
POST: A Case Study for an Incremental Development in rCOS�

Quan Long1, Zongyan Qiu1, Zhiming Liu2,��, Lingshuang Shao3, and He Jifeng2

1 LMAM and Department of Informatics, School of Mathematical Sciences,
Peking University, Beijing, China

{longquan, qzy}@math.pku.edu.cn
2 International Institute for Software Technology,

United Nations University, Macao, China
{lzm, hjf}@iist.unu.edu

3 Software Engineering Institute, Peking University, Beijing, China
shaolsh04@sei.pku.edu.cn

Abstract. We have recently developed an object-oriented refinement calculus
called rCOS to formalize the basic object-orient design principles, patterns and
refactoring as refinement laws. The aim is of rCOS is to provide a formal sup-
port to the use-cased driven, incremental and iterative Rational Unified Process
(RUP). In this paper, we apply rCOS to a step-wised development of a Point of
Sale Terminal (POST) system, from a requirement model to a design model, and
finally, to the implementation in Visual C#.

Keywords: Refinement, Software design, Object-orientation, Refactoring, UML.

1 Introduction

In the imperative paradigm, the specification of a problem is mainly concerned with
the control and data structures of the program. The program development is the design
and implementation of data structures and algorithms through a number of steps of
refinement. Verification is needed to prove that each step preserves the specification of
the control and data structures in the previous step. Various formal methods, especially
those state-based models [5,10] such as VDM [11] and Z [4], are widely found helpful
in correct and reliable construction of such a program.

The object-oriented requirement analysis, design and programming are popular re-
cently in practical software engineering. Recent development and application of UML
and the Rational Unified Process (RUP) have led to the use of design patterns and refac-
toring more effective.

However, the research in the formal aspects and techniques does not reflect or
provide enough support to these newly developed objected-oriented engineering prin-
ciples and development processes. It is still hard to obtain assurance of correctness
in object-oriented developing process using old fashioned programming techniques.
Model-based formalisms have been extended with object-oriented techniques, via lan-
guages such as Object-Z [1], VDM++ [6], and methods such as Syntropy [3] which

� Supported by NNSFC(No. 60173003) and NKBRPC(2004CB318000).
�� Partly supported as a research task of E-Macao Project funded by the Macao Government.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 485–500, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

486 Q. Long et al.

uses the Z notation, and Fusion [2] that is related to VDM. Whilst these formalisms
are effective at modelling data structures as sets and relations between sets, they do
not capture the main principles of object-oriented decomposition, including function-
ality delegation, class decomposition, and object-oriented refinement. Object-oriented
refinement must capture the notation of substitutability of a group of associated classes
by another group of associated classes. The development of rCOS is mainly motivated
by these problems [8].

In this paper, we use the case study of a Point of Sale Terminal (POST) system,
originally from [12] to demonstrate how a system can be formally and systematically
developed supported by the rCOS based development process. A POST system is typ-
ically used in a retail store or supermarket. It includes hardware components such as a
computer and a bar code scanner, and the software to control the system. The case study
also shows how the techniques could be used in the development of other systems. It
mainly demonstrates how functionality is decomposed in the object-oriented settings
by the expert pattern, and how object-oriented structure is refined by refactoring rules.

The rest of this paper is organized as follows. We first briefly introduce rCOS and
related development process in Section 2 and Section 3 respectively. And then, in Sec-
tion 4, we present the development process, or refinement process of POST software
system. The executable product developed from the final refined design is illustrated in
Section 5. Finally, in Section 6, we conclude the paper and discuss some future research
directions.

2 Overview of rCOS

In this section we give a brief introduction to the rCOS model and our earlier work
based on it. We refer the readers to [8,9,15] for more details.

2.1 rCOS Syntax

rCOS is a refinement calculus of object-oriented sequential systems. In rCOS, a system
(or program) S is of the form cdecls • P, consisting of class declaration section cdecls and
a main method P. The main method P is a pair (glb, c) of a set glb of global variables
declarations and a command c. P can also be understood as the main method in Java.
The class declaration section cdecls is a sequence of class declarations cdecl1; . . . ; cdeclk,
where each class declaration cdecli is of the form

[private] class N extends M {
private (Ui ui = ai)i:1..m; protected (Vi vi = bi)i:1..n; public (Wi wi = ci)i:1..k;
method m1(T 11 x1, T 12 y

1
, T 13 z1){c1}; · · · ; m�(T �1 x�, T �2 y

�
, T �3 z�){c�}}

Note that

– A class can be declared as private or public, but by default it is assumed as
public. Only the public classes and primitive types can be used in the global vari-
able declarations glb.

