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Abstract. Rewriting logic is a simple computational logic very well
suited as a semantic framework within which many different models of
computation, systems and languages can be naturally modeled. It is also
a flexible logical framework in which many different logical formalisms
can be both represented and executed. As the title suggests, this pa-
per does not try to give a comprehensive overview of rewriting logic.
Instead, after introducing the basic concepts, it focuses on some recent
research directions emphasizing: (i) extensions of the logic to model real-
time systems and probabilistic systems; and (ii) some exciting applica-
tion areas such as: semantics of programming languages, security, and
bioinformatics.

1 Introduction

Rewriting logic is now a teenager; a quinceañera, as they call adolescent women
reaching 15 in Spain and Latin America. There are hundreds of papers; five
rewriting logic workshops have already taken place and a sixth will meet in
Vienna next March; and a host of tools and applications have been developed.
Taking pictures of this “young person” as it grows up is a quite interesting
intellectual exercise, one that can help other people become familiar with this
field and its possibilities. I, with the help of others, have done my share of
picture taking in earlier stages [69,70,72,67]. In particular, the “roadmap” [67]
that Narciso Mat́ı-Oliet and I wrote, gives a brief but comprehensive overview
and cites 328 papers in the area as of 2002. This paper takes a different tack. I
will not try to give you an overview. I will give you a sampler, some rewriting
logic tapas if you will, to tease your curiosity so that hopefully you may find
some things that you like and excite your interest.

I should of course say something about my choice of topics for the sampler;
and about some important developments that I do not cover. At the theoretical
level, one of the interesting questions to ask about a formalism is: how general,
flexible and extensible is it? For example, how does it compare in generality to
other formalisms? how can it deal with new application areas? how well can it
be extended in new directions? can it represent its own metalevel? I address
some of these questions by my choice of topics, but I consciously omit others.
The most glaring omission is the theoretical extension from ordinary rewrite
theories to generalized rewrite theories [10], that substantially extend the logic’s
expressive power. For the sake of a simpler exposition, this whole development
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is relegated here to Footnote 1. I do however discuss two other important the-
oretical extensions, namely, real-time rewrite theories [87] (Section 3.2), which
extend rewriting logic to deal with real-time and hybrid systems; and proba-
bilistic rewrite theories [63,64,2] (Section 3.3), that bring probabilistic systems,
as well as systems exhibiting both probabilistic and nodeterministic behavior,
within the rewriting logic fold. In both cases, the generality aspect is quite
encouraging, in the sense that many models of real time and of probabilistic
systems appear as special cases. However, to keep the exposition short, I do not
discuss all those models except in passing, and refer to [87] and [63] for detailed
comparisons. For the generality of rewriting logic itself see [67]. Reflection, that
allows rewriting logic to represent its own metalevel, is of such great theoretical
and practical importance that I also discuss it in Section 2.3.

At the practical level, one can ask questions such as: how well is this formal-
ism supported by tools? (this I briefly answer in Section 2.4); and what are some
exciting application areas? I have chosen three such areas for the sampler: (1)
semantics of programming languages and formal analysis of programs (Section
3.1); (2) security (Section 3.4); and (3) bioinformatics (Section 3.5). Enjoy!

2 What Is Rewriting Logic?

A rewrite theory1 is a tuple R = (Σ, E, R), with:

– (Σ, E) an equational theory with function symbols Σ and equations E; and
– R a set of labeled rewrite rules of the general form

r : t −→ t′

with t, t′ Σ-terms which may contain variables in a countable set X of vari-
ables which we assume fixed in what follows; that is, t and t′ are elements of
the term algebra TΣ(X). In particular, their corresponding sets of variables,
vars(t), vars(t′) are both contained in X .

1 To simplify the exposition I present here the simplest version of rewrite theories,
namely, unconditional rewrite theories over an unsorted equational theory (Σ, E). In
general, however, the equational theory (Σ, E) can be many-sorted, order-sorted, or
even a membership equational theory [71]. And the rules can be conditional, having
a conjunction of rewrites, equalities, and even memberships in their condition, that
is, they could have the general form

r : t −→ t′ if (
∧

i

ui = u′
i) ∧ (

∧

j

vj : sj) ∧ (
∧

l

wl −→ w′
l)

Furthermore, the theory may also specify an additional mapping φ : Σ −→ P(IN),
assigning to each function symbol f ∈ Σ (with, say, n arguments) a set φ(f) =
{i1, . . . , ik}, 1 ≤ i1 < . . . < ik ≤ n of frozen argument positions under which it is
forbidden to perform any rewrites. Rewrite theories in this more general sense are
studied in detail in [10]; they are clearly more expressive than the simpler uncon-
ditional and unsorted version presented here. This more general notion is the one
supported by the Maude language [17,18].
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Intuitively, R specifies a concurrent system, whose states are elements of the
initial algebra TΣ/E specified by (Σ, E), and whose concurrent transitions are
specified by the rules R. The equations E may decompose as a union E = E0∪A,
where A is a (possibly empty) set of structural axioms (such as associativity,
commutativity, and identity axioms). To give a flavor for how concurrent systems
are axiomatized in rewriting logic, I discuss below a fault-tolerant communication
protocol example specified as a Maude [17,18] module2

mod FT-CHANNEL is
protecting NAT .
sorts NatList Msg MsgSet Channel .
subsorts Nat < NatList .
subsorts Msg < MsgSet .
op nil : -> NatList .
op _;_ : NatList NatList -> NatList [assoc id: nil] .
op null : -> MsgSet .
op __ : MsgSet MsgSet -> MsgSet [assoc comm id: null] .
op [_,_]_[_,_] : NatList Nat MsgSet NatList Nat -> Channel .
op {_,_} : Nat Nat -> Msg .
op ack : Nat -> Msg .

vars N M I J K : Nat .
vars L P Q R : NatList .
var MSG : Msg .
var S : MsgSet .

rl [send] : [J ; L,N] S [P,M] => [J ; L,N] {J,N} S [P,M] .
rl [recv] : [J ; L,N] {J,K} S [P,M] =>

if K == M then [J ; L,N] S ack(M) [P ; J,s(M)]
else [J ; L,N] S ack(K) [P,M] fi .

