
On Superposition-Based Satisfiability
Procedures and Their Combination

Hélène Kirchner, Silvio Ranise, Christophe Ringeissen, and Duc Khanh Tran

LORIA & INRIA-Lorraine

Abstract. We study how to efficiently combine satisfiability procedures
built by using a superposition calculus with satisfiability procedures for
theories, for which the superposition calculus may not apply (e.g., for
various decidable fragments of Arithmetic). Our starting point is the
Nelson-Oppen combination method, where satisfiability procedures co-
operate by exchanging entailed (disjunction of) equalities between vari-
ables. We show that the superposition calculus deduces sufficiently many
such equalities for convex theories (e.g., the theory of equality and the
theory of lists) and disjunction of equalities for non-convex theories (e.g.,
the theory of arrays) to guarantee the completeness of the combination
method. Experimental results on proof obligations extracted from the
certification of auto-generated aerospace software confirm the efficiency
of the approach. Finally, we show how to make satisfiability procedures
built by superposition both incremental and resettable by using a hier-
archic variant of the Nelson-Oppen method.

1 Introduction

Satisfiability procedures for theories of data types such as arrays, lists, and in-
tegers are at the core of many state-of-the-art verification tools. The task of de-
signing, proving correct, and implementing satisfiability procedures is far from
simple. One of the main problem is proving the correctness of satisfiability pro-
cedures. Furthermore, data structures and algorithms for each new procedure
are implemented from scratch, with little software reuse and high risk of errors.

To overcome these difficulties, an approach to flexibly build satisfiability
procedures based on superposition has been proposed in [2] and it has been
shown competitive with ad hoc satisfiability procedures in [3,1]. Following this
approach, the correctness proof of a procedure for a theory T reduces to show
the termination of the fair and exhaustive application of the rules of the super-
position calculus [12] on an axiomatization of T and an arbitrary set of literals.
Furthermore, the implementation of the satisfiability procedure for T becomes
easy by using (almost) off-the-shelf an available prover implementing the super-
position calculus. In this way, years of careful engineering and debugging can
be effortlessly reused. Unfortunately, this approach does not allow one to build
satisfiability procedures for the fragments of Arithmetic which are required by
most (if not all) verification problems. Hence, there is a need to combine satis-
fiability procedures obtained by superposition with satisfiability procedures for
the various fragments of Arithmetic based on ad hoc techniques (see e.g., [8]).

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 594–608, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Superposition-Based Satisfiability Procedures 595

The method proposed by Nelson and Oppen (N-O) [11] allows one to combine
satisfiability procedures for theories (satisfying some requirements) by exchang-
ing equalities or disjunction of equalities between variables. Such equalities (or
their disjunction) must be entailed by the input set of literals in each component
theory. Since a set S of literals entails an equality (or a disjunction of equalities)
φ if and only if the conjunction of S and the negation of φ is unsatisfiable, there
does not seem to be any problem in using a satisfiability procedure based on
superposition in a N-O combination. However, as it is well known (see e.g. [6]),
to implement the combination method efficiently, the satisfiability procedure for
the component theories must be capable of deriving the formulae to exchange
with other procedures. This is not obvious for satisfiability procedures obtained
by superposition since latter is not known to be complete for consequence find-
ing, i.e. we are not guaranteed that a clause which is a logical consequence of
a set of clauses will be eventually derived by applying the rules of the calculus.
The first contribution of this paper is to show that satisfiability procedures
obtained by superposition deduce sufficiently many equalities between variables
for convex theories (e.g., the theory of lists) or disjunction of equalities between
variables for non-convex theories (e.g., the theory of arrays) to guarantee the
completeness of the N-O combination method.

The capability of detecting entailed equalities is not the only requirement to
efficiently implement the N-O method: the component satisfiability procedures
must be incremental and resettable, i.e. it must be possible to add and remove
literals to and from the state of the procedure without restarting it. Actual
state-of-the-art theorem provers based on superposition do not satisfy these two
requirements and each time a literal is added or removed, provers must be in-
voked from scratch. This may result in an unacceptable overhead. To overcome
this difficulty, the second contribution of this paper is to propose a hierarchic
variant of the N-O combination method, where the superposition prover is used
as a front-end of a congruence closure algorithm which is then combined with a
satisfiability procedure for Arithmetic by the standard N-O method.

Our motivation for this work is to give a firm basis to a theorem proving
system, called haRVey [3], which we are currently developing. Experimental
results on a set of benchmarks [4] extracted from program verification problems
clearly show the advantages of the proposed approach.

Plan of the paper. In Section 2, we introduce some basic notions. In Section 3,
we show how to directly extract entailed (disjunction of) equalities between vari-
ables from satisfiability procedures built by superposition for various theories, we
discuss some experimental results, and we conclude by describing a refinement
of the N-O method. In Section 4, we discuss some related work. In Section 5, we
conclude and sketch the future work. All omitted proofs can be found in [9].