– N and M are distinct names of classes, and M is called the direct superclass of N.

POST: A Case Study for an Incremental Development in rCOS 487

– Attributes annotated with private are private attributes of the class, and simi-
larly, the protected and public declarations for the protected and public attributes.
Types and initial values of attributes are also given in the declaration.

– The method declaration declares the methods, their value parameters (T i1 xi), result
parameters (T i2 y

i
), value-result parameters (T i3 zi) and bodies (ci). We sometimes

denote a method by m(paras){c}, where paras is the list of parameters of m, and c

is the body command of m. The method body ci is a command that will be defined
later.

We use Java convention to write a class specification, and assume an attribute protected
when it is not tagged with private or public. We have these different kinds of attributes
to show how visibility issues can be dealt with. We can also have different kind of
methods for a class, however, it is omitted here for simplicity of the theory. Instead, we
assume all methods in public classes are public and can be inherited by a subclass and
accessed by the main method, and all methods in private classes are protected.

When we write refinement laws, we use the following notation to denote a class
declaration of class N .

N[M, pri, prot, pub, op]

where M is the name of the direct superclass of N, pri, prot and pub are the sets of
the private, protected and public attribute declarations, and op is the set of the method
declarations of N. When there is no confusion, we only explicitly give the parameters
that we are concerned. For example, we use N[op] to denote a class with a set op of
methods, and N[prot, op] a class with a protected attributes prot and methods op.

Commands. rCOS supports typical object-oriented programming constructs, but it
also allows some commands for the purpose of specification and refinement:

c ::= skip | chaos | var T x=e | end x | c; c | c � b � c | c � c
| b ∗ c | le.m(e, v, u) | le := e| C.new(x)[e]

where b is a Boolean expression, e is an expression, and le is an expression which may
appear on the left side of an assignment and is of the form le ::= x | le.a, where x is a
simple variable and a an attribute of an object. We use le.m(e, v, u) to denote a call of
method m of the object denoted by le with actual value parameters e for input to the
method, actual result parameters v for the return values, and value-result parameters u

that can be changed during the execution of the method and with their final values as
return values too. The command C.new(x)[e] creates a new object of class C with the
initial values of its attributes assigned by the values of the expressions in e and assigns
it to variable x. Thus, C.new(x)[e] uses x with type C to refer to the newly created object.
The other commands, c; c, c � b � c, c � c and b ∗ c denote the conventional commands
of sequential composition, choice, non-determined choice, and iteration respectively.

The expressions e appear in the commands are defined in a usual way. We ignore
them here.

2.2 Semantics and Refinement of Object Systems

rCOS adopts an observation-oriented and relational semantics. The model describes
the behavior of an object-oriented program by a design containing seven logical vari-

488 Q. Long et al.

ables as its free variables that form the alphabet “α” in [10] of the program. They are
cname, attr, op, superclass, Σ, glb and locvar. They record both static structure of
the classes and dynamic state of the system.

Commands and class declarations, as well as an object system as a whole, are se-
mantically defined as a framed design D(α, P) with the form {α} : pre(x) � Post(x, x′).
That is, the effect of any piece of code are defined by the pre- and post states of the
above mentioned alphabet. Please see [9] for details if interested.

Based on the relational model, rCOS supports refinement of object-oriented de-
signs at different levels of abstraction during a system development. It includes design
refinement, data refinement, refinement of classes and refinement of a whole system.

In [9], the Design refinement and Data refinement are defined similar to traditional
ones. In this section we only present the definitions of System refinement and Class
refinement as follows.

Definition 1. (System refinement) Let S1 and S2 be object programs which have the
same set global variables glb. S1 is a refinement of S2, denoted by S2 �sys S1, if its
behavior is more controllable and predictable than that of S2:

∀x, x′ · (S1 ⇒ S2)

where x are variables in glb.