rl [ack-recv] : [J ; L,N] ack(K) S [P,M] =>
if K == N then [L,s(N)] S [P,M]

else [J ; L,N] S [P,M] fi .
rl [loss] : [L,N] MSG S [P,M] => [L,N] S [P,M] .
endm

This rewrite theory imports the natural numbers module NAT and has an order-
sorted signature Σ specified by its sorts, subsorts, and operations. All its equa-
tions are structural axioms A, which in Maude are not specified explicitly as
equations, but are instead declared as attributes of their corresponding opera-
tor: here the list concatenation operator ; has been declared associative and

2 The Maude syntax is so close to the corresponding mathematical notation for defin-
ing rewrite theories as to be almost self-explanatory. The general point to keep in
mind is that each item: a sort, a subsort, an operation, an equation, a rule, etc., is
declared with an obvious keyword: sort, subsort, op, eq (or ceq for conditional equa-
tions), rl (or crl for conditional rules), etc., with each declaration ended by a space
and a period. Another important point is the use of “mix-fix” user-definable syntax,
with the argument positions specified by underbars; for example: if then else fi.
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having nil as its identity element with the assoc and id: keywords. Similarly,
the multiset union operator has been declared with empty syntax (juxtapo-
sition) and with associativity, commutativity (comm), and identity axioms,
making null its identity element. The rules R are send, recv, ack-recv, and
loss; they are applied modulo the structural axioms A, that is, we get the ef-
fect of rewriting in A-equivalence classes. This theory specifies a fault-tolerant
communication protocol in a bidirectional faulty channel, where messages can
be received out of order and can be lost. The sender is placed at the left of the
channel and has a list of numbers to send and a counter. The receiver is placed
at the right, with also a list of numbers to receive and another counter. The
contents of the channel in the middle is a multiset of messages (since there can
be several repeated copies of the same message). The protocol is fault-tolerant,
in that it will work even when some messages are permuted or lost, provided
the recv and ack-recv rules are applied in a fair way (for fairness in rewriting
logic see [74]).

2.1 Rewriting Logic Deduction

Given R = (Σ, E, R), the sentences that R proves are rewrites of the form,
t −→ t′, with t, t′ ∈ TΣ(X), which are obtained by finite application of the
following rules of deduction:

– Reflexivity. For each t ∈ TΣ(X), t −→ t

– Equality. u −→ v E � u = u′ E � v = v′
u′ −→ v′

– Congruence. For each f : k1 . . . kn −→ k in Σ, and ti, t
′
i ∈ TΣ(X), 1 ≤ i ≤

n,

t1 −→ t′1 . . . tn −→ t′n
f(t1, . . . , tn) −→ f(t′1, . . . , t

′
n)

– Replacement. For each substitution θ : X −→ TΣ(X), and for each rule
r : t −→ t′ in R, with, say, vars(t)∪ vars(t′) = {x1, . . . , xn}, and θ(xl) = pl,
1 ≤ l ≤ n, then

p1 −→ p′1 . . . pn −→ p′n
θ(t) −→ θ′(t′)

where for 1 ≤ i ≤ n, θ′(xi) = p′i, and for each x ∈ X − {x1, . . . , xn},
θ′(x) = θ(x).

– Transitivity.

t1 −→ t2 t2 −→ t3
t1 −→ t3
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We can visualize the above inference rules as follows:
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The notation R � t −→ t′ states that the sequent t −→ t′ is provable in
the theory R using the above inference rules. Intuitively, we should think of
the inference rules as different ways of constructing all the (finitary) concurrent
computations of the concurrent system specified by R. The Reflexivity rule says
that for any state t there is an idle transition in which nothing changes. The
Equality rule specifies that the states are in fact equivalence classes modulo
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the equations E. The Congruence rule is a very general form of “sideways
parallelism,” so that each operator f can be seen as a parallel state constructor,
allowing its arguments to evolve in parallel. The Replacement rule supports a
different form of parallelism, which could be called “parallelism under one’s feet,”
since besides rewriting an instance of a rule’s lefthand side to the corresponding
righthand side instance, the state fragments in the substitution of the rule’s
variables can also be rewritten. Finally, the Transitivity rule allows us to build
longer concurrent computations by composing them sequentially.

For execution purposes, a rewrite theory R = (Σ, E, R) should satisfy some
additional requirements. As already mentioned, the equations E may decompose
as a union E = E0 ∪ A, where A is a (possibly empty) set of structural axioms.
We should require that matching modulo A is decidable, and that the equations
E0 are ground Church-Rosser and terminating modulo A; furthermore, the rules
r : t −→ t′ in R should satisfy vars(t′) ⊆ vars(t), and should be coherent with
respect to E modulo A [109]. In the Maude language [17,18], modules are rewrite
theories that are assumed to satisfy the above executability requirements (in an
extended form that covers conditional rules [17]).

2.2 Operational and Denotational Semantics of Rewrite Theories

A rewrite theory R = (Σ, E, R) has both a deduction-based operational seman-
tics, and an initial model denotational semantics. Both semantics are defined
naturally out of the proof theory described in Section 2.1. The deduction-based
operational semantics of R is defined as the collection of proof terms [69,10] of
the form α : t −→ t′. A proof term α is an algebraic description of a proof tree
proving R � t −→ t′ by means of the inference rules of Section 2.1. As already
mentioned, all such proof trees describe all the possible finitary concurrent com-
putations of the concurrent system axiomatized by R. When we specify R as a
Maude module and rewrite a term t with the rewrite or frewrite commands,
obtaining a term t′ as a result, we can use Maude’s trace mode to obtain what
amounts to a proof term α : t −→ t′ of the particular rewrite proof built by the
Maude interpreter.

