]} for any
1 � i � j and thus bw(Gj) = A[j]. We proved that bw(Gq) = A[q]. Since Gq

is the union of two connected components, the first one being G itself and the
second an isolated vertex xq, bw(G) = bw(Gq). �

By Corollary 1 the computation of matrices K and A takes time O(q2) if the
values |Si|, |Xi|, |Si∩Sj+1|, and |Xi,j | can be accessed in O(1) time. We now show
that these values can be made available in array locations S[i], X [j], S[i, j], X [i, j]
by pre-processing stage. Any interval graph recognition algorithm [3] is able to
ouput in O(n+m) time the size X [i] = |Xi| of any maximal clique and S[i] = |Si|
of any minimal separator, and also for any vertex x the range [Left(x), Right(x)]
of consecutive cliques containing x. From those values, assuming for any 1 � i �
q X [i, i] = |Xi|, we have for i + 1 � j � q, X [i, j] = X [i, j − 1] + X [j] − S[j].
To find the values S[i, j] = |Si ∩ Sj+1| fast, we first compute the intermediary
q× q-matrix M such that for i < j, M [i, j] = |(Si ∩Sj) \Sj+1|. Since |Si ∩Sj | =∑

h�j |(Si ∩ Sj) \ Sj+1|, the array S[i, j] can be computed as follows:

Initialize each entry of M [i, j] to 0;
For any Si (2 � i � q) and x ∈ Si Do If Right(x) = j Then add 1 to M [i, j]
For i = 2 to q Do S[i, q] = M [i, q]

For j = q − 1 downto i Do S[i, j] = S[i, j + 1] + M [i, j]

As the sum of the sizes of the minimal separators of an interval graph is
bounded by m, this preprocessing requires O(m+n+ q2) time. We have shown:

Theorem 5. Branchwidth of an interval graph G = (V,E) on m edges, n ver-
tices and q ≤ n maximal cliques can be computed in time O(n + m + q2).

5.2 Clique Trees with Polynomial Number of Subtrees

For a subtree T ′ of a tree T we define its connection points as the pairs of vertices
a1b1, a2b2, ..., apbp such that aibi is an edge of T with ai ∈ T ′ and bi ∈ T \ T ′.
Assume clique tree TG of chordal graph G has a polynomial number of subtrees
T1, T2, ..., Tt, ordered by size. Let Ti have connection points a1b1, a2b2, ..., apbp.
Define the connection separators of Ti to be Sj = Xaj ∩Xbj for 1 ≤ j ≤ p, where
Xaj , Xbj are the maximal cliques of G corresponding to tree nodes aj , bj . Define
K[i] to be True if V (Ti) has a k-troika respecting the connection separators
S1, S2, ..., Sp of Ti. The following algorithm will in polynomial time decide if G
has branchwidth at most k:

Theorem 6. For a chordal graph G given with a clique tree having a polyno-
mial number t of subtrees the above algorithm will in polynomial time decide if
branchwidth of G is at most k.

390 C. Paul and J.A. Telle

For i = 1 to t Do Compute boolean K[i] by the system of equations of Theorem 3
A[i] = T if K[i] = T or if ∃e ∈ E(Ti) with A[e1] = T and A[e2] = T
for subtrees Te1 , Te2 of Ti \ e; otherwise A[i] = F

Fig. 4. Branchwidth of G ≤ k iff A[t] = T

References

1. H.L. Bodlaender and D.M. Thilikos. Constructive linear time algorithms for
branchwidth. In 24th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), Vol. 1256 of Lecture Notes in Computer Science, p. 627–637,
1997.

2. H.L. Bodlaender and D.M. Thilikos. Graphs with branchwidth at most three.
Journal of Algorithms, 32:167–194, 1999.

3. K. Booth and G. Lueker. Testing of the consecutive ones property, interval graphs,
and graph planarity testing using PQ-tree algorithms. Journal of Computer and
System Sciences, 13:335–379, 1976.

4. W. Cook and P.D. Seymour. Tour merging via branch-decompositions. Journal
on Computing, 15:233–248, 2003.

5. E. Demaine, F. Fomin, M. Hajiaghayi, and D.M. Thilikos. Fixed-parameter al-
gorithms for (k,r)-center in planar graphs and map graphs. In 30th International
Colloquium on Automata, Languages, and Programming (ICALP). Vol. 2719 of
Lecture Notes in Computer Science, p. 829–844, 2003.

6. F. Fomin and D. Thilikos. Dominating sets in planar graphs: Branch-width and ex-
ponential speedup. In 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), p. 168–177, 2003.

7. F. Fomin and D. Thilikos. A simple and fast approach for solving problems on
planar graphs. In 22nd Annual Symposium on Theoretical Aspect of Computer
Science (STACS) Vol. 2996 of Lecture Notes in Computer Science, p. 56-67, 2004.

8. F. Fomin and D. Thilikos. Fast parameterized algorithms for graphs on surfaces:
Linear kernel and exponential speedup In 31st International Colloquium on Au-
tomata, Languages, and Programming (ICALP), Vol. 3142 of Lecture Notes in
Computer Science, p. 581-592, 2004.

9. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory Series B, 16:47–56, 1974.

10. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Acad. Press, 1980.
11. T. Kloks, J. Kratochvil, and H. Müller. New branchwidth territories. In 16th Ann.

Symp. on Theoretical Aspect of Computer Science (STACS) Vol. 1563 of Lecture
Notes in Computer Science, p. 173–183, 1999.

12. T. Kloks, J. Kratochvil, and H. Müller. Computing the branchwidth of interval
graphs. Discrete Applied Mathematics 145:266-145, 2005.

13. F. Mazoit. A general scheme for deciding the branchwidth. Technical Report
RR2004-34, LIP - École Normale Supérieure de Lyon, 2004.
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2004/RR2004-34.pdf.

14. N. Robertson and P.D. Seymour. Graph minors X: Obstructions to tree-
decomposition. Journal on Combinatorial Theory Series B, 52:153–190, 1991.

15. P.D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

Treewidth Lower Bounds with Brambles�

Hans L. Bodlaender1, Alexander Grigoriev2, and Arie M.C.A. Koster3

1 Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

hansb@cs.uu.nl
2 Department of Quantitative Economy, University of Maastricht,

P.O. Box 616, 6200 MD Maastricht, The Netherlands
a.grigoriev@ke.unimaas.nl

3 Zuse Institute Berlin (ZIB), Takustraße 7, D-14195 Berlin-Dahlem, Germany
koster@zib.de

Abstract. In this paper we present a new technique for computing lower
bounds for graph treewidth. Our technique is based on the characterisa-
tion of the treewidth as the maximum order of a bramble of the graph. We
give two algorithms: one for general graphs, and one for planar graphs.
The algorithm for planar graphs is shown to give a lower bound for
the treewidth that is at most a constant factor away from the exact
treewidth. For both algorithms, we report on extensive computational
experiments that show that the algorithms give often excellent lower
bounds, in particular when applied to (close to) planar graphs.

1 Introduction

Motivation. In many applications of the notion of treewidth, it is desirable that
we can compute tree decompositions of small width of given graphs. Unfortu-
nately, finding a tree decomposition of optimal width and determining the exact
treewidth are NP-hard; see [3]. Much research has been done in recent years on
the problem to determine the treewidth of the graph: this includes a faster expo-
nential time algorithm [17], a theoretically optimal but due to the large constant
factor hidden in the O-notation impractical linear time algorithm for the fixed
parameter case [5], a polynomial time algorithm for graphs with polynomially
many minimal separators [11], a branch and bound algorithm [18], preprocess-
ing methods [9,8], upper bound heuristics (see e.g., [2,13,21]), and lower bound
heuristics. An overview with many references can be found in [6].

In this paper, we focus on lower bound methods for treewidth. Lower bound
algorithms are interesting and useful for a number of different reasons. When
running a branch and bound algorithm to compute the treewidth of a graph (see
e.g., [18]), a good lower bound helps to quickly cut of branches. Lower bounds

� This work was partially supported by the Netherlands Organisation for Scientific
Research NWO (project Treewidth and Combinatorial Optimisation) and partially
by the DFG research group ”Algorithms, Structure, Randomness” (Grant number
GR 883/9-3, GR 883/9-4).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 391–402, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

392 H.L. Bodlaender, A. Grigoriev, and A.M.C.A. Koster

inform us on the quality of upper bounds. Also, a high lower bound can tell that
we should not aim for a solution of a problem on a certain graph instance with
treewidth techniques: Suppose we decide we want to solve a certain problem on
a given graph with a dynamic programming algorithm on a tree decomposition.
If we have a large lower bound for the treewidth of that graph, we know in
advance that this dynamic programming algorithm will use much time, and
hence we should direct our attention to trying different methods.

In recent years, several treewidth lower bound methods have been found and
evaluated. A trivial lower bound for the treewidth is the minimum degree of a
vertex. Better lower bounds are obtained by looking at the minimum degrees
of induced subgraphs or of graphs obtained by contractions (see [10]). Often
slightly better than the minimum degree is a lower bound by Ramachandra-
murthi [24], which is (for non-complete graphs) the minimum over all pairs of
non-adjacent vertices v, w, of the maximum degree of v and w. Another lower
bound, found by Lucena [23], and analysed in [7] is based on maximum cardinal-
ity search. Combining these bounds with contractions gives often considerable
improvements [10,22]. Significant improvements can be obtained by using these
techniques in combination with a method introduced by Clautiaux et al. [12],
based upon adding edges between vertices that have many common neighbours
or disjoint paths between them.

The experiments carried out in [10,22] show that for several graphs, the
existing lower bound methods give good bounds that are often close and in
several cases equal to the known upper bounds. However, there are also several
instances where each of these methods yields rather small lower bounds that
are far away from the real treewidth. Instances of this type are often planar
graphs, or graphs that are in a certain sense close to being planar, e.g., graphs
obtained by taking the union of a small number of TSP-tours on a point set in
the plane (see [14]). The reason that the known techniques appear to fail for
these instances probably is due to the fact that they — in a certain sense — are
all degree-based, and planar graphs always have vertices of small degree, cf. [30].
Thus, we were searching for a treewidth lower bound method using a different
principle that works well for graphs that are planar or close to planar, or have in
some other sense ‘not many high degree vertices’. In this paper, we present such
a different method, based on the notion of bramble (for the first time, brambles
appeared in [27] with the name screens).

Notations and Techniques. Let G = (V,E) be a graph. Two subsets of V are said
to touch if they have a vertex in common or E contains an edge between them.
Reed [25] calls a set B of mutually touching connected vertex sets a bramble.
A subset of V is said to cover B if it it is a hitting set for B (i.e. a set which
intersects every element of B. The order of a bramble B is the minimum size
of a hitting set for B. The bramble number of G is the maximum order of all
brambles of G. The relationship between the bramble order and the treewidth
was obtained by Seymour and Thomas [27]:
Theorem 1 (Seymour and Thomas [27]). Let k be a non-negative integer.
A graph has treewidth k if and only if it has bramble number k + 1.

Treewidth Lower Bounds with Brambles 393

For a short proof of this theorem we refer to Bellenbaum and Diestel [4].
So, finding a high order bramble immediately implies getting a good lower

bound for the treewidth. In this paper, we give algorithms that construct bram-
bles and compute their orders: in Section 2 for general graphs; and in Section 3
for planar graphs. We finish the paper presenting the computational results.

A graph H is a minor of G, if H can be obtained from G by a series of zero
or more vertex deletions, edge deletions, and edge contractions. We use several
standard graph theoretic notions, and skip the definitions here, including those
of tree decomposition and treewidth.

2 Brambles in General Graphs

Algorithm A1 gets as input an arbitrary undirected graph G, finds several bram-
bles of G or minors of G, and outputs the bramble with largest order thus found.

Preprocessing.

1. Take an arbitrary vertex r in V . Define V0 := {r}. Let us refer to this set as
to the level 0 set of vertices.

2. Suppose that k ≥ 1 preprocessing steps have been done and k level sets
V0, V1, . . . , Vk−1 were defined. We define level k set Vk as follows. Consider
the vertices V ′

k ⊆ V \ {
⋃k−1

i=0 Vi} adjacent to the vertices from Vk−1. If those
vertices form a connected subgraph then Vk := V ′

k. Otherwise, let us find
a connectivity closure of V ′

k , i.e. a subset V ′′
k ⊆ V \ {

⋃k−1
i=0 Vi} such that

the graph induced by V ′
k ∪ V ′′

k is connected. This can be done, for instance,
by adding to initially empty set V ′′

k all shortest paths between the compo-
nents in V ′

k . If there is no connectivity closure for the set V ′
k then redefine

Vk−1 := V \ {
⋃k−2

i=0 Vi} and go to step 3 of preprocessing. Notice, that the
described procedure is a classical Breadth-First-Search (BFS) extended to
taking connectivity closures. Let the number of obtained level sets be R− 1.

3. Add to the graph a dummy vertex q; connect all vertices from the level R−1
to q; and define the level R set by VR := {q}. For simplicity, let us call the
level sets simply by levels.

Basic Step. For all 0 ≤ i < j ≤ R we do the following.

1. Contract the first i levels V0, . . . , Vi−1 and the last R−j levels VR−j+1, . . . , VR

into vertices si and tj respectively. Denote the resulting graph by Gi,j

2. Find a minimum (si, tj)-cut in Gi,j by max-flow techniques; see [1]. Let ci,j

be the cardinality of such a cut.
3. In Gi,j find ci,j vertex disjoint (si, tj)-paths P ′

� , � = 1, . . . , ci,j , delete from
each of these paths vertices si and tj , and denote the resulting paths by P�.

4. Define Bi,j as follows. Let {si} be an element of Bi,j . For all i ≤ k ≤ R − j
and 1 ≤ � ≤ ci,j let the set Vk ∪ P� be an element of Bi,j .

Output. Output the maximum cardinality set Bi,j, 0 ≤ i < j ≤ R. STOP.

394 H.L. Bodlaender, A. Grigoriev, and A.M.C.A. Koster

Theorem 2. Set Bi,j , 0 ≤ i < j ≤ R, is a bramble of Gi,j \ {tj}. The order of
this bramble equals min{ci,j + 1, R− j − i + 2}.

Proof. Take any pair i, j such that 0 ≤ i < j ≤ R and consider the corresponding
graph Gi,j . Let us check whether all conditions in the definition of brambles are
satisfied for the set Bi,j.

First of all, let us verify that each element of Bi,j forms a connected set. From
preprocessing we know, that each level is a connected set. The paths constructed
in the basic step of A1 are clearly connected and each of those paths crosses all
levels in Gi,j . Hence a union of any level and any path forms a connected set.

Secondly, all elements of Bi,j are mutually touching: all elements are touching
{si}, and again all paths from the basic step in A1 pass through all levels in Gi,j .
Therefore, Bi,j is a bramble for Gi,j .

Clearly, the min-cut together with si forms a cover for the constructed bram-
ble. A set of representative vertices, one from each level k, i ≤ k ≤ R−j, together
with si also form a cover for the constructed bramble. Thus, the order of the
bramble is at most min{ci,j+1, R−j−i+2}. Since the levels are non-intersecting,
the paths constructed at the basic step ofA1 are vertex disjoint, and the bramble
contains all combinations of these levels and paths, the order of the bramble is
at least min{ci,j + 1, R− j − i + 2}, which completes the proof. ��

Theorem 3. The lower bound LB1 = max0≤i<j≤R |Bi,j | − 1 on the treewidth
of a general graph G can be obtained by Algorithm A1 in time O(n3m), where
|Bi,j | is the order of bramble Bi,j, n is the number of vertices in G, and m is the
number of edges in G.

Proof. By Theorem 1 the order of any bramble is at most the treewidth of the
graph plus one. By Theorem 2, Algorithm A1 finds a bramble Bi,j for each graph
Gi,j . Since Gi,j is a minor of G, we derive that LB1 = max0≤i<j≤R |Bi,j | − 1 is
a lower bound for the treewidth of graph G.

Computing the partition of V into the level sets requires at most R times call-
ing an all-pairs shortest paths subroutine. Such a subroutine can be implemented
in O(mn) time; see [1]. Thus, the preprocessing requires at most O(Rnm) time.

In the basic step of the algorithm we compute c vertex disjoint (s, t)-paths in
a graph, which can be done in O(nm) time; see [1]. Together with enumeration
over all possibilities for i and j, it brings the time complexity of the basic step
up to O(R2nm). Since R ≤ n, we have that the total running time of A1 is at
most O(n3m), as required. ��

At cost of an additional multiplicative factor of n we can find a root vertex r
for the BFS that provides the best lower bound for the treewidth, cf. Section 4.

3 Brambles in Planar Graphs

Algorithm A1 can be significantly improved when the input graph is restricted
to be planar. Consider the following Algorithm A2 that finds brambles in several
minors of a connected planar graph G.

Treewidth Lower Bounds with Brambles 395

Input. A planar embedding of G with no edge crossings. It is well known that
such an embedding can be constructed in linear time. Without loss of generality
we assume that the exterior face of this embedding is a simple cycle containing
at least three vertices (G is a simple graph without parallel edges).
Preprocessing. Let North, East, South, and West be four simple paths (possibly
atomic) belonging to the exterior face such that North has one common endpoint
with East and one common endpoint with West, and so has South. Moreover,
let the lengths of these four paths be roughly the same, i.e. the length may vary
by at most one vertex. Notice that such paths always exist and can be found
in linear time. We add in the exterior four dummy vertices N , E ,S, and W
and connect them to all vertices in North, East, South, and West respectively.
Further in the paper we always refer to the vertices incident to N , E ,S,W as to
North, East, South and West, respectively.

Basic Step. We view the algorithm as a rooted tree with a root corresponding to
the graph constructed in the preprocessing. At each node of the tree we perform
the following steps.

1. Given a node i in the tree and the planar graph Gi associated with this node.
Let ci denote the size of a minimum (N ,S)-cut in graph Gi \ {E ,W} and
di the size of a minimum (W , E)-cut in Gi \ {N ,S}. Find ci vertex disjoint
paths connecting N and S, and di vertex disjoint paths connecting W and
E . Denote bi = min{ci, di}. Clearly, Gi \ {N , E ,S,W} contains a bi× bi grid
as a minor. We create an order bi bramble Bi for this bi × bi grid taking the
set of all crosses in the grid; see [4].

2. If bi = ci, we create the child nodes of i as follows. The (N ,S)-cut C of
cardinality ci specifies two disconnected subsets V N

i and V S
i of vertices in

Gi \ C where V N
i is connected to N and V S

i is connected to S. To define
the first child node of i we contract in Gi the connected subgraph induced
by {N} ∪ V N

i ∪ C into a vertex N . After this contraction, edges (N ,W)
and (N , E) will appear, see Figure 1 (a)-(b).

We remove those edges from the graph. Clearly, after the contraction,
West and North, and East and North, have no endpoints in common. We
add one edge from W to the exterior of the graph and one edge from E
to the exterior of the graph such that North will again has one common
endpoint with West and one common point with East, see Figure 1 (c). Let
the resulting graph GN

i be the first child node of i.
The second child node we obtain similarly by contraction of the subgraph

induced by {S} ∪ V S
i ∪ C into a vertex S. The connected components of

Gi \ C different from V N
i and V S

i form also the child nodes of the tree.
For those child nodes we perform the preprocessing again to establish the
dummy vertices.

3. If bi = di, we similarly create the child nodes with respect to East-West.
4. We recurse on the child nodes unless the number of non-dummy vertices in

the node graph becomes less or equal to the largest value bi observed by the
algorithm (so far).

Output. Output the maximum cardinality bramble Bi. STOP.

396 H.L. Bodlaender, A. Grigoriev, and A.M.C.A. Koster

(a) Common neighbor of N
and W

(b) Contraction to N (c) New child node

Fig. 1. Child node creation

Theorem 4. The lower bound LB2 = maxi bi on the treewidth of a planar graph
can be obtained by Algorithm A2 in time O(n2 logn).

Proof. We already observed that for any node i in the tree, bi is a side size of a
square grid minor in G. Since the treewidth of a square grid is its side size we
directly have that LB2 = maxi bi is a lower bound on the treewidth of G.

Notice that the preprocessing requires only linear time. In the basic step of
the algorithm we compute two minimum cuts in a planar network, which can be
done in O(n logn) time; see [1]. Since the number of nodes in the tree is O(n),
performing the basic step on all O(n) nodes, we have the total running time of
A2 at most O(n2 logn), as required. ��

It is noticeable that Algorithm A2, besides estimation of the treewidth, ap-
proximates another parameter of the planar graph, namely the side size of the
largest grid minor. It is well known that graphs having a large treewidth must
have also a large grid as a minor; see, e.g., [16,15,26]. The following theorem and
corollary present the algorithmic consequences of this fact.

Theorem 5. For any planar graph G, the lower bound on the treewidth returned
by Algorithm A2 satisfies inequality S−16

4 ≤ LB2 ≤ S, where S is a side size of
the largest grid minor in G, and these bounds for LB2 are tight.

Proof. By construction, LB2 is the side size of a grid minor of G. Since S is the
side size of the largest grid minor, the inequality LB2 ≤ S always holds. Thus,
it remains to prove the lower bound for LB2.

We prove the bound by contradiction. Assume LB2 < S−16
4 . Let M be the

largest square grid minor in G, thus having the side size S. From the fact that
Algorithm A2 processes the child nodes until they contain at most bi ≤ LB2

non-dummy vertices and from the assumption that LB2 < S−16
4 � S2, there

is a node in the tree such that M is cut by North,East, South, and West.
Assume |North| ≥ S/4 and there is an interior vertex of M belonging to North.
Then we immediately derive that there is a (grand-) parent node j in the tree
such that the value bj calculated by Algorithm A2 in that node is at least
S
4 − 4 = S−16

4 yielding LB2 ≥ S−16
4 . The same we derive for East, South and

West. Therefore, none of the cuts, North,East, South, or West, is such that it
contains an interior vertex of M and the cardinality of the cut is at least S/4.

Treewidth Lower Bounds with Brambles 397

Since T = North ∪ East ∪ South ∪West forms a cut of M and in the interior
of M this total cut has at most S − 1 points, T can cut off at most S2/2 points
from M . Therefore, there is a branch of the tree where all node graphs contain
at least S2/2 � S−16

4 vertices. Since this holds also for a leaf in this branch,
we derive that there must exist a node i in the tree with value bi returned by
Algorithm A2 at least S2/2 ≥ S−16

4 yielding the desired contradiction.
To prove the asymptotical tightness of the bound, consider an S×S grid. Let

the dummy nodes be connected to one side of the grid as depicted on Figure 2. At

Fig. 2. Tightness of the lower bound

the first basic step of the algorithm both minimum cuts, (N ,S)− and (W , E)−,
have cardinality S/4. Proceeding the algorithm further on does not improve the
lower bound obtained at the first basic step. Therefore, on the given instance
the algorithm outputs the lower bound LB2 = S/4.

Tightness of the upper bound on LB2 follows directly from the consideration
of S × S grid when each dummy node is connected to one side of the grid
dedicated especially to this dummy node. In this case the algorithm outputs
LB2 = S recorded at the first basic step of the algorithm. ��

Notice that at cost of additional factor of n in the running time we can im-
prove Algorithm A2 by ”rotating” North, East, South, and West, i.e., choosing
the best possible combination of common endpoints of the paths.

From Theorem 5 and the result by Robertson, Seymour, and Thomas [26]
that every planar graph of treewidth tw(G) has an Ω(tw(G)) × Ω(tw(G)) grid
graph as a minor, we deduce the following corollary.

Corollary 1. Algorithm A2 is a constant approximation algorithm for th e
treewidth and for the branchwidth on planar graphs.

Proof. From Theorem 5 we have that S = Θ(LB2). From the result by Robert-
son, Seymour, and Thomas [26], we have that tw(G) = Θ(bw(G)) = Θ(S) =
Θ(LB2), where bw(G) is a branchwidth of graph G. ��

398 H.L. Bodlaender, A. Grigoriev, and A.M.C.A. Koster

We complete this section with a brief discussion of advantages and disadvan-
tages of Algorithm A2 in comparison with the known approximation algorithms
for the treewidth on planar graphs. The earliest and the most studied algorithm
was proposed by Seymour and Thomas in [28]. The algorithm runs in O(n2) time
and has performance ratio 3/2. The biggest disadvantage of the Seymour and
Thomas algorithm is that it is not memory friendly and even for the medium
size graphs it easily runs out of memory; see [19,20]. Recently, Hicks in [20] made
several attempts to get a memory friendly algorithm based on the Seymour and
Thomas ideas. He derived two memory friendly algorithms with running time
O(n3). Clearly, Algorithm A2 is also a memory friendly algorithm and it has
nearly the same running time as Seymour and Thomas’ algorithm, and better
running time than the Hicks’ algorithm. The disadvantage of Algorithm A2 is
the worse performance ratio in comparison to the other algorithms. On the other
hand, Algorithm A2 has another advantage, namely, that this is a polynomial
time 4-approximation algorithm for finding the largest square grid minor in a
planar graph.

4 Computational Experiments

Algorithms A1 and A2 have been implemented in C++ as to compare their qual-
ity with previously studied treewidth lower bounds in practice. In this section
we report on the obtained results for two selected sets of instances. The first
set contains a number of general graphs, that have been used in previous stud-
ies [10,22] and originate from different applications like probabilistic networks,
frequency assignment, and vertex coloring. The second set of instances consists
of planar graphs that have been used by Hicks [19,20] before. From both sets we
selected some instances that are representative for the whole set and/or show
an interesting behaviour. The CPU times reported are in seconds and obtained
on a Linux-operated PC with 3.0 GHz Intel Pentium 4 processor.

Algorithm A1 for general graphs has been tested on both the selected planar
and non-planar graphs. The algorithm is enhanced by recording the maximum
|Bij | so far and testing whether following Gi,j can beat this maximum.

As pointed out before, the maximum can be increased further by taking all
vertices as root vertex r once. The additional O(n) complexity of the algorithm
can be reduced in practice by sorting or limiting the number of root vertices.
In principle the algorithm has to be executed for only one of the vertices for
which the maximum is achieved. However, we cannot select on this value before
computing it. Experiments have shown that the eccentricity of a vertex is a
reasonable criterion to sort/limit the root vertices. The eccentricity ε(v) of a
vertex v is the maximum depth of a breadth first search with v as root, cf. [29]
and hence the best lower bound with root r is limited by ε(r). Figure 3 shows for
two planar graphs the eccentricity and LB1 for all possible root vertices, sorted
first according to non-increasing eccentricity and second to non-increasing LB1.
If the best bound achieved so far is at least ε(r) for some r ∈ V , we do not
have to run algorithm A1 with r as root. By sorting the vertices according to

Treewidth Lower Bounds with Brambles 399

non-increasing eccentricity, the number of root vertices for which the algorithm
should be executed is limited in our computations this way. Figure 3 in fact shows
that the computation times can be reduced further by limiting the number of
root vertices to those with high eccentricity.

(a) u724 (b) nrw1379

Fig. 3. LB1 and eccentricity for all possible root vertices

Table 1 reports the results for non-planar graphs, in comparison with a con-
traction degeneracy δC(G) lower bound [10]. Different behaviour can be ob-
served: for the graphs originating from probabilistic networks, frequency assign-
ment, and coloring, LB1 is outperformed by the contraction degeneracy, both
in time and value. For the graphs originating from a solution approach for the
traveling salesman problem, LB1 is significantly higher than δC(G). It is known
that these graphs are close to planar, which restricts the contraction degener-
acy to exceed small values (i.e., δC(G) ≤ 5 + γ(G), where γ(G) is the genus
of G [30]). As was hoped for, the new lower bound turns out to be profitable

Table 1. Results for algorithm A1 on selected non-planar graphs

instance |V | |E| δC CPU LB1 CPU UB

link 724 1738 11 0.02 7 89.95 13
munin1 189 366 10 0.00 4 2.19 11
munin3 1044 1745 7 0.01 4 195.35 7
pignet2 3032 7264 38 0.12 5 3456.77 135
celar06 100 350 11 0.00 3 1.50 11
celar07pp 162 764 15 0.01 3 19.40 18
graph04 200 734 20 0.02 5 0.38 55
school1 385 19095 122 0.59 3 46.22 188
school1-nsh 352 14612 106 0.39 3 45.34 162
zeroin.i.1 126 4100 50 0.04 2 0.30 50
fl3795-pp 1433 3098 6 0.04 6 1501.53 13
fnl4461-pp 1528 3114 5 0.05 14 4703.67 33
pcb3038-pp 948 1920 5 0.03 12 383.77 25
rl5915-pp 863 1730 5 0.02 10 470.76 23
rl5934-pp 904 1800 5 0.02 12 378.17 23

400 H.L. Bodlaender, A. Grigoriev, and A.M.C.A. Koster

for exactly those instances, closing the gap to the best known upper bound UB
substantially. Table 2 shows the results for planar graphs. The same behaviour
as for the close to planar graphs can be observed.

Table 2. Results for algorithms A1 and A2 on selected planar graphs

instance |V | |E| δC CPU LB1 CPU LB2 CPU LB2R CPU β(G) − 1
d1655 1655 4890 5 0.04 20 995.62 17 13.76 18 574.05 28
d2103 2103 6290 5 0.07 23 1331.97 24 22.21 24 276.97 28
nrw1379 1379 4115 5 0.04 21 567.85 20 9.56 22 74.30 30
pr1002 1002 2972 5 0.03 16 605.80 17 4.69 17 57.55 20
pr2392 2392 7125 5 0.07 21 16391.82 19 21.46 20 417.70 28
tsp225 225 622 5 0.01 10 15.68 9 0.43 9 7.88 11
u2152 2152 6312 5 0.06 23 60192.11 23 12.53 23 1069.80 30
u2319 2319 6869 5 0.06 41 2625.04 31 25.64 33 1011.65 43
u724 724 2117 5 0.02 16 550.48 14 2.98 14 58.46 17

Table 2 also shows the lower bound LB2 computed by algorithm A2. As
initial outer face, the longest face of the computed planar embedding is taken,
and partitioned in (roughly) equally sized parts North, East, South, and West.
Comparing LB1 and LB2, there is no clear winner. In some cases LB2 is better
than LB1, but more often it is slightly worse. The computation time of LB2 is
however significantly less than that of LB1, which could be of importance if the
bound is incorporated in a branch and bound approach.

The 3/2-approximation algorithm of Seymour and Thomas [28] for planar
graphs computes in fact the branchwidth β(G). It is well-known that the β(G)−1
is a lower bound on the treewidth. The values reported in Table 2 are taken from
Hicks [19]. In all cases, this lower bound is higher than LB1 and LB2, as is the
computational effort, cf. [19].

As pointed out in Section 3, the lower bound can be enhanced by rotation of
North, East, South, and West. In column LB2R, we report such results. A slight
improvement in comparison with the case without rotation can be observed.

5 Concluding Remarks

The treewidth of a graph can be characterised by the notion of brambles, in-
troduced by Seymour and Thomas [28]. In this work, we developed bramble
construction algorithms as to bound the treewidth from below. The constructed
brambles turn out to be profitable, both in theory and practice, for graphs that
are (close to) planar. These results complement previously studied treewidth
lower bounds that turned out to be good for graphs that are far from planar.

Treewidth Lower Bounds with Brambles 401

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

2. E. Amir. Efficient approximations for triangulation of minimum treewidth. In Pro-
ceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pages
7–15, 2001.

3. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

4. P. Bellenbaum and R. Diestel. Two short proofs concerning tree-decompositions.
Combinatorics, Probability, and Computing, 11:541–547, 2002.

5. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305–1317, 1996.

6. H. L. Bodlaender. Discovering treewidth. In P. Vojtás̆, M. Bieliková, and
B. Charron-Bost, editors, SOFSEM 2005: 31st Conference on Current Trends in
Theory and Practice of Computer Science, pages 1–16. Springer-Verlag, Lecture
Notes in Computer Science 3381, 2005.

7. H. L. Bodlaender and A. M. C. A. Koster. On the Maximum Cardinality Search
lower bound for treewidth. In J. Hromkovic̆, M. Nagl, and B. Westfechtel, editors,
Proc. 30th International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence WG 2004, pages 81–92. Springer-Verlag, Lecture Notes in Computer Science
3353, 2004.

8. H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. In Pro-
ceedings 6th Workshop on Algorithm Engineering and Experiments ALENEX04,
pages 70–78, 2004.

9. H. L. Bodlaender, A. M. C. A. Koster, F. v. d. Eijkhof, and L. C. van der Gaag. Pre-
processing for triangulation of probabilistic networks. In J. Breese and D. Koller,
editors, Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence,
pages 32–39, San Francisco, 2001. Morgan Kaufmann.

10. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth
lower bounds. In S. Albers and T. Radzik, editors, Proceedings 12th Annual Euro-
pean Symposium on Algorithms, ESA2004, pages 628–639. Springer, Lecture Notes
in Computer Science, vol. 3221, 2004.

11. V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput., 31:212–232, 2001.

12. F. Clautiaux, J. Carlier, A. Moukrim, and S. Négre. New lower and upper bounds
for graph treewidth. In J. D. P. Rolim, editor, Proceedings International Work-
shop on Experimental and Efficient Algorithms, WEA 2003, pages 70–80. Springer
Verlag, Lecture Notes in Computer Science, vol. 2647, 2003.

13. F. Clautiaux, A. Moukrim, S. Négre, and J. Carlier. Heuristic and meta-heuristic
methods for computing graph treewidth. RAIRO Oper. Res., 38:13–26, 2004.

14. W. Cook and P. D. Seymour. Tour merging via branch-decomposition. Informs J.
on Computing, 15(3):233–248, 2003.

15. E. D. Demaine and M. Hajiaghayi. Graphs excluding a fixed minor have grids
as large as treewidth, with combinatorial and algorithmic applications through
bidimensionality. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA2005, pages 682–689, 2005.

16. R. Diestel, T. R. Jensen, K. Y. Gorbunov, and C. Thomassen. Highly connected
sets and the excluded grid theorem. J. Comb. Theory Series B, 75:61–73, 1999.

402 H.L. Bodlaender, A. Grigoriev, and A.M.C.A. Koster

17. F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for
treewidth and minimum fill-in. In Proceedings of the 31st International Colloquium
on Automata, Languages and Programming, pages 568–580, 2004.

18. V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In Pro-
ceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence
UAI-04, pages 201–208, Arlington, Virginia, USA, 2004. AUAI Press.

19. I. V. Hicks. Planar branch decompositions I: The ratcatcher. INFORMS Journal
on Computing (to appear), 2005.

20. I. V. Hicks. Planar branch decompositions II: The cycle method. INFORMS Jour-
nal on Computing (to appear), 2005.

21. A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Com-
putational experiments. In H. Broersma, U. Faigle, J. Hurink, and S. Pickl, editors,
Electronic Notes in Discrete Mathematics, volume 8. Elsevier Science Publishers,
2001.

22. A. M. C. A. Koster, T. Wolle, and H. L. Bodlaender. Degree-based treewidth
lower bounds. In S. E. Nikoletseas, editor, Proceedings of the 4th International
Workshop on Experimental and Efficient Algorithms WEA 2005, pages 101–112.
Springer Verlag, Lecture Notes in Computer Science, vol. 3503, 2005.

23. B. Lucena. A new lower bound for tree-width using maximum cardinality search.
SIAM J. Disc. Math., 16:345–353, 2003.

24. S. Ramachandramurthi. The structure and number of obstructions to treewidth.
SIAM J. Disc. Math., 10:146–157, 1997.

25. B. A. Reed. Tree width and tangles, a new measure of connectivity and some ap-
plications, volume 241 of LMS Lecture Note Series, pages 87–162. Cambridge Uni-
versity Press, Cambridge, UK, 1997.

26. N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a planar graph.
J. Comb. Theory Series B, 62:323–348, 1994.

27. P. D. Seymour and R. Thomas. Graph searching and a minimax theorem for tree-
width. J. Comb. Theory Series B, 58:239–257, 1993.

28. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

29. D. B. West. Introduction to graph theory. Prentice Hall, 2001.
30. T. Wolle, A. M. C. A. Koster, and H. L. Bodlaender. A note on contraction degen-

eracy. Technical Report UU-CS-2004-042, Institute of Information and Computing
Sciences, Utrecht University, Utrecht, The Netherlands, 2004.

Minimal Interval Completions

Pinar Heggernes1, Karol Suchan2, Ioan Todinca2, and Yngve Villanger1

1 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway

{pinar, yngvev}@ii.uib.no
2 LIFO, Université d’Orleans, PB 6759,

F-45067 Orleans Cedex 2, France
{todinca, suchan}@lifo.univ-orleans.fr

Abstract. We study the problem of adding edges to an arbitrary graph
so that the resulting graph is an interval graph. Our objective is to add an
inclusion minimal set of edges, which means that no proper subset of the
added edges can result in an interval graph when added to the original
graph. We give a polynomial time algorithm to obtain a minimal interval
completion of an arbitrary graph, thereby resolving the complexity of this
problem.

1 Introduction

The class of interval graphs is an important and well-studied graph class with ap-
plications in many fields, like biology, chemistry, and archeology [5]. In addition,
many problems that are NP-complete on general graphs have polynomial-time,
and even linear-time, algorithms on interval graphs. Thus it is of interest to
compute an interval embedding of a given graph with few added edges. An in-
terval graph can be obtained from any graph by adding edges, and the resulting
graph is called an interval completion of the original graph. If the added set of
edges is of minimum cardinality, the resulting interval completion is called min-
imum. Unfortunately, computing minimum interval completions is an NP-hard
problem [3], [6]. The pathwidth problem is concerned with computing an interval
completion in which the size of the largest clique is minimized. Many difficult
problems have efficient solutions for graphs of bounded pathwidth; however also
this problem is NP-hard [7]. This has given motivation to study the problem
of adding an inclusion minimal set of fill edges to a given graph to obtain an
interval completion. That is, no proper subset of the added edges can give an
interval completion of the original graph. In this case, the resulting interval com-
pletion is called minimal. Interval completions with minimum number of edges
or with minimum clique size are among the minimal interval completions of the
input graph. The computational complexity of minimal interval completions has
been open until now. In this paper, we show that the problem can be solved in
polynomial time.

Interval graphs are a subset of chordal graphs, and they are exactly the class
of graphs that are both chordal and AT-free [11]. Adding edges to an arbitrary

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 403–414, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

404 P. Heggernes et al.

graph so that the resulting graph is chordal, gives a chordal completion, or a tri-
angulation of the input graph. Minimum and minimal triangulations are defined
analogous to minimal and minimum interval completions. Computing minimum
triangulations is NP-hard [14], whereas computing minimal triangulations is a
well studied problem, and it motivates the study of minimal interval completions
[8]. A triangulation is minimal if and only if no single added edge can be removed
without destroying chordality [13]. This useful property gives algorithmic tools
that have been used in several minimal triangulation algorithms. Unfortunately,
the analogous statement for interval completions is not true. That is, it might be
the case that no single added edge can be removed from an interval completion
without destroying the interval graph property, but still the interval completion
might not be minimal because there are several edges that can be removed si-
multaneously to give a minimal interval completion. Furthermore, examples can
be constructed to show that a minimal triangulation followed by a minimal AT-
free completion, or vice versa, does not necessarily result in a minimal interval
completion. Consequently, the minimal interval completion problem is more dif-
ficult than the minimal triangulation problem, and it was not known until now
whether minimal interval completions could be computed in polynomial time.

We use an incremental approach for some fixed ordering of vertices to com-
pute a minimal interval completion of a given arbitrary graph G: At each step, a
new vertex is taken into account and we compute a minimal interval completion
of the subgraph of G induced by the vertices considered so far. For each new
vertex u processed in this way, edges are added only between u and the vertices
processed before. The overall time complexity of our algorithm is O(n4).

2 Preliminaries

We start this section with standard definitions, and at the end of this section we
give new definitions specific to our problem and our algorithm.

We consider simple and connected input graphs. A graph is denoted by G =
(V,E), with n = |V |, and m = |E|. For a set A ⊆ V , G[A] denotes the subgraph
of G induced by the vertices in A. Vertex set A is called a clique if G[A] is
complete. For a vertex v ∈ V or a subset A ⊆ V , we will informally use G − v
and G − A to denote the graphs G[V \ {v}] and G[V \A], respectively. A path
is a sequence [v1, v2, . . . , vp] of vertices such that vi is adjacent to vi+1, for all
1 ≤ i < p. A cycle is a path such that the first and last vertices are adjacent.

The neighborhood of a vertex v in G is NG(v) = {u | uv ∈ E}, and the
closed neighborhood of v is NG[v] = NG(v) ∪ {v}. Similarly, for a set A ⊆ V ,
NG(A) =

⋃
v∈A NG(v) \ A, and NG[A] = NG(A) ∪ A. When graph G is clear

from the context, we will omit subscript G.
An edge that is added to the input graph G is called a fill edge, and the

process of adding edges between a vertex x and a vertex set A is called filling A.
A vertex set S ⊂ V is a separator if G−S is disconnected. Given two vertices

u and v, S is a u, v-separator if u and v belong to different connected components
of G−S, and S is then said to separate u and v. A u, v-separator S is minimal if
no proper subset of S separates u and v. In general, S is a minimal separator of

Minimal Interval Completions 405

G if there exist two vertices u and v in G such that S is a minimal u, v-separator.
It can easily be verified that S is a minimal separator if and only if G−S has two
distinct connected components C1 and C2 such that NG(C1) = NG(C2) = S. In
this case, C1 and C2 are called full components, and S is a minimal u, v-separator
for every pair of vertices u ∈ C1 and v ∈ C2.

A chord of a cycle is an edge connecting two non-consecutive vertices of the
cycle. A graph is chordal, or equivalently triangulated, if it contains no induced
chordless cycle of length ≥ 4.

A graph G is an interval graph if continuous intervals can be assigned to each
vertex of G such that two vertices are neighbors if and only if their intervals
intersect. In other terms, interval graphs are the intersection graphs of subpaths
of a path.

Every interval graph is also chordal. A graph is an interval graph if and only
if it is chordal and AT-free [11].

Theorem 1 ([4]). A graph G is interval if and only if there is a path (K, P)
whose vertex set is the set of all maximal cliques of G, such that the subgraph
of (K, P) induced by the maximal cliques of G containing vertex v is connected,
for each vertex v of G.

Such a path will be called a clique path CPG of G. The vertices of a clique
path (maximal cliques of G) are also called bags. Let the maximal cliques of
an interval graph G be labelled 1, 2, ..., k, according to the order in which they
appear in a clique path of G. Then, as a consequence of Theorem 1, an interval
representation of G can be obtained by assigning to each vertex v the interval
that consists of the labels of the maximal cliques containing v. In this way, every
clique path of G is equivalent to an interval representation of G.

Due to space restrictions, all the results of this section are given without
proofs. The proofs can be found in the full version of the paper [9].

Lemma 1 (see e.g. [5]). Let G be an interval graph and let CPG be any clique
path of G. A set of vertices S is a minimal separator of G if and only if S
is the intersection of two maximal cliques of G that are neighbors in CPG. In
particular, all minimal separators of G are cliques.

We now give some definitions particularly related to our results. Let S and T
be two minimal separators of G such that no one of them is a subset of the other.
Suppose that T (resp. S) intersects a unique component CT (S) (resp. CS(T)) of
G − S (resp. G− T) and that CT (S) (resp. CS(T)) is full for S (resp. T). We
define the piece between S and T by P (S, T) = S ∪ T ∪ (CT (S) ∩ CS(T)).

A block B of G is a vertex subset such that B is the piece between P (S, T)
for some minimal separators S, T (in which case we say that B is a two-block),
or B = S ∪ C for some minimal separator S and a full component C of G − S
(in this case B is a one-block). We say that the separators S and T (respectively
S) border the block B.

Lemma 2. Let B be a block of an interval graph G. Then B is the union of
maximal cliques of G contained in B.

406 P. Heggernes et al.

Let us note that, for any block B of an interval graph G, and for any clique
path CPG of G, the maximal cliques contained in B form a (connected) subpath
of CPG.

Lemma 3. Let B be a block of an interval graph G and let CPG = (K, P) be
any clique path of G. The set of bags corresponding to maximal cliques contained
in B form a connected subpath PB of P .

Clearly for any clique path CPG of G, its subpath PB defines a clique path of
G[B]. The converse is not true, there are clique paths of G[B] which can not be
extended into clique paths of G. Consider the case when B is a one-block. The
next lemma characterizes the clique paths of B extendable into clique paths of
the whole graph.

Lemma 4. Let B be a block of an interval graph G.
1. A clique path CPG[B] of G[B] can be extended into a clique path of G if

and only if each separator bordering B is contained in a maximal clique that is
a (different) endpoint of CPG[B].

2. In a clique path CPG of G, subpath PB can be replaced by any clique path
of G[B] satisfying the above property.

Lemma 5. Let H be a minimal interval completion of an arbitrary graph G.
Let G′ be a graph obtained from G by adding a new vertex x, with neighborhood
NG′(x). There is a minimal interval completion H ′ of G′ such that H ′−x = H.

Hence, for computing a minimal interval completion of G, we introduce the
vertices of G one by one in the order x1, x2, . . . , xn. Given a minimal interval
completion of Hi of Gi = G[{x1, . . . , xi}], we compute an interval completion
Hi+1 of Gi+1 by adding vertex xi+1 and the edges between xi+1 and NGi+1 to
Hi, together with a well chosen set of additional edges incident to xi+1.

3 Principles of the Algorithm

From now on we consider as input an interval graph G = (V,E). A new vertex
x is added to G, together with a set of edges incident to x. For the rest of this
document, let G′ denote the graph G+x. We want to compute a minimal interval
completion H of G′, obtained by adding edges incident to x only. We say that
such a minimal interval completion respects G.

Take any clique path CPH = (K, P) of H . By property of clique paths, the
cliques containing x form a subpath Px of P . Now, let us get back to G. Delete x
from every bag in CPH , and possibly remove the bags that do not correspond to
maximal cliques of G. This yields CPG - a clique path of G, which gives a linear
ordering of maximal cliques of G. We say in this case that CPG was obtained
by pruning the vertex x from CPH .

Definition 1. An interval completion H of G′ respects a clique path CPG of G
if CPG can be obtained by pruning x from some clique path of H.

Minimal Interval Completions 407

Clearly the maximal cliques that come from Px still form a subpath of CPG.
Our aim is to do the converse: to find a clique path CPG = (K, P) of G and a
subpath of CPG in which, by adding vertex x to every bag and possibly trans-
forming the bordering separators into new bags of H (with x contained), we
obtain a minimal interval completion of G′ respecting CPG.

A clique path CPG is called nice if there exists a minimal interval completion
H respecting CPG. Let KL (resp. KR) be the leftmost (resp. rightmost) clique
of CPG such that x has a neighbor in KL \KL+1 (resp. KR \KR−1) in the graph
G′. Any minimal interval completion H respecting CPG satisfies:
– xu ∈ E(H) for every vertex u contained in a clique strictly between KL and

KR of CPG.
– xv �∈ E(H) for every vertex v that is not contained in any clique situated

between KL and KR in the clique path.
We point out that, it some cases, it might be required to add fill edges between

x and some vertices of KL or KR. Note that any clique path obtained from a
nice one by permutations of the cliques strictly between KL and KR, or outside
the interval between KL and KR will also be a nice clique path of G. We will
not look for one particular clique path, but a class of them, yielding the same
interval completion. Working towards finding a nice clique path of G and cliques
KL and KR, we refine ordered partitions of the set K of all maximal cliques of G.

Definition 2. Consider an ordered partition OP = [K1, . . . ,Kp] of K such that
the maximal cliques in each part Ki correspond to a block of G and, moreover,
there exists a clique path CPG of G such that the subpaths P1, . . . , Pp formed by
the maximal cliques in K1, . . .Kp appear in this order (see also Lemma 3). Such
an ordered partition is called valid.

Observe that, when each part of a valid ordered partition OP is a singleton,
OP is exactly a clique path of G. Here, again we say that the ordered partition
OP is nice if it can be refined into a nice clique path CPG.

Once we obtain a nice ordered partition OP . LetKL (respKR) be the leftmost
(resp. rightmost) part ofOP such that x has a neighbor appearing inKL but not in
KL+1 (resp. appearing inKR but not inKR−1). We must fill all the cliques strictly
between KL and KR. It remains to add a well chosen set of edges between x and
blocks OL and OR, corresponding to the sets of maximal cliques KL and KR re-
spectively. This will be done by refining recursively the sets of cliques KL andKR.

For obtaining the nice ordered partition OP we distinguish between two
cases. In the first case, the neighborhood of x in G is a clique. We show in the
full paper [9] that, if G′ is not already an interval graph, is it sufficient to add
edges from x to a well chosen minimal separator of G. Let us consider now the
main case, when the neighborhood of x in G is not a clique.

4 The Main Case

The main and most difficult case of our algorithm is when the neighborhood of
x in G′ is not a clique. We denote by Sx the set of all minimal a, b-separators of
G, with a, b ∈ NG′(x) and non-adjacent. Clearly Sx is not empty.

408 P. Heggernes et al.

Theorem 2 ([1]). Let H be any chordal supergraph of G′ such that H−x = G.
Consider a minimal a, b-separator S of G, where a and b are neighbors of x in
G′. Then S is in the neighborhood of x in H.

Theorem 3. Let H be any interval supergraph of G′ such that H−x = G. Any
block B = P (SL, SR) that is a piece between two separators in Sx, is contained
in the neighborhood of x in H ′.

The proof of Theorem 3 is given in the full paper [9].
From now on we fix a block B = P (SL, SR) with SL, SR ∈ Sx, if such a

block exists. For each component Cj of G−B, let Oj = N(Cj) ∪Cj . Note that
N(Cj) is a minimal separator, so Oj , j = 1, . . . , k are full one-blocks associated
to separators that are subsets of SL or SR. Let O(B) denote the set of all these
one-blocks associated to B, and B the set O ∪ {B}. Notice that the blocks B
induce a partition of the set K of all maximal cliques of G. Indeed, each K ∈ K
is contained in exactly one element of B. Moreover, by Lemma 3, for any clique
path CPG = (K, P) of G, the cliques contained in a block BL ∈ B induce a
subpath of CPG. Therefore, there is a natural correspondence between clique
paths and valid ordered partitions of set K induced by B.

Consider such a valid ordered partition OP = [K1, . . . ,Kp] corresponding to
clique path CPG. Instead of working with the ordered partition OP , we work
with the pair (L,R) where L is the list of one-blocks of O(B) situated to the left
of B in the clique path, ordered from left to right; R is the list of blocks to the
right of B, from right to left. More formally, let Ki be the part corresponding
to block B (i.e., the elements of Ki are exactly the maximal cliques of B). Then
L = [O1, O2, . . . , Oi−1] and R = [Op, Op−1, . . . , Oi+1], where Oj is the one-block
corresponding to part Kj. Clearly the pair (L,R) identifies the ordered partition
OP . Now given two lists L and R such that each one-block of O(B) is in exactly
one list, we want to know if the pair (L,R) defines a valid ordered partition.

Graph G might not contain a block B = P (SL, SR) as defined above. All the
statements proved in the rest of the paper remain true when B = P (SL, SR) is
replaced by B = S, for any S ∈ Sx.

Consider two one-blocks Oi and Oj in O(B). We want to know whether there
exists a clique path CPG of G in which the subpath POj is between POi and PB .
The answer is yes only if Oi . Oj according to the pre-order defined as follows:

Definition 3. For every O ∈ O(B) let
big(O) = max{K∩B|K ∈ K,K ⊆ O}, small(O) = min{K∩B|K ∈ K,K ⊆ O}
Two one-blocks Oi, Oj satisfy Oi . Oj if big(Oi) ⊆ small(Oj).

Lemma 6. Let Oi and Oj be two one-blocks of O(B). There is a clique path
CPG of G such that the subpath POj is between POi and PB only if Oi . Oj .

It is actually more convenient to prove the following stronger statement. It
shows that this pre-order captures all possible clique paths of G.

Theorem 4. Let L,R be two lists such that each block of O(B) appears in ex-
actly one of them. Then (L,R) defines a valid ordered partition if and only if L
and R are directed paths of partially pre-ordered set (O(B),.).

Minimal Interval Completions 409

Proof. For the “only if” part, note that for two blocks Oi and Oj there exist a
clique path in which POj is between POi and PB only if Oi ∩ B is contained in
every maximal clique of G[Oi]. Hence L and R must be chains of (O(B),.).

Conversely, if we partition (O(B),.) into two chains (L,R) we can construct
a clique path of G in which the subpaths corresponding to one-blocks in L (resp.
R) are situated to the left (resp. right) of PB, respecting the order of the chains
L, R. In this setting, we only need to get a clique path for each block BL ∈ B
that lets us glue them all together into a clique path of G.

By using Lemma 4, we can construct a clique path of every O ∈ O(B) with
big(O) at one end. In a similar way we can get a clique path of B with separators
SL and SR bordering B in G at the ends. The conclusion follows. ��

Our aim is to construct ordered partitions that are not only valid, but also
nice. Unfortunately the pre-order (O(B),.) is not enough to manage nice or-
dered partitions (and thus minimal interval completions). The reason is that, for
one-blocks that are equivalent with respect to ., their placement is not without
impact on the minimality of the interval completion obtained.

Definition 4. We say that a one-block O is:
– clean if O ∩NG′(x) ⊂ B
– hit if it is not clean
– sparable if there is an interval completion of G′

d[O ∪ {x}], constructed form
G′[O∪{x}] by adding a dummy vertex d adjacent to x and to all the vertices
in the separator bordering O, in which x is non adjacent to at least one vertex
of O.

In particular, all clean blocks are sparable.

Definition 5. Let (L,R) be any valid order partition of G. An interval com-
pletion H(L,R) is good for (L,R) if it respects some clique path obtained by
refining (L,R) and it is inclusion minimal for this property.

The following proposition characterizes the best interval completions that
can be obtained from a valid ordered partition (L,R). The proof is given in the
full paper [9].

Lemma 7. Let (L,R) define a valid ordered partition. Let OL and OR be the
first hit blocks of L and R respectively1. An interval completion H of G′ is good
for (L,R) if and only if:

1. For each block O appearing after OL in L or after OR in R, O is filled.
2. For each block O appearing before OL in O or before OR in R, O stays clean

in H.
1 If OR is not defined, imagine it as added at the end of the list R; the set of blocks

appearing after OR in R becomes empty, the set of blocks appearing before it is
exactly R. The case when OL is undefined is symmetrical.

410 P. Heggernes et al.

3. For each O ∈ {OL, OR}, the graph Hd[O ∪ {x}] is a minimal interval com-
pletion of G′

d[O ∪ {x}]. Here Hd[O ∪ {x}] is obtained from H [O ∪ {x}] by
adding a dummy vertex x adjacent to x and all the vertices in the separator
bordering O (see also Definition 4).

In particular, if H is a good interval completion for (L,R) and O ∈ {OL, OR}
is sparable, then it is not filled in H .

Theorem 5. Let (L,R) define a valid ordered partition. Denote by
Spared(L,R) the set of one-blocks appearing before OL in L, before OR in R
or being in {OL, OR} and sparable. The valid ordered partition (L,R) is nice if
and only if Spared(L,R) is inclusion-maximal.

Proof. According to Lemma 7, the set Spared(L,R) is exactly the set of blocks
that may not be filled in an interval completion respecting (L,R).

Let (L,R) be such that Spared(L,R) is maximal and H be a good interval
completion for (L,R). Suppose that H is strictly contained in some interval
completion H ′ of G′. Denote by (L′, R′) the valid ordered partition corresponding
to some path decomposition of H ′. Let O ∈ O(B) such that NH′ (x)∩O is strictly
contained in NH(x) ∩O. Note that O is in Spared(L,R), by maximality of this
set. If O is a hit block (i.e. x has a neighbor in O \ B in the graph G) then
O ∈ {OL, OR}, contradicting Lemma 7. If O is not hit, then NH(x) ∩ O is
exactly the separator bordering O. By Theorem 3, this separator is filled in any
interval completion of G′, leading again to a contradiction.

Conversely, let H be a minimal interval completion of G′. Suppose there exists
a valid order partition (L′, R′) with Spared(L,R) ⊂ Spared(L′, R′). Then all the
blocks that are clean in H are also clean in any interval completion H ′ good for
(L′, R′). If O is sparable but hit in (L,R), then O is OL or OR. Thus O is either
OL′ or OR′ . By Lemma 7 we can take H ′ such that H ′[O] = H [O]. Consequently
H ⊆ H ′. Choose now a block O in Spared(L′, R′) \ Spared(L,R), so O is not
filled in H ′. We obtain that H ′ is strictly contained in H , a contradiction. ��

Suppose that O1, O2, O3 are equivalent with respect to ., and that they
represent all one-blocks that should be placed to the left of B. Let O1 be clean,
O2 hit but sparable, and O3 not sparable. If we put them in any order different
than 1− 2 − 3, then the edges we add form a superset of those added by order
1− 2− 3, following Theorem 5.

Let (O(B),≤) denote the pre-order (O(B),.) refined to incorporate this
differentiation.

Definition 6. For any Oi, Oj ∈ O(B),
Oi ≤ Oj if Oi . Oj and (not Oj . Oi or priority(Oi) ≤ priority(Oj)), where

priority(O) =

⎧⎨⎩
1, if O is clean;
2, if O is hit but sparable;
3, if O is not sparable.

Note that one can check in polynomial time if a one-block is sparable (see
also [9]).

Minimal Interval Completions 411

Lemma 8. A block O is sparable if and only if there exists a vertex y ∈ O\(B∪
NG′(x)) such that the graph obtained from G′

d[O ∪ {x}] by filling O \ {y} is an
interval graph. It can be checked in O(nm) time if a given one-block O ∈ O(B)
is sparable.

The algorithm NiceOrderedPartition below produces a nice ordered par-
tition (L,R). The full proof of the algorithm can be found in [9]. Let us give
here a description of the algorithm and some hints about its proof.

The algorithm relies on the pre-order ≤. We transform it into a linear order
≤top by sorting the one-blocks in topological order (the permutation of elements
in the same equivalence class does not affect the minimality of interval comple-
tions obtained). The graph (O,.) together with a topological ordering ≤top of
the refined pre-order is taken as input. The set O(B), the pre-orders and the
topological order have to be computed before launching this procedure. This is
possible due to Lemma 8.

procedure NiceOrderedPartition
Input: (O(B),�,≤top) the pre-order on the set of all one-blocks together with a topo-
logical order of the refined pre-order
Output: (L, R) - lists of one-blocks to be constructed s.t. (L, R) defines a nice ordered
partition
Variables: M - an array used to store forcing information on the one-blocks.

M [O] =

⎧⎨⎩
“L” - O is forced to be in L;
“R” - O is forced to be in R;
“L or R” - O can be either in L or in R.

MinHitFound - information if the minimal hit one-block has been found
MinHitSide - information on the side where the minimal hit one-block has been put,
initialized to be L but R would be fine as well

procedure shake(O)
forall X ∈ O s.t (O ≤top X) and (X incomp. with O for �) and (M [X] = “L or R”)

M [X] := opposite(M [O]) do

shake(X)
end

MinHitFound := false
MinHitSide := L
L ← ∅; R ← ∅
forall O ∈ O do M [O] := “L or R”
forall O ∈ O in the topological order do

if (M [O] = “L or R”) then
if O is sparable then

move O on the top of opposite(MinHitSide) and M [O] :=
opposite(MinHitSide)

shake(O)
else

move O on the top of MinHitSide and M [O] := MinHitSide
shake(O)

endif

else

412 P. Heggernes et al.

move O on the top of M [O]
endif

if (not MinHitFound and O is hit) then
MinHitFound := true
MinHitSide := M [O]

endif

endforall

return (L, R)

Theorem 6. The pair (L,R) produced by Algorithm NiceOrderedPartition
defines a nice ordered partition. The running time of the algorithm is O(n2).

Proof. (Hints, see [9].) The algorithm takes the one-blocks of O sorted in a
topological order, and processes them one by one. Our goal is to obtain a pair
of lists (L,R) like in Theorem 5. Initially all the blocks are marked “L or R”,
which means that they can be put either in L or in R. When we decide to put a
block in one of the lists, other blocks may be forced to appear in the opposite or
in the same list, because of incomparability relations. Indeed if two blocks are
incomparable with respect to ., they must be placed on different sides of B.
This forcing is explored through the procedure “shake”, by marking the blocks
“L” or “R”.

We can think of the algorithm as having three phases. The first phase lasts
as long as we do not encounter any hit block. The blocks considered in the first
phase can be put in any convenient list; they will stay clean. When we meet the
first hit block we enter the second phase. We denote by MinHitSide the list
containing this block. Suppose without loss of generality that this list is L. We
are in the second phase as long as R has no hit block. When we treat a block
O we should put it in R if it is sparable; by putting it in L it would be filled.
On the contrary, if O is not sparable we put it in L, thus keeping the possibility
to spare other blocks. Eventually, the third phase starts when both L and R
contain hit blocks. In this case we put the current block in any convenient list,
it will be filled anyway. ��

5 Putting Everything Together

Given an interval graph G = (V,E) and a vertex x outside of G, we run the
following procedure with (G, x,NG′(x)) as input. A minimal interval completion
of G′ is obtained as H ′ = (V ′, E′) with V ′ = V ∪{x} and E′ = E ∪{{x, y} | y ∈
IntervalCompletion(G, x,NG′(x))}.

We construct the block B as in Theorem 3 and then call the algorithm
NiceOrderedPartition to obtain the nice ordered partition (L,R). In order to
compute a minimal interval completion of G′, according to Lemma 7 it remains
to compute, by recursive calls, minimal interval completions of G′

d[O ∪ {x}] for
each O ∈ {OL, OR}.

Here we might encounter a difficulty that we have not yet discussed. During
this recursive call on G′

d[O∪{x}] it is possible that Sx is restricted to the minimal

Minimal Interval Completions 413

separator S bordering O in G (even when G′
d[O ∪{x}] is not an interval graph).

If we choose S as the block B, the algorithm calls itself again on G′
d[O ∪ {x}]

and it will not terminate. In this case we define B as the union of maximal
cliques of the input graph containing N(x) \ {d}, the neighborhood of x except
the dummy vertex. In this case also NiceOrderedPartition produces a nice
ordered partition, as explained in [9].

procedure MinIntervalCompletion
input: G, x, N - the neighborhood of x in G′, d - dummy vertex
output: modified N - the neighborhood of x in an interval completion of G′

if G′ is an interval graph then return ∅

Compute Sx.
if N(d) is not the only minimal separator in Sx then

B := a maximal piece between two minimal separators in Sxor a
minimal separator S ∈ Sx if such a piece between does not exist

N := N ∪ B
else

B := the union of all maximal cliques containing N \ {d}
endif

Compute the one-blocks O(B)
Check sparability of all one-blocks.
Compute the graph (O(B),≤) and a topological order ≤top

(L, R) ← NiceOrderedPartition((O(B),≤,≤top))
forall O in L above OL do N := N ∪ O
forall O in R above OR do N := N ∪ O // no iterations if OR is undefined
foreach O ∈ {OL, OR} do

if O is sparable then

let Gd[O] := G[O] plus a dummy vertex d adjacent to O ∩ B
N := N ∪ MinIntervalCompletion(Gd[O], x,N ∩ O ∪ {d},d) \ {d}

else if O is not sparable then N := N ∪ O
return N

Theorem 7. Algorithm MinIntervalCompletion computes a minimal inter-
val completion of G′ in O(n3) time.

Proof. The algorithm is clearly polynomial. We prove in the full paper [9] that
the algorithm can be implemented to run in O(n4) time, based on a O(n3) im-
plementation of the NiceOrderedPartition procedure. Recently we improved
the latter running time to O(n2), which gives the desired time bound. ��

Using the incremental approach, Theorem 7 and the similar result for the
case when the neighborhood of x is a clique (see [9]), we deduce:

Theorem 8. There is an algorithm computing a minimal interval completion
of an arbitrary graph in O(n4) time.

414 P. Heggernes et al.

6 Conclusion

In this paper we give the first polynomial time algorithm that computes a min-
imal interval completion of an arbitrary graph. With small modifications, our
algorithm can be transformed to produce any of the minimal interval comple-
tions of the input graph. A natural question is whether the algorithm can be
adapted into heuristics specialized in finding interval completions with few fill
edges or small clique size. We are now able to adapt the algorithm in order to
choose, at each iteration, an interval completion that (locally) adds a minimum
number of edges or minimizes the cliquesize.

Acknowledgment

We would like to thank Fedor Fomin for useful discussions on the subject.

References

1. A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach for
dynamically maintaining chordal graphs. In Algorithms and Computation - ISAAC
2003, pages 47–57. Springer Verlag, 2003. LNCS 2906.

2. V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: grouping the minimal
separators. SIAM J. on Computing, 31(1):212 – 232, 2001.

3. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman
and Co., 1978.

4. P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and
of interval graphs. Canadian J. Math., 16:539–548, 1964.

5. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

6. P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes against
physical mapping of DNA. J. Comput. Bio., 2(1):139–152, 1995.

7. J. Gustedt. On the pathwidth of chordal graphs. Discrete Applied Mathematics,
45(3):233–248, 2003.

8. P. Heggernes. Minimal triangulations of graphs: A survey. To appear Discrete
Math.

9. P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger. Minimal interval com-
pletions. Technical Report RR2005-04, LIFO - University of Orléans, 2005.
http://www.univ-orleans.fr/SCIENCES/LIFO/prodsci/rapports/RR2005.htm.en.

10. T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of aster-
oidal triple-free graphs. Theor. Comput. Sci., 175:309–335, 1997.

11. C.G. Lekkerkerker and J.C. Boland. Representation of a finite graph by a set of
intervals on the real line. Fund. Math., 51:45–64, 1962.

12. A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal
graph embeddings. Disc. Appl. Math., 79:171–188, 1997.

13. D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput., 5:146–160, 1976.

14. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg.
Disc. Meth., 2:77–79, 1981.

A 2-Approximation Algorithm for
Sorting by Prefix Reversals

Johannes Fischer and Simon W. Ginzinger

LFE Bioinformatik und Praktische Informatik,
Ludwig-Maximilians-Universität München,

Amalienstr. 17, D-80333 München
{Johannes.Fischer, Simon.Ginzinger}@bio.ifi.lmu.de

Abstract. Sorting by Prefix Reversals, also known as Pancake Flipping,
is the problem of transforming a given permutation into the identity per-
mutation, where the only allowed operations are reversals of a prefix of
the permutation. The problem complexity is still unknown, and no algo-
rithm with an approximation ratio better than 3 is known. We present the
first polynomial-time 2-approximation algorithm to solve this problem.
Empirical tests suggest that the average performance is in fact better
than 2.

1 Introduction

The problem of sorting a permutation by prefix reversals, also known as pan-
cake flipping, was first considered in a computational context by Gates and
Papadimitriou [7]. The problem may informally be described as follows: given a
permutation of the first n integers, transform it into the sorted sequence 1, . . . , n
by using as few prefix reversals as possible, an operation that flips the first x
elements. In [7], and likewise in a subsequent article by Heydari and Sudbor-
ough [11], bounds were given that only depend on the size n of the permutation,
disregarding special properties of the given permutation. This reflects the con-
cept of the diameter f(n) of the pancake network of size n, i.e. the maximal
number of prefix reversals that is needed to sort an (arbitrary) permutation of
1, . . . , n. In summary, we now know [7, 11] that (15/14)n ≤ f(n) ≤ (5n + 5)/3.

In this article, we tackle the problem of finding a minimal sequence of prefix
reversals that sorts a given permutation π (MIN-SBPR). It should be clear that
for n fixed, some permutations of length n are easier to sort than others. This
intuition can be formalized by the concept of breakpoints and breakpoint graphs,
first introduced by Bafna and Pevzner [1]. They considered a different version
of the problem, the task of sorting a permutation by (arbitrary) reversals (MIN-
SBR). The problem was shown to be NP-complete by Caprara [4], but Hannen-
halli and Pevzner [9] gave a polynomial time algorithm for the slightly restricted
case of signed permutations which is highly relevant in computational biology.
Despite the NP-completeness of MIN-SBR, substantial progress has been made
in finding approximation algorithms, starting with Kececioglu and Sankoff’s al-
gorithm [14] which has a performance guarantee of 2. The currently best known
algorithm is a 1.375-approximation due to Berman et al. [3].

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 415–425, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

416 J. Fischer and S.W. Ginzinger

A related problem is the one of sorting by transpositions (MIN-SBT), where
one seeks to find the minimum number of transpositions needed to sort a per-
mutation. In contrast to MIN-SBR, it is still unknown whether MIN-SBT is in P
or NP-hard. However, several 1.5-approximation algorithms have been devised
(e.g. [2], the most recent being [10]). Similar to the case of reversals, the problem
of prefix transpositions has been considered. Here, the currently best result is a
2-approximation by Dias and Meidanis [6].

However, in the case of prefix reversals, little progress has been made. Al-
though Heydari [12] has proven the NP-completeness of a modified version of
MIN-SBPR, it remains unknown whether or not the original problem is in P.
Similarly, although it is easy to come up with a 3-approximation for MIN-SBPR1,
no approximation algorithms with a performance guarantee less than 3 have been
found. We give the first 2-approximation algorithm for MIN-SBPR.

The remainder of this article is organized as follows. Sect. 2 gives a formal
definition of the problem and introduces the notion of breakpoint graphs and
related concepts. It also states the lower bound on which our algorithm is based.
Sect. 3 develops the 2-approximation algorithm. Sect. 4 shows by empirical tests
that the actual performance of our approximation is much better than 2. Finally,
Sect. 5 concludes and gives an outlook to future work.

2 Preliminaries

For a permutation π = (π1, . . . , πn) of {1, . . . , n}, a prefix reversal φ(r) is de-
fined as the operation that flips the first r elements of π for 2 ≤ r ≤ n, i.e.
π ◦ φ(r) = (πr , . . . , π1, πr+1, . . . , πn). The prefix reversal distance d(π) is the
minimal number of prefix reversals that is needed to transform π into the iden-
tity permutation ι := (1, . . . , n). Determining d for a given permutation is known
as the problem of Sorting by Prefix Reversals (MIN-SBPR) and is the issue of
this article.

We now extend π by setting π0 := 0 and πn+1 := n + 1, yielding π′ =
(0, π1, . . . , πn, n + 1). For convenience, we will also write π for the extended
permutation π′. We say that there is a breakpoint between πi and πi+1 if |πi −
πi+1| �= 1 for 1 ≤ i ≤ n.2 That is, there is a breakpoint between 2 elements that
are adjacent in π, but not adjacent in the identity permutation ι′ := (1, . . . , n+
1). As an example, the breakpoints in the following permutation are marked
with a horizontal bar: (8|2, 1|9|5, 6|3, 4|7|). We define b(π) to be the number of
breakpoints in π.

1 The obvious 3-approximation flips the strip with the highest unsorted element to
the beginning, brings it in the correct direction and then flips it to its proper place
at the end where it remains untouched. See Sec. 2 for the definition of strips.

2 Because of the inherent asymmetry of prefix reversals, we never say that there is a
breakpoint between π0 and π1. However, in the breakpoint graph (to be defined after
Lemma 1) we do have a red edge between π0 and π1 if |π0 − π1| �= 1.

A 2-Approximation Algorithm for Sorting by Prefix Reversals 417

743659128 100

Fig. 1. The breakpoint graph of the permutation (8|2, 1|9|5, 6|3, 4|7|)

(a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4

Fig. 2. Different types of blue edges

An immediate consequence is

Lemma 1. For a permutation π = (π1, . . . , πn) of {1, . . . , n} with b(π) break-
points, we have

d(π) ≥ b(π) .

Proof. Let φ(r1), . . . , φ(rd(π)) be an optimal sequence of prefix reversals that
sorts π, i.e. π ◦ φ(r1) ◦ · · · ◦ φ(rd(π)) = ι. Note that a reversal φ(r) can eliminate
at most one breakpoint, namely the one between πr and πr+1 (if any). Since ι
is the only permutation having 0 breakpoints, the claim follows. ��

We note that this bound is not sharp for all cases. For example, the permu-
tation (3, 4|1, 2|) has two breakpoints, but needs at least three prefix reversals
to be transformed into the identity permutation. (The prefix reversals are φ(2),
φ(4) and φ(2).)

The breakpoint graph Gπ = (V,E) of a permutation π is defined as follows:
the set of vertices in Gπ is V := {π0, . . . , πn+1}, and the set of (directed) edges
E is the union of so-called red edges R and blue edges B to be defined next. An
edge e is in R if and only if e = (πi, πi+1) and there is a breakpoint between πi

and πi+1, or e = (π0, π1) and |π0−π1| �= 1. Further, an edge e is in B if and only
if e = (πi, πj) for some 0 ≤ i < j ≤ n + 1, πj = πi ± 1 and πi ∈ e′ for some red
edge e′. Note that the number of blue edges equals the number of red edges. See
Fig. 1 for an example of a breakpoint graph, where the blue edges are drawn as
dashed lines to distinguish them from the red edges. We stick to the convention
that the breakpoint graph is drawn “from left to right”, and that red edges are
drawn as straight lines, whereas blue edges are drawn as arcs. Whenever we
talk of the first or leftmost blue edge we mean the blue edge argmin(πi,πj)∈Bi.
Likewise, the last or rightmost blue edge is defined as argmax(πi,πj)∈Bj. For
example, in Fig. 1 the first blue edge connects 0 and 1 and the last blue edge
connects 9 and 10.

We say that πi, . . . , πj form a strip for 1 ≤ i ≤ j ≤ n if πk = πk+1 ± 1 for
all i ≤ k < j, πi �= πi−1 ± 1 and πj �= πj+1 ± 1. A strip is called a singleton if
it consists of only one element πi, with the exception that π1 = 1 and πn = n

418 J. Fischer and S.W. Ginzinger

are never considered as singletons. A strip of length ≥ 2 is called ascending if
πk = πk+1 − 1 for all i ≤ k < j and descending otherwise.

Now consider a blue edge between 2 elements πi and πj := πi ± 1. Because
of the definition of blue edges there is at least one adjacent red edge on each
side of the blue edge; we can thus classify such a blue arc into one of the four
different types shown in Fig. 2, depending on the directions of the adjacent red
edges. Note that if πi’s or πj ’s strip is a singleton, the blue arc may be classified
into at least 2 different types. As an example, consider the blue arc (6, 7) in Fig.
1 which is of type 2 and 3.

Note that we will not use the breakpoint graph for theoretical considerations
such as relating the maximal number of alternating cycles in it to the reversal
distance as in [9]; it will rather be used for expository purposes. In the rest of this
paper we will only consider permutations where there is a breakpoint between
πn and πn+1. This is simply because if there are x ordered elements at the end
of π, say π = (π1, . . . , πn−x, n− x + 1, . . . , n− 1, n), we can reduce the problem
of sorting π to sorting the permutation π′ := (π1, . . . , πn−x). We will further
restrict ourselves to prefix reversals that act on a breakpoint, which means that
φ(r) is applied to π only if there is a breakpoint between πr and πr+1. We will
see later that this restriction is sufficient for a 2-approximation.3

3 The 2-Approximation Algorithm

We are now ready to present the details of our 2-approximation. The next lemma
gives a nice property of the breakpoint graph that allows us to eliminate a
breakpoint by using at most two prefix reversals.

Lemma 2. Let π be a permutation of {1, . . . , n} and Gπ be its associated break-
point graph. Then there exists a sequence of at most two prefix reversals φ(r) and
φ(s) that eliminates a breakpoint if at least one of the three conditions holds:

1. Gπ contains a blue arc (πi, πj) of type 1 with i = 1.
2. Gπ contains a blue arc (πi, πj) of type 2, where i �= 0.
3. Gπ contains a blue arc (πi, πj) of type 3.

Proof. Because (πi, πj) is blue we must have πj = πi ± 1. We show that in all
cases we can create an adjacency between πi and πj without introducing any
new breakpoints, thereby eliminating a breakpoint. The reader is encouraged to
follow the examples shown in Fig. 3.

In case 1, the single prefix reversal φ(j − 1) creates the desired adjacency
between π1 and πj without introducing a new breakpoint. See Fig. 3 (a) for an
example.

In case 2, φ(j) and φ(j − i) suffice: we have (π1, . . . , πn) ◦ φ(j) = (πj , . . . , πi,
. . . , π1, πj+1, . . . , πn) =: π′; so Gπ′ contains a blue arc (π′

1, π
′
j−i+1) of type 1, and

3 In analogy to Hannenhalli and Pevzner’s Theorem 3.1 in [8] we can in fact show that
there is an optimal sorting of prefix reversals that does not “cut” a strip of length
≥ 3. However, for strips of length 2 this is not the case.

A 2-Approximation Algorithm for Sorting by Prefix Reversals 419

743659120 8 10

(a) The blue edge from π1 = 8 to π9 = 7
satisfies condition 1 of Lemma 2. We ap-
ply the prefix reversal φ(8); see the next
picture for the result.

2 8 109534 160 7

(b) Now the blue edge from π2 = 3 to π7 =
2 satisfies condition 2. We thus apply the
reversals φ(7) . . .

0 2 8 7 105 43691

(c) . . . and φ(5) to create an adjacency be-
tween 2 and 3.

8 70 1046 5 9 2 31

(d) Here, the highlighted blue edge is of
type 3. The reversals φ(3) . . .

8 70 1045 2 3169

(e) . . . and φ(7) . . .
8 70 1014 5 9623

(f) . . . create the desired adjacency.

Fig. 3. An example. We want to sort π = (8|2, 1|9|5, 6|3, 4|7|) (the six breakpoints are
marked with a bar). The adjacencies that will be created next are highlighted. The
example will be continued in figure 7, when the necessary tools have been introduced.

we are thus in the situation of case 1. The condition i �= 0 is necessary because
with i = 0 we have π0 = 0, so πj = 1 and we cannot create an adjacency by our
definition of breakpoints. Note also that an arc of type 2 cannot be the last blue
edge in Gπ ; this implies in particular j �= n + 1, so φ(j) is a valid reversal. See
Fig. 3 (b)–(c) for an example.

In case 3, the adjacency is created by the prefix reversals φ(i) and φ(j − 1):
again, with (π1, . . . , πn) ◦ φ(i) = (πi, . . . , π1, πi+1, πj , . . . , πn) =: π′ we see that
Gπ′ contains a blue arc (π′

1, π
′
j) of type 1. See Fig. 3 (d)–(f) for an example. ��

For the rest of this section, we will say that a blue edge of type 1,2 or 3
is a good edge if it satisfies one of the respective conditions given in Lemma 2.
The next two lemmas are the key to our 2-approximation. They characterize
those permutations that do not contain a good edge. In fact, we will show that
these permutations all resemble a certain prototype permutation (given in Eq.
(∗) on p. 421) which can then be solved by the generic sorting sequence given in
Lemma 6.

Lemma 3. Let π be a permutation of {1, . . . , n} that does not contain a good
blue edge and let Gπ be its associated breakpoint graph. Then π does not contain
any singletons.

Proof. Assume π contains a singleton, say at position 1 ≤ i ≤ n. Then there are
two blue edges beginning or ending at πi. Further, there is a red edge ending
at πi and a red edge beginning at πi. If one of the two blue edges had πi as
its left endpoint, then this edge would be of type 2 or 3 (or both), so at least

420 J. Fischer and S.W. Ginzinger

πi πi 1+−

(a) If there is a blue edge going from πi to
the right, then it is either type 3. . .

πi πi
+−1+−

(b) . . . or type 2, depending on the direction
of the incident red edge in πi ± 1.

πiπi+1

(c) The blue edge between πi and πi + 1
must point to the left, as well as the red
edge incident to πi + 1.

πiπi+1 πi+pπi+p+1

(d) The highlighted edges correspond to ex-
actly the same situation which we have al-
ready considered.

Fig. 4. Illustrations to the proof of Lemma 3

πi

ef

(a) Assume edge e is the first of type 1 (all
shown edges between the first and the last
are of type 4).

πiπi
+−1+−

e’

e’’
f

(b) The next blue edge e′ must point to
the left, as well as the red edge e′′ incident
to πi ± 1.

Fig. 5. Illustrations to the proof of Lemma 4

one of the conditions 2 or 3 in Lemma 2 would hold, a contradiction (see Fig.
4 (a)–(b)). So both blue edges have πi as their right endpoint, in particular the
edge starting at πi + 1. There cannot be a red edge on the right side of πi + 1,
because otherwise the blue edge (πi + 1, πi) would be of type 3 and thus be
good. So the only red edge incident to πi +1 ends there (Fig. 4 (c)). This means
that there is an ascending strip from πi + 1 to πi + p for some p ≥ 2. Now we
either have πi + p = n, in which case there must be a blue edge from πi + p = n
to πn+1 = n + 1, which would then be of type 3, a contradiction. If, on the
other hand, πi + p �= n, by the same reasoning as above we know that the blue
edge incident to πi + p must point to the left, and again the red edge incident
to πi + p + 1 must also point to the left (Fig. 4 (d)). We are thus in the same
situation as before and must eventually reach n which gives us a blue edge of
type 3, a contradiction. This proves that there are no singletons in π. ��

Lemma 4. Let π �= ι be a permutation of {1, . . . , n} that does not contain a
good blue edge and let Gπ be its associated breakpoint graph. Then all of Gπ’s
blue edges have a unique type, the first is of type 2, the last is of type 1, and all
other blue edges are of type 4.

Proof. The fact that all blue edges have a unique type follows immediately from
Lemma 3. Since condition 3 of Lemma 2 is not satisfied, the first blue edge
cannot be of type 3 and must thus be of type 2. (The first blue edge can never
be of type 1 or 4.) We now prove that all other blue edges apart from the last
are of type 4. In fact, all we need to show is that they are not of type 1, for if

A 2-Approximation Algorithm for Sorting by Prefix Reversals 421

there were an arc of type 2 or 3, one of the conditions 2 or 3 in Lemma 2 would
hold. Note further that because π contains no singletons, there are either 0 or
2 edges incident to each vertex of Gπ. So Gπ forms a unique cycle. Following
this cycle from the end of the leftmost blue edge f , look at the first blue edge
e of type 1, see Fig. 5 (a). (We will actually show that this edge must be the
last.) Define πi as the element to the left of the right endpoint of e. By the
same reasoning as in Lemma 3, the blue edge e′ incident to πi cannot point to
the right, and likewise the next red edge e′′ must point to the left (Fig. 5 (b)),
because otherwise e′ would be of type 2. Now either e′ = f (in which case we are
done), or the argument can be continued inductively until we eventually reach
edge f . The proof is finished by noting that there must be at least one blue edge
of type 1, for otherwise Gπ would not form a cycle. ��

For the proof of the following lemma we need another definition for blue
edges [9]: two blue edges (πi, πj) and (πk, πl) are said to be interleaving if the
intervals [i, j] and [k, l] overlap but neither of them contains the other.

Lemma 5. Let π �= ι be a permutation of {1, . . . , n} that does not contain a
good blue edge. Then π is of the form

π = (p1, . . . , 1︸ ︷︷ ︸
l1

, p2, . . . , p1 + 1︸ ︷︷ ︸
l2

, , n, . . . , pb(π)−1 + 1︸ ︷︷ ︸
lb(π)

) , (∗)

i.e. π consists of b(π) ≥ 2 descending strips of length li ≥ 2 for all 1 ≤ i ≤ b(π).

Proof. By Lemma 4, Gπ consists of one blue edge of type 2 at the beginning,
one blue edge of type 1 at the end, and all blue edges in between are of type 4.
Because Gπ forms a unique cycle and blue edges of type 4 must interleave with
at least two other blue edges, the only possible arrangement of these edges looks
as shown in Fig. 6, with (πi, πj) being its first blue edge.

ππ πn+1i j

Fig. 6. The only possible breakpoint graph when we cannot apply two reversals that
eliminate a breakpoint

First note that i = 0, for otherwise the blue edge (πi, πj) would be good.
Following the first blue arc from πi = 0, we see that πj = 1. Therefore the first
strip must be p1, . . . , 1 with l1 = p1 ≥ 2, for if p1 = 1, the strip would be a
singleton. Continuing this line of arguments we get that π must of the form (∗).

To see that b(π) ≥ 2, assume that there is only one breakpoint in π. Then
there would be no edge of type 4 in Gπ, so the blue edge of type 1 would start
at π1 and would thus be good. ��

422 J. Fischer and S.W. Ginzinger

8 70 1014 5 9623

(a) Here we are in the situation of Lemma
4. The permutation is sorted by first ap-
plying the prefix reversal φ(9) . . .

0 106 43215987

(b) . . . then φ(5). . .

0 1043219 7856

(c) . . . again φ(9). . .

0 107 65981234

(d) . . . then φ(7). . .

0 10651 432789

(e) . . . again φ(9). . .

0 102 98713456

(f) . . . and finally φ(6).

0 10987654321
(g) The sorted permutation.

Fig. 7. Continuing the running example: This figure shows the effect of the generic
sorting sequence

The previous lemma has characterized permutations that do not contain a
good blue edge. We now show how to cope with these “hard” instances.

Lemma 6. Assume π is of the form (∗), and let l1, . . . , lb(π) be defined as in
Lemma 5. Then the sequence of 2b(π) prefix reversals

φ(n) ◦ φ(n− l1) ◦ φ(n) ◦ φ(n− l2) ◦ · · · ◦ φ(n) ◦ φ(n− lb(π))

applied to π yields the identity permutation.

Proof. Applying the first two reversals to π yields

π� := (p2, . . . , p1 + 1, p3, . . . , p2 + 1, , n, . . . , pb(π)−1 + 1, 1, . . . , p1) .

We now prove by induction on the number of breakpoints in π� (equal to b(π))
that applying the next 2b(π)− 2 prefix reversals yields the identity. The base is
when b(π�) = 2. So π� = (n, . . . , p1 + 1, 1, . . . , p1), and π� ◦ φ(n) ◦ φ(n − l2) is
clearly equal to ι.

For the induction step, let π� = (p2, . . . , p1 + 1, p3, . . . , p2 + 1, , n, . . . ,
pb(π)−1 + 1, 1, . . . , p1). Now π� ◦ φ(n) ◦ φ(n− l2) = (p3, . . . , p2 + 1, , n, . . . ,
pb(π)−1 +1, 1, . . . , p1, p1 +1, . . . , p2), which is of the same form as π� but has one
breakpoint less. The claim follows. ��

See Fig. 7 for an example of the generic sorting sequence. We note that in the
above lemma, the first two prefix reversals (φ(n) and φ(n− l1)) do not eliminate
a breakpoint, whereas the last two prefix reversals (φ(n) and φ(n− lb(π))) both
create an adjacency, and all other pairs of reversals create exactly one adjacency.

A 2-Approximation Algorithm for Sorting by Prefix Reversals 423

That is, the last two prefix reversals compensate for the first two that could not
create any adjacency.

We now come to our main result:

Corollary 1. MIN-SBPR is 2-approximable.

Proof. While the breakpoint graph of π contains a good blue edge, choose on of
these edges and apply at most 2 prefix reversals to eliminate a breakpoint. If this
is impossible, by Lemma 5 π must be of the form (∗), which can be transformed
into the identity permutation ι by the generic sequence of prefix reversals given
in Lemma 6. The number of prefix reversals used is at most 2b(π). The claim
follows with the lower bound given in Lemma 1. ��

4 Empirical Results

We implemented the algorithm that drops out from the proof of Cor. 1. The
obvious strategy used was that good arcs of type 1 were preferred over good
arcs of type 2 or 3 because the former just need one prefix reversal to create
an adjacency instead of two. This algorithm was compared to a branch-and-
bound method to compute the optimal number of prefix reversals to sort a given
permutation. Due to the enormous size of the group of permutations (and the
even more numerous number of possible sorting sequences to be inspected by the

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 0 10 20 30 40 50 60 70 80

ap
pr

ox
im

at
io

n
ra

tio

size of permutation

Fig. 8. The actual approximation ratios of our 2-approximation algorithm. The size
of the permutations is plotted against the number of operations performed by our
algorithm, divided by the minimum number of prefix reversals needed to sort these
permutations. All numbers are averaged over 10,000 random permutations of the shown
size.

424 J. Fischer and S.W. Ginzinger

branch-and-bound algorithm), we chose to select at random 10,000 permutations
of length up to 71 and computed the actual approximation ratios of our 2-
approximation. The results can be seen in Fig. 8.

It is interesting to see that the actual approximation ratio is much better
than 2. This suggests that with a deeper analysis of the algorithm the theoretical
approximation ratio could even be lowered. For example, we were able to prove
that certain blue arcs of type 4 (similar to the ones in Fig. 6) contribute to
d(π) by an extra prefix reversal. Nevertheless this is not sufficient to lower the
theoretical approximation ratio of the algorithm: To do so, one would have to
make sure that, among other things, such situations are not“created”unless they
are inevitable.

Another point to note on Fig. 8 is that the actual approximation ratio seems
to level off at ≈1.2. One possible explanation for this could be that the number
of “hard” permutations for our method converges against a constant fraction of
the size of the group. However, because we could only sample a constant number
of permutations for every n (namely 10,000), it could also be that the really hard
instances were not covered by our randomly chosen permutations and the true
approximation ratio is worse than the graph shows.

5 Conclusions and Outlook

We have seen an algorithm to solve MIN-SBPR with an approximation ratio of 2.
We note that Cohen and Blum [5] give a similar 2-approximation for the signed
version of MIN-SBPR, parts of which could also have been used for our problem.
While our result is rather of theoretical interest, empirical tests have shown that
on average, our algorithm is within ≈1.2 of the optimal for permutations of
length up to 71. This suggests that there is a hidden parameter in the prefix-
reversal-distance d(π), in a similar way as hurdles and fortresses account for
the reversal-distance in MIN-SBR. Future work will be directed towards raising
the lower bound by identifying the parameters influencing the prefix-reversal
distance. From a theoretical standpoint, another interesting topic of research is
to prove the theoretical computational complexity of both the signed and the
unsigned version of the problem.

Acknowledgments

We wish to thank Volker Heun for fruitful discussions and helpful suggestions
on this subject. Further thanks go to an anonymous reviewer who pointed out
the connection to the signed version of MIN-SBPR [5].

References

1. V. Bafna, P. A. Pevzner: Genome Rearrangements and Sorting by Reversals. SIAM
J. on Computing, 25(2): 272–289, 1996.

2. V. Bafna, P. A. Pevzner: Sorting by Transpositions SIAM J. on Discrete Mathe-
matics 11(2), 224–240, 1998.

A 2-Approximation Algorithm for Sorting by Prefix Reversals 425

3. P. Berman, S. Hannenhalli, M. Karpinski: 1.375-Approximation Algorithm for Sort-
ing by Reversals. Proc. ESA’02, Lecture Notes in Computer Science 2461: 200–210,
2002.

4. A. Caprara: Sorting Permutations by Reversals and Eulerian Cycle Decomposi-
tions. SIAM J. on Discrete Mathematics 12(1): 91–110, 1999.

5. D. S. Cohen, M. Blum: On the Problem of Sorting Burnt Pancakes. Discrete Applied
Mathematics 61: 105–120, 1995.

6. Z. Dias, J. Meidanis: Sorting by Prefix Transpositions. Proc. SPIRE’02, Lecture
Notes in Computer Science 2476: 65–76, 2002.

7. W. H. Gates, C. H. Papadimitriou: Bounds for Sorting by Prefix Reversals. Discrete
Mathematics 27: 47–57, 1979.

8. S. Hannehalli, P. Pevzner: TO CUT ... OR NOT TO CUT (Applications of Com-
parative Physical Maps in Molecular Evolution). Proceedings of the 7th ACM
Symposium on Discrete Algorithms (SODA’96), 304–313, 1996.

9. S. Hannenhalli, P. A. Pevzner. Transforming Cabbage into Turnip: Polynomial
Algorithm for Sorting Signed Permutations by Reversals. J. of the ACM 46(1):
1–27, 1999.

10. T. Hartman, R. Shamir: A Simpler 1.5-Approximation Algorithms for Sorting by
Transpositions, Proc. CPM’03, Lecture Notes in Computer Science 2676, 156–169,
2003.

11. M. H. Heydari, I. H. Sudborough: On the Diameter of the Pancake Network. J. of
Algorithms 25: 67–94, 1997.

12. M. H. Heydari. The Pancake Problem. PhD-thesis, University of Wisconsin at
Whitewater, 1993.

13. J. Kececioglu, D. Sankoff. Efficient Bounds for Oriented Chromosome Inversion
Distance. Proc. CPM’94, Lecture Notes in Computer Science 807: 307–325, 1994.

14. J. Kececioglu, D. Sankoff. Exact and Approximation Algorithms for Sorting by
Reversals, with Application to Genome Rearrangements. Algorithmica 13: 180–
210, 1995.

Approximating the 2-Interval Pattern Problem

Maxime Crochemore1,�, Danny Hermelin2, Gad M. Landau3,��,
and Stéphane Vialette4

1 Institut Gaspard-Monge, Université de Marne-la-Vallée, France,
and Department of Computer Science, King’s Collage, London, UK

maxime.crochemore@univ-mlv.fr
2 Department of Computer Science, University of Haifa, Israel

danny@cri.haifa.ac.il
3 Department of Computer Science, University of Haifa, Israel,

and Department of Computer and Information Science,
Polytechnic University, NY, USA

landau@cs.haifa.ac.il
4 Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud, France

vialette@lri.fr

Abstract. We address the problem of approximating the 2-Interval
Pattern problem over its various models and restrictions. This problem,
which is motivated by RNA secondary structure prediction, asks to find
a maximum cardinality subset of a 2-interval set with respect to some
prespecified model. For each such model, we give varying approximation
quality depending on the different possible restrictions imposed on the
input 2-interval set.

1 Introduction

In the context of RNA secondary structure prediction, Vialette [11] proposed
a geometric representation of a helix in an RNA single stranded molecule by
means of a natural generalization of an interval, namely a 2-interval. A 2-interval
is the union of two disjoint intervals defined over a single line. In [11], intervals
and 2-intervals represent respectively sequences of contiguous bases and possible
pairings between such sequences in the RNA secondary structure. The goal is
to find a maximum disjoint subset of the given set of 2-intervals, restricted to
prespecified geometrical constrains, so as to serve as a valid approximation of
the actual secondary structure of the given RNA.

Throughout the paper, a 2-interval is denoted by D = (I, J) where I and J
are two (closed) intervals defined over a single line such that I < J , i.e., I is
completely to the left of J . Two 2-intervals D1 = (I1, J1) and D2 = (I2, J2) are
disjoint, if both 2-intervals share no common point, i.e., (I1∪J1)∩ (I2 ∪J2) = ∅.
For such disjoint pairs of 2-intervals, three natural binary relations are of special
interest.
� Partially supported by CNRS, France, and the French Ministry of Research through

ACI NIM.
�� Partially supported by the Israel Science Foundation grant 282/01.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 426–437, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximating the 2-Interval Pattern Problem 427

Definition 1 (Relations between 2-intervals). Let D1 = (I1, J1) and D2 =
(I2, J2) be two disjoint 2-intervals. Then

– D1 < D2 (D1 precedes D2), if I1 < J1 < I2 < J2.
– D1 � D2 (D1 is nested in D2), if I2 < I1 < J1 < J2.
– D1 � D2 (D1 crosses D2), if I1 < I2 < J1 < J2.

A pair of 2-intervals D1 and D2 is R-comparable for some R ∈ {<, �, �}, if
either (D1, D2) ∈ R or (D2, D1) ∈ R. A set of 2-intervals D is R-comparable
for some R ⊆ {<, �, �}, R �= ∅, if any pair of distinct 2-intervals in D is R-
comparable for some R ∈ R. The non-empty subset R is called a model. Note
that any two disjoint 2-intervals are R-comparable for some R ∈ {<, �, �}.
Equivalently, any pairwise disjoint subset of D is {<, �, �}-comparable. In [3,11],
the 2-Interval Pattern problem is defined as follows:

Definition 2 (The 2-Interval Pattern problem). Let D be a set of 2-
intervals and let R ⊆ {<, �, �}, R �= ∅, be a given model. The 2-Interval
Pattern problem asks to find a maximum cardinality R-comparable subset of D.

By the above definition, any solution for the 2-Interval Pattern problem
over a modelR corresponds to a secondary structure constrained byR. Let D be
a set of 2-intervals and let S(D) = {I, J : D = (I, J) ∈ D} be the set of intervals
involved in D. Several biologically motivated restrictions on D and S(D) are of
interest.

D1

D2
D3

(b)

D1

D2
D3

(a)

(d)

(c)

D1

D2

D3

D1

D2

D3

Fig. 1. Restrictions for 2-interval sets. Intervals are represented by dark lines or circles
and 2-intervals are represented by a thin line connecting two intervals. (a) A point
2-interval set where D1 � D2 and D1 < D3. D2 and D3 are not disjoint and thus are
not comparable by any relation. (b) A unitary 2-interval set where D1 � D2, D1 < D3,
and D2 < D3. (c) A balanced 2-interval set where D3 � D2. The entire set is {<, �}-
comparable. (d) An unlimited {<, �, �}-comparable 2-interval set.

Definition 3. Let D be a set of 2-intervals and let S(D) be the set of intervals
involved in D.

– D is a point 2-interval set if all intervals in S(D) are pairwise disjoint (note
that in this case, all intervals in S(D) may be considered as points).

428 M. Crochemore et al.

– D is a unitary 2-interval set if S(D) consists of intervals of unit length.
– D is a balanced 2-interval set if any 2-interval in D is a pair of two intervals

of equal length.
– D is an unlimited 2-interval set if none of the above restrictions are imposed.

The left part of Table 1 depicts the current state of the art for the 2-Interval
Pattern problem in terms of exact algorithms. In [11], the 2-Interval Pat-
tern problem over the {�, �} and {<, �, �} models is proved to be NP-hard
even for unitary 2-interval sets. The proof for the {<, �, �} model is obtained
as a direct consequence of the APX-hardness result for the Maximum Inde-
pendent Set problem for t-interval graphs given in [2]. The results in [2] also
provide approximation algorithms for this model. In [3], an NP-hardness result
for the {<, �} model restricted to unitary 2-interval sets is given. The time com-
plexity for this same model when the input is restricted to point 2-interval sets
is still unknown [11,3]. These results imply that in practical terms, secondary
structures containing pseudoknots are hard to predict in our suggested math-
ematical model. This is consistent with previously known NP-hardness results
for RNA secondary structures prediction in other models considering arbitrary
pseudoknots [1,8,9].

Table 1. The 2-Interval Pattern problem over it’s various models and restrictions.
Left part: Classical complexity results for the 2-Interval Pattern problem, where
n = |D|. Right part: The approximation factors we obtain in this paper.

Classical complexity
Model Unl. Bal. Uni. Pnt.
{<,�, �} NP-C [11,2] O(n

√
n) [11]

{�, �} NP-C [11] O(n2√n) [3]
{<, �} NP-C [3] ?
{<, �} O(n2) [11]
{�} O(n2 log n) [11]
{�} O(n log n) [3]
{<} O(n log n) [11]

Approximation factors
Model Unl. Bal. Uni. Pnt.

{<, �, �} (Section 2) 4a 4b 3c –
{�, �} (Section 3) 4a 4d 3e –
{<, �} (Section 4) 6b 5b 3c 2c

a Polynomial-time [2].
b O(n2) time algorithm.
c O(n lg n) time algorithm [2].
d O(n3) time algorithm.
e O(n2 lg n) time algorithm.

In this paper we focus on the three NP-hard models of the 2-Interval
Pattern problem. More specifically, we design constant factor approximation
algorithms for the {<, �, �}, {�, �}, and {<, �} models. The approximation fac-
tors obtained by all our algorithms vary depending on the restriction imposed on
the input set of 2-intervals (see Table 1). Furthermore we suggest a new restric-
tion, namely balanced 2-interval sets. By definition, unitary 2-interval sets are
also balanced but the converse is not necessarily true. Consequently, the above
mentioned NP-hardness results also hold for the balanced case, and moreover,
balanced 2-interval sets introduce a new combinatorial object which requires

Approximating the 2-Interval Pattern Problem 429

particular consideration. Furthermore, the balanced restriction is very natural
in the biological setting of the problem.

This paper is organized as follows. In Section 2, we consider the 2-Interval
Pattern problem over the general model, i.e., the {<, �, �}model. We describe
in Section 3 an approximation algorithm for the problem over the {�, �} model.
Finally, in Section 4, the {<, �}model is considered, and different approximation
algorithms are introduced for all possible restrictions imposed on the input.

2 Approximation Algorithms for the {<, �, �} Model

We begin by considering the 2-Interval Pattern problem over the general
model, i.e., the {<, �, �} model. Recall that in this case, given an input set of
2-intervals D, the problem asks to find a maximum {<, �, �}-comparable subset
of D, which is equivalent to finding a maximum pairwise disjoint subset of D.

For point 2-intervals sets, 2-Interval Pattern can be solved in polyno-
mial time by maximum matching [11]. For unitary 2-interval sets, the problem
is already APX-hard [2], and therefore is APX-hard also for balanced and un-
limited 2-interval sets. Furthermore, the results in [2] also yield approximation
algorithms for our case which directly imply the following.

Proposition 1 ([2]). The 2-Interval Pattern problem over the {<, �, �}
model can be approximated within a factor of 4 when restricted to unlimited
2-interval sets, and a factor of 3 when restricted to unitary interval sets.

The algorithm given in [2] that solves the case of unitary 2-interval sets can
be executed in O(n lg n) time, where n is the size of the input set of 2-intervals.
However, the algorithm for unlimited 2-interval sets uses linear programming
techniques, which in practice are very often too time costly. Clearly, balanced
2-interval sets lie between the two cases and are arguably the most biologi-
cally important case. In the rest of this section we describe a quadratic time
4-approximation algorithm for balanced 2-intervals sets.

Given any balanced 2-interval set D, let the smallest 2-interval in D be the 2-
interval with the shortest left (or right, as they are both of equal length) interval
among all left intervals involved in D. The algorithm we suggest is a simple
greedy strategy that repeatedly picks the smallest 2-interval in the input, adds
it to the solution, and omits all other 2-intervals in the input which intersect it.
A schematic description of this algorithm, which we call Bal-{<, �, �}-Approx,
is given in Figure 2.

Lemma 1. Algorithm Bal-{<, �, �}-Approx achieves an approximation factor
guarantee of 4 for the 2-Interval Pattern problem over the general model,
restricted to balanced 2-interval sets.

Proof. Let D be the set of remaining 2-intervals at any arbitrary iteration of Bal-
{<, �, �}-Approx, and let D0 ∈ D be the smallest 2-interval at this iteration.
Since D0 is the smallest 2-interval in D, no interval involved in D can be properly

430 M. Crochemore et al.

Algorithm Bal-{<, �, �}-Approx(D)
Data : A set of balanced 2-intervals D.
Result : A {<, �, �}-comparable subset of D.
begin

while D �= ∅ do
1. Let D0 be the smallest 2-interval in D.
2. Add D0 to the solution.
3. Omit D0 and all 2-intervals intersecting D0 from D.

end
return the 2-intervals chosen for the solution.

end

Fig. 2. A schematic description of algorithm Bal-{<, �, �}-Approx

contained in the left or right interval of D0. Thus, there can be at most four
disjoint intervals involved in D, which intersect D0 at this given iteration. It
follows that at this iteration, at most four 2-intervals in the optimal solution
are omitted from D. Applying this argument for all iterations of the algorithm
yields the desired approximation factor guarantee. ��

Time Complexity. Given an input set of 2-intervals D of size n, algorithm Bal-
{<, �, �}-Approx can be implemented straightforwardly to run in O(n2) time.

3 An Approximation Algorithm for the {�, �} Model

We next consider the 2-Interval Pattern problem over the {�, �} model.
Recall that the 2-Interval Pattern problem over this model is NP-complete
even for unitary 2-interval sets [11]. In the following we introduce a single algo-
rithm which achieves different constant approximation factors for unitary, bal-
anced and unlimited 2-interval sets. More specifically, we describe an algorithm
which uses the algorithms described in the previous section as sub-procedures,
choosing the specific algorithm according to the restriction imposed on the input.
Our algorithm is a direct generalization of the algorithm devised in [3] for the 2-
Interval Pattern problem over the {�, �}model, restricted to point 2-interval
sets. As in [3], the notion of interval graphs is used extensively throughout the
section. An interval graph is an intersection graph of a finite family of intervals,
all defined over a single line [7,10].

Given a 2-interval D = (I, J), let C(D) denote the smallest interval that cov-
ers D, i.e., C(D) = [l(I) : r(J)] where l(I) and r(J) are the left and right end-
points of I and J , respectively. Blin et al. [3] called C(D) the covering interval of
D. They also observed that any pair of disjoint 2-intervals are {�, �}-comparable
if and only if their corresponding covering intervals intersect. Thus, given a set
of 2-intervals D, and the set C(D) of all covering intervals of 2-intervals in D,
any {�, �}-comparable subset D′ ⊆ D corresponds to a pairwise intersecting
subset of C′ ⊆ C(D). However, the converse is not true as a pair of non-disjoint

Approximating the 2-Interval Pattern Problem 431

2-intervals have corresponding intersecting covering intervals as well. Hence, a
pairwise intersecting subset of C(D) can contain corresponding 2-intervals which
are non-disjoint in D.

Let D be the input set of 2-intervals and C(D) be the set of covering intervals
of all 2-intervals in D. First, we construct the interval graph ΩC(D) of C(D).
Since ΩC(D) is an interval graph, it has at most |V (ΩC(D))| = |D| maximal (in
containment order) cliques, and all these maximal cliques can be computed in
polynomial time [6]. Note that any pair of 2-intervals with covering intervals in
a maximal clique, are either nesting or crossing (but not preceding), or they are
non-disjoint. Now, let OPT denote a maximum cardinality {�, �}-comparable
subset of D and let C(OPT) be the set of covering intervals of OPT . The sub-
graph of ΩC(D) which corresponds to C(OPT) is a clique, and is thus a subset of
a maximal clique in ΩC(D). Furthermore, any 2-interval with a covering interval
in this clique and not in OPT is necessarily non-disjoint with at least one of the
2-intervals in OPT .

Observation 1. Let OPT denote the maximum {�, �}-comparable subset of
D. Then OPT is a maximum pairwise disjoint subset of a set of 2-intervals D′,
OPT ⊆ D′ ⊆ D, such that C(D′), the covering intervals of OPT , corresponds to
a maximal clique in ΩC(D).

Given the 2-intervals which corresponds to a maximal clique in ΩC(D), one
can use the algorithms in Section 2 to find an approximation of the maximum
pairwise disjoint subset of these 2-intervals. A detailed schematic description of
our algorithm, which is called {�, �}-Approx, is given in Figure 3.

Algorithm {�, �}-Approx(D)
Data : A set of 2-intervals D.
Result : A {�, �}-comparable subset of D.
begin

1. Construct C(D), the set of covering intervals of all 2-intervals in D.
2. Construct ΩC(D), the interval graph of C(D).
3. Compute all maximal cliques of ΩC(D) using [6].
4. foreach maximal clique C of ΩC(D) do

(a) Compute DC ⊆ D, the 2-intervals with covering intervals in C.
(b) Approximate the maximum pairwise disjoint subset of DC , using
the algorithms described in the previous section.

end
return the largest pairwise disjoint subset found in step 4(b).

end

Fig. 3. A schematic description of algorithm {�, �}-Approx

Lemma 2. Algorithm {�, �}-Approx is a 4-approximation (3-approximation)
algorithm for the 2-Interval Pattern problem for unlimited (unitary) 2-
interval sets.

432 M. Crochemore et al.

Proof. Immediate from the above discussion and from Proposition 1 and
Lemma 1. ��

Time Complexity. The number of sub-procedure invocations in step 4(b) of
{�, �}-Approx is bounded by O(n) where n denotes the size of the input set.
Also, generating all maximal cliques of ΩC(D) can be done in O(n2) time. Hence,
we have a super-quadratic running time of O(n2 lg n) for unitary 2-interval sets
and a O(n3) running time for balanced 2-interval sets. For unlimited 2-interval
sets, the running time of {�, �}-Approx is polynomial [2].

4 Approximation Algorithms for the {<, �} Model

We now turn to considering the 2-Interval Pattern problem over the {<
, �} model. Recall that the problem is known to be NP-hard for unitary 2-
interval sets, while for point 2-interval sets the problem is not known to be
in P [3]. Thus, in the following section we consider all possible restrictions for
the {<, �} model. More specifically, we design a 3-approximation algorithm for
unitary 2-interval sets which is also a 2-approximation algorithm for point 2-
interval sets. We later slightly modify this algorithm to obtain a 5-approximation
algorithm for balanced 2-interval sets. Finally, we introduce a different more
complex modification which yields a 6-approximation algorithm for unlimited
2-interval sets.

Throughout the section, we will use the notion of trapezoid graph [4,5].
Consider two intervals, I ′ and J ′, defined over two distinct horizontal lines. The
trapezoid T = (I ′, J ′) is the convex set of points bounded by I ′ and J ′, and the
two arcs connecting the right and left endpoints of I ′ and J ′. We call I ′ and J ′

the bottom interval and top interval of T respectively. A family of trapezoids
is a finite set of trapezoids which are all defined over the same two horizontal
lines. The above definitions imply, that two distinct trapezoids T1 = (I ′1, J

′
1) and

T2 = (I ′2, J
′
2) in a family of trapezoids are disjoint, i.e., they contain no common

point, if and only if (I ′1 < I ′2 and J ′
1 < J ′

2) or (I ′2 < I ′1 and J ′
2 < J ′

1) holds. If T1

and T2 are indeed disjoint, then one trapezoid is completely to left of the other,
say for instance T1, and this is denoted by T1 < T2. Finally, a trapezoid graph
is an intersection graph of a family of trapezoids.

4.1 Point and Unitary 2-Interval Sets

We begin the discussion in this section by first describing an approximation
algorithm for point and unitary 2-interval sets. We call this initial algorithm
{<, �}-Approx. The general outline of {<, �}-Approx consists of the following
stages: First T (D), a family of trapezoids representing each 2-interval in D is
constructed. Next, the maximum pairwise disjoint subset of T (D) is computed
using the algorithm proposed in [5]. Finally, trapezoids in this subset which
correspond to non-disjoint 2-intervals in D are omitted, and the filtered solution
is outputted.

Approximating the 2-Interval Pattern Problem 433

Definition 4 (Corresponding trapezoid family). Let D be a set of 2-
intervals, and let α and β be two distinct horizontal lines such that α is below β.
The corresponding trapezoid family of D, denoted T (D), is defined as the family
containing a single trapezoid T = (I ′, J ′) ∈ D for each 2-interval D = (I, J) ∈ D,
where I ′ is defined over α, J ′ is defined over β, and I ′ = I and J = J ′.

I’1

I’2

J’2

I’1

J’1

I2

I2

J2I2J1

J2J1

I1

I1

J1J2I1

J’2

I’2

J’1

I’1 I’2

J’1J’2

I’2I’1
I2 J2

J1I1

J’2J’1

Fig. 4. {<, �}-comparable 2-intervals correspond to disjoint trapezoids but the converse
is not necessarily true

Let D be a set of 2-intervals and let T (D) be the corresponding trapezoid
family of D. It is not difficult to see that {<, �}-comparable 2-intervals in D
correspond to disjoint trapezoids in T (D), while {�}-comparable 2-intervals in
D correspond to intersecting trapezoids in T (D) (see Figure 4).

Observation 2. Any two disjoint 2-intervals in D are {<, �}-comparable if and
only if their corresponding trapezoids in T (D) are disjoint.

Felsner et al. [5] presented an O(n lg n) algorithm for finding a maximum dis-
joint subset in a family of n trapezoids. Unfortunately, this alone does not suffice
in our case since there may be disjoint trapezoids in T (D) which correspond to
non-disjoint 2-intervals in D. (see Figure 4).

Definition 5 (Clashing intervals). Let I ′ = [l(I ′), r(I ′)] and J ′ =
[l(J ′), r(J ′)] be two distinct intervals defined over two distinct horizontal lines
such that l(I ′) ≤ l(J ′). The two intervals I ′ and J ′ clash, if either l(I ′) ≤ l(J ′) ≤
r(J ′) ≤ r(I ′) or l(I ′) ≤ l(J ′) ≤ r(I ′) ≤ r(J ′).

Definition 6 (Clashing trapezoids). Let T1 = (I ′1, J
′
1) and T2 = (I ′2, J

′
2) be

two distinct trapezoids in a family of trapezoids. The two trapezoids T1 and T2

clash, if either I ′1 and J ′
2 clash or I ′2 and J ′

1 clash.

Observation 3. Any pair of 2-intervals in D are {<, �}-comparable if and only
if their corresponding trapezoids in T (D) are disjoint and do not clash.

Observation 3 is the heart of algorithm {<, �}-Approx. Note that the number
of maximal (in containment order) pairwise disjoint subsets of T (D) can be
exponential, so exhaustively searching through all such subsets for a maximum
non-clashing subset is unfeasible. Let T ′ be the maximum pairwise disjoint subset
of T (D). Since the optimal solution OPT ⊆ D also corresponds to a pairwise

434 M. Crochemore et al.

disjoint non-clashing subset of trapezoids, we must have |OPT | ≤ |T ′|. Next we
show how to obtain a a pairwise non-clashing subset of T ′ which is no more
than a constant factor smaller then OPT , in case D is either a point or unitary
2-interval set. Namely, we find a subset of T ′ which is an approximation of OPT .

Consider the leftmost trapezoid T0 of T ′ and let D0 be its corresponding
2-interval in D. By our definition of a 2-interval and of T (D), any trapezoid in
T (D), has a bottom interval which is completely to the left of its top interval.
Thus, T0 can only clash with trapezoids on its right in T ′. Now, if D is a point 2-
interval set, then all 2-intervals with left intervals intersecting the right interval of
D0 have the same left interval, and as T ′ is pairwise disjoint, at most one of these
has a corresponding trapezoid in T ′. Furthermore, if D is a unitary 2-interval
set, intersecting intervals involved in D must overlap. Thus, any trapezoid in T ′

clashing with T0 corresponds to a 2-interval with a left interval which contains
either endpoints, but not both, of the right interval of D0. Since T ′ is pairwise
disjoint, there can be at most two such trapezoids in T ′.

Algorithm {<, �}-Approx first computes T ′ the maximum pairwise disjoint
subset of T (D), and then repeatedly adds the leftmost trapezoids in T ′ to the
solution while omitting all trapezoids which clash with this trapezoid in T ′. A
schematic description of algorithm {<, �}-Approx is given in Figure 5.

Algorithm {<, �}-Approx(D)
Data : A set of 2-intervals D.
Result : A {<, �}-comparable subset of D.
begin

1. Construct T (D), the corresponding trapezoid set of D.
2. Compute T ′ ⊆ T (D), the maximum pairwise disjoint subset of T (D) [5].
3. while T ′ �= ∅ do

(a) Let T0 be the leftmost trapezoid in T ′.
(b) Add T0 to the solution.
(c) Omit T0 and all trapezoids clashing with T0 from T ′.

end
return the set of 2-intervals corresponding to the trapezoids in the solution.

end

Fig. 5. A schematic description of algorithm {<, �}-Approx

Lemma 3. Algorithm {<, �}-Approx is a 3-approximation algorithm (2-
approximation algorithm) for the 2-Interval Pattern problem over the {<, �}
model restricted to unitary 2-interval sets (point 2-interval sets).

Time Complexity. Let |D| = n. The family of trapezoids T (D) can be con-
structed in O(n) time, and according to [5], T ′ ⊆ T (D) can be computed in
O(n lg n) time. In addition, each iteration in step 3 of the algorithm can easily
be computed by scanning T ′ a constant number of times. As there are O(n)
iterations all together, it follows that step 3, and consequently algorithm {<, �}-
Approx, can be computed in O(n2) time. In fact, if we sort all the right endpoints

Approximating the 2-Interval Pattern Problem 435

of intervals involved in D in an O(n lg n) preprocessing stage, we can compute
each iteration of step 3 in linear time with respect to the number of trapezoids
omitted. As there is only a constant number of such trapezoids in each iteration,
step 3 can be computed in O(n) time. This yields a total of O(n lg n) running
time.

4.2 Balanced 2-Interval Sets

We next consider balanced 2-interval sets. We show that a slight modification to
algorithm {<, �}-Approx yields a 5-approximation algorithm for this case. We
call this new algorithm Bal-{<, �}-Approx. Algorithm Bal-{<, �}-Approx differs
from {<, �}-Approx only by the fact that at each iteration of step 3, instead of
choosing the leftmost trapezoid in T ′, the smallest trapezoid (i.e., the trapezoid
corresponding to the smallest 2-interval) amongst all trapezoids in T ′ is chosen
for the solution.

Lemma 4. Algorithm Bal-{<, �}-Approx is a 5-approximation factor the 2-
Interval Pattern problem over the {<, �} model restricted to balanced 2-
interval sets.

Proof. Consider T ′ at an arbitrary iteration of step 3 in Bal-{<, �}-Approx, and
let T0 be the smallest trapezoid of T ′ at this iteration. Also let OPT denote the
maximum {<, �}-comparable subset of D. Since T0 is the smallest trapezoid, by
a similar argument used in Lemma 1, T0 clashes at most 4 other trapezoids in
T ′ at this iteration. Hence, since |OPT | ≤ |T ′| prior to step 3, the promised
approximation factor is obtained and the above lemma holds. ��

Time Complexity. Algorithm Bal-{<, �}-Approx can be implemented straight-
forwardly to run in O(n2) time, where n = |D|.

4.3 Unlimited 2-Interval Sets

The rest of this section is devoted to the 2-Interval Pattern problem over
the {<, �} model for unlimited 2-interval sets. We introduce a slightly more
delicate modification of {<, �}-Approx to obtain a 6-approximation algorithm
for the unlimited case. For this, we consider special trapezoid families which
have structures that are convenient for our purposes.

Definition 7 (Proper trapezoid family). A family of trapezoids T is proper
if for any two distinct trapezoids T1 = (I ′1, J ′

1), T2 = (I ′2, J ′
2) in T , I ′1 ∩ I ′2 = ∅

and J ′
1 ∩ J ′

2 = ∅ holds.

Definition 8 (Strongly proper trapezoid family). A proper family of trape-
zoids T is strongly proper if for any two distinct trapezoids T1 = (I ′1, J

′
1), T2 =

(I ′2, J
′
2) in T , if J ′

1 and I ′2 clash then l(J ′
1) ≤ l(I ′2) < r(I ′2) ≤ r(J ′

1), where
l(J ′

1), r(J ′
1) and l(I ′2), r(I ′2) are the left and right endpoints of J ′

1 and I ′2 respec-
tively.

436 M. Crochemore et al.

Note that by the above definition, any pairwise disjoint family of trapezoids
is proper, but the converse is not true. Thus, T ′ ⊆ T computed at step 2 of
{<, �}-Approx is a proper trapezoid family. Also, computing a strongly proper
subset T ′′ ⊆ T ′ can be done easily by adjusting step 3 of {<, �}-Approx. Instead
of omitting all trapezoids clashing with the leftmost trapezoid in this iteration,
we need only to omit a small subset of these trapezoids. More specifically, let
T0 = (I ′0, J

′
0) be the leftmost trapezoid in T ′. We only omit trapezoids Tα =

(I ′α, J ′
α) ∈ T ′ with either l(I ′α) ≤ l(J ′

0) ≤ r(I ′α) or l(I ′α) ≤ r(J ′
0) ≤ r(I ′α) (or

both). It is not difficult to see that we obtain a strongly proper trapezoid family
T ′′ ⊆ T ′ if we proceed in this fashion and that |T ′′| ≥ 1

3 |T ′|.
Definition 9 (Clashing trapezoid graph). Given a family T of trapezoids,
the clashing trapezoid graph of T , denoted by GT , is the graph such that each
vertex in V (GT) corresponds to a distinct trapezoid in T , and two vertices are
connected by an edge if and only if their corresponding trapezoids clash.

Lemma 5. Let T be a family of trapezoids. If T is strongly proper then GT is
a forest.

Proof. Let T be a strongly proper family of trapezoids and let GT be its corre-
sponding clashing trapezoid graph. Define G∗

T as the directed graph obtained be
orientating the edges of GT according to the precedence relation of T . In other
words, V (G∗

T) = V (GT) and (T1, T2) ∈ E(G∗
T) if and only if {T1, T2} ∈ E(GT)

and T1 < T2 in T . Since T is strongly proper, every trapezoid in T clashes with
at most one trapezoid on its left, and so the in-degree of every vertex v ∈ V (G∗

T)
is at most one. Hence, any cycle (v0, . . . , vt, v0) in GT is a (directed) cycle in
G∗

T . However, in such a case we must have T0 < Tt < T0 by definition of G∗
T ,

which is clearly a contradiction. Hence, we conclude that G∗
T , and consequently

GT , contain no cycles, and the above lemma holds. ��
It is well known that the maximum independent set in any forest G is of size

at least 1
2 |V (G)| and that this set can be found in linear time with respect to

|V (G)|. Also, by definition, if T ′′ is a pairwise disjoint family of trapezoids, then
any independent set of GT ′′ corresponds to a pairwise disjoint non-clashing set
of trapezoids, which by Observation 3, corresponds to a {<, �}-comparable set
of 2-intervals. A schematic description of our algorithm for unlimited 2-intervals
sets, called Unl-{<, �}-Approx, is given in Figure 6.

Lemma 6. Algorithm Unl-{<, �}-Approx is a 6-approximation algorithm for the
2-Interval Pattern problem over the {<, �} model.

Proof. Let D be the input set of 2-intervals and let T (D), T ′ and T ′′ be the
trapezoid families as described in the above description of Unl-{<, �}-Approx.
Also, denote by OPT the maximum {<, �}-comparable subset of D. We have
|OPT | ≤ |T ′| and |T ′| ≤ 3|T ′′|. Let α(GT ′′) denote the size of the maximal
independent set of GT ′′ . Since GT ′′ is a forest, we have |V (GT ′′)| ≤ 2α(GT ′′).
Accumulating all these inequalities together we get: |OPT | ≤ |T ′| ≤ 3|T ′′| =
3|V (GT ′′)| ≤ 6α(GT ′′). Thus, the maximum independent set of GT ′′ is at least
of size 1

6 |OPT |, and the promised approximation factor holds. ��

Approximating the 2-Interval Pattern Problem 437

Algorithm Unl-{<, �}-Approx(D)
Data : A set of 2-intervals D.
Result : A {<, �}-comparable subset of D.
begin

1. Construct T (D), the corresponding trapezoid set of D.
2. Compute T ′, the maximum pairwise disjoint subset of T (D).
3. Compute T ′′, a strongly proper subset of T ′, such that |T ′′| ≥ 1

3
|T ′|.

4. Compute GT ′′ and the maximum independent set of GT ′′ .
return the set of 2-intervals corresponding to the maximum independent set
of GT ′′ .

end

Fig. 6. A schematic description of algorithm Unl-{<, �}-Approx

Time Complexity. Let |D| = n. Steps 1-2 in Unl-{<, �}-Approx can be computed
in O(n lg n) time by a similar analysis of the time complexity of {<, �}-Approx.
Step 3 can be computed straightforwardly in O(n2) time. Finally, step 4 can be
computed in O(n) time since GT ′′ is a forest. Thus, the whole algorithm can be
implemented to run in O(n2) time.

References

1. T. Akutsu. Dynamic programming algorithms for RNA secondary structure pre-
diction with pseudoknots. Discrete Applied Mathematics, 104:45-62, 2000.

2. R. Bar-Yehuda, M.M. Halldorsson, J. Naor, H. Shachnai and I. Shapira. Scheduling
spit intervals. Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2002), 732-741.

3. G. Blin, G. Fertin and S. Vialette. New results for the 2-interval pattern problem.
Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching
(CPM 2004), Lecture Notes in Computer Science 3109, Springer-Verlag, 311-322.

4. I. Dagan, M.C. Golumbic and R.Y. Pinter. Trapezoid graphs and their coloring.
Discrete Applied Mathematics, 21:35-46, 1988.

5. S. Felsner, R. Müller and L. Wernisch. Trapezoid graphs and generalizations:
Geometry and algorithms. Discrete Applied Mathematics, 74:13-32, 1997.

6. F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering
by cliques and maximum independent set of a chordal graph. SIAM Journal on
Computing, 1:180-187, 1972.

7. M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New York, 1980.

8. S. Ieong, M.Y. Kao, T.W. Lam, W.K. Sung and S.M. Yiu. Predicting RNA sec-
ondary structures with arbitrary pseudoknots by maximizing the number of stack-
ing pairs. Proceedings of the 2nd Symposium on Bioinformatics and Bioengineering
(BIBE 2002), 183-190.

9. R.B. Lyngsø, C.N.S. Pedersen. RNA pseudoknot prediction in energy based models.
Journal of Computational Biology, 7:409-428, 2000.

10. T.A. McKee, F.R. McMorris. Topics in intersection graph theory. SIAM mono-
graphs on discrete mathematics and applications, 1999.

11. S. Vialette. On the computational complexity of 2-interval pattern matching prob-
lems. Theoretical Computer Science, 312:335-379, 2004.

A Loopless Gray Code for Minimal
Signed-Binary Representations

Gurmeet Singh Manku1 and Joe Sawada2

1 Google Inc., USA
manku@cs.stanford.edu

http://www.cs.stanford.edu/∼manku
2 University of Guelph, Canada

sawada@cis.uoguelph.ca

http://www.cis.uoguelph.ca/∼sawada

Abstract. A string . . . a2a1a0 over the alphabet {−1, 0, 1} is said to be
a minimal signed-binary representation of an integer n if n =

∑
k≥0 ak2k

and the number of non-zero digits is minimal. We present a loopless (and
hence a Gray code) algorithm for generating all minimal signed binary
representations of a given integer n.

1 Introduction

A string . . . a2a1a0 is said to be a signed-binary representation
1101001̄1̄01̄

101̄01001̄1̄01̄
101̄1̄001̄1̄01̄
101̄1̄01̄0101̄

101̄0101̄0101̄
110101̄0101̄
1100110101̄

101̄00110101̄
101̄00110011
1100110011
110101̄0011

101̄0101̄0011
101̄1̄01̄0011

Fig. 1. A Gray
code listing of
minimal SBRs
for 819. Succes-
sive strings differ
in three adjacent
positions.

(SBR) of an integer n if n =
∑

k≥0 ak2k and ak ∈ {−1, 0, 1}
for all k. A minimal SBR has the least number of non-zero dig-
its. For example, 45 has five minimal SBRs: 101101, 1101̄01,
101̄01̄01, 101̄001̄1̄ and 11001̄1̄, where 1̄ denotes −1. Our main
result is a loopless algorithm that generates all minimal SBRs
for an integer n in Gray code order. See Fig. 1 for an exam-
ple. Our algorithm requires linear time for generating the first
string. Thereafter, only O(1) time is required in the worst-case
for identifying the portion of the current string to be modified
for generating the next string1.

Volumes 3 and 4 of Knuth’s The Art of Computer Pro-
gramming are devoted entirely to algorithms for generation
of combinatorial objects. For the output of such an algorithm
to be considered a Gray code, successive objects must differ
by a constant amount. However, the time required to obtain
each new object may be ω(1). A generation algorithm is said
to be loopless if after the initial object is generated, successive
objects may be obtained in O(1) time in the worst-case. For
a survey of Gray code generation algorithms, see Savage [20].

The earliest algorithm for listing all minimal SBRs is due
to Ganesan and Manku [8]; however they did not consider the efficiency of im-
plementing their algorithm. By modifying their technique, Sawada [21] was able
1 See http://www.cs.stanford.edu/∼manku/projects/graycode/index.html for

source code in C.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 438–447, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Loopless Gray Code for Minimal Signed-Binary Representations 439

generate all minimal SBRs in constant amortized time. Additionally, the output
constitutes a Gray code. However, the algorithm is not loopless, since successive
strings require linear time in the worst case.

Our approach is novel — we first identify the canonical minimal SBR (see
§2 for its definition). The canonical SBR is split into disjoint “chains”. Individ-
ual chains are handled by a Gray code algorithm which never outputs certain
forbidden strings (see §4). The cross-product of all the chains is handled by a
generalization of the Binary Reflected Gray Code (BRGC) [10, 3] (see §3 and
§5). A detailed history of SBRs is presented in §6.

2 A Loopless Gray Code for Minimal SBRs

From earlier work by Sawada [21], we know that any minimal signed binary
representation (SBR) for an integer n can be transformed into another minimal
SBR for the same integer by repeated application of the following re-write rules:
101̄ → 011, 011 → 101̄, 1̄01 → 01̄1̄, and 01̄1̄ → 1̄01. Our strategy for listing
minimal SBRs in Gray code order is the following. We study the structural
properties of a specific minimal SBR, popularly known as the canonical SBR.
We then develop a procedure for listing all strings that result from repeated
application of the four re-write rules to the canonical SBR.

Definition (Canonical SBR). Let S denote the binary representation of a given
integer, padded with two leading zeros. For instance, integer 45 would correspond
to the string S = 00101101. Scanonical is the unique minimal SBR for S such
that the product of any two adjacent digits is 0. Thus we never have 11, 11̄, 1̄1
or 1̄1̄ as a substring. For example,

S = 00101011111010000001010110101000010100
Scanonical = 0101̄01̄00001̄0100000101̄01̄01̄0101000010100

Scanonical has been used by previous authors (Reitwiesner [19],Chang and
Tsao-Wu [6], Jedwab and Mitchell [12] and Prodinger [18]). In fact, Scanonical

for integer n can be obtained by “bit-wise subtracting n/2 from 3n/2”
(Prodinger [18]). Starting with Scanonical is critical to the simplicity of our ap-
proach.

Definition (Blocks). A maximally long bit-sequence of (01)+ and (01̄)+ in
Scanonical is called a block. The following string has eight blocks (each block has
been underlined): 01 01̄01̄ 000 01̄ 01 0000 01 01̄01̄01̄ 0101 000 0101 00

Definition (Chains). A chain is a maximally long sequence of two or more
adjacent blocks. The following string has three chains (each chain has been un-
derlined): 01 01̄01̄ 000 01̄ 01 0000 01 01̄01̄01̄ 0101 000 0101 00

Two chains are separated by one or more 0s. Therefore, none of the four rewrite
rules, when applied to one chain, affects another chain. This proves the following:

Theorem 1. The set of minimal SBRs of S corresponds to the cross product of
the sets of minimal SBRs for individual chains of Scanonical.

440 G.S. Manku and J. Sawada

We now develop two loopless algorithms: one for generating the minimal
SBRs of a chain in Gray code order (see §5), and another for generating the
cross-product of Gray codes (see §3).

3 Gray Codes for Cross-Products

Consider the cross product of m combinato-
BRGC

initialize

while true do
last ← 1
i ← plast

if (i = m + 1) then exit

next(i)

if (is terminal(i)) then
di ← −di

j ← i + 1
pi ← pj

pj ← j

if (i �= last) then plast ← last

Fig. 2. A generalization of the Bi-
nary Reflected Gray Code [10,3]. See
Table 1(A) for sample output.

rial objects: Xm ×Xm−1 × · · · ×X1, where
object Xi has ti ≥ 2 members which can
be listed in Gray code order. Clearly, there
is a 1-1 correspondence between members
of the cross product and tuples of the form
(am, am−1, . . . , a1), where ai ∈ [1, ti] repre-
sents the ai-th object in the Gray code of
Xi. When each ti = 2, one possible Gray
code for the set of tuples is the Binary Re-
flected Gray Code (BRGC) [10]. A general-
ization of the BRGC, developed by Bitner,
Ehrlich, and Reingold [3], handles arbitrary
values of ti ≥ 2. Procedure brgc (displayed
in Fig. 2) is such an algorithm.

Procedure brgc maintains three tuples:
(am, am−1, . . . , a1) is the current-tuple,
(dm, dm−1, . . . , d1) is the direction-tuple, and
(pm+1, pm, . . . , p1) is the pointer-tuple.

initialize initializes the three tuples.
The current-tuple has ai = 1 or ai = ti,
chosen arbitrarily. The direction-tuple has
initial value di = 1 if ai = 1; otherwise di = −1. The pointer-tuple has initial
value (m + 1,m,m− 1, . . . , 1).

next(i) updates ai ← ai + di.
is terminal(i) returns true iff (ai = ti and di = 1) or (ai = 1 and di = −1).
The pointer-tuple lies at the heart of procedure brgc. If p1 = m+ 1, proce-

dure brgc terminates. Otherwise, let i = p1. Then ai, the i-th member of the
current-tuple, is modified. The direction-tuple indicates whether to increment
(di = 1) or decrement (di = −1) the value of ai.

Sample output produced by the algorithm is shown in Table 1(A).
Procedure brgc can easily be adapted to generate members of Xm×Xm−1×

· · ·×X1 in Gray code order. Clearly, such an algorithm is loopless if the algorithm
that generates members of each Xi in Gray code order is loopless.

4 Gray Codes for Cross-Products with Forbidden Tuples

Let Rm denote the set of m-tuples (am, am−1, . . . , a1) satisfying

1) ∀m ≥ i ≥ 1 : ai ∈ [1, ti], with ti ≥ 2
2) ∀m ≥ i > 1 : (ai = ti)⇒ (ai−1 = 1)

A Loopless Gray Code for Minimal Signed-Binary Representations 441

Table 1. Output of brgc (Fig 2) and brgc-restrict (Fig 3) for t3 = 2, t2 = 3,
t1 = 3. The initial tuple is (a3, a2, a1) = (1, 3, 1). The output is generated after each
iteration of the while loop. For simplicity we use ‘-’ to represent -1.

(A) With brgc
a3 a2 a1 p4 p3 p2 p1 d3 d2 d1

1 3 1 4 3 2 1 1 - 1
1 3 2 4 3 2 1 1 - 1
1 3 3 4 3 2 2 1 - -
1 2 3 4 3 2 1 1 - -
1 2 2 4 3 2 1 1 - -
1 2 1 4 3 2 2 1 - 1
1 1 1 4 3 3 1 1 1 1
1 1 2 4 3 3 1 1 1 1
1 1 3 4 3 2 3 1 1 -
2 1 3 4 4 2 1 - 1 -
2 1 2 4 4 2 1 - 1 -
2 1 1 4 4 2 2 - 1 1
2 2 1 4 4 2 1 - 1 1
2 2 2 4 4 2 1 - 1 1
2 2 3 4 4 2 2 - 1 -
2 3 3 4 3 4 1 - - -
2 3 2 4 3 4 1 - - -
2 3 1 4 3 2 4 - - 1

(B) With brgc-restrict
a3 a2 a1 p4 p3 p2 p1 d3 d2 d1

1 3 1 4 3 2 1 1 - 1
1 2 1 4 3 2 1 1 - 1
1 2 2 4 3 2 1 1 - 1
1 2 3 4 3 2 2 1 - -
1 1 3 4 3 3 1 1 1 -
1 1 2 4 3 3 1 1 1 -
1 1 1 4 3 2 3 1 1 1
2 1 1 4 4 2 1 - 1 1
2 1 2 4 4 2 1 - 1 1
2 1 3 4 3 2 4 - 1 -

For example, with t3 = 2, t2 = 3, and t1 = 3, Rm consists of 3-tuples listed
in Table 1(B). We now develop a loop-free algorithm for listing Rm in Gray code
order. This algorithm will be used in §5 for listing minimal SBRs of chains.

Let Gm denote a Gray code for Rm. Then the reversal of Gm, denoted Gm,
is also a Gray code. We define Gm recursively as follows. The base cases are
G0 = (), the empty tuple, and G1 = (1), (2), . . . , (t1). For m ≥ 1, Gm+1 depends
upon the parity (odd/even) of both tm+1 and tm. Four cases arise; the sequence
of (m + 1)-tuples for Gm+1 for the four cases is defined below.

(even, even) (even, odd) (odd, even) (odd, odd)

1Gm, 1Gm, 1Gm, 1Gm,
2Gm, 2Gm, 2Gm, 2Gm,
3Gm, 3Gm, 3Gm, 3Gm,

4Gm, 4Gm, 4Gm, 4Gm,
.

tmGm, tmGm, tmGm, tmGm,
tm+11Gm−1 tm+11Gm−1 tm+11Gm−1 tm+11Gm−1

The notation xGi denotes a sequence of tuples with i + 1 members: the first
member of each tuple is x; the remaining members of the tuple constitute Gi.
The last tuple in Gm is the same as the first tuple in Gm and vice versa. Thus,

442 G.S. Manku and J. Sawada

BRGC-RESTRICT

initialize

while true do
last ← map(1)
i ← map(plast)
if (i = m + 1) then exit

next(i)

if (is terminal(i)) then
di ← −di

j ← map(i + 1)
pi ← pj

pj ← j

if (i �= last) then plast ← last

Procedure initialize:

for i ← m + 1 downto 1 do pi ← i

am ← dm ← 1
if (even(tm)) then rev ← true
else rev ← false

for i ← m − 1 downto 1 do
if rev = false then

ai ← di ← 1
if (even(ti)) then rev ← true

else
ai ← ti

di ← −1
i ← i − 1
ai ← di ← 1
if (even(ti)) then rev ← false

Fig. 3. A loopless algorithm for listing restricted cross products. See Table 1(B) for
sample output.

since the first tuple in each listing begins with a one, Gm+1 for m ≥ 1 is indeed
a Gray code for Rm+1.

Theorem 2. Procedure brgc-restrict in Fig. 3 is a loopless algorithm for
producing the Gray code Gm.

brgc-restrict (Fig. 3) differs from brgc (Fig. 2) in two important aspects:

1. The initial string (am, am−1 . . . , a1) has to be initialized appropriately (see
procedure initialize). We begin by assigning am ← 1. The recursive defi-
nition of Gm then helps us determine the initial values for each ai, where
m − 1 ≥ i ≥ 1. To do this we need only keep track of whether or not ai is
the first member in the first i-tuple of Gi or Gi. The variable rev is used
determine the list. Recall that the direction di is initialized to 1 if ai = 1. If
ai = ti, then di is initialized to −1. The initialization for the “pointer-tuple”
p is the same as before: (m + 1,m,m− 1, . . . , 1).

2. We employ a function map which is defined as follows:

map(i) =
{
i + 1 if (m > i ≥ 1) and (ai = 1) and (ai+1 = ti+1)
i otherwise

If map(i) always returns i, then brgc-restrict would be identical to brgc.

An interesting special case corresponds to ti = 2 for all i. Then Gm consists
of m-digit strings using the digits {1, 2} in which 22 is a forbidden substring.
The total number of such strings equals the (m + 1)st Fibonacci number.

A Loopless Gray Code for Minimal Signed-Binary Representations 443

5 A Loopless Gray Code for Chains

We begin with two examples for illustration of our approach.

Example (Chain with 2 Blocks). Let B2B1 = (01̄)s(01)t. A rewrite rule is appli-
cable only where the two blocks join: 1̄01→ 01̄1̄, to obtain (01̄)s−1001̄1̄(01)t−1.
Now, we could apply the inverse rule (01̄1̄ → 1̄01) to obtain the previous string,
or we can apply the same rule again to the unique substring 1̄01 in the new
representation. This pattern will repeat until we reach the end of the chain. The
number of minimal SBRs for this chain is t + 1 and is independent of s. As
an example, if s = 2 and t = 3, then the 4 minimal SBRs of 01̄01̄010101 will
be: 01̄01̄010101, 01̄001̄1̄0101, 01̄001̄01̄1̄01 and 01̄001̄01̄01̄1̄. Only B1 is changing,
except for the rightmost digit of B2 that changes after the first rewrite. �
Example (Chain with 3 Blocks). Without loss of generality, let B3B2B1 =
(01̄)s(01)t(01̄)u. In this case, we can again apply the rewrite rules between B3

and B2 as with the two block case, but now we can also apply similar rewrite
rules between B2 and B1. The only difference is that the rewrite rules between
B2 and B1 can only be applied if the state of B2 has not been altered to its final
state where it ends with 1̄1̄. In that case, no rewrite rules are possible between
the two blocks (block B1 must remain in its initial form: (01̄)u). If we ignore the
leftmost block, observe that this problem is an instance of the restricted cross
products (where m = 2) described in §4. �

To generalize the above observations, we define

s(k, �) =
{

(01)k if � = 1
(1̄0)�−21̄1̄(01)k−�+1 if 1 < � ≤ k + 1

For block Bi = (01)k (that is not the leftmost block of a chain), the sequence
s(k, 1), s(k, 2), . . . s(k, k + 1) corresponds to the k + 1 different strings that the
block Bi may cycle through. The string s̄(k, �) is defined similarly, with 1 and 1̄
interchanged throughout the string. Examples:

s(1, 1) = 01
s(1, 2) = 1̄1̄

s̄(1, 1) = 01̄
s̄(1, 2) = 11

s(4, 1) = 01010101
s(4, 2) = 1̄1̄010101
s(4, 3) = 1̄01̄1̄0101
s(4, 4) = 1̄01̄01̄1̄01
s(4, 5) = 1̄01̄01̄01̄1̄

s̄(4, 1) = 01̄01̄01̄01̄
s̄(4, 2) = 1101̄01̄01̄
s̄(4, 3) = 101101̄01̄
s̄(4, 4) = 10101101̄
s̄(4, 5) = 10101011

Using these strings we can now formally map the problem of cycling through
all minimal SBRs of a chain Bm+1Bm · · ·B1 to the problem of generating re-
stricted m-tuples. Without loss of generality assume that m is odd and that each
Bi is initially defined as follows:

Bm+1 = s̄(km+1, 1) = (01̄)km+1 ,
Bm = s(km, 1) = (01)km ,
Bm−1 = s̄(km−1, 1) = (01̄)km−1 ,
.
B2 = s(k2, 1) = (01)k2 ,
B1 = s̄(k1, 1) = (01̄)k1 .

444 G.S. Manku and J. Sawada

Then a listing of all minimal SBRs for the chain is a subset of the cross-product
of strings in blocks Bm, Bm−1, . . . , B1, satisfying two constraints for m ≥ i > 1:

(1) If the string in block Bi equals s(ki, ki + 1), then the string in block Bi−1

must equal s̄(ki−1, 1).
(2) If the string in block Bi equals s̄(ki, ki + 1), then the string in block Bi−1

must equal s(ki−1, 1).

A Gray code for the chain can be obtained by setting ti = ki + 1 for m ≥
i ≥ 1 and using brgc-restrict outlined in §4. There is a 1-1 correspondence
between tuples generated by brgc-restrict and strings assigned to blocks. A
tuple (am, am−1, am−2, . . . , a1) generated by brgc-restrict corresponds to the
following configuration: string s(km, am) in block Bm, string s̄(km−1, am−1) in
block Bm−1, string s(km−2, am−2) in block Bm−2, and so on. The only special
consideration is that rightmost bit in the leftmost block Bm+1 must be changed
to 0 iff Bm is not in its original state. This is a trivial constant time operation.

Since brgc-restrict (Fig. 3) is loopless, we have a loopless algorithm to list
all minimal SBRs for a given chain. For cross-product of chains (see Theorem 1)
we apply procedure brgc (Fig. 2).

Theorem 3. A listing of all minimal SBRs for a given integer n can be gener-
ated by a loopless algorithm.

6 A Brief History of Signed Binary Representations

Signed-digit representations have been investigated by both mathematicians and
computer scientists (see Hwang [11], Parhami [16] and Knuth [13]). Signed-binary
representations using the digits {−1, 0, 1} were first investigated by Reitwies-
ner [19] and Avizienis [2] in the context of digital hardware. Reitwiesner pre-
sented an algorithm for identifying the canonical signed-binary representation,
which is that representation in which no two adjacent digits are non-zero. Over
the years, similar algorithms have been re-discovered by several authors (Chang
and Tsao-Wu [6], Jedwab and Mitchell [12] and Prodinger [18]). A technique
for identifying all minimal signed-binary representations, not just the canonical,
was discovered by Ganesan and Manku [8]. Sawada [21] adapted this technique
to list all minimal SBRs in Gray code order in constant amortized time.

The average weight of minimal signed-binary representations of b-bit numbers
approaches b/3 for large b. This result has been re-discovered several times, using
different proof techniques (Reitwiesner [19], Arno and Wheeler [1], Prodinger [18]
and Ganesan and Manku [8]).

Sloane and Plouffe’s sequence M0103 and Sloane’s sequence A007302 corre-
spond to the weights of minimal signed-binary representations of natural num-
bers. Sloane’s Sequence A005578 are numbers n at which the weight of minimal
signed-binary representations of n increases. Sloane’s sequence A057526 is the
number of zeros in minimal signed-binary representations of natural numbers.

For m ≥ 2, (. . . a2a1a0)m is said to be a “signed-digit representation” of n if
n =

∑
k≥0 akm

k and mk ∈ {0,±1,±2, . . .± (m− 1)}. A minimal representation

A Loopless Gray Code for Minimal Signed-Binary Representations 445

has the least number of non-zero digits. The general case m ≥ 2 has appeared in
early work by Avizienis [2]. Clark and Liang [7] defined a canonical representa-
tion as one satisfying two additional constraints: (a) |ai+1 +ai| < m for all i, and
(b) |ai| < |ai+1|, if ai+1ai < 0, where |ai| denotes the absolute value of ai. Such
a representation is also known as a generalized non-adjacent form (GNAF) since
it possesses the property that no two consecutive digits are non-zero for m = 2.
The GNAF for any integer is minimal and unique. An algorithm for identifying
the GNAF was presented in [7]. The average weight for b-digit numbers was
shown to be asymptotically m−1

m+1 b by Arno and Wheeler [1]. Wu and Hasan [26]
derive closed-form formulae for the same. These results were re-discovered by
Ganesan and Manku [8].

6.1 Fast Exponentiation

Fast computation of xn mod r is very valuable in cryptography (see surveys by
Koç [14] and Gordon [9]). Exponentiation can be studied in terms of addition
chains and addition-subtraction chains.

An addition chain for integer n is a sequence of values a0 = 1, a1, a2, . . . ar = n
with the property that for each i > 0, there exist j and k such that ai = aj +ak.
Then xn can be computed with r multiplications. See Knuth [13] for a survey
of addition chains. The best known lower-bound is log2 n+ log2 H(n)− 2.13 by
Schönhage [22]. An upper bound for the length of addition chains is !log2 n"+
H(n), where H(n) denotes the Hamming weight of n (the number of 1-bits in
binary representation of n). The upper bound is realized by the folklore “fast-
multiplication algorithm”. For a randomly chosen b-bit exponent, b/2 bits are
1 on average; so the expected number of multiplications is 3b/2. Several papers
propose heuristics for reducing the average by discovering short addition chains
(see Bos and Coster [4] and Yacobi [27], for example).

For evaluating xn mod r when x and r are fixed a priori, we can pre-compute
x−1 mod r, enabling efficient “division” as well. Further, in elliptic curve cryp-
tography, computing x−1 mod r is as costly as computing x mod r. This leads
us to the idea of addition-subtraction chains (described below), which reduces
the average number of multiplications far below 3b/2.

An addition-subtraction chain for integer n is a sequence of values a0 =
1, a1, a2, . . . ar = n with the property that for each i > 0, there exist j and k such
that ai = ±aj ± ak. Then xn can be computed with r multiplications/divisions.
Signed-binary representations correspond to addition-subtraction chains. For b-
bit exponents, approximately b/3 bits are ±1; so the average number of multi-
plications/divisions is roughly 4b/3. Higher bases lead to further savings.

Addition-subtraction chains are useful for fast exponentiation in groups (Wu
and Hasan [25], Brickell et al [5]). Their usefulness in elliptic curve cryptogra-
phy was first pointed out by Morain and Olivos [15]. Conversion of an integer
in binary to its minimal signed-digit representation is popularly known as re-
coding. Efficient software/hardware implementation of recoding presents its own
unique challenges. This has led to a variety of recoding algorithms and gener-
alizations of signed-digit representations by the cryptography community. For a
good overview of recoding literature, see Phillips and Burgess [17].

446 G.S. Manku and J. Sawada

6.2 Routing in Chord and CM-2

Weitzman [24] studied routing in the Connection Machine CM-2, developed by
Thinking Machines in 1980s. CM-2 was a massively parallel computer using a
hypercube-based inter-connection network for routing. Every processor could
send a message to another processor a fixed distance ±2i away for any i ≥ 0.
Weitzman discovered that F (n), the optimal cost of communication between
two processors distance n away, was given by F (0) = 0, F (2k) = 1 and F (n) =
1 + min(F (n − 2k), F (2k+1 − n)), for 2k < n < 2k+1. The relationship between
F (n) and signed-binary representations was exposed by Ganesan and Manku [8].
They studied a peer-to-peer routing network called Chord [23]. In its simplest
form, Chord is an undirected graph on 2b nodes arranged in a circle, with edges
connecting pairs of nodes that are 2k positions apart for any k ≥ 0. The shortest
path for clockwise distance d can be identified by computing a minimal signed-
binary representation of d′ defined as follows [8]:

d ′ =

⎧⎨⎩
d if d ≤ ⌊

2b/3
⌋

2b − d if d >
⌊
2b+1/3

⌋
d or 2b − d otherwise

1 and 1̄ in the signed-binary representation correspond to clockwise and anti-
clockwise traversals of Chord edges respectively. A variety of algorithms for
solving the problem are presented in [8]. One of them is “Left-to-Right
Bidirectional Greedy”, which is identical to Weitzman’s algorithm.

References

1. Steven Arno and Ferrell S Wheeler. Signed digit representations of minimal ham-
ming weight. IEEE Transactions on Computers, 42(8):1007–1010, August 1993.

2. Algirdas A Avizienis. Signed-digit number representations for fast parallel arith-
metic. IRE Transactions on Electronic Computers, 10:389–400, 1961.

3. James R Bitner, Gideon Ehrlich, and Edward M Reingold. Efficient generation of
the binary reflected Gray code and its applications. Communications of the ACM,
19(9):517–521, September 1976.

4. J Bos and M Coster. Addition chain heuristics. In Advances in Cryptology:
CRYPTO 89 (LCNS No 435), pages 400–407, 1989.

5. E F Brickell, D M Gordon, K S McCurley, and D B Wilson. Fast exponentiation
with precomputation. In Proc. EUROCRYPT ’92, pages 200–207, 1992.

6. S H Chang and N Tsao-Wu. Distance and structure of cyclic arithmetic codes.
In Proc. Hawaii International Conference on System Sciences, volume 1, pages
463–466, 1968.

7. W E Clark and J J Liang. On arithmetic weight for a general radix representation
of integers. IEEE Transactions on Information Theory, 19:823–826, November
1973.

8. Prasanna Ganesan and Gurmeet Singh Manku. Optimal routing in Chord. In
Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pages
169–178, January 2004.

9. Daniel M Gordon. A survey of fast exponentiation methods. J of Algorithms,
27(1):129–146, April 1998.

A Loopless Gray Code for Minimal Signed-Binary Representations 447

10. F Gray. Pulse code communications. U S Patent 2,632,058 (March 17, 1953), 1953.
11. Kai Hwang. Computer Arithmetic: Principles, Architecture and Design. John

Wiley and Sons, Inc., 1979.
12. J Jedwab and C J Mitchell. Minimum weight modified signed-digit representations

and fast exponentiation. Electronic Letters, 25(17):1171–1172, 1989.
13. Donald E Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer

Programming. Addison-Wesley, Reading, Massachusetts, 3 edition, 1997.
14. Çetin Kaya Koç. High-speed RSA implementation. RSA Labs, November 1994.
15. Frančois Morain and Jorge Olivos. Speeding up the computations on an ellip-

tic curve using addition-subtraction chains. RAIRO Informatique Théoretique et
Applications, 24(6), 1990.

16. B Parhami. Generalized signed-digit number systems: A unifying framework for
redundant number representations. IEEE Transactions on Computers, 39:89–98,
1990.

17. Braden Phillips and Neil Burgess. Minimal weight digit set conversions. IEEE
Transactions on Computers, 53(6):666–677, June 2004.

18. Helmut Prodinger. On binary representations of integers with digits −1, 0, 1. IN-
TEGER: The Electronic Journal of Combinatorial Number Theory, 0, 2000.

19. G W Reitwiesner. Binary arithmetic. Advances in Computers, 1:231–308, 1960.
20. Carla Savage. A survey of combinatorial Gray codes. SIAM Review, 39(4):609–625,

1997.
21. Joe Sawada. A Gray code for binary subtraction. In 2nd Brazilian Symposium on

Graphs, Algorithms and Combinatorics (GRACO 2005), 2005.
22. Schönhage. A lower bound for the length of addition chains. Theoretical Computer

Science, 1:1–12, 1975.
23. Ion Stoica, Robert Morris, D Liben-Lowell, David R Karger, M Frans Kaashoek,

F Dabek, and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup protocol
for Internet applications. IEEE/ACM Transactions on Networking, 11(1):17–32,
2003.

24. A Weitzman. Transformation of parallel programs guided by micro-analysis. In B
Salvy, editor, Algorithms Seminar, 1992-1993, pp. 155–159, Institut National de
Recherche en Informatique et en Automatique, France, Rapport de Recherche, No.
2130 (Summarized by Paul Zimmermann), 1993.

25. H Wu and M A Hasan. Efficient exponentiation of a primitive root in GF(2m).
IEEE Transactions on Computers, 46(2):162–172, February 1997.

26. Huapeng Wu and M Anwar Hasan. Closed-form expression for the average weight
of signed-digit representations. IEEE Transactions on Computers, 48(8):848–851,
August 1999.

27. Yacov Yacobi. Exponentiating faster with addition chains. In Advances in Cryp-
tography – EUROCRYPT 90: Workshop on the Theory and Application of Cryp-
tographic Techniques, page 222, 1990.

Efficient Approximation Schemes for Geometric
Problems?�

Dániel Marx

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics,

Budapest, H-1521, Hungary
dmarx@cs.bme.hu

Abstract. An EPTAS (efficient PTAS) is an approximation scheme
where ε does not appear in the exponent of n, i.e., the running time
is f(ε) ·nc. We use parameterized complexity to investigate the possibil-
ity of improving the known approximation schemes for certain geometric
problems to EPTAS. Answering an open question of Alber and Fiala [2],
we show that Maximum Independent Set is W[1]-complete for the in-
tersection graphs of unit disks and axis-parallel unit squares in the plane.
A standard consequence of this result is that the nO(1/ε) time PTAS of
Hunt et al. [11] for Maximum Independent Set on unit disk graphs
cannot be improved to an EPTAS. Similar results are obtained for the
problem of covering points with squares.

1 Introduction

We say that an optimization problem admits a polynomial-time approximation
scheme (PTAS) if for every ε > 0 there is a polynomial-time algorithm with
relative error at most ε. A PTAS is an efficient polynomial-time approximation
scheme (EPTAS) if this family of approximation algorithms is uniformly polyno-
mial: for every ε > 0, the running-time is f(ε)·nc, where f is an arbitrary function
of ε, and c is a constant independent of ε. For example, Arora [3] presented an
nO(1/ε) time PTAS for Euclidean TSP, which is not an EPTAS. However, in the
journal version of the paper [4], the running-time of the algorithm is improved
to n · logO(1/ε) n = 2O(1/ε2) · n2, hence the problem admits an EPTAS.

Whenever a problem admits a PTAS, it should be examined if the algorithm
can be improved to an EPTAS. The motivation comes from the observation that
a polynomial-time algorithm is not really practical if the degree is larger than
3. Therefore, a O(n2/ε) time PTAS is not practical even for 20% error. In fact,
the situation is much worse than that: as pointed out in [7], most approxima-
tion schemes in the literature have very high degrees even for 20% error. For
example, the running time of the PTAS of [9] for finding the maximum weighted
independent set in the intersection graph of disks is O(n523804) for 20% error.

� Research is supported in part by grants OTKA 44733, 42559 and 42706 of the
Hungarian National Science Fund.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 448–459, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Approximation Schemes for Geometric Problems? 449

Parameterized complexity gives us useful tools to investigate the question
whether a PTAS can be improved to an EPTAS. Parameterized complexity deals
with problems where the input instances have a distinguished part k called the
parameter. For example, in the Maximum Clique problem the input is of the
form (G, k), where k is the size of the clique to be found. Usually we are consid-
ering problems that are polynomial-time solvable for every fixed value of k: for
example, Maximum Clique can be solved by checking all the O(nk) size k sets.
However, in parameterized complexity we are interested in the question whether
there is a uniformly polynomial-time algorithm for the problem, that is, whether
it can be solved in f(k)nc time, where f depends only on k and c is a constant
independent of k. It turns out that several NP-hard problems, such as Minimum
Vertex Cover, Longest Path, and Triangle Packing can be solved in
uniformly polynomial time. Such problems are called fixed-parameter tractable
(FPT). On the other hand, for Maximum Clique, Minimum Dominating Set,
and several other problems, no uniformly polynomial algorithm is known. W[1]-
hardness is the parameterized complexity analog of NP-hardness: by showing
that a problem is W[1]-hard, we prove that the problem is not fixed-parameter
tractable (under standard complexity-theoretic assumptions). For more back-
ground, the reader referred to the monograph of Downey and Fellows [8].

In [5] and [6], it is noted that an approximation algorithm with relative error
1/(2k) can decide whether the optimum is k. Therefore, an EPTAS with running
time f(ε)nc immediately implies that the parameterized version of the problem
is fixed-parameter tractable: the EPTAS gives an f(1/(2k))nc time algorithm
for the problem. This means that by proving that a problem is W[1]-hard, we
can show that the problem is unlikely to have an EPTAS.

There are many optimization problems involving geometric objects in the
plane that admit a PTAS. For example, [11] presents a PTAS for finding the
maximum number of pairwise independent disks in a collection of unit disks.
The reason for the abundance of approximation schemes for geometric problems
is that in many cases, shifting and layering techniques can be used to reduce the
problem to small subproblems that can be solved by brute force. In this paper
we investigate whether it is possible to give an EPTAS for such problems.

For a set V of geometric objects, the intersection graph of V is a graph with
vertex set V where two vertices are connected if and only if the two objects have
non-empty intersection. Intersection graphs of disks, rectangles, line segments
and other objects arise in applications such as facility location [14], frequency
assignment [12], and map labeling [1]. Maximum independent set is NP-hard
for the intersection graphs of unit disks, but admits an nO(1/ε) time PTAS [11].
Alber and Fiala [2] considered the special case of λ-precision unit disk graphs,
where the distance between the centers of disks have to be at least λ. For fixed
λ, they gave a O(2

√
k + n) algorithm for finding an independent set of size k,

which shows that the problem is FPT in this special case. The parameterized
complexity of the problem without the precision restriction remained an open
question. Here we answer this question by showing that maximum independent
set is W[1]-complete for unit disk graphs. This result has two implications. First,

450 D. Marx

it shows that (unless FPT = W[1]) the uniformly polynomial algorithm of [2]
for λ-precision unit disk graphs cannot be extended to general unit disk graphs.
Furthermore, the PTAS of [11] cannot be improved to an EPTAS; the expression
1/ε cannot be taken out of the exponent of n in the running time. Clearly, the
same conclusion holds for the nO(1/ε4) PTAS of [9] that solves the more general
problem of weighted independent set for disks with arbitrary diameter.

On the positive side, if we have a PTAS for a problem whose parameterized
version is FPT, then this might indicate that the PTAS can be improved to
an EPTAS. We present two examples for this situation. As shown in [2], the
Maximum Independent Set problem is FPT for λ-precision unit disk graphs,
and by [11], there is a linear-time EPTAS for such graphs. Furthermore, unlike
Maximum Independent Set, the Minimum Vertex Cover problem is FPT
for every graph, hence it might be possible that there is an EPTAS for this
problem on unit disk graphs. This is indeed so: in Section 3, we show that the
PTAS of [11] can be improved to a linear-time EPTAS.

In Section 4, we study the problem of covering a given set of points by as
few squares as possible. This problem is motivated by applications in image
processing. Hochbaum and Maass [10] presented an nO(1/ε2) time PTAS for the
problem. By proving that the corresponding parameterized problem is W[1]-
hard, we show that this PTAS cannot be improved to an EPTAS.

2 Maximum Independent Set

We prove that Maximum Independent Set remains W[1]-complete when re-
stricted to the intersection graphs of unit disks and unit squares. First we prove
W[1]-completeness for unit squares by a parameterized reduction from the Max-
imum Clique problem. A parameterized reduction transforms an instance (I, k)
to an instance (I ′, k′) where k′ depends only on k, but not on I (ordinary re-
ductions used to show NP-completeness usually do not have this property). As
shown in Theorem 3, essentially the same reduction can be used for unit disks.

Theorem 1. Maximum Independent Set is W[1]-hard for the intersection
graphs of axis-parallel unit squares in the plane.

Proof. The reduction is from parameterized Maximum Clique. We have to
determine whether the given graph G contains a clique of size k. For convenience,
we assume that the number of vertices and the number of edges are both n.1

The squares are open, two squares that share only a boundary do not intersect.
Set ε := 1/n2. The squares constructed in the reduction are partitioned into

k′ blocks, where k′ depends only on k. Each block has a position (x, y), which is a
pair of integers. If a square belongs to the block at (x, y), then the coordinates of
its lower left corner are of the form (x+ iε, y+ jε) for some integers 1 ≤ i, j ≤ n.
Therefore, a block can contain at most n2 squares; a block containing all n2 of
them will be called a complete block. If the horizontal coordinate of a square is
1 This can be achieved by adding/deleting isolated vertices and acyclic components.

Efficient Approximation Schemes for Geometric Problems? 451

(k − 1, k)
. . .

(1, 3)
column column column
(1, 2)

. . .

row 1

row k

Bk,(k−1,k)

B1,(1,2)

Fig. 1. The structure of the core

of the form x + iε, then we say that the horizontal offset of the square is i. The
vertical offset is similarly defined. At most one square can be selected from each
block, hence every independent set in G′ has size at most k′. Furthermore, every
size k′ independent set contains exactly one square from each block.

The constructed instance consists of two parts: the core and the wrap-around
machinery. The core is illustrated in Figure 1. There are k rows with 3

(
k
2

)
blocks

in each, and there are
(
k
2

)
columns with 3k blocks in each. The columns are

indexed by the two element subsets of {1, 2, . . . , k}, i.e., each index is a pair
(j1, j2) with 1 ≤ j1 < j2 ≤ k. The block in the intersection of row i and column
(j1, j2) is denoted by Bi,(j1,j2). The set of squares contained in block Bi,(j1,j2)

is defined as follows. If i �= j1 and i �= j2, then the block Bi,(j1,j2) is a complete
block. Let e1, e2, . . . , en be the edges of G, and let v(1)(ej) < v(2)(ej) be the two
vertices of edge ej . The block Bj1,(j1,j2) contains n squares: for each 1 ≤ j ≤ n,
it contains a square with horizontal offset v(1)(ej) and vertical offset j. Similarly,
Bj2,(j1,j2) contains a square with horizontal offset v(2)(ej) and vertical offset j.

There are also blocks that are in one of the rows and in none of the columns,
and there are blocks that are in one of the columns and in none of the rows. All
these blocks (shown in lighter color in Fig. 1) are complete blocks.

Assume that one square is selected from each block of the core in such a way
that they are pairwise non-intersecting. Such a solution will be called a standard
solution if every square selected from row i has the same horizontal offset xi and
every square from column (j1, j2) has the same vertical offset y(j1,j2).

Lemma 2. The core has a standard solution if and only if G has a size k clique.

Proof. Assume that the core has a standard solution with horizontal offsets xi

and vertical offsets y(j1,j2). We claim that the numbers xi correspond to a clique
of size k in G. Suppose that, on the contrary, for some 1 ≤ j1 < j2 ≤ k the pair
xj1xj2 is not an edge of G (including the possibility that xj1 = xj2). Consider
the square selected from block Bj1,(j1,j2), it has horizontal offset xj1 and vertical
offset y′ = y(j1,j2). By construction, this means that v(1)(ey′) = xj1 , i.e., the
first vertex of edge ey′ is xj1 . Similarly, by considering the square selected from
Bj2,(j1,j2), the second vertex of ey′ is xj2 , hence xj1xj2 is an edge.

Now assume that x1, . . . , xk is a clique of size k in G, with edge e(j1,j2) being
the edge connecting xj1 and xj2 . Let the horizontal offset in row i be xi, and let
the vertical offset in column (j1, j2) be e(j1,j2). The construction ensures that we
can select such a square from block Bi,(j1,j2). Consider the four complete blocks
next to Bi,(j1,j2), and select a square from each of them that has the same offsets

452 D. Marx

first horizontal band

second horizontal band

lower left corner block
first vertical band

second vertical band

(a) (b)

Fig. 2. (a) The first two horizontal wrap-around bands. (b) The first two horizontal
and vertical wrap-around bands.

as the one selected from Bi,(j1,j2). The square from Bi,(j1,j2) and the four squares
around it are pairwise non-intersecting, thus we get a (standard) solution. ��

The wrap-around machinery consists of k horizontal bands and
(
k
2

)
vertical

bands. The i-th horizontal band ensures that the selected squares in the i-th
row have the same horizontal offset. Each horizontal band connects the first and
the last block of the row, as shown in Figure 2a. Notice that the distance is at
least two between two bands. Apart from the four corner blocks, each block is a
complete block. The upper left and the lower right corner blocks have the same
structure: for every 1 ≤ i ≤ n, they contain the squares with horizontal offset
i and vertical offset i. The upper right and the lower left corner blocks contain
the squares with horizontal offset i and vertical offset n− i + 1 (1 ≤ i ≤ n).

We show that if one square is selected from each block such that they are
independent, then the squares in row i have the same horizontal offset. Let �i

(resp., ri) be the horizontal offset of the first (resp., last) square of row i. The
horizontal offset of the second square in row i is at least �i, otherwise it would
conflict with the first square. Continuing this argument, we get that �i ≤ ri, and
the horizontal offset of every square in row i is between �i and ri. Therefore,
it is sufficient to show ri ≤ �i. Consider the horizontal segment of the band
extending from the last block of row i. By the same argument as above, the
horizontal offset of each selected square is at least ri. In particular, this is true
for the upper right corner block. By construction, this means that the vertical
offset of the square in that corner block is at most n−ri +1. This implies that in
the right vertical segment of the band every block has a vertical offset of at most
n− ri +1. Therefore, the horizontal offset of the square in the lower right corner
block is at most n− ri + 1. Continuing further in a similar way, it follows that
the square in the lower left corner has vertical offset at least ri, the square in
the upper left corner has horizontal offset at least ri, hence the horizontal offset
of the first block of row i is also at least ri. On the other hand, it is easy to see
that if the square in the first and last block of row i have the same horizontal
offset, then we can select one square from each block of the i-th horizontal band.

Efficient Approximation Schemes for Geometric Problems? 453

The
(
k
2

)
vertical bands are defined analogously, band (j1, j2) ensures that

the vertical offset is the same for every square selected from column (j1, j2) (see
Figure 2b.) Notice that we reuse some blocks of the horizontal bands when a
vertical band crosses a horizontal band, but that does not modify our conclusion
that the bands enforce a standard solution for the core. The only thing that
has to be carefully examined is whether a standard solution of the core can
be extended to the horizontal and vertical bands simultaneously. Consider the
block B at the intersection of horizontal band i and vertical band (j1, j2). The
horizontal (resp., vertical) band determines the horizontal (resp., vertical) offset
of the square in this block. There are 4 other blocks next to block B, from each
of them we select a square with the same horizontal and vertical offset as the one
selected from B. The selected squares do not intersect each other, and they do
not intersect the other squares on their band. This can be done independently
for every intersection, since their distance is at least two blocks.

The reduction constructs k′ blocks, where k′ depends only on k. We have
shown that there are k′ independent squares if and only if there is a standard
solution for the core, or equivalently, if the graph G has a clique of size k. ��

The same reduction shows hardness for unit disks. For convenience, we present
the proof for unit-diameter disks instead of unit-radius disks.

Theorem 3. Maximum Independent Set is W[1]-hard for the intersection
graphs of unit disks in the plane.