This indicates the external behavior of S1, that is, the pairs of pre- and post global states,
is a subset of that of S2. To prove one program S1 refines another S2, we require that
they have the same set of global variables and the existence of a refinement mapping
between the variables of S1 to those of S2 that is identical on global variables.

Definition 2. (Class refinement) Let cdecls1 and cdecls2 be two declaration sections.
cdecls1 is a refinement of cdecls2, denoted by cdecls2 �class cdecls1, if the former can
replace the later in any object system:

cdecls2 �class cdecls1 =df ∀P · (cdecls2 • P �sys cdecls1 • P)

where P stands for a main method (glb, c).

Intuitively, it states that cdecls1 supports at least the same set of services as cdecls2.
As stated in the introduction section, in our earlier work [9] and [16], we have

given many useful refinement laws that capture the nature of incremental development
in object-oriented programming. Please refer to them if interested.

2.3 Some Refinement Laws

We introduce some laws in [9] and [16] that will be used in the case study.

Law 1 (Law 7. in [9] Introducing a private attribute has no effect). If neither N nor any
of its superclasses and subclasses in cdecls has x as an attribute, then

N[pri]; cdecls � N[pri ∪ {T x = d}]; cdecls.

Law 2 (Law 8. in [9] Changing private attributes into protected supports more
services).

N[pri ∪ {T x = d}, prot]; cdecls � N[pri, prot ∪ {T x = d}]; cdecls.

POST: A Case Study for an Incremental Development in rCOS 489

Law 3 (Law 9. in [9] Adding a new method refines a declaration). If m is not in N, let
m(paras){c} be a method with distinct parameters paras and a command c, then

N[ops]; cdecls � N[ops ∪ {m(paras){c}}]; cdecls

Law 4 (Law 10. in [9] Refining a method refines a declaration). If c1 � c2,

N[ops ∪ {m(paras){c1}}]; cdecls � N[ops ∪ {m(paras){c2}}]; cdecls

Law 5 (Law 1. (Extract Method) in [16]). Assume that m1(){c} is a method in op of
class M. Let op1 = op\{m1(){c}}. Then

cdecls; M[op] � cdecls; M[op1 ∪ {m1(){m2()}, m2(){c}}]

where m2 is a method name that is not used in cdecls and op.

Law 6 ((Law 10. (Move Method) in [16]). Let op and op1 be sets of method declara-
tions. Assume that N b is an attribute of M, and m(){ĉ} is a method of M, m() is not in
op1 of N, and command c only refers attributes b.x and methods b.n() of class N. Define

– ôp to be the methods obtained from op by replacing each occurrence of m() in every
method with b.m()

– command c to be the command obtained from ĉ by replacing each attribute b.x with
x and each method call b.n() with n().

cdecls; M [N b, op ∪ {m(){ĉ}]; N [op1]
� cdecls; M [N b, ôp]; N [op1 ∪ {m(){c}}]

provided that m() is not called from outside M on the left-hand-side of �.

Law 7 ((Law 12. (Extract Class) in [16]). Assume N is a fresh name which is not used
in cdecls and m2() does not refer any attribute of M . Then we have

cdecls; M [m1(), m2()] • P � cdecls′; M [N n, m̂1()]; N [m2()] • P ′

where cdecls′ is gain from cdecls by substitute all M.m2() to N.m2(), P ′ is gain from P

by substitute all M.m2() to N.m2(), and m̂1() = m1()[n.m2()/m2()].

Law 8 ((Law 59. (Strategy) in [16]). Assume all the newly introduced names are fresh
ones. We have

Context0[Strategy s,op()]; Strategy[algorithm0()]
� Context[Strategy s,op()]; Strategy[algorithm()];

StrategyA[algorithm()]; StrategyB[algorithm()]

where

– op() =df {s.algorithm()}.
– In class StrategyA, algorithtm() =df {cA}, where cA is a sequence of commands for a

particular algorithm.
– In class StrategyB, algorithtm() =df {cB}, where cB is a sequence of commands for

another particular algorithm.
– algorithm0() =df {cA � b � cB}, where b is a boolean variable for making a choice

between algorithm cA and cB.