A rewrite theory R = (Σ, E, R) has also a model theory, so that the inference
rules of rewriting logic are sound and complete with respect to satisfaction in the
class of models of R [69,10]. Such models are categories with a (Σ, E)-algebra
structure [69,10]. These are “true concurrency” denotational models of the con-
current system axiomatized by R. That is, this model theory gives a precise
mathematical answer to the question: when do two descriptions of two concur-
rent computations denote the same concurrent computation? The class of models
of a rewrite theory R = (Σ, E, R) has an initial model TR [69,10]. The initial
model semantics is obtained as a quotient of the just-mentioned deduction-based
operational semantics, precisely by axiomatizing algebraically when two proof
terms α : t −→ t′ and β : u −→ u′ denote the same concurrent computation.
Of course, α and β should have identical beginning states and identical ending
states. By the Equality rule this forces E � t = u, and E � t′ = u′. That, is,
the objects of the category TR are E-equivalence classes [t] of ground Σ-terms,
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which denote the states of our system. The arrows or morphisms in TR are equiv-
alence classes of proof terms, so that [α] = [β] iff both proof terms denote the
same concurrent computation according to the “true concurrency” axioms. Such
axioms are very natural. They for example express that the Transitivity rule
behaves as an arrow composition and is therefore associative. Similarly, the Re-
flexivity rules provides an identity arrow for each object, satisfying the usual
identity laws.

As discussed in Section 4.1 of [67], rewriting logic is a very general semantic
framework in which a wide range of concurrency models such as process calculi,
Petri nets, distributed object systems, Actors, and so on, can be naturally ax-
iomatized as specific rewrite theories. Furthermore, as also explained in Section
4.1 of [67], the algebraically-defined true concurrency models of rewriting logic
include as special cases many other true concurrency models such as residual
models of term rewriting, parallel λ-calculus models, process models for Petri
nets, proved transition models for CCS, and partial order of events models for
object systems and for Actors. Note, however, that a rewrite rule

r : t −→ t′

has two complementary readings, one computational, and another logical. Com-
putationally, as already explained, it axiomatizes a parametric family of con-
current transitions in a system. Logically, however, it represents and inference
rule3 in a logic, whose inference system is axiomatized by R. It turns out that,
with this second reading, rewriting logic has very good properties as a logical
framework, in which many other logics can be naturally represented, so that we
can simulate deduction in a logic as rewriting deduction in its representation
[66].

2.3 Reflection

Reflection is a very important property of rewriting logic [22,15,23,24]. Intu-
itively, a logic is reflective if it can represent its metalevel at the object level
in a sound and coherent way. Specifically, rewriting logic can represent its own
theories and their deductions by having a finitely presented rewrite theory U
that is universal, in the sense that for any finitely presented rewrite theory R
(including U itself) we have the following equivalence

R � t → t′ ⇔ U � 〈R, t〉 → 〈R, t′〉,
3 The use of conditional rewrite rules is of course very important in this logical reading.

Logically, we would denote a conditional rewrite rule

r : t −→ t′ if (
∧

i

ui = u′
i) ∧ (

∧

j

vj : sj) ∧ (
∧

l

wl −→ w′
l)

as an inference rule

(
∧

i ui = u′
i) ∧ (

∧
j vj : sj) ∧ (

∧
l wl −→ w′

l)

t −→ t′
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where R and t are terms representing R and t as data elements of U . Since U
is representable in itself, we can achieve a “reflective tower” with an arbitrary
number of levels of reflection [15,16].

Reflection is a very powerful property: it allows defining rewriting strategies
by means of metalevel theories that extend U and guide the application of the
rules in a given object-level theory R [15]; it is efficiently supported in the Maude
implementation by means of descent functions [16]; it can be used to build a
variety of theorem proving and theory transformation tools [15,19,20,25]; it can
endow a rewriting logic language like Maude with powerful theory composition
operations [40,35,37,42]; and it can be used to prove metalogical properties about
families of theories in rewriting logic, and about other logics represented in the
rewriting logic (meta-)logical framework [5,21,4].

2.4 Maude and Its Formal Tools

Rewrite theories can be executed in different languages such as CafeOBJ [53],
and ELAN [7]. The most general support for the execution of rewrite theories
is currently provided by the Maude language [17,18], in which rewrite theories
with very general conditional rules, and whose underlying equational theories
can be membership equational theories [71], can be specified and can be exe-
cuted, provided they satisfy the already-mentioned requirements. Furthermore,
Maude provides very efficient support for rewriting modulo any combination of
associativity, commutativity, and identity axioms. Since an equational theory
(Σ, E) can be regarded as a degenerate rewrite theory of the form (Σ, E, ∅),
equational logic is naturally a sublogic of rewriting logic. In Maude this sublogic
is supported by functional modules [17], which are theories in membership equa-
tional logic.

Besides supporting efficient execution, typically in the order of several million
rewrites per second, Maude also provides a range of formal tools and algorithms
to analyze rewrite theories and verify their properties. A first very useful formal
analysis feature is its breadth-first search command. Given an initial state of
a system (a term), we can search for all reachable states matching a certain
pattern and satisfying an equationally-defined semantic condition P . By making
P = ¬Q, where Q is an invariant, we get in this way a semi-decision procedure
for finding failures of invariant safety properties. Note that there is no finite-state
assumption involved here: any executable rewrite theory can thus be analyzed.
For systems where the set of states reachable from an initial state are finite,
Maude also provides a linear time temporal logic (LTL) model checker. Maude’s
is an explicit-state LTL model checker, with performance comparable to that of
the SPIN model checker [58] for the benchmarks that we have analyzed [45,46].

As already pointed out, reflection is a key feature of rewriting logic, and
is efficiently supported in the Maude implementation through its META-LEVEL
module. One important fruit of this is that it becomes quite easy to build new
formal tools and to add them to the Maude environment. Indeed, such tools
by their very nature manipulate and analyze rewrite theories. By reflection,
a rewrite theory R becomes a term R in the universal theory, which can be
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efficiently manipulated by the descent functions in the META-LEVELmodule. As a
consequence, Maude formal tools have a reflective design and are built in Maude
as suitable extensions of the META-LEVEL module. They include the following:

– the Maude Church-Rosser Checker, and Knuth-Bendix and Coherence Com-
pletion tools [19,41,38,36]

– the Full Maude module composition tool [35,42]
– the Maude Predicate Abstraction tool [88]
– the Maude Inductive Theorem Prover (ITP) [15,19,25]
– the Real-Time Maude tool [82] (more on this in Section 3.2)
– the Maude Sufficient Completeness Checker (SCC) [57]
– the Maude Termination Tool (MTT) [39].