Proof. The same reduction works as in Theorem 1: a square with lower left corner
at (x + iε, y + jε) can be replaced by a unit disk with center (x + iε, y + jε). In
the reduction, only the following two properties of the squares were used:

1. If we select a square with horizontal offset i1 from the block at position (x, y),
and we select a square with horizontal offset i2 from the block at position
(x + 1, y), then they intersect if and only if i1 > i2.

2. If we select a square with vertical offset j1 from the block at position (x, y),
and we select a square with vertical offset j2 from the block at position
(x, y + 1), then they intersect if and only if j1 > j2.

We show that the same properties hold for (open) unit disks. Consider two disks
with centers (x + i1ε, y + j1ε) and (x + 1 + i2ε, y + j2ε). Clearly, if i1 ≤ i2, then
their distance is at least 1. On the other hand, if i1 > i2 then their distance is√

(1 + (i2 − i1)ε)2 + (j2 − j1)2ε2

≤
√

(1 − ε)2 + n2ε2 =
√

1− 2ε + (n2 + 1)ε2 < 1,

if ε ≤ 1/n2. Property 2 can be shown similarly. ��

The reduction constructs instances where the centers are arbitrarily close to
each other. Therefore, the proof does not work for λ-precision unit disk graphs.
This is not surprising, since it is shown in [2] that for every fixed λ > 0, Max-
imum Independent Set is fixed-parameter tractable for λ-precision unit disk

454 D. Marx

graphs. This opens the possibility that (unlike the general case) the problem
restricted to λ-precision unit disk graphs admits an EPTAS. Indeed, [11] shows
that there is a linear-time EPTAS for every fixed λ.

3 Minimum Vertex Cover

After giving a PTAS for Maximum Independent Set in unit disk graphs,
Hunt et al. [11] briefly discuss a similar PTAS for the Minimum Vertex Cover
problem. From the parameterized complexity point of view, Maximum Inde-
pendent Set and Minimum Vertex Cover are very different: the first prob-
lem is W[1]-hard (even for unit disk graphs, Section 2), while the latter problem
is fixed-parameter tractable for every graph (the current best algorithm is pre-
sented in [13]). Therefore, we cannot prove a Minimum Vertex Cover analog
of Theorem 3, which raises the possibility that the PTAS of [11] for Minimum
Vertex Cover can be improved to an EPTAS. We show here that some simple
ideas are sufficient to turn this PTAS into a linear-time algorithm.

Let D be a set of unit-diameter disks. In the first phase of the algorithm, we
ensure that every point of the plane is contained in at most 1/ε disks. If point p is
contained in more than 1/ε disks, then add these disks into the set S, and remove
them from D. We repeat this until no such p can be found, let D0 be the set of
remaining disks. We claim that the set S together with a (1 + ε)-approximation
of the vertex cover for D0 gives a (1 + ε)-approximate vertex cover for D. This
follows from the fact that whenever we add to S the � ≥ 1/ε+1 disks containing
some point p, then at least � − 1 of these disks have to appear in every vertex
cover. Hence S itself is a (1 + ε)-approximate vertex cover of S.

The linear-time EPTAS of [11] for Maximum Independent Set in λ-
precision unit disk graphs is based on the observation that a constant-sized
rectangle can contain at most a constant number of disks. If we perform the first
phase of the algorithm, then this property will hold for our instance. Therefore,
we can give a linear-time PTAS for Minimum Vertex Cover that is similar
to [11–Theorem 5.2] (we omit the details).

Theorem 4. There is a 2O(1/ε2) ·n time EPTAS for Minimum Vertex Cover
in unit disk graphs. ��

4 Covering Points with Squares

Hochbaum and Maass [10] presented a PTAS for the problem of covering n given
points in Rd with the minimum number of d-dimensional unit-diameter balls or
d-dimensional rectilinear blocks. As a special case, their result gives an nO(1/ε2)

time approximation scheme for covering n points in the plane by unit squares.
We show that it is unlikely that this PTAS can be improved to an EPTAS, since
the parameterized version of the problem is W[1]-hard.

Theorem 5. Covering Points with Squares is W[1]-hard.

Efficient Approximation Schemes for Geometric Problems? 455

Proof. The proof is similar in structure to the proof of Theorem 1. The reduc-
tion is from Maximum Clique; the k vertices are selected by k rows, and the(
k
2

)
edges are selected by

(
k
2

)
columns. Horizontal and vertical bands are used

to ensure the consistency of the rows and columns (see below for details). In
Theorem 1, the structure of the graph was encoded by the squares available
in certain blocks. In Covering Points with Squares, we cannot prescribe
which squares can be used in a solution, hence a more delicate construction is
required to ensure that the selected vertices and edges form a correct solution.

We will use the directions east (increasing x coordinate), north (increasing
y coordinate), northeast, etc. The directions will be abbreviated as E, N, NE,
etc. For convenience, we assume that the squares are closed on west and south,
and open on east and on north. The SW- and the SE-corner points belong to
the square, but the NW- and the NE-corners do not. (It can be shown that the
problem has the same complexity with open, closed, and half-open squares).

Let G be the graph where we have to find a size k clique. For convenience,
we assume that the number of edges and vertices are both n in G. Set ε :=
1/n2. Every point constructed in the reduction has coordinates that are integer
multiples of ε. Therefore, it can be assumed that in a solution the coordinates
of the corners of each square are integer multiples of ε.

We use the points to construct blocks, connectors, and testers. If there is a
block at (x, y), then this means that we add 5 points (x+0.5, y+0.5), (x+nε, y+
0.5),(x+ 1− nε− ε, y + 0.5), (x + 0.5, y + nε), (x + 0.5, y + 1− nε− ε). These 5
points are called the central, W, E, S, N control points of the block, respectively.

The problem parameter k′ in the constructed instance of Covering Points
with Squares is equal to the number blocks. It can be shown (details omitted)
that the only way k′ squares can cover the control points of k′ blocks is that if
every square corresponds to some block:

Proposition 6. For each block, there is a unique square in the solution that
covers all five control points of the block. ��

Therefore, the SW-corner of the square of block (x, y) has coordinates (x +
iε, y + jε) for some integers −n ≤ i ≤ n, −n ≤ j ≤ n. These two integers are
called the horizontal and vertical offsets of block (x, y).

We will add boundary points to some of the blocks. There are four types of
boundary points: N, S, E, W. Whenever we add a N (S etc.) boundary point to
a block, then it will be true that there is no N (S etc.) neighbor of the block.
Adding boundary points to the block at (x, y) will be done as follows:

– The N-boundary point is at (x+0.5, y+1). It ensures that the vertical offset
of the block is positive (recall that the squares are open on north).

– The S-boundary point is at (x+ 0.5, y). It ensures that the vertical offset of
the block is not positive.

The E-boundary (resp., W-boundary) points are defined analogously, they ensure
that the horizontal offset is positive (resp., not positive).

A connector is a set of points whose job is to ensure that certain relations hold
between the offsets of two neighboring blocks. A horizontal connector between

456 D. Marx

T2,(2,3)

T3,(1,3)

T1,(1,3)

T2,(1,2)

T1,(1,2)

T3,(2,3)

d

d

Row 1

Row 2

Row 3

Column

Column

Column

(1,2)

(1,3)

(2,3)

Fig. 3. Structure of the constructed instance in the proof of Theorem 5

blocks (x, y) and (x + 1, y) consists of the 2n points (x + 1 + iε, y + 0.5) (−n ≤
i ≤ n− 1). These points can be covered only by the squares of blocks (x, y) and
(x + 1, y). These two squares cover the connector if and only if the horizontal
offset of block (x, y) is not smaller than the horizontal offset of block (x + 1, y).

Similarly, the vertical connector between blocks (x, y) and (x, y + 1) consists
of the points (x+0.5, y+ 1+ iε) (−n ≤ i ≤ n− 1). These points ensure that the
vertical offset of (x, y) is not the smaller than the vertical offset of (x, y + 1).

A diagonal connector between blocks (x, y) and (x+ 1, y + 1) consists of the
points (x + 1 + iε, y + 1 + iε) (−n ≤ i ≤ n − 1). These points ensure that if
block (x, y) has offsets i1, j1, and block (x + 1, y + 1) has offsets i2, j2, then
i2, j2 ≤ min(i1, j1). The blocks (x, y + 1) and (x + 1, y) can be connected in a
similar way. In this case, if i1, j1 are the offsets of (x, y + 1), and i2, j2 are the
offsets of (x + 1, y), then i2 ≤ min(i1,−j1) and j2 ≥ max(−i1, j1) follows.

Figure 3 shows the structure of the constructed instance of Covering
Points with Squares. As in Theorem 1, there are k rows (shown by darker
blocks) that correspond to the k vertices of the clique, and there are

(
k
2

)
columns

(also shown in dark) that correspond to the
(
k
2

)
edges of the clique. The rows are

indexed from 1 to k, while the column indexes are pairs (j1, j2) (1 ≤ j1 < j2 ≤ k).
The connector gadgets connecting the neighboring blocks are shown by short
line segments in the figure. There are 2

(
k
2

)
tester gadgets (shown by circles

in Figure 3): for every (j1, j2) (1 ≤ j1 ≤ j2 ≤ k), there is a tester gadget
Tj1,(j1,j2) connected to both row j1 and column (j1, j2), and there is a tester
gadget Tj2,(j1,j2) connected to both row j2 and column (j1, j2). The distance be-
tween the rows/columns is d blocks, where d is sufficiently large to ensure that
there is enough space for the tester gadgets between the rows and columns (e.g.,
d = 20 is enough).

For each row, the leftmost and the rightmost blocks are connected by a
horizontal band. As in the proof of Theorem 1, this band ensures that in every
solution, the horizontal offset is the same for every block of the row. If we follow
what requirements the connectors prescribe on the adjacent blocks, then it turns

Efficient Approximation Schemes for Geometric Problems? 457

Column (j1, j2)

Row j1
z

w

a
c

t u

s

r

b
d

Fig. 4. The tester gadget

out that the horizontal offset of the rightmost block cannot be smaller or larger
than the horizontal offset of the leftmost block. Therefore, the same horizontal
offset has to appear in every block of the row. Similarly, the vertical bands ensure
that the vertical offset is the same for every block of a given column.

We add an E-boundary point to the rightmost block of each row (see the
small dot in Fig. 3). Similarly, we add a N-boundary point to the topmost block
of each column. These points ensure that the horizontal (resp., vertical) offset is
between 1 and n for every row (resp., column).

Given a solution to the constructed instance of Covering Points with
Squares, we interpret the horizontal offset of row i as the index of the i-th
vertex of the clique, and the vertical offset of column (j1, j2) as the index of
the edge ej1,j2 connecting the j1-th and j2-th vertices. The tester gadgets ensure
that this interpretation gives a consistent solution: the two end points of the edge
given by column (j1, j2) are the vertices given by rows j1 and j2. More precisely,
gadget Tj1,(j1,j2) ensures that the smaller end of ej1,j2 is the j1-th vertex of the
clique, and Tj2,(j1,j2) ensures that the larger end of ej1,j2 is the j2-th vertex.

The tester gadget Tj1,(j1,j2) connected to row j1 and column (j1, j2) is con-
structed as follows (the description of Tj2,(j1,j2) is similar). The gadget consists
of 33 blocks and it is arranged as shown in Fig. 4. Besides these new blocks,
we add some additional points to the rows and columns as well. A W-boundary
point is added to the W-neighbor of block r and to the W-neighbor of block s
(see Fig. 4). A S-boundary point is added to the S-neighbors of blocks t and u.

Let (x, y) be the coordinates of the SE-corner of block t. Let us add the
points (x + �ε, y + ε) (1 ≤ � ≤ n). The S-neighbor of block t has a S-boundary
point, thus only block t and its SE-neighbor, z, can cover these new points. This
means that the horizontal offset of block t cannot be smaller than the horizontal
offset of row j1. On the other hand, if the horizontal offset of row j1 is α, then
z can cover (x + �ε, y + ε) for every � ≥ α if we set the vertical offset of z to at
least 2. In this case, t has to cover (x + �ε, y + ε) only for � < α, hence if the
horizontal offset of t is not smaller than α, then all the points are covered.

In a similar way, we force the vertical offset of block s to be at least as
large as the vertical offset of column (j1, j2). For this purpose, if (x, y) are the
coordinates of the NW-corner of block s, then we add the points (x + ε, y + �ε)
(1 ≤ � ≤ n). The argument is the same as in the previous paragraph.

458 D. Marx

There is a diagonal connector between blocks z and u. However, this connec-
tor is slightly different from the one defined above. Let (x, y) be the coordinates of
the NE-corner of block z. The connector consists of the points (x+(�+1)ε, y+�ε)
for −n ≤ � ≤ n. Notice that these points cannot be covered by the S-neighbor of
u, since that block has a S-boundary point and its horizontal offset is positive.
A normal connector between z and u would ensure that the vertical offset of u
is at most as large as the horizontal offset of z. This modified connector forces
a stronger requirement: it ensures that the vertical offset of u is at most the
horizontal offset of z minus 1. A similar connector forces the horizontal offset of
r to be at most the vertical offset of w minus 1.

The construction described so far depends only on k and n, but not on the
structure of the graph G. The tester points in each tester gadget encode the
edges of G. Let (x, y) be the coordinates of the common corner of blocks a, b, c,
d in gadget Tj1,(j1,j2) connected to row j1 and column (j1, j2). If the p-th vertex
is not the smaller endpoint of the q-th edge (1 ≤ p, q ≤ n), then we add the
point (x− qε, y − pε). The gadget Tj2,(j1,j2) is similarly defined, but in this case
a tester point (x− qε, y − pε) signifies that the p-th vertex is not the larger end
point of the q-th edge. This completes the description of the reduction.

To prove the correctness of the reduction, first we show that if there is a
solution for Covering Points with Squares, then there is a size k clique in
G. Recall that the problem parameter (the maximum number of allowed squares)
in the constructed instance of Covering Points with Squares equals the
number of blocks. This means that the squares in the solution correspond to the
blocks. As we have seen above, each row has a horizontal offset between 1 and
n, let vi be the vertex indexed by the horizontal offset of row i. Similarly, let
ej1,j2 be the edge indexed by the vertical offset of column (j1, j2).

We claim that the vi’s form a clique in G, with ej1,j2 being the edge con-
necting vj1 and vj2 . Suppose that this claim does not hold for some j1 and j2.
Assume without loss of generality that ej1,j2 is not incident to vj1 . Let us look at
what happens in tester gadget Tj1,(j1,j2). Let p be the index of vj1 and q be the
index of ej1,j2 . The horizontal offset of row j1 is p, hence the horizontal offset
of t is at least p, and the vertical offset of u is at most p − 1. If we follow the
implications of this, then it turns out that the vertical offset of a is at most −p,
and the vertical offset of d is at least −p + 1. Similarly, the horizontal offset of
c is forced to be at most −q, and the horizontal offset of b is forced to be at
least −q + 1. Let (x, y) be the coordinates of the common corner of a, b, c, and
d. From the assumption that the q-th edge is not incident to the p-th vertex, it
follows that there is a tester point at (x − qε, y − pε). This point is not covered
by any of the blocks a, b, c, d: for example, block a cannot cover a point with
vertical coordinate at least y − pε; block b cannot cover a point with horizontal
coordinate less than x− qε + ε, etc. This gives a contradiction.

To prove the other direction, we have to show that if there is a size k clique
in G, then there is a solution for the constructed instance of Covering Points
with Squares. Let vi be the i-th vertex in the clique, and let ej1,j2 be the edge
connecting vj1 and vj2 . It is clear that we can cover the points in the k rows,

(
k
2

)

Efficient Approximation Schemes for Geometric Problems? 459

columns, horizontal bands, and vertical bands in such a way that the horizontal
offset of row i is the index of vi, and the vertical offset of column (j1, j2) is the
index of ej1,j2 . The only thing that should be verified is whether the points in
the tester points in the tester gadgets can be covered. Consider the tester gadget
that is connected to row j1 and column (j1, j2). Let p be the index of vj1 , and
let q be the index of ej1,j2 . Each tester point has coordinates (x−αε, y− βε) for
some α and β. We use block c to cover all the tester points with α < q; we use
block b to cover the tester points with α ≥ q + 1, etc. By construction, there is
no tester point at (x− qε, y − pε), hence all the points are covered. ��

References

1. P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum inde-
pendent set in rectangles. Comput. Geom., 11(3-4):209–218, 1998.

2. J. Alber and J. Fiala. Geometric separation and exact solutions for the param-
eterized independent set problem on disk graphs. J. Algorithms, 52(2):134–151,
2004.

3. S. Arora. Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. In FOCS 1996, pages 2–11. IEEE Comput. Soc. Press, 1996.

4. S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman
and other geometric problems. J. ACM, 45(5):753–782, 1998.

5. C. Bazgan. Schémas d’approximation et complexité paramétrée. Technical report,
Université Paris Sud, 1995.

6. M. Cesati and L. Trevisan. On the efficiency of polynomial time approximation
schemes. Inform. Process. Lett., 64(4):165–171, 1997.

7. R. G. Downey. Parameterized complexity for the skeptic. In Proceedings of the 18th
IEEE Annual Conference on Computational Complexity, pages 147–169, 2003.

8. R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in
Computer Science. Springer-Verlag, New York, 1999.

9. T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes
for geometric graphs. In SODA 2001, pages 671–679. SIAM, 2001.

10. D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32(1):130–136, 1985.

11. H. B. Hunt, III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz,
and R. E. Stearns. NC-approximation schemes for NP- and PSPACE-hard prob-
lems for geometric graphs. J. Algorithms, 26(2):238–274, 1998.

12. E. Malesińska. Graph-Thoretical Models for Frequency Assignment Problems. PhD
thesis, Technical University of Berlin, 1997.

13. L. Sunil Chandran and F. Grandoni. Refined memorization for vertex cover. In-
form. Process. Lett., 93(3):125–131, 2005.

14. D. W. Wang and Y.-S. Kuo. A study on two geometric location problems. Inform.
Process. Lett., 28(6):281–286, 1988.

Geometric Clustering to Minimize
the Sum of Cluster Sizes

Vittorio Bilò1, Ioannis Caragiannis2, Christos Kaklamanis2,
and Panagiotis Kanellopoulos2

1 Dipartimento di Matematica “Ennio De Giorgi”
Università di Lecce, Provinciale Lecce-Arnesano, 73100 Lecce, Italy

2 Research Academic Computer Technology Institute &
Department of Computer Engineering and Informatics,

University of Patras, 26500 Rio, Greece

Abstract. We study geometric versions of the min-size k-clustering
problem, a clustering problem which generalizes clustering to minimize
the sum of cluster radii and has important applications. We prove that
the problem can be solved in polynomial time when the points to be clus-
tered are located on a line. For Euclidean spaces of higher dimensions,
we show that the problem is NP-hard and present polynomial time ap-
proximation schemes. The latter result yields an improved approximation
algorithm for the related problem of k-clustering to minimize the sum of
cluster diameters.

1 Introduction

Clustering is an area of combinatorial problems which is both algorithmically rich
and practically relevant. Several clustering problems have been extensively stud-
ied since they have applications in many fields including database systems, image
processing, data mining, information retrieval, molecular biology, and more.

Given a set of points X , we call a cluster any nonempty subset of X . A set
of clusters is a clustering for X if each point of X belongs to some cluster. A
clustering is called k-clustering if it consists of at most k clusters. In general,
clustering problems are stated as follows: An instance of such a problem consists
of a set X of n points, a distance function dist : X × X → R and an integer
k and the objective is to compute a k-clustering of the points in X minimizing
f(C1, ..., Ck), where f is a function defined on the clusters, typically using the
distance function dist. Depending on the definition of the function f , many
different clustering problems can be defined. The mostly studied ones are the k-
center, k-median, and k-clustering. Their objectives are to assign the points to at
most k clusters so that the maximum distance from any point to its cluster center
(k-center) or the sum of distances from each point to its closest cluster center
(k-median) or the sum of all distances between points in the same cluster (k-
clustering) is minimized. These problems are NP-hard and several approximation
algorithms have been proposed [3,5,13] including polynomial time approximation
schemes for geometric instances of these problems [1,2,10,16].

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 460–471, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Geometric Clustering to Minimize the Sum of Cluster Sizes 461

In this paper, we study a variation of the problem of clustering a set of points
into a specific number of clusters so as to minimize the sum of cluster sizes. The
size of a cluster may be proportional to the radius/diameter of the cluster, to its
area, etc. In particular, minimizing the sum of cluster radii/diameters has been
suggested as an alternative to the k-center objective in certain applications so
as to avoid the dissection effect [8]: using the maximum diameter/radius as the
objective sometimes results in objects that should have been placed in the same
cluster to be placed in different clusters.

Clustering to minimize the sum of diameters/radii has been studied for points
in metric spaces in [6] and [8]. An approximation algorithm which computes a
solution with at most 10k clusters of cost at most a factor of O(log n/k) within
the optimal solution for k clusters was presented in [8]. This result was im-
proved by Charikar and Panigrahy in [6] where an algorithm that computes a
constant approximate solution using at most k clusters is presented. In metric
spaces, ρ-approximation algorithms for clustering to minimize the sum of di-
ameters give 2ρ-approximation algorithms for the corresponding radii problem
(and vice versa). Negative results include a 2 − ε inapproximability bound for
minimizing the sum of diameters in metric spaces [8] while the complexity of the
corresponding radii problem is open. For non-metrics, no approximation bound
is possible for diameters in polynomial time unless P = NP even for k = 3
[8]. When k is fixed, the optimal solution for radii/diameters can be found in
polynomial time by enumerating the O(nk) possible solutions. The papers [12]
and [15] present fast polynomial time algorithms for the case k = 2, addressing
the Euclidean case as well. Capoyleas et al. [7] study a generalized version of the
problem for points on the Euclidean plane and show that, for fixed k and any
function of the cluster diameters, it can be solved in polynomial time.

In this paper, we consider geometric versions of the min-size k-clustering
problem. Formally, an instance (X,F, d, α) of the problem has a set X of n
points with rational coordinates on the d-dimensional Euclidean space, a cost
function F that associates a fixed non-negative cost with each point, and a
constant value α. The objective is to compute a k-clustering C together with
center points c ∈ X in each cluster C such that

∑
C∈C COST (C) is minimized,

where COST (C) is defined as (maxp∈C dist(p, c))α+Fc and dist(p, c) denotes the
Euclidean distance between the points p and c. The quantity maxp∈C dist(p, c)
is the radius of cluster C with center c.

Besides its importance for clustering optimization, another motivation for
studying the min-size k-clustering problem is the following scenario. Assume that
a telecommunication agency wishes to give wireless access to users scattered in
several locations. This can be achieved by establishing a network of base stations
(antennas) to specific locations and setting appropriately the range of each base
station such that all the locations are within the range of some station. From
the point of view of the agency, establishing a base station incurs a setup cost
and an operational cost which is proportional to the range of the station (i.e.,
the square of the distance of the farthest location within range from the base
station). Min-size k-clustering models the problem of minimizing the costs for

462 V. Bilò et al.

building and operating the network. Very recently, we became aware of [14] which
studied special cases of min-size k-clustering under this motivation. The authors
of [14] study instances (X,F, d, 1) of min-size k-clustering with k = n and fixed
costs in {0,∞}. They present a dynamic programming algorithm that solves the
problem optimally when the points are located on the line and a polynomial-time
approximation scheme for points in Euclidean spaces of constant dimensions.
This latter result is based on ideas of a dynamic programming algorithm of [9]
for approximating the minimum vertex cover of disk graphs.

Min-size k-clustering generalizes the problem of minimizing the sum of radii.
We consider the case where k is arbitrary. The result of [6] for metric spaces
implies an algorithm with approximation ratio slightly worse than 3α in our case.
We show that the problem is NP-complete in 2-dimensional Euclidean spaces
and α ≥ 2, while a generalized version is solvable in polynomial-time when the
points are located on a line. For higher dimensions, we present a polynomial time
approximation scheme that computes an (1 + ε)-approximate solution using at
most k clusters; the running time of our algorithm is n(α/ε)O(d)

. Our techniques
yield a (2 + ε)-approximation algorithm for the k-clustering to minimize the
sum of cluster diameters. Like [14], our algorithm uses and extends ideas from
[9]. Our results are stronger than those in [14] since we assume that k can be
arbitrary, that the fixed costs of the points may have arbitrary positive values,
and we consider the more general case α ≥ 1. Our algorithm is guaranteed to
find approximate solutions in polynomial time due to structural properties of the
optimal or approximate solutions. This is captured by corresponding Structure
Lemmas.

The rest of the paper is structured as follows. In Section 2 we give complexity
results for the problem. We present the algorithm and its analysis in Section 3.
Section 4 contains the statements and proofs of the Structure Lemmas. We
conclude with some extensions and open problems in Section 5. Due to lack of
space, most of the proofs have been omitted.

2 Complexity Results

We first show that the problem is solvable in polynomial time when the points
are located on the line.

Theorem 1. Min-size k-clustering for instances (X,F, 1, α) is in P.

The proof of this statement follows by expressing the problem as an integer
linear program with totally unimodular matrix and concluding that an optimal
clustering is obtained by computing a basic solution for the linear program. The
statement also holds if the clusters have arbitrary positive costs. Previous results
include weaker statements with more complicated proofs [4,14].

In the sequel we consider points in higher dimensions. We can show that
two important cases of the problem on the Euclidean plane are NP-hard. The
first case is an interesting geometric version of set cover which is also studied
in [11]. We have two disjoint sets of points S and T on the Euclidean plane.

Geometric Clustering to Minimize the Sum of Cluster Sizes 463

We wish to cover all points in T by disks centered in points of S so that the
total area of the disks is minimized. It is not difficult to see that this problem is
equivalent to the min-size k-clustering with k = |S ∪ T | = n and input instance
(S ∪ T, F, 2, 2) where Fp = ∞ if c ∈ T (this guarantees that points of T should
not be cluster centers) and Fp = 0 if c ∈ S (this guarantees that all points of
S can be centers of clusters including no points of T). In the instances of the
second case that we prove to be NP-hard, all points have zero fixed costs. Our
NP-hardness statements follow.

Theorem 2. Let (X,F, 2, α) be an instance of the problem with α ≥ 2 and F
such that Fp ∈ {0,∞} for any point p ∈ X. Deciding whether (X,F, 2, α) has
any min-size clustering of cost at most K is NP-complete.

Theorem 3. Let (X,F, 2, α) be an instance of the problem with α ≥ 2 and
Fp = 0 for any point p ∈ X. Deciding whether (X,F, 2, α) has any min-size
k-clustering of cost at most K is NP-complete.

3 The Algorithm

Our algorithm uses the idea of plane subdivision from an algorithm of Erlebach
et al. [9] that approximates the minimum vertex cover of disk graphs. Given
disks on the plane, the corresponding disk graph is the graph having a node for
each disk and an edge between any pair of nodes corresponding to overlapping
disks. Although it is not at all related to minimum vertex cover in disk graphs,
the min-size k-clustering can be seen as a covering problem with disks as well.
We may think of a cluster C with center c as a disk centered at the point c
and with radius equal to the maximum distance of c from any point of C (and
possibly zero if c is the only point of C). Such a disk has a cost equal to the
quantity (maxp∈C dist(p, c))α +Fc. Now, the min-size k-clustering problem asks
for a set of at most k disks with minimum total cost which include (i.e., cover)
all points of X .

Before we describe the min-size k-clustering algorithm, we adapt the termi-
nology of [9] to our setting. We use the term cluster instead of the term disk. Fix
a positive integer λ > 1. Consider an instance (X,F, 2, α) of min-size k-clustering
and let D denote the set of all possible n2 clusters obtained by considering all
possible radii for each point in X . Among all clusters of D with non-zero ra-
dius, let rmin and rmax be the radius of the smallest and the largest cluster,
respectively. Partition D into L + 1 levels, where L = !logλ+1(rmax/rmin)".
For 0 ≤ j ≤ L, level j consists of all clusters di having radius ri such that
(λ + 1)−jrmax ≥ ri > (λ + 1)−(j+1)rmax. Note that the smaller the level, the
larger the radii of the clusters are. Thus, the cluster with radius rmin will be on
level L. We assume that clusters with zero radius belong to level L as well.

For each level j, 0 ≤ j ≤ L, impose a grid on the plane consisting of lines
that are 2(λ+1)−jrmax apart from each other. The v-th vertical line, for integer
v in (−∞,∞), is at x = 2v(λ + 1)−jrmax. The h-th horizontal line, for integer
h in (−∞,∞), is at y = 2h(λ + 1)−jrmax. We say that the v-th vertical line

464 V. Bilò et al.

has index v and that the h-th horizontal line has index h. Furthermore, we say
that a cluster di with center (xi, yi) and radius ri hits a vertical line at x = a if
a − ri < xi ≤ a + ri. Similarly, we say that di hits a horizontal line at y = b if
b − ri < yi ≤ b + ri. Intuitively, by considering clusters as disks, a cluster hits
a line if it intersects that line, except if it only touches the line from the left or
from below. Note that every cluster can hit at most one horizontal line and at
most one vertical line on its level.

Let 0 ≤ r, s < λ and consider the vertical lines whose index modulo λ equals
r and the horizontal lines whose index modulo λ equals s. We say that these lines
are active for (r, s). Consider one particular level j. The lines on level j that are
active for (r, s) partition the plane into squares. More precisely, for consecutive
active vertical lines at x = a1 and x = a2 and consecutive active horizontal lines
at y = b1 and y = b2, one square {(x, y)|a1 < x ≤ a2, b1 < y ≤ b2} is obtained.
We refer to these squares on level j as j-squares. As observed in [9], for any j,
0 ≤ j < L, every (j + 1)-square is completely contained in some j-square. An
example is depicted in Figure 1.

active line of level j

active line of level j+1

active line of level j+1

active line of level j+1

active line of level j+1

active line of level j+1

active line of level j

Fig. 1. An example of the plane subdivision for λ = 5. The disks shown represent
clusters of level j of the minimum and maximum possible radius.

A j-square S is relevant if there exists at least one cluster of level j in D
containing a point p ∈ S ∩ X . Observe that the number of relevant squares is
polynomial in n, since the number of clusters is n2 and a cluster may cover
points in at most 4 squares of its level. For a relevant j-square S and a relevant
j′-square S′ with j′ > j, we say that S′ is a child square of S (and S is a parent of
S′) if S′ is contained in S and there is no relevant j′′-square S′′ with j′ > j′′ > j,
such that S′ is contained in S′′ and S′′ is contained in S. It can be easily seen
that the number of relevant 0-squares is at most 4; these are the only squares

Geometric Clustering to Minimize the Sum of Cluster Sizes 465

without a parent. We show the following property which holds specifically for
instances of min-size k-clustering.

Lemma 1. Each relevant square has at most O(λ4) child squares.

Proof. Clearly, a square S of level j and of side length � may have at most (λ+1)4

child squares of levels j +1 and j + 2. If S has more than (λ+ 1)4 child squares,
then it should have child squares of level at least j + 3. We will show that the
number of child squares of S of level at least j + 3 is at most 16

π (2(λ+ 1)2 + 1)2.
Pick a square S′ of smallest level j′ ≥ j + 3 among the child squares of S

and let p be a point contained in it. Then, all other points will be at distance
either smaller than �

2(λ+1)j′−j+1 or at least �
2(λ+1)2 , otherwise the j′′-square S′′

containing S′ with j < j′′ < j′ would be relevant and, hence, S′′, instead of
S′, would be a child of S. Now, observe that, within a disk of radius �

4(λ+1)2

centered at p, there can be at most four child squares of S of level at least j +3,
including S′; this is the maximum number of squares that may have one point
at distance smaller than �

2(λ+1)j′−j+1 from p. Repeat recursively this procedure
for the child squares of S of level at least j + 3 which are not contained in the
disk until all squares of level at least j+3 have been included in disks. The disks
do not overlap, otherwise this would mean that the center of some disk which is
a point in a square of level j + 3 has distance smaller than �

2(λ+1)2 and at least
�

2(λ+1)j′′−j+1 from some other point. Also, they all have their centers in S, thus

they are all contained in the square of side length
(
1 + 1

2(λ+1)2

)
�. Hence, their

number is at most (
1 + 1

2(λ+1)2

)2

�2

π
(

�
4(λ+1)2

)2 ≤ 4
π

(2(λ + 1)2 + 1)2,

and the number of child squares of S of level at least j + 3 cannot exceed
16
π (2(λ + 1)2 + 1)2. ��

Consider some j-square S and denote by IS the set of clusters in D inter-
secting S. We denote by IS

<j the set of clusters in IS having level smaller than
j and define IS

≤j , I
S
=j , I

S
≥j and IS

>j analogously. We say that a set C ⊆ IS is
a pseudoclustering of S if for any point p ∈ X ∩ S there exists a cluster in C
containing p. For any pseudoclustering C of S, call IS

<j ∩ C the projection of C
onto IS

<j (and similarly for IS
≤j).

Now, we are ready to describe the algorithm. Given an instance (X,F, 2, α) of
min-size k-clustering, the algorithm assigns levels to all possible clusters defined
by X and implicitly defines horizontal and vertical lines on the plane as discussed
above. Then, for each possible value of r, s ∈ {0, ..., λ− 1}, it executes an itera-
tion. In each iteration, a k-clustering is computed; the best k-clustering among
all iterations is output as the final solution. In each iteration associated with r, s,
the algorithm processes all relevant squares defined by the plane subdivision ac-
cording to r and s in a bottom-up fashion (i.e., in decreasing order of levels). At

466 V. Bilò et al.

a relevant j-square S, the projections of polynomially many pseudoclusterings
of S are enumerated. During this enumeration process, a table TableS is con-
structed by looking up the respective entries stored in tables at children of S.
The entry TableS(P, i) for a projection P ⊆ IS

<j of a pseudoclustering of S onto
IS
<j and an integer i such that 1 ≤ i ≤ k, will be a set J ⊆ IS

≥j such that P ∪J is
a pseudoclustering of S with exactly i clusters. At the end of each iteration, the
algorithm computes a k-clustering by enumerating all clusterings obtained by
choosing entries from each table TableS taken over all relevant squares S having
no parent.

1. TableS ← ∅
2. IS

≤j ← all clusters in D of level at most j intersecting S
3. for all Q ⊆ IS

≤j such that |Q| ≤ min{ξ, k} do
4. J ← {D ∈ Q|D has level j}
5. P ← {D ∈ Q|D has level smaller than j}
6. if S has no children then
7. TableS(P, |Q|) ← J
8. else
9. let S1, S2, ..., St be the child squares of S

10. for each child square Sy do
11. P ′(Sy) ← {D ∈ Q|D intersects Sy}
12. for each possible combination of (i1, i2, ..., it)

with 1 ≤ iy ≤ k for y = 1, ..., t do
13. J ′ ← J ∪⋃t

y=1 TableSy(P ′(Sy), iy)
14. i′ = |P ∪ J ′|
15. if i′ ≤ k and P ∪ J ′ is a pseudoclustering of S then
16. if TableS(P, i′) is undefined

or ω(J ′) < ω(TableS(P, i′)) then
17. TableS(P, i′) ← J ′

Fig. 2. The pseudocode for computing TableS once the tables TableS′ have been com-
puted for all children S′ of S and all values of i

In Figure 2, we present the pseudocode for computing TableS once the tables
TableS′ have been computed for all children S′ of S and all values of i. The
parameter ξ is used to constrain the size of pseudoclusterings of S considered.
We use ω(.) to denote the cost of a cluster or the total cost of a set of clusters.

The algorithm executes λ2 iterations. In each iteration, at most O(n2) rel-
evant squares are processed. Using Lemma 1, we can easily see that the time
required for computing the table entries for each relevant square is at most
nO(λ4+ξ). Since the number of relevant squares having no parent in each itera-
tion is at most 4, the last step of each iteration completes in polynomial time.
Overall, the running time of the algorithm is nO(λ4+ξ).

In the following, we present the main arguments for analyzing the perfor-
mance of the algorithm. Let (X,F, 2, α) be an instance of min-size k-clustering
and consider all solutions which, for any square of side � contain at most ξ clus-
ters of radius at least �

2(λ+1)2 that can include all the points of X in the square.

Geometric Clustering to Minimize the Sum of Cluster Sizes 467

We call such solutions ξ-solutions for instance (X,F, 2, α). Clearly, for any rele-
vant j-square defined by the plane subdivision according to r, s, a ξ-solution for
(X,F, 2, α) contains at most ξ clusters of level at most j covering all the points
of X in the square. The proof of the efficiency of the algorithm will be based on
the comparison of the cost of the solutions obtained with the cost of the best
ξ-solution. This will follow by Lemmas 2 and 3. First, in Lemma 2, we show that
the cost of the solution computed by the algorithm in an iteration associated
with r, s is upper-bounded by a quantity defined as a function of the cost of the
clusters in the best ξ-solution and the plane subdivision defined by r, s. Then,
in Lemma 3, we show that there are values of r, s such that this latter quantity
(and, consequently, the cost of the best solution computed by the algorithm) is
not much larger than the cost of the best ξ-solution.

Denote by C∗ the best ξ-solution of instance (X,F, 2, α). For any relevant
j-square S, denote by C∗(S) the clusters of level j in C∗ intersecting S.

Lemma 2. Let r, s ∈ {0, ..., λ − 1} and S(r, s) be the set of relevant squares
defined by r, s and X. In the iteration associated with r, s, the algorithm computes
a k-clustering A(r, s) of X of cost ω(A(r, s)) ≤

∑
S∈S(r,s) ω(C∗(S)).

Proof. Since C∗ is a ξ-solution, we may assign each point to exactly one cluster
so that all points are assigned to some cluster and the number of clusters inter-
secting with some square S which have been assigned points contained in S is at
most ξ. We call a cluster intersecting with a relevant square S and having been
assigned a point of S, a cluster associated with S.

For any relevant j-square S, let CS be the set of clusters in C∗ associated
with S. Define CS

<j , C
S
≤j and CS

=j as usual. We claim that after TableS has been
computed, it holds

ω(TableS(CS
<j , |CS |)) ≤

∑
S′≺S

ω(C∗(S′)), (1)

where S′ ≺ S denotes that S′ is a relevant square that is contained in S. Note
that S ≺ S.

The proof is by induction on the order in which the relevant squares are
processed during an iteration. It is trivially true when S has no children. Assume
that the algorithm is about to process the relevant j-square S and that (1) holds
for all squares processed before S. In one of the iterations of the outer loop in
the pseudocode of Figure 2, we have Q = CS

≤j (and J = CS
=j). In this iteration,

consider the combination (i1, i2, ..., it) such that P ′(Sy) = C
Sy

≤j and iy = |CSy |
for any 1 ≤ y ≤ t. Observe that for each j′-square which is a child of S, it is
CS′

≤j = CS′
<j′ . Also, clearly, it is CS

=j ⊆ C∗(S). Thus, the minimum cost set J ′

such that P ∪ J ′ is a pseudoclustering of S and |P ∪ J ′| = |CS | assigned to the
entry TableS(CS

<j , |CS |) has cost at most∑
S′ child of S

ω(TableS′(CS′
≤j , |CS′

|)) + ω(C∗(S)) ≤
∑

S′≺S

ω(C∗(S′)),

and, hence, (1) holds also for S.

468 V. Bilò et al.

Finally, let S0(r, s) be the set of all relevant squares without a parent. Once
again the algorithm performs a complete enumeration of all possible solutions
obtained by choosing exactly one entry from each table TableS for all S ∈
S0(r, s). By applying the same argument used above and using the fact that for
any relevant j-square S ∈ S0(r, s) it is CS

<j = ∅, we obtain that ω(A(r, s)) ≤∑
S∈S0(r,s) ω(TableS(∅, |CS |)) ≤

∑
S∈S(r,s) ω(C∗(S)). ��

Lemma 3. There exist r, s ∈ {0, 1, ..., λ − 1} such that
∑

S∈S(r,s) ω(C∗(S)) ≤(
1 + 6

λ

)
ω(C∗).

Similar statements with Lemma 3 are proved in [9,14]. So far (by combining
Lemmas 2 and 3), we have bounded the cost of the best solution computed by
the algorithm after all iterations in terms of the cost of the best ξ-solution. In
the next section, we prove that for any instance (X,F, 2, α) the optimal solution
(for α = 1) or approximate solutions (for α > 1) are essentially ξ-solutions.
Combining the analysis above with Lemmas 4 and 5, we can bound the cost
of the solution computed by our algorithm in terms of the cost of the optimal
solution. By appropriately setting the parameters λ and ξ in terms of ε (for any
ε > 0), we obtain the following theorems.

Theorem 4. There exists an algorithm for min-size k-clustering which, for each
instance (X,F, 2, 1) of the problem, computes an (1+ ε)-approximate solution in
time nO(1/ε4) for any ε > 0.

Theorem 5. There exists an algorithm for min-size k-clustering which, for each
instance (X,F, 2, α) of the problem, computes an (1+ ε)-approximate solution in
time nO(α4/ε6) for any ε > 0.

4 The Structure Lemmas

The following lemmas imply that for any instance (X,F, 2, α) of the min-size
k-clustering problem, there exist constant values for ξ such that any optimal
solution (for α = 1) or at least a particular approximate solution (for α > 1)
are essentially ξ-solutions (and, hence, the best ξ-solution is optimal or almost
optimal, respectively).

Lemma 4 (Structure Lemma). For any integer constant λ > 1, there exists
a constant ξ = ξ(λ) = O(λ4) such that the following is true: For any square S of
side length �, any optimal solution for any instance (X,F, 2, 1) of the min-size
k-clustering problem, contains at most ξ clusters of radius at least �

2(λ+1)2 which
intersect with S.

A slightly different version of this Structure Lemma can also be found in
[14]. For the case α > 1, we cannot show a statement as strong as Lemma 4.
Actually, it can be shown that there exist instances (X,F, 2, α) with α > 1 and
squares S of side length � such that optimal solutions for (X,F, 2, α) contain

Geometric Clustering to Minimize the Sum of Cluster Sizes 469

an unbounded number of clusters of radius at least �
2(λ+1)2 intersecting with S.

However, we can prove the next Approximate Structure Lemma which states that
an approximate solution is a ξ-solution and, hence, it suffices for our purposes.

Lemma 5 (Approximate Structure Lemma). For any constants γ > 0,
α > 1, and integer λ > 1, there exists a constant ξ = ξ(λ, α, γ) = O

(
α2λ4

γ2

)
such

that the following is true: Any instance (X,F, 2, α) of the min-size k-clustering
problem has an (1 + γ)α-approximate solution which, for any square S of side �,
contains a subset of at most ξ clusters of radius at least �

2(λ+1)2 which contain
all points in S.

Proof. Consider an instance (X,F, 2, α) of the min-size k-clustering problem
and an optimal solution D∗

OPT for (X,F, 2, α). Let ψOPT be a function that
assigns to each point of X a cluster of D∗

OPT containing this point. We obtain a
(1+γ)α-approximate solution D∗ by increasing the radius of each disk in D∗

OPT

by a factor of 1 + γ. Define the assignment ψ which assigns each point of X to
the smallest cluster (i.e., the one with the smallest radius) of D∗ that contains
it. We will show that, for any square of side length �, the number of clusters of
D∗ of radius at least �

2(λ+1)2 which are assigned by ψ to points of S is at most

ξ(λ, α, γ) =

((
6
√

2 +
4
√

2
γ

)
α(1 + γ)(λ + 1)2

ln 2
+ 1

)2

+ 1.

Let S be a square of side length �. Denote by X1 and X2 the sets of points
of S assigned by ψOPT to clusters of D∗

OPT of radii smaller than �
√

2/γ and at
least �

√
2/γ, respectively. All points in X1 are assigned to clusters of D∗ of radii

smaller than �
√

2(1+1/γ) by ψ. Furthermore, the radius of the clusters of D∗
OPT

to which points of X2 are assigned by ψOPT is increased by at least �
√

2 and,
hence, the resulting clusters of D∗ cover the whole square. Among these clusters,
denote by d the one with the smallest radius. The points of X2 (if any) will be
assigned either to cluster d or to clusters of radius smaller than �

√
2(1 + 1/γ).

Now assume that more than ξ(λ, α, γ) clusters of D∗ are assigned to points
of the square S by ψ. This means that more than ξ(λ, α, γ)−1 clusters of radius
larger than �

2(λ+1)2 and at most �
√

2/γ have their centers at distance at most(
3√
2

+
√

2
γ

)
� from the center O of the square, otherwise, these clusters would

not cover any point of S. Now shrink all these clusters around their centers to
obtain disks of radius 21/α−1

4(1+γ)(λ+1)2 �. Let D′ be the set of shrunk disks. We claim
that any two disks of D′ are disjoint. Assume otherwise and consider two disks
of D′ centered at points c1 and c2 of distance δ smaller than (21/α−1)�

2(1+γ)(λ+1)2 . Let
d1 and d2 be the clusters centered at c1 and c2 in the optimal solution D∗

OPT

and let r and R be their radii. Without loss of generality, assume that r ≤ R.
Clearly, r,R ≥ �

2(λ+1)2(1+γ) . If R ≥ r + δ, then this means that the cluster d2

could include all points included in the cluster d1, hence the solution D∗ would
not be optimal. If R < r + δ, then we can include all points included in clusters

470 V. Bilò et al.

d1 and d2 in the solution D∗
OPT by increasing the radius of the cluster d2 to r+δ

and removing cluster d1 from D∗
OPT . The new cost of cluster d2 is now

Fc2 + (r + δ)α < Fc2 +
(
r +

21/α − 1
2(1 + γ)(λ + 1)2

�

)α

≤ Fc2 + (r + (21/α − 1)r)α

≤ Fc2 + 2rα ≤ Fc1 + rα + Fc2 + Rα

which means that D∗ is not optimal. Hence, all disks of D′ are disjoint. By their
definition, they are contained in a disk d′ with radius

(
3√
2

+
√

2
γ + 21/α−1

4(1+γ)(λ+1)2

)
�

centered at O. Since they are disjoint, their total area is more than

(ξ(λ, α, γ)− 1)π
(

(21/α − 1)�
4(1 + γ)(λ + 1)2

)2

≥
((

6
√

2 +
4
√

2
γ

)
α(1 + γ)(λ + 1)2

ln 2
+ 1

)2

π

(
(21/α − 1)�

4(1 + γ)(λ + 1)2

)2

≥
((

6
√

2 +
4
√

2
γ

)
(1 + γ)(λ + 1)2

21/α − 1
+ 1

)2

π

(
(21/α − 1)�

4(1 + γ)(λ + 1)2

)2

≥ π

(
3√
2

+
√

2
γ

+
21/α − 1

4(1 + γ))(λ + 1)4

)2

�2

which contradicts the fact that they are completely contained in the disk d′.
Hence, the number of clusters of D∗ of radius at least �

2(λ+1)2 which are assigned
to points of S cannot exceed ξ(λ, α, γ). ��

5 Extensions and Open Problems

Our techniques naturally extend to higher dimensions by using similar subdivi-
sions of Euclidean spaces. Again, appropriate Structure Lemmas can be shown
with slightly more complicated arguments. We can show the following statement.

Theorem 6. There exists an algorithm for min-size k-clustering which, for each
instance (X,F, d, α) of the problem, computes an (1+ ε)-approximate solution in
time n(α/ε)O(d)

for any ε > 0, α ≥ 1, and constant integer d ≥ 2.

The most important open problem is to explore the complexity of the prob-
lems in the case α = 1. problems are still open for metric spaces as well; the best
known approximability result is the constant approximation algorithm of [6].

In k-clustering to minimize the sum of cluster diameters, the cluster centers
need not necessarily be points of X . Our polynomial-time approximation scheme
for min-size k-clustering with α = 1 yield a (2 + ε)-approximation algorithm
for any constant dimension. To our knowledge, this is the best approximation
guarantee for arbitrary k. Further improvements are also possible. Again, the
complexity of the problem in multidimensional Euclidean spaces is still open.

Geometric Clustering to Minimize the Sum of Cluster Sizes 471

References

1. S. Arora, P. Raghavan, and S. Rao. Approximation schemes for the Euclidean k-
medians and related problems. In Proc. of the 30th ACM Symposium on Theory
of Computing (STOC ’98), pp. 106-113, 1998.

2. M. Bǎdoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In
Proc. of the 34th Annual ACM Symposium on Theory of Computing (STOC ’02),
pp. 250-257, 2002.

3. Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering in metric
spaces. In Proc. of the 33rd Annual ACM Symposium on Theory of computing
(STOC ’01), p.11-20, 2001.

4. P. Brucker. On the complexity of clustering problems. Optimization and Operations
Research, Lecture Notes in Economics and Mathematical Sciences, Vol. 157, pp.
45-54, 1978.

5. M. Charikar, S. Guha, E. Tardos, and D. S. Shmoys. A constant factor approx-
imation algorithm for the k-median problem. Journal of Computer and Systems
Sciences, Vol. 65 (1), pp. 129-149, 2002.

6. M. Charikar and R. Panigrahy. Clustering to minimize the sum of cluster diameters.
Journal of Computer and Systems Sciences, Vol. 68 (2), pp. 417-441, 2004.

7. V. Capoyleas, G. Rote, and G. J. Woeginger. Geometric Clusterings. Journal of
Algorithms, Vol. 12(2), pp. 341-356, 1991.

8. S. R. Doddi, M. V. Marathe, S. S. Ravi, D. S. Taylor, and P. Widmayer. Approxi-
mation algorithms for clustering to minimize the sum of diameters. Nordic Journal
of Computing, Vol. 7(3), pp. 185-203 , 2000.

9. T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for
geometric graphs. In Proc of the 12th Annual Symposium on Discrete Algorithms
(SODA ’01), pp. 671-679, 2001.

10. W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation
schemes for clustering problems. In Proc. of the 35th Annual ACM Symposium on
Theory of Computing (STOC ’03), pp. 50-58, 2003.

11. A. Freund and D. Rawitz. Combinatorial interpretations of dual fitting and primal
fitting. In Proc. of the First International Workshop on Approximation and Online
Algorithms (WAOA ’03), LNCS 2909, Springer, pp. 137-150, 2003.

12. P. Hansen and B. Jaumard. Minimum sum of diameters clustering. Journal of
Classification, Vol. 4, pp. 215-226, 1987.

13. K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual scheme and Lagrangian relaxation.
Journal of the ACM, Vol. 48, pp. 274-296, 2001.

14. N. Lev-Tov and D. Peleg. Polynomial time approximation schemes for base station
coverage with minimum total radii. Computer Networks, Vol. 47, pp. 489-501, 2005.

15. C. L. Monma and S. Suri. Partitioning points and graphs to minimize the maximum
or the sum of diameters. Graph Theory, Combinatorics and Applications, John
Wiley and Sons, pp. 880-912, 1991.

16. R. Ostrovsky and Y. Rabani. Polynomial-time approximation schemes for geomet-
ric clustering problems. Journal of the ACM, Vol. 49(2), pp. 139-156, 2002.

Approximation Schemes for Minimum
2-Connected Spanning Subgraphs in Weighted

Planar Graphs�

André Berger1, Artur Czumaj2, Michelangelo Grigni1, and Hairong Zhao2

1 Department of Mathematics and Computer Science,
Emory University, Atlanta GA 30322, USA
aberge2@emory.edu, mic@mathcs.emory.edu

2 Department of Computer Science,
New Jersey Institute of Technology, Newark NJ 07102, USA

{czumaj, hairong}@cis.njit.edu

Abstract. We present new approximation schemes for various classical
problems of finding the minimum-weight spanning subgraph in edge-
weighted undirected planar graphs that are resistant to edge or vertex
removal. We first give a PTAS for the problem of finding minimum-weight
2-edge-connected spanning subgraphs where duplicate edges are allowed.
Then we present a new greedy spanner construction for edge-weighted
planar graphs, which augments any connected subgraph A of a weighted
planar graph G to a (1 + ε)-spanner of G with total weight bounded
by weight(A)/ε. From this we derive quasi-polynomial time approxima-
tion schemes for the problems of finding the minimum-weight 2-edge-
connected or biconnected spanning subgraph in planar graphs. We also
design approximation schemes for the minimum-weight 1-2-connectivity
problem, which is the variant of the survivable network design problem
where vertices have 1 or 2 connectivity constraints. Prior to our work,
for all these problems no polynomial or quasi-polynomial time algorithms
were known to achieve an approximation ratio better than 2.

1 Introduction

The survivable network design problem is a fundamental problem in algorithmic
graph theory with numerous applications in computer science and operations
research (see, e.g., [12,15,22]). The classical k-connectivity problems are perhaps
the most extensively studied problems in network design. We are given a graph
G with n vertices and a nonnegative weight w(e) on each edge e, and we want
to find a k-edge or k-vertex connected spanning subgraph S, such that its total
edge weight w(S) equals the minimum possible OPT. It is well-known that all
non-trivial variants of the survivable network design problem are NP-hard and
therefore the main research interest lies in the design of efficient approximation
algorithms (see, e.g., [15] for a survey).

� Research supported in part by NSF grants CCR-0208929 and ITR-CCR-0313219.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 472–483, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximation Schemes for Minimum 2-Connected Spanning Subgraphs 473

In this paper we consider approximation algorithms for the most basic case of
the survivable network design problem in which the resulting subgraphs should
be resistant to the removal of a single edge or vertex. The two classical problems
here are to find a minimum-weight 2-edge-connected (2-EC) spanning subgraph
(a 2-ECSS) of G, or a 2-vertex-connected (2-VC or biconnected) spanning sub-
graph (a 2-VCSS) of G. We also consider a standard relaxation of the 2-ECSS
problem of finding a minimum weight 2-EC spanning sub-multigraph (2-ECSSM)
H of G, meaning that an edge of G can be used multiple times in H (conse-
quently its weight is also counted multiple times in H). Another classical ex-
tension is the 1-2-connectivity problem: each vertex v is assigned a connectivity
type rv ∈ {1, 2}. The problem is to find a minimum weight spanning subgraph
such that for any pair of vertices v, u ∈ V , there are at least ruv = min{ru, rv}
edge-disjoint or vertex-disjoint paths between v and u. We denote the 1-2-edge-
connectivity by {1,2}-EC, and 1-2-vertex-connectivity by {1,2}-VC. We also con-
sider the relaxed 1-2-edge-connectivity problem where each edge may be used
more than once.

All the problems mentioned above have been extensively studied in the litera-
ture. Since all these problems are NP-hard, the main research has been devoted
to design efficient approximation algorithms, see the survey [15] and more recent
advances [4,10,11,14,17]. In general, we would prefer to design a polynomial-time
approximation scheme (PTAS), which is a c-approximation algorithm taking
both G and c as inputs, and running in polynomial time for each fixed c > 1.
However, all the problems we consider in this paper are max-SNP-hard [6], even
for unweighted graphs or when duplicate edges are allowed; therefore they do
not have a PTAS unless P = NP . But this does not preclude a PTAS for re-
stricted classes of graphs: indeed, there exist PTAS’s for all these problems in
geometric graphs in low dimensions [6,8], and also for the 2-ECSS and 2-VCSS
problems in unweighted planar graphs [5]. In fact, the approximation schemes
of [5] allow weighted planar graphs, but then the algorithms will either run in

time nO(
w(G)

ε·OPT) to ensure an (1 + ε)-approximate solution or they run in poly-
nomial time with an approximation guarantee of 1+O(w(G)

ε·OPT). Since the ratio
w(G)/OPT could be arbitrarily large, these algorithms are in general not PTAS’s
for weighted planar graphs.

For both the 2-ECSS and 2-VCSS problems in weighted planar graphs, the
best known polynomial-time or even quasi-polynomial-time approximation guar-
antee is still 2 [16,20], which is achieved by polynomial-time algorithms working
for general weighted graphs. On the other hand, besides the PTAS for unweighted
planar graphs [5], there are better constant approximation guarantees known for
general unweighted graphs. For example, there exists a 5

4 -approximation algo-
rithm for the unweighted 2-ECSS problem [14], and a 4

3 -approximation algorithm
for the unweighted 2-VCSS problem [23].

A similar phenomenon can be seen for the 1-2-connectivity problems. For
both the unweighted {1,2}-ECSS and the unweighted {1,2}-VCSS problem,
Krysta [18] gives 3

2 -approximation algorithms. If the graph is weighted, the best
known result for {1,2}-ECSS is a 2-approximation algorithm, due to Jain [13],

474 A. Berger et al.

which in fact solves the more general problem where rv ≤ k for any k. For the
weighted {1,2}-VCSS problem, Fleischer [9] gives a 2-approximation algorithm,
which actually solves the {0,1,2}-VCSS problem. A PTAS for the geometric
version of these problems is presented in [8].

1.1 New Contributions and Techniques

We present efficient approximation schemes for all the above mentioned problems
in weighted planar graphs. Our approximation algorithms depend in a crucial
way on our new construction of light spanners for planar graphs.

Let G be a weighted graph. We use dG(u, v) to denote the weighted shortest
path distance between the vertices u and v in G. An s-spanner of G is a spanning
subgraph H of G such that dH(u, v) ≤ s ·dG(u, v) for all u, v. A spanner provides
an approximate representation of the shortest path metric (1-connectivity) in G,
but it may be much lighter than G.

Althöfer et al. [1] designed a simple greedy algorithm that for an arbitrary
graph G computes an s-spanner H of G for any s > 1. In the case of planar
graphs, it is shown in [1] that this spanner has weight w(H) ≤ (1 + 2/(s −
1))MST(G), where MST(G) is the weight of a minimum spanning tree in G.
Since MST(G) ≤ OPT for all the problems we consider, this bounds the ratio
w(H)/OPT in terms of just s. If all weighted graphs in a graph family have
spanners with such a bound on w(H)/OPT (depending only on s), then we say
the family has light spanners for this problem. Light spanners are known to be
very useful for solving various optimization problems on graphs. For example,
planar graphs have light spanners for metric-TSP: the first step in the metric-
TSP PTAS for weighted planar graphs [2] is to replace the input graph with an
accurate enough s-spanner (using [1]), thus effectively bounding w(G)/OPT for
the remainder of the algorithm. Spanners are also used in complete geometric
graphs to design efficient PTAS’s for geometric TSP and related problems [21],
and to design PTAS’s for the 2-edge and 2-vertex-connectivity problems [7,8].

By combining the spanner constructed in [1] with the planar separator de-
composition approach tuned to analyze 2-connected graphs [5], we show that one
can design a PTAS for the 2-ECSSM problem and a PTAS for the {1,2}-ECSSM
problem. However, this approach of replacing the input graph with an s-spanner
fails for the 2-ECSS and 2-VCSS problems. The reason is that a spanner does
not have to be 2-connected, thus may not contain the optimal or a near optimal
solution in most cases. Naturally, one may think to use light fault-tolerant span-
ners (see, e.g., in [19]), which are subgraphs that persist as s-spanners even after
deleting a constant number of vertices or edges. Unfortunately, this concept is
not useful here, since simple examples show that light fault-tolerant spanners do
not exist in weighted planar graphs, not even for a single edge deletion.

To solve the problem mentioned above, we present our main contribution:
a new greedy spanner construction which produces a light planar spanner with
certain desirable properties. Specifically, given a weighted planar graph G, a
connected spanning subgraph A of G and s > 1, it computes an s-spanner H
of G. H contains A as a subgraph and has total weight w(H) = O(1/(s − 1) ·

Approximation Schemes for Minimum 2-Connected Spanning Subgraphs 475

w(A)). Thus if we feed the algorithm with α-approximate solutions H to the
various connectivity problems in a weighted planar graph G, then we obtain an
O(α/(s− 1))-approximation H∗ for that problem, which at the same time is an
s-spanner for G. Furthermore, we can show that while H∗ need not contain a
(1 + ε)-approximate solution S, we can put a bound on the number of edges of
S “crossing” each face of H∗ (Lemma 3).

Using our new spanner construction technique and the planar separator de-
composition, we design approximation schemes for the 2-ECSS and 2-VCSS,
{1,2}-ECSS and {1,2}-VCSS problems, which find solutions with weight at most
(1 + ε) ·OPT in nO(log n log(1/ε)/ε) time; these are quasi-polynomial time approx-
imation schemes (QPTAS’s).

Organization. We first present a PTAS for the 2-ECSSM problem in Section
2. This section contains also a description of the main algorithmic approach used
in our approximation schemes, which is a combination of the use of spanners,
a recursive approach driven by a variant of the planar separator theorem, and
dynamic programming. Next, in Sections 3 and 4, we describe our new construc-
tion of spanners and discuss the special properties of the spanners. In Section
5, we present quasi-polynomial approximation schemes for the 2-ECSS and the
2-VCSS problems. Finally in Section 6, we consider {1,2}-ECSS and {1,2}-VCSS
problems: we show a PTAS for the {1,2}-ECSSM problem, and a QPTAS for
each of the {1,2}-ECSS and {1,2}-VCSS problems.

2 PTAS for the 2-ECSSM Problem

Let G be a connected weighted graph. A 2-ECSSM H of G is a spanning sub-
multigraph of G in which edges can have some multiplicity and in which every
pair of vertices is connected by at least two edge-disjoint paths. Note that G may
not have any multiple edges at all. If an edge is used multiple times in H , its
weight also contributes multiple times to the weight of H . Since it never helps
to use an edge more than twice, we may cap all edge multiplicities at two. We
now present a PTAS for this problem, running in nO(1/ε2) time.

Given G and ε > 0, we choose s so that s2 ≤ 1 + ε. We first compute an
s-spanner H in G by the greedy spanner algorithm [1], with weight w(H) =
O((1/ε) · OPT). Now we show that there is a (1 + ε)-approximate 2-ECSSM
that uses only edges from H . Suppose S∗ is an optimal 2-ECSSM in G with
w(S∗) = OPT. Now we modify S∗ such that it uses only edges from H . For each
edge e of S∗ not in H , we remove e and add a shortest path from H of total
weight at most s·w(e). When we add the path, we add the edges with multiplicity,
but capped at two. The result of all these modifications is another 2-ECSSM S,
using only edges from H , each edge used at most twice, with w(S) ≤ s ·OPT.

Next we apply the 2-ECSS s-approximation algorithm from [5] to the graph
H ′, which is H with each edge duplicated. Since this algorithm forms also a
core of our algorithm for other problems discussed later in Sections 5 and 6, we
briefly describe it here. The algorithms in [5] use a recursive approach driven by
the following planar separator theorem from [3] (see also [5]):

476 A. Berger et al.

Lemma 1. Let G be a connected planar graph on n ≥ 3 vertices embedded in
the plane. Suppose G has non-negative weights on its vertices, edges and faces,
and non-negative costs on its edges. Let W be the total weight of the graph and
let M be its total cost and assume that no edge has weight more than (3/4) ·W .
Then for any positive integer k, we can find a subgraph F of G and a closed
Jordan curve J in O(n) time such that:

1. F is the union of at most two vertex-disjoint simple cycles (maybe none).
The total cost of the edges on each cycle is at most M/k. If F contains two
cycles A and C, then interior(C) ⊂ interior(A). The interior of C and the
exterior of A (if they exist) both have weight at most W/2.

2. Denote by G′ the embedded graph that results after deleting the interior of
C and the exterior of A (if they exist) and contracting each cycle in F to a
vertex of weight 0. Then J is a Jordan curve which intersects edges of G′ only
at their endpoints and passes through O(k) vertices (“portals”) including the
new contracted vertices. The interior and exterior of J both have weight at
most (3/4) ·W .

First, we decompose H ′ according to Lemma 1 (with k = Θ((log n/ε) ·
w(H′)
OPT) = Θ(log n/ε2)) into at most four pieces: the interior of the cycle C, the

exterior of the cycle A, and the interior and the exterior of the Jordan curve J .
By assigning weight to the new portals and faces properly, we can make sure
that each piece has weight at most a constant fraction of the H ′. We continue
to decompose the small pieces recursively. It is easy to see that the depth of the
recursion is logarithmic, and the number of pieces is O(n log n). By the weighting
scheme of the new portals ([2,5]), one can show that each piece has a portal set
P with size O(k).

We need to find a low cost spanning subgraph in each piece and then combine
them together to form an almost minimum weight 2-ECSS of H ′. Of course we
do not know the remaining subgraph outside this piece. Thus, for each piece, we
enumerate all the different ways that some subgraph of H ′ (outside this piece)
may influence the connectivity constraints within this piece. We call these the
external types of the piece, and one can show that the number of such types is
2O(|P |) = nO(1/ε2) [5, Lemma 2.4], where P is the set of portals of this piece.

For each piece and each external type, we must find a near minimum cost
subgraph of the piece, so that this subgraph together with the external type can
meet the global connectivity constraints. We use dynamic programming to solve
the subproblems in each of the pieces.

During the course of the algorithm, we always commit the cycle edges found
in the separator to the solution, which is the only source of the error in our al-
gorithm. Since the cycle edges has total cost at most w(H ′)/k at each level
of the recursion and there are at most O(log n) levels, by setting appropri-
ately the leading constant in k, we can show that the total error introduced
in the algorithm is ε ·OPT. For each piece, the number of types is bounded by
nO(w(H′)/(ε·OPT)) = nO(1/ε2). There are O(n log n) pieces. Therefore the algo-
rithm solves nO(1/ε2) subproblems, each in time nO(1/ε2).

Approximation Schemes for Minimum 2-Connected Spanning Subgraphs 477

In summary, we have the following theorem.

Theorem 1. Let ε > 0 and let G be a connected weighted planar graph with n
vertices. There is an algorithm running in time nO(1/ε2) that outputs a 2-ECSSM
of G whose weight is at most (1 + ε) times the minimum.

The above technique does not work for other problems considered in this
paper, because there we are not allowed to duplicate edges from G in the output
graph. Instead, our approximation schemes must consider the possibility that the
near-optimal S needs some “extra” edges from outside the spanner. In Sections
3 and 4 we develop a new type of light planar spanners and we limit the number
and arrangements of those extra edges outside the spanner.

3 Augmented Planar Spanners

In this section we present a new greedy algorithm constructing s-spanners in
weighted planar graphs, resembling the standard greedy algorithm [1] for general
graphs. Just as in the standard algorithm, we take a connected weighted graph
G and a parameter s ≥ 1, and produce an s-spanner H . Unlike the general
algorithm, our G must be planar, and for each edge e of G not in H we guarantee
that s ·w(e) is at least the length of some path in the face of H containing e. We
also provide our algorithm with a third argument: a “seed” spanning subgraph
A, containing edges that must appear in H . In Section 4 we will use A to enforce
some 2-connectivity properties in the spanner.

Suppose G is a weighted plane graph (that is, an embedded planar graph)
and H is a subgraph. A chord e of H is an edge of G not in H . Note that H and
e inherit embeddings from G. For each chord e we define wH(e) as the length of
the shortest walk connecting the endpoints of e, along the boundary of the face
of H containining e.

More precisely, if the endpoints of e are disconnected in H , then we define
wH(e) = +∞. Otherwise e connects two vertices in a component of H , and e is
embedded in some face f of this component. The boundary of f is a cyclic walk of
(oriented) edges, with total weight w(f); note that a cut-edge may appear twice
in the boundary (once per orientation), and its weight would then count twice
in w(f). Similarly a cut-vertex may appear multiple times. The edge e splits the
boundary sequence into two walks P1 and P2, both connecting the endpoints of
e, with w(P1) + w(P2) = w(f). Now we define wH(e) = min(w(P1), w(P2)) (see
Figure 1).

Given G, s, and A as above, we compute H = Augment(G, s, A) as follows:

Augment(G, s, A):
H ← A
for all edges e of G in non-decreasing w(e) order do

if e is not in H and s · w(e) < wH(e) then
add e to H

return H

478 A. Berger et al.

f

e
vu

2
P

1
P

Fig. 1. A non-simple face f in H , a chord e, and walks P1 and P2

Note A ⊆ H ⊆ G. If A is empty (has all vertices of G but no edges), then
this is like the general greedy spanner algorithm [1], except that we have wH in
place of dH .

Theorem 2. Let G be a weighted plane graph, s > 1, and A a spanning subgraph
of G. Then H = Augment(G, s, A) is an s-spanner of G. If A is connected, then
w(H) ≤ (1 + 2/(s− 1)) · w(A).

Proof. To show that H is an s-spanner it suffices to show that each edge of G
is s-approximated in H . For e not in H , at the moment it was rejected we had
wH(e) ≤ s · w(e). Note that wH(e) may only decrease after that, so dH(e) ≤
wH(e) ≤ s · w(e) at the end of the algorithm.

For the second part we need to show that the weight of all edges in H
but not A is at most (2/(s − 1)) · w(A). Suppose e is such an edge; then e is
not a cut edge in H since A is a connected spanning subgraph. Therefore e is
bounded by two distinct faces. Let f be either face bounding e. We first claim
that w(f) > (1 + s) · w(e). To see this, consider the last edge e′ added to f
whose boundary consists of a path P plus e′. Since e′ is added to H , we must
have that s · w(e′) < wH(e′) and wH(e′) ≤ w(P). Adding w(e′) to both sides of
s · w(e′) < w(P), and noting w(e) ≤ w(e′), we get the claim.

For each face f of A, let Ef be the set of edges in H crossing the interior
of f . Since the sum of w(f) over all faces of A is 2 · w(A), it suffices to show
that w(Ef) ≤ (1/(s− 1)) ·w(f). Note that the edges dual to Ef define a tree on
the faces of H inside f . Orient this dual tree away from some arbitrarily chosen
root: now for each e ∈ Ef , we have chosen an adjacent face fe of H (only the
root was not picked). For each e ∈ Ef we know w(fe)− 2 ·w(e) > (s− 1) ·w(e),
from the previous paragraph. Summing these inequalities over all e ∈ Ef , we get
at most w(f) on the left hand side, and exactly (s− 1) · w(Ef) on the right.

4 Spanners and 2-EC Subgraphs

Suppose we are given a weighted plane 2-EC graph G and we want to find a
(1 + ε)-approximate 2-ECSS. We first construct an auxiliary subgraph H∗ as
follows:

Approximation Schemes for Minimum 2-Connected Spanning Subgraphs 479

1. Compute a 2-approximate 2-ECSS A, in polynomial time.
2. Compute H∗ = Augment(G,

√
2, A).

The constant
√

2 here is not critical, just convenient. By Theorem 2, H∗ is a
12-approximate 2-ECSS. Below we show that for every ε > 0, this H∗ has nice
intersection properties with some (1 + ε)-approximate 2-ECSS in G.

Given a face f in H∗, the chords of f are the edges of G embedded inside
this face, according to G’s embedding. A face-edge e of f is an abstract edge
connecting two vertices of f ; unlike a chord, a face-edge is not necessarily an
edge of G. (If vertices appear more than once on f , we must specify which
appearances we want as the endpoints of e.) We say the face edge e crosses a
chord c if: c is a chord of the same face f , their endpoints are distinct vertex
appearances on f , and they appear in cyclic “ecec” order around the boundary
of f . Note that we may embed e inside f so e intersects only the crossed chords.

Suppose S is a 2-ECSS in G, and an edge c of S is not in H∗. Then c is a
chord of some face f of H∗. Let Pc be the path in f connecting the endpoints
of c, such that w(Pc) ≤

√
2 · w(c). Then the chord move at c is the following

modification of S: add to S all the edges of Pc that were not already in S, and
remove from S any chords inside the cycle c ∪ Pc (see Figure 2(a)). Since H∗ is
2-EC, the cycle has no repeated edges, and therefore S is still a 2-ECSS after
the chord move. The chord move is improving if w(S) decreases; this happens
whenever w(Pc) (or

√
2 · w(c)) is less than the weight of the discarded chords.

Any non-trivial chord move brings S closer to H∗ (in Hamming distance), thus
at most O(n) improving chord moves apply to any given 2-ECSS S.

cP
c

f

f
3

c
4

c
5c

1
c

2

eu v

c

(a) (b)

Fig. 2. (a) Face f of H∗ (oval) with chord c, path Pc (bold), and chords removed from
S by the chord move at c (dotted). (b) Face f with a face-edge e (dashed) crossed by
five chords from S.

Lemma 2. Let e be a face edge of a face f in H∗ and S be a 2-ECSS of G. Sup-
pose C is a set of edges of S all of which are chords crossing e,

√
2·minc∈C w(c) >

maxc∈C w(c), and no chord in C gives an improving chord move. Then |C| ≤ 4.

Proof. If not, S has five chords crossing e as in Figure 2(b). But then we have
an improving chord move at c3, since the discarded chords ({c1, c2} or {c4, c5})
weigh more than

√
2 · w(c3).

Now we argue that by accepting a small additive error in our 2-ECSS, we
may assume it has only a small number of chords crossing a given face-edge:

480 A. Berger et al.

Lemma 3. Suppose G and H∗ are as above, ε > 0, S is a 2-ECSS, f is a
face in H∗, and e is a face-edge in f . Then there exists a 2-ECSS S′ such that
w(S′) ≤ w(S) + ε · w(C′

f), where C′
f is the set of edges of S′ that are chords

crossing e, C′
f ⊆ S, and |C′

f | = O(log(1/ε)).

Proof. First we may suppose that S has no improving chord move at a chord
crossing e, since such a move could only remove some chords crossing e. Let
Cf be the set of chords in S crossing e. Arrange Cf in “left to right” order,
according to how they intersect e. Let c0 ∈ Cf be the chord with maximum
weight. Say that a chord c ∈ Cf is short if w(c) ≤ ε ·w(c0)/(2

√
2). Now if there

are short chords to the left of c0, perform a chord move at the rightmost one,
cl. Similarly if there are short chords to the right of c0, perform a chord move
at the leftmost one, cr. S′ is the result of these (at most) two chord moves; note
that C′

f contains no short chords except possibly cl and cr.
Map each non-short chord c ∈ C′

f to the real number log(w(c0)/w(c)), a
point in the real interval I = [0, log(1/ε) + 3/2]. Note that two edges can be
mapped to the same semi-open subinterval of I of length 1/2 only if the heavier
edge has weight less than

√
2 times that of the lighter edge. By Lemma 2, at

most four edges can be mapped into the same subinterval of I of length 1/2.
This implies |C′

f | = O(log(1/ε)).
The chord moves in f increased w(S′) by at most

√
2(w(cl) + w(cr)) ≤

ε · w(c0), which is at most ε · w(C′
f).

Remarks: In the 2-VCSS case, the initial A should be a 2-approximate 2-VCSS,
so that H∗ is a 12-approximate 2-VCSS. Then in the chord move the cycle has
no repeated vertices, therefore S remains a 2-VCSS after the move. In Lemmas
2 and 3, the only properties of H∗ that we needed were that it was 2-EC (or
2-VC), and that wH∗(e) ≤

√
2 · w(e) for each chord e.

5 Approximation Schemes for the 2-ECSS and 2-VCSS
Problems

In this section we will show how to use our new spanner construction to find
quasi-polynomial time approximation schemes for the 2-ECSS and the 2-VCSS
problems in weighted planar graphs. We start with the QPTAS for 2-ECSS
problem.

We use a similar framework as that in the PTAS for 2-ECSSM problem in
Section 2. But instead of using the spanner constructed as in [1], now we use the
augmented spanner H∗ as constructed in Section 4.

We first apply Lemma 1 to H∗ with k = Θ(log n/ε) to decompose H∗. How-
ever, different from the PTAS for the 2-ECSSM problem, H∗ may not contain
a near-optimal solution of the 2-ECSS problem. Thus we cannot work on the
pieces of H∗ directly. Fortunately, Lemma 3 guarantees that there exists a near-
optimal solution with at most O(k log(1/ε)) edges crossing the Jordan curve J .
We guess these crossing edges by trying all nO(k log(1/ε)) possibilities. We add the

Approximation Schemes for Minimum 2-Connected Spanning Subgraphs 481

guessed edges to the corresponding pieces. The vertices of H∗ along J together
with the endpoints of the guessed edges determine the set of portals for the new
pieces. For each new piece with its guessed edges, we assign weights to the new
portals such that each new piece has cost at most a constant fraction of H∗ and
O(k) portals. Then we recursively decompose the new pieces.

As in the PTAS for the 2-ECSSM problem, for each piece we define edge-
connectivity types which describe how these portals may be connected outside
this piece in a (1 + ε)-approximate solution. The number of types for each piece
is 2O(k log(1/ε)). Then we use dynamic programming to solve the subproblems as
before and we commit the cycle edges to the solution.

The approximation scheme for the 2-VCSS problem is similar and we only
mention the differences: first, we redefine H∗ as remarked at the end of Section
4. Then we need to define vertex-connectivity types using the same techniques
as in [5].

The error of our final solution comes from two sources. First, we commit-
ted the edges of the cycles that arose from the application of the separator
theorem to the solution. Since each piece in the decomposition has weight at
most constant fraction of its parent weight, the depth of the recursive calls is
O(log n). As before, the total error per recursive level is O((w(H∗)/k) log n),
where k = Θ(log n/ε) and w(H∗) = O(OPT/ε). By an appropriate choice of the
leading constant defining k, this is at most (ε/2) ·OPT. Moreover, each time a
face of H∗ (or its pieces) is cut by a Jordan curve, we guess O(log(1/ε)) cross-
ing edges. If we guess these edges optimally (they were edges in some original
optimal S∗), then by Lemma 3 we may pay an additive error of at most ε/2
times the weight of these guessed edges. Summing over the entire assembly of a
possible solution, the total of these errors is at most (ε/2) ·OPT.

The dominating factor in the running time comes from trying all nO(k log(1/ε))

possibilities for the guessed edges. The weights of the subproblems are only
a constant times the weight of their respective parents and therefore a pure
recursive approach (without dynamic programming) leads to a time bound of
T (n) ≤ nO(k log(1/ε))T (c · n) (0 < c < 1), with solution nO((1/ε)·log(1/ε)·log2 n).
We may improve this bound by a logarithmic factor in the exponent by using
dynamic programming and by a more careful count of subproblems. It has been
proved in [3] that for each piece, one can find a list of O(n2) separations such
that for any valid weight scheme of the vertices, edges and faces of the piece,
some separation in this list satisfies the properties of Lemma 1. This implies:

Lemma 4. The total number of distinct pieces (contracted subgraphs) of the
original H∗ that occur during our recursive decomposition is nO(log n). There-
fore the number of distinct subproblems (a piece, |P | = O(k log(1/ε)) portals
selected in the piece, and an external connectivity type on those portals) is
nO(log n)nO(|P |)2O(|P |) = nO(k log(1/ε)).

Theorem 3. Let ε > 0 and let G be a 2-EC (2-VC) weighted planar graph with
n vertices. There is an algorithm running in time nO(log n·log(1/ε)/ε) that outputs
a 2-ECSS (2-VCSS) H of G such that w(H) ≤ (1 + ε) ·OPT.

482 A. Berger et al.

6 Extensions to the {1, 2}-Connectivity Problem

In this section, we extend our results to the {1, 2}-connectivity problems in
weighted planar graphs. We focus on the algorithm for the {1, 2}-ECSS problem
only. The algorithm for the {1, 2}-VCSS problem can be obtained similarly. The
algorithms are modifications of the respective algorithms in Sections 2 and 5.

First consider the {1, 2}-ECSSM problem, a relaxed version of the {1, 2}-
ECSS problem, where duplicate edges are allowed. As in Section 2, we can show
there is a (1 + ε)-approximate {1, 2}-ECSSM that uses only edges from a light
(1 + ε)-spanner H . So we can work on H with duplicated edges instead of G.

The main difference from Section 2 is the dynamic programming part. We
need to redefine the connectivity types to reflect the non-uniform connectivity
requirements. For this, we can use the connectivity type construction in [8].
Each time we contract a 2-connected component or path, we assign the highest
connectivity requirement among all contracted vertices to the new vertex. This
increases the number of types from 2O(|P |) to 2O(2|P |), where P is the set of
portals in the given graph. We again obtain a PTAS with running time nO(1/ε2).

Now consider the {1, 2}-ECSS problem. We first find a 2-approximate solu-
tion A using algorithms from [13]. Then we augment A into a light spanner H∗

as in Section 4. Using similar arguments as in the proof of Lemma 3, we can
show that there is a (1 + ε)-approximate {1, 2}-ECSS S so that for each picked
face-edge e, only O(log(1/ε)) edges of S cross e. Now redefine the connectivity
types as above and use dynamic programming to solve the problem. The running
time is still dominated by the number of subproblems nO(log n·log(1/ε)/ε). Hence,
we get a QPTAS in this case.

Our results in this section are summarized as follows.

Theorem 4. Let ε > 0 and let G be a weighted planar graph with n vertices.
There is an algorithm running in time nO(1/ε2) that outputs a {1,2}-ECSSM of
G whose weight is at most (1 + ε) ·OPT.

Theorem 5. Let ε > 0 and let G be a weighted planar graph with n vertices.
There is an algorithm running in time nO(log n·log(1/ε)/ε) that outputs a {1,2}-
ECSS H of G such that w(H) ≤ (1 + ε) ·OPT.

Theorem 6. Let ε > 0, and let G be a weighted planar graph with n vertices.
There is an algorithm running in time nO(log n·log(1/ε)/ε) that outputs a {1,2}-
VCSS H of G such that w(H) ≤ (1 + ε) ·OPT.

References

1. I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of
weighted graphs. Discrete Comput. Geom., 9: 81–100, 1993.

2. S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial time
approximation scheme for weighted planar graph TSP. SODA 1998, pp. 33–41.

3. A. Berger, M. Grigni and H. Zhao. A well-connected separator for planar graphs.
Manuscript, 2004.

Approximation Schemes for Minimum 2-Connected Spanning Subgraphs 483

4. J. Cheriyan, S. Vempala and A. Vetta. An approximation algorithm for the
minimum-size k-vertex connected subgraph. SIAM J. Comput., 32(4):1050–1055,
2003.

5. A. Czumaj, M. Grigni, P. Sissokho, and H. Zhao. Approximation schemes for
minimum 2-edge-connected and biconnected subgraphs in planar graphs. SODA
2004, pp. 489–498.

6. A. Czumaj and A. Lingas. On approximability of the minimum-cost k-connected
spanning subgraph problem. SODA 1999, pp. 281–290.

7. A. Czumaj and A. Lingas. Fast approximation schemes for Euclidean multi-
connectivity problems. ICALP 2000, pp. 856–868.

8. A. Czumaj, A. Lingas, and H. Zhao Polynomial-time approximation schemes for
the Euclidean survivable network design problem. ICALP 2002, pp. 973–984.

9. L. Fleischer. A 2-approximation for minimum cost {0, 1, 2} vertex connectivity.
IPCO 2001, pp. 115–129.

10. H. N. Gabow. An ear decomposition approach to approximating the smallest 3-
edge connected spanning subgraph of a multigraph. SODA 2002, pp. 84–93.

11. H. N. Gabow. Better performance bounds for finding the smallest k-edge connected
spanning subgraph of a multigraph. SODA 2003, pp. 460–469.

12. M. Grötschel, C. L. Monma, and M. Stoer. Design of survivable networks. In M. O.
Ball et al., eds., Handbooks in Operations Research and Management Science, vol
7: Network Models, chapter 10, pp. 617–672. North-Holland, Amsterdam, 1995.

13. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica, 21(1):39–60, 2001.

14. R. Jothi, B. Raghavachari, and S. Varadarajan. A 5/4-approximation algorithm
for minimum 2-edge-connectivity. SODA 2003, pp. 725–734.

15. S. Khuller. Approximation algorithms for finding highly connected subgraphs.
In D. S. Hochbaum, ed., Approximation Algorithms for NP-Hard Problems, pp.
236–265, 1996.

16. S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings.
Journal of the ACM, 41(2):214–235, March 1994.

17. G. Kortsarz and Z. Nutov. Approximation algorithm for k-node connected sub-
graphs via critical graphs. STOC 2004, pp. 138–145.

18. P. Krysta. Approximating minimum size 1,2-connected networks, Discrete Appl.
Math., 125:267–288, 2003.

19. C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Efficient algorithms for
constructing fault-tolerant geometric spanners. STOC 1998, pp. 186–195.

20. M. Penn and H. Shasha-Krupnik. Improved approximation algorithms for weighted
2- and 3-vertex connectivity augmentation problems. J. Algorithms, 22:187–196,
1997.

21. S. B. Rao and W. D. Smith. Approximating geometrical graphs via “spanners”
and “banyans”. STOC 1998, pp. 540–550.

22. M. Stoer. Design of Survivable Networks. Lect. Notes in Math. 1531, Springer-
Verlag, 1992.

23. S. Vempala and A. Vetta Factor 4/3 approximations for minimum 2-connected
subgraphs. APPROX 2000, pp. 262–273.

Packet Routing and Information Gathering in
Lines, Rings and Trees

Yossi Azar1,� and Rafi Zachut1

School of Computer Science, Tel Aviv University,
Tel Aviv, 69978, Israel

{azar, zachutra}@tau.ac.il

Abstract. We study the problem of online packet routing and informa-
tion gathering in lines, rings and trees. A network consist of n nodes.
At each node a buffer of size B. Each buffer can transmit one packet
to the next buffer at each time step. The packets injection is under ad-
versarial control. Packets arriving at a full buffer must be discarded. In
information gathering all packets have the same destination. If a packet
reaches the destination it is absorbed. The goal is to maximize the num-
ber of absorbed packets. Previous studies have shown that even on the
line topology this problem is difficult to handle by online algorithms. A
lower bound of Ω(

√
n) on the competitiveness of the Greedy algorithm

was presented by Aiello et al in [1]. All other known algorithms have
a near linear competitive ratio. In this paper we give the first O(log n)
competitive deterministic algorithm for the information gathering prob-
lem in lines, rings and trees. We also consider multi-destination routing
where the destination of a packet may be any node. For lines and rings we
show an O(log2 n) competitive randomized algorithms. Both for informa-
tion gathering and for the multi-destination routing our results improve
exponentially the previous results.

1 Introduction

Overview: Packet routing networks, have become dominant platform for carry-
ing data. In this paper we investigate a packet routing and information gathering
in lines, rings and trees. In information gathering all injected packets have the
same destination. Information gathering is widely used in many networks (e.g
sensor networks). We also consider the multi destination routing in which the
destination of a packet might be any node in the network.

We model the problem of packet routing on a unidirectional line or ring or
tree as follows. A network has n nodes. At each node a buffer of size B. At
each time unit, new packets may arrive at the buffers, each has a destination
node. A packet can only be stored in a buffer if there is enough space. Since
the n nodes have bounded capacity, packet loss may occur. All packets have the
same value. At each time step a buffer can transmit one packet to its successor.
� Research supported in part by the German-Israeli Foundation and by the Israel

Science Foundation.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 484–495, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Packet Routing and Information Gathering in Lines, Rings and Trees 485

When a packet reaches its destination it is absorbed. The goal is to maximize
the number of absorbed packet. The definitions can be extended to rings, trees
and general graphs.

Traditionally, the performance of a packet routing algorithm was measured
within the stability analysis. In such framework either a probabilistic model
([8,11]) or an adversarial model([2,9]) for the packet injection is given, and the
goal is to bound the buffer size needed to prevent packet drop. Since it seems
impossible to avoid packet drop in practice, approximation analysis which avoid
any a priori assumption on the input and compares the performance of algo-
rithms to the optimal solution in the context of throughput has been adopted
recently. In particular competitive analysis in which one has to deal with dropped
packets becomes a common approach ([1,7]).

To the best of our knowledge, even for a simple topology as the line, all known
algorithm either have a near linear competitive ratio or they must use buffers
which are much larger than those of the optimal solution, in order to obtain a
good competitive ratio. In [1] Aiello et al. showed the poor performance of the
greedy algorithm for information gathering by proving a lower bound of Ω(

√
n)

on its competitive ratio (actually the upper bound is n+1 for FIFO model). They
also showed that for the multi-destination routing, algorithm NTG (Nearest To
Go) is only O(n

2
3)-competitive. There were no algorithms with poly-logarithmic

competitive ratio given the same condition as the optimal solution even for lines,
rings and trees.

In this paper we provide the first logarithmic competitive algorithm for in-
formation gathering improving exponentially the previous results for lines, rings
and trees. For multi destination routing we provide the first poly-logarithmic ran-
domized algorithms for lines and rings. Our results hold even for small buffers
of constant size as well as for large buffers independent of the buffer size.

Our Results:

– Our main contribution is an O(log n) competitive deterministic algorithms
for information gathering in lines, rings and trees. For lines and rings we
require B ≥ 3 and for trees we require that B is larger than the maximum
degree. We note that for B = 1 there is an easy deterministic lower bound
of n for the line.

– We provide an O(log2 n) competitive randomized algorithm for the multi-
destination routing in lines and unidirectional and bidirectional rings topol-
ogy for any B ≥ 3.

We use two tools which are of their own interest:

– We present a generic technique to transform any fractional algorithm for
information gathering into a discrete algorithm. Specifically, we show that
given a fractional algorithm for information gathering with buffers of size
B ≥ 3 in a line, we can construct a discrete algorithm whose competitive
ratio is larger by the small factor of B

B−2 .
– We present a generic technique to construct a fractional algorithm for large

buffers from an algorithm for smaller buffers. Specifically, we show that given

486 Y. Azar and R. Zachut

a fractional algorithm for information gathering for buffers of size n we can
construct a fractional algorithm for buffers of size B > n with competitive
ratio larger by a factor of 16.

Recently, independently of our work Stanislav et al. [3] achieved a slightly weaker
result of O(log2 n) competitiveness for information gathering in lines and trees
and a randomized O(log3 n) algorithm for multi-destination routing in lines.

Our Techniques: We start by studying the online fractional call admission and
circuit routing problem. By a small modification to the algorithm of Awerbuch et
al. [4] for the discrete version of this problem with small bandwidth requests, we
obtain a fractional O(logD) competitive algorithm, where D is a bound on the
allowed maximum length of path used. We next construct an online reduction
from the fractional buffers packet routing in a line network with bounded delay
problem to the problem of fractional call admission and circuit routing. Thus
we obtain an O(log(nB)) competitive algorithm for the fractional information
gathering, which immediately supplies an O(log n) competitive algorithm for
buffers of size B ≤ n. For larger buffers we use a reduction to buffers of size
n in order to obtain the O(log n) competitiveness. Next we use a technique
to transform any fractional algorithm for information gathering into a discrete
algorithm, and obtain an O(log n) discrete algorithm for information gathering
in a line network. We construct an O(log2 n) randomized algorithm for the multi-
destination routing in a line network problem using the ”Classify and randomly
Select” with the algorithm for information gathering. We extend our techniques
for rings and trees.

Related Results for Throughput Packet Routing:

– Line and Tree Topologies: Aiello et al.[1] investigated the unit packet
routing on the line topology and proved a lower bound of Ω(

√
n) on the

competitiveness of the greedy algorithm for information gathering in a line.
Algorithm NTG (Nearest To Go) is shown in [1] to be O(n

2
3) competitive

for the multi-destination routing in a line. Azar et al. [7] showed that the
greedy algorithm for the multi-destination routing is (n + 1) competitive.
In [10] Kesselman et al. investigated the routing problem under the work
conserving assumption on directed lines and directed trees where packets are
injected at the leaves and are destined to the root.

– General Graphs: In [5] Awerbuch et al. presented a load balance algorithm
for anycasting packet routing in general topologies. For the line problem this
algorithm is 1

1−ε competitive using buffers which are larger by factor of O(n
ε)

than those of the optimal solution. In [1] Aiello et al. proved that algorithm
NTG (Nearest To Go) is O(md) competitive for any network, where m
is the number of edges in the network and d is the maximal length of a
path traversed by any packet. They also showed that on DAGs any greedy
algorithm is O(md) competitive.

Other Related Work: For various switching model there are constant com-
petitive algorithms for the throughput. There is a lot of work on adversarial

Packet Routing and Information Gathering in Lines, Rings and Trees 487

queuing theory where the adversary never overload the network. There is also a
lot on online call admission and routing for circuit routing. We use [4] for our
work.

2 Problem Definition and Notations

There are two major routing types in communication networks: packet routing
and virtual circuit routing. In circuit routing paths connections are constructed
while in packet routing packets are traversed in the network. In this paper we
consider packet routing defined below. Interestingly, our results are based also
on virtual circuit routing defined in section 3.

In the online Packet Routing problem on a line we have a network organized
in a line topology of length n, i.e. node i = 0, . . . , n − 1 is connected to node
i+ 1 via a unidirectional link with unit capacity. Node i = 0, . . . , n− 1 contains
a buffer of size B, which is initially empty, to buffer the packets waiting to
be transmitted via its outgoing link. In information gathering we may assume
without loss of generality that node n−1 is the destination of all packets while in
the multi-destination routing the destination of a packet may be any node. We
assume time proceeds in discrete steps, and each time step t ≥ 0 is divided into
two phases: at the first phase new packets may arrive to nodes i = 0, . . . , n− 1,
each packet is associated with a destination node. During the second phase of
time t, node i = 0, . . . , n−1 may transmit a packet from its buffer to node i+1. If
a packet reaches its destination it is absorbed. Otherwise, online arriving packets
(from both phase 1 and phase 2) can be buffered without exceeding the buffers
capacities. Remaining packets must be discarded. The goal is to maximize the
number of packets that reach their destination. We consider the non-preemptive
model, in which stored packets cannot be discarded from the buffers.

Given an online algorithm A we denote by A(σ) the value of A given the
sequence σ. We denote the optimal (offline) algorithm by OPT , and use similar
notation for it.

3 Online Fractional Call Admission and Circuit Routing

Our routing algorithm for information gathering is based on an online fractional
call admission and circuit routing algorithm. Thus we start by considering the
online version of the call admission and circuit routing problem, which is de-
fined as follows. A network is represented by a capacitated graph G(V,E, u) and
a bound D on the allowed maximum length of path used. The capacity u(e)
assigned to each edge e ∈ E represents the bandwidth available on this edge.
The online input sequence consists of a call requests for paths: β1, β2, . . . , βk,
where the ith call is represented by: βi = {si, ti, ri}. Node si is the origin of
the call βi, node ti is its destination, and ri is the bandwidth it requires. Upon
receiving a call request βi an algorithm either routes it by assigning it a path of
maximum length D from si to ti with ri bandwidth, or rejects it. If it routes the
call then the available bandwidth of each edge on the path decreases by ri and

488 Y. Azar and R. Zachut

the throughput of the algorithm increases by ri. The goal of an algorithm is to
maximize its throughput while maintaining the capacity constraints.

The fractional version of the problem is defined as follows: an algorithm can
split a call into smaller bandwidth calls and treat each one of them as a separate
call. Thus an algorithm can route different fractions of a call βi in different paths
from si to ti, and reject the remaining fraction. The throughput of the algorithm
is the total bandwidth of routed fractions.

Awerbuch et al. [4] investigated the integral version of the problem. They
proved O(logD) competitive algorithm for the case that the bandwidth of each
request is relatively small compared to the capacity of the edges. Specifically
they assumed that for each call βi , ri ≤ mine{u(e)}

log(2D+2) . We call their algorithm
AAP .

The low bandwidth assumption is required to achieve a poly-logarithmic
competitive algorithm. We show how to easily overcome this assumption by
modifying the AAP algorithm and allowing it to route fractional call. We call
this fractional algorithm FAAP (presented in figure 1).

Algorithm FAAP

Upon arrival of the call βi :

1. Split βi into calls of bandwidth mine{u(e)}
log(2D+2)

.(The last fraction of βi might be of
smaller bandwidth).

2. Run AAP in sequence on βi fractions , until it rejects a fraction or all fractions
have been routed.

Fig. 1. Algorithm FAAP

Theorem 1. Algorithm FAAP is O(logD) competitive for maximizing the
throughput (even compared to a fractional OPT).

4 Fractional Packet Routing

In this section we consider a fractional version of the packet routing problem
described in section 2. I.e., we allow an algorithm to accept fractional pack-
ets as well as transmit fractional packets from one node to its successor. Each
packet fraction that reaches its destination increases the algorithm throughput
by its size. The purpose of this section is to construct an O(log n) competitive
fractional algorithm for information gathering. We also assume that input se-
quence σ consists of integral packets. However, this restriction is not obligatory
for this section. The restriction is relevant for the transformation of a fractional
algorithm for the packet routing problem into a discrete routing algorithm (see
subsection 5.1).

Packet Routing and Information Gathering in Lines, Rings and Trees 489

4.1 Fractional Packet Routing with Bounded Delay

In this section we consider a fractional variant of the multi-destination routing
in which a packet fraction must not stay more than T time steps in the network.

We begin by introducing a translation of this problem into the problem of
fractional call admission and circuit routing which was described in section 3.
The graph G = (V,E, u) for the fractional call admission problem is described
in figure 2.

Fig. 2. The graph G for the call admission and circuit routing problem

Exploiting the matrix shape in which the white nodes in figure 2 are posi-
tioned , we refer to a white node according to its coordinates in the matrix. The
node at the left top corner is node {0, 0}.

The i’th row in the graph represents the i’th buffer over all times. Each time
step is represented by two consequent columns. The beginning of the arrival
phase of time step t is represented by column number 2t. The consequent column
represents the beginning of the transmission phase of time step t. We assign a
capacity B to each edge ({2t, i},{2t + 1, i}) for every t ≥ 0 and 0 ≤ i ≤ n − 1.
Those edges represent the buffers resources. We assign a capacity 1 to all diagonal
edges between two white nodes. They represent the links resources. All other
edges capacity is ∞.

We set the bound D on the allowed maximum length of a path used in the
translated fractional call admission and circuit routing problem to be 2T (since
each time step corresponds to two consequent edges).

490 Y. Azar and R. Zachut

Based on the graph description, we translate the input sequence σ. Suppose
a packet p ∈ σ has arrived at node i at time step t and its destination is node j.
We translate p to the following call request c on G: The origin of c is the white
node {2t, i}. The destination of c is the black node j. The bandwidth c requires
is 1.

It is not hard to show the equivalence between the fractional packet routing
with bounded delay problem and the translated fractional call admission and
circuit routing problem.

In figure 3 we present the online algorithm BPR for the fractional packet
routing with bounded delay T .

Algorithm BPR (Bounded delay Packet Routing)

– Maintain a running simulation of FAAP on G with D = 2T on the translated
input sequence σ.

– If FAAP accepted a call fraction, accept its corresponding packet fraction and
route it according to the path of the call fraction.

Fig. 3. Algorithm BPR

Theorem 2. Algorithm BPR is feasible and O(log T) competitive for the frac-
tional packet routing with bounded delay.

Remark 1. The technique presented in subsection 4.1 can be generalized to re-
duce fractional packet routing in general graphs to circuit routing.

4.2 An O(log(nB)) Algorithm for Fractional Information Gathering

In this subsection we consider the fractional version of information gathering
with no bound on the delay. It can be shown that any feasible routing solution
with unbounded delay can be transformed into a feasible solution with bounded
delay T = 2nB by losing only a constant factor in the throughput. This im-
plies O(log(nB)) competitive fractional algorithm PR for information gathering
(presented in figure 4) based on the BPR algorithm.

Algorithm PR (Packet Routing)

Apply algorithm BPR with bounded delay T = 2nB.

Fig. 4. The PR algorithm

Theorem 3. Algorithm PR is feasible and O(log(nB)) competitive for frac-
tional information gathering with no bounded delay assumptions.

Packet Routing and Information Gathering in Lines, Rings and Trees 491

4.3 Reduction from Buffers of Size B > n to Buffers of Size n

In this subsection we give a generic technique to construct a fractional algorithm
for information gathering with large buffers from an algorithm for small buffers.
Specifically, given a c-competitive algorithm for buffers of size n, we can construct
a 16c-competitive fractional algorithm for buffers of size B > n. We call this
technique GR (Generic Reduction). We assume throughout this subsection that
n|B otherwise we use only the biggest portion of the buffers space which is
divisible by n.

Note that given a c-competitive algorithm for buffers of size n immediately
implies that we are given a 2c-competitive fractional algorithm for buffers of size
n
2 by halving each accepted/transmitted packet fraction. Furthermore, we can
construct 2c-competitive algorithm A for buffers of size B

2 and links of bandwidth
B
n by scaling. We will show that applying the GR technique on algorithm A
generates a 16c-competitive algorithm for information gathering with buffers of
size B > n.
The following definition unite every B

n consequent time steps.

Definition 1. We define the l’th time interval (l ≥ 0) as time steps l · B
n upto

(l + 1) · B
n − 1.

Definition 2. We define the l’th border time as the time between the end of
the l’th time interval and the beginning of time interval l + 1.

We denote by σ̂ the input sequence σ in which for each buffer we concatenate
packets arriving during the same time interval. Informally, the idea of the tech-
nique is to simulate algorithm A which runs in time intervals on the sequence σ̂,
by transmitting in the original sequence σ during the time steps contained in the
time interval. We denote by Ri,l the quantity of the packet fractions which was
injected to buffer i at time interval l and accepted by the simulation of algorithm
A on σ̂. We denote by Ti,l the quantity of packet fractions which was transmitted
from buffer i at time interval l by the simulation of algorithm A on σ̂. In figure 5
we give the exact definition of GR with algorithm A as a parameter.

Theorem 4. Let B′ ≤ B the largest number such that n|B′ and let A be a
2c-competitive algorithm for fractional information gathering with bandwidth B′

n

and buffers of size B′
2 , then algorithm GRA is 16c-competitive for fractional

information gathering with buffers of size B (and links of bandwidth 1).

Corollary 1. Theorem 4 implies that given a c-competitive algorithm for buffers
of size n, we can construct a 16c-competitive algorithm for fractional information
gathering with buffers of size B > n by applying GRA as above.

4.4 Fractional Information Gathering – An O(log n) Competitive
Algorithm

In this section we present an O(log n) competitive algorithm for fractional infor-
mation gathering. For that purpose we use algorithm PR for information gath-
ering, presented in subsection 4.2, and the reduction to information gathering

492 Y. Azar and R. Zachut

Algorithm GRA

– Virtually partition each buffer of GRA to upper buffer and lower buffer. Each
of size B

2
.

– Run a simulation of algorithm A in time intervals on the sequence σ̂.
– For each node i = 0, . . . , n − 1 at every time step t:

Let l = � t

(B
n

)
�.

1. Arrival phase: Accept packet fractions into the upper buffer unless it’s
full.

2. Transmission phase: Transmit Ti,l−1

(B
n

)
fractions of packets from the lower

buffer to the lower buffer of the next node.
– At border time l move Ri,l fractions of packets from the upper buffer to the

lower buffer.

Fig. 5. Algorithm GRA

with size of buffers n presented in subsection 4.3. Algorithm FIG for fractional
information gathering is presented in figure 6.

Algorithm FIG (Fractional Information Gathering)

– if B ≤ n: Use algorithm PR.
– else

1. Let A be algorithm PR for buffers of size n
2

scaled up by �B
n
�.

2. Use algorithm GRA.

Fig. 6. Algorithm FIG

Theorem 5. Algorithm FIG is feasible and O(log n) competitive for fractional
information gathering.

5 Discrete Information Gathering

In this section we consider discrete information gathering. Given a sequence
σ which consists of integral packets, we present a generic local technique for
buffers of size B ≥ 3 to transform any online fractional algorithm for information
gathering into a discrete algorithm with competitiveness multiplied by B

B−2 . In
particular, we use the fractional algorithm FIG presented in subsection 4.4, to
construct a discrete algorithm with O(log n) competitiveness.

5.1 Discretization of a Fractional Packet Routing Algorithm

Given a sequence σ which consists of integral packets, we present a generic local
technique to transform any fractional algorithm A for information gathering,
that uses buffers of size B, into a discrete algorithm with the same throughput,

Packet Routing and Information Gathering in Lines, Rings and Trees 493

but uses buffers of size B+ 2. This implies that, for B ≥ 3 this technique can be
used to transform any c-competitive fractional algorithm for the problem into
a discrete algorithm with a competitive ratio of c · B

B−2 which doesn’t require
additional buffer space. Before we proceed we introduce some notations. Given
a sequence σ which consists of integral packets and a fractional (or discrete)
algorithm Alg, we denote by TAlg

i (t) the accumulated sum of packet fractions
Alg has transmitted from node i until time step t inclusive. We denote by RAlg

i (t)
the accumulated sum of packet fractions that were injected from outside to node
i until time step t inclusive and were accepted by Alg. In figure 7 we present
the definition of RU with algorithm A as a parameter. This technique rounds
up quantities from algorithm A. Let A′ = RUA.

Algorithm A′ = RUA

Run a simulation of algorithm A (fractional model) with the input sequence σ.
For each node i = 0, . . . , n − 1 at every time step t:

1. Arrival phase: Accept packets until RA′
i (t) = �RA

i (t)�.
2. Transmission phase: Transmit a packet only if it is necessary to hold the

equality : T A′
i (t) = �T A

i (t)�.

Fig. 7. Algorithm A′ = RUA

Theorem 6. Suppose A′ uses buffers larger than those used by A by two slots
each. Then for every input sequence σ, A′ is feasible and A′(σ) ≥ A(σ).

Next we show how to use RU to transform any c-competitive fractional al-
gorithm for buffers of size B into a discrete algorithm with buffers of size B
whose competitive ratio is c · B

B−2 for B ≥ 3. We call this transformation D
(Discretization). Let A be a c-competitive fractional algorithm for information
gathering, when using buffers of size B. In figure 8 we present the definition of
D with algorithm A as a parameter.

Algorithm DA

1. Run a simulation of algorithm A with the input sequence σ.
2. Let S be the algorithm obtained by shrinking by B−2

B
each ac-

cepted/transmitted packet fraction of the simulation of A .
3. Apply RUS.

Fig. 8. Algorithm DA

Theorem 7. Algorithm DA uses buffers of size B and is c · B
B−2 competitive for

information gathering.

494 Y. Azar and R. Zachut

5.2 An O(log n) Algorithm for Information Gathering

In this subsection we apply the discretization technique D from subsection 5.1
on algorithm FIG presented in subsection 4.4 in order to construct an O(log n)
competitive discrete algorithm for information gathering. We construct the dis-
crete algorithm IG for information gathering for buffers of size B ≥ 3 by applying
DFIG.

Theorem 8. Algorithm IG = DFIG is feasible and O(log n) competitive for
information gathering (even against a fractional OPT).

Remark 2. In information gathering, packets at a specific buffer are exchange-
able. Thus transmitting the packet at the head of the buffer, instead of trans-
mitting an arbitrary packet, will modify our information gathering algorithm to
hold in a model in which FIFO queues are imposed.

6 Multi-destination Routing

In this section we give an O(log2 n) randomized algorithm for multi-destination
routing. For this algorithm we use the known technique ”Classify and Randomly
Select” (e.g [6]) and our result from subsection 5.2. We classify a packet p accord-
ing to its source to destination distance dp , and its source location sp , by the
following rule: let l = !log(dp)" then classify p into class number 3l+! sp

2l " mod 3.
The above rule classifies the packets into 3 logn disjoint classes.

Definition 3. Nodes j, . . . , j+3d−1 are an interval of class number i if d = 2�
i
3 �

and j mod 3d = d(i mod 3).

Definition 4. A super exit of an interval of a class is the first node after the
first third of the interval.

In figure 9 we present algorithm MD for the multi-destination routing:

Algorithm MD (Multi-destination)

1. Randomly select a class number i∗ uniformly in {0, 1, . . . , 3 log n − 1}.
2. Reject all packets which are not from class i∗.
3. For each interval of the class i∗:

– Run a simulation of IG in the first third of the interval while changing the
destination of all the packets to be the super exit of the interval.

– Apply the actions of the simulation in the first third of the interval.
– Apply a greedy transmission in the last two-thirds of the interval.

Fig. 9. Algorithm MD

Theorem 9. The randomized algorithm MD is O(log2 n) competitive for the
multi-destination routing.

Remark 3. We can easily modify our multi-destination routing algorithm so that
it uses FIFO queues with the same competitive ratio (see remark 2).

Packet Routing and Information Gathering in Lines, Rings and Trees 495

7 Extension to Trees and Rings

In this section we extend our results to rings and trees.

1. Information gathering in unidirectional ring is the same as in the line. For the
multi-destination routing in a unidirectional ring we can also get O(log2 n)
competitive algorithm. This can be done in a similar way described in sec-
tion 6 with the small modification that the definition of the interval should
be considered under the modulo operation.

2. For the multi-destination routing on a bidirectional ring we can also get
O(log2 n) competitive algorithm. We pick one direction with probability of
1
2 and apply the algorithm for the unidirectional case.

3. Information gathering in trees, i.e., routing packets to a single node of a
tree, can be done in the same way described in section 4 and section 5.
The discretization in the case of a tree results in the multiplication of the
competitiveness of the fractional algorithm by a factor of B

B−d (instead of
B

B−2 as shown for the line topology), where d is the maximum input degree of
a node. Thus for B ≥ (1 + ε)d we obtain an O(log n) competitive algorithm.
For example for binary tree (d = 3) we need B ≥ 4.

References

1. W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén. Dynamic routing on net-
works with fixed-size buffers. In Proc. 14th SODA, pages 771–780, 2003.

2. M. Andrews, B. Awerbuch, A. Fernández, J. Kleinberg, T. Leighton, and Z. Liu.
Universal stability results for greedy contention-resolution protocols. In Proc. 37th
IEEE Symp. on Found. of Comp. Science, pages 380–389, 1996.

3. S. Angelov, S. Khanna, and K. Kunal. The network as a storage device: Dynamic
routing with bounded buffers. To appear in APPROX, 2005.

4. B. Awerbuch, Y. Azar, and S. Plotkin. Throughput competitive on-line routing.
In Proc. 34th IEEE Symp. on Found. of Comp. Science, pages 32-40, 1993.

5. B. Awerbuch, A. Brinkmann, and C. Scheideler. Anycasting and multicasting in
adversarial systems: Routing and admission control. In Proc. 30 ICALP, pages
1153-1168, 2003.

6. Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosén. Competitive non-
preemptive call control. In Proc. 5’th ACM-SIAM Symp. on Discrete Algorithms,
pages 312–320, 1994.

7. Y. Azar and Y. Richter. The zero-one principle for switching networks. In Proc.
36th ACM Symp. on Theory of Computing, pages 64–71, 2004.

8. A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and M. Sidi. An optimal ser-
vice policy for buffer systems. Journal of the Association Computing Machinery
(JACM), 42(3):641–657, 1995.

9. A. Borodin, J.Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. Adversarial
queuing theory. In Proc. 28th ACM STOC, pages 376–385, 1996.

10. A. Kesselman, Z. Lotker, Y. Mansour, and B. Patt-Shamir. Buffer overflows of
merging streams. In Proc. 11th Annual ESA, pages 349–360, 2003.

11. M. May, J. C. Bolot, A. Jean-Marie, and C. Diot. Simple performance models
of differentiated services for the internet. In Proceedings of the IEEE INFOCOM
1999, pages 1385–1394.

Jitter Regulation for Multiple Streams
(Extended Abstract)

David Hay and Gabriel Scalosub

Computer Science Department, Technion,
Technion City, Haifa 32000, Israel

{hdavid, gabriels}@cs.technion.ac.il

Abstract. For widely-used interactive communication, it is essential
that traffic is kept as smooth as possible; the smoothness of a traffic
is typically captured by its delay jitter, i.e., the difference between the
maximal and minimal end-to-end delays. The task of minimizing the
jitter is done by jitter regulators that use a limited-size buffer in order
to shape the traffic. In many real-life situations regulators must handle
multiple streams simultaneously and provide low jitter on each of them
separately. This paper investigates the problem of minimizing jitter in
such an environment, using a fixed-size buffer.

We show that the offline version of the problem can be solved in
polynomial time, by introducing an efficient offline algorithm that finds
a release schedule with optimal jitter. When regulating M streams in the
online setting, we take a competitive analysis point of view and note that
previous results in [1] can be extended to an online algorithm that uses a
buffer of size 2MB and obtains the optimal jitter possible with a buffer
of size B. The question arises whether such a resource augmentation is
essential. We answer this question in the affirmative, by proving a lower
bound that is tight up to a factor of 2, thus showing that jitter regulation
does not scale well as the number of streams increases unless the buffer
is sized-up proportionally.

1 Introduction

Contemporary network applications call for connections with stringent Quality-
of-Service (QoS) demands. This gives rise to QoS networks that are able to pro-
vide guarantees on various parameters, such as the end-to-end delay, loss ratio,
bandwidth, and jitter. The need for efficient mechanisms to provide smooth and
continuous traffic is mostly motivated by the increasing popularity of interactive
communication and in particular video/audio streaming. The smoothness of the
traffic is captured by the notion of delay jitter (or Cell Delay Variation [2]);
namely, the difference between the maximal and minimal end-to-end delays of
different fixed-size packets, henceforth referred to as cells.

Controlling traffic distortions within the network, and in particular jitter
control, has the effect of moderating the traffic throughout the network [3]. This
is important when a service provider in a QoS network must meet service level

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 496–507, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Jitter Regulation for Multiple Streams 497

agreements (SLA) with its customers. In such cases, moderating high congestion
states in switches along the network results in the provider’s ability to satisfy
the guarantees to all its customers [4].

Jitter control mechanisms have been extensively studied in recent years (see
a survey in [3]). These are usually modelled as jitter regulators [1,5,6] that use
internal buffers in order to shape the traffic, so that cells leave the regulator
in the most periodic manner possible. Generally, such regulators calculate a
hypothetical periodic schedule, and try to release cells accordingly. Upon arrival,
cells are stored in the buffer until their planned release time, or until a buffer
overflow occurs. This indicates a tradeoff between the buffer size and the best
attainable jitter, i.e., as buffer space increases, one can expect to obtain a lower
jitter.

This paper investigates the problem of finding an optimal jitter release sched-
ule, given a predetermined buffer size. This problem was first raised by Mansour
and Patt-Shamir [1], who considered only a single-stream setting. However, in
practice jitter regulators handle multiple streams simultaneously and must pro-
vide low jitter for each stream separately and independently.

In the multi-stream model, the traffic arriving at the regulator is an inter-
leaving of M streams originating from M independent abstract sources (see
Figure 1). Each abstract source i sends a stream of fixed-size cells in a fully pe-
riodic manner, with inter-release time X i, which arrive at a jitter regulator after
traversing the network. Variable end-to-end delay caused by transient congestion
throughout the network may result in such a stream arriving at the regulator
in a non-periodic fashion. The regulator knows the value of X i, and strives to
release consecutive cells X i time units apart, thus re-shaping the traffic into its
original form. Furthermore, the order in which cells are released by each abstract
source is assumed to be respected throughout the network. This implies that the
cells from the same stream arrive at the regulator in order (but not necessarily
equally spaced), and the regulator should also maintain this order. We refer to
this property as the FIFO constraint.

Note that the FIFO constraint should be respected in each stream inde-
pendently, but not necessarily on all incoming traffic. This implies that in the
multi-stream model, the order in which cells are released is not known a priori.
This lack of knowledge is an inherent difference from the case where there is
only one abstract source, and it poses a major difficulty in devising algorithms
for multi-stream jitter regulation (as we describe in detail in Section 4).

Our Results
This paper presents algorithms and tight lower bounds for jitter regulation in this
multiple-streams environment, both in offline and online settings. This answers
a primary question posed in [1].

We evaluate the performance of a regulator in the multi-stream environment
by considering the maximum jitter obtained on any stream. We show that sur-
prisingly, the offline problem can be solved in polynomial time. This is done by
characterizing a collection of optimal schedules, and showing that their prop-

498 D. Hay and G. Scalosub

erties can be used to devise an offline algorithm that efficiently finds a release
schedule that attains the optimal jitter.

We use a competitive analysis [7,8] approach in order to examine the online
problem. In this setting, by sizing up the buffer to a size of 2MB and statically
partitioning the buffer equally among the M streams, applying the algorithm
described in [1–Algorithm B] on each stream separately yields an algorithm that
obtains the optimal max-jitter possible with a buffer of size B. We show that
such a resource augmentation cannot be avoided, by proving that any online
algorithm needs a buffer of size at least M(B−1)+B +1 = Ω(MB) in order to
obtain the optimal jitter possible with a buffer of size B. We further show that
these tight results also apply when the objective is to minimize the average jitter
attained by the M streams. These results indicate that online jitter regulation
does not scale well as the number of streams increases unless the buffer is sized
up proportionally.

Fig. 1. The multi-stream jitter regulation model

Previous Work
Mansour and Patt-Shamir [1] consider a simplified single-stream model in which
there is only a single abstract source. They present an efficient offline algorithm,
which computes an optimal release schedule in these settings. They further devise
an online algorithm, which uses a buffer of size 2B, and produces a release
schedule with the optimal jitter attainable with buffer of size B, and then show
a matching lower bound on the amount of resource augmentation needed, proving
that their online algorithm is optimal in this sense.

This model is later discussed by Koga [9] that deals with jitter regulation
of a single stream with delay consideration. An optimal offline algorithm, and a
nearly optimal online algorithm are presented for the case where a cell cannot
be stored in the buffer for more than a predetermined amount of time.

Jitter Regulation for Multiple Streams 499

2 Model Description, Notation, and Terminology

We adopt the following definitions from [1]:

Definition 1. Given a sequence of cells σ = (pσ
i)n

i=0 and a non-decreasing ar-
rival function a : σ → R+ such that cell pσ

i arrives at time a(pσ
i):

1. A release schedule for σ is a function s : σ → R+ satisfying for every pσ
i ∈ σ,

a(pσ
i) ≤ s(pσ

i).
2. A release schedule s for σ is B-feasible if at any time t,

|{pσ
i ∈ σ|a(pσ

i) ≤ t < s(pσ
i)}| ≤ B.

That is, there are never more than B cells in the buffer simultaneously.
3. The delay jitter of σ under a release schedule s is

Jσ(s) = max
0≤i,k≤n

{s(pσ
i)− s(pσ

k)− (i− k)X}

where X is the inter-release time of σ (i.e., X is the difference between the
release times of any two consecutive cells from the abstract source).1

We first extend Definition 1 to an arrival sequence σ that is an interleaving
of M streams σ1, . . . , σM . We denote by Xσi the inter-release time of stream
σi, and assume for simplicity that all streams have the same inter-release time
X ; all our results extend immediately to the case where this does not hold. Let
pσ

j denote the j’th cell (in order of arrival) of the interleaving of the streams
σ, and let pσi

j denote the j’th cell of the single stream σi. A release schedule
should obey a per-stream FIFO discipline, in which cells of the same stream are
released in the order of their arrival.

Let Jσi(s) be the jitter of a single stream σi obtained by a release schedule
s. We use the following metric to evaluate multi-stream release schedules:

Definition 2. The max-jitter of a multi-stream sequence σ = {σ1, . . . , σM} ob-
tained by a release schedule s is the maximal jitter obtained by any of the streams
composing the sequence; that is, MJσ(s) = max

1≤k≤M
Jσk(s).

2.1 Geometric Intuition

One can take a geometric view of delay jitter by considering a two dimensional
plane where the x-axis denotes time and the y-axis denotes the cell number. We
first consider the case of a single stream σ. Given a release schedule s, a point
at coordinates (t, j) is marked if s(pσ

j) = t (see Figure 2(a)). The release band is
the band with slope 1/X that encloses all the marked points and has minimal
width. The jitter obtained by s is the width of its release band, and therefore
our objective is to find a schedule with the narrowest release band.

Under the multi-stream model, we associate every stream σi with a different
color i. A point at coordinates (t, j) is colored with color i if s(pσi

j) = t. Any
schedule s induces a separate release band for each stream σi in σ that encloses
all points with color i. Schedule s is therefore characterized by M release bands.
1 Since the abstract source generates perfectly periodic traffic, this definition of delay

jitter coincides with the notion of Cell Delay Variation.

500 D. Hay and G. Scalosub

βσ

right margin

left margin

J(s)

number
packet

time

(a) non-aligned schedule
βσ

packet
number

time

(b) aligned schedule

Fig. 2. Outline of arrivals (dotted circles) and marked releases (full circles)

3 Online Multi-stream Max-Jitter Control

As mentioned previously, there exists an online algorithm with buffer size 2MB,
which obtains the optimal max-jitter possible with a buffer of size B. In this
section we show that this result is tight up to a factor of 2, by showing that
in order to obtain the optimal max-jitter possible with a buffer of size B, any
online algorithm needs a buffer of size at least M(B−1)+B+1. Hence, in order
to maintain the same jitter performance, it is necessary to increase the buffer
size in a linear proportion to the number of streams.

Theorem 1. For every online algorithm ALG with an internal buffer of size
< M(B − 1) + B + 1, there exists an arrival sequence consisting of M streams,
such that ALG attains max-jitter strictly greater than the optimal jitter possible
with a buffer of size B.

Proof. Let ALG be an online algorithm with a buffer of size at most M(B−1)+
B. Consider the following arrival sequence σ: For every 0 ≤ i ≤ B − 1, M cells
arrive at the regulator at time i ·X , one for every stream. The sequence stops if
ALG releases a cell before time t′ = (B + 1)X .

If ALG releases a cell before time t′, say of stream σi, consider the following
continuation for σ: In time T > t′ which can be arbitrarily large, one cell of
stream σi arrives at the regulator.

Since ALG releases the first cell of stream σi before time t′, and the last cell
of stream σi cannot be sent prior to time T , then jσi(ALG) ≥ T−t′−(B+1)X ≥
T − (B + 1)X − (B + 1)X = T , which can be arbitrarily large. It follows that
MJσ(ALG) is strictly greater than zero. On the other hand, note that for any
choice of T , the optimal max-jitter possible with a buffer of size B is zero: Every
cell of a stream other than σi is released immediately upon its arrival, and for
every 0 ≤ j ≤ B, cell pσi

j is released in time T − (B − j)X . Since every stream
other than σi does not consume any buffer space, it is easy to verify that at every
time t, there are at most B cells in the buffer. Clearly, every stream obtains a
zero jitter by this release schedule.

Assume now that ALG does not release any cells before time t′, implying that
in time t′ there are MB cells in the buffer. Consider the following continuation
for σ: In time t′, B + 1 cells of stream σ1 arrive at the regulator.

Jitter Regulation for Multiple Streams 501

Since ALG has a buffer of size at most M(B−1)+B = (M +1)B−M , it must
release at least M +1 cells in time t′. By the pigeonhole principle it follows that
two of the released cells correspond to the same stream. This stream attains a
jitter of at least t′−t′−(0−1)X = X , and therefore MJσ(ALG) is strictly greater
than zero. On the other hand, the optimal max-jitter possible with a buffer of
size B is zero: Every cell of a stream other than σ1 is released immediately upon
its arrival, and for every 0 ≤ j ≤ B, cell pσ1

j is released in time t′ − (B − j)X .
Similarly to the previous case, every stream obtains a zero jitter by this release
schedule, and no more than B cells are stored simultaneously in the buffer. ��

Note that this lower bound for the case M = 1 exactly coincides with the
result of the single stream model [1]. Theorem 1 further implies that in case
the buffer size is < M(B − 1) + B + 1, there are scenarios in which an optimal
schedule attains zero jitter for all streams, while any online algorithm produces
a schedule where at least one stream has a strictly positive jitter. This fact
immediately implies that even if the objective is to minimize the average jitter
obtained by the different streams, the same lower bound holds. Since the online
algorithm, which statically partitions the buffer, minimizes the jitter of each
stream independently, it clearly minimizes the overall average jitter as well, thus
providing a matching upper bound.

4 An Efficient Offline Algorithm

This section presents an efficient offline algorithm that generates a release sched-
ule with optimal max-jitter.

Given a sequence σ that is an interleaving of M streams, consider a total
order π = (p′0, . . . , p

′
n) on the release schedule of cells in σ that respects the

FIFO order in each stream separately. The release schedule, which attains the
optimal max-jitter and respects π, can be found using similar arguments to the
ones in [1–Algorithm A]: Cell p′j can be stored in the buffer only until cell p′j+B

arrives, imposing strict bounds on the release time of each cell. In particular,
it follows that for every sequence σ, there exists an optimal release schedule.
Unfortunately, it is computationally intractable to enumerate over all possible
total orders, hence a more sophisticated approach should be considered.

We first discuss properties of schedules that achieve optimal max-jitter. We
then show that these properties allow to find an optimal schedule in polynomial
time, based solely on the cells’ arrival times, and the parameters X and B.

For every cell pσ
j , one can intuitively consider t = a(pσ

j) − jX as the time
at which pσ

0 should be sent, so that pσ
j is sent immediately upon its arrival,

in a perfectly periodic release schedule. For any stream σ, denote by βσ =
maxj

{
a(pσ

j)− jX
}
. From a geometric point of view, βσ is a lower bound on

the intersection between the time axis and the right margin of any release band
(see Figure 2(a)), since otherwise the cell defining βσi would have to be released
prior to its arrival.

Given a release schedule s for a sequence σ, a stream σi ⊆ σ is said to be
aligned in s if there is no cell pσi

k ∈ σi such that s(pσi

k) > βσi + kX . Clearly,

502 D. Hay and G. Scalosub

if σi is aligned in s, then the cell pσi

j that defines βσi satisfies s(pσi

j) = a(pσi

j).
Geometrically, the right margin of a release band corresponding to an aligned
stream σi intersects the time axis in point (βσi , 0) (see Figure 2(b)).

A release schedule s for max-jitter is said to be aligned, if every stream is
aligned in s. The following simple lemma shows that one can iteratively align
the streams of an optimal schedule without increasing the overall jitter:

Lemma 1. For every sequence σ, there exists an optimal aligned schedule s.

Proof. Given an optimal schedule s′ for sequence σ with at least � aligned
streams, we prove that s′ can be changed into an aligned schedule (i.e. with
M aligned streams), maintaining its optimality.

We first show that s′ can be altered into an optimal schedule with � + 1
aligned streams. Let σi be one of the non-aligned streams in s′, and consider the
following schedule s:

s(pσk
j) =

{
min

{
s′(pσk

j), βσk + jX
}

k = i

s′(pσk

j) k �= i

Clearly for every stream other than σi, the schedule remains unchanged, there-
fore it suffices to consider only stream σi. Since s′(pσi

j) ≥ a(pσi

j) and βσi + jX ≥
a(pσi

j), s is a release schedule and it can easily be verified that s satisfies the
FIFO constraint. Schedule s is B-feasible, since s′ is B-feasible and for any cell
pσi

j , s(pσi

j) ≤ s′(pσi

j). Stream σi is aligned in s, since clearly every cell pσi

j satisfies
s(pσi

j) ≤ βσi + jX . Hence, s has � + 1 aligned stream.
In order to prove that s is optimal, it suffices to show that s(pσi

j)− s(pσi
m)−

(j − m)X ≤ Jσi(s′) for every two cells pσi

j , pσi
m ∈ σi. First note that s(pσi

j) −
s(pσi

m) − (j − m)X ≤ s′(pσi

j) − s(pσi
m) − (j − m)X , since s(pσi

j) ≤ s′(pσi

j). If
s(pσi

m) = s′(pσi
m) then trivially s(pσi

j)− s(pσi
m)− (j −m)X ≤ Jσi(s′). Otherwise,

s(pσi
m) = βσi +mX = a(pσi

b)−bX+mX for the cell pσi

b that defines βσi . Since s′ is
a release schedule, then s(pσi

b) ≥ a(pσi

b), which yields s(pσi

j)−s(pσi
m)−(j−m)X ≤

s′(pσi

j)− s′(pσi

b)− (j − b)X ≤ Jσi(s′).
Applying the same arguments repeatedly alters schedule s′ into an aligned

schedule and preserves its optimality. ��

Next we show that the optimality of a schedule s is maintained even if cells
that are stored in the buffer are released earlier, as long as their new release time
satisfies FIFO order and remains within a release band of width MJσ(s):

Lemma 2. Let s be an optimal schedule for sequence σ. Then, for every stream
σi ⊆ σ and for every J ∈ [Jσi(s), MJσ(s)], the new schedule

s′(pσk
j) =

{
max

{
a(pσk

j), βσk − J + jX
}

k = i

s(pσk

j) k �= i

is B-feasible and MJσ(s′) = MJσ(s). Furthermore, if s is aligned then so is s′.

Jitter Regulation for Multiple Streams 503

Proof. Since s′ only changes the release schedule of stream σi, it clearly preserves
the FIFO order and jitter of each stream other than σi.

We first show that s′ respects the FIFO order of cells in σi. Let pσi

j be any cell
in σi. If s′(pσi

j) = a(pσi

j) then its release time is ≤ a(pσi

j+1) ≤ s′(pσi

j+1). Otherwise,
s′(pσi

j) = βσi − J + jX ≤ βσi − J + (j + 1)X ≤ s′(pσi

j+1).
In order to bound the max-jitter of s′, it suffices to show that Jσi(s′) ≤

MJσ(s). Consider any pair of cells pσi
a , pσi

b ∈ σi. By the definition of s′, s′(pσi
a) ≥

βσi−J+aX . On the other hand, s′(pσi

b) = max {a(pσk

b), βσk − J + bX} ≤ βσi +
bX since a(pσi

b) ≤ βσi +bX by the definition of βσi . Hence, s′(pσi

b)−s′(pσi
a) ≤ J+

(b − a)X , which implies that Jσi(s′) = maxa,b {s′(pσi

b)− s′(pσi
a)− (b− a)X} ≤

J ≤ MJσ(s).
Assume by way of contradiction that s′ in not B-feasible, and let t be any

time in which a set P of more than B cells are stored in the buffer. Since the
release schedule of any stream σk other than σi is identical under both s and s′,
every cell pσk

j ∈ P , for k �= i, is also stored in the buffer at time t under schedule
s. Note first that any cell in P is not released upon its arrival. Hence,

s′(pσi

j) = βσi − J + jX by the definition of s′

≤ βσi − Jσi(s) + jX since J ∈ [Jσi(s), MJσ(s)]
= a(pσi

k)− kX − Jσi(s) + jX for pσi

k defining βσi

≤ s(pσi

k)− (k − j)X − Jσi(s) since a(pσi

k) ≤ s(pσi

k)
≤ s(pσi

k)− (k − j)X−(
s(pσi

k)− s(pσi

j)− (k − j)X
)

by definition of Jσi(s)
≤ s(pσi

j)

Therefore, all cells pσi

j ∈ P are stored in the buffer at time t under schedule s as
well, contradicting the B-feasibility of s.

We conclude the proof by showing that if s is aligned then s′ is also aligned.
Assume s is aligned. For any stream σk �= σi schedules s and s′ are identical
on σk, and therefore σk is aligned in s′. Assume by contradiction that σi is
not aligned, therefore there is a cell pσi

j such that s′(pσi

j) > βσi + jX . Note
that the definition of βσi is independent of s and s′. By the definition of s′,
max

{
a(pσi

j), βσi − J + jX
}

> βσi + jX . It follows that a(pσi

j) > βσi + jX ,
contradicting the maximality of βσi . ��

The new schedule obtained in the above lemma is illustrated by the circled
cells in Figure 3. By iteratively applying Lemma 2 with J = MJσ(s) on all
streams, we get:

Corollary 1. Given an optimal aligned schedule s for sequence σ, the schedule
defined by

s′(pσk
j) = max

{
a(pσk

j), βσk −MJσ(s) + jX
}

is an optimal aligned schedule.

The following lemma bounds from below the release time of cells in an aligned
schedule. Intuitively, this lemma defines the left margin of the release band.

504 D. Hay and G. Scalosub

Lemma 3. For any aligned schedule s for sequence σ, every stream σi ⊆ σ, and
every cell pσi

j , s(pσi

j) ≥ βσi − Jσi(s) + jX.

Proof. Assume by contradiction that there exists a stream σi and a cell pσi

j such
that s(pσi

j) < βσi − Jσi(s) + jX . Let pσi

k be the cell defining βσi . Since s is
aligned, it follows that s(pσi

k) = a(pσi

k). Hence,

Jσi(s) ≥ s(pσi

k)− s(pσi

j)− (k − j)X
> a(pσi

k)− (βσi − Jσi(s) + jX)− (k − j)X
= a(pσi

k)− (a(pσi

k)− kX) + Jσi(s)− jX − kX + jX = Jσi(s),

which is a contradiction. ��
Lemma 3 indicates an important property of aligned optimal schedules. In

such schedules, the jitter of any stream can be characterized by the release time
of a single cell, as depicted in the following corollary: (proof omitted)

Corollary 2. For any aligned schedule s for sequence σ and every stream σi ⊆
σ, Jσi(s) = maxj

{
βσi − s(pσi

j) + jX
}
.

The following lemma shows that at least one of the widest release bands,
corresponding to some stream σi attaining the max-jitter, has its left margin
determined by the following event: An arrival of a cell causing a buffer overflow,
which necessitates some cell of σi to be released earlier than desired.

Lemma 4. Let s be an aligned optimal schedule for sequence σ. There exists
a stream σi ⊆ σ that attains the max-jitter, and a cell pσi

j such that s(pσi

j) =
βσi −MJσ(s) + jX and s(pσi

j) = a(pσ
�) for some cell pσ

� .

Proof. We show by contradiction that if the claim does not hold for an optimal
aligned schedule, then such a schedule can be altered into a new schedule with
max-jitter strictly less than the original schedule. Formally, consider an aligned
optimal schedule s for σ. Let M = {σi | Jσi(s) = MJσ(s)}, and for every σi ∈M ,
let Ti =

{
pσi

j | s(pσi

j) = βσi −MJσ(s) + jX
}
. From a geometric point of view,

Ti consists of all the cells in σi, whose release time lies on the left margin of σi’s
release band. Finally, let T =

⋃
σi∈M Ti. Assume by contradiction that for every

pσ
j ∈ T , there is no cell pσ

� such that s(pσ
j) = a(pσ

�).
Note first that in such a case, MJσ(s) > 0. Otherwise, since s is aligned,

for each stream σi the cell pσi

k defining βσi satisfies both s(pσi

k) = a(pσi

k) and
s(pσi

k) = βσi − 0 + jX .
The altered schedule s′ is obtained by postponing the release of all the cells in

T for some positive amount of time. As we shall prove, schedule s′ is B-feasible,
and has a max-jitter strictly less than MJσ(s), contradicting the optimality of s.

For each cell pσi

k ∈ T which is the j’th cell of σ (i.e, pσi

k = pσ
j), the exact

amount of postponing time is determined by the following constraints:

1. Avoiding buffer overflow: Do not postpone further than the first arrival of a
cell after s(pσ

j). This constraint is captured by

δ(pσ
j) = min

pσ
� :a(pσ

�)>s(pσ
j)

{
a(pσ

�)− s(pσ
j)

}
.

Jitter Regulation for Multiple Streams 505

2. Maintaining FIFO order: Do not postpone further than s(pσi

k+1). This con-
straint is captured by ε(pσ

j) = s(pσi

k+1)− s(pσi

k).

If pσ
j is the last cell in σ, δ(pσ

j) = ε(pσ
j) = ∞. Let δ = minpσ

j ∈T δ(pσ
j) and

ε = minpσ
j ∈T ε(pσ

j), capturing the amounts of time that satisfy these constraints
for all cells in T . Since MJσ(s) > 0 and by using the previous lemmas and the
assumption, it can be verified that both δ and ε are finite and strictly greater
than zero.

For the purpose of analysis, define for every stream σi ∈ M ,

ρ(σi) = min
p

σi
k ∈σi\Ti

{s(pσi

k)− (βσi −MJσ(s) + kX)} .

ρ(σi) comes to capture how far is the rest of the stream from the left margin.
Since for any σi ∈ M , Jσi(s) > 0, then σi \ Ti is not empty and ρ(σi) > 0. Let
ρ = minσi∈M ρ(σi). It follows that ρ > 0.

Let Δ = min {δ, ε, ρ}, and consider the following schedule that, as we shall
prove, attains a jitter strictly smaller than MJσ(s):

s′(pσ
j) =

{
s(pσ

j) + Δ/2 pσ
j ∈ T

s(pσ
j) otherwise

We first prove that s′ is B-feasible and maintains FIFO order. Assume by
way of contradiction that s′ is not B-feasible, and let t be the first time the
number of cells in the buffer exceeds B. By the minimality of t, there exists a
cell that arrives at time t. For every cell pσ

j ∈ T , no cells arrive to the buffer in
the interval [s(pσ

j), s(pσ
j) + Δ/2] because Δ ≤ δ(pσ

j), implying that t is not in
any such interval. But the definition of s′ yields that the content of the buffer
in such a time t is the same under schedules s and s′, thus contradicting the
B-feasibility of s. The FIFO order of s′ is maintained since Δ ≤ ε(pσ

j) for every
pσ

j ∈ T .
We conclude the proof by showing that MJσ(s′) < MJσ(s). Consider any

σi ∈ M , and any pσi

k . If pσi

k ∈ T then by the definition of s′ and Lemma 3,
s′(pσi

k) = s(pσi

k) + Δ/2 ≥ βσi −MJσ(s) + kX + Δ/2. The same holds also for
pσi

k /∈ T : Since ρ(σi) ≥ Δ > Δ/2, it follows that s′(pσi

k) = s(pσi

k) ≥ βσi −
MJσ(s) + kX + ρ(σi) > βσi −MJσ(s) + kX + Δ/2. Hence, for every pσi

k ,

βσi − s′(pσi

k) + kX ≤ βσi − (βσi −MJσ(s) + kX + Δ/2) + kX
= MJσ(s)−Δ/2
< Jσi(s).

By Corollary 2, Jσi(s′) < Jσi(s) for any stream σi ∈ M . The jitter of any
other stream remains unchanged, therefore MJσ(s′) < MJσ(s), contradicting
the optimality of s. ��

Lemma 4 implies that there is an optimal schedule s and a stream σi, such
that MJ(s) = βσi − a(pσ

l) + kX , for some cells pσi

k ∈ σi and pσ
l ∈ σ. Note that

for any stream σi, the value of βσi can be computed in linear time using only

506 D. Hay and G. Scalosub

time

packet
number

r

j

k

βσi a(pσi

k)s(pσi
j)

r′

pσ
�

Jσi(s)

(a) schedule s

time

packet
number

r

j

k

βσi a(pσi

k)s(pσi
j)

r′

pσ
�

Jσi(s′)

(b) schedule s′

Fig. 3. Outline of arrivals (dotted circles) and releases (full circles) for cells of the
stream σi that attains the max-jitter, in an aligned release schedule, as discussed in
Corollary 1 and in Lemma 4. The square represents an arrival of some cell in σ causing
buffer overflow.

the arrival sequence σi. It follows that by enumerating over all possible choices
of the pair (pσi

k , pσ
l), one can find the collection of possible values of the optimal

jitter. For every such value J , verifying that there is a B-feasible release schedule
attaining jitter J can be done in linear time by checking the feasibility of the
schedule defined in Corollary 1 assuming MJ(s) = J . This yields the following
result:

Theorem 2. There exists a polynomial-time algorithm that finds an optimal
schedule for the multi-stream max-jitter problem.

5 Discussion

This paper examines the problem of jitter regulation and specifically, the tradeoff
between the buffer size available at the regulator and the optimal jitter attainable
using such a buffer. We deal with the realistic case where the regulator must handle
many streams concurrently, thus answering a primary question posed in [1].

We focus our attention on regulating the jitter of multiple streams with the
objective of minimizing the maximum jitter attained by any of these streams.
We show that the offline problem of finding a schedule that attains the optimal
max-jitter can be solved in polynomial time, by a time-efficient algorithm which
produces an optimal schedule. We observe that existing single-stream online
algorithms can be used to devise an online algorithm for the multi-stream jitter
regulation problem, at a cost of multiplying the buffer size linearly by the number
of streams. We prove that such a resource augmentation is essential by providing
an asymptotically matching lower bound. Our results for the online setting apply
also to the problem of finding a release schedule with optimal average jitter.

Note that our offline algorithm suggests an interesting heuristic for improving
the value of the jitter for an online algorithm using a buffer of size considerably
less than MB, compared to the optimal jitter attainable with a buffer of size B.

Jitter Regulation for Multiple Streams 507

One can calculate an optimal schedule of a prefix of the traffic using our offline
algorithm, and then prolong the schedule by attempting to send consecutive cells
as equally spaced as possible. Although there are traffics in which this approach
fails, as shown by our lower bound, it may prove a useful heuristic in situations
where the overall traffic in the network does not change radically over time.

Since real-life networks clearly have finite capacity links, it is also interesting
to investigate the behavior of a jitter regulator that handles multiple streams
simultaneously and its outgoing link is of bounded capacity. In addition, since
regulators might be allowed to drop cells, it is of interest to examine the corre-
lations between buffer size, optimal jitter, and drop ratio.

Acknowledgements. We would like to thank Hagit Attiya, Seffi Naor, Adi
Rosén, and Shmuel Zaks for their useful comments.

References

1. Mansour, Y., Patt-Shamir, B.: Jitter control in Qos networks. IEEE/ACM Trans-
actions on Networking 9 (2001) 492–502

2. The ATM Forum: Traffic Management Specification. (1999) Version 4.1, AF-TM-
0121.000.

3. Zhang, H.: Service disciplines for guaranteed performance service in packet switching
networks. Proceedings of the IEEE 83 (1995) 1374–1396

4. Tanenbaum, A.: Computer Networks. Fourth edn. Prentice Hall (2003)
5. Keshav, S.: An Engineering Approach to Computer Networking. Addison-Wesley

Publishing Co. (1997)
6. Zhang, H., Ferrari, D.: Rate-controlled service disciplines. Journal of High-Speed

Networks 3 (1994) 389–412
7. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-

bridge University Press (1998)
8. Sleator, D., Tarjan, R.: Amortized efficiency of list update and paging rules. Com-

munications of the ACM 28 (1985) 202–208
9. Koga, H.: Jitter regulation in an internet router with delay constraint. Journal of

Scheduling 4 (2001) 355–377

Efficient c-Oriented Range Searching with
DOP-Trees

Mark de Berg�, Herman Haverkort��, and Micha Streppel� � �

Department of Computer Science,
TU Eindhoven, P.O.Box 513, 5600 MB Eindhoven, The Netherlands

mdberg@win.tue.nl

cs.herman@haverkort.net

m.w.a.streppel@tue.nl

Abstract. A c-dop is a c-oriented convex polytope, that is, a convex
polytope whose edges have orientations that come from a fixed set of c
orientations. In this paper we study dop-trees—bounding-volume hier-
archies that use c-dops as bounding volumes—in the plane. We prove
that for any set S of n disjoint c-dops in the plane, one can construct
a dop-tree such that a range query with a c-dop as query range can
be answered in O(n1/2+ε + k) time, where k is the number of reported
answers. This is optimal up to the factor O(nε). If the c-dops in S may
intersect, the query time becomes O(n1−1/c + k), which is optimal.

1 Introduction

The range-searching problem is to preprocess a set S of objects in Rd such
that the objects intersecting a query range Q can be found quickly. The range-
searching problem is a fundamental problem in computational geometry, and it
arises in numerous applications in practice. Hence, it has been widely studied
both from a theoretical and from an experimental point of view [2,3,8,10].

The goal of most of the research in computational geometry on range search-
ing is to develop data structures with (close to) optimal performance guarantees
for each specific setting. Thus there are data structures for range searching with
triangles in point sets in the plane, for range searching with disks in point sets,
for range searching with rectangles in line segments, and so on. Unfortunately,
many of these data structures are rather involved. Moreover, it would be prefer-
able to have a single multi-functional geometric data structure: a data structure

� MdB was supported by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 639.023.301.

�� This research was done while HH was working at Karlsruhe University, supported
by the European Commission, FET open project DELIS (IST-001907), and sub-
sequently at the University of Aarhus, supported by a grant from the Danish
National Science Research Council.

� � � MS was supported by the Netherlands’ Organisation for Scientific Research (NWO)
under project no. 612.065.203.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 508–519, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient c-Oriented Range Searching with DOP-Trees 509

that can store different types of data and answer various types of queries. Indeed,
this is what is usually done in practice. The goal of our work is to investigate
what can be said about such practical data structures from a theoretical point
of view.

One of the most widely used practical solutions to the range-searching prob-
lem is to use a bounding-volume hierarchy (bvh). A bvh on a set S of objects
is a tree structure whose leaves are in a one-to-one correspondence with the ob-
jects in S and where each node ν stores some bounding volume of the set of
objects corresponding to the leaves in the subtree of ν. A bvh has linear size
by definition, and it can store any kind of object. A query with a range Q is
answered by traversing the bvh in a top-down manner, only proceeding to those
nodes whose bounding volume is intersected by Q. For each leaf that is reached,
the corresponding object needs to be checked against Q. In principle one can
perform the search with any kind of range Q. To speed up the test whether the
range Q intersects the bounding volume of some node, however, the range itself
is often also replaced by a bounding volume. Hence, the possibly expensive test
with the original range Q only has to be performed with the objects found at the
leaf level. Note that there is a trade-off in the type of bounding volume used: a
simple bounding volume will make the intersection test fast, but it often makes
the bounding volume fit less well to the underlying objects so that more nodes
in the tree will be visited.

A very popular bounding volume is the axis-aligned bounding box. The rea-
son for this is, of course, that intersection tests between bounding boxes are
very fast and easy to implement. bvhs that use bounding boxes as bounding
volumes—such bvhs are called box-trees—have been investigated from a theo-
retical point of view by Agarwal et al. [1] and by Haverkort et al. [5]. Agarwal et
al. showed how to construct a box-tree for a set S of n input boxes in Rd such
that a range query with a query box Q can be answered in time Θ(n1−1/d + k),
where k is the number of input boxes intersecting Q. They also showed that this
is optimal in the worst case, even if the input boxes are disjoint. If the input
bounding boxes are disjoint and d = 2, they present another box-tree, which
achieves a query time of O(

√
n log n + k) for queries with axis-parallel rectan-

gles, and O(log2 n) for point queries. In Haverkort’s thesis [4], the bound for
rectangle queries is improved to the optimal O(

√
n + k).

As noted above, a simple bounding volume such as a bounding box may not
fit the underlying objects or the query range very well. Suppose, for instance,
that we want to find all objects intersecting a query line segment. If the slope of
the segment is close to 1, then its bounding box will fit badly, possibly increasing
the number of visited nodes dramatically. Indeed, the box-trees of Agarwal et
al. [1] (or any box-tree, for that matter) cannot give any (sublinear) worst-case
guarantees for queries with non-rectangular ranges. The fact that bounding boxes
may not always fit well, inspired research on bvhs that use different, more tightly
fitting bounding volumes [3,11]. One of the bounding volumes that has been
suggested are so-called discretely oriented polytopes [6,7]. These are polytopes
whose facets have orientations that come from a fixed set of c orientations. We

510 M. de Berg, H. Haverkort, and M. Streppel

call such a bounding volume a c-dop. For instance, a bounding box in the plane is
a 2-dop, since its edges are horizontal and vertical. The larger the value of c, the
better the c-dop will fit the underlying object. We call a bvh that uses c-dops
as bounding volumes a dop-tree. As far as we know, there are no dop-trees with
worst-case performance guarantees. In this paper we develop such dop-trees for
range searching in the plane, where the query range is also a c-dop. We call
such queries dop queries. We will also consider point queries, where the query
range is a point. Point queries—sometimes also called inverse range queries—are
interesting in their own right. Moreover, if point queries can be answered very
efficiently, one may expect that range queries with small ranges can be answered
efficiently as well.

Our Results. We describe a general strategy to construct a dop-tree on a set S
of c-dops in the plane from a c-oriented binary space partition (bsp) on a set
of representative points for the c-dops. (A bsp for a set of points in the plane
is a recursive partitioning of the plane using lines, until each subspace contains
a single point. A bsp is c-oriented if its splitting lines come from a fixed set of c
orientations.) This strategy is described and analyzed in Section 3.

To obtain an efficient dop-tree, we thus need a bsp on a set of points in the
plane that has a good query time for range searching with c-dops. Developing
such a bsp is the topic of Section 2, where we present such a bsp whose query time
is O(n1/2+ε + k).1 This result generalizes to higher dimensions; the query time
in Rd is O(n1−1/d+ε + k). We remark that the same (in fact, slightly better)
bounds can be obtained for more general queries, namely arbitrary simplices,
using partition trees [9]. Our bsp structure is much simpler, however, and its
time for point queries is O(log n), which is not the case for partition trees.
Moreover, partition trees cannot serve as a basis for our general strategy for
constructing dop-trees.

By combining our bsp result with our general strategy, we obtain a dop-
tree on a set S of disjoint c-dops in the plane such that dop queries can be
answered in O(n1/2+ε + k) time. This is optimal up to the factor O(nε): any
bvh that uses convex bounding volumes has Ω(

√
n) query time, even for point

data and rectangle queries [1]. Our dop-tree answers point queries in O(logc n)
time. Note that our query times are almost as good as those of Agarwal et al.
[1]. The advantages of our structure are twofold: (i) it works on more tightly
fitting bounding volumes, so that less bounding volumes will be reported whose
underlying objects do not intersect the range, and (ii) there are performance
guarantees for a larger class of query ranges, namely c-dops instead of rectangles.

We also prove that if the c-dops in S may intersect, then any dop-tree must
have Ω(n1−1/c) query time in the worst case, even for point queries where the
query point does not lie in any of the input c-dops, and we describe a dop-tree
that matches this bound. Interestingly, this discrepancy between intersecting
and disjoint input does not occur for rectangular input and rectangular ranges:
1 More precisely stated, for any constant ε > 0 we can construct the bsp in such a way

that the query time is O(n1/2+ε + k). The constant in the O-notation will depend on
ε and c.

Efficient c-Oriented Range Searching with DOP-Trees 511

here one can obtain O(
√

n + k) query time both for disjoint and for intersecting
input [1] (which can also be seen by plugging c = 2 into our results.)

Finally, we consider the case where the input set S is “almost” disjoint, in
the sense that no point in the plane is contained in more than σ c-dops. (The
number σ is called the stabbing number of S.) We prove that if σ is a constant,
then the same bounds can be obtained as for disjoint objects. Due to lack of
space several of the proofs are omitted in this extended abstract.

Terminology. Let C be a set of c non-parallel hyperplanes in Rd. We say that
two hyperplanes have the same orientation if they are parallel. Thus the set C
defines c orientations. We say that a hyperplane, or a (d−1)-dimensional facet of
a polytope, is c-oriented if it has one of the c orientations defined by C. We call a
convex polytope a c-dop if all of its facets are c-oriented. Hence, a c-dop has at
most 2c facets. The set C is fixed throughout the paper, and terms like c-dops,
c-oriented, and so on, always refer to this set C. Moreover, when we speak of a
dop, we always mean a c-dop. Finally, we define bdop(o) to be the bounding
dop of an object o, that is, the smallest c-dop containing o.

2 A c-Oriented bsp for dop Queries

In this section we describe a bsp on a set S of n points in Rd that has a good
query time for range searching with c-dops.

A simplicial partition of size r for a set S of n points in Rd is a set of pairs
Ψ(S) = {(S1,Δ1), . . . , (Sr,Δr)}, where the Si form a (disjoint) partition of S,
each Δi is a simplex containing Si, and |Si| � n/r for all i. The crossing num-
ber of Ψ(S) is the maximum number of simplices intersecting any hyperplane.
Matoušek [9] has shown that any set of points admits a simplicial partition of
size r with crossing number O(r1−1/d). We will obtain basically the same re-
sult, except that we only bound the crossing number with respect to c-oriented
hyperplanes. Thus our result is less general than the result of Matoušek. Our
construction, however, has one important additional property, which will be cru-
cial in later sections: it is a bsp. The simplices in Matoušek’s partitioning, on the
other hand, are arbitrary and can even intersect. This means that the crossing
number of a point—the maximum number of simplices containing the point—is
1 for our partitioning, whereas no better bounds than O(r1−1/d) are known for
Matoušek’s partitioning. Moreover, our partitioning algorithm is much simpler.

Lemma 1. Let S be a set of n points in Rd. For any r ≤ n there exists a c-
oriented bsp for S with the following properties:
(i) each cell in the partitioning contains at most n/r points,
(ii) the size of the partitioning is O(r),
(iii) any c-oriented hyperplane h intersects O(r1−1/d) cells.
The partitioning can be constructed in O(n log n) time.

Proof. Consider an orientation in C. Take a set of r1/d − 1 splitting hyperplanes
with that orientation, such that there are n/r1/d points from S in each of the

512 M. de Berg, H. Haverkort, and M. Streppel

slabs defined by the hyperplanes.2 Do this for each of the c orientations. This
gives us a “grid” with O(r) cells. Next, partition each cell that contains more
than n/r points into cells with at most n/r and at least n/(2r) points, for
example using parallel hyperplanes with an orientation from C.

This partitioning is a bsp (or rather, can easily be converted into a bsp),
and it has property (i) by construction. Property (ii) follows from the fact that
the first stage produces O(r) cells, and the second stage produces only cells with
at least n/(2r) points. To prove property (iii), we note that the number of cells
intersected by any c-oriented hyperplane h after the first stage is bounded by
the complexity of the arrangement on h induced by the partitioning, which is
O(((c−1)r1/d)d−1) = O((c−1)d−1r1−1/d). It remains to account for the increase
in the number of intersected cells due to the second stage. To this end, we observe
that the total number of points in the intersected cells is at most n/r1/d, since
h lies inside one of the slabs induced by the splitting hyperplanes parallel to h.
Because the second stage only produces cells with at least n/(2r) points, this
implies that there cannot be more than 2r1−1/d such cells.

Computing the bsp in O(n log n) time is not difficult, so we omit the details
in this extended abstract. ��

To obtain a bsp that can answer dop queries efficiently, we recursively apply
Lemma 1 (with a suitable value of r) to each cell in the partitioning that contains
more than one point. This is similar to the way simplicial partitions are used to
construct partition trees. This leads to the following result.

Theorem 1. Let S be a set of n points in Rd. For any ε > 0, there is a linear-
size c-oriented bsp tree T whose depth is O(log n) and that can answer dop
queries in O(n1−1/d+ε + k) time, where k is the number of reported points.

3 From bsp-Trees to dop-Trees

In this section we describe and analyze a general method for creating a dop-tree
on a set S of c-dops in the plane from a c-oriented bsp on a set of representative
points. Our method will create a dop-tree of branching degree at most 2c + 3,
which can be turned into a binary dop-tree as a postprocessing step. The method
works as follows.

1. Pick an arbitrary representative point in each dop in S. Let P := P (S) be
the resulting set of representative points.

2. Construct a c-oriented bsp TP on the set P .
3. Next, transform the bsp TP into a bvh TS by inserting the dops from S

into TP in a top-down manner, starting at the root of TP with the complete
input set S. A recursive call proceeds as follows. We get as input a set of
dops Sν ⊆ S which is to be inserted into the subtree rooted at a node ν.
Instead of the splitting line �ν stored at ν, we store at ν the bounding dop

2 For simplicity we assume here and in the sequel that the set of points is in general
position.

Efficient c-Oriented Range Searching with DOP-Trees 513

bdop(ν) := bdop(Sν) of all dops in Sν , thus converting a bsp-node into a
bvh-node. We then split Sν into three sets. The set S−

ν contains all dops in
Sν that lie completely to the left of �ν , the set S+

ν contains all dops in Sν to
the right of �ν , and S×

ν contains the dops in Sν that are intersected by �ν .
(i) The set S−

ν (if non-empty) is inserted recursively into the left child ν−

of ν, and the set S+
ν (if non-empty) is inserted recursively into the right

child ν+ of ν.
(ii) Recall that C is the set of lines defining the c orientations of the splitting

lines used by the bsp TP (and the dops). Remove the line parallel to �ν

from C, to obtain a set C∗. Construct a dop-tree for the set S×
ν (if non-

empty) by calling a subroutine CreateSubTree(S×
ν , C∗) and make this

tree a subtree of ν.

CreateSubTree is a recursive subroutine, which works as follows.

CreateSubTree(S∗, C∗)

1. If C∗ = ∅, create a subtree for S∗—we call such a subtree a 0-tree—using a
special subroutine CreateZeroTree to be described later. Otherwise, proceed
with steps 2–4.

2. Create a root node μ for the tree to be constructed. Define Sμ := S∗ and
Cμ := C∗. Store the bounding dop bdop(Sμ) at μ.

3. Let {−→n1, . . . ,−→n2c} be the normals to the lines in C (not only the lines in C∗).
Note that for every line we have normals in both directions. For each normal
−→ni in turn, we remove from Sμ the dop Di extending furthest in the direction
−→ni, and store it in a leaf μi directly below μ. We call such leaves priority
leaves. Note that a dop stored in a priority leaf because it is extreme in
some direction −→ni will not be considered when we look for extreme dops in
subsequent directions.

4. Let S′ := Sμ\{D1, . . . , D2c} be the remaining dops in Sμ. If S′ is not empty,
we find a splitting line �μ parallel to the first line in Cμ, such that �μ splits
the set of representative points of the dops in S′ in two sets of roughly equal
size. Now we create three sets of dops S−

μ , S+
μ , and S×

μ that contain the
dops in S′ that lie completely to the left, completely to the right, or across
�μ, respectively.
(i) Create the left and right subtree of μ by calling CreateSubTree(S−

μ , Cμ)
and CreateSubTree(S+

μ , Cμ), respectively. (If S−
μ or S+

μ is empty the cor-
responding call can be skipped.)

(ii) Let C∗μ be the set Cμ with its first line, which is parallel to �μ, removed.
Create a subtree of μ for S×

μ (if this set is non-empty) by calling Create-
SubTree(S×

μ , C∗μ).

Note that the algorithm above can create nodes of degree one, when only one of
the subsets for which a subtree is created is non-empty. We remove these nodes
in a postprocessing step.

This finishes the description of the construction algorithm; the subroutine
CreateZeroTree that creates the 0-trees depends on the application—whether or

514 M. de Berg, H. Haverkort, and M. Streppel

not the input dops are disjoint—and we defer its description to the relevant part
of the next section. In the remainder of this section we will prove bounds on the
performance of the dop-tree created with the algorithm above. In the analysis,
we will make one assumption on the 0-trees created by CreateZeroTree: every
non-leaf node in a 0-tree has priority leaves, similar to the priority leaves of the
nodes created by CreateSubTree. Moreover, we define q0() to be a function that
specifies the point-query time in a 0-tree, that is, q0(m)+O(k) is the number of
nodes visited when a 0-tree with m objects is queried with a point and k answers
are reported.

We first need to introduce some definitions. Any node which was already
present in the original bsp TP will be called a c-node. For 0 < m < c, an m-node
ν will be any node constructed in a call to CreateSubTree(S∗, C∗) with |C∗| = m.
An m-tree is a subtree rooted at an m-node; thus an m-tree only contains m′-
nodes for m′ � m. The k-parent of an m-node ν, for some m < k � c, is its
lowest ancestor that is a k-node.

Lemma 2. The bvh TS uses O(n) storage and its depth, excluding 0-trees, is
O(depth(TP)). Given TP , the dop-tree TS, excluding the 0-trees, can be con-
structed in O(n · depth(TP)) time.

Next we prove the bounds on the number of nodes in TS visited by a point
query and a dop query. To this end, we associate a region of the plane with
every node ν in TS . Consider all the ancestors of ν. At each such ancestor μ, we
used a splitting line �μ to guide the construction; the node ν can either lie in the
subtree corresponding to the subset lying completely in one of the half-planes
defined by �μ, or not. (In the latter case the ν is a priority leaf below μ, or ν
lies in the subtree created for S×

μ .) The region of ν, denoted region(ν), is defined
as the intersection of all half-planes corresponding to ancestors of the former
type. Note that for any node ν in TS the bounding dop bdop(ν) is a subset of
region(ν).

Observation 2. The number of visited c-nodes in TS is at most the number of
visited nodes in TP .

We now analyse the number of nodes visited by a point query.

Lemma 3. The number of nodes visited by a point query in TS, including visited
nodes in its 0-trees, is O(q0(n) · depth(TP) · logc−1 n + k).

Proof. In TP a point query q visits O(depth(TP)) nodes, so q is contained in the
bounding dops of at most O(depth(TP)) c-nodes in TS . For each such node, its
(c − 1)-subtree may also contain bounding dops that contain q. A point query
in an m-tree (0 < m < c) is contained in the bounding dops of O(log n) m-
nodes, since the depth of an m-tree, excluding its 0-trees, is O(log n). At each
m-node, its (m − 1)-subtree may also contain bounding dops that contain q.
Thus, an m-tree on n dops, excluding the 0-trees, contains at most T (n, m) =
O(log n)(1+T (n, m−1)) bounding dops that contain q in total, where T (n, 1) =
O(log n). This solves to T (n, m) = O(logm n), and the total number of nodes

Efficient c-Oriented Range Searching with DOP-Trees 515

visited in TS , excluding 0-trees, is therefore O(depth(TP) · logc−1 n). For each
visited 1-node ν, we may need to visit q0(n) + O(kν) nodes in its 0-subtree
Tν , where kν is the number of answers found in that structure. Thus we visit
O(q0(n) · depth(TP) · logc−1 n + k) nodes in total. ��

Now we are going to analyse the number of internal nodes visited by a dop
query in TS , including its 0-trees; the number of leaf-nodes is at most a constant
factor more. To this end we introduce the notion of defining segments. The set
of defining segments of an m-node ν, denoted DefSeg(ν), is the intersection
of bdop(ν) with the splitting lines �μ of all k-parents μ of ν (for every k ∈
{m + 1, ..., c}). Note that any dop in the subtree rooted at ν intersects all
defining segments of that node.

We also make the following definition. We say that two edges of a query range
Q (or some other c-dop) are adjacent if their orientations are adjacent in the
cyclic ordering of the set C of all orientations. Hence, if Q has 2c edges then this
corresponds to the usual definition. If, however, some orientations are not used
by Q then two edges may be non-adjacent even when they are incident to the
same vertex.

We distinguish between the following types of visited nodes:

Inner nodes are nodes ν such that bdop(ν) is completely contained in Q;
Side nodes are nodes ν such that bdop(ν) intersects only one edge of Q;
Stabbing nodes are nodes ν such that bdop(ν) intersects at least two edges of

Q (but no vertex), and have a defining segment that intersects at most one
edge of Q;

Embracing nodes are nodes ν such that bdop(ν) and all defining segments
DefSeg(ν) intersect at least two non-adjacent edges of Q;

Corner nodes are nodes ν such that bdop(ν) contains at least one vertex of Q;

Lemma 4. The number of inner nodes, side nodes, and stabbing nodes visited by
a dop-query Q in TS , including such nodes in its 0-trees, is O(k). Furthermore
the number of visited corner nodes is O(q0(n) · depth(TP) · logc−1 n + k).

We will now bound the number of embracing nodes. Observe that all ances-
tors of embracing nodes are embracing nodes.

Lemma 5. An m-tree (0 � m < c) on n dops whose root is an embracing
node contains O(logm n) embracing nodes—excluding embracing nodes in the
associated 0-trees.

Proof. Let ν be an embracing m-node. Since m < c, the node ν has at least one
defining segment s, and since ν is an embracing node, s intersects two edges of
Q. Let s′ := s ∩Q. Since the bounding dops bdop(ν−) and bdop(ν+) of the left
and right child of ν are disjoint, they cannot both contain s′ completely. Any
child that does not contain s′ completely, has a defining segment that intersects
less than two edges of Q and therefore cannot be an embracing node. Hence, at
most one of ν− and ν+ can be an embracing node. In addition, the child created
for S×

ν may be an embracing (m−1)-node. The maximum number of embracing

516 M. de Berg, H. Haverkort, and M. Streppel

nodes in an m-tree on n dops is therefore T (n, m) � 1+T (n/2, m)+T (n, m−1),
where T (n, m) = 1 for n � 2c, and T (n, 0) = 0 for any n. This recurrence solves
to T (n, m) = O(logm n). ��

Lemma 6. The number of embracing nodes visited by a dop-query Q in TS, ex-
cluding its 0-trees, is O(tna(TP , Q)+tna disj (TP , Q) logc−1 n), where tna(TP , Q)
is the number of cells in TP that intersect at least two non-adjacent edges of Q,
and tna disj (TP , Q) is the maximum size of a set of such cells that are pairwise
disjoint.

Proof. By Observation 2, the number of embracing c-nodes is at most the num-
ber of cells in TP that intersect at least two non-adjacent edges of Q, which is
O(tna(TP , Q)) by definition.

Now consider the subgraph T ′ of TP that consists of the nodes for all such
cells. Since the cells at the leaves of T ′ are disjoint, T ′ has O(tna disj (TP , Q))
leaves. Suppose ν is an embracing c-node that has an embracing (c−1)-child ν×.
Then the cutting line �ν used at ν must intersect two edges of Q. Since no cutting
line can intersect edges of adjacent orientations, it must, in fact, intersect two
non-adjacent edges of Q. Then the left and right child of ν in TP also intersect
those two non-adjacent edges of Q, and therefore ν is a node of degree two
in T ′. That tree T ′ has O(tna disj (TP , Q)) nodes of degree two, and therefore
there can be only O(tna disj (TP , Q)) embracing (c− 1)-children of c-nodes. By
Lemma 5 they may have O(tna disj (TP , Q) logc−1 n) embracing descendants in
total. Adding up the bounds proves the lemma. ��

Lemma 7. The total number of embracing nodes in 0-trees visited by a dop-
query Q is O(q0(n) · depth(TP) · logc−1 n + k).

The following lemma, which follows immediately from the preceding lemmas,
summarizes the performance of our dop-tree construction algorithm.

Lemma 8. Let S be a set of n c-dops, and let TP be a c-oriented bsp on the
set of representative points of S. Then there is a bvh TS on S such that:

(i) a point query visits O(q0(n) · depth(TP) · logc−1 n + k) nodes;
(ii) a dop query with a dop Q visits

O(tna(TP , Q) + (tna disj (TP , Q) + q0(n) · depth(TP)) · logc−1 n + k) nodes,

where k is the number of dops in S that intersect Q; tna(TP , Q) is the number
of cells in TP that intersect at least two non-adjacent edges of Q; tna disj (TP , Q)
is the maximum size of a set of such cells that are pairwise disjoint; the number
of nodes visited by a point query in any 0-tree on n dops is q0(n) + O(k).

4 Applications

By combining the c-oriented bsp developed in Section 2 with the bsp-to-dop-
tree conversion algorithm of the previous section we will obtain the main results
of this paper. We consider two cases, depending on whether or not the dops in
the input set S are disjoint.

Efficient c-Oriented Range Searching with DOP-Trees 517

Disjoint Input. We start with the case where the input dops are disjoint. The
efficiency of our solution is based on the following lemma.

Lemma 9. If the dops in the input set S are disjoint, then a 0-tree stores only
a single dop.

Proof. Suppose there are two dops in a 0-tree. Since the dops are disjoint, they
can be separated by a line � parallel to an edge of one of the dops and, hence,
by a line parallel to a line in C. However, the set of defining segments of a 0-tree
contains a defining segment for each direction, in particular one parallel to �.
This defining segment cannot intersect both dops, contradicting that each dop
stored in the 0-tree intersects all defining segments by construction. ��

Together with Theorem 1 and Lemma 8, the lemma above implies the following
result.

Theorem 3. Let S be a set of n disjoint c-dops in the plane. There is a dop-
tree for S such that dop queries can be answered in time O(n1/2+ε + k), where
k is the number of reported answers. Point queries can be answered in O(logc n)
time.

Intersecting Input. If the input dops can intersect, then a 0-tree may have to
store more than one dop. In fact, if all input dops have a non-empty common
intersection then it can even happen that all input dops end up in the same
0-tree. We therefore need to develop an efficient dop-tree for intersecting input.
Fortunately, the so-called cs-boxtree described by Agarwal et al. [1] can be
generalized to obtain a dop-tree with optimal query time.

Theorem 4. For any set of (possibly intersecting) c-dops in the plane, there is
a dop-tree such that dop queries can be answered in time O(n1−1/c + k), where
k is the number of reported answers. Moreover, the bound on the query time is
optimal, even for point queries: for any n, there is a set S of n c-dops such that
for any dop-tree T on S there is a query point p not contained in any dop from
S such that a query with p visits Ω(n1−1/c) nodes in T .

