

Lecture Notes in Computer Science 3722
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Dang Van Hung Martin Wirsing (Eds.)

Theoretical Aspects
of Computing –
ICTAC 2005

Second International Colloquium
Hanoi, Vietnam, October 17-21, 2005
Proceedings

13

Volume Editors

Dang Van Hung
United Nations University
International Institute for Software Technology
P.O. Box 3058, Macao SAR, China
E-mail: dvh@iist.unu.edu

Martin Wirsing
Universität München, Institut für Informatik
Oettingenstr. 67, 80538 München, Germany
E-mail: wirsing@informatik.uni-muenchen.de

Library of Congress Control Number: 2005933498

CR Subject Classification (1998): F.1, F.3, F.4, D.3, D.2, C.2.4

ISSN 0302-9743
ISBN-10 3-540-29107-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29107-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11560647 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of ICTAC 2005, the second ICTAC,
International Colloquium on Theoretical Aspects of Computing. ICTAC 2005
took place in Hanoi, Vietnam, October 17–21, 2005.

ICTAC was founded by the International Institute for Software Technology
of the United Nations University (UNU-IIST) to serve as a forum for practition-
ers, lecturers and researchers from academia, industry and government who are
interested in theoretical aspects of computing and rigorous approaches to soft-
ware engineering. The colloquium is aimed particularly, but not exclusively, at
participants from developing countries. We believe that this will help developing
countries to strengthen their research, teaching and development in computer
science and engineering, improve the links between developing countries and
developed countries, and establish collaboration in research and education. By
providing a venue for the discussion of common problems and their solutions, and
for the exchange of experiences and ideas, this colloquium supports research and
development in computer science and software technology. ICTAC is attracting
more and more attention from more and more countries.

Topics covered by ICTAC include:
– automata theory and formal languages,
– principles and semantics of programming languages,
– logic and its applications,
– software architectures and their description languages,
– software specification, refinement and verification,
– model checking and theorem proving,
– formal techniques in software testing,
– models of object and component systems,
– coordination and feature interaction,
– integration of formal and engineering methods,
– service-oriented and document-driven development,
– models of concurrency, security and mobility,
– theory of parallel, distributed and Internet-based (grid) computing,
– real-time and embedded systems,
– type and category theory in computer science.

Research papers in these topics are always considered by ICTAC.
ICTAC 2005 received 122 paper submissions from 29 countries, and accepted

35 papers. We would like to thank the authors of all submitted papers.
Selecting papers for a program from the large number of submissions in a

fair and competent manner is a hard job. Luckily, ICTAC 2005 had an excellent
Program Committee with highly qualified members from diverse backgrounds
to carry out the job. Each submission was reviewed carefully by at least three
referees working in relevant fields. Borderline papers were further discussed dur-
ing an intensive on-line meeting of the Program Committee. We believe that

VI Preface

the program resulting from this excellent job of the Program Committee was
scientifically very strong. In addition to the contributed papers, the proceedings
also include contributions from invited speakers: Reiko Heckel, Zhiming Liu, José
Meseguer, Rocco De Nicola, and Do Long Van.

Five tutorials were selected as affiliated events of ICTAC 2005. The abstracts
of the tutorials are also included in the proceedings. We express our thanks to
all of the people who submitted tutorial proposals.

Special thanks are due to the Program Committee members and all the ref-
erees, whose names are listed on the following pages, for their assistance in re-
viewing and selecting papers. The help from the Advisory Committee, especially
Zhiming Liu, was invaluable. We express our appreciation to the Organizing
Committee, especially Ho Si Dam, Le Hai Khoi, Le Quoc Hung and Bui The
Duy, and the Publicity Chair, Bernhard Aichernig, for their efforts in making
ICTAC 2005 such a successful and enjoyable event. We would particularly like
to thank Kitty Iok Sam Chan of UNU-IIST for her hard work in maintaining
the conference administration system. We would also like to express our thanks
to all UNU-IIST staff for their active support of ICTAC 2005. Last but not least
we are grateful to Springer for its helpful collaboration and quick publication.

October 2005 Dang Van Hung and Martin Wirsing

Organization

ICTAC 2005 was organized by the International Institute for Software Technol-
ogy of the United Nations University, the College of Technology of the Vietnam
National University, Hanoi, and the Institute of Information Technology of the
Vietnam Academy of Science and Technology.

Conference Chairs

Program Co-chair Dang Van Hung (UNU-IIST, Macau, China)
Martin Wirsing (University of Munich, Germany)

Organizing Committee Ho Si Dam (College of Technology, Vietnam)
Co-chair Le Hai Khoi (Institute of Information Technology,

Vietnam)

Publicity Chair Bernhard K. Aichernig (UNU-IIST, Macau, China)

Advisory Committee

Dines Bjørner Technical University of Denmark, Denmark
Manfred Broy Technische Universität München, Germany
José Luiz Fiadeiro University of Leicester, UK
Jifeng He UNU-IIST, Macau, China
Mathai Joseph TRDDC/TCS, India
Shaoying Liu Hosei University, Japan
Zhiming Liu UNU-IIST, Macau, China
Zohar Manna Stanford University, USA
Tobias Nipkow Technische Universität München, Germany
Mike Reed UNU-IIST, Macau, China
Jim Woodcock York University, UK

Program Committee

Marc Aiguier University of Evry, France
Keijiro Araki Kyushu University, Japan
J.O.A. Ayeni University of Lagos, Nigeria
Jay Bagga Ball State University, USA
Hubert Baumeister LMU, Munich, Germany
Michel Bidoit CNRS & ENS de Cachan, France

VIII Organization

Jonathan Bowen London South Bank University, UK
Victor A. Braberman University of Buenos Aires, Argentina
Cristian S. Calude University of Auckland, New Zealand
Ana Cavalcanti University of York, UK
Yifeng Chen University of Leicester, UK
Jim Davies Oxford University, UK
János Demetrovics MTA-SZTAKI, Hungary
Henning Dierks University of Oldenburg, Germany
Jin Song Dong NUS, Singapore
Marcelo F. Frias University of Buenos Aires, Argentina
Wan Fokkink CWI, The Netherlands
Valentin Goranko University of Witwatersrand, Johannesburg,

South Africa
Susanne Graf VERIMAG, France
Dimitar P. Guelev Bulgarian Academy of Science, Bulgaria
Michael R. Hansen DTU, Lyngby, Denmark
Nguyen Cat Ho IoIT, Hanoi, Vietnam
Jozef Hooman Embedded Systems Institute, Eindhoven,

The Netherlands
Ngo Quang Hung State University of New York at Buffalo, USA
Purush Iyer North Carolina State University, USA
Ryszard Janicki McMaster University, Ontario, Canada
Takuya Katayama JAIST, Japan
Maciej Koutny University of Newcastle upon Tyne, UK
Xuandong Li Nanjing University, China
Antonia Lopes University of Lisbon, Portugal
Andrea Maggiolo-Schettini University of Pisa, Italy
Antoni Mazurkiewicz Institute of Computer Science of PAS, Poland
Hrushikesha Mohanty University of Hyderabad, India
Paritosh Pandya TIFR, Mumbai, India
Jean-Eric Pin LIAFA, CNRS and University Paris 7, France
Narjes Ben Rajeb INSAT, Tunisia
R. Ramanujam Institute of Mathematical Sciences, Chennai,

India
Anders P. Ravn Aalborg University, Denmark
Gianna Reggio University of Genoa, Italy
Wolfgang Reif Augsburg, Germany
Riadh Robbana LIP2/EPT, Tunisia
Mark Ryan University of Birmingham, UK
Zaidi Sahnoun UMC, Algeria
Augusto Sampaio Federal Univ. of Pernambuco, Recife, Brazil
Don Sannella University of Edinburgh, UK
Bernhard Schätz TU München, Germany
Carolyn Talcott RI International, USA

Organization IX

P. S. Thiagarajan NUS, Singapore
Do Long Van Institute of Mathematics, Vietnam
Ji Wang National Laboratory for Parallel

and Distributed Processing, China
Mingsheng Ying Tsinghua University, Beijing, China
Jian Zhang Chinese Academy of Sciences, Beijing,

China
Hongjun Zheng Semantics Designs Inc., USA

Referees

Femi Agboola
Luca Aceto
Aderemi O. Adewumi
Bernhard K. Aichernig
Nazareno Aguirre
Jean Philippe Babeau
Diane Bahrami
Rilwan Olayinka Basanya
Andreas Bauer
Peter Baumgartner
Adel Benzina
Lennart Beringer
Nicole Bidoit
Javier Blanco
Tomek Borzyszkowski
O.K. Boyinbode
Marius Bozga
Vasco Brattka
Andrew Brown
Mario Bravetti
Franck Capello
Jacques Carette
Paul Caspi
Antonio Ceron
Bob Coecke
Frédéric Cuppens
Stefan Dantchev
Steve Dawson
Carole Delporte
Josée Desharnais
Raymond Devillers
Enrica Duchi
Phan Thi Ha Duong

Marcin Dziubinski
Eugene Eberbach
Martin Escardo
Hugues Fauconnier
Ansgar Fehnker
Pascale Le Gall
Christophe Gaston
Vincenzo Gervasi
P. Gouveia
Johannes Grünbauer
James Harland
Joos Heintz
Rolf Hennicker
Gabriel Infante-Lopez
Alan Jeffrey
Ole Høgh Jensen
Ata Kaban
Wolfram Kahl
Hiroyasu Kamo
Kamel Karoui
Tran Dinh Khang
Victor Khomenko
Kais Klai
Michal Konečný
Moez Krichen
Antonin Kucera
Christian Laforest
K. Lakshmanan
Eric Laporte
Reinhold Letz
Paul B. Levy
Zhiming Liu
Bas Luttik

Kenneth MacKenzie
Ian Mason
Paulo Mateus
Ralph Matthes
Anne Micheli
Paolo Milazzo
Michael Mislove
Carroll Morgan
Akira Mori
Ben Moszkowski
I. Nunes
Edward Ochmanski
Atsushi Ohori
Adegboyega Ojo
Alfredo Olivero
Mizuhito Ogawa
Savas Parastatidis
Adriano Peron
Diego Piemonte
Alessandra Di Pierro
Sophie Pinchinat
Andre Platzer
Pascal Poizat
John Power
Stefan Ratschan
James Riely
Jan Romberg
Dominique Rossin
Jonathan Rowe
Domenico Sacca
Fernando Schapachnik
Laura Semini
Guillermo Simari

X Organization

B.A. Sawyerr
Emil Sekerinski
Amilcar Sernadas
Michael Soltys
Volker Sorge
Meng Sun
Makoto Takeyama
Andrzej Tarlecki
Hendrik Tews
Ho Thuan
Nguyen Thanh Thuy

Simone Tini
David Trachtenherz
Emina Torlak
Tayssir Touilli
Marek Tudruj
Sebastian Uchitel
Irek Ulidowski
Mart́ın Urtasun Charles
O. Uwadia
V. Vasconcelos
S. Vial

Alan Wassyng
Heike Wehrheim
Jozef Winkowski
Bozena Wozna
Dobieslaw Wroblewski
Zhang Yan
Naijun Zhan
Yunquan Zhang
Jianhua Zhao
Huibiao Zhu

Sponsoring Institutions

International Institute for Software Technology of the United Nations University
Vietnam National University, Hanoi
Vietnam Academy of Science and Technology

Table of Contents

Invited Speakers

A Rewriting Logic Sampler
José Meseguer . 1

Codes and Length-Increasing Transitive Binary Relations
Do Long Van, Kieu Van Hung, Phan Trung Huy 29

Languages and Process Calculi for Network Aware Programming –
Short Summary

Rocco De Nicola . 49

Stochastic Analysis of Graph Transformation Systems: A Case Study
in P2P Networks

Reiko Heckel . 53

Component-Based Software Engineering
He Jifeng, Xiaoshan Li, Zhiming Liu . 70

Formal Languages

Outfix-Free Regular Languages and Prime Outfix-Free Decomposition
Yo-Sub Han, Derick Wood . 96

Solving First Order Formulae of Pseudo-Regular Theory
Sébastien Limet, Pierre Pillot . 110

Splicing Array Grammar Systems
K.G. Subramanian, A. Roslin Sagaya Mary,
K.S. Dersanambika . 125

Computer Science Logics

Compositionality of Fixpoint Logic with Chop
Naijun Zhan, Jinzhao Wu . 136

An SLD-Resolution Calculus for Basic Serial Multimodal Logics
Linh Anh Nguyen . 151

XII Table of Contents

Upside-Down Transformation in SOL/Connection Tableaux and Its
Application

Koji Iwanuma, Katsumi Inoue, Hidetomo Nabeshima 166

Program Construction

On the Stability Semantics of Combinational Programs
Tran Van Dung . 180

Generating C Code from LOGS Specifications
Jianguo Zhou, Yifeng Chen . 195

Formalizing the Debugging Process in Haskell
Alberto de la Encina, Luis Llana, Fernando Rubio 211

Finding Resource Bounds in the Presence of Explicit Deallocation
Hoang Truong, Marc Bezem . 227

Real-Time Systems

The Timer Cascade: Functional Modelling and Real Time Calculi
Raymond Boute, Andreas Schäfer . 242

A Robust Interpretation of Duration Calculus
Martin Fränzle, Michael R. Hansen . 257

Symbolic Model Checking of Finite Precision Timed Automata
Rongjie Yan, Guangyuan Li, Zhisong Tang . 272

Concurrency and Refinement

Covarieties of Coalgebras: Comonads and Coequations
Ranald Clouston, Robert Goldblatt . 288

Linking Theories of Concurrency
He Jifeng, C.A.R. Hoare . 303

On Cool Congruence Formats for Weak Bisimulations
Robert Jan van Glabbeek . 318

Externalized and Internalized Notions of Behavioral Refinement
Michel Bidoit, Rolf Hennicker . 334

Table of Contents XIII

Software Security

Information Flow Is Linear Refinement of Constancy
Fausto Spoto . 351

On Typing Information Flow
Gérard Boudol . 366

Representation and Reasoning on RBAC: A Description Logic
Approach

Chen Zhao, Nuermaimaiti Heilili, Shengping Liu, Zuoquan Lin 381

Revisiting Failure Detection and Consensus in Omission Failure
Environments

Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling 394

Quantitative Logics

Congruences and Bisimulations for Continuous-Time Stochastic Logic
Ernst-Erich Doberkat . 409

A Logic for Quantum Circuits and Protocols
Manas Patra . 424

Quantitative Temporal Logic Mechanized in HOL
Orieta Celiku . 439

Weak Stochastic Bisimulation for Non-Markovian Processes
Natalia López, Manuel Núñez . 454

Object-Orientation and Component Systems

On Refinement of Software Architectures
Sun Meng, Lúıs S. Barbosa, Zhang Naixiao . 469

POST: A Case Study for an Incremental Development in rCOS
Quan Long, Zongyan Qiu, Zhiming Liu, Lingshuang Shao,
He Jifeng . 485

Implementing Application-Specific Object-Oriented Theories in HOL
Kenro Yatake, Toshiaki Aoki, Takuya Katayama 501

Constructing Open Systems via Consistent Components
Nguyen Truong Thang, Takuya Katayama . 517

XIV Table of Contents

Model-Checking and Algorithms

A Sub-quadratic Algorithm for Conjunctive and Disjunctive Boolean
Equation Systems

Jan Friso Groote, Misa Keinänen . 532

Using Fairness Constraints in Process-Algebraic Verification
Antti Puhakka . 546

Maximum Marking Problems with Accumulative Weight Functions
Isao Sasano, Mizuhito Ogawa, Zhenjiang Hu . 562

Applied Logics and Computing Theory

Toward an Abstract Computer Virology
G. Bonfante, M. Kaczmarek, J.-Y. Marion . 579

On Superposition-Based Satisfiability Procedures and Their
Combination

Hélène Kirchner, Silvio Ranise, Christophe Ringeissen,
Duc Khanh Tran . 594

Tutorials at ICTAC 2005

A Summary of the Tutorials at ICTAC 2005
Dang Van Hung . 609

Author Index . 613

A Rewriting Logic Sampler

José Meseguer

University of Illinois at Urbana-Champaign, USA

Abstract. Rewriting logic is a simple computational logic very well
suited as a semantic framework within which many different models of
computation, systems and languages can be naturally modeled. It is also
a flexible logical framework in which many different logical formalisms
can be both represented and executed. As the title suggests, this pa-
per does not try to give a comprehensive overview of rewriting logic.
Instead, after introducing the basic concepts, it focuses on some recent
research directions emphasizing: (i) extensions of the logic to model real-
time systems and probabilistic systems; and (ii) some exciting applica-
tion areas such as: semantics of programming languages, security, and
bioinformatics.

1 Introduction

Rewriting logic is now a teenager; a quinceañera, as they call adolescent women
reaching 15 in Spain and Latin America. There are hundreds of papers; five
rewriting logic workshops have already taken place and a sixth will meet in
Vienna next March; and a host of tools and applications have been developed.
Taking pictures of this “young person” as it grows up is a quite interesting
intellectual exercise, one that can help other people become familiar with this
field and its possibilities. I, with the help of others, have done my share of
picture taking in earlier stages [69,70,72,67]. In particular, the “roadmap” [67]
that Narciso Mat́ı-Oliet and I wrote, gives a brief but comprehensive overview
and cites 328 papers in the area as of 2002. This paper takes a different tack. I
will not try to give you an overview. I will give you a sampler, some rewriting
logic tapas if you will, to tease your curiosity so that hopefully you may find
some things that you like and excite your interest.

I should of course say something about my choice of topics for the sampler;
and about some important developments that I do not cover. At the theoretical
level, one of the interesting questions to ask about a formalism is: how general,
flexible and extensible is it? For example, how does it compare in generality to
other formalisms? how can it deal with new application areas? how well can it
be extended in new directions? can it represent its own metalevel? I address
some of these questions by my choice of topics, but I consciously omit others.
The most glaring omission is the theoretical extension from ordinary rewrite
theories to generalized rewrite theories [10], that substantially extend the logic’s
expressive power. For the sake of a simpler exposition, this whole development

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 1–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 J. Meseguer

is relegated here to Footnote 1. I do however discuss two other important the-
oretical extensions, namely, real-time rewrite theories [87] (Section 3.2), which
extend rewriting logic to deal with real-time and hybrid systems; and proba-
bilistic rewrite theories [63,64,2] (Section 3.3), that bring probabilistic systems,
as well as systems exhibiting both probabilistic and nodeterministic behavior,
within the rewriting logic fold. In both cases, the generality aspect is quite
encouraging, in the sense that many models of real time and of probabilistic
systems appear as special cases. However, to keep the exposition short, I do not
discuss all those models except in passing, and refer to [87] and [63] for detailed
comparisons. For the generality of rewriting logic itself see [67]. Reflection, that
allows rewriting logic to represent its own metalevel, is of such great theoretical
and practical importance that I also discuss it in Section 2.3.

At the practical level, one can ask questions such as: how well is this formal-
ism supported by tools? (this I briefly answer in Section 2.4); and what are some
exciting application areas? I have chosen three such areas for the sampler: (1)
semantics of programming languages and formal analysis of programs (Section
3.1); (2) security (Section 3.4); and (3) bioinformatics (Section 3.5). Enjoy!

2 What Is Rewriting Logic?

A rewrite theory1 is a tuple R = (Σ, E, R), with:

– (Σ, E) an equational theory with function symbols Σ and equations E; and
– R a set of labeled rewrite rules of the general form

r : t −→ t′

with t, t′ Σ-terms which may contain variables in a countable set X of vari-
ables which we assume fixed in what follows; that is, t and t′ are elements of
the term algebra TΣ(X). In particular, their corresponding sets of variables,
vars(t), vars(t′) are both contained in X .

1 To simplify the exposition I present here the simplest version of rewrite theories,
namely, unconditional rewrite theories over an unsorted equational theory (Σ, E). In
general, however, the equational theory (Σ, E) can be many-sorted, order-sorted, or
even a membership equational theory [71]. And the rules can be conditional, having
a conjunction of rewrites, equalities, and even memberships in their condition, that
is, they could have the general form

r : t −→ t′ if (
∧
i

ui = u′
i) ∧ (

∧
j

vj : sj) ∧ (
∧
l

wl −→ w′
l)

Furthermore, the theory may also specify an additional mapping φ : Σ −→ P(IN),
assigning to each function symbol f ∈ Σ (with, say, n arguments) a set φ(f) =
{i1, . . . , ik}, 1 ≤ i1 < . . . < ik ≤ n of frozen argument positions under which it is
forbidden to perform any rewrites. Rewrite theories in this more general sense are
studied in detail in [10]; they are clearly more expressive than the simpler uncon-
ditional and unsorted version presented here. This more general notion is the one
supported by the Maude language [17,18].

A Rewriting Logic Sampler 3

Intuitively, R specifies a concurrent system, whose states are elements of the
initial algebra TΣ/E specified by (Σ, E), and whose concurrent transitions are
specified by the rules R. The equations E may decompose as a union E = E0∪A,
where A is a (possibly empty) set of structural axioms (such as associativity,
commutativity, and identity axioms). To give a flavor for how concurrent systems
are axiomatized in rewriting logic, I discuss below a fault-tolerant communication
protocol example specified as a Maude [17,18] module2

mod FT-CHANNEL is
protecting NAT .
sorts NatList Msg MsgSet Channel .
subsorts Nat < NatList .
subsorts Msg < MsgSet .
op nil : -> NatList .
op _;_ : NatList NatList -> NatList [assoc id: nil] .
op null : -> MsgSet .
op __ : MsgSet MsgSet -> MsgSet [assoc comm id: null] .
op [_,_]_[_,_] : NatList Nat MsgSet NatList Nat -> Channel .
op {_,_} : Nat Nat -> Msg .
op ack : Nat -> Msg .

vars N M I J K : Nat .
vars L P Q R : NatList .
var MSG : Msg .
var S : MsgSet .

rl [send] : [J ; L,N] S [P,M] => [J ; L,N] {J,N} S [P,M] .
rl [recv] : [J ; L,N] {J,K} S [P,M] =>

if K == M then [J ; L,N] S ack(M) [P ; J,s(M)]
else [J ; L,N] S ack(K) [P,M] fi .

rl [ack-recv] : [J ; L,N] ack(K) S [P,M] =>
if K == N then [L,s(N)] S [P,M]

else [J ; L,N] S [P,M] fi .
rl [loss] : [L,N] MSG S [P,M] => [L,N] S [P,M] .
endm

This rewrite theory imports the natural numbers module NAT and has an order-
sorted signature Σ specified by its sorts, subsorts, and operations. All its equa-
tions are structural axioms A, which in Maude are not specified explicitly as
equations, but are instead declared as attributes of their corresponding opera-
tor: here the list concatenation operator ; has been declared associative and

2 The Maude syntax is so close to the corresponding mathematical notation for defin-
ing rewrite theories as to be almost self-explanatory. The general point to keep in
mind is that each item: a sort, a subsort, an operation, an equation, a rule, etc., is
declared with an obvious keyword: sort, subsort, op, eq (or ceq for conditional equa-
tions), rl (or crl for conditional rules), etc., with each declaration ended by a space
and a period. Another important point is the use of “mix-fix” user-definable syntax,
with the argument positions specified by underbars; for example: if then else fi.