2 Background

We assume the usual first-order syntactic notions of signature, term, position,
and substitution, as defined, e.g., in [5]. If l and r are two terms, then l = r

596 H. Kirchner et al.

is an equality and ¬(l = r) (also written as l �= r) is a disequality. A literal is
either an equality or a disequality. A first-order formula is built in the usual way
over the universal and existential quantifiers, Boolean connectives, and symbols
in a given first-order signature. We call a formula ground if it has no variable.
A clause is a disjunction of literals. A unit clause is a clause with only one
disjunct, equivalently a literal. The empty clause is the clause with no disjunct,
equivalently an unsatisfiable formula.

We also assume the usual first-order notions of model, satisfiability, validity,
logical consequence, and theory. A first-order theory is a set of first-order for-
mulae with no free variables. When T is a finitely axiomatized theory, Ax(T)
denotes the set of axioms of T . All the theories in this paper are first-order theo-
ries with equality, which means that the equality symbol = is always interpreted
as the equality relation. The theory of equality is denoted with E . A formula
is satisfiable in a theory T if it is satisfiable in a model of T . Two formulas ϕ
and ψ are equisatisfiable in T if for every model A of T , ϕ is satisfiable in A
iff ψ is satisfiable in A. The satisfiability problem for a theory T amounts to
establishing whether any given finite conjunction of literals (or equivalently, any
given finite set of literals) is T -satisfiable or not. A satisfiability procedure for T
is any algorithm that solves the satisfiability problem for T (the satisfiability of
any quantifier-free formula can be reduced to the satisfiability of sets of literals
by converting to disjunctive normal form and then splitting on disjunctions).
The reader should observe that free variables in a formula ϕ behave as (Skolem)
constants when ϕ is checked for satisfiability. In the rest of the paper, we use
variables and constants interchangeably when the context allows us to do so, i.e.
when combining satisfiability procedures.

2.1 The Superposition Calculus SP

In the following, = is (unordered) equality, ≡ is identity, �� is either = or �=,
l, r, u, t are terms, v, w, x, y, z are variables, all other lower case letters are con-
stant or function symbols. The rules of the superposition calculus SP used in [2]
and in this paper are depicted in Figures 1 and 2.

Given a set S of clauses, an expansion inference in Figure 1 adds the clause
in its conclusion to S while a contraction inference rule in Figure 2 either simpli-
fies (e.g. Simplification reduces to (ordered) rewriting when C is a unit clause)
or deletes a clause from S. Notice that the premises and conclusion of an ex-
pansion rule are clauses while those of a contraction rule are sets of clauses.
The rules in Figures 1 and 2 are well-known in the theorem proving literature
(see e.g., [12]). A fundamental feature of SP is the usage of a total reduction
ordering (TRO) � [5] on terms. The ordering � is extended to literals in such
a way that only maximal sides of maximal instances of literals are considered
when applying the expansion rules of Figure 1. Since later we need a total re-
duction ordering �c on clauses, we extend the TRO � on terms to clauses
as follows: C �c D if ms(C) (�mul)mul ms(D), where C and D are clauses,
�mul is the multiset extension of the TRO � over terms (see [5] for details),
and ms(s1 �= s′1 ∨ . . . ∨ sn �= s′n ∨ t1 = t′1 ∨ . . . tm = t′m) returns the multi-

On Superposition-Based Satisfiability Procedures 597

Superposition (SP)
Γ ⇒ ∆, l[u′] = r Π ⇒ Σ, u = t

σ(Γ, Π ⇒ ∆, Σ, l[t] = r)
(i), (ii), (iii), (iv)

Paramodulation (PM)
Γ, l[u′] = r ⇒ ∆ Π ⇒ Σ, u = t

σ(l[t] = r, Γ, Π ⇒ ∆, Σ)
(i), (ii), (iii), (iv)

Reflection (R)
Γ, u′ = u ⇒ ∆

σ(Γ ⇒ ∆)
∀L ∈ Γ ∪ ∆ : σ(u′ = u) �≺ σ(L)

Eq. Factoring (EF)
Γ ⇒ ∆, u = t, u′ = t′

σ(Γ, t = t′ ⇒ ∆, u = t′)
(i), ∀L ∈ Γ : σ(u) �� σ(L),

∀L ∈ {u′ = t′} ∪ ∆ : σ(u = t) �≺ σ(L)

where a clause ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bn is written in sequent style as
{A1, . . . , An} ⇒ {B1, . . . , Bm} (where the Ai’s and Bj ’s are literals), equality is the
only predicate symbol, σ is the most general unifier of u and u′, u′ is not a variable in
Superposition and Paramodulation, L is a literal, and the following hold:

(i) σ(u) �� σ(t), (ii) ∀L ∈ Π ∪ Σ : σ(u = t) �� σ(L), (iii) σ(l[u′]) �� σ(r),
and (iv) ∀L ∈ Γ ∪ ∆ : σ(l[u′] = r) �� σ(L).

Fig. 1. Expansion inference rules of SP

Subsumption
S ∪ {C, C′}

S ∪ {C}

if for some substitution θ, θ(C) ⊆
C′ and for no substitution ρ,
ρ(C′) ≡ C

Simplification
S ∪ {C[l′], l = r}

S ∪ {C[θ(r)], l = r}
if l′ ≡ θ(l), θ(l) � θ(r), and
∀L ∈ C[θ(l)] : L � (θ(l) = θ(r))

Deletion
S ∪ {Γ ⇒ ∆, t = t}

S

where C and C′ are clauses and S is a set of clauses.