490 Q. Long et al.

Finally, we have a shorthand notation ∃o : T which stands for the existing of a ref-
erence o which refers to an object of type T . It can be formally defined using rCOS
semantics. We use it here to replace the standard notations for simplicity and intuition.
Also, we do not have return keyword in the syntax of rCOS. But it can be defined using
local variable declaration. We will use it for intuition.

3 rCOS Support to RUP

Now we discuss how rCOS supports a step-wised, incremental and iterative develop-
ment process. For more formal details, please refer to [15].

The incremental development initiates in the requirement analysis to reach the Use
Cases of the system [13], then, the Conceptual Model and Design Model [15,14] are
built sequentially. From an informal view, a Conceptual Model can be thought as a
class diagram in which all classes have only attributes without methods, and Design
Model a class diagram in which all classes have attributes and method specifications
(not necessarily code) as well.

The process starts with the creation of a requirement model (specification) of the
system. The requirement model consists of a conceptual class diagram and a use-case
model. The conceptual model is specified as a rCOS class declaration section with-
out methods. Use cases are specified as use-case controller class with the user opera-
tions as its methods. The conceptual model is created by identifying the domain con-
cepts as classes and relations among the concepts as attributes of classes [13,15]. This
can be carried out incrementally by adding more and more use cases, classes and at-
tributes. Each incremental step is a refinement in rCOS [9]. This is called the horizontal
refinements.

The design can take the use cases in turns, planned according to their significance,
urgency, and risks. In the design of a use case, each use case operation is decomposed
by delegation its sub-functionalities (responsibilities) to the classes which maintains the
information for the realization of the functionalities. These classes are called the experts
of the functionalities. This will also transform the conceptual class diagram by adding
the specifications or code of these responsibilities to their expert classes, producing a
design class model. This activities are also proven to be rCOS refinement.

Then implementation can also take the designs of the tasks in turns, by coding
the methods of the classes. The refinement from the requirement specifications to the
designs and to the implementations is called the vertical refinement.

4 A Development of POST

In this section, we present our incremental development as a sequence of refinement
steps. During the development, we always denote the system as a sequence of class
declarations. Initially, POST1 stands for the first version, the Conceptual Model, of the
system. And then, with the support of the refinement laws in Section 2, we refine it
to POST2. Similarly, POST2 can be refined to POST3. At last, the system reaches POST7
which is the final version of the design. Intuitively, each version of the sequence of class
declarations is depicted by a corresponding UML class diagram.

POST: A Case Study for an Incremental Development in rCOS 491

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

Post

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g p catalo g

Payment

flo at amo u n t
in t ty p e

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

*1

1 *

1

*

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

1*

1

1

1

*
*

*

Fig. 1. Conceptual Model

4.1 Conceptual Model

At the beginning, we should determine the basic components of the system. After the
requirement analysis, we decide to have the classes as follows: A Product Catalog
as a database to store the information of all possible on sale products of the given
supermarket. Each item of the database is a Product Specification. When a sale begins,
we need to build a Sale object which is composed of many Sales Line Item to record
all the products purchased. At last, the customer has to make a payment. Thus we need
another object Payment. During the execution, we will create many instances of Sale,
Sales Line Item, and Payment. Finally, we need a class as the user interface which is the
use case controller of the system. We name it as Post.

Our next job is to add the attributes to achieve the Conceptual Model. During the
requirement analysis, we realize that these classes should have attributes as follows:

– Post, which act as the interface of the system, should maintain at least three at-
tributes: sale refers to the current sale object, sales as a list of sale objects to record
all the handled sales, and a reference to the database ProductCatalog.

– ProductCatalog has a list of references to its ProductSpecifications.
– ProductSpecification should have a name, an attribute upc which stands for “Universal

Product Code” as its key in the database, and another attribute price.
– Sale should have at least four attributes: a business time time, a reference to

ProductCatalog, a reference to the payment object and a list of its SalesLineItem.
– SalesLineItem should have a reference to its corresponding ProductSpecification and a

integer, quantity, to record how many products of this kind are purchased.
– The last class, Payment should remember how much money the customer should

pay in its attribute amount and the payment way in type. Here we only deal with two
kinds of payment: type = 0 stands for pay by cash and type = 1 for pay by credit
card.

In our relational OO model, we can add private attributes and change a private
attribute into a protected one by Law 1 and Law 2. We can apply these laws repeatedly
to add all the above mentioned attributes to our classes.