4 J. Meseguer

having nil as its identity element with the assoc and id: keywords. Similarly,
the multiset union operator has been declared with empty syntax (juxtapo-
sition) and with associativity, commutativity (comm), and identity axioms,
making null its identity element. The rules R are send, recv, ack-recv, and
loss; they are applied modulo the structural axioms A, that is, we get the ef-
fect of rewriting in A-equivalence classes. This theory specifies a fault-tolerant
communication protocol in a bidirectional faulty channel, where messages can
be received out of order and can be lost. The sender is placed at the left of the
channel and has a list of numbers to send and a counter. The receiver is placed
at the right, with also a list of numbers to receive and another counter. The
contents of the channel in the middle is a multiset of messages (since there can
be several repeated copies of the same message). The protocol is fault-tolerant,
in that it will work even when some messages are permuted or lost, provided
the recv and ack-recv rules are applied in a fair way (for fairness in rewriting
logic see [74]).

2.1 Rewriting Logic Deduction

Given R = (Σ, E, R), the sentences that R proves are rewrites of the form,
t −→ t′, with t, t′ ∈ TΣ(X), which are obtained by finite application of the
following rules of deduction:

– Reflexivity. For each t ∈ TΣ(X), t −→ t

– Equality. u −→ v E � u = u′ E � v = v′

u′ −→ v′

– Congruence. For each f : k1 . . . kn −→ k in Σ, and ti, t
′
i ∈ TΣ(X), 1 ≤ i ≤

n,

t1 −→ t′1 . . . tn −→ t′n
f(t1, . . . , tn) −→ f(t′1, . . . , t

′
n)

– Replacement. For each substitution θ : X −→ TΣ(X), and for each rule
r : t −→ t′ in R, with, say, vars(t)∪ vars(t′) = {x1, . . . , xn}, and θ(xl) = pl,
1 ≤ l ≤ n, then

p1 −→ p′1 . . . pn −→ p′n
θ(t) −→ θ′(t′)

where for 1 ≤ i ≤ n, θ′(xi) = p′i, and for each x ∈ X − {x1, . . . , xn},
θ′(x) = θ(x).

– Transitivity.

t1 −→ t2 t2 −→ t3
t1 −→ t3

A Rewriting Logic Sampler 5

We can visualize the above inference rules as follows:

Reflexivity

�
�
��

�
�
��

t
�

�
�
��

�
�
��

t

Equality
�
�
��

�
�
��

u
�

�
�
��

�
�
��

v

‖
�
�
��

�
�
��

u
′ �

‖
�
�
��

�
�
��

v
′

Congruence
f
�
��
�
�
�
�
�
��.

�� �� �� �� �� �� �� ��

f
�
��
�
�
�
�
�
��.

�� �� �� �� �� �� �� ��� 		
� ���

�

Replacement
�
��

�
��

t

�� �� �� �� �� �� �� ��
.

�
��

�
��

t
′

�� �� �� �� �� �� �� ��
.

� 		
� ���

�

Transitivity

�
�
��

�
�
��

t1

� �
�
��

�
�
��

t3

�
�
��

�
�
��

t2

�
��� �

��

The notation R � t −→ t′ states that the sequent t −→ t′ is provable in
the theory R using the above inference rules. Intuitively, we should think of
the inference rules as different ways of constructing all the (finitary) concurrent
computations of the concurrent system specified byR. The Reflexivity rule says
that for any state t there is an idle transition in which nothing changes. The
Equality rule specifies that the states are in fact equivalence classes modulo

6 J. Meseguer

the equations E. The Congruence rule is a very general form of “sideways
parallelism,” so that each operator f can be seen as a parallel state constructor,
allowing its arguments to evolve in parallel. The Replacement rule supports a
different form of parallelism, which could be called “parallelism under one’s feet,”
since besides rewriting an instance of a rule’s lefthand side to the corresponding
righthand side instance, the state fragments in the substitution of the rule’s
variables can also be rewritten. Finally, the Transitivity rule allows us to build
longer concurrent computations by composing them sequentially.

For execution purposes, a rewrite theory R = (Σ, E, R) should satisfy some
additional requirements. As already mentioned, the equations E may decompose
as a union E = E0 ∪A, where A is a (possibly empty) set of structural axioms.
We should require that matching modulo A is decidable, and that the equations
E0 are ground Church-Rosser and terminating modulo A; furthermore, the rules
r : t −→ t′ in R should satisfy vars(t′) ⊆ vars(t), and should be coherent with
respect to E modulo A [109]. In the Maude language [17,18], modules are rewrite
theories that are assumed to satisfy the above executability requirements (in an
extended form that covers conditional rules [17]).

2.2 Operational and Denotational Semantics of Rewrite Theories

A rewrite theory R = (Σ, E, R) has both a deduction-based operational seman-
tics, and an initial model denotational semantics. Both semantics are defined
naturally out of the proof theory described in Section 2.1. The deduction-based
operational semantics of R is defined as the collection of proof terms [69,10] of
the form α : t −→ t′. A proof term α is an algebraic description of a proof tree
proving R � t −→ t′ by means of the inference rules of Section 2.1. As already
mentioned, all such proof trees describe all the possible finitary concurrent com-
putations of the concurrent system axiomatized by R. When we specify R as a
Maude module and rewrite a term t with the rewrite or frewrite commands,
obtaining a term t′ as a result, we can use Maude’s trace mode to obtain what
amounts to a proof term α : t −→ t′ of the particular rewrite proof built by the
Maude interpreter.

A rewrite theoryR = (Σ, E, R) has also a model theory, so that the inference
rules of rewriting logic are sound and complete with respect to satisfaction in the
class of models of R [69,10]. Such models are categories with a (Σ, E)-algebra
structure [69,10]. These are “true concurrency” denotational models of the con-
current system axiomatized by R. That is, this model theory gives a precise
mathematical answer to the question: when do two descriptions of two concur-
rent computations denote the same concurrent computation? The class of models
of a rewrite theory R = (Σ, E, R) has an initial model TR [69,10]. The initial
model semantics is obtained as a quotient of the just-mentioned deduction-based
operational semantics, precisely by axiomatizing algebraically when two proof
terms α : t −→ t′ and β : u −→ u′ denote the same concurrent computation.
Of course, α and β should have identical beginning states and identical ending
states. By the Equality rule this forces E � t = u, and E � t′ = u′. That, is,
the objects of the category TR are E-equivalence classes [t] of ground Σ-terms,

A Rewriting Logic Sampler 7

which denote the states of our system. The arrows or morphisms in TR are equiv-
alence classes of proof terms, so that [α] = [β] iff both proof terms denote the
same concurrent computation according to the “true concurrency” axioms. Such
axioms are very natural. They for example express that the Transitivity rule
behaves as an arrow composition and is therefore associative. Similarly, the Re-
flexivity rules provides an identity arrow for each object, satisfying the usual
identity laws.

As discussed in Section 4.1 of [67], rewriting logic is a very general semantic
framework in which a wide range of concurrency models such as process calculi,
Petri nets, distributed object systems, Actors, and so on, can be naturally ax-
iomatized as specific rewrite theories. Furthermore, as also explained in Section
4.1 of [67], the algebraically-defined true concurrency models of rewriting logic
include as special cases many other true concurrency models such as residual
models of term rewriting, parallel λ-calculus models, process models for Petri
nets, proved transition models for CCS, and partial order of events models for
object systems and for Actors. Note, however, that a rewrite rule

r : t −→ t′

has two complementary readings, one computational, and another logical. Com-
putationally, as already explained, it axiomatizes a parametric family of con-
current transitions in a system. Logically, however, it represents and inference
rule3 in a logic, whose inference system is axiomatized by R. It turns out that,
with this second reading, rewriting logic has very good properties as a logical
framework, in which many other logics can be naturally represented, so that we
can simulate deduction in a logic as rewriting deduction in its representation
[66].

2.3 Reflection

Reflection is a very important property of rewriting logic [22,15,23,24]. Intu-
itively, a logic is reflective if it can represent its metalevel at the object level
in a sound and coherent way. Specifically, rewriting logic can represent its own
theories and their deductions by having a finitely presented rewrite theory U
that is universal, in the sense that for any finitely presented rewrite theory R
(including U itself) we have the following equivalence

R � t → t′ ⇔ U � 〈R, t〉 → 〈R, t′〉,
3 The use of conditional rewrite rules is of course very important in this logical reading.

Logically, we would denote a conditional rewrite rule

r : t −→ t′ if (
∧
i

ui = u′
i) ∧ (

∧
j

vj : sj) ∧ (
∧
l

wl −→ w′
l)

as an inference rule

(
∧

i ui = u′
i) ∧ (

∧
j vj : sj) ∧ (

∧
l wl −→ w′

l)

t −→ t′

8 J. Meseguer

where R and t are terms representing R and t as data elements of U . Since U
is representable in itself, we can achieve a “reflective tower” with an arbitrary
number of levels of reflection [15,16].

Reflection is a very powerful property: it allows defining rewriting strategies
by means of metalevel theories that extend U and guide the application of the
rules in a given object-level theoryR [15]; it is efficiently supported in the Maude
implementation by means of descent functions [16]; it can be used to build a
variety of theorem proving and theory transformation tools [15,19,20,25]; it can
endow a rewriting logic language like Maude with powerful theory composition
operations [40,35,37,42]; and it can be used to prove metalogical properties about
families of theories in rewriting logic, and about other logics represented in the
rewriting logic (meta-)logical framework [5,21,4].

2.4 Maude and Its Formal Tools

Rewrite theories can be executed in different languages such as CafeOBJ [53],
and ELAN [7]. The most general support for the execution of rewrite theories
is currently provided by the Maude language [17,18], in which rewrite theories
with very general conditional rules, and whose underlying equational theories
can be membership equational theories [71], can be specified and can be exe-
cuted, provided they satisfy the already-mentioned requirements. Furthermore,
Maude provides very efficient support for rewriting modulo any combination of
associativity, commutativity, and identity axioms. Since an equational theory
(Σ, E) can be regarded as a degenerate rewrite theory of the form (Σ, E, ∅),
equational logic is naturally a sublogic of rewriting logic. In Maude this sublogic
is supported by functional modules [17], which are theories in membership equa-
tional logic.

Besides supporting efficient execution, typically in the order of several million
rewrites per second, Maude also provides a range of formal tools and algorithms
to analyze rewrite theories and verify their properties. A first very useful formal
analysis feature is its breadth-first search command. Given an initial state of
a system (a term), we can search for all reachable states matching a certain
pattern and satisfying an equationally-defined semantic condition P . By making
P = ¬Q, where Q is an invariant, we get in this way a semi-decision procedure
for finding failures of invariant safety properties. Note that there is no finite-state
assumption involved here: any executable rewrite theory can thus be analyzed.
For systems where the set of states reachable from an initial state are finite,
Maude also provides a linear time temporal logic (LTL) model checker. Maude’s
is an explicit-state LTL model checker, with performance comparable to that of
the SPIN model checker [58] for the benchmarks that we have analyzed [45,46].

As already pointed out, reflection is a key feature of rewriting logic, and
is efficiently supported in the Maude implementation through its META-LEVEL
module. One important fruit of this is that it becomes quite easy to build new
formal tools and to add them to the Maude environment. Indeed, such tools
by their very nature manipulate and analyze rewrite theories. By reflection,
a rewrite theory R becomes a term R in the universal theory, which can be

A Rewriting Logic Sampler 9

efficiently manipulated by the descent functions in the META-LEVELmodule. As a
consequence, Maude formal tools have a reflective design and are built in Maude
as suitable extensions of the META-LEVEL module. They include the following:

– the Maude Church-Rosser Checker, and Knuth-Bendix and Coherence Com-
pletion tools [19,41,38,36]

– the Full Maude module composition tool [35,42]
– the Maude Predicate Abstraction tool [88]
– the Maude Inductive Theorem Prover (ITP) [15,19,25]
– the Real-Time Maude tool [82] (more on this in Section 3.2)
– the Maude Sufficient Completeness Checker (SCC) [57]
– the Maude Termination Tool (MTT) [39].

3 Some Research Directions

3.1 The Rewriting Logic Semantics Project

The fact that rewriting logic specifications provide an easy and expressive way
to develop executable formal definitions of languages, which can then be sub-
jected to different tool-supported formal analyses, is by now well established
[107,8,108,103,98,73,105,14,91,106,51,49,59,9,75,76,13,12,50,26,93,3,99,27,77]. In
fact, the just-mentioned papers by different authors are contributions to a collec-
tive ongoing research project which we call the rewriting logic semantics project.
What makes this project promising is the combination of three interlocking facts:

1. that rewriting logic is a flexible and expressive logical framework that unifies
denotational semantics4 and SOS in a novel way, avoiding their respective
limitations and allowing very succinct semantic definitions (see [77]);

2. that rewriting logic semantic definitions are directly executable in a rewrit-
ing logic language such as Maude [17], and can thus become quite efficient
interpreters (see [76,77]) ; and

3. that generic formal tools such as the Maude LTL model checker [45], the
Maude inductive theorem prover [19,25], and new tools under development
such as a language-generic partial order reduction tool [50], allow us to amor-
tize tool development cost across many programming languages, that can
thus be endowed with powerful program analysis capabilities; furthermore,
genericity does not necessarily imply inefficiency: in some cases the analyses
so obtained outperform those of well-known language-specific tools [51,49].

For the most part, equational semantics and SOS have lived separate lives.
Although each is very valuable in its own way, they are “single hammer” ap-
proaches and have some limitations [77]. Would it be possible to seamlessly

4 I use in what follows the broader term equational semantics —that is, semantics
based on semantic equations— to emphasize the fact that higher-order denotational
and first-order algebraic semantics have many common features and can both be
viewed as instances of a common equational semantics framework.

10 J. Meseguer

unify them within a more flexible and general framework? Could their respec-
tive limitations be overcome when they are thus unified? Rewriting logic does
indeed provide one such unifying framework. The key to this, indeed very simple,
unification is what Grigore Rosşu and I call rewriting logic’s abstraction knob.
The point is that in equational semantics’ model-theoretic approach entities are
identified by the semantic equations, and have unique abstract denotations in
the corresponding models. In our knob metaphor this means that in equational
semantics the abstraction knob is always turned all the way up to its maximum
position. By contrast, one of the key features of SOS is providing a very de-
tailed, step-by-step formal description of a language’s evaluation mechanisms.
As a consequence, most entities —except perhaps for built-in data, stores, and
environments, which are typically treated on the side— are primarily syntactic,
and computations are described in full detail. In our metaphor this means that
in SOS the abstraction knob is always turned down to its minimum position.

How is the unification and corresponding availability of an abstraction knob
achieved? Since a rewrite theory (Σ, E, R) has an underlying equational theory
(Σ, E) with Σ a signature of operations and sorts, and E a set of (possibly
conditional) equations, and with R a set of (possibly conditional) rewrite rules,
equational semantics is then obtained as the special case in which R = ∅, so we
only have the semantic equations E and the abstraction knob is turned up to
its maximum position. Roughly speaking,5 SOS is then obtained as the special
case in which E = ∅, and we only have (possibly conditional) rules R rewriting
purely syntactic entities (terms), so that the abstraction knob is turned down to
the minimum position.

Rewriting logic’s “abstraction knob” is precisely its crucial distinction be-
tween equations E and rules R in a rewrite theory (Σ, E, R). States of the
computation are then E-equivalence classes, that is, abstract elements in the
initial algebra TΣ/E. Because of rewriting logic’s Equality inference rule (see
Section 2.1) a rewrite with a rule in R is understood as a transition [t] −→ [t′]
between such abstract states. The knob, however, can be turned up or down. We
can turn it all the way down to its minimum by converting all equations into
rules, transforming (Σ, E, R) into (Σ, ∅, R ∪ E). This gives us the most con-
crete, SOS-like semantic description possible. Instead, to make a specification
as abstract as possible we can identify a subset R0 ⊆ R such that: (1) R0 ∪ E
is Church-Rosser; and (2) R0 is biggest possible with this property. In actual
language specification practice this is not hard to do. Essentially, we can use se-
mantic equations for most of the sequential features of a programming language:
only when interactions with memory could lead to nondeterminism (particularly
if the language has threads, or they could later be added to the language in
an extension) or for intrinsically concurrent features are rules (as opposed to

5 I gloss over the technical difference that in SOS all computations are “one-step”
computations, even if the step is a big one, whereas in rewriting logic, because of its
built-in Transitivity inference rule (see Section 2.1) the rewriting relation is always
transitive. For a more detailed comparison see [76].

A Rewriting Logic Sampler 11

equations) really needed. In this way, we can obtain drastic search space reduc-
tions, making formal analyses much more scalable than if we used only rules.

Many languages have already been given semantics in this way using Maude.
The language definitions can then be used as interpreters, and —in conjunction
with Maude’s search command and its LTL model checker— to formally ana-
lyze programs in those languages. For example, large fragments of Java and the
JVM have been specified in Maude this way, with the Maude rewriting logic
semantics being used as the basis of Java and JVM program analysis tools that
for some examples outperform well-known Java analysis tools [51,49]. A similar
Maude specification of the semantics of Scheme at UIUC yields an interpreter
with .75 the speed of the standard Scheme interpreter on average for the bench-
marks tested. The specification of a C-like language and the corresponding formal
analyses are discussed in detail in [77]. A semantics of a Caml-like language with
threads was discussed in detail in [76], and a modular rewriting logic semantics
of CML has been given by Chalub and Braga in [13]. d’Amorim and Roşu have
given a definition of the Scheme language in [27]. Other language case studies,
all specified in Maude, include: bc [9], CCS [107,108,9], CIAO [99], Creol [59],
ELOTOS [105], MSR [11,97], PLAN [98,99], and the pi-calculus [103]. In fact,
the semantics of large fragments of conventional languages are by now routinely
developed by UIUC graduate students as course projects in a few weeks, includ-
ing, besides the languages already mentioned: Beta, Haskell, Lisp, LLVM, Pict,
Python, Ruby, and Smalltalk.

Besides search and model checking analyses, it is also possible to use a lan-
guage’s semantic definition to perform semantics-based deduction analyses either
on programs in that language, or even about the correctness of a given logic of
programs with respect to the language’s rewriting semantics. Work in this di-
rection includes [93,3,26,108,105].

Modularity of semantic definitions, that is, the property that a feature’s se-
mantics does not have to be redefined when a language is extended, is notoriously
hard to achieve. To solve this problem for SOS, Peter Mosses has proposed the
modular structural operational semantics (MSOS) methodology [80]. This in-
spired C. Braga and me to develop a similar modular methodology for rewriting
logic semantics [75,9]. This has had the pleasant side-effect of providing a Maude-
based execution environment for MSOS specifications, namely the Maude MSOS
Tool developed at the Universidade Federal Fluminense in Brazil by F. Chalub
and C. Braga [12], which is available on the web at http://mmt.ic.uff.br/.

3.2 Real-Time Rewrite Theories and Real-Time Maude

In many reactive and distributed systems, real-time properties are essential to
their design and correctness. Therefore, the question of how systems with real-
time features can be best specified, analyzed, and proved correct in the semantic
framework of rewriting logic is an important one. This question has been inves-
tigated by several authors from two perspectives. On the one hand, an extension
of rewriting logic called timed rewriting logic has been investigated, and has been
applied to some examples and specification languages [62,84,96]. On the other

12 J. Meseguer

hand, Peter Ölvecky and I have found a simple way to express real-time and hy-
brid system specifications directly in rewriting logic [85,87]. Such specifications
are called real-time rewrite theories and have rules of the form

{t} r−→ {t′} if C

with r a term denoting the duration of the transition (where the time can be
chosen to be either discrete or continuous), {t} representing the whole state of
a system, and C an equational condition. Peter Ölvecky and I have shown that,
by making the clock an explicit part of the state, these theories can be desugared
into semantically equivalent ordinary rewrite theories [85,87,82]. That is, in the
desugared version we can model the state of a real-time or hybrid system as a
pair (t, r), with t the current state, and with r the current global clock time.
Rewrite rules can then be either instantaneous rules, that take no time and only
change some part of the state t, or tick rules, that advance the global time of the
system according to some time expression r and may also change the state t. By
characterizing equationally the enabledness of each rule and using conditional
rules and frozen operators [10], it is always possible to define tick rules so that
instantaneous rules are always given higher priority; that is, so that a tick rule
can never fire when an instantaneous rule is enabled [82]. When time is contin-
uous, tick rules may be nondeterministic, in the sense that the time r advanced
by the rule is not uniquely determined, but is instead a parametric expression
(however, this time parameter is typically subjected to some equational condi-
tion C). In such cases, tick rules need a time sampling strategy to choose suitable
values for time advance. Besides being able to show that a wide range of known
real-time models, (including, for example, timed automata, hybrid automata,
timed Petri nets, and timed object-oriented systems) and of discrete or dense
time values, can be naturally expressed in a direct way in rewriting logic (see
[87]), an important advantage of our approach is that one can use an existing
implementation of rewriting logic to execute and analyze real-time specifications.
Because of some technical subtleties, this seems difficult for the alternative of
timed rewriting logic, although a mapping into our framework does exist [87].