Fig. 2. Contraction inference rules of SP

set {{s1, s1, s
′
1, s

′
1}, . . . , {sn, sn, s′n, s′n}, {t1, t

′
1}, . . . , {tm, t′m}}. (By abuse of no-

tation, we abbreviate �c with �.)
A clause C is redundant with respect to a set S of clauses if either C ∈ S or

S can be obtained from S ∪ {C} by a sequence of application of the contraction
rules of Figure 2. An inference is redundant with respect to a set S of clauses
if its conclusion is redundant with respect to S. A set S of clauses is saturated
with respect to SP if every inference of SP with a premise in S is redundant
with respect to S. A derivation is a sequence S0, S1, . . . , Si, . . . of sets of clauses
where at each step an inference of SP is applied to generate and add a clause
(cf. expansion rules in Figure 1) or to delete or reduce a clause (cf. contraction
rules in Figure 2). A derivation is characterized by its limit, defined as the set
of persistent clauses S∞ =

⋃
j≥0

⋂
i>j Si.

Lemma 1 ([12]). Let S0, S1, . . . , Sn, . . . be a derivation and let C be a clause
in (

⋃
i Si)\S∞. Then C is redundant with respect to S∞.

A derivation S0, S1, ..., Si, ... with limit S∞ is fair with respect to SP if for every
inference in SP with premises in S∞, there is some j ≥ 0 such that the inference
is redundant in Sj .

598 H. Kirchner et al.

Theorem 1 ([12]). If S0, S1, . . . is a fair derivation of SP, then (i) its limit
S∞ is saturated with respect to SP, (ii) S0 is unsatisfiable iff the empty clause
is in Sj for some j, and (iii) if such a fair derivation is finite, i.e. it is of the
form S0, . . . , Sn, then Sn is saturated and logically equivalent to S0.

We say that SP is refutation complete since it is possible to derive the empty
clause with a finite derivation from an unsatisfiable set of clauses (cf. (ii) of
Theorem 1).

2.2 A Superposition Approach to Satisfiability Procedures

The rewrite-based methodology [2] uses SP to build in an uniform way sat-
isfiability procedures for theories which can be finitely axiomatized by a set
of clauses. For a term t, depth(t) = 0, if t is a constant or a variable, and
depth(f(t1, . . . , tn)) = 1+max{depth(ti) | 1 ≤ i ≤ n}. A term is flat if its depth
is 0 or 1. For a literal, depth(l �� r) = depth(l) + depth(r). A positive literal is
flat if its depth is 0 or 1. A negative literal is flat if its depth is 0. A flat clause is
a clause containing only flat literals. Let V be a set of variables. A V -elementary
equality is an equality of the form x = y for x, y ∈ V . A V -elementary clause is
a disjunction of V -elementary equalities.

The rewrite-based methodology for T -satisfiability consists of two phases:

1. Flattening: all ground literals are flattened by introducing new constants,
yielding an equisatisfiable T -reduced flat problem.

2. Ordering selection and termination: any fair derivation of SP is shown to
be finite when applied to a T -reduced flat problem, provided that the TRO
� satisfies a few properties depending on T .

If T is a theory to which the rewrite-based methodology applies, a T -satisfiability
procedure can be built by implementing the flattening (this can be done once
and for all), and by using a prover mechanizing SP with a suitable TRO �. If
the final set of clauses returned by the prover contains the empty clause, then
the T -satisfiability procedure returns unsat; otherwise, it returns sat.

2.3 The Nelson-Oppen Method

The N-O combination method allows us to solve the problem of checking the
satisfiability of a conjunction Φ of quantifier-free literals in the union of two
signature-disjoint theories T1 and T2 for which two satisfiability procedures are
available. Since the literals in Φ may be built over symbols in T1 or in T2, we need
to purify them by introducing fresh variables to name subterms. This process
leaves us with a conjunction Φ1 ∧ Φ2 which is equisatisfiable to Φ where Φi

contains only literals with symbols of Ti, for i = 1, 2. In this way, literals in Φi

can be dispatched to the available decision procedure for Ti.
To show the correctness of the N-O method [10,13], the theories T1 and

T2 must be stably-infinite. Roughly, a theory is stably infinite if any satisfiable
quantifier-free formula is satisfiable in a model having an infinite cardinality. All

On Superposition-Based Satisfiability Procedures 599

theories considered in this paper (the theory of equality, the theory of lists, the
theory of arrays, and the theory of Linear Arithmetic) are stably infinite.

An efficient description of the N-O method is based on the availability of
satisfiability procedures with the following properties (see [6] for an in depth
discussion on these issues):

Deduction completeness. It must be capable of efficiently detecting elemen-
tary clauses which are implied by the input conjunction of literals.

Incrementality & resettability. It must be possible to add and remove lit-
erals to and from the state of the procedure without restarting it. Also,
processing each literal must be computationally cheap.

