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Abstract. We transfer the concept of robust interpretation from arith-
metic first-order theories to metric-time temporal logics. The idea is that
the interpretation of a formula is robust iff its truth value does not change
under small variation of the constants in the formula. Exemplifying this
on Duration Calculus (DC), our findings are that the robust interpreta-
tion of DC is equivalent to a multi-valued interpretation that uses the
real numbers as semantic domain and assigns Lipschitz-continuous inter-
pretations to all operators of DC. Furthermore, this continuity permits
approximation between discrete and dense time, thus allowing exploita-
tion of discrete-time (semi-)decision procedures on dense-time properties.

Keywords: Metric-time temporal logic; Robust interpretation; Discrete
time vs. dense time.

1 Introduction

As embedded systems become more and more complex, early availability of un-
ambiguous specification of their intended behaviour has become an important
factor for quality and timely delivery. Consequently, the quest for automatic
analysis methods for specifications arises. This quest becomes even more pro-
nounced if specifications are to be formal, because formal specifications are often
found to be particularly hard to write and maintain. Therefore, decision proce-
dures for entailment between specifications, satisfiability of specifications, etc.,
may be extremely helpful in their design process. The price to be paid for such
procedures is, however, a firmly constrained expressiveness of the specification
formalisms: one has to sacrifice all elements that could give rise to undecidability.

However, the logically motivated notions of entailment between specifica-
tions, satisfiability of specifications, etc., have often been criticized from an en-
gineering standpoint, as their validity or invalidity may well depend on the exact
values of certain constants (e.g., the exact length of a steering rod relative to the
exact distance of two joints), while any technical realization of these constants
can only be approximate. In system design, the role of any decision problem
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prone to changing its truth value under arbitrarily small variations of constants
may be considered questionable. Based on this insight, research has in recent
years addressed more “robust” notions of property satisfaction, where a prop-
erty is considered to be robustly (in-)valid iff it does not change its validity under
small variation of constants and/or values of variables [6,8,3,1,4,9,10]. The ul-
timate hope is that, besides being more relevant to engineering problems, such
robust notions enhance decidability as, e.g., existence of non-computable reals
cannot influence their validity.

With respect to design of embedded systems, such robust properties have by
now mainly been investigated in the automata-based modeling context. Starting
with Gupta’s, Henzinger’s, and Jagadeesan’s [6] as well as Puri’s [8] investigation
of timed automata, the idea has been to exploit topological properties of sys-
tems in order to obtain robust answers. Asarin and Bouajjani [1] have applied
this approach to reach set computation of, a.o., hybrid automata and Turing
machines. Fränzle introduced a variant thereof in [3] by applying the concept to
decision problems about hybrid automata instead of reach-set computation, e.g.
invariance of a first-order property over hybrid states [3] or progress [4], thereby
obtaining automatic analysis procedures that succeed in all robust cases, even
such which are undecidable wrt. non-robust notions of property satisfaction.

Independently, constraint solving technology for numerical constraints over
the real numbers was developed that has perfectly corresponding properties: one
can solve otherwise undecidable constraints (containing functions over the real
numbers other than polynomials [14]), provided they are robust, in the sense
that their solvability does not change under small perturbations of the constants
the constraints contain [9,10,11]. Even in cases where constraints are decidable,
robust constraints can be solved much more efficiently.

In this paper, we unite above two lines of research by addressing logical mod-
els of embedded systems. In Section 3, we provide a robust interpretation of a
very expressive metric-time temporal logic, Duration Calculus [17,15], and show
its equivalence to a multi-valued interpretation that uses the real numbers as se-
mantic domain and assigns Lipschitz-continuous interpretations to all operators
of DC in Section 4. Sections 5 and 6 deal with approximation of the multi-
valued truth value, in particular discrete-time approximation of the dense-time
interpretation, and with decidability issues.

2 Duration Calculus

Duration Calculus (abbreviated DC in the remainder) is a real-time logic that
is specially tailored towards reasoning about durational constraints on time-
dependent Boolean-valued states. Since its introduction in [17], many variants
of Duration Calculus have been defined [15]. Aiming at a mechanizable design
calculus, we present a slight syntactic subset of the Duration Calculus as defined
in [17]. Our subset allows full treatment of the gas burner case study [13], the
primary case study of the ProCoS project. This indicates that our subset offers
an interesting vocabulary for specifying embedded real-time controllers.
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The formula
∫
Q > 3 holds on observation interval O1 = [0, 4], as the accu-

mulated duration of Q being true over this interval exceeds 3. Analogously,∫
(P ∧ ¬Q) ≥ 1 holds on observation interval O2 = [4, 6]. Consequently, the

formula (
∫
Q > 3) � (

∫
(P ∧ ¬Q) ≥ 1) holds on the catenation O3 = [0, 6] of

the other two observation intervals.