Real-Time Maude [83,86,82], is a specification language and a formal tool
built in Maude by reflection. It provides special syntax to specify real-time sys-
tems, and offers a range of formal analysis capabilities. The Real-Time Maude
2.0 tool [82] systematically exploits the underlying Maude efficient rewriting,
search, and LTL model checking capabilities to both execute and formally an-
alyze real-time specifications. Reflection is crucially exploited in the Real-Time
Maude 2.0 implementation. On the one hand Real-Time Maude specifications are
internally desugared into ordinary Maude specifications by transforming their
meta-representations. On the other, reflection is also used for execution and
analysis purposes. The point is that the desired modes of execution and formal
properties to be analyzed have real-time aspects with no clear counterpart at
the Maude level. To faithfully support these real-time aspects a reflective trans-
formational approach is adopted: the original real-time theory and query (for
either execution or analysis) are simultaneously transformed into a semantically

A Rewriting Logic Sampler 13

equivalent pair of a Maude rewrite theory and a Maude query [82]. In practice,
this makes those executions and analyses quite efficient and allows scaling up to
highly nontrivial specifications and case studies.

In fact, both the naturalness of Real-Time Maude to specify large nontrivial
real-time applications (particularly for distributed object-oriented real-time sys-
tems) and its effectiveness in simulating and analyzing the formal properties of
such systems have been demonstrated in a number of substantial case studies,
including the specification and analysis of advanced scheduling algorithms and
of: (1) the AER/NCA suite of active network protocols [83,81]; (2) the NORM
multicast protocol [65]; and (3) the OGDC wireless sensor network algorithm
[104]. The Real-Time Maude tool is a mature and quite efficient tool freely
available (with source code, a tool manual, examples, case studies, and papers)
from http://www.ifi.uio.no/RealTimeMaude.

3.3 Probabilistic Rewrite Theories and PMaude

Many systems are probabilistic in nature. This can be due either to the uncer-
tainty of the environment in which they must operate, such as message losses
and other failures in an unreliable environment, or to the probabilistic nature of
some of their algorithms, or to both. In general, particularly for distributed sys-
tems, both probabilistic and nondeterministic aspects may coexist, in the sense
that different transitions may take place nondeterministically, but the outcomes
of some of those transitions may be probabilistic in nature. To specify systems of
this kind, rewrite theories have been generalized to probabilistic rewrite theories
in [63,64,2]. Rules in such theories are probabilistic rewrite rules of the form

l : t(x) → t′(x, y) if cond(x) with probability y := πr(x)

where the first thing to observe is that the term t′ has new variables y disjoint
from the variables x appearing in t. Therefore, such a rule is nondeterministic;
that is, the fact that we have a matching substitution θ such that θ(cond) holds
does not uniquely determine the next state fragment: there can be many different
choices for the next state, depending on how we instantiate the extra variables y
in t′. In fact, we can denote the different such next states by expressions of the
form t′(θ(x), ρ(y)), where θ is fixed as the given matching substitution, but ρ
ranges along all the possible substitutions for the new variables y. The probabilis-
tic nature of the rule is expressed by the notation: with probability y := πr(x),
where πr(x) is a probability distribution which may depend on the matching
substitution θ. We then choose the values for y, that is, the substitution ρ,
probabilistically according to the distribution πr(θ(x)).

The fact that the probability distribution may depend on the substitution θ
can be illustrated by means of a simple example. Consider a battery-operated
clock. We may represent the state of the clock as a term clock(T,C), with T a
natural number denoting the time, and C a positive real denoting the amount
of battery charge. Each time the clock ticks, the time is increased by one unit,
and the battery charge slightly decreases; however, the lower the battery charge,
the greater the chance that the clock will stop, going into a state of the form

14 J. Meseguer

broken(T,C’). We can model this system by means of the probabilistic rewrite
rule

rl [tick]: clock(T,C) => if B then clock(s(T),C - (C / 1000))
else broken(T,C (C / 1000))

fi
with probability B := BERNOULLI(C / 1000) .

that is, the probability of the clock breaking down instead of ticking normally de-
pends on the battery charge, which is here represented by the battery-dependent
bias of the coin in a Bernoulli trial. Note that here the new variable on the
rule’s righthand side is the Boolean variable B, corresponding to the result of
tossing the biased coin. As shown in [63], probabilistic rewrite theories can ex-
press a wide range of models of probabilistic systems, including continuous-time
Markov chains [100], probabilistic non-deterministic systems [90,94], and gener-
alized semi-Markov processes [54]; they can also naturally express probabilistic
object-based distributed systems [64,2], including real-time ones.

The PMaude language [64,2] is an experimental specification language whose
modules are probabilistic rewrite theories. Note that, due to their nondetermin-
ism, probabilistic rewrite rules are not directly executable. However, probabilistic
systems specified in PMaude can be simulated in Maude. This is accomplished by
transforming a PMaude specification into a corresponding Maude specification
in which actual values for the new variables appearing in the righthand side of
a probabilistic rewrite rule are obtained by sampling the corresponding proba-
bility distribution functions. This theory transformation uses three key Maude
modules as basic infrastructure, namely, COUNTER, RANDOM, and SAMPLER. The
built-in module COUNTER provides a built-in strategy for the application of the
nondeterministic rewrite rule

rl counter => N:Nat .

that rewrites the constant counter to a natural number. The built-in strategy
applies this rule so that the natural number obtained after applying the rule is
exactly the successor of the value obtained in the preceding rule application. The
RANDOM module is a built-in Maude module providing a (pseudo-)random number
generator function called random. The SAMPLER module supports sampling for
different probability distributions. It has a rule

rl [rnd] : rand => float(random(counter + 1) / 4294967296) .

which rewrites the constant rand to a floating point number between 0 and
1 pseudo-randomly chosen according to the uniform distribution. This floating
point number is obtained by converting the rational number random(counter +
1) / 4294967296 into a floating point number, where 4294967296 is the maxi-
mum value that the random function can attain. SAMPLER has rewrite rules sup-
porting sampling according to different probability distributions; this is based
on first sampling a floating point number between 0 and 1 pseudo-randomly
chosen according to the uniform distribution by means of the above rnd rule.

A Rewriting Logic Sampler 15

For example, to sample the Bernoulli distribution we use the following operator
and rewrite rule in SAMPLER:

op BERNOULLI : Float -> Bool .
rl BERNOULLI(R) => if rand < R then true else false fi .

that is, to sample a result of tossing a coin with bias R, we first sample the
uniform distribution. If the sampled value is strictly smaller than R, then the
answer is true; otherwise the answer is false. Any discrete probability distri-
bution on a finite set can be sampled in a similar way. The ordinary Maude
specification that simulates the PMaude specification for a clock with the above
tick probabilistic rewrite rule imports COUNTER, RANDOM, and SAMPLER, and has
then a corresponding Maude rewrite rule

rl [tick] : clock(T,C) => if BERNOULLI(C / 1000.0)
then clock(s(T),C - (C / 1000.0))
else broken(T,C - (C / 1000.0))

fi .

For a continuous probability distribution π with differentiable density func-
tion dπ, and with cumulative distribution function Fπ(x) =

∫ x

−∞ dπ(y)dy, we
can use the well-known fact (see for example [89], Thm 8A, pg. 314) that if U
is a random variable uniformly distributed on [0, 1], then F−1

π (U) is a random
variable with probability distribution π, to sample elements according to the
distribution π by means of a rewrite rule

sampleπ −→ F−1
π (random)

Of course, π may not be a fixed probability distribution, but a parametric family
π(p) of distributions depending on some parameters p, so that the above rule
will then have extra variables for those parameters.

In general, provided that sampling for the probability distributions used in
a PMaude module are supported in the underlying SAMPLER module, we can
associate to it a corresponding Maude module. We can then use this associated
Maude module to perform Monte Carlo simulations of the probabilistic systems
thus specified. As explained in [2], provided all nondeterminism has been elim-
inated from the original PMaude module6, we can then use the results of such
Monte Carlo simulations to perform a statistical model checking analysis of the
6 The point is that, as explained above, in general, given a probabilistic rewrite theory

and a term t describing a given state, there can be several different rewrites, perhaps
with different rules, at different positions, and with different matching substitutions,
that can be applied to t. Therefore, the choice of rule, position, and substitution is
nondeterministic. To eliminate all nondeterminism, at most one rule at exactly one
position and with a unique substitution should be applicable to any term t. As ex-
plained in [2], for many systems, including probabilistic real-time object-oriented sys-
tems, this can be naturally achieved, essentially by scheduling events at real-valued
times that are all different, because we sample a continuous probability distribution
on the real numbers.

16 J. Meseguer

given system to verify certain properties. For example, for a PMaude specifica-
tion of a TCP/IP protocol variant that is resistant to Denial of Service (DoS)
attacks, we may wish to establish that, even if an attacker controls 90% of the
network bandwith, it is still possible for the protocol to establish a connection
in less than 30 seconds with 99% probability. Properties of this kind, including
properties that measure quantitative aspects of a system, can be expressed in the
QATEX probabilistic temporal logic, [2], and can be model checked using the
VeStA tool [95]. See [1] for a substantial case study specifying a DoS-resistant
TCP/IP protocol as a PMaude module, performing Monte Carlo simulations
by means of its associated Maude module, and formally analyzing in VeStA its
properties, expressed as QATEX specifications, according to the methodology
just described.

3.4 Security Applications and Narrowing

Security is a concern of great practical importance for many systems, making
it worthwhile to subject system designs and implementations to rigorous formal
analysis. Security, however, is many-faceted : on the one hand, we are concerned
with properties such as secrecy: malicious attackers should not be able to get
secret information; on the other, we are also concerned with properties such as
availability, which may be destroyed by a (DoS) attack: a highly reliable com-
munication protocol ensuring secrecy may be rendered useless because it spends
all its time checking spurious signatures generated by a DoS attacker. Rewrit-
ing logic has been successfully applied to analyze security properties, including
both secrecy and availability, for a wide range of systems. More generally, using
distributed object-oriented reflection techniques [28,78], it is possible to analyze
tradeoffs between different security properties, and between them and other sys-
tem properties; and it is possible to develop system composition and adaptation
techniques allowing systems to behave adequately in changing environments.

Work in this general area includes: (1) work of Denker, Meseguer, and Talcott
on the specification and analysis of cryptographic protocols using Maude [29,30]
(see also [92]); (2) work of Basin and Denker on an experimental comparison of
the advantages and disadvantages of using Maude versus using Haskell to analyze
security protocols [6]; (3) work of Millen and Denker at SRI using Maude to give
a formal semantics to their new cryptographic protocol specification language
CAPSL, and to endow CAPSL with an execution and formal analysis environ-
ment [31,32,33,34]; (4) work of Gutierrez-Nolasco, Venkatasubramanian, Stehr,
and Talcott on the Secure Spread protocol [56]; (5) work of Gunter, Goodloe,
and Stehr on the formal specification and analysis of the L3A security protocol
[55]; (6) work of Cervesato, Stehr, and Reich on the rewriting logic semantics of
the MSR security specification formalism, leading to the first executable envi-
ronment for MSR [11,97]; and (7) the already-mentioned work by Agha, Gunter,
Greenwald, Khanna, Meseguer, Sen, and Thati on the specification and analysis
of a DoS-resistant TCP/IP protocol using probabilistic rewrite theories [1].

A related technique with important security applications is narrowing, a sym-
bolic procedure like rewriting, except that rules, instead of being applied by

A Rewriting Logic Sampler 17

matching a subterm, are applied by unifying the lefthand side with a nonvariable
subterm. Traditionally, narrowing has been used as a method to solve equations
in a confluent and terminating equational theory. In rewriting logic, narrowing
has been generalized by Meseguer and Thati to a semi-decision procedure for
symbolic reachability analysis [79]. That is, instead of solving equational goals
∃x. t = t′, we solve reachability goals ∃x. t −→ t′. The relevant point for secu-
rity applications is that, since narrowing with a rewrite theory R = (Σ, E, R)
is performed modulo the equations E, this allows more sophisticated analyses
than those performed under the usual Dolev-Yao “perfect cryptography assump-
tion”. It is well-known that protocols that had been proved secure under this
assumption can be broken if an attacker uses knowledge of the algebraic prop-
erties satisfied by the underlying cryptographic functions. In rewriting logic we
can specify a cryptographic protocol as a rewrite theory R = (Σ, E, R), and can
model those algebraic properties as equations in E. Under suitable assumptions
that are typically satisfied by cryptographic protocols, narrowing then gives us a
complete semidecision procedure to find attacks modulo the equations E; there-
fore, any attack making use algebraic properties can be found this way [79]. Very
recent work in this direction by Escobar, Meadows and Meseguer [47] is using
rewriting logic and narrowing to give a precise rewriting semantics to the infer-
ence system of one of the most effective analysis tools for cryptographic protocols,
namely the NRL Analyzer [68]. Further recent work on narrowing with rewrite
theories focuses on: (1) generalizing the procedure to so-called “back-and-forth
narrowing,” so as to ensure completeness under very general assumptions about
the rewrite theory R [102]; and (2) efficient lazy strategies to restrict as much
as possible the narrowing search space [48].

3.5 Bioinformatics Modeling and Analysis

Biology lacks at present adequate mathematical models that can provide some-
thing analogous to the analytic and predictive power that mathematical mod-
els provide for, say, Physics. Of course, the mathematical models of Chemistry
describing, say, molecular structures are still applicable to biochemistry. The
problem is that they do not scale up to something like a cell, because they are
too low-level. One can of course model biological phenomena at different levels
of abstraction. Higher, more abstract levels seem both the most crucial and the
least supported. The most abstract the level, the better the chances to scale up.

All this is analogous to the use of different levels of abstraction to model digi-
tal systems. There are great scaling up advantages in treating digital systems and
computer designs at a discrete level of abstraction, above the continuous level
provided by differential equations, or, even lower, the quantum electrodynam-
ics (QED) level. The discrete models, when they can be had, can also be more
robust and predictable: there is greater difficulty in predicting the behavior of a
system that can only be modeled at lower levels. Indeed, the level at which biolo-
gists like to reason about cell behavior is typically the discrete level; however, at
present descriptions at this level consist of semi-formal notations for the elemen-
tary reactions, together with informal and potentially ambiguous notations for

18 J. Meseguer

things like pathways, cycles, feedback, etc. Furthermore, such notations are static
and therefore offer little predictive power. What are needed are new computable
mathematical models of cell biology that are at a high enough level of abstraction
so that they fit biologist’s intuitions, make those intuitions mathematically pre-
cise, and provide biologists with the predictive power of mathematical models,
so that the consequences of their hypotheses and theories can be analyzed, and
can then suggest laboratory experiments to prove them or disprove them.

Rewriting logic seems ideally suited for this task. The basic idea is that we
can model a cell as a concurrent system whose concurrent transitions are pre-
cisely its biochemical reactions. In fact, the chemical notation for a reaction like
AB −→ C D is exactly a rewriting notation. In this way we can develop symbolic
bioinformatic models which we can then analyze in their dynamic behavior just
as we would analyze any other rewrite theory.

Implicit in the view of modeling a cell as a rewrite theory (Σ, E, R) is the
idea of modeling the cell states as elements of an algebraic data type specified by
(Σ, E). This can of course be done at different levels of abstraction. We can for
example introduce basic sorts such as AminoAcid, Protein, and DNA and declare
the most basic building blocks as constants of the appropriate sort. For example,

ops T U Y S K P : -> AminoAcid .
ops 14-3-3 cdc37 GTP Hsp90 Raf1 Ras : -> Protein .

But sometimes a protein is modified, for example by one of its component
amino acids being phosphorylated at a particular site in its structure. Consider
for example the c-Raf protein, denoted above by Raf1. Two of its S amino acid
components can be phosphorilated at sites, say, 259 and 261. We then obtain a
modified protein that we denote by the symbolic expression,

[Raf1 \ phos(S 259) phos(S 621)]

A fragment, relevant for this example, of the signature Σ needed to symbol-
ically express and analyze such modified proteins is given by the following sorts,
subsorts, and operators:

sorts Site Modification ModSet .
subsort Modification < ModSet .

op phos : Site -> Modification .
op none : -> ModSet .
op __ : ModSet ModSet -> ModSet [assoc comm id: none] .
op __ : AminoAcid MachineInt -> Site .
op [__] : Protein ModSet -> Protein [right id: none] .

Proteins can stick together to form complexes. This can be modeled by the
following subsort and operator declarations

sort Complex .
subsort Protein < Complex .
op _:_ : Complex Complex -> Complex [comm] .

A Rewriting Logic Sampler 19

In the cell, proteins and other molecules exist in “soups,” such as the cytosol,
or the soups of proteins inside the cell and nucleus membranes, or the soup inside
the nucleus. All these soups, as well as the “structured soups” making up the
different structures of the cell, can be modeled by the following fragment of sort,
subsort, and operator declarations,

sort Soup .
subsort Complex < Soup .
op __ : Soup Soup -> Soup [assoc comm] .
op cell{_{_}} : Soup Soup -> Soup .
op nucl{_{_}} : Soup Soup -> Soup .

that is, soups are made up out of complexes, including individual proteins, by
means of the above binary “soup union” operator (with juxtaposition syntax)
that combines two soups into a bigger soup. This union operator models the fluid
nature of soups by obeying associative and commutative laws. A cell is then a
structured soup, composed by the above cell operator out of two subsoups,
namely the soup in the membrane, and that inside the membrane; but this
second soup is itself also structured by the cytoplasm and the nucleus. Finally,
the nucleus itself is made up of two soups, namely that in the nucleus membrane,
and that inside the nucleus, which are composed using the above nucl operator.
Then, the following expression gives a partial description of a cell:

cell{cm (Ras : GTP) {cyto
(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3)

nucl{nm{n}}}}

where cm denotes the rest of the soup in the cell membrane, cyto denotes the
rest of the soup in the cytoplasm, and nm and n likewise denote the remaining
soups in the nucleus membrane and inside the nucleus.

Once we have cell states defined as elements of an algebraic data type spec-
ified by (Σ, E), the only missing information has to do with cell dynamics, that
is, with its biochemical reactions. They can be modeled by suitable rewrite rules
R, giving us a full model (Σ, E, R). Consider, for example, the following reaction
described in a survey by Kolch [61]:

“Raf-1 resides in the cytosol, tied into an inactive state by the binding of
a 14-3-3 dimer to phosphosterines-259 and -621. When activation ensues,
Ras-GTP binding . . . brings Raf-1 to the membrane.”

We can model this reaction by the following rewrite rule:

rl[10]: {CM (Ras : GTP) {CY
(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3) }}
=>
{CM ((Ras : GTP) :
(([Raf1 \ phos(S 259)phos(S 621)] : (cdc37 : Hsp90)) : 14-3-3))

{CY}} .

20 J. Meseguer

where CM and CY are variables of sort Soup, representing, respectively, the rest of
the soup in the cell membrane, and the rest of the soup inside the cell (including
the nucleus). Note that in the new state of the cell represented by the righthand
side of the rule, the complex has indeed migrated to the membrane.

Given a type of cell specified as a rewrite theory (Σ, E, R), rewriting logic
then allows us to reason about the complex changes that are possible in the
system, given the basic changes specified by R. That is, we can then use (Σ, E, R)
together with Maude and its supporting formal tools to simulate, study, and
analyze cell dynamics. In particular, we can study in this way biological pathways,
that is, complex processes involving chains of biological reactions and leading to
important cell changes. In particular we can:

– observe progress in time of the cell state by symbolic simulation, obtaining
a corresponding trace;

– answer questions of reachability from a given cell state to another state
satisfying some property; this can be done both forwards and backwards ;

– answer more complex questions by model checking LTL properties; and
– do meta-analysis of proposed models of the cell to weed out spurious con-

jectures and to identify consequences of a given model that could be settled
by experimentation.

Since the first research in this direction [43], on which the above summary
is based, this line of research has been vigorously advanced, both in develop-
ing more sophisticated analyses of cell behavior in biological pathways, and in
developing useful notations and visualization tools that can represent the Maude-
based analyses in forms more familiar to biologists [44,101]. In particular, [101]
contains a good discussion of related work in this area, using other formalisms,
such as Petri nets or process calculi, that can also be understood as particular
rewrite theories; and shows how cell behavior can be modeled with rewrite rules
and can be analyzed at different levels of abstraction, and even across such levels.
In fact, I view this research area as ripe for bringing in more advanced speci-
fication and analysis techniques —for example, techniques based on real-time
and probabilistic rewrite theories as introduced in this paper— so as to develop
a range of complementary models for cell biology. In this way, aspects such as
the probabilistic nature of cell reactions, their dependence on the concentration
of certain substances, and their real-time behavior could also be modeled, and
even more sophisticated analyses could be developed.

4 Where to Go from Here?

This finishes the sampler. I have tried to give you a feeling for some of the
main ideas of rewriting logic, some of its theoretical extensions to cover en-
tire new areas, and some of its exciting application areas. I did not promise
an overview: only an appetizer. If you would like to know more, I would rec-
ommend the roadmap in [67] for a good overview: it is a little dated by now,
and there are many new references that nobody has yet managed to gather

A Rewriting Logic Sampler 21

together, but this sampler puts the roadmap up to date in some areas; and
reading both papers together is the best suggestion I can currently give for an
introduction.