The N-O method for satisfiability procedures satisfying the requirements
above is depicted in Figure 3 when T1 is the theory of equality for which the
superposition calculus is known to be a satisfiability procedure (see e.g., [2])
and T2 is Linear Arithmetic (LA) for which various satisfiability procedures are
available (see e.g., [8]). Such a combination method simply consists of exchanging
elementary clauses between the two procedures until either unsatisfiability is
derived by one of the two, or no more elementary clauses can be exchanged. In
the first case, we derive the unsatisfiability of the input formula; in the second
case, we derive its satisfiability. N-O method terminates because only finitely
many elementary clauses can be constructed by using the variables of both Φ1
and Φ2.

It is sufficient to exchange only elementary equalities when combining convex
theories. A theory is convex if for any conjunction Γ of equalities, a disjunction
D of equalities is entailed by Γ if and only if some disjunct of D is entailed by Γ .
Examples of convex theories are the theory of equality, the theory of lists, and the
theory of Linear Arithmetic over the Rationals (LA(R)). Since both procedures
are assumed to be deduction complete, the combination method only needs to

Backtracking

Dispatcher
Purification&

input literals

Linear
Arithmeticequalities

equalities equalities

disjunction of equalitiesdisjunction of equalities

Superposition
Prover

purified equality literals purified arithmetic literals

Case−Splitting

Fig. 3. The Nelson-Oppen Combination Method

600 H. Kirchner et al.

pass around elementary equalities between the procedures as soon as they detect
them. Adding the newly detected equalities can be done efficiently as long as
the procedures are also assumed to be incremental.

When combining at least one non-convex theory such as the theory of arrays
or the theory of Linear Arithmetic over the Integers (LA(I)), the combina-
tion method is more complex since the procedures should exchange elementary
clauses. Although the procedures are capable of deriving the entailed elementary
clauses, their processing is problematic since they are only capable of handling
conjunctions of literals. The standard solution, as depicted in Figure 3, is to
case-split on the derived elementary clauses and then consider each disjunct in
turn by using a backtracking procedure; this can be efficiently done (see e.g., [6]
for details) since both procedures are assumed to be incremental and resettable.

3 Deduction Complete, Incremental, and Resettable
Satisfiability Procedures Based on Superposition

As discussed in Section 2.3, satisfiability procedures must be deduction complete,
incremental, and resettable to be efficiently combined à la N-O. Here, we show
how to extend the satisfiability procedures based on superposition of [2] with
such capabilities.

3.1 Deduction Completeness

First, we need a formal definition of deduction completeness to precisely state
our results.

Definition 1. A T -satisfiability procedure is deduction complete with respect
to elementary clauses (resp. elementary equalities) if for any T -satisfiable set S
of clauses (resp. unit clauses), it returns, in addition to sat, a set of elementary
clauses (resp. elementary equalities) D such that for any elementary clause (resp.
elementary equality) C, we have T |= S ⇒ C if and only if D |= C (i.e. S ⇒ C
is T -valid if and only if C is a logical consequence of D).

We now show how the methodology in [2] (summarized in Section 2.2) can be
extended to build satisfiability procedures which are deduction complete w.r.t.
elementary clauses. To this end, we must prove the following conjecture.

Conjecture 1. Let Ax(T) be the set of axioms of a stably infinite theory T for
which the methodology in [2] yields a satisfiability procedure, S be a T -satisfiable
set of ground literals, and V be the set of all constants in S. If S′ is the saturation
of Ax(T) ∪ S and DV ⊆ S′ is the set of all V -elementary clauses, then for every
V -elementary clause C which is a logical consequence of T ∪ S, C is a logical
consequence of DV .

If we are capable of proving Conjecture 1 for a certain theory T , we can build
a deduction complete satisfiability procedure for T by simply extracting from
a saturated set S′ of clauses (not containing the empty clause) the elementary

On Superposition-Based Satisfiability Procedures 601

clauses which entail all elementary clauses entailed by S′. Indeed, this is sufficient
for the completeness of the N-O method depicted in Figure 3.

Since Conjecture 1 must be proved for each theory T for which the method-
ology of [2] (cf. Section 2.2) yields a superposition-based satisfiability procedure,
we extend such a methodology with the following phase:

3. Deduction completeness : any set of clauses saturated by SP (not containing
the empty clause) is shown to contain a set of elementary clauses entailing
all elementary clauses which are logical consequences of the initial set of
clauses.

Below, we assume that � is a TRO such that t � c for each constant
c and term t containing a function symbol of arity bigger than 0. This
requirement is easy to realize in practice (see [2] for more details). We also assume
that the contraction rules of SP have higher priority than expansion rules. This
is a reasonable assumption: before enlarging the search space by adding a new
clause via the application of an expansion rule, one would try to reduce it as
much as possible via the application of as many contraction rules as possible.

Theory of Equality E. Let S be a set of ground literals and Ax(E) be the
empty set since equality is built-in the rules of SP . For any TRO �, the fair and
exhaustive applications of the rules of SP on Ax(E) ∪ S always terminates and
so SP can be used to build a satisfiability procedure for E (see [2] for details).
Here, for the sake of generality, we consider S to be a set of clauses and not
simply of literals.