Fig. 1. The meaning of
∫
S ∼ k and of the chop modality

Syntax. The syntax of DC used in this paper is as follows.

φ ::=
∫
S ≥ c |

∫
S > c | ¬φ | (φ ∧ φ) | (φ � φ)

S ::= P | ¬S | (S ∧ S)
P ::∈ Varname
c ::∈ R ,

where Varname is a countable set of state-variable names. Note that, in contrast
to other expositions of DC, we allow negative constants as this makes the theory
more homogeneous.

Formulae are interpreted over trajectories providing Boolean-valued valua-
tion of state variables that vary finitely, in the sense of featuring only finitely
many changes over any finite interval of time. For a given bounded and closed
time interval, also called an “observation interval”, a formula is either true or
false. While the meaning of the Boolean connectives used in DC formulae should
be obvious, the temporal connective � (pronounced “chop”) may need some ex-
planation. A formula φ � ψ is true of an observation interval iff the observation
interval can be split into a left and a right subinterval s.t. φ holds of the left part
and ψ of the right part. A duration formula

∫
S ≥ k is true of an observation

interval iff the state assertion S, interpreted over the trajectory, is true for an
accumulated duration of at least k time units within the observation interval.
Fig. 1 provides an illustration of the meaning of these formulae.

Despite its simple syntax, DC is very expressive, as can be seen from the
following abbreviations frequently used in formulae:

–
∫
S < k

def= ¬
∫
S ≥ k means that S holds for strictly less than k time units in

the current observation interval;
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–
∫
S ≤ k

def= ¬
∫
S > k means that S holds for at most k time units in the

current observation interval,
– � ≥ k

def=
∫
true ≥ k, where true is an arbitrary tautologous state assertion,

denotes the fact that the observation interval has length k or more; likewise,
� ≤ k

def=
∫
true ≤ k, � < k

def=
∫
true < k, etc.;1

– the temporal operators � and �, meaning ‘in some subinterval of the obser-
vation interval’ and ‘in each subinterval of the observation interval’, can be
defined as �φ

def= (true � φ � true) and �φ
def= ¬�¬φ.

Semantics. Duration Calculus is interpreted over trajectories Traj T , where T
is the time domain. We will deal here with the discrete-time interpretation (i.e.
T = N), the rational-time interpretation (i.e. T = Q≥0), and the real-time
interpretation (i.e. T = R≥0) of DC. The definition of trajectories is as follows:

Traj T
def= R≥0 → Varname → B ,

where for every tr ∈ Traj T , we require for each function P (t) = tr(t)(P ), where
P ∈ Varname, that the discontinuity points of P belongs to T , and the func-
tion P is finitely varied, in the sense that it has at most a finite number of
discontinuity points in every bounded and closed interval.

Satisfaction of a formula φ by a trajectory tr is defined as a limit property
over a chain of finite chunks from tr called observations, where an observation is
a pair (tr , [a, b]) ∈ ObsT

def= Traj T × TimeIntervalT with TimeIntervalT being
the set of bounded and closed time intervals { [a, b] ⊆ R≥0 | a, b ∈ T }.

First, we will define when an observation (tr , [a, b]) satisfies a formula φ when
interpreted over time domain T , denoted tr , [a, b] |=T φ. For atomic duration
formulae

∫
S ≥ k or

∫
S > k, this is defined by

tr , [a, b] |=T

∫
S ≥ k iff

∫ b

t=a

χ ◦ [[S]] ◦ tr(t) dt ≥ k ,

tr , [a, b] |=T

∫
S > k iff

∫ b

t=a

χ ◦ [[S]] ◦ tr(t) dt > k ,

where [[S]](σ) canonically lifts a Boolean-valued interpretation σ : Varname → B

of state variables to an interpretation of the state assertion S, e.g. [[P ∧¬Q]](σ) =
σ(P ) ∧ ¬σ(Q), and χ maps truth values to {0, 1} according to the convention
χ(false) = 0 and χ(true) = 1. I.e.,

∫
S ≥ k holds on (tr , [a, b]) iff S holds for

an accumulated duration of at least k time units within [a, b].
The interpretation of Boolean connectives is classical:

tr , [a, b] |=T ¬φ iff tr , [a, b] �|=T φ ,
tr , [a, b] |=T φ ∧ ψ iff tr , [a, b] |=T φ and tr , [a, b] |=T ψ .