3 Some Research Directions

3.1 The Rewriting Logic Semantics Project

The fact that rewriting logic specifications provide an easy and expressive way
to develop executable formal definitions of languages, which can then be sub-
jected to different tool-supported formal analyses, is by now well established
[107,8,108,103,98,73,105,14,91,106,51,49,59,9,75,76,13,12,50,26,93,3,99,27,77]. In
fact, the just-mentioned papers by different authors are contributions to a collec-
tive ongoing research project which we call the rewriting logic semantics project.
What makes this project promising is the combination of three interlocking facts:

1. that rewriting logic is a flexible and expressive logical framework that unifies
denotational semantics4 and SOS in a novel way, avoiding their respective
limitations and allowing very succinct semantic definitions (see [77]);

2. that rewriting logic semantic definitions are directly executable in a rewrit-
ing logic language such as Maude [17], and can thus become quite efficient
interpreters (see [76,77]) ; and

3. that generic formal tools such as the Maude LTL model checker [45], the
Maude inductive theorem prover [19,25], and new tools under development
such as a language-generic partial order reduction tool [50], allow us to amor-
tize tool development cost across many programming languages, that can
thus be endowed with powerful program analysis capabilities; furthermore,
genericity does not necessarily imply inefficiency: in some cases the analyses
so obtained outperform those of well-known language-specific tools [51,49].

For the most part, equational semantics and SOS have lived separate lives.
Although each is very valuable in its own way, they are “single hammer” ap-
proaches and have some limitations [77]. Would it be possible to seamlessly

4 I use in what follows the broader term equational semantics —that is, semantics
based on semantic equations— to emphasize the fact that higher-order denotational
and first-order algebraic semantics have many common features and can both be
viewed as instances of a common equational semantics framework.
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unify them within a more flexible and general framework? Could their respec-
tive limitations be overcome when they are thus unified? Rewriting logic does
indeed provide one such unifying framework. The key to this, indeed very simple,
unification is what Grigore Rosşu and I call rewriting logic’s abstraction knob.
The point is that in equational semantics’ model-theoretic approach entities are
identified by the semantic equations, and have unique abstract denotations in
the corresponding models. In our knob metaphor this means that in equational
semantics the abstraction knob is always turned all the way up to its maximum
position. By contrast, one of the key features of SOS is providing a very de-
tailed, step-by-step formal description of a language’s evaluation mechanisms.
As a consequence, most entities —except perhaps for built-in data, stores, and
environments, which are typically treated on the side— are primarily syntactic,
and computations are described in full detail. In our metaphor this means that
in SOS the abstraction knob is always turned down to its minimum position.

How is the unification and corresponding availability of an abstraction knob
achieved? Since a rewrite theory (Σ, E, R) has an underlying equational theory
(Σ, E) with Σ a signature of operations and sorts, and E a set of (possibly
conditional) equations, and with R a set of (possibly conditional) rewrite rules,
equational semantics is then obtained as the special case in which R = ∅, so we
only have the semantic equations E and the abstraction knob is turned up to
its maximum position. Roughly speaking,5 SOS is then obtained as the special
case in which E = ∅, and we only have (possibly conditional) rules R rewriting
purely syntactic entities (terms), so that the abstraction knob is turned down to
the minimum position.

Rewriting logic’s “abstraction knob” is precisely its crucial distinction be-
tween equations E and rules R in a rewrite theory (Σ, E, R). States of the
computation are then E-equivalence classes, that is, abstract elements in the
initial algebra TΣ/E. Because of rewriting logic’s Equality inference rule (see
Section 2.1) a rewrite with a rule in R is understood as a transition [t] −→ [t′]
between such abstract states. The knob, however, can be turned up or down. We
can turn it all the way down to its minimum by converting all equations into
rules, transforming (Σ, E, R) into (Σ, ∅, R ∪ E). This gives us the most con-
crete, SOS-like semantic description possible. Instead, to make a specification
as abstract as possible we can identify a subset R0 ⊆ R such that: (1) R0 ∪ E
is Church-Rosser; and (2) R0 is biggest possible with this property. In actual
language specification practice this is not hard to do. Essentially, we can use se-
mantic equations for most of the sequential features of a programming language:
only when interactions with memory could lead to nondeterminism (particularly
if the language has threads, or they could later be added to the language in
an extension) or for intrinsically concurrent features are rules (as opposed to

5 I gloss over the technical difference that in SOS all computations are “one-step”
computations, even if the step is a big one, whereas in rewriting logic, because of its
built-in Transitivity inference rule (see Section 2.1) the rewriting relation is always
transitive. For a more detailed comparison see [76].
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equations) really needed. In this way, we can obtain drastic search space reduc-
tions, making formal analyses much more scalable than if we used only rules.

Many languages have already been given semantics in this way using Maude.
The language definitions can then be used as interpreters, and —in conjunction
with Maude’s search command and its LTL model checker— to formally ana-
lyze programs in those languages. For example, large fragments of Java and the
JVM have been specified in Maude this way, with the Maude rewriting logic
semantics being used as the basis of Java and JVM program analysis tools that
for some examples outperform well-known Java analysis tools [51,49]. A similar
Maude specification of the semantics of Scheme at UIUC yields an interpreter
with .75 the speed of the standard Scheme interpreter on average for the bench-
marks tested. The specification of a C-like language and the corresponding formal
analyses are discussed in detail in [77]. A semantics of a Caml-like language with
threads was discussed in detail in [76], and a modular rewriting logic semantics
of CML has been given by Chalub and Braga in [13]. d’Amorim and Roşu have
given a definition of the Scheme language in [27]. Other language case studies,
all specified in Maude, include: bc [9], CCS [107,108,9], CIAO [99], Creol [59],
ELOTOS [105], MSR [11,97], PLAN [98,99], and the pi-calculus [103]. In fact,
the semantics of large fragments of conventional languages are by now routinely
developed by UIUC graduate students as course projects in a few weeks, includ-
ing, besides the languages already mentioned: Beta, Haskell, Lisp, LLVM, Pict,
Python, Ruby, and Smalltalk.