Theorem 2. Let S be a satisfiable set of ground clauses and V be the set of all
constants occurring in S. Let S′ be a saturation of S with respect to SP and DV

be the set of all V -elementary clauses in S′. Then for every V -elementary clause
C, S |= C implies DV |= C.

Proof. Since S and S′ are logically equivalent, S |= C if and only if S′ |= C. Let
C ≡ c1 = c′1 ∨ c2 = c′2 ∨ . . . ∨ cn = c′n, then S′ |= c1 = c′1 ∨ c2 = c′2 ∨ . . . ∨ cn = c′n
is equivalent to S′ ∪ {c1 �= c′1, c2 �= c′2, . . . , cn �= c′n} is unsatisfiable.

By the refutation completeness of SP , we can derive the empty clause from
S′ ∪ {c1 �= c′1, c2 �= c′2, . . . , cn �= c′n} using the inference system SP . Since
S′ is already saturated, only inferences between clauses in S′ and clauses in
{c1 �= c′1, c2 �= c′2, . . . , cn �= c′n} could derive the empty clause. But then,
only Paramodulation, Simplification and Reflection can apply since clauses in
{c1 �= c′1, . . . , cn �= c′n} are all negative. Now let us analyze the form of clauses
used by these three rules to derive the empty clause.

– Paramodulation: a clause of the form c1 = c′1 ∨ c2 = c′2 ∨ . . . ∨ cm = c′m
(m ∈ {1, . . . , n}) in S′ and c1 �= c′1 are used to derive in one step c2 =
c′2 ∨ . . . ∨ cm = c′m. The rule repeatedly applies until the empty clause is
obtained. That means the clause c1 = c′1 ∨ c2 = c′2 ∨ . . . ∨ cm = c′m must
be in S′ and hence in DV . But c1 = c′1 ∨ c2 = c′2 ∨ . . . ∨ cm = c′m |= C,
consequently DV |= C.

602 H. Kirchner et al.

– Simplification: a clause cj �= c′j in {c1 �= c′1, c2 �= c′2, . . . , cn �= c′n} is simplified
(by one or many steps) to the clause a �= a; and Reflection applies to derive
the empty clause. But Simplification uses equalities to simplify clauses. In
addition, these equalities must be elementary since they are used to simplify
a disequality between constants. In other word cj = c′j is a consequence of
a set of elementary equalities which is itself a subset of DV . Thus we have
DV |= C.

– Reflection: a �= a is used in Reflection and hence either a �= a ∈ S′ or
a �= a ∈ {c1 �= c′1, c2 �= c′2, . . . , cn �= c′n}. But that type of clause cannot
be in S′ that is saturated and does not contain the empty clause. If it is
in {c1 �= c′1, c2 �= c′2, . . . , cn �= c′n}, this simply means that c1 = c′1 ∨ c2 =
c′2 ∨ . . . ∨ cn = c′n is a tautology clause; and we have DV |= C.

In all cases, we have DV |= C. �

Corollary 1. Let S be a satisfiable set of ground literals and V be the set of
all constants occurring in S. Let S′ be a saturation of S with respect to SP and
ΓV be the set of all V -elementary equalities in S′. Then for every V -elementary
equality c = c′, S |= c = c′ implies ΓV |= c = c′.

Corollary 2. SP is a deduction complete (with respect to elementary equalities)
satisfiability procedure for E.

Proof. By Corollary 1, it is immediate to see that a deduction complete satisfi-
ability procedure for E is obtained by computing a saturation of the input set
of literals (unit clauses) and then collecting the elementary equalities in such a
saturated set of clauses. �

Theory of Lists à la Shostak. The (convex) theory L of lists à la Shostak [16]
is axiomatized by the following set Ax(L) of axioms:

car(cons(X, Y)) = X (L1)
cdr(cons(X, Y)) = Y (L2)

cons(car(X), cdr(X)) = X (L3)

where X and Y are implicitly universally quantified variables.

Lemma 2 ([2]). Let S be a finite set of ground flat L-literals. The clauses
occurring in the saturation of Ax(L) ∪ S w.r.t. SP are of the following types
only, where X, Y are variables, a, b, c are constants, and ��∈ {=, �=}:

i) the empty clause;
ii) the axioms in Ax(L): 1) car(cons(X, Y)) = X; 2) cdr(cons(X, Y)) = Y ;

and 3) cons(car(X), cdr(X)) = X;
iii) ground flat literals of the forms: 1) c �� c′; 2) car(a) = b; 3) cdr(a) = b;

and 4) cons(a, b) = c;
iv) equalities of the form cons(b, cdr(a)) = a or cons(car(a), b) = a, where a, b

are constants.

On Superposition-Based Satisfiability Procedures 603

A consequence of this lemma [2] is that SP is a satisfiability procedure for
L. This is so because all saturations of Ax(L) ∪ S are finite, since only finitely
many literals of types i)–iv) can be built out of a finite signature.

Lemma 3. Let S be a finite L-satisfiable set of ground flat L-literals and V be
the set of constants occurring in S. Let Sg be the set of all ground clauses in
the saturation of Ax(L) ∪ S w.r.t. SP. Then, for every V -elementary equality
c = c′, we have that
A) if L ∪ S |= c = c′ then Sg |= c = c′, and
B) L ∪ S ∪ {c = c′} is unsatisfiable iff Sg ∪ {c = c′} is unsatisfiable.