Acknowledgments. This research has been supported by ONR Grant N00014-
02-1-0715 and NSF Grant CCR-0234524. I thank the ICTAC05 organizers for
kindly giving me the opportunity of presenting these ideas. Many of them have
been developed in joint work with students and colleagues; and many other ideas
are not even my own work. Besides the credit given in each case through the
references, I would like to point out that: (1) the recent work on foundations
of rewriting logic is joint work with Roberto Bruni; (2) the work on Maude is
joint work with all the members of the Maude team at SRI, UIUC, and the
Universities of Madrid and Málaga; (3) the work on Maude tools is joint work
with Manuel Clavel, Francisco Durán, Joseph Hendrix, Salvador Lucas, Claude
Marché, Hitoshi Ohsaki, Peter Ölveczky, Miguel Palomino, and Xavier Urbain;
(4) the work on the rewriting logic semantics project is a fairly wide collective
effort, in which I have collaborated most closely with Feng Chen, Azadeh Farzan,
and Grigore Roşu at UIUC, and with Christiano Braga at the Universidade Fed-
eral Fluminense in Brazil; (5) my part of the work on real-time rewrite theories
is joint work with Peter Ölveczky at the University of Oslo; (6) the work on
probabilistic rewrite theories is joint work with Gul Agha, Nirman Kumar, and
Koushik Sen at UIUC; (7) security applications is again a wide effort in which
I have collaborated most closely with Santiago Escobar, Grit Denker, Michael
Greenwald, Carl Gunter, Sanjiv Khanna, Cathy Meadows, Koushik Sen, Carolyn
Talcott, and Prasanna Thati; and (8) I was only involved in the early stages of
the bioinformatics work, which has been continued by the Pathway Logic Team
at SRI International.

References

1. G. Agha, C. Gunter, M. Greenwald, S. Khanna, J. Meseguer, K. Sen, and
P. Thati. Formal modeling and analysis of DoS using probabilistic rewrite theo-
ries. In Workshop on Foundations of Computer Security (FCS’05) (Affiliated with
LICS’05), 2005.

2. G. Agha, J. Meseguer, and K. Sen. PMaude: Rewrite-based specification language
for probabilistic object systems. In 3rd Workshop on Quantitative Aspects of
Programming Languages (QAPL’05), 2005.

3. W. Ahrendt, A. Roth, and R. Sasse. Automatic validation of transformation rules
for Java verification against a rewriting semantics. Manuscript, June 2005.

4. D. Basin, M. Clavel, and J. Meseguer. Reflective metalogical frameworks. ACM
Transactions on Computational Logic, 2004.

5. D. Basin, M. Clavel, and J. Meseguer. Rewriting logic as a metalogical framework.
In S. Kapoor and S. Prasad, editors, Twentieth Conference on the Foundations of
Software Technology and Theoretical Computer Science, New Delhi, India, Decem-
ber 13–15, 2000, Proceedings, volume 1974 of Lecture Notes in Computer Science,
pages 55–80. Springer-Verlag, 2000.

22 J. Meseguer

6. D. Basin and G. Denker. Maude versus Haskell: An experimental com-
parison in security protocol analysis. In Futatsugi [52], pages 235–256.
http://www.elsevier.nl/locate/entcs/volume36.html.

7. P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a rewrit-
ing logic point of view. Theoretical Computer Science, 285:155–185, 2002.

8. C. Braga. Rewriting Logic as a Semantic Framework for Modular Structural Op-
erational Semantics. PhD thesis, Departamento de Informática, Pontificia Uni-
versidade Católica de Rio de Janeiro, Brasil, 2001.

9. C. Braga and J. Meseguer. Modular rewriting semantics in practice. in Proc.
WRLA’04, ENTCS.

10. R. Bruni and J. Meseguer. Generalized rewrite theories. In J. Baeten, J. Lenstra,
J. Parrow, and G. Woeginger, editors, Proceedings of ICALP 2003, 30th Inter-
national Colloquium on Automata, Languages and Programming, volume 2719 of
Springer LNCS, pages 252–266, 2003.

11. I. Cervesato and M.-O. Stehr. Representing the msr cryptoprotocol specification
language in an extension of rewriting logic with dependent types. In P. Degano,
editor, Proc. Fifth International Workshop on Rewriting Logic and its Applica-
tions (WRLA’2004). Elsevier ENTCS, 2004. Barcelona, Spain, March 27 - 28,
2004.

12. F. Chalub. An implementation of modular SOS in maude. Master’s thesis, Uni-
versidade Federal Fluminense, May 2005. http://www.ic.uff.br/∼frosario/
dissertation.pdf.

13. F. Chalub and C. Braga. A Modular Rewriting Semantics for CML. Journal of
Universal Computer Science, 10(7):789–807, July 2004. http://www.jucs.org/
jucs 10 7/a modular rewriting semantics.

14. F. Chen, G. Roşu, and R. P. Venkatesan. Rule-based analysis of dimensional
safety. In Rewriting Techniques and Applications (RTA’03), volume 2706 of
Springer LNCS, pages 197–207, 2003.

15. M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metapro-
gramming Applications. CSLI Publications, 2000.

16. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, and J. Meseguer.
Metalevel computation in Maude. In Kirchner and Kirchner [60], pages 3–24.
http://www.elsevier.nl/locate/entcs/volume15.html.

17. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

18. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual. June 2003, http://maude.cs.uiuc.edu.

19. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In CAFE: An Industrial-Strength Algebraic Formal
Method, pages 1–31. Elsevier, 2000. http://maude.cs.uiuc.edu.

20. M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a formal
meta-tool. In J. M. Wing, J. Woodcock, and J. Davies, editors, FM’99 — Formal
Methods, World Congress on Formal Methods in the Development of Comput-
ing Systems, Toulouse, France, September 20–24, 1999 Proceedings, Volume II,
volume 1709 of Lecture Notes in Computer Science, pages 1684–1703. Springer-
Verlag, 1999.

21. M. Clavel, F. Durán, and N. Mart́ı-Oliet. Polytypic programming in Maude. In
Futatsugi [52], pages 339–360.
http://www.elsevier.nl/locate/entcs/volume36.html.

A Rewriting Logic Sampler 23

22. M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In
J. Meseguer, editor, Proceedings First International Workshop on Rewriting Logic
and its Applications, WRLA’96, Asilomar, California, September 3–6, 1996, vol-
ume 4 of Electronic Notes in Theoretical Computer Science, pages 125–147. Else-
vier, Sept. 1996. http://www.elsevier.nl/locate/entcs/volume4.html.

23. M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical
Computer Science, 285:245–288, 2002.

24. M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational
logic, many-sorted equational logic, horn logic with equality, and rewriting logic.
In F. Gadducci and U. Montanari, editors, Proc. 4th. Intl. Workshop on Rewriting
Logic and its Applications. ENTCS, Elsevier, 2002.

25. M. Clavel and M. Palomino. The ITP tool’s manual. Universidad Complutense,
Madrid, April 2005, http://maude.sip.ucm.es/itp/ .

26. M. Clavel and J. Santa-Cruz. ASIP+ITP: A verification tool based on algebraic
semantics. To appear in Proc. PROLE’05,
http://maude.sip.ucm.es/~clavel/pubs/.

27. M. d’Amorim and G. Roşu. An Equational Specification for the Scheme Lan-
guage. In Proceedings of the 9th Brazilian Symposium on Programming Languages
(SBLP’05), to appear 2005. Also Technical Report No. UIUCDCS-R-2005-2567,
April 2005.

28. G. Denker, J. Meseguer, and C. Talcott. Rewriting semantics of meta-objects
and composable distributed services. ENTCS, Elsevier, 2000. Proc. 3rd. Intl.
Workshop on Rewriting Logic and its Applications.

29. G. Denker, J. Meseguer, and C. L. Talcott. Protocol specification and analysis
in Maude. In N. Heintze and J. Wing, editors, Proceedings of Workshop on
Formal Methods and Security Protocols, June 25, 1998, Indianapolis, Indiana,
1998. http://www.cs.bell-labs.com/who/nch/fmsp/index.html .

30. G. Denker, J. Meseguer, and C. L. Talcott. Formal specification and analysis
of active networks and communication protocols: The Maude experience. In
D. Maughan, G. Koob, and S. Saydjari, editors, Proceedings DARPA Informa-
tion Survivability Conference and Exposition, DISCEX 2000, Hilton Head Island,
South Carolina, January 25–27, 2000, pages 251–265. IEEE Computer Society
Press, 2000. http://schafercorp-ballston.com/discex/.

31. G. Denker and J. Millen. CAPSL and CIL language design: A common authen-
tication protocol specification language and its intermediate language. Technical
Report SRI-CSL-99-02, Computer Science Laboratory, SRI International, 1999.
http://www.csl.sri.com/∼denker/pub 99.html.

32. G. Denker and J. Millen. CAPSL intermediate language. In N. Heintze and
E. Clarke, editors, Proceedings of Workshop on Formal Methods and Security
Protocols, FMSP’99, July 1999, Trento, Italy, 1999.
http://www.cs.bell-labs.com/who/nch/fmsp99/program.html.

33. G. Denker and J. Millen. CAPSL integrated protocol environment. In
D. Maughan, G. Koob, and S. Saydjari, editors, Proceedings DARPA Informa-
tion Survivability Conference and Exposition, DISCEX 2000, Hilton Head Island,
South Carolina, January 25-27, 2000, pages 207–222. IEEE Computer Society
Press, 2000. http://schafercorp-ballston.com/discex/.

34. G. Denker and J. Millen. The CAPSL integrated protocol environment. Technical
Report SRI-CSL-2000-02, Computer Science Laboratory, SRI International, 2000.
http://www.csl.sri.com/∼denker/pub 99.html.

35. F. Durán. A reflective module algebra with applications to the Maude language.
Ph.D. Thesis, University of Málaga, 1999.

24 J. Meseguer

36. F. Durán. Coherence checker and completion tools for Maude specifications.
Manuscript, Computer Science Laboratory, SRI International,
http://maude.cs.uiuc.edu/papers, 2000.

37. F. Durán. The extensibility of Maude’s module algebra. In T. Rus, editor,
Algebraic Methodology and Software Technology, 8th International Conference,
AMAST 2000, Iowa City, Iowa, USA, May 20–27, 2000, Proceedings, volume
1816 of Lecture Notes in Computer Science, pages 422–437. Springer-Verlag, 2000.

38. F. Durán. Termination checker and Knuth-Bendix completion tools for Maude
equational specifications. Manuscript, Computer Science Laboratory, SRI Inter-
national, http://maude.cs.uiuc.edu/papers, 2000.

39. F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving termina-
tion of membership equational programs. In P. Sestoft and N. Heintze, editors,
Proc. of ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program
Manipulation, PEPM’04, pages 147–158. ACM Press, 2004.

40. F. Durán and J. Meseguer. An extensible module algebra for Maude. In Kirchner
and Kirchner [60], pages 185–206.
http://www.elsevier.nl/locate/entcs/volume15.html.

41. F. Durán and J. Meseguer. A Church-Rosser checker tool for Maude equational
specifications. Manuscript, Computer Science Laboratory, SRI International,
http://maude.cs.uiuc.edu/papers, 2000.

42. F. Durán and J. Meseguer. On parameterized theories and views in Full Maude
2.0. In K. Futatsugi, editor, Proc. 3rd. Intl. Workshop on Rewriting Logic and its
Applications. ENTCS, Elsevier, 2000.

43. S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and K. Sonmez. Path-
way logic: Symbolic analysis of biological signaling. In Proceedings of the Pacific
Symposium on Biocomputing, pages 400–412, January 2002.

44. S. Eker, M. Knapp, K. Laderoute, P. Lincoln, and C. Talcott. Pathway Logic:
executable models of biological networks. In F. Gadducci and U. Montanari, edi-
tors, Proc. 4th. Intl. Workshop on Rewriting Logic and its Applications. ENTCS,
Elsevier, 2002.

45. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker.
In F. Gadducci and U. Montanari, editors, Proc. 4th. Intl. Workshop on Rewriting
Logic and its Applications. ENTCS, Elsevier, 2002.

46. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker
and its implementation. In Model Checking Software: Proc. 10th Intl. SPIN Work-
shop, volume 2648, pages 230–234. Springer LNCS, 2003.

47. S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference system
for the NRL Protocol Analyzer. Submitted for publication, 2005.

48. S. Escobar, J. Meseguer, and P. Thati. Natural narrowing for general term rewrit-
ing systems. In J. Giesl, editor, Proceedings of the 16th Intl. Conference on Term
Rewriting and Applications, RTA 2005, pages 279–293. Springer LNCS Vol. 3467,
2005.

49. A. Farzan, F. Cheng, J. Meseguer, and G. Roşu. Formal analysis of Java programs
in JavaFAN. in Proc. CAV’04, Springer LNCS, 2004.

50. A. Farzan and J. Meseguer. Partial order reduction for rewriting semantics of
programming languages. Technical Report UIUCDCS-R-2005-2598, CS Dept.,
University of Illinois at Urbana-Champaign, June 2005.

51. A. Farzan, J. Meseguer, and G. Roşu. Formal JVM code analysis in JavaFAN. in
Proc. AMAST’04, Springer LNCS 3116, 132–147, 2004.

A Rewriting Logic Sampler 25

52. K. Futatsugi, editor. Proceedings Third International Workshop on Rewriting
Logic and its Applications, WRLA 2000, Kanazawa, Japan, September 18–20,
2000, volume 36 of Electronic Notes in Theoretical Computer Science. Elsevier,
2000. http://www.elsevier.nl/locate/entcs/volume36.html.

53. K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST
Series, 1998.

54. P. Glynn. The role of generalized semi-Markov processes in simulation output
analysis, 1983.

55. C. Gunter, A. Goodloe, and M.-O. Stehr. Formal prototyping in early
stages of protocol design. In In Proceedings of the Workshop on Issues
in the Theory of Security (WITS’05). January 10-11, 2005, Long Beach,
California. To appear in the ACM Digital Library. Paper available at
http://formal.cs.uiuc.edu/stehr/l3a-wits.pdf.

56. S. Gutierrez-Nolasco, N. Venkatasubramanian, M.-O. Stehr, and C. L. Tal-
cott. Exploring adaptability of secure group communication using formal
prototyping techniques. In Proceedings of the 3rd Workshop on Reflective
and Adaptive Middleware (RM2004). October 19, 2004, Toronto, Ontario,
Canada. To appear in ACM Digital Library. Extended version available at
http://formal.cs.uiuc.edu/stehr/spread eng.html.

57. J. Hendrix, J. Meseguer, and M. Clavel. A sufficient completeness reasoning tool
for partial specifications. In J. Giesl, editor, Proceedings of the 16th Intl. Con-
ference on Term Rewriting and Applications, RTA 2005, pages 165–174. Springer
LNCS Vol. 3467, 2005.

58. G. Holzmann. The Spin Model Checker - Primer and Reference Manual. Addison-
Wesley, 2003.

59. E. B. Johnsen, O. Owe, and E. W. Axelsen. A runtime environment for concurrent
objects with asynchronous method calls. In N. Mart́ı-Oliet, editor, Proc. 5th. Intl.
Workshop on Rewriting Logic and its Applications. ENTCS, Elsevier, 2004.

60. C. Kirchner and H. Kirchner, editors. Proceedings Second International Workshop
on Rewriting Logic and its Applications, WRLA’98, Pont-à-Mousson, France,
September 1–4, 1998, volume 15 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 1998. http://www.elsevier.nl/locate/entcs/volume15.html.

61. W. Kolch. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK
pathway by protein interactions. Biochem. J., 351:289–305, 2000.

62. P. Kosiuczenko and M. Wirsing. Timed rewriting logic with application to
object-oriented specification. Technical report, Institut für Informatik, Univer-
sität München, 1995.

63. N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistic rewrite theories: Uni-
fying models, logics and tools. Technical Report UIUCDCS-R-2003-2347, Univer-
sity of Illinois at Urbana-Champaign, May 2003.

64. N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewriting based model of prob-
abilistic distributed object systems. Proc. of Formal Methods for Open Object-
Based Distributed Systems, FMOODS 2003, Springer LNCS Vol. 2884, 2003.

65. E. Lien. Formal modeling and analysis of the NORM multicast protocol in Real-
Time Maude. Master’s thesis, Dept. of Linguistics, University of Oslo, 2004.
http://wo.uio.no/as/WebObjects/theses.woa/wo/0.3.9.

66. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic,
2nd. Edition, pages 1–87. Kluwer Academic Publishers, 2002. First published as
SRI Tech. Report SRI-CSL-93-05, August 1993.

26 J. Meseguer

67. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography.
Theoretical Computer Science, 285:121–154, 2002.

68. C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Pro-
gramming, 26(2):113–131, 1996.

69. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96(1):73–155, 1992.

70. J. Meseguer. Rewriting logic as a semantic framework for concurrency: a progress
report. In Proc. CONCUR’96, Pisa, August 1996, pages 331–372. Springer LNCS
1119, 1996.

71. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In F. Parisi-Presicce, editor, Proc. WADT’97, pages 18–61. Springer LNCS
1376, 1998.

72. J. Meseguer. Research directions in rewriting logic. In U. Berger and H. Schwicht-
enberg, editors, Computational Logic, NATO Advanced Study Institute, Markto-
berdorf, Germany, July 29 – August 6, 1997. Springer-Verlag, 1999.

73. J. Meseguer. Software specification and verification in rewriting logic. In M. Broy
and M. Pizka, editors, Models, Algebras, and Logic of Engineering Software,
NATO Advanced Study Institute, Marktoberdorf, Germany, July 30 – August 11,
2002, pages 133–193. IOS Press, 2003.

74. J. Meseguer. Localized fairness: A rewriting semantics. In J. Giesl, editor, Pro-
ceedings of the 16th Intl. Conference on Term Rewriting and Applications, RTA
2005, pages 250–263. Springer LNCS Vol. 3467, 2005.

75. J. Meseguer and C. Braga. Modular rewriting semantics of programming lan-
guages. in Proc. AMAST’04, Springer LNCS 3116, 364–378, 2004.

76. J. Meseguer and G. Roşu. Rewriting logic semantics: From language specifications
to formal analysis tools. In Proc. Intl. Joint Conf. on Automated Reasoning
IJCAR’04, Cork, Ireland, July 2004, pages 1–44. Springer LNAI 3097, 2004.

77. J. Meseguer and G. Roşu. The rewriting logic semantics project. In Proc. of SOS
2005. Elsevier, ENTCS, 2005. To appear.

78. J. Meseguer and C. Talcott. Semantic models for distributed object reflection.
In Proceedings of ECOOP’02, Málaga, Spain, June 2002, pages 1–36. Springer
LNCS 2374, 2002.

79. J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing and
its application to the verification of cryptographic protocols. In N. Mart́ı-Oliet,
editor, Proc. 5th. Intl. Workshop on Rewriting Logic and its Applications. ENTCS,
Elsevier, 2004.

80. P. D. Mosses. Modular structural operational semantics. J. Log. Algebr. Program.,
60–61:195–228, 2004.

81. P. Ölveczky, M. Keaton, J. Meseguer, C. Talcott, and S. Zabele. Specification and
analysis of the AER/NCA active network protocol suite in Real-Time Maude.
In Proc. of FASE’01, 4th Intl. Conf. on Fundamental Approaches to Software
Engineering, Springer LNCS. Springer-Verlag, 2001.

82. P. Ölveczky and J. Meseguer. Real-Time Maude 2.0. in Proc. WRLA’04, ENTCS.
83. P. C. Ölveczky. Specification and Analysis of Real-Time and Hybrid Sys-

tems in Rewriting Logic. PhD thesis, University of Bergen, Norway, 2000.
http://maude.csl.sri.com/papers.

84. P. C. Ölveczky, P. Kosiuczenko, and M. Wirsing. An object-oriented algebraic
steam-boiler control specification. In J.-R. Abrial, E. Börger, and H. Langmaack,
editors, The Steam-Boiler Case Study Book, pages 379–402. Springer-Verlag, 1996.
Vol. 1165.

A Rewriting Logic Sampler 27

85. P. C. Ölveczky and J. Meseguer. Specifying real-time systems in rewriting logic.
In J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its
Applications, volume 4 of Electronic Notes in Theoretical Computer Science. El-
sevier, 1996.
http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/volume4.htm.

86. P. C. Ölveczky and J. Meseguer. Real-Time Maude: a tool for simulating and
analyzing real-time and hybrid systems. ENTCS, Elsevier, 2000. Proc. 3rd. Intl.
Workshop on Rewriting Logic and its Applications.

87. P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science, 285:359–405, 2002.

88. M. Palomino. A predicate abstraction tool for maude. Documentation and tool
available at http://maude.sip.ucm.es/∼miguelpt/bibliography.html.

89. E. Parzen. Modern Probability Theory and its Applications. Wiley, 1960.
90. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley and Sons, 1994.
91. G. Roşu, R. P. Venkatesan, J. Whittle, and L. Leustean. Certifying optimality

of state estimation programs. In Computer Aided Verification (CAV’03), pages
301–314. Springer, 2003. LNCS 2725.

92. D. E. Rodŕıguez. Case studies in the specification and analysis of protocols in
Maude. In Futatsugi [52], pages 257–275.
http://www.elsevier.nl/locate/entcs/volume36.html.

93. R. Sasse. Taclets vs. rewriting logic – relating semantics of Java. Master’s thesis,
Fakultät für Informatik, Universität Karlsruhe, Germany, May 2005. Technical
Report in Computing Science No. 2005-16,
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=ira/2005/16 .

94. R. Segala. Modelling and Verification of Randomized Distributed Real Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, 1995.

95. K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic
systems. In 17th conference on Computer Aided Verification (CAV’05), volume
3576 of Lecture Notes in Computer Science (To Appear), Edinburgh, Scotland,
July 2005. Springer.

96. L. Steggles and P. Kosiuczenko. A timed rewriting logic semantics for SDL: a
case study of the alternating bit protocol. Proc. 2nd Intl. Workshop on Rewriting
Logic and its Applications, ENTCS, Vol. 15, North Holland, 1998.

97. M.-O. Stehr, I. Cervesato, and S. Reich. An execution environment for the MSR
cryptoprotocol specification language.
http://formal.cs.uiuc.edu/stehr/msr.html.

98. M.-O. Stehr and C. Talcott. PLAN in Maude: Specifying an active network
programming language. In F. Gadducci and U. Montanari, editors, Proc. 4th.
Intl. Workshop on Rewriting Logic and its Applications. ENTCS, Elsevier, 2002.