We now consider the setting that is probably most relevant in practice: the
dops may intersect, but not too much. To quantify this we use the so-called
stabbing number of the input set S. This is the smallest number σ such that no
point in the plane is contained in more than σ dops from S. For example, if the
dops in S are disjoint, then σ = 1. In practice, especially when the dops from S
are bounding dops of an underlying set of disjoint objects, one may expect that
σ is some small constant. We construct the dop-tree by combining our previous
results: we use the general construction algorithm of the previous section with
the bsp from Theorem 1 and a subroutine CreateZeroTree that builds 0-trees
according to Theorem 4.

To analyse the performance of this structure, we need to bound the number
of dops that can end up in any 0-tree. Below we will prove that this number is
bounded by O(σ). This leads to the following, almost optimal, result.

518 M. de Berg, H. Haverkort, and M. Streppel

Theorem 5. For any set of c-dops in the plane with stabbing number σ, there
is a dop-tree such that c-oriented range queries can be answered in O(n1/2+ε +
σ1−1/c logc n + k) time, where k is the number of reported dops. The time for
point queries is O(σ1−1/c logc n + k).

It remains to prove the claim that the maximum number of dops in any
0-tree is O(σ). Recall that all dops ending up in the 0-tree rooted at some node
ν intersect all defining segments of ν. Thus we need to bound the maximum size
of any set D of c-dops with the following properties.

(P1) There is a set L of c lines such that every edge of any dop in D is parallel
to some line in L;

(P2) (the interior of) each dop in D intersects every line in L;
(P3) no point in the plane is within the interior of more than σ dops from D.

We begin with a simple proof for a special, but interesting case.

Lemma 10. Let D be a set of dops that are bounding dops of some underlying
set of disjoint objects and satisfying properties (P1)–(P3). Then |D| � 4cσ + 1.

Proof. It follows from Lemma 9 that any two dops in D intersect. Furthermore,
for any two intersecting dops D, D′ ∈ D there must be a vertex from D inside
D′, or vice versa. This follows since D and D′ are bounding dops of disjoint
objects. We charge the intersection between D and D′ to this vertex. By property
(P3), any vertex can be charged at most σ times. Since a dop has at most 2c
vertices we can have at most 2c|D|σ intersections, otherwise a vertex would be
charged too often. On the other hand, any two dops in D intersect, so there are(|D|

2

)
= |D|(|D| − 1)/2 pairwise intersections. Hence, |D|(|D| − 1)/2 � 2c|D|σ,

which implies |D| � 4cσ + 1. ��

Bounding the size of D for the general case, where the dops in D can intersect
in an arbitrary manner, is a lot more difficult, and we have not been able to get
a linear dependency on c, as in Lemma 10. Nevertheless we can prove a bound
that is linear in σ.

Theorem 6. Let D be a set of dops satisfying properties (P1)–(P3). Then
|D| = O(c4σ).

Proof (sketch): For each dop D ∈ D we can prove that there is a cell in
the arrangement AL induced by the lines in L such that D intersects at least
three edges of that cell. It follows that it intersects three edges of a cell in the
arrangementA′ of the three lines from L that contain those edges of AL. For any
such arrangement A′, we show there is a set of O(c) points such that if a dop
intersects all edges of any three-edge cell in A′, it must contain at least one point.
Hence the total number of dops in D cannot exceed

(
c
3

)
O(c)σ = O(c4σ). �

Efficient c-Oriented Range Searching with DOP-Trees 519

5 Concluding Remarks

Our paper suggests several interesting open problems. The first is to see whether
any set of n points in Rd admits a simplicial partition of size r with crossing
number O(r1−1/d) that consists of disjoint simplices or that is perhaps even
a bsp subdivision. We have shown this for the crossing number of c-oriented
hyperplanes, but it would be very interesting to see if this is possible in gen-
eral. Another interesting open problem is to improve the dependency on c in
Theorem 6.

References

1. P.K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, H.J. Haverkort, Box-
trees and R-trees with near-optimal query time, Discrete Comput. Geom., 28,
291–312, 2002.

2. P.K. Agarwal and J. Erickson. Geometric range searching and its relatives. In: B.
Chazelle, J. Goodman, and R. Pollack (Eds.), Advances in Discrete and Compu-
tational Geometry, Vol. 223 of Contemporary Mathematics, pages 1–56, American
Mathematical Society, 1998.

3. S. Gottschalk, M.C. Lin, and D. Manocha, OBB-Tree: a hierarchical structure for
rapid interference detection, In Proc. Computer Graphics (SIGGRAPH), 171-180,
1996.

4. H.J. Haverkort, Results on Geometric Networks and Data Structures. Ph.D. Thesis,
Utrecht University, 2004.

5. H.J. Haverkort, M. de Berg, and J. Gudmundsson. Box-Trees for Collision Checking
in Industrial Installations. In Proc. 18th ACM Symp. on Computational Geometry,
pages 53–62, 2002

6. H.V. Jagadish. Spatial Search with Polyhedra. In Proc. Int. Conf. Data Engineer-
ing (ICDE), 311–319, 1990

7. J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan, Efficient Colli-
sion Detection Using Bounding Volume Hierarchies of k-DOPs IEEE Transactions
on Visualization and Computer Graphics, 4(1):21–36, 1998.

8. Y. Manolopoulos, Y. Theodoridis, and V. Tsotras, Advanced Database Indexing,
Kluwer Academic Publishers, 1999.

9. J. Matoušek, Efficient partition trees Discrete Comput. Geom., 8:315–334, 1992.
10. J. Nievergelt and P. Widmayer. Spatial data structures: concepts and design

choices. In: M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer (eds.), Al-
gorithmic Foundations of Geographic Information Systems, LNCS 1340, Springer-
Verlag, 153–197, 1997

11. I. Sitzmann and P.J. Stuckey. The O-TreeA Constraint-Based Index Structure,
technical report, University of Melbourne, 1999.

Matching Point Sets with Respect to the Earth
Mover’s Distance

Sergio Cabello1,�, Panos Giannopoulos2, Christian Knauer2,
and Günter Rote2

1 IMFM, Department of Mathematics, Jadranska 19, SI-1000 Ljubljana, Slovenia
sergio.cabello@imfm.uni-lj.si

2 Institut für Informatik, Freie Universität Berlin,
Takustraße 9, D-14195 Berlin, Germany

{panos, knauer, rote}@inf.fu-berlin.de

Abstract. The Earth Mover’s Distance (EMD) between two weighted
point sets (point distributions) is a distance measure commonly used in
computer vision for color-based image retrieval and shape matching. It
measures the minimum amount of work needed to transform one set into
the other one by weight transportation.

We study the following shape matching problem: Given two weighted
point sets A and B in the plane, compute a rigid motion of A that
minimizes its Earth Mover’s Distance to B. No algorithm is known that
computes an exact solution to this problem. We present simple FPTAS
and polynomial-time (2+ ε)-approximation algorithms for the minimum
Euclidean EMD between A and B under translations and rigid motions.

1 Introduction

Shape matching is a fundamental problem in computational geometry: given two
shapes A and B and a distance measure, one wants to determine a transformed —
such as rotated and/or translated — version of, say, A that attains the minimum
possible distance to B; see Alt and Guibas [2] for a survey.

In a typical application such as content-based image retrieval, a shape, or
pattern in general, is usually given by a set of feature weighted points in some
metric space, e.g., Euclidean space or CIE-Lab color space [15]. The weight of
a point normally represents its significance, that is, the larger the weight, the
more important the point for the whole pattern.

The Earth Mover’s Distance (EMD) is a similarity measure for weighted point
sets. Informally, it measures the minimum amount of work needed to transform
one set into the other one by weight transportation; a formal definition will be
given shortly. The EMD is the discrete version of the Monge-Kantorovich mass
transportation distance whose potential use for measuring shape similarity was
first proposed by Mumford [13]. Since then, the EMD has turned into a popular

� Research partially supported by the European Community Sixth Framework Pro-
gramme under a Marie Curie Intra-European Fellowship.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 520–531, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Matching Point Sets with Respect to the Earth Mover’s Distance 521

similarity measure in computer vision with applications in color-based image
retrieval [10,12,15], shape matching [7,8,9] and music score matching [16].

Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two planar weighted point
sets with m ≤ n. A weighted point ai ∈ A is defined as ai = {(xai , yai), wi}, i =
1, . . . ,m, where (xai , yai) ∈ R2 and wi ∈ R+∪{0} is its weight. A weighted point
bj ∈ B is defined similarly as bj = {(xbj , ybj), uj}, j = 1, . . . , n. Let W =

∑m
i=1 wi

and U =
∑n

j=1 uj be the total weight, or simply weight, of A and B respectively.
We study the following problem: Given two weighted point sets A and B find

a rigid motion – sometimes referred to as isometry – of A that minimizes its Earth
Mover’s Distance (EMD) to B. Note that we are interested in transformations
that change only the position of the points, not their weights. We consider B to
be fixed, while A can be translated and/or rotated relative to B. We assume some
initial positions for both sets, denoted simply by A and B. We denote by I the
set of all possible rigid motions in the plane, by Rθ a rotation about the origin by
some angle θ ∈ [0, 2π), and by T�t a translation by t ∈ R2. Any rigid motion I ∈ I
can be uniquely defined as a translation followed by a rotation, that is, I = I�t,θ =
Rθ ◦ T�t, for some θ ∈ [0, 2π) and t ∈ R2. In general, transformed versions of A
are denoted by A(t, θ) = {a1(t, θ), . . . , am(t, θ)} for some I�t,θ ∈ I. For simplicity,
translated only versions of A are denoted by A(t) = {a1(t), . . . , am(t)}. Similarly,
rotated only versions of A are denoted by A(θ) = {a1(θ), . . . , am(θ)}.

The EMD between A(t, θ) and B, is a function EMD : I → R+∪{0} defined
as

EMD(t, θ) = min
F∈F(A,B)

∑m
i=1

∑n
j=1 fijdij(t, θ)

min{W,U} ,

where dij(t, θ) is the distance of ai(t, θ) to bj , and F = {fij} ∈ F(A,B) with
F(A,B) being the set of all feasible flows between A and B defined by the
constraints: (i)fij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n, (ii)

∑n
j=1 fij ≤ wi, i = 1, . . . ,m,

(iii)
∑m

i=1 fij ≤ uj , j = 1, . . . , n, and (iv)
∑m

i=1

∑n
j=1 fij = min{W,U}. In case

that t or θ or both are constant, we simply write EMD(θ), EMD(t) and EMD
respectively. We deal with the Euclidean EMD where dij is given by the L2-norm.
Our problem can be now stated as follows:

Given two weighted point sets A,B in the plane, compute a rigid motion
I�topt,θopt

that minimizes EMD(t, θ).
The problem was first studied by Cohen and Guibas [7] who presented a Flow

– Transformation iteration which alternates between finding the optimum flow
for a given transformation, and the optimum transformation for a given flow.
They showed that this iterative procedure converges, but not necessarily to the
global optimum. Computing the EMD for a given transformation is actually
the transportation problem, a special minimum cost network flow problem [1],
for the solution of which there is a variety of polynomial time algorithms; see
Section 2. However, the task of finding the optimal transformation for a given
flow is not trivial: for translations, it reduces to the Fermat-Weber problem [6]
where one wants to find a point that minimizes the sum of weighted distances
to a set of given points. No exact solution to the latter problem is known even

522 S. Cabello et al.

in the real RAM model of computation [4]. Cohen and Guibas gave also simple
algorithms that compute the optimum translation for the special case where
W = U and dij is the squared Euclidean distance. This case is quite restrictive
since, in general, the sets need not have the same weight, and the use of squared
Euclidean distance is statistically less robust than Euclidean distance [4]. To
the best of the authors’ knowledge, no algorithm that computes the optimal
translation and/or rotation is known for the Euclidean EMD.

The EMD is a metric when dij is a metric and W = U [15]. When W �= U the
EMD inherently performs partial matching since a portion of the weight of the
‘heavier’ set remains unmatched. The case where wi = uj = 1, i = 1, . . . ,m, j =
1, . . . , n deserves special attention: the integer solutions property of the minimum
cost flow problem and the fact that 0 ≤ fij ≤ 1 imply that there is a minimum
cost flow from A to B that results in a partial assignment between A and B, that
is, a perfect matching between A and a subset of B; when n = m the problem
is simply referred to as the assignment problem.

We give simple polynomial-time (1+ε) and (2+ε)-approximation algorithms
for the minimum EMD of two weighted point sets in the plane under translations
and rigid motions. The algorithms for translations are given in Section 4 and
for rigid motions in Section 5. In the general case where the sets have unequal
total weights we compute a (1+ε)-approximation in O((n3m/ε4) log2(n/ε)) time
for translations and a (2 + ε)-approximation in O((n4m2/ε4) log2(n/ε)) time for
rigid motions. When the sets have equal total weights, the respective running
times decrease to O((n2/ε4) log2(n/ε)) and O((n3m/ε4) log2(n/ε)).

We also show how to compute a (1 + ε)-approximation of the minimum cost
assignment under translations and rigid motions in O((n3/2/ε7/2) log5 n) and
O((n7/2/ε9/2) log6 n) time respectively. Finally, we give probabilistic (1 + ε)-
approximations of the minimum cost partial assignment under translations in
O((n3/ε4) log2(n/ε) logn) time and under rigid motions in O((n4m/ε5) log2(n/ε)
logn logm) time; both algorithms succeed with high probability.

In Section 3, we give two simple lower bounds on the EMD that are vital
to our approximation algorithms. These algorithms need to compute the EMD
for a given transformation. Computing the EMD exactly is expensive, and un-
necessary since we opt for approximations for our original problem. We begin
by showing how to get a (1 + ε)-approximation of the EMD in almost quadratic
time.

2 Approximating the EMD

The fastest known strongly polynomial-time algorithm for the minimum cost flow
problem on a graph G(V,E) is due to Orlin [14], and runs in O((|E| log |V |)(|E|+
|V | log |V |)) time. Several weakly polynomial-time algorithms exist that assume
integer edge costs and/or integer weights [1]. For the transportation problem in
the plane, Atkinson and Vaidya [3] gave a weakly polynomial-time algorithm
that assumes integer supplies and demands and runs in O(|V |2.5 log(|V |) logW)
time, where W is the largest supply or demand.

Matching Point Sets with Respect to the Earth Mover’s Distance 523

Consider the complete bipartite graph G(V,E) with V = A ∪ B and E =
{(ai, bj) : ai ∈ A, bj ∈ B}. Using the algorithm of Callahan and Kosaraju [5], we
can construct, in O(n log n+(n/ε2) log 1/ε) time, a linear size (1+ε)-spanner Gs,
i.e., a graph Gs(V,Es) with |Es| = O(n/ε) such that the shortest path between
any two points in Gs is at most (1+ε) times the Euclidean distance of the points.
Running the algorithm of Orlin on Gs produces an approximate value EMDs.
For convenience, this procedure is referred to as ApxEMD(A,B, ε) and given
in Figure 1. Using the fact that the distances in the spanner approximate the
distances in the complete graph, it is not hard to prove the following result.

ApxEMD(A,B, ε):

1. Let G(V, E) be a complete bipartite graph with V = A ∪ B
and E = {(ai, bj) : ai ∈ A, bj ∈ B}.

2. Construct a (1 + ε)-spanner Gs(V, Es) using the algorithm of Callahan and
Kosaraju [5], such that |Es| = O(n/ε).

3. Find a minimum cost flow on Gs using the algorithm by Orlin [14],
and report the cost.

Fig. 1. Algorithm ApxEMD(A,B, ε)

Lemma 1. For any given ε > 0, ApxEMD(A,B, ε) computes a value EMDs

such that EMD ≤ EMDs ≤ (1 + ε)EMD in O((n2/ε2) log2(n/ε)) time.

For the assignment or else minimum cost Euclidean bipartite matching problem,
Varadarajan and Agarwal [17] presented an algorithm that finds a matching
with cost at most (1+ε) times that of an optimal matching in O((n/ε)3/2 log5 n)
time; we refer to this algorithm as ApxMATCH(A,B, ε).

Theorem 1. [17–Theorem 3.1] Let A and B be two sets of points in the plane
with |A| = |B| = n. For any given ε > 0, a perfect matching between A and
B with cost at most (1 + ε) times that of an optimal perfect matching can be
computed in O((n/ε)3/2 log5 n) time.

3 Lower Bounds on the EMD

The following simple lower bound comes directly from the definition of the EMD.

Observation 1. Given two weighted point sets A and B, EMD ≥ mini,j dij .

The next lower bound is due to Rubner et al. [15], and applies to sets with equal
weights. It is based on the notion of the center of mass of a weighted point set.
The center of mass C(A) of a planar weighted point set A = {(xai , yai), wi}, i =
1, . . . ,m is defined as C(A) = (

∑m
i=1 wi · (xai , yai))/

∑m
i=1 wi.

Theorem 2. [15] Let A and B be two weighted point sets with equal weights.
Then EMD ≥ d(C(A), C(B)).

524 S. Cabello et al.

4 Approximation Algorithms for Translations

We denote by ti→j the translation which matches ai and bj; we call such a
translation a point-to-point translation. Observation 1 implies that the point-to-
point translation that is closest to topt gives a 2-approximation of EMD(topt).
Hence, we have the following:

Lemma 2. EMD(topt) ≤ mini,j EMD(ti→j) ≤ 2EMD(topt).

According to Observation 1, the point-to-point translation which is closest to
 topt can be at most EMD(topt) away from topt. This bound is crucial for the
(1 + ε)-approximation algorithm given in Figure 2. Using a uniform square grid
of suitable size we compute the EMD for a limited number of grid translations
within a neighborhood of size EMD(topt) of every translation ti→j . Note that we
do not know EMD(topt) but we can compute mini,j EMD(ti→j) which, accord-
ing to Lemma 2, approximates EMD(topt) well-enough. In order to save time,
rather than computing EMD exactly, we will approximate it using the procedure
ApxEMD.

Translation(A,B, ε):

1. Let α = mini,jApxEMD(A(�ti→j), B, 1);
let G be a uniform square grid of spacing cεα, where c = 1/

√
72.

2. For each pair of points ai ∈ A and bj ∈ B do:
(a) Place a disk D of radius α around �ti→j .
(b) For every grid point �tg of any cell of G that intersects D

compute a value ẼMD(�tg) = ApxEMD(A(�tg), B, ε/3).
3. Report the grid point �tapx that minimizes ẼMD(�tg).

Fig. 2. Algorithm Translation(A,B, ε)

Theorem 3. Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point
sets in the plane with m ≤ n. For any given ε > 0, Translation(A,B, ε) com-
putes a translation tapx such that EMD(tapx) ≤ (1+ε)EMD(topt) in O((n3m/ε4)
log2(n/ε)) time.

Proof. From Lemma 2, we have EMD(topt) ≤ mini,j EMD(ti→j) ≤ 2EMD(topt).
From Lemma 1, we have EMD(ti→j) ≤ApxEMD(A(ti→j), B, 1) ≤ 2EMD(ti→j).
Hence, since α = mini,jApxEMD(A(ti→j), B, 1), we have that EMD(topt) ≤
α ≤ 4EMD(topt). Also, according to Observation 1, there is a point-to-point
translation ti→j for which | ti→j − topt| ≤ EMD(topt) ≤ α. Algorithm Trans-
lation will, at some stage, consider the α-neighborhood of such a transla-
tion, and thus, compute a value ẼMD(tg) for some grid point tg for which

| tg − topt| ≤
√

2(εα/
√

72)2/2 ≤ (ε/3)EMD(topt) and, thus, dij(tg) ≤ dij(topt) +

(ε/3)EMD(topt); see Figure 3. If {fij} is the optimal flow at topt, we have

Matching Point Sets with Respect to the Earth Mover’s Distance 525

ai

bj

ai(�tg)

ai(�topt)

EMD(�topt) ≤ α ≤ 4EMD(�topt)

Grid size:

Θ(ε× EMD(�topt))

Fig. 3. A pair of points ai, bj for which dij(�topt) ≤ EMD(�topt), and a grid translation
�tg of ai for which |�tg − �topt| ≤ (ε/3)EMD(�topt)

EMD(tg) ≤
∑m

i=1

∑n
j=1 fijdij(tg)

min{W,U}

≤
∑m

i=1

∑n
j=1 fij(dij(topt) + (ε/3)EMD(topt))

min{W,U} = (1 + ε/3)EMD(topt).

From Lemma 1 we have that EMD(tg) ≤ ẼMD(tg) ≤ (1 + ε/3)EMD(tg). Hence,
the algorithm reports a translation tapx such that

EMD(tapx) ≤ ẼMD(tapx) ≤ ẼMD(tg) ≤ (1 + ε/3)EMD(tg) ≤ (1 + ε)EMD(topt),

for every ε ≤ 3. There are nm point-to-point translations, around each of which
ApxEMD is run for O(α2/(α2ε2)) = O(1/ε2) grid points. Hence, the algorithm
runs in O((nm/ε2)(n2/ε2) log2(n/ε)) = O((n3m/ε4) log2(n/ε)) time. ��

4.1 Equal Weight Sets

We consider now the case of sets with equal total weights. Let tC(A)→C(B) be the
translation that matches the centers of mass C(A) and C(B). Theorem 2 suggests
the following trivial 2-approximation algorithm: compute EMD(tC(A)→C(B));
this has been noted also by Klein and Veltkamp [11].

Since topt is at most EMD(topt) far away from tC(A)→C(B), we need to search
for topt only within a small neighborhood of tC(A)→C(B). We modify algorithm
Translation as follows: First we compute C(A) and C(B). Then, we run
ApxEMD(A(tC(A)→C(B)), B, 1) and set α to the value returned. Next, we use

526 S. Cabello et al.

the same grid size as in Translation, and run ApxEMD(A(tg), B, ε/3) for all
the grid points tg which are at most α away from tC(A)→C(B). The minimum
over all these approximations gives the desired approximation bound. Since the
total number of grid points to be tested is O(1/ε2), we have saved a nm term
from the time bound of Theorem 3.

Theorem 4. Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point
sets in the plane with equal total weights and m ≤ n. Then, for any given ε > 0,
a translation tapx such that EMD(tapx) ≤ (1 + ε)EMD(topt) can be computed in
O((n2/ε4) log2(n/ε)) time.

For the assignment problem under translations we can use the above algorithm
running ApxMATCH instead of ApxEMD, reducing the running time further.

Theorem 5. For any given ε > 0, a (1+ ε)-approximation of the minimum cost
assignment under translations can be computed in O((n3/2/ε7/2) log5 n) time.

Note that the latter algorithm can be also applied to equal weight sets with
bounded integer point weights by replacing each point by as many points as its
weight.

4.2 Partial Assignment

In Observation 1, we saw that there is at least one pair of points ai, bj whose
distance is at most EMD. It is not hard to see that for the partial assignment
case there is a linear number of pairs of points whose distance is at most 2EMD.

Lemma 3. Given two weighted point sets A = {a1, . . . , am}, B = {b1, . . . , bn}
with m ≤ n and wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n, there are at least m/2
distances dij with dij ≤ 2EMD.

Algorithm Translation tests all possible nm pairs of points ai, bj in order
to find at least one for which dij(topt) ≤ EMD(topt). Using Lemma 3, we can
prove that testing a linear number of pairs suffices in order to find one for which
dij(topt) ≤ 2EMD(topt) with high probability. Algorithm RandomTransla-
tion is given in Figure 4; it is a probabilistic version of algorithm Translation.

Theorem 6. Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point
sets with m ≤ n and wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n. For any given
ε > 0, RandomTranslation(A,B, ε) computes a translation tapx such that
EMD(tapx) ≤ (1+ε)EMD(topt) in O((n3/ε4) log2(n/ε) logn) time. The algorithm
succeeds with probability at least 1− 2n−1.

Proof. According to Lemma 3, dij(topt) ≤ 2EMD(topt) for at least m/2 distances
dij(topt). Since there are in total nm possible distances dij(topt), we have that

Pr[dij(topt) > 2EMD(topt)] ≤ 1−m/(2nm) = 1− 1/(2n)

for a random pair ai, bj . Thus, the probability that K random draws of a pair
ai, bj will all fail to give a pair for which dij(topt) ≤ 2EMD(topt) is at most

Matching Point Sets with Respect to the Earth Mover’s Distance 527

RandomTranslation(A,B, ε):

1. Repeat (2/ log e)n log n times:
(a) Choose a random pair (ai, bj) ∈ A × B.
(b) Let αij =ApxEMD(A(�ti→j), B, 1).
Let α = 2mini,j αij ;
let G be a uniform square grid of spacing cεα, where c = 1/

√
288.

2. Repeat (2/ log e)n log n times:
(a) Choose a random pair (ai, bj) ∈ A × B.
(b) Place a disk D of radius α around �ti→j .
(c) For every grid point �tg of any cell of G that intersects D

compute a value ẼMD(�tg) = ApxEMD(A(�tg), B, ε/3).
3. Report the grid point �tapx that minimizes ẼMD(�tg).

Fig. 4. Algorithm RandomTranslation(A,B, ε)

(1− 1/2n)K . By choosing K = (2/ log e)n logn the latter probability is at most
e−(log n)/ log e = n−1.

The rest of the proof is almost identical to the proof of Theorem 3. That is, if
a pair ai, bj for which dij(topt) ≤ 2EMD(topt) is tested, then the algorithm will
compute in step 1 a value α such that 2EMD(topt) ≤ α < 8EMD(topt). Similarly,
step 2 will report a translation tapx such that EMD(topt) ≤ EMD(tapx) ≤ (1 +
ε)EMD(topt) in O(((n log n)/ε2)(n/ε)2 log2(n/ε)) = O((n3/ε4) log2(n/ε) logn)
time. The algorithm fails to report such a translation if and only if any of its two
random steps fail. That is, the algorithm fails with probability at most 2n−1. ��

5 Approximation Algorithms for Rigid Motions

We first give (2+ε) and (1+ε)-approximation algorithms for rotations for the gen-
eral and partial assignment case respectively. Then, we combine these algorithm
with the (1+ ε)-approximation algorithms for translations to get approximation
algorithms for rigid motions.

5.1 Rotations

Let ∠aiobj be the angle between the segments oai and obj such that 0 ≤ ∠aiobj ≤
π. Also, let θi→j be the rotation by ∠aiobj that aligns the origin o and points ai

and bj such that both ai and bj are on the same side of o. Note that this is the
rotation that minimizes dij(θ); we call such a rotation an alignment rotation.

Lemma 4. Let ai and bj be two points in the plane with ∠aiobj = φ. If ai is
rotated by an angle θ ≤ φ, then dij(θ) < 2dij.

Consider the angle ∠ai(θopt)obj for every pair of points ai(θopt) and bj and let
∠ai0(θopt)obj0 be the smallest of all these angles. Then θi0→j0 is the alignment
rotation that is closest to θopt. Similarly to Lemma 2, and using Lemma 4, we can

528 S. Cabello et al.

now prove that this alignment rotation gives a 2-approximation of EMD(θopt).
Hence, we have the following:

Lemma 5. EMD(θopt) ≤ mini,j EMD(θi→j) ≤ 2EMD(θopt).

By approximating mini,j EMD(θi→j) with mini,jApxEMD(A(θi→j), B, ε/2) we
can get a (2 + ε)-approximation of EMD(θopt). We refer to this algorithm as
Rotation(A,B, ε). Apart from the cost value, Rotation returns the corre-
sponding rotation θi→j as well.

Lemma 6. For any given ε > 0, a rotation θapx such that EMD(θapx) ≤ (2 +
ε)EMD(θopt) can be computed in O((n3m/ε2) log2(n/ε)) time.

Partial Assignment. For the partial assignment case we can provide a (1 +
ε)-approximation. Let a1bj1 , . . . , ambjm be the matching corresponding to an
optimal integer flow at an optimal rotation θopt for the problem. Observe that
diji(θopt) ≤ mEMD(θopt) since mEMD(θopt) =

∑
i diji (θopt). This means that

for finding an optimal rotation we only need to consider the rotations {θ ∈
[0, 2π) : dij(θ) ≤ mEMD(θopt)} for all i, j. Of course, since we do not know the
value EMD(θopt), we will instead consider the rotations Rij(α) = {θ ∈ [0, 2π) :
dij(θ) ≤ mα}, for some value α such that EMD(θopt) ≤ α ≤ 3EMD(θopt).

Inside each Rij we will consider sample rotations Θij according to the fol-
lowing. We divide Rij(α) into two parts, R<

ij(α) = {θ ∈ [0, 2π) : dij(θ) ≤ α} and
R>

ij(α) = {θ ∈ [0, 2π) : α ≤ dij(θ) ≤ mα}. To handle R<
ij(α), we consider the set

of distances D<
ij(α) = {k · ε α

18 ∈ [0, α] | k ∈ N}, which consists of O(1/ε) values.
To handle R<

ij(α), we consider the set of distances D>
ij(α) = {α(1 + ε/6)k ∈

[α,mα] | k ∈ N}, which contains O(log1+ε
mα
α) = O(log1+ε m) = O(ε−1 logm)

values. Let Dij(α) = {0, α,mα}∪D<
ij(α)∪D>

ij(α), and consider the set of angles
Θij = {θ ∈ [0, 2π) | dij(θ) ∈ Dij(α)}. This finishes the description of Θij , and
therefore Θij contains O(ε−1 logm) angles.

We claim that the best rotation in
⋃

ij Θij provides a (1 + ε)-approximation
for EMD(θopt). The main idea is that the angles from Θiji that are in R<

ij(α)
take care for the case when diji(θopt) is at most α ≥ EMD(θopt) by controlling
the absolute error this pair produces in the approximation, while the angles from
Θiji that are in R>

ij(α) take care for the case when diji (θopt) is between α and
mEMD(θopt) ≤ mα by controlling the relative error that the pair aibji produces.
A detailed description of the algorithm, referred to as PartRotation, is given
in Figure 5. The algorithm shown runs ApxEMD for the genaral case where
m < n; when m = n, ApxMATCH can be used instead.

Lemma 7. Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two point sets with
m ≤ n and wi = uj = 1, i = 1, . . . ,m, j = 1, . . . , n. For any given ε ∈ (0, 1),
PartRotation(A,B, ε) computes a rotation θapx such that EMD(θapx) ≤ (1 +
ε)EMD(θopt) in O((n3m/ε3) log2(n/ε) logm) time. When m = n, the same ap-
proximation can be computed in O((n7/2/ε5/2) log6 n) time.

Matching Point Sets with Respect to the Earth Mover’s Distance 529

PartRotation(A,B, ε):

1. Let α = mini,jApxEMD(A(θi→j), B, 1).
2. For each pair of points ai ∈ A and bj ∈ B do:

(a) Compute Dij(α) = {0, α, mα} ∪ D<
ij(α) ∪ D>

ij(α)).
(b) Let Θij = {θ ∈ [0, 2π) | dij(θ) ∈ Dij(α)}.
(c) For each rotation θ ∈ Θij compute a value ẼMD(θ) =ApxEMD(A(θ),B, ε/3).

3. Report the sample rotation θapx that minimizes ẼMD(θ).

Fig. 5. Algorithm PartRotation(A, B, ε)

5.2 Rigid Motions

We can combine algorithm Rotation with the 2-approximation algorithm for
translations in Lemma 6 to get a (4 + ε)-approximation of the minimum EMD
under rigid motions in the following way: for each point-to-point translation
 ti→j , compute a (2+ ε/2)-approximation of the optimum EMD between A(ti→j)
and B under rotations about bj. The minimum over all these approximations
gives a 2(2 + ε/2)-approximation of EMD(topt, θopt).

Lemma 8. For any given ε > 0, a (4+ ε)-approximation of the minimum EMD
under rigid motions can be computed in O((n4m2/ε2) log2(n/ε)) time.

The (2 + ε)-approximation algorithm for rigid motions is based on similar ideas.
According to Observation 1, there exist two points ai, bj whose distance at
I�topt,θopt

is at most EMD(topt, θopt). We place a grid of suitable size around
each ti→j . For each grid point tg that is at most EMD(topt, θopt) away from ti→j

we compute a (2+ ε)-approximation of the optimum EMD between A(tg) and B
under rotations about bj. The minimum over all these approximations is within
a factor of (2 + ε) of EMD(topt, θopt). Since we do not know EMD(topt, θopt), we
compute a 6-approximation of it as shown above. Algorithm RigidMotion is
shown in Figure 6; for the partial assignment problem, a (1 + ε)-approximation
can be achieved by running PartRotation instead of Rotation.

Theorem 7. For any given ε > 0, RigidMotion(A,B, ε) computes a rigid mo-
tion I�tapx,θapx

such that EMD(tapx, θapx) ≤ (2+ε)EMD(topt, θopt) in O((n4m2/ε4)
log2(n/ε)) time. For the minimum cost partial assignment problem under rigid
motions, a (1 + ε)-approximation can be computed in O((n4m2/ε5) log2(n/ε)
logm) time.

As in the case of translations, for equal weight sets we need to search for
the optimal translation only around tC(A)→C(B). We set the center of rotation
to be C(B). Computing the 6-approximation of EMD(topt, θopt) can be done
simply by running Rotation(A(tC(A)→C(B)), B, 1). Similarly, we need to run
Rotation(A(tg), B, ε/3) only for grid points tg that are close to tC(A)→C(B).
For the assignment problem, instead of using Rotation, we can use the version
of PartRotation that runs ApxMATCH to achieve a (1 + ε)-approximation.

530 S. Cabello et al.

RigidMotion(A,B, ε):

1. For each pair of points ai ∈ A and bj ∈ B do:
(a) Set the center of rotation, i.e., the origin, to be bj by translating B appropri-

ately.
(b) Run Rotation(A(�ti→j), B, 1) and let αij the cost value returned.
Let α = minij αij .

2. Let G be a uniform grid of spacing cαε, where c = 1/
√

288.
For each pair of points ai ∈ A and bj ∈ B do:
(a) Set the center of rotation, i.e., the origin, to be bj by translating B appropri-

ately.
(b) Place a disk D of radius α around �ti→j .
(c) For every grid point �tg of any cell of G that intersects D

run Rotation(A(�tg), B, ε/3);
let ẼMD(�tg) and θg

apx be the cost value and angle returned respectively.

3. Report the grid point �tapx that minimizes ẼMD(�tg), and the corresponding angle
θapx.

Fig. 6. Algorithm RigidMotion(A,B, ε)

Theorem 8. If A and B have equal total weights, then, for any given ε > 0,
a rigid motion I�tapx,θapx

such that EMD(tapx, θapx) ≤ (2 + ε)EMD(topt, θopt)
can be computed in O((n3m/ε4) log2(n/ε)) time. For the minimum cost assign-
ment problem under rigid motions a (1 + ε)-approximation can be computed in
O((n7/2/ε9/2) log6 n) time.

For the partial assignment problem under rigid motions, we can use the same
arguments as in the translational case to convert algorithm RigidMotion—
that will now use PartRotation— into a randomized one where its two first
steps are executed only for a random selection of Θ(n log n) pairs of points. We
conclude with the following:

Theorem 9. Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two weighted point
sets with m ≤ n and wi = uj = 1, i = 1, ...,m, j = 1, ..., n. For any given ε > 0,
a rigid motion I�tapx,θapx

such that EMD(tapx, θapx) ≤ (1 + ε)EMD(topt, θopt) can
be computed in O((n4m/ε5) log2(n/ε) logn logm) time. The algorithm succeeds
with probability at least 1− 2n−1.

6 Concluding Remarks

We have presented polynomial-time (1+ε) and (2+ε)-approximation algorithms
for the minimum Euclidean EMD under translations and rigid motions. We are
currently working on extending the (1 + ε)-approximation for rotations to the
general case of arbitrary weights. Another interesting and non-trivial task is to
give lower and upper bounds of the complexity of the function EMD(t, θ), i.e.,
the total number of its local optima.

Matching Point Sets with Respect to the Earth Mover’s Distance 531

Acknowledgments. The authors would like to thank Sariel Har-Peled for help-
ful discussions.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms
and Applications. Prentice-Hall, 1993.

2. H. Alt and L. Guibas. Discrete geometric shapes: Matching, interpolation, and
approximation. In J.R. Sack and J. Urrutia, editors, Handbook of Comp. Geom.,
pages 121–153. Elsevier Science Publishers B.V. North-Holland, 1999.

3. D.S. Atkinson and P.M. Vaidya. Using geometry to solve the transportation prob-
lem in the plane. Algorithmica, 13:442–461, 1995.

4. P. Bose, A. Maheshwari, and P. Morin. Fast approximations for sums of distances
clustering and the Fermat-Weber problem. Comp. Geom. Theory & Appl., 24:135–
146, 2003.

5. P.B. Callahan and S.R. Kosaraju. Faster algorithms for some geometric graph
problems in higher dimensions. In Proc. of the 4th ACM-SIAM SODA, pages
291–300, 1993.

6. R. Chandrasekaran and A. Tamir. Algebraic optimization: The Fermat-Weber
location problem. Math. Programming, 46(2):219–224, 1990.

7. S. Cohen and L. Guibas. The Earth Mover’s Distance under transformation sets.
In Proc. of the 7th IEEE ICCV, pages 173–187, 1999.

8. P. Giannopoulos and R. C. Veltkamp. A pseudo-metric for weighted point sets. In
Proc. of the 7th ECCV, volume 2352 of LNCS, pages 715–731, 2002.

9. K. Grauman and T. Darell. Fast contour matching using approximate Earth
Mover’s Distance. In Proc. of the IEEE CVPR, pages 220–227, 2004.

10. P. Indyk and N. Thaper. Fast image retrieval via embeddings. In 3rd Int. Workshop
on Statistical and Computational Theories of Vision, 2003.

11. O. Klein and R.C. Veltkamp. Approximation algorithms for the Earth Mover’s
Distance under transformations using reference points. Technical Report UU-CS-
2005-003, IICS, Utrecht University, The Netherlands, 2005.

12. Q. Lv, M. Charikar, and K. Li. Image similarity search with compact data struc-
tures. In Proc. of the 13th ACM CIKM, pages 208–217, 2004.

13. D. Mumford. Mathematical theories of shape: Do they model perception? In SPIE
vol. 1570 Geometric Methods in Comp. Vision, pages 2–10, 1991.

14. J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
Research, 41(2):338–350, 1993.

15. Y. Rubner, C. Tomasi, and L.J. Guibas. The Earth Mover’s Distance as a metric
for image retrieval. Int. Journal of Computer Vision, 40(2):99–121, 2000.

16. R. Typke, P. Giannopoulos, R. C. Veltkamp, F. Wiering, and R. van Oostrum.
Using transportation distances for measuring melodic similarity. In Proc of 4th
Int. Symp. on Music Inf. Retrieval (ISMIR), pages 107–114, 2003.

17. K.R. Varadarajan and P.K. Agarwal. Approximation algorithms for bipartite and
non-bipartite matching in the plane. In Proc. of the 10th ACM-SIAM SODA’99,
pages 805–814, 1999.

Small Stretch Spanners on Dynamic Graphs�

Giorgio Ausiello1, Paolo G. Franciosa2, and Giuseppe F. Italiano3

1 Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, Roma, Italy

ausiello@dis.uniroma1.it
2 Dipartimento di Statistica, Probabilità e Statistiche Applicate,

Università di Roma “La Sapienza”, Roma, Italy
paolo.franciosa@uniroma1.it

3 Dipartimento di Informatica, Sistemi e Produzione,
Università di Roma “Tor Vergata”, Roma, Italy

italiano@disp.uniroma2.it

Abstract. We present fully dynamic algorithms for maintaining 3- and
5-spanners of undirected graphs. For unweighted graphs we maintain a 3-
or 5-spanner under insertions and deletions of edges in O(n) amortized
time per operation over a sequence of Ω(n) updates. The maintained
3-spanner (resp., 5-spanner) has O(n3/2) edges (resp., O(n4/3) edges),
which is known to be optimal. On weighted graphs with d different edge
cost values, we maintain a 3- or 5-spanner in O(n) amortized time per
operation over a sequence of Ω(d ·n) updates. The maintained 3-spanner
(resp., 5-spanner) has O(d·n3/2) edges (resp., O(d·n4/3) edges). The same
approach can be extended to graphs with real-valued edge costs in the
range [1, C]. All our algorithms are deterministic and are substantially
faster than recomputing a spanner from scratch after each update.

1 Introduction

Graph spanners arise in many applications, including communication networks,
computational biology, computational geometry, robotics and distributed com-
puting [1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15]. Intuitively, a spanner of a graph
is a subgraph that preserves approximate distances between all pairs of vertices.
More formally, given t ≥ 1, a t-spanner of a graph G is a subgraph S of G such
that for each pair of vertices the distance in S is at most t times the distance
in G: t is referred to as the stretch factor of the spanner. The best time bound
for computing a t-spanner of a weighted graph with n vertices and m edges is
O(m + n), and is given by Baswana and Sen [4]. Their algorithm is randomized
and computes spanners of size O(t · n1+2/(t+1)); a derandomization of this algo-
rithm has been proposed in [16]. In the case of unweighted graphs, it is possible
to compute a t-spanner in O(m + n) time with a deterministic algorithm [20].
For weighted graphs, a deterministic algorithm is given in [1]; the best known
implementation of this algorithm has running time O(n2+2/(t+1)) [18].
� Partially supported by the Italian MIUR Project ALGO-NEXT “Algorithms for the

Next Generation Internet and Web: Methodologies, Design and Experiments”.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 532–543, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Small Stretch Spanners on Dynamic Graphs 533

Small stretch spanners offer a good compromise between sparsity and dis-
tance stretch: maintaining a t-spanner may be practical in the case of very large
graphs, whose edges must be stored in external memory, while spanner edges
could fit into main memory. A graph with million vertices could need TeraBytes
of memory to store its edges, while the edges in its 3-spanner or 5-spanner only
need order of GigaBytes, at the cost of a limited distance stretch. While there
has been a lot of progress in the area of dynamic graph problems, to the best
of our knowledge no fully dynamic algorithm for maintaining a t-spanner of a
general weighted graph under edge insertions and/or deletions is known, and
for this problem only partially dynamic solutions were announced in [4]. A re-
lated direction of research is concerned with the computation and maintenance
of approximate distances, i.e., a query on the distance between two vertices is
answered with a guaranteed approximation factor (see [16, 17] for recent results
and references). Those algorithms typically require Ω(n2) space, while in the case
of t-spanners we are interested in a much sparser structure that still maintains
distances in the original graph.

In this paper, we contribute a first step towards the maintenance of dy-
namic graph spanners by presenting a fully dynamic deterministic algorithm for
maintaining 3- and 5-spanners of unweighted graphs. Our algorithm supports
an intermixed sequence of Ω(n) edge insertions and deletions in O(n) amor-
tized time per operation. The maintained 3-spanner has O(n3/2) edges, while
the 5-spanner has O(n4/3) edges. Wenger [19] showed how to build graphs with
Θ(n3/2) edges having no cycles of length less than 5, or with Θ(n4/3) edges
having no cycles of length less than 7: for such graphs, no proper subgraphs
preserve distances within stretch factor 3 (resp. 5). This implies that the size
of our spanners is asymptotically optimal. The same approach can be extended
to weighted graphs with d different edge cost values. On a sequence of Ω(d · n)
intermixed edge insertions and deletions the amortized time per operation is still
O(n). The maintained 3-spanner has O(d · n3/2) edges, while the 5-spanner has
O(d · n4/3) edges. This is optimal for constant d. On graphs with real-valued
edge costs in [1, C], for t > 3 we can maintain a t-spanner with O(n3/2 · logt/3 C)
edges in O(n) amortized time per operation over a sequence of Ω(n · logt/3 C)
edge insertions and edge deletions. For t > 5, a t-spanner with O(n4/3 · logt/5 C)
edges can be maintained in O(n) amortized time per operation over a sequence
of Ω(n · logt/5 C) edge insertions and edge deletions. All our algorithms require
O(n2) worst-case space, are deterministic and are substantially faster than re-
computing a spanner from scratch. To achieve our results, we dynamize the
static randomized technique of Baswana and Sen [4], and make the resulting al-
gorithm deterministic rather than randomized. Our algorithms use simple data
structures, and thus seem amenable to practical implementations.

2 Definitions

We assume that the reader is familiar with the standard graph terminology, as
contained for instance in [8]. Let G = (V,E) be an undirected graph, with V

534 G. Ausiello, P.G. Franciosa, and G.F. Italiano

being the set of vertices and E the set of edges. Throughout the paper, we denote
by n the number of vertices and by m the number of edges in a graph. If the graph
is weighted, there is a real-valued cost c(e) ≥ 0 associated with each edge e ∈ E.
Given a vertex x, its neighborhood is the set N(x) = {x}∪{y | (x, y) ∈ E} (note
that x ∈ N(x) by definition). Given two vertices u, v ∈ V , a path π in G = (V,E)
connecting vertex u to vertex v is a sequence of vertices u = v0, v1, . . . , v� = v
such that (vi−1, vi) ∈ E, for 0 < i ≤ �. We say that each edge (vi−1, vi) is in
path π, for 0 < i ≤ �. The length of a path π is given by the number of edges in
π. If the graph is weighted, the cost of a path π is the sum of the costs of edges
in π: c(π) =

∑�
i=1 c(vi−1, vi) . In the case of unweighted graphs the cost of a

path is simply its length. The distance distG(u, v) from u to v in G is given by
the minimum cost of a path in G from u to v (or +∞ if there is no such path).
A shortest path from u to v is then defined as any path π from u to v with
c(π) = distG(u, v). A graph G′ = (V ′, E′) is a subgraph of graph G = (V,E) if
V ′ ⊆ V and E′ ⊆ E. Given a graph G, a t-spanner S is a subgraph of G that
preserves distances up to a factor t (the stretch factor). More formally,

Definition 1. Let G = (V,E) be a weighted graph, and let t be a real value,
with t ≥ 1. A t-spanner of G is a graph S = (V,E′) with E′ ⊆ E such that:

∀ u, v ∈ V distS(u, v) ≤ t · distG(u, v).

The following lemma is due to Peleg and Shäffer [13]:

Lemma 1. [13] A subgraph S = (V,E′) of G = (V,E), is a t-spanner of G if
and only if the following holds:

∀ (x, y) ∈ E distS(x, y) ≤ t · c(x, y). (1)

Definition 2. Let x1, . . . , xk, with k ≥ 1, be distinct vertices in V , and let
Γ = {Cl(x1), . . . , Cl(xk)} be a family of subsets of V . Given a real number
� ≥ 1, Γ is an �-clustering of G = (V,E) if the following properties hold:

1. Cl(xi) ⊆ N(xi) for 1 ≤ i ≤ k;
2. Cl(xi) ∩ Cl(xj) = ∅, for each i �= j;
3.

⋃k
i=1 Cl(xi) =

⋃k
i=1 N(xi);

4. |Cl(xi)| ≥ � for 1 ≤ i ≤ k.

Set Cl(xi) is called cluster, and xi is denoted as its center.

According to the previous definition, the center xi of cluster Cl(xi) may belong
to another cluster Cl(xj), with i �= j. As a special case, we define an empty clus-
tering to be a clustering with no clusters. We assume that the empty clustering
is an �-clustering, for any �. An example of 5-clustering is shown in the left part
of Figure 1. Given an �-clustering, a vertex is called clustered if it belongs to a
cluster, and free otherwise; if vertex y is clustered, center(y) denotes the cen-
ter of the cluster containing y. For each v ∈ V , we define its free neighborhood
FN(v) as FN(v) = N(v) \

(⋃k
i=1 Cl(xi)

)
. Note that an �-clustering contains at

most n/� clusters, each of size at least �. We say that an �-clustering is maximal

Small Stretch Spanners on Dynamic Graphs 535

a

b

Cl(b)

Cl(a)

Cl(c)

c

centers
clustered
free

vertices

a

b

Cl(b)

Cl(a)

Cl(c)

c

cluster
3-bridge

free

edges

Fig. 1. A 5-clustering of a graph and an associated 3-spanner

if |FN(v)| < 2�, for each v ∈ V . We remark that our definition of clustering
is more strict that the one given in [4]. In the case of unweighted graphs, the
construction of spanners starting from our definition of clustering is simpler and
deterministic.

3 Clusterings and Spanners

In this section we show how small stretch spanners of unweighted graphs can be
obtained from proper �-clusterings. In particular, we describe how to produce a
3-spanner from a n1/2-clustering, and a 5-spanner from a n1/3-clustering.

3.1 Clusterings for 3-Spanners

Definition 3. Given a n1/2-clustering Γ of G = (V,E), a subgraph G′ = (V,E′)
of G is 3-compatible with Γ if E′ is the union of the following sets of edges:

Cluster Edges: all edges (x, y) such that y is clustered and x = center(y);
Free Edges: all edges (x, y) ∈ E such that either x or y is a free vertex;
3-Bridge Edges: for each cluster Cl(xi) and each vertex y ∈ (Cl(xj) \ {xi}),

with xj �= xi, one arbitrary edge (x, y) ∈ E such that x ∈ Cl(xi), if one
exists. We say that edge (x, y) connects vertex y to cluster Cl(xi).

Theorem 1. Given a graph G = (V,E) and a n1/2-clustering Γ , if G′ = (V,E′)
is a subgraph of G 3-compatible with Γ then G′ is a 3-spanner of G.

Proof. We show that for any edge (a, b) ∈ E there is a path of length at most 3
in G′. There can be only three cases, depending on a and b.

(Case 1) Both a and b belong to the same cluster: in this case either one among
a and b is the center of the cluster, and thus (a, b) is a cluster edge in G′, or a
third vertex x is the center of the cluster, and thus (a, x) and (x, b) are cluster
edges in G′.

536 G. Ausiello, P.G. Franciosa, and G.F. Italiano

(Case 2) Vertices a and b belong to different clusters. Let a ∈ Cl(xi) and b ∈
Cl(xj): in such a case there must be a 3-bridge edge (b, y), where y ∈ Cl(xi). If
y �= a, then the cluster edges provide a path of length at most 2 from y to a,
thus giving a path of length at most 3 from a to b in G′.
(Case 3) Either a or b is a free vertex: in this case (a, b) is a free edge in G′.

Due to Theorem 1, we will refer to a subgraph of G 3-compatible with an n1/2-
clustering Γ as a 3-spanner associated with Γ . The right side of Figure 1 shows
a 3-spanner associated with the 5-clustering on the left. If the n1/2-clustering is
maximal, we can prove that any associated 3-spanner is sparse:

Theorem 2. A 3-spanner G′ = (V,E′) associated to a maximal n1/2-clustering
contains O(n3/2) edges.

Proof. There are at most n cluster edges, since each vertex can be in at most
one cluster. There is at most one 3-bridge edge for each possible pair 〈x,Cl(xi)〉,
where x ∈ N and Cl(xi) ∈ Γ : since there are at most n1/2 clusters, there are at
most n3/2 3-bridge edges. We finally bound the number of free edges: since Γ is
maximal, we have |FN(v)| < 2n1/2 for any vertex v. Hence, the total number of
free edges is at most 2 · n3/2.

3.2 Clusterings for 5-Spanners

Definition 4. Given an n1/3-clustering Γ of G = (V,E), a subgraph G′ =
(V,E′) of G is 5-compatible with Γ if E′ is the union of the following sets of
edges:

Cluster Edges: all edges (x, y) such that y is clustered and x = center(y);
Free Edges: all edges (x, y) ∈ E such that either x or y is a free vertex;
5-Bridge Edges: for each pair of clusters Cl(xi), Cl(xj), with xi �= xj, one

arbitrary edge (x, y) ∈ E such that x ∈ Cl(xi) and y ∈ Cl(xj), if one exists.
We say that edge (x, y) connects clusters Cl(xi) and Cl(xj).

We remark that the only difference with Definition 3 lies in the set of bridge
edges.

Theorem 3. Given a graph G = (V,E) and an n1/3-clustering Γ , if G′ =
(V,E′) is a subgraph of G 5-compatible with Γ then G′ is a 5-spanner of G.

Proof. We show that for any edge (a, b) ∈ E there is a path of length at most 5
in G′. There can be only three cases, depending on a and b.

(Case 1) Both a and b belong to the same cluster: in this case either one among
a and b is the center of the cluster, and thus (a, b) is a cluster edge in G′, or a
third vertex x is the center of the cluster, and thus (a, x) and (x, b) are cluster
edges in G′.
(Case 2) Vertices a and b belong to different clusters. Let a ∈ Cl(xi) and b ∈
Cl(xj): in such a case there must be a 5-bridge edge (x, y), where x ∈ Cl(xi)
and y ∈ Cl(xj). Since cluster edges provide paths of length at most 2 from a to
x and from y to b, we have a path of length at most 5 from a to b in G′.
(Case 3) Either a or b is a free vertex: in this case (a, b) is a free edge in G′.

Small Stretch Spanners on Dynamic Graphs 537

Due to Theorem 3, we will refer to a subgraph of G 5-compatible with an
n1/3-clustering Γ as a 5-spanner associated with Γ . If the n1/3-clustering is
maximal, we can prove that any associated 5-spanner is sparse:

Theorem 4. A 5-spanner G′ = (V,E′) associated to a maximal n1/3-clustering
contains O(n4/3) edges.

Proof. There are at most n cluster edges, since each vertex can be in at most one
cluster. There is at most one 5-bridge edge for each possible pair of clusters: since
there are at most n2/3 clusters, there are at most n4/3 5-bridge edges. We finally
bound the number of free edges: since Γ is maximal, we have |FN(v)| < 2 ·n1/3

for any vertex v. Hence, the total number of free edges is at most 2 · n4/3.

4 Decremental Algorithms for 3- and 5-Spanners

The main contribution of this paper is to provide a fully dynamic deterministic
algorithm for maintaining 3-spanners and 5-spanners of unweighted graphs. The
construction and maintenance of our spanners is based on the maintenance of a
maximal �-clustering. Starting from any �-clustering, a maximal �-clustering can
be obtained with a simple greedy algorithm, as illustrated in Figure 2. We observe
that the same algorithm can be used for computing a maximal �-clustering from
scratch, starting from the initial empty clustering Γ = ∅.

Theorem 5. Procedure MaximalCluster computes a maximal �-clustering of G.

Proof. The fact that Procedure MaximalCluster computes an �-clustering can
be easily seen by induction on the number of clusters added to Γ . We assume
Γ is an �-clustering before applying the procedure. In particular, this is true for
the empty clustering. We now show that any time a new cluster Cl(x) is added
to Γ all the properties of Definition 2 are maintained:

– Property 1: Cl(x) = FN(x) ⊆ N(x) by definition of free neighborhood;
– Property 2: Cl(x) only contains free vertices, hence it is disjoint from all

existing clusters;
– Property 3: all free vertices in N(x) are included in Cl(x);
– Property 4: Cl(x) has size at least 2 · �.

Procedure MaximalCluster
input: graph G = (V, E)

�-clustering Γ

output: maximal �-clustering Γ

1. while there is a vertex x with |FN(x)| ≥ 2 · �
2. make x a center
3. make Cl(x) = FN(x)
4. add Cl(x) to Γ

Fig. 2. Procedure MaximalCluster

538 G. Ausiello, P.G. Franciosa, and G.F. Italiano

Moreover, Γ is maximal, since at the end there is no vertex x with |FN(x)| ≥ 2·�.

Procedure MaximalCluster builds an �-clustering Γ by adding one cluster
at a time. We now show how to maintain a 3-spanner associated with Γ when
new clusters are added, in the case � = n1/2. For each vertex x we maintain the
following simple data structures, that represent the current spanner plus some
auxiliary information:

– The number |FN(x)| of free vertices in N(x).
– For each cluster Cl(c) such that x �∈ Cl(c), the list of edges e = (x, z) ∈ E

such that z ∈ Cl(c). This list represents the candidate edges for connecting
x to Cl(c); the 3-bridge edge in the spanner connecting x to Cl(c), for each
cluster, is the first edge in the list.

– A flag indicating whether x is clustered. If x is clustered, we maintain a
reference to the cluster containing x, a reference to center(x), and the list of
all 3-bridge edges (y, x) incident to x, connecting any vertex y to the cluster
containing x.

– A flag indicating whether x is a center. If x is a center we maintain the list
of vertices in Cl(x). This list implicitly represents all cluster edges of Cl(x).

– The list of all free edges incident to x.

Theorem 6. It is possible to maintain a 3-spanner associated to a n1/2-
clustering, under the addition of new clusters C1, C2, . . . , Ch as described in
Procedure MaximalCluster, in a total of O(

∑h
i=1

∑
y∈Ci

|N(y)|) worst-case time.

Proof. Assume that cluster edges, free edges and 3-bridge edges are correct be-
fore adding clusters to Γ . A vertex x having |FN(x)| ≥ 2n1/2 can be found
in constant time, provided that the set of vertices x having |FN(x)| ≥ 2n1/2

is maintained throughout. We now determine the cost of updating the span-
ner for the different classes of spanner edges. Assume that the new cluster
Cl(x) = FN(x) is added to Γ :

(i) Cluster Edges: we add all edges (x, y), with y ∈ Cl(x). This can be done
in O(|Cl(x)|) worst-case time;

(ii) Free Edges: vertices in Cl(x) are no longer free. For each vertex y ∈
Cl(x) we explore vertices in N(y): for each vertex z ∈ N(y) we decrement
|FN(z)|, moreover, if z is clustered we remove (z, y) from the set of free
edges. This can be done in O(

∑h
i=1

∑
y∈Ci

|N(y)|) worst-case time;
(iii) 3-Bridge Edges: each vertex v ∈ V \ Cl(x) must be connected to Cl(x)

via a new 3-bridge edge, if one exists. For each vertex y ∈ Cl(x) we scan
vertices z ∈ N(y): if z is not already connected to Cl(x) then (y, z) becomes
a 3-bridge edge. This can be done in O(

∑h
i=1

∑
y∈Ci

|N(y)|) worst-case
time.

All the above operations can be implemented in a total of O(
∑h

i=1

∑
y∈Ci

|N(y)|)
worst-case time.

Theorem 7. Given a graph G, Procedure MaximalCluster computes in O(m+n)
worst-case time a 3-spanner of G having O(n3/2) edges.

Small Stretch Spanners on Dynamic Graphs 539

Proof. We apply Procedure MaximalCluster starting from Γ = ∅. At the begin-
ning, all vertices are free, there are no cluster edges and 3-bridge edges, and the
set of free edges is E. By Theorems 1, 2, 5, and 6, we can state that a 3-spanner
is computed in O(m + n) worst-case time.

We now show how to deal with edge deletions. When an edge is deleted from
the graph we might have to update the clustering and the associated spanner.
We first analyze how the clustering can be updated, and then describe how to
update the associated spanner. A clustering Γ is affected by the deletion of
edge e = (x, y) only if e is a cluster edge; w.l.o.g. assume that x is a center
and y ∈ Cl(x). In this case y can no longer be in Cl(x), due to Property 1 of
Definition 2. A more substantial change is due to Property 4 of Definition 2, in
the case where, after removing y from Cl(x), this set becomes too small to be a
cluster: in this case Cl(x) is removed from Γ . In both cases, in order to preserve
Property 3 of Definition 2, we must add y (resp., each vertex v ∈ Cl(x) in the case
Cl(x) is removed from Γ) to some other cluster in Γ , whenever possible. If there
are no centers in N(y) (resp., in N(v) for any vertex v ∈ Cl(x)) then y becomes a
free vertex. The update algorithm is described by Procedure DeleteClusterEdge
in Figure 3. We now show how to update the associated spanner after the deletion
of an edge e = (x, y). We distinguish four different cases, depending on the type
of edge being deleted:
e is not in the spanner: the spanner G′ = (V,E′) does not change. Since e is
not in the spanner, both x and y must be clustered vertices. Neither FN(x) or
FN(y) change their size;

Procedure DeleteClusterEdge
input: graph G = (V, E)

n1/2-clustering Γ of G = (V, E)
a cluster edge e = (x, y), where x = center(y)

output: n1/2-clustering Γ of G = (V, E \ {e})
1. if |Cl(x)| > n1/2

2. remove y from Cl(x)
3. if y is the center of a cluster in Γ
4. add y to Cl(y)
5. else if there exists a center c ∈ N(y) in Γ
6. add y to Cl(c)
7. else
8. // vertex x is no longer a center //
9. remove Cl(x) from Γ
10. for each v ∈ Cl(x)
11. if v is the center of a cluster in Γ
12. add v to Cl(v)
13. else if there exists a center c ∈ N(v) in Γ
14. add v to Cl(c)

Fig. 3. Deleting a cluster edge

540 G. Ausiello, P.G. Franciosa, and G.F. Italiano

e is a free edge: at least one among x and y is free. Edge e is removed from
the spanner; the sizes of FN(x) and/or FN(y) are decremented accordingly;
e is a 3-bridge edge: w.l.o.g. assume that e connects y to x ∈ Cl(z) (the case
where e also connects x to y ∈ Cl(w) is dealt with analogously): find another
edge f connecting y to a vertex w ∈ Cl(z) (if it exists), and add f to the set of
3-bridge edges;
e is a cluster edge: assume that x is a center and y ∈ Cl(x), and that the
clustering is updated according to Procedure DeleteClusterEdge. The spanner
is updated as follows.

– If |Cl(x)| remains at least n1/2, Cl(x) is still a cluster, and vertex x is still
its center:
• e is no longer a cluster edge;
• replace each 3-bridge edge (z, y) connecting a vertex z to Cl(x) via y

by a new bridge, if one exists. To this aim, for each vertex z ∈ N(y), if
(z, y) is a 3-bridge edge we remove (z, y) from the set of 3-bridge edges
and search for a new 3-bridge edge (z, w), with w ∈ Cl(x);

• if y is added to Cl(c) (where possibly c = y):
∗ (c, y) becomes a cluster edge (provided that c �= y);
∗ in case some vertex w was not connected to Cl(c), because there

were no edges (w, z) ∈ E with z ∈ Cl(c), but (w, y) ∈ E, it is now
possible to connect w to Cl(c) via y. This can be done by detecting,
for each w ∈ N(y), whether w is already connected to Cl(c) and, if
not, adding edge (w, y) to the set of 3-bridge edges.

• in case y is now free, for each z ∈ N(y) we increase |FN(z)| and add
(z, y) to the set of free edges.

– If |Cl(x)| drops below n1/2, Cl(x) can no longer be a cluster, and thus vertex
x can no longer be a center:
• remove all 3-bridge edges connecting vertices to Cl(x)—provided that

the same edge does not connect a vertex to any other cluster;
• for each v ∈ Cl(x) we do the following:

∗ (x, v) is no longer a cluster edge;
∗ if v is added to Cl(c) (where possibly c = v):

· (c, v) becomes a cluster edge (provided that c �= v);
· in case some vertex w was not connected to Cl(c), because there

were no edges (w, z) ∈ E with z ∈ Cl(c), but (w, v) ∈ E, it
is now possible to connect w to Cl(c) via v. As above, this can
be done by detecting, for each w ∈ N(v), whether w is already
connected to Cl(c) and, if not, adding edge (w, v) to the set of
3-bridge edges.

∗ in case v is now free, for each z ∈ N(v) we increase |FN(z)| and add
(z, v) to the set of free edges.

This restores a 3-spanner associated to the n1/2-clustering Γ . After this, in order
to obtain a maximal n1/2-clustering, we apply Procedure MaximalCluster.

Small Stretch Spanners on Dynamic Graphs 541

Theorem 8. Procedure DeleteClusterEdge updates a n1/2-clustering and the
associated 3-spanner of G under the deletion of edge (x, y) in either
O(|N(x)| + |N(y)|) worst-case time, if no cluster is removed from Γ , or in
O(

∑
v∈Cl(x) |N(v)|) worst-case time, if (x, y) is a cluster edge and cluster Cl(x)

is removed from Γ .

Proof. If e is not in the spanner or it is a free edge, the above algorithm requires
constant time. In the case (x, y) is a 3-bridge edge we need O(|N(x)| + |N(y)|)
worst-case time for exploring N(x) and/or N(y). If (x, y) is a cluster edge, we
distinguish two cases: if Cl(x) is still a cluster, we only explore N(x) and N(y).
Otherwise, if Cl(x) is destroyed, we explore the neighborhood of all vertices in
Cl(x), in O(

∑
v∈Cl(x) |N(v)|) worst-case time.

We now sketch how to build and maintain 5-spanners. With respect to 3-
spanners, we need to maintain an n1/3-clustering rather than a n1/2-clustering,
and consequently the only change in the data structures consists in keeping
track of 5-bridge edges instead of 3-bridge edges. We omit here for lack of space
the details of the data structure. The following theorems are the analogous of
Theorems 6, 7 and 8.

Theorem 9. It is possible to maintain a 5-spanner associated to an n1/3-
clustering, under the addition of new clusters C1, C2, . . . , Ch as described in
Procedure MaximalCluster, in a total worst-case time O(

∑h
i=1

∑
y∈Ci

|N(y)|).

Theorem 10. Given a graph G, Procedure MaximalCluster computes in O(m+
n) worst-case time a 5-spanner of G having O(n4/3) edges.

Theorem 11. Procedure DeleteClusterEdge updates an n1/3-clustering and the
associated 5-spanner of G under the deletion of edge e = (x, y) in either
O(|N(x)| + |N(y)|) worst-case time, if no cluster is removed from Γ , or in
O(

∑
v∈Cl(x) |N(v)|) worst-case time, if (x, y) is a cluster edge and cluster Cl(x)

is removed from Γ .

We next analyze the amortized complexity of edge deletions. An edge deletion
that does not modify the clustering is performed in O(n) worst-case time. If a
vertex is removed from a cluster, the spanner is maintained in O(n) worst-case
time (by Theorems 8 and 11), plus possibly the time needed to build a new
cluster. Since the size of the new cluster is O(�), the new cluster can be built in
O(� ·n) time, due to Theorems 6 and 9. An edge deletion that destroys a cluster
is performed in O(� · n) worst-case time (by Theorems 8 and 11), plus possibly
the time needed to build the new clusters. Again, each new cluster has size O(�),
and by Theorems 6 and 9 the time needed is O(� ·n) for each new cluster. Hence,
for each edge deletion we need a total of O(n) time plus O(� · n) time for each
cluster that appears or disappears from the clustering.

In order to bound the number of clusters that appear or disappear during a
sequence of edge deletions, we consider how the cluster sizes can be affected by
edge deletions. If the edge deletion does not destroy any cluster, then the size
of at most one cluster is decreased by one (this happens when a cluster edge

542 G. Ausiello, P.G. Franciosa, and G.F. Italiano

is deleted). Otherwise, only one cluster may be destroyed, and the size of the
other clusters does not decrease. During a sequence of edge deletions, the set
of destroyed clusters consists at most of the initial clusters, plus some of the
clusters created during the sequence of edge deletions. The initial clusters are
at most n/�. The initial size of a cluster C created during the sequence is at
least 2 · �, and C is destroyed only if its size decreases to less than � during the
update sequence. By the above arguments at least � deletions are needed in order
to shrink C from its initial size (at least 2 · �) to �. In summary, if the update
sequence has length σ, at most n/�+σ/� clusters may be destroyed overall. The
number of clusters created during the sequence is at most the number of clusters
at the end of the sequence plus the number of destroyed clusters, that is at most
2 · n/� + σ/�. By Theorems 8 and 11, the total cost over the sequence is thus
O(σ · n+ (n/�+ σ/�) · � · n) = O(σ · n+ n2). Hence, we can state the following:

Theorem 12. A 3-spanner (resp. a 5-spanner) of an unweighted graph can be
maintained in O(σ · n + n2) total time over a sequence of σ edge deletions. The
spanner has O(n3/2) (resp. O(n4/3)) edges. This gives O(n) amortized time per
operation over a sequence of Ω(n) edge deletions.

5 Fully Dynamic 3- and 5-Spanners for Unweighted
Graphs

To make the decremental algorithms of Section 4 fully dynamic, we deal with
edge insertions in a lazy fashion. Inserted edges are kept in a set E′′, and our
3-spanner consists of the edges induced by the clustering (see Definition 3) plus
the edges in E′′. When inserting an edge, we do not update the clustering and the
associated spanner. Only when the size of E′′ exceeds the size of the spanner, i.e.,
n3/2 or n4/3, a new clustering and the associated spanner are built from scratch
using Procedure MaximalCluster starting from the empty clustering, and E′′ is
set to the empty set. This gives the following theorem:

Theorem 13. A 3-spanner or a 5-spanner of an unweighted graph can be main-
tained in O(σ ·n+n2) total time over a sequence of σ intermixed edge insertions
and edge deletions. This gives O(n) amortized time per operation on a sequence
of Ω(n) edge insertions and edge deletions.

Proof. If the sequence contains less than n3/2 (resp., n4/3) edge insertions, then
the spanner is never rebuilt from scratch, and the theorem derives from The-
orem 12. Otherwise, we must rebuild from scratch the spanner, taking O(n2)
worst-case time (see Theorems 7 and 10), but this cost can be amortized over a
sequence of length Ω(n3/2) (resp., Ω(n4/3)), giving an amortized cost of O(n1/2)
(resp., Ω(n2/3)) per operation. Hence, the amortized cost is dominated by the
cost of edge deletions, which is O(n) by Theorem 12.

The algorithms in this paper can be extended to weighted graphs, as shown
in the following theorems.

Small Stretch Spanners on Dynamic Graphs 543

Theorem 14. A 3-spanner (resp., a 5-spanner) of a graph with d different edge
costs can be maintained in O(n) amortized time per operation over a sequence
of Ω(d · n) edge insertions and deletions. The spanner has O(d · n3/2) (resp.,
O(d · n4/3)) edges.

Theorem 15. For any t > 3 (resp. t > 5), a t-spanner of a graph with real-
valued edge costs in [1, C] can be maintained in O(n) amortized time per oper-
ation over a sequence of Ω(n · logt/3 C) (resp. Ω(n · logt/5 C)) edge insertions
and edge deletions. The spanner has O(n3/2 · logt/3 C) (resp. O(n4/3 · logt/5 C))
edges.

References

[1] I. Althofer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners
of weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993.

[2] B. Awerbuch. Complexity of network synchronization. Journal of the ACM,
32(4):804–823, 1985.

[3] H.-J. Bandelt and A. Dress. Reconstructing the shape of a tree from observed
dissimilarity data. Adv. Appl. Math., 7:309–343, 1986.

[4] S. Baswana and S. Sen. A simple linear time algorithm for computing (2k − 1)-
spanner of O(n1+1/k) size for weighted graphs. In Proc. 30th ICALP, 384–396.

[5] L. Cai. NP-completeness of minimum spanner problems. Discr. Appl. Math. and
Comb. Oper. Research and Comp. Sci., 48(2):187–194, 1994.

[6] L. Cai and J. M. Keil. Degree-bounded spanners. Parallel Processing Letters,
3:457–468, 1993.

[7] L. P. Chew. There are planar graphs almost as good as the complete graph.
Journal of Computer and System Sciences, 39(2):205–219, 1989.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2001.

[9] G. Das and D. Joseph. Which triangulations approximate the complete graph?
In Proc. Int. Symp. on Optimal Algorithms, 168–192.

[10] D. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as
good as complete graphs. Discrete Comput. Geom., 5:399–407, 1990.

[11] A. L. Liestman and T. Shermer. Additive graph spanners. Networks, 23:343–364,
1993.

[12] A. L. Liestman and T. Shermer. Grid spanners. Networks, 23:122–133, 1993.
[13] D. Peleg and A. Shäffer. Graph spanners. J. of Graph Theory, 13:99–116, 1989.
[14] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM

Journal on Computing, 18(4):740–747, 1989.
[15] D. Richards and A. L. Liestman. Degree-constrained pyramid spanners. Journal

of Parallel and Distributed Computing, 25:1–6, 1995.
[16] L. Roditty and M. Thorup and U. Zwick. Deterministic constructions of approx-

imate distance oracles and spanners. In Proc. ICALP 2005 , to appear.
[17] L. Roditty and U. Zwick. Dynamic approximate all-pairs shortest paths in undi-

rected graphs. In Proc. FOCS 2004 , 499–508.
[18] L. Roditty and U. Zwick. On dynamic shortest paths problems. In Proc. ESA

2004 , 580–591.
[19] R. Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. J. Combin. Theory

Ser. B, 52:113–116, 1991.
[20] U. Zwick. Personal communication.

An Experimental Study of Algorithms
for Fully Dynamic Transitive Closure�

Ioannis Krommidas and Christos Zaroliagis

Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece;
and Dept of Computer Engineering and Informatics,

University of Patras, 26500 Patras, Greece
{krommudi, zaro}@ceid.upatras.gr

Abstract. We have conducted an extensive experimental study on some
recent, theoretically outstanding, algorithms for fully dynamic transi-
tive closure along with several variants of them, and compared them to
pseudo fully dynamic and simple-minded algorithms developed in a pre-
vious study. We tested and compared these implementations on random
inputs, synthetic (worst-case) inputs, and on inputs motivated by real-
world graphs. Our experiments reveal that some of the fully dynamic
algorithms can really be of practical value in many situations.

1 Introduction

The transitive closure (or reachability) problem in a digraph G consists in finding
whether there is a directed path between any two vertices in G. In this paper,
we are concerned with the dynamic version of this (fundamental and extensively
studied) problem, namely with the maintenance of transitive closure when G
undergoes a sequence of edge insertions and deletions. An algorithm is called
fully dynamic if it supports both edge insertions and deletions, and partially
dynamic if either insertions or deletions (but not both) are supported; in the
former case the algorithm is called incremental, while in the latter decremental.

Recently, we have witnessed a number of important theoretical breakthroughs
regarding fully dynamic transitive closure [4,11,10,12,15–17]. These fully dy-
namic algorithms can be roughly divided into two categories: those using com-
binatorial techniques [10,12,15–17] and those which do not exclusively use such
techniques [4,11,16]. Moreover, some of these algorithms apply to DAGs, while
some others to general digraphs. In this paper, we concentrate on fully dynamic
algorithms for maintaining the transitive closure of general digraphs only.

Despite the above theoretical progress, we are not aware of any practical
assessment of any of the aforementioned algorithms. Our prime goal is to advance
our knowledge on the practical aspects of this recent and important theoretical
work. Previous experimental studies regarding maintenance of transitive closure
[1,6] have mostly focussed on the assessment of partially dynamic algorithms.
� This work was partially supported by the IST Programme (6th FP) of EC under

contract No. IST-2002-001907 (integrated project DELIS).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 544–555, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Experimental Study of Algorithms for Fully Dynamic Transitive Closure 545

The only experimental comparison regarding fully dynamic transitive closure was
made by Frigioni et al [6], where a fully dynamic algorithm in [7] was compared
to a new algorithm, called Ital-Gen, developed in [6]. Ital-Gen is based on
a hybridization and extension of Italiano’s partially dynamic algorithms [8,9],
works in a fully dynamic setting, but update times can be analyzed and bounded
only for partially dynamic operation sequences. We shall refer to such algorithms
as pseudo fully dynamic. The experiments in [6] showed that Ital-Gen was
considerably faster than the fully dynamic algorithm in [7].

In this work, we have implemented and experimentally compared all the
aforementioned combinatorially based fully dynamic algorithms [10,12,15–17],
as well as the algorithm of Demetrescu & Italiano [4], along with some new
variants of them. In particular, from the former set we have implemented the
space-saving version of King’s algorithm [10,12] along with two new variants,
the algorithm of Roditty & Zwick [16], the algorithm of Roditty [15] along with
a new variant, and the very recent algorithm of Roditty & Zwick [17]. In addi-
tion, we have implemented the decremental algorithm of Roditty & Zwick [16],
which we modified and fine-tuned so that it can work in a fully dynamic envi-
ronment. We call this pseudo fully dynamic algorithm RZ-Opt. A summary of
the theoretical bounds of all these algorithms can be found in Fig. 1. We com-
pared the above implementations to Ital-Gen and also to the simple-minded
algorithms presented in [6]. Our experiments were conducted on three types of
inputs: random inputs, synthetic (worst-case) inputs, and real-world inputs.

Our experiments showed that, regardless of the type and size of input, the
algorithm of Demetrescu & Italiano [4], the space-saving version of King’s al-
gorithm [10,12] and its new variants were by far the slowest, followed by the
algorithm of Roditty [15]. The performance of the latter is actually surprising,
since at least for some cases it is theoretically better than the algorithm in [16].
For random inputs, the pseudo fully dynamic algorithms Ital-Gen and RZ-Opt
were dramatically faster than any of the fully dynamic ones or their variants,
with RZ-Opt being usually the fastest. Regarding fully dynamic algorithms, the
first interesting outcome is that the theoretically inferior – with respect to [17] –
algorithm of Roditty & Zwick in [16] was the fastest. The second interesting out-
come is that Demetrescu & Italiano’s [4] algorithm exhibits an excellent locality
of reference and achieves the smallest ratio of cache misses w.r.t. any algorithm
in our study (however, its performance degrades, since it requires a vast number
of main memory accesses). For synthetic inputs, the fastest algorithm in all cases
were the simple-minded ones. Regarding the dynamic algorithms, we observed
that the situation is similar to the random inputs as long as the graph consists of
strongly connected components (SCCs) of small size. When, however, the size of
SCCs increases, the fully dynamic algorithms of Roditty & Zwick [16,17] perform
dramatically better than the pseudo fully dynamic ones. This implies that the
fully dynamic algorithms demonstrate their theoretical superiority by learning
quickly the specific structure of these graphs and benefiting substantially from
it. The experimental results with the real-world inputs were similar to those
of random inputs. Due to space limitations, some parts are omitted from this
version. Full details can be found in [13].

546 I. Krommidas and C. Zaroliagis

2 Algorithms and Their Implementation

Let G = (V,E) be a digraph with n vertices and an initial number of m0 edges.
If there is a directed path from a vertex u to a vertex v, then u is called an
ancestor of v, v is called a descendant of u, and v is said to be reachable from
u. The digraph G∗ = (V,E∗) that has the same vertex set with G but has an
edge (u, v) ∈ E∗ iff v is reachable by u in G is called the transitive closure of
G. In the following, we denote by m′ the number of edges to be inserted and/or
deleted, and consequently m = m0 + m′.

2.1 The Algorithms of Italiano and Their Extensions

We start with the partially dynamic algorithms of Italiano [8,9]. The incremental
algorithm applies to any digraph, while the decremental applies to DAGs. In [6],
a modified and fine-tuned implementation of these algorithms was presented,
called Ital-Opt. Ital-Opt maintains for each u ∈ V a tree Desc[u], which
contains all descendants of u. The Desc trees are maintained implicitly using a
n× n matrix Parent and a Boolean query for vertices i and j is carried out in
O(1) time, by checking Parent[i, j]. The main idea of the algorithm is that the
maintenance of a tree during a sequence of edge deletions can be done efficiently,
if the graph is a DAG. More details in [6,8,9].

Based on Ital-Opt, Frigioni et al. [6] developed a new algorithm called
Ital-Gen that can handle edge insertions and deletions in general digraphs. The
main idea of Ital-Gen is that if every strongly connected component (SCC) is
replaced by a single vertex, then the resulting graph G′ is a DAG, whose transi-
tive closure can be maintained using Ital-Opt. For each SCC C, the algorithm
maintains (among other) a sparse certificate S (sparse subgraph) of C. If an edge
e is removed from C and if e belongs to S, then Ital-Gen checks whether C has
broken. In addition, the algorithm maintains an n × n matrix Index such that
Index(i, j) is true iff there is an i-j path. A query can be answered in O(1) time
by checking this matrix. Both Ital-Opt and Ital-Gen can be modified so that
they can work in a fully dynamic environment [6].

2.2 The Algorithm of King and Its Variants

King’s algorithm [10] uses forests of BFS trees and a set of matrices to facilitate
query answering in O(1) time. An Out (resp. In) BFS tree of depth d rooted at
vertex r is a data structure which maintains vertices reachable from (resp. reach-
ing) r, and whose distance from r is less than or equal to d. Maintenance of this
data structure for any sequence of edge deletions can be done in O(m0d) time.
The algorithm maintains k = �log2 n� forests F 1, F 2, . . . , F k, where each F i

contains a pair of BFS trees Ini
u and Outiu of depth d = 2 rooted at every vertex

u ∈ V . The BFS trees of the forest F 1 are constructed for G. The BFS trees
of the forest F i, i > 1, are constructed for the graph Gi = (V,Ei), where Ei is
defined as follows: if there is a path between two vertices u,w whose length is
less than or equal to 2i, then (u,w) ∈ Ei.

An Experimental Study of Algorithms for Fully Dynamic Transitive Closure 547

During the deletion of an edge e (or of a set of edges) the edge e is removed
from any BFS tree of forest F i, 1 ≤ i ≤ k, it belongs. In the case of an insertion of
an edge (or a set of edges) incident to a vertex u the trees Ini

u, Outiu, i = 1, . . . , k
are built from scratch.

King and Thorup in [12] proposed a space saving version of this algorithm.
Graph Gi = (V,Ei) is maintained using an incidence matrix M : if (u,w) ∈ Ei,
then M(u,w) = 1, otherwise M(u,w) = 0. The maintenance of a BFS tree using
these matrices costs now O(n2d) time, however this does not affect the amortized
update bound. We shall refer to the implementation of this algorithm as King-1.

In addition, we have implemented a variant of this algorithm, called King-2.
The idea is to maintain BFS trees of depth d > 2. In King-2 we considered
d = 8, which reduces the number of forests by 2/3. The asymptotic complexity
of the update operations is the same with those of King-1. Furthermore, we
have implemented another variant, called King-3, that maintains BFS trees of
depth D, where D is the diameter of the graph, and therefore it requires only
one forest of BFS trees.

2.3 The Algorithms of Roditty and Zwick

The Algorithms in [16] and Their Extensions. Roditty and Zwick proposed
in [16] a randomized (Las Vegas) decremental algorithm, which is a combination
of the decremental part of Ital-Gen [6] with a new decremental algorithm [16] for
maintaining the SCCs of a digraph. The crucial observation is that Ital-Gen
requires O(nm0) time to handle any sequence of edge deletions, if the check
whether a SCC has broken is handled by the new decremental algorithm [16]
for maintaining the SCCs. The main idea of the decremental algorithm which
maintains the SCCs is the following. In each SCC C of the graph it maintains
an In-BFS tree In(w) and an Out-BFS tree Out(w) rooted at a random vertex
w ∈ C. If an edge (x, y) belonging to C is deleted, then the BFS trees are
updated accordingly and, to determine whether C breaks it suffices to check
whether x ∈ In(w) and y ∈ Out(w). If C has broken, the new SCCs to which
C breaks are computed and new BFS trees are constructed, except for the new
SCC C′ which contains w and inherits the BFS trees rooted at w.

We have modified the decremental transitive closure algorithm of Roditty and
Zwick so that it can handle edge insertions, without affecting the performance
when it handles edge deletions. Specifically, edge deletions are processed as in
the “original” algorithm and an edge insertion is handled as follows. If the new
edge connects two different SCCs, then Ital-Gen is used. On the other hand, if
the new edge belongs to a SCC, then its BFS trees are updated in a recursive
manner by lifting up nodes towards the root of the tree. We call this pseudo
fully dynamic algorithm RZ-Opt. This algorithm handles any sequence of edge
deletions in O(nm0) time and m′ edge insertions in O(m′(n + m0 + m′)) time.
Consequently, we expect RZ-Opt to be faster when handling edge deletions, and
Ital-Gen to be faster when handling edge insertions.

A final remark concerns the algorithm for maintaining the SCCs. When a
SCC C breaks, then the BFS trees rooted at w ∈ C are inherited by the new

548 I. Krommidas and C. Zaroliagis

SCC that contains w. In our implementation of RZ-Opt these trees are built from
scratch, therefore RZ-Opt may spend more than O(nm0) time to handle m′ edge
deletions. Despite this fact, however, RZ-Opt proved to be competitive to the
fastest algorithms implemented by Frigioni et al. [6].

We now turn to the combinatorial fully dynamic algorithm in [16]. Initially,
a decremental data structure DD for maintaining the transitive closure is built
(DD could be RZ-Opt or Ital-Gen). The insertion of an edge (or a set of edges)
incident to a vertex u is done as follows. Vertex u is added to a set S of vertices
and an ancestor (resp. descendant) tree In(u) (resp. Out(u)) rooted at u is built.
If |S| becomes equal to a predetermined parameter t (t =

√
n in [16] and in our

implementation), then all data structures are re-initialized. The deletion of a set
E′ of edges is done as follows. First, every e ∈ E′ is removed from DD. Then, for
every w ∈ S, the trees In(w) and Out(w) are rebuilt. A query for an u-w path
is computed as follows. First DD is queried and if the answer is yes, then there
exists a u-w path in G. If the answer is no and if a vertex z exists such that
u ∈ In(z) and w ∈ Out(z), then again a u-w path exists. Otherwise, there is no
u-w path. We shall refer to the implementation of this algorithm as RZ-1.

The Algorithm of Roditty [15]. The recent fully dynamic algorithm proposed
by Roditty [15] is inspired by the algorithm of King [10]. It uses a decremental
data structure for maintaining paths composed of edges belonging to the initial
graph and an algorithm for maintaining a forest of in-trees (ancestor trees)
and out-trees (descendant trees) around each insertion center (i.e., the vertex
incident to the current set of edge insertions). Boolean queries are answered in
O(1) time using an n× n matrix count such that each entry count(x, y) equals
the number of insertion centers that lie on a path from x to y.

An out-tree (in-tree) around a vertex u maintains the so-called blocks with
respect to u that are reachable from (reach) u. Two vertices x, y belong to the
same block with respect to u, if x and y belong to the same SCC after the last
edge insertion centered at u and after every subsequent delete operation. The
insertion of a set of edges incident to u, may change the blocks with respect to u,
while an edge deletion may change every block that exists so far. The main idea
of this algorithm is that all in-trees and out-trees can be maintained implicitly
using a single adjacency matrix M of size O(n2). Each update of the matrix
requires O(n2) time. In our implementation, called Rod, we have used RZ-Opt as
the decremental structure, because it has been the fastest algorithm in handling
edge deletions in general digraphs.

Our experiments revealed that this algorithm spends a significant amount of
time in building the adjacency matrix M (M is built from scratch at every up-
date operation). The algorithm must maintain entries M(v, x) = minw M(v, w),
where v is a vertex, x is a block, and w is a vertex (or a block) belonging to
x. The value of each entry M(v, x) in Rod is computed using a for loop across
all entries. Since these values are non-negative, we can exit the loop as soon
as a zero entry is found. We have generated a variant of the algorithm, called
Rod-Opt, based on this fact to see whether it affects performance.

An Experimental Study of Algorithms for Fully Dynamic Transitive Closure 549

The Algorithm of Roditty and Zwick in [17]. The very recent algorithm of
Roditty and Zwick [17] is a combination of a new persistent dynamic algorithm
for maintaining the SCCs of a graph with a new decremental algorithm for
maintaining reachability trees presented in [17].

The persistent algorithm for strong connectivity works as follows. During the
insertion of an edge (or of a set of edges incident to a vertex), a new version of
the graph is created and the algorithm maintains all versions. Each version of
the graph, once created, is not affected by any edge insertion, while, each edge
deletion applies to all versions. Each SCC of version i (created by the i-th insert
operation) is either a SCC or a union of SCCs of version i− 1. As a result, the
SCCs of all versions of the graph can be maintained as a forest. The edge set of
the graph is partitioned into t + 1 edge sets Hi (i = 1, . . . , t + 1). If an edge e
connects two different SCCs in the current version of the graph, then e ∈ Ht+1.
Otherwise, e ∈ Hj where j is the version at which e became an internal edge of
some SCC. When an edge insertion occurs, Ht+1 is used to compute new SCCs
of the graph. In order to achieve this, a Union-Find algorithm is used, which
can efficiently merge SCCs by representing them as sets of vertices and return
the SCC to which a vertex belongs. Roditty & Zwick [17] use this algorithm
in a very clever way in order to maintain a reachability tree in a decremental
environment (see [17] for the details) at a total cost of O(m + n logn).

The fully dynamic algorithm for maintaining the transitive closure maintains
a pair of reachability trees Inu, Outu for each vertex u ∈ V . The reachability
tree Outu (resp. Inu) maintains SCCs reachable from (resp. reaching) u. When
a set of edges incident to u is inserted into the graph G, a new version Gu of G
is created, and the trees Inu, Outu are built from scratch. Trees Inu, Outu are
maintained with respect to Gu. Each version Gu undergoes only edge deletions
and is replaced by a new version when another edge insertion around u occurs.
When an edge deletion occurs, the forest of SCCs is updated using the persistent
algorithm for strong connectivity. If a SCC C contained in a reachability tree
breaks, then C is replaced by the SCCs to which it breaks, and the algorithm
checks whether these SCCs can be connected to the tree. A boolean query (u,
v) is answered in O(n) time by checking for each vertex w whether u ∈ Inw and
v ∈ Outw. We refer to this algorithm as RZ-P.

2.4 The Algorithm of Demetrescu and Italiano

The main idea of the algorithm of Demetrescu and Italiano [4] (see also [5]) is
to reduce the transitive closure problem to the problem of maintaining polyno-
mials over matrices subject to updates of their variables. The algorithm takes
advantage of the following equivalence: If G is a directed graph and XG is its
adjacency matrix, then computing the Kleene closure X∗

G of XG is equivalent to
computing the transitive closure of G.

Let Xa
b denote a Boolean matrix. The basic data structure (we shall refer to

it as Struct1) used by the algorithm maintains polynomials P over such matrices
of degree 2; i.e., P is of the form P =

∑h
i=1 X

i
1 · X i

2. This structure (after an
initialization phase which takes O(hnω + hn2) time, where ω is the exponent

550 I. Krommidas and C. Zaroliagis

of matrix multiplication) is able to maintain P in O(n2) time when a Boolean
matrix Xa

b is changed. Struct1 uses O(hn2) space. Polynomials Pk of degree
k > 2 can be maintained by using Struct1, because each Pk can be represented
by a sum of O(k2) polynomials of degree 2.

Let G be a directed graph, X its adjacency matrix, X∗ the Kleene closure
of X , and n the number of nodes of the graph. Then X∗ can be computed
recursively by computing 12 polynomials and 3 closure matrices of size n

2 ×
n
2

[4,5]. Each such closure matrix of size n
2 ×

n
2 is maintained recursively by 12

polynomials and 3 closures of size n
4 ×

n
4 , and so on. When an edge insertion

or deletion occurs, the transitive closure information is updated by properly
updating the 12 polynomials and the 3 matrix closures of size n

2 ×
n
2 (each

matrix closure is updated recursively). In this way the algorithm can handle
insertion of a set of edges around a vertex u and deletion of an arbitrary set of
edges. Boolean queries can be answered in O(1) time.

In our implementation, which we refer to as DI, we have not used matrix
multiplication; however, this affects only the initialization time of the algorithm,
because in update operations matrix multiplication is not used.

2.5 Simple-Minded Algorithms and Summary

Frigioni et al [6] developed three simple-minded algorithms based on the follow-
ing idea. When an edge insertion or edge deletion occurs, then the particular
edge is simply added or removed from G, resulting in a O(1) time update op-
eration. Queries are answered in O(n + m) worst-case time by applying some
graph-searching algorithm among BFS, DFS, and DBFS (vertices are visited in
DFS order, but every time a vertex is visited we check whether the target ver-
tex is any of its adjacent ones). The theoretical time and space bounds of all
algorithms and their variants considered in our study are summarized in Fig. 1.

Algorithm Reference Amortized Update Time Query Time Space

Ital-Gen (†) [6] O(n) per ins O(m) per del O(1) O(n2)
RZ-Opt (†) This paper O(m) per ins O(n) per del O(1) O(n2)

RZ-1 [16] O(m
√

n) O(
√

n) O(n2)
Rod [15] O(n2) O(1) O(n2)

Rod-Opt This paper O(n2) O(1) O(n2)
RZ-P [17] O(m + n log n) O(n) O(nm)
King-1 [10,12] O(n2 log n) O(1) O(n2 log n)
King-2 This paper O(n2 log n) O(1) O(n2 log n)
King-3 This paper O(n2D) O(1) O(n2)
DI [4] O(n2) O(1) O(n2)

Simple [6] O(1) O(n + m) O(n + m)

Fig. 1. Amortized bounds for m′ = Θ(m) edge insertions/deletions. D denotes the
diameter of the graph and m = m0 + m′. (†) Pseudo fully dynamic algorithms.

An Experimental Study of Algorithms for Fully Dynamic Transitive Closure 551

3 Experimental Results

For our experimental study we used the experimental platform developed by
Frigioni et al [6]. We implemented each algorithm as a C++ class using LEDA
[14] and the library for dynamic graph algorithms [2]. We used the correctness
checking program in [6] to verify the correctness of our implementations. The
source code is available from http://www.ceid.upatras.gr/faculty/zaro/
software/. The experiments were run on three different computing environ-
ments; namely, (i) a Sun UltraSparc II (USparc-II) with 4 processors at 300
MHz, Solaris 7 operating system, 1.2GB of main memory, and 2MB L2 cache
per processor; (ii) an Intel Pentium 4 (P4) at 1.6 GHz, with linux SUSE 7.3 op-
erating system, 512MB of main memory, and 512KB L2 cache; and (iii) an AMD
Athlon at 1.9 GHz, with linux Mandrake 10 operating system, 512MB of main
memory, and 256KB L2 cache. We used this variety of computing environments
to investigate whether it affects the relative performance of algorithms, espe-
cially regarding memory accesses and cache effects since all algorithms require
Ω(n2) space.

In all experiments conducted we did not observe any substantial difference
in the relative performance of the implementations. The same applies for the
simulation of cache misses with Valgrind (valgrind.kde.org). For that reason
we will mostly report experiments run on P4. RZ-P (as expected) was by far the
most memory demanding algorithm, and after a certain point its performance
is dominated by the swaps executed between main and secondary memory. Due
to this fact, we were unable to run large input instances (e.g., graphs with more
than 800 vertices) on P4 and Athlon. For the case of simple-minded algorithms,
we report results only with the fastest of them in the particular class of inputs.
We performed experiments on three classes of inputs.

Random Inputs. We performed our tests on random digraphs with n ∈
[100, 700] vertices and several values on the initial number of edges m0. For
these values of n and m0, we considered various lengths of operation sequences
|σ| ∈ [500, 50000]. We generated a large collection of data sets, each consisting
of 5 to 10 samples, and corresponded to a fixed value of graph parameters and
|σ|. The reported values are average CPU times over the samples. The random
sequence of operations consisted of update operations (insertions/deletions) and
queries (Boolean). Following similar studies (e.g., [3,6]), we considered two types
of patterns: uniformly mixed queries and updates (each occurring with proba-
bility 1/2, where an update can equally likely be an insertion or deletion), and
uniformly mixed insertions, deletions, and queries (each such operation occurs
with probability 1/3).

Our experiments revealed that DI, King-1, King-2 and King-3 were by far
the slowest, followed by Rod and Rod-Opt, even for small input instances and
moderate operation sequences with 50% of queries. The bad behaviour of King-1,
King-2, King-3, Rod and Rod-Opt is due to the maintenance of incidence matri-
ces. This slows down the construction and the update of the trees maintained,
since they require quadratic time regardless of the edge density. Among the vari-

552 I. Krommidas and C. Zaroliagis

0

5

10

15

20

25

30

1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

RZ-1
RZ-P

0

100

200

300

400

500

600

700

5000 10000 15000 20000 25000 30000

T
im

e
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

RZ-1
RZ-P

Fig. 2. Random digraphs with n = 300. Experiments run on P4. Left: |σ| = 5000 (33%
queries). Right: |σ| = 30000 (33% queries).

0

1

2

3

4

5

6

1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

0

5

10

15

20

25

30

35

40

45

0 10000 20000 30000 40000 50000 60000 70000

T
im

e
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

Fig. 3. Random digraphs with n = 700. Experiments run on P4. Left: |σ| = 5000 (33%
queries). Right: |σ| = 50000 (33% queries).

ants of King’s algorithm, we observe that King-3 is almost always the fastest
due to the fact that it maintains less trees than King-1 and King-2. When the
graph becomes very sparse, however, King-3 is slower due to the overhead of
maintaining a BFS tree for the large (giant) component. Finally, Rod-Opt is from
1.5 (50% queries) to 2 (33% queries) times faster than Rod due to the heuristic
of aborting the loop as soon as a zero M(v, w) entry has been found.

We now turn to DI. One possible explanation for the bad performance of DI
is that it maintains a large number of polynomials (the update of each one costs
O(n2) time). Moreover, the recursive maintenance of the closure matrices turns
out to be inefficient, because DI becomes slower as the recursion depth increases.
On the other hand, DI (as expected) is faster than King’s algorithm and its
variants, because it manages to exhibit a better locality of reference. Indeed,
simulation of cache misses with Valgrind revealed that the cache behaviour of
DI is dramatically (about 50–100 times) better. Actually, DI has the smallest
ratio of cache misses w.r.t. any algorithm in our study.

The comparison of the rest of the algorithms is shown in Fig. 2. Simple-
minded and pseudo fully dynamic algorithms clearly outperform RZ-1 and RZ-P.
RZ-P is penalized by its larger query time, by its large memory demand after
a certain point (see Fig. 2(right)), and most importantly by the maintenance

An Experimental Study of Algorithms for Fully Dynamic Transitive Closure 553

0

10

20

30

40

50

60

70

200 400 600 800 1000 1200 1400 1600

T
im

e
(s

ec
)

Vertices

DFS
Ital-Gen

RZ-1
RZ-P

0

50

100

150

200

250

200 400 600 800 1000 1200 1400 1600

T
im

e
(s

ec
)

Vertices

DFS
Ital-Gen

RZ-1
RZ-P

Fig. 4. Synthetic digraphs with |σ| = 1920 (33% queries). Experiments run on USparc-
II. Left: clique size 10. Right: clique size 80.

0

100

200

300

400

500

600

700

5000 10000 15000 20000 25000 30000

T
im

e
(s

ec
)

Edges

Overall time
Deletion time

0

50

100

150

200

250

300

350

400

1000 1500 2000 2500 3000 3500 4000 4500 5000

Edges

Splits
Merges

Fig. 5. Experiments on P4. Left: Deletion time vs overall time of RZ-P, for n = 300 and
|σ| = 30000 (33% queries). Right: Splits and merges of SCCs in RZ-Opt and Ital-Gen,
for n = 700 and |σ| = 5000 (33% queries).

of SCCs across all versions of the graph (quite expensive during deletions).
Fig. 5(left) shows clearly that RZ-P spends almost all of its time in handling
edge deletions. RZ-1 is faster than RZ-P due to its smaller query time and the
fact that it uses RZ-Opt to handle edge deletions. Its main drawback, however,
seems to be the fact that its decremental data structure (i.e., RZ-Opt) must be
rebuilt every O(

√
n) operations.

We now turn to the three faster implementations DBFS, Ital-Gen, and
RZ-Opt; see Fig. 3. When the graph is relatively sparse (less than n lnn edges),
DBFS is the fastest algorithm, while RZ-Opt is considerably faster in denser
graphs. The differences between the performance of Ital-Gen and RZ-Opt can be
explained by how they handle SCCs. Ital-Gen is not efficient in handling edge
deletions in SCCs because even if a SCC does not break, it may spend O(n+m)
time to determine whether the SCC has broken and to rebuild its sparse certifi-
cate. This claim is confirmed with the support of Fig. 5(right) and Fig. 3(left):
although the number of SCCs that split decreases, the running time is practically
unaffected. On the other hand, RZ-Opt is not efficient in handling edge insertions
because if a new edge is created in a SCC, then it may spend O(n+m) time to
update the BFS trees. However, as the edge density increases, RZ-Opt performs

554 I. Krommidas and C. Zaroliagis

better, since the BFS trees have small depth. RZ-Opt is highly dominated by the
merges and splits of SCCs, a fact that can be easily confirmed by an inspection
of the curves of Fig. 5(right) with the overall time curve of Fig. 3(left). Conse-
quently, in sparse graphs, where many splits and merges of SCCs occur, both
algorithms have more-or-less the same performance. As soon as the strong con-
nectivity threshold (n lnn) is approached and/or surpassed RZ-Opt outperforms
Ital-Gen, as it performs much less work mainly for deletions.

Synthetic Inputs. We have considered and slightly modified the synthetic in-
puts introduced by Frigioni et al [6], which enforce the algorithms to exhibit their
worst-case behaviour. These graphs consist of a sequence of s = �n/k� cliques
C1, . . . , Cs, each of size k, interconnected with a set of “bridges”. A bridge is
a pair of directed edges connecting a node of Ci with a node of Ci+1, and vice
versa. Insertions and deletions are only performed on bridges and in a specific
order, such that the bridge inserted/deleted last would provide new reachability
and SCC information from roughly n/2 to the other n/2 vertices of the graph.

As with random inputs, DI, King’s algorithm and its variants as well as
Rod and Rod-Opt were the worst, and hence we do not report results for them.
Ital-Gen was always faster than RZ-Opt (due to the inefficient insertion proce-
dure of the latter; see below), and hence we report results only with the former.
Fig. 4 illustrates the performance of the rest of the algorithms. Similar results
hold for smaller or larger operation sequences and different computing environ-
ments; we report results on USparc-II (the machine with the largest memory) to
include large values of n. We observed that DFS was always the fastest algorithm.

The performance of Ital-Gen deteriorates as the clique size k increases, since
for large k we get large SCCs whose maintenance becomes very costly due to their
splits and merges. Note that a split (resp. merge) of a SCC occurs every two edge
deletions (resp. insertions), and the data structures in those SCCs must be built
from scratch. On the other hand, RZ-1 and RZ-P perform better than Ital-Gen
as k increases, since they can handle better the splits and merges of large SCCs.
As a side remark, the good performance of RZ-1 indicates that RZ-Opt (which
is used by RZ-1 for deleting edges) is worse than Ital-Gen mainly due to the
inefficient handling of edge insertions. For RZ-P a large value of k implies a small
number of insertion centers (tails of edges inserted), and therefore it maintains
less versions of the graph. In addition, the maintenance of the reachability trees
has a very low cost, since the algorithm has to check only the external to a SCC
edges, i.e., the bridges. However, RZ-P is slower than RZ-1 probably due to the
overhead caused by deletions, in order to maintain the forest of SCCs across all
versions of the graph. In conclusion, the fully dynamic algorithms demonstrate
their theoretical superiority by learning quickly the specific structure of the
synthetic graphs and benefiting substantially from it.

Real-World Inputs. We have also used two inputs motivated by real-world
graphs. The first graph has 1259 vertices and 5101 edges and represents a frag-
ment of the Internet visible from RIPE (www.ripe.net) that has been used in [6].
The second graph describes a US road network (ftp://edcftp.cr.usgs.gov)

An Experimental Study of Algorithms for Fully Dynamic Transitive Closure 555

having 576 vertices and 1762 edges, and has been used in [3]. On these graphs,
we run random sequences of operations, and we observed similar results to the
experiments on random inputs.

References

1. S. Abdeddaim. Algorithms and Experiments on Transitive Closure, Path Cover and
Multiple Sequence Alignment. In Proc. 2nd Workshop on Algorithm Engineering
and Experiments – ALENEX 2000, pp. 157–169, 2000.

2. D. Alberts, G. Cattaneo, G.F. Italiano, U. Nanni, and C. Zaroliagis. A Software
Library of Dynamic Graph Algorithms. In Proc. Workshop on Algorithms and
Experiments – ALEX’98, pp. 129–136, 1998.

3. C. Demetrescu, S. Emiliozzi, and G. F. Italiano. Experimental Analysis of Dynamic
All Pairs Shortest Path Algorithms. In Proc. 15th ACM-SIAM Symp. on Discrete
Algorithms – SODA 2004, pp.362-371.

4. C. Demetrescu and G. F. Italiano. Fully Dynamic Transitive Closure: Breaking
through the O(n2) Barrier. In Proc. 41st IEEE Symp. on Foundations of Computer
Science – FOCS 2000, pp. 381–389, 2000.

5. C. Demetrescu. Fully Dynamic Algorithms for Path Problems on Directed Graphs.
PhD Thesis, University of Rome “La Sapienza”, February 2001.

6. D. Frigioni, T. Miller, U. Nanni and C. Zaroliagis. An Experimental Study of
Dynamic Algorithms for Transitive Closure. ACM Journal of Experimental Algo-
rithmics, 6(9), 2001.

7. M.R. Henzinger and V. King. Fully Dynamic Biconnectivity and Transitive Clo-
sure. In Proc. 36th IEEE Symposium on Foundations of Computer Science –
FOCS’95, pp. 664–672, 1995.

8. G. F. Italiano. Amortized efficiency of a path retrieval data structure. Theoretical
Computer Science, 48:273-281, 1986.

9. G. F. Italiano. Finding paths and deleting edges in directed acyclic graphs. Infor-
mation Processing Letters, 28:5-11, 1988.

10. V. King. Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and
Transitive Closure in Digraphs. In Proc. 40th IEEE Symposium on Foundations of
Computer Science – FOCS’99, pp.81-91, 1999.

11. V. King, and G. Sagert. A Fully Dynamic Algorithm for Maintaining the Transitive
Closure. In Proc. 31st ACM Symp. on Theory of Comp. – STOC’99, pp. 492–498.

12. V. King and M. Thorup. A Space Saving Trick for Directed Dynamic Transitive
Closure and Shortest Path Algorithms. In Proc. 7th Comp. and Combinatorics
Conference – COCOON 2001, pp.268-277, 2001.

13. I. Krommidas and C. Zaroliagis. An Experimental Study of Algorithms for Fully
Dynamic Transitive Closure. CTI Tech. Report TR 2005/07/01, July 2005.

14. K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

15. L. Roditty. A faster and simpler fully dynamic transitive closure. Proc. 14th ACM-
SIAM Symp. on Discrete Algorithms – SODA 2003, pp. 404-412.

16. L. Roditty and U. Zwick. Improved dynamic reachability algorithms for directed
graphs. In Proc. 43rd IEEE Symposium on Foundations of Computer Science –
FOCS 2002, pp.679-690, 2002.

17. L. Roditty and U. Zwick. A fully dynamic reachability algorithm for directed graphs
with an almost linear update time. In Proc. 36th ACM Symp. on Theory of Com-
puting – STOC 2004.

Experimental Study of Geometric t-Spanners

Mohammad Farshi1,� and Joachim Gudmundsson2

1 Department of Mathematics and Computing Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

m.farshi@tue.nl
2 NICTA��, Sydney, Australia

joachim.gudmundsson@nicta.com.au

Abstract. The construction of t-spanners of a given point set has re-
ceived a lot of attention, especially from a theoretical perspective. In this
paper we perform the first extensive experimental study of the properties
of t-spanners. The main aim is to examine the quality of the produced
spanners in the plane. We implemented the most common t-spanner al-
gorithms and tested them on a number of different point sets. The ex-
periments are discussed and compared to the theoretical results and in
several cases we suggest modifications that are implemented and eval-
uated. The quality measurements that we consider are the number of
edges, the weight, the maximum degree, the diameter and the number
of crossings.

1 Introduction

Consider a set V of n points in the plane. A network on V can be modeled as an
undirected graph G with vertex set V of size n and an edge set E of size m where
every edge e = (u, v) has a weight wt(e). A geometric (Euclidean) network is a
network where the weight of the edge e = (u, v) is the Euclidean distance d(u, v)
between its endpoints u and v. Let t > 1 be a real number. We say that G is
a t-spanner for V , if for each pair of points u, v ∈ V , there exists a path in G
of weight at most t times the Euclidean distance between u and v. We call this
path a t-path between u and v. The minimum t such that G is a t-spanner for
V is called the stretch factor, or dilation, of G. Finally, a subgraph G′ of a given
graph G is a t-spanner for G if for each pair of points u, v ∈ V , there exists a
path in G′ of weight at most t times the weight of the shortest path between u
and v in G.

Complete graphs represent ideal communication networks, but they are ex-
pensive to build; sparse spanners represent low-cost alternatives. The weight of
the spanner is a measure of its sparseness; other sparseness measures include the
number of edges, the maximum degree, and the number of crossings. Spanners

� Supported by Ministry of Science, Research and Technology of I. R. Iran.
�� National ICT Australia is funded through the Australian Government’s Backing

Australia’s Ability initiative, in part through the Australian Research Council.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 556–567, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Experimental Study of Geometric t-Spanners 557

for complete Euclidean graphs as well as for arbitrary weighted graphs find ap-
plications in robotics, network topology design, distributed systems, design of
parallel machines, and many other areas and have been a subject of considerable
research. Recently low-weight spanners found interesting practical applications
in areas such as metric space searching [15,16] and broadcasting in communica-
tion networks [8,13]. Several well-known theoretical results also use the construc-
tion of t-spanners as a building block, for example, Rao and Smith [18] made
a breakthrough by showing an optimal O(n log n)-time approximation scheme
for the well-known Euclidean traveling salesperson problem, using t-spanners (or
banyans). Similarly, Czumaj and Lingas [6] showed approximation schemes for
minimum-cost multi-connectivity problems in geometric networks. The problem
of constructing spanners has received considerable attention from a theoreti-
cal perspective, see the survey [7], but almost no attention from a practical, or
experimental perspective [15,20].

In this paper we consider the most well-known algorithms for the construction
of t-spanners in the plane: greedy spanners, Θ-graphs, ordered Θ-graphs and
spanners constructed from the well-separated pair decomposition (WSPD). The
quality measurements used in the literature is the number of edges, the weight,
the maximum degree, the diameter and the number of crossings. We study each
of the algorithms independently, but also in combination with each other. To the
best of the authors knowledge, this is the first time an extensive experimental
study has been performed on the construction of t-spanners. Navarro and Paredes
[15] presented four heuristics for point sets in high-dimensional metric space
(d = 20) and showed by empirical methods that the running time was O(n2.24)
and the number of edges in the produced graphs was O(n1.13). In [20] Sigurd
and Zachariasen considered the problem of constructing a minimum weight t-
spanner of a given graph, but they only considered sparse graphs of small size,
i.e., graphs with at most 64 vertices and with average vertex degree 4 or 8.

The paper is organized as follows. Next we briefly go through the different
properties that we considered in the experiments, and present a first algorithm
that computes the t-diameter of a t-spanner. In Section 3 we give a short de-
scription of each of the algorithms that we implemented, together with their
theoretical bounds. Then, in Sections 4–5 we discuss the implementations, the
data we used and the experimental results, followed by Section 6 where we dis-
cuss the results and propose improvements.

2 Spanner Properties

As input we are given a set V of n points in the plane and a positive real value
t > 1. The aim is to compute a t-spanner for V with some good properties where
the quality measurements that we will consider in this paper are as follows:

Size: Defined to be the number of edges in the graph. This is the most impor-
tant property of the constructed networks and all the implemented algorithms
produce spanners with only O(n) edges. This key feature has made the con-

558 M. Farshi and J. Gudmundsson

struction of spanners one of the fundamental tools in the development of fast
approximation algorithms for geometrical problems.

Degree: The maximum number of edges incident to a vertex. This property has
been shown to be useful in the development of approximation algorithms [10]
and for the construction of ad hoc networks where small degree is essential in
trying to develop fast localized algorithms [13].

Weight: The weight of a Euclidean network is the sum of the edge weights.
The best that can be achieved is a constant times the weight of the minimum
spanning tree of input point set, denoted wt(MST).

Diameter: Defined as the smallest integer d such that for any pair of vertices u
and v in V , there is a t-path in the graph between u and v containing at most
d edges, i.e., a path of weight at most t · |uv|. Note that there is a trade-off
between the degree and the diameter and between the diameter and the size [2].
For wireless ad hoc networks it is often desirable to have small diameter since it
determines the maximum number of times a message has to be transmitted in a
network.

Crossings: A pair of edges with a non-empty intersection is said to cross. The
total number of pairs of edges in a graph that cross is the number of crossings.
One wants to minimize the number of crossings since it decreases the complexity
and the readability of a graph [17].

2.1 Diameter

As mentioned before, the diameter of a t-spanner is the smallest integer k such
that there is a t-path between each pair of points that contains at most k edges.
As far as we know there is no known algorithm on how to compute the diameter of
a t-spanner, below we present a dynamic programming approach for the problem
which we will use in Section 4 to calculate the diameter of the constructed t-
spanners.

Assume that L[p, q, k] is the shortest path length between p and q with at
most k edges. If there is no such path, we set L[p, q, k] to ∞. With this definition,
the diameter of a t-spanner is the smallest integer k such that L[p, q, k] ≤ t · |pq|,
for all points p and q.

Lemma 1. Let G = (V, E) be a graph and p and q are two vertices of G. For
each integer k ≥ 2,

L[p, q, k] = min
{

L[p, q, k − 1], min
r∈V \{p,q}

{L[p, r, k − 1] + L[r, q, 1]}
}
.

Note that, based on Lemma 1, L[−,−, 1] and L[−,−, k − 1] is sufficient for
computing L[−,−, k].

Now for computing the diameter, we start with k = 1. Obviously L[p, q, 1] =
|pq| for all edges (p, q) in the graph and L[p, q, 1] = ∞ otherwise. For k ≥
2, we can compute L[−,−, k] using L[−,−, k − 1] and L[−,−, 1]. We continue

Experimental Study of Geometric t-Spanners 559

construction until we received a k such that L[p, q, k] ≤ t · |pq|, for all points p
and q.

Corollary 1. The diameter of a t-spanner G can be computed in O(dn3) time
using O(n2) space, where d is the diameter of G.

3 The Spanner Construction Algorithms

In this section we give a short description of each of the algorithms implemented
together with their theoretical bounds.

3.1 The Greedy Algorithm

The greedy algorithm was discovered independently by Bern in 1989 and Althöfer
et al. [1]. The graph constructed using the greedy algorithm will be called a
greedy graph.

The greedy algorithm maintains a partial t-spanner G′ while processing all
point pairs in order of increasing length. Processing a pair u, v entails a shortest-
path query in G′ between u and v. If there is a t-path between u and v in G′

then the edge (u, v) is discarded, otherwise it is added to G′.
The time complexity of the greedy algorithm is O(n3 log n) and it uses O(n2)

space. There exists an O(n log n) time greedy algorithm [9] that only uses linear
space but, unfortunately, it is very complicated and therefore we decided to
implement the simple version. The following theorem states the theoretical upper
bounds.

Theorem 1. The greedy graph is a t-spanner of V with O(n) edges, maxi-
mum degree O(1) and weight O(wt(MST (V))), and can be computed in time
O(n log n).

Note also that a trivial Ω(n) lower bound on the diameter of a greedy graph is
obtained by placing n points on a line.

The greedy approach can also be used to prune a given t-spanner G = (V, E),
that is, instead of considering all point pairs, the algorithm only considers the
endpoints of the edges in E. In this paper we also perform experiments using
the pruning tool in combination with the other algorithms, see Section 5. The
time complexity of the implemented greedy pruning is O(mn log(n), where m is
the number of edges in the input graph.

Improvement. As mentioned above the running time of the implemented al-
gorithm is O(n3 log n), which is too slow when performing experiments with up
to 13.000 points. We use a speed-up strategy that turned out to decrease the
running time considerably in practice. Originally the algorithm computes the
shortest path for each pair of points to check if there is a t-path between the
two points or not. But there are two simple observations. First, we only need
to know ”Is there a t-path between the points?” and second, the algorithm only

560 M. Farshi and J. Gudmundsson

adds O(n) edge to the graph in total, so the graph does not change very often
during the execution.

Therefore, we use a matrix to save the shortest path between each two points
and update it only when we need to, thus it is not always up to date. Instead of
computing a shortest path for each pair, the main change is that we only check
if there is a t-path or not.

With these changes, the space complexity of the greedy algorithm increases,
but the gain in running time is considerable. We counted the number of shortest
path queries that this algorithm performs in the experiments and surprisingly it
seems that O(n) shortest path queries is sufficient.

Conjecture 1. The modified greedy algorithm performs O(n) shortest path
queries.

3.2 The Θ-Graph Construction

The Θ-graph was discovered independently by Clarkson [5] and Keil [11]. Keil
only considered the graph in two dimensions while Clarkson extended his con-
struction to also include three dimensions. Later Rupert and Seidel [19] and
Althöfer et al. [1] defined the Θ-graph for higher dimensions.

The Θ-graph algorithm processes each point u as follows. Consider k non-
overlapping cones with apex u and with angle θ = 2π

k (k is related to t). For
each non-empty cone C add an edge between u and v to the graph, where v is
the point within C whose orthogonal projection onto the bisector of C is closest
to u.

Theorem 2. The Θ-graphs is a t-spanner of V for t = 1
cos θ−sin θ with O(kn)

edges and can be computed in O(kn log n) time.

Note the even though the “out-degree” of each vertex is bounded by k the “in-
degree” could be linear and the weight of the Θ-graph can be Ω(n·wt(MST (V))).
Finally, by placing n points on a line it follows that the diameter of the Θ-graph
is Ω(n).

3.3 Ordered Θ-Graph

A simple variant of the Θ-graph that has been shown to have good theoretical
performance is the Ordered Θ-graph by Bose et al. [3]. An ordered Θ-graph of
V is obtained by inserting the points of V in some order. When a point p is
inserted, we draw the cones as in the Θ-graph algorithm around p and connect
p to its closest previously-inserted point in each cone.

Theorem 3. The Ordered Θ-graphs is a t-spanner of V for t = 1
cos θ−sin θ with

O(kn) edges and O(k log n) degree, and can be computed in O(kn log n) time.

Remark 1. If the points are processed in random order then the diameter will
be bounded by O(log n) with high probability [3], but then the degree bound
does not hold anymore.

Experimental Study of Geometric t-Spanners 561

3.4 The WSPD-Graph

The well-separated pair decomposition (WSPD) was developed by Callahan and
Kosaraju [4]. Callahan and Kosaraju show that a WSPD of size m = O(sdn)
can be computed in O(sdn log n) time.

Constructing a t-spanner using the WSPD is surprisingly easy. It is sufficient
to compute a WSPD of V w.r.t. s = 4(t+1)

t−1 and then add an each between each
well-separated pair in the WSPD.

Theorem 4. The WSPD-graph is a t-spanner for V ⊂ R2 with O((t
t−1)2 · n)

edges, and can be constructed in time O((t
t−1)2n logn).

An Ω(n) lower bound on the degree and the diameter of a WSPD-graph can be
shown by placing n points on a line with exponentially decreasing inter point
distance from left to right. However we have not been able to find any non-trivial
lower or upper bound on the weight of a WSPD-graph.

4 Experimental Results

In this section we discuss the results in more detail by considering each of the
five properties. The experiments were done on point sets ranging from 100 to
13.000 points with five different distributions:

– uniform distribution,
– normal distribution with mean 500 and deviation 100,
– gamma distribution with shape parameter 0.75,
– n

100 uniformly distributed unit squares with 100 uniformly distributed points,
and

–
√

n uniformly distributed unit squares with
√

n uniformly distributed points.

In the discussion that follows we will call the point sets produced with the two
latter distributions the clustered sets, and the other point sets will be called the
non-clustered sets. To avoid the effect of specific instances, we ran the algorithms
on many different instances and took the average of the results.

We produced t-spanners using values of t between 1.05 and 2. For larger
values of t one can use the Delaunay triangulation which is known to have
dilation ≈ 2.42 [12]. The algorithms were implemented in C++ using the LEDA
5.0 library [14].

4.1 Size

The number of edges in the produced graphs were all linear with respect to the
number of points and, as expected, the greedy graph had the smallest number
of edges. For t = 2, t = 1.1 and t = 1.05 the number of edges in the greedy
graph is approximately 2n, 4n and 6n respectively, which is surprisingly small.
For comparison it is interesting to note that the Delaunay triangulation has
approximately 3n edges and dilation bounded by 2.42 [12]. A short summary

562 M. Farshi and J. Gudmundsson

of the results is that the size of the WSPD-graph is roughly a factor 7 to 13
times greater than the size of the (ordered) Θ-graph which in turn is roughly a
factor 5 to 10 times greater than the size of the greedy graph. For the uniform
distribution and for t = 2 the results can be seen in Fig. 1a. The WSPD algorithm
was expected to perform slightly better for clustered sets since it uses a clustering
approach, but the improvement was greater than predicted. On clustered sets
the WSPD algorithm produced graphs where the number of edges is comparable,
or even smaller, than the number of edges in the (ordered) Θ-graph. Especially
for small values of t the algorithm performed better.

4.2 Degree

As above, the greedy algorithm again outperformed the other approaches. It is
the only algorithm that has a theoretical constant upper bound on its degree,
see Theorem 1, and the experiments supports the theory. In the tests the greedy
algorithm produced graphs with degree about 5, 7 and 23 for t = 2, t = 1.5 and
t = 1.05 respectively and the bounds are roughly the same for all the test sets.

For non-clustered sets the degree of the (ordered) Θ-graphs increases very
slowly with respect to the number of points, for example for the uniform dis-
tribution the ordered Θ-graph has a degree of 24 for 100 points and the degree
then slowly increases to 31 for 10.000 points. The ordered Θ-graph generally
performs slightly better than the Θ-graph. However, for clustered sets the re-
sults change unexpectedly. The degree of the Θ-graph deteriorate rapidly and
the degree varies highly between different instances. The ordered Θ-graph on the
other hand performs slightly better than for the other distributions, as shown
in Fig. 1b. Again it seems that the experiments supports the theory stated in
Theorem 3 since the ordered Θ-graph has O(k log n) degree.

As expected the WSPD-algorithm generated the graphs with the highest
degree. For small values of t it almost shows a linear behavior for sets with up to
13.000 points. Although for larger values of t it seems to converge slowly, but to
be able to draw any distinct conclusions more experiments has to be performed
on much larger point sets. But as observed in the previous section, the WSPD-
algorithm performs much better on clustered sets and seems to converge to a
constant for large point sets. For example for t = 1.05 and t = 1.1 the degree is
bounded by 350 and 290 respectively, and it does not seem to increase.

Finally, we tried to improve the WSPD-graph by considering a modification
of the WSPD-algorithm. Instead of adding an arbitrary edge between a well-
separated pair, we add an edge between the two endpoints in the pairs with
smallest degree. This does not improve the theoretical upper bound but we
were hoping to see some improvements in the experimental bounds. There is a
small improvement, unfortunately this improvement only shows up for graphs
with t > 1.5, for smaller values the difference is negligible. For t = 1.5 the
improvement is roughly a factor 1.5 and increases to about 3 for t = 4. Note also
that the Ω(n) lower bound stated in Section 3 does not hold for the modified
WSPD-algorithm.

Experimental Study of Geometric t-Spanners 563

4.3 Weight

Recall that theoretically the weight of the greedy graph is O(wt(MST)) while
the weight of the (ordered) Θ-graph and the WSPD-graph is only bounded by
O(n · wt(MST)) so the fact that the weight of the greedy graphs is much less
than the weight of the other graphs is hardly surprising. For t = 2 the weight
of the greedy graph is approximately 2 times the wt(MST) and for t = 1.1 and
t = 1.05 the factors are 10 and 18 respectively, as can be seen in Fig. 1c. For the
clustered sets the bounds are even slightly better.

For the non-clustered sets the weight of the Θ-graph was unexpectedly small
and the ratio between its weight and the wt(MST) increased very slowly. For
example for t = 1.1 it went from 133 for 100 points to 330 for 13.000 points. An
interesting question that we have not been able to answer neither through the
experiments nor in theory is if the expected weight of the Θ-graph for uniform
point sets is bounded by a constant times the wt(MST). For clustered sets the
weight of the Θ-graph is almost linear with respect to the number of clusters
and its weight is highly dependent on the different instances.

One would expect a similar behavior from the ordered Θ-graph but the weight
of the ordered Θ-graph is much higher than both the greedy graph and the Θ-
graph. The ratio between the weight of the ordered Θ-graph and the wt(MST)
is almost a linear function with respect to the number of points up to 10.000
points before it starts to level out. Moreover the behavior of the weight of the
ordered Θ-graph is unpredictable and seems to be highly dependent on the
specific instances.

The weight of the WSPD-graph has the same behavior as the degree of the
WSPD-graph. For a small stretch factor it shows a linear behavior compared to
the wt(MST) and for larger values of t it seems to converge slowly. Just as for
the degree, the WSPD-algorithm performs very well on clustered sets and seems
to converge to a large constant times the wt(MST) for large sets. For example
for t = 1.05 the ratio was bounded by 900 and for, t = 2 it was bounded
by 230.

� � � � � � � 	
 � � � � � � � � � � 	 � 	 � � �

�

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� �

� � � � � 	 � � 	 � � � � � �

�
�
�
�

� � 	
 � � � � � � � �
 � � � � � � � � � � � � 	
 � � � � � � � �
 � � � �

� � � � � � � � � � � 	
 � � � � � � � �
 � � � � � � � � � � � � � � �
 � � � �

� � � � � � � � � 	 � � � � � 	 � � � 	 � 	 � � 	 � � �

�

 � �

� � � �

� � �

� � � �

� � �

! � � �

� �

� � � � � 	 � � 	 � � � � � �

�
�
�
�
�

� � 	
 � � � � � � � �
 � � � � � � � � � � � � 	
 � � � � � � � �
 � � � �

� � � � � � � � � � � 	
 � � � � � � � �
 � � � � � � � � � � � � � � �
 � � � �

� � � � � � � 	
 � � � � � � � � � � 	 � 	 � � 	 � � �

�

� � �

� � �

� � �

� � �

� � � �

� � � �

� �

� � � � � 	 � � 	 � � � � � �

�
�
�
�
�
�
	
�
	

�
!
"
�
#
$

� � 	
 � � � � � � � �
 � � � � � � � � � � � � 	
 � � � � � � � �
 � � � �

� � � � � � � � � � � 	
 � � � � � � � �
 � � � �

Fig. 1. (a) Size for uniform distribution sets. (b) Degree for clustered sets. (c)
Weight/wt(MST) for uniform distribution sets.

564 M. Farshi and J. Gudmundsson

4.4 Diameter

Due to the high complexity of computing the spanner diameter of a graph we
could only compute the diameter for graphs with up to 2000 points.

Note that all of the algorithms that we implemented may produce graphs
whose diameter is Θ(n). The only known algorithm that produces graphs with
smaller diameter is the modified ordered Θ-graphs which was shown to have
O(log n) diameter with high probability [3].

As expected the greedy graphs had the highest diameter. This follows from
the fact that the greedy graph has fewer edges than the other graphs and the
greedy approach favors short edges and avoids adding long edges. The diameter of
a 2-spanner generated by the greedy algorithm (normal distribution) is about 16
for a set with 100 points and it reaches 58 for a set with 2000 points. The diameter
seems to increase linearly with the size of the input set. Also the diameter changes
slightly depending on the different distributions, for t = 1.1 and n = 1000
the diameter varies between 22 for normal distribution to 36 for the clustered
distribution.

The diameter of the (ordered) Θ-graph is much smaller than the greedy
graph. A 2-spanner generated by the (ordered) Θ-graph has diameter approx-
imately 5 for a set with 100 points and it increases to 15 for a set with 2000
points. The ordered Θ-graph has generally a slightly lower diameter compared
to the Θ-graph. The diameter of the (ordered) Θ-graphs is almost the same for
all the distributions.

Finally, the WSPD-graph has very low diameter and it converges fast. The
diameter of a 2-spanner on a set with 100 points (normal distribution) is 3.4
and it increases to 5 for a point set with 2.000 points. In the clustered sets, the
diameter is slightly higher, between 4 and 7, probably because the number of
edges in these graphs are smaller compared to the graphs for the non-clustered
sets. An oddity is that the modified WSPD algorithm which add an edge between
the two points of well separated pair with smallest degree has slightly lower
diameter compared with the WSPD-graphs.

4.5 Crossings

The last property we discuss is the number of crossings which obviously is highly
dependent on the number of edges, therefore it is not surprising that the greedy
graph is superior to the other graphs and it is the only graph with a reasonable
number of crossings. Just as for the diameter the experiments could only be done
on sets with up to 2.000 points since the number of crossings only is bounded by
O(m2) where m is the number of edges in the graph. For t = 1.5 and n = 2.000
the number of crossings in the greedy graph is on average 94. Also the number of
crossings seems to increase linearly with respect to the number of points which
is surprisingly low. For t = 1.1 the number of crossings for n = 100, 500 and
2.000 is on average 1.727, 23.851 and 50.210.

We did some initial experiments with the (ordered) Θ-graphs but the number
of crossings were so high that we found the results uninteresting, for example
for t = 1.1 and n = 100 the Θ-graph has 2.437 edges and 300K crossings! Thus

Experimental Study of Geometric t-Spanners 565

if the number of crossings is a priority to the user then the only option is to use
the greedy algorithm.

5 Hybrid Algorithms

As you can see in Section 4, the greedy algorithm produced graphs whose size,
weight, degree and number of crossings are superior to the graphs produced
from the other approaches. However the running time of the greedy algorithm is
O(n3 log n). A way to improve the running time while, hopefully, still obtaining
the high-quality graphs is to first compute a tα-spanner (0 < α < 1) G of the
input set which contains linear number of edges and then compute a (t1−α)-
spanner of G using the greedy pruning algorithm. The dilation of the resulting
graph is bounded by tα · t1−α = t. The tα-spanner can be constructed using
(ordered) Θ-graphs or WSPD-graphs, ensuring that the number of edges isO(n),
and consequently the total running time would decrease to O(n2 log n).

A second reason why we consider hybrid algorithms is the fact that the
(ordered) Θ-graphs and the WSPD-graph actually have much smaller dilation
than the specified t-value. For example for t = 2 the greedy graph has dilation
close to 2 while the ordered Θ-graph and the WSPD-graph has dilation 1.4 and
the Θ-graph has dilation 1.2. For t = 1.1 the Θ-graph has dilation 1.02, the
ordered Θ-graph has dilation 1.06 and the WSPD-graph has dilation 1.04. By
first producing the (ordered) Θ-graph or the WSPD-graph we use the fact that
they can be constructed fast and the number of edges remaining is linear. Since
their dilation in practice is very small it leaves a lot of freedom for the greedy
algorithm to produce a t-spanner with good properties.

This approach has another advantage which is that the parameter α can be
adjusted to fit the application. If α is chosen to be close to zero then the resulting
graph is very similar to the greedy graph but the gain in running time is small.
If α is chosen close to 1 then the algorithm is faster but the quality of the graph
is worse.

We performed the same experiments using different algorithmic combinations
and compared the properties of the generated graphs with the greedy graphs.
We implemented the combination of (ordered) Θ-graph and WSPD-graph plus
greedy pruning.

The experiments showed the following interesting observations. The graphs
generated by the three hybrid algorithms has more or less the same properties,
and even though the number of edges, degree and weight is higher their behavior
is very similar to the greedy algorithm. This probably follows from the fact that
the actual dilation of the (ordered) Θ-graphs and the WSPD-graph is much
smaller in reality than the given parameter tα, thus as expected the resulting
graphs are mainly decided by the greedy pruning. For the uniform distribution
with α = 0.9 and t = 1.1 the number of edges and degree of the graphs generated
by the hybrid algorithms are roughly a factor 3 greater than the number of edges
and degree of the greedy graph. Also the weight is approximately six times
greater and the diameter is less than a half that of the greedy graph. Finally, if

566 M. Farshi and J. Gudmundsson

the value of α is very small, say 0.1, then the resulting graphs have more or less
the same properties as the greedy graphs.

6 Conclusion and Future Work

In short the conclusions from the experiments are as follows:

– The greedy graph has surprisingly good quality when it comes to the number
of edges, the weight, the degree and the number of crossings. The diameter
of the greedy graph is considerably higher than the diameter of the other
graphs.

– The greedy improvement worked out much better than expected and it would
be very interesting if one could prove that the improved algorithm has a
running time of O(n2 log n) (expected).

– The experiments shows that the weight of the Θ-graph is very small for
non-clustered sets. Proving, or disproving, that the expected weight of the
Θ-graph for uniform distributions is an interesting and challenging open
question.

– The Θ-graph has unexpectedly high degree when the sets are clustered and
its degree varies greatly between different instances. Also the degree of the
ordered Θ-graph is much smaller, for clustered sets, than the Θ-graph. Sur-
prisingly the same results can not be seen in the weight of the (ordered)
Θ-graphs.

– The WSPD-algorithm produces graphs with unexpectedly poor quality for
non-clustered sets. For clustered sets the results are much better; the weight
and degree of the WSPD-graph are considerably smaller than the weight and
degree of the (ordered) Θ-graphs. The weight and the degree of the WSPD-
graphs seem to converge for very large data sets. However, to answer this
conjecture we need to perform tests on much larger sets.

Future work includes more extensive tests with larger sets to be able to ex-
perimentally answer some of the remaining open questions. However the main
objective will be to experimentally compare the time complexity of the algo-
rithms.

References

1. I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners
of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.

2. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners:
short, thin, and lanky. In Proc. 27th ACM Symposium on Theory of Computing,
pages 489–498, 1995.

3. P. Bose, J. Gudmundsson, and P. Morin. Ordered theta graphs. Computational
Geometry: Theory and Applications, 28:11–18, 2004.

4. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. Journal
of the ACM, 42:67–90, 1995.

Experimental Study of Geometric t-Spanners 567

5. K. L. Clarkson. Approximation algorithms for shortest path motion planning. In
Proc. 19th ACM Symposium on Computational Geometry, pages 56–65, 1987.

6. A. Czumaj and A. Lingas. Fast approximation schemes for Euclidean multi-
connectivity problems. In Proc. 27th International Colloquium on Automata, Lan-
guages and Programming, volume 1853 of Lecture Notes in Computer Science, pages
856–868. Springer-Verlag, 2000.

7. D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 425–461. Elsevier Science Publishers,
Amsterdam, 2000.

8. A. M. Farley, A. Proskurowski, D. Zappala, and K. J. Windisch. Spanners and
message distribution in networks. Discrete Applied Mathematics, 137(2):159–171,
2004.

9. J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Improved greedy algo-
rithms for constructing sparse geometric spanners. SIAM Journal of Computing,
31(5):1479–1500, 2002.

10. J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. Smid. Approximate
distance oracles for geometric graph. In Proc. 13th ACM-SIAM Symposium on
Discrete Algorithms, 2002.

11. J. M. Keil. Approximating the complete Euclidean graph. In Proc. 1st Scandina-
vian Workshop on Algorithmic Theory, pages 208–213, 1988.

12. J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete
Euclidean graph. Discrete and Computational Geometry, 7:13–28, 1992.

13. X.-Y. Li. Applications of computational geomety in wireless ad hoc networks.
In X.-Z. Cheng, X. Huang, and D.-Z. Du, editors, Ad Hoc Wireless Networking.
Kluwer, 2003.

14. K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, UK, 2000.

15. G. Navarro and R. Paredes. Practical construction of metric t-spanners. In Proc.
5th Workshop on Algorithm Engineering and Experiments, pages 69–81. SIAM
Press, 2003.

16. G. Navarro, R. Paredes, and E. Chvez. t-spanners as a data structure for metric
space searching. In Proc. 9th International Symposium on String Processing and
Information Retrieval, volume 2476 of Lecture Notes in Computer Science, pages
298–309. Springer-Verlag, 2002.

17. Helen C. Purchase. Which aesthetic has the greatest effect on human understand-
ing? In Graph Drawing, volume 1353 of Lecture Notes in Computer Science, pages
248–261. Springer-Verlag, 1997.

18. S. Rao and W. D. Smith. Approximating geometrical graphs via spanners and
banyans. In Proc. 30th ACM Symposium on the Theory of Computing, pages 540–
550. ACM, 1998.

19. J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean
graph. In Proc. 3rd Canadian Conference on Computational Geometry, pages 207–
210, 1991.

20. M. Sigurd and M. Zachariasen. Construction of minimum-weight spanners. In
Proc. 12th European Symposium on Algorithms, number 3221 in Lecture Notes in
Computer Science. Springer-Verlag, 2004.

Highway Hierarchies Hasten
Exact Shortest Path Queries

Peter Sanders1,� and Dominik Schultes1,2

1 Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
sanders@ira.uka.de

2 Universität des Saarlandes
mail@dominik-schultes.de

Abstract. We present a new speedup technique for route planning that
exploits the hierarchy inherent in real world road networks. Our algo-
rithm preprocesses the eight digit number of nodes needed for maps of
the USA or Western Europe in a few hours using linear space. Shortest
(i.e. fastest) path queries then take around eight milliseconds to pro-
duce exact shortest paths. This is about 2 000 times faster than using
Dijkstra’s algorithm.

1 Introduction

Computing shortest paths in graphs (networks) with nonnegative edge weights
is a classical problem of computer science. From a worst case perspective, the
problem has largely been solved by Dijkstra in 1959 [1] who gave an algorithm
that finds all shortest paths from a starting node s using at most m+n priority
queue operations for a graph G = (V,E) with n nodes and m edges.

However, motivated by important applications (e.g., in transportation net-
works), there has recently been considerable interest in the problem of acceler-
ating shortest path queries, i.e., the problem to find a shortest path between a
source node s and a target node t. In this case, Dijkstra’s algorithm can stop as
soon as the shortest path to t is found.

A classical technique that gives a constant factor speedup is bidirectional
search which simultaneously searches forward from s and backwards from t until
the search frontiers meet. All further speedup techniques either need additional
information (e.g., geometry information for goal directed search) or precomputa-
tion. There is a trade-off between the time needed for precomputation, the space
needed for storing the precomputed information, and the resulting query time.
In Section 1 we review existing precomputation approaches, which have made
significant progress, but still fall short of allowing fast exact shortest path queries
in very large graphs.

In particular, from now on we focus on shortest paths in large road networks
where we use ‘shortest’ as a synomym for ‘fastest’. The graphs used for North

� Partially supported by DFG grant SA 933/1-2.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 568–579, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Highway Hierarchies Hasten Exact Shortest Path Queries 569

America or Western Europe already have around 20 000 000 nodes so that sig-
nificantly superlinear preprocessing time or even slightly superlinear space is
prohibitive. To our best knowledge, all commercial applications currently only
compute paths heuristically that are not always shortest possible. The basic idea
of these heuristics is the observation that shortest paths “usually” use small roads
only locally, i.e., at the beginning and at the end of a path. Hence the heuristic
algorithm only performs some kind of local search from s and t and then switches
to search in a highway network that is much smaller than the complete graph.
Typically, an edge is put into the highway network if the information supplied
on its road type indicates that it represents an important road.

Our approach is based on the idea to compute exact shortest paths by defin-
ing the notion of local search and highway network appropriately. This is very
simple. We define local search to be a search that visits the H closest nodes from
s (or t) where H is a tuning parameter. This definition already fixes the highway
network. An edge (u, v) ∈ E should be a highway edge if there are nodes s and t
such that (u, v) is on the shortest path from s to t, v is not within the H closest
nodes from s, and u is not within the H closest nodes from t. Section 2 gives a
more formal definition of the basic concepts used in this paper.

One might think that an expensive all-pairs shortest path computation is
needed to find the highway network. However, in Section 3 we show that each
highway edge is also within some local shortest path tree B rooted at some s ∈ V
such that all leaves of B are “sufficiently far away” from s.

So far, the highway network still contains all the nodes of the original network.
However, we can prune it significantly: Isolated nodes are not needed. Trees
attached to a biconnected component can only be traversed at the beginning
and end of a path. Similarly, paths consisting of nodes with degree two can be
replaced by a single edge. The result is a contracted highway network that only
contains nodes of degree at least three. We can iterate the above approach, define
local search on the highway network, find a “superhighway network”, contract
it,. . . We arrive at a multi-level highway network — a highway hierarchy.

Section 4 develops a query algorithm that uses highway hierarchies. After
several correctness preserving transformations we get a bidirectional, Dijkstra-
like search in a single graph that contains all levels. The only modifications affect
the selection of edges to be relaxed and how to finish the search when the search
frontiers from s and t meet.

In Section 5 we summarise experiments using detailed road networks for West-
ern Europe and the USA. Using a uniform neighbourhood size of 125 and 225 re-
spectively, the graphs shrink geometrically from level to level. This leads to prepro-
cessing time around four hours and averagequery times below 8 ms. Possible future
improvements are discussed in Section 6. Proofs and additional experimental data
can be found in the full version at http://www.dominik-schultes.de/hwy/.

Related Work
There is so much literature on shortest paths and preprocessing that we can
only highlight selected results that help to put our results into perspective. In
the following, speedup refers to the acceleration compared to the unidirectional

570 P. Sanders and D. Schultes

variant of Dijkstra’s algorithm that stops when the target is found. For recent,
more detailed overviews we refer to [2,3].

Perhaps the most interesting theoretical results on route planning are algo-
rithms for planar graphs that might be adaptable to route networks since those
are ”almost planar. Using O(n log3 n) space and preprocessing time, query time
O(
√
n logn) can be achieved [4] for directed planar graphs without negative cy-

cles. Queries accurate within a factor (1 + ε) can be answered in near constant
time using O((n log n)/ε) space and preprocessing time [5]. However, for very
large graphs we need linear space consumption so that these approaches seem
not directly applicable to the problem at hand.

The previous practical approach closest to ours is the separator based multi-
level method [6]. The idea is to partition the graph into small subgraphs by
removing a (hopefully small) set of separator nodes. These separator nodes to-
gether with edges representing precomputed paths between them constitute the
next level of the graph. Queries then only need to search in the partitions of
s and t and in the higher level graph. This process can be iterated. At least
for road networks speedups so far seem to be limited to a factor around ten
whereas better speedup can be observed for railway transportation problems [6].
Disadvantages compared to our method are that performance depends on very
small (and thus hard to find) separators and that the higher level graphs get
quite dense so that going to many levels quickly reaches a point of diminishing
return. In contrast, our method has a very simple definition of what constitutes
the higher level graphs and our higher level graphs remain sparse.

Reach based routing [7] excludes nodes from consideration if they do not
contribute to any path long enough to be of use for the current query. Speedups
up to 20 are reported for graphs with about 400 000 nodes using about 2 hours
preprocessing time. Our method is an order of magnitude faster both in terms
of query time and in terms of preprocessing time.

Most other preprocessing techniques are different from our approach in that
they focus the search towards the target. Very high speedups (hundreds or even
around 2000) are reported for geometric containers [8,3] and bit vectors [9,10].
Both methods store information with each edge. Queries use this information to
decide whether this edge can possibly lead to the target. Our method achieves
similar speedups but needs much less time for preprocessing: To compute k-
bit vectors, O(

√
kn) global shortest path searches are needed (assuming planar

graphs) and geometric containers even need an all-pairs computation.
An interesting alternative are landmark based lower bounds for strengthening

goal directed search [2]. For global queries, about 16 global shortest path com-
putations during preprocessing suffice to achieve speedup around 20. However,
the landmark method needs a lot of space — one distance value for each node-
landmark pair. It is also likely that for real applications each node will need to
store distances to different sets of landmarks for global and local queries. Hence,
landmarks have very fast preprocessing and reasonable speedups but consume
too much space for very large networks.

Highway Hierarchies Hasten Exact Shortest Path Queries 571

2 Preliminaries

We expect an undirected graph G = (V,E) with n nodes and m edges with
nonnegative weights as input.1 We assume w.l.o.g. that there are no self-loops,
parallel edges, or zero weight edges in the input — they could be dealt with easily
in a preprocessing step. The length w(P) of a path P is the sum of the weights of
the edges that belong to P . P ∗ = 〈s, . . . , t〉 is a shortest path if there is no path
P ′ from s to t such that w(P ′) < w(P ∗). The distance d(s, t) between s and t is
the length of a shortest path from s to t. If P = 〈s, . . . , s′, u1, u2, . . . , uk, t

′, . . . , t〉
is a path from s to t, then P |s′→t′ = 〈s′, u1, u2, . . . , uk, t

′〉 denotes the subpath
of P from s′ to t′.

Dijkstra’s Algorithm. In the context of Dijkstra’s algorithm, we use the following
terminology: each node is either unreached, reached, or settled. If a node u is
reached, at least one path (not necessarily the shortest one) from the source
node s to u has been found and u has been inserted into the priority queue. If a
node v is settled, it is reached and has been removed from the priority queue by
a deleteMin operation; a shortest path from s to v has been found.

Canonical Shortest Paths. A selection of shortest paths SP contains for each
connected pair (s, t) ∈ V × V exactly one shortest path from s to t. Such a
selection is called canonical if P = 〈s, . . . , s′, . . . , t′, . . . , t〉 ∈ SP implies that
P |s′→t′ ∈ SP . The elements of a canonical selection are called canonical short-
est paths. If Dijkstra’s algorithm is started from each node s ∈ V , for each
connected pair (s, t) exactly one shortest path is determined. In the full paper
some modifications of Dijkstra’s algorithm are described which ensure that the
obtained selection of shortest paths is canonical.

Locality. Let us fix any rule that decides which element Dijkstra’s algorithm
removes from the priority queue when there is more than one queued element
with the smallest key. Then, during a Dijkstra search from a given node s, all
nodes are settled in a fixed order. The Dijkstra rank rs(v) of a node v is the
rank of v w.r.t. this order. s has Dijkstra rank rs(s) = 0, the closest neighbour
v1 of s has Dijkstra rank rs(v1) = 1, and so on. For a given node s, the distance
of the H-closest node from s is denoted by dH(s), i.e., dH(s) = d(s, v), where
rs(v) = H . The H-neighbourhood NH(s) (or just neighbourhood N(s)) of s is
N(s) := {v ∈ V | d(s, v) ≤ dH(s)}. 2

Highway Hierarchy. For a given parameter H , the highway network G1 =
(V1, E1) of a graph G is defined as the set of edges (u, v) ∈ E that appear
in a canonical shortest path 〈s, . . . , u, v, . . . , t〉 from a node s ∈ V to a node
1 Unless otherwise stated, we always deal with undirected edges. The restriction to

undirected graphs simplifies the presentation of our approach and the implementa-
tion. However, our method can be generalised to directed graphs.

2 For directed graphs we also need an analogous value d̄H(·) that refers to the reverse
graph Ḡ := (V, {(v, u) | (u, v) ∈ E}). N̄(·) is defined correspondingly. From now on,
whenever the target node t or the backward search from t is concerned, we have to
keep in mind that Ḡ, d̄H(·), and N̄(·) apply.

572 P. Sanders and D. Schultes

t ∈ V with the property that v �∈ NH(s) and u �∈ NH(t). The set V1 is the
maximal subset of V such that G1 contains no isolated nodes.

The 2-core of a graph is the maximal vertex induced subgraph with minimum
degree two. A graph consists of its 2-core and attached trees, i.e., trees whose
roots belong to the 2-core, but all other nodes do not belong to it. A line in a
graph is a path 〈u0, u1, . . . , uk〉 where the inner nodes u1, . . . , uk−1 have degree
two. From the highway network G1 of a graph G, the contracted highway network
G′

1 of the graph G is obtained by taking the 2-core of G1 and, then, removing the
inner nodes of all lines 〈u0, u1, . . . , uk〉 and replacing each line by an edge (u0, uk).
Thus, the highway network G1 consists of the contracted highway network (or
short, just core) G′

1 and some components, where ‘component’ is used as a generic
term for ‘attached tree’ and ‘line’. In this paper, ‘components’ is used always in
this specific sense and not to denote ‘connected components’ in general.

The highway hierarchy is obtained by applying the process that leads from
G to G′

1 iteratively. The original graph G0 := G′
0 := G constitutes Level 0 of the

highway hierarchy, G1 corresponds to Level 1, the highway network G2 of the
graph G′

1 is called Level 2, and so on.

3 Construction

For each node s0 ∈ V , we compute and store the value dH(s0). This can be easily
done by a Dijkstra search from each node s0 that is aborted as soon as H nodes
have been settled. Then, we start with an empty set of highway edges E1. For
each node s0, two phases are performed: the forward construction of a partial
shortest path tree B and the backward evaluation of B. The construction is done
by a single source shortest path (SSSP) search from s0; during the evaluation
phase, paths from the leaves of B to the root s0 are traversed and for each edge
on these paths, it is decided whether to add it to E1 or not. The crucial part is
the specification of an abort criterion for the SSSP search in order to restrict it
to a ‘local search’.

Phase 1: Construction of a Partial Shortest Path Tree. A Dijkstra search from
s0 is executed. During the search, a reached node is either in the state active
or passive. The source node s0 is active; each node that is reached for the first
time (insert) and each reached node that is updated (decreaseKey) adopts the
activation state from its (tentative) parent in the shortest path tree B. When a
node p is settled using the path 〈s0, s1, . . . , p〉, then p’s state is set to passive if
|N(s1)∩N(p)| ≤ 1. When no active unsettled node is left, the search is aborted
and the growth of B stops.

Phase 2: Selection of the Highway Edges. During Phase 2, all edges (u, v) are
added to E1 that lie on paths 〈s0, . . . , u, v, . . . , t0〉 in B with the property that
v �∈ N(s0) and u �∈ N(t0), where t0 is a leaf of B. This can be done in time O(|B|).

Theorem 1. An edge (u, v) ∈ E is added to E1 by the construction algorithm iff
it belongs to some canonical shortest path P = 〈s, . . . , u, v, . . . , t〉 and v �∈ N(s)
and u �∈ N(t).

Highway Hierarchies Hasten Exact Shortest Path Queries 573

Speeding Up Construction. An active node v is declared to be a maverick if
d(s0, v) > f ·dH(s0), where f is a parameter. When all active nodes are mavericks,
the search from passive nodes is no longer continued. This way, the construction
process is accelerated and E1 becomes a superset of the highway network. Hence,
queries will be slower, but still compute exact shortest paths. The maverick factor
f enables us to adjust the trade-off between construction and query time.

Theorem 2. The highway network can be contracted in time O(m + n).

Highway Hierarchy. The result of the contraction is the contracted highway
network G′

1, which can be used as input for the next iteration of the construction
procedure in order to obtain the next level of the highway hierarchy.

4 Query

The highway hierarchy G = (V , E) consists of the graphs G0, G1, G2, . . . , GL,
which are arranged in L+1 levels. For each node v ∈ V and each i ∈ {j | v ∈ Vj},
there is one copy of v, namely vi, that belongs to level i of G. Accordingly, there
are several copies of an edge (u, v) when u and v belong to more than one
common level. These edges, which connect two nodes in the same level, are
called horizontal edges. Additionally, G contains a directed edge (v�, v�+1) for
each pair v� ∈ V�, v�+1 ∈ V�+1, where v� and v�+1 are copies of the same node v.
These additional edges are called vertical and have weight 0. For each node v,
not only one value dH(v) is known, but for each level � < L, there is a distance
d�

H(v) from v to the H-closest node in the graph G′
�; if a node v does not belong

to G′
�, d

�
H(v) is defined to be +∞; furthermore, dL

H(v) := +∞. Correspondingly,
we use the notation N �(v) to refer to the set {v′ ∈ V ′

� | d(v, v′) ≤ d�
H(v)}, which

is the neighbourhood of v in the graph G′
�. Note that the neighourhood of a node

that belongs to a component is unbounded, i.e., it contains all nodes of the core
of the corresponding level. The same applies to NL(v), for any v.

The multilevel query algorithm that works on G is a modification of the
bidirectional version of Dijkstra’s algorithm. The source and target nodes of an
s-t query are the corresponding copies of s and t in level 0. For the time being,
we omit the abort-on-success criterion, i.e., we do not abort when both search
scopes meet, but continue until both searches terminate; then, we consider all
nodes that have been settled from both sides as meeting points and take the
shortest path that has been found by this means. The modifications consist of
two restrictions:

1. In each level �, no horizontal edge is relaxed that would leave the neighbour-
hood N �(v∗) of the corresponding entrance point v∗. Each node that belongs
to the core and has been settled via a horizontal edge that leaves a compo-
nent and each node that has been settled via a vertical edge is an entrance
point. In addition, the source and the target nodes of the query are entrance
points. The corresponding entrance point of a settled node v is the last en-
trance point on the path to v.

574 P. Sanders and D. Schultes

2. Components are never entered using a horizontal edge. An edge (u, v) enters
a component if either u belongs to the core and v to a component or u belongs
to a line and v to an attached tree. However, an edge from an attached tree
to a line leaves the attached tree and does not rank among the edges that
enter a component. Note that the endpoint(s) of a component do not belong
to the component but to the core (or to the line in case of the root of a tree
that is attached to a line).

Theorem 3. For any given s, t ∈ V , the multilevel query algorithm finds the
shortest path from s to t in G.

Proof Idea. It is known that the bidirectional version of Dijkstra’s algorithm
works correctly. We have to show that the imposed restrictions do not affect the
correctness. When Restriction 1 applies, it is always possible to switch to the
next level using a vertical edge. Due to the definition of the highway network,
it is guaranteed that the corresponding part of the shortest path which we are
looking for can be found in the next level. A path from s that enters a component
is not traversed due to Restriction 2. However, from the point of view of t, this
path leaves the component so that the edge that has been skipped during the
search from s can be relaxed in the reverse direction during the search from t.
Hence, the path can be found in spite of Restriction 2. These arguments can be
used in an inductive proof over the number of levels. �

Collapse of the Vertical Dimension. So far, we allow that several copies of the
same node are reached. However, it can be shown that it is sufficient if at most
one copy of a node is reached via a horizontal edge, namely the copy with the
smallest tentative distance or, if there are several copies with the same smallest
tentative distance, the copy in the lowest level.

Due to this observation, we can let the vertical dimension collapse. We can
interpret the highway hierarchy G as one plain graph, i.e., there are no copies of
the nodes distributed over several levels. Basically, this graph corresponds to the
original graph G enhanced by some additional data: each edge (u, v) is assigned
a maximum level �(u, v), i.e., it belongs to the levels 0, 1, . . . , �(u, v); each node v
is assigned to at most one component c(v); a component c(v) belongs to a certain
level �(c(v)), which is equal to the level its inner edges belong to. Furthermore,
the value d�

H(v) is stored only if v ∈ G′
�. Our implementation is based on this

interpretation of G.

Abort-on-Success. In the bidirectional version of Dijkstra’s algorithm, we can
abort as soon as both search scopes meet, i.e., there is one node v that is settled
in both search scopes. Then, the shortest path P from s to t does not necessarily
consist of the shortest paths from s to v and from v to t, but it is well known that
it is always ensured that the right meeting point v′ has already been reached
from both sides. The crucial precondition for this fact is that all nodes whose
distance from s is less than d(s, v) have been settled in the search scope of s,
and all nodes whose distance from t is less than d(t, v) have been settled in the
search scope of t.

Highway Hierarchies Hasten Exact Shortest Path Queries 575

Unfortunately, we cannot adopt the abort-on-success criterion as it stands
because, in general, the multilevel query algorithm does not fulfil this precondi-
tion as several edges are not relaxed due to Restriction 1 and 2 so that we cannot
guarantee that all nodes up to a certain distance have been settled. We have al-
ready shown that the algorithm is correct all the same because if an ‘important’
edge is not relaxed (e.g. a component is not entered), then it is relaxed from the
other side (e.g. the component is left). However, we have to wait until the reverse
search has relaxed this edge, i.e., we must not abort too early. Nevertheless, even
if we have skipped an edge e = (u, v) at node u, we can abort after both search
scopes have met as soon as it is certain that e will not be relaxed from v during
the final steps of the search. We can use the following approach. Let Es denote
the set of all horizontal edges that have been skipped during the search from s.
Et is defined accordingly. After both search scopes have met, we can abort as
soon as the search from t has finished search level �̂s := maxe∈Es �(e) and the
search from s has finished level �̂t := maxe∈Et �(e). A search level � is finished
when there are no reached but unsettled nodes in level � or below. If the search
level � is finished, edges e in levels �(e) ≤ � cannot be relaxed any longer. Hence,
when the search from t has finished search level �̂s, it is certain that no edge
e that belongs to a level �(e) ≤ �̂s will be relaxed during the final steps of the
search, in particular, no edge that has been skipped during the search from s will
be traversed by the backward search. There are several possibilities to further
improve this abort criterion, which are described in the full paper.

5 Experiments
Implementation. We use a binary heap priority queue. Our current implemen-
tation leaves room for reducing both running time and memory usage.

Environment. The experiments were done on a 64-bit machine with 8 GB main
memory and 1 MB L2 cache, using one out of four AMD Opteron processors
clocked at 2.2 GHz, running SuSE Linux (kernel 2.6.5). The program was com-
piled by the GNU C++ compiler 3.3.3 using optimisation level 3.

Instances. Basically, we deal with two test instances, namely, the road networks
of the United States of America (minus Alaska and Hawaii) and of Western Eu-
rope. The former was obtained from the TIGER/Line Files [11] by merging the
relevant data of all counties. The latter contains the 14 European countries Aus-
tria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and the UK. The data has been
made available for scientific use by the company PTV AG. In some cases, we
restrict our experiments to the German road network. In all cases, as we deal
with undirected graphs, we ignored the restrictions caused by one-way streets.

The original graphs contain for each edge a length and a road category, e.g.,
motorway, national road, regional road, urban street. We assign average speeds
to the road categories, compute for each edge the average travel time, and use it
as weight. Table 1 summarises important properties of the used road networks
and the key results of the experiments.

576 P. Sanders and D. Schultes

Table 1. Overview of the used road networks and key results. The parameter H is
used iteratively until the construction leads to an empty highway network. We pro-
vide average values for 10 000 queries, where the source and target nodes are chosen
randomly. ‘Speedup’ refers to a comparison with Dijkstra’s algorithm3. ‘Efficiency’ [2]
denotes the number of nodes that belong to the computed shortest paths divided by
the number of nodes that are settled by the multilevel query algorithm. For Germany,
we give the memory usage on a 32-bit machine in parentheses.

USA Europe Germany

input

#nodes 24 278 285 18 029 721 4 345 567
#edges 29 106 596 22 217 686 5 446 916
#degree 2 nodes 7 316 573 2 375 778 604 540
#road categories 4 13 13

parameters
average speeds [km/h] 40–100 10–130 10–130
H 225 125 100

construction
CPU time [h:min] 4:15 2:41 0:30
#levels 7 11 11

query

CPU time [ms] 7.04 7.38 5.30
#settled nodes 3 912 4 065 3 286
speedup (CPU time) 2 654 2 645 680
speedup (#settled nodes) 3 033 2 187 658
efficiency 113% 34% 13%
main memory usage [MB] 2 443 1 850 466 (346)

Fast vs. Precise Construction. During various experiments, we came to the con-
clusion that it is a good idea not to take a fixed maverick factor f for all levels
of the construction process, but to start with a low value (i.e. fast construction)
and increase it level by level (i.e. more precise construction). For the following
experiments, we used the sequence 0, 2, 4, 6,

Best Neighbourhood Sizes. For two levels � and � + 1 of a highway hierarchy,
the shrinking factor is the ratio between |E′

�| and |E′
�+1|. In our experiments,

we observed that the highway hierarchies of the USA and Europe were almost
self-similar in the sense that the shrinking factor remained nearly unchanged
from level to level when we used the same neighbourhood size H for all levels.
We kept this approach and applied the same H iteratively until the construction
led to an empty highway network. Figure 1 demonstrates the shrinking process
for Europe. For most levels, we observe an almost constant shrinking factor
(which appears as a straight line due to the logarithmic scale of the y-axis).
The greater the neighbourhood size, the greater the shrinking factor. The first
iteration (Level 0→1) and the last few iterations are exceptions: at the first
iteration, the construction works very well due to the characteristics of the real
world road network (there are many trees and lines that can be contracted);
at the last iterations, the highway network collapses, i.e., it shrinks very fast,
because nodes that are close to the border of the network usually do not belong

3 The averages for Dijkstra’s algorithm are based on only 1 000 queries.

Highway Hierarchies Hasten Exact Shortest Path Queries 577

107

106

105

104

1000

100

10

1
 0 2 4 6 8 10 12 14 16

#e
dg

es

level

H = 75
H = 125
H = 175
H = 300

Fig. 1. Shrinking of the highway networks of Europe. For different neighbourhood
sizes H and for each level �, we plot |E′

�|, i.e., the number of edges that belong to the
core of level �.

to the next level of the highway hierarchy, and when the network gets small,
almost all nodes are close to the border.

Multilevel Queries. Table 1 contains average values for queries, where the source
and target nodes are chosen randomly. For the two large graphs we get a speedup
of more than 2 000 compared to Dijkstra’s algorithm both with respect to (query)
time4 and with respect to the number of settled nodes.

For our largest road network (USA), the number of nodes that are settled
during the search is less than the number of nodes that belong to the shortest
paths that are found. Thus, we get an efficiency that is greater than 100%. The
reason is that edges at high levels will often represent long paths containing
many nodes.5

For use in applications it is unrealistic to assume a uniform distribution
of queries in large graphs such as Europe or the USA. On the other hand, it
would be hardly more realistic to arbitrarily cut the graph into smaller pieces.
Therefore, we decided to measure local queries within the big graphs: For each
power of two r = 2k, we choose random sample points s and then use Dijkstra’s
algorithm to find the node t with Dijkstra rank rs(t) = r. We then use our
algorithm to make an s-t query. By plotting the resulting statistics for each
value r = 2k, we can see how the performance scales with a natural measure of
difficulty of the query. Figure 2 shows the query times. Note that the median

4 It is likely that Dijkstra would profit more from a faster priority queue than our
algorithm. Therefore, the time-speedup could decrease by a small constant factor.

5 The reported query times do not include the time for expanding these paths. We
have made measurements with a naive recursive expansion routine which never take
more than 50% of the query time. Also note that this process could be radically sped
up by precomputing unpacked representations of edges.

578 P. Sanders and D. Schultes

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0
2

4
6

8
10

12

0
2

4
6

8
10

12

USA
Europe

Fig. 2. Multilevel Queries. For each road network and each Dijkstra rank on the x-axis,
1 000 queries from random source nodes were performed. The results are represented
as box-and-whisker plot [12]: each box spreads from the lower to the upper quartile
and contains the median, the whiskers extend to the minimum and maximum value
omitting outliers, which are plotted individually.

query times are scaling quite smoothly and the growth is much slower than the
exponential increase we would expect in a plot with logarithmic x axis, linear y
axis, and any growth rate of the form rρ for Dijkstra rank r and some constant
power ρ. The curve is also not the straight line one would expect from a query
time logarithmic in r.

6 Discussion

Starting from a simple definition of local search, we have developed nontrivial
algorithms for constructing and querying highway hierarchies. We have demon-
strated that highway hierarchies of the largest road networks currently used can
be constructed in a few hours, i.e., fast enough to allow daily updates. The space
consumption is only a small constant factor of the input size. The query times
around 10 ms are more than fast enough for interactive use. The only previous
speedup techniques that would achieve comparable speedup (bit vectors, geo-
metric containers) have prohibitive preprocessing times for very large graphs.

Even faster preprocessing is a major issue for future work. We see many
small (and not so small) opportunities for improvement. The local nature of
preprocessing makes it likely that highway hierarchies can be quickly updated
dynamically when only a few edges (e.g., for taking traffic jams into account) or
a region of the network changes. We can also easily parallelise preprocessing.

Even faster queries are also interesting. For example, for some traffic simula-
tions, millions of shortest paths queries are needed and there is no overhead for
a user interface. Besides many small improvements (faster priority queues. . .)

Highway Hierarchies Hasten Exact Shortest Path Queries 579

a combination with other speedup techniques seems interesting. In particular,
bit vectors, geometric containers, or landmarks give the search a strong sense
of direction that highway hierarchies lack, i.e., these two basic approaches may
complement one another. Moreover, the higher levels of the hierarchy are so small
that superlinear time or space may be tolerable as long as the contributions of
the lower levels can be incorporated efficiently.

Acknowledgements

We would like to thank Andrew Goldberg, Rolf Möhring, Matthias Müller-
Hannemann, Heiko Schilling, Frank Schulz, Mikkel Thorup, and Dorothea Wag-
ner for interesting discussions on various speedup techniques. Martin Holzer,
Domagoj Matijevic, Frank Schulz, and Thomas Willhalm have also helped with
data and tools for processing graphs.

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

2. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A∗ meets graph
theory. In: 16th ACM-SIAM Symposium on Discrete Algorithms. (2005) 156–165

3. Willhalm, T.: Engineering Shortest Path and Layout Algorithms for Large Graphs.
PhD thesis, Technische Universität Karlsruhe (2005)

4. Fakcharoenphol, J., Rao, S.: Negative weight edges, shortest paths, near linear
time. In: 42nd Symposium on Foundations of Computer Science. (2001) 232–241

5. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. In: 42nd Symposium on Foundations of Computer Science. (2001) 242–
251

6. Schulz, F., Wagner, D., Zaroliagis, C.D.: Using multi-level graphs for timetable in-
formation. In: 4th Workshop on Algorithm Engineering and Experiments. Volume
2409 of LNCS., Springer (2002) 43–59

7. Gutman, R.: Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In: 6th Workshop on Algorithm Engineering and
Experiments (ALENEX). (2004)

8. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In: 11th European Symposium on Algorithms. Volume
2832 of LNCS., Springer (2003) 776–787

9. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Proc. Münster GI-Days. (2004)

10. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and con-
strained shortest path computation. In: 4th International Workshop on Efficient
and Experimental Algorithms. (2005)

11. U.S. Census Bureau, Washington, DC: UA Census 2000 TIGER/Line Files.
http://www.census.gov/geo/www/tiger/tigerua/ua tgr2k.html (2002)

12. The R Development Core Team: R: A Language and Environment for Statistical
Computing, Reference Index. http://www.r-project.org/ (2004)

Preemptive Scheduling of Independent Jobs on
Identical Parallel Machines Subject to

Migration Delays�

Aleksei V. Fishkin1, Klaus Jansen2, Sergey V. Sevastyanov3, and René Sitters1

1 Max-Planck-Institute für Informatik, 66123 Saarbrücken, Germany
{avf, sitters}@mpi-sb.mpg.de

2 Institute of Computer Science, University of Kiel, 24118 Kiel, Germany
kj@informatik.uni-kiel.de

3 Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia
seva@math.nsc.ru

Abstract. We present hardness and approximation results for the prob-
lem of scheduling n independent jobs on m identical parallel machines
subject to a migration delay d so as to minimize the makespan. We give
a sharp threshold on the value of d for which the complexity of the prob-
lem changes from polynomial time solvable to NP-hard. We give initial
results supporting a conjecture that there always exists an optimal sched-
ule in which at most m − 1 jobs migrate. Further, we give a O(n) time
O(1+1/ log2 n)-approximation algorithm for m = 2, and show that there
is a polynomial time approximation scheme for arbitrary m.

Keywords: scheduling, identical machines, preemption, migration delay.

We consider the problem of scheduling independent jobs on identical parallel
machines subject to migration delays so as to minimize the makespan. For-
mally, there are m machines, M1,M2, . . . ,Mm which are used to process n jobs,
J1, J2, . . . , Jn. Each job Jj (j = 1, . . . , n) has a processing time pj. Each ma-
chine can process at most one job at a time, and each job can be processed by at
most one machine at a time. Preemptions with a migration delay d are allowed,
that is, the processing of any job Jj on a machine Mi can be interrupted and
resumed at any later time on Mi, and at least d time units later if Jj migrates
to another machine Mk. The goal is to schedule the jobs so as the makespan is
minimized. By extending the three-field notion [1,2], we denote this problem by
α|pmtn(delay = d)|Cmax, where α is either Pm (fixed number m of machines),
or P (arbitrary number of machines).

In classical scheduling models the migration of a job is done without any
delay constraint. However, in production planning, for example, it is natural to
reserve some time for the transition of a product from one machine to another.
� Most of the work has been done within two short-term visits at MPI für Informatik

in Saarbrücken, supported in part by the EU project CRESCCO and the Russian
Foundation for Basic Research (grant no. 05-01-00960).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 580–591, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Preemptive Scheduling of Independent Jobs 581

Simply the transportation of the product takes time, but also technical issues
might make it necessary to wait for some time; a heated product might need to
cool down first, or a product needs to dry before its next operation can start.
We refine the classical model of identical machines by adding a delay constraint
d, which is independent of the job and machines.

Our model generalizes two elementary identical machine scheduling problems.
If the delay is zero, we obtain the preemptive problem, P |pmtn|Cmax, which can
be solved efficiently by McNaughtons’s wrap around rule [3]. On the other hand,
for large enough delay d no job will migrate in the optimal schedule. In this case
we obtain the non-preemptive problem P ||Cmax which is strongly NP-hard [4].
An intringueing question is what happens for the intermediate values of d. When
is the problem hard? Is there a simple rule, like McNaughton’s rule, which solves
the problem? Is there a good approximation algorithm?