1 Note that � in � ∼ k is not a state variable, but a piece of concrete syntax that
denotes the length of the current observation interval.
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Satisfaction of a chop formula φ � ψ, finally, requires that the observation
interval can be split into two subintervals [a, m] and [m, b] s.t. φ resp. ψ hold on
the two subintervals:

tr , [a, b] |=T φ � ψ iff ∃ m ∈ T ∩ [a, b] .
(
tr , [a, m] |=T φ and tr , [m, b] |=T ψ

)
.

A trajectory tr satisfies a formula φ, which is denoted by tr |=T φ, iff any
prefix-observation of tr satisfies φ — formally, tr |=T φ iff tr , [0, t] |=T φ for each
t ∈ T . For notational convenience, we denote the set of models of φ over time
domain T (where T ∈ {N, Q≥0, R≥0}), i.e. the set of trajectories satisfying φ
wrt. to that interpretation, by MT [[φ]]. As usual, we say that φ is valid over T ,
denoted |=T φ, iff MT [[φ]] = TrajT .

3 Robust Interpretation of DC

From an engineering perspective, arguments that become invalid when an in-
finitesimally small change to the constants occurring in the argument appears,
are at least doubtful, if not even useless. Hence, we define a formula to be robustly
valid iff it remains valid under some small variation of constants:

Definition 1 (Robust validity). A DC formula φ is robustly valid over time
domain T iff there is ε > 0 such that |=T φ′ holds for each φ′ ∈ N (φ, ε), where
N (φ, ε) is the set of all DC formulae that are structurally equal to φ, yet may
differ from φ in the constants of the individual atomic formulae by at most ε.

I.e., N (φ, ε) is the ε-neighborhood of φ with respect to the following recur-
sively defined metrics on DC formulae:

d(
∫
S1 ≥ k,

∫
S2 ≥ l) =

{
|k − l| if S1 = S2,
∞ otherwise;

d(
∫
S1 > k,

∫
S2 > l) =

{
|k − l| if S1 = S2,
∞ otherwise;

d(¬φ, ¬ψ) = d(φ, ψ) ;
d(φ1 ∧ φ2, ψ1 ∧ ψ2) = max{d(φ1, ψ1), d(φ2, ψ2)} ;

d(φ1 � φ2, ψ1 � ψ2) = max{d(φ1, ψ1), d(φ2, ψ2)} ;
d(φ, ψ) = ∞ if φ and ψ disagree on the

outermost operator.

In analogy to robust validity, we define robust satisfaction of formulae by
observations and by trajectories as follows:

Definition 2 (Robust satisfaction).

1. A formula φ is robustly satisfied (over time domain T ) by an observation
obs ∈ ObsT iff there is ε > 0 such that obs |=T φ′ holds for each φ′ ∈ N (φ, ε).

2. A formula φ is robustly satisfied (over time domain T ) by a trajectory tr ∈
Traj T iff there is ε > 0 such that tr |=T φ′ holds for each φ′ ∈ N (φ, ε).
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Note that this definition in fact yields a three-valued interpretation of satis-
faction by observations, as an observation may fail to robustly satisfy both φ and
¬φ, while in classical DC, exactly one of obs |=T φ or obs �|=T φ does inevitably
hold. On the levels of satisfaction by trajectories or of validity, no fundamental
differences do arise. It is, however, a consequence of the definitions that robust
validity is more discriminative than classical validity: classical validity is a nec-
essary, yet not sufficient, condition for robust validity.

Unfortunately, the existential quantification of ε in the three definitions yields
that the relation between satisfaction by an observation, satisfaction by a tra-
jectory, and validity is different from the classical setting. Thus, the following
statements (which follow immediately from the definitions) are just single-sided
implications, while they are equivalences in the classical setting:

Lemma 1 (Satisfaction vs. validity).

1. For each trajectory tr ∈ Traj T it holds that φ is robustly satisfied (over time
domain T ) by all observations of the form (tr , [0, e]) if φ is robustly satisfied
(over time domain T ) by tr .

2. φ is robustly satisfied (over time domain T ) by all trajectories tr if φ is
robustly valid (over time domain T ).