99. M.-O. Stehr and C. L. Talcott. Practical techniques for language design and
prototyping. In J. L. Fiadeiro, U. Montanari, and M. Wirsing, editors, Abstracts
Collection of the Dagstuhl Seminar 05081 on Foundations of Global Computing.
February 20 – 25, 2005. Schloss Dagstuhl, Wadern, Germany., 2005.

100. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-
ton, 1994.

101. C. Talcott, S. Eker, M. Knapp, P. Lincoln, and K. Laderoute. Pathway logic
modeling of protein functional domains in signal transduction. In Proceedings of
the Pacific Symposium on Biocomputing, January 2004.

102. P. Thati and J. Meseguer. Complete symbolic reachability analysis using back-
and-forth narrowing. To appear in Proc. CALCO 2005, Springer LNCS, 2005.

28 J. Meseguer

103. P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of asynchronous
Pi-Calculus semantics and may testing in Maude 2.0. In F. Gadducci and U. Mon-
tanari, editors, Proc. 4th. Intl. Workshop on Rewriting Logic and its Applications.
ENTCS, Elsevier, 2002.

104. S. Thordvalsen. Modeling and analysis of the OGDC wireless sensor network
algorithm in Real-Time Maude. Master’s thesis, Dept. of Informatics, University
of Oslo, 2005. http://heim.ifi.uio.no/∼peterol/RealTimeMaude/OGDC/.

105. A. Verdejo. Maude como marco semántico ejecutable. PhD thesis, Facultad de
Informática, Universidad Complutense, Madrid, Spain, 2003.

106. A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in
Maude. Manuscript, Dto. Sistemas Informáticos y Programación, Universidad
Complutense, Madrid, August 2003.

107. A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude. In Proc.
FORTE/PSTV 2000, pages 351–366. IFIP, vol. 183, 2000.

108. A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In F. Gadducci
and U. Montanari, editors, Proc. 4th. Intl. Workshop on Rewriting Logic and its
Applications. ENTCS, Elsevier, 2002.

109. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285:487–517, 2002.

Codes and Length-Increasing Transitive
Binary Relations

Do Long Van1, Kieu Van Hung2, and Phan Trung Huy3

1 Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam
dlvan@math.ac.vn

2 Hanoi Pedagogical University No.2, Xuan Hoa, Phuc Yen, Vinh Phuc, Vietnam
hungkv@hn.vnn.vn

3 Hanoi Polytechnic University, 1 Dai Co Viet Street, Hanoi, Vietnam
phanhuy@hn.vnn.vn

Abstract. Classes of codes defined by binary relations are considered. It
turns out that many classes of codes can be defined by length-increasing
transitive binary relations. By introducing a general embedding schema
we show that the embedding problem can be solved in a unified way for
many classes of codes defined in such a way. Several among these classes
of codes can be characterized by means of variants of Parikh vectors.
This is very useful in constructing many-word concrete codes, maximal
codes in corresponding classes of codes. Also, this allows to establish pro-
cedures to generate all maximall codes as well as algorithms to embed a
code in a maximal one in some classes of codes.

Keywords: Code, binary relation, embedding problem, Parikh vector.

1 Introduction

Throughout the paper about codes we mean length-variable codes whose theory
has been initiated by M. P. Shützenberger and then developed by many others.
This theory has now become a part of theoretical computer science and of formal
languages, in particular. A code is a language such that every text encoded
by words of the language can be decoded in a unique way or, in other words,
every coded message admits only one facterization into code-words. A simple
application of Zorn’s Lemma showed that every code is included in a maximal
code. For thin codes, regular codes in particular, the maximality is equivalent
to the completeness, which concerns with optimal use of transmission alphabet.
Thus maximal codes are important in both theoretical and practical points of
view. For background of the theory of codes we refer to [1,11,17].

Every regular code is included in a maximal code, which is still regular [4].
There exist however finite codes, which cannot be included in any finite maximal
code [13,15]. These facts lead to a general question of whether, for a given class
C of codes, every finite (regular) code in C can be included in a code maximal
in C (not necessarily maximal as a code) which is still finite (regular, resp.). We
call this the embedding problem for the class C of codes. Until now answer for the

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 29–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

30 D.L. Van, K.V. Hung, and P.T. Huy

embedding problem is only known for several cases using different combinatorial
techniques. For prefix codes the answer is positive for the finite case (folklore, see
[1]). The embedding procedure is simple: given a finite prefix code X , it suffices
to add the lacking leaves to the tree associated with X [1]. The regular case
can be solved similarly by using deterministic finite automaton associated with
X [2,16]. From a well-known result of M. P. Schützenberger (see [1]) it follows
that it is impossible to embed a finite code with deciphering delay d = 0 into
a maximal finite code with deciphering delay d′ = 0. For the regular case, the
embedding problem for these codes has been solved positively in [3]. There is
finite bifix code, which cannot be included in any finite maximal bifix code [1]
whereas every regular bifix code is included in a regular maximal bifix code [23].
This generalizes the construction in [14]. The finite case for infix codes is solved
positively in [10] and later by another way in [12] together with the regular
case, etc.

H. Shyr and G. Thierrin [18] were the first who observed that several classes
of codes can be defined by binary relations on words (see also [17,9]). This idea
comes from the notion of independent sets in universal algebra [5]. Our work
is a further development of this idea. The paper is organized as follows. Sec-
tion 2 presents some basic notions which will be used in the sequel. In Section
3 we show that many classes of codes, well-known as well as new, can be de-
fined by length-increasing transitive binary relarions. In Section 4 we propose a
general embedding schema for the classes of codes defined by length-increasing
transitive binary relations (Theorem 1). Using this schema, positive solutions
for the embedding problem are obtained in a unified way for many classes of
codes, well-known as well as new. In Section 5 it is shown that Parikh vectors
and their appropriate generalizations can be used to characterize several among
introduced kinds of codes (namely, supercodes, superinfix codes, p-superinfix
codes, s-superinfix codes and corresponding maximal codes). This is very use-
full in constructing many-word concrete codes, maximal codes in corresponding
classes of codes. Also, this allows to construct procedures to generate all maximal
codes as well as algorithms to embed a code in a maximal one in some classes
of codes.

2 Preliminaries

Let A throughout be a non-empty finite alphabet. Let A∗ be the free monoid
generated by A, that is the set of words over A. The empty word is denoted by 1
and A+ = A∗− 1. The number of occurrences of letters in a word u is the length
of u, denoted by |u|. Any set of words over A is a language over A. A language
X is a code if for any n, m ≥ 1 and any x1, . . . , xn, y1, . . . , ym ∈ X, the condition

x1x2 . . . xn = y1y2 . . . ym

implies n = m and xi = yi for i = 1, . . . , n. A code X over A is maximal if X
is not properly contained in any other code over A. Let C be a class of codes

Codes and Length-Increasing Transitive Binary Relations 31

over A. A code X ∈ C is a maximal code in C (not necessarily maximal as a
code) if it is not properly contained in any other code in C.

Given a binary relation ≺ on A∗. A subset X in A∗ is an independent set
with respect to the relation ≺ if any two elements of X are not in this relation.
A class C of codes is said to be defined by ≺ if these codes are exactly the
independent sets w.r.t. ≺. The class C is then denoted by C≺. When the relation
≺ characterizes some property α of words, instead of ≺ we write ≺α, and also
Cα stands for C≺α . We denote by � the reflexive closure of ≺, i.e. for any
u, v ∈ A∗, u � v iff u = v or u ≺ v.

A word u is called an infix (a prefix, a suffix) of a word v if there exist words
x, y such that v = xuy (v = uy, v = xu, resp.). The infix (prefix, suffix) is proper
if xy = 1 (y = 1, x = 1, resp.). A word u is a subword of a word v if, for some
n ≥ 1, u = u1 . . . un, v = x0u1x1 . . . unxn with u1, . . . , un, x0, . . . , xn ∈ A∗. If
x0 . . . xn = 1 then u is called a proper subword of v.

Definition 1. Let A be an alphabet and X ⊆ A+.

(i) X is a prefix code (suffix code) if no word in X is a proper prefix (proper
suffix, resp.) of another word in X;

(ii) X is a bifix code if it is both a prefix code and a suffix code;
(iii) X is an infix code (a p-infix code, a s-infix code) if no word in X is an infix

of a proper infix (a proper prefix, a proper suffix, resp.) of another word in
X;

(iv) X is a hypercode if no word in X is a proper subword of another word in it.

The classes of prefix codes, suffix codes, bifix codes, infix codes, p-infix codes,
s-infix codes and hypercodes are denoted respectively by Cp, Cs, Cb, Ci, Cp.i,
Cs.i and Ch. It is easy to see that these classes of codes are defined respectively
by the relations which satisfy, for any u, v ∈ A∗, the following corresponding
conditions:

u ≺p v ⇔ v = ux, with x = 1;
u ≺s v ⇔ v = xu, with x = 1;
u ≺b v ⇔ (u ≺p v) ∨ (u ≺s v);
u ≺i v ⇔ v = xuy, with xy = 1;
u ≺p.i v ⇔ v = xuy, with y = 1;
u ≺s.i v ⇔ v = xuy, with x = 1;
u ≺h v ⇔ ∃n ≥ 1 : u = u1 . . . un ∧ v = x0u1x1 . . . unxn, with x0 . . . xn = 1.

Prefix codes, suffix codes and bifix codes play a fundamental role in the
theory of codes (see [1,17]). For more details about infix codes, p-infix codes
and s-infix codes we refer to [9,17]. Hypercodes, a special kind of infix codes,
have some interesting properties, especially, all hypercodes are finite (see [17]).
Relationship between these classes of codes can be resumed in the following
proposition.

Proposition 1. Over any alphabet consisting of at least two letters, the follow-
ings hold true.

32 D.L. Van, K.V. Hung, and P.T. Huy

(i) Cb ⊂ Cp, Cb ⊂ Cs, Cb = Cp ∩Cs, Ch ⊂ Ci;
(ii) Ci ⊂ Cp.i, Ci ⊂ Cs.i, Ci = Cp.i ∩Cs.i, Ci ⊂ Cb, Cp.i ⊂ Cp, Cs.i ⊂ Cs.

3 New Classes of Codes Defined by Binary Relations
3.1 Definitions and Examples

We introduce in this section some new classes of codes which can be defined
by binary relations. Definitions of these codes are based on appropriate combi-
nations of the basic notions such as prefix, subfix, infix, subword, permutation,
and cyclic permutation of a word. All such classes of codes, as we shall see later
(Proposition 4), are subclasses of prefix codes or suffix codes.

Given u, v ∈ A+. Let u be a subword of v, u = u1 . . . un, v = x0u1x1 . . . unxn.
As u = 1, we may assume ui = 1 for all i. Then, we call u a right-proper subword
of v if x1 . . . xn = 1. Dually, if x0 . . . xn−1 = 1 then u is a left-proper subword of
v. A word u is called a permutation of a word v if |u|a = |v|a for all a ∈ A, where
|u|a denotes the number of occurrences of the letter a in u. And u is a cyclic
permutation of v if there exist two words x, y such that u = xy and v = yx.

Definition 2. Let A be an alphabet and X ⊆ A+.

(i) X is a subinfix (p-subinfix, s-subinfix) code if no word in X is a subword
of a proper infix (prefix, suffix, resp.) of another word in X;

(ii) X is a p-hypercode (s-hypercode) if no word in X is a right-proper (left-
proper) subword of another word in X;

(iii) X is a superinfix (p-superinfix, s-superinfix) code if no word in X is a
subword of a permutation of a proper infix (prefix, suffix, resp.) of another
word in X;

(iv) X is a sucyperinfix (p-sucyperinfix, s-sucyperinfix) code if no word in X is
a subword of a cyclic permutation of a proper infix (prefix, suffix, resp.)
of another word in X;

(v) X is a supercode (sucypercode) if no word in X is a proper subword of a
permutation (cyclic permutation, resp.) of another word in it.

This definition itself explains the way we named the new kinds of codes. It
is easy to see that these classes of codes have as defining relations the following,
respectively.

u ≺si v ⇔ ∃w ∈ A∗ : w ≺i v ∧ u �h w;
u ≺p.si v ⇔ ∃w ∈ A∗ : w ≺p v ∧ u �h w;
u ≺s.si v ⇔ ∃w ∈ A∗ : w ≺s v ∧ u �h w;
u ≺p.h v ⇔ ∃n ≥ 1 : u = u1...un ∧ v = x0u1x1...unxn, with x1...xn = 1;
u ≺s.h v ⇔ ∃n ≥ 1 : u = u1...un ∧ v = x0u1x1...unxn, with x0...xn−1 = 1;
u ≺spi v ⇔ (∃v′ : v′ ≺i v)(∃v′′ ∈ π(v′)) : u �h v′′;
u ≺p.spi v ⇔ (∃v′ : v′ ≺p v)(∃v′′ ∈ π(v′)) : u �h v′′;
u ≺s.spi v ⇔ (∃v′ : v′ ≺s v)(∃v′′ ∈ π(v′)) : u �h v′′;
u ≺scpi v ⇔ (∃v′ : v′ ≺i v)(∃v′′ ∈ σ(v′)) : u �h v′′;
u ≺p.scpi v ⇔ (∃v′ : v′ ≺p v)(∃v′′ ∈ σ(v′)) : u �h v′′;

Codes and Length-Increasing Transitive Binary Relations 33

u ≺s.scpi v ⇔ (∃v′ : v′ ≺s v)(∃v′′ ∈ σ(v′)) : u �h v′′;
u ≺sp v ⇔ ∃v′ ∈ π(v) : u ≺h v′;
u ≺scp v ⇔ ∃v′ ∈ σ(v) : u ≺h v′;

where π(v) and σ(v) are the sets of all permutations and cyclic permutations of
v respectively.

Example 1. Consider the subsets X1 = {aba, bab2a}, XR
1 = {aba, ab2ab}, X2 =

ab∗a, X3 = {a, ba}, XR
3 = {a, ab}, X4 = {ab, b3a}, XR

4 = {ba, ab3}, X5 =
{abab, a2b3} and X6 = {ab, b2a} over the alphabet A = {a, b}. It is easy to check
that the followings hold true

X1 ∈ Cp.si − Csi, X
R
1 ∈ Cs.si − Csi, X2 ∈ Csi ∩ Cspi ∩ Cscpi;

X3 ∈ Cp.h − Ch, XR
3 ∈ Cs.h − Ch, X6 ∈ Ch − Cscp;

X4 ∈ Cp.spi − Cscpi, X
R
4 ∈ Cs.spi − Cscpi, X5 ∈ Cscpi ∩ Cscp − Cspi.

Although, as we shall see below (Proposition 4), the class of p-hypercodes (s-
hypercodes) strictly contains the class of hypercodes, the former codes however
are still finite.

Proposition 2. All the p-hypercodes and s-hypercodes over a finite alphabet are
finite.

A binary relation ≺ is said to be length-increasing if for any u, v ∈ A∗ : u ≺ v
implies |u| < |v|. From now on, we denote by Ω the set {p, s, p.i, s.i, i, p.si, s.si, si,
p.scpi, s.scpi, scpi, p.spi, s.spi, spi, p.h, s.h, h, scp, sp} and Ω′ = Ω− {p.h, s.h, h,
scp, sp}.

Proposition 3. The relations ≺α, α∈Ω are all transitive and length-increasing.

Note that the relation ≺b is length-increasing but not transitive. That’s the
reason why, as we shall see later, Theorem 1 cannot be applied to solve the
embedding problem for bifix codes.

3.2 Relative Positions of the Classes of Codes

Relationship between the classes of codes under consideration can be resumed
in the following proposition.

Proposition 4. Over any alphabet consisting of at least two letters, the follow-
ings hold true

(i) Csi ⊂ Cp.si, Csi ⊂ Cs.si, Csi = Cp.si ∩ Cs.si, Csi ⊂ Ci,
Cp.si ⊂ Cp.i, Cs.si ⊂ Cs.i;

(ii) Cscpi ⊂ Cp.scpi, Cscpi ⊂ Cs.scpi, Cscpi = Cp.scpi ∩ Cs.scpi,
Cscpi ⊂ Csi, Cp.scpi ⊂ Cp.si, Cs.scpi ⊂ Cs.si;

(iii) Cspi ⊂ Cp.spi, Cspi ⊂ Cs.spi, Cspi = Cp.spi ∩ Cs.spi, Cspi ⊂ Cscpi,
Cp.spi ⊂ Cp.scpi, Cs.spi ⊂ Cs.scpi;

(iv) Ch ⊂ Cp.h, Ch ⊂ Cs.h, Ch ⊂ Csi, Cp.h ⊂ Cp.si, Cs.h ⊂ Cs.si,
Ch = Cp.h ∩ Cs.h = Cp.h ∩Cs.si = Cp.si ∩ Cs.h;

(v) Csp ⊂ Cscp ⊂ Ch, Cscp ⊂ Cscpi, Csp ⊂ Cspi.

34 D.L. Van, K.V. Hung, and P.T. Huy

Remark 1. Consider the languages X = {abab, a2b3}, Y = {ba, b3a}, Z = {a, ba}
and T = {bab, ab3a}. It is easy to verify that X ∈ Cscp − Cp.spi ∪ Cs.spi,
T ∈ Ch − Cp.scpi∪ Cs.scpi, Z ∈ Cp.h − Cs, ZR ∈ Cs.h − Cp, Y ∈ Cp.spi − Cs

and Y R ∈ Cs.spi − Cp. It follows that, except for the inclusions mentioned in
Proposition 4, there is no any more inclusion between the classes of codes under
consideration.

By virtue of Propositions 1, 4 and Remark 1, the relative positions of the
classes of codes under consideration can be illustrated in the Figure 1, where

Fig. 1. Relative positions of the classes of codes

Codes and Length-Increasing Transitive Binary Relations 35

the arrow → stands for a strict inclusion. It is worthy to note that if we restrict
ourselves to considering only one-letter alphabets then all the classes of codes
represented in the Figure 1 coincide.

4 Embedding Problem

4.1 A General Embedding Schema

In this section we present a general embedding schema for the classes of codes
defined by length-increasing transitive binary relations which will be used in the
sequel.

Let ≺ be a binary relation on A∗ and u, v ∈ A∗. We say that u depends on v
if u ≺ v or v ≺ u holds. Otherwise, u is independent of v. These notions can be
extended to subsets of words in a standard way. Namely, a word u is dependent
on a subset X if it depends on some word in X . Otherwise, u is independent of
X . For brevity, we shall adopt the following notations

u ≺ X ⇀↽ ∃v ∈ X : u ≺ v; X ≺ u ⇀↽ ∃v ∈ X : v ≺ u.

An element u in X is minimal in X if there is no word v in X such that v ≺ u.
When X is finite, by maxX we denote the maximal wordlength of X .

Now, for every subset X in A∗ we denote by DX , IX , LX and RX the sets of
words dependent on X , independent of X , non-minimal in IX and minimal in
IX , respectively. In notations

DX = {u ∈ A∗ | u ≺ X ∨X ≺ u};
IX = A∗ −DX ;

LX = {u ∈ IX | IX ≺ u};
RX = IX − LX

When there is no risque of confusion, for brevity we write simply D, I, L, R
instead.

The following theorem has been first formulated in [19] (see also [20]). An-
other proof of it is presented in [21]. An extension of this result has been made
in [7].

Theorem 1. Let ≺ be a length-increasing transitive binary relation on A∗ which
defines the class C≺ of codes. Then, for any code X in C≺, we have

(i) RX is a maximal code in C≺ which contains X;
(ii) If moreover the relation ≺ satisfies the condition

∃k ≥ 1∀u, v ∈ A+:(|v| ≥ |u|+ k) ∧ (u ≺ v) ⇒ ∃w:(|w| ≥ |u|) ∧ (w ≺ v) (∗)

then the finiteness of X implies the finiteness of RX , and max RX ≤
maxX + k − 1.

36 D.L. Van, K.V. Hung, and P.T. Huy

4.2 Embedding Problem for Regular Case

In this section we apply Theorem 1 to solve the embedding problem for the
classes of codes introduced above in the regular case. The main lemmas needed
for this are the following.

Lemma 1. For any X ⊆ A∗, π(X) and σ(X) are regular if so is X.

For any set X we denote by P(X) the family of all subsets of X . Recall that
a substitution is a mapping f from B into P(C∗), where B and C are alphabets.
If f(b) is regular for all b ∈ B then f is called a regular substitution. When f(b)
is a singleton for all b ∈ B it induces a homomorphism from B∗ into C∗. Let #
be a new letter not being in A. Put A# = A ∪ {#}. Let’s consider the regular
substitutions S1, S2 and the homomorphism h defined as follows

S1 : A → P(A∗#), where S1(a) = {a, #} for all a ∈ A;
S2 : A# → P(A∗), with S2(#) = A+ and S2(a) = {a} for all a ∈ A;
h : A∗# → A∗, with h(#) = 1 and h(a) = a for all a ∈ A.

Factually, as we will see later, the substitution S1 will be used to mark the
occurrences of letters to be deleted from a word. The homomorphism h realizes
the deletion by replacing # by the empty word. The inverse homomorphism h−1

“chooses” in a word the positions where the words of A+ may be inserted, while
S2 realizes the insertions by replacing # by A+. Notice that regular languages are
closed under regular substitutions, homomorphisms and inverse homomorphisms
(see [8]).