Known Results. The two-machine non-preemptive problem, P2||Cmax, is NP-
hard [4]. There is an exact pseudo-polynomial time algorithm for Pm||Cmax [5].
Regarding approximations, there is a polynomial time approximation scheme
(PTAS) for the general problem, P ||Cmax [6], that is, a family of approximation
algorithms {Aε}ε>0 such that given an instance of the problem Aε finds a solu-
tion within a factor of (1 + ε) from the optimum in time polynomial in the size
of the input for fixed ε.

Our problem is closely related to the problem of scheduling unit-length
jobs with precedence constraints and equal communication delays, P |prec, pj =
1, cjk = d|Cmax, where a precedence relation between two jobs Jj and Jk im-
plies that job Jk always starts after job Jj completes, and at least d time units
later if the jobs are processed on different machines. If in our problem all pre-
empted parts are integral, then we obtain an instance of the above problem with
chains-like precedence constraints, P |chains, pj = 1, cjk = d|Cmax.

The version of unit communication delays, P |prec, pj = 1, cjk = 1|Cmax,
is well studied. Regarding approximations, Hanen & Munier [7] presented a
(7/3 − 4/(3m))-approximation algorithm. Lenstra & Veltman [8] showed that
there is no (5/4− ε)-approximation algorithm unless P = NP . Improving these
bounds remains one of most challenging problems in scheduling theory [9]. Far
less is known for the general version with large communication delays. Engels et
al. [10] considered a version of the problem with tree-like precedence constraints
and general communication delays, P |tree, pj = 1, cjk,iq |Cmax, where cjk,iq de-
pends on the pair of machines (i, q) and the pair of jobs (j, k). They showed
that there is a polynomial time algorithm if all cjk,ik are bounded by some con-
stant. As soon as communication delays are considered as part of the input, the
problem becomes harder to solve. Afrati et al. [11] showed that the two-machine
problem with tree-like precedence constraints and equal communication delays,
P2|tree, pj = 1, cjk = d|Cmax, is NP-hard. Engels [12] showed that the single-
machine problem problem with chain-like precedence constraints and just two
possible delays, P1|prec, pj = 1, cjk ∈ {0, d}|Cmax, is NP-hard.

Our Results. In this paper we add a migration restriction to the classical model
of scheduling on identical machines. We present hardness and approximation

582 A.V. Fishkin et al.

results. In Section 1 we show that the sub-problem of P |pmtn(delay = d)|Cmax

with delay d at most Δ − pmax can be solved in linear time, where pmax =
maxn

j=1 pj , L =
∑n

j=1 pj, and Δ = max{pmax, L}. Further, we show that for
any constant ε > 0 the sub-problem of P |pmtn(delay = d)|Cmax with d larger
than (1 + ε) times (Δ − pmax) is NP-hard in strong sense. In Section 2 we
investigate properties of the optimal schedule. We show that there always exists
an optimal schedule which yields at most one preemption for the two-machine
problem, P2|pmtn(delay = d)|Cmax, and an optimal schedule which yields at
most two migrations for the three-machine problem, P3|pmtn(delay=d)|Cmax.
This leads to two exact pseudo-polynomial time algorithms for the problems.
We conjecture that there always exists an optimal schedule which yields at most
m− 1 migrations for Pm|pmtn(delay=d)|Cmax. Further, we show that for any
instance of P |pmtn(delay = d)|Cmax there exists an optimal schedule in which
no machine is idle before its completion time. In Section 3 we give an algorithm
which finds near-optimal solutions for any instance of the two-machine problem.
The algorithm outputs an optimal schedule if delay d is at most (1−2/ log2 n)Δ,
and otherwise, it finds a schedule of length at most (1 + 1/ log2 n) times the
optimum. The running time of the algorithm is linear in the number of jobs, n.
Finally, in Section 4 we give a polynomial time approximation scheme (PTAS)
for the general problem, P |pmtn(delay = d)|Cmax.

As mentioned above, our model is closely related to scheduling with commu-
nication delays. Most of the results presented can be directly translated for the
problem, P |chains, pj = 1, cjk = d|Cmax. No results for this model with large
communication delays were known before.

1 Complexity

Let pmax = maxn
j=1 pj be the maximum processing time and L =

∑n
j=1 pj/m

be the average machine load. We define Δ = max{pmax,
∑

pj/m}. We have the
following bounds

Δ ≤ OPT ≤ Δ + pmax ≤ 2 ·Δ, (1)

where OPT denotes the optimum.

McNaughton’s Rule. Recall that any instance with d = 0 can be solved by using
McNaughton’s wrap around rule [3]: Select the jobs one by one in some order
and sequentially fill up the schedules of machines M1,M2, . . . ,Mm within the
time interval [0,Δ]. If on a current machine Mi there is no enough room for
the next in turn job, first complete the schedule of Mi, and only then move the
rest of the job to the beginning of the schedule of the next machine Mi+1. The
procedure outputs a schedule of length δ in O(n) time. By adopting this, we can
provide the following result.

Theorem 1. The sub-problem of P |pmtn(delay=d)|Cmax with delay d at most
Δ− pmax can be solved by using McNaughton’s rule in O(n) time.

Proof. If Δ = pmax, then d = 0 and McNaughton’s rule gives an optimal schedule
of length Δ. If Δ = L =

∑n
j=1 pj/m, then McNaughton’s rule gives a schedule

Preemptive Scheduling of Independent Jobs 583

of length L. Consider any job Jj which gets preempted and migrates from a
machine Mi to machine Mi+1. The gap between the part of job Jj on machine
Mi and the other part of Jj on machine Mi+1 is exactly L−pj, which is at least
L−pmax ≥ d. Hence, the delay constraint is satisfied. The running time is linear
in the number of jobs, n. ��

Hardness. Next, we provide hardness results for our problem. We reduce from
the strongly NP-hard problem α-PARTITION [13]:
Instance: k · α positive numbers e1, e2 . . . , eα·k, E ∈ Z+ such that

α·k∑
i=1

ei = k ·E and E/(α + 1) < ei < E/(α− 1) for all i = 1, . . . , α · k. (2)

Question: Is there a partition of {1, 2, . . . , α · k} into k disjoint subsets N1, N2,
. . ., Nk such that ∑

i∈N�

ei = E for all � = 1, . . . , k? (3)

Theorem 2. For any constant ε > 0 the sub-problem of P |pmtn(delay = d)|
Cmax with delay d at least (1 + ε) times (Δ− pmax) is NP-hard in strong sense.

Proof. Given an instance of α-PARTITION, we construct an instance of our
problem as follows. We let the number of machines m = α · k, the number of
jobs n = m+ k, and the migration delay d = E/(α− 1). Next, we define m large
jobs Jj (j = 1, . . . ,m) with processing times pj = 2E− ej , and and k small jobs
Jj (j = m + 1, . . . ,m + k) of equal processing length pm+1 = . . . = pm+k = E.
Then, the average machine load L is equal 2E, which is at least pmax. Thus, we
have that Δ = L.

One can see that the above construction can be completed in time polynomial
in k and α. In the following we show that an instance of α-PARTITION yields
the “YES”-answer if and only if the constructed instance of our problem yields
a schedule of length L.

Assume that we have a schedule of length L. Since d = E/(α− 1) and

L = 2E = E + (α− 1)d < E + α · d,

we can conclude that each small job migrates at most (α − 1) times. On the
other hand, from (2) we have that d = E

α−1 > ei (i = 1, . . . ,m), which implies
that no large job migrates. Hence, in order to have a schedule of length L, each
machine should process at least one small job for some time whereas each small
job can be processed by at most α machines. Since there are m = α ·k machines
and k small jobs, each small job is processed by exactly α machines and no
machine processes two different small jobs. This gives a feasible solution for the
given instance of α-PARTITION. Similarly, one can also see that any feasible
solution for an instance of α-PARTITION leads to a schedule of length L for
the constructed instance of our problem.

584 A.V. Fishkin et al.

In the instance we have that

d =
E

α− 1
=

α + 1
α− 1

· E

α + 1
<

α + 1
α− 1

· emin =
(

1 +
2

α− 1

)
(Δ− pmax),

where emin = minm
j=1 ej, Δ = L = 2E and pmax = maxm+k

j=1 pj = 2E − emin.
So, for any fixed ε > 0 one can find a fixed α ∈ Z+ such that 2

α−1 ≤ ε. Hence,
the sub-problem with d ≥ (1 + ε)(Δ − pmax) consists the above instance and,
thereby, is NP-hard in strong sense. ��

2 Properties of the Optimal Schedule

Theorem 3. For any instance of the two-machine problem P2|pmtn(delay =
d)|Cmax there exists an optimal schedule with at most one migration.

Proof. Given an optimal schedule of length OPT, we construct a new optimal
schedule of as follows. Let Li (i = 1, 2) be the total load of the jobs which com-
pletely run on machine Mi in the given optimal schedule without migrations. We
reschedule the jobs of L1 within interval [0, L1] on M1 and the jobs of L2 within
interval [OPT− L2,OPT] on M2, respectively. No preemptions and migrations
for these jobs are made, see Fig 1a.

L2a)

L1

M1

M2

OPT

Jk

OPT − pk

Jk

b)

M1

OPT

M2

Fig. 1. Rescheduling on two machines

Next we reschedule the jobs which migrate in the given optimal schedule by
using McNaughton’s wrap around rule within still available intervals [L1,OPT]
and [0,OPT− L2]. This completes the construction. The length of the schedule
is OPT. There is at most one job which gets preempted and migrates from M2

to M1.
Assume w.l.o.g. that there is one job Jk which migrates in the constructed

schedule, see Fig 1b. This job Jk is scheduled in the end of [L1,OPT] on machine
M1, and in the beginning of [0,OPT−L2] on M2. The time gap between the two
parts of Jk is exactly OPT− pk . Since Jk also migrates in OPT, we have that
pk + d is at most OPT. Hence, the delay constraint is satisfied. The constructed
schedule is optimal. ��

There exit instances for which the number of preemptions and the number of
migrations must differ in the optimal schedule. Consider the following example.
There are three large jobs J1, J2, J3 and one small job J4. such that Δ = (p1 +

Preemptive Scheduling of Independent Jobs 585

p2 + p3 + p4)/3 = 2d + p4 and p1 = p2 = p3. Then, in order to get a schedule of
length Δ, the small job should migrate two times, and one large job should be
preempted one time. Hence, there are two migrations and three preemptions.

Theorem 4. For any instance of the P3|pmtn, delay = d|Cmax there exists an
optimal schedule with at most two migrations.

Proof. Given an optimal schedule of length OPT we construct a new optimal
schedule in two steps. We first construct a pseudo-schedule of length OPT which
may be infeasible, and then turn this into a feasible schedule.

Let Li (i = 1, 2, 3) be the total load of the jobs which completely run on
machine Mi in the given optimal schedule without migrations. Assume w.l.o.g
that L1 ≤ L2 ≤ L3. We place the jobs of Li (i = 1, 2, 3) within [0, Li] on Mi,
respectively. No preemptions and migrations for these jobs are made.

M1

M2

M3

Jk

M1

M2 Jk

L1

L2

L3

Jk

a)

L2

M1

M2

M3

Jk

M1

M2

M3

L1

L2

L3

Jk

Jk′

Jk′

c)

d)

Jk′Jk

Jk′

Jk

M3

Jk

Jk

L1

Jk

b)

Fig. 2. Rescheduling on three machines

Next we place the jobs which migrate in the given optimal schedule. We
order these jobs by non-decreasing lengths. Then we select the jobs one by one
in this order and use McNaughton’s wrap-around rule. We first place the jobs on
machine M2 within interval [L2,OPT], then on machine M1 within [L1,OPT],
and finally on M3 within [L3,OPT]. This gives a pseudo-schedule of length OPT.

If there is at most one migration in the pseudo-schedule, then the proof
follow directly from the proof of Lemma 3. In the following we assume that
there are exactly two migrations, and modify the schedule so as to satisfy the
delay constraints.

Assume that there is a job Jk which is processed on all three machines, see
Fig. 2a. Due to the rescheduling procedure, we can conclude that the processing
time pk of Jk is larger than (OPT − L2) + (OPT − L1). Since L1 ≤ L2 ≤ L3,
job Jk must migrate at least two times in the given optimal schedule. The delay
constraint implies that pk + 2d is at most OPT. Hence, we can modify the
schedule as shown in Fig 2b.

586 A.V. Fishkin et al.

Now assume that there is one job Jk which is processed on machines M2 and
M1, and one job Jk′ which is processed on machines M2 and M3, see Fig. 2c.
Since jobs Jk and Jk′ both migrate in OPT, the delay constraint implies that
pk + d ≤ OPT and pk′ + d ≤ OPT. Hence, we can modify the schedule as shown
in Fig 2d. ��

Conjecture 1. For any instance of Pm|pmtn, delay=d|Cmax there exists an op-
timal schedule with at most m− 1 migrations.

One can see that a simple rule, like McNaughton’s rule, cannot be used to find
the optimal schedule of the preempted jobs, even if almost all information on the
optimal schedule is given. Notice also that, unlike the problem with preemptions
but delays, there might be more than two preempted jobs on a machine, and an
optimal schedule might have to preempt the same job more than once. In fact,
even more complicated structures can be constructed.

Theorem 5. For any instance of the general problem P |pmtn(delay = d)|Cmax

there exists an optimal schedule in which no machine is idle before its completion
time.

Proof. Let σ be a schedule with minimizes the following three objectives in the
given order: the makespan, the sum of all completion times, and minus the sum
over all jobs of the mean completion times, where the mean completion time of
a job is the average time at which it is processed. Assume w.l.o.g. that machine
M1 is idle in σ at some time t, i.e. no job is processed on M1 in the interval
]t − ε, t[for some ε > 0, and M1 does process some job at a later moment. We
assume w.l.o.g that d ≥ ε. Let job Jj be the first job that is processed after time
t on M1. If Jj is entirely processed on M1 or is not processed on any machine
before time t, then we can reduce its completion time by ε without increasing
the makespan or changing the schedule of any other job. If job Jj is processed
before time t − ε, then we remove the last ε units of Jj that were processed
before time t− ε, and process it on M1 between t− ε and t. We have increased
the average completion time of Jj by a small amount without increasing the
completion time of any job. Hence, σ is not optimal for the given objectives.
This gives a contradiction. ��

3 Two Machines: A Near-Optimal Schedule in Linear
Time

We show that for the two machine problem, P2|pmtn(delay = d)|Cmax, a near
optimal solution can be found in O(n) time. First we introduce some notation.
We assume that jobs J1, J2, . . . , Jn (n ≥ 2) are numbered in non-increasing order
of their processing times p1 ≥ . . . ≥ pn. So, we have Δ = min{p1,

∑n
j=1 pj/2}

as a lower bound on the optimum OPT. We use Ik (k = 1, . . . , n) to denote the
set of k largest jobs {J1, J2, . . . , Jk}. Taking the jobs of Ik as an instance of the

Preemptive Scheduling of Independent Jobs 587

non-preemptive problem P2||Cmax, we use Ck to denote its optimum, and Sk to
denote its optimal (non-preemptive) schedule. Then, we have that

C1 ≤ C2 ≤ . . . ≤ Cn.

Lemma 1. If Cn = Δ, then OPT = Δ. In the other case, let k∗ .= min{k | k ∈
{1, 2, . . . , n} and Ck > Δ} and let γ

.= max{Δ, pk∗ + d}. Then,

OPT = min{γ, Ck∗}. (4)

Proof. The first is immediate since Sn is a feasible schedule and Δ is a lower
bound on OPT. For the other case let us show that

Ck∗−1 ≤ OPT ≤ Ck∗ .

The lower bound follows from Ck∗−1 ≤ Δ ≤ OPT. To justify the upper bound,
it suffices to take the schedule Sk∗ and complete it to a feasible schedule for
the original problem with length equal to Ck∗ — by just assigning the remaining
(“small”) jobs to the less loaded machine. — The optimal schedule should clearly
have length not greater than Ck∗ .

It is clear that OPT cannot be strictly less than Ck∗ , if no job Ji ∈ Ik∗

migrates. On the other hand, if some of them migrate, OPT cannot be less than
γ

.= max{Δ, pk∗ +d}. Thus, we have the following lower bound on the optimum:

OPT ≥ min{γ, Ck∗}. (5)

Let us show that, in fact, (5) holds as an equality. Indeed, if “min” in the right
part of (5) is attained at Ck∗ , then we can easily achieve it via constructing a
schedule of length Ck∗ (without preemption), as shown above. Alternatively, if
γ < Ck∗ , we construct a schedule of length γ as follows:

— take the schedule Sk∗−1 (it has length Ck∗−1 ≤ Δ and no preemptions);
— put the job Jk∗ to an arbitrary machine (let it be M1) — the schedule length
becomes at least Ck∗ ;
— divide the job Jk∗ into two parts, making the load of machine M1 to be equal
to γ; the (positive) remainder of the job migrates to machine M2;
— put the remaining jobs (Jk∗+1, . . . , Jn) on machine M2.
Clearly, the resulting schedule is feasible and its length is equal to γ. ��

Theorem 6. There exists an algorithm which for any instance of the two-
machine problem P2|pmtn(delay = d)|Cmax with n jobs (a) solves the problem
to the optimum if delay d is at most

(
1− 2

log2 n

)
Δ, and (b) otherwise, it pro-

vides either an optimal schedule or an approximate non-preemptive schedule S
of length at most

Cmax(S) ≤
(

1 +
1

log2 n

)
OPT. (6)

The running time of the algorithm is linear in the number of jobs, n.

588 A.V. Fishkin et al.

Proof. Put k′ := �log2 n�. Then

pk′ ≤ 2Δ

k′
≤ 2

log2 n
Δ. (7)

Observe that we can extract the set of jobs Ik′ (i.e., the set of the largest k′

jobs) from the whole set {J1, J2, . . . , Jn} in O(n) time by means of the standard
technique [14], after which its items can be renumbered in non-increasing order
of processing times (p1 ≥ . . . ≥ pk′) in O(log n log log n) = o(n) time. After this
we can compute all optimums {C1, . . . , Ck′} in O(2k′

) = O(n) time by the direct
enumeration of all subsets of the set {1, 2, . . . , k′}.

Next we compare Ck′ and Δ. If Ck′ > Δ, we can conclude that k∗ ≤ k′, and
that k∗ can be found in O(log n) comparisons of values {Ci | i = 1, . . . , k′} with
Δ. Next we construct the optimal schedule (of length OPT = min{γ, Ck∗}),
using the schedules Sk∗−1 and Sk∗ as described in the proof of the previous
lemma. If Ck′ ≤ Δ (and hence, k∗ > k′), then in the case d + pk′ ≤ Δ we
have OPT = Δ, and the optimal schedule can be obtained by the completion
of the schedule Sk′ up to a whole schedule using the linear-time McNaughton’s
algorithm. Alternatively, if d + pk′ > Δ, and therefore (from (7)),

d > Δ− pk′ ≥
(

1− 2
log2 n

)
Δ,

we take the schedule Sk′ and complete it to a whole non-preemptive schedule
for the original instance using the simple list-scheduling algorithm (with the
remaining jobs sequenced in an arbitrary order). It can be seen that the length
of schedule S meets an upper bound Cmax(S) ≤ Δ+ 1

2 pk for some k > k′, which
implies

Cmax(S) ≤ Δ +
1
2
pk′ . (8)

The desired bound (6) follows from (8) and (7). ��

4 A Polynomial Time Approximation Scheme

Here we give an outline of a polynomial time approximation scheme (PTAS),
that is, a family of approximation algorithms {Aε}ε>0 such that given an in-
stance of the problem Aε finds a solution within a factor of (1 + ε) from the
optimum in time polynomial in the size of the input for fixed ε. Our approach
to approximation is to perform several transformations that simplify the input
problem without dramatically increasing the objective value, so that the final
result is amenable to a fast enumeration solution. As before, pmax = maxn

j=1 pj ,
L =

∑n
j=1 pj/m, Δ = max{pmax,

∑
pj/m}, and Δ ≤ OPT ≤ 2 ·Δ. We assume

w.l.o.g. that 1/ε ≥ 4 is integral.

Cleaning Up. Our first transformation cleans up the instance. The idea is to
separate the set of jobs – we say that a job Jj is large if pj > εΔ, small otherwise.
We drop all small jobs from the instance, and add them later to the schedule.

Preemptive Scheduling of Independent Jobs 589

Fromnowonwe are interested in obtaining anear-optimal schedule for the large
jobs. Since

∑n
j=1 pj ≤ m · Δ, we can conclude that there are at most 2m/ε large

jobs. A job which migrates k times is split into k+1 parts which we call operations.
Our next transformation gives a lower bound on the value of d, as well as an upper
bound on the maximum number of operations (migrations) of a large job.

Lemma 2. With 1 + 2ε loss, we can assume that the value of d is at least 2εΔ,
and hence, each large job consists of at most 2/ε operations.

Proof. If d ≤ 2εΔ, we can construct a schedule as follows. We first use Mc-
Naughton’s wrap-around rule on the set of large jobs, ignoring all migration
constraints. This gives a pseudo-schedule of length Δ in which at most m − 1
large jobs migrate. Next, we use the structure of the schedule. We move the parts
of the jobs which run in the end of the schedule by d so that to satisfy all migra-
tion constraints. This completes a feasible schedule of length Δ+d ≤ (1+2ε)Δ,
which is at most (1 + 2ε)OPT.

If d ≥ 2εΔ, then each job can migrate at most OPT/d times. From OPT ≤
2Δ, each job can consist of at most 1/ε + 1 ≤ 2/ε operations. ��

Rounding. By applying our main transformation we round all values in our
problem to some discrete points, that is very useful for further enumeration. For
simplicity, we write Oh

j to denote the hth operation of job Jj , whereas we write
ph

j and Sh
j to denote the processing time and starting time of operation Oh

j . We
can bound operation sizes as follows.

Lemma 3. With 1 + ε loss, we can assume that the processing time of each
operation ph

j is at least ε4Δ/4.

Proof. Given an optimal schedule of length OPT we scale it by 1 + ε. The time
reserved for each operation Oh

j is then (1 + ε)ph
j . Next, we move the start time

of Oh
j so far that this creates an idle time gap of size εph

j before its start time.
For each large job Jj , there are at most 2/ε − 1 operations. Hence, there is

at least one big operation of Jj with processing time pj/(2/ε) = εpj/2. We can
conclude that there is an idle time gap of size at least ε2pj/2 ≥ ε3Δ/2. Thus, we
can take the operations of job Jj with sizes at most ε4Δ/4, which sum up to at most
ε4(2/ε)Δ/4 = ε3Δ/2 total size, and then put them together into the idle gap.

We go over all jobs performing the above procedure. In the end, there is no
operation with size less than ε4Δ/4. We increased the schedule length by εOPT.

��
Next we round all values to O(1/ε5) possible discrete points.

Lemma 4. With 1 + 2ε loss, we can round up all values so that the delay d ∈
{4/ε4, 4/ε4 + 1, . . . , 16/ε5}, all operation sizes ph

j ∈ {16/ε, 16/ε + 1, . . . , 8/ε5},
and all starting times Sh

j ∈ {0, 1, . . . , 16/ε5}.

Proof. Given an optimal schedule of length OPT we scale it by 1 + ε. The time
reserved for each operation Oh

j is then (1+ε)ph
j . Next, we move the start time of

Oh
j so far that this creates an idle time gap of size εph

j before its start time. Since

590 A.V. Fishkin et al.

ph
j ≥ ε4Δ/4, this gap is at least 2ε5Δ/4. Next, we use one part of this gap with

size ε5Δ/4 to round ph
j , and the other part with the same size to round Sh

j so
that their values turn to some integer multiples of ε5Δ/4. Similar, we round the
value of d to an integer multiple of ε5Δ/4. The procedure increases the schedule
length by 2εOPT.

Further, we divide all values by ε5Δ/4 where ε ∈ (0, 1/4]. Since d ∈ [εΔ, 2(1+
4ε)Δ], each ph

j ∈ [ε4Δ/4, (1 + 4ε)Δ], and each Sj ∈ [0, 2(1 + 4ε)Δ], we obtain
the claimed bounds. ��

Enumeration. One can see that Lemmas 2 and 4 shape a schedule for the set
of large jobs: (i) there are O(1) unit time slots (ii) each large job Jj forms O(1)
operations Oh

j (iii) each operation Oh
j can eventually fill O(1) time slots but

it completely runs on one machine. This information is enough to find a near-
optimal schedule by a brute-force enumeration. Omitting technical details, we
can state the following result.

Lemma 5. In mO(1) time we can find a feasible schedule for the large jobs which
length is at most (1 + O(ε))OPT.

Though we aim at the existence of a PTAS, we can provide some nice enumer-
ation techniques which replace mO(1) by a clean bound.

Adding the Small Jobs. Now we complete the obtained schedule of the large jobs
by adding the small jobs in a greedy manner. We select the small jobs one by
one and preemptively schedule them on the machines as soon as possible and
without migrations. We use preemptions each time when the current machine is
busy processing a large job. There is no small job migrates in the schedule, and
the schedule length is at most (1+O(ε))OPT+ εΔ, which is (1+O(ε))OPT. In
overall, we obtain the following final result.

Theorem 7. For any instance of P |pmtn(delay = d)|Cmax and any positive
accuracy ε, one can find a schedule of length at most (1+ε)OPT in O(mf(ε) +n)
time, where f(·) is some function independent of the number of jobs n and the
number of machines m.

Proof. In the algorithm we need to separate the jobs into small and large ones,
round all values, and perform the enumeration procedure. The first two steps
can be completed in O(n) time. The enumeration procedure can be run in mO(1)

time. ��

References

1. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic scheduling: A survey. Annals of Discrete Math-
ematics (1979) 287–326

2. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and
scheduling: Algorithms and complexity. In: Logistics of Production and Inventory.
Volume 4 of Handbooks in Operation Research and Management Science. North-
Holland, Amsterdam (1993) 445–522

Preemptive Scheduling of Independent Jobs 591

3. McNaughton, R.: Scheduling with deadlines and loss functions. Management
Science 6 (1959)

4. Karp, R.M.: Recucibility among combinatorial problems. In: Complexity of Com-
puter Computations. Plenum Press, New York (1972)

5. Rothkopf, M.H.: Scheduling independent tasks on parallel processors. Management
Science 12 (1966) 347–447

6. Hochbaum, D.S., Shmoys, D.: A polynomial approximation scheme for scheduling
on uniform processors: using the dual approximation approach. SIAM Journal on
Computing 17 (1988) 539–551

7. Hanen, C., Munier, A.: An approximation algorithm for scheduling dependent tasks
on m processors with small communication delays. Discrete Applied Mathematics
108 (2001) 239–257

8. Hoogeveen, J.A., Lenstra, J.K., Veltman, B.: Three, four, five, six, or the com-
plexity of scheduling with communication delays. Operations Research Letters 16
(1994) 129–137

9. Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for
machine scheduling: Ten open problems. Journal of Scheduling 2 (1999) 203–213

10. Engels, D.W., Feldman, J., Karger, D.R., Ruhl, M.: Parallel processor scheduling
with delay constraints. In: SODA. (2001) 577–585

11. Afrati, F.N., Bampis, E., Finta, L., Milis, I.: Scheduling trees with large commu-
nication delays on two identical processors. In: Euro-Par. (2000) 288–2295

12. Engels, D.W.: Scheduling for hardware-software partitioning in embedded system
design. PhD thesis, Massachusetts Institute of Technology, Cambridge, USA (2000)

13. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. Freeman, San Francisco, CA (1979)

14. Blum, M., Floyd, R., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection.
J. Comp. System Sci. (1973)

Fairness-Free Periodic Scheduling with Vacations

Jǐŕı Sgall1,�, Hadas Shachnai2, and Tami Tamir3

1 Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1,
Czech Republic, and Dept. of Applied Mathematics,

Faculty of Mathematics and Physics, Charles University, Praha
sgall@math.cas.cz

2 Computer Science Department, The Technion, Haifa 32000, Israel
hadas@cs.technion.ac.il

3 School of Computer science, The Interdisciplinary Center, Herzliya, Israel
tami@idc.ac.il

Abstract. We consider a problem of repeatedly scheduling n jobs on m
parallel machines. Each job is associated with a profit, gained each time
the job is completed, and the goal is to maximize the average profit per
time unit. Once the processing of a job is completed, it goes on vaca-
tion and returns to the system, ready to be processed again, only after
its vacation is over. This problem has many applications, in production
planning, machine maintenance, media-on-demand and databases query
processing, among others.

We show that the problem is NP-hard already for jobs with unit pro-
cessing times and unit profits, and develop approximation algorithms,
as well as optimal algorithms for certain subclasses of instances. In par-
ticular, we show that a preemptive greedy algorithm achieves a ratio of
2 to the optimal for instances with arbitrary processing times and arbi-
trary profits. For the special case of unit processing times, we present a
1.67-approximation algorithm for instances with arbitrary profits, and a
1.39-approximation algorithm for instances where all jobs have the same
(unit) profits. For the latter case, we also show that when the load gen-
erated by an instance is sufficiently large (in terms of n and m), any
algorithm that uses no intended idle times yields an optimal schedule.

1 Introduction

We consider a scheduling problem in which jobs need to be scheduled repeatedly.
The input is a set of m identical parallel machines and a set of n jobs, J =
{1, . . . , n}, that need to be scheduled on the machines. All the jobs are ready at
time t = 0. Each job j, is associated with a processing time pj ≥ 1, and a window
aj ≥ pj; once the processing of j is completed, it goes on vacation and returns
after aj−pj time units, ready to be processed again. Thus, a feasible schedule is
one where each machine processes at most one job at any time, and there is a gap
of at least aj − pj time units between two consecutive executions of job j. The
jobs are sequential, i.e., no job can be scheduled on more than one machine at the
� Supported by research project MSM0021620838 of MŠMT ČR.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 592–603, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fairness-Free Periodic Scheduling with Vacations 593

same time. There is also a profit, bj, associated with each execution of job j; the
goal is to find a feasible schedule that maximizes the average profit per time unit.
We call this problem scheduling with vacations (SWV). Our problem arises in
many practical scenarios where tasks need to be accomplished periodically, but
due to setup times or maintenance requirements there must be some gap between
two consecutive executions of a task. The following are two of the applications
that motivate our study.

Surveillance Camera Scheduling: Consider a system of robots carrying
surveillance cameras, which patrol an area periodically. Each robot has a prede-
fined path that it needs to patrol, while recording all the events along this path.
Upon completion of each patrol, the robot returns to the controller, where the
recorded data is downloaded/processed, and the robot is prepared for its next
tour. Each patrol j is associated with a profit bj , gained once the corresponding
robot completes the tour. The controller can handle at most m robots simulta-
neously, and it takes pj time units to complete the processing of robot j. The
time it takes robot j to traverse its path is tj ≥ 1. The goal of the controller is
to process the robots in a way that maximizes the profit gained from all robots,
throughout the operation of the system. This yields an instance of SWV, where
job j has a processing time pj, and the window aj = pj + tj .

Commercial Broadcast: In a broadcasting system which transmits data,
e.g., commercials on a running banner, there is a profit associated with the
transmission of each commercial. This profit is gained only if some predefined
period of time elapsed since the previous transmission. The goal is to broadcast
the commercials in a way that maximizes the overall profit of the system. Thus,
we get an instance of SWV, where the window of each job corresponds to the
time interval between consecutive transmissions of each commercial.

1.1 Our Results and Related Work

The problem of scheduling with vacations belongs to the class of periodic schedul-
ing problems, where each job may be scheduled infinite number of times. Periodic
scheduling is a well-studied problem. Problems of this type arise in many areas,
including production planning, machine maintenance, telecommunication sys-
tems, media-on-demand, image and speech processing, robot control/navigation
systems, and database query processing. In the paper [12], which introduced the
periodic scheduling problem, the goal is to schedule each of the jobs such that
the average gap between two executions of job j is aj , using the minimum num-
ber of machines. Another early example is the chairman assignment problem
[13], in which the number of executions of job j in any prefix of the schedule
of length t must be at least !t/aj" and at most �t/aj�. For both problems the
earliest deadline first algorithm was shown to be optimal.

Our problem is different from previously studied variants of periodic schedul-
ing in two major aspects. First, our goal is to maximize the total profit of the
server. This may result in lack of fairness. Indeed, in a schedule which maximizes
the profit, some of jobs may be waiting forever, while other (more profitable) jobs

594 J. Sgall, H. Shachnai, and T. Tamir

are repeatedly processed as soon as they return from vacation. In other works
(e.g., [12,7,8]), the performance of a periodic schedule is measured by some fair-
ness criterion, or (e.g. [2,9]) the two objectives are combined; that is, each job
comprises a mandatory and an optional part, with which a non-decreasing re-
ward function is associated. In other variants of the periodic scheduling problem
(see, e.g., in [1]), the processing of each job incurs a service cost, depending on
the time that elapsed since the last service of this job, and the goal is to minimize
the cost of the schedule, however, the cost increases with job delays − implying
that an optimal solution requires some fairness.

The other major difference from well-studied variants of periodic scheduling
is that in our problem, due to the vacation requirement, jobs cannot be processed
too often. In the windows scheduling problem [4,5], the parameter associated with
each job gives the maximal gap between any two executions of job j, however,
it is feasible to schedule a job more often. In the periodic machine scheduling
problem (PMSP) [3], this parameter specifies the exact gap between any two
executions of j. To the best of our knowledge, there is no earlier work in which
only the minimal gap between any two executions is given.

We first show that SWV is NP-hard already for jobs with unit length and unit
profits. Since the total number of different configurations of the system is finite,
an optimal solution can be found (inefficiently) by applying the known buffer
scheme designed for the windows scheduling problem [6]. We present several ap-
proximation algorithms for various subclasses of instances. A simple greedy algo-
rithm yields a 2-approximation for preemptive scheduling of jobs with arbitrary
processing times and arbitrary profits. For the special case of unit processing
times, we present a 1.67-approximation algorithm for instances with arbitrary
profits, and a 1.39-approximation algorithm for instances with the same (unit)
profits. For the latter case, we also show that when the load generated by an
instance is sufficiently large (in terms of n and m), any algorithm that uses no
intended idle times yields an optimal schedule.

Our approximation algorithms for unit length jobs apply a transformation of
the instance to an aligned instance, where all window sizes satisfy certain proper-
ties. Our approximation technique, based on finding an optimal schedule for the
resulting aligned instance, builds on a technique of [5] for the windows schedul-
ing problem. To obtain better approximation ratio, we extend this technique:
Our algorithm for unit processing times and unit profits applies the best align
technique, which finds an aligned instance that yields the best approximation
ratio for the original instance.

2 Preliminaries

2.1 Definitions and Notation

Denote by aj the scheduling window (for short, window) of job j. The load
incurred by job j is �(j) = pj/aj . The best service job j can receive is to be
processed whenever it returns from vacation (i.e., no waiting time). Thus, the
load of job j represents the average processing requirement of j per time unit.

Fairness-Free Periodic Scheduling with Vacations 595

The total load of the input is L(J) =
∑

j∈J �(j). In the special case of unit
processing times (i.e., for all j, pj = 1), we get that �(j) = 1/aj, and L(J) =∑

j∈J 1/aj. Each job is associated with an additional parameter, bj, the profit
gained from each execution of job j.

We say that a job j is heavier than j′ if bj/pj > bj′/pj′ , or bj/pj = bj′/pj′

and j > j′. A heavier job achieves larger profit per unit time of its execution; the
second part of the definition only breaks ties consistently for the whole instance.
Let J≥j denote the set of jobs at least as heavy as j.

To define the profit of a schedule formally, let complST (j) denote the number
of times job j is completed in the first T time units in schedule S. The profit of
schedule S is defined as

profit(S) = lim inf
T→∞

1
T

n∑
j=1

complST (j)bj .

A schedule is periodic with period p if for any time T , the jobs scheduled at time
T are the same as the jobs scheduled at time T + p. It is easy to see that there
always exists a periodic optimal schedule: Define a configuration at time T to
consist of the information of how much of each job is currently executed, or how
much time has elapsed since its last completion. An optimal schedule can always
be chosen so that for two points of time T and T ′ with the same configurations,
the remainder of the schedule is the same. Since the number of configurations is
finite, such a schedule is periodic.

In the remainder of paper we consider only periodic schedules. For a schedule
S with period p, in the definition of profit, lim inf can be replaced by lim which
always exists and it is actually equal to the value of the remaining expression for
T = p. Similarly, it is meaningful to speak about the load (relative frequency) of
a job j in S; we denote it by �S(j). Finally, LS(J ′) =

∑
j∈J′ �S(j) denotes the

load of a set of jobs J ′ ⊆ J in a schedule S.
The next lemma is used to compare our schedules to an optimal schedule S∗.

Lemma 2.1. Let S∗ be an arbitrary schedule for an instance J and let R ≥ 1.

(i) Suppose that for a schedule S for J , and for any job j, LS(J≥j) ≥
LS∗

(J≥j)/R. Then profit(S) ≥ profit(S∗)/R.
(ii) Suppose that for a distribution of schedules S for J , and for any job j,

ExpS∈S [LS(J≥j)] ≥ LS∗
(J≥j)/R. Then one of the schedules S ∈ S satisfies

profit(S) ≥ profit(S∗)/R.

Proof. The lemma follows from the fact that the profit of any schedule S can be
computed as

∫∞
β=0 L

S(Jβ) dβ, where Jβ = {j ∈ J | bj ≥ β}.

2.2 Hardness Results

The hardness of SWV with a single machine, unit profits, and unit processing
times is shown by a reduction from the periodic machine scheduling problem
(PMSP), which is known to be NP-hard (see in [3]). In PMSP, there is a set of

596 J. Sgall, H. Shachnai, and T. Tamir

n machines; the j-th machine requires maintenance every aj time units, where∑n
j=1 1/aj ≤ 1. The maintenance of any machine takes one time unit, and

at any time only one machine can be maintained. It is assumed that the first
maintenance of machine j can be done in any of the first aj time slots. The goal
is to find a maintenance schedule that satisfies exactly all the requirements, that
is, for all j, machine j is maintained exactly once in any window of aj time slots.

Theorem 2.2. SWV is NP-hard, even with a single machine, unit profits and
unit processing times.

Proof. Given an instance of PMSP with n machines in which the j-th machine
requires maintenance every aj time units, construct an instance of SWV with
unit profits, unit processing times, and scheduling windows aj for jobs j =
1, . . . , n. Since

∑n
j=1 1/aj ≤ 1, there is a feasible schedule for PMSP if and only

if the average profit per time-unit from job j is exactly 1/aj, that is, there is a
schedule of the SWV instance with average profit

∑n
j=1 1/aj.

Remark 2.3. When L(J) ≥ 1, the problem is still NP-hard for unit profits and
unit processing times. The proof is similar to the hardness proof for the windows
scheduling problem given in [5]. An instance with L(J) < 1 and unit profits can
be extended into one with L(J ′) = 1 in a way that does not affect the schedule
of the original jobs. Let A = LCM(a1, a2, ..., an), that is, each of the original
windows divides A. Add to J dummy jobs, each having window A, such that
the total load is 1. Then a schedule of the new instance with average profit 1
induces a schedule of the original instance with average profit

∑n
j=1 1/aj, and

vice versa. For arbitrary profits, a single dummy job with bj = ε and aj = 1 is
sufficient.

2.3 An Optimal Super-Polynomial Algorithm

The general buffer scheme [6] is a tool designed for solving optimally the windows
scheduling problem. We explain below how it can be adjusted to solve optimally
the problem of scheduling with vacations. We describe the adjustment for unit-
length jobs and arbitrary profits. It can be extended to handle jobs with arbitrary
lengths similar to the extension for windows scheduling shown in [6]. The buffer
scheme is based on representing the system as a nondeterministic finite state
machine in which any directed cycle corresponds to a valid periodic schedule
and vice-versa. Let a∗ = maxj{aj}. The state of a job is represented using a set
of buffers, B0, B2, . . . , Ba∗−1. Each job is stored in some buffer. A job is stored
in Bi when i time slots remain till the end of its vacation. Initially, all jobs are
ready to be processed so they are all stored in B0. In each iteration, the scheme
schedules at most m jobs from B0 and updates the content of the buffers:

– For all i > 0, all jobs stored in Bi are moved to Bi−1 (note that none of
them is scheduled).

– Each scheduled job j is moved from B0 to Baj−1 (this ensures that at least
aj − 1 time slots will elapse before j is scheduled again).

Fairness-Free Periodic Scheduling with Vacations 597

Note that the total number of buffer configurations is at most Πjaj . In the
state machine, each configuration is represented by a vertex, and there is an edge
connecting configuration f to configuration g if it is possible to move from the
state corresponding to f to the state corresponding to g in a single time slot.
Each edge e = (f, g) has a weight be whose value is the profit gained by moving
from f to g, that is, the total profit of the jobs selected for execution. A periodic
schedule with cycle t corresponds to a cycle of length t in the state machine. The
profit of this schedule is given by the average edge weight along this cycle. Thus,
an optimal schedule corresponds to a cycle with maximal mean weight. Such a
cycle can be found by using the classic Max Cycle Mean algorithm of Karp [10].
The running time is polynomial in the graph size, which is polynomial in Πjaj .
Clearly, this algorithm is applicable only for small instances, however, since in
general the problem is NP-hard, we cannot expect efficient optimal solutions.

3 A 2-Approximation Algorithm

We describe below an algorithm for preemptive scheduling of arbitrary-length
jobs. Note that in the preemptive scheduling model, the execution of a preempted
job can be resumed at any time. The vacation-constraint refers only to the gaps
between different executions of a job. Recall that m is the number of machines.

Algorithm Greedy
At any time t, schedule for one time unit the m heaviest available jobs.

It is easy to see that Greedy always generates a periodic schedule, as the
possible number of different states is finite.

Theorem 3.1. Greedy is a 2-approximation algorithm.

Proof. Let S be the schedule produced by greedy and R = 2. Order the jobs
from the heaviest one, and denote them j1, j2, . . . , jn in this order.

We prove that for every i,

LS(J≥ji) ≥ min{m/2, L(J≥ji)/2}.

Since the optimal schedule S∗ satisfies LS∗
(J ′) ≤ min{m,L(J ′)} for any J ′ ⊆ J ,

the theorem then follows from Lemma 2.1.
To prove the claim, we distinguish between two cases.
First, assume that for some i, �S(ji) ≤ �(ji)/2. If two consecutive completion

times of the job are aji + T time units apart then between the two completion
times there are at least T time slots in which ji was available but not scheduled;
by the definition of the algorithm, heavier jobs were scheduled in these time slots
on all machines. Consequently, the case assumption implies that in half of the
slots of the schedule jobs heavier than i were executed. Thus, LS(J≥ji) ≥ m/2,
and the same follows also for any i′ ≥ i.

Second, by induction on i we prove that until the first case occurs, LS(J≥ji) ≥
L(J≥ji)/2. Since the first case is excluded, we have �S(ji) > �(ji)/2 and the

598 J. Sgall, H. Shachnai, and T. Tamir

inductive step follows by summing this inequality and the induction assumption
for i− 1. (If i = 1 then the claim follows trivially.)

We conjecture that our analysis of Greedy is not tight and in fact its ap-
proximation ratio is e/(e−1) ≈ 1.58. The following is an example of an e/(e−1)
ratio for unit-length jobs: Let a be an integer and let A = {a+1, a+2, . . . , !ea"}.
We have

∑
i∈A 1/i = ln !ea"− ln a ≤ ln e = 1 and for a sufficiently large, the sum

is arbitrarily close to 1. Let m = LCM{a + 1, a + 2, . . . , !ea"}. That is, each of
the numbers a+1, a+ 2, . . . , ea divides m. The instance consists of m machines,
and m jobs having window aj = i for each i = a+ 1, a+ 2, . . . , !ea". The profits
are all almost equal to 1, with a slight preference to jobs having long vacation.

The Greedy schedule: In the first slot, the most profitable jobs are those with
vacation !ea", so these m jobs are scheduled first on each of the m machines. Next
(on all m machines) are the jobs with vacation !ea"−1, and so on. The resulting
schedule has period !ea" repeating on each machine [!ea" , !ea"−1, ..., a, ∗, . . . , ∗],
where stars denote a idle slots. The average profit per slot on each of the machines
is therefore arbitrarily close to (ea− a)/(ea) = (e− 1)/e.

An optimal schedule: For each i, m/i machines schedule with no idle time all
the jobs with window i. Since

∑
i∈A 1/i ≈ 1, there are enough jobs to ‘saturate’

this way all the machines with no idle times. Therefore the average profit per
slot is arbitrarily close to 1 and the approximation ratio tends to e/(e− 1).

4 Unit Processing Times

We call an instance aligned if there exists an integer q such that for each j,
aj = q2αj for some integer αj ≥ 0, or aj = 1. (Note that this generalizes the
case where all the windows are powers of 2.) The following result is due to [5].

Theorem 4.1. An optimal solution for an aligned instance can be computed in
polynomial time.

For completeness, we describe such an optimal solution. Note that this solution
works also if we start not with an empty schedule but with some schedule with
period q, where some slots are already used by other jobs.

Schedule the jobs in order of increasing windows, always keeping the period
of the schedule equal to the maximal window processed so far. The machines are
utilized in an arbitrary order. When a new job is processed, if needed, increase
the period by doubling the period and repeating the current schedule, until the
period is equal to the currently processed window. Then, if possible, schedule
the current job in an empty slot on some machine. Otherwise, if the current job
is heavier than some of the scheduled jobs, run this job in a slot of the lightest
scheduled job. (This light job can still be scheduled in some of the slots, due to
a possible previous doubling of the period.)

An alternative view of this schedule S will be useful. Let j be the heaviest
job such that L(J≥j) ≥ m. Then the schedule above has the property that all
jobs j′ heavier than j are scheduled at their maximal rate, i.e., �S(j′) = �(j′),

Fairness-Free Periodic Scheduling with Vacations 599

and no jobs lighter than j occur in the schedule. The rate of the borderline job
j is selected such that all the rates sum to 1.

It follows that a simple 2-approximation algorithm can be achieved by round-
ing the window of each job to the next higher power of 2 and using the optimal
algorithm for aligned instances. Below we give two algorithms that refine this
idea and achieve better approximation ratios. These algorithms are determinis-
tic: randomization is used only for their analysis.

4.1 A 1.67-Approximation Algorithm for Arbitrary Profits

Algorithm SimpleAlign
Produce 2 instances J ′ and J ′′. The instance J ′ has all windows rounded
up to the next power of 2; the instance J ′′ has all windows rounded up
to the next number of the form 3 · 2α for some integer α ≥ 0, with
the exception of jobs with window 1 which remain unchanged. Produce
optimal schedules S′ and S′′ for J ′ and J ′′ and choose the better one.

Theorem 4.2. SimpleAlign is a 1.67-approximation algorithm for unit pro-
cessing times and arbitrary profits.

Proof. Using Theorem 4.1, SimpleAlign runs in polynomial time.
Consider a distribution which chooses S′ with probability 2/5 and S′′ with

probability 3/5. We prove that the condition of Lemma 2.1 is satisfied with
R = 5/3. We use the following claim, where by �J′

(j) we denote the load of a
job j rounded as in the instance J ′, and similarly for �J′′

and J ′′.

Claim 1. For any job j, 2
5 �

J′
(j) + 3

5�
J′′

(j) ≥ �(j)/R.

Proof. We consider two cases:

(i) If for some integer α, 2α+1 ≤ aj ≤ 3 · 2α, then

2
5
�J′

(j) +
3
5
�J′′

(j) ≥ 2
5
· 1
2α+2

+
3
5
· 1
3 · 2α

=
3

5 · 2α+1
≥ �(j)

R
.

(ii) Otherwise, for some integer α, 3 · 2α < aj < 2α+2, in which case

2
5
�J′

(j) +
3
5
�J′′

(j) ≥ 2
5
· 1
2α+2

+
3
5
· 1
3 · 2α+1

=
1

5 · 2α
≥ �(j)

R
.

Now, given an optimal schedule S∗ and a job j, we prove the assumption of
Lemma 2.1. We distinguish between two cases.

(a) First, assume that both LS′
(J≥j) < m and LS′′

(J≥j) < m. Then LS′
(J≥j) =∑

j∈J≥j
�J′

(j), by the construction of an optimal schedule for aligned in-
stances, and similarly for S′′. From Claim 1, we obtain Exp[LS(J≥j)] ≥
L(J≥j)/R ≥ LS∗

(J≥j)/R.

600 J. Sgall, H. Shachnai, and T. Tamir

(b) Otherwise it must be the case that LS′
(J≥j) = m or LS′′

(J≥j) = m (note
that the load in a schedule cannot be larger than m). Either way, it implies
that L(J≥j) ≥ m in the original instance. In both J ′ and J ′′, the size of each
window is at most doubled, therefore LS′

(J≥j) ≥ m/2 and LS′′
(J≥j) ≥ m/2.

Then the average load is bounded by Exp[LS(J≥j)] ≥ 2/5 + 3/5 · m/2 =
7m/10 ≥ m/R ≥ LS∗

(J≥j)/R.

The proof is completed by an application of Lemma 2.1.

4.2 A 1.39-Approximation Algorithm for Unit Profits

Now we focus on the special case where, for any job j, bj = 1. Thus, the average
profit is equal to the load of the schedule. In particular, if the schedule has no
idle time, it is optimal.

Instead of using two schedules with periods 2 and 3 times a power of 2, the
next algorithm uses one of k schedules with periods q = k+1, k+2, . . . , 2k times
a power of 2. For a large but constant k, the approximation ratio approaches
2 ln 2 ≈ 1.39. The jobs with large windows are rounded similarly to the previous
proof.

The jobs with small windows are handled separately. Given a constant q and
a set of jobs with windows at most q, we find an optimal schedule with period q
in polynomial time. If the number of machines is constant, then the number of
such schedules is constant and we can find an optimal one simply by exhaustive
search. (Note that we do not need to distinguish between different jobs having
the same windows, as they have identical profits.)

For arbitrary m, we use Lenstra’s polynomial algorithm for integer program-
ming in fixed dimension (see [11]), similarly to its other applications in schedul-
ing. Since q is a constant, we have a constant number of job types specified by
their windows, and for each type of jobs we have a constant number of patterns
specifying in which time slots it runs. The variables of the integer program cor-
respond to the number of jobs of each type following each pattern; the number
of these variables is a constant exponential in q. The constraints specify that (i)
the number of scheduled jobs of each type equals to the number of such jobs
in the instance, and that (ii) the number of jobs scheduled in any given time
unit is at most m. Feasible integral solutions then correspond to schedules in a
straightforward way. Given an instance, the integer program can be produced in
linear time, and solved in time polylogarithmic in n and m (with a multiplicative
constant doubly exponential in q).

Algorithm BestAlign
Let ε > 0 be given.
Let K = �1/ε�. For all values k ∈ {K, 4K, . . . , 4xK, . . . , 4KK} and

for all values q = {k + 1, k + 2, . . . , 2k} generate a schedule as follows.
Let J ′ be the set of jobs with windows at most k/4. Let J ′′ be an

instance of jobs with windows larger than k. (Note that J ′ and J ′′ depend
only on k.) Let J ′′′ be an aligned instance obtained from J ′′ so that the

Fairness-Free Periodic Scheduling with Vacations 601

window of each job is rounded up to the next number of the form q2α,
for some integer α ≥ 0.

Find the best schedule with period q for J ′; since q is a constant, this
can be done as described in the previous paragraph. Then schedule J ′′′

in the remaining slots, using the optimal algorithm for aligned instances.
Output the best schedule over all values of k and q.

Theorem 4.3. BestAlign is (2 ln 2 + O(ε))-approximation algorithm for the
jobs with unit processing times and unit profits.

Thus, there exists an R-approximation algorithm for any R > 2 ln 2 ≈ 1.386.

Proof. By the above discussion, BestAlign can be implemented in polynomial
time for any fixed ε > 0.

Let S∗ be an optimal schedule for a given instance. For the proof, fix a value
of k among those used in the algorithm, so that the contribution of the jobs with
windows between k/4 and k to L(S∗) is at most ε ·L(S∗). Since there are �1/ε�
choices of k, one of them has a sufficiently small contribution. This defines the
sets of jobs J ′ and J ′′. Let S′ and S′′ denote the schedule S∗ restricted to J ′ and
J ′′, respectively, i.e., all the other jobs are simply removed from the schedule.

For any q, let Sq be the schedule produced by the algorithm for this choice
of q and for k fixed as above. If any of Sq has load m, it is optimal for J and the
theorem follows. Thus, for the remaining proof we can assume that Sq always
schedules all the jobs in J ′′′ with their maximal load, i.e., LSq(J ′′′) = L(J ′′′).

We prove that one of the schedules Sq has load at least 3/4 · LS′
(J ′) +

L(J ′′)/(2 ln 2 + O(ε)). The theorem then follows since, by the choice of k,
LS∗(J) ≤ (1 + O(ε))(LS′

(J ′) + LS′′
(J ′′); furthermore, LS′′

(J ′′) ≤ L(J ′′), and
2 ln 2 > 4/3.

The schedule produced by BestAlign for J ′ has load at least 3/4 of L(S′):
If we take in S′ a segment of length q− k/4 with the maximal load and append
to it k/4 empty slots, we get a schedule with period q and load at least 3/4 of
L(S′). The optimal schedule for J ′ with period q chosen by BestAlign has at
least the same load.

Now we complete the proof of the theorem by showing that for some distri-
bution over the schedules Sq, Exp[LSq(J ′′′)] ≥ L(J ′′)/(2 ln 2+O(ε)). Define the
probability distribution so that the probability of choosing Sq is πq = X/(q−1),
where X is chosen so that the sum of the probabilities is 1, i.e.,(

1
k

+ . . . +
1

2k − 1

)
X = 1. (1)

We proceed with the proof job by job, as in Theorem 4.2. Since Sq schedules
all the jobs with maximal rate, it is sufficient to prove for each job j that its
expected load in J ′′′ (i.e., after rounding) is at least �(j)/(2 ln 2+O(ε)). Assume
that the integers α ≥ 0 and t ∈ {k, . . . , 2k − 1} satisfy t2α < aj ≤ (t + 1)2α

(for each j, there exist unique values of t and α). Then the average load of j in
J ′′′ is

602 J. Sgall, H. Shachnai, and T. Tamir

t∑
q=k+1

πq ·
1

q2α+1
+

2k∑
q=t+1

πq ·
1

q2α
= t

⎛⎝ t∑
q=k+1

πq ·
1
2q

+
2k∑

q=t+1

πq ·
1
q

⎞⎠ 1
t2α

≥ t

⎛⎝ t∑
q=k+1

πq ·
1
2q

+
2k∑

q=t+1

πq ·
1
q

⎞⎠ �(j).

It remains to bound the coefficient on the right-hand side. By the definition of
πq, we have

πq

q
=

X

(q − 1)q
=

(
1

q − 1
− 1

q

)
X,

and substituting this and telescoping the sums we have

t

⎛⎝ t∑
q=k+1

πq ·
1
2q

+
2k∑

q=t+1

πq ·
1
q

⎞⎠ = tX

(
1
2k
− 1

2t
+

1
t
− 1

2k

)
=

X

2
.

Using (1), we have

2
X

= 2
(

1
k

+ . . . +
1

2k − 1

)
≤ 2

∫ 2k

k

dx

x
+

2
k

= 2(ln(2k)−lnk)+
2
k
≤ 2 ln 2+O(ε).

This completes the proof of the theorem.

4.3 Instances with a Large Load

In the case where pj = bj = 1, the goal is to maximize the utilization of the
machine. A simple observation is that the best schedule one can expect is one
in which the machines are busy all the time. In this subsection we focus on two
cases where such a schedule can be generated.

Our analysis of SimpleAlign shows that if L(J)≥5m/3, then SimpleAlign
produces a schedule with load m: One of the schedules S′ and S′′ is guaranteed
to have at least this load, and no larger load is possible.

The next theorem gives a condition to the optimality of any greedy algorithm
in scheduling jobs with unit lengths and unit profits. In the resulting schedule,
we get full utilization of all machines. In other words, no machine is ever idle,
regardless of the jobs selected to be scheduled at any time slot.

Theorem 4.4. Suppose that n = km+ r for some r < m. (i.e., k = !n/m" and
r = n mod m.) If L(J) > mHk − 1 + (r + 1)/(k + 1) then any algorithm with
no intended idle times achieves the optimal profit. In particular, for m = 1, the
condition is L(J) > Hn+1 − 1.

Proof. We show that if a machine is idle, L(J) must be small. Assume that
some machine is idle for the first time at t. Thus, none of the n jobs is available,
meaning that all jobs are either processed on the other machines or on vacation.

Fairness-Free Periodic Scheduling with Vacations 603

Order the jobs by the last execution up to time t, including possible executions
on the other m − 1 machines at time t. The last m − 1 jobs in this order are
possibly executed at time t, we have no bound on their vacation, so each can
contribute as much as 1 to L(J). The previous m jobs in this order are scheduled
no later than at time t−1, they are on vacation at time t, thus they have aj ≥ 2
and contribute at most 1/2 each to L(J). Similarly, the previous m jobs are
scheduled no later than at time t− 2 and contribute at most 1/3 each to L(J),
and so on. The last r+1 jobs contribute at most 1/(k+1) each. Thus, the total
load of the input is

L(J) ≤ m− 1 + m

(
1
2

+
1
3

+ . . . +
1
k

)
+

r + 1
k + 1

= mHk − 1 +
r + 1
k + 1

.

Therefore, L(J) > mHk − 1 + (r + 1)/(k + 1) implies that there is no idle
time.

Acknowledgment. We thank Gerhard Woeginger for stimulating discussions
on this paper.

References

1. S. Anily, J. Bramel, Periodic scheduling with service constraints. Operations Re-
search, Vol. 48, pp. 635-645, 2000.

2. H. Aydin, R. Melhem, D. Mosse, P. Mejia-Alvarez, Optimal Reward-Based Schedul-
ing of Periodic Real-Time Tasks. In 20th IEEE Real-Time Systems Symp., 1999.

3. A. Bar-Noy, R. Bhatia, J. Naor, B. Schieber, Minimizing Service and Operation
Costs of Periodic Scheduling. In Proc. of SODA, 1998.

4. A. Bar-Noy and R. E. Ladner. Windows Scheduling Problems for Broadcast Sys-
tems. In Proc. of SODA, 2002.

5. A. Bar-Noy, R. E. Ladner, T. Tamir. Windows Scheduling as a Restricted Version
of Bin Packing. In Proc. of SODA, 2004.

6. A. Bar-Noy, R. E. Ladner, T. Tamir. A General Buffer Scheme for the Windows
Scheduling Problem. In Proc. of WEA, 2005.

7. S.K.Baruah, N.K.Cohen, C.G.Plaxton, D.A.Varvel, Proportionate Progress: A No-
tion of Fairness in Resource Allocation. Algorithmica, 15(6), pages 600 –625, 1996.

8. S. K. Baruah, S-S. Lin. Pfair Scheduling of Generalized Pinwheel Task Systems.
IEEE Trans. on Comp., Vol. 47, 812–816, 1998.

9. J. Chung, J.W.S. Liu, K. Lin. Scheduling Periodic Jobs that Allow Imprecise Re-
sults. IEEE Trans. on Comp., Vol. 39 (9),pp. 1156–1174, 1990.

10. R. M. Karp. A Characterization of the Minimum Cycle Mean in a Digraph. Discrete
Math., 23:309-311, 1978.

11. H.W. Lenstra. Integer programming with a fixed number of variables. Mathematics
of Operations Research, Vol. 8, 538–548, 1983.

12. C. L. Liu, J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, Vol. 20, No. 1, 46-61, 1973.

13. R. Tijdeman. The Chairman assignment Problem. Discrete Mathematics, Vol. 32,
323-330, 1980.

Online Bin Packing with Cardinality Constraints

Leah Epstein�

Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

Abstract. We consider a one dimensional storage system where each
container can store a bounded amount of capacity as well as a bounded
number of items k ≥ 2. This defines the (standard) bin packing problem
with cardinality constraints which is an important version of bin packing,
introduced by Krause, Shen and Schwetman already in 1975. Following
previous work on the unbounded space online problem, we establish the
exact best competitive ratio for bounded space online algorithms for
every value of k. This competitive ratio is a strictly increasing function
of k which tends to Π∞ +1 ≈ 2.69103 for large k. Lee and Lee showed in
1985 that the best possible competitive ratio for online bounded space
algorithms for the classical bin packing problem is the sum of a series,
and tends to Π∞ as the allowed space (number of open bins) tends
to infinity. We further design optimal online bounded space algorithms
for variable sized bin packing, where each allowed bin size may have a
distinct cardinality constraint, and for the resource augmentation model.
All algorithms achieve the exact best possible competitive ratio possible
for the given problem, and use constant numbers of open bins. Finally, we
introduce unbounded space online algorithms with smaller competitive
ratios than the previously known best algorithms for small values of
k, for the standard cardinality constrained problem. These are the first
algorithms with competitive ratio below 2 for k = 4, 5, 6.

1 Introduction

The classical bin packing problem [19,5,3] assumes no limit on the number of
items which may be packed in a single bin. In practice, many applications re-
quire such a bound either due to overheads or additional constrains that are not
modeled. For example, a disk cannot keep more than a certain number of files,
even if these files are indeed very small. A processor cannot run more than a
given number of tasks during a given time, even if all tasks are very short. The
problem where there is a given bound k > 1 on the number of items which can
co-exist in one bin, is called “Bin Packing with Cardinality Constraints” [11,1].
We consider several versions of this problem.

We first define the classic online bin packing problem. In this problem, we
receive a sequence σ of items p1, p2 . . . pn, arriving one by one. The values pi are
the sizes of the items. We have an infinite supply of bins, each of which is of

� Research supported in part by the Israel Science Foundation (grant no. 250/01).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 604–615, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Online Bin Packing with Cardinality Constraints 605

unit size. An item must be assigned to a bin upon arrival, so that the sum of
items in no bin exceeds 1. A bin is empty if no item is assigned to it, otherwise
it is used. The goal is to minimize the number of bins used. In the cardinality
constrained bin packing problem, an additional constraint is introduced. A
parameter k bounds the number of items that can be assigned to a single bin.

The standard measure of algorithm quality for online bin packing is the
asymptotic competitive ratio, which we now define. For a given input sequence
σ, let A(σ) (or A) be the number of bins used by algorithm A on σ. Let OPT (σ)
(or OPT) be the cost of an optimal offline algorithm which knows the complete
sequence of items in advance, i.e., the minimum possible number of bins used to
pack items in σ. The asymptotic performance ratio for an algorithm A is defined
to be R(A) = lim supn→∞ supσ

{
A(σ)

OPT (σ) |OPT (σ) = n
}
.

In the resource augmented bin packing problem, the online algorithm is sup-
plied with larger bins at its disposal than those of the offline algorithm that it
is compared to. The competitive ratio then becomes a function of the bin size.
All online bins are of the same size, and all the offline bins are of the same size,
but these two sizes are not necessarily the same.

In the variable-sized bin packing problem, there is a supply of several bin
sizes that can be used to pack the items. The cost of an algorithm is the sum of
sizes of used bins. In this problem, the generalization into cardinality constrained
packing assumes that each bin size si ≤ 1 is associated a parameter ki which
bounds the number of items that can be packed into such a bin.

We stress the fact that items arrive online, this means that each item must
be assigned in turn, without knowledge of the next items. We consider bounded
space algorithms, which have the property that they only have a constant number
of bins available to accept items at any point during processing, these bins are
also called “open bins”. The bounded space assumption is a quite natural one.
Essentially the bounded space restriction guarantees that output of packed bins
is steady, and that the packer does not accumulate an enormous backlog of bins
which are only output at the end of processing.

Previous Results. Cardinality constrained bin packing was studied in the of-
fline environment already in 1975 by Krause, Shen and Schwetman [12,13]. They
showed that the performance guarantee of the well known First Fit algorithm is
at most 2.7− 12

5k . Additional results were offline approximation algorithms of per-
formance guarantee 2. These results were later improved in two ways. Kellerer
and Pferschy [11] designed an improved offline approximation algorithm with
performance guarantee 1.5 and finally a PTAS was designed in [2] (for a more
general problem). On the other hand, Babel et al. [1], designed a simple online
algorithm with competitive ratio 2 for any value of k. They also designed im-
proved algorithms for k = 2, 3 of competitive ratios 1 +

√
5

5 ≈ 1.44721 and 1.8
respectively. The same paper [1] also proved an almost matching lower bound of√

2 ≈ 1.41421 for k = 2 and mentioned that the lower bounds of [22,20] for the
classic problem hold for cardinality constrained bin packing as well. The lower
bound of 1.5 given by Yao [22] holds for small values of k > 2 and the lower

606 L. Epstein

bound of 1.5401 given by Van Vliet [20] holds for sufficiently large k. No other
lower bounds are known.

For the classic bin packing problem, Lee and Lee [14] presented an algorithm
called Harmonic, which partitions items into m > 1 classes and uses bounded
space of at most m − 1 open bins. For any ε > 0, there is a number m such
that the Harmonic algorithm that uses m classes has a performance ratio of at
most (1 + ε)Π∞ [14], where Π∞ ≈ 1.69103 is the sum of series (see Section 2).
They also showed there is no bounded space algorithm with a performance ratio
below Π∞. Currently the best known unbounded space upper bound is 1.58889
due to Seiden [17].

The first to investigate the variable sized bin packing problem were Friesen
and Langston [10]. Csirik [4] proposed the Variable Harmonic algorithm and
showed that it has performance ratio at most Π∞. Seiden [16] showed that
this algorithm is optimal among bounded space algorithms. Unbounded space
variable sized bin packing was studied also in [18].

The resource augmented bin packing problem was studied by Csirik and
Woeginger [6]. They showed that the optimal bounded space asymptotic perfor-
mance ratio is a function ρ(b) of the online bin size b. Unbounded space resource
augmented bin packing was studied also in [8].

Our Results. We consider bounded space algorithms. For every value of k,
we find the best competitive ratio of any online bounded space algorithm. The
competitive ratio is a strictly increasing function of k and for large enough k it
approaches 1 + Π∞ ≈ 2.69103 where Π∞ is the best competitive ratio shown
by [14] for the classic bounded space problem. This is a surprising feature of the
problem, since one would expect this value to simply tend to Π∞ as k grows.

We further consider the resource augmented problem where the online algo-
rithm may use larger bins compared to the optimal offline algorithm. We design
optimal online algorithms for this problem as well. For large enough values of
k, the competitive ratios again approach values which differ by 1 from the best
competitive ratios for the classic resource augmented problem [6]. We show that
the competitive ratios for our problem never drops below 1 (unlike the case stud-
ied in [6]) and identify the cases where the competitive ratio is exactly 1. For
variable sized bin packing, we design algorithms of the exact optimal competi-
tive ratios (among bounded space algorithms) for any set of bins and cardinality
constraints. An interesting feature is that we prove the algorithms have optimal
competitive ratios, even though we do not know what these ratios are.

A main difference between our results for bounded space algorithms and the
results of [14,6,16] is that our algorithms have exactly the best possible com-
petitive ratio achievable by bounded space online algorithms. The algorithms
for variants of the classical problem have competitive ratios which tend to the
best competitive ratio as the number of open bins grows without bound. Our
algorithms just need a constant number of open bins to achieve the best com-
petitive ratios. Therefore we need to be very careful in the analysis since unlike
the classic problem, we may not lose any small constants, which depend on the
number of open bins, in the analysis.

Online Bin Packing with Cardinality Constraints 607

For small values of k we design several new unbounded space algorithms,
based on combination of large and small items together in bins (see [14,15,17]),
according to sizes of small items. We prove the competitive ratios of our algo-
rithms for k = 3, 4, 5, 6 are 7

4 = 1.75, 71
38 ≈ 1.86842, 771

398 ≈ 1.93719, 287
144 ≈ 1.99306

(respectively). This improves on the bounds 9
5 = 1.8 (k = 3) and 2 (k = 4, 5, 6)

of [1].

2 Optimal Algorithms for Bounded Space Packing

In this section we define bounded space algorithms of optimal competitive ratio
for each value of k > 1. For every k > 1, we define an online bounded space
algorithm which packs at most k items in each bin and uses at most k − 1 open
bins. We show that this algorithm is the best possible among bounded space
algorithms. We use the well known sequence πi, i ≥ 1 which is often used for

bin packing, let π1 = 2, πi+1 = πi(πi − 1) + 1 and let Π∞ =
∞∑

i=1

1
πi−1 ≈ 1.69103.

This sequence was used by Lee and Lee in [14] and by Van Vliet [20].
Adaptations of this sequence were later used in several papers including [6,18].

The sequence is constructed in a way that 1 −
j∑

i=1

1
πi

= 1
πj+1−1 (which can be

easily shown by induction using the sequence definition). This means that each
time the next value πi is picked to be an integer, such that all items 1

πj
for j ≤ i

can fit together in a bin leaving some empty space. Note that Π∞ is a lower bound
on the best competitive ratio for classical bounded space bin packing, and there
exists a sequence of bounded space algorithms, with an increasing sequence of
open bins whose competitive ratios tend to this value [14,21]. The algorithms
in this section are based on the algorithms in [14] with some differences in the
construction and proof due to the cardinality constraint (which also increases
the competitive ratio by 1 for large values of k). We also would like to achieve
the best possible bound for every value of k separately, and not only in the limit.

Let Rk =
k∑

i=1

max
{

1
πi−1 ,

1
k

}
. We show that for every value of k, the best

competitive ratio is exactlyRk. We start with some properties ofRk as a function
of k.

Theorem 1. The value of Rk is a strictly increasing function of k, such that
3
2 ≤ Rk < Π∞ + 1, and lim

k→∞
Rk = Π∞ + 1 ≈ 2.69103.

Proof. We first find the value of R2. Since π1 = 2 and π2 = 3, we have R2 =
3
2 = 1.5. Note also that R3 = 11

6 ≈ 1.83333,R4 = 2,R5 = 2.1 and R6 =
13
6 ≈ 2.16666. Next we show the monotonicity of Rk. For a given k, let jk =
min

1≤j≤k
{j| 1k ≥

1
πj−1}. The value jk exists for all k since πk − 1 ≥ k for all k. Then

we haveRk =
jk−1∑
i=1

1
πi−1 +

k∑
i=jk

1
k =

jk−1∑
i=1

1
πi−1 + k−jk+1

k . By definition of the values

608 L. Epstein

ji, clearly jk ≤ jk+1. Therefore Rk+1−Rk =
jk+1−1∑

jk

1
πi−1 + k−jk+1+2

k+1 − k−jk+1
k >

jk+1−jk

k+1 + 1−jk+1
k+1 − 1−jk

k = jk−1
k − jk−1

k+1 ≥ 0. We deduce the strict inequality
above by πi − 1 < k + 1 which holds for i < jk+1.

An upper bound on Rk follows from Rk =
k∑

i=1

max
{

1
πi−1 ,

1
k

}
<

k∑
i=1

1
πi−1 +

k∑
i=1

1
k < Π∞ + 1. We next show that Rk tends to this value. For a given ε > 0,

let � be a value such that
�∑

i=1

1
πi−1 ≥ Π∞ − ε

2 , and � ≥ 2
ε . Let k = �2, then

Rk ≥
�∑

i=1

1
πi−1 +

k∑
i=�+1

1
�2 ≥ Π∞ − ε

2 + �2−�
�2 ≥ Π∞− ε

2 + 1− ε
2 = Π∞ + 1− ε ��

Next we define the algorithm Cardinality Constrained Harmonick

(CCHk) which is an adaptation of the algorithm Harmonick defined originally
by Lee and Lee [14]. The fundamental idea of “harmonic-based” algorithms is
to first classify items by size, and then pack an item according to its class (as
opposed to letting the exact size influence packing decisions).

For the classification of items, we partition the interval (0, 1] into sub-intervals.
We use k − 1 sub-intervals of the form (1

i+1 ,
1
i] for i = 1, . . . , k− 1 and one final

sub-interval (0, 1
k]. Each bin will contain only items from one sub-interval (type).

Items in sub-interval i are packed i to a bin for i = 1, . . . , k−1, thus keeping the
cardinality constraint. The items in interval k are packed k to a bin. A bin which
received the full amount of items (according to its type) is closed, therefore at
most k − 1 bins are open simultaneously (one per interval, except for (1

2 , 1]).
To prove the upper bound on the competitive ratio, we use a simplified ver-

sion of a theorem 9 stated in section 5. We use the technique of weighting func-
tions. This technique was originally introduced for one-dimensional bin packing
algorithms [19]. The version we use is as follows.

Theorem 2. Consider a bin packing algorithm. Let w be a weight measure.
Assume that for every output of the algorithm, the number of bins used by an
algorithm ALG is bounded by X(σ) + c for some constant c, where X(σ) is
the sum of weights of all items in the sequence according to weight measure w.
Denote by W the maximum amount of weight that can be packed into a single
bin of an offline algorithm according to measure w. Then the competitive ratio
of the algorithm is upper bounded by W .

We define weights as follows. The weight of item x is denoted w(x). The
weight of an item in interval (1

i+1 ,
1
i], for i = 1, . . . , k − 1, is 1

i . The weight of
an item in interval (0, 1

k] is 1
k . Recall that except for k − 1 open bins that may

not receive the full amount of items, each output bin receives a total weight of
1. A closed bin for items in interval (1

i+1 ,
1
i] receives i items, of weight 1

i each. A
closed bin for items in interval (0, 1

k] receives k items, of weight 1
k each. Therefore

we get CCHk(σ) ≤ X(σ) + k − 1.

Online Bin Packing with Cardinality Constraints 609

Theorem 3. For every k, the competitive ratio of CCHk is Rk, and no online
algorithm which uses bounded space can have a better competitive ratio.

Proof. We prove the upper bound first. Let ε > 0 a very small constant, such
that ε << 1

kπk+1
We claim that the maximum weight of a single bin is achieved

for the following set of items. f1 ≥ . . . ≥ fk, so that fi = 1
πi

+ ε. This set of
items fits in a single bin according to the definition of the sequence πj . Their

sum of weights is exactly Rk =
k∑

i=1

max
{

1
πi−1 ,

1
k

}
.

To show that the maximum weight of any bin is indeed Rk, consider an
arbitrary set S of � ≤ k items which fits into one bin. If � �= k, we add k − �
items of size zero and give them weight 1

k . This may only increase the sum of
weights. Let g1 ≥ . . . ≥ gk be the sorted list of items. If gi ∈ (1

πi
, 1

πi−1] holds
for all i such that πi ≤ k and gi ∈ [0, 1

k] for all i such that πi > k, then the
weight of the items of S is exactly Rk. Otherwise let i be the first index of

item that does not satisfy the above. If w(gi) = 1
k we get that

k∑
j=1

w(gj) =

i−1∑
j=1

w(gj) +
k∑

j=i

w(gj) =
i−1∑
j=1

w(fj) +
k∑

j=i

1
k ≤

k∑
j=1

w(fj) = Rk.

Otherwise, assume w(gi) > 1
k . Due to the greedy construction of the sequence

πj , and since gi /∈ (1
πi
, 1

πi−1], we get that gi ≤ 1
πi

and therefore w(gi) < 1
πi−1 =

w(fi). Let i′ be the smallest index such that w(gi′) = 1
k (this value exists as

mentioned above since k ≤ πk − 1). If i′ = i + 1 we get that w(gi) < w(fi), and

for j ≥ i′, 1
k = w(gj) ≤ w(fj). In this case we have

k∑
j=1

w(gi) <
k∑

j=1

w(fi) = Rk.

Otherwise consider the values of j such that i ≤ j ≤ i′ − 1. We have gj ≤ 1
πi

,

and therefore according to the weight definition for x > 1
k , w(gj)

gj
≤ πi+1

πi
for

i ≤ j ≤ i′ − 1. Given that for j < i, gj ∈ (1
πj
, 1

πj−1], we have
k∑

j=i

gj ≤ 1
πi−1

and therefore
i′−1∑
j=i

w(gj) ≤ πi+1
π2

i −πi
. However w(fi) + w(fi+1) = 1

πi−1 + 1
πi+1−1 =

1
πi−1 + 1

π2
i −πi

= πi+1
π2

i −πi
. Summarizing, we get

k∑
j=1

w(gj) =
i−1∑
j=1

w(gj)+
i′−1∑
j=i

w(gj)+

k∑
j=i′

w(gj) ≤
i−1∑
j=1

w(fj) + w(fi) + w(fi+1) +
k∑

j=i′

1
k ≤

k∑
j=1

w(fi) = Rk.

The proof of the lower bound is similar to previously known lower bound
proofs for bounded space algorithms, see [14,6]. To prove the lower bound, let N
be a large constant, and δ > 0 a very small constant, such that δ << 1

kπk+1
. We

construct the following sequence. The sequence has k phases. Phase i contains
N items of size 1

πi
+δ. Let K be the number of bins that may be open simultane-

ously. Except for at most K bins, all bins of each phase are closed after the phase.
Such bins can be filled by a maximum amount of min{πi − 1, k} items. There-
fore phase i contributes at least N

min{πi−1,k} −K = N max{ 1
πi−1 ,

1
k} −K closed

610 L. Epstein

bins to the output. The optimal packing of the sequence contains N identically
packed bins with one item of each phase per bin. We get that the competitive
ratio is at least Rk − kK

N . This approaches Rk for large enough N . ��

3 Extension to Resource Augmentation

Following the work of [6] which studied resource augmentation for the classic bin
packing problem, we show that the algorithms defined in the previous section
are optimal in a resource augmented environment as well.

We compare an online algorithm which uses bins of size 1 to an optimal
offline algorithm whose bins are of size 1

b . We assume that all item sizes are
bounded by 1

b . This problem definition is equivalent to the alternative definition
where items have sizes in (0, 1], the online algorithm uses bins of size b and
the offline algorithm uses bins of size 1. The competitive ratio for bounded
cardinality k is measured as a function of b > 1. The best competitive ratio
for bounded space algorithms and unrestricted online algorithms are denoted
Rk(b) and rk(b) (respectively). We note a fundamental difference between the
resource augmented problem associated with the classic bin packing problem
and the problem studied in this paper. As we show later in this section, the
competitive ratio is never below 1 for our problem, whereas the classic problem
has a competitive ratio below 1 for b ≥ 2 [6,8].

We show that the competitive ratio (even for unbounded space algorithms)
cannot actually reach 1 if b < k and is exactly 1 for b = k (the proof is omitted).

Theorem 4. For all values of b, k such that b < k we have Rk(b) ≥ rk(b) > 1.
For all values of b, k such that b ≥ k, we have rk(b) = Rk(b) = 1 .

The algorithms are defined exactly as in the previous section. However this means
that some of the defined classes do not exist if b is large enough. Note that the
algorithm for the case b ≥ k becomes exactly Next Fit.

To define the competitive ratio, we first define sequences πi(b) and Πi(b),
originally defined by [6] as follows. Π0(b) = 0, π1(b) = !b" + 1, Π1(b) = 1

π1(b) ,

πi(b) =
⌊

1
1
b −Πi−1(b)

⌋
+ 1 and Πi(b) = Πi−1(b) + 1

πi(b)
. The intuition behind this

function is to find a sequence of integers, such that the next integer at each point
is picked greedily to be minimal, and the sum of their reciprocals is less than 1

b .
The values of πi(b) satisfy πi(b) > b. We can show that the values are strictly
increasing as a function of b. Clearly the values are non-decreasing. If two values
are the same we let πi(b) = πi+1(b) = f be these identical values. Then we argue
that πi(b) should have been chosen to be at most f − 1. To see that note that
1
b −Πi−1(b) > 2

f ≥
1

f−1 . This holds for all f ≥ 2.

Csirik and Woeginger [6] introduced the function ρ(b) =
∞∑

i=1

1
πi(b)−1 and

showed that this is the best possible competitive ratio with resource augmenta-
tion b for the classic bin packing problem. Note that ρ(1) = Π∞ ≈ 1.69103. We
can prove the following theorems whose proofs are omitted.

Online Bin Packing with Cardinality Constraints 611

Theorem 5. For every k, the competitive ratio of CCHk (defined in the pre-

vious section) is Rk(b) =
k∑

i=1

max
{

1
πi(b)−1 ,

1
k

}
, and no online algorithm which

uses bounded space can have a better competitive ratio.

Theorem 6. The value of Rk(b) for a fixed value of b is an increasing function
of k, such that 1 ≤ Rk(b) < ρ(b) + 1, and lim

k→∞
Rk = ρ(b) + 1.

4 Extension to Variable Sized Bins

Following the work of Seiden [16] we design optimal online bounded space algo-
rithm for the case of variable sized bins. Similarly to that case and other work on
variable sized bins [7], we design algorithms for any set of bin sizes, we prove their
optimality, however we do not know their competitive ratios. Our algorithms are
based on the Variable Harmonic algorithms of Csirik [4]. The optimality of
these algorithms among the class of bounded space algorithms was proved in
[16]. As in previous sections, the main difference between these algorithms and
our algorithms is in the way that small items are packed. As in previous sections,
our algorithms have the exact best possible competitive ratio for a given set of
bins and cardinality constraints, this with a constant number of open bins that
can be easily computed (as a function of the bins sizes and constraints). The
algorithms for the classical problem get close to the best possible competitive
ratio as the number of open bins grows without bound.

In order to define our general algorithm Cardinality Constrained Vari-
able Harmonic (CCVH) we use some definitions. Let the bins sizes be s1 <
. . . sm = 1. Let their cardinality constraints be k1, . . . , km (respectively). We
define a set of critical sizes for each bin in the following way. Let Ti = { si

j |1 ≤
j ≤ ki} and T =

⋃
1≤i≤m

Ti. Let |T | = M and the members of T be 1 = t1 > t2 >

. . . > tM . The type of a size tr is defined to a value i(r) such that tr ∈ Ti(r)

(ties are broken arbitrarily). In this case the order of tr is �(r) ≤ ki such that
tr = si(r)

�(r) .
We again classify items into intervals whose right endpoint is a critical size.

This associates an item with an type and order. Afterwards we pack an item
according to its type and order (here as well as in the previous sections, the
exact size does not influence packing decisions). Each bin will contain items of
a single interval.

Since M = |T | ≤
m∑

i=1

ki, there is a bounded number of pairs of type and order.

For the classification of items, we partition the interval (0, 1] into sub-intervals.
The “small” interval is (0, tM]. The other intervals are (tj+1, tj] for j = 1, . . . ,M−
1. Each bin will contain only items from one pair of type and order. Items in the
sub-interval whose right endpoint is tr are packed into bins of size si(r). The items
in this interval are packed �(r) to a bin, thus keeping the cardinality constraints.
Note that at most M−m bins are open simultaneously, since a bin which received
the full amount of items (according to its type) is closed.

612 L. Epstein

The differences with algorithms for the classic variable sized bin packing
problem are as follows. The condition for an item to be “small” (i.e. in the
“small” interval) is determined by the cardinality constraints. Items cannot be
packed using Next Fit due to these constraints. Moreover, in [16] the smallest
items are packed into bins of size 1. In that case it is actually possible to pack
the small items into any type of bin. Here the type of bin for the small items
must be si(M) (if there exists another size i′ such that tM ∈ T ′

i , that size can be
used for the small items as well).

The following theorem is used in [16] to prove upper bounds on the compet-
itive ratio of algorithms for variable sized bins.

Theorem 7. Consider a bin packing algorithm. Let w be a weight measure.
Assume that for every output of the algorithm, the cost of all the bins used by
the algorithm ALG is bounded by X(σ) + c for some constant c, where X(σ) is
the sum of weights of all items in the sequence according to weight measure w.
Denote by Wi the maximum amount of weight that can be packed into a single bin
of size si of an offline algorithm according to measure w. Then the competitive
ratio of the algorithm is upper bounded by max

1≤i≤m

{
Wi

si

}
.

We assign weights to items in the following way. A weight of an item x is
again denoted by w(x). An item of interval (0, tM] receives weight si(M)

�(M) (note
that �(M) = ki(M)). An item of interval (tj+1, tj] receives weight si(j)

�(j) . Each
closed bin of interval (0, tM] is of size si(M), it receives �(M) items and thus
the weight of items packed in it is equal to its size. Each closed bin of interval
(tj+1, tj] is of size si(j). It receives �(j) items and thus the weight of items packed
in it is equal to its size. Therefore the cost of the algorithm differs from the total
weight of all items by the cost of all open bins, which is clearly bounded by
M −m.

We can now use Theorem 7 to prove the following theorem (the proof is
omitted).

Theorem 8. For a given set of bins sizes and cardinality constraints, the algo-
rithm CVH is an optimal online algorithm.

5 Improved Unbounded Space Algorithms for Small
Values of k

We first design an algorithm for k = 3. Already the algorithm of [1] has a
competitive ratio lower than the best bounded space algorithm (9

5 = 1.8 which
is smaller than 11

6). We design an algorithm which uses a more careful partition
into classes and has competitive ratio 7

4 = 1.75. The algorithm is based on the
idea of the Harmonic algorithm, and its generalizations (see [14,15,17,9]). In
these generalizations, items of two intervals are combined together in the same
bins. We would like to use a similar approach, however the boundaries of intervals
are chosen with accord to cardinality constraints.

Online Bin Packing with Cardinality Constraints 613

We use the following five intervals. A = (2
3 , 1], B = (1

2 ,
2
3], C = (1

3 ,
1
2],

D = (1
6 ,

1
3], E = (0, 1

6]. Items which belong to an interval I are called items of
type I, type I items, or simply I items. Items of types A,C and D are packed
independently of any other items, one, two and three items per bin, respectively.
Note that it is always possible to combine one item of type B with two items of
type E. Therefore, each item of type E receives a color upon arrival, white or
red. White items are packed in separate bins (three per bin) whereas red items
are packed two per bin, and combined with one type B item. If there exists such
an open bin, the red type E items are added there. Otherwise once a type B item
arrives later, it is added to a bin with two type E items. The colors are assigned
so that an α fraction of the type E items are red. We use α = 1

4 . Therefore every
fourth type E item is red, and all others are white.

We define a bin as incomplete in the four following packings. 1. A bin with
a single C item, 2. A bin with only one or two D items, 3. A bin with a single
red E item, 4. A bin with one or two white E items, 5. A bin with one red E
item (and possibly a B item as well).

At every time, the algorithm can have at most five incomplete bins, one for
each combination. Therefore upon termination, except for at most four incom-
plete bins, all bins can be packed as follows. 1. A single A item, 2. Two C
items, 3. Three D items, 4. One B item, 5. Two red E items, 6. Three white E
items, 7. One B item and two red E items.

According to the definition of the algorithm, we never have a situation where
one bin has only a B item, and another bin has two red E items. This is true
since a new bin is opened for such items only if they cannot join a previously
opened bin.

The algorithm is therefore at one of the following two situations. 1. There
are no bins with two red E items with no B item. 2. There are no bins with one
B item and no E items.

We assign two weights to each item, according to the two scenarios. The
weights are assigned according to types of items. We use w1(I) and w2(I) to
denote the weights of type I items according to the two weight functions. Let
w1(A) = w2(A) = 1, w1(B) = 1, w2(B) = 0, w1(C) = w2(C) = 1

2 , w1(D) =
w2(D) = 1

3 , w1(E) = 1−α
3 = 1

4 , w2(E) = α+2
6 = 3

8 .
The weights are defined so that in the first scenario, on average all bins (but

at most four) have a total amount of weight of at least 1 packed into them
according to the first weight measure, and otherwise the same property holds
according to the second weight measure.

We use the following theorem, see Seiden [17].

Theorem 9. Consider a bin packing algorithm. Let w1, w2 be two weight mea-
sures. Assume that for every output of the algorithm, there exists i (i = 1 or
i = 2) such that the number of bins used by the algorithm ALG is bounded
by Xi(σ) + c for some constant c, where Xi(σ) is the sum of weights of all
items in the sequence according to weight measure wi. Denote by Wi the max-
imum amount of weight that can be packed into a single bin according to measure

614 L. Epstein

wi (i = 1, 2). Then the competitive ratio of the algorithm is upper bounded by
max(W1,W2).

To use the theorem, we need to prove that for every input ALG ≤ Xi(σ) + c for
some i. We ignore the (at most five) incomplete bins, which adds at most 5 to
the constant c. The weight of a bin is the sum of weights of items assigned to it.
In both scenarios, bins with one A item have weight 1, bins with two C items
have weight 1, and so do bins with three D items.

We remove from the sequence items of incomplete bins. Denote the amounts
of B items by n(B), and of E items by n(E). The number of red E items
is denoted n(ER), and the number of white E items n(EW), (i.e., n(E) =
n(EW) + n(ER)). According to the color assignments, and since at most two
white items and one red item were removed, 3n(ER) ≤ n(EW) ≤ 3n(ER) + 6.
In the first scenario, no bins contain red E items only. The total weight of
B and E items is n(B) + n(E)

4 . The number of bins used for these types is
n(B) + n(EW)

3 ≤ n(B) + n(E)+2
4 (using n(EW) ≥ 3n(ER) + 6). In this case

we get ALG < X1 + 6. In the second scenario, no bins contain a B item only.
The total weight of B and E items is 3n(E)

8 . The number of bins used for these
types is n(ER)

2 + n(EW)
3 ≤ 3n(E)

8 (using 3n(ER) ≤ n(EW)). In this case we get
ALG < X2 + 5.

Next we analyze the maximum amount of weight that a bin can contain
according to the two weight measures. In both weight measures, if no item has
weight 1, the total weight of three items does not exceed 3

2 . Using w1, the smallest
item of weight 1 is slightly larger than 1

2 . If there is a C item, then there can
be no D item but only a E item. We get therefore 1 + 1

2 + 1
4 . If there is no C

item, the worst case is two extra D items. This gives 1 + 2
3 . We get therefore

W1 = 7
4 = 1.75. Using w2, the smallest item of weight 1 is slightly larger than

2
3 . There can be no B or C items. The worst case is two extra E items, and we
get W2 = 1 + 2 · 3

8 = 1.75.
We proved the following theorem.

Theorem 10. The competitive ratio of the above algorithm for k = 3 is at most
1.75.

In the full version of the paper, we design the algorithms for other small
values of k and prove the following theorem.

Theorem 11. The competitive ratios of the above algorithm for k = 4, 5, 6 are
at most 71

38 ≈ 1.86842, 771
398 ≈ 1.93719, 287

144 ≈ 1.99306 (respectively).

References

1. L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-
packing problems with cardinality constraints. Discrete Applied Mathematics,
143(1-3):238–251, 2004.

2. A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for ordered
vector packing problems. Naval Research Logistics, 92:58–69, 2003.

Online Bin Packing with Cardinality Constraints 615

3. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: A survey. In D. Hochbaum, editor, Approximation algorithms. PWS
Publishing Company, 1997.

4. J. Csirik. An online algorithm for variable-sized bin packing. Acta Informatica,
26:697–709, 1989.

5. J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat
and G. J. Woeginger, editors, Online Algorithms: The State of the Art, pages
147–177, 1998.

6. J. Csirik and G. J. Woeginger. Resource augmentation for online bounded space
bin packing. Journal of Algorithms, 44(2):308–320, 2002.

7. L. Epstein and R. van Stee. On variable-sized multidimensional packing. In Proc. of
the 12th Annual European Symposium on Algorithms (ESA2004), pages 287–298,
2004.

8. L. Epstein and R. van Stee. Online bin packing with resource augmentation.
In Proceedings of the 2nd Workshop on Approximation and Online Algorithms
(WAOA 2004), pages 48–60, 2004.

9. L. Epstein and R. van Stee. Optimal online bounded space multidimensional
packing. In Proc. of 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’04), pages 207–216, 2004.

10. D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM Journal on
Computing, 15:222–230, 1986.

11. H. Kellerer and U. Pferschy. Cardinality constrained bin-packing problems. Annals
of Operations Research, 92:335–348, 1999.

12. K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analysis of several task-scheduling
algorithms for a model of multiprogramming computer systems. Journal of the
ACM, 22(4):522–550, 1975.

13. K. L. Krause, V. Y. Shen, and H. D. Schwetman. Errata: “Analysis of several
task-scheduling algorithms for a model of multiprogramming computer systems”.
Journal of the ACM, 24(3):527–527, 1977.

14. C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the
ACM, 32(3):562–572, 1985.

15. P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear
time. Journal of Algorithms, 10:305–326, 1989.

16. S. S. Seiden. An optimal online algorithm for bounded space variable-sized bin
packing. SIAM Journal on Discrete Mathematics, 14(4):458–470, 2001.

17. S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–
671, 2002.

18. S. S. Seiden, R. van Stee, and L. Epstein. New bounds for variable-sized online bin
packing. SIAM Journal on Computing, 32(2):455–469, 2003.

19. J. D. Ullman. The performance of a memory allocation algorithm. Technical
Report 100, Princeton University, Princeton, NJ, 1971.

20. A. van Vliet. An improved lower bound for online bin packing algorithms. Infor-
mation Processing Letters, 43(5):277–284, 1992.

21. G. J. Woeginger. Improved space for bounded-space online bin packing. SIAM
Journal on Discrete Mathematics, 6:575–581, 1993.

22. A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–227,
1980.

Fast Monotone 3-Approximation Algorithm for
Scheduling Related Machines

Annamária Kovács

Max-Planck Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

fax: +49-681-93-25-199
panni@mpi-inf.mpg.de

Abstract. We consider the problem of scheduling n jobs to m machines
of different speeds s.t. the makespan is minimized (Q||Cmax). We provide
a fast and simple, deterministic monotone 3-approximation algorithm for
Q||Cmax. Monotonicity is relevant in the context of truthful mechanisms:
when each machine speed is only known to the machine itself, we need
to motivate that machines declare their true speeds to the scheduling
mechanism. As shown by Archer and Tardos, such motivation is possible
only if the scheduling algorithm used by the mechanism is monotone.
The best previous monotone algorithm that is polynomial in m, was
a 5-approximation by Andelman et al. A randomized 2-approximation
method, satisfying a weaker definition of truthfulness, is given by Archer.
As a core result, we prove the conjecture of Auletta et al., that the greedy
algorithm (Lpt) is monotone if machine speeds are all integer powers of 2.

1 Introduction

We consider the offline task scheduling problem on related machines (Q||Cmax).
We are given a speed vector 〈s1, s2, . . . , sm〉 representing the speeds of m ma-
chines, and a job vector 〈t1, t2, . . . , tn〉, where tj is the size of the jth job,
1 ≤ j ≤ n. We assume tj ≥ tj+1 (1 ≤ j < n), i.e., the job sizes are ordered.
The goal is to assign the jobs to the machines, so that the overall finish time is
minimized: If jobs assigned to machine i are {tiγ}Γ

γ=1 then the work assigned to
i is wi :=

∑Γ
γ=1 t

i
γ and the finish time of i is fi := wi/si. The makespan to be

minimized is maxm
i=1 fi. This problem is NP-hard even for 2 identical machines

[6], but it has an approximation scheme [3]. For constant m a FPTAS exists [4].
Here we regard this problem in the context of truthful mechanisms : we assume

that the machines are owned by selfish agents, and the speed of each machine is
private information to its agent. A mechanism is a pair M = (A,P), where A
is an (approximation-)algorithm to the scheduling problem, and P is a payment
function. Let the job vector be fixed and public. Every machine (agent) i reports
a bid bi to be the inverse of her speed. With the job vector and the bid vector
〈b1, . . . , bm〉 as input, M schedules the jobs using algorithm A, and pays each
machine using the payment function P = (P1, P2, . . . , Pm). P depends on the
schedule and on the bids. The profit of machine i is defined by Pi − wi/si.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 616–627, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fast Monotone 3-Approximation Algorithm for Scheduling Related Machines 617

The mechanism is truthful, if (for every job vector), for every i and every si,
and every possible bid vector of the other machines 〈b1, . . . , bi−1, bi+1, . . . , bm〉,
bidding truthfully, i.e., bi = 1/si maximizes the profit of i.

Applications of the mechanism design framework to diverse optimization
problems arising in economics, game theory, and recently in computer science and
networking constitute a widely studied area (see [2,7]). The above formulation
concerning scheduling is one of the numerous examples. It is a natural goal to
search for (truthful) mechanisms with an efficient algorithm A having a good
approximation bound and an efficiently computable payment function P.

In our scheduling context, a monotone algorithm A is defined as follows:

Definition 1. Let A be an approximation algorithm for the Q||Cmax problem.
Suppose that on input 〈s1, . . . , sk−1, sk, sk+1, . . . , sm〉 and 〈t1, t2, . . . , tn〉, A as-
signs work wk to machine k; and on input 〈s1, . . . , sk−1, s

′
k, sk+1 . . . , sm〉 and

〈t1, t2, . . . , tn〉, A assigns work w′
k to machine k. The algorithm A is monotone,

if (sk ≤ s′k)⇒ (wk ≤ w′
k) (1 ≤ k ≤ m).

Related Work. In a seminal paper Archer and Tardos [2] show that in models
when the profit function has the above form Pi − wi/si, a truthful mechanism
M = (A,P) exists if and only if A is a monotone algorithm. In this case they also
provide an explicit formula for the payment function. Among other examples,
Archer and Tardos consider the problem Q||Cmax. They show that – by some
fixed order of the machines – the lexicographically minimal optimal solution
is monotone. They also provide a fast randomized 3-approximation algorithm,
that allows a mechanism, that is truthful in expectation, meaning that truth-
telling maximizes the expected profit of each agent. This was later improved to
a randomized 2-approximation mechanism [1].

The same problem, i.e., finding an efficient monotone approximation algo-
rithm for Q||Cmax is studied in [9]. The authors provide a deterministic, mono-
tone (4 + ε)−approximation algorithm. They conjecture that the greedy list-
processing algorithm ’Longest Processing Time first (Lpt)’ [10] is monotone, if
machine speeds are known to be powers of 2 (2-divisible speeds). They apply
a variant of Lpt, which is combined with the optimal schedule of the largest
jobs, in order to give a reasonable approximation bound. As a consequence, the
resulting algorithm is only polynomial when m is fixed, in particular, it runs in
time Ω(exp(m2/ε)). This result was considerably improved by Andelman et al.
in a recent paper [7], presenting an FPTAS for the case of constant m, and a
5-approximation algorithm for arbitrary m.

Our Result. We show a fast and simple, deterministic monotone 3-approximation
algorithm for Q||Cmax. With input jobs ordered by size, it runs in time O(m(n+
logm)). This is an improvement over the 5-approximation bound of [7]. As com-
pared to the algorithms in [2,1], no randomization is needed, and a stronger
definition of truthfulness is fulfilled. Our approach can be sketched as follows:

We prove the conjecture of [9], that Lpt is monotone on 2-divisible machines.
In case of arbitrary machine speeds Lpt was shown to yield a

618 A. Kovács

2-approximation [10]. We show that in case of 2-divisible speeds, Lpt is a
3/2-approximation algorithm. For arbitrary input speeds, the monotone
3-approximation algorithm Lpt* is as simple as to run Lpt with machine speeds
rounded to powers of 2. In order to show monotonicity of Lpt, we need to com-
pare schedules I and II, where both are results of Lpt on the same input, except
that the machine speed sk of I is increased to s′k = 2sk in II. The proof involves
a rather technical case distinction based on the number of jobs assigned to the
machine k′ in II, and on the ratio tn/ta, where ta is the first job assigned to k′.
If tn is not much smaller than ta, then a simple counting of the jobs assigned to
each machine yields the proof. If tn � ta, then a comparison of the total work
received by each machine in I and II is used.

For completeness, we note here that along the same lines as in [9,7], it is
straightforward to show that our payment function admits voluntary participa-
tion (see [2]) and can be calculated in polynomial time.

The argument that Lpt gives a 3/2-approximation, is relatively short and
simple, while making use of the same basic idea as the much more involved proof
of monotonicity. Therefore, we present this argument in the first place.

Overview. Section 2 introduces notation, and defines algorithms Lpt and Lpt*.
In Section 3 we show that Lpt* is a 3-approximation algorithm. A sketch of
the proof that Lpt* is monotone can be found in Section 4. The complete proof
is available at [5]. We conclude with some considerations about approximation
lower bounds.

2 The Lpt* Algorithm

In order to distinguish arbitrary input speed vectors from 2-divisible speed vec-
tors, in the rest of the paper 〈σ1, . . . , σi, . . . , σm〉 denotes the input speed vector
of arbitrary, positive speeds. Moreover we will assume that σi ≤ σi+1 (1 ≤ i <
m), i.e., machine speeds are in non-decreasing order. Next we define 2-divisible
speed vectors. In the definition we allow fractional speeds only for sake of simpler
presentation of our proofs. Clearly, they are not essential to the result.

Definition 2. The speed vector 〈s1, s2, . . . , sm〉, or the machines are called
2-divisible if si = 2li (li ∈ Z) for all i, and si ≤ si+1 (1 ≤ i < m).

We say that machine h is to the right (left) of i if i < h (h < i). We will refer to
job j by the job size tj . In cases when the work wi or finish time fi of machine
i is considered at an intermediate step of the algorithm, this is emphasized
by a ˜ or some superscript over wi and fi. The completion time of a job tj
assigned to machine i is the finish time of i right after tj was scheduled. Next,
we define algorithms Lpt and Lpt*:

Lpt algorithm: Input: 〈s1, . . . , sm〉 and 〈t1, . . . , tn〉
At step j of Lpt let wj

i denote the work of machine i (1 ≤ i ≤ m). Lpt
assigns tj to machine h if (wj

h + tj)/sh = mini(w
j
i + tj)/si, and h is the smallest

machine index with this property.

Fast Monotone 3-Approximation Algorithm for Scheduling Related Machines 619

Lpt* algorithm: Input: 〈σ1, . . . , σm〉 and 〈t1, . . . , tn〉
1. round the machine speeds down to si := 2�log σi� 1 ≤ i ≤ m (the rounded

speeds remain ordered);
2. run Lpt on 〈s1, . . . , sm〉 and 〈t1, t2, . . . , tn〉;
3. among machines of the same rounded speed, reorder the assigned work

(i.e. the assigned sets of jobs), such that wi ≤ wi+1 holds.

Clearly, Lpt* runs in time O(m(n + logm)).
We close this section with a frequently used property of the Lpt algorithm.

Observe, that Proposition 1 (i) holds only because Lpt favours slower machines
in case of ties. This feature of Lpt is not essential, but it facilitates simpler
proofs for both theorems.

Proposition 1. Suppose that machine speeds are 2-divisible. In Lpt scheduling
the following hold:

(i) If sh = si/2, then h receives its first job after the first job of i and before
the second job of i.

(ii) Let si = si+1. If tj is the first job assigned to i, then tj+1 is the first job
assigned to i + 1.

3 Lpt* is a 3-Approximation Algorithm

The key result of this section is Theorem 1, stating that Lpt yields a 3/2-
approximation on 2-divisible machines. We start by introducing some nota-
tion and making elementary observations. We fix a 2-divisible speed vector
〈s1, s2, . . . , sm〉 (si ≤ si+1) and a job vector 〈t1, t2, . . . , tn〉 (tj ≥ tj+1).

Let Opt be any fixed optimal schedule of this input. Opt denotes the opti-
mum makespan and Lpt denotes the makespan resulted by Lpt on the above
input. We will also use the short notation μ := Opt.

To get a contradiction, we assume that Lpt > 3
2μ. Let the last job t := tn

be assigned to machine k in Lpt. We may assume that t has completion time
Lpt, i.e., t is a bottleneck job. Note that jobs following a bottleneck job neither
increase Lpt, nor decrease Opt.

We denote by w∗
i , and f∗

i = w∗
i /si the work and the finish time of machine i

in Opt with respect to all the jobs. We denote by wi, and fi = wi/si the work
and the finish time of machine i in Lpt before scheduling t. Note that the last
restriction has an influence only on fk and wk.

Lpt > 3
2μ implies that for every machine i in Lpt

fi >
3
2
μ− t/si. (1)

We assume wlog. that the slowest nonempty machine in Opt has speed 1. It
follows that

t ≤ μ · 1 = μ. (2)

Definition 3. A machine i of speed si = 1 will be called a 1-machine.

620 A. Kovács

The proof is based on the following simple technique: We strive to get a
contradiction by showing that the total work in Lpt is strictly more than in
Opt. First we show that only 1-machines may get more work in Opt than in
Lpt. Then in Lemma 1 we introduce the set of P-jobs. These jobs are assigned
to 1-machines in Opt, but they are larger than the jobs on 1-machines in Lpt.
Finally, in Lemma 2 we argue that the total work difference (

∑
si>1(wi−w∗

i)) on
faster machines receiving the P-jobs in Lpt, exceeds the potential work difference
on 1-machines (

∑
si=1(w

∗
i −wi)), so that in total, more work is scheduled in Lpt

than in Opt.

Proposition 2. If fi < f∗
i holds for a machine i, then i is a 1-machine, and in

Lpt at most 1 job is assigned to i. Moreover, there exists at least one 1-machine
l s.t. fl < f∗

l .

Proof. For such a machine fi < f∗
i ≤ μ holds. According to (1), 3

2μ − t/si <
fi < μ, i.e., μ/2 < t/si. By (2), t/si ≤ μ/si, so we obtain si < 2. If si < 1 then
f∗

i = 0. Consequently, si = 1 and μ/2 < t/si implies μ/2 < t, so there is at
most 1 job on i. Since t +

∑
i wi =

∑
i w

∗
i , a machine l exists, s.t. wl < w∗

l , i.e.,
fl < f∗

l . �

Corollary 1. μ/2 < t

By Proposition 2, fi < f∗
i , resp. wi < w∗

i is possible only on 1-machines. In
Lemma 1 we upper bound

∑
si=1(w

∗
i −wi) (see Fig. 1). Let fo := max(t, 3

4μ). It
is easy to show the following Proposition:

Proposition 3. On an arbitrary 1-machine i, there is at most 1 job in Opt,
and even before scheduling t, there is at least 1 job in Lpt. Moreover, fi ≥ fo.

Lemma 1. For some p ≥ 0, there is a set of p jobs P = {tj1 , . . . , tjp} so that
(i) all of the jobs in P are assigned to 1-machines in Opt, and to faster

machines in Lpt;
(ii) 3

4μ ≤ fo ≤ tjτ ≤ μ (1 ≤ τ ≤ p);
(iii)

∑
si=1(w

∗
i − wi) ≤

∑p
τ=1(tjτ − fo) ≤ p · μ/4.

Definition 4. The jobs in P will be called P-jobs.

Lemma 2. In Lpt, at most 2r − 1 P-jobs are assigned to a machine i of speed
si = 2r (r ≥ 1). If si ≥ 4 then wi − w∗

i ≥ (2r − 1) · μ/4. If si = 2 and t̂ is the
(only) P-job assigned to i, then wi − w∗

i ≥ t̂− fo.

Proof. While P-jobs are being scheduled, 1-machines are still empty in Lpt.
Therefore, any P-job tjτ has completion time less than tjτ , otherwise it would
be assigned to a 1-machine. This implies that a machine of speed 2r has at most
2r − 1 P-jobs.

Suppose first that si = 2r ≥ 4. Then by (1) and (2), fi−f∗
i > 3

2μ− t/4−μ =
1
2μ− t/4 ≥ 1

2μ− μ/4 = μ/4. Consequently, wi − w∗
i > 2r · μ/4.

Second, if si = 2, then (1) implies wi − w∗
i > 2 · (3

2μ− t/2− μ) = μ− t, and
μ− t ≥ t̂− fo by Lemma 1 and Proposition 3. �

Fast Monotone 3-Approximation Algorithm for Scheduling Related Machines 621

OPT

LPT

μ
fο

P−jobs

Fig. 1. Lemma 1: Jobs on 1-machines in Lpt and in Opt

Theorem 1. Let 〈s1, s2, . . . , sm〉 (si ≤ si+1) be a 2-divisible speed vector, and
〈t1, t2, . . . , tn〉 (tj ≥ tj+1) a fixed job vector. Let Opt be the optimum makespan,
and Lpt be the makespan resulted by Lpt on this input. Then Lpt ≤ 3

2 ·Opt.

Proof. If si �= 1 then wi ≥ w∗
i by Proposition 2. Therefore, Lemmas 1 and 2

imply ∑
si=1

(w∗
i − wi) ≤

p∑
τ=1

(tjτ − fo) ≤
∑
si �=1

(wi − w∗
i)

m∑
i=1

w∗
i ≤

m∑
i=1

wi

a contradiction, since t +
∑

i wi =
∑

i w
∗
i . �

Theorem 2. Lpt* is a 3-approximation algorithm.

Proof. Suppose that on input 〈t1, t2, . . . , tn〉
Opt is the optimum makespan at speed vector 〈σ1, . . . , σm〉;
Opt′ is the optimum makespan at speed vector 〈s1, . . . , sm〉;
Lpt is the makespan provided by Lpt at 〈s1, . . . , sm〉;
Lpt∗ is the makespan provided by Lpt* at 〈σ1, . . . , σm〉,

then Lpt∗ ≤ Lpt ≤ 3
2 ·Opt′ ≤ 3

2 · (2 ·Opt). The first and last inequalities follow
from the fact that machine speeds are increased, resp. decreased by a factor
between 1 and 2. Finally, Lpt ≤ 3

2 ·Opt′ holds according to Theorem 1. �

4 Lpt* is Monotone

The main result of this paper is that the Lpt schedule is monotone on 2-divisible
machines. In particular, suppose that in Lpt schedule I the 2-divisible input
speed vector contains one more copies of speed 1/2 and one less copies of speed
1 than in Lpt schedule II, and otherwise the inputs of I and II are the same.
Let k be any machine of speed 1/2 in I, and k′ be any machine of speed 1 in
II. Theorem 3 claims that machine k receives not more work in schedule I than
machine k′ in schedule II.

622 A. Kovács

Let s1 ≤ s2 ≤, . . . ,≤ sm denote the machine speeds in I. We will view
schedule II like this: in schedule II, the speed sk = 1/2 of machine k is increased
to s′k = 1 while the speeds of other machines remain unchanged. We will refer
to machine i in schedule II by i′. Clearly, in general k′ is not the kth machine,
and i′ is not necessarily the ith machine in II (see Fig. 3). We partition the
unchanged machines into three categories:

Definition 5. Let i �= k. Based on the speed si of machine i, we say that i is
a slow machine if si < 1/2, a medium machine if 1/2 ≤ si ≤ 1, resp. a fast
machine, if 1 < si. We call a slow machine tardy, if it has the speed of the
slowest nonempty machines in II. Finally, a machine of speed 1 or 1/2 will be
called a 1-machine, resp. a 1/2-machine.

In I and in II the machines receive the same job sequence t1 ≥ . . . ≥ tn. If
tj is assigned to machine i, it has (time)length tj/si. We denote by wi and fi

the work and finish time of machine i in schedule I. For ease of use, w′
i and f ′

i

denote the respective values in schedule II (instead of, e.g., w′
i′ and f ′

i′).

Theorem 3. Let the Lpt schedules I and II, machines k and k′, furthermore
the respective total works wk and w′

k be as defined above, then wk ≤ w′
k.

Sketch of Proof. We prove Theorem 3 by contradiction: we assume wk > w′
k.

Let W�=k :=
∑

i�=k wi and W ′
�=k :=

∑
i�=k w

′
i. In most subcases of the proof we

strive to show W�=k ≥W ′
�=k, contradicting to wk > w′

k. In the remaining subcases
we show that the number of assigned jobs is strictly larger in schedule I than in
schedule II.

Let ta be the first job assigned to k′ in II. We will call a machine dead, if
it receives no job after ta in II, and we call it living otherwise. Note that right
before job ta is scheduled, the schedules I and II are exactly the same. Therefore,
on dead machines w ≥ w′, and there are at least as many jobs on the machine
in I as in II. Unless it is necessary to mention dead machines explicitly, we
concentrate on living machines.

Let t := tn denote the last job. We may suppose that wk becomes larger than
w′

k only after job t; job t is assigned to k in I, but it is not assigned to k′ in II.
Let ta = ta1 ≥ ta2 ≥ ta3 ≥ . . . be the jobs assigned to k′. It facilitates a more

handy proof if we normalize job sizes so that ta = 1. We can do this without
loss of generality. Consequently, the length of ta on k′ is ta/s

′
k = 1/1 = 1.

Because the finish time f ′
k of k′ plays a central role in our comparisons, we

provide it with special notation: let λ := f ′
k be the finish time of k′. That is,

λ = w′
k/1. Since wk > w′

k, for the finish time of k in I, fk = wk/
1
2 > w′

k/
1
2 = 2λ

holds. Moreover, in I a machine i �= k of speed 2r (r ∈ Z) has finish time

fi > 2λ− t

2r
, (3)

otherwise this machine (and not k) would receive the last job t.
Let WT and W ′

T denote the total work on tardy machines in schedule I and
II, respectively. We provide some intuition about the first part of our proof.

Fast Monotone 3-Approximation Algorithm for Scheduling Related Machines 623

This part follows the same lines as the proof of Theorem 1. First we show, that
if w < w′ on a slow machine, then it must be a tardy machine. After that we
prove that if w ≥ w′ on every medium and fast machine, then W�=k ≥ W ′

�=k.
Luckily, this is the case if at least 2 jobs are assigned to k′ in II (CASE 1.). How
do we show W�=k ≥ W ′

�=k? In Lemma 3 we introduce the set of P-jobs. These
are very small jobs, that follow the jobs of tardy machines in II, but are still
put on tardy machines in I. In the same lemma an upper bound on W ′

T −WT

is derived in terms of the number p of P-jobs. In Lemma 4 it is shown that the
difference W ′

T − WT is balanced out on non-tardy machines, that receive the
P-jobs in II. In CASE 2., the same argument about P-jobs is used parallel to
other techniques, in order to show W�=k ≥W ′

�=k.
Next, we provide upper bounds on the finish time of living machines in II:

Proposition 4. In schedule II, f ′
i ≤ max(2, 3λ/2) for any living machine i′.

Proposition 5. In Lpt schedule II,
(i) If tj is a job on a slow machine i′, then t ≤ tj ≤ λ/3, and f ′

i ≤ 4λ/3.
(ii) If tj is the 2nd job on a 1/2-machine i′ then t ≤ tj ≤ λ/3, and f ′

i ≤ 4λ/3.
(iii) If tj is the 3rd job on a 1-machine i′ then t ≤ tj ≤ λ/2, and f ′

i ≤ 3λ/2.
In cases (ii) and (iii) f ′

i ≤ fi.

Proposition 6. Suppose that wi < w′
i holds for a slow machine i of speed si =

1/2l (l ≥ 2). Then i is a tardy machine, and each tardy machine receives at most
1 job in schedule II.

In Lemma 3 we upper bound W ′
T −WT . The jobs of P will be called P-jobs:

Lemma 3. Suppose that wi < w′
i holds for a tardy machine i, and tardy ma-

chines have speed 1/2d. Let tj be the first job on tardy machines in II. There is
a set of jobs P = {tJ , tJ+1, . . . , tJ+p−1} for some p ≥ 0, so that

(i) in I all the p jobs are assigned to tardy machines, and in II all the p jobs
are assigned to faster than tardy machines;

(ii) λ/2d ≤ tJ+ζ < tj ≤ 4
3λ/2

d (0 ≤ ζ ≤ p− 1);
(iii) W ′

T −WT ≤ p · (4
3λ/2

d − t) ≤ p · (1
3λ− t).

Lemma 4. Machine k′ does not receive P-jobs in II. Suppose that at least one
P-job is assigned to machine i′ �= k′.

(i) If i′ is a fast machine of speed si = 2r (r ≥ 1), then it receives at most
2r P-jobs and wi − w′

i > 2r(1
3λ− t). Furthermore, w′

i ≤ 2r 4
3λ .

(ii) If i′ is a medium or slow (non-tardy) machine, then it receives 1 P-job,
and wi − w′

i >
4
3λ/2

d − t, where the speed of tardy machines is 1/2d.

Corollary 2. If wi ≥ w′
i for every medium and fast machine, then W�=k ≥W ′

�=k.

Proof. By Proposition 6, wi ≥ w′
i on every non-tardy machine. There are p ≥ 0

P-jobs on tardy machines in I. Let i′1, i
′
2, . . . , i

′
ξ be the machines with at least

one P-job in II. By Lemmas 3 and 4,

W ′
T −WT ≤ p · (4

3
λ/2d − t) ≤

ξ∑
τ=1

(wiτ − w′
iτ

).

624 A. Kovács

< w_i − w_i’

k’ (i)(ii)

 −jobP

5/3

4/3
λ

λ
λ

k’

II

Fig. 2. Lemma 4: A fast (i) and a medium (ii) machine receiving P-jobs in schedule II

To sum up, the potential total difference W ′
T−WT on tardy machines is balanced

out on non-tardy machines receiving P-jobs in II, and W�=k ≥W ′
�=k follows. �

CASE 1. in schedule II at least 2 jobs are assigned to machine k′

Lemma 5. If there are at least 2 jobs assigned to k′, then W�=k ≥W ′
�=k.

Proof. We show that if i is a fast or medium machine then fi ≥ f ′
i , that is,

wi ≥ w′
i. Based on this, Corollary 2 yields the Lemma.

(i) We show that fi > 2 on every machine i of speed at least 1/2 in I. Since
t is the last job, w′

k ≥ ta1 + ta2 ≥ 1 + t. In schedule I, let w̃k and f̃k be the
work and finish time of k before the last step. Then w̃k = wk − t > w′

k − t ≥ 1,
consequently, f̃k > 2. If there were a machine i of fi ≤ 2 and si ≥ 1/2, then i
would receive t instead of machine k.

(ii) We show that fi > 3λ/2 on every machine of speed at least 1 in I.
Note that t ≤ λ/2 holds, because λ = w′

k ≥ 1 + t. Moreover, (3) implies fi >
2λ− t/2r ≥ 2λ− t ≥ 3λ/2 if r ≥ 0.

Now (i), (ii) and Proposition 4 imply the statement of the Lemma, unless i
has speed 1/2. Let si = 1/2. If there is only one job tj assigned to i′ in II, then
tj ≤ ta = 1, since si < s′k, and ta is the first job on k′. Consequently, f ′

i ≤ 2,
which together with (i) yields fi ≥ f ′

i . If there are at least two jobs assigned to
i′, then according to Proposition 5, fi ≥ f ′

i . �

CASE 2. in schedule II only job ta is assigned to machine k′

The proof of CASE 2. is more involved, and consists of further subcases. In
the general part we introduce further notation and derive necessary conditions
for w < w′ on a medium machine. As a side effect, this will prove the theorem
if there are no fast machines. Recall that ta = 1, so λ = f ′

k = w′
k/1 = ta/1 = 1.

In CASE 2.1. we assume t > 1/3. Thus, Proposition 5 (i) implies that all
the slow machines are empty in II. Moreover, using the fact that before ta is
scheduled, every machine has the same finish time in I as in II, we will show
that if i �= k, then the number of jobs assigned to i by I is not smaller than the
number of jobs assigned to i′ by II; and schedule I assigns strictly more jobs to
machine k, than schedule II to k′, so we get a contradiction.

Fast Monotone 3-Approximation Algorithm for Scheduling Related Machines 625

at

at tb−1

t bt a+1

tC tD

ct

k’

k

I

II

t

dead

Fig. 3. Definition 6: The (first) jobs on 1/2-machines and 1-machines in I and II

The case when t ≤ 1/3 (CASE 2.2.) is divided into three subcases, depending
on the size of the smallest job assigned to any fast machine. Although this part
is lengthy and intricate, it applies combinations of the two types of arguments
we are presenting here, i.e., a comparison of the total work or of the number of
jobs on fast and medium machines. The proof of CASE 2.2. is available at [5].

Definition 6. Let ta, ta+1, . . . , tb (a ≤ b) be the first jobs assigned to 1-machines
to the right of k′ in II. Let Tb be the time step, before tb is scheduled.

Let tC be the first job on the leftmost 1/2-machine, and tD be the first job
on the rightmost 1/2-machine in I. Finally, tc denotes the first job assigned to
medium machines after Tb + 1 in II, if such a job exists (see Figure 3).

By Proposition 1 the jobs ta+1, . . . , tb are well-defined. At time Tb schedules
I and II are the same, except that jobs on 1-machines are shifted due to machine
k′; 1/2-machines and slow machines are empty. Observe that C ≤ D, and if 1/2-
machines exist in II, then tc is the first job on the leftmost 1/2-machine. If job
tc does not exist at all, then obviously w ≥ w′ holds for all medium machines.

Proposition 7. In schedule I, there are at least 3 jobs and total work > 1 + tD
assigned to each living 1-machine.

Proposition 8. If wi < w′
i for a medium machine i, then c < C and tc > 1− t.

Corollary 3. If there are no fast machines, then W�=k ≥W ′
�=k.

Proof. Recall that in II there is at least one 1-machine, and in I there is at least
one 1/2-machine. If there are no fast machines, then according to Proposition 1,
b = C must hold (see Fig. 3). Therefore, c > b = C, and Proposition 8 implies
wi ≥ w′

i on every medium machine i. Finally, Corollary 2 yields the proof. �

CASE 2.1. t > 1/3

626 A. Kovács

1
1−1/4

k’

2

 = 4

z =

si

i
3

2
1

0

54

Fig. 4. Definition 8: Zones of a machine of speed 4

Definition 7. Let i be a fast machine. f b
i denotes the common finish time of i

and i′ at time Tb.

Note that if si = 2r (r ≥ 1), then f b
i ≥ 1 − 1/2r, otherwise ta would be

assigned to i′. For the (final) finish time in II, f ′
i ≤ 2 holds by Proposition 4.

Now we first partition the time interval (1, 2] into 2r equal zones of length 1/2r,
and partition (1− 1/2r, 1] into two further zones. (see Figure 4):

Definition 8. We say that f b
i is in the zith zone if zi ∈ N s.t.

f b
i ∈ (2 − (zi + 1) · 1/2r , 2− zi · 1/2r] (0 ≤ zi ≤ 2r − 1);

if f b
i ∈ (1− t/2r , 1], then zi = 2r; if f b

i ∈ [1− 1/2r , 1− t/2r], then zi = 2r + 1.

Proposition 9. If f b
i is in the zith zone, then after Tb, i gets at least zi jobs in

I, and i′ gets at most zi jobs in II.

Lemma 6. If t > 1/3, then i receives at least as many jobs in schedule I as i′

in schedule II; k receives at least 2 jobs in I, and k′ receives only 1 job in II.

Proof. (i) To machine k, schedule I assigns at least 2 jobs, otherwise wk > w′
k

is impossible; on the other hand, II assigns only job ta to k′.
(ii) To a 1/2-machine, II assigns at most 1 job by Proposition 5 (ii), since

t > 1
3 = λ

3 ; schedule I assigns at least 1 job, otherwise k would not receive a
second job.

(iii) To a 1-machine i, II assigns at most 3 jobs, because the completion time
of the 3rd job is larger than 3 · 1/3 = 1, and any further job would prefer k′

to i′. According to Proposition 7, schedule I assigns at least 3 jobs to a living
1-machine.

(iv) Proposition 9 proves the lemma for fast machines. �

� Theorem 3

Theorem 4. Lpt* is monotone.

Proof. Suppose that in the input of Lpt*, the speed σk is increased to σ′
k and

everything else remains unchanged. Then the index of speed σ′
k in the (re)ordered

input speed vector is at least k. If sk = s′k, then step 3. of Lpt* implies that k re-
ceives not less work with increased speed. If sk < s′k, then a repeated application
of Theorem 3 implies Theorem 4. �

Fast Monotone 3-Approximation Algorithm for Scheduling Related Machines 627

5 Conclusions

If m is constant, a monotone FPTAS exists for Q||Cmax [7]. We don’t know of ap-
proximation lower-bounds for efficient monotone algorithms for arbitrary m. We
conjecture, that on 2-divisible machines Lpt actually has a 4/3-approximation
bound, implying that Lpt* yields a 8/3-approximation. On the other hand, for
any ε > 0 an instance exists where Lpt* provides an 8/3− ε approximation.

It doesn’t seem to be worth trying to prove monotonicity and good approxi-
mation of Lpt for c-divisible machines, where c < 2. It is shown in [8], that even
for 2 machines, Lpt is not monotone if c ≤ 1.78.

A more promising approach might be to modify a better algorithm or a PTAS
and apply it on 2-divisible machines achieving a close to 2 approximation. It
is more of a challenge to provide a monotone PTAS or even just an efficient
monotone algorithm with approximation bound below 2.

Acknowledgements. I would like to thank Martin Skutella for turning my atten-
tion to this problem. Special thanks to Katalin Friedl and Vincenzo Auletta for
reading previous versions of this paper, and for their many useful comments.

References

1. A. Archer. Mechanisms for Discrete Optimization with Rational Agents. PhD
thesis, Cornell University, 2004.

2. A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In Proc.
42nd IEEE Symp. on Found. of Comp. Sci. (FOCS), pages 482–491, 2001.

3. D.S. Hochbaum and D.B. Shmoys. A polynomial approximation scheme for
scheduling on uniform processors: Using the dual approximation approach. SIAM
J. Comp., 17(3):539–551, 1988.

4. E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling non-
identical processors. Journal of the ACM, 23:317–327, 1976.

5. A. Kovács. Fast monotone 3-approximation algorithm for scheduling related ma-
chines. Extended version: http://www.mpi-sb.mpg.de/∼panni/greedy.ps.

6. D.S. Johnson M.R. Garey. Computers and Intractability; A Guide to the Theory
of NP-completeness. Freeman, San Francisco, 1979.

7. Y. Azar N. Andelman and M. Sorani. Truthful approximation mechanisms for
scheduling selfish related machines. In Proc. 22nd Ann. Symp. on Theor. Aspects
of Comp. Sci. (STACS), volume 3404 of LNCS, pages 69–82, 2005.

8. V. Auletta P. Ambrosio. Deterministic monotone algorithms for scheduling on
related machines. In Proc. 2nd Ws. on Approx. and Online Alg. (WAOA), 2004.

9. V. Auletta R. De Prisco P. Penna and G. Persiano. Deterministic truthful ap-
proximation mechanisms for scheduling related machines. In Proc. of 21st STACS,
volume 2996 of LNCS, pages 608–619. Springer, 2004.

10. O.H. Ibarra T. Gonzalez and S. Sahni. Exact and approximate algorithms for
scheduling nonidentical processors. Journal of the ACM, 23:317–327, 1976.

Engineering Planar Separator Algorithms�

Martin Holzer1, Grigorios Prasinos2, Frank Schulz1, Dorothea Wagner1,
and Christos Zaroliagis2

1 Department of Computer Science, University of Karlsruhe,
P.O. Box 6980, 76128 Karlsruhe, Germany
{mholzer, fschulz, dwagner}@ira.uka.de

2 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece,
and Department of Computer Engineering and Informatics,

University of Patras, 26500 Patras, Greece
{green, zaro}@ceid.upatras.gr

Abstract. We consider classical linear-time planar separator algo-
rithms, determining for a given planar graph a small subset of the nodes
whose removal separates the graph into two components of similar size.
These algorithms are based upon Planar Separator Theorems, which
guarantee separators of size O(

√
n) and remaining components of size

less than 2n/3. In this work, we present a comprehensive experimental
study of the algorithms applied to a large variety of graphs, where the
main goal is to find separators that do not only satisfy upper bounds but
also possess other desirable qualities with respect to separator size and
component balance. We propose the usage of fundamental cycles, whose
size is at most twice the diameter of the graph, as planar separators:
For graphs of small diameter the guaranteed bound is better than the
O(

√
n) bounds, and it turns out that this simple strategy almost always

outperforms the other algorithms, even for graphs with large diameter.

1 Introduction

The Planar Separator Theorem was introduced by Lipton and Tarjan in [1],
where they give a linear-time algorithm for determining a set of nodes (separator)
of size smaller than 2

√
2n ≈ 2.83

√
n that separates a given planar graph with

n nodes into two components of size smaller than 2n/3. Djidjev [2] improved
the bound on the separator size to

√
6n ≈ 2.45

√
n, and also proved a lower

bound of 1.55
√
n, which is still the best known. The algorithms behind these two

classical results share a common core algorithm, which determines an appropriate
fundamental cycle in a planar graph that contributes to the sought separator.

Since then, a lot of generalizations and extensions have been made, and
the upper bound on separator size has been improved by Alon, Seymour and
Thomas [3] to 2.13

√
n and by Djidjev and Venkatesan [4] to the currently best

known bound of 1.97
√
n (where the aforementioned core algorithm is used as a

� This work was partially supported by the IST Programme of EC under contract
no. IST-2002-001907 (DELIS).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 628–639, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Engineering Planar Separator Algorithms 629

subroutine, too). A recent work by Alexandrov et al. [5] considered a general-
ization of planar separator algorithms that computes t-separators: nodes have
associated costs and weights, which are used in calculating the cost of the sep-
arator and the weights of the components resp.; the weight of each remaining
component is required to be less than or equal to t ·w(G), where t is an arbitrary
constant in (0, 1) and w(G) the total weight of the graph. This typically requires
the graph to be separated into more than two components, and with t = 2/3
and unit weight and cost includes the basic variant of the problem, as introduced
above. The paper includes experimental study on a few synthetic and real-world
families of graphs. For comparison, we consider some of the families used in [5]
in our experiments.

We are not aware of a systematic and detailed experimental study regarding
the classical algorithms by Lipton and Tarjan [1], and by Djidjev [2]. In this
work, we do not only investigate finding separators that satisfy upper bounds,
but we also consider several new algorithmic aspects regarding: (i) the optimiza-
tion of separator size and balance; (ii) the consideration of fundamental-cycle
separator algorithms in their own right; and (iii) the application of postprocess-
ing techniques to improve the quality of the separators. The fundamental-cycle
separator algorithms guarantee a bound on the separator size of 2d+ 1, where d
denotes the diameter of a triangulation of the input graph. When the diameter
is small, which is often the case for real-world graphs, this guarantees smaller
separators than the O(

√
n) bounds of the classical algorithms.

Our main contribution in this work is the comprehensive experimental study
of the above issues. It turned out that the behavior of the algorithms depends
highly on the input graph: for example, on very regular graphs like grids a level of
a breadth-first search tree (which is the first attempt of the classical algorithms)
is already an almost optimal separator, whereas for more irregular and real-world
graphs (e.g., road map graphs) the classical algorithms yield relatively bad solu-
tions. Hence, for our experiments we used a large variety of planar graphs, both
from real-world and synthetic inputs with different characteristics (e.g., size of di-
ameter, size of minimum separator, etc). A surprising outcome of our experimental
investigation is that fundamental-cycle separator algorithms always provide the
best solutions. Another important issue of our experimental analysis concerns the
arbitrary choices that have to be made during the course of an algorithm (e.g., the
choice of a node as the root of a breadth-first search tree). It turns out that such
choices influence the quality of the separators found significantly.

Due to lack of space several details concerning the algorithms and experi-
ments had to be omitted in this extended abstract and can be found in [6].

2 Separating Planar Graphs

In this section, we consider classical linear-time planar separator algorithms im-
plementing the Planar Separator Theorem as stated below. The node separators
computed by the different algorithms fulfill different upper bounds β

√
n, for

some constant β, on the separator size, while each of the remaining components
contains less than two thirds of all nodes. The first theorem of this kind (for

630 M. Holzer et al.

β = 2
√

2) was introduced by Lipton and Tarjan [1]. For simplicity, we state the
theorem and its related algorithms for the case of an unweighted planar graph.
The algorithms and our implementations work for the weighted case, as it is
introduced in [1], as well.

Theorem 1 (Planar Separator Theorem). Given a planar graph G, the n
nodes of G can be partitioned into three sets A, B, and S such that no edge
joins a node in A with a node in B, neither A nor B consists of more than 2n/3
nodes, and S contains no more than β

√
n nodes, where β is a constant.

An important concept used in the theorem are fundamental cycles: given a span-
ning tree of the input graph, a fundamental cycle consists of a non-tree edge e
together with the path connecting the two end-nodes of e in the spanning tree.

Lemma 1 (Fundamental-Cycle Lemma). Let G be a connected planar
graph. Suppose G has a spanning tree of height h. Then, the nodes of G can
be partitioned into three sets A, B, and C such that no edge joins a node in A
with a node in B, neither A nor B consists of more than 2n/3 nodes, and C is
a fundamental cycle containing no more than 2h + 1 nodes.

2.1 Optimization Criteria

In practical applications of planar separator algorithms, requirements as to
“good separations” may vary a lot. We therefore provide three optimization
criteria: separator size, balance, and separator ratio. Let A be the smaller and
B the larger of the two components, then balance is defined as A/B, and the
separator ratio as S/A (cf. [7]). What is desirable are small separator size and
high balance at the same time; the separator ratio, which is to be minimized,
represents a trade-off between the two targets. Note that if one of the simple cri-
teria, separator size or balance, is to be optimized and there are several optimal
solutions, then the separator ratio criterion becomes relevant.

2.2 The Algorithms

We investigate two classical algorithms, by Lipton and Tarjan (LT) [1] and by
Djidjev (Dj) [2]. Both work in three phases. First, a breadth-first search (BFS)
tree is computed, partitioning the nodes into levels. If one of the BFS levels
constitutes a separator fulfilling the size and balance requirements, then the
algorithm returns that level. In case there are several feasible levels and an
optimization criterion is applied, the respective algorithm selects a level that is
optimal with respect to that criterion. In the second phase, separators consisting
of two levels of the BFS tree are considered, yielding a separation of the tree
into a lower, middle, and upper part of the graph. If there is a separator such
that the biggest of these parts and the remaining two put together each meet
the bound, it is returned. If not so, the third phase applies Lemma 1 to one part
of a previous two-level separation. In this case, the separator consists of those
two levels and the fundamental cycle found through the lemma. The algorithms
differ in the selection of the levels, as described in more detail below. We also

Engineering Planar Separator Algorithms 631

consider fundamental-cycle separations computed by applying (the algorithmic
version of) Lemma 1 directly to the graph.

Note that there are several parts in all the above algorithms, where certain
arbitrary (in a sense “random”) decisions have to be made: (i) the choice of
the BFS root and the search itself; (ii) the triangulation of the graph, which is
needed in phase 3 of the algorithms; (iii) the choice of the fundamental cycle
from among several feasible ones—the so-called choice of the non-tree edge. We
will thoroughly discuss the influence of the choices of the BFS root and the
non-tree edge in Section 4.

Lipton and Tarjan (LT). First, the middle level in the BFS tree is considered,
i.e., the first level, starting from the root, that covers together with the lower
levels more than half of the nodes. If this level is too large, the levels above and
below are scanned until in each direction a level of size less than 2(

√
n −D) is

found, where D is the distance to the middle level. If the part between these
two levels is too large then Lemma 1 is used to separate it and in this case
the separator consists of the two levels plus a fundamental cycle. We consider a
textbook version [8,9] of the algorithm guaranteeing a separator of size less than
4
√
n, i.e., β = 4.

Djidjev (Dj). Already in [1], Lipton and Tarjan give an even better bound, and
in [2] Djidjev further improves the selection of levels to β =

√
6 ≈ 2.45. In a

similar but more sophisticated way than that in LT, the algorithm tries to find
a separator consisting of one or two levels of the BFS tree (which have to be
smaller than in LT), and as final option also determines a fundamental cycle.

Fundamental-Cycle Separation (FCS). During the experimental phase of this
study, we observed that it is very effective to omit the selection of levels and
directly consider fundamental cycles as separators: We compute a simple-cycle
separator by applying Lemma 1 directly to the input graph. The height of any
spanning BFS tree is smaller than the diameter d of the graph, and thus, for
BFS trees, the fundamental cycle C computed by Lemma 1 is a separator with
no more than 2d + 1 nodes. The minimum height of a spanning tree equals the
radius r of the graph, and in this case the fundamental cycle can be guaranteed to
contain no more than 2r+1 nodes. A spanning tree of height r can be computed
in time O(n2) simply by computing the breadth first search trees originating
from every node in the graph. Hence, FCS computes, in linear time, a separator
of size no more than 2d + 1, and, by investing quadratic time, even a separator
of size 2r + 1 can be guaranteed.

Simple-cycle separators are also promising from a theoretical point of view,
since an upper bound on the separator size of 1.97

√
n, which is (to our knowl-

edge) the best bound in n that is currently known [4], is achieved by a simple
cycle.1 For graphs of small diameter and radius, the FCS approach guarantees
1 The algorithm used in the proof of the 1.97

√
n bound is rather sophisticated, and

since the simple-cycle separators obtained by FCS are (often by far) smaller than
this bound for all graphs we are considering, we restrict our experiments to FCS
concerning simple-cycle separators.

632 M. Holzer et al.

a better bound than the β
√
n bounds, whereas in general, of course, the β

√
n

bounds are stronger since the maximum diameter and radius of planar graphs
are linear in the number of nodes.

2.3 Postprocessing

To the above algorithms we provide two optional postprocessing steps, which
may help to improve the separation found by the specific algorithm in terms of
separator size and/or balance. The first one, called node expulsion, consists of
moving separator nodes that are not connected to both components A and B
(and hence do not actually separate two nodes from different components) to
one of the components, thus decreasing the size of the separator. If a node can
be moved to either component, then it is assigned to the smaller one. The idea
behind the other postprocessing step, called the Dulmage-Mendelsohn optimiza-
tion [10], is to detect a subset of the separator, ∅ �= S′ ⊂ S, such that the subset
B′ ⊂ B, consisting of nodes that are adjacent to S′ and belong to the larger
component B, is smaller than S′. Then, the separator is modified by removing
the nodes in S′ and adding the nodes in B′. The size of the new separator is
smaller than the original one, and the balance may be improved as well.

3 Data Sets

In the following, we give a brief description of the graph classes we used in our
experiments. The first five categories consist of synthetically generated graphs,
whilst the data sets in the last stem from real world.

The first category of grid-like graphs encompasses three classes of regular-
structured graphs, namely grid, rect(angular), sixgrid, and triang(ular).
The grid and rect graphs can be regarded as an x× x or x× y raster of nodes,
respectively. A sixgrid graph is composed of x×y hexagons in a honeycomb-like
fashion, and in a triang graph, starting with an initial triangle, every triangle is
iteratively replaced by three triangles. In a grid graph with n nodes a separator
with minimal size consists of approximately

√
2n/3 ≈ 0.82

√
n nodes (recall that

we consider only separators such that each component contains at most 2n/3
nodes). If x � y, then the smallest separator of a rectangular graph has x
nodes, and a sixgrid graph has an optimal separator with x + 1 nodes.

In [2] the currently best lower bound of 1.55
√
n on the separator size is proven

by graphs that approximate the sphere. We consider two simple constructions of
graphs that approximate the sphere, as worst-case examples concerning separa-
tor size. A globe graph is—simply speaking—the graph induced by (a specified
number of) meridians and circles of latitude of a terrestrial globe. A t-sphere
graph approximates the sphere by almost similar triangles, see e.g., [11]. The
iterative generation process starts with an icosahedron; during an iteration each
triangle is split into four smaller ones.

Given a diameter d, we construct a maximal planar graph that consists of 3d+
1 nodes and has diameter d. We refer to this class as diameter. By construction,
such a graph has always a separator of size 3.

Engineering Planar Separator Algorithms 633

Random maximum planar graphs, denoted by del-max and leda-max, are
generated such that the specified number of nodes are randomly placed in
the plane and the convex hull of them is triangulated, the triangulation be-
ing a Delaunay triangulation (del-max) or a standard LEDA-triangulation [12]
(leda-max), respectively. In addition, we have the del and leda graphs, which
are obtained from del-max and leda-max, respectively, by deleting at random a
specified number of edges. We will occasionally refer to del and del-max (leda
and leda-max, resp.) as the Delaunay (LEDA, resp.) graphs.

Graphs with small separators are generated as follows: Given a planar graph,
two copies of this graph are connected via a given small number of additional
nodes, which constitute a perfectly balanced separator of a so constructed graph.
The challenge of the algorithms is to re-determine these small separators. We
consider four of the previous graph types and get the following new kind of
generated graphs: c-grid, c-globe, c-del-max, and c-leda-max graphs.

Regarding real-world data, we consider a graph representing a finite-element
mesh [13] (airfoil1), and seven graphs representing the road networks of some
U.S. cities and their surrounding areas (referred to as city), taken from the San
Francisco Bay Area Regional Database (BARD) [14] and the Environmental
Systems Research Institute (ESRI) info-page [15].

4 Experiments

Our experimental study is subdivided into three parts encompassing graphs of
increasing size. The three algorithms LT, Dj, and FCS have been implemented
in C++ using the LEDA library [12] (version 4.5). The code is compiled with
GCC (version 3.3.3) and the experiments were performed on a 2.8 GHz Intel
Xeon machine running a Linux kernel (version 2.6.5).

4.1 Small Graphs

For each of the generated graph types grid, rect, sixgrid, globe, del, leda,
del-max, and leda-max, we considered series of 20 graphs containing between
50 and 1000 nodes. We take into account all algorithms, LT, Dj, and FCS,
optimized on separator size, and each node was once chosen as BFS root. As
already described above, if more than one smallest separators have been found,
the one with best balance is selected.

Concerning the grid-like and globe graphs, the differences between the three
algorithms are quite small. Due to the regular construction of these graphs, LT
and Dj always succeed right after the first phase, and the smallest BFS level
is almost optimum. The mean size of a fundamental-cycle separator is always
slightly smaller and yields better balance. For the randomly generated graphs,
the results are different: For the Delaunay graphs, LT always terminates after
the first phase with a smallest valid BFS level, while Dj applies for around 15%
of the BFS roots the last phase of the algorithm. Figure 1 shows clearly that
FCS computes on average the best separators, while Dj is slightly better than
LT. Considering the LEDA random graphs, both LT and Dj always have to pass

634 M. Holzer et al.

LT
Dj
FCS

0

0 200 400 600 800 1000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

LT
Dj
FCS

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

BFS range
cycle range

0

0 200 400 600 800 1000

2
4

6
8

BFS range
cycle range

0 200 400 600 800 1000

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Fig. 1. Experiments with Delaunay graphs of sizes ranging from 50 to 1000 nodes: The
upper diagrams show the mean separator size (left) and mean balance (right) with LT,
Dj, and FCS. The lower diagrams show for FCS the ranges of the mean separator size
(left) and mean balance (right), comparing BFS root and non-tree edge selection.

the third phase. The mean separator size of FCS is only slightly better than that
of Dj, while LT is by far worse. The mean balance with LEDA graphs is similar
for all algorithms between 0.8 and 0.9.

The lower diagrams in Figure 1 show the influence of BFS root selection
and non-tree edge selection on separator size and balance. For FCS applied to
the Delaunay graphs, the range of the mean of both the separator size and
balance values are depicted, either over all possible BFS root nodes or over all
possible non-tree edges. For example, the range of the mean separator size over
all possible BFS root nodes is defined as follows: For every BFS root, determine
the mean separator size over all possible non-tree edges. Then, the wanted range
of the mean is the difference between the maximum and the minimum of these
separator sizes among all BFS root nodes. The diagrams show that selection of
the BFS root node is more decisive for the separator size than non-tree edge
selection. Concerning balance, both selections are of similar importance.

4.2 Large Graphs

The second series of graphs that we experimented with, the large graphs, consists
of 16 graphs of the categories mentioned in Section 3 of size roughly 10000 nodes
(see Table 1). The rectangular graph represents a 20×500 raster, the sixgrid
graph consists of 20× 237 hexagons, the globe has 100 meridians and circles of
latitude, and the t-sphere is constructed by 5 iterations. For c-grid, c-del-max

Engineering Planar Separator Algorithms 635

Table 1. Large graphs: The table depicts the number of nodes and edges, the diameter
and the radius for both the graph itself (orig) and a triangulation of it (triang) as well
as for each of the algorithms LT, Dj, and FCS, all of them optimized on separator size
with postprocessing applied, the minimum and mean separator sizes over all BFS root
nodes; bold-face and italic figures indicate the best result(s) for the respective graph

graph nodes edges diameter radius LT Dj FCS
orig triang orig triang min mean min mean min mean

grid 10000 19800 198 67 100 50 82 106 82 106 89 99
rectangular 10000 19480 518 20 260 10 20 27 20 27 20 20
sixgrid 9994 14733 513 22 257 11 21 28 21 28 21 21
triangular 5050 14850 99 45 66 34 58 83 58 83 58 68

globe 10002 20100 101 101 76 67 100 119 100 119 100 106
t-sphere 10242 30720 96 96 80 80 160 169 160 169 160 164

diameter 10000 29994 3333 3333 1667 1667 3 4 3 4 3 3.3

del 10000 25000 56 45 46 36 206 300 82 113 65 75
del-max 10000 29971 52 48 43 39 204 314 86 117 74 79
leda 9989 25000 18 15 11 8 76 216 7 31 5 8
leda-max 10000 29975 15 14 9 8 56 205 7 26 6 10

c-grid 10087 19904 212 72 106 36 38 78 38 78 5 6.4
c-globe 10090 20325 144 142 73 71 4 96 4 96 4 12
c-del-max 10005 29972 65 58 34 29 74 318 19 65 5 8.3
c-leda-max 10005 29984 20 16 11 8 78 209 7 32 4 4.5

airfoil1 4253 12289 65 31 36 21 50 89 26 85 26 35
city2 2948 3564 131 14 66 9 15 39 15 39 4 9.5
city3 15868 16690 658 13 329 9 28 53 28 53 4 6.8

and c-leda-max, the two copies of the respective graph are connected by 5 nodes,
while for c-globe only 4 nodes are used to connect the two graphs.

Main Results. We investigated the performance in terms of separator size of
LT, both unoptimized and optimized on separator size, Dj, and FCS, the latter
ones optimized on separator size. We ran each of these algorithms for each graph
while once making each node the root of the BFS tree.

The results of the experiments regarding the separator sizes achieved by the
various algorithms are listed in Table 1, and illustrated in Figure 2 by means
of box plots that represent the middle fifty per cent of the data series (note
that the whiskers here span the whole range of outcomes). The data shows
that—except for the grid graphs—the smallest minimum separator is found
by FCS, and concerning the mean separator size FCS achieves the best result
for all graphs under consideration. This, together with the fact that the boxes
are clearly slender, and—except for c-globe—the ranges are minimal for FCS,
suggests that FCS significantly outperforms the other algorithms in terms of
separator size. In particular, this behavior is surprising for graphs with rather
big diameter d and radius r (e.g., c-globe, globe, and diameter), since the
guaranteed bound on the separator size is 2d + 1 (2r + 1, respectively; cf. the
description of FCS on page 631) for FCS.

636 M. Holzer et al.

Lipton&Tarjan (LT)
Lipton&Tarjan (LT) optimized
Djidjev (Dj)
Fundamental Cycle Sep (FCS)

g
r
i
d

r
e
c
t

6
g
r
i
d

t
r
i
a
n
g

g
l
o
b
e

t
-
s
p
h
e
r
e

d
i
a
m
e
t
e
r

d
e
l

d
e
l
-
m
a
x

l
e
d
a

l
e
d
a
-
m
a
x

c
-
g
r
i
d

c
-
g
l
o
b
e

c
-
d
e
l
-
m
a
x

c
-
l
e
d
a
-
m
a
x

a
i
r
f
o
i
l
1

c
i
t
y
2

c
i
t
y
3

0
1

2
3

4

Fig. 2. Box plots depicting the separator sizes relative to
√

n obtained with unop-
timized LT (light-gray) and LT (gray), Dj (dark-gray), and FCS (black), the latter
three optimized on separator size. The dashed lines indicate the range of all separators
without postprocessing applied.

For regular-structured graphs (i.e., grid-like, sphere approximation, and the
diameter graphs) the separator sizes are similar and quite high for the three
algorithms. For irregular graphs (i.e., leda, the graphs with small separator,
and the real-world graphs), the picture looks different: The Dj algorithm always
yields better results than the LT algorithm, and FCS is clearly superior to both
Dj and LT. Furthermore, the minimum and mean separator sizes computed by
FCS are by far below the guaranteed upper bounds.

The running time considering one BFS root node is linear for all of our algo-
rithms. However, for the algorithms LT and Dj, the constant crucially depends
on the phase in which the algorithms terminate (cf., Section 2.2). The first two
phases consist basically of a breadth-first search, while the computation of the
fundamental cycle requires expensive operations like embedding, triangulation,
and copying. FCS, of course, computes a fundamental cycle and always needs
the expensive operations. LT and Dj terminate after phase 1 with all grid-like
graphs, sphere-approximating graphs, and with the diameter, c-grid, c-globe,
and city graphs. In contrast, the LEDA, c-del-max, and c-leda-max graphs
in the majority of cases require phase 3. For the Delaunay graphs, LT mostly
terminates after phase 1, but Dj needs phase 3. The mean running time for LT

Engineering Planar Separator Algorithms 637

METIS
FCS

g
r
i
d

r
e
c
t

6
g
r
i
d

t
r
i
a
n
g

g
l
o
b
e

t
-
s
p
h
e
r
e

d
i
a
m
e
t
e
r

d
e
l

d
e
l
-
m
a
x

l
e
d
a

l
e
d
a
-
m
a
x

c
-
g
r
i
d

c
-
g
l
o
b
e

c
-
d
e
l
-
m
a
x

c
-
l
e
d
a
-
m
a
x

a
i
r
f
o
i
l
1

c
i
t
y
2

c
i
t
y
30

.0
0
.5

1
.0

1
.5

2
.0

2
.5 METIS

FCS

g
r
i
d

r
e
c
t

6
g
r
i
d

t
r
i
a
n
g

g
l
o
b
e

t
-
s
p
h
e
r
e

d
i
a
m
e
t
e
r

d
e
l

d
e
l
-
m
a
x

l
e
d
a

l
e
d
a
-
m
a
x

c
-
g
r
i
d

c
-
g
l
o
b
e

c
-
d
e
l
-
m
a
x

c
-
l
e
d
a
-
m
a
x

a
i
r
f
o
i
l
1

c
i
t
y
2

c
i
t
y
30
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Fig. 3. Minimum separator sizes relative to
√

n (left) and balance (right) computed
with MeTiS (light-gray) and with FCS (black) optimized on separator ratio

(applying only phase 1) in the city3 graph, for example, is 0.04 seconds, while
FCS involving a fundamental-cycle computation needs 0.71 seconds.

Postprocessing. The subsequent experiments deal with the effect of postprocess-
ing on the various algorithms. We found in a pre-study that the optimization of
separator size and separator ratio should be accompanied by a combination of
Dulmage-Mendelsohn optimization followed by node expulsion.

Our results applying these combinations of postprocessing techniques can
be summarized as follows (data not shown): On the one hand, for the grid-like
and sphere-approximating graphs as well as the diameter graph, the separa-
tors found by the algorithms without postprocessing cannot be much improved.
(Often the separators are already close to optimal solutions for these graphs.)
On the other hand, for the remaining graphs, the separators computed by the
algorithms Dj and LT are very large compared to an optimal solution, and in
these cases the postprocessing greatly improves the separators. The separators
computed by FCS can generally be improved only a little.

Benchmark. To get an idea of the quality of the separators found by the algo-
rithms, we compare them against separators obtained with the help of MeTiS
[16], a graph partitioning tool collection. We applied MeTiS to partition the
nodes into two sets and observed very high balances (meeting the requirement
that each part encompass at least one third of the graph’s nodes) with quite few
cut edges. From a partitioning thus obtained we computed a node separator by
choosing an appropriate subset of the end-nodes of the edges forming the cut.

Separators determined by MeTiS are a trade-off between separator size and
balance, so for the sake of a meaningful comparison, we contrast the MeTiS
results and our algorithms optimized on separator ratio. Since among LT, Dj,
and FCS optimized on separator ratio, the solutions computed by FCS were
the best with respect to both separator size and balance, we compare MeTiS
with FCS only. Figure 3 shows the best separator size and balance values. One
may state that with FCS, the separator size is always at least as good as with

638 M. Holzer et al.

MeTiS and balance is almost always comparable. Those graphs whose balance is
considerably worse with FCS than with MeTiS (leda and city2) exhibit by far
smaller separators with FCS, which suggests that the weighting between the two
criteria, separator size and balance, seems to be more in favor of separator size
with FCS, while MeTiS tends to prefer balance. Indeed, almost perfect balance
can always be achieved with FCS optimized only on balance.

4.3 City Graphs

We consider a series of city graphs with numbers of nodes up to about 45,000. For
these graphs we computed separations by the following linear-time procedure:
run FCS on ten BFS trees of a given graph, determined by a random node as
root, and from among these separations take the one with best separator ratio.

The results of the experiments with the graph nodes edges size balance
city1 1429 3034 5 0.871
city2 2948 3564 8 0.996
city3 15868 16690 7 0.869
city4 20036 41476 10 0.789
city5 24106 53826 5 0.740
city6 38823 79988 8 0.704
city7 44878 90930 7 0.547

city graph series are depicted in the table
aside. Obviously, all city graphs have ex-
tremely small separators, which are also
found by our algorithm. The separators for
the city2 and city3 graphs, which had al-
ready been included in the experiments of
the previous section, are somewhat bigger
than those of the preceding experiment (8
and 7 instead of 4, resp.; see Table 1). This is due to the fact that: (i) the sep-
arator ratio is now optimized instead of the separator size; and (ii) we do not
longer take into account every node as a BFS root.

5 Conclusions and Outlook

Our experiments have shown that, especially for graphs with small separators,
there is a high potential for optimizing the separators computed by the algo-
rithms. Both the postprocessing and in particular the Fundamental-Cycle Sep-
aration yielded almost-optimal separators with respect to separator size and
balance. Applied to graphs whose triangulations have small diameter (which is
true for many graphs, especially from real world), FCS is empirically and theoret-
ically superior to the classical algorithms guaranteeing separators of size O(

√
n).

Selection of the non-tree edge in the fundamental-cycle computation has a con-
siderable influence on both criteria, and we are able to select the best during the
respective algorithm. The choice of the BFS root also exhibits a great impact on
separator quality, mainly on its size. The experiments on city graphs confirmed
that FCS, applied to a small random sample of BFS root nodes and separator
ratio as optimization criterion yields excellent separators in linear time.

An issue for further investigation would be to explore whether more sophis-
ticated strategies for selecting an appropriate BFS root can be developed. In
addition, we would like to investigate other parts of the algorithms that are also
subject to arbitrary choices, namely triangulation and breadth-first search.

Engineering Planar Separator Algorithms 639

Acknowledgments

The authors would like to thank Imen Borgi and Jürgen Graf for their assistance
with parts of the implementation work and the anonymous referees for their
detailed comments and very helpful hints for further research.

References

1. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics 36 (1979) 177–189

2. Djidjev, H.N.: On the problem of partitioning planar graphs. SIAM Journal on
Algebraic and Discrete Methods 3 (1982) 229–240

3. Alon, N., Seymour, P., Thomas, R.: Planar separators. SIAM Journal on Discrete
Mathematics 7 (2004) 184–193

4. Djidjev, H.N., Venkatesan, S.M.: Reduced constants for simple cycle graph sepa-
ration. Acta Informatica 34 (1997) 231–243

5. Aleksandrov, L., Djidjev, H.N., Guo, H., Maheshwari, A.: Partitioning planar
graphs with costs and weights. In: ALENEX 2002. Volume 2409 of LNCS., Springer
(2002) 98–110

6. Holzer, M., Prasinos, G., Schulz, F., Wagner, D., Zaroliagis, C.: Engineering planar
separator algorithms. Technical Report 2005-20, Fakultät Informatik, Universität
Karlsruhe (TH) (2005)
http://www.ubka.uni-karlsruhe.de/vvv/ira/2005/20/20.pdf.

7. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM 46 (1999) 787–832

8. Mehlhorn, K.: Data Structures and Algorithms 1, 2, and 3. Springer (1984)
9. Kozen, D.: The Design and Analysis of Algorithms. Springer (1992)

10. Ashcraft, C., Liu, J.W.H.: Applications of the Dulmage-Mendelsohn decomposition
and network flow to graph bisection improvement. Technical Report CS-96-05,
Dept. of Computer Science, York University, North York, Ontario, Canada (1996)
http://www.cs.yorku.ca/techreports/1996/CS-96-05.html.

11. Bourke, P.: Sphere generation (1992)
http://astronomy.swin.edu.au/~pbourke/modelling/sphere/.

12. Näher, S., Mehlhorn, K.: The LEDA Platform of Combinatorial and Geomet-
ric Computing. Cambridge University Press (1999) http://www.algorithmic-

solutions.com.
13. Diekmann, R.: (Graph Partitioning Graph Collection)

http://wwwcs.upb.de/fachbereich/AG/monien/RESEARCH/PART/graphs.html.
14. BARD: (Bay Area Regional Database) http://bard.wr.usgs.gov.
15. ESRI: (Environmental Systems Research Institute) http://www.esri.com.
16. Karypis, G.: (MeTiS) http://www-users.cs.umn.edu/~karypis/metis.

Stxxl : Standard Template Library for XXL
Data Sets

Roman Dementiev1, Lutz Kettner2, and Peter Sanders1,�

1 Fakultät für Informatik, Universität Karlsruhe,
Karlsruhe, Germany

{dementiev, sanders}@ira.uka.de
2 Max Planck Institut für Informatik,

Saarbrücken, Germany
kettner@mpi-sb.mpg.de

Abstract. We present a software library Stxxl, that enables practice-
oriented experimentation with huge data sets. Stxxl is an implemen-
tation of the C++ standard template library STL for external memory
computations. It supports parallel disks, overlapping between I/O and
computation, and pipelining technique that can save more than half of
the I/Os. Stxxl has already been used for computing minimum span-
ning trees, connected components, breadth-first search decompositions,
constructing suffix arrays, and computing social network analysis met-
rics.

1 Introduction

Massive data sets arise naturally in many domains: geographic information sys-
tems, computer graphics, database systems, telecommunication billing systems,
network analysis, and scientific computing. Applications working in those do-
mains have to process terabytes of data. However, the internal memories of
computers can keep only a small fraction of these huge data sets. During the
processing the applications need to access the external storage (e.g. hard disks).
One such access can be about 106 times slower than a main memory access. For
any such access to the hard disk, accesses to the next elements in the external
memory are much cheaper. In order to amortize the high cost of a random access
one can read or write contiguous chunks of size B. One minimizes the number of
I/Os performed, and to increase I/O bandwidth, applications use multiple disks,
in parallel. In each I/O step the algorithms try to transfer D blocks between the
main memory of size M and D disks (one block from each disk). This model
has been formalized by Vitter and Shriver as Parallel Disk Model (PDM) [1]
and is the standard theoretical model for designing and analyzing I/O-efficient
algorithms. In this model, N is the input size and B is the block size measured
in bytes.

Theoretically I/O-efficient algorithms and data structures have been devel-
oped for many problem domains: graph algorithms, string processing, computa-
tional geometry, etc. (for a survey see [2]). Some of them have been implemented:
� Partially supported by DFG grant SA 933/1-2.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 640–651, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Stxxl : Standard Template Library for XXL Data Sets 641

sorting, matrix multiplication [3], (geometric) search trees [3], priority queues [4],
suffix array construction [4]. However there is an increasing gap between theoret-
ical achievements of external memory (EM) algorithms and their practical usage.
Several EM software library projects (LEDA-SM [4] and TPIE [5]) have been
started to reduce this gap. They offer frameworks which aim to speed up the
process of implementing I/O-efficient algorithms, abstracting away the details
of how I/O is performed.

We have started to develop an external memory library Stxxl making more
emphasis on performance, trying to avoid the drawbacks of the previous libraries
impeding their practical usage. The following are some key features of Stxxl:

– Transparent support of parallel disks.
– The library is able to handle problems of size up to dozens of terabytes.
– Explicit overlapping between I/O and computation.
– A library feature “pipelining” can save more than half the number of I/Os

performed by many algorithms, directly feeding the output from an EM
algorithm into another EM algorithm, without needing to store it on the
disk in between.

– The library avoids superfluous copying of data blocks, e.g. in I/O subsystem.
– Short development times due to well known STL-compatible interfaces for

EM algorithms and data structures. STL – Standard Template Library is the
library of algorithms and data structures that is a part of the C++ standard.
STL algorithms can be directly applied to Stxxl containers; moreover the
I/O complexity of the algorithms remains optimal in most of the cases.

Stxxl library is open source and available under the Boost Software Li-
cense 1.0 (http://www.boost.org/LICENSE 1 0.txt). The latest version of the
library, a user tutorial and a programmer documentation can be downloaded
at http://stxxl.sourceforge.net. Currently the size of the library is about
15 000 lines of code.

The remaining part of this paper is organized as follows. Section 2 discusses
the design of Stxxl. In Section 3 we implement a short benchmark and use
it to study the performance of Stxxl. Section 4 gives a short overview of the
projects using Stxxl. We make some concluding remarks and point out the
directions of future work in Section 5.

Related Work. TPIE [3] was the first large software project implementing I/O-
efficient algorithms and data structures. The library provides implementation of
I/O-efficient sorting, merging, matrix operations, many (geometric) search data
structures (B+-tree, persistent B+-tree, R-tree, K-D-B-tree, KD-tree, Bkd-tree),
and the logarithmic method. The work on the TPIE project is in progress.

LEDA-SM [4] EM library was designed as an extension to the LEDA library
for handling large data sets. The library offers implementations of I/O-efficient
sorting, EM stack, queue, radix heap, array heap, buffer tree, array, B+-tree,
string, suffix array, matrices, static graph, and some simple graph algorithms.
However, the data structures and algorithms can not handle more than 231 bytes.
The development of LEDA-SM has been stopped.

642 R. Dementiev, L. Kettner, and P. Sanders

LEDA-SM and TPIE libraries currently offer only single disk EM algorithms
and data structures. They are not designed to explicitly support overlapping
between I/O and computation. The overlapping relies largely on the operating
system that caches and prefetches data according to a general purpose policy,
which can not be as efficient as the explicit approach. Furthermore, overlapping
based on system cache on most of the operating systems requires additional
copies of the data, which leads to CPU and internal memory overhead.

The idea of pipelined execution of the algorithms that process large data sets
not fitting into main memory is very well known in relational database manage-
ment systems. The pipelined execution strategy allows to execute a database
query with minimum number of EM accesses, to save memory space to store
intermediate results, and to obtain the first result as soon as possible.

FG [6] is a design framework for parallel programs running on clusters, where
parallel programs are split into series of asynchronous stages, which are executed
in the pipelined fashion with the help of multithreading. This allows to mitigate
disk access latency, communication network latency, and overlap I/O and com-
munication.

2 Stxxl Design

Stxxl consists of three layers (see Figure 1). The lowest layer, the Asyn-
chronous I/O primitives layer (AIO layer) abstracts away the details of how
asynchronous I/O is performed on a particular operating system. Other ex-
isting EM algorithm libraries rely only on synchronous I/O APIs [4] or al-
low reading ahead sequences stored in a file using the POSIX asynchronous
I/O API [5]. Unfortunately, asynchronous I/O APIs are very different on
different operating systems (e.g. POSIX AIO and Win32 overlapped I/O).

T
X

X
L

S

files, I/O requests, disk queues,

block prefetcher, buffered block writer

completion handlers

Block management (BM) layer
typed block, block manager, buffered streams,

Containers:

STL−user layer
vector, stack, set

priority_queue, map
sort, for_each, merge

Pipelined sorting,
zero−I/O scanning

Streaming layer

Algorithms:

Operating System

Applications

Asynchronous I/O primitives (AIO) layer

Fig. 1. Structure of Stxxl

Therefore, we have intro-
duced the AIO layer to make
porting Stxxl easy. Porting
the whole library to a dif-
ferent platform (for example
Windows) requires only
reimplementing the AIO
layer using native file access
methods and/or native
multithreading mechanisms.
Stxxl has already several
implementations of the
layer which use synchronous
file access methods under
POSIX/UNIX systems.
The read/write calls using
direct access (O DIRECT
option) have shown the best performance under Linux. To provide asynchrony
we use POSIX threads or Boost threads.

Stxxl : Standard Template Library for XXL Data Sets 643

The Block Management layer (BM layer) provides a programming interface
simulating the parallel disk model. The block manager implements block alloca-
tion/deallocation allowing several block-to-disk assignment strategies: striping,
randomized striping, randomized cycling, etc. The BM layer provides implemen-
tation of parallel disk buffered writing [7], optimal prefetching [7], and block
caching. The implementations are fully asynchronous and designed to explicitly
support overlapping between I/O and computation.

The top of Stxxl consists of two modules. The STL-user layer provides EM
data structures which have (almost) the same interfaces (including syntax and
semantics) as their STL counterparts. The Streaming layer provides efficient
support for pipelining EM algorithms. The algorithms for external memory suf-
fix array construction implemented with this module [8] require only 1/3 of
I/Os which must be performed by implementations that use conventional data
structures and algorithms (either from Stxxl STL-user layer, or LEDA-SM, or
TPIE).

The rest of this section discusses the STL-user and Streaming layers in more
detail. The detailed description of the BM and AIO layers can be found in the
extended version of the paper [9].

2.1 STL-User Layer

Containers
Vector is an array whose size can vary dynamically. Similar to LEDA-SM arrays
[4], the user has the choice over the block striping strategy of vector, the size of
the vector cache, the cache replacement strategy (LRU, random, user-defined).
Stxxl vector has STL compatible Random Access Iterators. One random ac-
cess costs O(1) I/Os in the worst case. Sequential scanning of the vector costs
O(1/DB) amortized I/Os per vector element.

EM priority queues are used for time-forward processing technique in exter-
nal graph algorithms [10,2] and online sorting. The Stxxl implementation of
priority queue is based on [11]. This queue needs less than a third of I/Os
used by other similar cache (I/O) efficient priority queues. The implementation
supports parallel disks and overlaps I/O and computation.

The current version of Stxxl also has an implementation of EM map (based
on B+-tree), FIFO queue, and several efficient implementations of stack.

Stxxl allows to store the references to objects located in EM using EM iter-
ators (e.g. stxxl::vector::iterator). The iterators remain valid while storing
to and loading from EM. When dereferencing an EM iterator, the pointed object
is loaded from EM by the library on demand.

Stxxl containers differ from the STL containers in their treatment of mem-
ory and distinction of uninitialized and initialized memory. Stxxl containers
assume that the data types they store are plain old data types (POD). The
constructors and destructors of the contained data types are not called when a
container changes its size. The support of constructors and destructors would
imply significant I/O cost penalty, e.g. on the deallocation of a non-empty con-
tainer, one has to load all contained objects and call their destructors. This

644 R. Dementiev, L. Kettner, and P. Sanders

restriction sounds more severe than it is, since EM data structures can not cope
with custom dynamic memory management anyway, the common use of cus-
tom constructors/destructors. However, we plan to implement special versions
of Stxxl containers which will support not only PODs and handle construc-
tion/destruction appropriately.

Algorithms
The algorithms of STL can be divided into two groups by their memory access
pattern: scanning algorithms and random access algorithms.

Scanning algorithms. These are the algorithms that work with Input, Out-
put, Forward, and Bidirectional iterators only. Since random access operations
are not allowed with these kinds of iterators, the algorithms inherently exhibit
strong spatial locality of reference. Stxxl containers and their iterators are
STL-compatible, therefore one can directly apply STL scanning algorithms to
them, and they will run I/O-efficiently (see the use of std::generate and
std::unique algorithms in the Listing 1.1). Scanning algorithms are the ma-
jority of the STL algorithms (62 out of 71). Stxxl also offers specialized imple-
mentations of some scanning algorithms (stxxl::for each, stxxl::generate,
etc.), which perform better in terms of constant factors in the I/O volume and
internal CPU work. Being aware of the sequential access pattern of the applied
algorithm, the Stxxl implementations can do prefetching and use queued writ-
ing, thereby enabling overlapping of I/O with computation.