Proof. Let S′ be a saturation of Ax(L) ∪ S. Since S is L-satisfiable, S′ does not
contain the empty clause.

A) Notice that L ∪ S |= c = c′ is equivalent to S′ ∪ {c �= c′} is unsatisfiable;
that also means we can derive the empty clause from S′ ∪ {c �= c′} using SP .
Since S′ is saturated, we only consider inferences between clauses in S′ and
c �= c′. For that, we consider all possible inferences between clauses listed in
Lemma 2 and c �= c′. We can easily see that only inferences between clauses of
type (iii .1) and c �= c′ are possible. In other words, c = c′ is a consequence of a
subset of Sg; consequently, Sg |= c = c′.

B) We have that L∪S ∪{c = c′} is unsatisfiable if and only if S′ ∪{c = c′} is
unsatisfiable. Since S′ is saturated, we only consider inferences between clauses
in S′ and c = c′. Again, we consider all possible inferences between clauses listed
in Lemma 2 and c = c′ to derive the empty clause. We can see that only the
following inferences are possible: (iii) and c = c′, (iv) and c = c′. This simply
means c = c′ is a consequence of Sg. �

Theorem 3. Let S be a finite L-satisfiable set of ground flat L-literals and V be
the set of constants occurring in S. Let ΓV be the set of V -elementary equalities
that belong to the saturation of Ax(L)∪S w.r.t. SP. Then for every V -elementary
equality c = c′ which is a logical consequence of Ax(L) ∪ S, c = c′ is a logical
consequence of ΓV .

Proof. It follows from Lemma 3 that the subset Sg containing the ground clauses
in the saturation of S is sufficient to derive V -elementary equalities, i.e. for every
ground V -elementary equality c = c′, S |= c = c′ implies Sg |= c = c′. By
Corollary 1, Sg |= c = c′ implies ΓV |= c = c′. �

Corollary 3. SP is a deduction complete (with respect to elementary equalities)
satisfiability procedure for L.

Other convex theories. The result obtained for L can be extended to other convex
theories considered in [2,1], namely the theory of lists à la N-O, a theory of
encryption, or a theory of records by proceeding along the lines of what has been
done for L: show that only the ground clauses in a saturation are sufficient to
derive entailed elementary equalities and then use Corollary 1 to conclude that
the elementary equalities in the saturation are sufficient to derive all entailed
elementary equalities. We do not do this here for lack of space.

604 H. Kirchner et al.

Theory of Arrays. The (non-convex) theory A of arrays (see e.g., [2]) is ax-
iomatized by the following finite set Ax(A) of axioms:

select(store(A, I, E), I) = E (A1)
I �= J ⇒ select(store(A, I, E), J) = select(A, J) (A2)

where A, I, J, E are implicitly universally quantified variables.

Lemma 4 ([2]). Let S be a finite set of ground flat A-literals. Then, the clauses
occurring in the saturation of Ax(A) ∪ S with respect to SP are of the following
types only, where X is a variable, and a, a′, e, e′, i, i1, i′1, . . . , in, i′n, j1, j

′
1 . . . , jm,

j′m for n ≥ 0, m ≥ 0 are constants, and ��∈ {=, �=}:

i) the empty clause;
ii) the axioms in Ax(A);
iii) ground flat literals;
iv) non-unit clauses of the form:

a) clauses of the form select(c, X) = select(c′, X) ∨ X = i1 ∨ . . .X =
in ∨ j1 �� j′1 ∨ . . . ∨ jm �� j′m;

b) select(a, i) �� e ∨ i1 �� i′1 ∨ . . . ∨ in �� i′n;
c) t = a′ ∨ i1 �� i′1 ∨ . . . ∨ in �� i′n, where t is either a or store(a, i, e);
d) e �� e′ ∨ i1 �� i′1 ∨ . . . ∨ in �� i′n;
e) i1 �� i′1 ∨ i2 �� i′2 ∨ . . . ∨ in �� i′n;

A consequence of this lemma [2] is that SP is a satisfiability procedure for A.

Lemma 5. Let S be a finite A-satisfiable set of ground flat A-literals and V be
the set of constants occurring in S. Let Sg be the set of all ground clauses in
the saturation of Ax(A) ∪ S with respect to SP. Then, for every V -elementary
clause D, we have that
A) Ax(A) ∪ S |= D ⇒ Sg |= D, and
B) Ax(A) ∪ S ∪ {D} is unsatisfiable if and only if Sg ∪ {D} is unsatisfiable.

Theorem 4. Let S be a finite A-satisfiable set of ground flat A-literals and V
be the set of constant occurring in S. Let DV be the set of V -elementary clauses
that belong to the saturation of Ax(A) ∪ S with respect to SP. Then for every
V -elementary clause C which is a logical consequence of Ax(A)∪S, C is a logical
consequence of DV .

Proof. It follows from Lemma 5 that the subset Sg containing the ground clauses
in the saturation of S is sufficient to derive V -elementary clauses, i.e. for every
ground V -elementary clause C, S |= C implies Sg |= C. By Theorem 2, Sg |= C
implies DV |= C. �

Corollary 4. SP is a deduction complete (with respect to elementary clauses)
satisfiability procedure for A.