Lemma 2. Given α ∈ Ω and X ∈ Cα. Then RX can be computed by the fol-
lowing expressions according to the case

(i) Case of prefix codes: R = I − IA+, where I = A∗−XA−−XA+ and A−

stands for (A+)−1.
(ii) Case of suffix codes: R = I −A+I, where I = A∗ −A−X −A+X.
(iii) Case of p-infix codes: R = I − (IA+ + A+IA+), where I = A∗ −XA− −

A−XA− −XA+ −A+XA+.
(iv) Case of s-infix codes: R = I − (A+I + A+IA+), where I = A∗ −A−X −

A−XA− −A+X −A+XA+.
(v) Case of infix codes: R = I − (IA+ + A+I + A+IA+), where I = A∗ −

XA− + A−X + A−XA− −XA+ −A+X −A+XA+.
(vi) Case of p-subinfix codes: R = I − S2(h−1(I) ∩A∗#{#}), where I = A∗ −

h(S1(X) ∩A∗#{#})− S2(h−1(X) ∩A∗#{#}).
(vii) Case of s-subinfix codes: R = I − S2(h−1(I) ∩ {#}A∗#), where I = A∗ −

h(S1(X) ∩ {#}A∗#)− S2(h−1(X) ∩ {#}A∗#).
(viii) Case of subinfix codes: R = I − S2(h−1(I) ∩ ({#}A∗# ∪ A∗#{#})), where

I = A∗−h(S1(X)∩({#}A∗#∪A∗#{#}))−S2(h−1(X)∩({#}A∗#∪A∗#{#})).
(ix) Case of p-sucyperinfix codes: R = I − S2(h−1(σ(I)) ∩ A∗#{#}), where

I = A∗ − σ(h(S1(X) ∩A∗#{#}))− S2(h−1(σ(X)) ∩A∗#{#}).

Codes and Length-Increasing Transitive Binary Relations 37

(x) Case of s-sucyperinfix codes: R = I − S2(h−1(σ(I)) ∩ {#}A∗#), where
I = A∗ − σ(h(S1(X) ∩ {#}A∗#))− S2(h−1(σ(X)) ∩ {#}A∗#).

(xi) Case of sucyperinfix codes: R = I − S2(h−1(σ(I)) ∩ ({#}A∗# ∪A∗#{#})),
where I = A∗ − σ(h(S1(X) ∩ ({#}A∗# ∪ A∗#{#}))) − S2(h−1(σ(X)) ∩
({#}A∗# ∪A∗#{#})).

(xii) Case of p-superinfix codes: R = I − S2(h−1(π(I)) ∩ A∗#{#}), where I =
A∗ − π(h(S1(X) ∩A∗#{#}))− S2(h−1(π(X)) ∩A∗#{#}).

(xiii) Case of s-superinfix codes: R = I − S2(h−1(π(I)) ∩ {#}A∗#), where I =
A∗ − π(h(S1(X) ∩ {#}A∗#))− S2(h−1(π(X)) ∩ {#}A∗#).

(xiv) Case of superinfix codes: R = I − S2(h−1(π(I)) ∩ ({#}A∗# ∪ A∗#{#})),
where I = A∗ − π(h(S1(X) ∩ ({#}A∗# ∪ A∗#{#}))) − S2(h−1(π(X)) ∩
({#}A∗# ∪A∗#{#})).

(xv) Case of p-hypercodes: R = I−S2(h−1(I)∩(A∗#{#}A∗#−{#}+A+)), where
I = A∗−h(S1(X)∩(A∗#{#}A∗#−{#}+A+))−S2(h−1(X)∩(A∗#{#}A∗#−
{#}+A+)).

(xvi) Case of s-hypercodes: R = I−S2(h−1(I)∩(A∗#{#}A∗#−A+{#}+)), where
I = A∗−h(S1(X)∩(A∗#{#}A∗#−A+{#}+))−S2(h−1(X)∩(A∗#{#}A∗#−
A+{#}+)).

(xvii) Case of hypercodes: R = I − S2(h−1(I) ∩ (A∗#{#}A∗#)), where I = A∗ −
h(S1(X) ∩ (A∗#{#}A∗#))− S2(h−1(X) ∩ (A∗#{#}A∗#)).

(xviii) Case of sucypercodes: R = I − σ(S2(h−1(I) ∩ (A∗#{#}A∗#))), where I =
A∗ − h(S1(σ(X)) ∩ (A∗#{#}A∗#))− σ(S2(h−1(X) ∩ (A∗#{#}A∗#))).

(xix) Case of supercodes: R = I − π(S2(h−1(I) ∩ (A∗#{#}A∗#))), where I =
A∗ − h(S1(π(X)) ∩ (A∗#{#}A∗#))− π(S2(h−1(X) ∩ (A∗#{#}A∗#))).

The following result, which follows from Proposition 3, Theorem 1, Lemma 1
and Lemma 2, has been proved partially in [19,6]. For more details see [21].

Theorem 2. For any α ∈ Ω′, every regular code in Cα, is contained in a max-
imal code in Cα which is still regular.

4.3 Embedding Problem for Finite Case

Our aim in this section is to solve the embedding problem for the mentioned
above classes of codes in the finite case. Namely, we will exhibit algorithms to
construct, for every finite code X in a class Cα, α ∈ Ω, a finite maximal code in
the same class which contains X .

The following theorem, whose proof is based on Proposition 3, Theorem 1
and Lemma 2, has been proved partially in [19,20,6]. For more details see also
[21].

Theorem 3. For any α ∈ Ω, every finite code X in Cα, , is contained in a
finite maximal code Y in Cα with maxY = maxX.

Denote by A[n] the set of all the words in A∗ whose length is less than or
equal to n. As an immediate consequence of Lemma 2 and Theorem 3 we have

38 D.L. Van, K.V. Hung, and P.T. Huy

Corollary 1. Given α ∈ Ω and X ∈ Cα with maxX = n. Then the maximal
code RX in Cα which contains X can be computed by the following “restricted”
expressions according to the case.

(i) Case of prefix codes: R=I−IA+∩A[n], where I =A[n]−XA−−XA+∩A[n].
(ii) Case of suffix codes: R=I−A+I∩A[n], where I =A[n]−A−X−A+X∩A[n].
(iii) Case of p-infix codes: R = I − (IA+ + A+IA+) ∩A[n], where I = A[n] −

XA− −A−XA− − (XA+ + A+XA+) ∩A[n].
(iv) Case of s-infix codes : R = I − (A+I + A+IA+)∩A[n], where I = A[n] −

A−X −A−XA− − (A+X + A+XA+) ∩A[n].
(v) Case of infix codes: R = I − (IA+ + A+I + A+IA+) ∩ A[n], where I =

A[n] −XA− + A−X + A−XA− − (XA+ + A+X + A+XA+) ∩A[n].
(vi) Case of p-subinfix codes: R = I − S2(h−1(I) ∩ A

[n−1]
{#}) ∩ A[n], where

I = A[n] − h(S1(X) ∩A∗#{#})− S2(h−1(X) ∩A
[n−1]
{#}) ∩A[n].

(vii) Case of s-subinfix codes: R = I − S2(h−1(I) ∩ {#}A[n−1]
) ∩ A[n], where

I = A[n] − h(S1(X) ∩ {#}A∗#)− S2(h−1(X) ∩ {#}A[n−1]
) ∩A[n].

(viii) Case of subinfix codes: R = I − S2(h−1(I) ∩ ({#}A[n−1]
∪A

[n−1]
{#}))∩

A[n], where I = A[n] − h(S1(X) ∩ ({#}A∗# ∪ A∗#{#})) − S2(h−1(X) ∩
({#}A[n−1]

∪A
[n−1]
{#})) ∩A[n].

(ix) Case of p-sucyperinfix codes: R = I − S2(h−1(σ(I)) ∩A
[n−1]
{#}) ∩A[n],

where I =A[n]−σ(h(S1(X)∩A∗#{#}))−S2(h−1(σ(X))∩A
[n−1]
{#})∩A[n].

(x) Case of s-sucyperinfix codes: R = I − S2(h−1(σ(I)) ∩ {#}A[n−1]
) ∩A[n],

where I =A[n]−σ(h(S1(X)∩{#}A∗#))−S2(h−1(σ(X))∩{#}A[n−1]
)∩A[n].

(xi) Case of sucyperinfix codes: R = I − S2(h−1(σ(I)) ∩ ({#}A[n−1]
∪

A
[n−1]
{#}))∩A[n], where I = A[n]−σ(h(S1(X)∩ ({#}A∗#∪A∗#{#})))−

S2(h−1(σ(X)) ∩ ({#}A[n−1]
∪A

[n−1]
{#})) ∩A[n].

(xii) Case of p-superinfix codes: R = I − S2(h−1(π(I)) ∩ A
[n−1]
{#}) ∩ A[n],

where I =A[n]−π(h(S1(X)∩A∗#{#}))−S2(h−1(π(X))∩A
[n−1]
{#})∩A[n].

(xiii) Case of s-superinfix codes: R = I−S2(h−1(π(I))∩{#}A[n−1]
)∩A[n], where

I = A[n] − π(h(S1(X) ∩ {#}A∗#))− S2(h−1(π(X)) ∩ {#}A[n−1]
) ∩A[n].

(xiv) Case of superinfix codes: R = I−S2(h−1(π(I))∩({#}A[n−1]
∪A

[n−1]
{#}))

∩A[n], where I = A[n]−π(h(S1(X)∩({#}A∗#∪A∗#{#})))−S2(h−1(π(X))

∩ ({#}A[n−1]
∪A

[n−1]
{#})) ∩A[n].

(xv) Case of p-hypercodes: R = I − S2(h−1(I) ∩ (A∗#{#}A∗# − {#}+A+) ∩
A

[n]
) ∩ A[n], where I = A[n] − h(S1(X) ∩ (A∗#{#}A∗# − {#}+A+)) −

S2(h−1(X) ∩ (A∗#{#}A∗# − {#}+A+) ∩A
[n]
) ∩A[n].

(xvi) Case of s-hypercodes: R = I−S2(h−1(I)∩(A∗#{#}A∗#−A+{#}+)∩A
[n]
)∩

A[n], where I = A[n]−h(S1(X)∩(A∗#{#}A∗#−A+{#}+))−S2(h−1(X)∩
(A∗#{#}A∗# −A+{#}+) ∩A

[n]
) ∩A[n].

Codes and Length-Increasing Transitive Binary Relations 39

(xvii) Case of hypercodes: R = I−S2(h−1(I)∩(A∗#{#}A∗#)∩A
[n]
)∩A[n], where

I =A[n]−h(S1(X)∩(A∗#{#}A∗#))−S2(h−1(X)∩(A∗#{#}A∗#)∩A
[n]
)∩A[n].

(xviii) Case of sucypercodes: R = I − σ(S2(h−1(I) ∩ (A∗#{#}A∗#) ∩ A
[n]
) ∩

A[n]), where I = A[n] − h(S1(σ(X)) ∩ (A∗#{#}A∗#)) − σ(S2(h−1(X) ∩
(A∗#{#}A∗#) ∩A

[n]
) ∩A[n]).

(xix) Case of supercodes: R = I − π(S2(h−1(I) ∩ (A∗#{#}A∗#) ∩ A
[n]
) ∩ A[n]),

where I = A[n]−h(S1(π(X))∩(A∗#{#}A∗#))−π(S2(h−1(X)∩(A∗#{#}A∗#)

∩A
[n]
) ∩A[n]).

Example 2. Consider the p-subinfix code X = {a2, ba2} over A = {a, b}. Since
maxX = 3, by Corollary 1(vi), RX can be computed by the formula

R = I − S2(h−1(I) ∩A
[2]
{#}) ∩A[3],

where I = A[3] − h(S1(X) ∩ A∗#{#}) − S2(h−1(X) ∩ A
[2]
{#}) ∩ A[3]. We may

now compute RX step by step as follows.
S1(X) ∩A∗#{#} = {a#, #2, ba#, b#2, #a#, #3};
h(S1(X) ∩A∗#{#}) = {1, a, b, ba};
h−1(X) ∩A

[2]
{#} = {a2#};

S2(h−1(X) ∩A
[2]
{#}) ∩A[3] = a2A = {a3, a2b};

I = A[3] − {1, a, b, ba}− {a3, a2b} = {a2, ab, b2, aba, ab2, ba2, bab, b2a, b3};
h−1(I) ∩A

[2]
{#} = {a2#, ab#, b2#};

S2(h−1(I) ∩A
[2]
{#}) ∩A[3] = a2A + abA + b2A = {a3, a2b, aba, ab2, b2a, b3};

R = I − {a3, a2b, aba, ab2, b2a, b3} = {a2, ab, b2, ba2, bab}.

Example 3. For the sucypercode X = {acb, a2b2, cabc} over A = {a, b, c}, in a
similar way, using formulas in Corollary 1(xviii) with n = 4 instead, we obtain
the maximal sucypercode R = {a3, a2c, aca, acb, bac, b3, b2c, bcb, ca2, cba, cb2,
c3, a2b2, abab, ab2a, abc2, ba2b, baba, b2a2, bc2a, cabc, c2ab}, which contains X .

4.4 Tree Representations

Sometime a graph-theoretic representation of codes defined by binary relations
seems to be useful. Like the case of prefix codes, it facilitates the construction
of examples of codes and in many cases maximal codes containing a given code.
Moreover, as we shall see below, it makes more intuitive in understanding and
proving facts.

First, to every transitive binary relation ≺ on A∗ we associate an infinite
oriented graph as follows. The alphabet A is totally ordered, and words of equal
length are ordered lexicographically. Each word represents a node of the graph.
Words of small length are to the left of words of greater length, and words of
equal length are disposed vertically according to lexical ordering. For any nodes
u, v, there is an edge u → v iff u ≺ v and there is no w such that u ≺ w ≺ v.

40 D.L. Van, K.V. Hung, and P.T. Huy

Throughout we restrict ourself to length-increasing relations only. Thus, the
corresponding graph is a tree in some large sense, called the tree of A∗ w.r.t. ≺,
denoted by T (A∗,≺), or simply T when there is no risque of confusion. In the
case of the relation ≺p this is nothing but the literal representation of A∗ [1].
¿From now on, we refer indifferently to a node in T and the word it represents.
For example, one may say of the length of a node which means the length of the
word it represents, etc.

To a given subset X of A∗ we associate a subtree of T (A∗,≺) as follows. We
keep just the nodes representing the words of X and of {u | u ≺ v, v ∈ X}, and
all related edges. The tree obtained in this way is the tree of X w.r.t. ≺, denoted
by T (X,≺) (see Figure 2).

A set X of nodes is node-independent if there is no path from one node to
another. The set X is maximal if it is included properly in no node-independent
set. In other words, a node-independent set X is maximal if it becomes no more
a node-independent set by adding a new node. The following fact establishes
relationship between the codes defined by ≺, that is the independent sets w.r.t.
≺, and the node-independent sets of the tree T (A∗,≺).

Proposition 5. Let ≺ be a length-increasing transitive binary relation on A∗

which defines a class C≺ of codes. Let T (A∗,≺) be the tree of A∗ w.r.t. ≺. Then,
for any X ⊆ A∗, X is a (maximal) code in C≺ iff the corresponding nodes in
T (A∗,≺) constitute a (maximal, resp.) node-independent set.

Remark 2. Proposition 5 can be used to obtain another proof [19], more intuitive,
of the item (i) in Theorem 1.

As seen in the above examples (Section 4.3), even for a small code X , com-
puting RX is not simple in practice. It is however much easier when using tree
representation of A∗ with respect to ≺ as shown in the following example.

Example 4. Consider again the p-subinfix code X = {a2, ba2}. As max X = 3,
for finding RX we may restrict to considering the tree T (A3,≺p.si) of the full
uniform code A3 w.r.t. ≺p.si. By virtue of Theorem 1 and Proposition 5, RX

can be obtained by applying the following algorithm: First, mark the nodes
represented by the words in X (namely: aa, baa). Then, delete all the nodes
depending on X (namely: 1, a, b, ba, aaa, aab). Next, among the rest (namely:
ab, bb, aba, abb, bab, bba, bbb) keep just the minimal nodes (namely: ab, bb, bab),
which together with X constitute RX , i.e. RX = {a2, ab, b2, ba2, bab}
(see Figure 2).

5 Characterizations of Some Classes of Codes

5.1 Vector Characterizations

The results in the rest of the paper have been obtained partially in [20,6]. For
more details see also [22].

Codes and Length-Increasing Transitive Binary Relations 41

1 �
�
�
�
�
��

�
�
�
�
�
�� b

�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
���

��
���

�����

a

�
�
�
�
�
�
�
�
�
�
�
��

�������������

�
�
�
��

�����

bb ������

��
����

ba �		
		
	

ab �������

�
�

�
�aa ������

��
����

bbb

bba

bab

�
�

�
�baa

abb

aba

aab

aaa

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 2. Computing RX , X = {a2, ba2}, by using the tree T (A3,≺p.si)

Let A = {a1, a2, . . . , ak} and K = {1, 2, . . . , k}. For every u ∈ A∗, we denote
by p(u) the Parikh vector of u, namely

p(u) = (|u|a1 , |u|a2 , . . . , |u|ak
).

where |u|ai denotes the number of occurrences of ai in u. Thus p is a mapping
from A∗ into the set V k of all the k-vectors of non-negative integers.

For any subset X ⊆ A∗ we denote by p(X) the set of all Parikh vectors of
the words in X , p(X) = {p ∈ V k | p = p(u) for some u ∈ X}.

The following result gives a simple characterization of supercodes.

Theorem 4. For any subset X ⊆ A+ the following assertions are equivalent

(i) X is a supercode;
(ii) π(X) is a supercode;
(iii) p(X) is an independent set w.r.t. the relation < on V k.

Similarly, for sucypercodes we have

Proposition 6. For any subset X of A+, X is a sucypercode iff so is σ(X).

Now, to every u ∈ A+ we associate two elements of the cartesian product
V k ×K, denoted by pL(u) and pF (u), and one element of V k ×K2, denoted by
pLF (u), which are defined as follows

pL(u) = (p(u), l); pF (u) = (p(u), f); pLF (u) = (p(u), l, f);

42 D.L. Van, K.V. Hung, and P.T. Huy

where l and f are the indices of the last and the first letter in u, respectively.
Thus pL and pF are mappings from A+ into V k × K, while pLF is a mapping
from A+ into V k × K2. These mappings are then extended to languages in a
standard way: pL(X) = {pL(u) | u ∈ X}, pF (X) = {pF (u) | u ∈ X} and
pLF (X) = {pLF (u) | u ∈ X}.

Put U = {(ξ, i) ∈ V k × K | pi(ξ) = 0} and W = {(ξ, i, j) ∈ V k × K2 |
pi(ξ), pj(ξ) = 0}. To each of the sets U and W we associate a binary relation,
denoted both by ≺, which are defined by

(ξ, i) ≺ (η, j) ⇔ (ξ ≤ η) ∧ (pj(ξ) < pj(η)),
(ξ, m, n) ≺ (η, i, j) ⇔ (ξ ≤ η) ∧ (pi(ξ) < pi(η) ∨ pj(ξ) < pj(η)),

where pi(ξ), 1 ≤ i ≤ k, denotes the i-th component of ξ. These relations on U
and on W , as easily verified, are transitive. Notice that for all language X ⊆ A+,
pL(X) and pF (X) are subsets of U while pLF (X) is a subset of W .

The following fact is easily verified.

Lemma 3. For any u, v ∈ A+ we have

(i) u ≺p.spi v iff pL(u) ≺ pL(v);
(ii) u ≺s.spi v iff pF (u) ≺ pF (v);
(iii) u ≺spi v iff pLF (u) ≺ pLF (v).

To every subset X of A+, we associate the sets

EX = {x ∈ X | ∃y ∈ X : p(y) < p(x)} and OX = X − EX .

Clearly, if EX = ∅ then X is a supercode.
Let u be a word in A+, we define the following operations

πL(u) = π(u′)b, with u = u′b, b ∈ A;
πF (u) = aπ(u′), with u = au′, a ∈ A;

πLF (u) =

{
aπ(u′)b, if |u| ≥ 2 and u = au′b, with a, b ∈ A;
u, if u ∈ A;

which are extended to languages in a normal way: πL(X)=
⋃

u∈X πL(u), πF (X)=⋃
u∈X πF (u) and πLF (X) =

⋃
u∈X πLF (u).

Lemma 4. Let X be a subset of A+. If pL(X) (pF (X)) is an independent set
w.r.t. the relation ≺ on U then so is pL(π(OX)∪πL(EX)) (pF (π(OX)∪πF (EX)),
resp.). If pLF (X) is an independent set w.r.t. the relation ≺ on W then so is
pLF (π(OX) ∪ πLF (EX)).

The last two lemmas allow us to prove the following characterizations of
p-superinfix codes, s-superinfix codes and superinfix codes (see also [22]).

Theorem 5. For any subset X of A+, the following assertions are equivalent

(i) X is a p-superinfix code (resp., a s-superinfix code, a superinfix code);

Codes and Length-Increasing Transitive Binary Relations 43

(ii) π(OX) ∪ πL(EX) is a p-superinfix code (resp., π(OX) ∪ πF (EX) is a s-
superinfix code, π(OX) ∪ πLF (EX) is a superinfix code);

(iii) pL(X) is an independent set w.r.t. the relation ≺ on U (resp., pF (X) is an
independent set w.r.t. the relation ≺ on U , pLF (X) is an independent set
w.r.t. the relation ≺ on W).

Example 5. Consider the language X = {a2ba, aba2, ab3, ba3, bab2, b2ab, a2b2a,
a2b3, ababa, abab2, ab2a2, ab2ab, ba2ba, ba2b2, baba2, babab, b2a3, b2a2b} over
the alphabet A = {a, b}. It is easy to check that pL(X) = {((3, 1), 1), ((3, 2), 1),
((2, 3), 2), ((1, 3), 2)} and that it is an independent set w.r.t. ≺ on U = {(ξ, j) ∈
V 2 × {1, 2} | pj(ξ) = 0}. By Theorem 5, X is a p-superinfix code.

5.2 Maximality

First we formulate a characterization of the maximal supercodes by means of
independent sets w.r.t. the relation < on V k.

Theorem 6. For any subset X of A+, X is a maximal supercode iff p(X) is a
maximal independent set w.r.t. < on V k and π(X) = X.

Next we characterize the maximal p-superinfix, s-superinfix and superinfix
codes by means of independent sets w.r.t. the relation ≺ on U and on W .

Theorem 7. For any subset X of A+, we have

(i) X is a maximal p-superinfix (s-superinfix) code iff pL(X) (resp., pF (X)) is a
maximal independent set w.r.t. the relation ≺ on U and π(OX)∪πL(EX) =
X (resp., π(OX) ∪ πF (EX) = X).