492 Q. Long et al.

Thus we reach the class diagram in which all the attributes have been filled in their
corresponding classes, that is, the Conceptual Model of the system. Fig. 1 illustrated
the class diagram.

We denote the classes depicted in Fig. 1 as POST1 which is a sequence of class
declarations.

4.2 Use Case Controller Class

Having the Conceptual Model, POST1, next we consider to refine the system to the
Design Model which includes all the method specifications. We start from the controller
class Post in which each method specification represents a formal use case specification.
As the result of the use case analysis, we realize that Post has to offer at least five
methods: makeSale() to initiate a business by creating a new object sale of type Sale;
enterItem() to add a sale line item to the sale object; makePayment() to summarize the
price and create a payment object; printSale() and endSale() to print and end the business
respectively. Further, endSale() has another job which is adding the reference of current
sale object to the sales list.

Here we formally give the details of the method specifications as follows:

– makeSale(Time time)
pcatalog
= nil � sale′.time = time ∧ sale′.pcatalog = pcatalog

– enterItem(UPC upc, int quantity)
pcatalog
= nil ∧ sale
= nil ∧ quantity
= 0 �
∃item : SalesLineItem • sale.items′ = sale.items ∪ {item}
∧item.upc = upc ∧ item.quantity = quantity
∧(∃ps : ProductSpecification • ps ∈ pcatalog ∧ item.ps = ps ∧ ps.upc = upc)

– makePayment(int type)
sale
= nil ∧ type ∈ {0, 1} �
∃payment : Payment • sale.payment′ = payment
∧payment.amount =

∑
item∈items item.ps.price × item.quantity

∧((type = 0 ∧ {Paid by cash}) ∨ (type = 1 ∧ {Paid by credit}))
where {Paid by cash} stands for customer’s completion of paying by cash, and
{Paid by credit} stands for customer’s completion of paying by credit card.

– printSale()
sale
= nil ∧ done(makePayment) � {Print the sales line item report}.

where the predicate done(makePayment) means the customer has made payment, and
{Print the sales line item report} stands for printing the receipt for customer.

– endSale()
sale
= nil ∧ done(makePayment) � sale′ = nil ∧ sales′ = sales ∪ {sale}

The class diagram is depicted in Fig. 2. We denote the corresponding class declara-
tions as POST2. With the support of Law 3 we can prove that adding a method is a refine-
ment to the system. So, trivially, applying this law five times, we have POST1 � POST2.

4.3 Design Model

Having added the interface methods to the system, the next task we confront with is to
develop all the methods of the classes to complete our Design Model.

POST: A Case Study for an Incremental Development in rCOS 493

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

Post

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

1*

1

1

1

*
*

*

Fig. 2. Use Case Controller

Firstly, we delegate some of the tasks of Post to Sale. To achieve this, we first develop
the following two methods in the class Sale. For the same reason to subsection 4.2, the
new system added these methods refines the former version.

– makeLineItem(UPS ups, int quantity)
pcatalog
= nil ∧ quantity
= 0 �
∃item : SalesLineItem • items′ = items ∪ {item} ∧ item.upc = upc ∧ item.quantity =
quantity ∧ (∃ps : ProductSpecification • ps ∈ pcatalog ∧ item.ps = ps ∧ ps.upc = upc)

– makePayment(int type)
type ∈ {0, 1} � ∃payment : Payment • payment′ = payment
∧payment.amount =

∑
item∈items item.ps.price × item.quantity

∧((type = 0 ∧ {Paid by cash}) ∨ (type = 1 ∧ {Paid by credit}))

Secondly, we can implement, or refine, in our model, the methods enterItem(), and
makePayment() in class Post by invoking the above developed methods as follows:

– enterItem′(UPC upc, int quantity)={sale.makeLineItem(upc, quantity)}
– makePayment′(int type)={sale.makePayment(type)}

Now after adding the methods makeLineItem() and makePayment() to the class Sale,
we substitute enterItem(), makePayment() with enterItem′(), makePayment′() in class Post.
We denote the new system as POST3.

Using the semantic model of [9], we can prove that in class Post, enterItem()
� enterItem′() and makePayment() � makePayment′(). By applying Law 4 we have
POST2 � POST3.