4 Multi-valued Interpretation

As the definition of robust satisfaction or validity has an extra quantification over
formula neighborhoods, the robust interpretation is structurally more complex
than the standard semantics of DC. Fortunately, an equivalent semantics can be
derived by more direct means, namely by a multi-valued interpretation of DC.
The idea is to assign to each (sub-)formula a real-number denoting its slackness
in the following sense: each formula is mapped to the upper bound of variation
in constants it can take on the current observation without changing its truth
value. Such slackness information can be lumped together with the formula’s
truth value by mapping it to a signed slackness value: if the formula is satisfied
by the observation then we assign the slackness as its multi-valued “truth” value;
otherwise we assign minus its slackness. We will now define a truth-functional
version of this multi-valued interpretation and will then show that it coincides
with the robust interpretation.

In a first step, we define a real-valued interpretation MT [[·]] : DC → ObsT →
R of formulae on observations obs ∈ ObsT and over time domain T as follows:

MT [[
∫
S ≥ k]](tr , [a, b]) =

∫ b

t=a

χ ◦ [[S]] ◦ tr(t) dt − k

MT [[
∫
S > k]](tr , [a, b]) =

∫ b

t=a

χ ◦ [[S]] ◦ tr(t) dt − k

MT [[¬φ]]obs = −MT [[φ]](obs)
MT [[φ ∧ ψ]]obs = min {MT [[φ]](obs), MT [[ψ]](obs)}

MT [[φ � ψ]](tr , [a, b]) = sup
m∈T∩[a,b]

min {MT [[φ]](tr , [a, m]), MT [[ψ]](tr , [m, b])} .



A Robust Interpretation of Duration Calculus 263

In fact, the supremum operator in MT [[φ � ψ]](tr , [a, b]) could be replaced by
the maximum over interval [a, b], as Corollary 3 below shows the semantics to
be continuous such that closedness of the observation interval [a, b] implies that
the maximum exists (and trivially coincides with the supremum).

Finally, we overload the symbol MT [[·]] by defining the multi-valued in-
terpretations MT [[·]] : DC → Traj T → R over individual trajectories and
MT [[·]] : DC → R over the universe of trajectories to be

MT [[φ]](tr) = inf
e∈T

MT [[φ]](tr , [0, e]),

MT [[φ]] = inf
tr∈TrajT

MT [[φ]](tr)

This multi-valued semantics corresponds closely to the standard semantics:

Lemma 2 (Multi-valued semantics vs. classical semantics).

1. If MT [[φ]](obs) > 0 then obs |=T φ;
2. if MT [[φ]](obs) < 0 then obs �|=T φ;
3. if MT [[φ]](tr) > 0 then tr |=T φ;
4. if MT [[φ]](tr) < 0 then tr �|=T φ;
5. if MT [[φ]] > 0 then |=T φ;
6. if MT [[φ]] < 0 then �|=T φ.

I.e., positivity of the multi-valued semantics is a sufficient, yet not necessary,
condition for satisfaction or validity (depending on the variant of MT [[φ]] used),
while negativity is a sufficient, yet not necessary, condition for dissatisfaction
or invalidity. Despite this close correspondence, the multi-valued interpretation
has a number of interesting properties that distinguish it from the standard
interpretation:

Lemma 3 (Lipschitz-continuity). For any DC formula φ, the semantic
mapping MT [[φ]] : ObsT → R is Lipschitz continuous with constant 1 with respect
to the metrics

d ((tr1, [b1, e1]) , (tr2, [b2, e2]))
def=

max

⎧
⎪⎨

⎪⎩

|b1 − b2|,
|e1 − e2|,∫ min{e1,e2}

t=max{b1,b2} χ ◦ (tr1 �= tr2)(t) dt

⎫
⎪⎬

⎪⎭

on observations.

This Lipschitz continuity, together with the following linearity properties, will
allow us to develop approximation schemes for MT [[φ]].

Lemma 4 (Linearity of multi-valued semantics). Let obs = (tr , [b, e]) be
an observation, let c ∈ R and d ∈ R>0. If MT [[φ]](obs) = x then

1. MT [[φ+c]](obs) = x+c, where φ+c is the formula obtained from φ by replacing
each positive occurrence of an atomic formula

∫
S ≥ k (or

∫
S > k) by

∫
S ≥

k − c (by
∫
S > k − c, resp.) and each negative occurrence by

∫
S ≥ k + c (by∫

S > k + c, resp.),
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2. Md·T [[φ·d]](obs ′) = xd, where d · T = {dt | t ∈ T } and φ·d is the formula ob-
tained from φ by replacing each occurrence of

∫
S ≥ k by

∫
S ≥ kd and each oc-

currence of
∫
S > k by

∫
S > kd, and observation obs ′ = (t �→ tr

(
t
d), [bd, ed]

)
.