(ii) X is a maximal superinfix code iff pLF (X) is a maximal independent set
w.r.t. the relation ≺ on W and π(OX) ∪ πLF (EX) = X.

Example 6. (i) Let X = {a3, ab2, bab, b2a, b3, a2ba, a2b2, aba2, abab, ba3, ba2b}. It
is easy to see that X = π(OX) ∪ πL(EX) and pL(X) = {((3, 0), 1), ((3, 1), 1),
((2, 2), 2), ((1, 2), 1), ((1, 2), 2), ((0, 3), 2)}, which is easily verified to be a maxi-
mal independent set w.r.t. ≺ on U = {(ξ, i) ∈ V 2×{1, 2} | pi(ξ) = 0}. By virtue
of Theorem 7(i), we may conclude that X is a maximal p-superinfix code over
A = {a, b}.

(ii) Let’s consider the set X = {a3, a2ba, aba2, b4, a2b2a, ababa, ab2a2,
bab3, b2ab2, b3ab, a2b3a, abab2a, ab2aba, ab3a2, ba2b3, babab2, bab2ab, b2a2b2,
b2abab, b3a2b} over A = {a, b}. We have evidently OX = {a3, b4}. A simple
verification leads to X = π(OX) ∪ πLF (EX) and also pLF (X) = {((3, 0), 1, 1),
((3, 1), 1, 1), ((3, 2), 1, 1), ((3, 3), 1, 1), ((2, 4), 2, 2), ((1, 4), 2, 2) ((0, 4), 2, 2)}. It
is easy to see that the latter is a maximal independent set w.r.t. ≺ on W =
{(ξ, i, j) ∈ V 2 × {1, 2}2 | pi(ξ), pj(ξ) = 0}. By Theorem 7(ii), it follows that X
is a maximal superinfix code over A.

The following result establishes relationship between maximal p-superinfix
(s-superinfix, superinfix) codes and p-infix (s-infix, sucyperinfix, resp.) codes.

44 D.L. Van, K.V. Hung, and P.T. Huy

Theorem 8. For any subset X of A+, we have

(i) X is a maximal p-superinfix (s-superinfix, resp.) code iff X is a maximal p-
infix (s-infix, resp.) code and π(OX)∪πL(EX) = X (π(OX)∪πF (EX) = X,
resp.).

(ii) X is a maximal superinfix code iff X is a maximal sucyperinfix code and
π(OX) ∪ πLF (EX) = X (π(OX) ∪ πF (EX) = X, resp.).

As a direct consequence of Theorem 8 we obtain

Corollary 2. For any subset X of A+, X is a maximal p-superinfix (s-superinfix,
resp.) code iff X is a maximal p-subinfix/p-sucyperinfix (s-subinfix/s-sucyperinfix,
resp.) code and π(OX) ∪ πL(EX) = X (π(OX) ∪ πF (EX) = X, resp.).

We have moreover

Corollary 3. Every maximal p-superinfix (s-superinfix) code is a maximal code.

This corollary together with Theorem 2 and Theorem 3 imply immediately

Corollary 4. Every finite (regular) p-superinfix code (s-superinfix code) is in-
cluded in a finite (regular, resp.) p-superinfix code (s-superinfix code) which is
maximal as a code.

Remark 3. While, as seen above, a maximal p-superinfix code (s-superinfix code)
is always a maximal prefix code (suffix code, resp.), a maximal superinfix code
is not necessarily a maximal subinfix code. Indeed, consider the code X = ab∗a
over the alphabet A = {a, b} which is easily verified to be a maximal superinfix
code. But it is not a maximal subinfix code because X ∪ {bab} is still a subinfix
code.

Relationship between maximal supercodes, sucypercodes and hypercodes is
pointed out in the following result.

Theorem 9. For any subset X of A+, we have the following

(i) X is a maximal supercode iff X is a maximal hypercode and π(X) = X.
(ii) X is a maximal sucypercode iff X is a maximal hypercode and σ(X) = X.
(iii) X is a maximal supercode iff X is a maximal sucypercode and π(X) = σ(X).

5.3 Supercodes Over Two-Letter Alphabets

Let’s fix a two-letter alphabet A = {a, b}. On V 2 we introduce the relation ≺2.v
defined by

u ≺2.v w ⇔ p1(u) > p1(w) ∧ p2(u) < p2(w),

where pi(u) denotes the i-th component of u. For simplicity, in this section we
write ≺ instead of ≺2.v.

A finite sequence (may be empty) S: u1, u2, . . . , un of elements in V 2 is a
chain if

u1 ≺ u2 ≺ · · · ≺ un.

Codes and Length-Increasing Transitive Binary Relations 45

The chain S is full if

∀i, 1 ≤ i ≤ n− 1, ∃v : ui ≺ v ≺ ui+1.

If the full chain S satisfies moreover the condition

p2(u1) = p1(un) = 0,

then it is said to be complete. A finite subset T of V 2 is complete if it can be
arranged to become a complete chain. For 1 ≤ i < j ≤ n we denote by [ui, uj]
the subsequence ui, ui+1, . . . , uj of the sequence S.

Theorem 10. For any finite subset X of A+, X is a maximal supercode iff
p(X) is complete and X = π(X).

Example 7. For any n ≥ 1, the sequence

(n, 0), (n− 1, 2), . . . , (n− i, 2i), . . . , (0, 2n)

is obviously a complete chain. Therefore, the set Vn={(n, 0), (n−1, 2),. . . ,(0, 2n)}
is complete. With n = 3 for example, V3 = {(3, 0), (2, 2), (1, 4), (0, 6)}. By Theo-
rem 10 it follows that the set X = π({a3, a2b2, ab4, b6}) = {a3, a2b2, abab, ab2a,
ba2b, baba, b2a2, ab4, bab3, b2ab2, b3ab, b4a, b6} is a maximal supercode.

By Theorem 10, in order to characterize the maximal supercodes over A =
{a, b} we may characterize the complete sets instead. For this we first consider
some transformations on complete chains. Let S: u1, u2, . . . , un be a complete
chain.

(T1) (extension). It consists in doing consecutively the following:
• Add on the left of S a 2-vector u with p1(u) > p1(u1);
• Delete from S all the uis with p2(ui) ≤ p2(u);
• If ui0 is the first among the uis remained, then insert between u and ui0

any chain such that [u, ui0] is a full chain;
• If there is no such a ui0 , then add on the right of u any chain ending with

a v, p1(v) = 0, and such that [u, v] is a full chain;
• Add on the left of u any chain begining with a v, p2(v) = 0, and such that

[v, u] is a full chain.

(T2) (replacement). The following steps will be done successively:
• Replacing some element ui in S by an element u with p1(u) = p1(ui);
• If p2(u) < p2(ui), then delete all the ujs on the left of u with p2(uj) ≥

p2(u);
• If uj0 is the last among the uj remained, then insert between uj0 and u

any sequence such that [uj0 , u] is a full chain;
• If there is no such a uj0 , then add on the left of u any chain commencing

with a v, p2(v) = 0, and such that [v, u] is a full chain;
• If i < n then insert between u and ui+1 any chain such that [u, ui+1] is a

full chain;

46 D.L. Van, K.V. Hung, and P.T. Huy

• If p2(u) > p2(ui), then delete all the ujs on the right of u with p2(uj) ≤
p2(u);

• If uj0 is the first among the ujs remained, then insert between u and uj0

any chain such that [u, uj0] is a full chain;
• If there is no such a uj0 , then add on the right of u any chain ending with

a v, p1(v) = 0, and such that [u, v] is a full chain;
• If i > 1 then insert between ui−1 and u any chain such that [ui−1, u] is a

full chain;
• If i = 1 then add on the left of u any chain begining with a v, p2(v) = 0,

and such that [v, u] is a full chain.

(T3) (insertion). This consists of the following successive steps:
• For some i, insert in the middle of ui and ui+1, 1 ≤ i ≤ n− 1, an element

u with p1(ui) > p1(u) > p1(ui+1);
• If p2(u) ≤ p2(ui), then delete all the ujs on the left of u with p2(uj) ≥

p2(u);
• If uj0 is the last among the ujs remained, then insert between uj0 and u

any chain such that [uj0 , u] is a full chain;
• If there is no such a uj0 , then add on the left of u any chain commencing

with a v, p2(v) = 0, and such that [v, u] is a full chain;
• Insert between u and ui+1 any chain such that [u, ui+1] is a full chain;
• If p2(u) ≥ p2(ui+1), then delete all the ujs on the right of u with p2(uj) ≤

p2(u);
• If uj0 is the first among the ujs remained, then insert between u and uj0

any chain such that [u, uj0] is a full chain;
• If there is no such uj0 , then add on the right of u any sequence ending with

a v, p1(v) = 0, and such that [u, v] is a full chain;
• Insert between ui and u any chain such that [ui, u] become a full chain.

Theorem 11. The following assertions hold true

(i) The transformations (T1)-(T3) preserve the completeness of a chain.
(ii) Any complete chain can be obtained from another one by a finite number of

applications of the transformations (T1)-(T3).
(iii) Every chain S can be embedded in a complete chain by a finite number of

applications of the transformations (T1)-(T3).

Example 8. Consider the chain S : (5, 2), (3, 4), (1, 7). We try to embed S in a
complete chain by using (T1)-(T3). For this, we choose an arbitrary complete
chain S′, say S′ : (2, 0), (1, 2), (0, 4), and manipulate like this:

• Applying (T1) to S′ with u = (5, 2) we obtain from step to step the
following sequences, where underline indicates the 2-vectors added in every step.

(5, 2), (2, 0), (1, 2), (0, 4);
(5, 2), (0, 4);
(5, 2), (2, 3), (0, 4);
(6, 0), (5, 2), (2, 3), (0, 4);

Codes and Length-Increasing Transitive Binary Relations 47

• Applying (T3) to the last chain with u = (3, 4) we obtain successively:

(6, 0), (5, 2), (3, 4), (2, 3), (0, 4);
(6, 0), (5, 2), (3, 4);
(6, 0), (5, 2), (3, 4), (1, 5), (0, 6);
(6, 0), (5, 2), (4, 3), (3, 4), (1, 5), (0, 6);

• Applying (T2) to the last chain with u = (1, 7) we obtain:

(6, 0), (5, 2), (4, 3), (3, 4), (1, 7), (0, 6);
(6, 0), (5, 2), (4, 3), (3, 4), (1, 7);
(6, 0), (5, 2), (4, 3), (3, 4), (1, 7), (0, 8);
(6, 0), (5, 2), (4, 3), (3, 4), (2, 6), (1, 7), (0, 8).

The last chain is a complete chain containing S.

As a consequence of Theorem 11 we have

Theorem 12. Let A be a two-letter alphabet. Then, we have

(i) There exists a procedure to generate all the maximal supercodes over A
starting from an arbitrary given maximal supercode.

(ii) There is an algorithm allowing to construct, for every supercode X over A,
a maximal supercode Y containing X.

Example 9. Let X = {b2a2bab, a3ba2b, b4ab3}. Since p(X) = {(3, 4), (5, 2), (1, 7)}
is an independent set w.r.t. < on V 2, by Theorem 4, X is a supercode over
A = {a, b}. The corresponding chain of p(X) is S : (5, 2), (3, 4), (1, 7). As has
been shown in Example 8, the sequence

S′ : (6, 0), (5, 2), (4, 3), (3, 4), (2, 6), (1, 7), (0, 8)

is a complete chain containing S. The corresponding complete set of S′ is

T = {(6, 0), (5, 2), (4, 3), (3, 4), (2, 6), (1, 7), (0, 8)}.

So Y = p−1(T) is a maximal supercode containing X . More explicitly, Y = π(Z)
with Z = {a6, a5b2, a4b3, a3b4, a2b6, ab7, b8}.

References

1. J. Berstel, D. Perrin, Theory of Codes. Academic Press, New York, 1985.
2. V. Bruyère, M. Latteux, Variable-length maximal codes. Theoretical Computer

Science 98 (1992), 321–337.
3. V. Bruyère, L. Wang, L. Zhang, On completion of codes with finite deciphering

delay. European Journal of Combinatorics 11 (1990), 513–521.
4. A. Ehrenfeucht, G. Rozenberg, Each regular code is included in a maximal

regular code. RAIRO Theoretical Informatics and Applications 20 (1986), 89–96.
5. G. Grätzer, Universal Algebra. Van Nostrand, Princeton, NJ, 1968.

48 D.L. Van, K.V. Hung, and P.T. Huy

6. K. V. Hung, P. T. Huy, D. L. Van, On some classes of codes defined by binary
relations. Acta Mathematica Vietnamica 29 (2004), 163–176.

7. K. V. Hung, P. T. Huy, D. L. Van, Codes concerning roots of words. Vietnam
Journal of Mathematics 32 (2004), 345–359.

8. J. Hopcroft, J. Ullman, Formal Languages and Their Relation to Automata.
Addison-Wesley Publishing Company, Massachussetts, 1969.

9. M. Ito, H. Jürgensen, H. Shyr, G. Thierrin, Outfix and infix codes and related
classes of languages. Journal of Computer and System Science 43 (1991), 484–508.

10. M. Ito, G. Thierrin, Congruences, infix and cohesive prefix codes. Theoretical
Computer Science 136 (1994), 471–485.

11. H. Jürgensen, S. Konstatinidis, Codes. In: G. Rozenberg, A. Salomaa
(eds.), Handbook of Formal Languages. Springer, Berlin, 1997, 511–607.

12. N. H. Lam, Finite maximal infix codes. Semigroup Forum 61 (2000), 346–356.
13. A. A. Markov, An example of an independent system of words which cannot be

included in a finite complete system. Matematicheskie Zametki 1 (1967), 87–90 (in
Russian).

14. D. Perrin, Completing biprefix codes. Theoretical Computer Science 28 (1984),
329–336.

15. A. Restivo, On codes having no finite completion. Discrete Mathematics 17
(1977), 309–316.

16. A. Restivo, S. Salemi, T. Sportelli, Completing codes. RAIRO Theoretical
Informatics and Applications 23 (1989), 135–147.

17. H. Shyr, Free Monoids and Languages. Hon Min Book Company, Taichung, 1991.
18. H. Shyr, G. Thierrin, Codes and binary relations. Lecture Notes 586 “Sèminarie

d’Algèbre, Paul Dubreil, Paris (1975-1976)”, Springer-Verlag, 180–188.
19. D. L. Van, Embedding problem for codes defined by binary relations. Preprint

98/A22, Institute of Mathematics, Hanoi, 1998.
20. D. L. Van, On a class of hypercodes. In: M. Ito, T. Imaoka (eds.), Words,

Languages and Combinatorics III. World Scientific, 2003, 171–183.
21. D. L. Van, K. V. Hung, On codes defined by binary relations, Part I: Embedding

problem (submitted).
22. D. L. Van, K. V. Hung, On codes defined by binary relations, Part II: Vector

characterizations and maximality (submitted).
23. L. Zhang, Z. Shen, Completion of recognizable bifix codes. Theoretical Computer

Science 145 (1995), 345–355.

Languages and Process Calculi for
Network Aware Programming

- Short Summary -

Rocco De Nicola

Dipartimento di Sistemi e Informatica,
Università di Firenze

Abstract. We describe motivations and background behind the design of
KLAIM, a process description language that has proved to be suitable for describ-
ing a wide range of applications distributed over wide area networks with agents
and code mobility. We argue that a drawback of KLAIM is that it is neither a
programming language, nor a process calculus. We then outline the two research
directions we have recently pursued. On the one hand we have evolved KLAIM to
a full-fledged language for highly distributed mobile programming. On the other
hand we have distilled the language to a number of simple calculi that we have
used to define new semantic theories and equivalences and to test the impact of
new operators for network aware programming.

1 Introduction

In the last decade, programming computational infrastructures available globally for
offering uniform services has become one of the main issues in Computer Science. The
challenges come from the necessity of dealing at once with issues like communication,
co-operation, mobility, resource usage, security, privacy, failures, etc., in a setting where
demands and guarantees can be very different for the many different components. This
has stimulated research on concepts, abstractions, models and calculi that could provide
the basis for the design of systems “sound by construction”, predictable and analyzable.

One of the abstractions that appears to be very important is mobility. This feature
deeply increases flexibility and, thus, expressiveness of programming languages for
network-aware programming. Evidence of the success of this programming style is
provided by the recent design of commercial/prototype programming languages with
primitives for moving code and processes, Java, T-Space, Oz, Pict, Oblique, Odyssey
. . . that have seen the involvement of several important industrial and academic research
institutions.

The first foundational calculus dealing with mobility has been the π-calculus, a sim-
ple and expressive calculus aiming at capturing the essence of name passing with the
minimum number of basic constructs. If considered from a network-aware perspective,
one could say that π-calculus misses an explicit notion of locality and/or domain where

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 49–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 R. De Nicola

computations take place. To overcome this deficiency of π-calculus, several founda-
tional formalisms, presented as process calculi or strongly based on them, have been
developed. We want to mention, among the others, Ambient calculus, Dπ-calculus,
DJoin, Nomadic Pict, A major problem that has been faced in their development
has been the search for the appropriate abstractions that can be considered an acceptable
compromise between expressiveness, elegance, and implementability. A paradigmatic
example is the Ambient calculus: it is very elegant and expressive, but a reasonable
distributed implementation is still problematic.

2 A Kernel Language for Agents Interaction and Mobility

KLAIM (A Kernel Language for Agents Interaction and Mobility) is a formalism specif-
ically designed to describe distributed systems made up of several mobile interacting
components that is positioned along the same lines of the above mentioned calculi. The
distinguishing features of the approach is the explicit use of localities for accessing data
or computational resources. The choice of its primitives was heavily influenced by CCS
and π-calculus and by Linda. Indeed, KLAIM stemmed from our work on process alge-
bras with localities [4] and our work on the formalization of the semantics of Linda as
a process algebra [10].

Linda is a coordination language that relies on an asynchronous and associative
communication mechanism based on a shared global environment called tuple space,
a multiset of tuples. Tuples are ordered sequence of information items (called fields).
There can be actual fields (i.e., expressions, processes, localities, constants, identifiers)
and formal fields (i.e., variables). Tuples are anonymous and content-addressable. The
basic interaction mechanism is pattern–matching that is used to select tuples from tuple
spaces. Linda has four primitives for manipulating tuple spaces: two blocking opera-
tions that are used for accessing and removing tuples and two non-blocking ones that
are used for adding tuples.

KLAIM can be seen as an asynchronous higher–order process calculus whose basic
actions are the original Linda primitives enriched with explicit information about the
location of the nodes where processes and tuples are allocated. Communications take
place through distributed repositories and remote operations. The primitives allow pro-
grammers to distribute and retrieve data and processes to and from the different local-
ities (nodes) of a net. Localities are first-class citizens that can be dynamically created
and communicated. Tuples can contain both values and code that can be subsequently
accessed and evaluated. An allocation environment, associating logical and physical lo-
calities, is used to avoid the programmers to consider the precise physical allocation of
the distributed tuple spaces.

The main drawback of KLAIM is that it is neither a real programming language nor
a process calculus. We have thus, more recently, worked along two directions. On the
one hand, we have evolved KLAIM to a full-fledged language (X-KLAIM) to be used
for distributed mobile programming. On the other hand, we have distilled the language
into a number of simpler calculi that we have used to define new semantic theories and
equivalences and to assess the expressive power of tuple based communications and
evaluate the theoretical impact of new linguistic primitives.

Languages and Process Calculi for Network Aware Programming 51

3 A Programming Language Based on KLAIM

X-KLAIM (eXtended Klaim) [1] is an experimental programming language that has
bee specifically designed to program distributed systems with several components in-
teracting through multiple tuple spaces and mobile code (possibly object-oriented). X-
KLAIM has been implemented on the top of a run-time system that was developed in
Java for the sake of portability [2]. The linguistic constructs of KLAIM have proved to
be appropriate for programming a wide range of distributed applications with agents
and code mobility that, once compiled in Java, can run over different platforms.

4 KLAIM-Based Calculi

From KLAIM we have distilled μKLAIM, CKLAIM and LCKLAIM) and we have stud-
ied the encoding of each of them into a simpler one [7]. μKLAIM is obtained from
KLAIM by eliminating the distinction between logical and physical localities (no al-
location environment) and the possibility of higher order communication (no process
code in tuples). CKLAIM, is obtained from μKLAIM by only considering monadic
communications and by removing the action, the non destructive variant of the

basic actions. LCKLAIM is obtained from CKLAIM by removing also the possibility
of performing remote inputs and outputs. In LCKLAIM communications is only local
and process migration is exploited to use remote resources.

This work on core calculi has also stimulated and simplified the search for other
variants of KLAIM that better model more sophisticated settings for network aware
programming. In [6] and in [8] we have considered TOPOLOGICAL-KLAIM a variant
of CKLAIM that permits explicit creation of inter-node connections and their destruction
and thus considering two typical features of global computers, namely dynamic inter-
node connections and failures. In [9] we have developed more flexible (but still easily
implementable) forms of pattern matching.

For the simpler calculi we have instantiated the theory developed in [3] and have in-
troduced two abstract semantics: barbed congruence and may testing. They are obtained
as the closure under operational and contexts reduction of the extensional equivalences
induced by what can be considered a natural basic observable for global computers:

A specific site is up and running
(when requested, the site provides a data of some kind).

For the two equivalences obtained as context closures, we have also provided alter-
native characterizations that permit a better appreciation of their discriminating power
and the development of proof techniques that avoid universal quantification over con-
texts. Indeed, we have established their correspondence with a bisimulation-based and
a trace-based equivalence over the labelled transition system used to describe the se-
mantics for the different variants of KLAIM.

5 Miscellanea

Starting from KLAIM, other lines of research have been pursued. We have considered
extensions of KLAIM for dealing with issues of security, quality of services and perfor-

52 R. De Nicola

mance evaluation. We have studied logics for reasoning about mobile code. We have
proposed type systems for controlling access to shared resources. Additional informa-
tion, software and papers related to KLAIM and to the KLAIM Project can be retrieved
at: .