Random access algorithms. These algorithms require RandomAccess itera-
tors, hence may perform many random I/Os 1. For such algorithms, Stxxl pro-
vides specialized I/O-efficient implementations that work with STL-user layer
external memory containers. Currently the library provides two implementations
of sorting: an std::sort-like sorting routine – stxxl::sort, and a sorter that
exploits integer keys – stxxl::ksort. Both sorters are highly efficient parallel
disk implementations. The algorithm they implement guarantees close to opti-
mal I/O volume and almost perfect overlapping between I/O and computation
[7]. The performance of the sorter scales well. With eight disks which have peak
bandwidth of 380 MB/s it sorts 128 byte elements with 32 bit keys achieving
I/O bandwidth of 315 MB/s.

Listing 1.1 shows how to program using the STL-user layer and how Stxxl
containers can be used together with both Stxxl algorithms and STL algo-
rithms. This example generates a huge random directed graph in sorted edge
array representation. The edges must be sorted lexicographically. A straightfor-
ward procedure to do this is to: 1) generate a sequence of random edges, 2)
sort the sequence, 3) remove duplicate edges from it. The STL/Stxxl code for
it is only five lines long: Line 1 creates an Stxxl EM vector with 10 billion
edges. Line 2 fills the vector with random edges (generate from STL is used,
random edge functor returns random edge objects). In the next line the Stxxl
sorter sorts randomly generated edges using 512 megabytes of internal memory.
The lexicographical order is defined by functor my cmp. Line 6 deletes duplicate

1 The std::nth element algorithm is an exception. It needs O(N/B) I/Os on average.

Stxxl : Standard Template Library for XXL Data Sets 645

edges in the EM vector with the help of the STL unique algorithm. The NewEnd
vector iterator points to the right boundary of the range without duplicates.
Finally (Line 7), we chop the vector at the NewEnd boundary.

Listing 1.1. Generating a random graph using the STL-user layer

1 stxxl : : vector<edge> Edges (10000000000 ULL) ;
2 std : : generate (Edges . begin () , Edges . end () , random_edge ()) ;
3 stxxl : : sort (Edges . begin () , Edges . end () , edge_cmp () ,
4 512∗1024∗1024) ;
5 stxxl : : vector<edge > : : iterator NewEnd =
6 std : : unique (Edges . begin () , Edges . end ()) ;
7 Edges . resize (NewEnd − Edges . begin ()) ;

2.2 Streaming Layer

The streaming layer provides a framework for pipelined processing of large se-
quences. The pipelined processing technique is well known in the database world.
To the best of our knowledge we are the first to apply this method systemati-
cally in the domain of EM algorithms. We introduce it in the context of an EM
software library.

Usually the interface of an EM algorithm assumes that it reads the input from
EM container(s) and writes output to EM container(s). The idea of pipelining
is to equip the EM algorithms with a new interface that allows them to feed the
output as a data stream directly to the algorithm that consumes the output,
rather than writing it to EM. Logically, the input of an EM algorithm does not
have to reside in EM, it could be rather a data stream produced by another EM
algorithm.

Many EM algorithms can be viewed as a data flow through a directed acyclic
graph G = (V = F ∪S ∪R,E). The file nodes F represent physical data sources
and data sinks, which are stored on disks (e.g. in the EM containers of STL-user
layer). A file node outputs or/and reads one stream of elements. Streaming
nodes S are equivalent to scan operations in non-pipelined EM algorithms, but
do not perform any I/O, unless a node needs to access EM data structures.
Sorting nodes R read a stream and output it in a sorted order. Edges E in the
graph G denote the directions of data flow between nodes. A pipelined execution
of the computations in a data flow is possible in an I/O-efficient way [8].

In Stxxl, all data flow node implementations have an Stxxl stream inter-
face which is similar to STL Input iterators2. As an input iterator, an Stxxl
stream object may be dereferenced to refer to some object and may be incre-
mented to proceed to the next object in the stream. The reference obtained
by dereferencing is read-only and must be convertible to the value type of the
Stxxl stream. Stxxl stream has a boolean member function empty() which re-
turns true iff the end of the stream is reached. The binding of a Stxxl stream
object to its input streams (incoming edges in a data flow graph G) happens
at compile time using templates, such that we benefit from function inlining in

2 Do not confuse with the stream interface of the C++ iostream library.

646 R. Dementiev, L. Kettner, and P. Sanders

C++. After constructing all node objects, the computation starts in a “lazy”
fashion, first trying to evaluate the result of the topologically latest node. The
node reads its intermediate input nodes, element by element, using dereference
and increment operator of the Stxxl stream interface. The input nodes procede
in the same way, invoking the inputs needed to produce an output element. This
process terminates when the result of the topologically latest node is computed.
This style of pipelined execution scheduling is I/O-efficient, it allows to keep the
intermediate results in-memory without needing to store them in EM.

In the extended version of the paper [9] we show how to “pipeline” the random
graph generation example from the previous chapter, such that the number of
I/Os is more than halved.

3 Performance

We demonstrate some performance characteristics of Stxxl using the EM max-
imal independent set (MIS) algorithm from [10] as an example. This algorithm
is based on the time-forward processing technique. As the input for the MIS
algorithm, we use the random graph computed by the examples in the previous
Section (Listings 1.1 and its pipelined version [9]). Our benchmark includes the
running time of the input generation.

The MIS algorithm given in Listing 1.2 is only nine lines long not including
declarations. The algorithm visits the graph nodes scanning lexicographically
sorted input edges. When a node is visited, we add it to the maximal indepen-
dent set if none of its visited neighbours is already in the MIS. The neighbour
nodes of the MIS nodes are stored as events in a priority queue. In Lines 6–7,
the template metaprogram [12] PRIORITY QUEUE GENERATOR computes the type
of priority queue that will store events. The metaprogram finds the optimal val-
ues for numerous tuning parameters (the number and the maximum arity of
external/internal mergers, the size of merge buffers, EM block size, etc.) under
the constraint that the total size of the priority queue internal buffers must be
limited by PQ MEM bytes. The node greater comparison functor defines the order
of nodes of type node type and minimum value that a node object can have,
such that the top() method will return the smallest contained element. The
last template parameter tells that the priority queue can not contain more than
INPUT SIZE elements (in 1024 units). Line 8 creates the priority queue depend
having prefetch buffer pool of size PQ PPOOL MEM bytes and buffered write mem-
ory pool of size PQ WPOOL MEM bytes. The external vector MIS stores the nodes
belonging to the maximal independent set. Ordered input edges come in the
form of an Stxxl stream called edges. If the current node edges->src is not a
neighbour of a MIS node (the comparison with the current event depend.top(),
Line 13), then it is included in MIS (if it was not there before, Line 15). All
neighbour nodes edges->dst of a node in MIS edges->src are inserted in the
event priority queue depend (Line 16). Lines 11-12 remove the events already
passed through from the priority queue.

Stxxl : Standard Template Library for XXL Data Sets 647

Listing 1.2. Computing a Maximal Independent Set using Stxxl

1 struct node_greater : public std : : greater<node_type> {
2 node_type min_value () const {
3 return std : : numeric_limits<node_type > : : max () ;
4 }
5 } ;
6 typedef stxxl : : PRIORITY_QUEUE_GENERATOR<node_type ,
7 node_greater , PQ_MEM , INPUT_SIZE /1024 > : : result pq_type ;
8 pq_type depend (PQ_PPOOL_MEM , PQ_WPOOL_MEM) ;
9 stxxl : : vector<node_type> MIS ; // output

10 for (; ! edges . empty ();++edges) {
11 while (! depend . empty () && edges−>src > depend . top ())
12 depend . pop () ; // d e l e t e o ld events
13 i f (depend . empty () | | edges−>src != depend . top ()) {
14 i f (MIS . empty () | | MIS . back () != edges−>src)
15 MIS . push_back (edges−>src) ;
16 depend . push (edges−>dst) ;
17 }
18 }

To make a comparison with other EM libraries, we have implemented
the graph generation algorithm using TPIE and LEDA-SM. The MIS algo-
rithm was implemented in LEDA-SM using its array heap data structure as
a priority queue. The I/O-efficient implementation of the MIS algorithm was
not possible in TPIE, since it does not have an I/O-efficient priority queue
implementation. For TPIE, we report only the running time of the graph
generation. The source code of all our implementations is available under
http://i10www.ira.uka.de/dementiev/stxxl/paper/index.shtml.

To make the benchmark closer to real applications, the edge data structure
has two 32-bit integer fields, which can store some additional information as-
sociated with the edge. The priority queues of LEDA-SM always store a pair
<key,info>. The info field takes at least four bytes. Therefore, to make a fair
comparison with Stxxl, we have changed the event data type stored in the
priority queue, such that it also has a 4-byte dummy info field.

The experiments were run on a 2-processor Xeon (2 GHz) workstation (only
one processor was used) and 1 GB of main memory (swapping was switched off).
The OS was Debian Linux with kernel 2.4.20. The computer had four 80 GB IDE
(IBM/Hitachi 120 GXP series) hard disks formatted with the XFS file system
and dedicated solely for the experiments. We used LEDA-SM version 1.3 with
LEDA version 4.2.13 and TPIE of January 21, 2005. For compilation of Stxxl
and TPIE sources, the g++ version 3.3 was used. LEDA-SM and LEDA were
compiled with g++ version 2.95, because they could not be compiled by later
g++ versions. The optimization level was set to -O3. We used library sorters
that use C++ comparison operators to compare elements. All programs have
been tuned to achieve their maximum performance. We have tried all available

3 Later versions of the LEDA are not supported by the last LEDA-SM version 1.3.

648 R. Dementiev, L. Kettner, and P. Sanders

file access methods and disk block sizes. In order to tune the TPIE benchmark
implementation, we followed the performance tuning Section of [5]. The input
size (the length of the random edge sequence, see Listing 1.1) for all tests was
2000 MB4. The benchmark programs were limited to use only 512 MB of main
memory. The remaining 512 MB are given to operating system kernel, daemons,
shared libraries and file system buffer cache, from which TPIE and LEDA-SM
might benefit. The Stxxl implementations do not use the file system cache.

Table 1. Running time (in seconds)/I/O bandwidth (in MB/s) of the MIS benchmark
running on single disk. For TPIE only graph generation is shown (marked with *).

LEDA-SM Stxxl-STL Stxxl-Pipel. TPIE
Input Filling 51/41 89/24 40/52
graph Sorting 371/23 188/45

100/20
307/28

generation Dup. removal 160/26 104/40 109/39
MIS computation 513/6 153/21

128/26
–N/A–

Total 1095/16 534/33 228/24 456*/32*

Table 1 compares the MIS benchmark performance of the LEDA-SM imple-
mentation, the Stxxl implementation based on the STL-user level, a pipelined
Stxxl implementation, and a TPIE implementation (only input graph genera-
tion). The running times, averaged over three runs, and average I/O bandwidths
are given for each stage of the benchmark. The running time of the different
stages of the pipelined implementation cannot be measured separately. How-
ever, we show the values of time and I/O counters from the beginning of the
execution till the time when the sorted runs are written to the disk(s) and
from this point to the end of the MIS computation. The total time numbers
show that the pipelined Stxxl implementation is significantly faster than the
other implementations. It is 2.4 times faster than the second leading implemen-
tation (Stxxl-STL). The win is due to reduced I/O volume: the Stxxl-STL
implementation transfers 17 GB, the pipelined implementation needs only 5.2
GB. However the 3.25 fold I/O volume reduction does not imply equal reduc-
tion of the running time because the run formation fused with filling/generating
phase becomes compute bound. This is indicated by the almost zero value of the
Stxxl I/O wait counter, which measures the time the processing thread waited
for the completion of an I/O. The second reason is that the fusion of merging,
duplicate removal and CPU intensive priority queue operations in the MIS com-
putation is almost compute bound. Comparing the running times of the total
input graph generation we conclude that Stxxl-STL implementation is about
20 % faster than TPIE and 53 % faster than LEDA-SM. This could be due to
better (explicit) overlapping between I/O and computation. Another possible
reason could be that TPIE uses a more expensive way of reporting run-time

4 Algorithms and data structures of LEDA-SM are limited to inputs of size 2 GB.

Stxxl : Standard Template Library for XXL Data Sets 649

Table 2. Running time (in seconds)/I/O bandwidth (in MB/s) of the MIS benchmark
running on multiple disk

Stxxl-STL Stxxl-Pipelined
Disks 2 4 2 4
Input Filling 72/28 64/31
graph Sorting 104/77 80/100

98/20 98/20

generation Dup. removal 58/69 34/118
MIS computation 127/25 114/28

112/30 110/31

Total 360/50 291/61 210/26 208/27

errors, such as I/O errors5. The running time of the filling stage of Stxxl-
STL implementation is much higher than of TPIE and LEDA-SM because they
rely on operating system cache. The filled blocks do not go immediately to the
disk(s) but remain in the main memory until other data needs to be cached by
the system. The indication of this is the very high bandwidth of 52 MB/s for
TPIE implementation, which is even higher than the maximum physical disk
bandwidth (48 MB/s) at its outermost zone. However, the cached blocks need
to be flushed in the sorting stage and then the TPIE implementation pays the
remaining due. The unsatisfactory bandwidth of 24 MB/s of the Stxxl-STL fill-
ing phase could be improved to 33 MB/s by replacing the call std::generate
by the native stxxl::generate call that efficiently overlaps I/O and compu-
tation. Stxxl STL-user sorter sustains an I/O bandwidth of about 45 MB/s
which is 95 % of the disk’s peak bandwidth. The high CPU load in the priority
queue and not very perfect overlapping between I/O and computation explain
the low bandwidth of the MIS computation stage in all three implementations.
We also run the graph generation test on 16 GByte inputs. All implementations
scale almost linearly with the input size: the TPIE implementation finishes in
1h 3min, Stxxl-STL in 49min, and Stxxl-Pipelined in 28min.

The MIS computation of Stxxl, which is dominated by PQ operations, is
3.35 times faster than LEDA-SM. The main reason for this big speedup is likely
to be the more efficient priority queue algorithm from [11].

Table 2 shows the parallel disk performance of the Stxxl implementations.
The Stxxl-STL implementation achieves speedup of about 1.5 using two disks
and 1.8 using four disks. The reason for this low speedup is that many parts of the
code become compute bound: priority queue operations in the MIS computation,
run formation in the sorting, and generating random edges in the filling stage.
The Stxxl-Pipelined implementation was almost compute bound in the single
disk case, and as expected, with two disks the first phase shows no speedup.
However the second phase has a small improvement in speed due to faster I/O.
5 TPIE uses function return types for error codes and diagnostics, which can be-

come quite expensive at the level of the single-item interfaces (e.g. read item and
write item) that is predominantly used in TPIEs algorithms. Instead, Stxxl checks
(I/O) errors on the per-block basis. We will use C++ exceptions to propagate errors
to the user layer without any disadvantage for the library users. First experiments
indicate that this will have negligible impact on runtime.

650 R. Dementiev, L. Kettner, and P. Sanders

Close to zero I/O wait time indicates that the Stxxl-Pipelined implementation
is fully compute bound when running with two or four disks. The longest MIS
computation, requiring the entire space of four disks (360 GBytes), for the graph
with 4.3 · 109 nodes and 13.4 · 109 edges took 2h 44min on an Opteron system.

4 Applications

Stxxl has been successfully applied in implementation projects that studied
various I/O efficient algorithms from the practical point of view. The fast algo-
rithmic components of Stxxl library gave the implementations an opportunity
to solve problems of very large size on a low-cost hardware in a record time.

The performance of EM suffix array construction algorithms was investi-
gated in [8]. The experimentation with pipelined Stxxl implementations of the
algorithms has shown that computing suffix arrays in EM is feasible even on a
low-cost machine. Suffix arrays for long strings up to 4 billion characters could
be computed in hours.

The project [13] has compared experimentally two EM breadth-first search
(BFS) algorithms. The pipelining technique of Stxxl has helped to save a fac-
tor of 2–3 in I/O volume. Using Stxxl, it became possible to compute BFS
decomposition of large grid graphs with 128 million edges in less than a day, and
for random sparse graphs within an hour.

Simple algorithms for computing minimum spanning trees (MST), connected
components, and spanning forests were developed in [14]. Their implementations
were built using STL-user-level algorithms and data structures of Stxxl. The
largest solved MST problem had 232 nodes, the input graph edges occupied
96 GBytes. The computation on a PC took 8h 40min.

The number of triangles in a graph is a very important metric in social
network analysis. We have designed and implemented an external memory algo-
rithm that counts and lists all triangles in a graph. Using our implementation we
have counted the number of triangles of a web crawl graph from the WebBase
project 6. In this graph the nodes are web pages and edges are hyperlinks be-
tween them. For the computation we ignored the direction of the links. Our crawl
graph had 135 million nodes and 1.2 billion edges. During computation on an
Opteron SMP which took only 4h 46min we have detected 10.6 billion triangles.
Total volume of 851 GB was transferred between 1GB of main memory and seven
hard disks. The details about the algorithm and the source code are available
under http://i10www.ira.uka.de/dementiev/tria/algorithm.shtml.

5 Conclusions

We have described Stxxl: a library for external memory computation that aims
for high performance and ease-of-use. The library supports parallel disks and ex-
plicitly overlaps I/O and computation. The library is easy to use for people who
know the C++ Standard Template Library. Stxxl supports algorithm pipelin-
ing, which saves many I/Os for many EM algorithms. Several projects using
6 http://www-diglib.stanford.edu/∼testbed/doc2/WebBase/

Stxxl : Standard Template Library for XXL Data Sets 651

Stxxl have been finished already. With help of Stxxl, they have solved very
large problem instances externally using a low cost hardware in a record time.
The work on the project is in progress. Future directions of Stxxl develop-
ment cover the implementation of the remaining STL containers, improving the
pipelined sorter with respect to better overlapping of I/O and computation, im-
plementations of graph and text processing EM algorithms. We plan to submit
Stxxl to the collection of the Boost C++ libraries (www.boost.org) which
includes a Windows port.

References

1. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory, I/II. Algorithmica
12 (1994) 110–169

2. Meyer, U., Sanders, P., Sibeyn, J., eds.: Algorithms for Memory Hierarchies. Vol-
ume 2625 of LNCS Tutorial. Springer (2003)

3. Arge, L., Procopiuc, O., Vitter, J.S.: Implementing I/O-efficient Data Structures
Using TPIE. In: 10th European Symposium on Algorithms (ESA). Volume 2461
of LNCS., Springer (2002) 88–100

4. Crauser, A.: LEDA-SM: External Memory Algorithms and Data Structures in
Theory and Practice. PhD thesis, Universität des Saarlandes, Saarbrücken (2001)
http://www.mpi-sb.mpg.de/∼crauser/diss.pdf.

5. L. Arge, R. Barve, D. Hutchinson, O. Procopiuc, L. Toma, D. E. Vengroff, R.
Wickeremesinghe: TPIE: User manual and reference. (2003)

6. Davidson, E.R., Cormen, T.H.: Building on a Framework: Using FG for More
Flexibility and Improved Performance in Parallel Programs. (In: 19th International
Parallel and Distributed Processing Symposium (IPDPS 2005)) to appear.

7. Dementiev, R., Sanders, P.: Asynchronous parallel disk sorting. In: 15th ACM
Symposium on Parallelism in Algorithms and Architectures, San Diego (2003)
138–148

8. Dementiev, R., Mehnert, J., Kärkkäinen, J., Sanders, P.: Better Ex-
ternal Memory Suffix Array Construction. In: Workshop on Algorithm
Engineering & Experiments, Vancouver (2005) http://i10www.ira.uka.de/

dementiev/files/DKMS05.pdf see also http://i10www.ira.uka.de/dementiev/

esuffix/docu/data/diplom.pdf.
9. Dementiev, R., Kettner, L., Sanders, P.: Stxxl: Standard Template Library for XXL

Data Sets. Technical Report 18, Fakultät für Informatik, University of Karlsruhe
(2005)

10. Zeh, N.R.: I/O Efficient Algorithms for Shortest Path Related Problems. PhD
thesis, Carleton University, Ottawa (2002)

11. Sanders, P.: Fast priority queues for cached memory. ACM Journal of Experimental
Algorithmics 5 (2000)

12. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison Wesley Professional (2000)

13. Ajwani, D.: Design, Implementation and Experimental Study of External
Memory BFS Algorithms. Master’s thesis, Max-Planck-Institut für Informatik,
Saarbrücken, Germany (2005)

14. Dementiev, R., Sanders, P., Schultes, D., Sibeyn, J.: Engineering an External
Memory Minimum Spanning Tree Algorithm. In: IFIP TCS, Toulouse (2004) 195–
208

Negative Cycle Detection Problem

WongChi-Him and TamYiu-Cheong

The Chinese University of Hong Kong
{02658924, 02654543}@alumni.cse.cuhk.edu.hk

Abstract. In this paper, we will describe some heuristics that can be
used to improve the runtime of a wide range of commonly used al-
gorithms for the negative cycle detection problem significantly, such
as Bellman-Ford-Tarjan (BFCT) algorithm, Goldberg-Radzik (GORC)
algorithm and Bellman-Ford-Moore algorithm with Predecessor Array
(BFCF). The heuristics are very easy to be implemented and only re-
quire modifications of several lines of code of the original algorithms. We
observed that the modified algorithms outperformed the original ones,
particularly in random graphs and no cycle graphs. We discovered that
69% of test cases have improved. Also, the improvements are sometimes
dramatic, which have an improvement of a factor of 23, excluding the
infinity case, while the worst case has only decreased by 85% only, which
is comparably small when compared to the improvement.

1 The Negative Cycle Detection Problem

1.1 Introduction

The Negative Cycle Detection problem has numerous applications in model ver-
ification, compiler construction, software engineering, VLSI design, scheduling,
circuit production, constraint programming and image processing. For example,
Constraint-based program analysis requires feasibility checking of constraint sets.
Constraint graphs are often used to represent systems of difference constraints;
an application of Farkas’ Lemma shows that a system of difference constraints
is feasible if and only if there are no negative cost cycles in the corresponding
constraint graph. That is, a difference constraint problem is feasible if and only
if there are no negative cycles in the graph.

In the design of VLSI circuits, it is required to isolate negative feedback loops.
These negative feedback loops correspond to negative cost cycles in the amplifier-
gain graph of the circuit. The problem of checking whether a zero-clairvoyant
scheduling system has a valid schedule can also be reduced to the problem of
identifying negative cost cycles in the appropriate graph. Recent approaches to
the image segmentation problem are also based on negative cycle detection. Most
of the approaches are based on the famous Bellman-Ford (BF) algorithm. All

0 The work described in this paper was partially supported by a direct allocation grant
from the Research Grant Council of the Hong Kong Special Administrative Region,
China (Project No. 2050321).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 652–663, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Negative Cycle Detection Problem 653

these algorithms have their worst case bound of O(|V||E|) in runtime. Most of
the previous algorithms run relatively slow on no cycle graphs. However, no cycle
graph is common in practice. So we try to develop some heuristics that are good
in detecting no cycle graphs. Our heuristics can be used to improve the runtime
of a wide range of Bellman-Ford based algorithms. We discovered that 69% of
test cases have improved. Also, the improvements are sometimes dramatic, which
have an improvement of a factor of 23, excluding the infinity case, while the worst
case has only decreased by 85% only, which is comparably small when compared
to the improvement. There are also significant improvement in no cycle graphs
and random graphs.

2 Related Works

2.1 Definitions

The Negative Cycle Detection problem can be defined as the problem of deciding
whether a negative cost cycle exists in a directed graph. This does not require
finding a path from a particular source to a particular destination, as it is only
a decision problem and require only a yes or no answer. Formally, the Negative
Cycle Detection (NCD) problem is defined as follows:

Given a directed graph G = < V, E, c >, where V = { v0, v1,. . . , vn−1 },
|V| = n, E = { eij : vi → v j }, |E| = m, and a cost function c : E → Z, is there
a negative cost cycle in G ?

There are no restrictions on the edge costs, i.e., they can be arbitrary integers
as opposed to small integers, as required by some scaling algorithms. We can even
extend the weights to floating point numbers.

Our heuristics can be applied to a wide range of commonly used algorithms
for the Negative Cycle Detection problem that is a single source algorithm. In
the following, we will define the meaning of single source algorithm.

An algorithm for the negative cycle detection problem is defined as a sin-
gle source algorithm if and only if the algorithm is relaxation-based and all the
relaxations (or calculations of labels) originate from a single vertex (the source).

We will give some examples of single source algorithms in the following.

2.2 The Bellman-Ford Moore Algorithm with Predecessor Array
(BFCF)

The Bellman-Ford-Moore (BFFI) algorithm attempts to reduce the number of
vertices that must be examined in each stage of the “standard” Bellman-Ford
(BF) algorithm by using a First-In-First-Out (FIFO) queue to store the vertices
whose distance labels were changed in the previous stage.

Predecessor Array is a strategy that uses parent pointer to store the parent of
each vertex vi, where the parent of vi is the vertex that caused the most recent
label change to vi. This strategy is widely used in many Bellman-Ford based
algorithms.

654 C.-H. Wong and Y.-C. Tam

The Bellman-Ford-Moore algorithm with Predecessor Array (BFCF) is an
algorithm that combines the above two techniques. As the algorithm starts with
a vertex with label 0 and all the other vertices of label infinity, it is a single
source algorithm. Notice that BFCF still has the worst case bound of O(|V||E|)
in runtime.

2.3 The Bellman-Ford-Tarjan Algorithm (BFCT)

Another variation of the BF algorithm is BFCT, which combines the “standard”
BF algorithm with the FIFO queue of BFFI and the sub-tree disassembly cycle
detection strategy due to Tarjan. The sub-tree disassembly strategy is imple-
mented by describing the tree structure by, besides the usual predecessor func-
tion, the first son and the adjacent brother function (next and previous). This
allows traversals of sub-trees in linear time, and tree modifications in constant
time. When no cycle is found in the traversal of a sub-tree Tv, all vertices in Tv

will be discarded from the queue and the tree. [Tar81]. A negative cycle will be
detected when a tree path from a vertex goes back to one of its ancestors. As
the algorithm is started with one source of label 0 and all the other vertices of
labels infinity, it is a single source algorithm.

2.4 The Goldberg-Radzik Algorithm (GORC)

The Goldberg-Radzik algorithm improved the Bellman-Ford-Moore algorithm.
It achieves the same worst-case bound of O(|V||E|), but can usually outperform
BFFI in practice. The algorithm maintains the set of labelled vertices in two
queues, queue A and queue B. Vertices in queue A will undergo a Bellman-
Ford-Moore pass while vertices in queue B will undergo a depth first search
with no update. At the beginning of the algorithm, the source is put in queue
B. In pass B, if there is an outgoing arc with reduced cost including zero, the
path is traversed and all vertices visited will be put in queue A. Notice that
there are no updates on the vertices’ labels in this step. Also, if a reduced path
from a vertex goes back to one of its ancestors, a negative cycle is detected. On
the other hand, pass A is a one step Bellman-Ford-Moore pass that relaxes the
vertices in queue A following the queue order. Notice that topological sort will
be done after the depth first searches in pass B, so we will relax the vertices in
pass A topologically and the label will be updated.

The algorithm starts with one source of label 0 and all the other vertices of
labels infinity, it is a single source algorithm.

3 Our New Approach to This Problem

Our approach is to incorporate two heuristics to the above single source algo-
rithms.

3.1 Heuristic One: Pumping Negative Strategy

The first heuristic is based on an observation that in any negative cost cycle,
we can find a negative weighted edge e such that when we travel through the

Negative Cycle Detection Problem 655

negative cost cycle starting from e, the accumulated costs are always negative.
The formal definition of this lemma is as follows.

Lemma 1: Given a directed graph G = < V, E, c >, where V = { v0, v1,. . . , vn−1

}, |V| = n, E = { eij : vi → v j }, |E| = m, and c is cost function E → Z, with
a negative cost cycle { vπ(1), vπ(2), vπ(3) ,. . . , vπ(k) }, where vπ(1) = vπ(k), there
exists at least one node vπ(i) where 1<

=i<=k such that when we travel through the
negative cost cycle starting from vπ(i), the accumulated costs are always negative.

In this heuristic, we will stop the relaxation once the label becomes positive.
But since we do not know which vertex in the negative cycle is the starting
vertex with the property as stated in Lemma 1, we need to treat each vertex as
source once. The proof of Lemma 1 is shown in Appendix II.

3.2 Heuristic Two: Reduced Cost Elimination

This heuristic is simply not deleting the labels on the vertices when moving from
one pass to another with different vertices as the source. Consider a case where
a particular vertex relaxes another vertex with label that is not marked 0. If
the label is smaller than the accumulated cost, we will have the following two
conclusions:

1. That particular vertex has been travelled previously as it has a label that is
not 0.

2. The accumulated cost of the previous travel must be smaller than current
accumulated cost as the label is smaller than the current accumulated cost.

Therefore, as the current accumulated cost is larger, using the current accumu-
lated cost will reduce the number of vertices visited. Therefore, we can keep the
cost label.

4 Modifications on Various Algorithms

In this section, we will briefly describe how we implement our heuristics into
some single source algorithms.

4.1 Modification of BFCF

For heuristic one, we first change the algorithm such that the original BFCF
algorithm will run V times with a different vertex as the source each time. We
also add a condition for the relaxation process which is, a relaxation can only
be done and continued if the accumulated cost is negative. When there are no
more relaxations, a new source will be chosen and the whole process is repeated.
For heuristic two, we can implement it simply by keeping the cost label on each
vertex unchanged when we start a new pass with a new source. The pseudo-code
is as follows:

Initialize all cost labels to 0. /*So, all accumulated cost will be negative
(Heuristic 1)*/

656 C.-H. Wong and Y.-C. Tam

For all v /*(Heuristic 1)*/
{
BFCF with v as the source /*(Heuristic 1)*/
/*Keep all the labels unchanged (Heuristic 2)*/
}

4.2 Modifications of BFCT

The modifications to BFCT are similar to that in BFCF. However, each vertex
in BFCT will be involved in the first son and adjacent brother functions (next
and previous). During our modification, we can leave the values of the function
(next and previous) unchanged when we choose a new starting point. This will
improve the runtime without affecting the correctness.

4.3 Modifications of GORC

The modifications for GORC are a bit different from that of BFCF and BFCT.
For heuristic one, we need to modify the condition in pass B to ensure that the
depth first search traversal will only traverse an edge when it leads to a nega-
tive reduced cost. GORC has already implemented the reduced cost elimination
heuristic, so we do not need to do any modification for heuristic two.

5 Experimental Setups

5.1 Results

The problem generator was developed by the authors of [Gol95]. It can be down-
loaded from the website http://www.avglab.com/andrew/index.html. There are
several sets of data.

1. The Rand-5 families have a fixed network size n=2000000 and m=10000000.
The maximum arc length U is fixed at 32000 and the minimum arc length
L varies from 0 to –64000 [Gol95].

2. The SQNC families represent the square grid families. Vertices of these net-
works correspond to points on the x − y plane with integer coordinates [x,
y], 0<

=x <
= X, 0<

=y <
= Y and X = Y . The SQNC01 family has no cycles. The

SQNC02 family has sparse small negative cycles. The SQNC03 family has
dense small negative cycles. The SQNC04 family has several long cycles. The
SQNC05 family has Hamilton cycle.

3. The LNC families are the grid networks mentioned above but with Y =16.
The LNC01, LNC02, LNC03, LNC04 and LNC05 are similar to those in the
SQNC families.

4. The PNC families are the layered networks. A layered network consists of
layers 0. . . X-1. Each layer is a simple cycle plus a collection of arcs con-
necting randomly selected pairs of vertices on the cycle. In the PNC families
each layer contains 32 vertices and X = n/32 [Gol95]. The PNC01, PNC02,
PNC03, PNC04 and PNC05 are similar to those in the SQNC families.

Negative Cycle Detection Problem 657

There are 5 test cases for each row shown in the following tables. The number
of scan operations shown is the average of the 5 test cases. The percentage
improvement is calculated according to the number of operation of relaxing.
Results with more than 10% faster or slower will be highlighted in different
colors. Finally, the ’M’ in front of the name of the algorithm implies the modified
algorithm with our heuristics implemented. The results are shown in Appendix I.

6 Conclusion

In this paper, we described two heuristics that can be incorporated into a wide
range of commonly used single source algorithms for the Negative Cycle Detec-
tion problem. The modifications are very simple, involving only adding several
lines of code.

After modification, all algorithms have increased the speed generally. There
are significant results in the set of random graphs and no cycle graphs. We
discovered that 69% of test cases have improved. Also, the improvements are
sometimes dramatic, which have an improvement of a factor of 23, excluding
the infinity case, while the worst case has only decreased by 85% only, which is
comparably small when compared to the improvement.

References

[CG96] Boris V. Cherkassky and Andrew V. Goldberg. Negative-cycle detection al-
gorithms. In Josep D’ıaz and Maria Serna, editors, Algorithms—ESA ’96,
Fourth Annual European Symposium, volume 1136 of Lecture Notes in
Computer Science, pages 349–363, Barcelona, Spain, 25–27 September 1996.
Springer.

[Gol95] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem.
SIAM Journal on Computing, 24(3):494–504, June 1995.

[Tar81] R. E. Tarjan. Shortest Paths. Technical report, AT&T Bell Laboratories,
Murray Hill, NJ, 1981.

658 C.-H. Wong and Y.-C. Tam

Appendix I

Table 1. Results for no cycle graphs LNC01

#Vertices MGORC GORC Improve MBFCT BFCT Improve
LNC01 8193 29571 51894 75.5% 14891 27338 83.6%

16385 59399 102501 72.6% 29864 54115 81.2%
32769 117508 204668 74.2% 59016 107378 81.9%
65537 236006 412421 74.8% 118558 217019 83.0%
131073 471187 824874 75.1% 236706 433352 83.1%
262145 940478 1643797 74.8% 472542 864805 83.0%
524289 1881286 3289308 74.8% 945099 1733480 83.4%
1048577 3764090 6590393 75.1% 1890963 3455877 82.8%
2097153 7523534 13186716 75.3% 3779505 6917921 83.0%
4194305 15052684 26342784 75.0% 7561213 13826436 82.9%
8388609 30111238 52697650 75.0% 15127398 27660704 82.9%
16777217 60193979 58728907 -2.4% 30237773 30997195 2.5%

Average 68.32% 76.11%

Table 2. Results for no cycle graphs PNC01

#Vertices MGORC GORC Improve MBFCT BFCT Improve
PNC01 8193 0 141440 INF 0 101024 INF

16385 0 282502 INF 0 206452 INF
32769 0 577308 INF 0 421004 INF
65537 0 1175657 INF 0 840400 INF
131073 0 2326792 INF 0 1697588 INF
262145 0 4662634 INF 0 3378583 INF
524289 0 9360087 INF 0 6776352 INF
1048577 0 18799475 INF 0 13545258 INF
2097153 0 37359269 INF 0 27079159 INF
4194305 0 74824647 INF 0 54191807 INF
8388609 0 149660040 INF 0 108381976 INF

Average INF INF

Table 3. Results for no cycle graphs SQNC01

#Vertices MGORC GORC Improve MBFCT BFCT Improve
SQNC01 4097 13503 29080 115.4% 6933 12259 76.8%

16385 51932 114828 121.1% 26775 48554 81.3%
65537 203158 479398 136.0% 104971 191840 82.8%
262145 807586 1961943 142.9% 418223 733359 75.4%
1048577 3211258 7930611 147.0% 1663635 2919808 75.5%
4194305 12817258 32338613 152.3% 6643025 11873024 78.7%
16777217 51213266 140101492 173.6% 26550354 48035413 80.9%

Average 141.19% 78.77%

Negative Cycle Detection Problem 659

Table 4. Results for a few short cycle graphs LNC02

#Vertices MGORC GORC Improve MBFCT BFCT Improve
LNC02 8193 6442 11480 78.2% 3240 5825 79.8%

16385 19433 34692 78.5% 9716 17916 84.4%
32769 42381 46765 10.3% 21241 24144 13.7%
65537 90512 114548 26.6% 45277 61044 34.8%
131073 151996 267506 76.0% 75979 141937 86.8%
262145 247744 438869 77.1% 123912 231623 86.9%
524289 696032 1163851 67.2% 348365 616440 77.0%
1048577 1563907 1669857 6.8% 782080 883473 13.0%
2097153 1845286 3252535 76.3% 923584 1729789 87.3%
4194305 6011875 6697666 11.4% 3007849 3560722 18.4%
8388609 13820476 24466542 77.0% 6911521 12969000 87.6%
16777217 22339356 37514660 67.9% 11172724 19902492 78.1%

Average 54.44% 62.32%

Table 5. Results for a few short cycle graphs PNC02

#Vertices MGORC GORC Improve MBFCT BFCT Improve
PNC02 8193 47185 59183 25.4% 29484 30705 4.1%

16385 86450 64450 -25.4% 53720 54659 1.7%
32769 225235 205400 -8.8% 140052 142698 1.9%
65537 287805 203174 -29.4% 178108 180636 1.4%
131073 350055 294782 -15.8% 218465 212419 -2.8%
262145 503878 386424 -23.3% 314458 330199 5.0%
524289 1316216 1095546 -16.8% 820598 874808 6.6%
1048577 4790290 3915894 -18.3% 2983431 3175931 6.5%
2097153 10428337 8593237 -17.6% 6495202 6953796 7.1%
4194305 23124100 19013193 -17.8% 14408767 15390086 6.8%
8388609 67316841 55413705 -17.7% 41913396 44775974 6.8%

Average -15.05% 4.10%

Table 6. Results for a few short cycle graphs SQNC02

#Vertices MGORC GORC Improve MBFCT BFCT Improve
SQNC02 4097 13503 29080 115.4% 6933 12259 76.8%

16385 51932 114828 121.1% 26775 48554 81.3%
65537 203158 479398 136.0% 104971 191840 82.8%
262145 807586 1961943 142.9% 418223 733359 75.4%
1048577 3211258 7930611 147.0% 1663635 2919808 75.5%
4194305 12817258 32338613 152.3% 6643025 11873024 78.7%
16777217 51213266 140101492 173.6% 26550354 48035413 80.9%

Average 141.19% 78.77%

660 C.-H. Wong and Y.-C. Tam

Table 7. Results for many short cycles graphs LNC03

#Vertices MGORC GORC Improve MBFCT BFCT Improve
LNC03 8193 343 396 15.3% 173 196 13.2%

16385 71 136 93.2% 31 47 48.4%
32769 112 275 145.9% 54 72 33.1%
65537 208 262 26.2% 106 97 -8.5%
131073 180 221 22.3% 92 91 -0.7%
262145 138 297 115.5% 72 82 14.2%
524289 240 349 45.4% 120 110 -8.0%
1048577 198 224 13.4% 97 69 -28.7%
2097153 149 313 110.3% 74 73 -1.1%
4194305 172 344 99.7% 86 86 -0.2%
8388609 216 261 20.9% 106 102 -3.6%
16777217 193 202 4.6% 95 100 5.7%

Average 59.39% 5.32%

Table 8. Results for many short cycles graphs PNC03

#Vertices MGORC GORC Improve MBFCT BFCT Improve
PNC03 8193 461 2713 489.1% 327 865 164.6%

16385 473 3046 543.5% 256 451 75.7%
32769 468 3843 721.2% 248 513 106.9%
65537 341 3030 788.0% 165 829 402.9%
131073 967 3842 297.1% 697 686 -1.7%
262145 381 3670 863.8% 214 339 58.7%
524289 1144 4174 265.0% 620 525 -15.3%
1048577 177 2743 1453.5% 113 244 116.9%
2097153 1125 3747 233.0% 617 552 -10.6%
4194305 314 2063 557.5% 175 394 124.9%
8388609 632 2628 315.5% 292 409 40.1%

Average 593.38% 96.65%

Table 9. Results for many short cycles graphs SQNC03

#Vertices MGORC GORC Improve MBFCT BFCT Improve
SQNC03 4097 109 487 345.3% 55 173 216.1%

16385 74 584 686.5% 34 249 625.0%
65537 250 1101 340.5% 130 493 280.1%
262145 477 3779 691.6% 243 1077 343.2%
1048577 1818 7839 331.1% 950 2441 157.0%
4194305 2934 7534 156.8% 1536 4593 199.0%
16777217 5896 28282 379.7% 3066 8719 184.4%

Average 418.79% 286.40%

Negative Cycle Detection Problem 661

Table 10. Results for a few long cycles graphs LNC04

#Vertices MGORC GORC Improve MBFCT BFCT Improve
LNC04 8193 26711 54962 105.8% 12910 20687 60.2%

16385 92773 148990 60.6% 41107 56489 37.4%
32769 251488 349870 39.1% 122379 145197 18.6%
65537 881848 948447 7.6% 365853 376227 2.8%
131073 1980993 2097090 5.9% 874778 898293 2.7%
262145 4467623 5460818 22.2% 1892207 2215706 17.1%
524289 11883080 11385873 -4.2% 4968220 5017279 1.0%
1048577 25741146 28462486 10.6% 10792331 12567955 16.5%
2097153 62102224 61088246 -1.6% 26089374 27892978 6.9%
4194305 121983730 128064383 5.0% 53771346 59798591 11.2%
8388609 275905623 286903304 4.0% 112925426 135532732 20.0%
16777217 538729562 664472322 23.3% 231721552 299999324 29.5%

Average 23.19% 18.66%

Table 11. Results for a few long cycles graphs PNC04

#Vertices MGORC GORC Improve MBFCT BFCT Improve
PNC04 8193 96459 82610 -14.4% 55914 37737 -32.5%

16385 363660 189675 -47.8% 222163 89015 -59.9%
32769 1032742 416393 -59.7% 633831 215134 -66.1%
65537 2475918 932459 -62.3% 1574038 485710 -69.1%
131073 3959249 2244526 -43.3% 2482065 1042791 -58.0%
262145 11673063 4881046 -58.2% 6672867 2282332 -65.8%
524289 26999818 10280214 -61.9% 16888696 4707412 -72.1%
1048577 56517150 21103100 -62.7% 35114982 9594361 -72.7%
2097153 118365443 44260038 -62.6% 74302031 20881883 -71.9%
4194305 225343295 95936613 -57.4% 147809535 43256228 -70.7%
8388609 517666048 189688611 -63.4% 328137483 88085199 -73.2%

Average -53.97% -63.74%

Table 12. Results for a few long cycles graphs SQNC04

#Vertices MGORC GORC Improve MBFCT BFCT Improve
SQNC04 4097 32707 30880 -5.6% 15213 13944 -8.3%

16385 184893 170162 -8.0% 81463 67445 -17.2%
65538 573055 746841 30.3% 254273 297501 17.0%
262145 1313928 3264595 148.5% 560271 1389863 148.1%
1048577 2338506 15068659 544.4% 1099832 6288913 471.8%
4194305 6204248 68242481 999.9% 2710118 27430729 912.2%
16777217 14024018 272653950 1844.2% 6681120 121993247 1725.9%

Average 507.67% 464.21%

662 C.-H. Wong and Y.-C. Tam

Table 13. Results for Hamiltonian cycle graphs LNC05

#Vertices MGORC GORC Improve MBFCT BFCT Improve
LNC05 8193 163438 172029 5.3% 98947 91658 -7.4%

16385 346868 364541 5.1% 215632 202262 -6.2%
32769 753945 803979 6.6% 458880 436855 -4.8%
65537 1633918 1733490 6.1% 999207 934728 -6.5%
131073 3499646 3789556 8.3% 2082565 2027643 -2.6%
262145 7599126 7828071 3.0% 4637622 4329335 -6.6%
524289 15608355 16876480 8.1% 9456863 9179454 -2.9%
1048577 33572684 35232411 4.9% 20445301 19287842 -5.7%
2097153 69453620 74266615 6.9% 42213747 40477734 -4.1%
4194305 144322754 156777150 8.6% 89613042 84456141 -5.8%
8388609 314273826 331798694 5.6% 189346386 181584841 -4.1%
16777217 637684719 668256739 4.8% 387236035 364980712 -5.7%

Average 6.11% -5.20%

Table 14. Results for Hamiltonian cycle graphs PNC05

#Vertices MGORC GORC Improve MBFCT BFCT Improve
PNC05 8194 82594 90718 9.8% 54836 47319 -13.7%

16386 179350 203306 13.4% 116631 100007 -14.3%
32770 361404 401511 11.1% 249244 210670 -15.5%
65538 785227 870523 10.9% 516925 443592 -14.2%
131074 1732688 1680790 -3.0% 1096942 901936 -17.8%
262146 3462811 3965235 14.5% 2232233 1928211 -13.6%
524290 7714697 7216528 -6.5% 4579138 4039317 -11.8%
1048578 16872712 16794782 -0.5% 9786195 8450277 -13.7%
2097154 32924136 37489022 13.9% 19973817 17243048 -13.7%
4194306 63798970 71903161 12.7% 41054033 35357906 -13.9%
8388610 154010041 151672136 -1.5% 86223637 74532047 -13.6%

Average -1.50% -14.16%

Table 15. Results for Hamiltonian cycle graphs SQNC05

#Vertices MGORC GORC Improve MBFCT BFCT Improve
SQNC05 4098 70976 79742 12.4% 44744 41610 -7.0%

16386 360423 365960 1.5% 207067 197097 -4.8%
65538 1644198 1712316 4.1% 983910 928755 -5.6%
262146 7650803 8070454 5.5% 4679524 4297402 -8.2%
1048578 32523850 34451433 5.9% 19818466 18737042 -5.5%
4194306 151666794 149113446 -1.7% 91909813 82151343 -10.6%
16777218 648487235 648211387 0.0% 394621759 353276864 -10.5%

Average 3.96% -7.46%

Negative Cycle Detection Problem 663

Table 16. Results for random graphs RAND-5

Negative Weight MGORC GORC Improve MBFCT BFCT Improve
0 0 7780968 INF 0 4578450 INF

-1000 1133358 8892373 684.6% 341958 5350722 1464.7%
-2000 2080317 9588453 360.9% 762572 6481434 749.9%
-4000 260253 3665786 1308.5% 211730 5139325 2327.3%
-6000 328345 884558 169.4% 218531 1634924 648.1%
-8000 224668 41588 -81.5% 115428 721280 524.9%
-16000 603 541 -10.4% 328455 237747 -27.6%
-32000 175 174 -0.5% 329102 143538 -56.4%
-64000 51 48 -4.3% 380534 55175 -85.5%

Table 17. General results for GORC

Improve Degrade
100% < X 36.1% 0.0%

10% < X ≤ 100% 27.8% 17.0%
X ≤ 10% 12.8% 6.3%

Total 76.7% 23.3%

Table 18. General results for BFCT

Improve Degrade
100% < X 24.8% 0.0%

10% < X ≤ 100% 29.3% 25.7%
X ≤ 10% 9.6% 10.6%

Total 63.7% 36.3%

Appendix II

Proof of Lemma 1

Consider a negative cost cycle C in a directed graph G(V, E) where C={v0, v1,
. . . , vn−1}. The accumulated costs on C starting from v0 are {C 1,0, C1,1,. . . ,
C 1,n−1 }, where C1,k is the accumulated cost at vertex vk starting from v0.

First of all, at the end of the cycle, i.e. vn−1, the accumulated cost (Wcycle)
along this cycle must be negative. Secondly, there is at least one maximum ac-
cumulated cost Cmax on this cycle. Finally, there must be at least one edge,
(vi ,vj), where j = i+1, that is negative since there must be at least one neg-
ative edge on a negative cycle. Note that we can change the ordering of the
vertices by choosing another “starting vertex”. Suppose that we take vk as the
starting vertex where vk has the largest accumulated cost (chose the last one if
there is more than one), we will have the accumulated costs {C 2,k+1, C2,k+2,. . . ,
C 2,n−1, C2,0, C2,1,. . . , C 2,k }.

Now we will have the path {vk+1, vk+2,. . . , vn−1, v0, v1,. . . , vk}. Then we
will have two sets of vertices. The first set contains the vertices in {vk+1, vk+2,
. . . , vn−1 }. For any vertex v in this set, C2,v = C1,v − Cmax < 0, where
Cmax

>
=0 because otherwise, v0 is already the correct starting point. The second

set contains the vertices in {v0, v1, . . . , vk}. For any vertex v in this set, C2,v =
C1,v + Wcycle − Cmax < 0.

An Optimal Algorithm for Querying Priced
Information: Monotone Boolean Functions and

Game Trees

Ferdinando Cicalese1,� and Eduardo Sany Laber2

1 Institut für Bioinformatik, Universität Bielefeld, Germany
nando@cebitec.uni.bielefeld.de

2 Department of Informatics, PUC, Rio de Janeiro, Brasil
laber@inf.puc-rio.br

Abstract. We study competitive function evaluation in the context of
computing with priced information. A function f has to be evaluated for
a fixed but unknown choice of the values of the variables. Each variable x
of f has an associated cost c(x), which has to be paid to read the value of
x. The problem is to design algorithms that compute the function query-
ing the values of the variables sequentially while trying to minimize the
total cost incurred. The evaluation of the performance of the algorithms
is made by employing competitive analysis. We determine the best pos-
sible extremal competitive ratio for the classes of threshold trees, game
trees, and monotone boolean functions with constrained minterms, by
providing a polynomial-time algorithm whose competitiveness matches
the known lower bounds.

1 Introduction

Priced information sources have recently been studied in many different contexts.
Notably, priced information has been favorably compared to free access policies
as a means of improving the access to the information on the Internet [5]. With
appropriate priced information schemes, the end-user may have guaranteed more
efficient access to the desired data [5]; however, the need arises for competitive
methodologies for reducing the cost incurred.

Our approach to the development of competitive procedures for accessing
and processing priced information follows the line of research initiated by the
seminal paper of Charikar et al. [2], where the basic problem of computing a
given function by adaptively querying the values of its variables is addressed. In
this model, reading the value of a variable is subject to the payment of some
cost and, in general, different variables may incur different costs. An algorithm
that solves the problem has to decide how to sequentially query the variables in
order to evaluate the function.
� Supported by the Sofja Kovalevskaja Award 2004 of the Alexander von Humboldt

Foundation.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 664–676, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Optimal Algorithm for Querying Priced Information 665

Problem Statement. More formally, we consider the following scenario. A
function f(x1, . . . , xn) has to be evaluated for a fixed but unknown choice of
the values for the set of variables V = {x1, x2, . . . , xn}. Each variable xi has an
associated non-negative cost c(xi) which is the cost incurred to probe xi, i.e.,
to read its value. Given U ⊆ V , we define the cost c(U) of U as the sum of
the costs of the variables in U , i.e., c(U) =

∑
x∈U c(x). The goal is to adaptively

identify and probe a minimum cost set of variables U ⊆ V whose values uniquely
determine the value of f, regardless of the value of the variables not probed.

An assignment σ for f is a choice of a value for each one of its variables.
We shall denote by xi(σ) the value assigned to xi in the assignment σ. We use
f(σ) to denote the value of f w.r.t. σ, i.e., f(σ) = f(x1(σ), . . . , xn(σ)). Given
a subset U ⊆ V, we use σ|U to denote the restriction of σ to the variables in
U. We say that U is sufficient with respect to a given assignment σ of V if the
value of f is determined by the partial assignment σ|U . A set of variables which
is sufficient is also called a proof of the value of f for the given assignment σ.

An evaluation algorithm A for f under an assignment σ is a rule to adaptively
read the variables in V until the set of variables read so far is sufficient with
respect to σ. The cost of the algorithm A for an assignment σ is the total
cost incurred by A to evaluate f under the assignment σ. All the algorithms
considered here have access to the variables costs.

Given a cost function c(·), we let cf
A
(σ) denote the cost of the algorithm A

for an assignment σ and cf (σ) be the cost of the cheapest proof for f under the
assignment σ. We say that A is ρ-competitive if cf

A
(σ) ≤ ρcf (σ), for every pos-

sible assignment σ. We use γA
c (f) to denote the competitive ratio of A, that is,

the minimum ρ for which A is ρ-competitive. The best possible competitive ratio
for any deterministic algorithm, then, is γf

c = minA γA
c (f), where the minimum

is computed over all possible deterministic algorithms A. With the aim of evalu-
ating the dependence of the competitive ratio on the structure of f , one defines
the extremal competitive ratio γA(f) of an algorithm A as γA(f) = maxc γA

c (f).
The best possible extremal competitive ratio for any deterministic algorithm,
then, is γ(f) = minA γA(f). This last measure is meant to capture the structural
complexity of f independent of a particular cost assignment and algorithm.

Our Results. We present a new implementation of the general approach intro-
duced in [3], that dramatically improves upon the previously published results.
The new implementation arises from a simple idea, that consists of forcing a
greedy-like choice into the general approach. As a result we obtain an algorithm
that achieves the optimal extremal competitive ratio for the classes of threshold
trees, game trees (under a weak assumption on the allowed assignments) and
general monotone boolean functions in which each variable appears in at most
three minterms.

Related Work. The seminal paper for the study of the effect that priced infor-
mation has on basic algorithmic problems is [2]. In this paper, the problems of
evaluating the classes of monotone boolean functions, threshold trees and game
trees, among others, are addressed. For monotone boolean functions, a 2γ(f) ex-

666 F. Cicalese and E.S. Laber

ponential time algorithm is outlined. For the subclass of the monotone boolean
functions that are representable by AND-OR tree, a polynomial time algorithm
with extremal competitive ratio γ(f) and a γf

c -competitive pseudo-polynomial
algorithm are provided. Two variants of the latter are shown to achieve 2γf

c -
competitiveness for the classes of threshold trees and game trees, respectively.
We believe that the result for game trees needs further investigation [6]. In the
extended version of the paper we shall discuss the arguable points in [2] at greater
length.

It is noticeable that, as opposed to ours, the results concerning competi-
tiveness with respect to γf

c are obtained by pseudo-polynomial algorithms. In
fact, all known results concerning the γf

c -competitiveness are attained by non-
polynomial procedures, unless additional assumptions on the structure of the
costs are made [4].

In [3], many of the results of [2] were improved, in terms of extremal com-
petitiveness. For monotone boolean function a (k + l−

√
min{k, l})-competitive

algorithm was given, where k and l denote the sizes of the largest minterm and
maxterm of the function under evaluation. Moreover an algorithm with compet-
itiveness 1.618γ(f) for threshold tree and one with competitiveness 1.5γ(f) for
game trees were provided. All these algorithm are obtained as implementations
of the general approach introduced in [3], and run in polynomial time.

In Table 1 our results are compared to the previously published ones.

Table 1. Summary of the results. By PP-TIME we mean pseudo-polynomial time.
The superscript + indicates that the result holds for the subclass of functions such
that min{k, l} ≤ 2. The superscript ∗ restricts the result to the subclass of functions
for which every variable appears in at most 3 minterms.

Function Class Charikar et. al [2] Our previous paper [3] This paper
Threshold trees 2γc(f) PP-TIME 1.618γ(f) PTIME γ(f) PTIME
Monotone Bool 2γ(f) EXP-TIME 2γ(f) and γ(f)+ PTIME γ(f)∗ PTIME

Game trees 2γc(f) PP-TIME 1.5γ(f) PTIME γ(f) PTIME

2 The General Approach

In this section we present the general approach introduced in [3] as a novel
schema for the design of algorithm in the framework of querying with priced
information.

Before we start we need to fix some notation. Let Y ⊆ V and let σY be
an assignment for the variables of Y . We use fY to denote the restriction of f
obtained by fixing the values of the variables in Y as given by σY .

The general approach, presented in the pseudo-code below, consists of inter-
actively executing the following steps until the function f is evaluated: a set U
of unevaluated variables is selected; then the variable u of minimum cost in U is
evaluated and the current cost of each variable in U is decreased by the current

An Optimal Algorithm for Querying Priced Information 667

cost of u. The procedure is iterated on the function fu obtained from f by fixing
the value of u. Note that the rule employed to select the set of variables U is left
unspecified. It is such a rule that determines both the competitiveness and the
computational complexity of the resulting algorithm.

Algorithm GenApp(f,V, c)
Y = ∅
While the value of fY is not known

Select UY ⊆ V − Y
u ← variable of UY with minimum cost w.r.t. c
Read(u)
Y = Y ∪ {u}
For each v ∈ UY − {u} do c(v) ← c(v) − c(u).

EndWhile
End Algorithm

We say that an algorithm A is an implementation of the general approach if
A is obtained from GenApp by fixing the rule for selecting the set UY among
all subsets of V − Y . The following lemma is the main tool for analyzing the
implementations of the general approach.

Lemma 1. [3] Let G be an implementation of GenApp. Let U be the family of
sets UY selected by G. Let βY be the largest integer such that |UY ∩P | ≥ βY for
every proof P for fY . Then, γG(f) ≤ maxUY ∈U

{
|UY |
βY

}
.

3 Optimal Implementations of the General Approach

In this section we present the new algorithm obtained by implementing the
general approach with a greedy selection of the set UY .

3.1 Monotone Boolean Functions

We shall first consider the case when f is a monotone boolean function over the
set of variable V = {x1, . . . , xn}. Recall that a function f is monotone (non-
decreasing) if it is not possible to decrease the value of f by increasing x(σ) for
some variable x ∈ V .

A 1-witness for f is a set of variables T ⊆ V such that if x(σ) = 1 for every
x ∈ T , then f evaluates to 1, no matter how are assigned the values for the
remaining variables. On the other hand, a 0-witness for f is a set of variable
S ⊆ V such that if x(σ) = 0 for every x ∈ S, then f evaluates to 0. A minterm
is a minimal 1-witness and a maxterm is a minimal 0-witness.

An immediate consequence of these definition is that each minterm of f has
non-empty intersection with each maxterm of f .

We use k(f) and l(f) to denote the size of the largest minterm and the
largest maxterm of f , respectively. We use the term certificate to either refer to
a minterm or to a maxterm. Note that every proof for f contains a certificate.

668 F. Cicalese and E.S. Laber

Theorem 1 ([2]). If f is a monotone function then γ(f) ≥ max{k(f), l(f)}.

Implementing the General Approach. The following lemma analyses the
particular implementation of the general approach that always selects UY as
a minterm for fY . It turns out that such a choice results in optimal extremal
competitive ratio for all assignments σ such that f(σ) = 0.

Lemma 2. Let A be a an implementation of the general approach in which UY

is a minterm for fY . Then, for every assignment σ for which f(σ) = 0, we have
cf

A
(σ) ≤ k(f)cf (σ).

Proof. Since f(σ) = 0, then, trivially, for every set Y of variable read by A, we
have fY (σ) = 0, whence every proof P of fY contains a maxterm of fY . On the
other hand, since the set UY is a minterm for fY , it intersects every maxterm
of fY , i.e., |UY ∩ P | ≥ 1 for every proof P for fY . Moreover, we have that
|UY | ≤ k(fY) ≤ k(f). Then, the desired result cf

A
(σ) ≤ k(f)cf (σ) immediately

follows by Lemma 1.

The Greedy Choice. Although the implementation A in Lemma 2 has an
optimal performance for each assignment σ such that f(σ) = 0, there is no
guarantee about its performance for the assignments σ′ such that f(σ′) = 1.
Note that A selects an arbitrary minterm of f . Now we discuss how to optimize
this choice in order to obtain algorithms with optimal competitiveness.

Let F denote the family of minterms of f . We shall now define an total order
χ on F that induces a sorting of the minterms of f in order of non-decreasing
cost.

Definition 1 (Ranks). Let f = f(x1, x2, . . . , xn) be a boolean function and let
c(·) be a cost function on the variables of f . Let π be the total order on the
variables of f defined by stipulating that, for each i = 1, 2, . . . , n− 1, xi precedes
xi+1 in the order π. Therefore, c and π induce a total order χ on the minterms
of f as follows. In χ a minterm C precedes a minterm D if and only if one of
the following conditions holds: (a) c(C) < c(D); (b) c(C) = c(D) and the list
of variables in C (listed according to π) precedes in the lexicographical order the
list of variables in D (listed according to π).

For each minterm C of f we define rankf (C) as the ordinal position of C in
χ (i.e., the number of minterms that precede C in χ, plus 1). When the function
f is clear from the context we shall write rank(C) instead of rankf (C).

The algorithm Greedy below examines the minterms of F following an
increasing order of their ranks. In the pseudo-code for Greedy, we use Ci to
denote the minterm C of F such that rank(C) = i, according to Definition 1.

By the value of a minterm we mean the AND of the values of its variable.
Therefore, the value of a minterm becomes known either when one of its variables
has been found to have value 0 or, otherwise, when all of its variables have been
found to have value 1.

We say that a minterm is active iff its value is not known yet. We say that a
set U of unread variables is strongly active iff : (i) it is exactly the set of unread

An Optimal Algorithm for Querying Priced Information 669

variables of some active minterm of f and (ii) U is minimal, i.e., no proper subset
of U satisfies condition (i). Note that U is always a minterm for fY , where Y is
the set of the variables evaluated so far.

Algorithm Greedy(f, V, c)
For i = 1 . . . |F|

While the values of f is unknown and Ci is active
U ← a strongly active subset of Ci

Read a variable of U
End While
If the value of f becomes known return

End For

We shall say that a minterm Ci is evaluated by Greedy if and only if at least
one variable of Ci is read during the ith iteration of the For-loop of Greedy.
Note that, according to this definition, it may happen that Ci is not evaluated
although some of its variables are read before and after the i-th iteration of the
For-loop.

Definition 2 (Implementations). An implementation of Greedy is a rule
that defines both the strongly active set U contained in Ci and the variable of U
to be selected.

Lemma 3. Let f = f(x1, . . . , xn) be a monotone boolean function such that for
each i = 1, . . . , n the variable xi appears in at most 3 minterms of f. Let G be
an arbitrary implementation of Greedy. Then for every assignment σ such that
f(σ) = 1, we have cf

G
(σ) ≤ l(f)cf(σ).

Proof. Let I = {C|C is evaluated by G} and let I ′ be a minimal subfamily of I
such that

⋃
C′∈I′

C′ =
⋃

C∈I
C. Let Cmax the minterm in I ′ of maximum cost. We

have the following.

Claim 1. cf
G
(σ) ≤ |I′|cf (σ).

Because of the greedy choice employed by G, we have that cf (σ) ≥ c(Cmax).
Thus, cf

G
(σ) ≤ c(

⋃
C∈I′

C) ≤
∑

C∈I′
c(C) ≤ |I′|c(Cmax) ≤ |I′|cf (σ).

Now, let F be the family of minterms of f . Let F ′ ⊆ F be the family of
minterms of f which contain at least one variable that appears at most once in
the minterms of I ′. Note that I ′ ⊆ F ′. Let H ′ be the minimal hitting set for F ′

obtained from the union of those variables. Thus |H ′| ≥ |I′|.
Let F = F \ F ′. By definition, every variable of a minterm in F appears

exactly twice in I ′. Note that we have C ∩ C′ = ∅ for every pair of different
minterms C, C′ ∈ F , for otherwise one of the variables would appear four times.
A key claim for our proof is the following. Due to the space constraints, its proof
is omitted in this extended abstract.

670 F. Cicalese and E.S. Laber

Claim 2. For each minterm C ∈ F , there is a minterm C′ ∈ I′ such that
C ∩ C′ 	= ∅ and c(C′) ≤ c(C).

Let I ′ = {Ci1 , . . . , Ci|I′|}. By Claim 2, we can partition the family F into
|I′| subfamilies as follows. For j = 1, 2, . . . , |I′|, let

Fj =

{
C ∈ F \

(
j−1⋃
s=1

Fs

)
| C ∩ Cij 	= ∅ and c(C) ≥ c(Cij)

}
.

Obviously Fi ∩ Fj = ∅, for each 1 ≤ i < j ≤ |I′|, and, moreover, because
of Claim 2, F = F1 ∪ · · · ∪ F|I′|. For each C ∈ Fj , let var(C) denote the
variable of C with minimum index which also appears in Cij (the only utility
of the index is to uniquely determine the variable). Let J = {j|Fj 	= ∅} and let
Hj = {var(C)|C ∈ Fj}, for j ∈ J . Note that H = H ′ ⋃

j∈J Hj is a hitting set for
F . Let Hf be a minimal hitting set for F obtained by removing the redundant
variables of H . Note that Hf ∩ Hj = Hj for every j ∈ J and Hi ∩ Hj = ∅ for
every i, j ∈ J . Thus, |Hf | = |Hf ∩ H ′| +

∑
j∈J |Hj |. Since Hi covers at most

|Hi|+1 minterms of I ′ and Hf ∩H ′ covers exactly |Hf ∩H ′| minterms, we must
have |Hf ∩ H ′| +

∑
j∈J

(|Hj | + 1) ≥ |I′|. It follows that |Hf | ≥ |I′| − |J |, whence

l(f) ≥ |I′| − |J |.
For each j ∈ J , let C′

j be an arbitrary minterm in Fj . By definition, c(C′
j) ≥

c(Cij) and since every variable of C′
j appears in exactly two minterms of I ′, we

have
cf

G
(σ) ≤ c

(
∪|I′|

j=1Cij

)
≤

∑|I′|
j=1 c(Cij) −

∑
j∈J c(C′

j) ≤
∑

j∈{1,...,|I′|}\J c(Cij)
≤ (|I′| − |J |)c(Cmax).
Finally, using l(f) ≥ |I′|−|J |, we have the desired result cf

G
(σ) ≤ l(f)c(Cmax) ≤

l(f)cf(σ)

Achieving the Best Extremal Competitive Ratio. Let us now consider the
implementation AG of the general approach in which the set UY is defined as a
strongly active set contained in the active minterm of f of minimum rank. It is
not hard to verify that AG coincides with an implementation of Greedy which
selects the variables according to the rule employed in the general approach.
Therefore, by Lemmas 2 and 3, we immediately get the following.

Theorem 2. Let f be a monotone boolean function such that each one of its
variables is in at most three minterms of f . Then for the implementation AG

of the general approach, it holds that cf
AG(σ) ≤ max{k(f), l(f)}cf(σ) for every

assignment σ.

3.2 Threshold Trees

A threshold tree over a set of boolean variables V is a rooted tree T , where each
internal node is associated to an integer number and each leaf is associated with
a distinct variable of V . The value of a leaf is the value of its associated variable.

An Optimal Algorithm for Querying Priced Information 671

The value of a node whose associated integer is t (a t-node) is 1 if at least t of
its children have value 1 and it is 0, otherwise. The boolean function computed
by a threshold tree T is the one mapping the values of the leaves of T to the
value of the root of T.

Given a threshold tree T, we use leaves(T) to denote its set of leaves and
|T | to denote its number of leaves. Abusing notation, we use T to denote also
the function, say f, computed by the tree T . Accordingly, for every Y ⊂ V , TY

denotes both the threshold tree computing fY and the function fY itself.

The Certificates of a Threshold Tree. Let T be a threshold tree rooted on
a t-node r and let T1, . . . , Tp be the subtrees of T rooted at the children of r.
Then, C is a minterm for T if and only if there exists a subset R ⊆ {1, . . . , p},
with |R| = t, such that: (i) C ∩ leaves(Ti) is a minterm for Ti, for i ∈ R; (ii)
C ∩ leaves(Ti) = ∅ for i /∈ R. Analogously, C is a maxterm for T if and only
if there exists a subset S ⊆ {1, . . . , p}, with |S| = p − t + 1, such that: (i)
C ∩ leaves(Tj) is a maxterm for Tj , for j ∈ S; (ii) C ∩ leaves(Tj) = ∅ for j /∈ S.

Let π and π′ be permutations of {1, . . . , p} such that: k(Tπ(i)) ≥ k(Tπ(i+1))
and l(Tπ′(i)) ≥ l(Tπ′(i+1)), for i = 1, . . . , p−1. The characterization above implies

that k(T) =
t∑

i=1

k(Tπ(i)) and l(T) =
p−t+1∑

i=1

l(Tπ′(i)).

Since the functions that can be represented by threshold trees are monotone,
then both Theorem 1 and Lemma 2 also hold for threshold trees. We shall now
show that for the class of the threshold trees a result analogous to Lemma 3
holds, i.e., for every threshold tree function f and for each assignment σ s.t.
f(σ) = 1, the algorithm Greedy has the best possible competitive ratio. We
shall need some preliminary results.

Definition 3 (Execution). Let I be an implementation of Greedy. For each
function f and for each assignment σ, the execution I(f, σ) of the implementa-
tion I of Greedy on the function f with assignment σ is the sequence of pairs
(xi, C(xi)), i = 1,2,. . . . where xi is the i-th variable that I reads and C(xi) is
the minterm of f that is being evaluated when xi is probed.

The following lemma allows to evaluates the cost incurred by Greedy on a
threshold tree in a recursive way.

Lemma 4. Let I be an arbitrary implementation of Greedy. Let Tm be a sub-
tree of T , rooted at one of the children of r. Let x1, x2, . . . , xq be the leaves of
Tm listed in the order that they appear in I(T, σ). Then, there exists an imple-
mentation Im for Greedy that satisfies

(i) The q first variables of Im(Tm, σ|Tm
) are x1, x2, . . . , xq

For i = 1, 2, . . . , q let C(xi) (respectively Cm(xi)) denote the minterm of T
(resp. Tm) that is evaluated in I(T, σ) (resp. Im(Tm, σ|Tm

)) when xi is probed.
(ii) Then, for i = 1, 2, . . . , q, we have Cm(xi) = C(xi) ∩ Tm.

Theorem 3. Let I be an arbitrary implementation of Greedy. If f can be
represented by a threshold tree, then for every assignment σ such that f(σ) = 1,
we have cf

I
(σ) ≤ l(f)cf(σ).

672 F. Cicalese and E.S. Laber

Proof. (Sketch) We prove by induction on the height of the tree that for every
assignment σ′, the cost incurred by I before determining the value of a minterm
C is at most l(f)c(C). This will suffice to establishes the theorem. In fact, we can
then consider the particular case where σ′ is a assignment for which f evaluates
to 1 and C is the cheapest proof for f under assignment σ′.

For the basis we assume that T has height 1, p leaves, and it is rooted at a
t-node. Let C = {x1, x2, . . . , xt} be a minterm for T and let cmax be the cost of
the variable with maximum cost of C. The key observation is that, because of
the greedy way of selecting the minterms implemented by Greedy no variable
with cost larger than cmax is read before the value of C is determined.

Then, the cost incurred before the value of C is determined is at most c(C)+
(p − t)cmax ≤ (p − t + 1)c(C) = l(T)c(C).

Let us assume that the claim holds for every threshold tree of height at
most h. Let T be a tree with height h + 1 rooted at a t-node r. In addition,
let T1, . . . , Tp be the subtrees rooted at the children of r. We assume w.l.g. that
C ∩ Ti 	= ∅ for i = 1, . . . , t. This implies that C ∩ Ti = ∅ for i = t + 1, . . . , p.

We have the following claim, whose proof is omitted from this extended
abstract due to the space constraints.

Claim. Let C′ be a minterm of T such that rank(C′) < rank(C). If C′ is
evaluated before the value of C is determined we must have

(i) c(C′ ∩ Ti) ≤ c(C ∩ Ti) for i = 1, . . . , t
(ii) c(C′ ∩ Tj) ≤ maxi=1,...,t{c(C ∩ Ti)}, for j > t.

Let Xi be the sequence of leaves of Ti that are in the execution I(T, σ) before
determining the value of C, listed in the order in which they are read by I. In
order to bound the sum of the costs of these variables, we use the fact, assured by
Lemma 4, that there is an implementation Ii such that the sequence of variables
in the execution Ii(Ti, σ|Ti)) coincides exactly with Xi.

In fact, the second statement in Lemma 4 together with the previous claim
guarantees that, for each i ≤ t (respectively i > t), Ii only evaluates minterms
of cost not larger than c(C ∩ Ti) (respectively cmax) while reading the variables
in Xi. Thus, by induction hypothesis we have that the cost incurred due to the
variables of Ti is at most l(Ti)c(C ∩ Ti) (respectively l(Ti)cmax).

Therefore, the cost spent by I before determining the value of C is at most

t∑
i=1

l(Ti)c(C∩Ti)+
p∑

i=t+1

l(Ti)cmax ≤
(

t
max
i=1

l(Ti) +
p∑

i=t+1

l(Ti)

)
c(C) ≤ l(T)c(C),

where the last inequality follows from the definition of l(T).

Since AG is simultaneously a valid implementation for Greedy and for the
general approach, then putting together Theorem 3 and Lemma 2 we have the
following result.

Theorem 4. For every monotone boolean function f represented by a threshold
tree, we have γA

G

(f) = max{k(f), l(f)} = γ(f).

An Optimal Algorithm for Querying Priced Information 673

3.3 Game Trees

A game tree T is a tree, rooted at r, where every internal node has either a MIN
or a MAX label and the parent of every MIN (MAX) node is a MAX (MIN)
node. Let V be the set of leaves of T . Every leaf of V is associated with a real
number, its value. The value of a MIN (MAX) node is the minimum (maximum)
of the values of its children. The function computed by T (the value of T) is
the value of its root. Like in the previous section we shall identify T with the
function it computes. Thus, if f is the function computed by the game tree T ,
we shall also write T for f and TY for fY .

We extend the notion of maxterms and minterms to the case of a game tree.
By a minterm (maxterm) of a game tree we shall understand a minimal set of
leaves whose values allow to state a lower (upper) bound on the value of the
game tree. More precisely, a minterm (maxterm) for a game tree T rooted at r
is a minimal set C of leaves of T such that if x(σ) ≥ � (x(σ) ≤ �,) for each x ∈ C
then r(σ) ≥ � (r(σ) ≤ �) regardless of the values of the leaves y 	∈ C. As with
boolean functions, we shall use the more general term certificate to either refer
to a minterm or to a maxterm.

We use FL
T and FU

T to denote the family of all minterms and the family of
all maxterms of T , respectively.

For the game tree function T = max{min{x1, x2}, min{x3, max{x4, x5}}},
we have FU

T = {{x1, x3}, {x1, x4, x5}, {x2, x3}, {x2, x4, x5}} and
FL

T = {{x1, x2}, {x3, x4}, {x3, x5}}.

The Certificates of a Game Tree. Let T1, . . . , Tp be the subtrees of T rooted
at the children of r. If r is a MAX node then CL is a minterm for T if and only
if CL is also a minterm for some subtree Ti, with i ∈ {1, . . . , p}. Furthermore,
CU is a maxterm for T if and only if CU ∩Ti is a maxterm of Ti, for i = 1, . . . , p.

On the other hand, if r is a MIN node, then CL is a minterm for T if and
only CL ∩ Ti is a minterm of Ti, for i = 1, . . . , p. Finally, CU is a maxterm for
T if and only if CU is also a maxterm for some subtree Ti, with i ∈ {1, . . . , p}.

We define the value C(σ) of a minterm (maxterm) C w.r.t. assignment σ as
the minimum (maximum) of the values of its leaves. In order to study the struc-
ture of a proof for T , it is useful to express the function computed by T in terms
of its certificates as follows. T (σ) = minCU∈FU

T
{CU (σ)} = maxCL∈FL

T
{CL(σ)}.

A proof for T , under an assignment σ, contains a minterm CL and a maxterm
CU such that CU (σ) = CL(σ) = T (σ).

Given a set of minterms (maxterms) for a Game tree T , the maximum (mini-
mum) over the values of these minterms (maxterms) is a lower bound (upper
bound) on the value of T.

In analogy with the treatment of the boolean functions, we shall use k(T)
and l(T) to denote the largest minterm and maxterm of T , respectively. These
quantities play a critical role in the following lower bound on the competitiveness
of every algorithm that evaluates a game tree.

674 F. Cicalese and E.S. Laber

Theorem 5. [3] Let T be a game tree. If each certificate of T has size at least
2 then γ(T) ≥ max{k(T), l(T)}.

Consider a run of an algorithm for evaluating a game tree. Let Y be the set
of leaves that have already been read. At this point of the execution, we know
the value of T is in the interval [LB, UB], with LB < UB. We observe that
if none of the maxterms (minterms) has been completely read then UB = ∞
(LB = −∞). Otherwise, UB(LB) is the minimum (maximum) among the values
of the maxterms (minterms) that have been fully read.

We say that a maxterm (minterm) C is active if for each leaf x ∈ C ∩ Y ,
we have x(σ) < UB (x(σ) > LB). In words, a maxterm (minterm) C is active
if the evaluation of its unevaluated leaves can still lead to an improvement of
the upper bound UB (lower bound LB), i.e., can provide additional information
on the value of the game tree. On the other hand, if a maxterm (minterm) is
non-active it means that the evaluation of its unread leaves is not necessary to
determine the value of T , since it will not affect the bound UB (LB). It must
be observed that the definitions above imply that if all leaves of a certificate C
have already been read, then C is non-active.

The Greedy Algorithm for Game Trees. The algorithm Greedy can be
easily applied to Game Trees since, with the generalized notion of minterms and
active minterms stated above, the definitions of ranks and strongly active sets
naturally extend to Game Trees.

The following lemma gives an upper bound on the cost spent by Greedy to
prove that f(σ) ≥ B, for each assignment σ and for each lower bound B. The
proof of the lemma is based on an extension of Lemma 4 to the implementations
of Greedy for game trees. Due to the space limit the proof of Lemma 5 is
omitted from this extended abstract.

Lemma 5. Let I be an arbitrary implementation of Greedy. If f can be rep-
resented by a game tree, then for every assignment σ and for every B such that
f(σ) ≥ B, we have cf,B

I
(σ) ≤ l(f)cf

B(σ) where cf,B
I

(σ) denotes the cost spent by
I to find a certificate that f(σ) ≥ B and cf

B(σ) denotes the cost of the cheapest
certificate that allows to proving that f(σ) ≥ B.

Theorem 6. Let f be a function over the set of real variables V that can be
represented by a game tree. Let G be the implementation of the general approach
that always chooses UY to be the same as the set U selected in the inner loop of
Greedy. Therefore, G is also a valid implementation of Greedy.

For every assignment σ such that there is only one variable in V , say x, for
which x(σ) = f(σ) we have that cf

G
(σ) ≤ max{k(f), l(f)}cf(σ), .

Proof. Let B = f(σ) and let C− (C+) cheapest minterm (maxterm) that certifies
f(σ) ≥ B (f(σ) ≤ B).

Claim C− ∪ C+ is a cheapest proof for f under assignment σ.

Proof of the Claim Clearly, C− ∪C+ is a proof. Let us consider a proof P for f
and let D− (D+) be a minterm (maxterm) contained in P that certifies f(σ) ≥ B

An Optimal Algorithm for Querying Priced Information 675

(f(σ) ≤ B). Let x be the unique variable of V such that x(σ) = B. We have that
x ∈ D− ∩D+ ∩C− ∩C+. In addition, since every pair of minterm and maxterm
in a game tree has intersection of size 1 [3], we have D−∩D+ = C−∩C+ = {x}.
Thus, it follows from the minimality of both C+ and C− that c(C− ∪ C+) =
c(C+) + c(C−) − c(x) ≤ c(D− ∪ D+) = c(D−) + c(D) − c(x) ≤ c(P).

We split cf
G
(σ) into costL and costU , where costL is the cost incurred before G

proves that f(σ) ≥ B and costU = cf
G
(σ)−costL is the remaining cost. Since G is

an implementation of Greedy it follows from Lemma 5 that costL ≤ l(T)c(C−).
Now, we use the fact that G is also an implementation of the general approach

to prove costU ≤ k(T) × c(C+ \ C−). Let Y be the set of variables that have
already been read at the point where the lower bound B is determined. We
have that C+ \ Y is a proof for the value of fY . Since x ∈ Y , then the cost
of the cheapest proof for fY is at most c(C+ \ C−). On the other hand, every
set UY selected by G must intersect every proof for fY . To see that, let C∗ be
the minterm for which UY is an active strong set and let z be the variable with
minimum value in C∗ ∩ Y . If UY does not intersect a proof P for fY we could
prove a lower bound larger than B by fixing all the variables of UY on z(σ),
which is a contradiction. Since |UY | ≤ k(f) always holds, then it follows from
Lemma 1 that costU ≤ k(f) × c(C+ \ C−). Thus, cf

G
(σ) = costU + costL ≤

max{k(f), l(f)}c(C+ ∪ C−) = max{k(f), l(f)}cf(σ).

Due to the space constraints, the polynomial implementation of both the
algorithm AG for threshold trees and the algorithm G for game trees is omitted.
The interested reader is referred to the full version of the paper.

References

1. R. Carmo, T. Feder, Y. Kohayakawa, E. Laber, R. Motwani, L. O’Callaghan,
R. Panigrahy, and D. Thomas. Querying priced information in databases: the con-
junctive case. 2004. submitted.

2. M. Charikar, R. Fagin, V. Guruswami, J. Kleinberg, P. Raghavan, and A. Sahai.
Query strategies for priced information. JCSS: Journal of Computer and System
Sciences, 64:785–819, 2002.

3. F. Cicalese and E. S. Laber. A new strategy for querying priced information. In
Proceedings of the 37th ACM Symposium on Theory of Computing, Baltimore,
2005. ACM Press. to appear.

4. A. Gupta and A. Kumar. Sorting and selection with structured costs. In IEEE,
editor, 42nd IEEE Symposium on Foundations of Computer Science, pages 416–
425, 2001.

5. A. Gupta, D. O. Stahl, and A. B. Whinston. Pricing of services on the internet. In
IMPACT: How IC2 Research Affects Public Policy and Business Markets. Quorum
Books, forthcoming.

6. V. Guruswami and E. Laber. Personal communications. 2003.
7. S. Kannan and S. Khanna. Selection with monotone comparison costs. In Pro-

ceedings of the fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA-03), pages 10–17, 2003.

676 F. Cicalese and E.S. Laber

8. Karchmer, Linial, Newman, Saks, and Wigderson. Combinatorial characterization
of read-once formulae. Discrete Mathematics, 114, 1993.

9. S. Khanna and W. Tan. On computing functions with uncertainty. In Symposium
on Principles of Database Systems, pages 171–182, 2001.

10. E. Laber. A randomized competitive algorithm for evaluating priced AND/OR
trees. In STACS: Annual Symposium on Theoretical Aspects of Computer Science,
pages 501–512, 2004.

11. E. Laber, O. Parekh, and R. Ravi. Randomized approximation algorithms for query
optimization problems on two processors. In ESA: Annual European Symposium
on Algorithms, pages 649–661, 2002.

Online View Maintenance Under a
Response-Time Constraint�

Kamesh Munagala, Jun Yang, and Hai Yu

Department of Computer Science, Duke University,
Durham, NC 27708-0129, USA

{kamesh, junyang, fishhai}@cs.duke.edu

Abstract. A materialized view is a certain synopsis structure precom-
puted from one or more data sets (called base tables) in order to facilitate
various queries on the data. When the underlying base tables change, the
materialized view also needs to be updated accordingly to reflect those
changes. We consider the problem of batch-incrementally maintaining
a materialized view under a response-time constraint. We propose tech-
niques for selectively processing updates to some base tables while keep-
ing others batched, with the goal of minimizing the total maintenance
cost while meeting the response-time constraint. We reduce this to a gen-
eralized paging problem, where the cost of evicting a page is a concave
non-decreasing function of the number of continuous requests seen since
the last time it was evicted. Our main result is an online algorithm that
achieves a constant competitive ratio for all concave cost functions while
relaxing the response-time constraint by a constant factor. For several
special classes of cost functions, the competitive ratio can be improved
with simpler, more intuitive algorithms. Our algorithms are based on
emulating the behavior of an online paging algorithm on a page request
sequence carefully designed from the cost function. The key novel tech-
nical ideas are twofold. The first involves discretizing the cost function,
so that there is a collection of periodic paging sequences, with page sizes
decreasing geometrically, which approximates the behavior of the origi-
nal function. The second involves designing an online view maintenance
algorithm based on the paging process, by emulating the behavior of the
paging scheme in recursively defined phases.

1 Introduction

A materialized view is a certain synopsis structure precomputed from one or more
data sets (called base tables) in order to facilitate various queries on the data [8].
Materialized views have a wide range of traditional and new applications, such as
data warehousing, database caching, continuous queries, and publish/subscribe
systems, just to name a few. Since a materialized view is a form of derived data,
which is computed from the underlying base tables, it needs to be refreshed if
the base tables change. Instead of recomputing the view from scratch in order to
refresh it, we can incrementally maintain the view, i.e., compute and apply only
the incremental changes to the view given the base table updates. Furthermore,
� Research is supported in part by NSF CAREER award under grant IIS-0238386.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 677–688, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

678 K. Munagala, J. Yang, and H. Yu

for many applications, incremental maintenance does not have to be performed
eagerly for each base table update; instead, the system can defer maintenance
until the view content needs to be accessed. Hence, the system maintains the
view in a batch incremental fashion: Base table updates are accumulated into a
batch and then processed together when needed.

The cost of processing the updates is typically a concave non-decreasing
function of the number of updates in the batch. In other words, processing a
batch of updates is usually more efficient than processing them one at a time.
Therefore, batch incremental maintenance can be used to improve efficiency for
many applications where deferred view maintenance is acceptable. For example,
recent publish/subscribe systems, e.g., OpenCQ [11], NiagraCQ [4], Xyleme [13],
all provide a feature that allows subscribers to specify a notification condition in
addition to the subscription content query. Examples include: “report mean and
median house prices in North Carolina once every 200 house sales”, or “notify
me with a detailed view of my portfolio whenever the price of a stock in my
portfolio has changed by more than 5 percent since the last notification”. Only
when the notification condition is met, the system needs to compute updates
to the subscribed content (which can be regarded as a materialized view) and
notify the subscriber.

At the same time, in many such applications, it is often desirable to provide
a quality-of-service guarantee in the form of a response-time constraint. That is,
whenever the content of a materialized view is requested, the system should be
able to refresh the view under a prescribed time limit. This constraint prevents
the system from deferring view refresh indefinitely; if the batch of unprocessed
base table updates becomes too big, it may be impossible to process the batch
in time upon request. This paper addresses the problem of maintaining a mate-
rialized view under a response-time constraint, with the goal of minimizing the
total cost of view maintenance over time.

Work in [9] mainly considers the offline version of the problem, where the
system has some knowledge of the arrival sequence of future base table updates.
In this paper, we propose online algorithms that are constant-competitive against
any adversary, assuming the response-time constraint is relaxed by a constant
factor. We show that this problem is an interesting generalization of paging with
concave cost functions; this connection is of independent interest. We need new
ideas to extend paging algorithms to concave functions, as we point out below.

Problem Statement. Formally, we want to incrementally maintain a view
defined over n base tables, v1, v2, . . . , vn. The cost of refreshing the view by
performing x units of updates to base table vi is fi(x). Each fi(x) is a con-
cave, non-decreasing function.1 By appropriate scaling, we enforce fi(1) ≥ 1 for

1 Strictly speaking, these cost functions are subadditive; that is, processing x + y
updates together cannot be more expensive than processing x updates in one batch
and then y updates in another, since the option of doing the latter is still available
given all x + y updates. We note that results for subadditive and concave functions
are equivalent within a factor of 2, so the same algorithms can still apply in the
subadditive case.

Online View Maintenance Under a Response-Time Constraint 679

each i. At any time instant t, an update vector 〈x1t, x2t, . . . , xnt〉 arrives on-
line, where xit is an integer denoting the number of updates to base table vi.
Let 〈X1t, X2t, . . . , Xnt〉 denote the total updates pending for each of these base
tables respectively after the update vector at the current step arrives. The algo-
rithm can now schedule a vector 〈Y1t, Y2t, . . . , Ynt〉 of updates on the base tables,
and incur an update cost of Ct =

∑n
i=1 fi(Yit), and carry forward the remaining

updates as pending to the next time step. Let 〈Z1t, Z2t, . . . , Znt〉 denote the vec-
tor of updates carried forward, or pending. Note the relations Zit = Xit−Yit and
Xit = xit+Zi,t−1 hold for all vi and all t. There is a bound H on the total update
cost that can be pending at any point of time, which we call the pending update
cost constraint. That is, the constraint on the algorithm is

∑n
i=1 fi(Zit) ≤ H for

all t.
The goal is to design an online algorithm to minimize the total update cost∑

t Ct, when the update vectors 〈x1t, x2t, . . . , xnt〉 arrive online at every time
step.

This problem generalizes the problem of paging with arbitrary page sizes,
where the goal is to minimize the total cost of page faults, or equivalently, the
total size of pages evicted (under the BIT model of paging [10]). Given a paging
problem with n pages, where page pi has size si (an integer), and a cache with
size k, the equivalent view maintenance problem has base table vi for page pi,
with update cost fi(x) = si independent of x, and H = k. The constraint
that the pending update cost is at most H translates exactly to the cache not
overflowing. The update cost at any time step is precisely the size of the pages
evicted at that step.

Our Results. Our main result in Section 4 presents a constant-competitive on-
line algorithm for the view maintenance problem, with a constant-factor relax-
ation in the pending update cost constraint. Before that, in Section 2, we present
a very simple O(log H)-competitive algorithm, with the pending update cost
constraint being relaxed to 8H . In Section 3, we describe a constant-competitive
algorithm for a natural special case, which forms the basis for the more general
constant-competitive algorithm of Section 4. Our algorithms are deterministic
and work against adaptive adversaries. The competitive ratio is essentially best
possible (to within constant factors) if the response-time constraint is allowed
to be relaxed by a constant factor.

Our main idea is to emulate the behavior of an online paging algorithm on an
appropriately defined paging sequence, and use this behavior to guide the view
maintenance algorithm. We first convert an online sequence of updates for the
original problem into a page request sequence. Next, we run the online paging
algorithm in [5,16], with the best known competitive ratio of O(1) on this page
request sequence using a cache of size 2H . We then convert the resulting online
paging scheme back into an online scheme for view maintenance.

There are constant-competitive paging algorithms known for arbitrary page
sizes and eviction costs [5,10,16] when the cache size is relaxed. Although we
emulate paging on a suitable page request sequence, and hence use these paging
algorithms as subroutines, this is in no way straightforward. The main problem

680 K. Munagala, J. Yang, and H. Yu

is the concave nature of the eviction cost. If we try defining multiple pages with
decreasing eviction costs to model concavity, we run into the problem that their
evictions have to be correlated: the cheaper page cannot be retained in the cache
by the paging algorithm if the more expensive page has been evicted. A problem
with using a paging algorithm as is is that it becomes non-trivial to convert the
behavior of the paging algorithm into a well-defined view maintenance scheme.
We show how to tackle both these issues by carefully constructing the paging
sequence after discretizing the concave cost function, and by grouping the page
evictions into recursive phases and performing view maintenance depending on
the behavior of the paging algorithm in each phase. Both these details are non-
trivial, requiring new ideas, and are expounded in Section 4.

All our algorithms need to relax the response-time constraint by a constant
factor. An interesting open question is to decide the complexity of the problem
(especially with respect to oblivious adversaries) if the response-time constraint
is not relaxed. We also note that our results can be made bicriteria on the com-
petitive ratio and the pending update cost relaxation in a fairly straightforward
manner.

Related Work. The classical online paging problem with unit sized pages is
well studied in the offline [2] and the online settings [6,12,14].

When the pages have arbitrary sizes and eviction cost proportional to size (as-
suming the smallest page has size 1), the offline paging problembecomes NP-Hard,
and the best known polynomial-time approximation algorithm achieves a factor
of O(log k) to the optimal cost [10]. This shows that the offline view maintenance
problem is NP-Hard (using the reduction above), with the best approximation
algorithm achieving a factor of O(log H). For the online version of the problem,
LRU is k-competitive, and is the best possible deterministic paging scheme [10].
Randomized marking algorithms perform much better; there is a O(log2 k)-
competitive paging scheme against an oblivious adversary, due to Irani [10].

The paging problem can be further generalized to allow both the sizes of the
pages and the cost for evicting the pages to be arbitrary. In the offline setting,
Albers et al. [1] obtained a constant-approximation algorithm that uses an addi-
tional amount of memory of size O(1) times the largest page size. In the online
setting, Cao and Irani [3] generalized a greedy-dual algorithm of Young [15] and
showed that this deterministic online algorithm is k-competitive. Young [16] and
Cohen and Kaplan [5] proved that it is h/(h−k+1)-competitive, by running the
same algorithm on a cache of size h ≥ k. We use this algorithm as our paging
subroutine for h = 2k (meaning we double the cache size used by the offline
algorithm in order to be 2-competitive). We note that since the best possible
competitive ratio for the paging problem is constant when the cache size is re-
laxed by a constant factor, the same guarantee is a lower bound for the more
general view maintenance problem.

2 Simple O(log H)-Competitive Algorithm

We now show a simple randomized reduction of the online view maintenance
problem to the online paging problem. The reduction can be easily made deter-

Online View Maintenance Under a Response-Time Constraint 681

ministic, but randomization slightly simplifies our analysis. The resulting algo-
rithm achieves a competitive ratio of O(log H) against an oblivious adversary,
provided that the pending update cost constraint can be relaxed to 8H . This
section provides the background for the more involved algorithms in later sec-
tions.

The reduction is accomplished in two steps. At the first step, we “translate”
an online sequence of updates for the view maintenance problem into a page
request sequence, and run a competitive online paging algorithm on this page
request sequence. At the second step, we “translate” the resulting online paging
scheme back into an online scheme to the original problem.

For each base table vi, we assume fi is a continuous function. If not, the
proofs below go through at the loss of an additional constant factor. Let r0 = 1,
and r1, . . . , rh be the values of update size such that fi(rj) = 2jfi(r0). Further,
fi(rh) ≥ H , but fi(rh−1) < H , which implies h ≤ log H . Corresponding to each
rj , we have a page pij of size fi(rj).

For an online view maintenance problem, we generate an instance of the
online paging problem as follows. The size of the cache is 2H . Whenever one
unit of update is input for base table vi, for each j, we request for page pij

with probability min(1, 1/rj). These requests are independent from one unit of
update to the next, even within the same time step. Let OPT denote the cost
of the optimal offline view maintenance algorithm on a certain update sequence.
Our analysis relies on the following lemma.

Lemma 1 ([9]). There exists a view maintenance scheme such that for all i
and t, if Yit > 0, then Zit = 0, and whose total update cost is at most 2 · OPT.

Intuitively, this lemma implies that one can find a 2-competitive view main-
tenance scheme so that whenever any update is processed for a base table, the
entire pending updates for that base table are processed. The proof of the above
lemma proceeds by modifying an optimal offline scheme to process all pending
updates of a base table whenever it processes any update of that base table,
so that any update operation in the original scheme is charged by at most two
update operations in the modified scheme. Details can be found in [9].

Lemma 2. There is a paging scheme for the page request sequence whose ex-
pected cost is O(log H) · OPT, and which uses 2H amount of cache space.

Proof. We will argue the bound for a certain base table vi, since the update costs
for different base tables are additive. Consider the view maintenance scheme in
Lemma 1. Consider a time interval [t1, t2] such that Zi,t1−1 = 0, Zit2 = 0, and
Zit > 0 for all t ∈ [t1, t2). Note that Zit =

∑t
t′=t1

xit′ , and at time t2 the view
maintenance scheme processes all Xit2 pending updates to base table vi. We will
pretend Zit2 = Xit2 in the proof below to unify notation.

At any time t ∈ [t1, t2], we allocate space 2fi(Zit) to the paging algorithm for
caching a subset of the pages pi0, · · · , pih. More precisely, let pij be the largest
page whose size is at most fi(Zit); we will cache pi0, pi1, . . . , pij in this space
at time t. Since the page sizes scale by a factor of 2, this space allocated is

682 K. Munagala, J. Yang, and H. Yu

sufficient to cache all these pages. If there is a page request for a page of size
larger than fi(Zit) at time t, we do not cache this page, but evict it as soon as
it is encountered, leading to a page fault. At time t2, we evict all pages pij in
the cache.

Consider a page pij which is in the cache at time t2. We brought this page
into cache at time t when Zit ≥ rj and Zi,t−1 < rj . In the interval [t1, t − 1],
the expected number of times page pij is requested is at most Zi,t−1/rj ≤ 1,
which means the expected cost for these page faults is at most fi(rj). After
time t, there are no additional page faults on pij , until we evict it at time t2.
Let k denote the largest such j, i.e., fi(rk) ≤ fi(Zit2) < 2fi(rk). The total
expected cost of all page faults for j ≤ k in the interval [t1, t2] is then at most
2
∑

j≤k fi(rj) ≤ 4fi(rk), where there is a factor of 2 since we evict all pages
pi0, · · · , pik at time t2.

Consider now a page pij which is not in the cache at time t2. Hence Zit2 < rj .
The expected number of times page pij is requested in the time interval [t1, t2]
is at most Zit2/rj . Thus the expected cost of page faults due to this page is
at most (Zit2/rj) · fi(rj) ≤ fi(Zit2) < 2fi(rk), where the first inequality holds
because fi(x) is a concave function. Therefore, the total cost of these page faults
is at most O(log H) · fi(rk), as there are at most log H such pages.

We have thus shown that the paging scheme pays cost at most O(log H) ·
fi(rk) in the interval [t1, t2], while the view maintenance scheme pays cost
fi(Zit2) ≥ fi(rk) at time t2. Therefore, overall, the cost of the paging scheme is
at most O(log H) · OPT.

Note that it does not help the adversary to inject updates costing more than
H at time t2, since doing so would result in the same cost for both. �

The above lemma shows that there is a paging scheme whose cost is O(log H)-
competitive with respect to the optimal offline scheme of the view maintenance
problem. The online algorithm for the view maintenance problem generates the
random page request sequence, and runs the constant-competitive paging algo-
rithm [5,16] on this sequence using a cache of size 4H . At any time t, let Wit

be the size of the largest page corresponding to base table vi in cache; the algo-
rithm allocates cost at most 2Wit to the pending updates of vi. There are two
situations where we process all pending updates of vi: (1) if the total cost of
these updates becomes larger than 2Wit; and (2) if the paging algorithm evicts
the largest page currently in its cache corresponding to vi.

Lemma 3. The online view maintenance algorithm is constant-competitive
against the cost of the corresponding online paging scheme.

Proof. Consider two consecutive time instances t1 and t2 when the online view
maintenance algorithm processes updates of base table vi. If the reason for pro-
cessing updates at time t2 is because the largest page was evicted from the cache,
the cost of the update can be accounted for by the cost of the page evicted (whose
size is at least fi(Xit2)/2). If the reason is that fi(Xit2) exceeds twice the size of
the largest page, we charge the cost of the update to the present or next instant
when a page of largest size less than fi(Xit2) is requested (and subsequently

Online View Maintenance Under a Response-Time Constraint 683

evicted); note that the size of this page is at least fi(Xit2)/2. Since the behavior
of the paging scheme is independent of the distribution of future page requests,
the expected number of such charges made to any page is at most one. Therefore,
overall, the expected competitive ratio of the online view maintenance algorithm
is 2 against the online paging algorithm. �

The above two lemmas immediately imply the following theorem (noting that
we lose a factor of 2 in the pending update cost due to the previous lemma).

Theorem 1. There is an O(log H)-competitive online algorithm for the view
maintenance problem that relaxes the pending update cost constraint to 8H.

3 Improved Algorithms for Special Cases

For several important special cases of cost functions, we can obtain simpler and
more intuitive algorithms with better performance guarantees. Here we consider
the following three cases: (1) fi(x) = min(aix, bi); (2) fi(x) = ai(x−1)+ bi; and
(3) fi(x) = min(ai(x − 1) + bi, ci).

The first case, fi(x) = min(aix, bi), can arise in the following situation. The
cost of processing a batch initially increases linearly with the size of the batch.
When the size of the batch reaches a certain point, however, it becomes more
efficient to simply recompute the view, whose dominating cost becomes inde-
pendent of the batch size. The second case, fi(x) = ai(x − 1) + bi, can arise if
update processing incurs a fixed amount of startup cost. Details for these two
cases will appear in the full paper.

In the remainder of this section, we focus on the third case, fi(x) = min(ai

(x − 1) + bi, ci). This special case is a generalization of the first two cases, and
serves as a preparation for our subsequent discussions in Section 4. The paging
sequence that we construct for this case is deterministic and periodic. Let us
assume ci is a multiple of bi, which can be enforced at a loss of factor of 2 in the
competitive ratio. We have k = ci

bi
types of pages corresponding to base table vi.

Let us denote them pi1, pi2, . . . , pik. We assume k > 4; the case for smaller k is
simple to deal with, and is therefore omitted.

We maintain two counters, c and r, which are initialized to 0 and 1 respec-
tively. Whenever there is a unit update received for the base table vi, we request
pir and increment c. If c ≥ bi

ai
, we set c ← 0, and r ← r mod k + 1. The size of

the cache is H . As before, we can prove the following emulation result.

Lemma 4. There is a paging scheme for the page request sequence whose cost
is at most 2 · OPT.

The online view maintenance algorithm runs the constant-competitive paging
algorithm on this page request sequence using a cache of size 2H . If the paging
algorithm caches a total size x of pages corresponding to base table vi, the
algorithm allocates at most 6x pending update cost to vi. The algorithm proceeds
in phases. A phase corresponds to the “period” of the request sequence, that is,

684 K. Munagala, J. Yang, and H. Yu

the time interval in which all k distinct pages are requested. At the beginning of
each phase, all pending updates of vi are untagged, and if the number of pages
corresponding to vi in the cache is less than k/2, the algorithm processes all
these untagged updates to vi. During the phase, for each received update of vi,
suppose page pir is requested and is in or being brought into the cache. The
algorithm keeps the corresponding update pending and tags this update to that
page. If the page is not cached, this update is processed immediately. When a
page is evicted, the updates tagged to that page are processed. If the number of
cached pages is larger than k/2 at the beginning of the phase, but drops below
k/4 sometime during the phase, the algorithm processes all untagged pending
updates to vi. Finally, all pending updates (either tagged or untagged) are reset
to untagged at the end of the phase before entering the next phase.

Theorem 2. The online algorithm has a competitive ratio of O(1), while relax-
ing the pending update cost to 12H.

Proof. We lose a factor of 2 in pending update cost upfront simply because the
online paging algorithm uses cache 2H . First note that the total cost of updates
that can be tagged to any page is at most 2bi, so that the cost of processing
these tagged updates can be charged to the eviction of the corresponding page.

Secondly, if there are untagged updates pending, the total cost allocated to
the updates of vi is at least ci. To verify this claim, observe that the untagged
updates must have been from the previous phase, and their presence indicates
that the number of pages in the cache must be at least k/4, since if there were
either less than k/2 pages at the beginning of the phase, or less than k/4 pages
sometime during the phase, these updates would have been processed then. With
a factor 4 relaxation in the pending updates cost constraint, the algorithm would
allocate cost at least ci for these updates. The total factor of 6 in the relaxation
comes from the sum of the factor 4 for the untagged updates, and the factor of
2 for the tagged updates.

Next, we observe that whenever the algorithm is forced to process all the
pending updates (by spending cost of at most ci) at the beginning of a phase,
the number of pages cached is at most k/2, which means that the number of
pages requested in the phase that will not be present in the cache is at least k/2.
The cost of fetching these pages (and subsequently evicting them) is at least
ci/2. Therefore, the update cost can be charged to the cost of evicting these
pages.

If the untagged pending updates are processed during a phase, the number
of pages evicted by the algorithm since the beginning of the phase is at least
k/4, and the cost of these evictions is at least ci/4. The cost for processing the
updates can therefore be charged to the cost of evicting these pages. �

4 Constant-Competitive Algorithm

In this section, we present an algorithm for general concave functions fi(x), which
achieves a constant competitive ratio, with a constant factor relaxation in the

Online View Maintenance Under a Response-Time Constraint 685

pending update cost constraint. The algorithm is based on the periodic paging
sequences constructed in Section 3, combined with an emulation in recursive
phases. We first need to discretize the cost function so that a phase-by-phase
accounting of cost can be performed. An idea similar to the following lemma
appeared in Guha et al. [7], and is key to the design of the algorithm. We note
that most realistic cost functions would satisfy this lemma upfront.

Lemma 5. The function fi(x) can be approximated to a constant factor by a
piecewise linear concave function gi(x) that connects by line segments consecutive
points (cr, dr) (c1 = 1), so that the points satisfy:

1. dr+1 is a multiple of dr;
2. dr+1 ≥ 2dr;
3. dr

cr
≥ 2 dr+1

cr+1
.

Proof. Let b = fi(1). Consider those points on the curve fi(x) with y coordinates
b, 2b, 4b, . . ., and denote them by (cr, dr), r ≥ 1. We scan these points in decreas-
ing order of y coordinates. We connect the closest two (in terms of r value) such
points whose dr/cr values differ by at least a factor of 2 and ignore the interme-
diate points. The curve ends at (1, b). This new curve gi(x) is a 2-approximation
to the original curve. To see why, consider two points (cj , dj) and (ck, dk) that
are connected (see Figure 1 (a)). For any x ∈ [cj+1, ck], by concavity we have
fi(x) ≤ xdj+1/cj+1 ≤ x(2dk/ck), and gi(x) ≥ xdk/ck. For any x ∈ [cj , cj+1], we
have fi(x) ≤ fi(cj+1) = 2bj and gi(x) ≥ bj . Therefore gi(x) ≥ fi(x)/2.

Note that the third condition may not be true at r = 1. This problem can
be fixed by first approximating fi(x) by an additional constant factor and then
applying the above procedure. We omit the details here. �

(a) (b)

ck

dk

cj+1cj

dj+1

dj

fi(x)

gi(x)

cr

Pr

Mr

cr−1

dr−1

dr

Pr−1

0

≤ 2dr−1

· · ·
· · ·

dr−1cr

dr

Fig. 1. (a) Approximating fi(x) by a piecewise linear concave function. (b) Phases and
mini-phases.

In the subsequent discussions, we pretend that fi(x) = gi(x). Let (cr, dr) be
the set of non-smooth points on the curve. For convenience, we further assume
dr

cr
is a multiple of dr+1

cr+1
; the proof remains the same even if it is not. We have a

686 K. Munagala, J. Yang, and H. Yu

paging sequence for each “level” r. For r ≥ 1, we have cr pages of size dr

cr
. We

request a different one every unit update in a cyclic fashion, so that the same
page is requested after exactly cr updates. Let us denote a complete cycle of
pages at level r by Pr. Note that at r = 1, this process requests the same page
of size d1 every unit update. Note also that this process requests many pages for
the same unit update, but these page sizes decrease by a factor of at least 2, so
that they sum to at most 2d1.

Lemma 6. There is a paging scheme for the page request sequence that is
constant-competitive against the optimal offline view maintenance algorithm,
provided that the cache size is 4H.

Proof. The paging scheme emulates the view maintenance scheme of Lemma 1
in the following way. Let [t1, t2) be a time interval during which the view mainte-
nance scheme continuously keeps updates to base table vi pending. At any time,
the paging scheme caches all pages requested so far corresponding to vi. The
total size of the cached pages is at most four times the pending update cost of
the view maintenance scheme at that time instant. To see why, consider the time
when x updates have been pending, and suppose x lies in between cr and cr+1.
The paging scheme has cached the entire set of pages for all levels up to r. The
total size of these pages is at most

∑r
i=1 di ≤ 2dr ≤ 2fi(x). For levels greater

than r, the total size cached is at most
∑

i>r x · di/ri ≤ 2x · dr+1/cr+1 ≤ 2fi(x).
All cached pages corresponding to base table vi are evicted at time t2, whose cost
can be accounted for by the cost of the view maintenance scheme for processing
all the pending updates of vi at that time. �

As before, we construct the page request sequence and run the constant-
competitive online algorithm on the sequence using a cache of size 8H . We now
show how to convert the paging scheme into an online algorithm for the view
maintenance problem. The emulation again proceeds in phases as in Section 3,
but now consists of recursive phases. Phase Jrg marks the end of the g-th com-
plete cycle of the request sequence Pr. We call the value of r the “level” of
the phase. Each Jrg is composed of consecutive mini-phases Mrl, each of which
has exactly as many level-r pages as to make the total size exactly dr−1. Note
that a mini-phase is composed of many consecutive periods of Pr−1. Let Brl be
the set of distinct level-r pages corresponding to Mrl. Note that Brx = Bry if
y ≡ x mod (dr/dr−1). The idea behind defining a mini-phase Mrl is that the
total cost of all updates in this mini-phase is at most 2dr−1; see Figure 1 (b).

For every unit update, if the r = 1 level page is not in the cache, the al-
gorithm processes the corresponding update, else the algorithm pends it. This
mechanism corresponds to the base case level r = 1. For larger r, the algorithm
for the phases is more complicated (see Figure 2). Consider any level r, and
a corresponding phase Jrg. Suppose the time step is currently in this phase,
and in mini-phase Mrl. This mini-phase is composed of many sub-phases Jr−1,x.
Suppose the current time step is in phase Jr−1,x. All updates which arrived
within Jrg but in Mrl′ for l′ < l are tagged to Brl′ . Updates arriving in Jr−1,x′

Online View Maintenance Under a Response-Time Constraint 687

for x′ < x, but within Mrl are tagged to the set Pr−1. This tagging scheme is
recursively maintained at all levels r.

tagged to:

Jr−1,x

· · ·Brl′ Br,l−1 Pr−1 · · ·Pr

Mrl Jrg

Fig. 2. The recursive tagging scheme. The solid squares represent yet unprocessed (or
pending) updates, and the empty squares represent processed updates.

At the end of mini-phase Mrl, all pending updates tagged to Pr−1 are now
tagged to Brl. Intuitively, the reason for doing so is that we can no longer afford
to tag more updates to Pr−1, because otherwise the total cost of these updates
may exceed 2dr−1, while the total size of the pages in Pr−1 is only dr−1; so we
re-tag these updates one level up to Brl, in order to “free” Pr−1 for tagging
future updates.

At the end of every mini-phase Mrl, for all l′ ≤ l, if the size of pages from
Brl′ present in the cache is at most dr−1/2, the algorithm processes the updates
tagged to Brl′ . During any mini-phase Mrl, if the size of pages for any Brl′ for
l′ < l is at least dr−1/2 at the beginning of the phase, but drops below dr−1/4
at the current time step, the algorithm also processes all updates tagged to Brl′ .

At the end of Jrg, all updates tagged to each Brl are now tagged to Pr. At the
end of Jrg, if the size of pages from Pr present in the cache is at most dr/2, the
algorithm processes all updates tagged to Pr. If during Jrg, this size falls below
dr/4, but was larger than dr/2 at the beginning of the phase, the algorithm also
processes the pending updates tagged to Pr.

Lemma 7. The total cost of pending updates is at most 8 times the total size
of pages at any point during the execution of the algorithm.

Proof. Any update is tagged either to a Pr or to a Brl for some r and some l.
The maximum cost of updates that can be tagged to a Pr before it passes on
to a Br+1,l is at most 2dr. The maximum cost of updates that can be tagged
to a Brl is at most 2dr−1. We have also maintained the invariant that if the
total size of pages in the cache corresponding to Pr is less than dr/4, or those
corresponding to Brl is less than dr−1/4, there are no updates tagged to these
sets. Therefore, the cost of the pending updates can be charged to the size of
the pages in the cache. �

Lemma 8. The cost of processing the pending updates is at most 12 times the
cost of evictions of the corresponding page sets to which they are tagged, imply-
ing the algorithm is constant-competitive against the cost of the online paging
scheme.

688 K. Munagala, J. Yang, and H. Yu

Proof. The proof of this claim uses exactly the same argument as the one given
in the proof of Theorem 2 in the previous section, charging the update cost to
the cost of page evictions in each phase. �

Theorem 3. The online view maintenance algorithm is constant-competitive,
with an O(1) relaxation in the pending update cost constraint.

References

1. S. Albers, S. Arora, and S. Khanna. Page replacement for general caching problems.
In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages 31–40, 1999.

2. L. Belady. A study of replacement algorithms for virtual storage computers. IBM
Systems Journal, 5:78–101, 1966.

3. P. Cao and S. Irani. Cost-aware www proxy caching algorithms. In Proc. USENIX
Symposium on Internet Technologies and Systems, pages 193–206, 1997.

4. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagraCQ: A scalable continuous
query system for internet databases. In Proc. 19th ACM SIGMOD Intl. Conf.
Management of Data, pages 379–390, 2000.

5. E. Cohen and H. Kaplan. LP-based analysis of greedy-dual size. In Proc. 10th
ACM-SIAM Sympos. Discrete Algorithms, pages 879–880, 1999.

6. A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. Competitive
paging algorithms. J. Algorithms, 12:685–699, 1991.

7. S. Guha, A. Meyerson, and K. Munagala. Hierarchical placement and network
design problems. Proc. 41st IEEE Sympos. Foundations of Comput. Sci., pages
603–612, 2000.

8. A. Gupta and I. S. Mumick, editors. Materialized Views: Techniques, Implemen-
tations and Applications. MIT Press, June 1999.

9. H. He, J. Xie, J. Yang, and H. Yu. Asymmetric batch incremental view mainte-
nance. In Proc. 21st Intl. Conf. Data Engineering, pages 106–117, 2005.

10. S. Irani. Page replacement with multi-size pages and applications to web caching.
Algorithmica, 33(3):384–409, 2002.

11. L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven
information delivery. IEEE Trans. Knowledge and Data Engineering, 11(4):610–
628, 1999.

12. L. McGeoch and D. Sleator. A strongly competitive randomized paging algorithm.
Algorithmica, 6:816–825, 1991.

13. B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML data on
the web. In Proc. 20th ACM SIGMOD Intl. Conf. Management of Data, pages
437–448, 2001.

14. D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28:202–208, 1985.

15. N. Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11:525–541, 1994.

16. N. Young. On-line file caching. Algorithmica, 33:371–383, 2002.

Online Primal-Dual Algorithms for Covering and
Packing Problems

Niv Buchbinder and Joseph Naor�

Computer Science Department, Technion, Haifa 32000, Israel
{nivb, naor}@cs.technion.ac.il

Abstract. We study a wide range of online covering and packing opti-
mization problems. In an online covering problem a linear cost function is
known in advance, but the linear constraints that define the feasible solu-
tion space are given one by one in an online fashion. In an online packing
problem the profit function as well as the exact packing constraints are
not fully known in advance. In each round additional information about
the profit function and the constraints is revealed. We provide general
deterministic schemes for online fractional covering and packing prob-
lems. We also provide deterministic algorithms for a couple of integral
covering and packing problems.

1 Introduction

We study a wide range of online covering and packing optimization problems. In
an “offline” (fractional) covering problem the objective is to minimize the total
cost given by a linear cost function

∑n
i=1 c(i)x(i). The feasible solution space

is defined by a set of m linear constraints of the form
∑n

i=1 a(i, j)x(i) ≥ b(j),
where the entries a(i, j) and b(j) are non negative.

The general online fractional covering problem is an online version of the
covering problem, described as a game between an algorithm and an adversary.
In this setting the cost function is known in advance, but the linear constraints
that define the feasible solution space are given to the algorithm one by one in
an online fashion. In order to maintain a feasible solution to the current set of
given constraints, the algorithm is allowed to augment the variables x(i). It may
not, however, decrease any previously augmented variable. We also extend our
study to cases where the value of each variable has an upper bound u(i), referred
to as a box constraint. The box constraints are known to the online algorithm
in advance. This captures online settings in which the amount of resources is
limited. As usual, the performance of an online algorithm on a given input is
defined to be the ratio between the total cost of its solution and the minimal
(optimal) cost of any solution for the given instance. The maximum ratio, taken
over all input sequences, is defined to be the competitive ratio of the algorithm.
Our setting generalizes the fractional graph optimization problems discussed in
[1,2]. There, the constraints are of the of the form

∑n
i=1 a(i, j)x(i) ≥ 1 with each

� Research supported in part by US-Israel BSF Grant 2002276.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 689–701, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

690 N. Buchbinder and J. Naor

coefficient a(i, j) ∈ {0, 1} and no upper bounds on the values of the variables
are given.

We show that the online covering problem is closely related to a dual online
packing problem. In an offline packing problem we are given n packing con-
straints of the type

∑m
j=1 a(j, i)y(j) ≤ c(i). The goal is to find a feasible solution

that maximizes a profit function
∑m

i=1 y(j). The general online fractional packing
problem is an online version of this problem. In the online setting the values c(i)
(1 ≤ i ≤ n) are known in advance, but the profit function and the exact packing
constraints are not known in advance. In the jth round a new variable y(j) is
introduced to the algorithm, along with its set of coefficients a(i, j) (1 ≤ i ≤ n).
Note that other variables that were not yet introduced may also appear in the
packing constraints. This means that each packing constraint is revealed to the
algorithm gradually. The algorithm may increase the value of a variable y(j)
only in the round where it is given and may not decrease or increase the values
of any previously given variables. The performance of the algorithm is measured
with respect to the maximum possible profit of the packing problem instance.

Although this online setting seems a bit unnatural, it generalizes the well
known (fractional) problems of throughput-competitive online routing of virtual
circuits problem and online load balancing [4]. In the (integral) online virtual
circuits routing problem the goal is to maximize the number of calls accepted.
The corresponding packing constraints are given by the limited edge capacities
in the network. Note that in this case all the coefficients a(i, j) associated with
some call j are either the bandwidth of the current call (for an edge on the route)
or zero otherwise.

Online algorithms for fractional problems may in some cases yield good online
algorithms for their corresponding online integral versions. Such an approach is
applicable when the fractional solution can be rounded into an integral solution
in an online fashion. This usually results in randomized algorithms that may
sometimes be derandomized to achieve a deterministic online algorithm for the
integral problem. The idea of rounding fractional solutions in an online fashion
was demonstrated in [2], yielding randomized online algorithms for many inter-
esting cases. The same idea was implicity used in [1] to achieve a deterministic
algorithm for the online set-cover problem.

Previous Work: Covering and packing optimization problems, as well as their
online versions, have been studied extensively. Yet, in most cases only the in-
tegral version of the problem was considered. Examples of such online integral
covering optimization problems are the online steiner problem that was consid-
ered in [10] and the generalized steiner problem that was considered in [3,5].
Recently, Alon et al. [2] suggested a general two-phase approach for a wide class
of online network optimization problems. First, a fractional solution to the online
problem is generated. The solution is then rounded in an online fashion in the
second phase. The two phases, although separated, are run simultaneously. In
[2], the first phase is performed by a general O(log n)-competitive method which
is applicable to a wide class of online graph optimization problems. The rounding
phase, on the other hand, is problem dependent. The approach was shown useful

Online Primal-Dual Algorithms for Covering and Packing Problems 691

by the development of randomized algorithms for many interesting integral graph
optimization problems. Examples are the online group steiner problem and the
online non-metric facility location. The same approach was also implicity used
in [1], where a deterministic online O(log n log m)-competitive algorithm for the
integral set cover problem was provided. Our methods for generating fractional
solutions for online covering problems generalize and improve upon the methods
of [2]. An integral online packing problem was considered in [4]. They considered
the problem of throughput-competitive online routing of virtual circuits.

There is a long line of work on generating a near-optimal fractional solution
for offline covering and packing problems, e.g. [14,16,9,7,11]. Generating such a
solution for the offline covering problem with upper bounds on the variables was
considered in [6,8]. All these methods take advantage of the offline nature of the
problems. Offline randomized rounding of covering and packing problems, along
with a derandomization method, was considered in [13,12]. A slightly better
rounding was provided in [15].

Results: We study the general online fractional covering problem with and
without box constraints and the general online fractional packing problem. We
show that the problems are closely related and provide general deterministic
primal-dual schemes that compute a near-optimal fractional solution for each
problem. In Section 3 we suggest a scheme for the general online fractional
packing. Let n denote the number of packing constraints. The scheme gets the
desired competitive ratio B > 0 and produces a solution that does not violate
any of the packing constraints by more than a function of 1/B (see theorem
1 for the exact expression). In particular, when all coefficients a(i, j) ∈ {0, 1},
we show an O(log n)-competitive algorithm that does not violate any of the
constraints. We also prove tight lower bounds on any online algorithm for the
problem, proving that our scheme is optimal for any B > 0.

The scheme for the covering problem is very similar. In fact, when each
coefficient a(i, j) ∈ {0, 1}, the same scheme is applicable for both problems.
Unfortunately, the above scheme is not suitable for the general online fractional
covering problem where the coefficients a(i, j) ≥ 0 are not limited to {0, 1}. For
this problem we design a more complicated scheme in Section 4. For any B > 0,
our scheme is O(log n

B)-competitive and covers each constraint up to a factor
of 1/B (i.e.

∑n
i=1 a(i, j)x(i) ≥ 1

B). We also extend the scheme to handle box
constraints, where we are given an upper bound on the value of each variable.
A simple modification of the lower bounds in [2] proves our scheme to be tight.

The online fractional covering problem with a(i, j) ∈ {0, 1} was studied pre-
viously in the context of online graph optimization problems [1,2]. The scheme
we propose for this case is simpler than the algorithms of [1,2], since we do not
need to guess the value of the optimum solution, and thus avoid the need for
phases. More importantly, our scheme is more precise, and thus improves the
competitive ratio of the algorithm. Specifically, we get a competitive ratio of
O(log d) instead of O(log n), where d is the maximum number of variables in
each given constraint (d ≤ n). This improvement immediately reflects on the
competitive ratio of any of the corresponding integral problems considered in

692 N. Buchbinder and J. Naor

[1,2]. The competitive ratio for the online set-cover improves to O(log d log n),
where d is the maximum number of sets that an element appears in. In the frac-
tional connectivity problems considered in [2], we improve the O(log m) factor,
where m is the number of edges, to O(log C), where C is the size of the maximum
cut in the graph. For certain integral versions of the problems considered in [2]
the competitive ratio can be further improved. For instance, in the online group
steiner problem we improve one of the log m factors to log |g|, where |g| is the
maximum size of a group. Similarly, in the fractional cuts problems considered
in [2] we improve the O(log m) factor to O(log L), where L is the length of the
longest simple path in the graph.

In Section 5 we show the applicability of our schemes for solving their cor-
responding integral versions via randomized rounding. To do so, we use the
schemes for the fractional cases as a “black box”. We focus on converting the
randomized algorithm we obtain into a deterministic algorithm. To this end, we
suggest a method for rounding the fractional solution deterministically by trans-
forming an (offline) pessimistic estimator into an online potential function. We
note that, in general, the existence of an offline derandomization method does
not necessarily yield an online deterministic algorithm. In particular, while all
randomized rounding methods in [2] can be derandomized offline, it is an open
question whether online deterministic algorithms for these problems exist. Still,
the perspective of deterministic rounding motivates us to consider derandomiza-
tion methods that were previously suggested for various offline problems, and
these enable us to obtain better deterministic online algorithms.

We demonstrate our derandomization method on two online problems, one
covering problem and one packing problem. We first consider the online un-
weighted set-cover problem [1] in Section 5.1. For this problem we provide a
better deterministic algorithm in terms of competitive ratio. We draw ideas from
the improved offline randomized rounding and derandomization methods of [15]
to come up with an improved potential function for the online problem. This
yields a competitive ratio of O(log d log n

OPT) instead of O(log d log n), where
OPT is the optimal number of sets needed to cover the requested elements. The
improvement in the competitive ratio is significant when the number of sets
needed for the cover is large, and in particular when the sets are small. Due to
space limitations we omit all proofs.

Finally, in Section 5.2 we consider the problem of throughput-competitive
online routing of virtual circuits [4]. We show that a deterministic algorithm
equivalent to the one from [4] can be derived easily by combining our schemes
with the method of conditional expectations of the randomized rounding algo-
rithm presented in [13]. This is an interesting way of viewing the algorithm of [4],
which also provides a systematic method for deriving it. In particular, we note
that our scheme produces in an online fashion a near-optimal fractional solution
to the problem that does not violate the capacity constraints. Producing such
a fractional solution, unlike an integral solution, is applicable to any values of
edge capacities. We also note that our scheme may be used to deal with a more
general setting of the problem. See section 5.2 for more details.

Online Primal-Dual Algorithms for Covering and Packing Problems 693

2 Preliminaries

In this section we formally define our problems and discuss their dual nature. In
an “offline” (fractional) covering problem the objective is to minimize the total
cost given by a linear cost function

∑n
i=1 c(i)x(i). The feasible solution space

is defined by a set of m linear constraints of the form
∑n

i=1 a(i, j)x(i) ≥ b(j),
where the entries a(i, j) and b(j) are non negative. Given an instance of a covering
problem we may first normalize each constraint to the form:

∑n
i=1 a(i, j)x(i) ≥ 1.

By the duality theorem, any primal covering instance has a corresponding dual
packing problem that provides a lower bound on any feasible solution to the
instance. A general form of a (normalized) primal covering problem along with
its dual packing problem is given in Figure 1.

The general online fractional covering problem is an online version of the
covering problem. In this setting the cost function is known in advance, but
the linear constraints that define the feasible solution space are given to the
algorithm one-by-one. In order to maintain a feasible solution to the current set
of given constraints, the algorithm is allowed to augment the variables x(i). It
may not, however, decrease any previously augmented variable. We also define
an online version of the packing problem. In the general online fractional packing
problem the values c(i) (1 ≤ i ≤ n) are known in advance. However, the profit
function and the exact packing constraints are not known in advance. In the
jth round a new variable y(j) is introduced to the algorithm, along with its set
of coefficients a(i, j) (1 ≤ i ≤ n). Note that other variables that were not yet
introduced may also appear in the packing constraints. This means that each
packing constraint is revealed to the algorithm gradually. The algorithm may
increase the value of a variable y(j) only in the round where it is given, and may
not decrease or increase the values of any previously given variables.

We observe that these two online settings form a primal-dual pair in the fol-
lowing sense: At any time an algorithm for the general online fractional covering
problem maintains a subset of the final linear constraints. This subset defines a
sub-instance of a final covering instance. The dual packing problem of this sub-
instance is a sub-instance of the final dual packing problem. In the dual packing
sub-instance only part of the dual variables are known along with their corre-
sponding coefficients. The two sub-instances form a primal-dual pair. In each
round of the general online fractional covering problem a new constraint on the
feasible solution space is given. The primal covering sub-instance is updated by
adding the new constraint. To update the dual sub-instance we add a new dual
variable to the profit function along with its coefficients that are defined by the

Primal (Covering) Dual (Packing)
Minimize:

∑n
i=1 c(i)x(i) Maximize:

∑m
j=1 y(j)

Subject to: Subject to:
For each 1 ≤ j ≤ m:

∑n
i=1 a(i, j)x(i) ≥ 1 For each 1 ≤ i ≤ n:

∑m
j=1 a(i, j)y(j) ≤ c(i)

For each 1 ≤ i ≤ n: x(i) ≥ 0 For each 1 ≤ j ≤ m: y(j) ≥ 0

Fig. 1. Primal (covering) and dual (packing) problems

694 N. Buchbinder and J. Naor

new primal constraint. Note that the dual update is the same as in the setting
of the online fractional packing problem.

The schemes we propose maintain at each step primal and dual solutions for
these primal-dual sub-instances. When a new constraint is given to the scheme
for the online fractional covering problem, it also considers the new correspond-
ing dual variable and its coefficients. When the scheme for the online fractional
packing problem receives a new variable along with its coefficients, it also con-
siders the corresponding new constraint in the primal sub-instance. In the rest
of the paper we use the notion of primal and dual sub-instances and the notion
of corresponding dual variable and primal constraint.

3 The General Online Fractional Packing Problem

In this section we describe an online scheme for computing a near-optimal frac-
tional solution for the general online fractional packing problem. The scheme
gets the desired competitive ratio B > 0 and returns a solution within B of the
optimal that does not violate the packing constraints by too much. The scheme
simultaneously maintains primal (covering) and dual (packing) solutions for the
primal and dual sub-instances.

Initially, each variable x(i) is initialized to zero. In each round a new vari-
able y(j) is introduced along with its coefficients a(i, j) (1 ≤ i ≤ n). In the
corresponding primal sub-instance a new constraint is introduced of the form∑n

i=1 a(i, j)x(i) ≥ 1. This constraint is non empty, since otherwise, it means
that there is no bound on the value of y(j) and the profit function is unbounded.
The algorithm increases the value of the new variable y(j) and the values of the
primal variables x(i) until the new primal constraint is satisfied. The augmen-
tation method is described here in a continuous fashion, but it is not hard to
implement the augmentation in a discrete way in any desired accuracy. In our
continuous description the variables x(i) behave according to a monotonically
increasing function of y(j). To implement the scheme in a discrete fashion, one
should find the minimal y(j) such that the new primal constraint is satisfied.
Note that any variable y(j) is being increased only in the jth round and the
values of the primal variables never decrease. A single round is described by the
following scheme. The performance of the scheme is analyzed in theorem 1.

1. y(j) ← 0; For each x(i): ai(max) ← maxj
k=1{a(i, k)}.

2. While
∑n

i=1 a(i, j)x(i) < 1:
(a) Increase y(j) continuously.
(b) Increase each variable x(i) by the following increment function:

x(i) ← max

{
x(i),

1
nai(max)

[
exp

(
B

2c(i)

j∑
k=1

a(i, k)y(k)

)
− 1

]}

Theorem 1. For any B > 0, the scheme is B−competitive algorithm for the
general online fractional packing problem and for any constraint:

Online Primal-Dual Algorithms for Covering and Packing Problems 695

m∑
k=1

a(i, k)y(k) = c(i) · O
(

log n + log ai(max)
ai(min)

B

)

Where, ai(max) = maxm
k=1{a(i, k)} and ai(min) = minm

k=1{a(i, k)|a(i, j) 	= 0}.

Corollary 1. When a(i, j) ∈ {0, 1} there exists an O(log n)-competitive algo-
rithm for the fractional packing problem that does not violate the constraints.

Remark 1. When all entries a(i, j) ∈ {0, 1}, we do not need to update the value
ai(max) in line 2(b) and the scheme is simplified. In this case, if we know in
advance that each primal constraint consists of at most � non-zero coefficients,
it is possible to improve the competitive factor from log n to log �. This is done by
replacing the value n in line 2(b) by �. Moreover, in this case, the same scheme
is applicable to the online fractional covering problem (with a(i, j) ∈ {0, 1}).
The improvement of the competitive ratio to log � immediately reflects on the
competitiveness of several corresponding integral covering problems. See Results
Section for more details.

Remark 2. The algorithm can handle an unbounded number of dual variables
in each iteration, if there exists an oracle that finds at each iteration a variable
whose primal constraint is not satisfied, or states that there is no such variable.

3.1 Lower Bounds

In this section we state two lower bounds that show that our scheme is optimal
up to constants.

Lemma 1. There is an instance of the general fractional packing problem
with a single constraint such that

∑m
j=1 a(i, j)y(j) ≥ cH(a(max)/a(min))

B for
any online B−competitive algorithm. H(n) is the nth harmonic number, and
a(max)/a(min) is the ratio between the maximal and the minimal value in the
constraint.

Lemma 2. There is an instance of the general online fractional packing problem
with n constraints and a(i, j) ∈ {0, 1}, such that for any B−competitive online
algorithm there exists a constraint such that

∑m
j=1 a(i, j)y(j) ≥ c(i) log n

2B .

4 The General Online Fractional Covering Problem

In this section we describe our online scheme for computing a near-optimal frac-
tional solution for the online fractional covering problem. As stated in Remark
1, in case the coefficients a(i, j) ∈ {0, 1} the scheme in section 3 is also applicable
for the online fractional covering problem. Unfortunately, the scheme is not ap-
plicable to the general online fractional covering problem, where the coefficients
a(i, j) ≥ 0 are not limited to {0, 1}. This happens since the scheme described in
Section 3 does not always produce a feasible dual solution that can bound the
primal solution efficiently. In this section we design a more complicated scheme
for the general online fractional covering problem.

696 N. Buchbinder and J. Naor

Primal (Covering) Dual (Packing)
Minimize:

∑n
i=1 c(i)x(i) Maximize:

∑m
j=1 y(j) −∑n

i=1 u(i)z(i)
Subject to: Subject to:
∀j : 1 ≤ j ≤ m:

∑n
i=1 a(i, j)x(i) ≥ 1 ∀i : 1 ≤ i ≤ n:

∑m
j=1 a(i, j)y(j) − z(i) ≤ c(i)

∀i : 1 ≤ i ≤ n: 0 ≤ x(i) ≤ u(i) ∀i, j: y(j), z(i) ≥ 0

Fig. 2. Primal (covering) with box constraints and its dual (packing) problem

Our scheme for the general online fractional covering problem gets a pa-
rameter B > 0. With B > 0 the competitive ratio of the scheme is O(log n

B)
and for each constraint

∑n
i=1 a(i, j)x(i) ≥ 1

B . The scheme works in phases:
When the first constraint is introduced the scheme generates a first lower bound
α(1) ← 1

B minn
i=1{c(i)/a(i, 1)} ≤ OPT

B . It runs with the lower bound α(r) on the
optimum as long as the total primal cost does not exceed the value α(r). When
the cost exceeds this value the scheme “forgets” about all the values given to
the primal and dual variables so far, updates the value of α by doubling it, and
starts a new phase with α(r + 1) ← 2α(r). Nevertheless, the values of the “for-
gotten” variables are accounted in the total cost of the solution. In the following
we describe one round of our scheme in the rth phase. Let

∑n
i=1 a(i, j)x(i) ≥ 1

be the new primal constraint that was introduced. Let y(j) be the new corre-
sponding dual variable. The scheme increases the values of the primal and dual
variables as described by the following scheme. Note that during each phase x(i)
only increases. The performance of the scheme is analyzed in theorem 2.

1. y(j) ← 0
2. While

∑n
i=1 a(i, j)x(i) < 1

B :
(a) increase y(j) continuously.
(b) Increase each variable x(i) by the following increment function:

x(i) ← α(r)
2nc(i)

exp

(
log 2n

c(i)

j∑
k=1

a(i, k)y(k)

)

Theorem 2. For any B > 0, the scheme for the general online fractional cover-
ing problem achieves a competitive ratio of O(log n

B), such that for each constraint∑n
i=1 a(i, j)x(i) ≥ 1

B .

Adding Box Constraints: We now extend our methods to handle upper
bounds on the variables x(i). Let u(i) be the upper bound on the variable x(i).
Such an upper bounds may result in an instance of the covering problem with
no feasible solution. We next sketch the main ideas and changes that are needed
in order to deal with the upper bounds. Adding box constraints to a covering
problem results in new negative variables z(i) in the dual program. The pri-
mal covering with box constraints and the new corresponding dual program are
described in Figure 2. The performance of the scheme is analyzed in theorem 3.

Online Primal-Dual Algorithms for Covering and Packing Problems 697

Theorem 3. For any B > 0, the scheme for the general online fractional cov-
ering problem with box constraints achieves a competitive ratio of O(log n

B), such
that for each constraint

∑n
i=1 a(i, j)x(i) ≥ 1

B and for each variable x(i) ≤ u(i)
B

Our proposed scheme works in phases, where each phase has an upper bound
on the total cost. When some variable reaches a value of u(i)

B , we start augment-
ing its corresponding dual variable z(i). The augmentation of z(i) causes the
increment of the primal variable x(i) to stop. Let X be the set of tight vari-
ables with value u(i)

B . If all variables in some unsatisfied constraint are tight, the
scheme returns - ”No feasible solution”. A single round during the rth phase is
described in the following:

1. y(j) ← 0
2. While

∑n
i=1 a(i, j)x(i) < 1

B :
(a) Increase y(j) continuously.
(b) For each variable x(i) ∈ X increase z(i) with rate a(i, j)y(j).
(c) Augment each variable x(i) by the following increment function:

x(i) ← min{u(i)
B

,
α(r)

2nc(i)
} exp

(
log 2n

c(i)

j∑
k=1

a(i, k)y(k) − z(i)

)

5 Integral Online Problems: Derandomization

In this section we show the applicability of our fractional schemes for solving
online integral problems. To do so, we use the schemes as “black boxes” and de-
terministically round the fractional solutions obtained. The deterministic round-
ing is obtained by transforming an (offline) pessimistic estimator into an online
potential function. This was done implicity in [1]. The existence of an offline
derandomization method does not necessarily yield an online deterministic algo-
rithm. For example, finding deterministic algorithms for the problems considered
in [2] is still an open problem. (They all have offline derandomizations.) Thus,
we note that the ability to transform a (offline) pessimistic estimator into an
online potential function is quite surprising.

We demonstrate our derandomization method on two online problems. We
first consider the online unweighted set-cover problem [1]. For this problem we
provide a better deterministic algorithm in terms of competitive ratio. To do
so, we draw on ideas from the improved offline rounding and derandomization
methods of [15] to generate an improved potential function. We then consider the
online problem of throughput-competitive routing of virtual circuits. We show
that the algorithm presented in [4] can be derived by a deterministic rounding
of the fractional solution produced by our packing scheme.

This approach provides us with the following insight to the competitive fac-
tors obtained by [4]. The O(log m) competitive factor follows from an online
generation of a fractional solution. The minimum edge capacity determines the

698 N. Buchbinder and J. Naor

scaling of the fractional solution that is needed in order to guarantee high prob-
ability of success in the rounding phase. We note that producing a near-optimal
fractional solution that does not violate the capacity constraints is applicable
with any values of edge capacities.

5.1 Improved Competitive Ratio for Online Unweighted Set Cover

We define the online unweighted set cover problem as follows. Let X = {e1, . . . ,
en} be a ground set of n elements, and let S be a family of subsets of X , |S| = m.
A cover is a collection of sets such that their union is X . In an online setting the
elements are given one-by-one. Once a new element is given, the algorithm has
to cover it by some set of S containing it. Denote by X ′ ⊆ X the set of elements
given by the adversary. Our assumption is that the set cover instance, i.e., X and
S, is known in advance. The objective is to minimize the total number of sets
chosen by the algorithm. Let C denote the family of sets in S that the algorithm
chooses, and let C denote the set of elements covered by sets belonging to C.

Note, first, that we may assume, by doubling, that the cardinality of OPT
is known up to a factor of 2. Indeed, we can start guessing OPT =1, and run
the algorithm with this value of the optimal solution. If it turns out that the
cardinality of the optimal solution is already at least twice our current guess
for it, (that is, the cost of C exceeds Θ(OPT log d log(n/OPT))), then we can
“forget” all sets chosen so far to C, update the value of OPT by doubling it, and
keep going. It can be easily verified that this only multiply the competitive ratio
by constants. Next, we transform the pessimistic estimator that appear in [15]
into the following online potential function used by our algorithm:
For each element ei (1 ≤ i ≤ n): f(ei) = min

{
1, exp

(
−α + α

∑
s|ei∈s w(s)

)}

Φ =

⎡⎣1 −
∏

ei|ei /∈C

(1 − f(ei))

⎤⎦ + exp

(∑
s∈S

(ln 2χC(s) − αw(s)) − OPT

)

The function χC(s) = 1 if s ∈ C, and χC(s) = 0 otherwise. The parameter
α = O(log(n/OPT) will determine our competitive ratio. The first term of the
potential function ensures that each element that was given to the algorithm is
covered. The second term is used to bound the cardinality of the solution.

Using the above potential function the online algorithm is simple: Run the
algorithm presented in Section 3 to produce a fractional solution. Note that since
all coefficients a(i, j) ∈ {0, 1}, the simpler scheme in section 3 is applicable. When
the weight of some set is augmented, add the set to the cover C, only if by adding
it the potential function decreases. We prove claim 5.1 on the properties of the
potential function and then prove our main lemma (lemma 3).

Claim. The potential function Φ satisfies the following properties:
1. At start Φ < 1, and at any time during the run of the algorithm Φ > 0.
2. When a set is augmented either taking it to C or excluding it does not

increase Φ.

Online Primal-Dual Algorithms for Covering and Packing Problems 699

Minimize:
∑

e∈E u(e)Y (e) +
∑

ci
U(ci) Maximize:

∑
ci

∑
P∈P (ci)

f(ci, P)
Subject to: Subject to:
∀P ∈ P (ci):

∑
e∈P Y (e) + U(ci) ≥ 1 ∀ client ci:

∑
P∈P (ci)

f(ci, P) ≤ 1
∀ edge e:

∑
P |e∈P

∑
ci

f(ci, P) ≤ u(e)

Fig. 3. The routing problem (Maximize) and its corresponding primal problem

Lemma 3. The online algorithm satisfies the following:
1. Each element that was given to the algorithm is covered.
2. The cardinality of C is at most OPT · O(log d log(n/OPT)).

5.2 Throughput-Competitive Online Routing of Virtual Circuits

The online problem of maximizing the throughput of scheduled virtual circuits
was considered in [4]. In its simplest version we are given in advance a graph with
capacities u(e) on the edges. A set of clients ci = (si, ti) (1 ≤ i ≤ n) arrive in an
online fashion. To serve a client, the algorithm chooses a path between si and ti
and allocates a bandwidth of 1 on this path. The total bandwidth allocated on
any edge may never exceed its capacity. The total profit of the algorithm is the
number of clients served and its performance is measured with respect to the
maximum number of clients that could have received service.

In a fractional version of the problem the allocation is not restricted to in-
tegral bandwidth of either zero or one, instead we can allocate to each client
a fractional bandwidth in the range [0, 1]. In addition, the bandwidth allocated
to a client can be divided between several paths. This is an online version of
maximum multicommodity flow. We describe the problem as a packing problem
in Figure 3. For ci = (si, ti) let P (ci) be the set of simple paths between si and
ti. The first set of constraints ensures that each client gets at most a fractional
flow (bandwidth) of 1. The second set of constraints are the capacity constraints
of the edges. In the primal problem we assign a variable U(ci) to each client ci

and a variable Y (e) to each edge in the graph. The problem is a special case of
the general online fractional packing problem with a(i, j) ∈ {0, 1}. We note that
our methods can generate a fractional solution to an extension of the problem to
any non-negative coefficients a(i, j). The extension can be viewed as giving each
edge a different capacity with respect to the clients that are using it. This models
a more complex relationship between the clients and the network capacities.

An algorithm for the problem was proposed in [4]. We provide here an al-
ternative equivalent algorithm. We build our algorithm systematically by using
our two phase approach. First, we use our scheme to generate a feasible frac-
tional solution which is O(log P (max)) far from the optimum, where P (max) is
the length of the longest path in the graph. Next, we convert the standard pes-
simistic estimator designed for the offline version of the problem into an online
potential function. A randomized method to achieve a feasible integral solution
is to scale down all the flows by some factor B ≥ 1. We then choose to route
the flow on a path P , carrying fractional flow of f(P), with probability f(P)/B.
When B is large enough, there is a positive probability that no edge capacity

700 N. Buchbinder and J. Naor

is violated, and the total integral flow is large enough [13]. This algorithm was
derandomized using the method of conditional expectations via a pessimistic
estimator [12]. We transform this pessimistic estimator into an online potential
function. When the flow on a path to a client is increased, the algorithm serves
the client on that path if by doing so the potential function does not increase.
Our online potential function Φ is the sum of the following functions:

Φ1 =
1
2

exp

⎧⎨⎩ln 2

⎡⎣∑
ci

∑
P∈P (ci)

f(ci, P)
B

− 2
∑
ci

χ(ci)

⎤⎦⎫⎬⎭
Φ2 =

1
2n

∑
e∈E

exp

⎧⎨⎩
(

1 +
1 + lnn

u(e)

)
χ(e) −

∑
P |e∈P

∑
ci

f(ci, P)

⎫⎬⎭
Where, χ(ci) is the characteristic function of ci (i.e. χ(ci) = 1 iff it is serviced),
and χ(e) is the total number of paths that use the edge. Choosing B = exp{(1+
1+ln n
u(min))} − 1, where u(min) is the minimal capacity of an edge, suffices to prove
claim 5.2 that is used to prove lemma 4.

Claim. Initially, Φ < 1 and throughout the algorithm, Φ > 0. In addition, each
time a flow on some path is increased, then either serving the client on this path
or doing nothing reduces the potential function.

Lemma 4. The algorithm does not violate the capacity constraints and accepts
a least O(1

B log P (max))OPT clients, where B = exp{(1 + 1+ln n
u(min))} − 1

Acknowledgements. We thank Yossi Azar for many helpful discussions.

References

1. N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. The online set cover
problem. In the 35th annual ACM Symp. on the Theory of Computation, 2003.

2. N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. A general approach
to online network optimization problems. In SODA, 2004.

3. B. Awerbuch, Y. Azar, and Y. Bartal. On-line generalized steiner problem. In
Proc. of the 7th Ann. ACM-SIAM Symp. on Discrete Algorithms, 1996.

4. B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online routing. In
Proc. of 34th FOCS, pages 32–40, 1993.

5. P. Berman and C. Coulston. On-line algorithms for steiner tree problems. In Proc.
of the 29th annual ACM Symp. on the Theory of Computation, 1997.

6. L. Fleischer. A fast approximation scheme for fractional covering problems with
variable upper bounds. In SODA 2004, pages 1001–1010.

7. L. K. Fleischer. Approximating fractional multicommodity flow independent of the
number of commodities. SIAM Journal on Discrete Mathematics, 2000.

8. N. Garg and R. Khandekar. Fractional covering with upper bounds on the variables:
Solving lps with negative entries. In ESA 2004, pages 371–382.

9. N. Garg and J. Konemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In FOCS 1998, pages 300–309.

10. M. Imase and B. Waxman. Dynamic steiner tree problem. SIAM Journal Discrete
Math., 4:369–384, 1991.

Online Primal-Dual Algorithms for Covering and Packing Problems 701

11. S. G. Kolliopoulos and N. E. Young. Tight approximation results for general
covering integer programs. In FOCS 2001, pages 522–528.

12. P. Raghavan. Probabilistic construction of deterministic algorithms: approximating
packing integer programs. J. Comput. Syst. Sci., 37(2):130–143, 1988.

13. P. Raghavan and C. Thompson. Randomized rounding: A technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1987.

14. E. T. S. Plotkin and D. Shmoys. Fast approximation algorithms for fractional
packing and covering problems. Math. of Operations Research, 20:257–301, 1995.

15. A. Srinivasan. Improved approximation guarantees for packing and covering integer
programs. SIAM Journal on Computing, 29(2):648–670, 1999.

16. N. E. Young. Randomized rounding without solving the linear program. In Proc.
of the 6th annual ACM-SIAM symp. on Discrete algorithms, pages 170–178, 1995.

Efficient Algorithms for Shared Backup
Allocation in Networks with Partial Information

Yigal Bejerano1, Joseph Naor2,�, and Alexander Sprintson3

1 Bell Labs, Lucent Technologies
bej@research.bell-labs.com

2 Department of Computer Science, Technion-Israel Institute of Technology
naor@cs.technion.ac.il

3 Department of Electrical Engineering, California Institute of Technology
spalex@caltech.edu

Abstract. We study efficient algorithms for establishing reliable con-
nections with bandwidth guarantees in communication networks. In the
normal mode of operation, each connection uses a primary path to de-
liver packets from the source to the destination. To ensure continuous
operation in the event of an edge failure, each connection uses a set of
backup bridges, each bridge protecting a portion of the primary path. To
meet the bandwidth requirement of the connection, a certain amount of
bandwidth must be allocated on the edges of primary path, as well as on
the backup edges. In this paper, we focus on minimizing the amount of
required backup allocation by sharing backup bandwidth among differ-
ent connections. We consider efficient sharing schemes that require only
partial information about the current state of the network. In particu-
lar, the only information available for each edge is the total amount of
primary allocation and the cost of allocating backup bandwidth on this
edge. We consider the problem of finding a minimum cost backup allo-
cation together with a set of bridges for a given primary path. We prove
that this problem is NP-hard and present an approximation algorithm
whose performance is within O(log n) of the optimum, where n is the
number of edges in the primary path.

1 Introduction

Modern communication networks are expected to provide a certain level of Qual-
ity of Service (QoS) guarantees and also be resilient to failures. A widely used
approach to achieve this goal is to provision for each connection a primary path
and a set of backup paths. The primary QoS path is used during normal network
operation; upon failure of a network element (node or edge) in the primary path,
the traffic is immediately switched to a backup path. To provide QoS guarantees,
a certain amount of bandwidth must be reserved on each edge of the primary
path, as well as on the backup edges.
� This research is supported in part by a foundational and strategical research grant

from the Israeli Ministry of Science, and by a US-Israel BSF Grant 2002276.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 702–713, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Algorithms for Shared Backup Allocation in Networks 703

P
s t

s’ t’

u1 u2 u3 u4 u5 u6 u7 u8

B1 B2 B3 B4

s=v1 v2 v3 v4 v5 v6 v7 t=v8
P

(a)
B3

s=v1 v4 v7 t=v8
P

(b)

P’

(c)

Fig. 1. (a) A primary path and a set of bridges {B1, . . . , B4}; (b) Activation of bridge
B3 upon failure of an edge (v5, v6) (c) Sharing of backup edges by two connections

In this paper we employ a local restoration method in order to facilitate
resilience to edge failures. In this method we provision a set of bridges, each
bridge protecting a portion of the primary path. A bridge is a path between two
nodes of the primary path that shares no common edges with it. Upon failure of
an edge in the primary path, the traffic is switched to one of the bridges. Fig. 1(a)
depicts an example of a primary path P̂ and a set of bridges {B1, . . . , B4} that
protect edges of P̂ . Fig. 1(b) depicts the backup path used upon failure of edge
(v5, v6) of P̂ . The backup path is formed by substituting the subpath {v4, . . . , v7}
of P̂ by bridge B3.

Due to budget constraints, resilience and survivability must be built into
a network in an efficient manner, that is, the amount of bandwidth dedicated
for this purpose must be minimized. An attractive way to achieve this goal is
by sharing backup bandwidth among multiple connections. Sharing of backup
bandwidth is possible due to low probability of simultaneous failures of multiple
edges in the network. Fig. 1(c) shows an example of two connections that share
several backup edges. The connections use P̂ and P̂ ′ as primary paths and share
backup edges (u1, u2), (u3, u4), (u5, u6), and (u7, u8).

We consider a practical network setting, in which the source node of the
connection computes both the primary path and a set of bridges. The source
node has only partial information about the current state of the network. In
particular, for each edge e, the following two parameters are given:

1. fe - The total amount of bandwidth provisioned by the primary paths that
use edge e;

2. ce(b) - The cost of allocating b units of backup bandwidth on edge e.

We use the first parameter, fe, to ensure that upon failure of edge e, all
primary paths that use e are protected. To this end, we reserve along each edge
of the bridge B that protects e at least fe units of bandwidth. Indeed, in the
worst case scenario all traffic that uses a failed edge e may be re-routed via
bridge B.

The function ce(b) specifies the cost of allocating b units of backup bandwidth
on edge e. This function may depend, for example, on the amount of backup
bandwidth provisioned on e by prior connections. Indeed, in the case when edge
e has a large amount of bandwidth provisioned by other connections, the cost of

704 Y. Bejerano, J. Naor, and A. Sprintson

allocating b units of backup bandwidth for the current connection may be small
or even zero.

The partial information model used in this paper is inspired by the paper of
Kodialam and Lakshman [1]. This paper provides an empirical evidence that par-
tial information model facilitates efficient sharing of backup bandwidth, resulting
in a reduction in the total amount of backup bandwidth reserved throughout the
network. At the same time, the model requires only a small amount of routing
information that needs to be disseminated in the network (only a few parameters
per each edge in the network).

Our Results. In this study we consider the problem of finding a minimum cost
backup allocation together with a set of bridges for a given primary path. We
prove that this problem is NP-hard and present an approximation algorithm
whose performance is within O(log n) of the optimum, where n is the number of
edges in the primary path.

We prove that this problem is NP-hard. However, we show that, by exploit-
ing a certain combinatorial structure of the problem, we can devise an efficient
approximation algorithm that achieves an approximation ratio of 8 logn. The
computational complexity of our algorithm is O(n3(|E| + |V | log |V |)), where n
is the maximum number of edges in the primary path. Our algorithm can be
easily extended for the problem of finding both a primary path and backup al-
location. While the ideas that led to the development of our algorithm as well
as the performance proofs are rather involved, the algorithm per se is relatively
simple and easy to implement.

Proof Techniques. We analyze important properties of the problems related
to bandwidth allocation with backup sharing. Specifically, we identify internal
edge sharing as a major obstacle to finding an efficient solution. Internal edge
sharing refers to the situation in which bridges that protect the same primary
path share edges (see e.g. Fig. 2). We prove by employing involved combinatorial
techniques that for any given primary path there is an optimal set of bridges
such that each edge is included in at most 8 logn bridges, where n is the number
of edges in the primary path.

This property allows us to construct an approximation algorithm based on
local optimization. Specifically, we define the local cost of a bridge to be the sum
of the costs incurred at its edges. Our goal is then to find a set of bridges that
protect all edges in the primary path such that the total local cost of all bridges
is minimal. We show that such a solution has a certain hierarchical property and
present an algorithm based on dynamic programming that identifies an optimal
set of bridges with respect to local costs. We note that this approach effectively
ignores internal sharing. Indeed, since the cost of each bridge is computed inde-
pendently of other bridges, an edge can contribute to the cost of several bridges.
However, since each edge appears in at most 8 log n bridges, the cost of our
solution is at most 8 log n times higher than the optimum.

Related Work. Sharing of backup resources as a means for improving network
performance was proposed by [1,2]. The network design problems in the context

Efficient Algorithms for Shared Backup Allocation in Networks 705

B1 B2

v1 v2 v3 v4
P

e u2u1

Fig. 2. Internal sharing. Bridges B1 = {v1, u1, u2, v2} and B2 = {v3, u1, u2, v4} share
an edge (u1, u2).

of backup sharing were investigated by [3,4]. In particular, [3] studied a simple
model in which edges that belong to primary and backup paths are assigned
different costs while [4] focused on the restoration problems in the Hose model.
Papers [5–7] investigated practical aspects of path restoration. Several heuristic
methods, based on linear programming for partial information model, were pro-
posed in [1]. The current study is the first one to provide efficient approximation
algorithms for computing shared backup allocation in the partial information
model.

Due to space constraints, some proofs and technical details are omitted and
can be found in the full version of this paper.

2 Model and Definitions

We represent the network by an undirected graph G(V, E), where V is the set
of nodes and E is the set of edges. An (s, t)-path is a sequence of distinct nodes
P = {s = v0, v1, . . . , t = vn}, such that, for 1 ≤ i ≤ n, (vi−1, vi) ∈ E. Here,
n = |P | is the hop count of P . We denote by E(P) the set of edges of P . The
subpath of P that extends from vi to vj is denoted by P(vi,vj).

A unicast connection links a source node s with a destination node t. In
a normal mode of operation, the packets are sent over the primary path P̂ =
{s = v0, v1, . . . , t = vn}. To ensure continuous operation in the event of an edge
failure, we provision a set of bridges B = {B1, B2, . . . , Bk} that protect edges
in the primary path. A bridge Bi = {si, . . . , ti} is a path between si ∈ P̂ and
ti ∈ P̂ that has no common edges with the subpath P̂(si,ti) of P̂ . We say that
a bridge Bi = {si, . . . , ti} protects an edge e ∈ P̂(si,ti) if upon failure of edge e

the traffic is switched from P̂(si,ti) to Bi. We denote by ϕ(Bi) the set of edges
in the primary path protected by bridge Bi. The set of edges that belong to
bridges in B is denoted by Er, i.e., Er = {e ∈ Bi | Bi ∈ B}. For each edge
(vi−1, vi) ∈ P̂ we denote by f(vi−1,vi) the total amount of primary bandwidth
reserved on (vi−1, vi).

To ensure continuous operation in the event of an edge failure, we reserve
a certain amount of bandwidth on each edge in Er. In the partial information
model, the backup reservation ω(e) on each edge e ∈ Bj must satisfy:

ω(e) ≥ max
(vi−1,vi)∈ϕ(Bj)

f(vi−1,vi). (1)

The reason for such a conservative approach is to guarantee that all primary
paths that use edge (vi−1, vi) can be restored in the event of a failure of (vi−1, vi).

706 Y. Bejerano, J. Naor, and A. Sprintson

Indeed, since we have no information about the backup paths used by other
connections, we make a worst-case assumption that all backup traffic triggered
by a failure of (vi−1, vi) is routed via edges of bridge Bj .

Since an edge e ∈ Er can belong to multiple bridges, the backup ω(e) reser-
vation on edge e must satisfy:

ω(e) ≥ max
Bj ,e∈Bj

max
(vi−1,vi)∈ϕ(Bj)

f(vi−1,vi) (2)

For each edge e ∈ E we are given a function ce(b) that specifies, for any b ≥ 0,
the cost of reserving b units of backup bandwidth on edge e. We assume that
functions ce(b) are monotonically increasing and can be computed in constant
time.

Backup Allocation Problem

In the backup allocation problem, our goal is to find a restoration topology R̂ for
a given primary path P̂ = {s = v0, v1, . . . , t = vn}. A restoration topology R̂ is
specified by a 4-tuple {B, Er, ϕ, ω}, where B is a set of bridges {B1, B2, . . . , Bk};
Er = {e ∈ Bi | Bi ∈ B} is the set of edges that belong to bridges in B; ϕ : B →
2E(P̂) is a function that specifies, for each bridge Bj ∈ B, the set of edges in the
primary path protected by Bj ; and ω : Er → Z is a function that specifies the
amount of backup bandwidth we need to allocate on each edge of Er.

A feasible restoration topology must satisfy the following conditions:

1. Each edge in the primary path P̂ must be protected by a bridge in B, i.e.,
for each (vi−1, vi) ∈ P̂ there is a bridge Bj ∈ B, such that (vi−1, vi) ∈ ϕ(Bj).

2. The backup allocation ω(e) on each edge e ∈ Er must satisfy Equation (2).

The cost C(R̂) of the restoration topology is defined to be the cost of its
edges, i.e., C(R̂) =

∑
e∈Er ce(ω(e)), where ce is the cost function associated

with edge e. Our goal is to find a restoration topology of minimal cost. We refer
to this problem as Problem BA (Backup Allocation) and denote the minimal
cost of a solution to Problem BA by OPT. In the full version of this paper we
show that Problem BA is NP-hard.

3 Properties of the Optimal Backup Allocation

The main obstacle in finding an optimal solution to Problem BA is the fact that
different bridges in R̂ can share edges. Such internal sharing is one of the reasons
of the NP-hardness of the problem. In this section we prove that there exists a
restoration topology R̂ = {B, Er, ϕ, ω} such that C(R̂) = OPT and each edge
e ∈ Er belongs to at most 8 logn bridges of B, where n is the number of edges
in the primary path.

Theorem 1. Given a primary path P̂ , there exists a restoration topology R̂ =
{B, Er, ϕ, ω} for P̂ such that C(R̂) = OPT and each edge e ∈ Er belongs to at
most 8 log n bridges of B̂, where n = |P̂ |.

Efficient Algorithms for Shared Backup Allocation in Networks 707

si=sj ti tj si ti=tjsj

(a) (b)
P P

Fig. 3. Bridges with common prefix (a) and suffix (b)

In Section 4, we use Theorem 1 in order to devise an approximation algorithm
for Problem BA. The algorithm finds a restoration topology R̂ whose cost is at
most 8 logn times more than OPT. The rest of this section is devoted to the
proof of Theorem 1.

We begin by introducing the following notation. Let Bi = {si, . . . , ti} be a
bridge in B. A subpath {si, . . . , v} of Bi is referred to as a prefix of Bi. Similarly,
a subpath {v, . . . , ti} is referred to as a suffix of Bi. We say that two bridges Bi =
{si, . . . , ti} and Bj = {sj, . . . , tj} share a prefix if there exists a node v ∈ Bi such
that the prefix {si, . . . , v} of Bi is identical to the prefix {sj, . . . , v} of Bj and
the suffixes {v, . . . , ti} and {v, . . . , tj} of Bi and Bj are mutually edge-disjoint.
Similarly, we say that two bridges Bi = {si, . . . , ti} and Bj = {sj, . . . , tj} share a
suffix if there exists a node v ∈ Bi such that the suffix {v, . . . , ti} of Bi is identical
to the suffix {v, . . . , tj} of Bj and the prefixes {si, . . . , v} and {sj, . . . , v} of Bi

and Bj are mutually edge-disjoint. Fig. 3 depicts examples of bridges that share
a prefix and a suffix.

3.1 Outline of the Proof

Let P̂ = {s = v0, v1, . . . , t = vn} be a primary path and let R = {B, Er, ϕ, ω} be
a restoration topology for P̂ such that C(R) = OPT and the number of edges
in Er is minimal. We construct a restoration topology R̂ = {B̂, Er, ϕ̂, ω} that
satisfies condition of the theorem. The restoration topology R̂ is formed from R
by modifying the set of bridges B and the bridge assignment function ϕ. The set
of backup edges Er and backup allocation ω of R̂ is identical to that of R.

Our proof includes the following steps:

1. First, we construct a restoration topology R̄ = {B̄, Er, ϕ̄, ω} that satisfies
the following property. Let B̄i = {si, . . . , ti} and B̄j = {sj, . . . , tj} be two
bridges of B̄ such that there exists an edge (x, y) that appears in both bridges
(in the same direction). Then, bridges B̄i and B̄j either share a suffix or share
a prefix (see Fig. 4).

2. Then, we show that the exist a partition π = {Si} of B̄ = {B̄1, B̄2, . . . , B̄k̄}
such that: (i) For each subset Si of π it holds that either all bridges in Si

share a prefix or all bridges in Si share a suffix. (ii) Each edge e ∈ Er belongs
to bridges of at most four different subsets of π.

3. Finally, we prove the following assertion. Let Si be a subset of bridges in B̄

such that either all bridges in Si share a prefix or all bridges share a suffix.
Also, let E(Si) ⊆ Er be the set of edges that belong to bridges in Si, i.e.,
E(Si) = {e ∈ B |B ∈ Si}. Then, there exists a set of bridges Ŝi such that

708 Y. Bejerano, J. Naor, and A. Sprintson

Ps1=s2 s3=s4 t3 s5t1=t4 t2=t5=s6=s7 s8 s9 t9 t6=t8 t7

Fig. 4. An example of a restoration topology that satisfies the condition of Step 1

(i) E(Ŝi) ⊆ E(Si), where E(Ŝi) = {e ∈ B̂ |B̂ ∈ Ŝi}; (ii) Set Ŝi protects the
same set of edges as Si, i.e., each edge (vi−1, vi) ∈ P̂ protected by a bridge
in Si is protected by a bridge in Ŝi; (iii) Each edge e ∈ E(Ŝi) belongs to at
most 2 log n bridges of Ŝi.

It is easy to verify that the union of all sets Ŝi that correspond to sets in π
satisfies the requirement of the theorem.

Step 1. Let P̂ = {s = v0, v1, . . . , t = vn} be a primary path and let R =
{B, Er, ϕ, ω} be an optimal restoration topology for P̂ . We show how to construct
a set of bridges B̄ and the corresponding bridge assignment function ϕ̄ such that
any two bridges in B̄ that have an edge in common either share a prefix or share
a suffix.

Let Gr be a subgraph of G induced by edges in Er. Each edge e ∈ Gr has a
backup reservation ω(e) in R. We introduce a new bottleneck metric for paths
in Gr with respect ω(e). Specifically, given a path P in Gr we define the weight
of the path B(P) to be the smallest amount of backup reservation of an edge in
P , i.e., B(P) = mine∈P ω(e).

Next, we define two functions, τ(v) and γ(v), for each node v ∈ Gr. Function
τ(v) maps a node v ∈ Gr to a node vi ∈ P̂ , while function γ(v) maps a node
v ∈ Gr to a path between τ(v) and v in Gr. In order to define τ(v) and γ(v),
we identify a tree Tvi that connects vi ∈ P̂ with the rest of the nodes in Gr

such that each path P = {vi, . . . , u} ∈ Tvi has the maximum bottleneck weight
among all paths that connect vi and u in Gr.

The function τ(v) is defined as follows. If v is a node in the primary path
P̂ , then τ(v) = v. Otherwise, τ(v) is equal to the node vi ∈ P̂ that satisfies the
following conditions (i) The path between vi and v in Tvi has more bandwidth
than any other path between vj ∈ P̂ and v. (ii) The distance (in hops) between s

and vi in P̂ is smaller than that of any other node vj ∈ P̂ that satisfy condition
(i).

The second function, γ(v), is defined as follows. If v belongs to the primary
path P̂ , then γ(v) is an empty path. Otherwise, γ(v) is a path between vi = τ(v)
and v in Tvi .

We are ready to describe the construction of the set of bridges B̄. For each
edge (vi−1, vi) ∈ P̂ , we identify a bridge B̄i as follows. Let Bj = {sj, . . . , tj} ∈ B

be a bridge in R that protects edge (vi−1, vi). Let (x, y) be an edge of Bj for
which it holds that τ(x) is a predecessor of vi−1 in P̂ and τ(y) is a successor
of vi in P̂ . Note that such an edge must exist because τ(sj) is a predecessor of
vi−1 and τ(tj) is a successor of vi. Then, we set B̄i to be a concatenation of path
γ(x), edge (x, y), and a path γ(y) (in a reverse direction). Note that for any

Efficient Algorithms for Shared Backup Allocation in Networks 709

node v ∈ γ(x) it holds that τ(v) = τ(x) and for each node v ∈ γ(y) it holds that
τ(v) = τ(y). This implies that paths γ(x) and γ(y) are mutually node-disjoint.
This fact, in turn, implies that B̄i is a simple path (i.e., does not include a cycle).

In the following lemma we prove that bridges in B̄ satisfy the required prop-
erty.

Lemma 2. Let B̄i and B̄j be two bridges in B̄ that share an edge (x, y), i.e.,
(x, y) ∈ B̄i and (x, y) ∈ B̄j. Then, B̄i and B̄j share either a prefix or a suffix.

Proof. We consider three cases. In the first case it holds that τ(x) = τ(y) and
x is an ancestor of y in Tvi . In this case γ(y) is a prefix of both bridges B̄i and
B̄j. Indeed, if γ(y) is a suffix of B̄i then B̄i contains a loop {x, y, x}, resulting in
a contradiction. In the second case τ(x) = τ(y) and y is an ancestor of x in Tvi .
In this case γ(x) is a suffix of both bridges B̄i and B̄j. Finally, in the third case
τ(x) 	= τ(y). In this bridge B̄i is identical to B̄j . Indeed, in this case γ(x) is a
prefix of both B̄i and B̄j, while γ(y) is a suffix of both B̄i and B̄j .

Step 2. We show that B̄ = {B̄1, B̄2, . . . , B̄k̄} can be partitioned into subsets
π = {Si} such that: (i) For each subset Si it either holds that any two bridges
in Si share a prefix or any two bridges in Si share a suffix. Further, any edge
e ∈ Er belongs to bridges of at most four different subsets of π.

We construct the π = {Si} through the following partitioning procedure.
The procedure uses an undirected auxiliary graph G′(V ′, E′), described below.
The vertices V ′ of G′ correspond to the nodes of the primary path P̂ and the
edges E′ of G′ correspond to the bridges in B̄. Specifically, for each bridge B̄i =
{si, . . . , ti} ∈ B̄ we add an edge between si and ti in G′. In the full version of
this paper we prove that the subgraph Gr induced by edges in Er, and, in turn,
the auxiliary graph G′ do not contain cycles.

The procedure includes the following steps for each connected component G′
i

of G′:

1. Select a node v ∈ G′
i and find an orientation of edges in G′

i such that the
resulting graph

−→
G ′

i is a directed tree rooted at v;
2. For each node u ∈ −→

G ′
i create two subsets S1

u and S2
u in the partition π. Both

subsets include bridges of B̄ that correspond to edges incident to u. The first
subset includes bridges for which u is the starting node, while the second set
includes bridges for which u is the end node.

Lemma 3. Let e be an edge in Er and let S be a set of bridges in B̄ that include
e. Then, the bridges of S belong to at most four different subsets of π.

Step 3. Let π = {Si} be a partition of B̄ that satisfies the conditions of Step
2. Also, let Si ∈ π be a set of bridges such that all bridges in Si share a prefix.
We begin by removing from Si all redundant bridges. A bridge B̄ ∈ Si is said to
be redundant if all edges in ϕ(B̄) can be protected by other bridges in Si.

We denote by E(Si) = {e ∈ B̂ |B̂ ∈ Si} the set of edges that belong to
bridges in Si and show that there exists a set of bridges Ŝi that satisfies the

710 Y. Bejerano, J. Naor, and A. Sprintson

following conditions: (i) E(Ŝi) ⊆ E(Si), where E(Ŝi) = {e ∈ B̂ |B̂ ∈ Ŝi}; (ii)
Each edge (vi−1, vi) ∈ P̂ protected by a bridge in Si is protected by a bridge in
Ŝi; (iii) Each edge e ∈ E(Ŝi) belongs to at most 2 log n bridges of Ŝi.