Given these properties, which help in building verification support, as e.g.
the continuity property allows to remove whole parts (namely a ball of radius
δ in the observation space around obs) from the search space of a satisfiability
search once an observation obs with truth value MT [[φ]](obs) = −δ has been
found, it is interesting to see that the multi-valued semantics is in fact tightly
linked to the robust interpretation:

Theorem 1 (Robustness vs. multi-valued).

1. MT [[φ]](obs) > 0 iff obs robustly satisfies φ;
2. MT [[φ]](tr ) > 0 iff tr robustly satisfies φ;
3. MT [[φ]] > 0 iff φ is robustly valid.

Proof. We show only (1.); the other cases are analogous:
As MT [[φ]](obs) assigns the slackness of the constants, i.e. corresponds to

the amount of variation of constants that can be applied without invalidating
satisfaction by obs , it is straightforward to show by induction on the structure of
φ that MT [[φ]](obs) > 0 implies that all formulae φ′ with d(φ, φ′) < MT [[φ]](obs)
are satisfied by obs . I.e., MT [[φ]](obs) > 0 implies that obs robustly satisfies φ.

Vice versa, if MT [[φ]](obs) ≤ 0 then MT [[φ+(−ε)]](obs) < 0 for each ε > 0.
I.e., according to Lemma 2, obs �|= φ+(−ε) for all ε > 0. As d(φ, φ+(−ε)) = ε, this
shows that obs does not robustly satisfy φ. �

5 Approximability

Due to the Lipschitz continuity of the multi-valued semantics and due to its
correspondence to the robust interpretation, it turns out that the robust inter-
pretation is approximable in a variety of ways. E.g., we find that the discrete-
time interpretation approximates the real-time interpretation with a quantifiable
tolerance. Note that such results do inherently build on the multi-valued inter-
pretation.

5.1 Real Time Versus Rational Time

Before we can start with discrete-time approximation, we show that robust DC
cannot distinguish between real-valued and rational-valued time in the sense
that a robustly satisfying observation over real-valued time exists iff a robustly
satisfying observation over rational time exists:2

2 The same is, btw., true for the standard interpretation, yet for different reasons:
for every n ∈ N, existence of an observation with n discontinuities satisfying φ can
be expressed as a formula in FOL(R, +, <). As FOL(R, +,<) cannot distinguish
between rationals and reals, φ has a rational-time model with n state changes iff it
has a real-time model with n state changes.



A Robust Interpretation of Duration Calculus 265

Lemma 5 (Rational time vs. real time). MR≥0[[φ]] = MQ≥0[[φ]].

Proof. Let tr ∈ Traj
R≥0 and e ∈ R≥0. Due to density of Q in R,

inf
tr ′∈TrajQ≥0,e′∈Q≥0

d((tr , [0, e]), (tr ′, [0, e′])) = 0 .

Similarly, real-valued chop points can be arbitrarily closely approximated by
rational ones. Given the continuity of MT [[φ]], as expressed in Lemma 3, an easy
induction over the structure of φ thus shows

MR≥0[[φ]]

= inf
tr∈TrajR≥0,e∈R

MR≥0[[φ]](tr , [0, e]) [Def. of MR≥0[[φ]]]

= inf
tr∈TrajQ≥0,e∈Q

MQ≥0[[φ]](tr , [0, e]) [Density of Q in R]

= MQ≥0[[φ]] [Def. of MQ≥0[[φ]]]
�

5.2 Approximation of Real Time Interpretation by the Discrete
Time Interpretation

Given the equivalence of the real-valued time and the rational-time interpreta-
tion expressed by Lemma 5, we can proceed towards approximation of real time
by discrete time:

Lemma 6 (Upper approximation by discrete time). Let φ be a DC for-
mula and let depth(φ) denote the nesting depth of chop operators in φ. Then

MR≥0[[φ]] ≤ MN[[φ]] +
depth(φ)

2
.

Proof. Let obs = (tr , [a, b]) ∈ ObsN be a discrete-time (and hence also a real-
time) observation. We show by induction on the structure of φ that

MR≥0[[φ]](obs) ∈ MN[[φ]](obs) ± depth(φ)
2

,

where x ± y denotes the set [x − y, x + y].

Base case: φ =
∫
S ≥ k or φ =

∫
S > k. Is simple as depth(φ) = 0 and

MR≥0[[φ]](obs) =
∫ b

t=a
χ ◦ [[S]] ◦ tr(t) dt − k = MN[[φ]](obs).