Other non-convex theories. The result obtained for A can be extended to the
theory of arrays with extensionality and a simple theory of sets with and without
extensionality considered in [2]. For lack of space, we do not develop this further.

On Superposition-Based Satisfiability Procedures 605

3.2 Experiments

In order to show the efficiency of the deduction complete satisfiability procedures
based on superposition presented above, we have implemented the combination
method described in Figure 3 in the theorem prover haRVey [3]. In particular, the
E prover [15] implements SP and we have implemented a module to inspect the
saturated sets of clauses computed by the E prover and extract the elementary
clauses. We have also implemented a deduction complete procedure for LA(R)
along the lines of [8].

For benchmarks, we used a selection of proof obligations from those generated
to certify auto-generated aerospace software in [4]. We selected 107 (out of 356)
unsatisfiable proof obligations expressing the property that each access to an
array element are within the appropriate range. For example, an array variable
a is modeled as the constant a and its i-element a[i] is written as sel(a, i);
hence, we need to reason about a combination of E and LA(I). As it is common in
software verification, we use the decision procedure for LA(R) as a semi-decision
procedure for LA(I). On these benchmarks, this is sufficient since all proof
obligations have been checked unsatisfiable already over the rationals. In [4],
the proof obligations come with a set of axioms which approximates LA(I) and
should be sufficient to discharge (almost) all of them. Since haRVey is capable
of handling virtually any theory which can be finitely axiomatized, we compared
the behavior of the system haRVey(SP) with the E prover alone handling the
supplied axioms for LA(I) and the system haRVey(SP + LA(R)) featuring the
combination between the decision procedure for LA(R) and the superposition
prover without axioms for LA(I).

Table 1. Experimental results

time-out don’t know unsat
haRVey(SP) 5 17 85
haRVey(SP + LA(R)) 0 0 107

Experiments were performed on a Pentium-IV 2 GHz running Linux with
256 Kb of RAM and 1 Gb of disk space. We set a time-out of 60 seconds. A
comparison of haRVey(SP) and haRVey(SP +LA(R)) is shown in Table 1. The
column “don’t know” means that the prover returned with satisfiable but since
the axiomatization of LA(I) is necessarily incomplete we interpreted it as non
conclusive. From Table 1, it is clear that the incorporation of LA(R) in haRVey
is successful since it both eliminates the need of an explicit axiomatization of the
background theory and makes the system more reliable. We believe that these
results clearly show that Arithmetic reasoning has been efficiently combined
with superposition theorem proving to discharge the proof obligations arising in
typical software verification problems.

3.3 Incrementality and Resettability

Although the combination method in Figure 3 is already efficient in practice
to tackle interesting proof obligations arising in verification (as shown in Sec-

606 H. Kirchner et al.

purified arithmetic literals

Congruence
Closure

Superposition
prover

Linear
Arithmetic

Handler

equalities

disjunction of equalitiesdisjunction of equalities

equalities

equalities equalities

Dispatcher
Purification&

input literals

Case−Splitting

purified equality literals

Fig. 4. The Hierarchic Nelson-Oppen Combination Method

tion 3.2), there is still room for improvement. In fact, Lemmas 3.B) and 5.B)
allow us to observe that when new elementary clauses (deduced from another
satisfiability procedure) must be added to a saturated set of clauses, it is only
necessary to consider the ground clauses in the saturated set. This implies that
it is sufficient to use the superposition calculus as a front-end for the congruence
closure algorithm, which can be turned into a deduction complete, incremental,
and resettable satisfiability procedure for E (see e.g., [6]). So, the superposi-
tion calculus must be applied only once before the combination loop in which
the congruence closure algorithm and another satisfiability procedure exchange
elementary clauses. Figure 4 depicts the hierarchic combination method which
allows us to obtain satisfiability procedures which are both incremental and re-
settable. We are currently implementing the method in haRVey and we expect
further improvements in performances. It is interesting to notice that this ap-
proach can be used in any theorem proving system featuring a combination of
satisfiability procedures à la N-O, offering an easy and efficient way to incorpo-
rate procedures for a variety of theories extending E .

4 Related Work

Our approach to efficiently combine a theory processed by superposition with a
procedure for LA(R) is based on the N-O method. An alternative combination
method has been proposed by Shostak [16]. Such a method assumes that the
theories to be combined are such that there exist functions for reducing terms
to canonical form (canonizers) and for solving equations (solvers) [13]. There
are essentially two different ways to use canonizers and solvers for deciding the
satisfiability problem in unions of disjoint theories.