We denote by s′ the starting node of all bridges in Si and by T = {tj} the
set of end nodes of bridges in Si, such that tj−1 is a predecessor of node tj in
P̂ . For each j, 1 ≤ j ≤ T , we denote by Bj the bridge in Si with end node tj .
We also denote by G′ the subgraph of G induced by E(Si). Note that G′ is a
subgraph of Gr (recall that Gr is a subgraph of G induced by edges in Er). Since
Gr does not contain a cycle, G′ is a tree. In addition, we denote by Γ the set of
edges in P̂ protected by bridges in Si, i.e., Γ = ∪B̄∈Si

ϕ(B̄). We partition Γ to
|T | subsets Γ1, . . . , Γ|T | such that subset Γ1 include edges in Γ located between
nodes s′ and t1 and a subset Γj includes edges of Γ located between nodes tj−1

and tj in T .

Lemma 4.

1. For each j, 1 ≤ j ≤ T , it holds that bridge Bj can protect all edges in Γj,
i.e., mine∈Bj ω(e) ≥ max(vx−1,vx)∈Γj

f(vx−1,vx)

2. Let P be a path in G′ between tk and tj, where tk is a predecessor of tj in
P̂ . Then, P is a bridge that can protect all edges in Γj, i.e., mine∈P ω(e) ≥
max(vx−1,vx)∈Γj

f(vx−1,vx).

We are ready to describe a procedure that constructs the set of bridges Ŝi.
The procedure includes the following steps.

1. For each Bj ∈ Si set ϕ(Bj) = Γj .
2. While Si is not empty, perform the following operations:

(a) Denote by E(Si) the set of edges that belong to bridges in Si, i.e.,
E(Si) = {e ∈ B̄ | B̄ ∈ Si}. Denote by G′ the subgraph of Gr induced by
edges in E(Si).

(b) Identify an Euler tour W = {s′, . . . , s′} in G′.
(c) Break W into paths {Pk} by cutting W at nodes s and tk ∈ T .
(d) Denote by sk the starting node of Pk and by tk the end node of Pk, such

that sk is a predecessor of tk in P̂ .
(e) For each path Pk = {sk, . . . , tk} for which there is a bridge Bj =

{s′, . . . , tj} ∈ Si with the same end node (i.e., tk = tj), perform the
following operations:
i. Add Pk into Ŝi and set ϕ(P k) = ϕ(Bj).
ii. Remove Bj from Si.

Fig. 5 demonstrates a single iteration of the procedure. A set of bridges
that share a common prefix is depicted in Fig. 5(a). An Euler tour W on G′ is
depicted in Fig. 5(b). We break W into four paths, two of which are added to
Ŝi, as depicted in Fig. 5(c).

Theorem 5. The set of bridges Ŝi satisfies the following conditions: (i) E(Ŝi) ⊆
E(Si), where E(Ŝi) = {e ∈ B̂ |B̂ ∈ Ŝi}; (ii) Each edge (vi−1, vi) ∈ P̂ protected
by a bridge in Si is protected by a bridge in Ŝi; (iii) Each edge e ∈ E(Ŝi) belongs
to at most 2 logn bridges of Ŝi.

Efficient Algorithms for Shared Backup Allocation in Networks 711

s’ t1 t2 t3
P

s’ t1 t2 t3
P

B1

B2 B3

(a) (b)
s’ t1 t2 t3

P

B1 B2

(c)

Fig. 5. (a) A set Si of bridges that share a common prefix (b) An Euler tour on G′ (c)
Two new bridges are added to Ŝi

The case in which all bridges in Si have a common suffix can be proven by
using similar arguments.

4 Approximation Algorithm for Problem BA

4.1 Locally Optimal Restoration Topologies

In this section we present an approximation algorithm for Problem BA. We
begin by defining the notion of the local cost of a restoration topology.

Definition 1 (Local Cost). Let R = {B, Er, ϕ, ω} be a restoration topology
for P̂ . The local cost C∗(B) of a bridge B ∈ B is defined to be the sum of local
costs incurred at its edges, i.e., C∗(B) =

∑
e∈B ce(ω(e)). The local cost of a

restoration topology is defined to be the sum of the local costs of its bridges:

C∗(R) =
∑
B∈B

C∗(B) =
∑
B∈B

∑
e∈B

ce(ω(e)). (3)

Definition 2 (Partial Restoration Topology). Let P be a subpath of the
primary path P̂ . A restoration topology R = {B, Er, ϕ, ω} is referred to as a
partial restoration topology for P if each edge in P is protected by a bridge
B ∈ R. The backup allocations ω(e) on each edge e ∈ Er must satisfy the
conditions of (2).

We say that a partial restoration topology R for P a is locally optimal if its
local cost is less than or equal to the local cost of any other partial restoration
topology R for P . The minimum cost of a locally optimal restoration topology
for P is denoted by OPT∗(P). From Theorem 1 it follows that OPT∗(P̂) ≤
8 · OPT log n, where n = |P̂ |.

The next lemma establishes a hierarchical property of restoration topologies
with minimal local cost. This lemma allows us to use the methods of dynamic
programming in order to find restoration topologies of minimal local cost.

Lemma 6. Let P ′ = {s′, . . . , t′} be a subpath of the primary path P̂ . Then one
of the following conditions hold:

1. Path P can be partitioned into edge-disjoint subpaths P 1, . . . , P k such that
OPT∗(P ′) =

∑k
i=1 OPT∗(P i);

712 Y. Bejerano, J. Naor, and A. Sprintson

2. The are exist edge-disjoint subpaths P 1, . . . , P k of P ′, a bridge B =
{s′, . . . , t′} ∈ G \ P ′, and a value ζ, such that:
(a) ζ is the maximum value f(vi−1,vi) of an edge (vi−1, vi) ∈ P ′ that does not

belong to paths P 1, . . . , P k;
(b) B = {s′, . . . , t′} is a minimum cost path between s′ and t′ with respect to

the cost
∑

e∈B ce(ζ);
(c) OPT∗(P ′) =

∑k
i=1 OPT∗(P i) +

∑
e∈B ce(ζ).

The hierarchical property allows us to efficiently find an optimal restoration
topology R̂ by using the methods and tools of dynamic programming.

4.2 Dynamic Programming Algorithm

The algorithm exploits the hierarchical property of locally optimal restoration
topologies, established by Lemma 6. The algorithm begins with the subpaths of
P̂ that include a single edge and computes for each subpath an optimal restora-
tion topology that protects it. Then, it computes locally optimal restoration
topologies for all subpaths of length 2, 3 and so on, until the locally optimal
restoration topology for the entire primary path is found. The order of pro-
cessing the subpaths of P by the algorithm ensures that when the algorithm
computes an optimal restoration topology for a subpath of length i, it already
has available the optimal restoration topologies for all subpaths of length smaller
than i.

We observe that optimal restoration topology for a subpath of length 1 in-
cludes a single bridge, which is easy to identify. Indeed, let P be a subpath that
includes a single edge (vi−1, vi). Note that each edge e of bridge B must be
allocated f(vi−1,vi) units of backup bandwidth. Thus, to find a locally optimal
bridge that protects (vi−1, vi) we compute a shortest path in G \ P̂ with respect
to edge costs ce(f(vi−1,vi)) between si and ti, where si is a predecessor of vi−1

in P̂ and ti is a successor of node vi in P̂ . Such a path can be computed by a
single invocation of a shortest path algorithm such as Dijkstra’s algorithm.

For a subpath P of P̂ of length more than 1, we need to consider two possible
cases, described in Lemma 6. For the first case, we need to determine a partition
P 1, . . . , P k of P such that total cost of restoration topologies R1, . . . ,Rk is
minimal, where Ri is a locally optimal restoration topology that protect P i.
Note that the optimal restoration topologies R1, . . . ,Rk are already computed
by the algorithm. Such an optimal partition can be determined by using the
auxiliary graph Ĝ, that includes, for each subpath P(vi,vj) of P , an edge (vi, vj),
whose cost is equal to the cost of the locally optimal restoration topology that
protects P(vi,vj). Then, we compute a shortest path between the source node
and the destination node of P and identify an optimal restoration topology for
P by taking the union of all restoration topologies that correspond to the edges
of the shortest path.

The second case is more complicated, as we need to determine a bridge B̂ and
several restoration topologies R1, . . . ,Rk that protect the edges of P . The key
step is to determine the amount of backup bandwidth ζ that must be reserved

Efficient Algorithms for Shared Backup Allocation in Networks 713

on edges of B̂. Indeed, if ζ is known, then we can easily determine B̂ (in a
manner similar to the case in which the subpath P includes a single edge) and
the edges of P that are protected by B̂ (edges (vi−1, vi) for which it holds that
f(vi−1,vi) ≤ ζ). Then, we can identify restoration topologies that protect all other
edges of P (not protected by B̂) by using the same technique as in the first case.

In order to determine ζ we use the following observation. We observe that ζ
must be equal to f(vi−1,vi) for some of edges in the P . Thus, the optimal value
of ζ can be found by performing the following exhaustive search: for each value
of ζ from the set {f(vi−1,vi) | (vi−1, vi) ∈ P} we compute the optimal restora-
tion topology and choose ζ for which the local cost of a restoration topology is
minimal.

Theorem 7. Given a primary path P̂ , the algorithm above identifies, in
O(n3(|E| + |V | log |V |)) time, a solution to Problem BA whose cost is at most
8 logn times more than the optimum.

References

1. Kodialam, M.S., Lakshman, T.V.: Dynamic routing of bandwidth guaranteed tun-
nels with restoration. In: Proceedings of IEEE INFOCOM’2000, Tel-Aviv, Israel
(2000)

2. Hwang, H., Ahn, S., Choi, Y., Kim, C.: Backup path sharing for survivable ATM
networks. In: Proceedings of ICOIN-12. (1998)

3. Chekuri, C., Gupta, A., Kumar, A., Naor, J., Raz, D.: Building edge-failure resilient
networks. In: Proceedings of IPCO 2002. (2002)

4. Italiano, G., Rastogi, R., Yener, B.: Restoration algorithms for virtual private net-
works in the hose model. In: Proceedings of IEEE INFOCOM’02, New York, NY
(2002)

5. Su, X., Su, C.F.: An online distributed protection algorithm in WDM networks. In:
Proceedings of IEEE ICC’01. (2001)

6. Sengupta, S., Ramamurthy, R.: Capacity efficient distributed routing of mesh-
restored lightpaths in optical networks. In: Proceedings of IEEE GLOBECOM
’01. (2001)

7. Li, G., Wang, D., Kalmanek, C., Doverspike, R.: Efficient distributed path selection
for shared restoration connections. In: Proceedings of IEEE INFOCOM’02, New
York, NY (2002)

Using Fractional Primal-Dual to
Schedule Split Intervals with Demands

Reuven Bar-Yehuda1 and Dror Rawitz2

1 Department of Computer Science, Technion, Haifa 32000, Israel
reuven@cs.technion.ac.il

2 Caesarea Rothschild Institute, University of Haifa, Haifa 31905, Israel
rawitz@cri.haifa.ac.il

Abstract. We consider the problem of scheduling jobs that are given
as groups of non-intersecting intervals on the real line. Each job j is
associated with a t-interval, which consists of up to t segments, for some
t ≥ 1, a demand, dj ∈ [0, 1], and a weight, w(j). A schedule is a collection
of jobs, such that, for every s ∈ IR, the total demand of the jobs in the
schedule whose t-interval contains s does not exceed 1. Our goal is to
find a schedule that maximizes the total weight of scheduled jobs.

We present a 6t-approximation algorithm that uses a novel extension
of the primal-dual schema called fractional primal-dual. The first step
in a fractional primal-dual r-approximation algorithm is to compute an
optimal solution, x∗, of an LP relaxation of the problem. Next, the al-
gorithm produces an integral primal solution x, and a new LP, denoted
by P′, that has the same objective function as the original problem, but
contains inequalities that may not be valid with respect to the original
problem. Moreover, x∗ is a feasible solution of P′. The algorithm also
computes a solution y to the dual of P′. x is r-approximate, since its
weight is bounded by the value of y divided by r.

We present a fractional local ratio interpretation of our 6t-
approximation algorithm. We also discuss the connection between frac-
tional primal-dual and the fractional local ratio technique. Specifically,
we show that the former is the primal-dual manifestation of the latter.

1 Introduction

The Problem. We consider the problem of scheduling jobs that are given as
groups of non-intersecting intervals on the real line. Each job j is associated with
a t-interval, which consists of up to t non-intersecting intervals, or segments, for
some t ≥ 1, and a positive weight, w(j). Each job requires the utilization of a
given limited resource. The amount of resource available is fixed; we normalize
it to unit size. The amount of resource required by job j, or the demand of j,
is denoted by dj . A schedule is a collection of jobs such that, for every s ∈ IR,
the total demand of the jobs in the schedule whose t-interval contains s does
not exceed 1. Our goal is to find a schedule that maximizes the total weight of
scheduled jobs.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 714–725, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using Fractional Primal-Dual to Schedule Split Intervals with Demands 715

The problem of scheduling t-intervals is NP-hard even when t = 1, since
it contains knapsack as a special case in which all t-intervals intersect. The
problem of scheduling t-intervals where all demands are equal to 1 was studied
by Bar-Yehuda et al. [1]. Two jobs are said to be in conflict if any of their
segments intersect. The objective in this special case is to schedule a subset of
non-conflicting jobs whose total weight is maximum. The unit demand problem
is formulated in [1] as the problem of finding a maximum weight independent
set (MWIS) in a t-interval graph. When t = 1 we get MWIS in interval graphs
which is solvable in polynomial time (see, e.g., [2]).

An interesting special case that was discussed in [1] is the family of t-union
graphs, in which the segments associated with each job (or vertex) can be labeled
in such a way that for any two jobs j1 and j2 the segment i1 of j1 and segment
i2 of j2 do not intersect for every 1 ≤ i1, i2 ≤ t and i1 	= i2. In this case the
t segments can be viewed as intervals on orthogonal axes, corresponding to a
t-dimensional box. Two boxes are in conflict if their projections on any of the t
axes intersect. A two dimensional example is given in Fig. 1. Note that the height
of a box corresponds to its demand. In Fig. 1, Jobs 1 and 2 are in conflict, while
jobs 1 and 3 are not. Jobs 2 and 3 are also in conflict, but in the more general
case, in which demands are allowed, they can be scheduled together, since the
sum of their demands is not more than one.

2

1

1

3

d2 = 1
2

d3 = 1
2

d1 = 1

Fig. 1. A two dimensional interpretation of a 2-interval scheduling instance

We describe several applications in which the problem of scheduling t-
intervals with demands arises. First, consider a multimedia-on-demand system
with a limited bandwidth through which movies are broadcasted to clients (e.g.,
through a cable TV network). Each movie has a different bandwidth demand,
which may depend on its quality. Each client requests a particular movie, and
specifies the time at which she would like to start watching it. Moreover, each
client specifies at which times she plans to take breaks. In the (offline) through-
put maximization version of this problem, we aim to maximize the revenue by
deciding which movies to broadcast, subject to the constraint that the band-
width demands at any given moment can be supplied by the system. (See [1] for
more details.) Another application is allocation of linear resources [3]. Requests

716 R. Bar-Yehuda and D. Rawitz

for a linear resource can be modeled as intervals on the line (e.g., a disk drive
is a linear resource when requests are for contiguous blocks [4]). Consider a sce-
nario in which the jobs are requests from several linear resources, and two jobs
are in conflict if their requests on one of the resources overlap. (This example
corresponds to a t-union graph.) Our goal is to schedule as many jobs as possible
such that the total demand from any linear resource at any given moment is not
more than one. The demand in this case can model transmission rate. For more
details and applications, such as genomic sequence similarity [5], see [1].

Previous Results. Bar-Yehuda et al. [1] showed that the class of degree-3 graphs
is contained in the class of t-union graphs. Since maximum independent set is
APX-hard on degree-3 graphs [6,7], MWIS on t-interval graphs is also APX-
hard. They proved that the k-dimensional matching problem is equivalent to
MWIS in the special class of k-union graphs of unit segments. They also pointed
out that k-dimensional matching cannot be approximated within an O(k/ log k)
ratio unless P=NP [8], while the best known approximation ratio is k/2 + ε,
for any ε > 0 [9]; and that 3-dimensional matching is APX-hard [10]. Note that
it is NP-complete to determine whether a given graph is t-interval [11], or t-
union [12], for any fixed t ≥ 2. However, the hardness results remain true with
respect to the problem of scheduling t-intervals with (or without) demands, since
the constructions in [1] are made using t-interval scheduling instances.

Bar-Yehuda et al. [1] presented a 2t-approximation algorithm for MWIS in t-
interval graphs that uses a new extension of local ratio [13] called fractional local
ratio. The novelty of the fractional approach is that, in weight decomposition
steps, the construction of a new weight function is based on an optimal solution
to an LP relaxation of the original problem instance, and the analysis compares
the weight of the solution returned to the weight of this optimal solution.

Our Results. A 6t-approximation algorithm for the problem of scheduling t-
intervals with demands is given in Sect. 2. The algorithm is based on a novel
and non-standard extension of the primal-dual schema we call fractional primal-
dual . The first step in a fractional primal-dual r-approximation algorithm is to
compute an optimal solution to an LP relaxation of the problem. Let P be the LP
relaxation, and let x∗ be an optimal solution of P. Next, as usual in primal-dual
algorithms (see, e.g. [14]), the algorithm produces an integral primal solution x
and a dual solution y, such that the value of y divided by r bounds the weight of
x. However, in contrast to other primal-dual algorithms, y is not a solution to the
dual of P. The algorithm produces a new LP, denoted by P′, that has the same
objective function as P, but contains inequalities that may not be valid with
respect to the original problem. The dual solution y is a feasible solution of the
dual of P′. x is r-approximate, since we make sure that x∗ is a feasible solution
of P′, and therefore the optimum value of P′ is not less than the optimum value
of P. A general description of fractional primal-dual is given in Sect. 3.

The relation between fractional primal-dual and fractional local ratio is dis-
cussed in Sect. 4. We show that the former is the primal-dual manifestation of the
latter. The connection between fractional primal-dual and fractional local ratio
is based on the connection between the two methods in their standard forms [15].

Using Fractional Primal-Dual to Schedule Split Intervals with Demands 717

We also present a fractional local ratio interpretation of the 6t-approximation
algorithm for the problem of scheduling t-intervals with demands.

Bar-Noy et al. [14] distinguish between two types of resources, fungible and
non-fungible. In a multimedia-on-demand system the resource is the bandwidth
of the system. Such a resource is called fungible, since the identity of the band-
width allocated to a specific movie is irrelevant. On the other hand, there are
scenarios in which a specific portion of the resource is allocated to each job,
e.g., memory allocation in a multi-threaded programming environment. Such re-
sources are called non-fungible. Continuity is another issue. In some cases, such
as memory allocation, the allocation of the resource must by contiguous. In the
full version of this paper we consider the problem of scheduling t-intervals with
demands where the allocation is contiguous and the resource is non-fungible. In
terms of t-union graphs (Fig. 1), this means we are required to pack (t + 1)-
dimensional boxes without breaking them. We present a bi-criteria approxima-
tion algorithm that computes 4t-approximate solutions that may need up to 4
times the given amount of resource.

Related Work. Several approximation frameworks that use the primal-dual
schema were published. Goemans and Williamson [16] presented an algorithm for
a wide family of network design problems. They proposed a more general frame-
work in [17]. A survey by Williamson [18] describes the primal-dual schema and
several extensions of the primal-dual approach. Bertsimas and Teo [19] proposed
a primal-dual framework for covering problems. As in [16] this framework en-
forces the primal complementary slackness conditions while relaxing the dual
conditions. However, in contrast to previous studies, Bertsimas and Teo [19]
express each advancement step as the construction of a single valid inequality,
and an increase of the corresponding dual variable. Bar-Yehuda and Rawitz [15]
presented a primal-dual framework that extends the one in [19]. In the analyses
of both [19] and [15] it was convenient to define a new LP that contains the in-
equalities used by the algorithm. Since this new LP relaxes the original program,
an r-approximation with respect to it is also an r-approximation with respect
to the original program.

As pointed out by Williamson [18] several primal-dual algorithms were de-
vised by first constructing a local ratio algorithm, and then transforming it into
a primal-dual algorithm. Bafna et al. [20] extended the local ratio technique [13],
and obtained a 2-approximation algorithm for the feedback vertex set problem.
This work and the algorithm from [21] were essential in the design of primal-dual
approximation algorithms for feedback vertex set [22]. Bar-Noy et al. [14] devel-
oped local ratio approximation algorithms for resource allocation and schedul-
ing problems. A primal-dual interpretation was given as well. Bar-Yehuda and
Rawitz [15] proved that the two methods in their standard forms are equivalent.

The fractional local ratio technique was also used by Lewin-Eytan et al. [23].

Definitions and Notation. Given a t-interval scheduling instance we denote the
set of jobs by J . For j ∈ J , N(j) is the set of jobs that are in conflict with j,
and N [j] is the set of jobs that are in conflict with j including j, i.e., N [j] =
N(j)∪{j}. (Recall that two jobs are in conflict if any of their segments intersect.)

718 R. Bar-Yehuda and D. Rawitz

We write I ∈ j if I is one of the segments of j. For a segment I ∈ j, the set
R[I] ⊆ J contains every job k such that there exists a segment I ′ ∈ k that
contains the right endpoint of I (including j).

We denote the optimum value of a given problem instance by opt. opt(Π)
denotes the optimum of Π , where Π is usually an LP. Given a schedule S, w(S)
is the weight of S, i.e., w(S) =

∑
j∈S w(j). Throughout the paper w(j) denotes

the weight of job j, while wi denotes the ith weight function. For example, w1(j)
is the weight of job j with respect to the weight function w1.

2 6t-Approximation Algorithm

The problem of scheduling t-intervals with demands can be formalized as follows:

max
∑

j∈J w(j)xj

s.t.
∑

k∈R[I] dkxk ≤ 1 ∀j ∈ J,∀I ∈ j

xj ∈ {0, 1} ∀j ∈ J

The LP relaxation is obtained by replacing the integrality constraints by: 0 ≤
xj ≤ 1 for every j. We denote it by P.

The unit demand version of the following lemma was proven in [1].

Lemma 1. Let x be a feasible solution of P. Then, there exists a job � such that∑
j∈N [�] djxj ≤ 2t.

Proof. In order to prove this lemma, it is enough to show that∑
k

∑
j∈N [k]

dkxk · djxj =
∑

k

dkxk

∑
j∈N [k]

djxj ≤ 2t ·
∑

k

dkxk .

If j1 and j2 are in conflict then j1 ∈ N [j2] and j2 ∈ N [j1]. Hence, the term
dj1xj1 · dj2xj2 is counted twice in the sum on the LHS for every j1, j2 that
are in conflict. Moreover, if j1 and j2 are in conflict then either there exists a
segment I1 ∈ j1 such that j2 ∈ R(I1), or there exists a segment I2 ∈ j2 such
that j1 ∈ R(I2). Thus,∑

k

∑
j∈N [k]

dkxk · djxj ≤ 2 ·
∑

k

∑
I∈k

∑
j∈R[I]

dkxk · djxj .

Since x is a feasible solution of P,∑
j∈R[I]

dkxk · djxj = dkxk

∑
j∈R[I]

djxj ≤ dkxk .

Therefore, ∑
k

∑
j∈N [k]

dkxk · djxj ≤ 2 ·
∑

k

∑
I∈k

dkxk = 2t ·
∑

k

dkxk .

and we are done. ��

Using Fractional Primal-Dual to Schedule Split Intervals with Demands 719

To approximate the problem we consider the following two special cases: (1)
all jobs are wide, i.e., dj > 1

2 for all j, and (2) all jobs are narrow , i.e., dj ≤ 1
2 for

all j. In the case of wide jobs the problem reduces to the special case in which all
jobs have demand 1 since no pair of conflicting jobs may be scheduled together.
Thus, it can be approximated using the 2t-approximation algorithm from [1]. In
the sequel we present a 4t-approximation algorithm for narrow jobs. To solve
the problem in the general case we solve it separately for the narrow jobs, and
for the wide jobs, and return the solution of greater weight. Since either the
optimum of the narrow jobs is at least 2

3opt or the optimum for the wide jobs
is at least 1

3opt, the schedule returned is 6t-approximate.
The first step in 4t-approximation algorithm for narrow instances is to obtain

an optimal solution of P, denoted by x∗. The second step is given below.

Algorithm FPD(J, w, x∗)

1. i ← 1
2. J1 ← J
3. While Ji 	= ∅ do:
4. Let �i = argmin�∈Ji

∑
j∈N [�]∩Ji

djx
∗
j

5. Construct Inequality i:
(1 − d�i)z�i +

∑
j∈N(�i)∩Ji

djzj ≤ 1 − 2d�i + 2t

6. Increase yi until
(1 − d�i)yi +

∑
k : �i∈N(�k)∩Jk

d�iyk = w(�i)

7. Ji+1 ←
{

j :
∑

k : j∈N(�k)∩Jk
djyk < w(j)

}
8. i ← i + 1

9. S ← ∅
10. While i > 1 do:
11. i ← i − 1
12. If S ∪ {�i} is a feasible solution do: S ← S ∪ {�i}
13. Return S

The running time of algorithm is polynomial since in each iteration at least
one job (Job �i) is eliminated. Moreover, the computed solution is feasible due
to Lines 9-12. It remains to show that this schedule is 4t-approximate.

The following LP contains the inequalities constructed by the algorithm:

max
∑

j

w(j)zj

s.t. (1 − d�i)z�i +
∑

j∈N(�i)∩Ji

djzj ≤ ci ∀i ∈ {1, . . . , m}

zj ≥ 0 ∀j

(P′)

where m is the number of iterations, and ci
�= 1 − 2d�i + 2t. The dual of P′ is:

720 R. Bar-Yehuda and D. Rawitz

min
m∑

i=1

ciyi

s.t. (1 − d�i)yi +
∑

k : �i∈N(�k)∩Jk

d�iyk ≥ w(�i) ∀i ∈ {1, . . . , m}∑
k : j∈N(�k)∩Jk

djyk ≥ w(j) ∀j 	∈ {�1, . . . , �m}

yi ≥ 0 ∀i ∈ {1, . . . , m}

(D′)

Let x be the incidence vector of the schedule S returned by the algorithm.
Also, let y be the vector constructed by the algorithm. We show that: (1) y
is a feasible solution of D′, (2) x∗ is a feasible solution of P′, and (3) w · x ≥
c · y/4t. When putting it all together we get that: w · x ≥ c · y/4t ≥ w · x∗/4t =
opt(P)/4t ≥ opt/4t, which means that x is 4t-approximate.

To see that y is a feasible solution of D′ observe that by the termination
condition of the first while loop (Line 3) all the constraints in D′ are satisfied.
Next we show that x∗ is a feasible solution of P′. Consider Inequality i. Let xi be
the projection of x∗ on Ji. That is, xi

j = x∗
j if j ∈ Ji, and xi

j = 0, otherwise. xi

is a feasible solution of P, therefore by Lemma 1
∑

j∈N [�i]∩Ji
djx

i
j ≤ 2t. Hence,

(1 − d�i)x
∗
�i

+
∑

j∈N(�i)∩Ji

djx
∗
j = (1 − d�i)x

i
�i

+
∑

j∈N(�i)∩Ji

djx
i
j

= (1 − 2d�i)x
i
�i

+
∑

j∈N [�i]∩Ji

djx
i
j

≤ 1 − 2d�i + 2t .

Since x∗ satisfies the inequalities in P′, we conclude that x∗ is a feasible solution
of P′, and that w · x∗ ≤ c · y.

Finally, we prove that w · x ≥ c · y/4t. First,

∑
j

w(j)xj =
∑

i

x�i

⎛⎝(1 − d�i)yi +
∑

k : �i∈N(�k)∩Jk

d�iyk

⎞⎠+

∑
j �∈{�1,...,�m}

xj

∑
k : j∈N(�k)∩Jk

djyk

since xj = 1 if j = �i for some i and the corresponding constraint is tight, and
otherwise xj = 0 (Line 6). By changing the summation order we get that

∑
j

w(j)xj =
∑

i

yi

⎛⎝(1 − d�i)x�i +
∑

j∈N(�i)∩Ji

djxj

⎞⎠ .

Observe that either �i ∈ S, or the total demand of jobs in N(�i)∩Ji ∩S is more
than 1 − d�i (otherwise �i would have been added to S in Line 12). Hence,∑

j

w(j)xj ≥
∑

i

yi(1 − d�i) =
∑

i

(1 − 2d�i + 2t) · yi
1 − d�i

1 − 2d�i + 2t
≥ 1

4t
·
∑

i

ciyi

Using Fractional Primal-Dual to Schedule Split Intervals with Demands 721

where the last inequality is because f(z) = 1−2z+2t
1−z is an increasing function for

0 ≤ z ≤ 1
2 and t ≥ 1, and that f(1

2) = 4t.

3 Using Fractional Primal-Dual

This section is written in terms of maximization problems. Similar arguments
can be made in the minimization case.

Consider the following linear program, denoted by P, and its dual:

max
∑n

j=1 w(j)xj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ {1, . . . , m}
xj ≥ 0 ∀j ∈ {1, . . . , n}

min
∑n

i=1 biyi

s.t.
∑n

i=1 aijyj ≥ w(j) ∀j ∈ {1, . . . , n}
yi ≥ 0 ∀i ∈ {1, . . . , m}

A primal-dual r-approximation algorithm constructs an integral primal solution
x and a dual solution y, such that w ·x ≥ b ·y/r. It follows, by weak duality, that
x is r-approximate. One way to find such a pair of primal and dual solutions is
to focus on pairs (x, y) satisfying the following relaxed complementary slackness
conditions (for an appropriately chosen r):

Primal: ∀j, xj > 0 ⇒
∑m

i=1 aijyi = w(j).
Relaxed Dual: ∀i, yi > 0 ⇒ bi/r ≤

∑n
j=1 aijxj ≤ bi.

These conditions imply that x is r-approximate since

n∑
j=1

w(j)xj =
n∑

j=1

xj ·
m∑

i=1

aijyi =
m∑

i=1

yi ·
n∑

j=1

aijxj ≥ 1
r
·

m∑
i=1

biyi.

Typically, such an algorithm begins with the solutions x = 0 and y = 0. It then
iteratively increases dual variables until y becomes feasible. Afterwards, it adds
as many elements that correspond to tight dual constraints to x as possible,
ending with a primal/dual pair satisfying the relaxed conditions. This design
method is commonly referred to as the primal-dual schema.

Our algorithm deviates from the standard primal-dual approach. First, the
algorithm is based on an optimal fractional solution, x∗. Another difference is
that our algorithm constructs new primal constraints during execution that are
not necessarily valid for the original problem instance. That is, a feasible solution
may not satisfy these constraints. However, we make sure that x∗ satisfies them.
Note that the construction of new primal constraints during execution was pre-
viously used by Bertsimas and Teo [19], and subsequently by Bar-Yehuda and
Rawitz [15]. However, in both papers the algorithms construct constraints that
are valid with respect to the original problem instance. The constraints that
are constructed by our algorithm induce a new linear program P′ and a dual
program D′. It produces a primal solution x for the original problem instance,
and a solution y for D′, whose value divided by r bounds the weight of x. Since
x∗ is in the feasible set of P′, y serves as an upper bound to the weight of x∗.
Therefore, x is r-approximate.

722 R. Bar-Yehuda and D. Rawitz

Let P′ = max {w · z : Az ≤ c}. When using fractional primal-dual the solu-
tions x∗, x, y produced by the algorithm satisfy the following fractional relaxed
complementary slackness conditions:

Primal: ∀j, xj > 0 ⇒
∑m

i=1 aijyi = w(j)
Relaxed Dual: ∀i, yi > 0 ⇒ ci/r ≤

∑n
j=1 aijxj and

∑n
j=1 aijx

∗
j ≤ ci

Note that y is actually positive, since P′ contains inequalities that were used by
the algorithm. Since x∗, x, y satisfy the above conditions we get that:

w · x =
n∑

j=1

w(j)xj =
n∑

j=1

xj ·
m∑

i=1

aijyi =
m∑

i=1

yi ·
n∑

j=1

aijxj ≥
m∑

i=1

1
r
ciyi =

c · y
r

which this means that x is r-approximate, since c · y ≥ opt(P′) ≥ w · x∗ =
opt(P) ≥ opt.

4 Fractional Local Ratio

In this section we present a fractional local ratio interpretation of the 4t-
approximation algorithm for narrow jobs, and study the connection between
fractional primal-dual and fractional local-ratio. We start with a brief descrip-
tion of the fractional local ratio technique.

A typical local ratio algorithm is recursive. It constructs, in each recursive
call, a new weight function w1. In essence, a local ratio analysis consists of com-
paring, at each level of the recursion, the solution found in that level to an
optimal solution for the problem instance passed to that level, where the com-
parison is made with respect to w1 and with respect to w − w1. Thus, in each
level of the recursion there are potentially two optima (one with respect to w1

and one with respect to w −w1) against which the solution is compared, and in
addition, different optima are used at different recursion levels. The fractional
local ratio paradigm takes a different approach. It uses a single solution x∗ to the
original problem instance as the yardstick against which all intermediate solu-
tions (at all levels of the recursion) are compared. In fact, x∗ is not even feasible
for the original problem instance but rather for a relaxation of it. Typically, x∗

will be an optimal fractional solution to an LP relaxation.
Fractional local ratio [1] is based on a fractional version of the Local Ratio

Theorem [13,24].

Theorem 1 (Fractional Local Ratio). Let w, w1, w2 ∈ IRn be weight func-
tions such that w = w1 + w2. Let x∗ and x be vectors in IRn such that
w1 · x ≥ w1 · x∗/r and w2 · x ≥ w2 · x∗/r. Then, w · x ≥ w · x∗/r as well.

4.1 Fractional Local Ratio Interpretation

Let x∗ be an optimal fractional solution. We now run the recursive algorithm
described next to obtain a feasible schedule. The algorithm contains problem-
size reduction steps, as do local ratio algorithms for packing problems (e.g., [14]).
The initial call is FLR(J, w).

Using Fractional Primal-Dual to Schedule Split Intervals with Demands 723

Algorithm FLR(J, w)

1. If J = ∅, return ∅
2. Let � = argmin�∈J

∑
j∈N [�] djx

∗
j

3. ε ← w(�)/(1 − d�)

4. Define the weight functions w1(j) = ε ·

⎧⎪⎨⎪⎩
1 − d� j = �,

dj j ∈ N(�),
0 otherwise,

and w2 = w − w1

5. Let J+ be the set of positive weighted jobs
6. S′ ← FLR(J+, w2)

7. If S′ ∪ {�} is a feasible solution, return S = S′ ∪ {�}
8. Else, return S = S′

For the analysis, let x denote the incidence vector of the schedule S returned
by the algorithm. We assume that x (and w) is of size n, where n is the number
of jobs in the original problem instance. This way we can compare x to x∗. We
claim that w · x ≥ 1

4t w · x∗. The proof is by induction on the recursion. In the
base case (J = ∅) we have S = ∅, and therefore w ·x = 0. Since the weights in the
recursive base are non-positive we get that w ·x∗ ≤ 0. Thus, w ·x ≥ w ·x∗. For the
inductive step, let x′ be the incidence vector of S′ (obtained in Line 6). By the
inductive hypothesis w2 · x′ ≥ 1

4t w2 · x∗. Moreover, the weight of � with respect
to w2 is zero, and therefore w2 · x = w2 · x′. This means that w2 · x ≥ 1

4t w2 · x∗.
Next, we show that w1 ·x ≥ 1

4tw1 ·x∗. This completes the proof since this means
that by the Fractional Local Ratio Theorem w · x ≥ 1

4t w · x∗.
It remains to show that w1 · x ≥ 1

4tw1 · x∗. Observe that the projection of x∗

on the current instance J is feasible. Hence,∑
j

w1(j)x∗
j = ε(1 − d�)x� +

∑
j∈N(�)∩J

εdjx
∗
j

= ε(1 − 2d�)x� + ε
∑

j∈N [�]∩J

djx
∗
j

≤ ε(1 − 2d� + 2t)

where the inequality is due to Lemma 1. On the other hand, we show that
w1 · x ≥ ε(1 − d�). If � is added to S (in Line 8) then this is obviously true.
Otherwise, if � is not added to S, the total demand of jobs in N(�) ∩ S is more
than 1−d�, since otherwise � would have been added to S. w ·x ≥ 1

4tw ·x∗, since
f(z) = 1−2z+2t

1−z is an increasing function for z ∈ [0, 1
2] and t ≥ 1, and f(1

2) = 4t.

4.2 Connection to Fractional Local Ratio

In [15] Bar-Yehuda and Rawitz showed that the primal-dual schema and local
ratio technique in their standard forms are equivalent. This equivalence is based

724 R. Bar-Yehuda and D. Rawitz

on the fact that increasing a dual variable by ε is equivalent to subtracting the
weight function obtained by multiplying the coefficients of the corresponding
primal constraint by ε from the primal objective function. A similar equivalence
exists between both fractional methods. For example, the weight function that
is used in the ith recursive call of Algorithm FLR is equal to the vector of
coefficients of the inequality that was constructed in the ith iteration of Algo-
rithm FPD multiplied by yi. Generally, in each recursive call of a fractional
local ratio algorithm we utilize a weight function w1 such that w1 ·x∗ ≤ r w1 ·x.
Implicitly, this means that there exists some ci such that w1 · x ≥ ci/r and
w1 · x∗ ≤ ci. Thus, the inequality w1 · z ≤ ci can be used by a fractional primal-
dual algorithm. (Note that we do not need to know the value of ci.) For the
other direction, an inequality α · z ≤ β corresponds to the weight function ε · α
where ε is the value of the corresponding dual variable.

Acknowledgments. We thank Guy Even, Ari Freund, Seffi Naor, and Moni Sha-
har for helpful discussions.

References

1. Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling
split intervals. In: 13th Annual Symposium on Discrete Algorithms. (2002) 732–741

2. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press
(1980)

3. Halldórsson, M.M., Rajagopalan, S., Shachnai, H., Tomkins, A.: Shceduling mul-
tiple resources. Manuscript (1999)

4. Rotem, D.: Analysis of disk arm movement for large sequential reads. In: 11th
ACM Symposium on Principles of Database Systems. (1992) 47–54

5. Bafna, V., Narayanan, B.O., Ravi, R.: Nonoverlapping local alignments (weighted
independent sets of axis parallel rectangles). Disc. Appl. Math. 71 (1996) 41–53

6. Berman, P., Fujito, T.: Approximating independent sets in degree 3 graphs. In:
4th Workshop on Algorithms and Data Structures. Volume 995 of LNCS. (1995)
449–460

7. Halldórsson, M.M., Yoshihara, K.: Greedy approximations of independent sets in
low degree graphs. In: 6th Annual International Symposium on Algorithms And
Computation. Volume 1004 of LNCS. (1995) 152–161

8. Hazan, E., Safra, S., Schwartz, O.: On the hardness of approximating k-dimensional
matching. In: 6th International Workshop on Approximation Algorithms for Com-
binatorial Optimization Problems. Volume 2764 of LNCS. (2003) 83–97

9. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics 2 (1989) 68–72

10. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complex-
ity classes. Journal of Computer and System Sciences 43 (1991) 425–440

11. West, D.B., Shmoys, D.B.: Recognizing graphs with fixed interval number is NP-
complete. Discrete Applied Mathematics 8 (1984) 295–305

12. Gyárfás, A., West, D.B.: Multitrack interval graphs. In: 26th SE Intl. Conf. Graph
Th. Comb. Comput. Volume 109 of Congr. Numer. (1995) 109–116

Using Fractional Primal-Dual to Schedule Split Intervals with Demands 725

13. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics 25 (1985) 27–46

14. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Shieber, B.: A unified approach
to approximating resource allocation and schedualing. J. ACM 48 (2001) 1069–
1090

15. Bar-Yehuda, R., Rawitz, D.: On the equivalence between the primal-dual schema
and the local ratio technique. SIAM J. on Disc. Math. (2005) To appear.

16. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. on Comp. 24 (1995) 296–317

17. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation
algorithms and its application to network design problems. In Hochbaum, D.S.,
ed.: Approximation Algorithms for NP-Hard Problem. PWS Publishing Company
(1997)

18. Williamson, D.P.: The primal dual method for approximation algorithms. Mathe-
matical Programming 91 (2002) 447–478

19. Bertsimas, D., Teo, C.: From valid inequalities to heuristics: A unified view of
primal-dual approximation algorithms in covering problems. Oper. Res. 46 (1998)
503–514

20. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. on Disc. Math. 12 (1999) 289–297

21. Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artificial In-
telligence 83 (1996) 167–188

22. Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P.: A primal-dual
interpretation of recent 2-approximation algorithms for the feedback vertex set
problem in undirected graphs. Oper. Res. Lett. 22 (1998) 111–118

23. Lewin-Eytan, L., Naor, J., Orda, A.: Admission control in networks with advance
reservations. Algorithmica 40 (2004) 293–403

24. Bar-Yehuda, R.: One for the price of two: A unified approach for approximating
covering problems. Algorithmica 27 (2000) 131–144

An Approximation Algorithm for the Minimum
Latency Set Cover Problem

Refael Hassin1 and Asaf Levin2

1 Department of Statistics and Operations Research,
Tel-Aviv University, Tel-Aviv, Israel

hassin@post.tau.ac.il
2 Department of Statistics, The Hebrew University, Jerusalem, Israel

levinas@mscc.huji.ac.il

Abstract. The input to the minimum latency set cover problem
consists of a set of jobs and a set of tools. Each job j needs a specific sub-
set Sj of the tools in order to be processed. It is possible to install a single
tool in every time unit. Once the entire subset Sj has been installed, job
j can be processed instantly. The problem is to determine an order of job
installations which minimizes the weighted sum of job completion times.
We show that this problem is NP-hard in the strong sense and pro-
vide an e-approximation algorithm. Our approximation algorithm uses
a framework of approximation algorithms which were developed for the
minimum latency problem.

Keywords: Minimum sum set cover, minimum latency, approximation
algorithm.

1 Introduction

The minimum latency set cover problem (MLSC) is defined as follows:
Let J = {J1, J2, . . . , Jm} be a set of jobs to be processed by a factory. A job
Ji has non-negative weight wi. Let T = {t1, t2, . . . , tn} be a set of tools. Job j
is associated with a nonempty subset Sj ⊆T . Each time unit the factory can
install a single tool. Once the entire tool subset Sj has been installed, job j can
be processed instantly. The problem is to determine the order of tool installation
so that the weighted sum of job completion times is minimized.

We rephrase MLSC as a variant of the minimum set cover problem in
the following way. Given a set of items J and a collection of subsets S1, . . . , Sm

of a ground set T . We want to order the elements of T so that when each item
j incurs a cost that equals its weight times the last time when an element of Sj

appears in the order. The goal is to minimize the total cost.
Feige et al. [6] considered the related problem where each job incurs a cost

equal to the first time where an element of Sj appears in the order. They proved
that a greedy algorithm is a 4-approximation algorithm, and showed that unless
P = NP there is no polynomial time algorithm with an approximation ratio
4 − ε where ε > 0.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 726–733, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Approximation Algorithm for the Minimum Latency Set Cover Problem 727

The minimum latency problem is defined as follows: we are given a set
of n points. A feasible solution is a Hamiltonian path that traverses the points.
Each point j (of the n points) incurs a cost that equals the total length of the
prefix of the path from its beginning towards the (first) appearance of j in the
path. The goal is to find the path that minimizes the total incurred cost. Our
approximation algorithm follows similar arguments to the ones used by Goemans
and Kleinberg [7] and Archer, Levin and Williamson [1] for the minimum latency
problem in a metric space.

The densest k-subgraph problem is defined as follows. We are given a
graph G = (V, E) where each edge e has a non-negative weight we. The goal
is to pick k vertices U = {v1, . . . , vk} ⊆ V such that

∑
(u,v)∈E∩(U×U) w(u,v) is

maximized. This problem is known to be NP-hard even if all weights are equal,
and the current best approximation algorithm for it [5] has an approximation
ratio of O(n− 1

3).
Given a hyper-graph G = (V, E) and a subset of vertices U ⊆ V , a hyper-edge

e is induced by U if e ⊆ U . We will use in our algorithm a new problem named
the densest k-sub-hyper-graph problem which generalizes the densest k-
subgraph problem to hyper-graphs where each hyper-edge e contributes to the
goal function if and only if it is induced by U . The densest k-sub-hyper-graph
problem is at least as difficult as the densest k-subgraph problem. However, we
are not aware of any prior results on this new variant.

Paper Preview. In Section 2 we prove that MLSC is NP-hard in the strong
sense. In Section 3 we develop a basic approximation algorithm assuming that
the densest k-sub-hyper-graph problem can be solved in polynomial time. After-
wards, in Section 4 we show how to remove this assumption and obtain our e-
approximation algorithm. In Section 5 we discuss bad examples for our analysis.

2 NP-Hardness of MLSC

The following problem is known as the minimum weighted sum of job com-
pletion times on a single machine under precedence constraints
with unit processing times problem: given m jobs {j1, j2, . . . , jm} each
has a unit processing time and a non-negative weight wj , and precedence con-
straints between the jobs in the form of an acyclic digraph G. A feasible schedule
must satisfy that for all (j, k) ∈ A, the machine starts to process job k only after
job s is finished (not necessarily immediately after). The goal is to find a feasible
schedule (that satisfies the precedence constraints) that minimizes the weighted
sum of job completion times. In the scheduling notation this problem is denoted
as 1|prec; pj = 1|

∑
wjCj . This problem is known to be NP-hard in the strong

sense (see [12,13] and also [4,10]), and there is a 2-approximation algorithm for
it [8].

Theorem 1. MLSC is NP-hard in the strong sense.

Proof. We will describe a reduction from 1|prec; pj = 1|
∑

wjCj . We are given
an instance I defined as J= {j1, j2, . . . , jn}, such that ji has weight wi, and an

728 R. Hassin and A. Levin

acyclic directed graph G defining the precedence constraints. For i = 1, . . . , n, let
Pi denote the set of all predecessors of ji. We define an instance I ′ to MLSC in
the following way: Define a job j′i and a tool ti for i = 1, . . . , n. Define for job
j′i the job set S′

i = {ti}
⋃

q∈Pi
S′

q. Finally, we assign a weight wi to j′i. Denote
the resulting instance of MLSC by I ′. Since problem 1|prec; pj = 1|

∑
wjCj is

NP-hard in the strong sense we can restrict ourselves to instances of 1|prec; pj =
1|

∑
wjCj in which the weights are polynomially bounded, and therefore I ′ has

polynomial size even if the numbers are represented in unary. To prove the
theorem, it suffices to show that given a solution of cost C to I there is a
solution to I ′ of cost at most C, and vice versa.

First assume that π is a feasible schedule to I with cost C. Then, at time unit
i we install tool tπ(i). Since π satisfies the precedence constraints, we conclude
that at time i the set S′

π(i) has been installed, and therefore we gain a weight
of wπ(i). This is exactly the weight of π(i) such that Cπ(i) = i (the completion
time of job π(i) is i and this term is multiplied by wπ(i) in the objective function∑

wjCj). Therefore, the resulting solution costs C as well.
Consider now a solution π′ to I ′, i.e., at time i we install tπ′(i). W.l.o.g. we

assume that prior to the i-th time unit we have already installed the sets Si′ for
all i′ such that (i′, π′(i)) ∈ G. This assumption is w.l.o.g. because otherwise at
time unit i we cannot complete the processing of any job, and we can exchange
the positions of the tools in π′ without additional cost. With this assumption,
π′ is a feasible solution to I, and as in the previous case, π′ has a cost of at
most C′. ��
Remark 1. MLSC is NP-hard even for unweighted instances. The changes that
are needed in the construction is to replace a job with weight wj by a family of
wj identical jobs, each with unit weight. Since MLSC is NP-hard in the strong
sense the resulting instance has a polynomial size.

3 The Basic Approximation Algorithm

In this section, we assume that there is a polynomial time algorithm for the
densest k-sub-hyper-graph problem. In the next section we will show how to
remove this assumption. We follow similar arguments as used by Goemans and
Kleinberg [7] for the minimum latency problem.

Our algorithm will make use of the values of the densest k-sub-hyper-graph
for k = 2, 3, . . . , n, in the following auxiliary hyper-graph. The vertex set is T , for
each job j we will have a hyper-edge ej = Sj that is its tool set with weight wj .
Denote by V1, V2, . . . , Vn the resulting vertex-sets and denote by Wi the weight
of hyper-edges induced by Vi. In other words, Wi is the maximum weight of jobs
that can be processed (covered) in i units of time (by i tools).

Given an increasing set of indices

j0 = 0 < j1 < j2 < · · · < jt = n,

we define the concatenated solution as follows: for all i = 0, . . . , t − 1, at time∑i
k=0 jk we finished installation of the tools of the Vj0 ∪Vj1 ∪· · ·∪Vji and in the

An Approximation Algorithm for the Minimum Latency Set Cover Problem 729

next ji+1 time units we install the yet uninstalled tools of Vji+1 in an arbitrary or-
der (perhaps leaving idle time until the end of this time period). A job j is served
at time no later than min

{∑i
k=0 jk : Sj ⊆

⋃i
k=0 Vk

}
. Consider the following

upper bound on the cost of the concatenated solution. Suppose that the weight
of jobs that are completed during the time interval

[∑i−1
k=0 jk + 1,

∑i
k=0 jk

]
, is

vi. Let qi =
∑i

l=0 vl be the weight of jobs completed until
∑i

k=0 ji. Denote by
W the total weight of all the jobs, i.e., W =

∑m
j=1 wj .

The set Vji adds at most ji to the waiting time of each of the W − qi−1 units
of weights of jobs that were not processed until time

∑i−1
k=0 jk. Thus, the total

cost of the concatenated solution is at most

t∑
i=1

(W − qi−1) · ji ≤
t∑

i=1

(W − Wi−1) · ji, (1)

where the inequality follows since by definition qi ≥ Wi for all i.
Our algorithm for approximating MLSC is as follows:

Algorithm A:

1. For k = 0, 1, 2, . . . , n, compute Vk, an optimal densest k-sub-hyper-graph
solution and its value Wk.

2. Let G be the graph on the vertex set {0, 1, 2, . . . , n}, such that, for all i ≤ j,
G has an arc from i to j with length (W − Wi) · j.

3. Compute a shortest 0 − n path in G. Denote its length by σ and suppose
that it goes through j0 = 0 < j1 < · · · < jt = n.

4. Output the concatenated solution .

The next lemma follows from (1):

Lemma 1. The cost of the concatenated solution is at most σ.

Let opt denote the optimal solution cost and let σ denote the length of a
shortest path in G.

Theorem 2.
σ ≤ e · opt.

Proof. To prove the theorem, we replace each job j by wj unit weight jobs each
having the same tool set Sj. Thus, the number of jobs is now W . This change
clearly has no effect on opt or σ. Let OPT be an optimal solution and denote
by l∗k the time it takes OPT to finish the first k jobs, k = 1, . . . , W . Note that
1 ≤ l∗1 ≤ · · · ≤ l∗W . We construct a 1 − n path in G and compare its length to
opt =

∑W
k=1 l∗k.

Fix c > 1 and 1 ≤ L0 < c. For i = 1, . . . , t let ji = �L0c
i−1� where t = min{i :

L0c
i ≥ n}. We may also assume w.l.o.g. that every tool is needed for some job so

that the total time for the process is n, and therefore jt = n. Consider the path
j0 = 0, j1, . . . , jt = n in G. Its length is

∑t
i=1(W − Wji−1) · ji. Since Wt = W ,

730 R. Hassin and A. Levin

t∑
i=1

(W − Wji−1)ji =
t∑

i=1

ji

t∑
r=i

(Wjr − Wjr−1)

=
t∑

i=1

[
(Wji − Wji−1) ·

i∑
r=1

jr

]

=
W∑

k=1

δk,

where δk =
∑i

l=1 jl for Wji−1 < k ≤ Wji .
Let Lk = min{L0c

i : L0c
i ≥ l∗k}.1 By definition, l∗k ≤ Lk. Let sk be such that

Lk = L0c
sk . Therefore,

δk =
sk∑
l=1

jl ≤
sk∑
l=1

L0c
l−1 =

sk∑
l=1

Lk

csk−l+1
≤ Lk +

Lk

c
+

Lk

c2
+ · · · =

Lkc

c − 1
,

where the first equation holds by definition of δk, the first inequality holds by
definition of jl, the second equation holds because Lk = L0c

sk .
Let L0 = cU where U is a random variable uniformly distributed over [0, 1].

This defines a random path whose expected length is
∑n

k=1 E[δk]. Moreover,
E[δk] ≤ c

c−1E[Lk]. We now compute E[Lk]. First, assume that l∗k ≥ L0. Observe

that Lk

l∗k
, is a random variable of the form cY , where Y =

⌈
logc

(
l∗k
L0

)⌉
−logc

(
l∗k
L0

)
is a uniform random variable over [0, 1]. Hence,

E[Lk] = l∗kE[cY] = l∗k

∫ 1

0

cxdx = l∗k
c − 1
ln c

.

Even if l∗k < L0 then Lk = L0 ≤ c and E[Lk] = E[L0] = c−1
ln c ≤ l∗k

c−1
ln c , where the

last inequality holds because l∗k ≥ 1.
Thus,

E[δk] ≤ c

ln c
l∗k.

Therefore, the expected length of our random path is at most c
ln c times

∑
l∗k.

Hence, the length of a shortest path is at most c
ln c times

∑
l∗k. This value is

optimized by setting c to be the root of ln(c)−1 = 0, and hence c = e ∼ 2.71828.
Therefore, σ ≤ e · opt. ��

Corollary 1. Algorithm A is an e-approximation algorithm.

4 The MLSC Approximation Algorithm

The results of Section 3 assumed that we are able to compute an optimal densest
k-sub-hyper-graph for all values of k. In this section we remove this assumption
1 δk is the minimum time in our logarithmic scale that the solution defined by the

path j0, . . . , jt completes k jobs, whereas Lk is the time - in the same scale- it takes
OPT to accomplish this task.

An Approximation Algorithm for the Minimum Latency Set Cover Problem 731

by following the framework carried by Archer, Levin and Williamson [1] for the
minimum latency problem.

For k = 1, 2, . . . , n, we find either an optimal densest k-sub-hyper-graph or a
pair of values kl < k < kh with optimal solutions Vkl

, Vkh
for the densest kl-sub-

hyper-graph and the densest kh-sub-hyper-graph problems with costs Wl, Wh

(respectively) such that the following property holds: let k = αkl + (1 − α)kh,
then ak = αWl + (1 − α)Wh ≥ Wk.

We note that there are values of k such that it is possible to compute a densest
k-sub-hyper-graph in polynomial time. To make this claim precise we will show
that given a parameter λ > 0 defining the cost of buying a tool, and the gain wj

obtained by purchasing the subset Sj (thus completing job j), it is possible to
compute a profit maximizing set of tools. This auxiliary problem can be solved
by a polynomial time algorithm for the provisioning problem: Given n items
to choose from where item j costs cj , and given m sets of items S1, S2, . . . , Sm

that are known to confer special benefit; if all the items of Si are chosen then a
benefit bi is gained. The goal is to maximize the net benefit, i.e., total benefit
gained minus total cost of items chosen. The provisioning problem is known to
be solvable in polynomial time (See [2,14] and also [11] pages 125-127).

In fact using a single parametric min-cut procedure it is possible to compute
the entire upper-envelope of the points in the graph of Wk versus k ([15] and see
also [9] for more related results). This piecewise linear graph gives the desired
ak values for all values of k.

For values of k that for which we can compute the optimal densest k-sub-
hyper-graph we let ak = Wk, and for other values of k we let ak = αal + (1 −
α)ah ≥ Wk and say that they corresponds to phantom solutions (the notion of
phantom solutions is inspired by [1]). These phantom solutions are not solutions
as we are not able to compute a densest k-sub-hyper-graph in polynomial time,
however these phantom solutions provide values of ak. Lemma 2 shows that there
exists a shortest path in G which does not use phantom vertices, i.e. vertices
that correspond to phantom solutions, for which we are not able to compute
a densest k-sub-hyper-graph. As a consequence, Algorithm A can be applied
to the subgraph of G induced by the vertices that correspond to non-phantom
vertices, without loss of optimality.

Lemma 2. There exists a shortest path in G that does not use phantom vertices.

Proof. We prove the lemma by showing that even when the true parameter
Wk of a phantom vertex k is replaced by ak ≥ Wk, thus reducing the lengths
(W − Wk)j of all arcs (k, j), there exists a shortest path which does not use
phantom vertices.

Consider a shortest path that visits i → k → j, where k is a phantom
vertex with corresponding kl, kh as defined above. Set γ = ah−al

kh−kl
. By definition

ak = (1 − α)al + γ(k − kl). By the definition of the arc lengths, the sub-path
i → k → j costs

(W − ai)k + (W − ak)j = (W − ai)k + (W − [(1 − α)al + γ(k − kl)])j
= k(W − ai − γj) + (W − (1 − α)al + γkl)j.

732 R. Hassin and A. Levin

This is a linear function of k and it is valid for max{i, kl} ≤ k ≤ min{j, kh}.
Therefore, it attains a minimum at one of the endpoints max{i, kl} or min{j, kh}.
We can either remove loops to reduce the length of the path and thus obtain a
contradiction, or we reduce the number of vertices along the path that correspond
to phantom vertices. Using an inductive argument we establish the lemma. ��

Therefore, we can apply Corollary 1 to get the main result of this paper:

Theorem 3. There is an e-approximation algorithm for the MLSC problem.

5 Bad Example for Our Analysis

Goemans and Kleinberg [7] proved that using the randomized path in their
analysis does not hurt the approximation ratio (with respect to the shortest
path). It follows that there are networks where the ratio between the shortest
path and the optimal solution is arbitrary close to the provable approximation
ratio.

In our analysis, we have different arc lengths. Therefore, the question whether
our analysis is tight is open. So far we were able to construct networks (by
solving large linear programs) where the ratio between the shortest 1-n path
to the optimal cost is approximately 2.62 for n = 70. This bound although
monotone increasing does not approach e as n goes to infinity. Therefore, it
might be possible to improve our analysis by using a different randomized path
in the proof of the approximation ratio.

References

1. A. Archer, A. Levin and D. P. Williamson. “Faster approximation algorithm for
the minimum latency problem”, Cornell OR&IE Technical report 1362, 2003.

2. M. L. Balinski, “On a selection problem,” Management Science, 17, 230-231, 1970.
3. A. Blum, P. Chalasani, D. Coppersmith, W. Pulleyblank, P. Raghavan, M. Sudan.

“The minimum latency problem”, Proceeding of the 26th ACM Symposium on the
Theory of Computing, 163-171, 1994.

4. P. Brucker, “Scheduling algorithms,” Springer-Verlag, Berlin, 2004.
5. U. Feige, D. Peleg and G. Kortsarz, “The dense k-subgraph Problem,” Algorith-

mica, 29 410-421, 2001.
6. U. Feige, L. Lovász and P. Tetali, “Approximating min sum set cover,” Algorith-

mica, 40, 219 - 234, 2004.
7. M. X. Goemans and J. Kleinberg. “An improved approximation ratio for the min-

imum latency problem”, Mathematical Programming, 82:111-124, 1998.
8. L. A. Hall, A. S. Schulz, D. B. Shmoys and J. Wein, ”Scheduling to minimize aver-

age completion time: off-line and on-line approximation algorithms,” Mathematics
of Operations Research, 22, 513-544, 1997.

9. D. S. Hochbaum, “Economically preferred facilities locations with networking ef-
fect,” manuscript, 2004.

10. B. J. Lageweg, J. K. Lenstra, E. L. Lawler and A. H. G. Rinnooy Kan, “Computer-
aided complexity classification of combinatorial problems,” Communications of the
ACM, 25, 817-822, 1982.

An Approximation Algorithm for the Minimum Latency Set Cover Problem 733

11. E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
& Winston, New-York 1976.

12. E. L. Lawler, “Sequencing jobs to minimize total weighted completion time subject
to precedence constraints”, Annals of Discrete Mathematics, 2, 75-90, 1978.

13. J.K. Lenstra and A. H. G. Rinnooy Kan, “Complexity of scheduling under prece-
dence constraints,” Operations Research, 26, 22-35, 1978.

14. J. Rhys, “Shared fixed cost and network flows,” Management Science, 17, 200-207,
1970.

15. D. D. Witzgall and R. E. Saunders, “Electronic mail and the locator’s dilemma,”
In Applications of Discrete Mathematics, R.D. Ringeisen and F.S. Roberts eds.
SIAM 65-84, 1988.

Workload-Optimal Histograms on Streams

S. Muthukrishnan1, M. Strauss2, and X. Zheng3

1 Supported by NSF ITR 0220280 and NSF 0354600, Rutgers University
muthu@cs.rutgers.edu

2 Supported by NSF DMS 0354600, University of Michigan
martinjs@umich.edu

3 Supported by NSF DMS 0354600, University of Michigan
xuanzh@eecs.umich.edu

1 Introduction

A histogram is a piecewise-constant approximation of an observed data distribu-
tion. A histogram is used as a small-space, approximate synopsis of the underly-
ing data distribution, which is often too large to be stored precisely. Histograms
have found many applications in database management systems, perhaps most
commonly for query selectivity estimation in query optimizers [1], but have also
found applications in approximate query answering [2], load balancing in paral-
lel join execution [3], mining time-series data [4], partition-based temporal join
execution, query profiling for user feedback, etc. Ioannidis has a nice overview
of the history of histograms, their applications, and their use in commercial
DBMSs [5]. Also, Poosala’s thesis provides a systematic treatment of different
types of histograms [3]. Formally:

Definition 1. A B-bucket histogram H of length N is a partition of [0, N) into
intervals [b0, b1) ∪ [b1, b2) ∪ · · · ∪ [bB−1, bB), where b0 = 0 and bB = N , together
with a collection of B heights hj, for 0 ≤ j < B, one for each bucket. A point
query A[i] to H returns the estimate hj where bj ≤ i < bj+1.

In building a B-bucket histogram, we want to choose B − 1 boundaries bj and
B heights hj, dependent on A. A number of different criteria are known [3] for
choosing bj ’s and hj ’s; a popular and effective one is the V-Opt histogram [6],
where bj’s and hj ’s are chosen to minimize the total square error, taken uniformly
over the set of all point queries, or, equivalently, ‖A−H‖2 =

∑
i(A[i]− hj(i))2.

(Once we have chosen the boundaries, the best bucket height on an interval I is
the average of A over I.)

In [7], the authors presented an O(N2B) time algorithm for determining the
optimal histogram Hopt that minimizes the total square error. This algorithm
has two drawbacks:

– it is expensive—quadratic in N . In order to overcome this drawback, focus
has been on (1 + ε)-approximations, that is, algorithms to find a histogram
H such that ‖A− H‖2 ≤ (1 + ε)‖A− Hopt‖2.

– it needs A to be stored explicitly which is prohibitive in space for large
distributions where histograms are used as synopses. In order to overcome

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 734–745, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Workload-Optimal Histograms on Streams 735

the second drawback, the focus has been on the data stream model of com-
putation where (a) the algorithm reads the signal left to right in one pass
as A[1],A[2], . . . , using space polylogarithmic in the input length N ; this is
the so-called time-series model [8], or, (b) A is specified as a series of up-
dates and the algorithm has to track the changes to A in space and time per
update polylogarithmic in input N ; this is the so-called cash register model
if only additions are allowed, or more generally, the dynamic maintenance
model if both additions and deletions are allowed [8]. Notice that with the
polylogarithmic space requirement, the input can only be represented lossily
since accurate representation of the signal or the workload will need at least
linear space in the worst case.

Besides the parameters B, N , and ε, the algorithms’ costs depend on the
numerical precision involved; we let M be a parameter such that log(M) is
roughly the number of bits of precision used (see below for a formal defini-
tion). A series of (1 + ε)-approximation algorithms have been proposed that
work in time in O(N + poly(B, log N, log M, 1/ε)) in the time series model us-
ing poly(B, log N, log M, 1/ε) space enroute [9–11]. In the dynamic maintenance
model, the authors in [12] present an algorithm that uses time per update, space,
and post-processing time time poly(B, log N, log M, 1/ε). This solves the approx-
imate V -Opt histogram computation problem from a theoretical point of view,
modulo getting the constants involved to be as small as possible.

It has, however, long been an issue that the V -Opt histogram as defined
above is limited in its applications because it does not take into account the
workload of queries for which the histogram is optimized. In particular, when
some of the point queries are more frequent than the others, the histogram
needs to be better at approximating answers to the frequent queries rather than
the infrequent ones. In other words, the metric to minimize is not the sum of
squared errors uniformly over all point queries, but that obtained by weighting
the error on each point query by the workload of how frequently each point query
is posed. Formally:

Definition 2. Given an input signal A[0 · · ·N −1] and workload w[0 · · ·N −1],
0 ≤ wi, the workload-optimal B-bucket histogram Hopt is the choice of bj’s and
hj’s that minimize ‖A− H‖2

w =
∑

i wi(A[i] − hj(i))2.

The problem of finding Hopt is interesting on stored or streamed signals as well
as stored or streamed workloads.

The database community has proposed methods not merely to synposize
data distributions but also to take the workload into account. Query feedback
from the execution engine of a DBMS was used in [13] to modify the synopsis.
Histogram boundaries are refined adaptively in [14–16] based on a dynamically
evolving workload that is continuously updated based on feedback from the
query engine; they differ in how they approximate values within buckets, how
they weight the workload etc. Still, these methods do not give any provable
results on approximating Hopt. There has been some work on other synopses
that are workload-aware. For example, [17] proposed sampling methods that

736 S. Muthukrishnan, M. Strauss, and X. Zheng

adapt to recent workload. IBM’s LEO optimizer [18] uses workload information
for a variety of synopses. In [19], a O(N2B/ log B) time algorithm is presented
for determining the optimal choice of B Haar wavelet terms; this has recently
been improved to O(N2) time [20]. The Haar basis is modified in [21] with the
knowledge of the workload and algorithms for obtaining B-term synopses are
designed for this new basis; while this algorithm works in linear time, it does not
provide a near-optimal B-term Haar wavelet synopsis. For special workloads, [19]
presented a near-linear algorithm for finding the optimal B-term Haar wavelet
synopsis. All of these results for Haar and related bases [19–21] work only when
both the signal and workload are available in a stored form without any loss of
information, and not streamed with polylogarithmic space. However, when both
the signal and workload are stored explicitly without loss of information, the
dynamic programming from [7] immediately gives an O(N2B) time algorithm
for finding the optimal Hopt, so the challenge in [19,20] arises from working
with the Haar wavelet basis and does not reflect on the difficulty in constructing
Hopt. In [9], there are many results of the same flavor as our result—indeed, the
expanded version of [9] contains many generalizations not considered here—but
the results of [9] do not appear to address directly our time- and space- bounded,
workload-aware problem with the bounds we give. To summarize, the significant
open problem with finding Hopt is when either the signal or the workload is
streamed or both are streamed, with space polylogarithmic in N .

In this paper, we address the problem of computing Hopt on data streams.
Our primary question is, do the powerful theoretical results known for uniform
histogram construction on data streams [12,11,9] hold for the workload-aware
case as well? Is there a difference in streaming the signal versus the streaming
the workload in polylogarithmic space? What is the information-content of the
workload and how does it affect the complexity of histogram construction?

Our contributions are as follows. Suppose the data items are integers, and
the weights are positive integers between the minimum weight, wmin, and the
maximum weight, wmax. Let M = max{||A||2, wmax

wmin
} be a bound on the range

of data and weights.

Workload w is Stored Without Loss of Information. We present an O(N+
poly(B, log N, log M, 1/ε))-time algorithm to compute a B-bucket histogram H
with ‖A − H‖2

w ≤ (1 + ε)‖A − Hopt‖2
w where Hopt is the workload-optimal

B-bucket histogram, with respect to arbitrary w. This is the first near-linear1

time algorithm for approximating Hopt under non-uniform workloads. The above
algorithm can be run in the time series model taking only O(1) time per new item
and using poly(B, log N, log M, 1/ε) space and post-processing time to construct
the (1+ε)-approximate histogram. Under the more general dynamic maintenance
model, the above algorithm can be modified using previously known techniques
so that the time per update, total space used, and postprocessing time are all
poly(B, log N, log M, 1/ε). This is the first known set of algorithms that use
1 Note that, for moderate values of the parameters other than N , the run time is

dominated by O(N). In this paper, we use the term “near-linear” for this type of
cost.

Workload-Optimal Histograms on Streams 737

sublinear—polynomial in B, 1/ε and polylogarithmic in N, M—space for dealing
with data stream signals and yet yields (1+ ε) approximate Hopt histograms for
any w. It matches the previously known bounds for the special case when the
workload is uniform [12].

Workload w is Compressed. We consider two cases.
• Given a workload vector w, let w′ denote the vector of weights in w, rounded
to a power of (1 + ε); it is easy to see that w′ can be substituted for w giving up
no more than a (1 + ε)-approximation factor in histogram estimation. This is a
trivial lossy compression of w.

A simple argument shows that, in general, if the rounded weight vector w′

of worst-case space |w′| = Θ(log(log(M)/ε)N) bits is compressed to |w′| −
ω(log(M)/ε) bits, then no algorithmic result of the type is possible (even if
the entire signal is stored without loss). That is, no significant lossy compression
of w is possible beyond discarding low-order bits.
• We focus on the case when w′ is compressed without loss. We show that if w′

is losslessly compressible to a structure C(w′) of size |C(w′)| by, e.g., the Ziv-
Lempel method [22], then the preprocessing time and space can be reduced from
linear in N to linear in |C(w′)|. We present a O(|C(w′)|)-spaced data structure
to answer “symbol-range-count” queries which enable all our workload-optimal
histogram construction algorithms above to be implemented in space and time
|C(w′)|poly(B, log N, log M, 1/ε). This is an advantage for highly compressible
workload w’s, where |C(w′)| � |w′|. We also present an alternative algorithm
with different tradeoffs among resources.

This work integrates aspects of streaming algorithms (where input is com-
pressed lossily) with algorithms that work with losslessly compressed input. This
is a novel direction suggested in [19].

Section 2 has preliminaries. Section 3 has our results for the case when w is
uncompressed, and is one of the main results here. The lower bound on space
when the workload is streamed is in Section 4 and is fairly simple. In Section 5,
we describe methods for managing a compressed workload w. In this extended
abstract, formal proofs are omitted.

2 Preliminaries

Definition 3. Inner Product with Weight: For any two signals A and B of
length N and any weight vector w of length N , define 〈A,B〉w =

∑N
i=1 AiBiwi

and ‖A‖w =
√
〈A,A〉w where wi is a non-negative weight at index i. We con-

tinue to write 〈A,B〉 and ‖A‖ for the dot product and norm under uniform
workload where all wi’s are equal.

Definition 4. Robust Representation [12,11]. Fix a signal A. A representation
Hr is called a (B, ε)-robust approximation to A if (i) ‖Hr − A‖ ≤ ε ‖Hopt − A‖,
or, (ii) for any representation H on the boundaries of Hr and any other B − 1
boundaries, with optimal parameters, we have (1 − ε)‖A− Hr‖2 ≤ ‖A− H‖2.

738 S. Muthukrishnan, M. Strauss, and X. Zheng

Here we call this property bucket robustness, to distinguish it from linear
robustness, defined later.

3 Uncompressed Workload

We first give an algorithm for time series data stream model that takes time
O(1) per item, space and post-processing time poly(B, log N, log M, 1/ε), where
the signal and workload have length N and bound M , and a (1+ε)-approximate
B-bucket histogram is desired. Our algorithm’s overall structure follows closely
the algorithm in [11] for the uniform workload, so we first sketch that algorithm
and selected parts of its analysis, then describe in detail the changes needed for
non-uniform workloads.

3.1 A Previous Uniform-Workload Algorithm

The algorithm in [11] proceeds as follows.

1. (Selection of large wavelet terms.) Read in a length-N stream A of time-
series data and output a list L of the B′ ≤ poly(B, log N, log M, 1/ε) wavelet
terms with largest coefficients.2

2. (Construction of bucket-robust representation.) Select the largest B′′ =
poly(B, log N, log M, 1/ε) terms from L, greedily, using a particular 2-part
stopping rule (described in detail below). Call the result Hr, a bucket-robust
histogram of O(B′′) buckets.

3. (Construction of output.) Find a best B-bucket histogram H to Hr, and
output H as a (1 + ε)-approximate histogram to A.

Note that the first step is performed on the stream, but the last two steps are
full-space, polynomial-time post-processing algorithms on small input, that is,
input of polylogarithmic size. In [11], the authors showed that the computational
cost of each step meets the claim.

We now consider in more detail the relevant parts of the [11] algorithm. In
Step 2, we need an additional parameter, εr = Θ(ε). We take terms from L, from
biggest to smallest, 4B log(N) at a time, and add them to Hr, which is initially
the zero histogram. Let H′

r denote the next value of Hr, i.e., Hr plus the next
4B log(N) terms to be taken. We stop when either of the following conditions is
met:

– (No Progress.) (1 − εr) ‖A − Hr‖2
2 ≥ ‖A− H′

r‖
2
2.

– (Many Terms.) We have accumulated T terms, for some T which is at most
O(ε2r log(1/εr)B log(N)).

Using a case analysis, the output H is shown to be correct whichever stopping
rule is used. The conditions in bucket-robustness (Definition 4) correspond to
the Many Terms and No Progress stopping rules, respectively.

2 We do not need the definition of wavelets in this paper.

Workload-Optimal Histograms on Streams 739

In Step 3, dynamic programming similar to [7] is used. In particular, the dy-
namic programming algorithm accesses Hr only by making the following query.
Given interval [�, r), what is the best height a of a 1-bucket histogram aχ[�,r)

and what is the resulting error
∑

�≤i<r(Hr[i]− a)2 on that interval? This query
must be answered in time to meet the post-processing bound.

3.2 Our Algorithm for Non-uniform Workloads

Our algorithm generalizes the algorithm in [11] to non-uniform workloads. We
first give a high-level description of our algorithm. To state the algorithm clearly,
it is convenient to give some abstract definitions along the way. Analysis will be
given later.

1. (Weight-class splitting.) We regard each weight wi as rounded to w′
i, a power

of (1 + ε). There is a small number p = log1+ε(M) of these classes. We split
the incoming time series into p new time series, according to the associated
rounded weight.

2. (Conversion to wavelets, selection of large terms, and construction of bucket-
robust representation.) For each substream, we create a bucket-robust rep-
resentation, as in [11]. For each substream, record which of the two stopping
conditions was used.

3. (Recombination of substreams.) Conceptually, recombine the bucket-robust
representations with stopping rule No Progress, getting H′

r, and recombine
the bucket-robust representations with stopping rule Many Terms, getting
H′′

r . Conceptually, combine H′
r and H′′

r , getting Hr. The algorithm does
nothing; it represents H′

r and H′′
r as the appropriate collection of bucket-

robust histograms.
4. (Construction of output.) Find a best B-bucket histogram H to Hr, and

output H as a near-best histogram to A.

In what follows, we will give details of each step where it significantly differs
from [11]. The technical aspects are manifold, but the crux is Hr is not bucket-
robust and as a result [11] fails. We now proceed formally.

Step 1. Rounding Weights. We consider signals of length N , with weights
w1, · · · , wN , and such that ‖A‖2 ≤ M . We will assume that data items are
integers and that weights are positive integers in the range wmin = 1 to some
wmax ≤ M . Define p = log1+ε M + 1, and define p different rounded weights
w1, w2, · · · , wp, where wi = (1+ε)i−1. Round all the original weights w1, · · · , wN

down to rounded weights w′
1, · · · , w′

N respectively, i.e., w′
i = wj where wj ≤ wi <

wj+1. We use w′ = (w′
1 · · ·w′

N) to represent the length-N rounded weight vector.

Lemma 1. Fix a signal A of dimension N . Then ‖A−H′
opt‖2

w ≤ (1 + ε)‖A−
Hopt‖2

w , where Hopt is the optimal B bucket representation to A under weight
w, and H′

opt is the optimal B bucket representation to A under weight w′.

Proof. We have ‖A − H′
opt‖2

w =
∑N

i=1[Ai − H′
opt(i)]2wi ≤ (1 + ε)

∑N
i=1[Ai −

H′
opt(i)]

2w′
i from the relationship between wi and w′

i. Further, by optimality

740 S. Muthukrishnan, M. Strauss, and X. Zheng

of H′
opt, ‖A − H′

opt‖2
w ≤ (1 + ε)

∑N
i=1[Ai − Hopt(i)]2w′

i ≤ (1 + ε)
∑N

i=1[Ai −
Hopt(i)]2wi. Hence, ‖A− H′

opt‖2
w ≤ (1 + ε)‖A− Hopt‖2

w.

Step 3. Here is the technical crux. Unfortunately, the old definition of bucket-
robustness fails in our framework of separate substreams based on weight classes.
We give a brief illustration why. Suppose there are just two weight classes, that
partition [0, N) precisely into the even and odd indices. Suppose H′ and H′′ are
two bucket-robust histograms, defined on the even and odd indices, respectively,
and each has a small number of buckets. Suppose that all heights represented in
H′ and H′′ are distinct. Suppose that H′ and H′′ have about equal shares of the
error. Finally, suppose that the reason for bucket-robustness is only that they are
not much improved by refinement by B more buckets; that is, suppose ‖A − H′‖2

and ‖A − H′′‖2 are each approximately 1
2 ‖A − Hopt‖2

> 0, which can happen if
A−Hopt is noisy. We claim that all of these assumptions are consistent.3 Now, let
H be the combination of H′ and H′′; we will show that H is not bucket-robust.
Note that, because of the even/odd partitition induced by the given weights,
H has N buckets, each of size 1. Then one of the bucket-robust conditions
says that if we further refine H and then optimize the heights, we do not get
much improvement, multiplicatively. Clearly, by optimizing the heights, we can
get error zero! The other condition says that ‖A − H‖2 ≈ ε2 ‖A− Hopt‖2. But
‖A − H‖2 = ‖A − H′‖2 + ‖A− H′′‖2 ≈ ‖A − Hopt‖2 � ε2 ‖A− Hopt‖2. It
follows that neither condition of bucket-robustness is satisfied.

Instead, we introduce the following new notion.

Definition 5. Fix a signal A and rounded weight vector w′. Given parameters
B and ε, let Hopt denote an optimal B-bucket histogram for A under w′. A rep-
resentation Hr is called a (B, ε)-linearly-robust (or just (B, ε)-robust henceforth)
approximation to A under weight w′, if, for any B-bucket histogram HB and
any scalars a and b, either ‖A − Hr‖2 ≤ ε2 ‖A− Hopt‖2 or (1− ε)‖A−Hr‖2

w ≤
‖A− (aHr + bHB)‖2

w.

The first condition is similar to the corresponding condition in bucket-robustness:
the error ‖A− Hr‖2 is already tiny compared with ‖A − Hopt‖2. The second
condition is implied by bucket-robustness. Hence, linear-robustness is a weaker
notion than bucket-robustness.

Returning to our overall algorithm, recall that H′
r and H′′

r are the recombi-
nations of bucket-robust histograms for substreams where the stopping rule is
No Progress or Many Terms, respectively.

Lemma 2. Each of H′
r and H′′

r is linearly robust. Further, the combination Hr

of H′
r and H′′

r is linearly robust.

Step 4. This involves two aspects, first a proof that the output H is correct,
that is, a best B-bucket histogram H to Hr is a (1 + ε)-approximation of the
optimal histogram to A, and second, how to find H.

3 In any case, we cannot provably rule out the existence of such H′ and H′′.

Workload-Optimal Histograms on Streams 741

For the uniform workload, the fact that Hr is bucket-robust was shown
in [11] to imply that the output H is correct. This was done by showing that
bucket-robustness implies linear-robustness and that linear-robustness implies
correctness, though the concept of linear-robustness was not isolated as impor-
tant in [11]. To extend the proof in [12,11] from the uniform workload to workload
w′, we observe that the proof under the uniform workload in [11] uses only the
triangle inequality and an approximate Pythagorean theorem, which hold also
under weight w′. Therefore we conclude that H is a correct (approximate) out-
put. For the reader familiar with [11], we note that the approximate weighted
Pythagorean Theorem says that if 〈A − C,B− C〉w′ ≤ ε ‖A − C‖w′ ‖B− C‖w′

(a near-right angle at C), then ‖A− B‖2
w′ = (1±ε)

(
‖A− C‖2

w′ + ‖B− C‖2
w′

)
.

Second, we perform dynamic programming. As remarked earlier, it suffices
to find the best 1-bucket histogram representation to Hr on a given range to
perform the dynamic programming. In order to do this, we need to be able to
answer the following type of query, which we call a symbol-range-count query.
Given a weight class label, i, and a position, j, how many times does the weight
class i occur in [0, j)? We use the following:

Lemma 3. Let histogram Hr equal the conceptual combination of p histograms
Hi

r of length N and at most B′ buckets with respect to a partition of [0, N)
corresponding to p weight classes in the rounded weight vector w′. In time (and
space) O(N), one can build from w′ (independent of Hr) a data structure that,
on query [j′, j), gives the best one-bucket approximation to Hr on [j′, j) and the
associated error, in query time O(pB′ log(N)).

We can now summarize:

Theorem 1. There is an algorithm that, given parameters B, N , M , ε and
weight vector w of length N and bound M , preprocesses w in time and space
O(N), reads data A with ‖A‖2

w ≤ M in time series, then outputs a B-bucket
histogram H with ‖A − H‖2

w ≤ (1 + ε)‖A − Hopt‖2
w, where Hopt is the best

possible B-bucket histogram representation to A under weight w. The algorithm
uses space O(poly(B, log N, log M, 1/ε)) in addition to the space associated with
w independent of the input. The algorithm uses time O(N) to read the stream
of data and post-processing time O(poly(B, log N, log M, 1/ε)) to build H.

This meets the complexity for the uniform workload case, and settles the problem
modulo improving the polynomials. Using prior work on the general dynamic
maintenance model for uniform workload case [12] we get the following corollary
(which also meets the best-known complexity for the uniform workload case [12]):

Corollary 1. For parameters N, M, B, ε, there is a randomized data structure
for an array A that preprocesses a workload w in time and space O(N), re-
quires additional space O(poly(B, log N, log M, 1/ε)) and supports the following
operations in time O(poly(B, log N, log M, 1/ε)): update (Add v to A[i], where v
may be positive or negative); build (Build a (1 + ε)-near optimal histogram with
respect to the then-current dataset A, under workload w.

742 S. Muthukrishnan, M. Strauss, and X. Zheng

4 Lower Bounds

It is easy to see that a histogram algorithm that first reads the data and then
is given a workload must store all the data, since the choice of workload and
histogram approximation criterion can force the algorithm to recover any data
item exactly. This immediately gives

Theorem 2. Suppose data and workload values are interleaved arbitrarily. For
any B ≥ 3, any algorithm that outputs approximate B-bucket histogram uses
space Ω(N log(M)) bits (enough to store all the data).

While Theorem 2 is the strongest possible statement about interleaving data
and workload values, it says nothing about compressing the workload. Above we
showed that, to get a (1 + ε)-factor approximation, one can round weights to a
power of (1+ ε) (i.e., discard low-order bits). We now show that, in a sense, this
is the only kind of lossy compression that is possible.

Lemma 4. Suppose an algorithm reads and processes a workload of length N
and bound M into an object s of size |s|, then discards everything about the
workload except s, then reads time series data. If, for any workload, any data,
and any sufficiently small ε > 0, the algorithm produces, with probability � 1/2,
a (1+ ε)-approximation to the best 3-bucket histogram, then the algorithm can be
used as a subroutine to store any value from a vector of positive integer entries
bounded by M/4, of length ≥ N − O(log(M)/ε), up to the factor (1 + O(ε)).

In particular, the lemma above implies:

Theorem 3. For any B ≥ 3 and any sufficiently small ε > 0, if an algorithm
represents in space |s| a workload w of length N and bound M and finds (1+ ε)-
near-best B-bucket histograms with respect to w, then |s| is at least the space
needed to store (N − O(log(M)/ε)) counters of Ω(log(M)/ε) states.

5 Compressed Weights

In the previous section, we showed that lossy compression of the workload be-
yond rounding is not possible, even information-theoretically. In this section, we
consider efficient algorithms for manipulating losslessly compressed workloads of
rounded weights. We consider principally the famous Lempel-Ziv compression
methods. Our goal in this section is to build a symbol-range-count structure R
to match the given compression scheme, where, we recall, a symbol-range-count
query is the pair (i, j), for which the answer is the number of occurrences of i
in [0, j). That is, if the compressed text C(w′) has size |C(w′)|, then, ideally, we
want to build R with preprocessing time O(|C(w′)|), we want |R| ≤ O(|C(w′)|),
and we want symbol-range-count queries to be as quick as possible—plausible
guarantees are O(poly(B, log N, log M, 1/ε)) or some function of the compressed
string. Thus, the challenge is to be opportunistic and design data structures
bounded in size by |C(w′)|. We also discuss building R′ of size |R′| < o(|C(w′)|)
such that R′ and C(w′) together constitute a symbol-range-query structure, R.

Workload-Optimal Histograms on Streams 743

This has the advantage that the total size |R| is (1 + o(1))|C(w′)| rather than
O(1)|C(w′)|; this is useful if, say, |C(w′)| = |w′|/100, so that the constant fac-
tor in O(1) is significant. Opportunistic data structures are known for indexing
a string for full-text substring queries [23], but no previous results are known
for our problem of supporting the symbol-range-count query. The results of this
section may of interest separately in database and string processing.

Formally, we are given a string S[1, ..., N], with each S[i] in alphabet set of
size p (the rounded weight classes in our histogram problem). We compress S us-
ing Lempel-Ziv algorithm, denoted LZ78, which works as follows. Say S[1, ..., i]
has been compressed; a dictionary D of tuples (dk, lk) would have been con-
structed thus far with each dk = S[lk, . . . , lk + |dk|−1]. The algorithm iteratively
proceeds by finding the longest prefix S[i + 1, .., j] that equals some dk, com-
pressing S[i+1, ..., j +1] as (lk, |dk|, S[j +1]), adding (S[i+1, ..., j +1], i+1) to
D and continuing. Each such step is called a “parse” and the number of parses
is directly related to the size of the compressed representation C(S) of S upto
constant factors. Hereafter, we will let |C(S)| be the number of such parses, as
is standard in the string compression area, without being specific about how to
code each (lk, |dk|, S[j + 1]) in smallest number of bits.

There are many variants of this basic method, depending on whether win-
dowing is used, whether S[i + 1, ..., j] and S[lk, ..., l + k + |dk| − 1] may overlap
or not, how the parses are encoded using bits, etc. We will focus on the basic
version above and our results will hold for these other variants as well. A signifi-
cantly different variant is the LZ77 [24] algorithm in which we add all substrings
of S[i + 1, .., j] to D. This leads to larger D and hence, fewer parses and smaller
C(S). Our algorithm in this section will work with the LZ77 compression method
as well (also for run-length encoding methods), but we omit the details in this
extended abstract.

Lemma 5. A string S given in its LZ78 compressed form C(S) can be prepro-
cessed in time and space O(|C(S)|) such that a symbol-range-count query (i, j, α)
can be answered in time O(|C[i, j]| log log N), where |C[i, j]| is the number of
LZ78 parses overlapping [i, j].

We also present a different method that we call decimated statistics.

Lemma 6. Suppose a rounded workload w′ of length N , multiplicative incre-
ment (1 + ε), and bound M , is compressed to C(w′) by LZ78. One can construct
from C(w′), in time O(p|C(w′)|), a structure R′, of size o(|C(w′)|), such that
R′ together with C(w′) constitute a symbol-range-count data structure of size
(1 + o(1))|C(w′)|, with query time poly(log N, log M, 1/ε).

The decimated statistics approach is incomparable with Lemma 5, as the
next theorem records. Combining the lemmas with our histogram algorithms we
have, analogous to Theorem 1 (a similar result holds analogous to Corollary 1
as well):

Theorem 4. There is an algorithm that, given parameters B, N , M , ε and
LZ78-compressed text C(w′) of rounded weight vector w′ with p ≤ O(log(M)/ε)

744 S. Muthukrishnan, M. Strauss, and X. Zheng

classes, preprocesses C(w′) in time and symbol-range-count space O(|C(w′)|),
reads data A with ‖A‖2

w ≤ M in time series, then outputs a B-bucket histogram
H with ‖A − H‖2

w ≤ (1 + O(ε))‖A − Hopt‖2
w, where Hopt is the best possible

B-bucket histogram representation to A under weight w. The algorithm uses
space O(poly(B, log N, log M, 1/ε)) in addition to the space associated with w′

independent of the input. The algorithm uses time O(N) to read the stream of
data and post-processing time |C(w′)|poly(B, log N, log M, 1/ε) to build H.

An alternative algorithm is as above except, for any parameter P (e.g., a P
that grows slightly faster than p ≈ log(M)/ε), the preprocessing time degrades to
O(P |C(w′)|), the symbol-range-count space improves to (1 + p/P)|C(w′)|, and
the post-processing time changes to poly(B, P, log N, log M, 1/ε).

6 Concluding Remarks

We have shown, for the first time, given a data set of length N and bound M , how
to build a (1+ε)-near optimal B-bucket histogram that is provably nearly optimal
with respect to a non-uniform workload, where the algorithm runs in nearly lin-
ear time O(N + poly(B, log N, log M, 1/ε)) and space poly(B, log N, log M, 1/ε)
beyond what is needed to store the workload. This algorithm generalizes to the
dynamic update streaming model. For both time-series and dynamic mainte-
nance update models, our time and space costs are comparable to those for the
uniform workload. We have also shown that lossy compression of the workload is
not possible beyond rounding to within the factor (1 + ε). Finally, we show how
to improve the space cost to essentially the space used to compress losslessly the
rounded workload by the Lempel-Ziv algorithm.

Another way to solve the problem under the time-series model is based on
the lockstep model, where we are given wi only when A[i] arrives and we can
not archive the entire workload wi. This is what we call the lockstep model. In
this model, we are able to give a different algorithm that can be run in time
O(N log(U) + poly(B, log U, log M, 1/ε)) using space poly(B, log U, log M, 1/ε))
to construct the (1+ ε)-approximate histogram, where U =

∑
i wi. This is some-

what weaker than our main result here, but the lockstep streaming model is
weaker. So, this result may be of independent interest. We do not know whether
near-linear time can be achieved in the lockstep model; this is a natural open
question.

Full proofs, results in the lockstep model as well as other open problems are
in the larger version of this paper [25].

References

1. Ioannidis, Y., Christodoulakis, S.: Optimal histograms for limiting worst-case error
propagation in the size of join results. ACM Trans. Database Syst. 18 (1993) 709–
748

2. Acharya, S., Gibbons, P., Poosala, V., Ramaswamy, S.: The aqua approximate
query answering system. In: SIGMOD Conference. (1999) 574–576

Workload-Optimal Histograms on Streams 745

3. Poosala, V.: Histogram-based estimation techniques in database systems. PhD
thesis, Univ of Wisconsin (1997)

4. Keogh, E., Chakrabarti, K., Mehrotra, S., Pazzani, M.: Locally adaptive dimen-
sionality reduction for indexing large time series databases. In: Proc. SIGMOD.
(2001)

5. Ioannidis, Y.: The history of histograms (abridged). In: Proc. VLDB. (2003)
6. Ioannidis, Y., Poosala, V.: Balancing histogram optimality and practicality for

query result size estimation. In: Proc. SIGMOD. (1995) 233–244
7. Jagadish, H.V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K., Suel, T.:

Optimal histograms with quality guarantees. In: Proc. VLDB. (1998) 275–286
8. Muthukrishnan, S.: Data stream algorithms and applications. http:www.cs.

rutgers.edu/~muthu/stream-1-1.ps (2003)
9. Guha, S., Koudas, N., Shim, K.: Data-streams and histograms. In: Proc. ACM

STOC. (2001) 471–475
10. Guha, S., Koudas, N.: Approximating a data stream for querying and estimation:

Algorithms and performance evaluation. In: Proc. ICDE. (2002)
11. Guha, S., Indyk, P., Muthukrishnan, S., Strauss, M.: Histogramming data streams

with fast per-item processing. In: Proc 29’th ICALP. (2002) 681–692
12. Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast,

small-space algorithms for approximate histogram maintenance. In: Proc. ACM
STOC. (2002) 389–398

13. Chen, C., Roussopoulos, N.: Adaptive selectivity estimation using query feedback.
In: Proc. ACM SIGMOD. (1994)

14. Konig, A., Weikum, G.: Combining histograms and parametric curve fitting for
feedback driven query result size estimation. In: Proc. VLDB. (1999)

15. Aboulnaga, A., Chaudhuri, S.: Self-tuning histograms: Building histograms with-
out looking at data. In: Proc. ACM SIGMOD. (1999)

16. Qiao, L., Agrawal, D., Abbadi, A.E.: Rhist: adaptive summarization over contin-
uous data streams. In: Proc. CIKM. (2002) 469–476

17. Ganti, V., Lee, M., Ramakrishnan, R.: Icicles–self-tuning samples for approximate
query answering. In: Proc. VLDB. (2000)

18. Stillger, M., Lohman, G., Markl, V., Kandil, M.: Leo - db2’s learning optimizer.
In: Proc. VLDB. (2001) 19–28

19. Muthukrishnan, S.: Nonuniform sparse approximation theory with Haar wavelets.
Technical report, DIMACS (2004)

20. Guha, S.: A note on wavelet optimization. http://www.cis.upenn.edu/~sudipto/
notes/wavelet.pdf.gz (2004)

21. Matias, Y., Urieli, D.: Optimal workload-based wavelet synopses,. Technical report,
TAU (2004)

22. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24 (1978) 530–536

23. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. IEEE FOCS. (2000) 390–398

24. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23 (1977) 337–343

25. Muthukrishnan, S., Strauss, M., Zheng, X.: Workload-optimal histograms on
streams. Technical report, DIMACS (2005)

Finding Frequent Patterns in a String in
Sublinear Time

Petra Berenbrink1, Funda Ergun2, and Tom Friedetzky3

1 School of Computing Science, Simon Fraser University,
Burnaby, B.C., V5A 1S6, Canada
http://www.cs.sfu.ca/∼petra/

2 School of Computing Science, Simon Fraser University,
Burnaby, B.C., V5A 1S6, Canada
http://www.cs.sfu.ca/∼funda/

3 Department of Computer Science, Durham University,
Durham, DH1 3LE, U.K.

http://www.dur.ac.uk/tom.friedetzky/

Abstract. We consider the problem of testing whether (a large part
of) a given string X of length n over some finite alphabet is covered by
multiple occurrences of some (unspecified) pattern Y of arbitrary length
in the combinatorial property testing model. Our algorithms randomly
query a sublinear number of positions of X, and run in sublinear time in
n. We first focus on finding patterns of a given length, and then discuss
finding patterns of unspecified length.

1 Introduction

The problem of finding frequent occurrences of patterns in a string comes up in
many areas such as telecommunications, e-commerce, anddatabases,where the ap-
plications generate long data streams to be analyzed.An example fromdatamining
is efficient handling of iceberg queries, that is, identifying those objects in a data
stream which occur with frequency over a threshold. In property testing of strings,
testing whether a string consists of back-to-back repetitions of the same patterns
is called periodicity testing. Usually, the efforts to efficiently identify such trends in
data are hampered by the large size of the data, which can be too large to fit into
main memory and to be efficiently analyzable, even by a linear time algorithm.

In this work, we are interested in detecting frequent repetitions of a pattern
(of any size) in a string of length n in time sublinear in n. In contrast to previous
work, the pattern boundaries are unrestricted, which, while more realistic, com-
plicates matters. We explore this problem in the combinatorial property testing
model ([10,3]), and first obtain an algorithm which distinguishes between strings
which are mostly covered with occurrences of one pattern of given size k and
those that do not contain a large number of repeated patterns in o(k) time.
We then generalize our result to detecting repetitions of patterns of unspecified
length, in o(n) time. In both cases, if a frequent pattern exists, the algorithm
can implicitly return a (likely approximate) copy of the pattern.

The fact that patterns can occur anywhere in the string means that there
can be a linear number of possible patterns of linear size in a given string,

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 746–757, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Finding Frequent Patterns in a String in Sublinear Time 747

and comparing them to one another can easily lead to inefficient algorithms.
To handle this, we represent each pattern as a short “sketch” or a “signature”.
However, there can still be a linear number of signatures sharing one location.
To deal with this, we use a sparse representation of our data which is based on
the few locations sampled. We show that this small amount of information is
sufficient to make conclusions about repeated trends in the input stream.

Our Results. We first present an algorithm which, given a string X and a length
k, tests in O(

√
kpolylogk) time if there exists a pattern Y of length k that covers

X (notice that Y is not given); allowing the occurrences of the pattern to overlap.
We say that Y approximately covers an α-fraction of X if there exists a set of
substrings Z = {Z1, . . . , Zj} of X (each of length k) where h(Zi, Y) ≤ εk for
all Zi ∈ Z and at least αn locations of X are covered by some Zi ∈ Z. Here
h(Zi, Y) is the Hamming distance between Y and Zi. If a pattern of length k
exists that covers all of X , with probability 1−o(1) our algorithm outputs Pass.
If there is no pattern Y of length k that covers an α-fraction of X , α, ε ∈ (0, 1),
it outputs Fail with probability 1 − o(1).

Next, we give an algorithm which, given X and k, tests in time
O(

√
kpolylogk) whether there is a string of a length � ∈ [δk, . . . , k] covering

an α-fraction of X ; it outputs Fail if there is no pattern Y of length k that ap-
proximately covers an (1−β)α-fraction of X , with probability 3/4, with certain
restrictions on α, β and ε. We use this variant to test if there is a pattern of any
length that covers an α-fraction of X , or if no pattern exists that approximately
covers a (1 − β)α-fraction of X .

Related Work. Combinatorial property testing was first defined by [10,3]. For an
overview of results see [9] and the references therein. Two recent related results
testing whether a string is close to periodic are [2,7]. They assume that the size
of the period is fixed so that position in which the period (corresponding to
“patterns”) appear is fixed, too. This means that it is more or less clear which
positions should be sampled. In our case, since a pattern can be anywhere, we
need to make sure that we have samples in all possible places that a pattern
can be 1. Another related result tests in sublinear time whether two strings have
large edit distance ([1]).

There have also been sublinear space streaming results. Iceberg queries for
identifying objects that appear in more than a fraction of a string are explored
in [6]. Periodicity testing is investigated using sketches in [5] where the running
time is considered in terms of memory accesses. These techniques differ from
ours that they are not bound by sublinear time, but are expected to return more
accurate answers.

2 Preliminaries

Given string X of length n, let X [i] refer to the ith character of X . r = [i : j]
denotes {i, i + 1, . . . , j}, where i and j are called respectively the left and right
1 To achieve this, we use an extra stage of sampling where one of the stages makes

sure that two copies of the same pattern will be correctly aligned.

748 P. Berenbrink, F. Ergun, and T. Friedetzky

endpoints of r. X [i : j] denotes the substring of X starting at location i and
ending at j. [n] is short for [1 : n] = {1, . . . , n}.

Given a location i in X , we say that a length k substring (or pattern) Y
“covers”, “contains”, or “appears around” i if and only if Y = X [j : j + k − 1]
such that i ∈ [j : j+k−1]. Here Y only refers to the contents of the substring, and
thus, can be repeated elsewhere in X . We call each such repetition an occurrence.
h(X, Y) denotes the Hamming distance between X and Y .

3 Finding Frequent Patterns of Given Length k

We first consider finding patterns of length exactly k.

3.1 Length Exactly k

We now formally define the problem of testing for frequent patterns. Formally,
given a string X of length n and 1 ≤ k ≤ αn, we would like to have an algorithm
with the following behavior.

– If there is a pattern Y of length k which covers all locations of X , then the
algorithm returns Pass with probability 1 − o(1).

– If there is no pattern Y of length k such that a set of substrings Z =
{Z1, . . . , Zj} of X (of length k) exist where h(Zi, Y) ≤ εk for all Zi ∈ Z and
at least αn locations of X are covered by some Zi ∈ Z, then the algorithm
returns Fail with probability 1 − o(1).

Note that the occurrences of the pattern can overlap. For a visual intuition on
the Fail condition, consider a scheme to mark an X with respect to a pattern
Y of length k. For j = 1, . . . , n − k + 1, if h(Y, X [j : j + k − 1]) ≤ εk then mark
locations X [j], . . . , X [j + k − 1]. In the end, if some X [i] remains unmarked,
then there exists no substring Z of X of length k that covers location i such
that h(Z, Y) ≤ εk. The Fail condition holds if and only if the marking of X
with respect to Y results in at least (1 − α)n unmarked locations for any Y of
of length k.

Consider X = abcabcaabcaabca. Y = abca covers X fully, where the a in
location 4 is covered by two overlapping copies of Y , thus the algorithm should
return Pass. Now let X ′ = abcdbaddacdedbcbe. Substrings abcd, dbad, dacd,
dbcb, cover all but two characters of X ′, and each has Hamming distance 1 to
Y = dbcd; thus the algorithm can return either Pass of Fail. Later, we will show
how our results translate into the non-overlapping case, where our definition of
distance will be equivalent to the usual one.

The approach of randomly choosing a few locations in X and checking
whether there is a pattern which covers all of these locations is not straightfor-
ward to implement in sublinear time, for two reasons. First, even if two random
locations i and j lie in two occurrences of the same pattern, they are likely to be
in different positions within the two occurrences, with k2 possible location pairs.
This hurdle is not present in periodicity testing where the pattern boundaries
are fixed. Second, the fact that locations p1 and p2, as well as p1 and p3 occur

Finding Frequent Patterns in a String in Sublinear Time 749

within the same pattern does not imply that p2 and p3 do. Two patterns can
share Θ(k) many patterns of length k; thus, finding one shared by all of the
sample points in o(n) time is nontrivial.

A Three-Stage Sampling Approach. We now present our approach which
tackles the above problems in time o(k). To do that, we will use sampling and
keep small summaries of our samples in “signatures”. Let �p = Θ(polylogn),
�s = Θ(

√
k log log k), �t = Θ(polylogn), with large enough constants hidden in

the Θ. Our sampling has three stages, where Stages 1 and 2 obtain primary and
secondary locations and Stage 3 the actual samples.
Stage 1: Construct set P = {p0, p1, . . . , p�p}, of primary locations, where each
pi is chosen independently and uniformly at random (i.u.r.) from [n].
Stage 2: For each pi ∈ P , construct set Si of secondary locations, said to be
owned by pi, of the form Si = {si,0, si,1, . . . , si,ls}, 2 where each si,j ∈ Si is
chosen i.u.r. from [pi − k : pi + k]. 3

Stage 3: Construct a sorted list of locations T = t1t2 . . . t�t where the ti are
picked i.u.r. from [−2k : 2k] and are in ascending order. Now consider any
secondary location si,j ∈ Si. Obtain samples Ti,j = si,j+t1, si,j+t2, . . . , si,j+t�t ;
these will be owned by si,j . The elements of Tij are uniformly distributed in
[si,j − 2k : si,j + 2k]; furthermore, the locations of the samples relative to any
secondary location s that owns them is identical across all s (Fig. 1).

string X

3.

distributed around s5,1

T5,2 T5,3 T5,4

“real samples”T5,1, samples owned by s5,1 ∈ S5

according to T ; |T5,1| = �t

primary location (say) p5 ∈ P , |P | = �p + 1

1.

2. secondary locations s5,j ∈ S5 owned by p5, |S5| = �s, i.u.r. from [p5 − k, p5 + k]

Fig. 1. Example for primary location p5; steps (1,2,3) indicate order of selection

Templates and Signatures. We will represent each substring of length k of X with
a short signature. To do this, decompose T into sublists which we call templates,
each of which contains the offsets to obtain samples to form a signature.

Definition 1. A list τ is said to be a template (of T) if for some −2k < i ≤ k+1,
τ , τ is the maximal sublist of T whose elements are in the range [i : i + k − 1].

The following lemma shows templates are large enough.
Lemma 1. Let �t = 24c̄ log k for some large enough constant c. With probability
at least 1 − o(1/k) every template consists of at least c̄ log k characters.

2 We will drop subscripts later when they are obvious.
3 If pi < k (pi > n − k) then the area [1 : pi + k] ([pi − k : n]) is sampled.

750 P. Berenbrink, F. Ergun, and T. Friedetzky

Proof. Consider the probability that there exists a j ∈ [−2k : 2k − j + 1] such
that there are fewer than c̄ log k elements in T whose values are in [j : j + k− 1].
To do this, partition the interval [−2k : 2k] into 12 subintervals of length k/3.
Any interval [j : j + k − 1] will fully contain such subinterval. The expected
number of elements of T in a subinterval is 2c̄ log k, which is a lower bound
on the expected length of a signature. Using Chernoff bounds (see e.g. [4]) the
probability that a particular subinterval will have fewer than c̄ log k samples is
at most e−c̄ log k = o(1/k). Thus, the probability that at least one subinterval
will have fewer than that many elements is also at most o(1/k).

The next observation holds by symmetry, showing that the sample points are
uniformly distributed over a template.
Observation 1. For an interval r = [i : i + k − 1] for −2k ≤ i ≤ k + 1, given
that the template representing r contains p locations, the set consisting of these
p locations is uniformly distributed in the subsets of size p of {i, . . . , i + k − 1}.

Using the elements of a template as offsets with respect to a secondary loca-
tion to obtain actual samples, we obtain a signature:
Definition 2. Let s = sl,m be a secondary location and τ = ti, ti+1, . . . , tj be a
template representing some interval [u : u + k − 1] for −2k ≤ u < k + 1. The
signature corresponding to τ with respect to sl,m is sigτ (l, m) = X [s + ti], X [s +
ti+1], . . . , X [s + tj], representing the interval [s + u : s + u + k − 1].

Let T = τ1, τ2, . . . denote the list of all templates of T . Below we show that
there are not too many distinct templates. This imposes an O(

√
k · polylogk)

bound on the total number of signatures generated. The proof is omitted.
Lemma 2. |T | ≤ 2�t. Furthermore, the total number of signatures generated
from X from the locations and samples obtained as above is at most 2�t�s(�p+1).

Since there are many more intervals of length k than templates, we now build
a succinct representation of their correspondance.

Definition 3. Let τ be a template. Let Q = {i | − 2k ≤ i ≤ k and interval [i :
i + k − 1]induces τ}. The range of τ , r(τ), is [a : b], with a and b as the left and
right endpoints of Q.

The notion of the range of a template extends naturally to the range of a
signature. Let si,j be any secondary location and [a : b] be the range of some
template τ . Then the range of sg = sigτ(i, j), denoted r(sg), is [a+si,j : b+si,j].
We observe below how to compute the range of a template (the range of a
signature is computed similarly). Let t0 = −2k − 1 and tlt+1 = 2k + 1.

Observation 2. Let τ = ti, ti+1, . . . , tj be a template. Then, r(τ) = [max{ti−1+
1, tj − k + 1} : min{ti, tj+1 − k}].

The Basic Sampling Algorithm. Our algorithm consists of two phases. In
the initialization phase we construct data structure D with signatures related to
the first primary location, p0. In the next phase we compare signatures of other
primary locations, to those already considered. If we identify a pattern which
occurs around all our primary locations, we return Pass. In what follows, let c
be a sufficiently large constant.

Finding Frequent Patterns in a String in Sublinear Time 751

Initialization Phase:

Obtain sets P, S of primary, secondary locations, T of offsets, and T of templates
If there exists a template τ ∈ T with less than c log k sample points return Fail
Set D = φ; G = φ;
For each secondary location s0,i for 1 ≤ i ≤ 	s and each template τ ∈ T

sg = sigτ (0, i)
let r = r(τ)∩ [p0 − s0,i − k + 1 : p0 − s0,i]
R = {r}
if sg does not exist in D, insert < sg,R > in D;
otherwise let R′ be the range of the entry found in D for sg
change the range of the entry for sg in D to R′ ∪ R
G = G ∪ R

The operation taking intersection of the ranges ensures that substrings which do
not intersect with p0 are not considered4.

Iterative Phase:
For m = 1 to 	p do

D′ = φ; G′ = φ;
Fill out D′ with signatures around pm as D was filled above for p0

For each signature sg in D′ with range R
If sg exists in D with range R′, G′ = G′ ∪ R

G = G ∩ G′

Output: If D 	= φ return Pass, otherwise return Fail.

Data Stuctures. Data structures D and D′ store modified signatures and their
ranges. A modified signature is obtained (from, say, sg = sigτ(i, j)) tagging
sg with a prefix, namely the smallest index in τ . This ensures two matching
(modified) signatures will come from the same template. Each node contains
a signature and its current range set R, representing the (candidate) frequent
substrings which have this signature. Both D, D′ and R can be implemented
by using any standard data structure that supports linear time construction
and logarithmic time search and updates, as well as constant time prev and
next operations. G and G′ store ranges in a similar way. Inserting a range into
R can take linear time due to the deletions of small ranges during merging.
The deletion of a range can be charged to its insertion, maintaining logarithmic
amortized insertion and deletion times. The union and intersection operations
all are performed in logarithmic time per range.

Analysis of the Algorithm.

Theorem 3. Let X be a string of length n and parameter k be such that 1 ≤
k ≤ αn. Let �p = c · log k, �s = c′

√
k log k and let �t = 24c̄ log k with sufficiently

large constants c, c′, c̄.

(a) If there is a pattern Y of length k that covers 100% of X, then the algorithm
returns Pass with probability at least 1 − o(1).

4 When we take a union of ranges, ranges which touch or overlap are merged.

752 P. Berenbrink, F. Ergun, and T. Friedetzky

(b) If there is no pattern Y of length k such that at least αn characters of X
can be covered by substrings Z1, . . . , Zw (of length |Y |) where h(Zi, Y) ≤ εk
then the algorithm returns Fail with probability at least 1 − o(1).

The algorithm runs in O(
√

kpolylogk) time and space.

Proof. We start with the proof of Part a. The runtime analysis is submitted in
this short version.

(a): If the Pass condition is satisfied, we can get an outcome of Fail if one the
two following cases happens.
(i) For some pi, we do not have a pair of “well aligned” secondary samples s, s′

belonging to p0 and pi respectively. By assumption, we have a copy of a string
Y covering p0 and one covering pi. To detect that these two copies are identi-
cal, we need to get identical signatures from them, for which we need to have
secondary locations s, s′ with identical relative locations w.r.t. the first and the
second copy of Y respectively. By the birthday paradox (see [8], Page 45), the
probability that we will not have such a “well aligned” pair of secondary loca-
tions for one particular pi is at most e−�s(�s−1)/2k = e−(c′2k log k−√

c′k log k)/2k ≤
e−(c′2k log k)/4k ≤ k−(c′)2/4 for c′ ≥ 2

√
c + 1. Using the union bound, the proba-

bility that this situation might arise for some pj is 1/k.
(ii) We get a Fail answer due to a signature which is smaller than the thresh-
old. By Lemma 1 this can only happen with a probability of o(1). Thus, the
probability of an incorrect Fail answer is at most o(1).

(b): If the Fail condition is satisfied, a Pass can be returned as as a result of
two events, analyzed below.
(i) Choice of primary locations: Call two substrings of size k Z1 and Z2 similar if
h(Z1, Z2) ≤ εk. With the Fail condition, a small number of the primary locations
p1, . . . , p�p may be covered by substrings which are similar to one particular sub-
string around p0. p0 is covered by at most k different substrings of length k; WLOG
consider Y = X [p0 − k + 1 : p0]. Due to the Fail assumption, marking X w.r.t. Y
will leave at least (1−α)npositions unmarked.Theprobability that a fixedprimary
location will fall on a marked position for a fixed string Y then is at most 1 − α.
(ii) Unlucky choice of templates: The signatures for two substrings Y and Y ′

can be identical even if Y and Y ′ differ in more that εk locations. This is a
problem only if the signatures are at least c̄ log k characters long, since otherwise
the algorithm automatically returns Fail. (Note that for a match of signatures
to be found, the two signatures must be generated from the same template,
which guarantees that the two substrings are being compared at corresponding
locations.)

Note that, due to how the signature of Y has been picked, the second state-
ment of Lemma 1 and the bound on the size of a signature, the samples in the
signature of Y correspond to a uniformly chosen subset of c̄ log k samples from
Y . Assume that the signature for Y ′ has been obtained from the same tem-
plate as that of Y (the opposite of this only helps us). For the two signatures
to match, none of the samples in the signatures must be from locations where

Finding Frequent Patterns in a String in Sublinear Time 753

Y and Y ′ differ. Since Y and Y ′ are not similar, the probability of this is at
most εc̄ log k ≤ 1/k3 . For any pair of primary locations p0 and pi we compare
at most �2

s · 2�t signatures with each other (see Lemma 2). The probability to
find identical signatures for a pair of primary locations p0 and pi is at most
(�2

s · 2�t) · 1
k3 ≤ 1

k . Since, given p0, there are at most k possible choices for Y , the

probability of a false negative/false positive is at most k ·
(
(1 − α) + 1

k

)�p ≤ o(1).

We now present a lemma relating the result with overlapping patterns to
non-overlapping patterns. The proof is omitted.

Lemma 3. If αn characters of a string X of length n are covered by overlapping
patterns of length k, then at least αn/2 characters are covered by non-overlapping
patterns.

3.2 Length Approximately k

In this section we show how to test if any pattern of length in the range [δk : k] for
constant δ < 1 occurs over a large fraction of a given string X . We first develop a
high level algorithm similar to that in Section 3.1. Later, we will use this algorithm
to find out if there is any pattern (of any size) which occurs frequently in X .

We define our modified algorithm in terms of its differences from the algo-
rithm in Section 3.1. First, a template is now defined as the maximal sublist of T
whose elements represent a range [i : i+ δk−1] (see Definition 1). Consequently,
a signature now spans an area of size δk.

The second change is in our data structures. In our previous algorithm, to
identify a pattern as frequent, we confirmed that it occurred around all our pri-
mary locations. Here, we will check that a pattern occurs around a large number
of primary locations. To count the occurrences of patterns around primary loca-
tions, we replace D with DR, described below. In the new algorithm, at the end
of the iterative section, rather than taking an intersection of the ranges (along
with signatures) found for the new pm with the existing candidates ranges in
D, we now simply add the new ranges found to DR. (Which keeps track of how
many times a range has been added). At the end, if there is a particular pattern
that occurs around many of the primary locations, it will be witnessed by DR
that the signature and range representing the pattern have a large count (one
for each occurrence around a primary location).

The algorithm outputs Pass if there is a signature and corresponding range
(thus, a pattern) found around at least αδ�p primary locations, for some con-
stants α, δ < 1, according to the count obtained from DR.

Data Structure for the Modified Algorithm. We use a data structure DR to store
ranges in terms of their endpoints. DR is, like D, a standard data structure. Each
node contains three fields: a value for an endpoint of a range, a count tracking
the times that an endpoint has been encountered, and a one bit field containing
the values left or right to qualify an endpoint. Here one can insert a range in
logarithmic time, output how many times each (sub)range has been inserted in
linear time for all of the ranges. For instance, if [2 : 8] and [6 : 14] have been
inserted, DR has value 1 for [2 : 5] and [9 : 14], and 2 for the intersection, [6 : 8].

754 P. Berenbrink, F. Ergun, and T. Friedetzky

To insert a range [a, b], we first look for a in DR. If it is not found, we insert
(a, left, 1) into DR. If a exists and the endpoint bit shows left, we increment
the count field for that entry; if the endpoint bit shows right we decrement the
count. We treat b similarly: if the value is not found, we insert (b, right, 1). If an
entry exists and the endpoint is right, we increment the count; if the endpoint is
left, we decrement the count. If at any point the count at a node reaches zero,
we delete the node.

To obtain a count of the ranges, we use a range counter (initially set to 0), start-
ing from the smallest value in DR and following the next pointers. For every node
we see with endpoint left the we increment the range counter by the count in that
node; for every node with endpoint right we decrement by the count in that node.
The value of the counter between two nodes in DR represents how many times the
range delimited by the values in those two nodes has been inserted.

Analysis of the Algorithm. In this section we will prove that the algorithm
works correctly. First we show that whenever there is a pattern of length k
covering an α-fraction of the string, then there is a pattern of length δk covering
an αδ-fraction. The proof is omitted.

Lemma 4. Let α ∈ (0, 1). Let X be a string of length n. Let δ ∈ (0, 1).
(a) Whenever there exists a pattern of length � with δk ≤ � ≤ k that covers at

least an α-fraction of C, then there also exists a pattern of length δk that
covers at least an (αδ)-fraction of the string.

(b) Whenever there exists a pattern Y of length � with δk ≤ � ≤ k such
that at least an α-fraction of X can be approximately covered by substrings
Z1, . . . , Zj (of length |Y |) where h(Zi, Y) ≤ εk, then there also exist a pattern
Y ′ of length δk and substrings Z ′

1, . . . , Z
′
j, such that least an (αδ)-fraction

of the string can be covered by the Z ′
1, . . . , Z

′
j with h(Z ′

i, Y
′) ≤ ε′δk where

ε′ = ε/δ.

Theorem 4. Let k ≥ 100. Let α ∈ [45 , 1), β ∈ (0, 1) with α(1 − β) ≤ 2
3 . Let

δ = 40
41 . Let X be a string of length n. Let �p = c · log k, �s = c′

√
k log k and let

�t = c̄ log k for large enough constants c, c′, c̄.

(a) If there is a pattern Y of length � with δk ≤ � ≤ k that covers an α-fraction
of X, then the algorithm returns Pass with probability at least 3/4.

(b) If there is no pattern Y of length � with δk ≤ � ≤ k such that at least an
α(1 − β)-fraction of X can be covered by substrings Z1, . . . , Zj (of length
|Y |) where h(Zi, Y) ≤ εk then the algorithm returns Fail with probability at
least 3/4.

The algorithm runs in O(
√

kpolylog k) time and space.

Finding Frequent Patterns in a String in Sublinear Time 755

Proof. (a) We can get a Fail answer if one of the following three cases happen.
(i) For some pi, we do not have a pair of “well aligned” secondary samples s and
s′ belonging to p0 and pi respectively. Using the birthday paradox we can show
that the probability that there exists a primary location that we can not align
to p0 is 1 − o(1).
(ii) We get a Fail due to a signature which is too small. Lemma 1 shows that
this will only happen with a probability of o(1).
(iii) We get a Fail because not sufficiently many of our primary location posi-
tions fall into the pattern. Using Lemma 4, the probability that a fixed primary
location does hit the occurrence of the pattern is at least αδ, thus p0 will not
be in the pattern with a probability of 1 − αδ. From the remaining �p primary
locations, expected αδ�p samples will fall into an occurrence of the pattern. Us-
ing Chernoff bounds from [4], we can show that the probability that fewer than
(1−γ)·αδ�p of p1, . . . , p�p fall within an occurrence of the pattern is at most 1/k.
We can make γ a constant as close to zero as we wish by making the constant c
(the coefficient of log k in �p) large enough.

Putting things together, the probability that the algorithm outputs Fail in
the Pass case is is most o(1) + (1 − αδ) + 1/k = o(1) + (1 − (40/41)α) + 1/k =
o(1) + (1/41)α + 1/k ≤ 1/4 for k a large enough constant.

(b) We now consider the probability of a Pass answer if the Fail condition is satis-
fied. Notice that our algorithm now allows for finding patterns (of length between
δk and k) that actually do not contain primary locations. As we choose secondary
locations within a ±k radius around primary locations, a primary location may
have a distance of up to (1−δ)k from an endpoint of an occurrence of the pattern,
and still be able to identify the pattern as such. We refer to these regions of size
(1 − δ)k to the left and to the right of an occurrence as extra regions.

Consider the modification of the marking game from Section 3.1, that marks
all locations that allow for identifying occurrences of the pattern Y , by marking
both the occurrences of Y itself, as well as all the corresponding extra regions.
It is easy to see that if there does not exist a pattern of length � with δk ≤ � ≤ k
that covers an α(1 − β)-fraction of X , the modified marking scheme will mark
at most α(1 − β)n + (α(1 − β)n/δk) · 2(1 − δ)k = α(1 − β)n · (2/(40/41)− 1) =
α(1−β)n·(1+1/20) locations. The first term, α(1−β)n, is an upper bound on how
much the actual pattern can cover, whereas the second term is an upper bound
on the number of occurrences of the pattern, multiplied with the size of the extra
regions (of which there are two for every occurrence). Let μ = α(1−β)

(
1 + 1

20

)
,

i.e., the coefficient of n in the above expression.
Fix an occurrence Y of length δk that is identifiable by p0, i.e., p0 is contained

in either Y itself, or in one of the two extra regions around Y . Notice that there
are k + 2(1 − δ)k = (3 − 2δ)k many choices for Y . There are two cases that let
the algorithm find a pattern between p0 and some pi

(i) Unlucky choice of primary locations: too many of the primary locations
p1, . . . , p�p may be covered by substrings which are similar to Y . Hence, the prob-
ability that a primary location is close enough to an occurrence of the pattern
Y is at most μ (as defined above).

756 P. Berenbrink, F. Ergun, and T. Friedetzky

(ii) Unlucky choice of templates: The signatures for two substrings Y and Y ′

can be identical even if Y and Y ′ differ in more that ε′k locations (see Lemma
4, part (b)). Similar to Theorem 3, we can show that in this case the probability
to find identical signatures for a pair of primary locations p0 and pi for i ∈
{1, . . . , �p} is at most 1/k.

Similar to the proof of Theorem 3 we can argue that the probability to
find identical signatures for a pair of primary locations p0 and pi is at most
μ + 1/k for a fixed pattern Y . Hence, the expected value for the counter of Y is
(μ + 1/k) · �p. Using Chernoff bounds [4], it is easy to show that the probability
that the algorithm finds more than (1 + γ′)(μ + 1/k)�p copies of Y , is at most
1/k3. Again, we can obtain a (constant) γ′ as close to zero as we wish by choosing
a sufficiently large value of c.

For the Pass and Fail case to be distinguishable, we need (1 + γ′)(μ +
1/k) = (1 + γ′)(α(1− β)(1 + 1/20)+ 1/k)+ λ ≤ (1− γ) ·αδ for some (constant)
λ > 0. Choose c large enough such that (1 + γ′) ≤ 100

99 . Since k ≥ 100, (1 +
γ′)(α(1−β)(1+1/20)+1/k) ≤ 71/99. Furthermore, we can choose (1−γ) ≥ 41

42 ,
and thus (1 − γ)αδ ≥ 41·4·40

42·5·41 = 32
42 = 16

21 . Therefore, we indeed have a gap of
λ = 16

21 − 71
99 = 31

693 .
Since there are at most k + (1 − δ)k = (2 − δ)k possible choices for Y , the

probability of a false negative/false positive is at most (2 − δ)k · 1
k3 = o(1).

Using several runs of the algorithm together with simple majority vote it is
easy to strengthen the results such that the algorithm gives the right answers
with a polynomial small probability. In the following we refer to this algorithm
as the reliable version of the algorithm that finds variable length patterns. The
runtime is still O(

√
kpolylogk).

Note that the algorithm can be easily modified to answer Pass if, say, x
percent of the string is covered with a pattern, and Fail if less than x − α
percent of the string are covered with a pattern.

4 Finding Frequent Patterns of Unspecified Length

In this part we will use the reliable version of the algorithm that finds variable
length patterns in order to search for all patterns that cover most parts of the
string. The new algorithm works in log1/δ n rounds. In round i (1 ≤ i ≤ log1/δ n),
we search for patterns of length � with δin ≤ � ≤ δi+1n.

The algorithm works on an output table which has an entry for every i with
1 ≤ i ≤ log1/δ n. It writes Pass (Fail) in position i of the array if the algorithm
outputs Pass (Fail) in round i. We can prove the following Theorem.

Theorem 5. Use the same definitions as in Theorem 4 and run the modified
algorithm for Θ(log n) times per round. Furthermore, fix δ < 1 and choose r
such that δr ≥ 100.

(a) For every i ≤ r such there exists a pattern Y of length � with δi+1n ≤ � ≤ δin
that covers an α-fraction of X, the algorithm writes a Pass into position i
of the output array with a probability of 1 − n−1.

Finding Frequent Patterns in a String in Sublinear Time 757

(b) For every i ≤ r such there exists no pattern Y of length � with δin ≤ � ≤
δi+1n such that at least an α(1−β)-fraction of X can be covered by substrings
Z1, . . . , Zj (of length |Y |) where h(Zi, Y) ≤ εk the algorithm writes a Fail
into position i of the output array with a probability of 1 − n−1.

The algorithm runs in O(
√

kpolylogk) time and space.

Proof. The proof follows directly from Theorem 4. The array has o(n) entries and
for every i the algorithmanswersPass(Fail) correctlywithaprobability of 1−n−2.

5 Conclusions

It is also possible to define an algorithm for which a constant number of primary
locations is sufficient, rather than O(log k) as in the previous sections. However,
since “nothing is for free” there is a bigger gap in the pattern length between
the Pass and Fail cases. Notice that for our algorithms a constant number of
primary locations is not enough since we essentially search for the k possible
patterns of length k that contain the primary location p0. This means that, for
a fixed pattern Y which includes p0, the probability that all primary locations
are contained in the same pattern has to be at most 1/k for the Fail case. Since
the probability that a fixed primary location is contained in a fixed pattern
(not a fixed occurrence of a pattern) is constant, we need log k many primary
locations. This algorithm will be presented in the full version. Unfortunately,
it is in general not possible to determine the longest pattern occurring in the
string, whilst guaranteeing a probability for correctness of the answer, using our
model. See the full version of this paper for a more detailed discussion

References
1. T. Batu, F. Ergun, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld and R.

Sami. A sublinear algorithm for weakly approximating edit distance. STOC 2003,
316–324.

2. F. Ergun, S. Muthukrishnan, and C. Sahinalp, Sublinear methods for detecting peri-
odic trends in data streams. Latin American Symposium on Theoretical Informatics
(LATIN), 2004.

3. O. Goldreich, S. Goldwasser and D. Ron. Property testing and its connection to
learning and approximation, Journal of the ACM 45(4):653–750, 1998.

4. T. Hagerup and C. Rüb. A Guided Tour of Chernoff Bounds. Information Pro-
cessing Letters 33 (1989), pp. 305–308.

5. P. Indyk, N. Koudas and S. Muthukrishnan, Identifying Representative Trends in
Massive Time Series Data Sets Using Sketches. Proc. VLDB 2000. 363–372.

6. R. Karp, S. Shenker, and C. Papadimitriou, A simple algorithm for finding frequent
elements in streams and bags. ACM Trans. Database Syst. 28: 51-55 (2003)

7. O. Lachish and I. Newman, Periodicity Testing. Proc. RANDOM 2005, to appear.
8. R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University

Press (1995)
9. D. Ron, Property Testing (A Tutorial). Handbook of Randomization, 2000.

10. R. Rubinfeld and M. Sudan, Robust Characterization of Polynomials with Appli-
cations to Program Testing, SIAM Journal of Computing 25(2):252–271, 1996.

Online Occlusion Culling�

Gereon Frahling and Jens Krokowski

Heinz Nixdorf Institute, Computer Science Department,
University of Paderborn, D-33102 Paderborn, Germany

{frahling, kroko}@upb.de

Abstract. Modern computer graphics systems are able to render
sophisticated 3D scenes consisting of millions of polygons. For most cam-
era positions only a small collection of these polygons is visible. We ad-
dress the problem of occlusion culling, i.e., determine hidden primitives.
Aila, Miettinen, and Nordlund suggested to implement a FIFO buffer on
graphics cards which is able to delay the polygons before drawing them
[2]. When one of the polygons within the buffer is occluded or masked
by another polygon arriving later from the application, the rendering
engine can drop the occluded one without rendering, saving important
rendering time.

We introduce a theoretical online model to analyse these problems in
theory using competitive analysis. For different cost measures we invent
the first competitive algorithms for online occlusion culling. Our imple-
mentation shows that these algorithms outperform the FIFO strategy
for real 3D scenes as well.

1 Introduction

To visualize complex 3D scenes at interactive frame rates one needs efficient al-
gorithms to determine the visible parts. Approximation and culling techniques
are used to reduce the number of primitives that have to be rendered. Occlusion
culling attempts to identify the parts of the scene hidden by objects in front of
them. To identify all occlusions during the rendering it is necessary to render the
primitives (or polygons) in front-to-back order in respect to the camera position.
On the other hand, spatial sorting and the traversing of the used data structures
are very expensive if done at all, especially for dynamic scenes. Therefore, most
applications balance between updating, traversing, and rendering costs and per-
form only coarse spatial sorting. The rendering pipeline processes these polygons
in causal order, i.e., in the order they arrive. Polygons occluded by polygons ar-
riving later are unnecessarily rendered into the frame buffer and expensive pixel
shader commands are executed. This increases the total rendering time.

Aila et al. [2] introduced the concept of a Delay Stream, i.e., a small cache,
capable of storing (tiles of) polygons before rendering. If one of these polygons
is culled by a polygon in the stream after it, it can be removed from the cache
� Research is partially supported by DFG grant 872/8-2, by the DFG Research Train-

ing Group GK-693 of the Paderborn Institute for Scientific Computation (PaSCo).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 758–769, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Online Occlusion Culling 759

without rendering. The authors implemented the cache as a First-In-First-Out
(FIFO) buffer and showed by practical measurements that on real scenes such a
buffer can reduce the number of rendered pixels by a factor of four.

This paper addresses the question if FIFO is the best cache management
method. The rendering process consists of different stages. The most complex
and costliest stages address the rendering of single pixels, such that the rendering
time depends nearly linear on the number of pixels drawn. We address this by
a theoretical model called the size model. Other stages perform actions for each
polygon which do not depend on the size. To cover these cases we look at the
uniform model. We analyse online algorithms for both models using competitive
analysis. In the uniform cost model we propose the algorithm Mark, a variant
of a paging algorithm given in [10]. In the size model we analyse the algorithm
Balance, a variant of a weighted caching algorithm given in [7].

The paper is organized as follows: Section 2 introduces the occlusion culling
models and online analysis methods. In sections 3 and 4 we show how to adapt
the algorithms Mark and Balance to the occlusion culling scenario. Practical
measurements in section 5 examine the behaviour of Mark, Balance, and other
strategies on real test scenes. We conclude in section 6.

1.1 Related Work

Since the early nineties many occlusion culling algorithms have been presented,
a recent survey is given in [8]. The methods compute the visible primitives ei-
ther during preprocessing and store them in Potential Visible Sets (PVS) for
regions of the camera position or determine them online. Online methods nor-
mally store the scene in a hierarchical data structure, e.g., octree[12], kd-tree [9],
or bounding box hierarchy [18], to compute the point-based visibility. Usually,
the sub-division is stopped if the leafs of the data structure contain less than
a threshold of some hundred polygons. PVS methods usually overestimate the
exact visible set to create larger regions for the camera. The system of [13] com-
putes the PVS during the walktrough in less than a second but the calculated
sets are about two times larger than the exact visible sets. All these methods
send a stream of primitives to the graphics card for rendering, which includes
more or less many hidden primitives which cannot be determined by a causal vis-
ibility test. Therefore, online occlusion culling methods can be used to improve
such rendering systems.

Aila et al. [2] noticed that buffering parts of the stream can be used to detect
primitives that are hidden by other ones presented later. Their system consists
of a FIFO buffer and the visibility of each primitive is checked two times: when
it is inserted into the buffer and again when leaving the buffer.

From the theoretical point of view no results are known addressing the online
occlusion culling problem using competitive analysis. Sleator and Tarjan [15]
analysed the competitive performance of paging algorithms (closely related to
online occlusion culling algorithms, see Section 2). They proved that LRU and
FIFO are k-competitive for paging problems with a cache size of k. They also
proved a matching deterministic lower bound. In [16] Young showed for several

760 G. Frahling and J. Krokowski

deterministic caching strategies that they are loosely log k-competitive, which is
a weaker model of competitiveness we don’t discuss here.

A first algorithm for the weighted caching problem was given in [7]. It is
k-competitive and will be discussed in detail in Section 4. Young discussed the
greedy-dual algorithm, a generalization of many well known paging strategies
which is as well k-competitive in the weighted caching model [16]. A general k-
competitive algorithm Landlord for weighted caching was given in [6] and was
analysed in more detail in [17]. Fiat et al. [10] showed that there are randomized
online algorithms for paging which are O(log k)-competitive. The authors pre-
sented an algorithm Mark, which achieves a competitive ratio of 2Hk, where
Hk denotes the k-th harmonic number. Mark is not the best algorithm known
so far, since in [11] and in [1] randomized algorithms for paging were introduced
achieving a competitive ratio of Hk matching the lower bound [10].

1.2 Our Contribution

Observing similarities with online paging and caching problems we first prove
lower bounds on the competitive ratio of online occlusion culling problems. We
extend the algorithms Balance [7] and Mark [10] to online occlusion culling.
Particularly, the extension of Balance is not trivial since one needs methods to
handle the case of multi-occlusions (one polygon occluding several other poly-
gons). We introduce new analysis methods for Balance and Mark and show
that our variants achieve the same competitive ratio for online occlusion culling
as for paging and weighted caching, resp. No competitive algorithms for online
occlusion culling were known before. Our theoretical results are summarized in
Table 1. In Section 5 we test Balance and Mark in real world scenarios. The
results show that they belong to the best occlusion culling algorithms known so
far, in many cases outperforming all other algorithms.

2 Occlusion Culling Models and Online Analysis

In this section we introduce two models for occlusion culling having different
cost measures. In each model our algorithm must handle a stream of polygons.
Each polygon p has a screen size w(p) denoting the number of screen pixels
showing the polygon. A polygon can occlude other polygons on the screen. In
our theoretical model we assume that a polygon is either completely occluded
or not occluded at all by another polygon. By using a z-buffer [5], our algorithm
can identify polygons occluded by polygons seen earlier within the stream (not
paying any costs).

An online occlusion culling algorithm maintains a cache (or buffer) in which
it can store k polygons. Each polygon p seen in the data stream has to enter
the cache at a cache position chosen by the algorithm. If a polygon q in the
cache is occluded by p the algorithm can drop q and replace it by p in the cache
without paying any rendering costs. Notice that it is possible that p occludes
several polygons within the cache simultaneously. If there are any free cache
positions, the algorithm can store p at a free cache position. In case the cache is

Online Occlusion Culling 761

full and no polygon within the cache is occluded the algorithm has to choose one
polygon within the cache to be drawn on screen, paying the rendering costs for
this polygon. After the drawing p can enter the free cache position. The online
algorithms differ in the strategies of choosing the polygons to be drawn when
the cache is full. They must decide online, i.e., without knowing future polygons.

We will analyse two different cost measures since rendering applications in
practice can be limited by different bottlenecks [14]: in ”vertex (or polygon)
limited” situations all rendered polygons create uniform costs. This is addressed
by the uniform cost model, in which an online algorithm has to pay one cost
unit for each polygon it renders on the screen. Please note, if in practice the
overall performance is bounded by geometry processing, our method can only
speed up the rendering about a constant factor, since the time of the online
occlusion culling step is dominated by the z-buffer test which is already linear
in the number of tested polygons.

Many applications are ”fill limited”, i.e., the rendering time is dominated by
processing all pixels. This is modeled in the more sophisticated size model, in
which each polygon p contributes with its size w(p) to the rendering costs.

We will analyse both models using competitive analysis [15]. We compare an
online algorithm Alg (which must decide without knowing future polygons) with
an optimal offline algorithm Opt which knows the whole instance in advance
and computes the best strategy for the instance.

Definition 1. Let c be a constant and Alg be a (randomized) online algorithm
for occlusion culling. For an instance I let CAlg (I) denote the rendering costs
of Alg on the instance and COpt(I) the minimum rendering costs achievable
by any algorithm on the instance. For a randomized algorithm CAlg (I) is a
random variable dependent on the coin flips during the run of the algorithm. We
call a deterministic online algorithm Alg c-competitive, if for each instance I:
CAlg (I)

/
COpt(I) ≤ c. A randomized online algorithm Alg is c-competitive,

if for each instance I: E
[
CAlg (I)

] /
COpt(I) ≤ c.

The uniform and size models have many similarities to paging [15] respec-
tively weighted caching [7]. In the weighted caching online problem an algorithm
has to maintain a cache of k pages. It sees a stream of requests of pages. When
a requested page p is not in the cache, this is called a cache fault and the page
must be brought to the cache by paying costs of w(p). If the requested page is
within the cache, an algorithm does not need to do anything, and pays no costs.
In the paging online problem all page weights are one.

When we don’t allow multi-occlusions (one polygon occluding several other
polygons simultaneously) and we assume that each occluding polygon has the
same size as the occluded polygon, the occlusion problem in the uniform model
is equivalent to paging and the occlusion problem in the size model is equivalent
to weighted caching. Each repeated page in a paging instance corresponds to
an occluded polygon in a occlusion culling instance. Using this coherence we
can transfer lower bounds from paging [10] and weighted caching [15] to online
occlusion culling:

762 G. Frahling and J. Krokowski

Table 1. Bounds on the competitive ratio shown in this paper for the analysed occlu-
sion culling problems (see Section 2 for model descriptions). Notice ln k < Hk ≤ 1+ln k.

Problem Lower bound Upper bound
Deterministic algorithm / Uniform model k k (Balance)
Randomized algorithm / Uniform model Hk 2 + 2Hk (Mark)
Deterministic algorithm / Size model k k (Balance)
Randomized algorithm / Size model Hk k (Balance)

Theorem 1. Let Hk be the k-th harmonic number. No deterministic (random-
ized) online algorithm for occlusion culling in the uniform model can be better
than k-competitive (Hk-competitive). No deterministic online algorithm for oc-
clusion culling in the size model can be better than k-competitive.

3 The Algorithm Mark

We alter the paging algorithm Mark and his analysis given by Fiat et al. [10] to
handle the case of one polygon occluding several other polygons. Mark main-
tains for each cache position a marking bit.�

�

�

�

Algorithm Mark
Unmark all marking bits.
for each polygon p within the stream do

If p is not occluded by a polygon already seen (test using z-buffer) then
Drop all polygons within the cache occluded by p and unmark their

positions (which are empty now)
If there is an empty cache position then

Bring polygon p into that position and mark the position.
else

If there is no unmarked cache position then unmark all positions
Choose one of the unmarked positions uniformly at random
Render the polygon of this position
Bring polygon p into this position and mark the position

end if
end if

end for each

Theorem 2. The algorithm Mark is 2 + 2 · Hk-competitive for the uniform
online occlusion culling problem, where Hk denotes the k-th harmonic number.

The proof will be provided in the full version of the paper.
Since this occlusion culling algorithm Mark is equivalent with the paging

algorithm Mark for paging on ”paginglike instances” (see Section 2), we can
apply the lower bound of Achlioptas et al. [1] for the paging case.

Lemma 1. Let Hk denote the k-th harmonic number. The occlusion culling
algorithm Mark is not c-competitive for c < 2 · Hk − 1.

Online Occlusion Culling 763

4 The Algorithm Balance

In this section we look at the more practical size model, in which each polygon
contributes with its size on the screen to the drawing costs. From Section 2
we conclude that the weighted occlusion culling problem is at least as hard as
weighted caching and no deterministic occlusion culling algorithm for the size
model can have a better competitive ratio than k.

We first give evidence why all known algorithms for online occlusion culling
are not competitive in the size model.

Lemma 2. No (randomized) algorithm, which does not consider the sizes of the
polygons can be c-competitive with a constant c.

The Lemma shows that a competitive algorithm must prefer to render small
polygons when the buffer is full. However, always preferring the smallest one
within the buffer is also not a good strategy.

Lemma 3. The algorithm LeastVisibleFirst which always renders the small-
est polygon, is not c-competitive for any constant c.

The proofs will be provided in the full version of the paper.
In [7] Chrobak, Karloff, Payne, and Vishwanathan showed that an algorithm

called Balance is k-competitive for the weighted caching problem. We adapt
Balance to the problem of weighted occlusion culling and show that it is still
k-competitive. In contrast to Chrobak et al. we must deal with the difficult case
of multi-occlusions.

The algorithm Balance maintains counters S1, S2, . . . Sk for each of the k
positions in the cache. Let wi denote the size of the polygon currently within
the i-th cache position.�

�

�

�

Algorithm Balance
for each polygon p within the stream do

If p is not occluded by a polygon already seen (test using z-buffer) then
If p does not occlude any polygon within the cache then

Find the index i ∈ {1, . . . , k} such that Si = min{S1, . . . , Sk}
Render the polygon at the i-th cache position (if there is any)
Store p at the i-th cache position
Set Si ← Si + w(p)

end if
If p occludes the polygons q1, . . . , ql at cache positions i1, . . . , il then

Replace the occluded polygon q1 by p
Set Si1 ← Si1 + w(p) − w(q1)
For j = 2, . . . , l set Sij ← maxh∈{1,...,l}{Sh − wh}
Remove the occluded polygons q2, . . . , ql from their positions

end if
end if

end for each

764 G. Frahling and J. Krokowski

4.1 Analysis of Algorithm Balance

We show that Balance is k-competitive for the weighted occlusion culling prob-
lem. Consider an optimal offline algorithm Opt. Consider a worst adversarial
input sequence of polygons.

Lemma 4. If Balance is not k-competitive, there is an input sequence such
that

1. Balance produces more than k times the costs of Opt.
2. No polygon is occluded by polygons already seen in the sequence.
3. At the end of the sequence Opt and Balance have the same set of polygons

within their caches.
4. No polygon in the sequence occludes another one already rendered by Opt.
5. No polygon in the sequence occludes exactly one within the cache of Bal-

ance.
6. No counter Si decreases during the run of Balance.

Proof : If Balance is not k-competitive, there is an input sequence, such that
Balance produces more than k times the costs of Opt. We will alter this input
sequence into an input sequence having all the remaining properties, such that
the costs of Balance do not decrease and the costs of Opt do not increase.

A polygon which is occluded by polygons already seen in the sequence will
be detected by the z-buffer and therefore has no impact on Balance or Opt.
If at the end of the sequence Opt and Balance do not have the same set
of polygons within their cache we alter the sequence by appending polygons
occluding polygons within the cache of Opt. This does not increase the costs
of Opt. At some point of time Balance will have rendered all polygons not in
the cache of Opt and the caches have the same content.
Consider a polygon p which occludes polygons q1, . . . , ql already rendered by
Opt. If no qi is within the cache of Balance, p could be replaced by a polygon
which does not occlude any polygon seen so far. This would not alter the costs
of Opt or Balance. If q1, . . . , qm are within the cache of Balance p could be
replaced by a polygon p̃ having size w(p) − w(q1), and presented at a point of
time, such that it will follow q1 within the cache of Balance. Furthermore, we
replace the polygons q2, . . . , qm by polygons not occluded by p, but of a smaller
size, such that they remain in the buffer of Balance exactly until p is presented.
Notice that the behavior of Balance is exactly the same as before. The cost of
Balance therefore can only increase (by the rendering of q2, . . . , qm). The costs
of Opt can only decrease because instead of q2, . . . , qm Opt now has to render
smaller polygons.

We can furthermore avoid the case of a polygon p which occludes exactly one
polygon q within the cache of Balance. If q is not within the cache of Opt,
case 4 applies. If q is within the cache of Opt, we can replace q by p and delete
the second occurrence of p without altering the costs of Balance or Opt.

We will now alter the sequence such that no counters of Balance decrease. A
counter can only decrease if more than one polygon is occluded by a new polygon

Online Occlusion Culling 765

p. W.l.o.g. this happens at cache positions 1, . . . , l, such that ij = j. Only for the
occluded polygons q2, . . . , ql the counter values decrease, since p is stored within
the first cache position. Let S̃j = Sj − w(qj) denote the counter value of cache
position j before the element qj came into it. Let S̃ = maxh∈{1,...,l}{Sh − wh}
denote the corresponding counter value after Balance dropped q2, . . . , ql.
We alter the sequence to one without decreasing counters in the following way:
We replace the polygons qj , j = 2, . . . , l by polygons q̃j of size w(q̃j) = S̃ − S̃j

and p by a polygon p̃ of size w(p) occluding q1, q̃2, . . . , q̃l. This way the counters
S2, . . . Sl are exactly at value S̃ when p is presented within the stream and do
not decrease. Notice that all counters are at least of value min{S1, . . . , Sk} until
p is presented. This guarantees that no q̃i is rendered before the occurrence of p.
Therefore, Balance behaves the same way on the altered input sequence and
the costs of Balance are the same as before the alteration (since q2, . . . , ql don’t
need to be rendered either way). The costs for Opt can only decrease since the
sizes of the polygons are smaller after this instance change. �

We will now concentrate on sequences fulfilling the requirements of Lemma
4. For these instances the proof follows the ideas of the proof from [7] for the
paging case. We just have to deal with the fact that one page can occlude several
pages in the cache. For instances fulfilling the requirements of Lemma 4 this can
be analysed in the same way than single occlusions.

Theorem 3. Balance is k-competitive for the weighted occlusion culling
problem.

The proof will be provided in the full version of the paper.

5 Experiments

We have implemented our proposed approach as a prototypical rendering system
in C++ using OpenGL routines for the rendering. All experiments are made on
a windows based system with a 1.6GHz Pentium M and a NVIDIA Quadro FX
graphics card. For all benchmarks we choose a resolution of 1024× 768 pixels.

We perform two common culling methods called view frustum culling and
backface culling in front of the online occlusion culling step. Additionally, causal
occluded polygons detected at the beginning of our online occlusion unit by
the z-buffer test are dropped without counting. Therefore, remaining polygons
after these standard tests will pass all stages of a common rendering pipeline,
(temporally) change pixel values and cause rendering costs.

The z-buffer of the occlusion test was realized using an OpenGL feedback
buffer to guarantee that the depth values used for the occlusion test are exactly
the same as the depth values used later in the rendering process. Hence, for each
rendered polygon we have to read out the z-buffer of the graphics card, which
is a time consuming process. Therefore, we cannot state any realistic results for
the improvement of the rendering time. Like Aila et al.[2], we assume that the
savings in pixel processing should directly result in a increased frame rate.

766 G. Frahling and J. Krokowski

Table 2. Statistical overview for different test scenes. Reduction of polygons and
drawn hidden pixels for buffer size k = 40, 200, 1000. Best and close to the best
(within 5%) results are highlighted in bold. PowerPlant Corridor & Tubes cour-
tesy of the Walkthrough Group at the University of North Carolina at Chapel Hill
(www.cs.unc.edu/ walk).

Scene Town PowerPlant-Corridor PowerPlant-Tubes
Polygons in
view frustum 44563 380639 329168

Polygons after
standard tests 14512 163053 53041
buffer size k 40 200 1000 40 200 1000 40 200 1000

Reduction of polygons in per cent
Mark 24.4% 33.4% 44.5% 25.4% 34.7% 46.1% 32.4% 38.8% 44.9%

Balance 15.8% 24.6% 38.5% 16.6% 25.8% 39.9% 21.7% 26.2% 35.5%
LRU 24.7% 34.1% 45.7% 25.3% 32.9% 45.3% 35.9% 40.5% 45.9%

NF 3.0% 19.5% 44.1% 3.4% 20.2% 30.3% 3.4% 9.4% 29.0%
MVF 4.1% 19.5% 42.2% 4.8% 20.7% 39.8% 2.3% 7.6% 28.9%
LVF 0.2% 2.5% 15.7% 0.3% 3.4% 16.4% 0.4% 2.1% 8.4%

Depth complexity 1.91 3.84 6.46
reduction of drawn hidden pixels in per cent

Mark 6.2% 13.7% 23.5% 8.8% 14.4% 24.6% 16.3% 21.9% 28.1%
Balance 7.9% 21.0% 34.9% 9.1% 23.9% 36.4% 22.7% 41.9% 60.2%

LRU 6.5% 14.7% 23.8% 7.4% 15.7% 25.3% 18.5% 21.5% 28.3%
NF 1.0% 7.8% 18.5% 1.3% 9.2% 20.1% 2.9% 6.0% 19.6%

MVF 0.7% 4.6% 12.2% 0.6% 5.3% 14.3% 2.2% 3.9% 13.1%
LVF 3.4% 15.8% 32.7% 4.1% 16.7% 33.3% 22.7% 38.9% 55.9%

5.1 Strategies

We investigated the empirical performance of the strategies Mark and Balance
of Sections 3 and 4, respectively. Since our occlusion culling scenario is related
to caching, we also consider the standard caching strategy Least-Recently-Used
(LRU) as well as fairly natural strategies in this scenario, depending on the
distance to the view point and the projected screen size:

Selection by Distance. If the polygons of a scene are processed strictly front-to-
back, all completely occluded polygons will be determined by a causal occlusion
test and the rendering costs will be minimized. In order to get a partially spatial
sorting we have implemented the strategy Nearest-First (NF), which always ren-
ders the polygon nearest to the viewer among all polygons currently in the buffer.

Visible Pixels. The Least-Visible-First (LVF) strategy records the number of
visible pixels of a polygon at the time it is inserted into the buffer. If a buffer
overflow occurs, it selects the polygon with the smallest pixel counter. The op-
posite strategy Most-Visible-First (MVF) selects the polygon with the greatest
pixel counter.

Depending on the cost model used for the investigation, there are arguments
for both strategies: on the one hand, one expects that as the size of a polygon
increases, the ”probability” for its occlusion will decrease. Additionally, it is
more likely that small polygons will be far away from the view point, since the

Online Occlusion Culling 767

projected screen size of a polygon decreases approximately with the square of
its distance to the view point [9]. Therefore, the selection strategy should prefer
small polygons to be kept in the buffer, as MVF does. On the other hand, if the
size model is observed, the rendering of a small polygon increase the total cost
insignificantly. But, if it is kept in the buffer, it wastes valuable storage capacity
that could be used for efficient buffering otherwise.

Note, the strategies First-In-First-Out (FIFO) and Least-Recently-Used
(LRU) are identical in the online occlusion culling model because each poly-
gon appears in the stream exactly once.

5.2 Results

Our test scenes and their characteristics are summarized in Table 2. We made
experiments for each combination of strategy, scene and buffer size. The polygons
are roughly spatial sorted by using an octree which is traversed in a front-to-
back order. Since there is some redundancy in the results we do not give figures
for all possible combinations. Instead we try to focus and explain the behavior
on selected examples. We discuss the results for varying buffer sizes in detail for
the Town scene, but the characteristics of the curves are similar for the other
scenes. Therefore, we summarized the results for buffer sizes 40, 200 and 1000 in
Table 2 and the results for the test scene Town are shown in detail in Figure 1
at the top row.

Uniform Cost Model. First we compare the strategies w.r.t. the uniform cost
model. In the top-left diagram of Figure 1 we see the number of polygons recog-
nized to be occluded for different buffer sizes and strategies. After all standard
visibility tests 14512 polygons have to be rendered without our online occlu-
sion culling unit, whereas just 48.7% of them are (partial) visible. The highest
reduction is achieved by strategies Mark and LRU for all buffer sizes. With
buffer size 1000 LRU recognizes 45.7% of the remaining polygons as occluded
(Mark: 44.5%). The second best group of strategies is composed of NF and
MVF followed by Balance with 38.5% – 44.1% identified occlusions. Finally,
the performance of LVF is very poor, because many small polygons are occluded
by large polygons later arriving the cache, but the strategy LVF already selected
these polygons for rendering.

Fig. 1. Comparison of the strategies for the test scene town. On the left side the results
for the uniform cost model are shown and the results for the size model are on the right.

768 G. Frahling and J. Krokowski

Size Model. After the standard visibility tests 1,212,416 pixels are changed during
the rendering, but only 637,225 different pixels are visible (the remaining pixels
are filled with the background color without creating any costs). Therefore, the
depth of complexity of the Town scene is 1.91, i.e., 91% of the pixels of the
screen are rendered twice on average.

The top-right diagram of Figure 1 illustrates the number of ”economized”
pixels for different cache sizes, i.e., the number of pixels that were saved due
to the fact that the corresponding hidden polygon was not rendered. In this
cost model the strategy Balance achieved best reduction results. With cache
size 1000 it excludes 34.9% of the hidden pixels from rendering. The second best
strategy is LVF (which is the worst strategy in the polygon cost model) reducing
the number of changed pixel values about 32,7%. The strategies Mark and LRU
behave nearly the same and exclude 23.5% and 23.8% of the hidden pixels from
rendering, resp., followed by NF and MVF. The good performance of Balance
can be explained the following way: Strategies which do not prefer rendering
small polygons must have higher drawing costs. However, holding the biggest
polygons within the cache forever occupies valuable cache positions. Balance
is in theory and practice a good compromise.

Note, our online occlusion culling system is not able to reach the optimal
depth complexity of 1.0 because many polygons are only partial visible and we
do not split these polygons.

To summarize briefly, considering the uniform cost model Mark and LRU
achieve the best reduction results for all of our tests and Balance and LVF do
so for the size model.

6 Conclusion and Future Work

Interesting extensions of these results would be randomized algorithms which
achieve a better competitive ratio than k for the size model. Since these algo-
rithms would directly lead to improved weighted caching algorithms this is a
challenging problem to look at.

It would be also interesting to translate other caching algorithms to online
occlusion culling. Results about lookahead could probably be transfered to oc-
clusion culling. Results about loose competitiveness would imply good results in
practice.

Another challenge could be not to look at the worst case behavior of algo-
rithms. A first step could be to develop reasonable models to represent input
distributions of scenes. Different online occlusion culling algorithms could be
analysed according to these input distributions and lead to even better algo-
rithms in practice (compare [3] for average case paging analysis).

Acknowledgements

We would like to thank Christian Sohler for many fruitful discussions about this
topic.

Online Occlusion Culling 769

References

1. D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized
paging algorithms. Proc. 4th Annual European Symposium on Algorithms (ESA),
pp. 419–430, 1996.

2. T. Aila, V. Miettinen, and P. Nordlund. Delay streams for graphics hardware. In
ACM Transactions on Graphics, 22(3), pages 792–800. ACM, ACM Press, 2003.

3. L. Becchetti. Modeling Locality: A Probabilistic Analysis of LRU and FWF.
Proc. 12th Annual European Symposium on Algorithms (ESA), pp. 98–109, 2004.

4. A. Borodin and R. El-Yaniv. Online computation and competitive analysis Cam-
bridge University Press, 1998.

5. E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces.
PhD thesis, University of Utah, 1974.

6. P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. USENIX Sym-
posium on Internet Technologies and Systems, 1997.

7. M. Chrobak, H. Karloff, T. H. Payne, and S. Vishwanathan. New results on server
problems. SIAM Journal on Discrete Mathematics, 4(2), pp. 172–181, 1991.

8. D. Cohen-Or, Y. Chrysanthou, C. Silva, and F. Durand. A survey of visibility for
walkthrough applications. Transactions on Visualization and Computer Graphics,
9(3):412–431, 2003.

9. S. R. Coorg and S. J. Teller. Real-time occlusion culling for models with large
occluders. In Symposium on Interactive 3D Graphics, pages 83–90, 189, 1997.

10. A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young.
On competitive paging algorithms. Journal of Algorithms, 12, pp.685-699, 1991.

11. L. A. McGeoch and D. D. Sleator. A strongly competitive randomized paging
algorithm. Algorithmica 6, pp.816-825, 1991.

12. N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. In Proc. of
ACM SIGGRAPH 93, pages 231–238, 1993.

13. T. Leyvand, O. Sorkine, and D. Cohen-Or. Ray Space Factorization for From-
Region Visibility. In ACM Transactions on Graphics, 22(3), pages 595–604. ACM,
ACM Press, 2003.

14. D. Shreiner. Performance opengl: Platform independent techniques. In ACM SIG-
GRAPH 2001 course notes, 2001.

15. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2), pp.202–208, 1985.

16. N. E. Young. The k-server dual and loose competitiveness for paging. Algorithmica
11(6), pp.525–541, 1994.

17. N. E. Young. Online file caching. Proc. 9th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp.82–86, 1998.

18. H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility culling using hierarchical
occlusion maps. In Proc. of ACM SIGGRAPH 97, pages 77–88, 1997.

Shortest Paths in Matrix Multiplication Time�

[Extended Abstract]

Piotr Sankowski

Institute of Informatics, Warsaw University,
Banacha 2, 02-097, Warsaw, Poland

sank@mimuw.edu.pl

Abstract. In this paper we present an Õ(Wnω) time algorithm solving
single source shortest path problem in graphs with integer weights from
the set {−W, . . . , 0, . . . , W }, where ω < 2.376 is the matrix multiplication
exponent. For dense graphs with small edge weights, this result improves
upon the algorithm of Goldberg that works in Õ(mn0.5 log W) time, and
the Bellman-Ford algorithm that works in O(nm) time.

1 Introduction

The Single Source Shortest Paths (SSSP) problem is one of the most funda-
mental problems in combinatorial optimization. In this paper we consider this
problem in the case when negative weights are allowed but no negative weight di-
rected cycles. In this case the first algorithm for SSSP problem was proposed by
Shimbel in 1955 [12]. Some years later, the so called, Bellman-Ford method was
developed in the papers [7,1,8]. The Bellman-Ford algorithm is strongly poly-
nomial, i.e., its time complexity does not depend on the weights in the graph.
Thirty years later three scaling algorithms were developed [4–6]. The fastest of
them is the algorithm of Goldberg. It works only in the case of integer edge
weights from the set {−W, . . . , 0, . . . ,+∞}, and its time complexity depends on
log W . This algorithm works faster than the Bellman-Ford method under the
similarity assumption, i.e., when W = O(poly(n)). The complexity results for
the SSSP problem with negative edge weights are summarized in Table 1.

In this paper we show how the matrix multiplication can be used to obtain
algorithm for the SSSP problem in the case of integer edge weights from the set
{−W, . . . , 0, . . . ,+W}. Our algorithm works in time Õ(Wnω), where ω is the
matrix multiplication exponent. The best known bound on omega is ω < 2.376
given by Coppersmith and Winograd [2]. Our result improves upon the previous
fastest algorithms in the case of dense graphs with small integer weights. The
same complexity result for the SSSP problem has been obtained independently
by Yuster and Zwick [14]. Their result is based on a distance oracle that after
Õ(Wnω) preprocessing time can answer distance queries in O(n) time.

The rest of the paper is organized as follows. In the remainder of this intro-
ductory section, we summarize the results in linear algebra algorithms and recall
� Research supported by KBN grant 4T11C04425.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 770–778, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Shortest Paths in Matrix Multiplication Time 771

Table 1. The complexity results for the SSSP problem with negative weights. The
bold font indicates an asymptotically best bound in the table.

Complexity Author

O(n4) Shimbel (1955) [12]

O(n2mW) Ford (1956) [7]

O(nm) Bellman (1958) [1], Moore (1959) [8]

O(n
3
4 m log W) Gabow (1983) [4]

O(
√

nm log(nW)) Gabow and Tarjan (1989) [5]

O(
√

nm log(W)) Goldberg (1993) [6]

Õ(nω W) this paper and Yuster and Zwick [14]

the randomization technique used later in this paper. In Section 2 we present
our algorithm for computing the single source distances. In Section 3 we show
how our algorithm can be used to detect negative weight directed cycles. Finally
in Section 4 we give the algorithm for computing the lightest paths tree.

1.1 Linear Algebra Algorithms

The interaction of the matrix multiplication and linear algebra is well under-
stood. The best known algorithms for many problems in linear algebra work in
matrix multiplication time, i.e., the determinant of a n × n matrix A, or the
solution to the linear system of equations, can be computed in O(nω) arithmetic
operations. Very recently Storjohann [13] has shown that these problems for
polynomial matrices can be solved with the same exponent.

Theorem 1 (Storjohann ’03). Let A ∈ K[x]n×n be a polynomial matrix of
degree d and b ∈ K[x]n×1 be a polynomial vector of the same degree, then

– rational system solution A−1b (Algorithm 5 [13]),
– determinant det(A) (Algorithm 10 [13]),

can be computed in Õ(nωd) operations in K, with high probability.

1.2 Zippel-Schwartz Lemma

Almost always when we apply algebraic methods to construct graph algorithms,
the problem is reduced to testing if some polynomial is non-zero. For example,
if we want to check if a given vertex is reachable in the graph from another one,
then we can test if appropriately defined adjacency matrix is non-singular [9].
In order to verify that the matrix is non-singular, we compute its determinant,
which is a polynomial in the entries of the matrix. In this case we cannot use
symbolic computation because the polynomial may have exponentially many
terms and it would give an exponential time algorithm. The following lemma
due to Zippel [15] and Schwartz [11] can be used to overcome this obstacle.

772 P. Sankowski

Lemma 2. If p(x1, . . . , xm) is a non-zero polynomial of degree d with coeffi-
cients in a field and S is a subset of the field, then the probability that p evaluates
to 0 on a random element (s1, s2, . . . , sm) ∈ Sm is at most d/|S|. We call such
event false zero.

Corollary 3. If a polynomial of degree n is evaluated on random values modulo
prime number p of length (1 + c) log n, then the probability of false zero is at
most 1

nc , for any c > 0.

Note that in the standard computation model with word size O(log n), the
finite field arithmetic modulo p, except division, can be realized in constant time.
To realize division we need O(log n) time, but divisions in our algorithms are
not the dominating operations.

2 Shortest Paths

A weighted directed n-vertex graph G is a tuple G = (V, E, w, W), where the
vertex set is given by V = {1, . . . , n}, E ⊆ V × V denotes the edge set, and the
function w : E → {−W, . . . , 0, . . . , W} ascribes weights to the edges.

Consider a path p = v1, v2, . . . , vk of lengthk. Theweight of this path is givenby
w(p) =

∑n−1
i=1 w((vi, vi+1)). The distance from v to u in G, denoted by distG(v, u),

is equal to the minimal weight of the paths starting at v and ending in w.
In the single source shortest paths (SSSP) problem we are given a weighted

directed graph G and a single vertex v in G, and we want to compute the
distances from v to all other vertices in G. If there is a negative weight cycle in
G reachable from v then the distances are undefined. The algorithm for SSSP
problem should detect and report such a case.

In order to compute the distances in the graph we extend the method for
computing the transitive closure introduced by Sankowski [9] and than used
in [10] for dynamically computing distances in graphs with positive integer
weights. Let us define a symbolic adjacency matrix of the weighted directed
graph G = (V, E, w, W) to be the n × n matrix Ã(G) such that

Ã(G)i,j =

⎧⎪⎪⎨⎪⎪⎩
yW if i = j

xi,jy
w((i,j))+W if (i, j) ∈ E,

0 otherwise,
where xi,j are unique variables corresponding to the edges of G. Note that Ã(G)
is a matrix polynomial of degree 2W . In the following we denote by deg∗y(q) the
smallest degree term of y in the multi-variable polynomial q.

Lemma 4. Let G be a directed weighted graph without negative weight cycles
and let Ã(G) be the symbolic adjacency matrix of G. The weight of the lightest
path in G from i to j is given by

distG(i, j) = deg∗y

(
adj

(
Ã(G)

)
i,j

)
− (n − 1)W.

Moreover, all non-zero terms in adj
(
Ã(G)

)
i,j

are non-zero in a finite field Zp.

Shortest Paths in Matrix Multiplication Time 773

Proof. For a given matrix A, we denote by Ai,j the matrix A with elements in
i-th row and j-th column set to zero except that Ai,j = 1. From the definition of
the adjoint we have that adj(A)i,j = det(Aj,i). Applying this formula to Ã(G)
we obtain

adj
(
Ã(G)

)
i,j

= det
(
Ã(G)j,i

)
=

∑
p∈Γn

sgn(p)
n∏

k=1

Ã(G)j,i
k,pk

, (1)

where Γn is the set of n element permutations, and sgn(p) is the sign of the
permutation p.

A permutation p defines a set of directed edges Ep = {(i, pi) : 1 ≤ i ≤
n and i 	= pi} and a set of vertices Vp = {i : 1 ≤ i ≤ n and i = pi}. The edge
set Ep is a set of cycles given by the non-zero length cycles of p and the set Vp

is the set of vertices covered by zero length cycles. Note that we have
n∏

k=1

Ã(G)j,i
k,pk

=
∏

(k,l)∈Ep

Ã(G)j,i
k,l

∏
k∈Vp

Ã(G)j,i
k,k =

From the definition of Ã(G)j,i, we see that this product is non-zero if the
edge set Ep contains the edge (j, i) and the other edges in Ep are in G, i.e.,
Ep − (j, i) ⊆ E. Let us denote by CG the set of all sets of disjoint directed cycles
in G. Now by using the definition of Ã(G) we can write

=
∏

(k,l)∈Ep−(j,i)

Ã(G)j,i
k,l

∏
k∈Vp

Ã(G)j,i
k,k =

=
∏

(k,l)∈Ep−(j,i)

xk,ly
w((k,l))+W

∏
k∈Vp

yW =

= yW |Ep−(j,i)|yW |Vp|
∏

(k,l)∈Ep−(j,i)

xk,ly
w((k,l)) =

We have |Ep| + |Vp| = n and so,

= yW (n−1)
∏

(k,l)∈Ep−(j,i)

xk,ly
w((k,l)).

By plugging the above equality into (1) we get

deg∗y

(
adj

(
Ã(G)

)
i,j

)
− (n − 1)W =

= deg∗y

⎛⎝ ∑
p∈Γn

sgn(p)
n∏

k=1

Ã(G)j,i
k,pk

⎞⎠− (n − 1)W =

= min
p∈Γn

⎧⎨⎩deg∗y

⎛⎝ ∏
(k,l)∈Ep−(j,i)

xk,ly
w((k,l))

⎞⎠⎫⎬⎭ =

774 P. Sankowski

= min
p∈Γn

⎧⎨⎩deg∗y

⎛⎝y
∑

(k,l)∈Ep−(j,i) w((k,l))
∏

(k,l)∈Ep−(j,i)

xk,l

⎞⎠⎫⎬⎭ =

= min
Ep∈CG, (j,i)∈Ep

⎧⎨⎩ ∑
(k,l)∈Ep−(j,i)

w((k, l))

⎫⎬⎭ =

= min
Ep∈CG, (j,i)∈Ep

⎧⎨⎩ ∑
c⊆Ep, c is a cycle

w(c)

⎫⎬⎭ − w((j, i)) = (2)

In G there are no negative weight cycles, so the minimum is achieved for Ep

containing only one cycle, because the other cycles can only increase the value
(2). Thus we get

= min
c⊆E, (j,i)∈c,

c is a cycle

{w(c) − w((j, i))} .

where we take the minimum over the cycles c containing the edge (j, i). Note that
the rest of the cycle c forms a path from i to j with weight w(c)−w((j, i)). Hence
the smallest term in the minimum corresponds to the lightest path, because we
sum over all cycles.

Notice that each monomial in (1) has coefficient ±1, so each non-zero term
in adj(Ã(G))i,j is also non-zero over Zp, for any prime p ≥ 2.

The above theorem shows that the adjoint matrix encodes the distances in
the graph. In connection with Theorem 1 we can formulate the following

Theorem 5. Let G = (V, E, w, W) be a weighted directed graph with integer
edge weights and let v be a vertex in G. Assuming that G has no negative weight
cycles, the distances from the vertex v can be computed in Õ(Wnω) time, with
high probability.