Induction steps φ = ¬ψ1 and φ = ψ1 ∧ ψ2 follow from the corresponding prop-
erties of ψi.
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Induction step: φ = ψ1 � ψ2. We establish the upper bound for MR≥0[[φ]](obs)
below. The lower bound is established similarly.

MR≥0[[φ]](obs)

= sup
m∈[a,b]

min
{

MR≥0[[ψ1]](tr , [a, m]),
MR≥0[[ψ2]](tr , [m, b])

}

[Def. MR≥0[[φ]]]

≤ sup
m∈N∩[a,b]

min
{

MR≥0[[ψ1]](tr , [a, m]),
MR≥0[[ψ2]](tr , [m, b])

}

+
1
2

[Lemma 3, d(N,R≥0) = 1
2 ]

≤ sup
m∈N∩[a,b]

min

{
MN[[ψ1]](tr , [a, m]) + depth(ψ1)

2 ,

MN[[ψ2]](tr , [m, b]) + depth(ψ2)
2

}

+
1
2

[Induction]

≤ sup
m∈N∩[a,b]

min

{
MN[[ψ1]](tr , [a, m]) + depth(φ)

2 ,

MN[[ψ2]](tr , [m, b]) + depth(φ)
2

}

[depth(ψi) + 1 ≤ depth(φ)]

= MN[[φ]](obs) +
depth(φ)

2
[Def. MN[[φ]]]

Thus, MR≥0[[φ]](obs) ∈ MN[[φ]](obs) ± depth(φ)
2 holds for φ = ψ1 � ψ2, which

ends the induction.
As a consequence, MR≥0[[φ]](obs) ≤ MN[[φ]](obs)+ depth(φ)

2 holds for arbitrary
formulae φ and arbitrary discrete-time observations obs ∈ ObsN. As the universe
Traj

N
of discrete-time trajectories is properly included in the universe Traj

R≥0
of real-time trajectories, we have:

MR≥0[[φ]]
= inf

tr∈TrajR≥0,e∈R≥0

MR≥0[[φ]](tr , [0, e]) [Def. MR≥0[[φ]]]

≤ inf
tr∈TrajN,e∈N

MR≥0[[φ]](tr , [0, e]) [N ⊂ R≥0]

≤ inf
tr∈TrajN,e∈N

MN[[φ]](tr , [0, e]) +
depth(φ)

2
[above induction]

= MN[[φ]] +
depth(φ)

2
[Def. MN[[φ]]]

�

Therefore, dense-time formulae can be falsified using discrete-time reasoning: if
MN[[φ]]+ depth(φ)

2 is negative then φ is certainly robustly invalid, as MR≥0[[φ]] < 0
follows.

In case above approximation is too inexact, linearity of the multi-valued
semantics allows for scaling, thus yielding tighter approximation by using higher
“sampling rates”:

Corollary 1 (Discr. approx. with higher sampling rate). For any n ∈
N \ {0},

MR≥0[[φ]] ≤ M 1
n ·N[[φ]] +

depth(φ)
2n

.

Proof. Follows directly from the previous lemma together with Lemma 4 and
the fact that depth(φ) = depth(φ·n):
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MR≥0[[φ]]

=
1
n

MR≥0[[φ·n]] [Lemma 4]

≤ 1
n

(

MN[[φ·n]] +
depth(φ·n)

2

)

[Lemma 6]

=
1
n

MN[[φ·n]] +
depth(φ)

2n
[depth(φ) = depth(φ·n)]

= M 1
n

·N[[φ]] +
depth(φ)

2n
[Lemma 4]

�

Unfortunately, the previous lemma and its corollary do only provide upper ap-
proximations of the real-valued time interpretation MR≥0[[φ]] by discrete time
with arbitrary sampling rates M 1

n ·N[[φ]]. Yet, these upper approximations are
complemented by a tightness result concerning rational time:

Lemma 7. infk≥l,k∈N M 1
k! ·N[[φ]] ≤ MQ≥0[[φ]] holds for each DC formula φ and

each l ∈ N.