Besides search and model checking analyses, it is also possible to use a lan-
guage’s semantic definition to perform semantics-based deduction analyses either
on programs in that language, or even about the correctness of a given logic of
programs with respect to the language’s rewriting semantics. Work in this di-
rection includes [93,3,26,108,105].

Modularity of semantic definitions, that is, the property that a feature’s se-
mantics does not have to be redefined when a language is extended, is notoriously
hard to achieve. To solve this problem for SOS, Peter Mosses has proposed the
modular structural operational semantics (MSOS) methodology [80]. This in-
spired C. Braga and me to develop a similar modular methodology for rewriting
logic semantics [75,9]. This has had the pleasant side-effect of providing a Maude-
based execution environment for MSOS specifications, namely the Maude MSOS
Tool developed at the Universidade Federal Fluminense in Brazil by F. Chalub
and C. Braga [12], which is available on the web at http://mmt.ic.uff.br/.

3.2 Real-Time Rewrite Theories and Real-Time Maude

In many reactive and distributed systems, real-time properties are essential to
their design and correctness. Therefore, the question of how systems with real-
time features can be best specified, analyzed, and proved correct in the semantic
framework of rewriting logic is an important one. This question has been inves-
tigated by several authors from two perspectives. On the one hand, an extension
of rewriting logic called timed rewriting logic has been investigated, and has been
applied to some examples and specification languages [62,84,96]. On the other

http://mmt.ic.uff.br/
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hand, Peter Ölvecky and I have found a simple way to express real-time and hy-
brid system specifications directly in rewriting logic [85,87]. Such specifications
are called real-time rewrite theories and have rules of the form

{t} r−→ {t′} if C

with r a term denoting the duration of the transition (where the time can be
chosen to be either discrete or continuous), {t} representing the whole state of
a system, and C an equational condition. Peter Ölvecky and I have shown that,
by making the clock an explicit part of the state, these theories can be desugared
into semantically equivalent ordinary rewrite theories [85,87,82]. That is, in the
desugared version we can model the state of a real-time or hybrid system as a
pair (t, r), with t the current state, and with r the current global clock time.
Rewrite rules can then be either instantaneous rules, that take no time and only
change some part of the state t, or tick rules, that advance the global time of the
system according to some time expression r and may also change the state t. By
characterizing equationally the enabledness of each rule and using conditional
rules and frozen operators [10], it is always possible to define tick rules so that
instantaneous rules are always given higher priority; that is, so that a tick rule
can never fire when an instantaneous rule is enabled [82]. When time is contin-
uous, tick rules may be nondeterministic, in the sense that the time r advanced
by the rule is not uniquely determined, but is instead a parametric expression
(however, this time parameter is typically subjected to some equational condi-
tion C). In such cases, tick rules need a time sampling strategy to choose suitable
values for time advance. Besides being able to show that a wide range of known
real-time models, (including, for example, timed automata, hybrid automata,
timed Petri nets, and timed object-oriented systems) and of discrete or dense
time values, can be naturally expressed in a direct way in rewriting logic (see
[87]), an important advantage of our approach is that one can use an existing
implementation of rewriting logic to execute and analyze real-time specifications.
Because of some technical subtleties, this seems difficult for the alternative of
timed rewriting logic, although a mapping into our framework does exist [87].

Real-Time Maude [83,86,82], is a specification language and a formal tool
built in Maude by reflection. It provides special syntax to specify real-time sys-
tems, and offers a range of formal analysis capabilities. The Real-Time Maude
2.0 tool [82] systematically exploits the underlying Maude efficient rewriting,
search, and LTL model checking capabilities to both execute and formally an-
alyze real-time specifications. Reflection is crucially exploited in the Real-Time
Maude 2.0 implementation. On the one hand Real-Time Maude specifications are
internally desugared into ordinary Maude specifications by transforming their
meta-representations. On the other, reflection is also used for execution and
analysis purposes. The point is that the desired modes of execution and formal
properties to be analyzed have real-time aspects with no clear counterpart at
the Maude level. To faithfully support these real-time aspects a reflective trans-
formational approach is adopted: the original real-time theory and query (for
either execution or analysis) are simultaneously transformed into a semantically
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equivalent pair of a Maude rewrite theory and a Maude query [82]. In practice,
this makes those executions and analyses quite efficient and allows scaling up to
highly nontrivial specifications and case studies.

In fact, both the naturalness of Real-Time Maude to specify large nontrivial
real-time applications (particularly for distributed object-oriented real-time sys-
tems) and its effectiveness in simulating and analyzing the formal properties of
such systems have been demonstrated in a number of substantial case studies,
including the specification and analysis of advanced scheduling algorithms and
of: (1) the AER/NCA suite of active network protocols [83,81]; (2) the NORM
multicast protocol [65]; and (3) the OGDC wireless sensor network algorithm
[104]. The Real-Time Maude tool is a mature and quite efficient tool freely
available (with source code, a tool manual, examples, case studies, and papers)
from http://www.ifi.uio.no/RealTimeMaude.

3.3 Probabilistic Rewrite Theories and PMaude

Many systems are probabilistic in nature. This can be due either to the uncer-
tainty of the environment in which they must operate, such as message losses
and other failures in an unreliable environment, or to the probabilistic nature of
some of their algorithms, or to both. In general, particularly for distributed sys-
tems, both probabilistic and nondeterministic aspects may coexist, in the sense
that different transitions may take place nondeterministically, but the outcomes
of some of those transitions may be probabilistic in nature. To specify systems of
this kind, rewrite theories have been generalized to probabilistic rewrite theories
in [63,64,2]. Rules in such theories are probabilistic rewrite rules of the form

l : t(x) → t′(x, y) if cond(x) with probability y := πr(x)

where the first thing to observe is that the term t′ has new variables y disjoint
from the variables x appearing in t. Therefore, such a rule is nondeterministic;
that is, the fact that we have a matching substitution θ such that θ(cond) holds
does not uniquely determine the next state fragment: there can be many different
choices for the next state, depending on how we instantiate the extra variables y
in t′. In fact, we can denote the different such next states by expressions of the
form t′(θ(x), ρ(y)), where θ is fixed as the given matching substitution, but ρ
ranges along all the possible substitutions for the new variables y. The probabilis-
tic nature of the rule is expressed by the notation: with probability y := πr(x),
where πr(x) is a probability distribution which may depend on the matching
substitution θ. We then choose the values for y, that is, the substitution ρ,
probabilistically according to the distribution πr(θ(x)).