Proof. The algorithm works as follows

1. choose a prime number p of length 3�log n�,
2. substitute all variables xi,j in the matrix Ã(G) for random numbers from

the set {1, . . . , p − 1} and let the resulting matrix be A,
3. using Theorem 1 compute det(AT) and (AT)−1ev, where ev is the v-th versor,

i.e., n dimensional zero vector except 1 on the i-th place.
4. with high probability

distG(v, u) = deg∗y
((

det(AT)
(
AT

)−1
ev

)
u

)
− (n − 1)W,

for all u ∈ V .

We have (det(AT)
(
AT

)−1
ev)u) = (adj(AT)ev)u = adj(AT)u,v = adj(A)v,u.

Note that the coefficient before the smallest degree term of y in Ã(G)v,u is a
non-zero polynomial of degree n (see Theorem 4). The smallest degree term in
adj(A)v,u is its evaluation over Zp. From Corollary 3 we get that the probability
of a false zero is O(n−2), and hence the probability that any of the O(n) distances
is computed incorrectly is O(n−1).

Shortest Paths in Matrix Multiplication Time 775

Note that the above algorithm computes also the value distG(v, v), and
distG(v, v) = 0. However, when there are some negative weight cycles in G then
distG(v, v) 	= 0. This observation will be used in the next section for computing
distances in the presence of negative weight cycles.

3 Detecting Negative Weight Cycles

In the previous section we have shown an algorithm for computing distances in
the graph only when there are no negative weight cycles. In this section we show
how the above method can be used for detecting negative weight cycles.

Theorem 6. Let G be a weighted directed graph and let Ã(G) be the symbolic
adjacency matrix of G. The value deg∗y(det(Ã(G)))−nW is equal to the minimum
weight of a disjoint set of cycles in G. Moreover, all non-zero terms in det(Ã(G))
are non-zero in a finite field Zp.

Proof. Similarly as in Theorem 4 we write

det(Ã(G)) =
∑

p∈Γn

sgn(p)
n∏

k=1

Ã(G)k,pk
,

and after the same transformations we obtain at the end,

deg∗y(det(Ã(G))) − nW = min
Ep∈CG

⎧⎨⎩ ∑
c⊆Ep, c is a cycle

w(c)

⎫⎬⎭ ,

and the theorem follows.

The above theorem can be very simply turned into an algorithm for detecting
negative weight cycles as the following theorem states.

Theorem 7. Let G = (V, E, w, W) be a weighted directed graph with integer
edge weights. A negative weight cycle in G can be detected in Õ(Wnω) time,
with high probability.

Proof. Any negative cycle in the graph G can be detected in the following way

1. choose a prime number p of length 2�log n�,
2. substitute all variables xi,j in the matrix Ã(G) for random numbers from

the set {1, . . . , p − 1} and let the resulting matrix be A,
3. using Theorem 1 compute det(A),
4. if deg∗y(det(A)) − nW < 0 then, with high probability, G has a negative

weight cycle.

If there are negative weight cycles in G then the minimum weight of the disjoint
set of cycles is also negative, so the correctness of the above algorithm follows
from Theorem 6 and Corollary 3.

776 P. Sankowski

In order to detect a negative weight cycle reachable from a given vertex v we
have to be a bit more careful than in the above theorem.

Theorem 8. Let G = (V, E, w, W) be a weighted directed graph with integer
edge weights and let v be a vertex in G. There is an Õ(Wnω) time algorithm
that, with high probability,

– detects if there is a negative weight cycle reachable from v in G,
– and if there is no such cycle it computes the distances from v.

Proof. Note that if there are negative weight cycles in G then the algorithm from
Theorem 5 returns wrong, too short distances, because negative weight cycles
can contribute to the sum in (2). However, when there are no negative weight
cycles the distances are computed correctly.

In order to detect negative weight cycles we use the standard Bellman-Ford
method [3]. The idea is as follows

1. run the algorithm from Theorem 5 to compute the distances from v, and let
the computed values be dv,u, for all u ∈ G,

2. define new distances d′v,u to be

d′v,u := dv,u − dv,v.

3. run the single iteration of the Bellman-Ford method on the distances d′,
4. if d′ remained unchanged in the Bellman-Ford step then return d′, else there

is a negative length cycle reachable from v.

There are three possibilities

– There are no negative length cycles in G — We have dv,v = 0 and
from Theorem 5 we get that the distances are computed correctly.

– No negative length cycle in G is reachable from v — In (2) the distance
distG(v, u) is given by the sum over the sets of cycles in G. Note that the
path from v to u is disjoint from any negative weight cycle in G, and so this
sum is reduced by the minimum weight of the disjoint set of cycles in G.
Note that adj(Ã(G))v,v = det(Ã(G−{v})), where G−{v} is G with removed
vertex v. Hence from Theorem 6 we get that distG(v, v) = deg∗y(det(Ã(G −
{v})))−(n−1)W is equal to the minimum weight of the disjoint set of cycles
in G−{v}. Because the negative weight cycles are disjoint from v this gives
also the minimum weight of the disjoint set of cycles in G.

– There is a negative length cycle in G reachable from v — In this
case the algorithm form Theorem 5 computes wrong distances for the vertices
reachable from v. However, whichever the distances are, they will be changed
by the Bellman-Ford step, because there is a negative weight cycle.

The above idea can be used for computing distances form the vertex v to all
other vertices which are reachable only by paths that do not touch any negative
weight cycle. The details will be given in the full version of this paper.

Shortest Paths in Matrix Multiplication Time 777

4 Constructing the Lightest Paths Tree

In this section we show how the lightest paths tree in the weighted directed
graph can be constructed.

Theorem 9. Let G = (V, E, w, W) be a weighted directed graph with integer
edge weights and let v be a vertex in G. A lightest paths tree rooted at v can be
constructed in Õ(Wnω) time, with high probability.

Proof. The algorithm for computing the lightest paths tree works as follows

1. run the algorithm from Theorem 8 to compute the distances from v, and let
the computed values be dv,u, for all u ∈ G,

2. let w′ be a new weight function in G defined by

w′((i, j)) := w((i, j)) − dv,j + dv,i, (3)

3. compute the lightest paths tree in G′ = (V, E, w′) using the Dijkstra’s algo-
rithm.

The distances distG(v, u) form a potential function with the following properties
[3],

(i) the weights defined in (3) are positive,
(ii) each path p from v to u is lightest with respect to w iff it is lightest with

respect to w′.

Because of (i) we can use the Dijkstra algorithm. By (ii) the lightest paths tree
returned by the Dijkstra’s algorithm for w′ is also the lightest paths tree for w.

Acknowledgments

I would like to thank my favorite supervisor Krzysztof Diks for his unwavering
support and Marcin Mucha for many helpful discussions.

References

1. R. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16(1):87–
90, 1958.

2. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. In Proceedings of the nineteenth annual ACM conference on Theory of com-
puting, pages 1–6. ACM Press, 1987.

3. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge Mass., 1990.

4. H.N. Gabow. Scaling Algorithms for Network Problems. J. Comput. Syst. Sci.,
31(2):148–168, 1985.

5. H.N. Gabow and R.E. Tarjan. Faster Scaling Algorithms for Network Problems.
SIAM J. Comput., 18(5):1013–1036, 1989.

778 P. Sankowski

6. A. V. Goldberg. Scaling Algorithms for the Shortest Paths Problem. SIAM J.
Comput., 24(3):494–504, 1995.

7. L.R. Ford Jr. Network Flow Theory. Paper P-923, The RAND Corperation, Santa
Moncia, California, August 1956.

8. E. F. Moore. The Shortest Path Through a Maze. In Proceedings of the Interna-
tional Symposium on the Theory of Switching, pages 285–292. Harvard University
Press, 1959.

9. P. Sankowski. Dynamic Transitive Closure via Dynamic Matrix Inverse. In Pro-
ceedings of the 45th annual IEEE Symposium on Foundations of Computer Science,
pages 248–255, 2004.

10. P. Sankowski. Subquadratic Algorithm for Dynamic Shortest Distances. In Pro-
ceedings of the 11th International Computing and Combinatorics Conference (CO-
COON’05), LNCS 3595, 2005.

11. J. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27:701–717, 1980.

12. A. Shimbel. Structure in Communication Nets. In In Proceedings of the Symposium
on Information Networks, pages 199–203. Polytechnic Press of the Polytechnic
Institute of Brooklyn, Brooklyn, 1955.

13. A. Storjohann. High-order lifting and integrality certification. J. Symb. Comput.,
36(3-4):613–648, 2003.

14. R. Yuster and U. Zwick. Answering distance queries in directed graphs using
fast matrix multiplication. In The 46th Annual Symposium on Foundations of
Computer Science (FOCS’05), 2005.

15. R. Zippel. Probabilistic algorithms for sparse polynomials. In International Sym-
posium on Symbolic and Algebraic Computation, volume 72 of Lecture Notes in
Computer Science, pages 216–226, Berlin, 1979. Springer-Verlag.

Computing Common Intervals of K

Permutations, with Applications to
Modular Decomposition of Graphs

Anne Bergeron1, Cedric Chauve1, Fabien de Montgolfier2,
and Mathieu Raffinot3

1 Département d’informatique, Université du Québec à Montréal, Canada
{bergeron.anne, chauve.cedric}@uqam.ca

2 LIAFA, Université Denis Diderot - Case 7014, 2 place Jussieu,
F-75251 Paris Cedex 05, France

fm@liafa.jussieu.fr
3 CNRS - Laboratoire Génome et Informatique, Tour Evry 2, 523,

Place des Terrasses de l’Agora, 91034 Evry, France
raffinot@genopole.cnrs.fr

Abstract. We introduce a new way to compute common intervals of K
permutations based on a very simple and general notion of generators of
common intervals. This formalism leads to simple and efficient algorithms
to compute the set of all common intervals of K permutations, that can
contain a quadratic number of intervals, as well as a linear space basis
of this set of common intervals. Finally, we show how our results on
permutations can be used for computing the modular decomposition of
graphs in linear time.

1 Introduction

The notion of common interval was introduced in [16] in order to model the
fact that, when comparing genomes, a group of genes can be rearranged but
still remain connected. In [16], Uno and Yagiura proposed a first algorithm that
computes the set of common intervals of a permutation P with the identity
permutation in time O(n+N), where n is the length of P , and N is the number
of common intervals. However, N can be of size O(n2), thus the algorithm of
Uno and Yagiura has an O(n2) time complexity. Heber and Stoye [10] defined a
subset of size O(n) of the common intervals of K permutations, called irreducible
intervals, that forms a basis of the set of all common intervals: every common
interval is a chain overlapping irreducible intervals. They proposed an O(Kn)
time algorithm to compute the set of irreducible intervals of K permutations,
based on Uno and Yagiura’s algorithm.

One of the drawbacks of these algorithms is that properties of Uno and
Yagiura’s algorithm are difficult to understand [4]. Even the authors describe
their O(n+N) algorithm as ”quite complicated”, and, in practice, simpler O(n2)
algorithms run faster on randomly generated permutations [16]. On the other

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 779–790, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

780 A. Bergeron et al.

hand, Heber and Stoye’s algorithms rely on a complex data structure that mimics
what is known, in the theory of modular decomposition of graphs, as the PQ-
trees of strong intervals. An incentive to revisit this problem is the central role
that these PQ-trees seem to play in the field of comparative genomics. Strong
intervals can be used to identify significant groups of genes that are conserved
between genomes [11], or as guides to reconstruct evolution scenarios [1,8].

In order to design alternative efficient algorithms to compute common
intervals, we propose a theoretical framework for common intervals based on
generating families of intervals. For two permutations, these families can be
computed by straightforward O(n) algorithms that use only tables and stacks as
data structures, and that upgrade trivially to the case of K permutations. Using
these families, we compute common intervals with simple O(n + N) and O(n)
algorithms whose properties can be readily verified. We then link this work to
previous studies on common interval, and we propose a new canonical represen-
tation of the family of common intervals that is simpler than the PQ-trees.

Finally, we extend our approach to the classical graph problem of modular
decomposition that aims to efficiently compute a compact representation of the
modules of a graph. The first linear time algorithms that were developed [6,13]
are rather complex and many efforts were have been made in the design of
decomposition algorithms that are efficient in practice, even if they do not run
in linear time but in quasi-linear time [7,14].

The article is structured as follows. In Section 2, we describe the notion of
generators of common intervals and how to compute generators of K permuta-
tions of size n in O(Kn) time. The third section explains how to generate the set
of all N common intervals in O(n + N) using a generator. Section 4 describes a
new linear space basis of common intervals, called the canonical generator, and
describes the relations between this new basis and the classical basis of strong in-
tervals. Section 5 contains a simple linear-time algorithm to construct the strong
intervals basis, given the canonical generator. Finally, in Section 6, we extend
our results to the modular decomposition of graphs. Some proofs are omitted,
however they can be found in [2].

2 Common Intervals and Generators

A permutation P on n elements is a complete linear order on the set of integers
{1, 2, . . . , n}. We denote Idn the identity permutation (1, 2, . . . , n). An interval
of a permutation P = (p1, p2, . . . , pn) is a set of consecutive elements of per-
mutation P . An interval of a permutation will be denoted by either giving its
left and right bounds, such as [i, j], or by giving the list of its elements, such as
(pi, pi+1, . . . , pj). An interval [i, j] = (i, i + 1, . . . , j) of the identity permutation
will be simply denoted by (i..j).

Definition 1. Let P = {P1, P2, . . . , PK} be a set of K permutations on n el-
ements. A common interval of P is a set of integers that is an interval in each
permutation of P .

Computing Common Intervals of K Permutations 781

The set {1, 2, . . . , n} and all singletons are always common intervals of any
non empty set of permutations, they are called trivial intervals. In the sequel,
we assume, without loss of generality, that the set P contains the identity per-
mutation Idn. A common interval of P can thus be denoted as an interval (i..j)
of the identity permutation.

Definition 2. Let P = {Idn, P2, . . . , PK} be a set of K permutations on n
elements. A generator for the common intervals of P is a pair (R, L) of vectors
of size n such that:

1. R[i] ≥ i and L[j] ≤ j for all i, j ∈ {1, 2, . . . , n},
2. (i..j) is a common interval of P if and only if (i..j) = (i..R[i]) ∩ (L[j]..j).

The following proposition shows how to construct a generator for a union of sets
of permutations, given generators for each set. If X and Y are two vectors, we
denote by min(X, Y) the vector min(X [1], Y [1]), . . . ,min(X [n], Y [n]).

Proposition 1. Let (R1, L1) and (R2, L2) be generators for the common inter-
vals of two sets P1 and P2 of permutations, both containing the identity per-
mutation. The pair (min(R1, R2), max(L1, L2)) is a generator for the common
intervals of P1 ∪ P2.

Proof. First note that (i..j) = (i..R[i]) ∩ (L[j]..j) if and only if L[j] ≤ i ≤
j ≤ R[i]. Interval (i..j) is a common interval of P1 ∪ P2 if and only if it is a
common interval of both P1 and P2, which is equivalent to L1[j] ≤ i ≤ j ≤
R1[i] and L2[j] ≤ i ≤ j ≤ R2[i], and finally to max(L1[j], L2[j]) ≤ i ≤ j ≤
min(R1[i], R2[i]) �

Proposition 1 implies that, given an O(n) algorithm for computing gener-
ators for the common intervals of two permutations, we can easily deduce an
O(Kn) algorithm for computing a generator for the common intervals of K
permutations.

Generators are far from unique, but some are easier to compute than others.
Identifying good generators is a crucial step in the design of efficient algorithms
to compute common intervals. The remaining of this section focuses on particular
classes of generators that turn out to have interesting properties with respect to
computations.

Definition 3. Let P = (p1, . . . , pn) be a permutation on n elements. For each
element pi, we define two intervals containing pi:

IMax[pi] is the largest interval of P whose elements are all ≥ pi,
IM in[pi] is the largest interval of P whose elements are all ≤ pi.

And the following two integers:
Sup[pi] is the largest integer such that (pi..Sup[pi]) ⊆ IMax[pi],
Inf [pi] is the smallest integer such that (Inf [pi]..pi) ⊆ IM in[pi].

Remark that (pi..Sup[pi]) and (Inf [pi]..pi) are intervals of the identity permu-
tation, but not necessarily intervals of permutation P . For example, if P =
(1 4 7 5 9 6 2 3 8), we have: IMax[5] = (7 5 9 6) and Sup[5] = 7, and
IM in[8] = (6 2 3 8) and Inf [8] = 8.

782 A. Bergeron et al.

Proposition 2. The pair of vectors (Sup, Inf) is a generator for the common
intervals of P and Idn.

Proof. Suppose that (i..j) is a common interval of P and Idn, then Sup[i] ≥ j
and Inf [j] ≤ i since all elements in the set (i..j) are consecutive in permuta-
tion P . Thus (i..j) = (i..Sup[i]) ∩ (Inf [j]..j). On the other hand, suppose that
Sup[i] ≥ j and Inf [j] ≤ i, then IMax[i] contains j and IM in[j] contains i. Since
both IMax[i] and IM in[j] are intervals of P , their intersection is an interval
and is equal to (i..j). �

Algorithm 1. Computing the generator (Sup, Inf)

Inf [1] ← 1, Sup[n] ← n.
For k from 1 to n, m[k] ← k, M [k] ← k.
For k from 2 to n

While m[k] − 1 is in IM in[k], m[k] ← m[m[k] − 1]
Inf [k] ← m[k]

For k from n − 1 to 1
While M [k] + 1 is in IMax[k], M [k] ← M [M [k] + 1]
Sup[k] ← M [k]

Proposition 3. Let P be a permutation on n elements. If the bounds of in-
tervals IMax[k] and IM in[k] are known for all k, then Algorithm 1 computes
(Sup, Inf) in O(n) time.

Proof. We first show that Algorithm 1 is correct. Suppose that, at the beginning
of the k-th iteration of the second For loop, Inf [k′] = m[k′] for all k′ < k,
and m[k] ∈ IM in[k]. This is the case at the beginning of iteration k = 2,
since Inf [1] = 1. By definition, Inf [k] ≤ k, thus before entering the While
loop, we have Inf [k] ≤ m[k]. If the test m[k] − 1 ∈ IM in[k] of the While
loop is true, then Inf [k] ≤ m[k] − 1, implying Inf [k] ≤ Inf [m[k] − 1]. Since
Inf [m[k] − 1] = m[m[k] − 1] by hypothesis, the instruction in the While loop
preserves the invariant Inf [k] ≤ m[k]. When the test of the While loop becomes
false, then Inf [k] is greater than m[k] − 1, thus Inf [k] = m[k]. The proof of
correctness for Sup is similar.

Suppose that IM in[k] = [i, j], then the tests in the While loops can be done
in constant time using the inverse of permutation P . The total time complex-
ity follows from the fact that the instruction within the While loop is executed
exactly n − 1 times. Indeed, consider, at any point of the execution of the algo-
rithm, the collection of intervals (m[k]..k) of the identity permutation that are
not contained in any other interval of this type. After the initialization loop, we
have n such intervals, and at the completion of the algorithm, there is only one,
namely (1..n), since Inf [n] = 1. The instruction in the While loop merges two
consecutive intervals into one and there can be at most n− 1 of these merges. �

The computation of the bounds of intervals IMax[k] and IM in[k], as well as
the computation of the inverse of permutation P , are quite straightforward. As
an example, Algorithm 2 shows how to compute the left bound of IMax[pi].

Computing Common Intervals of K Permutations 783

Proposition 4. Let P = (p1, . . . , pn) be a permutation on n elements, Algo-
rithm 2 computes the left bound of all intervals IMax[pi] in O(n) time.

Proof. The time complexity of Algorithm 2 is immediate since each position is
stacked once. The correctness of LMax relies on the fact that, at the beginning
of the i-th iteration, the position j of the nearest left element such that pj < pi

must be in the stack. If it was not the case, then an element smaller than pj was
found between the positions j and i, contradicting the definition of position j �

Algorithm 2. Computing the left bound LMax[pi] of IMax[pi] for all pi

S is a stack of positions; s denotes the top of S.
Push 0 on S
p0 ← 0
For i from 1 to n

While pi < ps Pop the top of S
LMax[pi] ← s + 1
Push i on S

To summarize the results of this section, we have:

Theorem 1. Let P = {Idn, P2, . . . , PK} be a set of K permutations on n ele-
ments. A generator for the common intervals of P can be computed in O(Kn)
time.

3 Common Intervals of K Permutations in Optimal Time

We now turn to the problem of generating all common intervals of K permuta-
tions in O(N) time, where N is the number of such common intervals, given a
generator satisfying the following property.

Definition 4. Two sets A and B commute if either A ⊆ B, or B ⊆ A, or A and
B are disjoint, and otherwise they overlap. A collection C of sets is commuting if,
for any pair of sets A and B in C, A and B commute. A generator (R, L) for the
common intervals of P = {Idn, P2, . . . , PK} is commuting if both the collections
{(i..R[i])}i∈(1..n) and {(L[i]..i)}i∈(1..n) are commuting. If (R, L) is a commuting
generator, we define Support[i], for i > 1, to be the greatest integer j < i such
that R[i] ≤ R[j].

It turns out that generators defined in Section 2 are commuting. Indeed,
generators defined in Proposition 1 are commuting if they are constructed with
generators (R1, L1) and (R2, L2) that are commuting. This is a consequence of
the fact that if a < b and a′ < b′ then min(a, a′) < min(b, b′) and max(b, b′) >
max(a, a′). For the generator (Sup, Inf), we have:

Proposition 5. The generator (Sup, Inf) for the common intervals of permu-
tations P and Idn is commuting.

784 A. Bergeron et al.

Proposition 6. Given a commuting generator (R, L), Algorithm 3 computes
the values Support[i], for all i > 1, in linear time.

Theorem 2. Given a commuting generator (R, L), Algorithm 4 outputs all com-
mon intervals of a set P of K permutations on n elements, in O(n + N) time,
where N is the number of common intervals of the set P.

Proof. The time complexity of Algorithm 4 is immediate. Suppose that interval
(i..j) is identified by the algorithm. At the start of the j-th iteration of the For
loop, i = j, thus j ≤ R[i]. If the test of the While loop is true, then i ≥ L[j], and
(i..j) is a common interval. If i′ = Support[i], then R[i′] ≥ R[i], thus j ≤ R[i′]
at the end of the While loop.

On the other hand, if (i..j) is a common interval of P , with i < j, then
Support[j] ≥ i, since R[i] ≥ R[j]. Let i′ be the smallest integer such that i < i′

and (i′..j) is identified by Algorithm 4 as a common interval. Such an interval
exists, since (j..j) is a common interval. Finally, Support[i′] = i since Support[i′]
must be greater than or equal to i. If it is greater, then (Support[i′]..j) is a
common interval, contradicting the definition of i′. �

Algorithm 3. Computing Support[i] for a commuting generator (R, L)

S is an empty stack; s denotes the top of S
Push 1 on S
For i from 2 to n

While R[s] < i Pop the top of S
Support[i] ← s
Push i on S

Algorithm 4. Common intervals of a set P given a generator (R, L)

For j from n to 1
i ← j
While i ≥ L[j]

Output (i..j) (* Interval (i..j) is a common interval of the set P *)
i ← Support[i]

4 Canonical Representations of Closed Families

The common intervals of a set of permutations is an example of a more general
families of intervals, the closed families. In this section, we develop a new canon-
ical representation for such families, based on the generators of the previous
section.

A closed family F of intervals of the identity permutation on n elements is a
family that contains all singletons, the interval (1..n) and that has the following
property: if (i..k) and (j..l) are in F , and i ≤ j ≤ k ≤ l, then (i..j), (j..k), (k..l)

Computing Common Intervals of K Permutations 785

and (i..l) belong to F . It is easy to extend Definition 2 of generators to the more
general case of closed families.

A classical result [3] establishes a bijection between the PQ-trees with n
leaves and closed families of Idn, thus allowing a representation of size O(n) for
any closed family. Among all possible generators, the following ones will also
provide a representation of size O(n) for any closed family:

Definition 5. A generator (R, L) for a closed family F is canonical if, for all
i ∈ (1..n), intervals (i..R[i]) and (L[i]..i) belong to F .

Proposition 7. Let F be a closed family. The canonical generator of F always
exists, and it is unique and commuting.

Theorem 3. Given a commuting generator (R′, L′), Algorithm 5 computes the
canonical generator (R, L) of a closed family F in O(n) time.

Algorithm 5. Canonical generator (R, L) given a commuting generator(R′,L′)

The vector Support is obtained from R′ using Algorithm 3
R[1] ← n
For k from 2 to n

R[k] ← k
For k from n to 2

If (Support[k]..R[k]) ∈ F
R[Support[k]] ← max(R[k], R[Support[k]])

(* Computation of L is similar, by defining the vector Support with respect
to L′ *)

Example 1. Let P = {Id8, P2} and Q = {Id8, P3} with

Id8 = (1, 2, 3, 4, 5, 6, 7, 8) P2 = (1, 3, 2, 4, 5, 7, 6, 8) P3 = (2, 8, 3, 4, 5, 6, 1, 7)

Figure 1 shows the generators (Sup, Inf) for the common intervals of P and
the common intervals of Q; a generator for the common intervals of the union
P ∪Q using the two generators (Sup, Inf); and the canonical generator for the
common intervals of P ∪Q.

Compared to PQ-trees, this canonical representation of a closed family F is
much simpler since it uses only two arrays. Moreover, some operations, for ex-
ample testing whether an interval (i..j) belongs to the family F , are also simpler
using this representation. However, PQ-trees have the advantage of being recur-
sive structures. Thus, in order to be complete, we next show how to transform
one representation into the other using the key notion of strong intervals.

5 From Canonical Generators to Strong Intervals

A strong interval of F is an interval that commutes with each interval of F .
In this section, we show how to compute the strong intervals, given a canonical

786 A. Bergeron et al.

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Fig. 1. The top two diagrams show the generators (Sup, Inf) of the common intervals
of the set P in solid lines, and of set Q in dashed lines. A line in row i of the left diagram
extends from column i to column Sup(i), and a line in row i of the right diagram
extends from column Inf(i) to column i. The middle diagrams shows a generator for
the common intervals of P ∪ Q constructed using Proposition 1. Finally, the bottom
diagrams shows the canonical generator constructed by Algorithm 5.

generator. The structure of PQ-tree, the inclusion tree of the strong intervals, is
another classical representation of an interval family [3]. This concept is investi-
gated in [12], where it is explained how to compute the PQ-tree from the strong
intervals.

Let (R, L) be the canonical generator. Consider the 4n bounds of intervals of
the families (i..R[i]) and (L[j]..j) for i, j ∈ (1..n). Let (a1, . . . , a4n) be the list of
these 4n bounds sorted in increasing order, with the left bounds placed before
the right bounds when they are equal. For the example of Figure 1 this list is

(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8)

where i denotes a right bound. Such a list can be constructed easily by scanning
the two vectors R and L, and by noting that each i ∈ (1..n) is a left bound at
least once, and a right bound at least once.

Computing Common Intervals of K Permutations 787

Proposition 8. Given the ordered list (a1, . . . , a4n) of the 4n bounds of a canon-
ical generator (R, L), Algorithm 6 outputs the strong intervals of a closed family
in O(n) time.

Algorithm 6. Computation of the strong intervals

S is a stack of bounds, s denotes the top of S
For i from 1 to 4n

If ai is a left bound
Push ai on S

Else
Output (s..ai) (* Interval (s..ai) is strong *)
Pop the top of S

6 Modular Decomposition

Let G = (V, E) be a directed, finite, loopless graph, with |V | = n and |E| = m.
Undirected graphs may be seen as symmetrical directed graphs in this context.
A module is a subset M of V that behaves like a single vertex: for x /∈ M either
there are |M | arcs that join x to all vertices of M , or no arc joins x to M , and
conversely either there are |M | arcs that join all vertices of M to x, or no arc
joins M to x. A strong module does not overlap any other module. There may
be up to 2n modules in a graph (in the complete graph for instance) but there
are at most O(n) strong modules, and the modular decomposition tree based on
the strong modules inclusion tree is sufficient to represent all modules [15]. The
modular decomposition tree is indeed the PQ-tree of the family of modules.

Linear-time decomposition algorithms have been discovered [6,13] but remain
rather complex. Simpler algorithms work in two steps: computing a factorizing
permutation, and then building a tree representation on it. The first step was
published in [9]. In this paper, we simplify the second step.

A factorizing permutation of a graph [5] is a permutation of the vertices of
the graph in which every strong module of the graph is a factor, that is an
interval of the permutation. Since the strong modules are a commuting family,
every graph admits a factorizing permutation. A factorizing permutation of a
graph can be computed in linear time [9]. In the following we assume, without
loss of generality, that the vertex-set V is the set {1, ..n} and that the identity
permutation is a factorizing permutation of the graph.

Given an interval (u..v) of the factorizing permutation, a vertex x /∈ (u..v)
is a splitter of the interval if there are between 1 and v − u arcs going from x
to (u..v), or if there are between 1 and v − u arcs going from (u..v) to x. A
right-module is an interval (u..v) with no splitters greater than v. A left-module
is an interval (u..v) with no splitters smaller than u. An interval-module is an
interval (u..v) with no splitters. Clearly interval-modules are modules. However,
some modules are not interval-modules, but, according to the definition of a
factorizing permutation, the strong modules of the graph are interval-modules.

788 A. Bergeron et al.

It is well known that modules behave like intervals: unions, intersections or
differences of two overlapping modules are modules. Thus:

Proposition 9. [15] The interval-modules of a factorizing permutation of a
graph G are a closed family. The strong intervals of this family are exactly the
strong modules of the graph G.

Definition 6. For a vertex v let R[v] be the greatest integer such that (v..R[v])
is a left-module and L[v] the smallest integer such that (L[v]..v) is a right-module.

It can be proved that for every w ∈ (L[v]..v), (w..v) is a right-module, and
for every w < L[v], (w..v) is not a right-module. For this reason (L[v]..v) is
called the maximal right-module ending at v. In a similar way, we can define the
maximal left-module beginning at v. We have:

Proposition 10. The pair (R, L) is a commuting generator of the interval-
modules family.

Proof. Interval (u..v) is an interval-module if and only if R[u] ≥ v and L[v] ≤
u, thus (R, L) is a generator. The family defined by R is commuting because
if (u..R[u]) overlaps (v..R[v]), and if, without loss of generality, u < v, then
(u..R[v]) is a left-module starting at u greater than the maximal left-module
(u..R[u]), which is a contradiction. A similar argument shows that L also is
commuting. �

In order to compute the maximal right-strong modules, we use a simplified
version of an algorithm due to Capelle and Habib [5]. The algorithm to compute
the maximal left-modules is similar.

Let us consider the maximal right-module (L[v]..v) ending at v. If L[v] > 1,
then there exists an x > v that splits (L[v] − 1..v), otherwise this right-module
would not be maximal, and x therefore splits (L[v]− 1..L[v]), but does not split
(y − 1, y) for all L[v] < y ≤ v. Based on this observation, Capelle and Habib
algorithm proceeds in two steps. First, for every vertex v the rightmost splitter
s[v] is computed. It is the greatest vertex, if any, that splits the pair (v − 1..v).
Then a loop for v from n to 2 computes all the maximal right-modules (L[x]..x)
such that v = L[x]. Computing s[v] can be done by a simultaneous scan of the
adjacency lists of v and v−1: the greatest element occurring in only one adjacency
list is kept. This can be done in time proportional to the size of the adjacency
lists. The computation of s[v] for all v can therefore be done in O(n + m) time,
that is linear in the size of the graph. The second step is Algorithm 7. It clearly
runs in O(n) time, and its correctness relies on the following invariant:

Invariant. At step v, for all vertices x in the stack, (v..x) is a right-module,
and for all x > v not in the stack, L[v] > v.

Proof. The invariant is initially true. Every step maintains it: if s[v] does not
exist then for all x in the stack (v−1..x) is a right-module, and (v−1..v) also is a
right-module. And if s[v] exists, (v) is the maximal right-module ending at v. For
all x < s[v] (v − 1..x) is not a right-module and (v..x) is therefore the maximal

Computing Common Intervals of K Permutations 789

right-module ending at x. For all x ≥ s[v] (v − 1..x) is still a right-module,
because s[v] is the greatest of the splitters of (v − 1, v). �

We thus have:

Theorem 4. Given a graph G, and a factorizing permutation of G, it is possible
to compute the modular decomposition tree of G in time O(n + m).

Algorithm 7. Computing all maximal right-modules given s[v]

S is a stack of vertices; t denotes the top of S.
for v from n to 2

if s[v] exists
L[v] ← v
While t < s[v]

L[t] ← v
Pop the top of S

else
Push v on S

7 Conclusion

In the present work, we formalized two concepts about common intervals, namely
generators and canonical representation, that proved to have important algorith-
mic implications. Indeed, the combinatorial properties of these objects, and in
particular the different links between them, are central in the design and the
analysis of the simple optimal algorithms for computing common intervals of
permutations we presented. It is important to highlight that our algorithms
are really “optimal” since they are based on very elementary manipulations of
stacks and arrays. This is, we believe, a significant improvement over the ex-
isting algorithms that are based on intricate data structures, both in terms of
ease of implementation and time efficiency, and in terms of understanding the
underlying concepts [10,16].

Moreover, we showed how, transposed in the more general context of mod-
ular decomposition of graphs, our results have a similar impact and lead to a
significant simplification of some existing algorithms. Indeed, modular decompo-
sition algorithms are quite complex algorithms, but using the simple factorizing
permutation algorithm of [9] and the right-modules identification algorithm of
Section 6, a generator of the interval-modules can easily be computed in linear
time; tools from Section 5 can then be used to compute the strong interval-
modules, that also are the strong modules, and the PQ-tree, called modular
decomposition tree in this context.

References

1. S. Bérard, A. Bergeron, and C. Chauve. Conserved structures in evolution scenar-
ios. In Comparative Genomics, RECOMB 2004 International Workshop, vol. 3388
of Lecture Notes in Comput. Sci., p. 1–15. Springer-Verlag, 2005.

790 A. Bergeron et al.

2. A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot. Computing com-
mon intervals of K permutations, with applications to modular decomposition
of graphs. LIAFA technical report 2005-006 available at http://www.liafa.

jussieu.fr/web9/rapportrech/listrapport fr.php?anscol=2005

3. S. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-trees algorithms. J. Comput. Syst. Sci., 13:335–379.
1976.

4. B. M. Bui Xuan, M. Habib, and C. Paul, From Permutations to Graph Algorithms,
LIRMM technical report RR-05021, 2005.

5. C. Capelle and M. Habib. Graph decompositions and factorizing permutations.
in Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997,
p. 132–143. IEEE Computer Society, 1997.

6. A. Cournier and M. Habib. A new linear algorithm for modular decomposition.
In Trees in algebra and programming – CAAP’94, 19th International Colloquium,
vol. 787 of Lecture Notes in Comput. Sci., p. 68–84. Springer-Verlag, 1994.

7. E. Dahlhaus, J. Gustedt, and R. M. McConnell. Efficient and practical algorithms
for sequential modular decomposition. J. Algorithms, 41(2):360–387. 2001.

8. M. Figeac and J.-S. Varré. Sorting by reversals with common intervals. In Algo-
rithms in Bioinformatics, 4th International Workshop, WABI 2004, vol. 3240 of
Lecture Notes in Comput. Sci., p. 26–37. Springer-Verlag, 2004.

9. M. Habib, F. de Montgolfier and C. Paul. A Simple Linear-Time Modular De-
composition Algorithm for Graphs, Using Order Extension In Algorithm Theory –
SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory, vol. 3111 of Lecture
Notes in Comput. Sci., p. 187–198. Springer-Verlag, 2004.

10. S. Heber and J. Stoye. Finding all common intervals of k permutations. In Com-
binatorial Pattern Matching, 12th Annual Symposium, CPM 2001, vol. 2089 of
Lecture Notes in Comput. Sci., p. 207–218. Springer-Verlag, 2001.

11. G.M. Landau, L. Parida and O. Weimann. Gene Proximity Analysis Across Whole
Genomes via PQ Trees. 6th Combinatorial Pattern Matching Conference (CPM),
2005.

12. R. M. McConnell and F. de Montgolfier. Algebraic Operations on PQ-trees and
Modular Decomposition Trees. WG’05, 31st International Workshop on Graph-
Theoretic Concepts in Computer Science, 2005.

13. R. M. McConnell and J. Spinrad. Linear-time modular decomposition and effi-
cient transitive orientation of comparability graphs. In Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, p. 536–545. ACM/SIAM, 1994.

14. R. M. McConnell and J. Spinrad. Ordered vertex partitioning. Discrete Mathe-
matics & Theoretical Computer Science, 4:45–60. 2000.

15. R. H. Möhring and F. J. Radermacher. Substitution decomposition for discrete
structures and connections with combinatorial optimization. Annals of Discrete
Mathematics, 19:257–356. 1984.

16. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica, 26(2):290–309. 2000.

Greedy Routing in Tree-Decomposed Graphs

Pierre Fraigniaud�

CNRS, University of Paris-Sud

Abstract. We propose a new perspective on the small world phenome-
non by considering arbitrary graphs augmented according to probabilis-
tic distributions guided by tree-decompositions of the graphs. We show
that, for any n-node graph G of treewidth ≤ k, there exists a tree-
decomposition-based distribution D such that greedy routing in the aug-
mented graph (G,D) performs in O(k log2 n) expected number of steps.
We also prove that if G has chordality ≤ k, then the tree-decomposition-
based distribution D insures that greedy routing in (G,D) performs in
O((k + log n) log n) expected number of steps. In particular, for any n-
node graph G of chordality O(log n) (e.g., chordal graphs), greedy routing
in the augmented graph (G,D) performs in O(log2 n) expected number
of steps.

1 Introduction

In his seminal work [23], Kleinberg gave a formal support to the “six degrees of
separation” phenomenon, defined after the Milgram’s experiment [31], recently
reproduced by Dodds, Muhamad, and Watts [13] (see also [1]). This experiment
demonstrated that there are short chains of acquaintances between individuals,
and that these chains can be discovered in a greedy manner. More precisely, given
an arbitrary source person s (e.g., living in Wichita, KA), and an arbitrary target
person t (e.g., living in Cambridge, MA), a letter can be transmitted from s to t
via a chain of individuals related on a personal basis. The target is identified by
its name, its professional occupation, and by the US state of its home town. The
transmission rule is that the letter held by an intermediate person x is passed to
the next person y who, as judged by x, is most likely to know the target among all
persons x knows on a first-name basis. Milgram’s experiment conclusion is often
summarized as the six degrees of separation phenomenon because, for chains
that reached the target, the number of intermediate persons between the source
and the target ranged from 2 to 10, with a median of 5.

Expanding on [35], Kleinberg modeled Milgram’s experiment as follows
(cf. [23,24]). Let M be the set of all 2-dimensional square meshes (i.e., the
n × n grids, for n ≥ 1). For M ∈ M, every node x of M is given an addi-
tional directed link pointing to some node y. The head y of the added link (x, y),

� The author received additional supports from the project “PairAPair” of the ACI
Masses de Données, from the project “Fragile” of the ACI Sécurité Informatique,
from the project “Grand Large” of INRIA, and from Shmoogle.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 791–802, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

792 P. Fraigniaud

called the long-range contact of x, is chosen according to the 2-harmonic distri-
bution H, i.e., the probability that x chooses y, y 	= x, as long-range contact, is
Probx(y) = 1/(Hx ·dist2(x, y)) where dist(x, y) denotes the Manhattan distance
between x and y in M , and Hx =

∑
y �=x 1/dist2(x, y) is a normalizing coeffi-

cient. The resulting graph is called an augmented mesh, and the set of graphs M
augmented by H is denoted by (M,H). Then, Kleinberg defined greedy routing
in any graph of (M,H) as the following process: Given a target node t, and
a current node x, x selects among all its neighbors (including its long-range
contact) the one that is closest to t in the mesh M (i.e., according to the Man-
hattan distance), and forwards to this neighbor. Kleinberg proved that greedy
routing in the n-node mesh augmented with long-range links set according to
the 2-harmonic distribution performs in O(log2 n) expected number of steps.

In Kleinberg’s model, the choice of the 2-harmonic distribution for the
2-dimensional meshes is crucial. Indeed, Kleinberg also proved that greedy
routing in 2-dimensional meshes augmented with the k-harmonic distribution
Probx(y) = 1/(H(k)

x · distk(x, y)) where H
(k)
x =

∑
y �=x 1/distk(x, y), performs

poorly if k 	= 2, i.e., in Ω(nα) expected number of steps, for some α > 0 that
depends on k. Therefore, finding the right distribution for 2-dimensional meshes
was far from being obvious, and there is no distribution D for which greedy
routing in (M,D) is known to perform in O(polylog(n)) expected number of
steps, but (distributions structurally equivalent to) the 2-harmonic distribution.
More generally, the design of an appropriate distribution D for an arbitrary given
graph G seems to be uneasy. Formally, we raise the following question:

Problem 1. For any n-node graph G = (V, E), is there a distribution D such
that greedy routing in the augmented graph (G,D) performs in O(polylog(n))
expected number of steps?

By “greedy routing” in (G,D), it is meant the following process:

Definition 1. (Greedy Routing.) For any target node t ∈ V , the current node
x ∈ V selects among all its neighbors (including its long-range contact chosen
according to D) the neighbor y that is closest to t in the underlying graph G, and
forwards to y.

Note that it is not sufficient to place a graph with small diameter on top
of the underlying graph G for greedy routing to perform in a small number of
steps. Indeed, greedy routing optimizes the choice of the current node’s neighbor
according to a distance measured in G, and not in the graph including the long-
range links.

Beside its own theoretical interest as a natural generalization of Kleinberg’s
work on the mesh, solving Problem 1 would have a significant impact on our
understanding of routing in social networks, as illustrated by Milgram’s experi-
ment. Indeed, although Kleinberg’s model is a powerful tool for analyzing greedy
routing strategies, there is no evidence that the network formed by social ac-
quaintances looks like an augmented mesh. There are however some evidences
that the social entities share a common knowledge about their relative distances,

Greedy Routing in Tree-Decomposed Graphs 793

based on their geographical positions, on their professional occupations, on their
hobbies, or on any criteria available to the entities. This common knowledge
could be modeled by a graph G. Then, the random events of life create connec-
tions between individuals who have, a priori, very little in common. This could
be modeled by random links added on top of the underlying graph G. Therefore
there is some support to the hypothesis that a social network can reasonably be
modeled by an augmented graph (G,D). Still, this gives rise to several questions:
what is the graph G? What is the distribution D? Why the long-range links are
structured according to some specific distribution rather than to another? By
considering Problem 1, this paper is an attempt to solve these questions.

1.1 Our Results

First, we address Problem 1 in tree-decomposed graphs. Informally, the treewidth
of a graph measures how far the graph is from a tree. Graphs of bounded
treewidth form a large class of graphs, including trees, outer-planar graphs,
series-parallel graphs, etc. In addition to their connection to the graph-minor
theory (cf, e.g., [33]), they have a wide range of applications in graph search-
ing [32] and routing [18,19]. They also play a central role in complexity and
logic. In particular, it is known that several NP-hard problems can be solved in
polynomial time if instances are restricted to graphs of bounded treewidth [3,6].
Actually, on graphs of treewidth at most k, where k is fixed, every decision or
optimization problem expressible in monadic second-order logic has a linear al-
gorithm [12]. We show that, for any n-node graph G of treewidth tw(G), there
exists a tree-decomposition-based distribution D such that greedy routing in the
augmented graph (G,D) performs in

O(tw(G) log2 n) (1)

expected number of steps. In particular, for graphs of bounded treewidth, there
exists a tree-decomposition-based distribution such that greedy routing in the
augmented graph performs in O(log2 n) expected number of steps. This latter
bound is close to optimal as it is known that, in the n-node directed ring, no
distribution enables greedy routing to perform better than Ω(log2 n/ log log n)
expected number of steps [4]. We also give a constructive variant of our result.
More precisely, given any n-node graph G, we show how to construct (in poly-
nomial time) a distribution D such that greedy routing in the augmented graph
(G,D) performs in O(tw(G) ·

√
log tw(G) · log2 n) expected number of steps.

Social networks possess specific topological properties which strongly im-
pact the performances of greedy routing. In particular nodes of social networks
are often grouped in communities. This property motivated us to investigate
greedy routing in graphs of bounded chordality (the chordality is the length
of the longest chordless cycle). We prove that if G has chordality γ, then the
tree-decomposition-based distribution D insures that greedy routing in (G,D)
performs in

O((γ + log n) log n) (2)

794 P. Fraigniaud

Table 1. Performances of (pure) greedy routing (with 1 long-range contact per node)

Underlying graph Distribution Expected #steps References
d-dimensional meshes d-harmonic O(log2 n) [23]
d-dimensional meshes k-harmonic, k �= d Ω(nα), α > 0 [23]

ring 1-harmonic Ω(log2 n) [5]
directed ring any Ω(log2 n/ log log n) [4]

d-dimensional meshes, d > 1 d-harmonic Ω(log2 n) [20]
moderate growth graphs 1/ball-size O(polylog(n)) [15]
graphs of treewidth ≤ k tree-decomposition-based O(k log2 n) [this paper]
graphs of chordality ≤ γ tree-decomposition-based O((γ + log n) log n) [this paper]

expected number of steps. In particular, for any n-node graph G of chordality
O(log n) (e.g., chordal graphs), greedy routing in the augmented graph (G,D)
performs in O(log2 n) expected number of steps, where D is the tree-
decomposition-based distribution. It is important to note that, as opposed to
Equation 1, the performance of greedy routing in graphs of bounded chordality
is independent from the treewidth of these graphs, although the treewidth of
n-node chordal graphs can take any value between 1 and n − 1.

All known complexity results (including ours) relative to the performances
of greedy routing in graphs augmented with one long-range contact per node
are summarized in Table 1. This table does not list results related to variants of
greedy routing, such as the ones mentioned in Section 1.2.

Finally, in the last part of this paper, we revisit our setting of the long-range
links and argue (somewhat informally) that our tree-decomposition-based dis-
tribution is plausible in the context of social networks, i.e., a social network is
well modeled by a graph G augmented with long-range links chosen according to
a tree-decomposition-based distribution D. In particular, as opposed to hierar-
chical models which define the hierarchical structure a priori (cf., e.g., [25,34]),
the hierarchy of our model is inherited from the structure of the social network.

1.2 Related Works

Several authors expanded on [23,24]. In [5], it is shown that the O(log2 n) up-
per bound of [23] is tight in the ring augmented with the 1-harmonic distri-
bution, i.e., greedy routing performs in Ω(log2 n) expected number of steps.
More generally, [4] shows that in the directed ring augmented with any distribu-
tion, greedy routing performs in Ω(log2 n/ log log n) expected number of steps.
In [26], a decentralized routing algorithm for augmented meshes is described. The
routing visits O(log2 n) nodes, and distributively discovers routes of expected
length O(log n(log log n)2) links using headers of size O(log2 n) bits. Neighbor-of-
neighbor greedy routing defined in [11,27] performs in O(1

c log c log2 n) expected
number of steps, with c long-range contacts per node. The non-oblivious rout-
ing protocol described in [28] performs in O(log1+1/d n) expected number of
steps in the d-dimensional mesh. The oblivious Indirect-greedy routing proto-
col described in [20] performs in O(log1+1/d n) expected number of steps in the

Greedy Routing in Tree-Decomposed Graphs 795

d-dimensional mesh. [20] also shows that the O(log2 n) upper bound of [23] is
tight in the d-dimensional mesh augmented with the d-harmonic distribution, for
any d ≥ 1. [15] generalizes Kleinberg’s result to the family of “moderate growth
graphs”, namely the graphs such that, roughly speaking, the size of the ball of
radius r centered at any node x is equal to rdx(r) where dx is a function that
is C1 and whose derivative is in O(1/(r log r)). Finally, [29] recently proposed
several constructions of small worlds, based on adding links with probability
proportional to the inverse distance. These constructions generalize both [23]
and [25]. Finally, in [25,30,34], the authors consider a hierarchical model that
will be discussed in more detail in Section 5.

2 Definitions and Notations

Performances of Greedy Routing. Let G = (V, E) be a connected graph with n
nodes, and let D = {Probx, x ∈ V }, where, for any x ∈ V , Probx is a probability
distribution on V \{x}. An augmentation of G according to D is a graph obtained
from G by adding at every node x ∈ V one directed edge (x, y) where y is chosen
with probability Probx(y). For every ordered pair (s, t) ∈ V × V , let Xs,t be the
random variable specifying the number of steps required by greedy routing to
go from s to t in the augmented graph. Let EXs,t be the expected value of Xs,t.
Kleinberg proved that, if G is a 2-dimensional square mesh, and D is the 2-
harmonic distribution, then EXs,t = O(log2 n). Greedy routing insures that, at
every step, one gets closer in G to the target, i.e.:

Fact 1. If x is the current node, and greedy routing forwards to y, then distG
(y, t) < distG(x, t) where distG() is the distance function in the underlying graph
G.

As a consequence, greedy routing has no loop, and it requires at most
distG(s, t) steps to go from s to t. In particular, in graphs with polylogarith-
mic diameter, there is no need to add long-range contacts for greedy routing to
perform in polylogarithmic number of steps.

Treewidth. A tree-decomposition of graph G is a pair (T, X) where T is a tree, and
X = {Xv, v ∈ V (T)} is a collection of subsets of V (G) satisfying the following
three conditions:

– C1: V (G) = ∪v∈V (T)Xv;
– C2: For any edge e of G, there is a set Xv such that both end-points of e are

in Xv;
– C3: For any triple u, v, w of nodes in V (T), if v is on the path from u to w

in T , then Xu ∩ Xw ⊆ Xv.

Condition C3 can be rephrased as: for any node x of G, {v ∈ V (T) | x ∈ Xv}
is a subtree of T . The sets Xvs are called bags. The width, ω(T, X), of a tree-
decomposition (T, X) is defined as maxv∈V (T) |Xv| − 1, i.e., the width of (T, X)
is roughly the maximum size of its bags. The treewidth tw(G) is defined as

796 P. Fraigniaud

min ω(T, X) where the minimum is taken over all tree-decompositions (T, X)
of G. For instance, trees have treewidth 1, cycles have treewidth 2, and n-node
cliques have treewidth n − 1.

Any bag of a tree-decomposition is a separator of the graph, that is a ver-
tex set whose removal disconnects the graph. In fact, a tree-decomposition can
be obtained by recursively separating the graph. (This is essentially the way
treewidth is O(log n)-approximated in [7,9].) We will intensively use this fact
throughout all the paper. Let (T, X) be a tree-decomposition of a graph G. Let
x and y be two nodes of G, and let b be a bag of T containing neither x nor
y, i.e., b ∩ {x, y} = ∅. Removing b from T results in a forest of k ≥ 1 trees
T1, . . . , Tk. Since b ∩ {x, y} = ∅, C1 and C3 imply that there is a unique i (resp.,
j) in {1, . . . , k} such that x (resp., y) belongs to some bag(s) of Ti (resp., Tj).
Assume that i 	= j, then the following is folklore:

Fact 2. The bag b is an (x, y)-separator in G (i.e., all paths from x to y in G
go through some node(s) in b).

3 Tree-Decomposition-Based Distribution

This section is dedicated to the definition of the tree-decomposition-based dis-
tribution of the long-range contacts, and to the proof of the following result:

Theorem 1. For any connected n-node graph G of treewidth ≤ k, there is a dis-
tribution D such that, for any source-destination pair (s, t), EXs,t = O(k log2 n).

Corollary 1. For any connected n-node graph G of bounded treewidth, there is
a distribution D such that greedy routing in the augmented graph (G,D) performs
in O(log2 n) expected number of steps.

Corollary 1 is close to optimal since [4] shows that greedy routing performs
in Ω(log2 n/ log log n) expected number of steps in the directed ring augmented
with any distribution. In both Theorem 1 and Corollary 1, the distribution D is
a tree-decomposition-based distribution, as defined in the proof bellow.

Proof of Theorem 1. For any k ≥ 2, let Gk be the class of connected graphs of
treewidth < k. Let G ∈ Gk be a graph of n nodes, and let T be a tree-decomposition
of G, of width < k. We can choose T with at most n bags (cf., e.g., Theorem 4.8
and Proposition 4.16 in [22]). In order to describe the distribution D, we describe
the Dxs, i.e., we describe the setting of the long-range contact of every node x in
G. Recall that a centroid of an r-node tree is a node whose removal from the tree
results in a forest with at most r/2 nodes in each subtree. A tree has either one or
two centroids, and if a tree has two centroids, then they are neighbors.

Let c be a centroid of T . For every node x ∈ V , let us denote by x̂ the bag
containing x that is closest to c in T . Note that, by C3 of the treewidth definition,
x̂ is uniquely defined. We set c

(0)
x = c, and define T

(1)
x as the subtree of T \{c(0)

x }
containing x̂. Then, let c

(1)
x be a centroid of T

(1)
x , and let T

(2)
x be the subtree of

T
(1)
x \ {c(1)

x } containing x̂. And so on. One constructs in this way two sequences

Greedy Routing in Tree-Decomposed Graphs 797

(T (0)
x , T (1)

x , . . . , T (qx)
x) and (c(0)

x , c(1)
x , . . . , c(qx)

x)

where:

1. T
(0)
x = T ;

2. c
(i)
x is the centroid of T

(i)
x closest to c in T ;

3. T
(i+1)
x is the subtree of T

(i)
x \ {c(i)

x } containing x̂;
4. c

(qx)
x = x̂.

Note that since |T | ≤ n, and |T (i+1)
x | ≤ |T (i)

x |/2, we get that both sequences are
of length qx + 1 ≤ log n. The result hereafter directly follows from the definition
of these two sequences.

Lemma 1. For any two nodes u and v, and for any index i, if v̂ ∈ T
(i)
u , then

c
(j)
v = c

(j)
u for j = 0, . . . , i, and c

(j)
v ∈ T

(i)
u for j = i, . . . , qv.

Tree-Decomposition-Based Distribution D. Node x picks its long-range
contact as follows:

– First x selects an index i ∈ {0, . . . , qx} with Probx(i) = 1/(qx + 1);
– Next, x selects a node y chosen uniformly at random in the bag c

(i)
x .

Node y is the long-range contact of x.

We show that with this setting of the long-range contacts, for any source
node s, and any target node t, EXs,t = O(k log2 n). Let G+ be an instance of
the graph G augmented with the long-range contacts set as above. Note that
G+ is directed since the edge from a node to its long-range contact is directed
(edges of the underlying graph G remain undirected). Let t ∈ V (G), and let
i ∈ {1, . . . , qt}. Let

Ui = {v ∈ V (G) | v̂ ∈ T
(i)
t }.

Lemma 2. The node-set ∪i−1
j=0c

(j)
t ⊆ V (G) separates Ui and V (G) \ Ui in G+,

i.e., any path in G+ from a node in Ui to a node in V (G) \ Ui goes through a
node in ∪i−1

j=0c
(j)
t .

Proof. Let P be a path from a node in Ui to a node in V (G)\Ui. Let e = (v, w) be
an edge of P from v ∈ Ui to w ∈ V (G)\Ui. If v ∈ c

(j)
t for some j ∈ {0, . . . , i−1},

then we are done. Thus assume v /∈ ∪i−1
j=0c

(j)
t . Since w /∈ Ui, we have ŵ /∈ T

(i)
t .

We consider separately the case where e is an edge of G, from the case where e
is a long-range link.

If e ∈ E(G), then let b be a bag containing both v and w (this bag exists from
C2). On the one hand, by C3, w belongs to all bags on the path in T from b to ŵ.
On the other hand, we have b further from c than v̂, i.e., v̂ is on the path from b to
c in T . Now, by construction of the sequence {c(j)

t , 0 ≤ j ≤ qt}, the neighborhood
of T

(i)
t in T (i.e., the set of bags not in T

(i)
t but adjacent to some bag in T

(i)
t) is

included in ∪i−1
j=0c

(j)
t . Hence b ∈ T

(i)
t since otherwise v would belong to some bag

798 P. Fraigniaud

of the neighborhood of T
(i)
t (by C3), which would imply v ∈ ∪i−1

j=0c
(j)
t . Since ŵ is

closer to c than b, but ŵ /∈ T
(i)
t , there is some c

(j)
t , j ∈ {0, . . . , i − 1} on the path

from b to ŵ in T . Therefore, w ∈ ∪i−1
j=0c

(j)
t , proving Lemma 2.

If e /∈ E(G), then w is the long-range contact of v. By the setting of the
long-range contacts, w ∈ ∪qv

j=0c
(j)
v . By Lemma 1, all bags c

(j)
v for j ≥ i are

nodes of T
(i)
t . If node w belongs to some bag b of T

(i)
t , then, as in the case

e ∈ E(G), combining C3 with the fact that ŵ /∈ T
(i)
t yields w ∈ ∪i−1

j=0c
(j)
t , and

we are done. Thus assume that w does not belong to any bag of T
(i)
t . Therefore

w ∈ ∪i−1
j=0c

(j)
v . From Lemma 1, since v̂ ∈ T

(i)
t , c

(j)
v = c

(j)
t for j = 0, . . . , i.

Therefore w ∈ ∪i−1
j=0c

(j)
t , which completes the proof of Lemma 2. �

Let (T (0)
t , T

(1)
t , . . . , T

(qt)
t) and (c(0)

t , c
(1)
t , . . . , c

(qt)
t) be the sequences of sub-

trees and centroids corresponding to the target t. Let x be the current node.
(Initially, x is the source node s.) Let i be the largest index such that x̂ ∈ T

(i)
t .

Let x0, x1, . . . , xr be the sequence of nodes visited by greedy routing from x = x0

until either it reaches a node xr with x̂r /∈ T
(i)
t , or it reaches t.

Lemma 3. Let y ∈ ∪i
j=0c

(j)
t . For every � = 0, . . . , r − 1, the probability that y

is the long-range contact of x� is at least 1/(k log n). The probability that the
long-range contact of x is in c

(j)
t is at least 1/ logn for every j = 0, . . . , i.

Proof. We have x̂� ∈ T
(i)
t for every � < r. Thus, from Lemma 1, for any � < r,

c
(j)
x� = c

(j)
t for j = 0, . . . , i. Therefore, every node x�, � < r, has its long-range

contact in a specific bag c
(j)
t , 0 ≤ j ≤ i, with probability 1/(1 + qx�

). A node
y ∈ c

(j)
t for some j ≤ i is the long-range contact of x� with probability at least

1/(|c(j)
t |(1 + qx�

)). Since |c(j)
t | ≤ k, and 1 + qx�

≤ log n, Lemma 3 follows. �

Lemma 4. The path from s to t constructed by greedy routing does not visit any
bag c

(0)
t , . . . , c

(qt)
t more than k times.

Proof. Since T has width < k, no bag contains more than k nodes. Thus, from
Fact 1, no bag can be visited by greedy routing more than k times on the way
from s to t. This is true in particular for bags c

(0)
t , . . . , c

(qt)
t . �

Finally, we will make use of the following simple result. Let (Xi)i≥1 be a
sequence of independent random variables in {0, 1, . . . , N} with

Prob({Xi = j}) = p/N if j ∈ {1, . . . , N};
Prob({Xi = 0}) = 1 − p;

for some 0 < p < 1. We consider the following iterative process. Let S0 =
{b1, . . . , bN} be a set of N non negative integers. After the ith trial, if Xi > 0,
then all integers bj ≥ bXi in the current set are removed, i.e., Si = Si−1\{bj | bj ≥
bXi}. Let Y be the random variable specifying the number of trials i until Si

becomes empty.

Greedy Routing in Tree-Decomposed Graphs 799

Lemma 5. EY ≤ N/p.

Proof. The set becomes empty after the first trial i such that Xi = j, where
bj = min� b�. This occurs with probability at least p/N . �

Let P be the path followed by greedy routing from s to t in G+. We de-
compose P into a sequence of subpaths P0P1P2 . . . Pqt where the first node of
P0 is s, the last node of Pqt is t, and, for every i = 0, 1, . . . , qt, Pi ⊆ T

(i)
t and

is minimal for that property. More explicitely, let P = x0, . . . , xr with x0 = s
and xr = t. For i = 0, . . . , qt, let ai be the smallest index such that, for every
j ≥ ai, x̂j ∈ T

(i)
t . In particular, a0 = 0 since ŝ ∈ T = T

(0)
t and every node of

G belongs to some bag of T . Similarly, aqt ≤ r since greedy routing eventually
reaches t ∈ c

(qt)
t ∈ T

(qt)
t . We define Pi as the path in G which starts at xai , and

ends at xai+1−1, but Pqt which ends at t. (If ai+1 = ai, then Pi is the empty
path.) We have:

|P | =
qt∑

i=0

|Pi|. (3)

Let i ∈ {0, 1, . . . , qt}, and consider Pi. By definition, while traveling along Pi,
greedy routing never goes out of T

(i)
t . Thus, from Lemma 2, it does not visit

nodes x such that x̂ ∈ ∪i−1
j=0c

(j)
t . Pi may however go in and out of T

(i+1)
t . From

Lemma 2, the only way Pi goes in and out of T
(i+1)
t is through c

(i)
t . From

Lemma 3, for each node x of Pi, the long-range contact y of x is in c
(i)
t with

probability at least 1/ logn. Assume success, i.e., y ∈ c
(i)
t . From Fact 1, no

node z with distG(z, t) > distG(y, t) will be ever visited by greedy routing after
x. In particular, no node z ∈ c

(i)
t with distG(z, t) > distG(y, t) will be ever

visited by greedy routing after x. In the same spirit as for Lemma 5, we just
say that those nodes y and z ∈ c

(i)
t are “removed”. We are in the situation

of Lemma 5 with p ≥ 1/ logn, and N = |c(i)
t | ≤ k. Thus, after an expected

number of at most O(k log n) trials, all nodes in c
(i)
t are removed. Therefore,

from Lemma 4, after this expected amount of trials, no nodes of c
(i)
t will be ever

visited by greedy routing. Hence, once in Pi, the path P enters Pi+1 after at
most O(k log n) expected number of steps. In other words, the expected length
of Pi is O(k log n). Therefore, from Eq. 3, the expected length of the path P is
at most O(qtk log n) ≤ O(k log2 n) which completes the proof of Theorem 1. ��

Theorem 1 is an existential result. Nevertheless, a combination of this the-
orem with known results from the literature allows us to explicitly construct a
long-range contact distribution for any graph G. This is however to the price of
a log tw(G) factor in the performances of greedy routing. More precisely, a tree-
decomposition T of any graph G, with width ≤ O(tw(G)

√
log tw(G)), can be

computed in polynomial time (see [17]). Once this is done, since the distribution
D in Theorem 1 can obviously be computed in polynomial time, we get:

Corollary 2. There is an polynomial time algorithm that, for any connected
n-node graph G of treewidth ≤ k, computes a distribution D such that greedy

800 P. Fraigniaud

routing in the augmented graph (G,D) performs in O(k
√

log k log2 n) expected
number of steps.

4 Greedy Routing in Augmented Chordal Graphs

Entities in social networks are known to be often grouped in communities [35].
This motivated us to study greedy routing using tree-decomposition-based long-
range contact distributions in graphs of bounded chordality. Formally, the
chordality of a graph G is the maximum length of a chordless cycle in G. In
particular, a graph of chordality 3 is a chordal graph.

Theorem 2. For any connected graph G of n nodes and chordality γ, there is a
tree-decomposition-based distribution D enabling greedy routing in (G,D) to per-
form in O((γ +log n) log n) expected number of steps, for any source-destination
pair.

The proof uses the same arguments as in the proof of Theorem 1, combined
with the following two additional facts.

1. For any n-node connected graph of chordality γ, there is a tree-decomposition
with at most n bags such that two nodes in the same bag are at distance at
most γ/2 [21] (see also [8]).

2. Let x0 = s, x1, x2, . . . , xr = t be the path followed by greedy routing from s
to t; If distG(xi, xj) ≤ d then |i − j| ≤ d.

Note that the result of Theorem 2 is independent from the treewidth of the
graph. It has an important consequence:

Corollary 3. For any n-node graph G of chordality O(log n) (in particular for
any chordal graph), there is a tree-decomposition-based distribution D such that
greedy routing in the augmented graph (G,D) performs in O(log2 n) expected
number of steps.

5 Discussion

Individuals can be grouped in large families. For instance: Africans, Americans,
Europeans, etc., or artists, scientists, farmers, etc. This can be done recursively.
For instance, Europeans can be grouped according to their countries of leav-
ing, while scientists can be grouped according to their scientific domains. And
so on. This clustered and hierarchical structure of the social networks was al-
ready pointed out by several authors (cf., e.g., [1,2,10,14,16,30,34,35]). The model
in [25] was the first model specified to capture this hierarchy (see also [29]). How-
ever, this model assumes that the hierarchy is induced by a specific structured
graph, defined a priori. (More precisely, in the model, nodes are leaves of a com-
plete b-ary tree, and the lower is the lowest common ancestor of two nodes, the
more likely these two nodes are to be connected by a long-range link.) Moreover

Greedy Routing in Tree-Decomposed Graphs 801

the model in [25] reflects one type of hierarchy only (e.g., arts/music/opera)
whereas social entities belong to several interleaved hierarchies such as those
based on the place of living, the professional activity, the recreative activity, etc.

In contrast, a tree-decomposition of the “natural” acquaintances (i.e., the ac-
quaintances described by the graph G) determines a hierarchy that is inherited
from these acquaintances, and not specified a priori. This hierarchy is the ex-
pression of all the underlying interleaved hierarchies. (This “general” hierarchy
could be interpreted a posteriori in the same way one interprets the result of
a Principal Components Analysis, but this is beyond the scope of this paper.)
The long-range contacts enable jumping across this hierarchy, and one may jump
upwards as well as downwards across the hierarchy. In addition, the hierarchy is
viewed differently from each node. In particular, nodes that are placed far apart
in the tree-decomposition have very different views of the hierarchy.

References

1. L. Adamic, and E. Adar. How To Search a Social Network. Social Networks.
Preprint submitted to Social Networks, 2004.

2. M. Aldenderfer and R. Blashfield. Cluster Analysis. Quantitative Applications in
the Social Sciences, Vol. 44, SAGE Publications, London, 1984.

3. S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of
graph reduction. Journal of the ACM 40(5), pages 1134–1164, 1993.

4. J. Aspnes, Z. Diamadi, and G. Shah. Fault-Tolerant Routing in Peer-to-Peer Sys-
tems. In 21st ACM Symp. on Principles of Distributed Computing (PODC), pages
223–232, 2002.

5. L. Barrière, P. Fraigniaud, E. Kranakis, and D. Krizanc. Efficient Routing in Net-
works with Long Range Contacts. In 15th International Symposium on Distributed
Computing (DISC), LNCS 2180, pages 270–284, Springer, 2001.

6. H. Bodlaender. Treewidth: algorithmic techniques and results. In 22nd Symp. on
Mathematical foundations of computer science (MFCS), LNCS 1295, pages 19–36,
Springer, 1997.

7. H. Bodlaender, J. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
Treewidth, Pathwidth, Frontsize and Shortest Elimination Trees. Journal of Algo-
rithms 18, pages 238–255, 1995.

8. H. Bodlaender and D. Thilikos. Treewidth for Graphs with Small Chordality.
Discrete Applied Mathematics 79(1-3):45-61, 1997.

9. V. Bouchitté, D. Kratsch, H. Müller, and I. Todinca. On treewidth approximations.
Discrete Applied Mathematics 136, pages 183–196, 2004.

10. A. Clauset, M. Newman, and C. Moore. Finding community structure in very large
networks. Phys. Rev. E 70, 066111 (2004).

11. D. Coppersmith, D. Gamarnik, and M. Sviridenko. The Diameter of a Long-Range
Percolation Graph. Random Structures and Algorithms 21(1):1–13, 2002.

12. B. Courcelle, J. Makowsky, and U. Rotics. Linear-time solvable optimization prob-
lems on graphs of bounded cliquewidth. In 24th Workshop on Graph-Theoretic
Concepts in Computer Science (WG), LNCS 1517, pages 1–16, Springer, 1998.

13. P. Dodds, R. Muhamad, and D. Watts. An Experimental Study of Search in Global
Social Networks. Science 301:827-829, 2003.

802 P. Fraigniaud

14. L. Donetti and M. Muñoz. Detecting Network Communities: A New Systematic and
Efficient Algorithm. J. of Statistical Mechanics: Theory and Experiment, P10012,
2004.

15. P. Duchon, N. Hanusse, E. Lebhar, and N. Schabanel. Could any graph be turned
into a small world? Technical Report LIP RR-2004-61, ENS-Lyon, Dec 2004.

16. B. Everitt, S. Landau and M. Leese. Cluster Analysis. Arnold, London, 4th edition,
2001.

17. U. Feige, M. Hajiaghayi, and J. Lee. Improved approximation algorithms for
minimum-weight vertex separators. In 37th ACM Symposium on Theory of Com-
puting (STOC), 2005.

18. P. Fraigniaud and C. Gavoille. Routing in trees. In 29th International Colloquium
on Automata, Languages and Programming (ICALP), LNCS 2076, pages 757–772,
Springer, 2001.

19. P. Fraigniaud and C. Gavoille. End-to-end routing. In 17th Symposium on Dis-
tributed Computing (DISC), LNCS 2848, pages 211–223, Springer, 2003.

20. P. Fraigniaud, C. Gavoille, and C. Paul. Eclecticism shrinks even small worlds. In
23rd ACM Symp. on Principles of Distributed Computing (PODC), pages 169–178,
2004.

21. C. Gavoille, M. Katz, N. Katz, C. Paul, and D. Peleg. Approximate Distance
Labeling Schemes. In 9th European Symposium on Algorithms (ESA), LNCS
2161, pages 476–487, Springer, 2001.

22. M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New-York, 1980.

23. J. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In 32nd
ACM Symp. on Theory of Computing (STOC), pages 163–170, 2000.

24. J. Kleinberg. Navigation in a Small-World. Nature 406:845, 2000.
25. J. Kleinberg. Small-World Phenomena and the Dynamics of Information. In 15th

Neural Information Processing Systems (NIPS), 2001.
26. E. Lebhar and N. Schabanel. Searching for optimal paths in long-range contact

networks. In 31st International Colloquium on Automata, Languages and Pro-
gramming (ICALP), LNCS 3142, pages 894–905, Springer, 2004.

27. G. Manku, M. Naor, and U. Wieder. Know Thy Neighbor’s Neighbor: The Power
of Lookahead in Randomized P2P Networks. In 36th ACM Symp. on Theory of
Computing (STOC), 2004.

28. C. Martel and V. Nguyen. Analyzing Kleinberg’s (and other) Small-world Models.
In 23rd ACM Symp. on Principles of Distributed Computing (PODC), pages 178–
187, 2004.

29. C. Martel and V. Nguyen. Analyzing and Charaterizing Small-World Graphs. In
16th ACM Symp. on Discrete Algorithms (SODA), 2005.

30. F. Menczer. Growing and Navigating the Small World Web by Local Content.
Proc. Natl. Acad. Sci. USA 99(22):14014–14019, 2002.

31. S. Milgram. The Small-World Problem. Psychology Today, 60–67, 1967.
32. N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The com-

plexity of searching a graph. Journal of the ACM 35(1), pages 18–44, 1988.
33. N. Robertson and P. D. Seymour. Graph minors II, Algorithmic Aspects of Tree-

Width. Journal of Algorithms 7, pages 309–322, 1986.
34. D. J. Watts, P. S. Dodds, M. E. J. Newman. Identity and Search in Social Networks.

Science 296:1302–1305, 2002.
35. D. Watts and S. Strogatz. Collective Dynamics of Small-World Networks. Nature

393:440–442, 1998.

Making Chord Robust to Byzantine Attacks

Amos Fiat1, Jared Saia2, and Maxwell Young2

1 Department of Computer Science,
Tel Aviv University, Tel Aviv, Israel

fiat@math.tau.ac.il
2 Department of Computer Science, University of New Mexico,

Albuquerque, NM 87131-1386
{saia, young}@cs.unm.edu

Abstract. Chord is a distributed hash table (DHT) that requires only
O(log n) links per node and performs searches with latency and message
cost O(log n), where n is the number of peers in the network. Chord
assumes all nodes behave according to protocol. We give a variant of
Chord which is robust with high probability for any time period during
which: 1) there are always at least z total peers in the network for some
integer z; 2) there are never more than (1/4− ε)z Byzantine peers in the
network for a fixed ε > 0; and 3) the number of peer insertion and deletion
events is no more than zk for some tunable parameter k. We assume there
is an adversary controlling the Byzantine peers and that the IP-addresses
of all the Byzantine peers and the locations where they join the network
are carefully selected by this adversary. Our notion of robustness is rather
strong in that we not only guarantee that searches can be performed but
also that we can enforce any set of “proper behavior” such as contributing
new material, etc. In comparison to Chord, the resources required by this
new variant are only a polylogarithmic factor greater in communication,
messaging, and linking costs.

1 Introduction

A distributed hash table (DHT) is a structured peer-to-peer network which pro-
vides for scalable storage and lookup of data items (see e.g. [21,26,28]). Because
peer-to-peer networks have little to no admission control, there has been signif-
icant effort in designing DHT’s which are robust to Byzantine faults. When a
peer suffers a Byzantine fault it is assumed to be controlled by an omniscient
adversary who uses that peer to try to disrupt the network.

In this paper, we consider the Byzantine join attack. Under this attack, a
stream of Byzantine peers join and leave the network over a time period during
which: 1) there are always at least z total peers in the network for some integer
z; 2) there are never more than (1/4− ε)z Byzantine peers in the network for a
fixed ε > 0; and 3) the number of peer insertion and deletion events is no more
than zk for some tunable parameter k. We assume an adversary controls the
stream of Byzantine peers joining the network and that this adversary carefully

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 803–814, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

804 A. Fiat, J. Saia, and M. Young

chooses the IP-addresses of these Byzantine peers1 and where they join the
network in order to place them at critical locations in the network. We assume
that all direct links in the overlay network are private communication channels.
However, the adversary is otherwise computationally unbounded and omniscient
i.e. it possesses full knowledge of the network topology, protocols, where data is
stored, etc.

1.1 Our Contributions

In this paper, we describe a variant of Chord, S-Chord, which is robust to the
Byzantine join attack. We define a z-good interval to be a time interval during
which: 1) there are always at least z total peers in the network for some integer
z; 2) there are never more than (1/4− ε)z Byzantine peers in the network for a
fixed ε > 0; and 3) the number of peer insertion and deletion events is no more
than zk for some tunable parameter k. Theorem 1 states our main result.

Theorem 1. During any z-good interval, the following properties hold for S-
Chord with high probability (specifically with probability of error polynomially
small in z)

– All functionality of Chord is preserved.
– We can enforce a rule-set for all peers in the network.
– For n peers in the network, the resource costs are as follows:

• O(log n) latency and expected Θ(log2 n) messages sent per lookup opera-
tion.

• Θ(log n) latency and Θ(log3 n) messages sent per peer join operation.
• O(log2 n) links stored at each peer.

In addition to being robust to the Byzantine join attack, S-Chord also has the
following properties.

– S-Chord can enforce a set of rules describing “proper behavior” such as:
“For every 20 search that a peer issues, that peer must service one search
request”. In particular, the consequences of not obeying the rules will be
disconnection from the network. To the best of our knowledge, S-Chord is
the first peer-to-peer network with this property.

– S-Chord is based on Chord and thus inherits many of Chord’s good proper-
ties. Moreover, we feel that the general techniques used in this paper can be
applied to a wide-range of other DHT’s.

– S-Chord requires Θ(log2) messages for lookups in expectation. Previous
DHT’s which are robust to the random Byzantine attack require Θ(log3 n)
messages.

1 i.e. by spoofing.

Making Chord Robust to Byzantine Attacks 805

1.2 Related Work

Recent years have witnessed the advent of large scale real-world peer-to-peer ap-
plications such as Gnutella, Napster, Kazaa, Morpheus, BitTorrent, and many
others. In addition, several distributed hash tables (DHTs) have been intro-
duced which are provably robust to random peer deletions (i.e. fail-stop faults)
[1,13,16,21,22,26,28].

We are aware of several results that deal with the more challenging problem
of designing DHTs which are robust to Byzantine faults. One class of DHTs are
robust to the random Byzantine attack. This is an instantaneous attack during
which each peer in the network suffers a Byzantine fault independently at random
with constant probability (less than 1/2). Fiat and Saia describe a DHT which uses
expander graphs and a butterfly network to achieve robustness to this attack [11].
This result was extended to be fully dynamic in [23]. Naor and Wieder describe
a much simpler DHT which is robust to the random Byzantine attack and is also
fully dynamic [19]. Hildrum and Kubiatowicz describe how to modify two popular
DHTs, Pastry [22] and Tapestry [28], in order to make them robust to the random
Byzantine attack [14]. Their modified DHTs are fully dynamic.2 In all three of
these results, lookups have Θ(log n) latency and require Θ(log3 n) messages. We
note that S-Chord is also robust to the random Byzantine attack.

Scheideler and Awerbuch [3,2] describe protocols for implementing a robust
distributed naming service. Under their scheme, each node must re-inject itself
into the system after a certain number of time steps and data must be continually
published to remain in the system. Their system also assumes the existence
of “bootstrap peers” which are a set of peers that 1) always remain in the
system, 2) are all good, and 3) are known by joining peers. These assumptions
are reasonable for a distributed name service application; however, they are
problematic when trying to design a widely-applicable distributed hash table.
Recent work by Scheideler in [24] demonstrates how to spread Byzantine peers
via rotations during peer joins. This work focuses only on one aspect of the join
protocol for a peer-to-peer system.

S-Chord makes use of secure multiparty computation in order to choose ran-
dom IDs for joining peers by consensus. There is a significant body of work in
the area of secure multiparty computation (see e.g. [4,5,6,8,12,15,20,25,27]). We
also make use of Scheideler’s result [24] for spreading Byzantine peers and a
result by King and Saia [17] for choosing a peer uniformly at random from the
set of all peers in a DHT.

2 Overview

2.1 Chord

We now briefly describe Chord [26].3 For convenience, we will assume that the
“key space” of Chord is scaled so it is in the range (0, 1] and will think of Chord
2 We emphasize here that S-Chord is also fully-dynamic.
3 For ease of exposition, our description will defer slightly from that of [26], but will

not be fundamentally different.

806 A. Fiat, J. Saia, and M. Young

as a circle with unit circumference, which we will call the unit circle. All of the
peers in Chord have identifiers (or IDs for short) which are points on the unit
circle that we call peer points. Chord provides one basic operation: successor().
For a point k on the unit circle, successor(k) returns the peer, p, whose peer
point minimizes the clockwise distance between k and p. Typically, k represents
a key for some data item and successor(k) is the peer responsible for storing
that data item. Thus, the successor() operation provides for easy storage and
lookups of data items.

We now briefly sketch how Chord implements the operation successor(). We
assume that all peers in the network know some number m which is always
greater than the number of peers in the network4. For a point p on the unit
circle and integer i between 0 and log m − 1, let f(p, i) be the point p + 2i/m.
For each i between 1 and log m − 1, each peer p maintains a link to the peer
whose peer point is closest clockwise to the point f(p, i). When a peer p links to
a peer p′, the peer p simply stores the IP address of p′. The number of unique
peers that a peer p links to is O(log n). For points p and k on the unit circle,
let next(p, k) be the point in the set {f(p, 0), f(p, 1), f(p, 2), ..., f(p, logm− 1)},
which has closest clockwise distance to k.

We can now describe the successor() operation. Assume that some peer p
calls successor(k) for some key k on the unit circle. If next(p, k) = p, then p
already knows the successor of k: it is simply the closest clockwise peer to p.
The search terminates by returning this peer. If next(p, k) = p′ where p′ 	= p,
then p forwards the search request to p′. The same procedure is repeated until
the search terminates.

2.2 Notation

For any two points x and y on the unit circle, let d(x, y) be the distance from x
to y traveling clockwise along the perimeter of the unit circle (i.e. if y ≥ x, then
d(x, y) = y−x else d(x, y) = 1−x+ y). When referring to intervals or points on
the unit circle, all addition is performed modulo 1. We will call a peer controlled
by the adversary faulty and call a peer not controlled by the adversary (i.e. a
peer that follows the protocol) correct.

2.3 S-Chord

In S-Chord, peers do not get to choose their own ID’s. Instead they are assigned,
by our protocol, a random ID between 0 and 1 when they first join the network.
Following convention, for a given peer p, we will frequently use p to refer both
to the peer and to the ID of the peer. The precise meaning should be clear from
the context.

As in [2,3,7,9], we make use of the concept of small sets of peers working to-
gether as a single functional unit. Central to S-Chord is the notion of a swarm5.
For every point x on the unit circle, we define the swarm, S(x), to be the set

4 In practice, m is the number of bits in the ID’s of the nodes.
5 This is essentially the same concept as a group in [2,3].

Making Chord Robust to Byzantine Attacks 807

of peers whose ID’s are located within a clockwise distance of (C lnn)/n of the
point x (where C is a constant depending on our fault-tolerant parameters). For
a given peer p, we will use S(p) to mean the swarm associated with the peer
p. All communication that p has with the DHT first passes through the swarm
S(p). Swarms, not peers, are the atomic functional units of S-Chord. We say
that a swarm is good if at least a 3/4 fraction of the peers in it are correct. Due
to the fact that S-Chord randomly assigns ID’s to peers, we can guarantee with
high probability that over a z-good time interval, all swarms will be good. Thus,
we can say that even though many peers are not correct, all of the swarms will
be good. This fact is the basis for the robustness of S-Chord6.

Outline: We begin by assuming that all peers in the network know the values
lnn and (ln n)/n exactly. In this extended abstract, we present protocols for
1) obtaining content from network and sending messages (Section 3) and 2)
handling dynamic peer joins (Section 4).

In the full version of this paper, we provide the required modifications to S-
Chord for the case where the peers do not know the values of lnn and (ln n)/n. It
also contains all proofs for results presented here as well as a protocol that allows
for SUCCESSOR to incur only an expected constant factor increase in the
number of bits sent over what is required for Chord. This second result assumes
a computationally bounded adversary. A STABILIZE protocol, analogous to
that given in the original Chord, is also provided in the full version.

2.4 Links Required

In this section, we state the links that each peer is required to maintain in
S-Chord. We will often make statements referring to some correct peer p main-
taining links to all peers in an interval [a, b] for a, b ∈ (0, 1]. Assume that this
means p maintains links to all correct peers and those faulty peers of which p
is aware. Let C be a positive constant depending on k. Every peer p maintains
links to all peers in the following intervals:

– Center Interval : Center(p) is the set of peers in the interval [p −
(2C lnn)/n, p + (2C lnn)/n].

– Forward Intervals : For all i between 1 and log m − 1, Forward(p, i) is the
set of peers in the interval [p + 2i/m − (C lnn)/n, p + 2i/m + (C lnn)/n].

– Backward Intervals : For all i between 1 and log m−1, Backward(p, i) is the
set of peers in the interval [p − 2i/m − (C lnn)/n, p − 2i/m + (C lnn)/n].

A peer p keeps track of the links in the Center interval so that 1) p knows
all peers in S(p), 2) p knows all peers p′ such that p ∈ S(p′) and 3) p is able
to help compute the SUCCESSOR algorithm described in Section 3. A peer
p, keeps track of the Forward intervals so that is able to forward on requests
for the SUCCESSOR function. While in Chord, requests for a successor are
6 It should be noted that S-Chord does not provide protection against the well-known

Sybil attack [10].

808 A. Fiat, J. Saia, and M. Young

Algorithm 1 SUCCESSOR(p)
1: p sends a request for k to all peers in S(p);
2: S ← set of all peers in S(p);
3: x ← identifier of p;
4: while (d(x, k) > (C lnn)/n) do
5: x′ ← next(x, k);
6: All peers in S send the request for k to all peers in S(x′);
7: S′ ← set of all peers in S(x′) that received the above request from

a majority of the peers in S;
8: S ← S′;
9: x ← x′;

10: end while
11: The peers in S send back pointers to all the peers in S(k). These

pointers are sent backwards along the same path, in the same manner,
to the peer p;

forwarded to a single peer, in S-Chord, they are forwarded to an entire swarm.
A peer p, keeps track of the Backward intervals so that it is able to recognize
legitimate requests sent during computations of the SUCCESSOR function.
In our protocol, we do not trust a peer to tell us its identifier (i.e. where it is
located on the unit circle). Thus, a peer p specifically requires links to Backward
intervals in order to keep track of the IDs of those peers who may legitimately
send p messages. All messages sent to p from peers which are not in one of p’s
Backward intervals are ignored.

3 Sucessor Protocol

Algorithm 1 gives the pseudocode for our robust SUCCESSOR protocol (which
is analogous to the successor operation of Chord). For a point k on the unit cir-
cle, SUCCESSOR(k) returns pointers to the peers in S(k). As in Chord, k typ-
ically represents a key for some data item. SUCCESSOR(k) returns pointers to
the set of peers responsible for storing that data item. Thus, the SUCCESSOR
operation provides for redundant storage and lookups of data items.

For a key k and peer p, SUCCESSOR(k) works as follows when called by
p. Peer p initially sends the request for k to all peers in S(p). Let x equal the
ID of p and S be S(p). Until d(x, k) ≤ (C lnn)/n, the following loop repeats:
the peers in S forward the request to all peers in S(x′) where x′ = next(x, k).
Let S′ be the set of peers in S(x′) which receive the request from a majority of
peers in S. The loop now repeats with S set to S′ and x set to x′. When the
loop terminates, d(x, k) ≤ (C lnn)/n, so all peers in the set S have pointers to
all peers in S(k). These pointers to peers in S(k) are then sent backwards along
the same path, in the same manner, to the originating peer p.

.

Making Chord Robust to Byzantine Attacks 809

For a given peer p, message m and an interval I on the unit circle, we define
SEND MESSAGE(m, I) to be an algorithm which allows p to send message
m to all peers in the interval I. If I is of length Θ((ln n)/n), it’s straightfor-
ward to see how O(1) calls to a modified SUCCESSOR algorithm will cre-
ate a SEND MESSAGE algorithm with latency O(log n) and message cost
O(log3 n) (the detailed pseudocode is omitted). When writing the JOIN proto-
col, we will make use of the SEND MESSAGE algorithm.

We now describe conditions under which we can show that all swarms are good.

Lemma 1. Assume that 1) all peer points are distributed uniformly at random
on the unit circle; and 2) the fraction of faulty peers is no more than 1/4 − ε.
Let k be any fixed integer and C be sufficiently large but depending only on k,
then with probability at least 1 − 1/nk, the following statement is true. For any
point x on the unit circle, the swarm S(x) is good.

We now provide a description of how S-Chord allows for the enforcement
of a rule set on all peers in the system, provided that all swarms are good.
The desired rule set must be known in advance by all correct peers. The rule
set can be enforced by having the correct peers in a swarm act in concert to
stop any prohibited behavior. For instance, if a faulty peer p attempts to abuse
bandwidth resources by making excessive calls to SUCCESSOR, the correct
peers in S(p) can simply refuse to participate in the SUCCESSOR calls after
a certain pre-defined cut-off point.

4 Peer Joins

Pseudocode for the JOIN algorithm is given in Algorithm 2 and an example run
of the algorithm is illustrated in Figure 1. The JOIN algorithm makes use of
an algorithm, based on secure multiparty computation protocols, which allows
a good swarm to choose a random number in the range (0,1]. Additionally, this
protocol employs a result by Scheideler’s which shows how to keep Byzantine
peers well distributed on the unit circle [24]. In particular, Scheideler proposes
the following algorithm. When a new peer joins the unit circle, it is temporarily
assigned a random peer point r. Then two other peers with peer points, p1 and
p2 are selected uniformly at random from the set of all peers. Finally, the peers
at positions r, p1 and p2 are rotated: the joining peer is assigned to position p1,
the peer formerly at position p1 is assigned to position p2, the peer formerly at
position p2 is assigned to position r. A result by Scheideler shows that a join
protocol augmented with this type of rotation will ensure that all swarms are
good for a polynomial number of insertions and deletions. The two random peer
points required to do this rotation are chosen using the algorithm given in [17].

The JOIN algorithm assumes that peer p knows some correct peer q. In the
algorithm, p first contacts peer q with p’s request to join the network. Peer q
alerts S(q) to this request and the peers in S(q) first choose a random ID r for
p using the algorithm discussed in the full version of this paper. Two peers, p1

810 A. Fiat, J. Saia, and M. Young

Algorithm 2 JOIN(p)
1: Peer p contacts some correct peer q which notifies S(q) of p’s request

to join;
2: All peers in S(q) both 1) come to consensus on a random number

r ∈ (0, 1] and 2) select two random peer points, p1 and p2, uniformly
at random from all peers currently in the DHT using the algorithm in
[17]. Assume that r, p1, and p2 are ordered clockwise along the unit
circle;

3: Using the SEND MESSAGE algorithm, all peers in S(p) notify
peers in Center(p1) that p has joined the network and that p is taking
the location of p1 who is relocating. In same way, all peers in S(p)
notify peers in Center(p2) that p1 is joining and that p1 is taking the
location of p2 who is relocating. Finally, all peers in S(p) notify all
peers in Center(r) that p2 is joining;

4: All peers in S(q) get pointers to the peers in Center(p1), using O(1)
calls to the SUCCESSOR algorithm. All peers in S(q) send these
pointers to p. In a similar fashion, S(q) sends pointers to the peers
of Center(p2) to p1 and sends pointers to peers of Center(r) to p2;

5: The peers in Center(p1) send data items for all keys k such that p ∈
S(k) and p then stores copies of these data items. Similar processes
for 1) Center(p2) and p1 and 2) Center(r) and p2 are performed;

6: PLACEMENT (p);
7: PLACEMENT (p1);
8: PLACEMENT (p2);

and p2, are selected uniformly at random and rotation is effected. The peers in
S(q) introduce p to the peers of Center(p1).

The steps for updating of Forward and Backward intervals for p, p1, and p2

are contained in the PLACEMENT protocol whose pseudocode is omitted from
extended abstract. In PLACEMENT , all peers in S(p) find all the peers in p’s
Forward and Backward intervals. In addition, the peers in S(p) introduce p to
all peers, p′, in the network such that p is now in a Center, Forward or Backward
interval for p′. In a similar fashion p1, p2 are rotated into their new positions and
their new Center, Forward, and Backward intervals are established.

Lemma 2. The JOIN protocol has the following properties with high probabil-
ity:

– JOIN has Θ(log n) latency and Θ(log3 n) message complexity.
– After JOIN completes, peer p knows all peers in its Center, Forward and

Backward intervals.

Making Chord Robust to Byzantine Attacks 811

(F)

p
1

p
2

p

q

S(q)
r

S 1
S 2

p
id

Forward(p,i)

p
id

Center(p)

S(q)

q

p
id

S 4

S 3

Backward(p,i)

p
id

Forward(p,i)

Backward(p,i)

Center(p)

p
2

p
1

p

(A) (B) (C)

(D) (E)

Fig. 1. An illustration of how p enters the network - the details for the rotation of
p1 and p2 are omitted. (A) Peer p contacts q asking to join the network. The peers
in S(q) generate a random number r ∈ (0, 1] and select two peer points uniformly at
random. (B) All peers in S(q) notify all peers in Center(p) that p is joining and send
to p the identifiers of and pointers to all peers in Center(p). (C) Peers in S(p) obtain
the identifiers of and pointers to the peers in the ith Forward interval of p. All peers
in this Forward interval are informed of p’s arrival. This process is repeated with all
Forward intervals of p. (D) Peers in S(p) obtain the identifiers of and pointers to the
peers in the ith Backward interval of p. All peers in this Backward interval are informed
of p’s arrival. Again, this process is repeated with all Backward intervals of p. (E) Links
established after the join protocol. The thick dashed arrows illustrate links between p

and the peers in its Forward, Backward, and Center intervals. There are links between
p and the peers in all of its Forward and Backward intervals although this is not shown
in this figure.

– Let q be any peer with the property that p is in a Center, Forward or Back-
ward interval for q. Then after JOIN completes, q knows about the peer
p.

– Assume, before p joins the network, that the fraction of faulty peers is no
more than 1/4 − ε and that all peer points are distributed uniformly at ran-
dom on the unit circle. Then after p joins the network, all peer points are
distributed uniformly at random on the unit circle.

5 Θ(log2 n) Expected Messages For SUCCESSOR

It is possible to improve SUCCESSOR so that it sends only Θ(log2 n) messages
in expectation. We assume that all peers have a hash function h1 which maps
peer identifiers to the positive integers. We make the random oracle assumption
about h1 i.e. for any input, all outputs are equally likely. We also assume that
the number of peers in any swarm is Θ(log n) and at least C log n for some fixed
constant C and that all swarms are good.

812 A. Fiat, J. Saia, and M. Young

Algorithm 3 Message Sending Protocol
1: Each peer x ∈ Sj−1 sends a message to peer y ∈ Sj iff

h1(x) = h1(y) mod log n

2: Each peer y ∈ Sj accepts a message from peer x ∈ Sj−1 iff

h1(x) = h1(y) mod log n

3: Each peer y ∈ Sj , upon receiving messages from at least 2/3-rds of
the peers that it would accept from, does majority filtering on all the
messages received to decide which message, if any, to propagate to
the next swarm.

Our algorithm for reducing message cost when sending from swarm Sj−1 to
swarm Sj is given in Algorithm 3. It assumes that swarm Sj−1 wants to send
a message to a swarm Sj (For ease of exposition, for a real number r, we will
write r instead of �r�. It should be clear from context which is meant.). This
algorithm is used in steps 6 and 7 of the SUCCESSOR pseudocode given in
Algorithm 1.

Lemma 3. For C sufficiently large but depending only on k′, the following is
true with probability at least 1 − 1/nk′

:

– All calls to SUCCESSOR succeed.
– All calls to SUCCESSOR send Θ(log2 n) messages in expectation.

6 Conclusion

In this extended abstract, we have introduced the Byzantine join attack, an at-
tack model under which an omniscient adversary causes a large number of Byzan-
tine peers to join a network. We assume that the adversary carefully chooses the
IP-addresses of these peers and where they join the network in order to try to
place them at critical locations. We have described S-Chord, a variant of Chord
that is provably robust to the Byzantine join attack. S-Chord also allows us
to enforce a rule set on the peers in the network and thereby prevent undesir-
able behavior. In comparison to Chord’s successor, this robustness is gained
at the cost of an expected log n factor increase in the number of messages per
SUCCESSOR operation and a log n factor increase in the number of links
stored per peer. We believe that the techniques described here can be easily
extended to a number of other ring-based DHTs that have a finger-function f
which satisfies |f(x) − f(x + δ)| ≤ δ for any point x on the ring.

Making Chord Robust to Byzantine Attacks 813

Acknowledgements

We gratefully thank Uri Nadav for his help with this paper. This research was
supported by NSF grant CCR-0313160 and SURP grant No. 191445.

References

1. Aspnes, J., Shah, G.: Skip Graphs. Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (2003) 384–393

2. Awerbuch, B., Scheideler, C.: Robust Distributed Name Service. International
Workshop on Peer-to-Peer Systems (IPTPS) (2004) 237–249

3. Awerbuch, B., Scheideler, C.: Group Spreading: A Protocol for Provably Secure
Distributed Name Service. Proceedings of the Thirty-First Int. Colloquium on Au-
tomata, Languages, and Programming (ICALP) (2004) 183–195

4. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous Secure Computation. Pro-
ceedings of the Twenty-Fifth ACM Symposium on the Theory of Computing
(STOC) (1993)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computing. Proceedings of the Twenti-
eth ACM Symposium on the Theory of Computing (STOC) (1988) 1–10

6. Ben-Or, M., Kelmer, B., Rabin, T. Asynchronous Secure Computations with Op-
timal Resilience. Proceedings of the Thirteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC) (1994) 183–192

7. Castro, M., Druschel P., Ganesh, A., Rowstron, A., Wallach, D.: Secure Routing
for Structured Peer-to-Peer Overlay Networks. Proceedings of the 5th Usenix Sym-
posium on Operating Systems Design and Implementation (OSDI) (2002) 299–314

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty Unconditionally Secure Proto-
cols. Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting (STOC) (1988) 11–19

9. Dabek, F., Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative
storage with CFS. Proceedings of the 18th ACM Symposium on Operating Systems
Principles (2001) 202–215

10. Douceur, J.: The Sybil Attack. Proceedings of the Second Internation Peer-to-Peer
Symposium (IPTPS) (2002)

11. Fiat, A., Saia, J.: Censorship Resistant Peer-to-Peer Content Addressable Net-
works. Proceedings of the Thirteenth ACM Symposium on Discrete Algorithms
(SODA) (2002)

12. Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game - A
Completeness Theorem for Protocols With Honest Majority. Proceedings of the
Nineteenth ACM Symposium on Theory of Computing (STOC) (1987) 218–229

13. Harvey, N., Jones, M., Saroiu S., Theimer, M., Wolman, A.: SkipNet: A Scalable
Overlay Network with Practical Locality Properties. Fourth USENIX Symposium
on Internet Technologies and Systems(USITS) (2003)

14. Hildrum, K., Kubiatowicz, J.: Asymptotically Efiicient Approaches to Fault-
Tolerance in Peer-to-peer Networks. Proceedings of the 17th International Sympo-
sium on Distributed Computing (2004)

15. Hirt, M., Nielsen, J., Przydatek, B.: An Asynchronous Multi-Party Computation
Protocol. In Submission (2004)

814 A. Fiat, J. Saia, and M. Young

16. Kashoek, M., Karger, D.: Koorde: A Simple Degree-Optimal Distributed Hash
Table. Proceedings of the Second International Workshop on Peer-to-Peer Systems
(IPTPS) (2003)

17. King, V., Saia, J.: Choosing a Random Peer. Proceedings of the Twenty-Third
Annual ACM Symposium on Principles of Distributed Computing (PODC) (2004)

18. Luby, M., Mitzenmacher, M., Shokrollahi, M., Spielman, D., and Stemann, V.:
Practical loss-resilient codes. Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing (1997) 150–159

19. Naor, M., Wieder, U.: A simple fault tolerant distributed hash table. Proceedings
of the Second International Workshop on Peer-to-Peer Systems (IPTPS) (2003)

20. Prabhu, B., Srinathan, K., Rangan, C.: Asynchronous Unconditionally Secure
Computation: An Efficiency Improvement. INDOCRYPT 2002, Lecture Notes in
Computer Science, Springer-Verlag 2551 (2002) 93–107

21. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (2001)

22. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms Heidelberg, (2001) 329–350

23. Saia, J., Fiat, A., Gribble, S., Karlin, A., Saroiu, S.: Dynamically fault-tolerant
content addressable networks. Proceedings of the First International Workshop on
Peer-to-Peer Systems (2002)

24. Scheideler, C.: How to Spread Adversarial Nodes? Rotate! Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of Computing (2005) 704–
713

25. Srinathan, K., Rangan, C.: Efficient Asynchronous Secure Multiparty Distributed
Computation. INDOCRYPT 2000, Lecture Notes in Computer Science, Springer-
Verlag 1977 (2000) 117–129

26. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Applications. Proceedings of the 2001
ACM SIGCOMM Conference (2001)

27. Yao, A.: Protocols for Secure Computations. Proceedings of the Twenty-Third
IEEE Symposium on the Foundations of Computer Science (FOCS) (1982) 160–
164

28. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An Infrastructure for Fault-
Resilient Wide-Area Location and Routing. University of California at Berkeley
Technical Report, UCB//CSD-01-1141, (April 2001)

Bucket Game with Applications to Set
Multicover and Dynamic Page Migration�

Marcin Bienkowski1 and Jaros�law Byrka2

1 International Graduate School of Dynamic Intelligent Systems,
University of Paderborn, Germany

young@upb.de
2 Centrum voor Wiskunde en Informatica,

Kruislaan 413, NL-1098 SJ Amsterdam, Netherlands
J.Byrka@cwi.nl

Abstract. We present a simple two-person Bucket Game, based on
throwing balls into buckets, and we discuss possible players’ strategies.
We use these strategies to create an approximation algorithm for a gen-
eralization of the well known Set Cover problem, where we need to cover
each element by at least k sets. Furthermore, we apply these strategies to
construct a randomized algorithm for Dynamic Page Migration problem
achieving the optimal competitive ratio against an oblivious adversary.

1 Introduction

In this paper we present a simple two-player Bucket Game. In this game we have
a set of n initially empty buckets, an infinite set of balls and a constant parameter
0 < c < 1. In each turn, player A associates arbitrarily a non-negative weight wi

with each bucket i. We can easily extend the notion of weight to sets of buckets,
i.e. the weight of a set X is the sum of weights of all buckets from X (the total
weight is the sum of weights of all n buckets). On the basis of weights {wi},
player B chooses a subset of buckets, whose weight is at least a fraction c of the
total weight, and throws a ball into each bucket from this subset. The goal of
player A is to fill each bucket with at least T balls for a given threshold T in as
few rounds as possible, whereas the goal of player B is to postpone it.

One of the most straightforward questions that arises is: “Assuming the opti-
mal strategy of player B, how fast can player A achieve the given threshold T ?”.
� Extended abstract. The full version of this paper is available under http://wwwhni.

upb.de/publikationen/.
1 Partially supported by DFG-Sonderforschungsbereich 376 “Massive Parallelität: Al-

gorithmen Entwurfsmethoden Anwendungen”, and by the Future and Emerging
Technologies programme of the EU under EU Contract 001907 DELIS “Dynami-
cally Evolving, Large Scale Information Systems”.

2 Supported by the EU Marie Curie Research Training Network ADONET, Contract
No MRTN-CT-2003-504438.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 815–826, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

816 M. Bienkowski and J. Byrka

In this paper we address this issue, proving tight bounds in Sect. 2. The trivial
answers to this question which we present are O(T · log n) and Ω(T + logn). We
develop a simple Exponential Balancing technique, which constructively yields
an algorithm for player A. This algorithm is guaranteed to fill all the buckets to
the given threshold T in O(T +logn) rounds. All logs in the paper are to base 2,
unless stated otherwise.

Although the Bucket Game might be interesting itself, the main contribution
of our paper is applying the Exponential Balancing scheme to improve approx-
imation and competitive ratios of Set Multicover and Dynamic Page Migration
problems, respectively. We present the problems and summarize our results, sep-
arately, in the two following subsections.

1.1 Set Cover, Set Multicover and k-SetCover

The Set Cover problem is defined as follows. Given a collection C of subsets of
S, such that

⋃
si∈C si = S, find a collection C′ ⊆ C, such that

⋃
si∈C′ si = S

and |C′| is minimal.
The Set Cover problem is NP-complete. Moreover, it was proved by Raz

and Safra [12] that the existence of an (c · log n)-approximation algorithm for
Set Cover with c < 1 would imply that NP ⊆ DTIME(nlog log n). On the other
hand, Johnson [8] and Lovász [9] showed two different algorithms, both of which
approximate Set Cover within a factor of Hn =

∑n
i=1

1
i = Θ(log n).

A natural generalization of Set Cover is the Set Multicover problem, where
each element x of S needs to be covered by at least lx sets, and each subset
si ∈ C may be used arbitrary number of times. This problem was addressed
by Rajagopalan and Vazirani in [11], where an Hn-approximation algorithm
was presented. We will, however, concentrate on the particular case where each
element must be covered by at least k subsets (i.e. lx = k for all x ∈ S). We call
this problem k-SetCover. A similar problem – a variant where each set may be
used at most once (known as Constrained Set Multicover) – was recently shown
in [3] to have applications to reverse engineering of protein and gene networks.

Our Contribution. We propose an algorithm for the k-SetCover problem,
that in polynomial time produces a k-cover with O((k +logn) · c∗) sets where c∗

is a number of sets in the optimal solution to the classical Set Cover problem. In
other words, c∗ is the cost of the optimal solution of the original input instance
with k = 1. Furthermore, our algorithm can be extended without loss of approx-
imation guarantee to handle a weighted version of k-SetCover, i.e. the one with
different costs charged for using particular sets in the cover.

Our algorithm is based on a reduction from Set Cover to Uncapacitated Fa-
cility Location (UFL) problem. The reduction is similar to the one used by Guha
and Khuller [7] to prove a lower bound on the approximation factor for UFL.

Although we do not improve the approximation ratio for k-SetCover achieved
by the greedy algorithm of Vazirani, we believe the result is worth of interest. It
relates the cost of the computed solution to c∗ which is for some instances Ω(k)
times smaller than the optimal solution to k-SetCover. We give an example of
instances for which our algorithm computes Ω(log n) times cheaper solutions.

Bucket Game with Applications to Set Multicover 817

1.2 Dynamic Page Migration

The Dynamic Page Migration (DPM) problem [4,5] arises in a network of n pro-
cessors (nodes) v1, v2, . . . , vn, which share one indivisible memory page (shared
variable) of size D. This variable is stored in the local memory of one of these
processors, initially at v1. The processors are placed in a metric space (X , d),
i.e. the distances between the points from X are given by the metric d.

We assume discrete time steps t = 1, 2, At the beginning of the step the
adversary may move each node by at most a constant distance Δ, i.e. for any
node vi, its positions pt−1(vi) and pt(vi) in two consecutive time steps cannot
be too far apart, d(pt−1(vi), pt(vi)) ≤ Δ. A tuple describing the positions of all
the nodes in time t is called configuration at time step t and is denoted by Ct.

After moving nodes, the adversary chooses one node, denoted by σt, which
wants to access (read or write) a single unit of data from a page. If the page is
stored in its local memory, then such a transaction is free. Otherwise, the node
has to send a request to the processor holding the page, say v∗, and appropri-
ate data is sent back. This incurs a cost, which is defined to be ct(σt, v

∗) :=
dt(σt, v

∗)+1. The function dt(va, vb) denotes the distance in step t between any
two nodes va and vb, i.e. dt(va, vb) := d(pt(va), pt(vb)).

To avoid the problem of maintaining consistency among multiple copies of
the page, the model allows only one copy of the page to be stored within the
network. After serving the request, the algorithm may decide to migrate the
page to another processor. The migration cost between two nodes va and vb is
equal to D · ct(va, vb).

The goal is to decide, online, when and where to move the page in order to
exploit the locality of the request, and minimize the total cost of communication
for all possible pairs of sequences of requests (σt) and network changes (Ct).

We consider only online algorithms, i.e. the ones which make decision in step t
solely on the basis of the initial part of the input up to step t. To analyze the
performance of an online algorithm ALG we use competitive analysis [13]. We
say that a randomized algorithm ALG is c-competitive, if for all input sequences
(Ct, σt) it holds E[CALG((Ct, σt))] ≤ c ·COPT((Ct, σt)), where the expected value
is taken over all random choices made by an algorithm. CALG((Ct, σt)) and
COPT((Ct, σt)) are the cost of ALG and the optimal offline solution, respec-
tively, on the input sequence (Ct, σt). The factor c is called the competitive ratio
of the algorithm. In this paper we consider only oblivious adversaries [2], which
have no access to the random bits used by the algorithm.

Related Work. The case in which network is static, i.e. Ct = Ct+1 for all time
steps t and the constant overhead for communication is not present, called Page
Migration, had been introduced in [6]. The best known algorithms (deterministic
and randomized), achieving constant competitive ratios for general topologies,
were presented in [1,14].

For the DPM problem Bienkowski, Dynia, and Korzeniowski gave in [4] a
deterministic, O(min{

√
D · n, D, λ})-competitive algorithm Mark, where λ is

the maximum distance between any pair of nodes occurring during runtime. This
result is up to a constant factor optimal due to the matching lower bound for

818 M. Bienkowski and J. Byrka

any randomized algorithm playing against an adaptive-online adversary given
in [5]. In [4] it was also shown that a direct randomization of Mark yields the
algorithm R-Mark which is O(min{

√
D · log n, D, λ})-competitive against an

oblivious adversary. The best known lower bound for this case, given in [4], is
Ω(min{

√
D · log n, D2/3, λ}).

Our Contribution. In Sect. 4 we partially close the gap mentioned above. We
use Exponential Balancing technique to approximate the node holding page of
the optimal algorithm by an accurate probability distribution over all nodes. We
prove that our algorithm is O(

√
D · log n)-competitive. Since it can be combined

with trivial O(D) and O(λ) algorithms from [5], we get an algorithm which is
O(min{

√
D · log n, D, λ})-competitive against an oblivious adversary.

2 Bucket Game

In this section we formally define a two-player Bucket Game and discuss possible
strategies for each player.

Definition 1 (Bucket Game). Assume we have a set of n buckets, which are
initially empty, numbered from 1 to n and let [n] := {1, 2, . . . , n}. We also have
an infinite set of balls. For any i ∈ [n], let ci be the current number of balls in
bucket i. Let 0 < c < 1 be any fixed constant. The Bucket Game is played in
rounds by two players A and B. Each round of the game is defined as follows.

– Player A defines a sequence of non-negative weights {wi}n
i=1 and shows it to

player B.
– Player B chooses some subset X ⊆ [n] of buckets, s.t.

∑
i∈X wi ≥ c·

∑n
i=1 wi,

and throws exactly one ball into each bucket from X.

The game ends when each of the buckets contains at least T balls (i.e. ci ≥ T
for all i ∈ [n]). The goal of player A is to minimize the number of rounds, while
B wants to play as long as possible.

Let us make the following simple observations. First of all, to throw at least
one ball into each bucket (i.e. for the case T = 1), O(log n) rounds are sufficient.
Player A simply defines wi = 1 for empty buckets and wi = 0 for non-empty
ones. Then in each round at least a fraction c of empty buckets gets a ball.
Hence, after at most log1/(1−c) n rounds there is no empty bucket left. Thus, to
fill each bucket to the threshold T , player A can repeat this scheme T times,
which yields an upper bound of O(T · log n).

Second, for any T , there exists a player B strategy which prevents finishing
the game in less than Ω(T + log n) rounds. Since each bucket may get at most
one ball per round, the number of rounds cannot be smaller than T . On the
other hand, suppose that in every round B chooses the subset with the smallest
number of empty buckets. With this strategy, in the i-th round, at most �c · ei�
of empty buckets get a ball, where ei is the number of empty buckets at the
beginning of the i-th round. Thus Ω(log n) rounds are also necessary.

Bucket Game with Applications to Set Multicover 819

Surprisingly, there is a simple player A strategy, which we call Exponential
Balancing, and which asymptotically matches the above-mentioned lower bound.

Theorem 1. For T = �log2 n�, there exists a player A strategy which guarantees
finishing the game in O(log n) rounds.

Proof. In each round A defines wi = n
2ci

. We call wi a value of a bucket, and
define the total value of the game as W =

∑
i∈[n] wi.

Initially, all buckets are empty, wi = n for all i. Hence, the initial value of the
game is n2. In any round each bucket “offers” to player B a half of its current
value for putting a ball into this bucket. According to the rules of the game,
B must collect at least a fraction c of this offered value. Thus, in every round,
the game loses at least a fraction 1

2 · c of its value. If W and W ′ denote the
game values in two consecutive rounds, then W ′ ≤ (1 − c/2) · W . If in some
round W ≤ 1, then the threshold T is reached and the game ends. Precisely,
W =

∑
i

n
2ci

≤ 1 implies n
2ci

≤ 1 for all i ∈ [n], and thus ci ≥ log n for all i ∈ [n].
It remains to observe that the value of the game can be reduced from n2 to 1 in
at most log1/(1−c/2) n2 = 2

1−log2(2−c) · log2 n rounds. ��

If threshold T is larger than �log2 n�, then player A may act as if he was
playing � T

�log2 n� times a game with threshold �log2 n�. By Theorem 1, each of
these sub-games lasts O(log n) rounds, and thus the whole game ends after at
most O(T) rounds. Thus, we get the following.

Corollary 1. For any T , there exists a player A strategy which guarantees fin-
ishing the game in O(T + log n) rounds.

3 Application to Set Multicover

In this section we present a new approximation algorithm for the k-SetCover
problem, the modification of the Set Multicover defined in Sect. 1.1. Our algo-
rithm uses an approximation algorithm for the Uncapacitated Facility Location
(UFL) problem as a subroutine.

In the following, we say that A is a λ-approximation algorithm for a minimiza-
tion problem P , if for any instance of the problem P it produces, in polynomial
time, a solution with a cost at most λ times higher than the cost of an optimal
solution.

Uncapacitated Facility Location (UFL) Problem. In the UFL problem we
are given a set F of nf facilities and a set C of nc cities. For every facility i ∈ F ,
a non-negative number fi denotes the opening cost of the facility. Furthermore,
for every city j ∈ C and facility i ∈ F , cij is a connection cost between facility i
and city j. The goal is to open a subset of the facilities F ′ ⊆ F , and connect
each city to an open facility so that the total cost is minimized.

The UFL problem is NP-complete, and MAX SNP-hard (see [7]). A UFL
instance is metric if its connection cost function satisfies the triangle inequality
(i.e. cij ≤ cik + ckj for any i, j, k ∈ C ∪ F). There are several approximation

820 M. Bienkowski and J. Byrka

algorithms for the metric UFL problem, the currently best one achieving the
approximation ratio of 1.52 [10].

Guha and Khuller [7] have proved by a reduction from Set Cover that there is
no polynomial time λ-approximation algorithm for metric UFL with λ < 1.463,
unless NP ⊆ DTIME(nlog log n). Another of their results was a (1.463 . . . + ε)-
approximation algorithm for the case when all the connection costs are either 1
or 3. We use this algorithm in our construction.

Computing Partial Set-Covers. First, we address a problem of computing
partial set-covers for a given instance of the Set Cover problem. By a set-cover we
mean a feasible solution to an instance of the Set Cover problem (i.e. a family
C′ ⊂ C covering every element of S), whereas a partial set-cover is a family
C′′ ⊂ C that covers at least a certain fraction of elements of S.

We put weights on elements to indicate that covering certain elements is
more important than covering others. We would like to know how much we can
cover with at most k ·c∗ sets, for a constant k ∈ R+ and c∗ denoting the number
of sets in an optimal set-cover.

Let λ0 be the approximation factor of an algorithm for the metric UFL
problem with connection costs 1 or 3 (By [7], we may choose λ0 ≈ 1.463).

Lemma 1. For all k > 2λ0−1
2−λ0

there exists an algorithm, that given ((S, C), c∗, w)
(where (S, C) is an instance of the Set Cover problem, c∗ is the number of subsets
in its optimal solution, and w : S → N+ is a weight function on the elements of
S) runs in polynomial time in

∑
x∈S w(x), outputs a partial set-cover Cp with

the number of sets cp ≤ k · c∗, and the total weight of elements not covered by Cp

is at most k(λ0−1)
2k−2λ0

·
∑

x∈S w(x).

To prove this lemma, we use a reduction of a Set Cover instance to a UFL
instance with distances 1 and 3 and an approximation algorithm for the UFL
problem. The core of the reduction and the algorithm were proposed by Guha
and Khuller [7]. We slightly extended the original reduction to encode the ele-
ments’ weights into quantities of groups of cities representing particular elements.
The complete proof of Lemma 1 can be found in the full version of the paper.

In Lemma 1 we bounded the fraction of uncovered weight of elements by
k(λ0−1)
2k−2λ0

, when k · c∗ subsets are used. Suppose we want to cover certain fraction
c of elements’ weight and wonder how many sets do we need to use. We may
consider the uncovered weight fraction 1−c = k(λ0−1)

2k−2λ0
and conclude the following.

Corollary 2. For any 0 < c < 3−λ0
2 ≈ 0.768 there exists an algorithm that,

in polynomial time, computes a partial set-cover that covers at least a fraction
c of elements’ weight, using at most 2λ0·(1−c)

3−λ0−2c · c∗ sets. We call this algorithm
Set-UFLc.

3.1 Approximation Algorithm for k-SetCover

Now we combine Corollary 2 with Theorem 1 to present an algorithm for the
k-SetCover problem. First, we present an algorithm A1 (see Fig. 1), solving the

Bucket Game with Applications to Set Multicover 821

1. Sol ← ∅ /* empty multiset */
2. guess c∗ – the number of sets in an optimal set-covera

3. define weight function w : S → N+

4. compute a partial set-cover Cp ← Set-UFLc((S, C), c∗, w)
5. add this partial set-cover to the current solution (Sol ← Sol ∪ Cp)
6. if Sol does not cover each element of S at least �log2 n� times, go to step 3
7. return Sol

a There are only polynomially many possible values of c∗.

Fig. 1. Algorithm A1

problem for k = log2 n, where n = |S|. A1, given an instance of a (log2 n)-
SetCover problem (S, C), produces as a solution a multiset Sol.

Lemma 2. There exists an (efficiently computable) weight function for step 3 of
Algorithm A1, such that the algorithm produces, in polynomial time, a solution
to (log2 n)-SetCover instance with at most O(log n · c∗) sets.

Proof. We use the Exponential Balancing technique to upper-bound the total
number of sets in Sol. Let c ∈ (0, 0.768) be a fixed parameter of the Algo-
rithm A1. From Corollary 2, in step 4 of Algorithm A1, we may cover a fraction c

of weight with at most 2λ0(1−c)
3−λ0−2c · c∗ sets.

Defining a weight function w in step 3 is like playing a role of player A in
the Bucket Game, except for the fact that now the weights are restricted to be
positive integers. Fortunately, the proof of Theorem 1 may be easily modified to
use only integer, polynomially bounded weights. Hence, by Theorem 1, we may
bound the number of used partial covers by 2 log2 n

1−log2(2−c) .
Concluding, |Sol| - the total number of used sets, may be bounded as

|Sol| ≤ 4λ0(1 − c)
(1 − log2(2 − c))(3 − λ0 − 2c)

· log2 n · c∗ . (1)

When we set c = 0.553 and λ0 ≈ 1.463, we obtain |Sol| < 12.006 · log2 n · c∗. ��

Theorem 2. There exists an algorithm that for any instance of the k-SetCover
problem, in polynomial time, produces a k-set-cover with O((k + log n) · c∗) sets,
where c∗ is the number of sets in an optimal classical set-cover.

Proof. Let r = �k/�log2 n��, and let r ∗ Sol denote a multi-set containing the
same elements as the multi-set Sol, but the quantity of each element e in r ∗Sol
is r times the quantity of e in Sol. We use Algorithm A1 to compute a solution
Sol, that covers each element at least �log2 n� times, and multiply it r times to
obtain a solution r ∗ Sol. By Lemma 2, Sol has O(log n · c∗) sets. Thus, r ∗ Sol
has O((k + log n) · c∗) sets. ��

Note on Weighted Version of Set Multicover. Like in the case of the
classical Set Cover problem, one may generalize the Set Multicover problem

822 M. Bienkowski and J. Byrka

by defining a weight function on the subsets representing the cost of using a
particular set in the solution. Same as in the unweighted version, we define the
cost of using a set l times to be l times the cost of using this set only once.

All the results concerning the Set Multicover problem (especially Theorem 2)
presented in this paper may be easily generalized to the Weighted Set Multicover
problem formulation. The proof will be presented in the full version of the paper.

Theorem 3. There exists an algorithm that for a given instance of the Weighted
k-SetCover problem, in polynomial time, produces a k-set-cover with cost at most
O(k + log n) times the cost of an optimal solution to the classical Weighted Set
Cover problem on this instance.

Motivating Example. Let us consider the following instances of the (log n)-
SetCover problem. Let the family C consist of subsets P1, P2, . . . , Pn+1 with
weights c1, c2, . . . , cn+1 such that Pj = {j} and cj = 1/j for j = 1, 2, . . . , n,
whereas Pn+1 = {1, 2, . . . , n} and cn+1 = 1 + ε for some ε ∈ R+. Consider the
greedy algorithm of Vazirani, i.e. the algorithm that consecutively chooses the
most cost effective set. If we use it to produce (log n)-set-cover for the instance
above, it outputs a multi-set containing each of the sets P1, P2, . . . , Pn log n
times. This solution has a cost equal to Hn · log n. However, since the optimal
solution to the classical Set Cover has cost c∗ = 1 + ε, by Theorem 3, our
algorithm produces (log n)-set-cover with cost O(log n).

4 Application to Dynamic Page Migration

In this section we design a randomized algorithm EBM (Exponential Balancing
Marking) and prove that it achieves a competitive ratio of O(

√
D · log n). Our

algorithm is based on the Mark algorithm [4]. First, we construct a marking
scheme, which induces the partition of input sequence into epochs. This partition
is independent of the algorithm, and depends only on the input. On the basis
of the computed marking we construct the EBM algorithm. We also use Bucket
Game as an underlying concept, however the relation between EBM and the
game is more obscure here.

Marking Scheme. We divide input sequence into chunks of length K :=
2 ·

√
D/ log n time steps. The partitioning of input sequence into epochs is per-

formed as follows. Each epoch consists of some non-empty sequence of chunks.
Let Mi be the number of marks that vi has; initially all Mi are set to 0. Marks
are DPM’s equivalents of the balls from the Bucket Game.

The first epoch starts with the beginning of the input. Let E denote the
current epoch; at the beginning of input sequence E = ∅. By a subsequence we
understand any time interval of the input sequence. For any subsequence S and
any vi ∈ V , let Ai(S) denote the cost (of serving requests) of an algorithm which
remains in vi for the whole S and does not move its page. After each chunk Ij we
run the marking routine depicted in Fig. 2. Marking of vi is computed entirely
on the basis of Ai(E). If at the end of Ij node vi becomes marked (with one or

Bucket Game with Applications to Set Multicover 823

E := E � Ij

for each vi ∈ V do Mi := �Ai(E) · log n
D

�
if Mi ≥ log n for all vi ∈ V then

for each vi ∈ V do set Mi := 0.
E := ∅ /* beginning of a new epoch */

Fig. 2. Marking routine after chunk Ij

more marks), i.e. the corresponding value of Mi increases, then Ij is called a
marking chunk for vi, and we say that vi is marked in Ij . Additionally, if S is
any subsequence, then by Mi(S) and M ′

i(S) we denote the number of marks vi

has before S and after S, respectively. We also define ΔMi(S) = M ′
i(S)−Mi(S).

An epoch ends when all nodes are marked at least log n times.
As an important fact, we get that COPT(E) = Ω(D) for each epoch E . Ac-

tually, if OPT remains at one node vi, then vi is marked at least log n times
during E , and thus OPT pays Ai(E) ≥ log n · D

log n = D. Otherwise, OPT pays
at least D for moving the page between nodes.

Jump Sets. Before we construct our algorithm, we adapt the construction of
Jump Sets from [4] for our needs. We consider one single chunk I and we number
time steps within I from 1 to K. Then σi denotes the node which issues a request
in the i-th step of I, and di(·), ci(·) are the distance and cost functions in the
i-th step. The following lemma is a simple reformulation of [4–Lemma 2].

Definition 2. A gravity center for I is a vertex v, which minimizes the sum∑K
i=1 cK(v, σi). If there is more that one such vertex, then we choose any of

them. We denote this node by GI .

Definition 3. For any chunk I and any integer k ≥ 1, a k-JumpSet, which we
denote by Jk(I), is the set of all nodes whose distance to GI , measured in the
last step of I is at most 9 · k · K, i.e. Jk(I) = {v ∈ V : dK(v,GI) ≤ 9 · k · K}.

Lemma 3. For any chunk I of K steps, any node vi ∈ V , and any k ≥ 1, if
vi /∈ Jk(I) at the and of I, then Ai(I) ≥ k

4 · K2 ≥ k · D
log n . This implies that if

vi gets k marks in I, then vi ∈ Jk+1(I).

4.1 The EBM Algorithm

Algorithm EBM works in chunks, i.e. it remains at one node for a chunk, and
then at the end of the chunk, it makes its decision (where to move the page) on
the basis of computed gravity centers and marking. If chunk I is the last chunk
of the epoch, then EBM moves its page to GI . Otherwise, if the node holding the
algorithm’s page is marked in I, then at the end of I, EBM chooses randomly
a node v∗, further called I-JumpCandidate, and moves its page to v∗. Any node
vi is chosen with probability 2−Mi/(

∑
i∈[n] 2

−Mi).

824 M. Bienkowski and J. Byrka

Theorem 4. The algorithm EBM is O(
√

D · log n)-competitive.

Consider any epoch E , and let m be the number of its chunks, i.e. E =
(I1, I2, . . . , Im). Movements of EBM’s page partition E into a sequence of p
phases, i.e. E = (P1, P2, . . . , Pp), each phase consisting of one or more chunks. In
one phase Pi, EBM remains at one node, denoted by PEBM(Pi). First, we prove
that the expected number of phases in one epoch is bounded.

Lemma 4. The expected number of phases in one epoch is O(log n).

Proof. We define a value of a node after any chunk I as n·2−M ′
i(I). The total value

after I is defined as the sum of nodes’ values, i.e. WI :=
∑

i∈[n] n · 2−M ′
i(I). We

make two key observations. First, WI is monotonically non-increasing within E .
Second, WI ≤ n2 for any chunk I ∈ E , and WIm−1 ≥ 1 (because after Im−1 at
least one node has less marks than log n).

EBM starts E at some node v and remains there till v becomes marked. This
first phase lasts for at least one chunk, and after it the total value is at most n2.
After the first phase, for the analysis, we may safely assume that EBM chooses a
jump candidate v∗ at the beginning of a phase, moves its page to v∗ and remains
at v∗ till it becomes marked. Thus, this choice of a node vi determines where
the phase ends: either at the first marking chunk for vi, or at Im, if vi is not
marked in the remaining part of E . This chunk we call stopping for vi.

We show that, with probability at least 1/2, one phase reduces the total
value by a constant factor or is the last phase in the epoch. We call such phase
successful. If the total value is reduced below 1, then the corresponding phase
ends with Im−1 or with Im, and thus at most one additional phase consisting of
the last chunk Im is sufficient. Thus, O(log n) successful phases are sufficient to
finish the whole epoch, and therefore the expected number of phases in epoch is
O(2 · log n).

Consider the beginning of any phase. We sort the nodes in the order induced
by their stopping chunks, obtaining a sorted sequence vi1 , . . . , vin . Let pi1 , . . . , pin

be the probabilities of choosing these nodes as jump candidates. Let j be the
smallest index for which

∑j
k=1 pik

≥ 1/2, and I ′ be the stopping chunk for vij .
Since j is the smallest index with this property, it follows immediately that, with
probability

∑n
k=j pik

≥ 1/2, EBM chooses one of vij , vij+1 , . . . , vin as a jump
candidate. Any such choice guarantees that the phase lasts at least to the end
of I ′. If I ′ = Im, then the process ends here and the lemma follows. Otherwise,
note that between the end of I and the end of I ′, vi1 , vi2 , . . . , vij are marked at
least once. Since probabilities pik

are directly proportional to the corresponding
values of nodes, and

∑j
k=1 pik

≥ 1/2, these nodes’ values constitute at least half
of the total value WI . By marking them once, one half of their values (and thus
at least 1/4 of the total value) is removed. Thus, WI′ ≤ 3

4 · WI . ��

Before we analyze the cost of EBM in a single phase, we introduce the notion
of potential Φ. If the distance between nodes holding the pages of OPT and EBM
is equal to L, then Φ := 2 ·D ·L. If S is any subsequence of steps, then by ΔΦ(S)
we denote the difference between the potential right after and right before S.

Bucket Game with Applications to Set Multicover 825

jump of BA(Pj)

BB(Pj)

BC(Pj)

J1

J2

J3 Jk Jk+1

a node

GI�

Fig. 3. Transports at the end of phase Pj

By an amortized cost of an action we understand the actual cost of this action
plus the change in the potential this action induced.

In the following we bound the amortized cost of EBM in any phase Pj . As-
sume that Pj consists of � chunks numbered from 1 to �, i.e. Pj = (I1, I2, . . . , I�),
and consider the following thought experiment. At the end of Pj , instead of
moving directly to I�-JumpCandidate v∗, EBM first moves its page to GI�

, and
then to v∗. Note, that for the last phase in E we do not need the latter part
of this movement. Obviously, the (amortized) cost of this combined movement
upper-bounds the (amortized) cost of the actual move.

We denote the part of the amortized cost EBM pays for serving all the re-
quests in Pj and moving to GI�

by BA(Pj). The remaining part of the cost
depends on the random choice of v∗. Since we are interested only in the ex-
pected value of this variable, we can view this move as transporting parts of
the page from GI�

to the nodes. These transports are schematically presented in
Fig. 3. Precisely, to node vi we transport a part pi := 2−M ′

i(Pj)/(
∑

k 2−M ′
k(Pj))

of the page, paying pi · D · cK(GI�
, vi). We divide the total amortized cost of

this transport into two parts: a transport within the boundary of the 1-JumpSet
(dashed lines in Fig. 3), denoted by BB(Pj), and a transport from this boundary
to the appropriate nodes (dotted lines in Fig. 3), denoted by BC(Pj). We note
that BB(Pj) and BC(Pj) are random variables. The following two lemmas are
straightforward generalizations of [5–Lemma 3,4].

Lemma 5. For any phase P holds BA(P) ≤ O(D/K) · COPT(P) + O(D · K).

Lemma 6. For any phase P holds BB(P) ≤ O(D · K).

Lemma 7. For any epoch E = (P1, P2 . . . Pp) holds E[
∑

Pj∈E BC(Pj)] = O(D ·
K · log n).

The complete proof of Lemma 7 can be found in the full version of the paper.
Here we mention only that the proof uses Lemma 3 to argue, that the BC part
of cost in one phase can be high (i.e. the page is transported far away from the
gravity center), only if these far nodes received a lot of marks in this phase. This
implies that an epoch E cannot contain many of such phases.

Finally, we can combine the lemmas above to prove EBM’s competitiveness.

Proof (of Theorem 4). Consider any epoch E and let E = (P1, P2, . . . Pp) be its
division into phases. Then, E[CEBM(E) + ΔΦ(E)] ≤

∑p
j=1[BA(Pj) + BB(Pj)] +

826 M. Bienkowski and J. Byrka

E[
∑p

j=1 BC(Pj)], and by Lemmas 5, 6, and 7, the amortized cost is bounded by
O(D/K)·COPT(E)+E[p]·O(D ·K)+O(D ·K ·logn). Thus, using E[p] = O(log n)
and COPT(E) ≥ D, we finally get E[CEBM(E) + ΔΦ(E)] ≤ O(

√
D · log n) ·

COPT(E). By summing this inequality over all the epochs, the proof follows. ��

References

1. Y. Bartal, M. Charikar, and P. Indyk. On page migration and other relaxed task
systems. In Proc. of the 8th ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 43–52, 1997.

2. S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On the
power of randomization in online algorithms. In Proc. of the 22nd ACM Symp. on
Theory of Computing (STOC), pages 379–386, 1990.

3. P. Berman, B. DasGupta, and E. Sontag. Randomized approximation algorithms
for set multicover problems with applications to reverse engineering of protein and
gene networks. In Proc. of the 7th Int. Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, pages 39–50, 2004.

4. M. Bienkowski, M. Dynia, and M. Korzeniowski. Improved algorithms for dynamic
page migration. In Proc. of the 22nd Symp. on Theoretical Aspects of Computer
Science (STACS), pages 365–376, 2005.

5. M. Bienkowski, M. Korzeniowski, and F. Meyer auf der Heide. Fighting against
two adversaries: Page migration in dynamic networks. In Proc. of the 16th ACM
Symp. on Parallelism in Algorithms and Architectures (SPAA), pages 64–73, 2004.

6. D. L. Black and D. D. Sleator. Competitive algorithms for replication and migration
problems. Technical Report CMU-CS-89-201, Department of Computer Science,
Carnegie-Mellon University, 1989.

7. S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms.
In Proc. of the 9th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 228–
248, 1998.

8. D. S. Johnson. Approximation algorithms for combinatorial problems. In Proc. of
the 5th ACM Symp. on Theory of Computing (STOC), pages 38–49, 1973.

9. L. Lovász. On the ratio of the optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975.

10. M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric
facility location problems. In Proc. of the 5th Int. Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, pages 229–242, 2002.

11. S. Rajagopalan and V. V. Vazirani. Primal-dual RNC approximation algorithms for
set cover and covering integer programs. SIAM Journal on Computing, 28(2):525–
540, 1999.

12. R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proc. of the 29th ACM
Symp. on Theory of Computing (STOC), pages 475–484, 1997.

13. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985.

14. J. Westbrook. Randomized algorithms for multiprocessor page migration. DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, 7:
135–150, 1992.

Bootstrapping a Hop-Optimal Network in the
Weak Sensor Model

Mart́ın Farach-Colton, Rohan J. Fernandes, and Miguel A. Mosteiro

Department of Computer Science, Rutgers University,
Piscataway, NJ 08854, USA

{farach, rohanf, mosteiro}@cs.rutgers.edu

Abstract. Sensor nodes are very weak computers that get distributed
at random on a surface. Once deployed, they must wake up and form
a radio network. Sensor network bootstrapping research thus has three
parts: one must model the restrictions on sensor nodes; one must prove
that the connectivity graph of the sensors has a subgraph that would
make a good network; and one must give a distributed protocol for finding
such a network subgraph that can be implemented on sensor nodes.

Although many particular restrictions on sensor nodes are implicit
or explicit in many papers, there remain many inconsistencies and am-
biguities from paper to paper. The lack of a clear model means that
solutions to the network-bootstrapping problem in both the theory and
systems literature all violate constraints on sensor nodes. For example,
random geometric graph results on sensor networks predict the existence
of subgraphs on the connectivity graph with good route-stretch, but these
results do not address the degree of such a graph, and sensor networks
must have constant degree. Furthermore, proposed protocols for actually
finding such graphs require that nodes have too much memory, whereas
others assume the existence of a contention-resolution mechanism.

We present a formal Weak Sensor Model that summarizes the liter-
ature on sensor node restrictions, taking the most restrictive choices when
possible. We show that sensor connectivity graphs have low-degree sub-
graphs with good hop-stretch, as required by the Weak Sensor Model.
Finally, we give a Weak Sensor Model-compatible protocol for find-
ing such graphs. Ours is the first network initialization algorithm that is
implementable on sensor nodes.

1 Introduction

Advances in technology have made it possible to integrate sensing, processing and
communication in a low-cost device, popularly known as a sensor node. Sensor
nodes are randomly deployed over an area and must self-organize as a radio-
communication network called a sensor network. Even though communication

This research was supported in part by DIMACS, Center for Discrete Mathematics
& Theoretical Computer Science, grants numbered NSF CCR 00-87022, NSF EIA
02-05116 and Alfred P. Sloan Foundation 99-10-8.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 827–838, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

828 M. Farach-Colton, R.J. Fernandes, and M.A. Mosteiro

among sensor nodes is through radio broadcast, it is useful to set up explicit
links between nodes in order to establish routing paths and prevent flooding.

A sensor network is capable of achieving large tasks through the coördinated
effort of sensor nodes, but individual nodes have severe limitations on memory
size, life cycle, range of communication, etc. Any sensor network initialization
algorithm must be fast and distributed, and must resolve channel contention
issues. The network constructed by such an algorithm must be connected and
must have low degree and diameter. The limitations on individual sensors nodes
make this problem non-trivial, and its adequate resolution is crucial for making
sensors useful.

There are two main types of issues in sensor network formation: those re-
lating to geometric properties and those relating to network protocols; and any
solution achieved for either must be compatible with an accurate model of sen-
sor nodes. On the one hand, coverage and connectivity in sensor networks are
dependent on the distribution of nodes in an area and the range of transmission
of each node. Additionally, the density of nodes in an area determines the min-
imum path length between any two nodes in the induced connectivity graph.
The limited range of transmission makes these properties geometric. On the
other hand, protocols for sensor network formation are limited by the fact that
sensor nodes share a common channel of communication and that they do not
typically have access to directional or positional information. Memory limita-
tions in sensor nodes also impose the restriction that a node can only keep track
of O(1) neighbors.

The existing literature on sensor network initialization does not sufficiently
handle all aspects of the problem. All random geometric graph results related
to ad-hoc wireless networks require ω(1) degree (see e.g. [9]). All proposed pro-
tocols for sensor network formation include some inappropriate hardware as-
sumptions. For example, the sensor network formation protocol in [14] builds
a constant-degree network, but relies on positional information hardware. The
protocol proposed in [2] also builds a constant degree network, but relies on the
preëxistence of a scheme for channel-contention resolution. The different models
implicit in such results are inadequate and poorly reflect the various limitations
under which sensor nodes operate, and indeed, there seems to be considerable
confusion in the literature as to what are or are not reasonable assumptions
about the capabilities of sensor nodes.

In this paper, we present a formal Weak Sensor Model that summarizes
the literature on sensor node restrictions, taking the most restrictive choices
when possible. Given the Weak Sensor Model, we argue that a good sensor
network must have constant degree and low hop-stretch, which we define below.
We show that any appropriate random geometric graph has such a subgraph.
Finally, we give a Weak Sensor Model-compatible protocol for finding such a
subgraph. Ours is the first network initialization algorithm that is implementable
on sensor nodes.

Bootstrapping a Hop-Optimal Network in the Weak Sensor Model 829

1.1 Related Work

Threshold Properties in Random Geometric Graphs. In the Random
Geometric Graph Model Gn,r,�, n nodes are distributed uniformly at random in
[0, �]2, and nodes are connected by an edge iff they are at Euclidean distance at
most r, the connectivity radius. The node density depends on the relative values
of n,r and �. A specific instance of Gn,r,� is a Random Geometric Graph (RGG),
also referred to as G(n, r, �).

Given two nodes u, v in a geometric graph, stretch(u,v) is defined as the
ratio of the shortest distance between u and v in the graph to the normed dis-
tance between the two points in the plane. Route stretch is the maximum of the
stretch(u, v) over all pairs of points in the graph. In a G(n, r, �), the asymp-
totic behavior of route stretch is studied as � → ∞ while maintaining sufficient
density to preserve connectivity. In a seminal paper, Gupta and Kumar [5] com-
puted the minimum radius needed to obtain a large connected component with
high probability in Gn,r,1. In Gn,r,�, tight thresholds for connectivity, coverage
and route stretch were shown by Muthukrishnan and Pandurangan [9] using an
overlapping dissection technique called bin-covering. More recently, Goel, Krish-
namachari and Rai [4] showed that all monotone graph properties have sharp
thresholds for random geometric graphs.

Sensor Networks. A protocol for bootstrapping sensor networks was presented
in [13]. In order to avoid collisions, the number of channels needed is a function of
the density, which makes it infeasible. A network formation protocol, where node
degree k is a constant tuned to ensure connectivity w.h.p., is given in [2]. This
protocol relies on expensive distance estimation hardware such as GPS. Recently,
an energy efficient topology control scheme was presented in [14]. This algorithm
requires the use of a directional antenna and distance estimation hardware. In all
these schemes, no contention resolution mechanism is given, and ω(1) memory
size is assumed.

Bluetooth. A significant amount of research related to scatternet (a type of
bounded degree network) formation has been done for Bluetooth. In these net-
works the nodes have less restrictive constraints (like power supply, range of
transmission, memory capacity, etc.) than in sensor networks. Several schemes
for scatternet formation have been proposed [7, 15, 16, 3]. Techniques proposed
in these are either strictly heuristic or cannot be implemented on sensor nodes.

1.2 Roadmap

The remainder of this paper is organized as follows. In §2 we describe the Weak
Sensor Model. In §3 we analyze geometric properties of good sensor networks.
In §4 we present and analyze a distributed algorithm for finding good sensor
networks. We conclude in §5.

2 The Weak Sensor Model

Bar-Yehuda, Goldreich and Itai [1] presented a formal model of a radio network
that specifies many of the important restrictions on sensor nodes, including e.g.

830 M. Farach-Colton, R.J. Fernandes, and M.A. Mosteiro

limits on contention resolution, but they make no mention of computational
limits, such as small memory. Since then, some papers, such as [10, 6, 8], have
added more restrictions, although often such restrictions are implicit in the text
or algorithms rather than fully specified.

Here, we specify the Weak Sensor Model:

– Memory size: Sensor nodes may store a constant number of O(log n) bit
words.

– Low-information channel contention: The communication with
neighbors is through broadcast on a shared channel. If more than one mes-
sage is sent at the same time, a collision occurs and no message is deliv-
ered. Furthermore, we require No collision detection, where only two
states are feasible, single transmission and silence/collision [1]. Finally, sen-
sors nodes have Non-simultaneous reception and transmission, so
that transmitters also cannot detect collisions.

– Discrete Transmission Range: We assume that sensor nodes can adjust
their power of transmission to only a constant number of levels.

– Asynchronicity: No global clock or other synchronizing mechanism is as-
sumed, but all sensor nodes have the same clock frequency. We assume that
time is divided into slots. This does not affect the asymptotic time complex-
ity [11].

– Other: Limited life cycle, Short transmission range, One channel
of communication, No position information, Adversarial node
wake-up schedule, Unreliability.

3 Geometric Analysis of Sensor Networks

Recall that sensor nodes may only set up links with a constant number of neigh-
bors, a consequence of the memory size limitation in the Weak Sensor Model
(WSM), and since sensor nodes are distributed uniformly at random, the poten-
tial connectivity relation defines a Random Geometric Graph (RGG). Hence,
any protocol for network formation must set up links defining a constant-degree
spanning subgraph of the RGG. However, ignoring potential links may result in
an increase in path lengths in the subgraph. This increase in path length can be
measured in two ways: in terms of increase in the number of hops or increase in
route stretch.

In applications where the propagation delay is significant, route stretch is an
appropriate measure of optimality. However, sensor networks have small inter-
node distances, and propagation delay is low. One of our primary concerns in
the WSM is that we should minimize energy consumption at each node so as to
maximize the life cycle. Thus, a Sensor Network is optimal when it minimizes
the number of transmissions, which is to say, minimizes the number of hops in
each path, rather than the weighted path length. A formal definition of stretch
in terms of hops follows.

Let the length of a path connecting two nodes in a given graph be the number
of edges of such a path. Let dmin(u, v) be the shortest path between two nodes

Bootstrapping a Hop-Optimal Network in the Weak Sensor Model 831

u and v in the RGG G(n, r, �). Let D(u, v) be the Euclidean distance between
u and v in the plane. Note that in G(n, r, �), �D(u, v)/r� is a lower bound on
dmin(u, v). Call this lower bound, dopt(u, v). The hop-stretch of (u, v) is defined
as the ratio dmin(u, v)/dopt(u, v). The hop-stretch of G(n, r, �) is the maximum
of the hop-stretch of (u, v) over all pairs of points (u, v) in G(n, r, �).

Note that schemes have been proposed that attempt to minimize energy
consumption [14], and these favor many short hops over a few long ones. However,
any such scheme ignores the contention resolution overhead of the extra hops
and, furthermore, requires an ω(1) number of transmission power levels. In the
rest of this section we will outline a scheme to obtain a constant degree hop-
optimal subgraph from a sufficiently dense random geometric graph.

3.1 Disk Covering Scheme for Network Formation

Before describing the scheme, we introduce some necessary terminology. A Ran-
dom Geometric Graph(RGG) or G(n, r, �) is an instance of Gn,r,�, where r is
the connectivity radius. Given a sufficiently dense G(n, r, �) as input, the Disk
Covering Scheme produces as output a spanning subgraph with constant degree
and asymptotically optimal path length. The precise nature of the path length
optimality is given in the proof of Theorem 2. The graph so obtained is called
the Constant-degree Hop-optimal Spanning Graph (CHSG). In the Disk Cover-
ing Scheme, a and b are tunable parameters that affect maximum degree and
hop-stretch of the CHSG.

The following pseudocode summarizes the Disk Covering Scheme.

1. Add all nodes from the RGG to the CHSG.
2. Lay down small disks of radius ar/2, 0 < a < 1 centered on nodes, such that

no central node is covered by more than one small disk and no node is left
uncovered. We call each central node a bridge. Note that the bridges form a
Maximal Independent Set (MIS) of the spanning subgraph G(n, ar/2, �) ⊆
G(n, r, �).

3. Add to the CHSG all edges from the RGG that connect bridges.
4. Expand the small disks into big disks of radius br/2, a < b ≤ 1.
5. Add to the CHSG the necessary edges to form a spanner of constant degree

among nodes covered by the same big disk. We call this spanner a disk-
spanner.

3.2 Analysis of the Disk Covering Scheme

In this section the Disk Covering Scheme described in §3.1 is proved to produce
a CHSG with asymptotically optimal path length. In section§3.2 we establish a
bound on the maximum degree of a node in the CHSG. In section§3.2 two useful
results for a connected G(n, r, �) are established: A bound on hop-stretch and
bounds on the node density. Finally, in section§3.2 we prove a theorem on the
hop-optimality of the CHSG.

832 M. Farach-Colton, R.J. Fernandes, and M.A. Mosteiro

ar/2

D

br/2
C

> (b − a)(c − 1)r/2c

≤ (b − a)r/2c

> br/2 − l/2

Fig. 1. Illustrating the proof of coverage of
edges of length ≤ (b − a)r/c

Δ = 3
⌈

4C

a
√

3

⌉(⌈
4C

a
√

3

⌉
+ 1

)

ar/2
Cr

Fig. 2. Illustrating the upper
bound on the degree, where
C = 1 and degree is Δ + 1 for
bridges, and C = b/2 and degree is
Δ∗Spanner degree for non-bridges

Degree Bound

Lemma 1. At the end of the Disk Covering Scheme, each edge of length at most
(b − a)r/c has both endpoints within a single big disk w.h.p, for any constant
c > 1.

Proof. The proof is illustrated in figure 1 and it is omitted here for brevity.

Lemma 2. The degree of any node in the CHSG is in O(1).

Proof. The proof is illustrated in figure 2 and it is omitted here for brevity.

Hop Stretch and Density in G(n, r, �). Theorem 1 demonstrates the ex-
istence of a path with an asymptotically optimal hop-stretch. The proof of the
theorem uses an overlapping dissection technique, called bin-covering, presented
by Muthukrishnan and Pandurangan [9].

Theorem 1. In a G(n, r, �) satisfying the following conditions: r2n = k�2 ln �,
r = θ(�εf(�)),f(�) ∈ o(�γ), γ > 0, 0 ≤ ε < 1, and 0 < α ≤ 1 is a fixed constant,
for any constant k > 5 4+α2

α , the hop-stretch is 1 +
√

α2 + 4 w.h.p.

Proof. It is enough to show that for any pair of nodes (u, v), there is a path
P defined by a sequence of nodes 〈u = x0, x1, . . . , xm = v〉 such that the ratio
between the length of P and the number of hops, m is bounded upwards by
1 +

√
α2 + 4 w.h.p.

For a given pair of nodes (u, v), the bin covering technique is applied as
follows. Let r′ be the shortest horizontal projection of a segment of length r
contained in the strip, i.e. r′ = r/

√
1 + (α/2)2. The line connecting u and v is

Bootstrapping a Hop-Optimal Network in the Weak Sensor Model 833

r′/2

slices

s

u

v
αr′/2

r′/2

Fig. 3. Strip between nodes u and v showing bin covering and slices

covered with overlapping bins of dimension r′/2×αr′/2 with a spacing parameter
s, as shown in figure 3. This bin layout will be referred to as a strip.

The coordinate system is rotated such that the line segment u, v is parallel to
the x axis. In what follows all distances are specified within this rotated frame
of reference. Let Dh(x, y) and Dv(x, y) be the horizontal and vertical distances
respectively between the nodes x and y.

Given a node xj in the path P the node xj+1 is selected using the following
criteria:

– The node xj+1 lies within the strip.
– Dh(xj , xj+1) ≤ r′.
– The horizontal distance Dh(xj+1, v) is minimized.

A hole is a rectangle of dimension r′/2×αr′/2, within a strip, that is devoid
of nodes and adjoins a node on the side closest to u.

Consider any 3 consecutive nodes along the path xi−1, xi, xi+1 where 0 < i <
m, and assume that along any strip there is no hole, then Dh(xi−1, xi) ≥ r′/2.
To see that this claim is true, assume for the sake of contradiction that
Dh(xi−1, xi) < r′/2. The distance Dh(xi−1, xi+1) > r′, otherwise xi+1 would
have been selected as the successor of xi−1. Thus, the distance Dh(xi, xi+1) >
r′/2. Since there cannot be any hole in the strip, there exists a node y
such that Dh(xi, y) < r′/2. This implies that Dh(xi−1, y) < r′. Note that
Dh(y, v) < Dh(xi, v), therefore y should have been chosen as the successor of
xi−1 by the construction criteria, which is a contradiction. The initial assump-
tion of Dh(xi−1, xi) < r′/2 is thus proven false which proves the truth of the
claim.

834 M. Farach-Colton, R.J. Fernandes, and M.A. Mosteiro

Since Dh(xi−1, xi) ≥ r′/2 for 0 < i < m− 1, the number of hops in the path
P is

m ≤
⌈

D(u, v)
r′/2

⌉
=
⌈√

α2 + 4
D(u, v)

r

⌉
.

If D(u, v) ≤ r the path is simply the edge connecting u and v and the hop-stretch
is trivially 1. Otherwise, D(u, v) > r and so, the hop-stretch is 1 +

√
α2 + 4.

It remains to show that there is no hole w.h.p.
To bound the probability that there is a hole in any strip, consider the se-

quence of small rectangles (call them slices) defined by the spacing parameter,
of size s × αr′/2. The slices are numbered in ascending order from u to v.

For any node xi that is contained in some slice j, let Ei be the event that
the node xi+1 is contained in the slice j − 1 + �r′/2s� at a horizontal distance
greater than r′ from xi. Then,

Pr[Ei] ≤
(

n − 1
1

)
αr′s
2�2

(
1 − αr′2

4�2

)n−2

.

If xi+1 is contained in a slice closer to xi then there is no hole. If xi+1 is contained
in a slice farther than j − 1 + �r′/2s� then there is at least one empty bin in the
strip. The probability that some bin is empty is bounded by

Pr[EmptyBin] ≤
max(u,v) D(u, v)

s

(
1 − αr′2

4�2

)n

.

Therefore, the probability that there is a hole within any strip is

Pr[Hole] ≤
(

n

2

)(
n(n − 1)

αr′s
2�2

(
1 − αr′2

4�2

)n−2

+
max(u,v) D(u, v)

s

(
1 − αr′2

4�2

)n
)

≤ n2 1
enαr′2/4�2

(
n2αr′s

2�2
eαr′2/2�2 +

√
2�

s

)
.

This expression is minimized when

s =

(
2
√

2�3

n2αr′eαr′2/2�2

)1/2

.

Then,

Pr[Hole] ≤ 2k3�6 ln3 �

r6�1+(kα/(4+α2))

(
αr′eαr′2/2�2

2
√

2�

)1/2

∈ O(�−γ) for k > 5
4 + α2

α
.

Lemma 3. In a G(n, r, �) satisfying the parameter conditions of Theorem 1, the
number of nodes contained in a circle of radius Θ(r) is Θ(log �) w.h.p.

Proof. The proof uses a simple application of the Chernoff-Hoeffding bounds
and is omitted in this extended abstract for the purpose of brevity.

Bootstrapping a Hop-Optimal Network in the Weak Sensor Model 835

Hop Optimality of the CHSG

Lemma 4. Consider the RGG G(n, r, l), where n satisfies the parameter condi-
tions of Theorem 1 for a reduced connectivity radius of r′ = (b− a)r/c. For any
pair of nodes (u, v) in the RGG at Euclidean distance D(u, v), there exists a path
between them in the CHSG of at most �c

√
α2 + 4D(u, v)/(b−a)r�−1+O(log �)

edges w.h.p.

Proof. Theorem 1 states that: In the RGG that satisfies the parameter conditions
of Theorem 1, there exists a path of �

√
α2 + 4D(u, v)/r� edges w.h.p. We can

thus imply that: If the RGG satisfies the same parameter conditions for a reduced
connectivity radius of r′ = (b− a)r/c, there exists a path between u and v using
�c
√

α2 + 4D(u, v)/(b − a)r� edges of length at most (b − a)r/c. Let p be such a
path and e1, e2, . . . , em be its sequence of edges.

In the description of the Disk Covering Scheme, two kinds of disks were
defined for clarity: big disks and small disks. In order to prove hop-optimality
of the CHSG, we only refer to big disks and simply call them disks.

Lemma 1 states that every edge in the path p is completely covered by
one disk. Therefore, there exists a sequence d1, d2, . . . , dm′ of overlapping disks,
where any edge ei in p is covered by some disk dj in this sequence. A disk may
completely cover more than one edge, hence m′ ≤ m. Let Di be the bridge
(center) of disk di.

Define a path p′ using only edges of the CHSG as follows. Connect u and
the bridge D1 with a path p1 of disk-spanner edges defined by the disk d1. For
each edge i, 1 ≤ i ≤ m, replace the edge ei in p with the node Di. Connect all
consecutive bridges Di and Di+1 within the path of overlapping disks with edge
DiDi+1. Consecutive bridges are adjacent to each other in the RGG, because
their disks overlap and the radius of each disk is br/2 with b ≤ 1. Finally, connect
the bridge Dm and v with a path pm of disk-spanner edges defined by the disk dm.
The length of p′ is given by: length(p′) ≤ length(p1)+(m−1)+length(pm). Using
the stretch bound, length(p′) ≤ �c

√
α2 + 4D(u, v)/(b − a)r� − 1 + length(p1) +

length(pm) w.h.p. Only disk-spanner edges are used in p1 and pm. It is shown in
Lemma 3 that the number of nodes within a disk is O(log �) w.h.p. Therefore,
length(p1) + length(pm) = O(log �) w.h.p. completing the proof.

The following theorem shows the main result.

Theorem 2. For every pair of nodes in an RGG, there is a path in the CHSG,
whose length is asymptotically optimal w.h.p.

Proof. The optimal path between any pair of nodes (u, v) separated by a dis-
tance D(u, v) has at least �D(u, v)/r� edges. If log � is also an asymptotic lower
bound on the length of such a path w.h.p., then (D(u, v)/r + log �)/2 is also an
asymptotic lower bound, and the result proved in Lemma 4 is a constant fac-
tor approximation. It remains to show that log � is an asymptotic lower bound
on the length of an optimal path in a constant-degree random geometric graph
w.h.p.

836 M. Farach-Colton, R.J. Fernandes, and M.A. Mosteiro

In a δ-regular graph, the expected distance between any pair of nodes ran-
domly chosen is at least logδ−1 n. A Θ(1) degree random geometric graph is
a subgraph of some regular graph. Hence, in a Θ(1) degree random geometric
graph, the expected distance between any pair of nodes randomly chosen is in
Ω(log n). The previous result is true w.h.p. because for some constant β

Pr(D(u, v) < β log n) ≤ 1
n − 1

β log n−2∑
i=0

δ(δ − 1)i

∈ O(n−γ) .

Using the union bound, under the parameter conditions of Lemma 4,
D(u, v) ∈ Ω(log �) for all pairs of nodes (u, v) w.h.p.

4 Distributed Algorithm

In this section we describe how to distributedly implement the steps of the Disk
Covering Scheme for network formation. Step 2 of the Disk Covering Scheme can
be achieved distributedly by means of a Maximal Independent Set (MIS) com-
putation with nodes transmitting in a range of ar/2. An algorithm to compute
an MIS in a weak model is presented in [8]. This algorithm can be tailored to
our setting and can be shown to have a running time of O(log2 �). The details
are omitted here for the sake of brevity.

Steps 3 and 4 of the Disk Covering Scheme require uncolliding transmissions
of each bridge in a radius of r and br/2 respectively. All nodes assigned to the
same bridge will participate in a common spanner construction. Additionally
bridge nodes must set up links with all bridge nodes at a distance of at most
r. A O(log �) time algorithm to achieve these types of uncolliding transmissions
exists and is easy to demonstrate. The details are omitted here for brevity.

Spanner Construction and Its Analysis. The implementation of step 5 of
the disk covering scheme is described in this section. After nodes are covered by
one or more bridges, they have to connect locally to neighboring nodes covered
by the same bridge, i.e. within the same disk. Nodes can be covered by more
than one bridge. Hence, interference of transmissions not only from the local
disk but also from neighboring disks must be taken into account. However, any
node is covered by at most a constant number of disks as explained in Lemma 2,
then the number of interfering transmissions with respect to the local disk is
increased only by a constant factor that we fold into the constants involved in
this analysis.

Since the diameter is not constrained, we adopt the simplest topology, i.e. a
linked list. In order to minimize the running time, we avoid handshaking among
nodes and all the construction is done by broadcasting. We start with every
node choosing an integer index uniformly at random from the interval [1, �].
Since there are O(log �) nodes within the same range w.h.p. as shown before, no
two nodes choose the same index w.h.p. Then, every node forever transmits its

Bootstrapping a Hop-Optimal Network in the Weak Sensor Model 837

index with probability 1/β4 log � where β4 is a constant. If a neighbor’s index is
received, links to the predecessor and successor are updated if necessary.

Lemma 5. Any node running the spanner algorithm joins the spanner within
O(log2 �) steps w.h.p.

Proof. The proof uses a simple balls and bins argument and is omitted in this
extended abstract for the purpose of brevity.

A Small-Diameter Spanner. In the previous construction, the distance be-
tween any two nodes is at most the number of nodes within the disk, i.e. O(log �).
Although a diameter of Θ(log �) for the disk spanner is optimal (Theorem 2) for
a Θ(1) degree random geometric graph, a Θ(1) degree spanner with diameter
o(log log �) is also possible.

The structure we utilize, is popularly known as a butterfly network [12].
Butterfly networks are used in many parallel computers to provide paths of
length log m connecting m inputs to m outputs. In our case, all nodes have the
same role and a message between any pair of nodes can be sent in O(log m) hops.
Then, given that there are Θ(log �) nodes in any disk, the diameter obtained is
o(log log �). Notice that, once unique consecutive labels are assigned to all nodes,
each node can easily compute to which nodes is connected. Then, our goal is to
assign unique consecutive indexes to all nodes within the disk.

A O(log2 �) distributed algorithm to construct a butterfly network exists.
The details are omitted here for brevity.

5 Conclusions

The bootstrapping protocol presented in this paper builds a hop-optimal Θ(1)
degree sensor network under the constraints of the WSM in O(log2 �) time w.h.p.

There is a trade-off among the maximum degree, the length of the optimal
path and the density given by:

There is a u, v path of ≤
⌈

D(u,v)
r

c
√

4+α2

b−a

⌉
− 1 + O(log �) hops w.h.p.

The degree of any node is ≤ 3� 4
a
√

3
�
(
� 4

a
√

3
� + 1

)
w.h.p.

The density of nodes is n
�2 > 5 4+α2

α

(
c

b−a

)2
ln �
r2 .

Here 0 < a < 1, a < b ≤ 1, c > 1 and 0 < α ≤ 1. The longer the edges covered,
the lower the density and the smaller the number of hops in the optimal path
but at the cost of a higher degree.

In our construction, only three ranges of transmission are used, namely ar/2,
br/2 and r. Hence, the specific values of a and b are hardware dependent. No
synchronicity assumption is needed, and neighboring disks do not need to be
running the same phase of the algorithm.

Regarding failures, the distributed network formation algorithm is also a
maintenance algorithm, since both bridge and non-bridge nodes keep broadcast-
ing forever. If a bridge node fails, after some time non-bridge nodes will detect

838 M. Farach-Colton, R.J. Fernandes, and M.A. Mosteiro

the absence of their bridge broadcast and will restart the MIS algorithm to ob-
tain a new bridge. On the other hand, if a non-bridge node fails, its successor and
predecessor will interconnect within the next round of the spanner construction.
If the butterfly network spanner is used instead and a link is lost, the butterfly
network can be simply rebuilt locally from scratch.

References

1. R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. Journal of Computer and System Sciences, 45:104–126, 1992.

2. D. M. Blough, M. Leoncini, G. Resta, and P. Santi. The k-neigh protocol for
symmetric topology control in ad hoc networks. In MobiHoc, 2003.

3. F. Ferraguto, G. Mambrini, A. Panconesi, and C.Petrioli. A new approach to device
discovery and scatternet formation in bluetooth networks. In Proc. of IPDPS, 2004.

4. A. Goel, B. Krishnamachari, and S. Rai. Sharp thresholds for monotone properties
in random geometric graphs. In Proc. of STOC, 2004.

5. P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity in wire-
less networks. In Stochastic Analysis, Control, Optimization and Applications.
Birkhauser, 1998.

6. V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan. End-to-end
packet-scheduling in wireless ad-hoc networks. In SODA, 2004.

7. C. Law and K.-Y. Siu. A Bluetooth scatternet formation algorithm. In Proceedings
of the IEEE Symposium on Ad Hoc Wireless Networks, November 2001.

8. T. Moscibroda and R. Wattenhofer. Maximal independent sets in radio networks.
In PODC, 2005.

9. S. Muthukrishnan and G. Pandurangan. The bin-covering technique for threshold-
ing random geometric graph properties. In Proc. of ACM-SODA, 2005.

10. K. Nakano and S. Olariu. Energy-efficient initialization protocols for radio networks
with no collision detection. In Proc. of ICPP, 2000.

11. L. G. Roberts. Aloha packet system with and without slots and capture. Computer
Communication Review, 5(2):28–42, 1975.

12. G. Schmidt. The butterfly parallel processor. In Proc. of ICS, pages 362–365, 1987.
13. K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-organization

of a wireless sensor network. Personal Communications, IEEE, 7(5):16–27, 2000.
14. W. Song, Y. Wang, X. Li, and O. Frieder. Localized algorithms for energy efficient

topology in wireless ad hoc networks. In MobiHoc, 2004.
15. Z. Wang, R. J. Thomas, and Z. Haas. Bluenet - A new scatternet formation

algorithm. In HICSS, 2002.
16. G. V. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees - Scatternet formation to

enable Bluetooth-based ad hoc networks. In Proc. of IEEE ICC, 2001.

Approximating Integer Quadratic Programs and
MAXCUT in Subdense Graphs

Andreas Björklund

Department of Computer Science, Lund University, Box 118, 22100 Lund, Sweden

Abstract. Let A be a real symmetric n × n-matrix with eigenvalues
λ1, · · · , λn ordered after decreasing absolute value, and b an n×1-vector.
We present an algorithm finding approximate solutions to min x∗(Ax+b)
and max x∗(Ax+ b) over x ∈ {−1, 1}n, with an absolute error of at most
(c1|λ1| + |λ�c2 log n�|)2n + O((αn + β)

√
n log n), where α and β are the

largest absolute values of the entries in A and b, respectively, for any
positive constants c1 and c2, in time polynomial in n.

We demonstrate that the algorithm yields a PTAS for MAXCUT in
regular graphs on n vertices of degree d of ω(

√
n log n), as long as they

contain O(d4 log n) 4-cycles. The strongest previous result showed that
Ω(n/ log n) average degree graphs admit a PTAS.

We also show that smooth n-variate polynomial integer programs of
constant degree k, always can be approximated in polynomial time leav-
ing an absolute error of o(nk), answering in the affirmative a suspicion
of Arora, Karger, and Karpinski in STOC 1995.

1 Introduction

In a novel paper [3] Arora, Karger, and Karpinski presented a general frame-
work for showing polynomial time approximation schemes for dense instances of
some NP-hard optimization problems. In particular they showed that degree d
polynomial integer programs on n variables in which each monomial of degree
g has a coefficient of absolute value O(nd−g), called smooth integer programs,
could be approximated with an absolute error of at most (ε + o(1))nd for any
fixed ε > 0 in polynomial time. In the special case of quadratic polynomials, we
show how to modify their algorithm in order to reduce the error term.

Theorem 1. Let A be a real symmetric n×n-matrix, with no entry exceeding α
in absolute value, and eigenvalues λ1, · · · , λn, ordered after decreasing absolute
value, and b a column vector of length n, with no entry exceeding β in absolute
value, then min x∗Ax + x∗b and maxx∗Ax + x∗b over the domain x ∈ {−1, 1}n,
can be approximated with an absolute error of at most(

c1|λ1| + |λ�c2 log n�|
)
2n + O

(
(αn + β)

√
n log n

)
for arbitrary positive constants c1 and c2, in time polynomial in n.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 839–849, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

840 A. Björklund

For some hardness results on the problem, consult [2] and the references therein.
The minimisation version of the problem for zero-diagonal matrices A with

only non-negative entries and b set to the zero-vector is in one-to-one corre-
spondence with a well studied graph problem, the problem of finding a weighted
MAXCUT in an undirected graph. Given a graph with positive weights on the
edges, you want to find the cut dividing the vertices in two parts such that the
sum of all weights of edges crossing the cut is maximised. Order the vertices 1
through n and put half of an edge ij’s weight at the entry in A on row i and col-
umn j, and the other half at row j and column i. Interprete the solution vector
x such that all vertices having a 1-entry is on one side of the cut, and the rest
of the vertices are on the other. Thus theorem 1 applies to the graph problem.
MAXCUT is known to be MAXSNP-hard in general [13], which according to
the well-known PCP-theorem [4] implies that there is a constant within which
we cannot approximate the problem in polynomial time, unless P = NP . The
best approximation guarantee is the one due to [9] which says one can always
get within a factor of .8785 of the optimum with polynomial time computations.
In dense graphs we can do much better though, as observed and explored in
[1][3][6][7] and [8]. The strongest result [8] shows that in unweighted undirected
graphs of average degree Ω(n/ log n), there is a polynomial time approximation
scheme (PTAS), i.e. for every fixed ε > 0 there is a polynomial time algorithm
approximating the solution with an absolute error of at most ε + o(1) times the
optimum value.

Interestingly, all five results listed above adopt the technique of random sam-
pling, admittedly partially encouraged by the success story on property testing
sample size [10]. Our main technical contribution is to replace the machinery of
random sampling for a simple utilisation of a structure implied by linear algebra.
We show that essentially equally strong results may be derived, and in addition,
we gain further insights by relating approximation success to the eigenvalue spec-
trum of the graph. To give an example we show that when the number of cycles
on exactly four vertices is not too large, MAXCUT can be approximated within
any constant efficiently also in subdense graphs.

Theorem 2. There is a PTAS for MAXCUT on d-regular unweighted undi-
rected graphs on n vertices, containing O(d4 log n) simple 4-cycles, for d of
ω(

√
n log n).

The graph family covered in theorem 2 includes all regular graphs of degree
Ω(n/ log n), since a d-regular graph on n vertices has O(d3n) 4-cycles. This is
the same class of regular graphs captured by [8], but using radically different
methods. A most natural question to ask is whether the technique of random
sampling proven so fruitful in the past can somehow be combined with ours to
yield even stronger results, or why not.

An easy extension of our argument shows that the algorithm enables poly-
nomial time approximation of smooth integer programs of constant degree k on
n variables, with an absolute error of o(nk). [3] was able to bound the error by
(ε+o(1))nk for any fixed ε > 0, but suspected that the error could be diminished

Approximating Integer Quadratic Programs and MAXCUT 841

by finding an alternative for exhaustive random sampling. This is confirmed by
the following result.

Theorem 3. For every smooth integer program of constant degree k on n vari-
ables from {−1, 1}, there is a polynomial time approximation algorithm finding
a solution which differs at most

(ε + o(1))nk

√
log log n

log n

from the optimum in absolute value, for every fixed ε > 0.

Many hard combinatorial problems can be expressed as smooth integer pro-
grams as described in [3], leading to results on their approximability on dense
instances. To mention one problem in particular, theorem 3 improves on the
approximability of dense MAX-k-SAT.

The rest of the paper is organized as follows. Section 2 describes the idea in
brief terms. Section 3 and 4 presents some mathematical background used in the
algorithm. Section 5 explains the algorithm, and section 6 analyses it. Finally,
section 7 provides the proofs of theorem 2 and theorem 3.

2 The Approach

Let A be a real symmetric n× n-matrix and b a column vector of length n, and
consider

min
x∈{−1,1}n

x∗Ax + x∗b

where x is a column vector and ∗ denotes transpose. The idea is to find a low
rank approximation UV ∗ of A where U and V are n × m-matrices for m << n
such that |x∗(A − UV ∗)x| is small for all x ∈ {−1, 1}n. Then it is sufficient to
approximate

min
x∈{−1,1}n

x∗UV ∗x + x∗b (1)

to find a good solution candidate. The latter problem is found by techniques
similar to the ones outlined in [3]. Guess an estimate W of V ∗xopt, where xopt is
an optimal solution to the original problem, and solve the relaxed linear program

minx x∗(UW + b)
s.t.