Proof. Assume, on the contrary, that x
def= infk≥l,k∈N M 1

k! ·N[[φ]] > MQ≥0[[φ]].
Then there is a rational-time observation obs ∈ ObsQ≥0 with x > MQ≥0[[φ]](obs).
But as obs = (tr , [a, b]) is a rational-time observation, there is m ∈ N with m ≥ l
such that a, b ∈ 1

m ·N and tr is constant on [ i
m , i+1

m ) for each i ∈ N and that, fur-
thermore, all chop points characterizing (i.e., yielding the suprema in) MQ≥0[[φ]]
are in 1

m ·N. Therefore, M 1
n ·N[[φ]](obsn) = MQ≥0[[φ]](obs) holds for all multiples n

of m, where obsn = (trn, [a, b]) is the natural restriction of obs to over-sampled
discrete time obtained using the restriction trn of tr to domain 1

n · N. With
n = m!, this yields the contradiction x > MQ≥0[[φ]](obs) = M 1

n ·N[[φ]](obsn) ≥
infobs′∈Obs 1

n
·N

M 1
n ·N[[φ]](obs ′) = M 1

n ·N[[φ]] ≥ infk≥l,k∈N M 1
k! ·N[[φ]] = x. Conse-

quently, the assumption that infk≥l,k∈N M 1
k! ·N[[φ]] > MQ≥0[[φ]] must be wrong,

which proves infk≥l,k∈N M 1
k! ·N[[φ]] ≤ MQ≥0[[φ]]. �

However, using Lemma 5, this tightness result carries over to real-valued time:

Corollary 2 (Asymptotic tightness of disc.-time approx.).
infk≥l,k∈N M 1

k! ·N[[φ]] ≤ MR≥0[[φ]] holds for each DC formula φ and each l ∈ N.

5.3 Discrete Time with Different Sampling Rates

Given above approximation results between discrete time and real-valued time,
the rate of convergence of the discrete time interpretation when using increas-
ingly larger sampling rates becomes interesting. A close look at the proofs of
Lemma 6 and Corollary 1 reveals that they carry over from real-valued time to
using discrete time (with different sampling rates) on both sides. When replacing
MR≥0[[φ]] by M 1

k ·N[[φ]] for some arbitrary k ∈ N \ {0}, we obtain
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Lemma 8 (Approximation by sub-sampling). Let φ be a DC formula and
let k ∈ N \ {0}. Then

M 1
k ·N[[φ]] ≤ MN[[φ]] +

depth(φ)
2

.

Proof. Substitute MR≥0[[φ]] with M 1
k ·N[[φ]] in the proof of Lemma 6. �

Again, we can scale this result using the linearity properties from Lemma 4, thus
obtaining a discrete-time variant of Corollary 1:

Corollary 3 (Sampling-rate conversion). For any m, n ∈ N \ {0},

M 1
mn ·N[[φ]] ≤ M 1

n ·N[[φ]] +
depth(φ)

2n
.

Proof. Repeat the proof of Corollary 1 with MR≥0[[φ]] replaced by M 1
mn ·N[[φ]]

and Lemma 6 substituted with Lemma 8. �

Note that this implies that independently of the formula structure, finer sampling
cannot yield arbitrary changes in the multi-valued truth value. When moving
to an over-sampling, the possible increase in truth value is bounded by depth(φ)

2n ,
where n is the base sampling rate. In particular, the possible increase converges
against 0 for growing sampling rates.

6 Decidability

We will now turn to decidability and semi-decidability results over integer and
real-valued time.

6.1 Decidability over Discrete Time

In order to obtain a decision procedure for robust validity over discrete time, we
present a reduction of robust validity over discrete time to conventional validity
over discrete time. A simple induction shows

Lemma 9 (Robust vs. classical satisfaction). For each DC formula φ and
each observation obs ∈ ObsN, the equivalence MN[[φ]](obs) > 0 iff obs |=N φ◦

holds, where φ◦ is the formula φ with all positive occurrences of
∫
S ≥ k replaced

by
∫
S > k and all negative occurrences of

∫
S > k replaced by

∫
S ≥ k.

As MN[[·]] maps formulae to integers, a corresponding reduction of robust validity
to classical validity can be derived.

Lemma 10 (Robust vs. classical validity). For a DC formula φ with integer
constants, MN[[φ]] > 0 iff |=N φ◦. I.e., φ is robustly valid over discrete time iff
φ◦ is valid over discrete time in the classical sense.

Proof. It follows from the definition of MT [[·]] that MN[[φ]](obs) ∈ Z ± C for
each obs ∈ ObsN, where C is the set of constants occurring in φ and M ± N =
{m + n | m ∈ M, n ∈ N} ∪ {m − n | m ∈ M, n ∈ N}. Therefore,
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MN[[φ]] > 0

iff inf
tr∈TrajN,e∈N

MN[[φ]](tr , [0, e]) > 0 [Def. MT [[φ]]]

iff ∀ tr ∈ Traj
N
, e ∈ N .