The fact that the probability distribution may depend on the substitution θ
can be illustrated by means of a simple example. Consider a battery-operated
clock. We may represent the state of the clock as a term clock(T,C), with T a
natural number denoting the time, and C a positive real denoting the amount
of battery charge. Each time the clock ticks, the time is increased by one unit,
and the battery charge slightly decreases; however, the lower the battery charge,
the greater the chance that the clock will stop, going into a state of the form

http://www.ifi.uio.no/RealTimeMaude
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broken(T,C’). We can model this system by means of the probabilistic rewrite
rule

rl [tick]: clock(T,C) => if B then clock(s(T),C - (C / 1000))
else broken(T,C (C / 1000))

fi
with probability B := BERNOULLI(C / 1000) .

that is, the probability of the clock breaking down instead of ticking normally de-
pends on the battery charge, which is here represented by the battery-dependent
bias of the coin in a Bernoulli trial. Note that here the new variable on the
rule’s righthand side is the Boolean variable B, corresponding to the result of
tossing the biased coin. As shown in [63], probabilistic rewrite theories can ex-
press a wide range of models of probabilistic systems, including continuous-time
Markov chains [100], probabilistic non-deterministic systems [90,94], and gener-
alized semi-Markov processes [54]; they can also naturally express probabilistic
object-based distributed systems [64,2], including real-time ones.

The PMaude language [64,2] is an experimental specification language whose
modules are probabilistic rewrite theories. Note that, due to their nondetermin-
ism, probabilistic rewrite rules are not directly executable. However, probabilistic
systems specified in PMaude can be simulated in Maude. This is accomplished by
transforming a PMaude specification into a corresponding Maude specification
in which actual values for the new variables appearing in the righthand side of
a probabilistic rewrite rule are obtained by sampling the corresponding proba-
bility distribution functions. This theory transformation uses three key Maude
modules as basic infrastructure, namely, COUNTER, RANDOM, and SAMPLER. The
built-in module COUNTER provides a built-in strategy for the application of the
nondeterministic rewrite rule

rl counter => N:Nat .

that rewrites the constant counter to a natural number. The built-in strategy
applies this rule so that the natural number obtained after applying the rule is
exactly the successor of the value obtained in the preceding rule application. The
RANDOM module is a built-in Maude module providing a (pseudo-)random number
generator function called random. The SAMPLER module supports sampling for
different probability distributions. It has a rule

rl [rnd] : rand => float(random(counter + 1) / 4294967296) .

which rewrites the constant rand to a floating point number between 0 and
1 pseudo-randomly chosen according to the uniform distribution. This floating
point number is obtained by converting the rational number random(counter +
1) / 4294967296 into a floating point number, where 4294967296 is the maxi-
mum value that the random function can attain. SAMPLER has rewrite rules sup-
porting sampling according to different probability distributions; this is based
on first sampling a floating point number between 0 and 1 pseudo-randomly
chosen according to the uniform distribution by means of the above rnd rule.



A Rewriting Logic Sampler 15

For example, to sample the Bernoulli distribution we use the following operator
and rewrite rule in SAMPLER:

op BERNOULLI : Float -> Bool .
rl BERNOULLI(R) => if rand < R then true else false fi .

that is, to sample a result of tossing a coin with bias R, we first sample the
uniform distribution. If the sampled value is strictly smaller than R, then the
answer is true; otherwise the answer is false. Any discrete probability distri-
bution on a finite set can be sampled in a similar way. The ordinary Maude
specification that simulates the PMaude specification for a clock with the above
tick probabilistic rewrite rule imports COUNTER, RANDOM, and SAMPLER, and has
then a corresponding Maude rewrite rule

rl [tick] : clock(T,C) => if BERNOULLI(C / 1000.0)
then clock(s(T),C - (C / 1000.0))
else broken(T,C - (C / 1000.0))

fi .

For a continuous probability distribution π with differentiable density func-
tion dπ, and with cumulative distribution function Fπ(x) =

∫ x

−∞ dπ(y)dy, we
can use the well-known fact (see for example [89], Thm 8A, pg. 314) that if U
is a random variable uniformly distributed on [0, 1], then F−1

π (U) is a random
variable with probability distribution π, to sample elements according to the
distribution π by means of a rewrite rule

sampleπ −→ F−1
π (random)

Of course, π may not be a fixed probability distribution, but a parametric family
π(p) of distributions depending on some parameters p, so that the above rule
will then have extra variables for those parameters.

In general, provided that sampling for the probability distributions used in
a PMaude module are supported in the underlying SAMPLER module, we can
associate to it a corresponding Maude module. We can then use this associated
Maude module to perform Monte Carlo simulations of the probabilistic systems
thus specified. As explained in [2], provided all nondeterminism has been elim-
inated from the original PMaude module6, we can then use the results of such
Monte Carlo simulations to perform a statistical model checking analysis of the
6 The point is that, as explained above, in general, given a probabilistic rewrite theory

and a term t describing a given state, there can be several different rewrites, perhaps
with different rules, at different positions, and with different matching substitutions,
that can be applied to t. Therefore, the choice of rule, position, and substitution is
nondeterministic. To eliminate all nondeterminism, at most one rule at exactly one
position and with a unique substitution should be applicable to any term t. As ex-
plained in [2], for many systems, including probabilistic real-time object-oriented sys-
tems, this can be naturally achieved, essentially by scheduling events at real-valued
times that are all different, because we sample a continuous probability distribution
on the real numbers.
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given system to verify certain properties. For example, for a PMaude specifica-
tion of a TCP/IP protocol variant that is resistant to Denial of Service (DoS)
attacks, we may wish to establish that, even if an attacker controls 90% of the
network bandwith, it is still possible for the protocol to establish a connection
in less than 30 seconds with 99% probability. Properties of this kind, including
properties that measure quantitative aspects of a system, can be expressed in the
QATEX probabilistic temporal logic, [2], and can be model checked using the
VeStA tool [95]. See [1] for a substantial case study specifying a DoS-resistant
TCP/IP protocol as a PMaude module, performing Monte Carlo simulations
by means of its associated Maude module, and formally analyzing in VeStA its
properties, expressed as QATEX specifications, according to the methodology
just described.