We will still use unprimed names enterItem() and makePayment() to denote the newly
refined methods in POST3. We make this abuse only for avoiding too many notations.
In the rest of this paper we will adopt this abuse where no confusion will be made. The
corresponding class diagram of POST3 is depicted in Fig. 3.

Next, we will continue to delegate the tasks of Sale to ProductCatalog and Payment.
Similar to the above process, we develop a new method Search() in class ProductCatalog

494 Q. Long et al.

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

Post

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

1*

1

1

1

*

*

*

Fig. 3. Primary Design Model

and invoke it in the method makeLineItem() of class Sale. Let us see the specification of
the new method:

Search(UPC upc, ProductSpecification ps):
pslist
= nil � (ps′ = null) � (∃ps ∈ pslist ∧ ps.upc = upc) � (ps′ = ps)

This method searches a valid Product Specification from ProductCatalog and return it
when success. Supported by this method, we can implement the method makeLineItem
in class Sale as follows:

makeLineItem′(UPC upc, int quantity) =
{varProductSpecification ps;
Search(upc, ps);
(ps
= null) � {

var SalesLineItem sli;
ProductSpecification.new(sli,[ps,quantity])}

items.Add(sli);
end ps}

Also, motivated by delegating a task of class Sale to class Payment, we develop a
new method pay() in the class Payment:

pay() = {{Paid by cash} � (type = 0) � {Paid by credit}}
Supported by this method, we implement makePayment(int type) in class Sale as

Sale.makePayment′(int type) =
{skip � (type = 0 ∨ type = 1)�

{
var float amount = 0;
foreach (SalseLineItem item ∈ items)

amount = amount + item.prise*item.quantity;
Payment.new(payment,[amount,type]);
ayment.pay()

}
}

In the semantic model we can prove in class Sale makeLineItem() � makeLineItem′()
and makePayment() � makePayment′().

POST: A Case Study for an Incremental Development in rCOS 495

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

Post

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

p ay ()

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

.

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

Search (UPC u p c,
Pro d u ctSp ecificatio n p s)

1*

1

1

1

*
*

*

Fig. 4. Design Model

With similar process, we can get a new system as POST4 by adding Search() to class
ProductCatalog and pay() to class Payment, substituting old makeLineItem(), makePayment()
with new ones in class Sale. And also, we have POST3 � POST4. The corresponding
class diagram of POST4 is depicted in Fig. 4.

4.4 Refactoring: Extract Method and Move Method

After the efforts, we have reached the Design Model. Now we are ready to implement
the system with any OO language. But there might be some K. Beck and M. Fowler’s
“bad smells” [7] existing in the design. In the rest of this section we will refactor the
model to enhance the flexibility and maintainability.

After carefully reviewing of the design, we find a piece of typical code needed to be
refactorred: the method makePayment() in class Sale uses the attributes of SalesLineItem
many times. It could be better if the computation happens in SalesLineItem itself to re-
duce the coupling, or interaction, between classes. So we would like to extract a method
in class Sale and then move it to class SalesLineItem.

We formally make the refactoring as follows:
Firstly, supported by the Law 5 (Extract Method) we have

Sale[makePayment()] �
Sale[makePayment()[subtotal()\(item.prise ∗ item.quantity)]]

where

– subtotal() = {return item.prise ∗ item.quantity}
– [a\b] means to substitute b with a.

The right hand can be refactorred further. With the Law 6 (Move Method) we have

Sale[makePayment()]; SalesLineItem[] �
Sale[makePayment()[item.subtotal()\subtotal()]]; SalesLineItem[subtotal()]

where, in the class SalesLineItem, subtotal() = {return prise ∗ quantity}.

496 Q. Long et al.

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

Post

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

p ay ()

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

Su b To tal()

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

Search (UPC u p c,
Pro d u ctSp ecificatio n p s)

1*

1

1

1

*
*

*

Fig. 5. Extract method and Move method

Thus we get the new class declarations POST5 whose corresponding class diagram
is depicted in Fig. 5. Again, we have POST4 � POST5.