(
MN[[φ]](tr , [0, e]) > 0

)

[MN[[φ]](obs) ∈ Z ± C, which has no accumulation point]

iff ∀ tr ∈ Traj
N
, e ∈ N .

(
(tr , [0, e]) |=N φ◦) [Lemma 9]

iff |=N φ◦ [Def. of classical validity]
�

Thus, robust validity of φ over discrete time can be reduced to classical validity
of φ◦ over discrete time.

Theorem 2 (Decidability of robust validity over discrete time). It is
decidable whether a DC formula φ with integer constants is robustly valid over
discrete time.

Proof. According to Lemma 10 it suffices to decide classical validity of φ◦ instead.
This problem is known to be decidable via a reduction to an emptiness problem
of extended regular expressions; see [7] for details. 3 �

6.2 Semi-Decidability Over Dense Time

Using the approximation scheme between discrete and dense time exposed in
Section 5, above discrete-time decidability result does immediately generalize to
a dense-time semi-decision procedure:

Theorem 3 (Semi-decidab. of dense time rob. invalidity). If φ contains
rational constants only then it is semi-decidable whether MR≥0[[φ]] < 0, i.e.
whether φ is robustly invalid over real-valued time.

Proof. W.l.o.g. we may assume that φ contains integer constants only4 such
that MN[[φ·n]] ∈ Z for each n ∈ N. According to Corollaries 1 and 2, inequation
MR≥0[[φ]] < 0 holds iff M 1

n ·N[[φ]] < −depth(φ)
2n for some n ∈ N \ {0}. However,

M 1
n ·N[[φ]] < −depth(φ)

2n

iff MN[[φ·n]] < −depth(φ)
2

[Lemma 4]

3 Strictly speaking, we need to extend the procedure from reference [7] to handle arbi-
trary integer constants in duration inequations

∫
S ∼ k, as [7] deals with non-negative

constants only. However, given that durations
∫
S can only yield non-negative values,

this extension is straightforward: validity of an arbitrary formula φ is equivalent to
validity of its variant φN, where φN is derived from φ by replacing each occurrence
of

∫
S ≥ k or

∫
S > k with k < 0 by

∫
S ≥ 0.

4 If φ contains non-integer rational constants then we can use φ·d, with d being a
common denominator of all constants in φ, instead. According to Lemma 4, the
formulae φ and φ·d are equivalent wrt. robust validity over dense time.
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iff MN[[φ·n]] + 1 ≤ −
⌊

depth(φ)
2

⌋

[MN[[φ·n]] ∈ Z]

iff MN[[(φ·n)
+

(
1+

⌊
depth(φ)

2

⌋) ]] ≤ 0 [Lemma 4]

iff (φ·n)
+

(
1+

⌊
depth(φ)

2

⌋) is not robustly valid over discrete time.

[Def. of robust validity]

The latter is decidable according to Theorem 2. Hence, in order to semi-decide
whether φ is robustly invalid over real-valued time, it suffices to decide robust
validity of (φ·n)+(1+� depth(φ)

2 �) over discrete time for successively larger n ∈ N\{0}
until an invalid instance is found. �

7 Discussion

We have developed the concept of robust interpretation for the interval tempo-
ral logic Duration Calculus, and we have shown an equivalence result relating
robust interpretation to a multi-valued semantics, where real numbers is used
as semantic domain and Lipschitz continuous functions are associated with the
operators of Duration Calculus.

The multi-valued semantics provides insight concerning robustness of the
formula, as the meaning of a formula describes how much the constants in the
formula may be varied without changing the truth value of the formula. Fur-
thermore, this semantics was shown to provide a nice framework for studying
the relationship between different time domains.

Based on the multi-valued semantics, we have studied how a real-time seman-
tics of Duration Calculus can be approximated by a discrete-time semantics. This
extends dicrete-time approximation, as suggested by Chakravorty and Pandya
[2], to an interval-based temporal logic featuring accumulated durations. In our
setting, an asymptotically tight upper-bound approximation constitutes the ba-
sis for a semi-decision procedure. A similar lower-bound approximation would
give a decidability result. Unfortunately we do not have a corresponding lower-
bound approximation result yet, although it is likely that such do at least hold
for those fragments of Duration Calculus, where chop is confined to occur in
only one polarity (i.e., either in only positive or in only negative contexts).
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