3.4 Security Applications and Narrowing

Security is a concern of great practical importance for many systems, making
it worthwhile to subject system designs and implementations to rigorous formal
analysis. Security, however, is many-faceted : on the one hand, we are concerned
with properties such as secrecy: malicious attackers should not be able to get
secret information; on the other, we are also concerned with properties such as
availability, which may be destroyed by a (DoS) attack: a highly reliable com-
munication protocol ensuring secrecy may be rendered useless because it spends
all its time checking spurious signatures generated by a DoS attacker. Rewrit-
ing logic has been successfully applied to analyze security properties, including
both secrecy and availability, for a wide range of systems. More generally, using
distributed object-oriented reflection techniques [28,78], it is possible to analyze
tradeoffs between different security properties, and between them and other sys-
tem properties; and it is possible to develop system composition and adaptation
techniques allowing systems to behave adequately in changing environments.

Work in this general area includes: (1) work of Denker, Meseguer, and Talcott
on the specification and analysis of cryptographic protocols using Maude [29,30]
(see also [92]); (2) work of Basin and Denker on an experimental comparison of
the advantages and disadvantages of using Maude versus using Haskell to analyze
security protocols [6]; (3) work of Millen and Denker at SRI using Maude to give
a formal semantics to their new cryptographic protocol specification language
CAPSL, and to endow CAPSL with an execution and formal analysis environ-
ment [31,32,33,34]; (4) work of Gutierrez-Nolasco, Venkatasubramanian, Stehr,
and Talcott on the Secure Spread protocol [56]; (5) work of Gunter, Goodloe,
and Stehr on the formal specification and analysis of the L3A security protocol
[55]; (6) work of Cervesato, Stehr, and Reich on the rewriting logic semantics of
the MSR security specification formalism, leading to the first executable envi-
ronment for MSR [11,97]; and (7) the already-mentioned work by Agha, Gunter,
Greenwald, Khanna, Meseguer, Sen, and Thati on the specification and analysis
of a DoS-resistant TCP/IP protocol using probabilistic rewrite theories [1].

A related technique with important security applications is narrowing, a sym-
bolic procedure like rewriting, except that rules, instead of being applied by
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matching a subterm, are applied by unifying the lefthand side with a nonvariable
subterm. Traditionally, narrowing has been used as a method to solve equations
in a confluent and terminating equational theory. In rewriting logic, narrowing
has been generalized by Meseguer and Thati to a semi-decision procedure for
symbolic reachability analysis [79]. That is, instead of solving equational goals
∃x. t = t′, we solve reachability goals ∃x. t −→ t′. The relevant point for secu-
rity applications is that, since narrowing with a rewrite theory R = (Σ, E, R)
is performed modulo the equations E, this allows more sophisticated analyses
than those performed under the usual Dolev-Yao “perfect cryptography assump-
tion”. It is well-known that protocols that had been proved secure under this
assumption can be broken if an attacker uses knowledge of the algebraic prop-
erties satisfied by the underlying cryptographic functions. In rewriting logic we
can specify a cryptographic protocol as a rewrite theory R = (Σ, E, R), and can
model those algebraic properties as equations in E. Under suitable assumptions
that are typically satisfied by cryptographic protocols, narrowing then gives us a
complete semidecision procedure to find attacks modulo the equations E; there-
fore, any attack making use algebraic properties can be found this way [79]. Very
recent work in this direction by Escobar, Meadows and Meseguer [47] is using
rewriting logic and narrowing to give a precise rewriting semantics to the infer-
ence system of one of the most effective analysis tools for cryptographic protocols,
namely the NRL Analyzer [68]. Further recent work on narrowing with rewrite
theories focuses on: (1) generalizing the procedure to so-called “back-and-forth
narrowing,” so as to ensure completeness under very general assumptions about
the rewrite theory R [102]; and (2) efficient lazy strategies to restrict as much
as possible the narrowing search space [48].

3.5 Bioinformatics Modeling and Analysis

Biology lacks at present adequate mathematical models that can provide some-
thing analogous to the analytic and predictive power that mathematical mod-
els provide for, say, Physics. Of course, the mathematical models of Chemistry
describing, say, molecular structures are still applicable to biochemistry. The
problem is that they do not scale up to something like a cell, because they are
too low-level. One can of course model biological phenomena at different levels
of abstraction. Higher, more abstract levels seem both the most crucial and the
least supported. The most abstract the level, the better the chances to scale up.

All this is analogous to the use of different levels of abstraction to model digi-
tal systems. There are great scaling up advantages in treating digital systems and
computer designs at a discrete level of abstraction, above the continuous level
provided by differential equations, or, even lower, the quantum electrodynam-
ics (QED) level. The discrete models, when they can be had, can also be more
robust and predictable: there is greater difficulty in predicting the behavior of a
system that can only be modeled at lower levels. Indeed, the level at which biolo-
gists like to reason about cell behavior is typically the discrete level; however, at
present descriptions at this level consist of semi-formal notations for the elemen-
tary reactions, together with informal and potentially ambiguous notations for
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things like pathways, cycles, feedback, etc. Furthermore, such notations are static
and therefore offer little predictive power. What are needed are new computable
mathematical models of cell biology that are at a high enough level of abstraction
so that they fit biologist’s intuitions, make those intuitions mathematically pre-
cise, and provide biologists with the predictive power of mathematical models,
so that the consequences of their hypotheses and theories can be analyzed, and
can then suggest laboratory experiments to prove them or disprove them.

Rewriting logic seems ideally suited for this task. The basic idea is that we
can model a cell as a concurrent system whose concurrent transitions are pre-
cisely its biochemical reactions. In fact, the chemical notation for a reaction like
AB −→ C D is exactly a rewriting notation. In this way we can develop symbolic
bioinformatic models which we can then analyze in their dynamic behavior just
as we would analyze any other rewrite theory.