4.5 Refactoring: Extract Class

Next, we have a closer look at the class Post. It has an attribute sales which is a list
to record all the past sales. For one thing, it is not suitable to let the interface class
maintain such a long list. For another, there may be several instances of Post working in
parallel. They should share the same list1. So we need another class to maintain the list.
We would like to extract a new class RecordStore to do the job instead.

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

Post

Sale s ale
Reco rd Sto re rs to re
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

p ay ()

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

Su b To tal()

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

Search (UPC u p c,
Pro d u ctSp ecificatio n p s)

1*

1

1

1

*
*

*

RecordStore

Lis t s ales <Sale>

ad d Sale(Sale s ale)

1 *

Fig. 6. Extract Class

1 This list can be considered as a database for all the records.

POST: A Case Study for an Incremental Development in rCOS 497

Supported by the Law 7 (Extract Class) we have

Post[List sales〈Sale〉] � Post[RecordStore rstore]; RecordStore[List sales〈Sale〉]

Similar to subsection 4.4, we can extract a method addSale(Sale sale) in class Post,
which adds the current sale object to the sales list rstore.sales. And then, we move it to
the newly developed class RecordStore, and have the class diagram in Fig. 6. We denote
the corresponding class declarations as POST6 and again POST5 � POST6.

4.6 Pattern-Directed Refactoring: Strategy

Now it comes to the last phase of the refinement. This is a pattern-directed refactoring
in which we introduce Strategy design pattern to the existing system.

In method pay() of class Payment, we have a piece of code “c1 � type = 0 � c2” in
which the value of type will affect the behavior of the method. Now, directed by Strategy
Pattern, we would like to refactor it by replacing the type code with polymorphism.

Supported by Law 8 (Strategy) we have

Sale[makePayment(int type)]; Payment[int type,pay()] �
Sale[makePayment(int type)]; Payment[pay()];
CashPayment[Payment,pay()]; CreditPayment[Payment,pay()]

where

– The method makePayment(int type) on the right hand is different to the one on the left
hand. We delete the command “Payment.new(payment,[amount,type]);” from the old
method and substitute it with another command:

CashPayment.new(payment,[amount]) � (type = 0)�
CreditPayment.new(payment,[amount]);

– The method body of pay() in class Payment is empty. It is implemented by its sub-
classes.

– In class CashPayment, method pay() = {Paid by cash}, and in class CreditPayment,
method pay() = {Paid by credit}.

CreditPayment

CashPayment

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

Post

Sale s ale
Reco rd Sto re rs to re
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t

p ay ()

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

Su b To tal()

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

Search (UPC u p c,
Pro d u ctSp ecificatio n p s)

1*

1

1

1

*
*

*

RecordStore

Lis t s ales <Sale>

ad d Sale(Sale s ale)

1 *

Fig. 7. Strategy Pattern-Directed Refactoring

498 Q. Long et al.

Now the type code is replaced by polymorphism by introducing two subclasses.
We denote the new class declarations as POST7, and have POST6 � POST7. The class
diagram is depicted in Fig. 7.

After the above refinement process, we gain the final design POST7 from POST0.
This ends our refinement. The classes in the final design is very near to executable code.
It is easy to implement it in any OO programming languages. We have implemented it
using Visual C# .Net.

5 Implementation

Supported by the C� and the .Net developing environment, we implement an executable
software product for the final design model.

The main interface of the system, depicted in Fig. 8, is composed of five “Button”s
which represent the five methods in class Post. Also we have two “TextBox”s to input the
UPC and quantity of the current purchasing product, a “ListBox” to show the content
of the current sale, and a pair of “RadioButton”s to choose payment ways. After the
payment way is chosen, when the “Print Sale” button is pressed, the system will pop-up
a form to show the receipt for customers.

An executing snapshot of our software is depicted in Fig. 9.

Fig. 8. Interface of POST System Fig. 9. POST System in Execution

6 Conclusions and Future Work

As stated in the introduction, the main motivation of this paper is to show the power
of rCOS refinement calculus in incremental software development by presenting the
POST case study. From this study, we could draw the conclusions about the advantages,
and a tiny disadvantage as well, of rCOS.

– As we have shown in the refinement process, rCOS supports a wide range of object-
oriented techniques. So it is a suitable calculus for OO development.