First, one can use a solver and a canonizer to build a satisfiability proce-
dure having the capability of computing entailed elementary equalities. Then,
this satisfiability procedure can be combined with others using the N-O method.
So, combining theories à la Shostak can be directly viewed as a refinement of
the Nelson-Oppen combination method [13]. In this way, solvers and canonizers

On Superposition-Based Satisfiability Procedures 607

can be readily integrated with the satisfiability procedures based on superposi-
tion described in this paper. A second approach consists in extending the use of
canonizers and solvers in order to deal with terms built over the union of the sig-
natures of the component theories. In contrast to the N-O method, one does not
need to purify the input literals. Rather, the input literals are processed directly
by solvers and canonizers having the capability of transforming heterogeneous
terms. This approach was initiated by Shostak and has been followed by many
other papers revisiting this combination method (see again [13] for details). Re-
cently, this approach has been used in [7] to integrate a canonizer and a solver
in the superposition calculus. This yields a refutationally complete calculus on
ground clauses whose terms are built over the union of the signatures of the
component theories. This is particularly interesting to integrate some form of
Arithmetic reasoning with superposition. The main drawback of this approach
is the ordering relation used to restrict the applicability of the inference rules
which is quite complex. Instead, our approach uses the standard and well under-
stood framework of the superposition calculus (including the standard techniques
to define ordering relations) which allows us to re-use a wide range of existing
results.

5 Conclusion

In [2], the authors give a general and flexible approach to derive satisfiability
procedures by superposition. In this work, we have shown that such satisfia-
bility procedures deduce sufficiently many (disjunctions of) equalities between
variables to be combined à la Nelson and Oppen with other satisfiability pro-
cedures without loosing completeness. Experimental results on typical software
verification problems show the efficiency of the proposed approach. Moreover, it
is possible to obtain a certain degree of incrementality and resettability by using
a hierarchic variant of the N-O method.

There are several main lines for future work. First, we want to derive a more
precise characterization of the theories for which deduction complete superpo-
sition based satisfiability procedures can be built with the methodology of [2].
Second, we intend to empirically evaluate the efficiency of our hierarchic variant
of N-O combination method by conducting some experiments in haRVey [3].
Finally, we plan to study, along the line of [14], the combination of superposi-
tion based satisfiability procedures with satisfiability procedures for non stably
infinite theories, for which the N-O method does not directly apply.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. On a rewriting approach to
satisfiability procedures: extension, combination of theories and an experimental
appraisal. In Proc. of the 5th Int. Workshop on Frontiers of Combining Systems
(FroCos’05), LNCS. Springer-Verlag, 2005. To appear.

2. A. Armando, S. Ranise, and M. Rusinowitch. A Rewriting Approach to Satisfia-
bility Procedures. Info. and Comp., 183(2):140–164, June 2003.

608 H. Kirchner et al.

3. D. Déharbe and S. Ranise. Light-Weight Theorem Proving for Debugging and
Verifying Units of Code. In Proc. of the Int. Conf. on Software Engineering and
Formal Methods (SEFM03). IEEE Comp. Soc. Press, 2003.

4. E. Denney, B. Fischer, and J. Schumann. Using automated theorem provers to cer-
tify auto-generated aerospace software. In Proc. of Int. Joint Conf. On Automated
Reasoning (IJCAR’04), volume 3097 of LNCS, 2004.

5. N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science,
volume B, chapter 6: Rewrite Systems, pages 244–320. Elsevier Science Publishers
B. V. (North-Holland), 1990.

6. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A Theorem Prover for Program
Checking. Technical Report HPL-2003-148, HP Laboratories, 2003.

7. H. Ganzinger, T. Hillenbrand, and U. Waldmann. Superposition modulo a Shostak
theory. In F. Baader, editor, Automated Deduction — CADE-19, volume 2741 of
LNAI, pages 182–196. Springer-Verlag, 2003.

8. D. Kapur and X. Nie. Reasoning about Numbers in Tecton. In Proc. 8th Inl.
Symp. Methodologies for Intelligent Systems, pages 57–70, 1994.

9. H. Kirchner, S. Ranise, C. Ringeissen, and D. K. Tran. On Superposition-Based
Satisfiability Procedures and their Combination (Full Version). Available at
http://www.loria.fr/~ranise/pubs/long-ictac05.ps.gz.

10. G. Nelson. Techniques for program verification. Technical Report CS-81-10, Xerox
Palo Research Center California USA, 1981.

11. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, Oct. 1979.

12. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
A. Robinson and A. Voronkov, editors, Hand. of Automated Reasoning. 2001.

13. S. Ranise, C. Ringeissen, and D.-K. Tran. Nelson-Oppen, Shostak and the Ex-
tended Canonizer : A Family Picture with a Newborn. In First International Col-
loquium on Theoretical Aspects of Computing — ICTAC 2004, Guiyang, China,
volume 3407 of LNCS, pages 372–386. Springer, Sep 2004.

14. S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with non-
stably infinite theories using many-sorted logic. In Proc. of the 5th Int. Workshop
on Frontiers of Combining Systems (FroCos’05), LNCS. Springer-Verlag, 2005. To
appear.

15. S. Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications,
15(2/3):111–126, 2002.

16. R. E. Shostak. Deciding combinations of theories. J. of the ACM, 31:1–12, 1984.

	Introduction
	Background
	The Superposition Calculus SP
	A Superposition Approach to Satisfiability Procedures
	The Nelson-Oppen Method

	Deduction Complete, Incremental, and Resettable Satisfiability Procedures Based on Superposition
	Deduction Completeness
	Experiments
	Incrementality and Resettability

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