Implicit in the view of modeling a cell as a rewrite theory (Σ, E, R) is the
idea of modeling the cell states as elements of an algebraic data type specified by
(Σ, E). This can of course be done at different levels of abstraction. We can for
example introduce basic sorts such as AminoAcid, Protein, and DNA and declare
the most basic building blocks as constants of the appropriate sort. For example,

ops T U Y S K P : -> AminoAcid .
ops 14-3-3 cdc37 GTP Hsp90 Raf1 Ras : -> Protein .

But sometimes a protein is modified, for example by one of its component
amino acids being phosphorylated at a particular site in its structure. Consider
for example the c-Raf protein, denoted above by Raf1. Two of its S amino acid
components can be phosphorilated at sites, say, 259 and 261. We then obtain a
modified protein that we denote by the symbolic expression,

[Raf1 \ phos(S 259) phos(S 621)]

A fragment, relevant for this example, of the signature Σ needed to symbol-
ically express and analyze such modified proteins is given by the following sorts,
subsorts, and operators:

sorts Site Modification ModSet .
subsort Modification < ModSet .

op phos : Site -> Modification .
op none : -> ModSet .
op __ : ModSet ModSet -> ModSet [assoc comm id: none] .
op __ : AminoAcid MachineInt -> Site .
op [_\_] : Protein ModSet -> Protein [right id: none] .

Proteins can stick together to form complexes. This can be modeled by the
following subsort and operator declarations

sort Complex .
subsort Protein < Complex .
op _:_ : Complex Complex -> Complex [comm] .
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In the cell, proteins and other molecules exist in “soups,” such as the cytosol,
or the soups of proteins inside the cell and nucleus membranes, or the soup inside
the nucleus. All these soups, as well as the “structured soups” making up the
different structures of the cell, can be modeled by the following fragment of sort,
subsort, and operator declarations,

sort Soup .
subsort Complex < Soup .
op __ : Soup Soup -> Soup [assoc comm] .
op cell{_{_}} : Soup Soup -> Soup .
op nucl{_{_}} : Soup Soup -> Soup .

that is, soups are made up out of complexes, including individual proteins, by
means of the above binary “soup union” operator (with juxtaposition syntax)
that combines two soups into a bigger soup. This union operator models the fluid
nature of soups by obeying associative and commutative laws. A cell is then a
structured soup, composed by the above cell operator out of two subsoups,
namely the soup in the membrane, and that inside the membrane; but this
second soup is itself also structured by the cytoplasm and the nucleus. Finally,
the nucleus itself is made up of two soups, namely that in the nucleus membrane,
and that inside the nucleus, which are composed using the above nucl operator.
Then, the following expression gives a partial description of a cell:

cell{cm (Ras : GTP) {cyto
(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3)

nucl{nm{n}}}}

where cm denotes the rest of the soup in the cell membrane, cyto denotes the
rest of the soup in the cytoplasm, and nm and n likewise denote the remaining
soups in the nucleus membrane and inside the nucleus.

Once we have cell states defined as elements of an algebraic data type spec-
ified by (Σ, E), the only missing information has to do with cell dynamics, that
is, with its biochemical reactions. They can be modeled by suitable rewrite rules
R, giving us a full model (Σ, E, R). Consider, for example, the following reaction
described in a survey by Kolch [61]:

“Raf-1 resides in the cytosol, tied into an inactive state by the binding of
a 14-3-3 dimer to phosphosterines-259 and -621. When activation ensues,
Ras-GTP binding . . . brings Raf-1 to the membrane.”

We can model this reaction by the following rewrite rule:

rl[10]: {CM (Ras : GTP) {CY
(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3) }}
=>
{CM ((Ras : GTP) :
(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3))

{CY}} .
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where CM and CY are variables of sort Soup, representing, respectively, the rest of
the soup in the cell membrane, and the rest of the soup inside the cell (including
the nucleus). Note that in the new state of the cell represented by the righthand
side of the rule, the complex has indeed migrated to the membrane.

Given a type of cell specified as a rewrite theory (Σ, E, R), rewriting logic
then allows us to reason about the complex changes that are possible in the
system, given the basic changes specified by R. That is, we can then use (Σ, E, R)
together with Maude and its supporting formal tools to simulate, study, and
analyze cell dynamics. In particular, we can study in this way biological pathways,
that is, complex processes involving chains of biological reactions and leading to
important cell changes. In particular we can:

– observe progress in time of the cell state by symbolic simulation, obtaining
a corresponding trace;

– answer questions of reachability from a given cell state to another state
satisfying some property; this can be done both forwards and backwards ;

– answer more complex questions by model checking LTL properties; and
– do meta-analysis of proposed models of the cell to weed out spurious con-

jectures and to identify consequences of a given model that could be settled
by experimentation.

Since the first research in this direction [43], on which the above summary
is based, this line of research has been vigorously advanced, both in develop-
ing more sophisticated analyses of cell behavior in biological pathways, and in
developing useful notations and visualization tools that can represent the Maude-
based analyses in forms more familiar to biologists [44,101]. In particular, [101]
contains a good discussion of related work in this area, using other formalisms,
such as Petri nets or process calculi, that can also be understood as particular
rewrite theories; and shows how cell behavior can be modeled with rewrite rules
and can be analyzed at different levels of abstraction, and even across such levels.
In fact, I view this research area as ripe for bringing in more advanced speci-
fication and analysis techniques —for example, techniques based on real-time
and probabilistic rewrite theories as introduced in this paper— so as to develop
a range of complementary models for cell biology. In this way, aspects such as
the probabilistic nature of cell reactions, their dependence on the concentration
of certain substances, and their real-time behavior could also be modeled, and
even more sophisticated analyses could be developed.

4 Where to Go from Here?

This finishes the sampler. I have tried to give you a feeling for some of the
main ideas of rewriting logic, some of its theoretical extensions to cover en-
tire new areas, and some of its exciting application areas. I did not promise
an overview: only an appetizer. If you would like to know more, I would rec-
ommend the roadmap in [67] for a good overview: it is a little dated by now,
and there are many new references that nobody has yet managed to gather
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together, but this sampler puts the roadmap up to date in some areas; and
reading both papers together is the best suggestion I can currently give for an
introduction.
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