POST: A Case Study for an Incremental Development in rCOS 499

– In the rCOS based software development, we can prove the correctness of each
developing step. So at least for highly critical systems, rCOS is a useful supporting
model. Further, in teamwork of large scale software development, rCOS also offers
a robust support for rigorous correctness formal proof.

– It is proven that rCOS can be used as a formal framework for the use-cased driven,
incremental and iterative Rational Unified Process (RUP). And also, the rCOS
based process is practical and scalable in software engineering.

– In practice, rCOS also offers a nice semantic model for correctly refactoring the
existing design, and further, might give a choice for refactoring supporting tools
development.

– The limitations. During the development of the POST system, we realized that there
are some tiny limitations existing in the current version of rCOS. For instance, we
do not have exception handling in the syntax of rCOS, making no chance to use
such mechanism to deal with dynamic errors in the software development.

As for the future work, we would like to provide tool support for our refinement
calculus. We hope, given the proof obligation of a refinement equation, the tool can
search whether there is a refinement law syntactically matches. In rCOS, we have not
yet had a result about the completeness of the laws. We will look into this problem in
future work and discuss the relationship of all of our laws. Another important future
work is, as mentioned above, we need to extend the current version of rCOS to support
more features, such as exception handling, of OO programming languages. There, we
believe, will be no essential difficulty.

References

1. D. Carrington, et al. Object-Z: an Object-Oriented Extension to Z. North-Halland, 1989.
2. D. Coleman, et al. Object-Oriented Development: the FUSION Method. Prentice-Hall, 1994.
3. S. Cook and J. Daniels. Designing Object Systems: Object-Oriented Modelling with Syn-

tropy. Prentice-Hall, 1994.
4. J. Davis and J.P. Woodcock. Using Z: Specification, Refinement and Proof. Prentice Hall,

1996.
5. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program semantics. Springer,

1989.
6. E. Dürr and E.M. Dusink. The role of V DM++ in the development of a real-time tracking

and tracing system. In J. Woodcock and P. Larsen, editors, Proc. of FME’93, LNCS 670.
Springer-Verlag, 1993.

7. Martin Fowler. Refectoring, Improving the Design of Existing Code. Addison-Wesley, 2000.
8. J. He, Z. Liu, and X. Li. rCOS: A refinement calculus for object sys-

tems. Technical Report 322, UNU/IIST, P.O. Box 3058, Macao SAR China, 2005.
http://www.iist.unu.edu/newrh/III/1/page.html.

9. J. He, Z. Liu, X. Li, and S. Qin. A relational model for object-oriented designs. In Pro.
APLAS’2004, LNCS 3302, Taiwan, 2004. Springer.

10. C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
11. C.B. Jones. Software Development: A Rigorous Approach. Prentice Hall International, 1980.
12. C. Larman. Applying UML and Patterns, An Introduction to Object-Oriented Analysis and

Design and the Unified Process. Prentice-Hall, 2001.

500 Q. Long et al.

13. X. Li, Z. Liu, and J. He. Formal and use-case driven requirement analysis in UML. In
COMPSAC01, pages 215–224, Illinois, USA, October 2001. IEEE Computer Society.

14. Z. Liu. Object-oriented software development with UML. Technical Report 259, UNU/IIST,
P.O. Box 3058, Macao SAR China, 2002. http://www.iist.unu.edu/newrh/III/1/page.html.

15. Z. Liu, J. He, X. Li, and Y. Chen. A relational model for formal requirements analysis in
UML. In J.S. Dong and J. Woodcock, editors, Formal Methods and Software Engineering,
ICFEM03, LNCS 2885, pages 641–664. Springer, 2003.

16. Q. Long, J. He, and Z. Liu. Refactoring and pattern directed refactoring : A formal per-
spective. Technical Report 318, UNU/IIST, P.O. Box 3058, Macao SAR China, 2005.
http://www.iist.unu.edu/newrh/III/1/page.html.

	Introduction
	Overview of rCOS
	rCOS Syntax
	Semantics and Refinement of Object Systems
	Some Refinement Laws

	rCOS Support to RUP
	A Development of POST
	Conceptual Model
	Use Case Controller Class
	Design Model
	Refactoring: Extract Method and Move Method
	Refactoring: Extract Class
	Pattern-Directed Refactoring: Strategy

	Implementation
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