V ∗x ∈ P
−1 ≤ xi ≤ 1

where P is a polytope capturing the vicinity of W , and apply randomized round-
ing of the solution x into a {−1, 1}-vector.

842 A. Björklund

3 Some Facts from Linear Algebra

An eigenvalue, eigenvector pair (λi, zi) for an n×n-matrix A, consists of a scalar
λi and a column vector zi of unit Euclidean length such that Azi = λizi. For real
symmetric matrices A all n eigenvalues are real and the corresponding eigenvec-
tors may always be chosen real and orthogonal to each other (see e.g. [11]). This
is the basis of the following decomposition.

Lemma 1 (The Spectral Decomposition). Let A be a real symmetric n×n-
matrix, with eigenvalues λ1, · · · , λn, and corresponding orthogonal eigenvectors
z1, · · · , zn, then

A =
n∑

i=1

λiziz
∗
i

The trace of a square matrix A, denoted tr(A), is the sum of all the diagonal
elements.

Lemma 2 (The Trace Identity). Let A be a real symmetric n × n-matrix,
with eigenvalues λ1, · · · , λn, and k a positive integer, then

tr(Ak) =
n∑

i=1

λk
i

Lemma 3 (The Rayleigh Bounds). Let A be a real symmetric n×n-matrix,
with eigenvalues λ1 ≤ · · · ≤ λn, then for all x

λ1x
∗x ≤ x∗Ax ≤ λnx∗x

4 Points on the Hypersphere

For a point p ∈ Rn, represented as a column vector, we denote its Euclidean
norm by ||p||2 =

√
p∗p. Let Dn denote the surface of the n-dimensional unit

hypersphere, i.e. all points p for which ||p||2 = 1. We say a finite point set
P ⊂ Dn is δ-dense, if for any q ∈ Dn there exists p ∈ P for which ||q − p||2 ≤ δ.
Note that an equivalent formulation is to require q∗p ≥ 1 − δ2/2. We prefer to
give an explicit construction although somewhat smaller sets may be obtained
simply by chosing points uniformly at random from Dn.

Lemma 4. For any fixed δ, 0 < δ < 1 there exists a δ-dense point set in m
dimensions of size at most

√
m2m(π/δ + 1)m, which can be constructed in de-

terministic time polynomial in the size of the set.

Proof. We will use a recursive construction. Let P (k, δ/
√

2) be a δ/
√

2-dense
point set in k dimensions, and define the point set P (2k, δ) in 2k dimensions by
all points

r(j, p) =
(
sin(

√
2δj1)p1, cos(

√
2δj1)p1, · · · , sin(

√
2δjk)pk, cos(

√
2δjk)pk

)

Approximating Integer Quadratic Programs and MAXCUT 843

for j = (j1, · · · , jk) ∈ {0, 1, · · · , �
√

2π/δ�}k, and p = (p1, · · · , pk) ∈ P (k, δ/
√

2).
Consider a point q = (q1, · · · , q2k) ∈ D2k. We will argue that there always exists
a r(j, p) for which

q∗r(j, p) ≥ 1 − δ2/2

Choose j such that sin(
√

2δji)q2i−1 + cos(
√

2δji)q2i is maximised for all i. For
two-dimensional vectors a∗b = ||a||2||b||2cos(φ), where φ is the angle between
the vectors a and b. We use the fact that cos(φ) ≥ 1 − φ2/2, and that there
always exists j for which φ ≤ δ/

√
2 by construction, to get

q∗r(j, p) ≥ (1 − δ2/4)
k∑

i=1

pi

√
q2
2i−1 + q2

2i

Furthermore, since P (k, δ/
√

2) is δ/
√

2-dense, there exists a p such that

k∑
i=1

pi

√
q2
2i−1 + q2

2i ≥ (1 − δ2/4)

Altogether we have that there is a r(j, p) for which q∗r(j, p) ≥ 1 − δ2/2, and
hence, that P (2k, δ) is δ-dense. A similar construction is used for P (2k − 1, δ).
Simply choose all points on the format(

sin(
√

2δj1)p1, cos(
√

2δj1)p1, · · · , sin(
√

2δjk−1)pk−1, cos(
√

2δjk−1)pk−1, pk

)
for j = (j1, · · · , jk) ∈ {0, 1, · · · , �

√
2π/δ�}k, and p = (p1, · · · , pk) ∈ P (k, δ/

√
2).

To see it is δ-dense, argue along the same lines as for P (2k, δ). Finally, set
P (1, δ)={-1,1}, for 0 < δ < 1, and note that δ-density holds.

It remains to bound the size of the construction. Let S(k, δ) denote the size
of P (k, δ), then

S(k, δ) =
{

2 : k = 1
�
√

2π
δ ��k/2S(�k/2�, δ/

√
2) : k > 1

We argue by induction. Let ξ(k) denote log2 k for positive integers k and 0 for

k=0. If S(k, δ) ≤
√

2
2k+ξ(k−1)

(π/δ + 1)k for all 0 < k < l and 0 < δ < 1, then

S(l, δ) = �
√

2π
δ ��l/2√2

2�l/2�+ξ(�l/2�−1)
(√

2π
δ + 1

)�l/2�
≤

(√
2π
δ +

√
2
)�l/2 √

2
2�l/2�+ξ(�l/2�−1)

(√
2π
δ +

√
2
)�l/2�

≤

√
2
2�l/2�+ξ(�l/2�−1)√

2
l (π

δ + 1
)l ≤

√
2
2l+ξ(l−1) (π

δ + 1
)l

since ξ(l−1) = 1+ ξ(�l/2�− 1) for odd integers l > 1 and ξ(l−1) ≥ ξ(�l/2�− 1)
for even integers l > 1. The bound is easily seen to hold for S(1, δ) with 0 < δ < 1
and thus the result follows.

844 A. Björklund

Given δ-dense point sets, it is possible to construct polytopes approximating
hyperspheres.

Lemma 5. Let W ∈ Rn be the center of a hypersphere S of radius r, and let
P be a

√
2 − 2/f-dense point set in n dimensions for some f > 1. Define the

f -smooth polytope P as all points x such that (x − W)∗p ≤ r for all p ∈ P .
Then for all x ∈ P, ||x − W ||2 ≤ fr, and yet, all points in S are contained in
the polytope.

Proof. Consider a point x ∈ P . Since P is
√

2 − 2/f -dense, there exists a p ∈ P
such that (x − W)∗p = ||x − W ||2/f . But the definition of the polytope says
(x −W)∗p ≤ r, and thus ||x− W ||2 ≤ fr. To see that S is contained in P , note
that for all x ∈ S and all p ∈ P we have (x − W)∗p ≤ ||x − W ||2 ≤ r, according
to the Cauchy-Schwarz inequality.

5 The Algorithm

We want to solve minx∈{−1,1}n x∗Ax + x∗b. Let xopt denote an optimal solution
in the following. The algorithm consists of two parts. The first finds a low rank
approximation of the matrix A, i.e. a factoring UV ∗ ≈ A where U and V are
n × m-matrices over the reals. The second step of the algorithm approximates
the solution to (1) by linear programming and randomized rounding.

5.1 Factoring A

Finding two real n × m-matrices U and V such that |x∗(A − UV ∗)x| is small
for all x ∈ {−1, 1}n is accomplished by considering the spectral decomposition
of A in lemma 1. Methods for obtaining the eigenvalues and eigenvectors for
real symmetric matrices are outlined in [11]. The next lemma describes the
construction.

Lemma 6. Let A be a real symmetric n×n-matrix, with eigenvalues λ1, · · · , λn,
sorted after decreasing absolute value with corresponding orthogonal eigenvec-
tors z1, · · · , zn. Let U be the matrix consisting of

√
|λi|zi as columns, and V of

sign(λi)
√

|λi|zi, for all i ≤ m, then

|x∗(A − UV ∗)x| ≤ |λm+1|x∗x

for all x.

Proof. First note that (A−UV ∗) =
∑

m<i≤n λiziz
∗
i according to lemma 1. This

matrix is symmetric and has no eigenvalues of absolute value larger than |λm+1|
since its eigenvalues are λi for i > m, and zero with multiplicity m. Hence, via
lemma 3, the result follows.

Approximating Integer Quadratic Programs and MAXCUT 845

5.2 Relaxation to Linear Programming

We want to solve
min

x∈{−1,1}n
x∗UV ∗x + x∗b

If we knew an approximation W of V ∗xopt such that ||V ∗xopt −W ||2 ≤ e, where
e is a positive constant, then we could solve the linear program

min x∗(UW + b)
s.t.

V ∗x ∈ P
−1 ≤ x ≤ 1

(2)

where P is an f -smooth polytope from lemma 5 approximating the hypersphere
of radius e centered at W . Note that a solution x̂ to the linear program fulfills

x̂∗(UW + b) ≤ x∗
opt(UW + b) (3)

since xopt is a feasable solution. Furthermore, for any feasible x we have

|x∗UW − x∗UV ∗x| = |x∗U(W − V ∗x)| ≤ fe||x∗U ||2 (4)

according to the Cauchy-Schwarz inequality. We need to bound the Euclidean
length of the vectors x∗U and V ∗x.

Lemma 7. Let A be a real symmetric n × n-matrix with λ1 the eigenvalue of
largest absolute value, and let U and V be as in lemma 6, then

max
x∈[−1,1]n

||x∗U ||2 = max
x∈[−1,1]n

||V ∗x||2 ≤
√
|λ1|n

Proof. Note that UU∗ = V V ∗ is symmetric and has zeros, and |λi| for i ≤ m
as eigenvalues, where λi is the ith largest absolute eigenvalue of A. Thus by
lemma 3, the Euclidean distance is bounded from above by

√
|λ1|n.

5.3 Estimating V ∗xopt

To guess an estimate W of V ∗xopt we will once again use dense point sets from
lemma 4.

Lemma 8. Let P be a g-dense point set, and S a hypersphere of radius r cen-
tered at origo, both in n dimensions. Consider the set R for a small positive
constant h < 1, consisting of the points jhr·p for each j ∈ {1, 2, · · · , �1/h�}, and
p ∈ P . Then, for every q ∈ S, there exists t ∈ R such that ||q−t||2 ≤

√
g2 + h2r.

Proof. Since P is g-dense, there exists p ∈ P such that q∗p ≥ (1 − g2/2)||q||2.
Let j be the smallest positive integer for which jhr ≥ ||q||2 and set t = jhr ·p
and Δ = ||t||2 − ||q||2. Then,

846 A. Björklund

||q − t||22 = ||q||22 − 2q∗t + ||t||22 ≤

||q||22 − (2 − g2)||q||2||t||2 + ||t||22 =

||t||22 − 2Δ||t||2 + Δ2 − (2 − g2)(||t||2 − Δ)||t||2 + ||t2||22 =

Δ2 + g2(||t||2 − Δ)||t||2 ≤

(h2 + g2)r2

after noting that ||t||2 − Δ ≤ ||t||2 ≤ r and |Δ| ≤ hr.

We will construct such a set R for r =
√
|λ1|n, since this is the maximum

value of ||V ∗xopt||2 according to lemma 7, and solve the linear program in (2) for
all points W ∈ R. Lemma 8 guarantees that one of the points is a close enough
approximation, since it leaves

e =
√

(g2 + h2)|λ1|n (5)

5.4 Randomized Rounding

The technique of randomized rounding presented by Raghavan and Thomp-
son [15] shows us how to go back from the relaxed LP-formulation to the original
problem without inducing too much error.

Lemma 9. Let x = {xi} be a vector of n variables, 0 ≤ xi ≤ 1, that satisfies a
certain linear constraint a∗x = b, where each entry of a has absolute value less
than or equal to s. Construct yi randomly by setting yi = 1 with probability xi

and 0 otherwise. Then |a∗y − b| is O(s
√

n log n) with probability at least 1−n−c

for any fixed positive constant c,

Let x be the best solution to all the linear programs (2) run for different choices
of W . Obtain y ∈ {−1, 1}n by setting yi = 1 with probability (1 + xi)/2, and
yi = −1 with probability (1 − xi)/2. Denote by α the largest absolute value in
A, and by β the largest absolute value in b. By lemma 9 with high probability
each element in Ax − Ay is O(α

√
n logn) in absolute value, and y∗b − x∗b is

O(β
√

n log n) in absolute value. Thus, remembering that A is symmetric,

y∗Ay + y∗b = x∗Ax + x∗b + (y∗A − x∗A)x + y∗(Ay − Ax) + (y∗b − x∗b) ≤

x∗Ax + x∗b + O
(
(αn + β)

√
n log n

)
(6)

A derandomization of lemma 9 can be done by the method of conditional expec-
tations as described in [14].

6 The Assembly Line

The approximation guarantee and running time of the algorithm described in
the previous section depends on several tunable parameters to be fixed. They
include,

Approximating Integer Quadratic Programs and MAXCUT 847

– m, the column dimension of the matrices U and V in section 5.1.
– f , the smoothness of the polytope in section 5.2.
– g and h, the density parameters for the set R in section 5.3.

We begin by focusing on the approximation guarantee. Let y be a found
solution, then

y∗Ay + y∗b ≤ x∗Ax + x∗b + O
(
(αn + β)

√
n logn

)
according to (6), where x is a solution to the linear program (2). By lemma 6

x∗Ax ≤ x∗UV ∗x + |λm+1|n

and by (3) and (4)

x∗UV ∗x + x∗b ≤ x∗(UW + b) + fe||x∗U ||2 ≤ x∗
opt(UŴ + b) + fe||x∗U ||2

where W is the close approximation of V ∗x, and Ŵ is one for V ∗xopt. The
inequality above holds since x is the best solution to all the linear programs run.
From (4), and lemma 6 we have

x∗
optUŴ ≤ x∗

optAxopt + fe||x∗
optU ||2 + |λm+1|n

Altogether, with the aid of lemma 7 and (5), we arrive at

y∗Ay + y∗b ≤ x∗
optAxopt + x∗

optb+

2f
√

g2 + h2|λ1|n + 2|λm+1|n + O
(
(αn + β)

√
n log n

) (7)

We now turn to the running time, aiming at polynomial time computations.
Obtaining the decomposition UV ∗ in lemma 6 is a cubic time task, see e.g. [11].
The linear program (2) will be run |R| times and this is fine as long as the set R,
as well as the linear program are of size polynomial in n, since polynomial time
algorithms for linear programming exist, see e.g. [12]. The size of the f -smooth
polytope P , and hence the larger part of the linear program (2) is

√
m

(√
2π√

1 − 1/f
+ 2

)m

according to lemma 4 and lemma 5. Letting f be constant leaves a polynomial
expression in n for m of O(log n). The set R of guesses W is of size

� 1
h
�
√

m

(
2π

g
+ 2

)m

(8)

as seen from lemma 4 and lemma 8. The expression is polynomial in n for g
and h fixed positive constants, and m = c2 log n for any positive constant c2.
Finally, note that the derandomization of the randomized rounding technique in
[14] runs in polynomial time.

To finish the proof of theorem 1 we observe that finding the maximum is just
the minimum in disguise: maxx∗Ax + x∗b is equal to min x∗(−A)x + x∗(−b),
over every domain.

848 A. Björklund

7 Applications

We will give two examples of applications of the algorithm. The first concerns
the MAXCUT problem. Let A be the adjacency matrix of the input graph G =
(V, E), with n = |V |, i.e. the symmetric n × n-matrix with ones at all entries
ij ∈ E, and zeros elsewhere. The maximum cut, denoted φ(G), can be expressed
through

φ(G) =
|E|
2

− 1
4

min
x∈{−1,1}n

x∗Ax

We will use theorem 1 to see that MAXCUT in subdense regular graphs without
too many 4-cycles admits a PTAS.

Proof. (of theorem 2) Let λ1, · · · , λn be the eigenvalues of A, sorted after de-
creasing absolute value. We know that λ1 = d, the degree of the graph, and that
tr(A4) counts the number of closed walks visiting four vertices in the graph,
see e.g. [5]. There are two types of walks, those who cross and those who don’t.
Walks of the first kind are easily counted in a regular graph: they amount to
2d2n − dn. Thus tr(A4) = 2d2n − dn + 8C4, where C4 is the number of non-
crossing 4-cycles. The coefficient 8 reflects the fact that each cycle is counted
once for each choice of start vertex, and in both directions. From lemma 2, we
may conclude that |λm| ≤ (tr(A4)/m)1/4 for 1 ≤ m ≤ n. We set m = c2 log n for
some constant c2, since this is the value appearing in theorem 1. Now observe
that for d of ω(

√
n), a bound of O(d4 log n) on C4 implies |λm| ≤ cd where c is

an arbitrary small positive constant inversely proportional to the 4th root of c2.
Thus, for increasingly small c1 and large c2 we may bound the absolute error in
theorem 1 as an arbitrarily small fraction of |E| plus a term of O(n1.5

√
log n).

The maximum cut is always at least |E|/2 as seen by an averaging argument,
and thus as long as d is ω(

√
n log n), we meet the definition of a PTAS.

Secondly, through a slight modification of theorem 1, we note that we can always
find an approximation of a smooth integer quadratic program in polynomial time
which differs from the optimum only by a subquadratic term.
Proof. (of theorem 3) Consider a smooth quadratic program min x∗Ax + x∗b.
Let λ1, · · · , λn be the eigenvalues of A, sorted after decreasing absolute value.
We know that |λ1| is O(n), and that tr(A2) is O(n2) since every entry in A has
absolute value O(1). By lemma 2, we see that |λm| ≤

√
tr(A2)/m for 1 ≤ m ≤ n.

Let m be proportional to log n/ log log n to obtain |λm| ≤ cn
√

log log n/ logn,
for some positive integer c. Let g and h be proportional to 1/

√
log n, and note

by (8) that the running time still is polynomial in n for these values of g, h, and
m, and that (7) fulfills the claimed error bound. For smooth integer programs of
degree k > 2, we use the techniques of [3] to reduce a degree k program to one
of degree k − 1, with an error boost bounded by a factor of n.

Acknowledgements

I thank Thore Husfeldt, Andrzej Lingas, and Mats Petter Pettersson for inter-
esting and motivating discussions on the subject.

Approximating Integer Quadratic Programs and MAXCUT 849

References

1. N. Alon, W. Fernandez de la Vega, R. Kannan, and M. Karpinski, “Random Sam-
pling and Approximation of MAX-CSP Problems”, Proc. 34th STOC, ACM, 534-
543, 2002. The full paper can be found in Technical Report TR01-100, ECCC,
2001.

2. S. Arora, E. Berger, E. Hazan, G. Kindler, and M. Safra, “On Non-Approximability
for Quadratic Programs”, Technical Report TR05-58, ECCC, 2005. To appear at
Proc. 46th FOCS, IEEE, 2005.

3. S. Arora, D. Karger, and M. Karpinski, “Polynomial time approximation schemes
for dense instances of NP-hard problems”, Proc. 27th STOC, ACM, 284-293, 1995.

4. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof verification
and hardness of approximation problems”, Proc. 33rd FOCS, IEEE, 14-23, 1992.

5. N. Biggs, “Algebraic Graph Theory”, Cambridge University Press, ISBN 0-521-
45897-8, 1996.

6. W. Fernandez de la Vega, “MAX-CUT has a Randomized Approximation Scheme
in Dense Graphs”, Random Structures and Algorithms, Vol. 8. No. 3, 187-198,
1996.

7. W. Fernandez de la Vega and M. Karpinski, “Polynomial time approximation of
dense weighted instances of MAX-CUT”, Random Structures and Algorithms, Vol.
16. No. 4, 314-332, 2000.

8. W. Fernandez de la Vega and M. Karpinski, “A Polynomial Time Approximation
Scheme for Subdense MAX-CUT”, Technical Report TR02-044, ECCC, 2002.

9. M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming”, J.
ACM 42, 1115-1145, 1995.

10. O. Goldreich, S. Goldwasser, and D. Ron, “Property Testing and its Connection
to Learning and Approximation”, Proc. 37th FOCS, IEEE, 339-348, 1996. The full
paper can be found in J. ACM 45, 653-750, 1998.

11. G. H. Golub and C. F. Van Loan. “Matrix Computations”, Third Edition, The
John Hopkins Universal Press, ISBN 0-8018-5414-8, 1996.

12. H. Karloff, “Linear Programming”, Birkhuser Boston, ISBN 3-7643-3561-0, 1991.
13. C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation, and com-

plexity classes”, J. Comput. System Sci. 43, 425-440, 1991.
14. P. Raghavan, “Probabilistic construction of deterministic algorithms: Approximate

packing integer programs”, J. Comput. System Sci. 37(2):130-143, 1988.
15. P. Raghavan and C. Thompson, “Randomized Rounding: a technique for provably

good algorithms and algorithmic proofs”, Combinatorica, 7:365-374, 1987.

A Cutting Planes Algorithm Based Upon a
Semidefinite Relaxation for the Quadratic

Assignment Problem

Alain Faye and Frédéric Roupin

CEDRIC, CNAM-Institut d’Informatique d’Entreprise,
18 allée Jean Rostand 91025 Evry cedex, France

{fayea, roupin}@iie.cnam.fr

Abstract. We present a cutting planes algorithm for the Quadratic As-
signment Problem based upon a semidefinite relaxation, and we report
experiments for classical instances. Our lower bound is compared with
the ones obtained by linear and semidefinite approaches. Our tests show
that the cuts we use (originally proposed for a linear approach) allow to
improve significantly on the bounds obtained by the other approaches.
Moreover, this is achieved within a moderate additional computing ef-
fort, and even in a shorter total time sometimes. Indeed, thanks to the
strong tailing off effect of the SDP solver we have used (SB), we obtain in
a reasonable time an approximate solution which is suitable to generate
efficient cutting planes which speed up the convergence of SB.

1 Introduction

The Quadratic Assignment Problem (QAP) is one of the most challenging clas-
sical combinatorial problems. It is a model for many industrial applications [5].
The QAP has been intensively studied and many approaches have been pro-
posed to solve it (e.g. [1,3,18]). Recently, semidefinite programming (SDP) has
proved to be a powerful tool to obtain tight lower bounds for the QAP (e.g.
[13,17,19,20]). The standard 0 − 1 quadratic formulation of the QAP is:

(QAP)

⎧⎪⎪⎨⎪⎪⎩
Min

∑
i,j,k,l Cijkl xijxkl

s.t.
∑n

i=1 xij = 1 ∀j ∈ {1..n}∑n
j=1 xij = 1 ∀i ∈ {1..n}

x ∈ {0, 1}n2

The paper is organized as follows. In Section 2, we recall the equivalence be-
tween two semidefinite relaxations of a general 0-1 quadratic program which
contains linear equalities. Then we discuss some general issues about different
semidefinite relaxations for the QAP and solving these SDP with the Spec-
tral Bundle algorithm (SB) [9]. These preliminary results help us to choose the
starting semidefinite relaxation for our cutting planes algorithm. In Section 3,

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 850–861, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Cutting Planes Algorithm Based Upon a Semidefinite Relaxation 851

we describe the cuts used and give the details about the implementation of our
algorithm. Numerical tests are presented in Section 4. Finally, we conclude in
Section 5 and summarize our results.

2 Semidefinite Programming for the QAP

2.1 Semidefinite Programming: Preliminary Results

Let Sn be the space of symmetric real n × n matrices. The standard inner
product over Sn is (A, B) ∈ S2

n → A • B = Tr (AB) =
∑n

i=1

∑n
j=1 AijBij .

We denote by d(A) the diagonal of a matrix A ∈ Sn, and we consider the
set S+

n =
{
A : ∀z ∈ !n, zT Az ≥ 0

}
⊂ Sn of semidefinite positive matrices. For

A ∈ S+
n we shall also write that A " 0. A semidefinite program can be defined

as the maximisation of a linear function of X ∈ S+
n subject to linear constraints:

(SDP)

⎧⎨⎩Max A0 • X
s.t. Ai • X = ci i = 1, ..., m

X " 0
(DSDP)

⎧⎨⎩Min cT y
s.t.

∑m
i=1 yiAi − A0 " 0

y ∈ !m

where c ∈ !m, and Ai (i ∈ {0, ..., m}) are in Sn. (DSDP) is the dual program
of (SDP). Semidefinite programming has proven to be an efficient approach
to solve (or approximate) hard combinatorial problems, especially for problems
that can be stated as (Q), a general 0-1 quadratic program:

(Q) min xT Q0x + dT
0 x s.t.

⎧⎨⎩xT Qix + dT
i x = (or ≤) ai i ∈ {1, ..., p}

Ax = b
x ∈ {0, 1}n

where A is a real m × n matrix. (SDPB), the basic semidefinite relaxation of
(Q) is equivalent to the dual of the total Lagrangian relaxation of (Q) when
x ∈ {0, 1}n is written as x2

i = xi (for all i ∈ {1, ..., n}) [14].

(SDPB) minx∈�n Q0 • X + dT
0 x s.t.

⎧⎪⎪⎨⎪⎪⎩
Qi • X + dT

i x = (or ≤) ai i ∈ {1, ..., p}
Ax = b[

1 xT

x X

]
" 0 ; d(X) = x

Instead of simply keeping the linear constraints Ax = b, one can obtain tighter
bounds by using particular treatments of “Ax = b” (e.g. [14,19]). In particular,
one can consider (SDPP) by adding to (SDPB) ”

∑n
j=1 AkjXij = bkxi for i ∈

{1, ..., n} and k ∈ {1, ..., m}”, and (SDPS) by adding to (SDPB) ”AkAT
k • X =

b2
k for k ∈ {1, ..., m}”. The semidefinite relaxations (SDPS) and (SDPP) are

equivalent considering the results presented in [6,14,19]. In fact, they are both
formulations of the dual of a partial Lagrangian relaxation of (Q) where the
constraints Ax = b are not relaxed. Nevertheless, as noticed in [6], the numerical
solving process behavior of (SDPS) and (SDPQ) depend on the solver used.
In the next section, we discuss such issues in order to choose the semidefinite
relaxation used in our cutting planes algorithm.

852 A. Faye and F. Roupin

2.2 Choosing the Starting Semidefinite Relaxation for the Cutting
Planes Algorithm

Consider the following linear relaxation of (QAP) used in [18].

(QAPLP)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Min
∑

i,j,k,l Cijkl Xijkl

s.t. (A1)
∑n

i=1 xij = 1 ∀j ∈ {1..n}
(A2)

∑n
j=1 xij = 1 ∀i ∈ {1..n}

(E1)
∑n

i=1 Xijkl = xkl ∀j, k, l ∈ {1..n} l 	= j
(E2)

∑n
j=1 Xijkl = xkl ∀i, k, l ∈ {1..n} k 	= i

(I0)Xijkl ≥ 0 ∀i, j, k, l ∈ {1..n} − J

where J = {(i, j, k, l) : (i = k and j 	= l) or (j = l and i 	= k)}. In [19], an algo-
rithm is proposed to build mechanically semidefinite relaxations for a bivalent
quadratic program (Q) from any linear relaxation of (Q). By applying it to
(QAPLP) one gets:

(SDP0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
∑

i,j,k,l Cijkl Xijkl

s.t. (S1)
∑n

i=1 xij = 1 ∀j ∈ {1..n}
(R1)

∑n
i=1

∑n
k=1 Xijkj = 1 ∀j ∈ {1..n}

(S2)
∑n

j=1 xij = 1 ∀i ∈ {1..n}
(R2)

∑n
j=1

∑n
k=1 Xijik = 1 ∀i ∈ {1..n}

(P1)
∑n

i=1 Xijkl = xkl ∀j, k, l ∈ {1..n}
(P2)

∑n
j=1 Xijkl = xkl ∀i, k, l ∈ {1..n}

(P0) Xijkl ≥ 0 ∀i, j, k, l ∈ {1..n}[
1 xT

x X

]
" 0 ; d(X) = x

First, the constraints (E1), (E2) and (I0) are copied respectively to (P1),
(P2) and (P0). Second, the constraints (S1), (R1), (S2) and (R2) are associated
to (A1) and (A2). Note that constraints (P0), (P1), (P2) and d(X) = x imply
Xijkl = 0 for (i, j, k, l) ∈ J (these constraints are also implied by (P0), (S1),
(S2), (R1), (R2) and d(X) = x). It is easy to verify that (SDP0) is tighter than
(QAPLP). This is a general property of the algorithm used to build the SDP
relaxations from the linear ones [19]. The results recalled in Section 2.1 imply
that one can remove (R1) and (R2) from (SDP0) (or (P1) and (P2)) without
modifying the optimal value. But numerical tests presented in [19] have shown
that keeping them all leads experimentally to a faster convergence of the Spectral
Bundle algorithm (SB) [10]. This point is illustrated in Figure 1, where (SDP1)
is (SDP0) without constraints (R1) and (R2), and (SDP2) is (SDP0) without
constraints (P1) and (P2). We have plotted the bounds for the first 500 seconds
only, but, as expected, the three semidefinite programs lead to the same bound
(568). Nevertheless, getting this bound by solving (SDP2) requires more than
80 hours on the computer we have used (a Pentium IV 2.2 GHz with 1 Go Ram
under Linux), whereas it takes only about one hour by using (SDP0).

In [20] Q. Zhao et al. propose three different semidefinite relaxations for the
QAP, denoted by QAPR1 , QAPR2and QAPR3 in [17]. In this last paper, the

A Cutting Planes Algorithm Based Upon a Semidefinite Relaxation 853

 480

 490

 500

 510

 520

 530

 540

 550

 560

 570

 0 100 200 300 400 500

S
D

P
 b

o
u
n
d

CPU time (s)

"SDP0"

 480

 490

 500

 510

 520

 530

 540

 550

 560

 570

 0 100 200 300 400 500

S
D

P
 b

o
u
n
d

CPU time (s)

"SDP0"

 480

 490

 500

 510

 520

 530

 540

 550

 560

 570

 0 100 200 300 400 500

S
D

P
 b

o
u
n
d

CPU time (s)

"SDP1"

 480

 490

 500

 510

 520

 530

 540

 550

 560

 570

 0 100 200 300 400 500

S
D

P
 b

o
u
n
d

CPU time (s)

"SDP1"

 480

 490

 500

 510

 520

 530

 540

 550

 560

 570

 0 100 200 300 400 500

S
D

P
 b

o
u
n
d

CPU time (s)

"SDP2"

 480

 490

 500

 510

 520

 530

 540

 550

 560

 570

 0 100 200 300 400 500

S
D

P
 b

o
u
n
d

CPU time (s)

"SDP2"

Fig. 1. Nug12 problem: bounds in dependence of CPU time when solving (SDP0),
(SDP1), and (SDP2) with the Spectral Bundle Algorithm

authors present a special version of the bundle algorithm and stop the solving
process after a fixed number of iterations (equal to 300), in order to approximate
the bounds proposed in [20]. The aim of this latter work is to provide good
bounds for the QAP in a reasonable time, and thus which could be used in an
exact method (Branch&Bound). The bounds obtained from (SDP0) presented
in [19] are better (for instance 2494 instead of 2451 for the Nug20 problem), but
involve a larger number of iterations in the standard Spectral Bundle algorithm
of Hemlberg and Rendl [9]. In Table 1, we give the bounds (rounded up to
the next integer) obtained for some Nugxx problems [4] by using (SDP0) in
dependence of number of descent steps in the Spectral Bundle (SB) algorithm.

The last column (RS) contains the bounds presented in [17]. Some CPU
times are indicated next to the bounds. These tests have been carried out on a
Pentium IV 2.2 MHz computer with 1 GoBytes of RAM under Linux RedHat

Table 1. Solving (SDP0) with the Spectral Bundle algorithm: bounds in dependence
of number of descent steps

Opt 20 steps 30 steps 40 steps 50 steps 60 steps RS

Nug20 2570 1878(1mn8s) 2383(3mn32s) 2473(20mn2s) 2492(1h32mn) 2499(5h11mn) 2451

Nug24 3488 2171(2mn6s) 3158(7mn45s) 3343(45mn32s) 3378(3h53mn) 3389(13h34mn) 3310

Nug27 5234 3087(4mn13s) 4600(11mn6s) 4951(41mn22s) 5066(2h56mn) 5103(15h16mn) 4965

Nug30 6124 2186(3mn58s) 4471(12mn4s) 5537(33mn58s) 5799(1h54mn) 5888(8h47mn) 5803

854 A. Faye and F. Roupin

9.0. The default parameters have been set for SB, expect for one: we have scaled
all the constraint matrices (option “-si 1”, see [10]). These results show that when
solving (SDP0) the convergence of SB is very fast for the first iterations. Indeed,
after only 50 descent steps we obtain a good approximation of the optimal value
of (SDP0) (considering the optimal values of the problems: ”Opt” column).
Moreover, note that the first 20 descent steps are computed in less than 5 minutes
(even for Nug30). This strong tailing off effect of SB is well-known and is also
illustrated in Figure 1.

Now we discuss the choice to keep in (SDP0) all the positivity constraints
Xijkl ≥ 0 ∀i, j, k, l ∈ {1, ..., n}, or use them as cuts. Indeed, in papers where
semidefinite programming is used to obtain lower bounds for 0-1 quadratic prob-
lems (and thus especially for the QAP), the authors generally do not include all
these constraints (see e.g. [7,11,13,20]), because their number can be very large
(for the QAP it is O

(
n4
)
). On the contrary, we have chosen to use (SDP0) (in-

cluding all the positivity constraints (P0)) as our starting relaxation. First, the
Spectral Bundle algorithm (SB) has a nice behaviour when solving (SDP0) (see
Table 1). Moreover this solver can handle a very large number of constraints (for
instance, for the Nug30 problem, (SDP0) contains 459471 constraints). Second,
as proposed in [17], one may think to use the standard linearization inequalities
as cuts (other than Xijkl ≥ 0), i.e. Xijkl ≤ xkl, and xij + xkl − 1 ≤ Xijkl for
all i, j, k, l in {1, ..., n}. The first ones are useless when using (SDP0), since con-
traints (P0), (P1), (P2) obviously imply Xijkl ≤ xkl. The second set of constraints
is also satisfied by any feasible solution (X, x) of (SDP0). Indeed, following the
results presented in [2] we have 1− xij − xkl + Xijkl =

∑
r �=j xir − xkl + Xijkl =∑

r �=j xir −
∑

r �=j Xirkl−Xijkl +Xijkl =
∑

r �=j (xir − Xirkl) ≥ 0. Hence, keeping
the constraints (P0) leads to a strong SDP relaxation (including all the stan-
dard linearization constraints) that can be solved approximately by SB within
a reasonable time.

3 The Cutting Planes Algorithm

3.1 Adding Cuts to Improve the Semidefinite Relaxation

Since the inequalities Xijkl ≤ xkl, and xij +xkl −1 ≤ Xijkl are already satisfied,
we have considered the two sets I ′C and I ′L of cuts proposed by Blanchard et al.
in [3], which have proved to be efficient for the linear program (QAPLP). The
two sets are defined as follows [3]:

I ′C :
∑
c∈C

Xijlc ≤
∑
k∈A

Xijhk +
∑
c∈C

∑
b∈B,b�=c

Xlchb

where i, h, l are distinct fixed row indices of x, j is a column indice of x,
(A, B, {j}) is a partition of the index set {1, ..., n}, and C ⊂ B.

I ′L :
∑
c∈L

Xijcl ≤
∑
h∈A

Xijhk +
∑
c∈L

∑
b∈B,b�=c

Xclbk

A Cutting Planes Algorithm Based Upon a Semidefinite Relaxation 855

where j, k, l are distinct fixed column indices of x, i is a row indice of x,
(A, B, {i}) is a partition of the index set {1, ..., n}, and L ⊂ B. Unfortunately,
(Π), the associated separation problem is NP-complete. Indeed, Max-cut poly-
nomially reduces to (Π), but it is polynomially solvable when |C| = 1 (all these
results are proved in [3]). To generate cuts with |C| > 1, we use the heuristic
proposed in [3]. The main idea is: first, start with a cut generated with |C| = 1,
second, add indices into C in order to obtain a cut which is more violated.

3.2 Implementation Issues

We have chosen to use the Spectral Bundle algorithm (SB) [9] which has proved
to be one of the more efficient SDP solver [15]. Moreover, it is not very sensitive
to a large number of constraints, and shows good initial progress (thus it allows
us to generate cuts within a reasonable time). The default parameter settings
of SB has been chosen expect for one: we have scaled the constraint matrices to
norm one on input (see [10] for details). Recall that SB can only solve the dual of
semidefinite programs with a constant trace matrix. Experiments for the QAP
in [19] showed that giving to that constant the smallest possible value leads to
a faster convergence of the solver SB. For (SDP0), thanks to the assignment
constraints, one can easily verify that the trace of X equals to n. At each step
of our cutting planes algorithm, the cuts are generated from an approximate
solution of the current SDP. We interrupt the solving process of the SDP when
the standard stopping criterion of SB is reached within a reasonable accuracy
(0.01 for all the tests), or when 50 descent steps have been done. Recall that the
stopping criterion of SB consists in considering that the maximal progress of the
next step is small in comparison to the absolute value of the function (details are
given in [10]). No more than 2000 cuts are added at each step (we add the most
violated ones), and when no cut is violated by more than 0.001 the algorithm
stops. The dual variables associated to the constraints are initialized as follows:
for the existing constraints, we keep the current values; for the cuts generated,
we choose a fixed positive value proportional to the degree of violation of the
corresponding constraint. This can be seen as a simple “warm-start”. Finally,
in order to have a reasonable total computing time, we do at most 5 steps in
the cutting planes algorithm (2 for “easy” problems), and we stop the solving
process of the last SDP if the standard stopping criterion of SB is reached within
a accuracy of 10−5 or if 70 descent steps have been done in the Spectral Bundle
algorithm.

3.3 Building a Feasible Solution for the QAP

When the cutting planes algorithms stop (based upon linear or semidefinite
programming), we use the heuristic presented in [13] to get a feasible solution
for (QAP) from the final matrix x′ (solution of the linear or semidefinite ap-
proaches). By this way, when the solution is non integral, we obtain for several
problems an optimal solution (see Section 4). Indeed we do not assume to know
in advance the optimal value of the problems. The idea is to minimize ‖x′ − x‖F

over the feasible solutions x of (QAP), where ‖.‖F is the norm associated to

856 A. Faye and F. Roupin

the trace inner product. One has ‖x′ − x‖2
F = ‖x′‖2

F + ‖x‖2
F − 2Tr(x′x) =

2n2 − 2
∑n

i=1

∑n
j=1 x′

ijxij . This linear assignment problem can be solved easily.

4 Computational Results

In this section we present computational experiments to test the benefits of the
cuts added to the semidefinite relaxation (SDP0). All the numerical experiments
have been carried out on a Pentium IV 2.2 MHz computer with 1 GoBytes of
RAM under Linux RedHat 9.0. The semidefinite programs were solved by the
Spectral Bundle algorithm (SB) [9,10], and the linear programs were solved by
using CPLEX 9.0 (with the “baropt” function). In addition, we have used SDP S
[12], a SDP modeler that formulates automatically semidefinite relaxations fol-
lowing the algorithm presented in [19].

Table 2. Chrxx problems. NLP = 5, NSDP = 2, MC = 2000.

pb OPT QAPLP LP CUT SDP SDP CUT RS

Chr12a 9552 9552 (9s) 9552 (9s) 9552 (13mn09s) 9552 (6mn53s) n.a.

Chr12b 9742 9742 (9s) 9742 (9s) 9742 (12mn09s) 9742 (5mn04s) n.a.

Chr12c 11156 11156 (9s) 11156 (9s) 11156 (50mn33s) 11156 (11mn28s) n.a.

Chr15a 9896 9514(1mn52s) 9896 (7mn54s) 9877(1h10mn) 9896 (1h13mn) n.a.

Chr15b 7990 7990 (1mn11s) 7990 (1mn11s) 7987(39mn15s) 7990 (27mn20s) n.a.

Chr15c 9504 9504 (1mn05s) 9504 (1mn05s) 9504 (1h13mn) 9504 (22mn40s) n.a.

Chr18a 11098 10759(12mn) 11098 (1h14mn) 10985(1h59mn) 11098 (2h40mn) n.a.

Chr18b 1534 1534(4mn30s) 1534(4mn30s) 1497(5h14mn) 1504(11h25mn) n.a.

Chr20a 2192 2176(21mn34s) 2192 (1h04mn) 2097(2h27mn) 2163(4h36mn) n.a.

Chr20b 2298 2287(14mn52s) 2298 (48mn) 1946(37mn20s) 2298 (9h53mn) n.a.

Chr20c 14142 14142 (18mn34s) 14142 (18mn34s) 14130(5h43mn) 14142 (2h42mn) n.a.

Chr22a 6156 6143(1h07mn) 6156 (2h48mn) 5223(51mn09s) 6156 (8h13mn) n.a.

Chr22b 6194 6181(1h14mn) 6194 (2h36mn) 5013(46mn57s) 6194 (12h13mn) n.a.

In Tables 2, 4, 5, 6 and 7, OPT is the optimal value of the considered QAP
instance [4]. NLP and NSDP are the maximum number of steps done in the
cutting planes algorithms based respectively upon (QAPLP) and (SDP0), and
MC is the maximum number of cuts added at each step of the cutting planes
algorithms. QAPLP is the bound obtained by solving (QAPLP). In the column
LP CUT , we give the bounds obtained by applying the cutting planes algorithm
based upon (QAPLP) (details are given in [3]). The bounds given in the column
SDP are obtained by solving (SDP0) when the standard stopping criterion of
SB is reached within a accuracy of 10−5 or when 80 descent steps have been
done. Consequently the values given in the SDP column are only lower bounds
of the real optimal values of (SDP0). For instance one can obtain 2198 for the
Chr20b problem by solving (SDP0), but it takes about 32 hours and requires
217 descent steps. In the column SDP CUT , we give the bounds obtained by

A Cutting Planes Algorithm Based Upon a Semidefinite Relaxation 857

applying the cutting planes algorithm based upon (SDP0). The last column (RS)
give the bounds presented in [17] (”n.a.” means ”not available”). All the bounds
are rounded up to the next integer, and CPU times are indicated next to the
bounds. Let us point out that the times given in the last column (SDP CUT)
are the total CPU times, i.e. the times required to solve approximately all the
semidefinite programs and to generate the cuts. When the heuristic presented
in Section 3.3 allows to build a feasible solution with the same value (and thus
optimal) for the considered problem, the bound is underlined.

Table 3. Nug20 problem: CPU times to reach several given bounds

Nug20(opt=2570) 2182 2292 2478 2503 2511

LP 38mn9s - - - -

LP CUT 38mn9s 21h48mn - - -

SDP 1mn38s 2mn19s 23mn28s 14h45mn -

SDP CUT 1mn38s 2mn19s 23mn28s 3h35mn 15h36mn

The linear approach outperforms the semidefinite one for the Chrxx prob-
lems (Table 2). This is not surprising, if one considers the quality of the bound
provided by the linear relaxation (QAPLP) for these “easy” problems.

Table 4. Nugxx problems. NLP = 30, NSDP = 5, MC = 2000.

pb OPT QAPLP LP CUT SDP SDP CUT RS

Nug12 578 523(11s) 564(5h38mn) 568(2h09mn) 574(5h35mn) 557

Nug14 1014 923(52s) 994(8h38mn) 1010(12h14mn) 1014(9h05mn) 992

Nug15 1150 1041(1mn35s) 1113(11h) 1140(9h54mn) 1146(5h12mn) 1122

Nug16a 1610 1426(2mn55s) 1537(19h18mn) 1597(3h26mn) 1605(15h08mn) 1570

Nug16b 1240 1089(2mn40s) 1176(21h27mn) 1216(6h03mn) 1224(8h24mn) 1188

Nug20 2570 2182(38mn9s) 2292(21h48mn) 2503(14h45mn) 2511(15h36mn) 2451

For the others sets of problems, the results show that whatever the quality of
bound one expects to obtain, the semidefinite approach is often the best choice.
For instance in Table 3, it takes only 2mn19s to get 2292 for the Nug20 problem
by using only (SDP0) (SDP line), whereas linear programming (LP line) needs
38mn9s to get only 2182. The same relation exists between the “simple” semidef-
inite approach (SDP line) and our cutting planes algorithm (SDP CUT line):
for the Nug20 problem, it takes 14h45mn to get 2503 during the solving pro-
cess of (SDP0) (SDP column), whereas we get the same value in only 3h35mn
(SDP CUT line). Another interesting phenomenon is the speed up of the con-
vergence of the SDP solver SB when one adds Blanchard et al’s cuts to (SDP0).
For instance in Table 5 we obtain for all the problems the optimal values by
using only (SDP0), but it is better to apply our cutting planes algorithm.

858 A. Faye and F. Roupin

Table 5. Hadxx problems. NLP = 15, NSDP = 2, MC = 500.

pb OPT QAPLP LP CUT SDP SDP CUT RS

Had12 1652 1622(14s) 1652(6mn05s) 1652(7mn49s) 1652(2mn22s) 1643

Had14 2724 2667(56s) 2724(21mn35s) 2724(13mn20s) 2724(5mn18s) 2715

Had16 3720 3561(2mn20s) 3688(4h13mn) 3720(3h37mn) 3720(14mn56s) 3699

Had18 5358 5088(9mn42s) 5228(3h49mn) 5358(8h55mn) 5358(2h11mn) 5317

Had20 6922 6579(33mn30s) 6753(14h43s) 6922(11h43mn) 6922(3h13mn) 6885

2650

2660

2670

2680

2690

2700

2710

2720

2730

0 200 400 600 800 1000 1200

S
D

P
 b

o
u
n
d

CPU time (s)

"SDP CUT"

2650

2660

2670

2680

2690

2700

2710

2720

2730

0 200 400 600 800 1000 1200

S
D

P
 b

o
u
n
d

CPU time (s)

"SDP CUT"

2650

2660

2670

2680

2690

2700

2710

2720

2730

0 200 400 600 800 1000 1200

S
D

P
 b

o
u
n
d

CPU time (s)

"SDP0"

2650

2660

2670

2680

2690

2700

2710

2720

2730

0 200 400 600 800 1000 1200

S
D

P
 b

o
u
n
d

CPU time (s)

"SDP0"

2650

2660

2670

2680

2690

2700

2710

2720

2730

0 200 400 600 800 1000 1200

S
D

P
 b

o
u
n
d

CPU time (s)

"LP CUT"

2650

2660

2670

2680

2690

2700

2710

2720

2730

0 200 400 600 800 1000 1200

S
D

P
 b

o
u
n
d

CPU time (s)

"LP CUT"

Fig. 2. Comparison of the three bounds in dependence of CPU time for the Had14
problem

Table 6. Scrxx and Rouxx problems. NLP = 15, NSDP = 5, MC = 2000.

pb OPT QAPLP LP CUT SDP SDP CUT RS

Scr12 31410 29828(2mn) 31410(43mn) 31409(10h56mn) 31409(2h01mn) 29321

Scr15 51140 49265(20mn) 51140(2h) 51140(8h03mn) 51140(2h06mn) 48836

Scr20 110030 95118(22mn) 99466(18h53mn) 105589(3h51mn) 105702(4h05mn) 94998

Rou12 235528 224303(1mn) 235528(5h) 234875(14mn56s) 235522(42mn20s) 223680

Rou15 354210 324902(8mn) 340389(23h) 347477(37mn15s) 348555(39mn26s) 333287

Rou20 725522 643364(22mn55s) 656337(19h17mn) 689229(1h17mn) 690472(1h15mn) 663833

This point is also illustrated in Figure 2 for the Had14 problem. For the
semidefinite cutting planes algorithm (SDP CUT), we have plotted only the
value of the bound in dependence of CPU time of the last semidefinite program
(but translated it by 125s, the time spent to solve approximately the first SDP
and to generate the cuts). We get the optimal value in about 5 minutes, whereas

A Cutting Planes Algorithm Based Upon a Semidefinite Relaxation 859

Table 7. Taixx problems. NLP = 15, NSDP = 5, MC = 2000.

pb OPT QAPLP LP CUT SDP SDP CUT RS

Tai12a 224416 222187(12s) 224416(2mn07s) 224416(4mn47s) 224416(6mn20s) 222784

Tai15a 388214 352891(1mn16s) 367214(6h26mn) 373526(20mn42s) 376337(58mn40s) 364761

Tai17a 491812 442703(4mn28s) 454950(6h28mn) 469251(27mn22s) 475013(2h13mn) 451317

Tai20a 703482 618526(19mn54s) 629565(14h30mn) 660855(42mn52s) 667899(2h33mn) 637300

Table 8. Escxx problems. NLP = 5, MC = 2000.

pb OPT QAPLP LPCUT SDP0 40 steps SDP0 60 steps RS

Esc16a 68 48(1mn26s) 54(34mn19s) 61(10mn40s) 64(5h27mn) 59

Esc16b 292 278(1mn24s) 281(57mn35s) 284(8mn47s) 290(1h24mn) 288

Esc16c 160 118(1mn14s) 126(59mn03s) 142(12mn33s) 152(56mn38s) 142

Esc16d 16 4(1mn15s) 8(1h02mn) 10(11mn13s) 12(38mn12s) 8

Esc16e 28 14(1mn25s) 17(1h24mn) 20(6mn05s) 26(50mn54s) 23

Esc16g 26 14(1mn25s) 18(1h11mn) 21(4mn35s) 25(1h30mn) 20

Esc16h 996 704(1mn24s) 729(1h18mn) 902(7mn24s) 976(7h05mn) 970

Esc16i 14 0(1mn14s) 10(36mn37s) 7(5mn19s) 11(1h09mn) 9

Esc16j 8 2(1mn13s) 6(44mn41s) 5(2mn38s) 8(20mn17s) 7

the cutting planes approach based on linear programming requires about 21
minutes to reach the optimal value.

Nevertheless for some instances (the Escxx problems, [4]) no cuts are found or
do not lead to an improvement on the bound given by (SDP0) alone. Therefore,
in Table 8 we do not give results for the cutting planes algorithm based upon
(SDP0), but only the bounds obtained during the solving process of (SDP0)
respectively after 40 and 60 descent steps in SB. We cite in the last column
(RS) the bounds presented in [17]. Here, the SDP approach clearly outperforms
the linear one: we get always better bounds in a shorter time. Indeed, even for
the “Esc16i” problem, the value 10 is obtained by solving (SDP0) in about 8
minutes.

5 Concluding Remarks

First, we have obtained a significative gain upon the simple SDP and the linear
approaches for many instances of the QAP. In Table 9, we give the average error
gaps obtained by the four approaches for the different sets of problems presented
in the previous section. Second, even when (SDP0) provides already the optimal
value, adding cuts speeds up the convergence of the SDP solver (see Tables 3,
5, and Figure 2). Therefore, our cutting planes algorithm can be used to get in
a shorter time a bound already obtained by a simpler approach.

However, further improvements are certainly possible. First, this is a work
in progress, and more numerical tests must be carried out, especially for larger
problems. Second, other sets of cuts may be used in addition of I ′C and I ′L.
Third, different heuristics for the separation problem (Π) could be considered

860 A. Faye and F. Roupin

Table 9. Average error gaps for the different sets of problems

Problems LP LP CUT SDP SDP CUT

Chr 0.7% 0% 4.4% 0.2%

Had 3.6% 1.2% 0% 0%

Nug 11.1% 4.7% 1.4% 0.8%

Scr 7.4% 3.2% 1.4% 1.3%

Rou 8.1% 6.0% 3.9% 3.7%

Tai 8.0% 5.8% 3.6% 2.9%

Esc 48.4% 27.3% 7.9% 7.9%

(see Section 3). Finally, when using the Spectral Bundle algorithm, a smarter
“warm-start” for the semidefinite relaxations may speed up the solving process.

References

1. K. Anstreicher and N. Brixius. A New Bound for the Quadratic Assignment Prob-
lem Based on Convex Quadratic Programming. Math. Prog. 89:341-357, 2001.

2. A. Billionnet and S. Elloumi. Best reduction of the quadratic semi-assignment
problem. Discrete Applied Mathematics 109(3):197-213, 2001.

3. A. Blanchard, S. Elloumi, A. Faye and N. Wicker. Un algorithme de génération de
coupes pour le problème de l’affectation quadratique. INFOR 41(1):35-49, 2003.

4. R.E. Burkard, S.E. Karisch and F. Rendl, QAPLIB. A Quadratic Assignment Prob-
lem Library, J. of Global Opt. 10:391-403, 1997.

5. F.Çela. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer, Mas-
sachessets, USA, 1998.

6. A. Faye and F. Roupin. Partial Lagrangian and Semidefinite Relaxations of
Quadratic Problems. In proceedings ROADEF’2005, Tours, 14-16 february 2005.
Research report RC673, available at http://cedric.cnam.fr.

7. C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefinite pro-
grams and cutting planes. Math. Progr. 82(3,A):291-315, 1998.

8. C. Helmberg. Semidefinite Programming for Combinatorial Optimization. Habili-
tationsschrift, TU Berlin, ZIB-report ZR-00-34, KZZI, Takustraße 7, 14195 Berlin,
Germany, 2000.

9. C. Helmberg and F. Rendl. A spectral bundle method for semidefinite program-
ming. SIAM J. Optim. 10(3):673-696, 2000.

10. C. Hemberg. A C++ implementation of the Spectral Bundle Method. http://www-
user.tu-chemnitz.de/˜helmberg/SBmethod/.

11. C. Helmberg. Cutting planes algorithm for large scale semidefinite relaxations.
ZIB-Report ZR 01-26, KZZI, Takustraße 7, 14195 Berlin, Germany, 2001.

12. G. Delaporte, S. Jouteau and F. Roupin. SDP S: a Tool to formulate and solve
Semidefinite relaxations for Bivalent Quadratic problems. In Proceedings ROADEF
2003, Avignon 26-28 Février, 2003.http://semidef.free.fr.

13. S.E. Karisch. Nonlinear approaches for the quadratic assignment and graph parti-
tion problems. PhD thesis, Graz University of Technology, Graz, Austria, 1995.

14. C. Lemarechal and F. Oustry. Semidefinite relaxations and Lagrangian duality with
application to combinatorial optimization. RR-3710, INRIA Rhone-Alpes, 1999.

15. Hans D. Mittelmann. An Independent Benchmarking of SDP and SOCP Solvers.
Math. Progr. 95(2):407-430, 2003.

A Cutting Planes Algorithm Based Upon a Semidefinite Relaxation 861

16. S. Poljak, F. Rendl and H. Wolkowicz. A recipe for semidefinite relaxation for
(0,1)-quadratic programming. J. of Global Opt. 7:51-73, 1995.

17. F. Rendl and R. Sotirov. Bounds for the Quadratic Assignment Problem Using the
Bundle Method. Research Report, University Of Klagenfurt, Universitaetsstrasse
65-67, Austria, 2003. Available at Optimization-online.org.

18. M.G.C Resende, K.G. Ramakrishnan, and Z. Drezner. Computing lower bounds
for the quadratic assignment problem with an interior point algorithm for linear
programming. Operations Research 43(5):781-791, 1995.

19. F. Roupin. From Linear to Semidefinite Programming: an Algorithm to obtain
Semidefinite Relaxations for Bivalent Quadratic Problems. J. of Comb. Opt.
8(4):469-493, 2004.

20. Q. Zhao, S.E. Karisch, F. Rendl and H. Wolkowicz. Semidefinite programming
relaxations for the quadratic assignment problem. J. of Comb. Opt. 2(1):71-109,
1998.

Approximation Complexity of min-max (Regret)
Versions of Shortest Path, Spanning Tree, and

Knapsack

Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten

LAMSADE, Université Paris-Dauphine, France
{aissi, bazgan, vdp}@lamsade.dauphine.fr

Abstract. This paper investigates, for the first time in the literature,
the approximation of min-max (regret) versions of classical problems like
shortest path, minimum spanning tree, and knapsack. For a bounded
number of scenarios, we establish fully polynomial-time approximation
schemes for the min-max versions of these problems, using relationships
between multi-objective and min-max optimization. Using dynamic
programming and classical trimming techniques, we construct a fully
polynomial-time approximation scheme for min-max regret shortest
path. We also establish a fully polynomial-time approximation scheme
for min-max regret spanning tree and prove that min-max regret
knapsack is not at all approximable. We also investigate the case of an
unbounded number of scenarios, for which min-max and min-max regret
versions of polynomial-time solvable problems usually become strongly
NP-hard. In this setting, non-approximability results are provided for
min-max (regret) versions of shortest path and spanning tree.

Keywords: min-max, min-max regret, approximation, fptas, shortest
path, mi-nimum spanning tree, knapsack.

1 Introduction

The definition of an instance of a combinatorial optimization problem requires
to specify parameters, in particular objective function coefficients, which may
be uncertain or imprecise. Uncertainty/imprecision can be structured through
the concept of scenario which corresponds to an assignment of plausible values
to model parameters. There exist two natural ways of describing the set of all
possible scenarios. In the interval data case, each numerical parameter can take
any value between a lower and an upper bound. In the discrete scenario case, the
scenario set is described explicitly. In this case, that is considered in this paper,
we distinguish situations where the number of scenarios is bounded by a constant
from those where the number of scenarios is unbounded. Kouvelis and Yu [3]

� This work has been partially funded by grant CNRS/CGRI-FNRS number 18227.
The second author was partially supported by the ACI Scurit Informatique grant-
TADORNE project 2004.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 862–873, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

863

proposed the min-max and min-max regret criteria, stemming from decision
theory, to construct solutions hedging against parameters variations. The min-
max criterion aims at constructing solutions having a good performance in the
worst case. The min-max regret criterion, less conservative, aims at obtaining a
solution minimizing the maximum deviation, over all possible scenarios, of the
value of the solution from the optimal value of the corresponding scenario.

Complexity of the min-max and min-max regret versions has been studied
extensively during the last decade. In [3], for the discrete scenario case, the
complexity of min-max and min-max regret versions of several combinatorial
optimization problems was studied, including shortest path, minimum spanning
tree, assignment, and knapsack problems. In general, these versions are shown
to be harder than the classical versions. More precisely, if the number of sce-
narios is unbounded, these problems become strongly NP -hard, even when the
classical problems are solvable in polynomial time. On the other hand, for a
constant number of scenarios, it was only partially known if these problems are
strongly or weakly NP -hard. Indeed, the reductions described in [3] to prove
NP -difficulty are based on transformations from the partition problem which is
known to be weakly NP -hard [2]. These reductions give no indications as to the
precise status of these problems. The only known weakly NP -hard problems are
those for which there exists a pseudo-polynomial algorithm (shortest path, knap-
sack, minimum spanning tree on grid graphs, . . .). All these pseudo-polynomial
algorithms described in [3] are based on dynamic programming.

In this paper we consider, for the first time in the literature, the approx-
imation complexity of these versions for classical combinatorial optimization
problems, focusing on three typical problems: shortest path, minimum spanning
tree and knapsack.

After presenting preliminary concepts in Section 2, we investigate the exis-
tence of approximation algorithms for our reference problems when the number
of scenarios is bounded by a constant (Section 3), and when it is unbounded
(Section 4). The results we obtained are summarized in Table 1.

Table 1. Approximation results for min-max and min-max versions

bounded unbounded
min-max min-max regret min-max min-max regret

shortest path fptas fptas not (2 − ε) approx. not (2 − ε) approx.
min spanning tree fptas fptas not (3

2
− ε) approx. not (3

2
− ε) approx.

knapsack fptas not at all approx. not at all approx. not at all approx.

2 Preliminaries

We consider in this paper the class C of 0-1 problems with a linear objective
function defined as: {

min
∑n

i=1 cixi ci ∈ N

x ∈ X ⊂ {0, 1}n

Approximation Complexity of min-max (Regret) Versions

864 H. Aissi, C. Bazgan, and D. Vanderpooten

This class encompasses a large variety of classical combinatorial problems,
some of which are polynomial-time solvable (shortest path problem, minimum
spanning tree, . . .) and others are NP -difficult (knapsack, set covering, . . .).

2.1 Min-max, min-max Regret Versions

Given a problem P ∈ C, the min-max (regret) version associated to P has as
input a finite set of scenarios S where each scenario s ∈ S is represented by
a vector (cs

1, . . . , c
s
n). We denote by val(x, s) =

∑n
i=1 cs

i xi the value of solution
x ∈ X under scenario s ∈ S and by val∗s the optimal value in scenario s.

The min-max optimization problem corresponding to P, denoted by Min-
Max P, consists of finding a solution x having the best worst case value across
all scenarios, which can be stated as:

min
x∈X

max
s∈S

val(x, s)

Given a solution x ∈ X, its regret, R(x, s), under scenario s ∈ S is defined
as R(x, s) = val(x, s)− val∗s . The maximum regret Rmax(x) of solution x is then
defined as Rmax(x) = maxs∈S R(x, s).

The min-max regret optimization problem corresponding to P, denoted by
Min-Max Regret P, consists of finding a solution x minimizing the maximum
regret Rmax(x) which can be stated as:

min
x∈X

Rmax(x) = min
x∈X

max
s∈S

{val(x, s) − val∗s}
When P is a maximization problem, the max-min and min-max regret ver-

sions associated to P are defined similarly.

2.2 Approximation

Let us consider an instance I, of size |I|, of an optimization problem and a
solution x of I. We denote by opt(I) the optimum value of instance I. The
performance ratio of x is r(x) = max

{
val(x)
opt(I) ,

opt(I)
val(x)

}
, and its error is ε(x) =

r(x) − 1.
For a function f , an algorithm is an f(n)-approximation algorithm if, for

any instance I of the problem, it returns a solution x such that r(x) ≤ f(|I|).
An optimization problem has a fully polynomial-time approximation scheme (an
fptas, for short) if, for every constant ε > 0, it admits an (1 + ε)-approximation
algorithm which is polynomial both in the size of the input and in 1/ε. The set
of problems having an fptas is denoted by FPTAS.

We recall the notion of gap-introducing reduction (see, e.g., [1,7]). Let P be a
decision problem and Q a minimization problem. P is gap-introducing reducible
to Q if there exist two functions f and α such that, given an instance I of P, it
is possible to construct in polynomial time an instance I ′ of Q, such that

– if I is a positive instance then opt(I ′) ≤ f(I ′),
– if I is a negative instance then opt(I ′) > α(|I ′|)f(I ′).

If P is an NP -hard problem, and P is gap-introducing reducible to Q, then Q
is not α(n)-approximable if P 	= NP.

865

2.3 Multi-objective Optimization

It is natural to consider scenarios as criteria (or objective functions) and to inves-
tigate relationships between min-max (regret) and multi-objective optimization,
when it is usually assumed that the number of criteria is a constant.

The multi-objective version associated to P ∈ C, denoted by Multi-objec-
tive P, has for input k objective functions (or criteria) where the hth objective
function has coefficients ch

1 , . . . , ch
n. We denote by val(x, h) =

∑n
i=1 ch

i xi the
value of solution x ∈ X on criterion h, and assume w.l.o.g. that all criteria are
to be minimized. Given two feasible solutions x and y, we say that y dominates
x if val(y, h) ≤ val(x, h) for h = 1, . . . , k with at least one strict inequality. The
problem consists of finding the set E of efficient solutions. A feasible solution x
is efficient if there is no other feasible solution y that dominates x. In general
Multi-objective P is intractable in the sense that it admits instances for which
the size of E is exponential in the size of the input. A set F of feasible solutions is
called an f(n)-approximation of the set of efficient solutions if, for every efficient
solution x, F contains a feasible solution y such that val(y, h) ≤ f(n)val(x, h)
for each criterion h = 1, . . . , k. An algorithm is an f(n)-approximation algorithm
for a multi-objective problem, if for any instance I of the problem it returns an
f(n)-approximation of the set of efficient solutions. A multi-objective problem
has an fptas if, for every constant ε > 0, there exists an (1 + ε)-approximation
algorithm for the set of efficient solutions which is polynomial both in the size
of the input and in 1/ε.

3 Bounded Number of Scenarios
3.1 Min-max Problems

Consider a minimization problem P. It is easy to see that at least one optimal
solution for Min-Max P is necessarily an efficient solution. Indeed, if x ∈ X
dominates y ∈ X then maxs∈S val(x, s) ≤ maxs∈S val(y, s). Therefore, we obtain
an optimal solution for Min-Max P by taking, among the efficient solutions,
one that has a minimum maxs∈S val(x, s). Observe, however, that if Min-Max
P admits several optimal solutions, some of them may not be efficient, but at
least one is efficient.

Theorem 1. For any function f : IN → (1,∞), if Multi-objective P has a
polynomial-time f(n)-approximation algorithm, then Min-Max P has a polyno-
mial-time f(n)-approximation algorithm.

Proof. Let F be an f(n)-approximation of the set of efficient solutions. Since at
least one optimal solution x∗ for Min-Max P is efficient, there exists a solution
y ∈ F such that val(y, s) ≤ f(n)val(x∗, s), for s ∈ S. Consider among the set
F a solution z that has a minimum maxs∈S val(z, s). Thus, maxs∈S val(z, s) ≤
maxs∈S val(y, s) ≤ maxs∈S f(n)val(x∗, s) = f(n)opt(I). �

Corollary 1. For a bounded number of scenarios, Min-Max Shortest Path,
Min-Max Spanning Tree, and Max-Min Knapsack are in FPTAS.

Approximation Complexity of min-max (Regret) Versions

866 H. Aissi, C. Bazgan, and D. Vanderpooten

Proof. For a bounded number of criteria, multi-objective versions of shortest
path, minimum spanning tree, and knapsack problems, have an fptas as shown
by Papadimitriou and Yannakakis in [5]. �

3.2 Min-max Regret Problems

General Results
As for min-max, at least one optimal solution for Min-Max Regret P is neces-
sarily an efficient solution for Multi-objective P. Indeed, if x ∈ X dominates
y ∈ X then val(x, s) ≤ val(y, s), for each s ∈ S, and thus Rmax(x) ≤ Rmax(y).
Therefore, we obtain an optimal solution for Min-Max Regret P by taking,
among the efficient solutions, a solution x that has a minimum Rmax(x). Unfor-
tunately, given F an f(n)-approximation of the set of efficient solutions, a solu-
tion x ∈ F with a minimum Rmax(x) is not necessarily an f(n)-approximation
for the optimum value since the minimum maximum regret could be very small
compared with the error that was allowed in F .

The following result deals with problems whose feasible solutions have a fixed
size. In this context, we need to consider instances where some coefficients are
negative but such that any feasible solution has a non-negative value. For an
optimization problem P, we denote by P ′ the extension of P to these instances.

Theorem 2. For any polynomial-time solvable minimization problem P whose
feasible solutions have a fixed size and for any function f : IN → (1,∞), if Min-
Max P ′ has a polynomial-time f(n)-approximation algorithm, then Min-Max
Regret P has a polynomial-time f(n)-approximation algorithm.

Proof. Let t be the size of all feasible solutions of any instance of P. Consider
an instance I of Min-Max Regret P where cs

i is the value of coefficient ci

in scenario s ∈ S. Compute for each scenario s the value val∗s of an optimum
solution. We construct from I an instance I of Min-Max P ′ with the same
number of scenarios, where cs

i = cs
i−

val∗s
t . Remark that some coefficients could be

negative but any feasible solution has a non-negative value. Let val(x, s) denote
the value of solution x in scenario s in I. The sets of the feasible solutions of both
instances are the same and moreover, for any feasible solution x, and for any
scenario s ∈ S, we have R(x, s) = val(x, s) − val∗s = val(x, s) since any feasible
solution is of size t. Therefore, an optimum solution for I is also an optimum
solution for I with opt(I) = opt(I). �

Min-Max Regret Spanning Tree

Corollary 2. Min-Max Regret Spanning Tree, with a bounded number of
scenarios, is in FPTAS.

Proof. Using the algorithm proposed in [4] for computing determinants, one can
solve the exact version of minimum spanning tree and extend the result from [5]
concerning the existence of an fptas for the multi-objective version of minimum
spanning tree to instances with negative coefficients but such that any feasi-
ble solution has a non-negative value. Hence, Min-Max Regret (Spanning
Tree)′ has an fptas. The result follows using Theorem 2. �

867

Min-Max Regret Shortest Path
We construct in the following an fptas for Min-Max Regret Shortest Path
considering the multi-objective problem that consists of enumerating the paths
whose regret vectors are efficient.

Theorem 3. Min-Max Regret Shortest Path, with a bounded number of
scenarios, is in FPTAS.

Proof. We consider first the case when the graph is acyclic and we describe
briefly at the end how to adapt this procedure for graphs with cycles.

Consider an instance I described by a directed acyclic graph G = (V, A),
where V = {1, . . . , n} is such that if (i, j) ∈ A then i < j, and a set S of k
scenarios describing for each arc (i, j) ∈ A its cost in scenario s by cs

ij . Denote
by cij the vector of size k formed by cs

ij , s ∈ S. Let (val∗s)i, s ∈ S, 1 ≤ i ≤ n
be the value of a shortest path in graph G from 1 to i under scenario s and let
(val∗)i be the vector of size k of these values (val∗s)i, s ∈ S.

In the following, we describe firstly a dynamic programming algorithm that
computes at each stage i, 1 ≤ i ≤ n, the set Ri of efficient vectors of regrets
for paths from 1 to i, for each scenario s ∈ S. Consider arc (i, j) ∈ A and let
Pi be a path in G from 1 to i of regret ri

s = val(Pi, s) − (val∗s)i, s ∈ S. Denote
by Pj the path constructed from Pi by adding arc (i, j). The regret of Pj is
rj
s = val(Pi, s)+ cs

ij − (val∗s)j = ri
s +(val∗s)i + cs

ij − (val∗s)j , s ∈ S. The algorithm
starts by initializing R1 = {(0, . . . , 0)}, where (0, . . . , 0) is a vector of size k and
for 2 ≤ j ≤ n let

Rj = Mini∈Γ−1(j){ri + (val∗)i + cij − (val∗)j : ri ∈ Ri}
where the operator ”Min” preserves the efficient vectors.

Observe that, for 2 ≤ j ≤ n, Rj , which contains all efficient regret vectors
for paths from 1 to j, necessarily contains one optimal vector corresponding
to a min-max regret shortest path from 1 to j. We also point out that, for
this algorithm as well as for the following approximation algorithm, any path
of interest can be obtained using standard bookkeeping techniques that do not
affect the complexity of these algorithms.

Our approximation algorithm is a dynamic programming procedure com-
bined with a trimming of the states depending on an accepted error ε > 0. In
this procedure, define set T 1 = {(0, . . . , 0)}, and sets U j , T j for 2 ≤ j ≤ n as
follows

U j = ∪i∈Γ−1(j){ri + (val∗)i + cij − (val∗)j : ri ∈ T i},
T j = Red(U j), where Red is an operator satisfying the following property

∀ r ∈ U j , ∃ r̄ ∈ T j : r̄ ≤ r(1 + ε)
1

n−1

where, given two vectors r′, r′′ of size |S|, we have r′ ≤ r′′ if and only if r′s ≤ r′′s ,
∀s ∈ S.

In the following, we prove by induction on j the proposition

P (j) : ∀ r ∈ Rj , ∃ r̃ ∈ T j such that r̃ ≤ r(1 + ε)
j−1
n−1

Approximation Complexity of min-max (Regret) Versions

868 H. Aissi, C. Bazgan, and D. Vanderpooten

Obviously, proposition P (1) is true. Supposing now that P (i) is true for
i < j, we show that P (j) is true. Consider r ∈ Rj . Then there exists i < j
such that (i, j) ∈ A and r′ ∈ Ri such that r = r′ + (val∗)i + cij − (val∗)j . Since
(val∗)i + cij ≥ (val∗)j , we have r ≥ r′. Using the induction hypothesis for i,
there exists r̃ ∈ T i such that r̃ ≤ r′(1 + ε)

i−1
n−1 . Since r̃ ∈ T i and (i, j) ∈ A, we

have r̃ + (val∗)i + cij − (val∗)j ∈ U j and, using the property satisfied by Red,
there exists r̄ ∈ T j such that:

r̄ ≤ [r̃ + (val∗)i + cij − (val∗)j](1 + ε)
1

n−1 ≤

≤ [r′(1 + ε)
i−1
n−1 + r − r′](1 + ε)

1
n−1 ≤ r(1 + ε)

i
n−1 ≤ r(1 + ε)

j−1
n−1 .

Thus proposition P (j) is true for j = 1, . . . , n. Obviously, there exists r ∈ Rn

such that opt(I) = maxs∈S rs. Applying P (n) to r ∈ Rn, there exists r̃ ∈ Tn

such that r̃ ≤ r(1 + ε) and thus maxs∈S r̃s ≤ (1 + ε)opt(I).
We show in the following how this algorithm can be implemented in poly-

nomial time in |I| and 1
ε . Let cmax = max(i,j)∈A,s∈S cs

ij . For any s ∈ S and
2 ≤ j ≤ n, we have rj

s ≤ (n − 1)cmax. An operator Red can be implemented in
polynomial time using the technique of interval partitioning described in Sahni
[6]. The idea is to partition the domain of values, for each scenario, into subinter-
vals such that the ratio of the extremities is (1+ε)

1
n−1 . Thus on each coordinate

(or scenario) we have � (n−1) log(n−1)cmax

log(1+ε) � subintervals. Operator Red can be
implemented by selecting only one vector in each non-empty hypercube of the
cartesian product of subintervals. Thus |T j | ≤ (n log ncmax

log(1+ε))k, 2 ≤ j ≤ n and

the time complexity of our algorithm is O(n(n log ncmax

log(1+ε))k) that is polynomial in
|I| = |A|k log cmax and 1

ε .

Consider now graphs with cycles. We can generalize the previous procedure,
by defining a dynamic programming scheme with stages �, � = 1, . . . , n − 1,
containing sets of states R�

j which represent the set of efficient vectors of regrets
for paths from 1 to j of length at most �, j = 2, . . . , n. �

Min-Max Regret Knapsack
In this section, we prove that Min-Max Regret Knapsack is not at all ap-
proximable even for two scenarios. For this, we use a reduction from Maximum
Constrained Partition defined in [1].

Maximum Constrained Partition
Input: A finite set A and an integer size s(a) for each a ∈ A, one element a0 ∈ A
and a subset B ⊆ A.
Output: A feasible partition, i.e., a partition (A′, A \ A′), A′ ⊆ A such that∑

a∈A′ s(a) =
∑

a∈A\A′ s(a), with a maximum number of elements from B on
the same side of the partition as a0.

Maximum Constrained Partition was proved not approximable within |A|ε
for some ε > 0 [8], but even deciding the existence of a feasible partition is
NP -hard [2].

869

Theorem 4. For any function f : IN → (1,∞), Min-Max Regret Knapsack
is not f(n)-approximable even for two scenarios, unless P = NP.

Proof. We construct a reduction from Maximum Constrained Partition to
Min-Max Regret Knapsack. Consider an instance I of Maximum Con-
strained Partition characterized by a set A = {a0, a1, . . . , an−1}, a size s(a)
for each a ∈ A, and a subset B ⊆ A. We define an instance I ′ of Min-Max
Regret Knapsack as follows: the number of items is n + 1, the knapsack ca-
pacity is d = 1

2

∑
a∈A s(a), the items weights are wi = s(ai) for i = 0, . . . , n − 1

and wn = d. I ′ contains two scenarios and the values of the n items are de-
fined as follows: v1

0 = n3d, v1
i = 0, for i = 1, . . . , n and v2

i = n2s(ai) + δi, for
i = 0, . . . , n − 1, where δi = 1 if ai ∈ B and δi = 0 otherwise, and v2

n = n2d.
Clearly, the optimum value in the first scenario of I ′ is n3d. If I does not

contain a feasible partition, the optimum value in the second scenario is n2d.
Indeed, candidate optimal solutions are either item n only with value n2d or sub-
sets T of items such that

∑
i∈T s(ai) < d with value n2

∑
i∈T s(ai) +

∑
i∈T δi ≤

n2(d−1)+n < n2d. If I contains a feasible partition, let opt(I) denote its optimal
value and (A′, A \A′) an optimal partition. Suppose that a0 ∈ A′, otherwise we
exchange A′ with A\A′. In this case, the optimum value in the second scenario is
n2d+ opt(I) (the optimal solution is formed by items corresponding to elements
from A′).

If a solution x of I ′ does not contain a0 then Rmax(x) = n3d. Consequently,
any optimal solution x∗ of I ′ must include item a0. If there exists a feasible
partition in I, then we have opt(I ′) = Rmax(x∗) = 0 and opt(I ′) ≥ n2 − n,
otherwise.

Hence, Min-Max Regret Knapsack is not approximable since otherwise,
any polynomial-time approximation algorithm for this problem applied to I ′

could decide if I contains a feasible partition (we could even derive a maximum
constrained partition by selecting for A′ the set of items present in the optimal
solution). �

We conclude this section giving some precisions about the complexity status
of these problems. Pseudo-polynomial time algorithms were given in the case
of a bounded number of scenarios for min-max (max-min) and min-max regret
versions of shortest path, knapsack, and minimum spanning tree on grid graphs
[3]. Our fptas for min-max and min-max regret spanning tree establish also
the existence of pseudo-polynomial time algorithms for these problems. Thus
min-max (max-min) and min-max regret versions of shortest path, minimum
spanning tree and knapsack are weakly NP -hard.

4 Unbounded Number of Scenarios

When the number of scenarios is unbounded, min-max and min-max regret short-
est path as well as min-max spanning tree and max-min knapsack were proved
strongly NP -hard in [3]. We establish the strong NP -hardness of min-max regret
knapsack and min-max regret spanning tree in Theorems 5 and 9 respectively.

Approximation Complexity of min-max (Regret) Versions

870 H. Aissi, C. Bazgan, and D. Vanderpooten

Concerning approximability results, reductions used in [3] for proving the
strong NP -hardness of min-max/min-max regret shortest path, and min-max
spanning tree, which are based on the 3-partition problem, cannot be used to
establish non-approximability results for these problems. Using alternative re-
ductions, we establish such results in Theorems 6-9. On the other hand, the
reduction used in [3] for proving the strong NP -hardness of max-min knapsack
is stronger and can be used to establish non-approximability results. In fact, it is
a gap-introducing reduction from the set covering problem which maps positive
instances into instances with optimum value at least 1 and negative instances
into instances with optimum value 0. Therefore, we can deduce from this re-
duction that Max-Min Knapsack is not f(n)-approximable for any function
f : IN → (1,∞). Finally, regarding Min-Max Regret Knapsack, we know
already that it is not f(n)-approximable for any function f : IN → (1,∞), since
even for two scenarios it is not approximable as shown in Theorem 4.

Now we state and prove the above-mentioned results.

Theorem 5. Min-Max Regret Knapsack, with an unbounded number of
scenarios, is strongly NP-hard.

Proof. We construct a gap-introducing reduction from Vertex Cover. Given
a graph G = (V, E) on n vertices and m edges and a positive integer k, we define
an instance I of Min-Max Regret Knapsack with n items and a set of m
scenarios S = {s1, . . . , sm}. The weights are wi = 1, for any i = 1, . . . , n, the
knapsack capacity is d = k and the value of item i in scenario sj is v

sj

i = 1 if
node i ∈ V is incident to edge j ∈ E, and 0 otherwise.

Observe first that val∗sj
= 2, for all sj ∈ S, which is obtained by taking the

two items corresponding to the extremities of edge j. If G has a vertex cover V ′ of
size at most k then the subset of items x′ corresponding to V ′ has val(x′, sj) ≥ 1,
for any sj ∈ S since edge j is covered by V ′. Thus, Rmax(x′) ≤ 1, which implies
opt(I) ≤ 1.

If G has no vertex cover of size at most k then for any V ′ ⊆ V , |V ′| ≤ k,
there exists sj ∈ S, corresponding to an edge j which is not covered by V ′, such
that the subset of items x′ corresponding to V ′ has val(x′, sj) = 0, and thus
Rmax(x′) = 2, which implies opt(I) = 2.

The existence of a polynomial-time algorithm would allow us to decide for
Vertex Cover in polynomial time. �

Observe that the (2 − ε) non-approximability result that could be derived
from this proof is weaker than the result stated in Theorem 4.

We show in the following a non-approximability result for min-max and min-
max regret versions of shortest path. For this, we use a reduction from Path
With Forbidden Pairs that is known to be NP -hard [2].

Path With Forbidden Pairs
Input: A directed graph G = (V, A), where V = {1, . . . , n}, a collection C =
{(a1, b1), . . . , (at, bt)} of arcs from A.
Question: Is there a path from 1 to n in G containing at most one vertex from
each arc of C ?

871

Theorem 6. Min-Max Shortest Path, with an unbounded number of sce-
narios, is not (2 − ε)-approximable, for any ε > 0, unless P = NP.

Proof. We construct a gap-introducing reduction from Path With Forbidden
Pairs. Let I be an instance of this problem with n vertices and m arcs, and t
arcs in collection C. We construct an instance I ′ of Min-Max Shortest Path
as follows: consider the same graph G = (V, A), a scenario set S = {s1, . . . , st},
and costs of arcs defined for each scenario as

csh
ij =

⎧⎨⎩2 if arc (i, j) corresponds to (ah, bh)
1 if i = ah or j = bh, (i, j) 	= (ah, bh)
0 otherwise

Suppose that I is a positive instance, that is G contains a path p from 1
to n that has at most one extremity from each of the t arcs of C. Then for
any scenario s, we have val(p, s) ≤ 1. Then maxs∈S val(p, s) ≤ 1, which implies
opt(I ′) ≤ 1.

If I is a negative instance, then every path p from 1 to n in G contains either
an arc or both extremities of an arc (ah, bh) from C. Then val(p, sh) = 2 in both
cases. Thus maxs∈S val(p, s) = 2, which implies opt(I ′) = 2. �

Theorem 7. Min-Max Regret Shortest Path, with an unbounded number
of scenarios, is not (2 − ε)-approximable, for any ε > 0, unless P = NP.

Proof. As for the previous theorem, we construct a similar gap-introducing re-
duction from Path With Forbidden Pairs. Let I be an instance of this
problem with n vertices and m arcs, and t arcs in the collection C. We con-
struct an instance I ′′ of Min-Max Regret Shortest Path as follows: con-
sider graph G′ = (V ′, A′), where V ′ = V ∪{n+1, . . . , n+ |S|}, A′ = A∪{(1, i) :
i = n + 1, . . . , n + |S|} ∪ {(i, n) : i = n + 1, . . . , n + |S|}, and a scenario set
S = {s1, . . . , st}. The costs of arcs in A are defined for each scenario s ∈ S as in
the previous theorem, and for any s ∈ S

cs
1,n+i = cs

n+i,n =
{

0 if s = si

1 if s 	= si

Obviously, val∗si
= 0 since the path (1, n + i, n) has value 0 on scenario si.

As previously, we can prove that if I is a positive instance, then opt(I ′′) ≤ 1,
otherwise opt(I ′′) = 2. �

We show in the following non-approximability results for min-max and min-
max regret versions of spanning tree. The first result uses a reduction from Min-
imum Degree Spanning Tree that is known to be not (3

2 − ε)-approximable,
for any ε > 0 [2].

Minimum Degree Spanning Tree
Input: A graph G = (V,E).
Output: A spanning tree such that its maximum degree is minimum.

Theorem 8. Min-Max Spanning Tree, with an unbounded number of sce-
narios, is not (3

2 − ε)-approximable, for any ε > 0, unless P = NP.

Approximation Complexity of min-max (Regret) Versions

872 H. Aissi, C. Bazgan, and D. Vanderpooten

Proof. We construct an approximation preserving reduction from Minimum De-
gree Spanning Tree. Let G = (V,E) be an instance of this problem on n
vertices. We construct an instance of Min-Max Spanning Tree on the same
graph G, with a set of n scenarios S = {s1, . . . , sn}, and costs of edges in sce-
nario sh defined by csh

ij = 1 if h = i or h = j and 0, otherwise. Then for any
spanning tree T of G, the degree of i ∈ V in T is the same as val(T, si). Thus,
the maximum degree of T , that is maxi∈V dT (i), coincides with the maximum
value of T over all scenarios from S, that is maxs∈S val(T, s). �

Theorem 9. Min-Max Regret Spanning Tree, with an unbounded number
of scenarios, is strongly NP-hard. Moreover, it is not (3

2 − ε)-approximable, for
any ε > 0, unless P = NP.

Proof. We construct a gap-introducing reduction from 3SAT. Given a set U =
{u1, . . . , un} of boolean variables and a formula φ containing the clauses {C1, . . . ,
Cm} over U such that each clause depends on exactly 3 variables, we construct an
instance I of Min-Max Regret Spanning Tree defined on a graph G = (V, E)
where V = {1, . . . , n} ∪ {1, . . . , n} ∪ {n + 1, . . . , 3n}. Vertices i, i, correspond to
variable ui, i = 1, . . . , n. Edge set is E = {(i, n + i), (i, 2n + i), (i, n + i), (i, 2n +
i), (i, i) : i = 1, . . . , n} ∪ {(i, i+1) : i = 1, . . . , n− 1}. Scenario set S = S1 ∪S2 ∪
S3 where S1 = {s1, . . . , sm} corresponds to clauses and S2 = {s′n+1, . . . , s

′
3n},

S3 = {s′1, . . . , s′n, s′
1
, . . . , s′n} correspond to vertices of G. The costs of edges in

scenario sj ∈ S1 are defined as follows: c
sj

i,2n+i = 1 if ui ∈ Cj , c
sj

i,2n+i
= 1 if

ui ∈ Cj , and 0 otherwise. The values of edges in scenario s′j ∈ S2 are defined

as follows: c
s′

n+i

i,n+i = c
s′

n+i

i,n+i
= n, c

s′
2n+i

i,2n+i = c
s′
2n+i

i,2n+i
= n, for every i = 1, . . . , n

and 0 otherwise. The values of edges in scenario s′j ∈ S3 are defined as follows:

c
s′

i
i,n+i = c

s′
i

i,2n+i = c
s′

i

ii
= 2, c

s′
i

i,n+i
= c

s′
i

i,2n+i
= c

s′
i

ii
= 2, for every i = 1, . . . , n and

0 otherwise.
We compute in the following the optimum costs corresponding to each sce-

nario. For any scenario sj ∈ S1, consider the spanning tree containing {(i, i+1) :
i = 1, . . . , n−1} and {(i, n+ i), (i, 2n+ i), (i, i)}, for every i such that ui ∈ Cj , or
{(i, 2n+i), (i, n+i), (i, i)}, otherwise. Obviously, this tree has value 0 in scenario
sj . For any scenario s′n+i ∈ S2, val∗s′

n+i
= n since any spanning tree contains one

of the edges (i, n + i), (i, n + i). Similarly, val∗s′
2n+i

= n, for all s′2n+i ∈ S2. For
any scenario s′i ∈ S3, val∗s′

i
= 2 since any spanning tree contains at least one of

the edges (i, n + i), (i, 2n + i), (i, i). Similarly, val∗s′
i

= 2, for all s′
i
∈ S3.

A spanning tree in G necessarily contains edges (i, i + 1), i = 1, . . . , n −
1. We show in the following that every spanning tree T that contains edges
(i, i), (i, n+ i), (i, 2n+ i) or edges (i, i), (i, 2n+ i), (i, n+ i) for every i = 1, . . . , n,
has Rmax(T) ≤ 3. Moreover, any other spanning tree T ′ in G has Rmax(T ′) ≥ 4.
We have val(T, sj) ≤ 3, for any sj ∈ S1, val(T, s′j) = n, for any s′j ∈ S2, and
val(T, s′j) = 4, for any s′j ∈ S3. Thus, Rmax(T) ≤ 3. If T ′ contains both edges
(i, n + i), (i, n + i) for some i, then val(T ′, s′n+i) = 2n and thus Rmax(T ′) = n.
We can also see that if a spanning tree T ′ contains both edges (i, 2n+ i), (i, 2n+

873

i) for some i, then val(T ′, s′2n+i) = 2n and thus Rmax(T ′) = n. Consider in
the following spanning trees T ′ that contain edges (i, i), i = 1, . . . , n. If T ′

contains both edges (i, n+ i), (i, 2n+ i) for some i, then val(T ′, s′i) = 6 and thus
Rmax(T ′) = 4. We can see also that if T ′ contains both edges (i, n+ i), (i, 2n+ i)
for some i, then val(T ′, s′

i
) = 6 and thus Rmax(T ′) = 4. Thus an optimum

solution in G is a spanning tree T that contains edges (i, i + 1), i = 1, . . . , n− 1,
edges (i, i), i = 1, . . . , n, and, for every i = 1, . . . , n, it contains either edges
(i, n + i), (i, 2n + i) or edges (i, 2n + i), (i, n + i). Such spanning trees are in one-
to-one correspondence with assignments of variables u1, . . . , un. More precisely,
T contains for some i edges (i, n + i), (i, 2n + i) if and only if ui takes value 1,
and it contains edges (i, 2n + i), (i, n + i) if and only if ui takes value 0. If φ is
satisfiable, then there exists an assignment x for u1, . . . , un that satisfies each
clause. Then, consider the spanning tree T associated to x. Every clause Cj is
satisfied by x. Therefore, there exists ui ∈ Cj , such that ui has value 1 in x or
ui ∈ Cj , such that ui has value 0 in x. In both cases, val(T, sj) ≤ 2, for any
sj ∈ S1. Tree T has also val(T, s) = n, for any s ∈ S2 and val(T, s) = 4, for any
s ∈ S3, and thus, Rmax(T) = 2, which implies opt(I) = 2.

Suppose now that φ is not satisfiable, that is for any assignment x, there exists
a clause Cj that is not satisfied. Therefore, for any spanning tree T associated to
x, we have val(T, sj) = 3, and thus Rmax(T) = 3, which implies opt(I) = 3. �

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and approximation. Combinatorial optimization problems
and their approximability properties. Springer, 1999.

2. M. Garey and D. Johnson. Computer and Intractability: A Guide to the theory of
NP-completeness. Freeman, 1979.

3. P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer
Academic Publishers, Boston, 1997.

4. M. Mahajan and V. Vinay. Determinants: combinatorics, algorithms, and com-
plexity. In Proceedings of the Eigth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 730–738, New Orleans, USA, 1997.

5. C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In IEEE Symposium on Foundations of Computer
Science, pages 86–92, 2000.

6. S. Sahni. General techniques for combinatorial approximation. Operations Research,
25(6):920–936, 1977.

7. V. V. Vazirani. Approximation Algorithms. Springer, 2001.
8. D. Zuckerman. NP-complete problems have a version that’s hard to approximate.

In Proceeding 8th Annual Conference on Structure in Complexity Theory, pages
305–312, 1993.

Approximation Complexity of min-max (Regret) Versions

Robust Approximate Zeros�

(Extended Abstract)

Vikram Sharma, Zilin Du, and Chee K. Yap

Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012, USA

{sharma, zilin, yap}@cs.nyu.edu

Abstract. Smale’s notion of an approximate zero of an analytic func-
tion f : C → C is extended to take into account the errors incurred in
the evaluation of the Newton operator. Call this stronger notion a ro-
bust approximate zero. We develop a corresponding robust point
estimate for such zeros: we prove that if z0 ∈ C satisfies α(f, z0) < 0.02
then z0 is a robust approximate zero, with the associated zero z∗ lying in
the closed disc B(z0,

0.07
γ(f,z0)

). Here α(f, z), γ(f, z) are standard functions
in point estimates.

Suppose f(z) is an L-bit integer square-free polynomial of degree d.
Using our new algorithm, we can compute an n-bit absolute approxima-
tion of z∗ ∈ IR starting from a bigfloat z0, in time O[dM(n + d2(L +
lg d) lg(n + L))], where M(n) is the complexity of multiplying n-bit in-
tegers.

1 Introduction

The Newton-Raphson method has been studied extensively in many settings.
Given an analytic function f : C → C and a point z0 ∈ C, we consider the
iteration zi+1 = Nf(zi) for i ≥ 0 where Nf (z) := z − f(z)/f ′(z). This sequence
is well-defined provided f ′(zi) 	= 0 for all i ≥ 0. Kantorovich [KA64] developed
convergence criteria for (zi)i≥0 that are applicable when points in an entire
neighborhood of z0 satisfy certain bounds. Yamamoto [Yam85, Yam86] gives
sharp bounds of this sort. A basic technique in Kantorovich’s approach is the
use of majorant sequences. Unfortunately, Kantorovich’s criteria are sometimes
inconvenient to use. Smale [Sma86, BCSS98] developed convergence criteria that
are applicable to a single point z0 ∈ C. Such criteria are called point estimates.
Following [BCSS98–p. 155], call z0 an approximate zero of f(z) if the sequence
zi+1 = Nf (zi) is well defined for all natural numbers i and there exists a root z∗

of f(z) such that for all i ≥ 0,

|zi − z∗| ≤ 21−2i |z0 − z∗|;
� This research is supported by NSF Grant #CCF-043836. The work of Yap is partially

carried out at the Korea Institute for Advanced Study (KIAS).

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 874–886, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Robust Approximate Zeros 875

z∗ is called the associated zero. One such point estimate [DF95] says that if
α(f, z0) < 3− 2

√
2 ∼ 0.17157 then z0 is an approximate zero. Here α(f, z) is an

easily computed function defined in the next Section.
Variations, improvements and extensions are known. Kim [Kim86, Kim88] de-

rived comparable point estimates for slightly different1 notions of approximate
zeros than the one defined above. Shub and Smale [SS85, SS93] and Malajovich
[Mal93, Mal94] have developed such criteria for multivariate Newton methods in
affine and projective spaces. Malajovich further extended this to pseudo New-
ton iteration, i.e., Newton iteration using the Moore-Penrose inverse. Wang and
Zhao [DF95] improved Smale’s point estimate using Kantorovich’s approach,
and extended it to the Weierstrass method [Dur60, Ker66]. Petkovic and oth-
ers [PCT95, PHI98, Bat98] also obtained point estimates for the Weierstrass
method.

The above results are developed in a setting where the operations are as-
sumed to be exact, i.e., Nf(z) can be computed without error. Even when this
is possible, such as the case where z is rational and f(z) an integer polyno-
mial, it may be undesirable because of inefficiency. In practice, the zi’s will
be represented by floating point numbers. In this paper, we assume the use of
bigfloats, i.e., floating point numbers whose exponent and mantissas are arbi-
trary precision integers. Since Nf (z) involves division, the use of approximation
is essential in bigfloat computation. Indeed, Newton iteration is uniquely suited
for approximation because of its known self-correcting behavior. Bigfloat arith-
metic is basically the multiple-precision arithmetic of Brent [Bre76a, Bre76b].
The fundamental results in this model have been achieved by Brent 30 years
ago; but we shall point out new issues in this paper.

Although there is a large literature on the error analysis of Newton iteration
[Ypm83, Ypm84, Tis01, Hig96], these results do not address the point estimate
setting. To our best knowledge, the only such results are by Malajovich [Mal94].
There are several differences between our work and Malajovich’s.

– We focus on the univariate case while Malajovich address the more general
case of multi-variate Newton. Consequently, our complexity bounds for the
univariate case are much stronger than Malajovich’s bound (when special-
ized to the univariate case). Indeed, Malajovich’s complexity statements (see
[Mal93–p. 2, Main Theorem and p. 79-80] or [Mal94–p. 2, and p. 8, Theorem
10]) contain terms that have no explicit complexity bounds.

– Malajovich assumes that each Newton step is computed to a fixed precision
s. In contrast, we follow Brent’s approach of doubling the precision at each
iteration. This has the advantage that the overall complexity is essentially
determined by the last iteration step (see [Bre76a, Bre76b]).

– Finally, Malajovich’s robust point estimate involves an extra parameter s
(the precision of the bigfloat computations steps above). In particular, he
shows that z0 and s should satisfy α(f, z0) < 0.05 and γ(f, z0)s < 1/384.
Since s has to be at least the precision with which we want to approxi-

1 For that matter, Smale has used more than one variant in his papers.

876 V. Sharma, Z. Du, and C.K. Yap

mate the zero, this criterion imposes additional constraints on the proce-
dure for finding z0. In contrast, our robust point estimate only requires
α(f, z0) ≤ 0.02, which is independent of the desired final precision. Our
approach guarantees convergence to the root, unlike Malajovich’s approach
where the distance between the iterates and the root can only be bounded
above by 2−6s.

Error Notation. If z, z̃ ∈ C and t ∈ IR, then z̃ is an absolute t-bit approxi-
mation of z if |z − z̃| ≤ 2−t. Similarly, z̃ is a relative t-bit approximation of
z if |z − z̃| ≤ 2−t|z|. We use two convenient notations for error bounds: we shall
write

[z]t (resp., 〈z〉t) (1)

for any relative (resp., absolute) t-bit approximation of z. Furthermore, the sym-
bol “±” in this paper has a specialized meaning: when we write “x±y”, it stands
for some number x + θy where θ satisfies |θ| ≤ 1. E.g., y = x± ε is equivalent to
y ∈ [x − |ε|, x + |ε|].

BigFloat Model of Computation. As in Brent [Bre76b, Bre76a], we use bigfloat
numbers to approximate real or complex numbers. If f is an integer, write 〈f〉 for
the value f2−�lg |f |; thus 〈f〉 ∈ [1, 2). A (binary) bigfloat is a rational number
of the form x = n2m where n, m ∈ ZZ. We say x has precision t if |n| < 2t. We
represent x = n2m by a pair (e, f) of binary integers. Given an arbitrary pair
(e, f) the associated bigfloat number, denoted 〈e, f〉, is

〈e, f〉 = f2e−�lg f = 〈f〉2e.

Thus n2m ≡ 〈e, f〉, where f = n and e = m + �lg n� is the exponent. The bit
size of a representation (e, f) is the pair (1, 1) when f = 0; (1, lg(2|f |)), when
e = 0; otherwise, (lg(2|e|), lg(2|f |)), where lg = log2.

We distinguish two modes of using bigfloats. In the weak (bigfloat) mode,
one fixes some precision bound which is used by all the bigfloats in a compu-
tation. Thus a weak mode computation can be regarded as a generalization of
the IEEE model implemented in hardware in modern computers. Malajovich’s
algorithms operate in this weak mode. In the strong (bigfloat) mode, we
use bigfloats without a priori precision bounds, and the algorithms can actively
manage the precision of each computation step. Brent’s complexity results (as
well as ours) are achieved in this strong mode. Although our complexity model
is essentially Brent’s, our treatment deviates from Brent in three ways:

– Brent’s complexity analysis applies to floating point numbers in a bounded
range. For a floating point number 〈e, f〉, “bounded range” means |e| = O(1).
For unbounded floating point numbers, our complexity bounds depends on
lg(2+|e|). This dependence can range from polynomial (e.g. Lemma 7 below)
to exponential (e.g., Lemma 8 below), and it may not be obvious when
this happens. Our complexity results apply to unbounded bigfloats. See also
[CSY97].

Robust Approximate Zeros 877

– Brent uses the big-Oh notation in two ways: in error analysis and in complex-
ity estimates. Unfortunately, when implementing such algorithms, a big-Oh
error analysis does not tell us important constants needed in various places
of an algorithm. Therefore, we will use non-asymptotic error analysis
although our complexity analysis will continue to use asymptotics.

– Finally, our complexity model is based on Schönhage’s pointer machine
model [Sch80], rather than the standard multi-tape Turing machines. This
is because Turing machines are not robust enough for our complexity esti-
mates involving unbounded bigfloats. E.g., if a bigfloat 〈e, f〉 is represented
in the obvious way on a Turing tape, we cannot read f without scanning
e. This causes unbounded distortion of the complexity of basic operations
such as truncation. Other conventions also have problems. Note that for
pointer machines, we can multiply n-bit numbers in time M(n) = O(n). We
expressed complexity bounds in terms of M(n) so that even if suboptimal
multiplication algorithms are used, we can guage their effects on complexity.

Contributions of This Paper. Our main results are as follows:

1. In Section 2 we introduce a notion of robust approximate zero of an ana-
lytic function f : C → C and give a corresponding robust point estimate
for z0 ∈ C to be a such a zero.

2. Section 3 derives explicit bounds on the precision necessary to carry out the
steps of a robust Newton iteration.

3. In Section 5, we give explicit complexity bounds for approximating a zero of a
square-free integer polynomial starting from a robust approximate zero. This
can be viewed as an extension of Brent’s complexity bound (for algebraic
roots) to the case of unbounded bigfloats.

4. Our introduction of non-asymptotic error analysis for bigfloat computation
is motivated by implementations needs. In the full version of this paper, im-
plementations and comparisons in Core Library [KLPY99] will be reported.

The Core Library [KLPY99], and also LEDA [BFMS99, MS01], provides a
number system with guaranteed a priori precision bounds, unlike the guaranteed
a posteriori precision bounds of interval analysis. Furthermore, this precision
guarantee is global in nature, as the bound is relative to an arbitrary sequence
of computational steps. In contrast, conventional IEEE arithmetic gives local
precision guarantees (being relative to each operation). See [Yap04] for discussion
of such “guaranteed precision mode” of computation.

2 Robust Newton Iteration

Let f : C → C be any analytic function with a simple root at z∗. We may assume
f is fixed in this paper and Nf (z) = z− f(z)

f ′(z) is its Newton iterator. Given z ∈ C
and C ∈ IR, let

Nf,i,C(z) := 〈Nf (z)〉2i+C . (2)

878 V. Sharma, Z. Du, and C.K. Yap

Equation (2) uses our error notation of (1): this means |Nf,i,C(z) − Nf (z)| ≤
2−2i−C . For any z0 ∈ C and C ∈ IR, a robust iteration sequence of z0

(relative to C and f) is an infinite sequence

(z̃i)i≥0 (3)

such that z̃0 = z0, and for all i ≥ 1,

z̃i = Nf,i,C(z̃i−1). (4)

We assume each z̃i ∈ C ∪ {∞}, and the relation (4) must be understood in the
following way: if z̃i−1 = ∞ or z̃i−1 is a critical point of f (i.e., f ′(z̃i−1) = 0),
then z̃i = ∞. We call the iteration sequence finite if each z̃i 	= ∞.

Our key definition is as follows: z0 is a robust approximate zero of f if,
there exists a zero z∗ of f , such that for all C satisfying

2−C ≤ |z0 − z∗|, (5)

whenever (z̃i)i≥0 is any robust iteration sequence of z0 (relative to C and f),
then the sequence is finite and for all i ≥ 0,

|z̃i − z∗| ≤ 21−2i |z0 − z∗|. (6)

Call z∗ the associated zero of z0.
We now recall several functions used in Smale’s analysis of approximate zeros:

– γ(f, z) := supk≥2

∣∣∣ f(k)(z)
k!f ′(z)

∣∣∣1/(k−1)

.

– β(f, z) :=
∣∣∣ f(z)
f ′(z)

∣∣∣.
– α(f, z) :=β(f, z)γ(f, z).
– ψ(x) := 1 − 4x + 2x2. The roots of ψ are (2 ±

√
2)/2.

– u(z, w) := γ(f, z)|z − w|. For the special case where z = z∗, a root of f , we
use the succinct notation uw.

Smale et al. [BCSS98–p. 156, Thm. 1] have shown the following:

Proposition 1. If z∗ is a simple zero of f(z), then z0 ∈ C is an approximate
zero of f with associated zero z∗ if

|z0 − z∗| ≤ 3 −
√

7
2γ(f, z∗)

.

Here is our robust analogue:

Theorem 1. If z∗ is a simple zero of f(z), then z0 ∈ C is a robust approximate
zero of f with associated zero z∗ if

|z0 − z∗| ≤ 4 −
√

14
2γ(f, z∗)

.

Robust Approximate Zeros 879

Proof. Let uz = γ(f, z∗)|z − z∗| as above. We prove (6) by induction on i ≥ 0.
The result is clearly true for i = 0. Inductively, assume that z̃i satisfies (6). Then
uz̃i

≤ 21−2i

uz0. Since uz0 ≤ 4−√
14

2 , it is smaller than the both roots of ψ(x).
Hence

ψ(uz̃i
) ≥ ψ(uz0). (7)

Thus,
|z̃i+1 − z∗| = |Nf,i+1,C(z̃i) − z∗|

≤ |Nf (z̃i) − z∗| + 2−2i+1 |z0 − z∗| (from (5)) .

From [BCSS98–p. 157, Prop. 1] we further get

|Nf (z̃i) − z∗| ≤ γ(f,z∗)
ψ(u

z̃i
) |z̃i − z∗|2

≤ γ(f,z∗)
ψ(uz0) |z̃i − z∗|2 (from (7)) .

From the inductive hypothesis we thus get,

|z̃i+1 − z∗| ≤ γ(f,z∗)
ψ(uz0) 22−2i+1 |z0 − z∗|2 + 2−2i+1 |z0 − z∗|

= uz0
ψ(uz0)2

2−2i+1 |z0 − z∗|21−2i+1 |z0 − z∗|
≤ 21−2i+1 |z0 − z∗|,

since the assumption uz0 ≤ 4−√
14

2 implies uz0
ψ(uz0) ≤ 1

4 . Q.E.D.

Let the continuous function Γ : S → S be a contraction map on S ⊆ C
with contraction constant K < 1; this implies that there is a unique fixed point
z∗ ∈ S of Γ such that for all z ∈ S, the sequence (Γ n(z))n≥0 converges to z∗.
We consider the inexact analogue of Γ n(z):

Lemma 1. Let Γi,C(z) := 〈Γ (z)〉i+C (for C ∈ IR and i ≥ 0). If C ≥ − lg(|z −
z∗|), then the sequence

z̃i+1 := Γi+1,C(z̃i),

starting from z̃0 := z0, converges to z∗ ∈ S, assuming z̃i ∈ S for each i.

The following shows that under suitable restrictions on z0 the robust iteration
sequence defined in (4) converges to a root z∗ of f . Let B(z, R) denote the closed
disc with center z ∈ C and radius R.

Lemma 2. Suppose there exist constants α0, u0 and C0 := 2(α0+u0)
ψ(u0)2

which sat-
isfy the following criteria:

1. 0 ≤ u0 < 1 − 1/
√

2,
2. C0 < 3

4 ,
3. α0 ≤ (3

4 − C0)u0, and

4. u0
ψ(u0)(1−u0)

≤ 4−√
14

2 .

880 V. Sharma, Z. Du, and C.K. Yap

If z0 ∈ C is such that α(f, z0) < α0 we have the following:

(a) Nf is a contraction map on B(z0,
u0

γ(f,z0)
) with contraction constant C0.

(b) z0 is a robust approximate zero of f , the associated zero z∗ ∈ B(z0,
u0

γ(f,z0)
).

One choice of constants that satisfy the above criteria is u0 = 0.07 and
α0 = 0.02.

Theorem 2 (Point estimate for robust approximate zero). Any z0 ∈ C
for which α(f, z0) < 0.02 is a robust approximate zero of f , with the associated
zero z∗ ∈ B(z0,

0.07
γ(f,z0)

).

3 Approximate Evaluation of Newton Iterator

Let f(z) be a square-free integer polynomial. In this section we determine the
absolute precision with which to evaluate f and f ′, and the relative precision
with which to carry out the division at each iteration step; let these be ei, Ei,
and �i, respectively.

We will have recourse to the next two lemmas which apply to an analytic f .

Lemma 3. Let u = γ(f, z)|z − w| < 1 − 1√
2
. Then we have

ψ(u)
(1 − u)2

≤ |f ′(w)|
|f ′(z)| ≤ 1

(1 − u)2
.

Lemma 4. Let z be such that uz = γ(f, z∗)|z − z∗| < 1, where z∗ is a simple
root of f . Then

|z − z∗|(1 − 2uz)
1 − uz

≤
∣∣∣∣ f(z)
f ′(z∗)

∣∣∣∣ ≤ |z − z∗|
1 − uz

.

Let z0 ∈ C such that α(f, z0) < 0.02; from Thm. 2 we know that z0 is a
robust approximate zero with an associated root z∗ and uz0 ≤ 4−√

14
2 , and hence

ψ(uz0) ≥ 1
2 . Let (z̃i)i≥0 be a robust approximate sequence starting from z0,

relative to a constant C satisfying (5). Writing δi = z̃i − z∗, we know |δi| ≤
2−2i+1|δ0|.

The main result of this section is:

Theorem 3. To compute an absolute approximation 〈Nf (z̃i)〉2i+C it suffices to

(i) evaluate f(z̃i) to (κ + 2i+1 + 4 + C) absolute bits,
(ii) evaluate f ′(z̃i) to (κ′ + 2i + 3 + C) absolute bits,
(iii) and perform the division in Nf to (κ′′ + 2i + 1 + C) relative bits.

Here, κ ≥ − lg |f ′(z0)|, κ′ ≥ − lg |f ′(z0)|γ(f, z0) and κ′′ ≥ 3 − lg γ(f, z0).

Robust Approximate Zeros 881

4 Estimating the Distance between an Approximate Zero
and its Associated Root

Let z0 be a robust approximate zero with the associated zero z∗. To construct a
robust iteration sequence (4) converging to z∗, we need to determine a C ∈ ZZ
satisfying (5), or equivalently, C ≥ − lg |z0 − z∗|. In this section we compute
tight bounds on |z0 − z∗| where z0 is an approximate zero (not just a robust
approximate zero). We assume that α(f, z0) < 0.03. Then from [BCSS98–p. 160,
Thm. 2] and [BCSS98–p. 166, Remark 6], we know that z0 is an approximate
zero satisfying Prop. 1.

We can use an inequality from Kalantari [Kal05]: for any z0 ∈ C,

|z0 − z∗| ≥ 1
2γ2(f, z0)

(8)

where

γ2(f, z0) := sup
k≥1

∣∣∣∣f (k)(z0)
k!f(z0)

∣∣∣∣1/k

. (9)

Hence it suffices to choose any C satisfying

C ≥ 1 + lg γ2(f, z0). (10)

The Kalantari function γ2(f, z0) is easily approximated in practice.
Since C controls the number of bits used in our robust iteration, it is desirable

for C to be as small as possible. We pose the problem of computing C up to
some additive constant K > 0. More precisely, compute any C which satisfies

0 ≤ C + lg |z0 − z∗| ≤ K. (11)

Kalantari’s estimate (10) is not known to satisfy (11). In short, we want a tight
estimate of the distance |z0−z∗| between z0 and its associated zero z∗. We could
use Turan’s proximity test [Pan97] to approximate the minimum and maximum
distances from any complex number to the zeros of a polynomial f(z) within
a constant factor, at the cost of O(d lg d) arithmetic operations, where d =
deg f(z). We do not use this test because it is limited to polynomials, and also
it does not leverage the fact that z0 is an approximate zero.

Our solution exploits the property of approximate zeros, based on a tight
relationship between δ :=

∣∣∣ f(z0)
f ′(z0)

∣∣∣ (= β(z0)) and |z0 − z∗|:

Lemma 5. Let z ∈ C satisfy u = γ(f, z∗)|z−z∗| < 1− 1√
2
, where z∗ is a simple

root of f . Then

|z − z∗|(1 − 2u)(1 − u) ≤
∣∣∣∣ f(z)
f ′(z)

∣∣∣∣ ≤ |z − z∗|(1 − u)
ψ(u)

.

882 V. Sharma, Z. Du, and C.K. Yap

We now describe our algorithm:

Algorithm D
Input: f, z0 where α(f, z0) < 0.03

Output: n such that |f(z0)/f ′(z0)| = C′ · 2−n

for some 0.5 ≤ C′ ≤ 3.
1 n = 0.
2 Do

3 w ←
〈

f(z0)
f′(z0)

〉
n

4 n ← n + 1

5 while (|w| ≤ 2−n+1)
6 Return (n − 1)

Note that α(f, z0) < 0.03 implies uz0 ≤ 3−√
7

2 . Hence ψ(uz0) ≥ 1
2 , and the

above lemma gives us
δ

2
≤ |z0 − z∗| ≤ 2δ. (12)

We then conclude that Algorithm D produces the necessary constant C for robust
iteration:

Lemma 6. Let C :=n+2, where n− 1 is the value returned by Algorithm D on
an approximate zero z0, α(f, z0) < 0.03, with z∗ as the associated root. Then

2−C ≤ |z0 − z∗| ≤ 6.2−C+2.

Basically, Algorithm D is converting absolute precision into relative precision.
Algorithm D takes (− lg δ) + O(1) steps of evaluation. But using the geometric
searching method in [AKY04], we can further reduce the number of evaluation
steps to 2 lg lg(1/δ) + O(1). For the purposes of this exposition we present the
simpler version, however the complexity result below is based upon the geometric
search method.

5 Complexity of Approximating a Zero of a Polynomial

Let f(z) be a degree d square-free polynomial with L-bit integer coefficients.
Furthermore, let sep(f, z∗) be the distance between z∗ and the nearest root of f
different from z∗. Suppose z0 is a robust approximate zero of f , with associated
zero z∗ and satisfying α(f, z0) < 0.02. Note that there are well-known methods
for computing such a z0 (either real of complex). Starting from such a z0, out
goal is to compute an n-bit absolute approximation 〈z∗〉n for z∗.

Our analysis here will focus will be on the case when z∗ ∈ IR and z0 is a
bigfloat. It is easy to check that |z̃i−z∗| ≤ 2n provided i ≥ lg(n+1+lg |z0−z∗|).
From Cauchy’s bound we may assume that |z0| ≤ 2L. Thus |z0 − z∗| ≤ 2L+1

which means we require at most lg(n + L + 2) steps of Newton iteration. The
complete algorithm which returns 〈z∗〉n, given z0, is as follows:

– Compute C satisfying (5) using Algorithm D above. Let z̃0 := z0.
– For i = 0, . . . , lg(n + L + 2) do the following:

Robust Approximate Zeros 883

1. x := 〈f(z̃i−1)〉2i+C+1−lg κ.
2. y := 〈f ′(z̃i−1)〉2i+2−lg κ.

3. z̃i := z̃i−1 −
[

x
y

]
2i+1

.

– Return z̃i.

To carry out the complexity estimates, we need some basic complexity bounds
for unbounded bigfloats:

Lemma 7. Let x = 〈ex, fx〉, y = 〈ey, fy〉 be bigfloats, and n be a positive natural
number. Also, fxfy 	= 0.

1. We can compute [x]n in O(n + lg(2 + |ex|)) time.
2. We can compute [xy]n in O(M(n) + lg(2 + |exey|)) time.
3. We can compute [x + y]n in O(n + lg(2 + |exey|)) time provided xy ≥ 0 or

|x| > 2|y| or |x| < |y|/2. In general, computing [x + y]n can be done in time
O(lg(2 + |fxfyexey|)).

4. An analogous statement holds for [x − y]n, where we replace xy ≥ 0 by
xy ≤ 0.

Next consider the evaluation of polynomial to arbitrary absolute precision:
let f(x) =

∑d
i=0 aix

i and suppose the ai’s and x are bounded by ei’s and ex as
follows:

2ei ≤ |ai| < 2ei+1, 2ex ≤ |x| < 2ex+1.

Also, let e :=max{e0, e1, . . . , ed}.

Lemma 8. We can evaluate f(x) to absolute precision n in time

O(dM(n + |e| + d|ex|)).

We now bound the complexity of Algorithm D. Let f(z) be a degree d integer
polynomial with L-bit coefficients. Further assume that z0 is a rational number
with s-bit numerator and denominator. Then we have the following:

Lemma 9. Let the bigfloat z0 be an approximate zero, α(f, z0) < 0.03, whose
exponent has bit size s. Then the geometric version of Algorithm D has complex-
ity O(M(d(L + s))).

Finally, we show:

Theorem 4. Let f(z) =
∑d

i=0 aiz
i be a polynomial such that |ai| ≤ 2L. Suppose

we are given a bigfloat z0 satisfying α(f, z0) ≤ 0.02. So z0 is a robust approximate
zero and let its associated root be z∗. Then we can compute an n-bit absolute
approximation 〈z∗〉n of z∗ in time

O[dM(n + d2(L + lg d) lg(n + L))]. (13)

If d, L are bounded then the complexity is O(M(n)).

This result may be regarded as a generalization of Brent’s bounded precision
bound [Bre76a–Lem. 3.1].

884 V. Sharma, Z. Du, and C.K. Yap

6 Conclusion and Future Work

The key contribution of this paper is the development of the concept of robust
approximate zero and robust point estimates. We improve on Malajovich’s work
by obtaining explicit complexity bounds and a stronger point estimate in the
univariate case. We plan to implement the robust Newton iteration in Core
library; the current implementation is in the weak mode.

We plan to extend the above work in the following directions: to multi-variate
Newton iteration, and to multiple zeros. For the latter problem, Yakoubsohn
[Yak03] has obtained results under the exact arithmetic setting. Brent has given
the complexity of approximating a simple zero of a non-linear equation in the
bounded bigfloat setting. We also plan to extend this to the unbounded robust
setting.

Acknowledgements. The authors would like to thank an anonymous referee for
meticulous and invaluable feedback.

References

[AKY04] Tetsuo Asano, David Kirkpatrick, and Chee Yap. Pseudo approximation
algorithms, with applications to optimal motion planning. Discrete and
Computational Geometry, 31(1):139–171, 2004. Special Conference Issue
from 18th ACM Symp. of Comput. Geom., 2002.

[Bat98] Prashant Batra. Improvement of a convergence condition for the Durand-
Kerner iteration. J. of Comp. and Appl. Math., 96:117–125, 1998.

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity
and Real Computation. Springer-Verlag, New York, 1998.

[BFMS99] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Efficient exact
geometric computation made easy. In Proc. 15th ACM Symp. Comp.
Geom., pages 341–450, New York, 1999. ACM Press.

[Bre76a] Richard P. Brent. Fast multiple-precision evaluation of elementary func-
tions. J. of the ACM, 23:242–251, 1976.

[Bre76b] Richard P. Brent. Multiple-precision zero-finding methods and the com-
plexity of elementary function evaluation. In J. F. Traub, editor, Proc.
Symp. on Analytic Computational Complexity, pages 151–176. Academic
Press, 1976.

[CSY97] J. Choi, J. Sellen, and C. Yap. Approximate Euclidean shortest paths
in 3-space. Int’l. J. Comput. Geometry and Appl., 7(4):271–295, 1997.
Also: 10th ACM Symp. on Comp. Geom. (1994)pp.41–48.

[DF95] Wang Deren and Zhao Fengguang. The theory of Smale’s point esti-
mation and its applications. J. of Comp. and Appl. Math., 60:253–269,
1995.

[Dur60] E. Durand. Solutions Numériques des Équations Algébriques, Tome I:
Equations du Type F(x) = 0. Racines d’un Polyn̂ome, Masson, Paris,
1960.

[Hig96] Nicholas J. Higham. Accuracy and stability of numerical algorithms.
Society for Industrial and Applied Mathematics, Philadelphia, 1996.

Robust Approximate Zeros 885

[KA64] L.V. Kantorovich and G.P. Akilov. Functional Analysis in Normed
Spaces. New York, MacMillan, 1964.

[Kal05] Bahman Kalantari. An infinite family of bounds on zeros of analytic func-
tions and relationship to Smale’s bound. Mathematics of Computation,
74(250):841–852, 2005.

[Ker66] I.O. Kerner. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen
von Polynomen. Numer. Math., 8:290–294, 1966.

[Kim86] Myong-Hi Kim. Computational Complexity of the Euler Type Algorithms
for the Roots of polynomials. PhD thesis, City University of New York,
January 1986.

[Kim88] Myong-Hi Kim. On approximate zeroes and root finding algorithms for
a complex polynomial. Math. Comp., 51:707–719, 1988.

[KLPY99] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library
for robust numerical and geometric computation. In 15th ACM Symp.
Computational Geometry, pages 351–359, 1999.

[Mal93] Gegorio Malajovich. On the complexity of path-following Newton algo-
rithms for solving systems of polynomial equations with integer coeffi-
cients. PhD thesis, Berkeley, 1993.

[Mal94] Gregorio Malajovich. On generalized Newton algorithms: Quadratic con-
vergence, path-following and error analysis. Theoretical Computer Sci-
ence, 133:65–84, 1994.

[MS01] Kurt Mehlhorn and Stefan Schirra. Exact computation with leda real

– theory and geometric applications. In G. Alefeld, J. Rohn, S. Rump,
and T. Yamamoto, editors, Symbolic Algebraic Methods and Verification
Methods, volume 379, pages 163–172, Vienna, 2001. Springer-Verlag.

[Pan97] Victor Y. Pan. Solving a polynomial equation: some history and recent
progress. SIAM Review, 39(2):187–220, 1997.

[PCT95] Miodrag S. Petković, Carsten Carstensen, and Miroslav Trajkov́ıc. Weier-
strass formula and zero-finding methods. Numer. Math., 69:353–372,
1995.

[PHI98] Miodrag S. Petković, Dorde Herceg, and Snez̆ana Ilić. Safe convergence
of simultaneous methods for polynomial zeros. Numerical Algorithms,
17:313–331, 1998.

[Sch80] A. Schönhage. Storage modification machines. SIAM J. Computing,
9:490–508, 1980.

[Sma86] S. Smale. Newton’s method estimates from data at one point. In R. Ew-
ing, K. Gross, and C. Martin, editors, The Merging of Disciplines: New
Directions in Pure, Applied, and Computational Mathematics. Springer-
Verlag, 1986.

[SS85] Mike Shub and Steven Smale. Computational Complexity: On the Ge-
ometry of Polynomials and a Theory of Cost. I. Annales Scientifiques
De L’É.N.S., 4(18):107–142, 1985.

[SS93] Mike Shub and Steve Smale. Complexity of Bezout’s Theorem I: Geo-
metric aspects. J. of Amer. Math. Soc., 6(2):459–501, 1993.

[Tis01] Françoise Tisseur. Newton’s method in floating point arithmetic and
iterative refinement of generalized eigenvalue problems. SIAM J. on
Matrix Anal. and Appl., 22(4):1038–1057, 2001.

[Yak03] Jean-Claude Yakoubsohn. Numerical Elimination, Newton Method and
Multiple Roots. In Frédéric Chyzak, editor, Algorithms Seminar, 2001-
2002, number 5003, Rapport de recherche, INRIA, pages 49–54. Nov.
2003.

886 V. Sharma, Z. Du, and C.K. Yap

[Yam85] T. Yamamoto. A unified derivation of several error bounds for Newton’s
process. Journal of Comp. and Appl. Mathematics, 12&13:179–191, 1985.

[Yam86] T. Yamamoto. Error bounds for Newton’s method under the Kantorovich
assumptions. In R. Ewing, K. Gross, and C. Martin, editors, The Merg-
ing of Disciplines: New Directions in Pure, Applied, and Computational
Mathematics. Springer-Verlag, 1986.

[Yap04] Chee K. Yap. On guaranteed accuracy computation. In Falai Chen
and Dongming Wang, editors, Geometric Computation, chapter 12, pages
322–373. World Scientific Publishing Co., Singapore, 2004.

[Ypm83] T.J. Ypma. The effect of rounding errors on Newton-like methods. IMA
J. of Numerical Analysis, 3:109–118, 1983.

[Ypm84] T.J. Ypma. Local convergence of inexact Newton methods. SIAM J. of
Numer. Anal., 21(3):583–590, 1984.

Optimizing a 2D Function Satisfying
Unimodality Properties

Erik D. Demaine1 and Stefan Langerman2,�

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA

edemaine@mit.edu
2 Département d’informatique, Université Libre de Bruxelles,

ULB CP212, Bruxelles, Belgium
Stefan.Langerman@ulb.ac.be

Abstract. The number of probes needed by the best possible algorithm
for locally or globally optimizing a bivariate function varies substantially
depending on the assumptions made about the function. We consider
a wide variety of assumptions—in particular, global unimodality, uni-
modality of rows and/or columns, and total unimodality—and prove
tight or nearly tight upper and lower bounds in all cases. Our results in-
clude both nontrivial optimization algorithms and nontrivial adversary
arguments depending on the scenario.

1 Introduction

Many problems in geometry, in particular problems about the set of distances
among geometric objects (diameter, closest pairs, farthest pairs, etc.) can be seen
as finding a maximum in a two-dimensional array. This abstraction is used by
many algorithms, but one of the most remarkable results is probably the O(n)-
time algorithm for optimizing “totally monotone” n × n matrices of Aggarwal
et al. [1] and the application of this algorithm to many geometric proximity
problems. This work later found many applications as a general technique for
speeding up dynamic-programming algorithms. A survey of these applications
can be found in [4]. The motivation for our work came from the desire to under-
stand what matrix properties enable speeding a search from linear time down to
a polylogarithmic number of probes. For example, we want to know the weak-
est properties that would have to be expressed in order to find the closest pair
of points between two given convex polygons in logarithmic time [3]. Such an
understanding could lead to many generalizations, for example to other metric
spaces or variants of convexity.

The most general formulation of this discrete optimization problem is to max-
imize a given function f : D → R over a discrete (finite) domain D. In general, of
course, this problem may require |D| probes to f . One approach to making opti-
mization more tractable is to be satisfiedwith finding a local maximum, i.e., a point
at which f attains a value larger than all “neighboring” points, for some definition

� Chercheur qualifié du FNRS.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 887–898, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

888 E.D. Demaine and S. Langerman

of neighborhoods. In particular, for the standard 1D domain D = {1, 2, . . . , n},
Fibonacci search [6] finds a local maximum using logφ n + O(1) probes, where
φ = (1 +

√
5)/2 is the golden ratio. Surprisingly, the problem complexity grows

exponentially in 2D, even for a square domain D = {1, 2, . . . , n} × {1, 2, . . . , n}:
independently, Llewellyn et al. [7,8], Althöfer and Koschnick [2], and Mityagin [9]
proved that Θ(n) probes to a function f are sufficient and sometimes necessary to
find any local optimum in an n × n array D. (Unless otherwise specified, we use
the 4-neighborhood {(i− 1, j), (i+1, j), (i, j− 1), (i, j +1)} of a point (i, j) in the
square grid.) Thus weakening the optimization problem to finding local maxima
does not provide an exponential speedup in higher dimensions like it did in 1D. See
also [10] for a survey on local optimization methods.

Another approach to making optimization more tractable is to add assump-
tions about the function f . Other than the monotonicity assumptions mentioned
above, the main example in the literature of which we are aware is a kind of Lip-
schitz condition: if f is integral Lipschitz in the sense that, between two neigh-
boring points x and y, f(x) and f(y) are integral and differ by at most L, then
it is possible to find a local maximum in O(L log n) probes [2]. Another simple
example is that, if we assume that f is unimodal (denoted “$ unimodal”), i.e.,
it has exactly one local maximum, then finding local maxima and finding global
maxima are equivalent. One could hope that having this structural information
about the function would also help in finding that maximum. Unfortunately, a
careful reading of the construction in [9] of 2D functions f requiring Θ(n) probes
reveals they are in fact $ unimodal.

We study the related condition that the 2D function f is unimodal in every
column (% unimodal) and/or in every row (↔ unimodal). These properties are
satisfied by e.g. convex functions, but are more general: for example, the distance
function between a point on a convex chain and a point on a monotone chain
satisfies one of these properties (in fact, it is % convex) but not the other. While
seemingly weaker than $ unimodality, these properties are incomparable to uni-
modality, and in fact result in exponential speedup for finding local maxima.
We also study the stronger condition that a function is totally unimodal in the
sense that every submatrix is $ unimodal. This property is the first that allows
us to find the (unique) local maximum of the array in O(log n) probes. Table 1
summarizes all of our results.

A notion related to a totally unimodal matrix is a unique-sink orientation
of the m × n grid graph, as considered for arbitrary-dimensional grids in [5].
However, the latter notion is less restrictive: essentially, unique-sink orientations
capture only relative comparisons between adjacent vertices, whereas total uni-
modality captures comparisons between arbitrary vertices in a total order. The
relative comparisons of unique-sink orientations may not even be realizable by
a total order because of directed cycles in the orientation. When restricted to
the two-dimensional case, the algorithms of [5] have running time O(m+n); our
totally unimodal algorithms are exponentially faster (but less general).

In the next section, we show how total properties of matrices can be expressed
as a set of forbidden partial orders in submatrices. This characterization allows

Optimizing a 2D Function Satisfying Unimodality Properties 889

Table 1. Worst-case bounds on the number of probes required to maximize a function
f : {1, 2, . . . , m} × {1, 2, . . . , n} → R. In the bounds, max = max{m, n} and min =
min{m, n}.

Assumption Local optimization Global optimization

None ≤ min · (lg max
min + 4) + O(lg max) [9] ≤ m · n [obvious]

≥ min{min, max/2} [9] ≥ m · n [obvious]
Totally +j ≤ min · (lg max

min + 4) + O(lg max) [9] O(min(1 + lg max
min)) [1]

monotone ≥ logφ max [Lem. 7] Ω(min(1 + lg max
min)) [1]

� unimodal ≤ min · (lg max
min + 4) + O(lg max) [9] same as local

≥ min{min, max/2} [9]
� unimodal ≤ logφ m logφ n + O(lg n) [Lem. 8] ≤ n logφ m + O(n) [Lem. 12]

≥ 1
4 lg m lg n − O(lg m lg lg n) if m ≤ n [Thm. 1] ≥ n logφ m − O(n) [Lem. 13]

≥ 1
4 lg2 n − O(lg n lg lg n) if m ≥ n [Thm. 1]

�, � same as � unimodal same as local
unimodal

�, ↔ ≤ 3
lg φ lg2 min + O(lg max) [Thm. 2] ≤ min(logφ max + O(1)) [Lem. 12]

unimodal ≥ 1
4 lg2 min − O(lg max lg lg max) [Thm. 3] Ω(min) [Lem. 14]

≥ logφ max [Lem. 7]

�, �, ↔ same as �, � unimodal same as local
unimodal
�, �, ↔ uni- same as �, �, ↔ unimodal same as local
modal & tot-
ally +i, +j
monotone
Totally O(lg max) [Thm. 4] same as local
unimodal ≥ logφ max [Lem. 7]

us to determine easily which combinations of properties imply which others. We
then proceed to present nearly tight bounds for finding a local or global maxi-
mum for most combinations of properties: in % unimodal functions (Section 4),
in %,↔ unimodal functions (Section 5), and in totally unimodal functions (Sec-
tion 6). Finally, in Section 7, we analyze a natural random probing strategy and
show that it falls in between the last two strategies.

2 Forbidden Submatrix Partial Orders

In this section we show how several properties of real-valued functions on the m×
n grid, or equivalently a real m×n matrix, can be expressed by finite forbidden
substructures.

(a) (b) (c) (d)

Fig. 1. Forbidden 2 × 2 submatrices for total mono-
tonicity. Arrows point to larger elements.

For any matrix property
P , we say that a matrix is
totally P if every of its sub-
matrices has property P . In
this section, we show how
many total properties for
matrices can be expressed
as a finite set of constant-
size partial orders that are
forbidden to occur in any submatrix. This characterization of total properties
gives an easy way to determine which combination of properties imply which
other.

890 E.D. Demaine and S. Langerman

Monotone. Let i(j) be the row index of the maximum in column j. A matrix
is +j monotone if j ≤ j′ implies i(j) ≤ i(j′). A matrix is totally +j monotone
if every submatrix is +j-monotone. It can be shown [1] that it is sufficient to
consider only 2 × 2 matrices. Thus to obtain the class of totally +j monotone
matrices, we just have to forbid the configuration shown in Figure 1(a).

(a) (b) (c) (d)

Fig. 2. Forbidden submatrices for total unimodality.
(a) � unimodality; (b) ↔ unimodality.

Total monotonicity can be
defined in all four directions:
+j, −j, −i, and +i. The
corresponding four forbidden
configurations are shown in
Figure 1(a–d).

A matrix is totally mono-
tone if it forbids any one of
these four configurations.

% or ↔ Unimodal. Note that
% or ↔ unimodality are total
properties. Each property has
a single forbidden configuration, as shown in Figure 2(a, b). Of course, %,↔
unimodality is given by forbidding both of these configurations.

Totally Unimodal. A matrix is totally unimodal if every submatrix is $ uni-
modal, i.e., every submatrix has a unique local maximum. This property has
four forbidden configurations, shown in Figure 2(a, b, c, d).

Lemma 1. If a matrix is %,↔ unimodal and totally +j,−i monotone (or totally
−j, +i monotone), then it is totally unimodal.

Lemma 2. A matrix is totally unimodal if and only if it is %,↔ unimodal, and
every 2 × 2 submatrix is $ unimodal.

Corollary 1. If a matrix is totally unimodal, then it is $, %,↔ unimodal.

3 Elimination Lemmas

This section develops a battery of lemmas for guaranteeing that the solution we
desire is not in a particular region, or more precisely, that at least one desired
solution is in the remaining region. Different lemmas apply to different scenarios
of assumptions made on the function, while one lemma is generic.

We consider the following more general (non-matrix) setting. A discrete do-
main D is a finite set along with a notion of adjacency (defined by a graph
on the finite set). As mentioned, we mainly focus on the square grid domain
D = {1, 2, . . . , m} × {1, 2, . . . , n}, primarily with 4-adjacency—two points are
adjacent if their �1 distance is 1—but several of our definitions and basic results
apply more generally.

A local maximum of a function f : D → R is a point p of the domain D
such that all points adjacent to p have strictly smaller f values than p. In other

Optimizing a 2D Function Satisfying Unimodality Properties 891

words, a point is a local maximum if all incident edges (adjacencies) are downhill
(in f). In this paper we assume that adjacent points have distinct f values;
otherwise, a constant function f satisfies all (nonstrict) unimodality properties
but is impossible to optimize in less than |D| probes.

The following lemmas allow us to restrict the region in which we must search
for a local maximum. In particular, given various configurations and/or uni-
modality assumptions on f , our goal is to identify elements that are effectively
eliminated by a constant number of probes, in the sense that the remaining
uneliminated region contains a local maximum.

The first lemma is useful in particular when the region in which we are
searching disconnects into multiple components. In general, a region R of a
discrete domain D is a subset of D. The skin of a region R is the set of points
in the domain D that are not in R but are adjacent to points in R.

Lemma 3. For a function f : D → R, if the maximum f value over a region R
of the domain D is larger than the f values of all points on the skin of R, then
R contains a local maximum of f .

The next lemma shows that, in the %-unimodal case, whenever an algorithm
makes a probe it can probe a vertically adjacent point (losing at most a factor of
2 in probe count) and eliminate either the top or bottom “half” of the column,
depending on which of the two points has a larger f value. Define (≤ i, j) =
{(i′, j) | i′ ≤ i} and similarly for (?i, j) and (i, ?j) for ? ∈ {≤,≥, <, >}.

Lemma 4. Suppose f : {1, 2, . . . , m} × {1, 2, . . . , n} → R is % unimodal and
suppose that region R contains a local maximum. If f(i, j) > f(i + 1, j), then
R \ (> i, j) contains a local maximum. Similarly, if f(i, j) < f(i + 1, j), then
R \ (≤ i, j) contains a local maximum.

The next lemma shows an analogous result for $, %,↔ unimodality, except
that the constant factor loss is now at most 3, and the eliminated elements are
nearly an entire quadrant. (The entire quadrant can be eliminated at a cost of
at most a factor of 5.) Define (≤ i,≤ j) = {(i′, j′) | i′ ≤ i, j′ ≤ j} and similarly
for (?i, ¿j) for ?, ¿ ∈ {≤,≥, <, >}.

Lemma 5. Suppose f : {1, 2, . . . , m} × {1, 2, . . . , n} → R is $, %,↔ unimodal
and suppose that region R contains a local maximum. Consider a point (i, j)
in R. If f(i, j) > f(i + 1, j) and f(i, j) > f(i, j + 1), then R \ [(≥ i,≥ j)− (i, j)]
contains a local maximum. (Unless (i, j) is also a local maximum, i.e., we also
have f(i, j) > f(i − 1, j) and f(i, j) > f(i, j − 1), even R \ (≥ i,≥ j) contains a
local maximum.) Similarly, if f(i, j) > f(i + 1, j) and f(i, j) < f(i, j + 1), then
R \ (≥ i,≤ j) contains a local maximum; if f(i, j) < f(i + 1, j) and f(i, j) >
f(i, j+1), then R\(≤ i,≥ j) contains a local maximum; and if f(i, j) < f(i+1, j)
and f(i, j) < f(i, j + 1), then R \ (≤ i,≤ j) contains a local maximum.

Finally, we prove a more powerful quadrant elimination lemma for totally
unimodal functions, where we can compare to nonadjacent points because total
unimodality allows us to consider induced submatrices.

892 E.D. Demaine and S. Langerman

Lemma 6. Suppose f : {1, 2, . . . , m} × {1, 2, . . . , n} → R is totally unimodal
and suppose that region R contains a local maximum. Consider two points (i, j)
and (i′, j′) with i < i′ and j < j′, suppose that R is already disjoint of the
cornerless quadrants (≤ i,≤ j)− (i, j) and (≥ i′,≥ j′)− (i′, j′), and suppose that
f(i − 1, j) < f(i, j) and f(i, j − 1) < f(i, j), If f(i′, j) > f(i, j) and f(i′, j) >
f(i′, j′), then R \ (≤ i,≥ j′) contains a local maximum. If f(i, j′) > f(i, j) and
f(i, j′) > f(i′, j′), then R \ (≥ i′,≤ j) contains a local maximum. If neither
of these conditions hold, then R \ ((≤ i,≥ j′) ∪ (≥ i′,≤ j)) contains a local
maximum.

Before proceeding to more difficult upper and lower bounds, we prove a simple
logarithmic lower bound in the most specific case of totally unimodal functions:

Lemma 7. Any comparison-based algorithm for finding a local maximum in a
totally unimodal function must make at least logφ max{m, n} − O(1) probes in
the worst case.

4 � Unimodal

4.1 Local Optimization

Lemma 8. There is an algorithm that, given a % unimodal m× n matrix, finds
a local optimum after ≤ logφ n logφ m + O(log n) probes.

Theorem 1. For every algorithm that correctly finds a local optimum in an
m×n % unimodal matrix, there is an adversary that (a) generates a % unimodal
function with a unique local optimum, and (b) forces the algorithm to make
≥ 1

4 lg m lg n − O(lg m lg lg n) probes if m ≤ n, and ≥ 1
4 lg2 n − O(lgn lg lg n) if

m > n.

Proof. The adversary gives the algorithm extra information, which can only
help. Whenever the algorithm probes the value at a particular point (i, j), the
adversary reveals not only that value, but also the slope of that value in that
column, i.e., whether the mode in that column j is above or below that point
(i, j). Furthermore, if the mode of column j is above the probe point (i, j),
then the adversary reveals all values in the column j below the point (i, j);
symmetrically, if the mode is below the probe point, the adversary reveals all
values above the point in its column. If the algorithm discovers the mode of
column j, the adversary reveals all values in the column j. Thus we maintain
the invariant that every column that is not totally revealed has some revealed
values in the topmost few rows, some revealed values in the bottommost few
rows, and the algorithm knows that the mode of the column is somewhere in
between.

If the unrevealed region ever becomes disconnected, the adversary reveals
all values in all connected components except the largest connected component.
Thus we maintain the invariant that the unrevealed region is connected. We
also maintain the invariant that the algorithm cannot discover the unique local

Optimizing a 2D Function Satisfying Unimodality Properties 893

optimum until every value has been revealed. Together these two invariants
make the goal of the algorithm to disconnect the unrevealed region; otherwise,
the algorithm must make at least one probe per column, for a total of at least
n probes.

The main task of the adversary is to decide whether a probe point is above
or below the mode of that column, and then to choose the revealed values below
or above the probe point. The adversary bases its decision on matching the
“nearest” previous decision, according to the �1 distance function. Naturally,
the distance between a point (i, j) and the top horizontal wall is i, and the
distance to the bottom wall is m + 1 − i.

Suppose that the algorithm probes the point (i, j). If point (i, j) is closer to
a horizontal wall than every revealed point, then the adversary reveals all values
in column j between (i, j) and the nearest wall, specifying that the mode is in
the other direction. Otherwise, the adversary specifies (i, j) to be above or below
the mode in its column j according to whether the revealed point (i∗, j∗) nearest
to (i, j) is above or below the mode in its column j∗. Then the adversary reveals
all unrevealed values starting from (i, j) in the opposite direction to the mode
in column j. (In the special case described below that the algorithm discovers
the mode among these revealed values, the specification that the mode is above
or below (i, j) is false; in this case the adversary reveals all values in column j.)

The adversary chooses the revealed values as follows. Suppose that the algo-
rithm probes (i, j) and say that the adversary decides that probe point (i, j) is
below the mode in its column j. If the to-be-revealed points keep the unrevealed
region connected, then the adversary repeatedly reveals that the bottommost
unrevealed value in column j is one more than the largest previously revealed
value, until reaching point (i, j). In this way the revealed values increase in an
integer sequence from the bottommost unrevealed value to (i, j). Equivalently,
the adversary reveals every unrevealed point (i′, j) below (i, j) in column j to
have value m−d more than the largest previously revealed value, where d = i−i′

is the Manhattan distance between the unrevealed point (i′, j) and the probe
point (i, j).

On the other hand, if the to-be-revealed points disconnect the unrevealed
region, then we either keep unrevealed the component left of column j or the
component right of column j, whichever has the largest number of unrevealed
columns. Assume the component left of column j is to be kept unrevealed, and
let j′ be the rightmost unrevealed column in the matrix. We reveal the entries in
the columns from column j′ to column j as follows: when revealing the entries of
column j′′, j′ ≥ j′′ ≥ j, we identify an entry (i′′, j′′) adjacent to an unrevealed
entry in column j′′−1. We set (i′′, j′′) to be the mode of column j′′, and reveal all
entries in that column, by repeatedly revealing the topmost entry with one more
than the previously revealed value until (i′′ − 1, j′′) is revealed, then repeatedly
revealing the bottommost entry with one more than the previously revealed value
until (i′′, j′′) is revealed, then proceed to reveal the entries of column j′′ − 1 in
the same manner, until column j is completely revealed. This strategy ensures
that whenever a point is revealed, it is connected to a yet unrevealed point, and

894 E.D. Demaine and S. Langerman

so there is an increasing path from any entry in the table to the unique local
optimum which is the last value to be revealed. Thus we obtain:

Lemma 9. The only point to become a local maximum according to the adver-
sary is the mode of the final column to become completely revealed.

Lemma 10. The algorithm must make min{n, lg m} probes before the unre-
vealed region first disconnects into multiple connected components.

Lemma 11. The nearest point or horizontal wall to a point (i, j) is in a column
j′ such that |j − j′| ≤ m.

Finally we conclude the proof of Theorem 1. Consider an algorithm that
makes fewer than lg n lg m probes. As mentioned above, the algorithm must dis-
connect the unrevealed region or else it is doomed to make at least n probes.
Lemma 10 says that the algorithm must make at least min{n, lg m} probes for
the first disconnection. Consider the final probe that caused the disconnection.
By the pigeon-hole principle, the (lg n lg m)m consecutive columns including and
to the right of this final probe must have a gap of at least m consecutive empty
columns, because there are at most lg n lg m probes total. We remove columns
starting from the final probe up to but not including this gap of m consecutive
empty columns. Similarly, we remove at most (lg n lg m)m columns to the left of
the final probe up to but not including a gap of m consecutive empty columns.
Thus we obtain two subproblems (one left and one right) that by Lemma 11 act
completely independently from each other and from the probes causing the dis-
connection, as far as probes made so far. We recursively consider the subproblem
corresponding to the larger connected component that remains. This recursive
subproblem is a rectangle with m rows and n′ ≥ �n/2� − (lg n lg m)m columns.
The recursive subproblem may have already been probed, but we can consider
such probes as happening after this subproblem. Thus the recursion applies until
n′/2 < (lg n lg m)m.

Therefore we obtain the lower bound of min{n′, lg m} probes, where n′ ≥
2(lg n lg m)m, at each of lg(n/(2(lg n lg m)m)) levels of recursion. In total we
obtain a lower bound of (lg m)(lg(n/m)− 1− lg lg n− lg lg m) ≥ lg m lg(n/m)−
O(lg m lg lg n). If m ≤

√
n, then the lower bound is ≥ 1

2 lg m lg n−O(lg m lg lg n).
If m >

√
n, we perform the same argument on a submatrix with m′ =

√
n rows.

The lower bound then becomes ≥ lg m′ lg(n/m′) − O(lg m′ lg lg n) ≥ 1
4 lg2 n −

O(lgn lg lg n). In particular, if
√

n ≤ m ≤ n, we obtain the lower bound ≥
1
4 lg m lg n − O(lg m lg lg n). �

4.2 Global Optimization

Lemma 12. There is an algorithm that, given a % unimodal m×n matrix, finds
its global optimum after at most n logφ m + O(n) probes.

Lemma 13. Any algorithm that, given a % unimodal m × n matrix finds its
global optimum must perform at least n logφ m − O(n) probes.

Optimizing a 2D Function Satisfying Unimodality Properties 895

5 �, ↔ Unimodal

Theorem 2. There is an algorithm that finds a local optimum in a %,↔ uni-
modal m × n matrix after at most (3/ lg φ) lg2 min + O(lg max) probes.

Proof. Assume without loss of generality that m ≤ n. First find the maxi-
mum element on row m/2, among elements in columns in/m, i = 1, . . . , m, in
lgφ m time. (Ratios are implicitly rounded to integers, affecting only lower-order
terms.) This finds two elements jn/m and (j + 1)n/m on columns separated by
n/m elements. We can now eliminate from the search one of the two quadrants
left of (m/2, jn/m) and one of the two quadrants right of (m/2, (j + 1)n/m).
Then find the maximum on columns jn/m and (j + 1)n/m using Fibonacci
search, and evaluate the right and left neighbors of those two maxima. We now
know a local max is either (I) to the left of column jn/m, (II) between columns
jn/m and (j + 1)n/m or (III) to the right of column (j + 1)n/m. Since one
quadrant has been eliminated to the left of column jn/m and one quadrant has
been eliminated to the right of column (j + 1)n/m, the size of the submatrix to
recurse in is (m/2) × n in cases (I) and (III), or m × (n/m) in case (II). Thus,
cases (I) and (III) can only happen lg m times, and case (II) can only happen
lg n/ lg m times. Each step performs 3 lgφ m + O(1) probes, so the total number
of probes is (3/ lg φ)(lg2 m + lg n) + O(1)(lg m + lg n/ lg m). �

Theorem 3. For every algorithm that correctly finds a local maximum in an
m × n %,↔ unimodal, totally +j, +i monotone matrix, there is an adversary
that (a) generates such a function with a unique local maximum, and (b) forces
the algorithm to make 1

4 lg2 min − O(lg min lg lg min) probes.

Lemma 14. Any algorithm that, given a %,↔ unimodal m× n matrix finds its
global maximum must perform at least min{n, m} probes.

6 Totally Unimodal

Theorem 4. There is an algorithm that, given a totally unimodal m×n matrix,
finds its global maximum after O(lg n + lg m) probes.

Proof. The algorithm performs successive probes and eliminates regions of the
matrix known not to contain the local maximum. At every step of the algorithm,
the unrevealed region will be a cross inside a submatrix, i.e., the algorithm
maintains four indices i1, i2, j1, j2, with i1 +1 < i2 and j1 +1 < j2 such that the
unique local maximum is known not to be in the quadrants (≤ i1,≤ j1), (≥ i2,≤
j1), (≤ i1,≥ j2), (≥ i2,≥ j2). Furthermore, we maintain the invariant that the
apex of each of those four quadrants is the maximum value in the quadrant, e.g.
for the first quadrant, that f(i1 − 1, j1) < f(i1, j1) and f(i1, j1 − 1) < f(i1, j1).
We call this the apex invariant. The rectangular area with corners (ik +1, jl +1)
for k, l ∈ {1, 2} is called the center of the cross, and is surrounded by four legs.
We will sometimes refer to T shapes or L shapes instead of the cross, those are
just crosses for which one or two of the legs is empty, respectively.

896 E.D. Demaine and S. Langerman

The algorithm then performs a constant number of probes which will reduce
the unrevealed area of the matrix by a constant factor. This will be done in one
of four ways: (a) by reducing the width of the cross (i2 − i1 and j2 − j1) by
half, (b) by transforming the cross into an L shaped region which is a constant
fraction smaller than the original cross, but whose center might not be contained
in the original center, or (c) by transforming the cross into an L shaped region
whose center (which might not be contained in the original center) has area at
least one quarter of the total unrevealed area.

Let im = �(i1 + i2)/2� and jm = �(j1 + j2)/2�. We first probe (im, jm) and
its four neighbors. Either (im, jm) is the local maximum, or by Lemma 5, one
of its four quadrants can be eliminated. Assume that the eliminated quadrant
is (≥ im,≥ jm), the other cases are handled symmetrically. Next, we apply
the Lemma 6 on entries (i1, j1) and (im, jm). For this, we probe the entries
(i1, jm) and (im, j1). Assume that f(i1, jm) > f(im, j1), the other case is handled
symmetrically. Then the quadrant (≥ im,≤ j1) can be eliminated from the
search. Furthermore, if the apex (im, j1) is the minimum of that quadrant, then
the quadrant satisfies the apex invariant. If it does not, then we still know
that f(im, j1) is smaller than one of f(i1, j1) and f(im, jm), otherwise rows i1
and im and columns j1 and jm form a 2 × 2 matrix with 2 local optima. If
f(im, j1) < f(i1, j1), then f(im + 1, j1) < f(im, j1) but f(im, j1 − 1) > f(im, j1)
since the apex invariant is not satisfied. This implies f(im, j1 + 1) < f(im, j1)
and applying Lemma 5, quadrant (≥ im,≥ j1) can be eliminated. Those two
eliminated quadrants together remove all rows ≥ im. Likewise, if f(im, j1) <
f(im, jm), then the quadrant (≤ im,≤ j1) can be eliminated and so all columns
≤ j1 can be removed.

At this point, we have eliminated at least two quadrants, and the left, right
and bottom legs have had their width divided by 2, and the bottom or left leg
might have been eliminated. We now probe the four neighbors of (i1, jm) (whose
value is know from the previous step), and apply Lemma 5 to eliminate one of
its four quadrants. We now have four cases to consider.

If quadrant (≤ i1,≥ jm) is eliminated, then we have achieved goal (a): we
have a new cross of half the width (where one of the legs may have been elimi-
nated), so the area of all four legs is multiplied by 1

2 , and the area of the center
is multiplied by 3

4 .
If quadrant (≤ i1,≤ jm) is eliminated, then we apply Lemma 6 to quadrants

(≤ i1,≤ jm − 1) and (≥ im,≥ jm). This eliminates either (≤ i1,≥ jm − 1) in
which case all rows ≤ i1 can be removed, or (≥ im,≤ jm), in which case all rows
≥ im can be removed. In both cases, the unrevealed region is a T shape, a cross
with one leg cut, and all legs have had their width multiplied by a factor 1

2 , so
we have again achieved goal (a).

If quadrant (≥ i1,≥ jm) is eliminated, then all columns ≥ j2 are eliminated.
We then apply Lemma 6 to quadrants (≤ i1,≤ j1) and (≥ i1 + 1,≥ jm). This
further eliminates either (≤ i1,≥ jm) or (≥ i1+1,≤ j1). In the first case, all rows
≥ jm can be removed and we obtain a T shaped unrevealed region, which is a
cross with one leg cut off, and all legs have had their width multiplied by a factor

Optimizing a 2D Function Satisfying Unimodality Properties 897

1
2 , so we have again achieved goal (a). In the second case, the unrevealed region
becomes L shaped: the left leg has been removed with quadrant (≥ i1 +1,≤ j1),
the right leg was already removed, so what remains is the top leg, the center of
the cross divided in two vertically and the bottom leg divided by two vertically.
So unless the top leg contained more than half of the area unrevealed at the
beginning of this step, we have eliminated at least one quarter of the total
unrevealed area, and so we have achieved goal (b). Otherwise, if the top leg
contained more than half of the area unrevealed at the beginning of this step,
then the center of the new L shape contains more than half of the top leg, and
so more than one quarter of the total unrevealed area, reaching goal (c).

Finally, if quadrant (≥ i1,≤ jm) is eliminated, then all columns ≥ j1 are
eliminated. We then apply Lemma 6 to quadrants (≥ i1 + 1,≤ jm) and (≤ i1,≥
j2). This further eliminates either (≤ i1,≤ jm) or (≥ i1 + 1,≥ j2). In the first
case, all rows ≤ jm can be removed and we obtain an L shaped unrevealed
region, which is a cross with two legs cut off, and all legs have had their width
multiplied by a factor 1

2 , so we have again achieved goal (a). In the second
case, the unrevealed region becomes L shaped, containing just the top leg and a
quarter of the original center. As in the previous case, if the top leg contained
less than half of the area unrevealed at the beginning of this step, we have
eliminated at least one quarter of the total unrevealed area, and so we have
achieved goal (b). Otherwise, if the top leg contained more than half of the area
unrevealed at the beginning of this step, then the center of the new L shape
contains more than half of the top leg, and so more than one quarter of the total
unrevealed area, and we have reached goal (c).

To conclude, note that every step performs a constant number of probes.
After each elimination step, if goals (a) or (b) are reached, then one quarter of
the unrevealed area has been eliminated. If goal (c) is attained, then the first set
of probes of the next step eliminates one quarter of the area of the center of the
cross, which is in this case at least one sixteenth of the total unrevealed area.
So in all cases, two consecutive steps eliminate a constant fraction of the area,
so the total number of steps is O(lg(mn)). �

7 Random Probing Algorithm

In this section we analyze a natural family of uniform probing strategies for
finding a local optimum in an %,↔ unimodal function. We specify and analyze
the strategy only in the case of totally unimodal functions, where of course
the algorithm finds the global maximum. Our lower bound on the strategy’s
performance also applies to any generalization of this algorithm to %,↔ unimodal
functions. Our upper bound is specific to totally unimodal functions.

The uniform probing algorithm for totally unimodal functions works as fol-
lows. Initially, we set the region R to the entire domain D = {1, 2, . . . , m} ×
{1, 2, . . . , n} of the function f . At each step, the algorithm chooses a point (i, j)
uniformly at random from the remaining region R. Then the algorithm makes
three samples to eliminate a quadrant except for its corner (i, j), according to

898 E.D. Demaine and S. Langerman

Lemma 5. If the remaining region R′ contains just one point, then it is the unique
maximum; otherwise the algorithm continues.

Theorem 5. Uniform probing makes Θ(ln2 max) expected probes in a totally
unimodal function.

8 Conclusion

We expect many of our results to generalize to several other scenarios. In par-
ticular, we expect similar bounds in d dimensions, at least in the case of an
n×n×· · ·×n matrix, where logarithmic bounds remain logarithmic and squared-
logarithmic bounds grow to logd. We also believe that our results generalize
to local maxima defined in terms of size-8 neighborhoods instead of the 4-
neighborhoods we use. For example, as with 4-neighborhoods, total unimodality
with 8-neighborhoods can be characterized as forbidding a finite set of partial
orders on constant-size submatrices. More generally, it would be interesting to
characterize the complexities achievable for all possible forbidden submatrices.
In our work, we have seen how combining various unimodality conditions with
the total monotonicity conditions of [1] yields surprising results. In particular,
combining %,↔ unimodality with total (+i,−j) or (−i, +j) monotonicity im-
plies total unimodality (Lemma 1), and so an O(log n) optimization algorithm,
while combining %,↔ unimodality with total (+i, +j) or (−i,−j) monotonicity
has an Ω(log2 min) lower bound (Theorem 3).

References

1. A. Aggarwal, M. M. Klawe, S. Moran, P. W. Shor, and R. Wilber. Geometric
applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.

2. I. Althöfer and K.-U. Koschnick. On the deterministic complexity of searching
local maxima. Discrete Appl. Math., 43(2):111–113, 1993.

3. H. Edelsbrunner. Computing the extreme distances between two convex polygons.
J. Algorithms, 6:213–224, 1985.

4. Z. Galil and K. Park. Dynamic programming with convexity, concavity and spar-
sity. Theoret. Computer Sci., 92(1):49–76, Jan. 1992.

5. B. Gärtner, W. D. Morris, and L. Rüst. Unique sink orientations of grids. In Proc.
11th Internat. IPCO Conf. on Integer Prog. and Combinat. Opt., volume 3509 of
Lecture Notes in Computer Science, pages 210–224, Berlin, Germany, June 2005.

6. J. Kiefer. Sequential minimax search for a maximum. Proc. Amer. Math. Soc.,
4:502–506, 1953.

7. D. C. Llewellyn, C. Tovey, and M. Trick. Local optimization on graphs. Discrete
Appl. Math., 23(2):157–178, 1989.

8. D. C. Llewellyn and C. A. Tovey. Dividing and conquering the square. Discrete
Appl. Math., 43(2):131–153, 1993.

9. A. Mityagin. On the complexity of finding a local maximum of functions on discrete
planar subsets. Theoret. Computer Sci., 310(1–3):355–363, Jan. 2004.

10. C. A. Tovey. Local improvement on discrete structures. In Local Search in Com-
binatorial Optimization, pages 57–89. John Wiley and Sons, 1997.

Author Index

Agarwal, Pankaj K. 355
Aissi, Hassene 862
Alfieri, Arianna 283
Arge, Lars 355
Ausiello, Giorgio 532
Azar, Yossi 484

Bar-Yehuda, Reuven 714
Batra, Garima 35
Bazgan, Cristina 862
Bejerano, Yigal 702
Benkert, Marc 143
Benkoczi, Robert 271
Berberich, Eric 155
Berenbrink, Petra 746
Berger, André 472
Bergeron, Anne 779
Bhattacharya, Binay 271
Bienkowski, Marcin 815
Bilò, Vittorio 460
Björklund, Andreas 839
Bodlaender, Hans L. 95, 391
Boissonnat, Jean-Daniel 367
Buchbinder, Niv 689
Byrka, Jaros�law 815

Cabello, Sergio 131, 520
Caragiannis, Ioannis 460
Chaudhry, Geeta 317
Chauve, Cedric 779
Chen, Zhi-Zhong 179
Christodoulou, George 59
Cicalese, Ferdinando 664
Codenotti, Bruno 83
Cormen, Thomas H. 317
Crochemore, Maxime 426
Czumaj, Artur 472

Daskalakis, Konstantinos 71
de Berg, Mark 508
de Kok, Thierry 343
de Montgolfier, Fabien 779
Delage, Christophe 367
Demaine, Erik D. 887
Dementiev, Roman 640

Dı́az, J. 215
Dorn, Frederic 95
Du, Zilin 874

Eigenwillig, Arno 155
Epstein, Leah 604
Ergun, Funda 746

Farach-Colton, Mart́ın 827
Farshi, Mohammad 556
Farzan, Arash 305
Faye, Alain 850
Fernandes, Rohan J. 827
Ferragina, Paolo 305
Fiat, Amos 803
Finocchi, Irene 1
Fischer, Johannes 415
Fishkin, Aleksei V. 580
Fleischer, Rudolf 11
Fomin, Fedor V. 95
Frahling, Gereon 758
Fraigniaud, Pierre 791
Franceschini, Gianni 305
Franciosa, Paolo G. 532
Frank, András 249
Friedetzky, Tom 746

Garg, Naveen 35
Giannopoulos, Panos 520
Gidenstam, Anders 329
Ginzinger, Simon W. 415
Grammatikopoulos, G. 215
Grandoni, Fabrizio 1
Grigni, Michelangelo 472
Grigoriev, Alexander 391
Gudmundsson, Joachim 556
Gupta, Garima 35

Hassin, Refael 167, 726
Haverkort, Herman 508
Hay, David 496
Hayrapetyan, Ara 191
Heggernes, Pinar 403
Hemmer, Michael 155

900 Author Index

Hermelin, Danny 426
Hert, Susan 155
Holzer, Martin 628
Hu, T.C. 226

Italiano, Giuseppe F. 1, 532
Ito, Hiro 119
Iwama, Kazuo 119

Jansen, Klaus 580

Kaklamanis, Christos 460
Kanellopoulos, Panagiotis 460
Kaporis, A.C. 215
Karpinski, Marek 238
Kempe, David 191
Kettner, Lutz 155, 640
Khuller, Samir 259
Király, Zoltán 249
Kirousis, L.M. 215
Kliewer, Georg 47
Knauer, Christian 520
Koster, Arie M.C.A. 391
Kotnyek, Balázs 249
Koutsoupias, Elias 59
Kovács, Annamária 616
Krokowski, Jens 758
Krommidas, Ioannis 544
Kučera, Luděk 203

Laber, Eduardo Sany 664
Landau, Gad M. 426
Langerman, Stefan 887
Larmore, Lawrence L. 226
Lauther, Ulrich 293
Lee, Kwangil 259
Levin, Asaf 726
Löffler, Maarten 343
Lukovszki, Tamás 293

Manku, Gurmeet Singh 438
Marx, Dániel 448
McCune, Benton 83
Mehlhorn, Kurt 155
Mitchell, Joseph S.B. 143
Mohar, Bojan 131
Moore, Cristopher 10
Morgenthaler, J. David 226
Mosteiro, Miguel A. 827
Munagala, Kamesh 677

Munro, J. Ian 305
Muthukrishnan, S. 734

Nagoya, Takayuki 179
Naor, Joseph 9, 689, 702
Nekrich, Yakov 238

Or, Einat 167
Osumi, Tsuyoshi 119

Pál, Martin 191
Papadimitriou, Christos H. 71
Papatriantafilou, Marina 329
Paul, Christophe 379
Penninkx, Eelko 95
Pérez, X. 215
Prasinos, Grigorios 628

Raffinot, Mathieu 779
Raman, Rajiv 83
Rawitz, Dror 714
Reichel, Joachim 155
Reinbacher, Iris 143
Rote, Günter 520
Roupin, Frédéric 850
Rührup, Stefan 23

Saia, Jared 803
Sanders, Peter 568, 640
Sankowski, Piotr 770
Sawada, Joe 438
Scalosub, Gabriel 496
Schindelhauer, Christian 23
Schmitt, Susanne 155
Schömer, Elmar 155
Schultes, Dominik 568
Schulz, Frank 628
Sevastyanov, Sergey V. 580
Sgall, Jǐŕı 592
Shachnai, Hadas 592
Sharma, Vikram 874
Shayman, Mark 259
Sitters, René 580
Sotiropoulos, D.G. 215
Sprintson, Alexander 702
Strauss, M. 734
Streppel, Micha 508
Suchan, Karol 403
Svitkina, Zoya 191

Tam, Yiu-Cheong 652
Tamir, Tami 592

Author Index 901

Telle, Jan Arne 379
Timajev, Larissa 47
Todinca, Ioan 403
Trippen, Gerhard 11
Tsigas, Philippas 329

van de Velde, Steef L. 283
Vanderpooten, Daniel 862
van Kreveld, Marc 143, 343
Varadarajan, Kasturi 83
Vialette, Stéphane 426
Villanger, Yngve 403

Wagner, Dorothea 628
Wahlström, Magnus 107

Woeginger, Gerhard J. 283
Wolff, Alexander 143
Wolpert, Nicola 155
Wong, Chi-Him 652

Yang, Jun 677
Yap, Chee K. 874
Yi, Ke 355
Young, Maxwell 803
Yu, Hai 677

Zachut, Rafi 484
Zaroliagis, Christos 544, 628
Zhao, Hairong 472
Zheng, X. 734

	Frontmatter
	Designing Reliable Algorithms in Unreliable Memories
	From Balanced Graph Partitioning to Balanced Metric Labeling
	Fearful Symmetries: Quantum Computing, Factoring, and Graph Isomorphism
	Exploring an Unknown Graph Efficiently
	Online Routing in Faulty Meshes with Sub-linear Comparative Time and Traffic Ratio
	Heuristic Improvements for Computing Maximum Multicommodity Flow and Minimum Multicut
	Relax-and-Cut for Capacitated Network Design
	On the Price of Anarchy and Stability of Correlated Equilibria of Linear Congestion Games,,
	The Complexity of Games on Highly Regular Graphs
	Computing Equilibrium Prices: Does Theory Meet Practice?
	Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions
	An Algorithm for the SAT Problem for Formulae of Linear Length
	Linear-Time Enumeration of Isolated Cliques
	Finding Shortest Non-separating and Non-contractible Cycles for Topologically Embedded Graphs
	Delineating Boundaries for Imprecise Regions
	{\sc Exacus}: Efficient and Exact Algorithms for Curves and Surfaces
	Min Sum Clustering with Penalties
	Improved Approximation Algorithms for Metric Max TSP
	Unbalanced Graph Cuts
	Low Degree Connectivity in Ad-Hoc Networks
	5-Regular Graphs are 3-Colorable with Positive Probability
	Optimal Integer Alphabetic Trees in Linear Time
	Predecessor Queries in Constant Time?
	An Algorithm for Node-Capacitated Ring Routing
	On Degree Constrained Shortest Paths
	A New Template for Solving {\itshape p}-Median Problems for Trees in Sub-quadratic Time
	Roll Cutting in the Curtain Industry
	Space Efficient Algorithms for the Burrows-Wheeler Backtransformation
	Cache-Oblivious Comparison-Based Algorithms on Multisets
	Oblivious vs. Distribution-Based Sorting: An Experimental Evaluation
	Allocating Memory in a Lock-Free Manner
	Generating Realistic Terrains with Higher-Order Delaunay Triangulations
	I/O-Efficient Construction of Constrained Delaunay Triangulations
	Convex Hull and Voronoi Diagram of Additively Weighted Points
	New Tools and Simpler Algorithms for Branchwidth
	Treewidth Lower Bounds with Brambles
	Minimal Interval Completions
	A 2-Approximation Algorithm for Sorting by Prefix Reversals
	Approximating the 2-Interval Pattern Problem
	A Loopless Gray Code for Minimal Signed-Binary Representations
	Efficient Approximation Schemes for Geometric Problems?
	Geometric Clustering to Minimize the Sum of Cluster Sizes
	Approximation Schemes for Minimum 2-Connected Spanning Subgraphs in Weighted Planar Graphs
	Packet Routing and Information Gathering in Lines, Rings and Trees
	Jitter Regulation for Multiple Streams
	Efficient {\itshape c}-Oriented Range Searching with DOP-Trees
	Matching Point Sets with Respect to the Earth Mover's Distance
	Small Stretch Spanners on Dynamic Graphs
	An Experimental Study of Algorithms for Fully Dynamic Transitive Closure
	Experimental Study of Geometric {\itshape t}-Spanners
	Highway Hierarchies Hasten Exact Shortest Path Queries
	Preemptive Scheduling of Independent Jobs on Identical Parallel Machines Subject to Migration Delays
	Fairness-Free Periodic Scheduling with Vacations
	Online Bin Packing with Cardinality Constraints
	Fast Monotone 3-Approximation Algorithm for Scheduling Related Machines
	Engineering Planar Separator Algorithms
	{\sc Stxxl}: Standard Template Library for XXL Data Sets
	Negative Cycle Detection Problem
	An Optimal Algorithm for Querying Priced Information: Monotone Boolean Functions and Game Trees
	Online View Maintenance Under a Response-Time Constraint
	Online Primal-Dual Algorithms for Covering and Packing Problems
	Efficient Algorithms for Shared Backup Allocation in Networks with Partial Information
	Using Fractional Primal-Dual to Schedule Split Intervals with Demands
	An Approximation Algorithm for the Minimum Latency Set Cover Problem
	Workload-Optimal Histograms on Streams
	Finding Frequent Patterns in a String in Sublinear Time
	Online Occlusion Culling
	Shortest Paths in Matrix Multiplication Time
	Computing Common Intervals of {\itshape K} Permutations, with Applications to Modular Decomposition of Graphs
	Greedy Routing in Tree-Decomposed Graphs
	Making Chord Robust to Byzantine Attacks
	Bucket Game with Applications to Set Multicover and Dynamic Page Migration
	Bootstrapping a Hop-Optimal Network in the Weak Sensor Model
	Approximating Integer Quadratic Programs and MAXCUT in Subdense Graphs
	A Cutting Planes Algorithm Based Upon a Semidefinite Relaxation for the Quadratic Assignment Problem
	Approximation Complexity of min-max (Regret) Versions of Shortest Path, Spanning Tree, and Knapsack
	Robust Approximate Zeros
	Optimizing a 2D Function Satisfying Unimodality Properties
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