Acknowledgements

The KLAIM Project is a collective effort. It is the result of the Ph.D. thesis of Lorenzo
Bettini, Michele Loreti and Daniele Gorla and of joint work with many other re-
searchers: Viviana Bono, Gianluigi Ferrari, Joost-Peeter Katoen, Diego Latella, Mieke
Massink, Eugenio Moggi, Ugo Montanari, Rosario Pugliese, Emilio Tuosto and Betti
Venneri. I would like to thank all of them for the contribution to the project and for what
they have taught me.

References

1. L. Bettini, R. De Nicola. Interactive Mobile Agents in X-KLAIM. In SFM-05:Moby, 5th

International School on Formal Methods for the Design of Computer, Communication and
Software Systems: Mobile Computing, volume 3465 of LNCS, pages 29–68, Spinger, 2005 .

2. L. Bettini, R. De Nicola, and R. Pugliese. KLAVA: a Java Package for Distributed and Mobile
Applications. Software – Practice and Experience, 32:1365–1394, 2002.

3. Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Basic observables for processes.
Inf. Comput., 149(1):77–98, 1999.

4. Flavio Corradini and Rocco De Nicola. Locality based semantics for process algebras. Acta
Inf., 34(4):291–324, 1997.

5. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: a Kernel Language for Agents Interaction
and Mobility. IEEE Trans. on Software Engineering, 24(5):315–330, 1998.

6. R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for global com-
puting. Tech. Rep. 07/2004, Dip. di Informatica, Università di Roma “La Sapienza”. Short
version to appear in the Proc. of ICALP’05.

7. R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of KLAIM-based calculi.
To appera in TCS. Short version in Proc. of EXPRESS’04, ENTCS 128(2):117–130. Elsevier,
2004.

8. R. De Nicola, D. Gorla, and R. Pugliese. Global computing in a dynamic network of tuple
spaces. In Proc. of COORDINATION’05, volume 3454 of LNCS, pages 157–172. Springer,
2005.

9. R. De Nicola, D. Gorla, and R. Pugliese. Pattern matching over a dynamic network of tuple
spaces. In Proc. of FMOODS’05, volume 3535 of LNCS, pages 1–14. Springer.

10. Rocco De Nicola and Rosario Pugliese. Linda-based applicative and imperative process
algebras. Theor. Comput. Sci., 238(1-2):389–437, 2000.

Stochastic Analysis of Graph Transformation
Systems: A Case Study in P2P Networks

Reiko Heckel�

Department of Computer Science, University of Leicester, United Kingdom

Abstract. In distributed and mobile systems with volatile bandwidth
and fragile connectivity, non-functional aspects like performance and re-
liability become more and more important. To formalise, measure, and
predict these properties, stochastic methods are required. At the same
time such systems are characterised by a high degree of architectural
reconfiguration. Viewing the architecture of a distributed system as a
graph, this is naturally modelled by graph transformations.

To address these two concerns, stochastic graph transformation sys-
tems have been introduced associating with each rule its application
rate—the rate of the exponential distribution governing the delay of
its application. Deriving continuous-time Markov chains, Continuous
Stochastic Logic is used to specify reliability properties and verify them
through model checking.

In particular, we study a protocol for the reconfiguration of P2P net-
works intended to improve their reliability by adding redundant connec-
tions. The modelling of this protocol as a (stochastic) graph transfor-
mation system takes advantage of negative application and conditions
path expressions. This ensuing high-level style of specification helps to
reduce the number of states and increases the capabilities for automated
analysis.

1 Introduction

Non-functional requirements, concerning the quality or resources of a system,
are often difficult to capture, measure, and predict. At the same time they are
usually critical for success. Many failures of software engineering projects have
been attributed to a lack of understanding of non-functional aspects in the early
stages of development [9].

With the success of Internet and mobile technology, properties like the reli-
ability of connections, available bandwidth and computing resources become an
even greater concern. Since individual occurrences of failures are generally un-
predictable, stochastic concepts are required to formalise such properties. Many
specification formalisms provide corresponding extensions, including stochastic
transition systems (or Markov chains [2,21]), stochastic Petri nets [1,4,19,20] or
process algebras [5,7]. Most of these formalisms specialise in describing behaviour
� European Community’s Human Potential Programme under contract HPRN-CT-

2002-00275, SegraVis.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 53–69, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

54 R. Heckel

in terms of orderings of events, neglecting aspects like data transformations and
changes to software architecture or network topology.

A noticeable exception is the π-calculus [18], which allows communication
of channel names between interacting processes. It is thus possible to describe
changes of data structures or network topologies. The stochastic π-calculus [22],
extending the original by assigning rates to the communication actions of a pro-
cess, allows to address non-functional aspects. However, while the π-calculus is an
adequate semantic framework for programming, it is too low-level for expressing
requirements in the early stages of a project. Here communication between de-
velopers and clients requires a direct, diagrammatic description of what changes
are required, instead of a detailed description of how they are achieved.

A more abstract style of specification is provided by rewriting-based for-
malisms like Rewriting Logic or Graph Transformation [17,24]. Here, rules spec-
ify pre- and post-conditions of operations (what should be achieved) in terms of
complex patterns, while the underlying mechanisms for pattern matching and
implementing these changes are hidden from the user. Graph transformation, in
particular, supports a visual representation of rules which is reminiscent of to
the intuitive way in which engineers would sketch, for example, network recon-
figurations.

In order to account for the non-functional aspects, we introduced stochas-
tic graph transformation systems [11]. Associating an exponentially distributed
application delay with each rule, we derive continuous-time Markov chains
(CTMCs), the standard model for stochastic analysis. This enables us to es-
tablish a link to continuous stochastic logic (CSL) to express and verify proper-
ties like the probability of being connected within 20 seconds after start-up, the
long-term probability for connectedness, etc.

This paper is devoted to a case study, a simplified version of a protocol for
the reconfiguration of Peer-to-Peer networks [16], to validate the practicability of
the approach. P2P networks are decentralised overlay networks that use a given
transport infrastructure like the Internet to create a self-organising network. Due
to the lack of global control and potential unreliability of the infrastructure, P2P
networks are prone to dependability problems. The standard solution consists
in creating sufficient redundancy so that, when a node unexpectedly leaves the
network, its role in the routing of information can be taken over by other nodes.

Mariani [16] proposes an algorithm which, executed asynchronously by each
peer, adds redundant connections to the network to guarantee that the disap-
pearance of a peer does not unduly affect the overall performance and routing
capabilities of the network. It does so by querying the local context of a node up
to a given depth to expose potential weaknesses in the network topology. The
assumption is that this happens fast enough to prevent loss of connectivity due
to the disappearance of the node before extra links could be added. The desired
result is an increased fault tolerance.

We are going to validate these assumptions and compare the level of fault
tolerance achieved with the one obtained by the simpler solution of just adding
a limited number of references at random. To this purpose, we shall model the

Stochastic Analysis of Graph Transformation Systems 55

protocol as a stochastic graph transformation systems and analyse different vari-
ants of it. To develop a satisfactory model, we will require advanced features for
controlling the application of rules, like negative application conditions and path
expressions. We give an introduction to the basic approach and its extensions
and discuss their relevance w.r.t. the model checking problem.

The paper is structured as follows. Below, in Sect. 2 we introduce typed
graph transformation systems and provide a functional model model of the P2P
network. In Sect. 3 we extend definitions and examples to stochastic graph trans-
formation systems, including the derivation of Markov chains, stochastic logic
and model checking. Their application to the case study is reported in Sect. 4.
Sect. 5 concludes the paper with a discussion of tools and relevant theoretical
problems.

2 Graph Transformation Systems

In this section we will first focus on the basic ideas of typed graph transformation
systems, followed by a survey of the more advanced concepts required by our
case study. We follow the so-called algebraic single-pushout (SPO) approach [15]
to the transformation of typed graphs [13,6].

2.1 Type and Instance Graphs

Graphs provide the most basic mathematical model for entities and relations. A
graph consists of a set of vertices V and a set of edges E such that each edge e
in E has a source and a target vertex s(e) and t(e) in V , respectively.

In this paper, graphs shall represent configurations of a Peer-to-Peer (P2P)
network, modelling network nodes as vertices and links between them as edges.
We distinguish two different kinds of nodes in our networks, labelled by P for
peers and R for registry, as well as edge types l and r representing links and
registrations, respectively. The idea is that new peers participating in the network
have to login with a central registry server. Afterwards, they can connect and
communicate directly, without using any central infrastructure.

The graph in the upper right of Fig. 2.1 represents a network with a single
participant and the registry, while the one in the upper left has two connected
participants. Our graphs are directed, but in the case of links we use undirected
l-edges edges to denote symmetric pairs of directed ones.

Like a network configuration, also a collection of interrelated types may be
represented as a graph. In the bottom, Figure 2.1 shows the type graph of the
P2P model, providing the types for the instance graphs in the top. The relation
between types and their occurrences in configurations is formally captured by
the notion of typed graphs : A fixed type graph TG represents the type level and
its instance graphs the individual snapshots.

Definition 1 (typed graphs). A directed (unlabelled) graph is a four-tuple
G = 〈GV , GE , srcG, tarG〉 with a set of vertices GV , a set of edges GE, and
functions srcG : GE → GV and tarG : GE → GV associating to each edge

56 R. Heckel

Fig. 1. Type and instance graphs

its source and target vertex. A graph homomorphism f : G → H is a pair of
functions 〈fV : GV → HV , fE : GE → HE〉 preserving source and target, i.e.,
such that fV ◦ srcG = srcH ◦ fE and fV ◦ tarG = tarH ◦ fE.

Fixing a type graph TG, an instance graph 〈G, tpG〉 over TG is a graph G
equipped with a graph homomorphism tpG : G → TG. A morphism of typed
graphs h : 〈G1, g1〉 → 〈G2, g2〉 is a graph homomorphism h : G1 → G2 that
preserves the typing, that is, tpG2 ◦ h = tpG1 .

We us the notation of the Unified Modelling Language (UML) for class and
object diagrams to capture the distinction between types and instances: r : R
denotes an element of an instance graph 〈G, tpG〉 such that its type tpG(r) = R.
The expression is underlined to stress that it is considered part of a system
configuration (rather than a rule as we shall see below). Morphisms between
typed graphs 〈G, tpG〉 and 〈H, tpH〉 are exemplified in Fig. 2.1. Morphism f
represents a subgraph inclusion while g, combining inclusion and renaming, is
an injective homomorphism or subgraph isomorphism.

2.2 Single-Pushout Graph Transformation

Having modelled configurations as instance graphs, we are turning to the speci-
fication of instance graph transformations by means of rules. A rule can be seen
as a representative example of all transformations, modelling them by means of
patterns for pre and post states.

For a given type graph TG, a graph transformation rule p : L → R consists
of a name p and a pair of graphs typed over TG. The left-hand side L represents
the pre-condition of the operation specified by the rule while the right-hand side
R describes the post-condition. A correspondence between elements in L and R
is given by the identities of the nodes (sometimes omitted, assuming that the
intention is obvious from the layout).

The rules for the P2P network model are shown in Fig. 2 and 5. Rule new
creates a new peer. This requires to look up the registration of an existing peer
at the registry server, represented by the r-edge from r : R to p : P , to create a

Stochastic Analysis of Graph Transformation Systems 57

Fig. 2. Rules for creating and killing peers

new peer p1 : P with corresponding registration, and to link it to p with a new
edge of type l.

Rule kill models the deletion of a peer with all its ingoing and outgoing
edges. This may cause the network to become disconnected, except for regis-
trations, which are not used for communication. The rule disconnected in the
bottom is provided to detect such situations. The rule is applicable if there are
two registered nodes which are not connected by a path of l-edges, but the appli-
cation does not have any effect on the graph. This rule combines two interesting
features: Negative application conditions and path expressions, both to be intro-
duced below in more detail.

Rules generate transformations by replacing in a given graph a match for the
left-hand side with a copy of the right-hand side. Thus, a graph transformation

from a pre-state G to a post-state H , denoted by G
p(m)
=⇒ H , is performed in

three steps.

1. Find a match of the left-hand side L in the given graph G, represented by an
injective graph morphism m : L → G, and check if it satisfies the application
conditions, if any;

2. Delete from G all vertices and edges matching L \R;
3. Paste to the result a copy of R \ L, yielding the derived graph H .

In Fig. 3 the application of a rule is shown which creates a new peer, but
unlike new in Fig. 2 passes on the registration from the existing to the new peer.
The match m of the rule’s left-hand side is indicated by the boldface nodes and
edges in G. The transformation deletes the r-edge from r : R to p

2
: P , because

it is matched by an edge in the left-hand side L, which does not occur in R.
To the graph obtained after deletion, we paste a copy of the node p1 : P in L,
renaming it to p

3
to avoid a name conflict, as well as copies of the l-edge from

p : P to p1 : P and the r-edge from r : R to p1. The match m tells us where these
edges must be added, e.g., p �→ p

2
means that the new l-edge is attached to p

2
rather than to p

1
in H . However, this is not the only possibility for applying this

58 R. Heckel

Fig. 3. Transformation step using rule collect

rule. Another option would be to match p by p
1
, attaching the link to a different

peer. That means, there are two causes of non-determinism: choosing the rule to
be applied (e.g., new or pass on) and the match at which it is applied. (In this
case, both transformations lead to graphs that are isomorphic, i.e., differ only
up to renaming.)

The example of Fig. 3 is not entirely representative of the problems that may
be caused by deleting elements in a graph during step 2. In fact, we have to
make sure that the remaining structure is still a valid graph, i.e., that no edges
are left dangling because of the deletion of their source or target vertices. The
problem is exemplified by the step in Fig. 4. The deletion of p

2
: P would leave

the attached r and l edges “dangling”.
There exist two solutions to this problem: a radical and a conservative one.

The first gives priority to deletion, removing the vertex along with the dangling
edges. The conservative alternative consists in assuming a standard applications
condition which excludes the depicted situation as valid transformation. This
application condition is known as the dangling condition, and it is characteristic
of the algebraic DPO (double-pushout) approach to graph transformation [8].

Fig. 4. More interesting example

Stochastic Analysis of Graph Transformation Systems 59

We adopt the more radical Single-Pushout (SPO) approach [15] because it
provides a more realistic representation of the behaviour we intend to model: It
may not be possible to stop a peer from leaving the network, even if it is still
connected to other peers. The SPO approach owes its name to the fact that the
construction of applying a transformation rule can be formalised as a pushout
(a gluing construction) in the category of graphs and partial graph homomor-
phisms [15]. A partial graph morphism g : G → H is a total morphisms from
some subgraph dom(g) of G to H . We consider the simplified case of injective
matching, where the left-hand side is essentially a subgraph of the graph to be
transformed, rather than an arbitrary homomorphic image.

Definition 2 (rule, match, transformation). A rule p : L
r−→ R consists

of a rule name p and a partial graph morphism r. A match for r : L → R into
some graph G is a total injective morphism m : L → G. Given a rule p and a
match m for p in a graph G the direct (SPO-) transformation from G with p at

m, written G
p(m)
=⇒ H, is the pushout of r and m in the category of graphs and

partial graph morphisms.

L

(1)m

��

r �� R

m∗

��
G

r∗
�� H

The typing G, L
r−→ R, and L

m−→ G over TG induces a unique typing for
the derived graph H as well as for the tracking morphism r∗ and the co-match
m∗. Intuitively, all elements that are preserved get their typing from G via r∗

and all new elements inherit their typing from R via m∗. Pushout properties of
(1) imply that there are no further elements in H (i.e., r∗ and m∗ are jointly
surjective) and for all elements that are in the image of both morphisms, there
exists a common pre-image in L so that commutativity of the diagram and type
compatibility of r and m ensure that they inherit the same types from R and G.

2.3 Application Conditions and Path Expressions

Quite often, plain graph matching is not enough to express sophisticated ap-
plication conditions. An example is the dangling edge condition, requiring that
there are no edges incident to nodes that are to be deleted, except for those that
are already part of the rule.

User defined negative application conditions [10] can “sense” the existence or
non-existence of connections in the vicinity of the match. As examples, Fig. 5
shows the rules for creating redundant links in the network to achieve a higher
fault tolerance in case a node is unexpectedly deleted. Using smart in the bot-
tom, a shortcut is introduced if the two neighbours of a peer are not otherwise
connected by a direct link or via a third peer. This is expressed by two negative
context conditions: the crossed out l-edge and the crossed out P -node with its
two attached edges.

60 R. Heckel

Fig. 5. Rules for introducing short-cuts in the network

The rule should be applicable at match m only if m can not be extended
to include any of the two forbidden structures, i.e., neither the crossed out l-
edge nor the P -node with its two edges. They are represented in Fig. 6 by two
injective morphisms l1 and l2 outgoing from the left-hand side L. Extension li
is present in graph G if an injective morphism ni can be found which coincides
with m on L, i.e., the corresponding sub-diagram commutes.

Definition 3 (application conditions). A constraint over L is an injective
typed graph morphism L

l−→ L̂. Given a a match (injective morphism) L
m−→ G,

match m satisfies l, written m |=L l, if there is an injective morphism L̂
n−→ G,

Fig. 6. Satisfaction of shortcut constraints as graph morphisms

Stochastic Analysis of Graph Transformation Systems 61

such that n ◦ l = m. An application condition is a Boolean expression using
constraints over L as atomic propositions. Satisfaction is defined as usual, based
on the satisfaction of constraints.

A conditional transformation step is a transformation step where the match
satisfies the application conditions associated with the rule.

The negative application in Fig. 6 is thus of the structure N = ¬l1 ∧¬l2. Its
satisfaction does not only depend on the graph G, but also on the chosen match
m. Consider, for example, m1 = {pi �→ p

i
}, m2 = {p1 �→ p

3
, p2 �→ p

4
, p3 �→ p

5
},

and m3 = {p1 �→ p
3
, p2 �→ p

1
, p3 �→ p

5
}. Then m1, m2 |=L N , but m3 |=L N .

The rule random in Fig. 5 models the naive approach of adding links at
random as long as the number of additional l-edges attached to either p3 or p4,
beyond the ones linking them to p1, do not exceed two. Hence, the rule will
not increase the degree of any node beyond three. This condition is expressed
by negative constraints, too. Note that injectivity of L̂

n−→ G is essential here,
because this enables us to count the number of nodes in a graph which would
have been confused otherwise.

Path expressions specifying the (non-)existence of certain paths support the
navigation within graphs and are generally useful if non-local graph properties
shall be expressed. For instance, rule disconnected in Fig. 2 detects disconnected
parts of the graph.

For vertices v, w ∈ GV , a path from v to w is a sequence of edges s =
(e1, e2, . . . , en) ∈ GE such that tarG(ei) = srcG(ei+1) for all i ∈ {1, . . . , n − 1}
(the target vertex of one edge is the source of its successor), v = srcG(e1) and
w = tarG(en). If G is typed over TG by tpG, the type of s is is defined by
extending tpG to sequences, i.e., tpG(s) = tpG

E(e1), tpG
E(e2), . . . , tpG

E(en).
A path expressions p is a regular expression over the alphabet TGE of edge

types. Labelling an edge e in the left-hand side of a rule, it is satisfied by a match
m : L → G if there exists a path s from m(srcL(e)) to m(tarL(e)) such that
tpG(s) = p.

Path expressions are formally subsumed by Def. 3 if we allow for a countably
infinite set of constraints and infinitary Boolean expressions as application con-
ditions. An expression stating the non-existence of a path labelled by l-edges, like
in rule disconnected in Fig. 2, is then represented by a conjunction ¬l1∧¬l2∧ . . .
where the li are constraints specifying paths of length i.

2.4 Graph Transformation Systems

Rules over the same type graph are collected in a graph transformation system.
Given a graph to start with, they can generate any of the usual state-based
models, like sets of traces, labelled transition systems, event structures. We will
be particularly interested in a variant of transition systems.

Definition 4 (graph transformation system). A graph transformation sys-
tem G = 〈TG, P 〉 consists of a type graph TG and a set of (conditional) graph
transformation rules p : L

r−→ R ∈ P . The application condition of p is denoted
by AP (p).

62 R. Heckel

A transformation sequence in G

G0
p1(m1)=⇒ G1

p2(m2)=⇒ · · · pk(mk)
=⇒ Gk

is a sequence of consecutive transformation steps with pi ∈ P , briefly denoted by
G0 =⇒∗

G Gk.

The graph transformation systems we shall be interested in are

– Grandom = 〈TG, {new, kill, disconnected, random}〉
– Gsmart = 〈TG, {new, kill, disconnected, smart}〉

with TG being the type graph shown in the bottom of Fig. 2.1 and the rules
given in Fig. 2 and 5.

A labelled transition graph is the multi-graph equivalent of a labelled transi-
tion system, allowing for more than one transition between a given pair of states,
defined as isomorphism classes of the graphs reachable from the initial one.

Definition 5 (induced labelled transition graph). Let G = 〈TG, P 〉 be a
graph transformation system and G0 a graph typed over TG. Assume a fixed
mapping χ associating to each isomorphism class C of typed graphs a represen-
tative G, i.e. χ(C) = G with C = [G] := {H | H ∼= G}. The labelled transition
graph induced by G and G0 is given by LTG(G, G0) = 〈L, S, T, pre, post, lab〉,
where

– L = P is the set of rule names of G;
– S is the set of all isomorphism classes of graphs reachable from G0, i.e.

S = { [Gn] | G0 =⇒∗
G Gn};

– T is the set of transformations t = (G
p(m)
=⇒ H) with χ(s) = G and χ(s′) = H

for some s, s′ ∈ S. In this case, pre(t) = s, post(t) = s′, lab(t) = p and we
write briefly s

p
=⇒ s′.

Multiple transitions are of interest when in the following section labelled
transition graphs are used to derive Markov chains.

3 Stochastic Graph Transformation

In this section, we introduce stochastic graph transformations extending typed
graph transformation systems in the SPO approach by rates associated with rule
names. We show how to derive a Continuous-Time Markov Chain (CTMC) from
the generated transition system, thus providing the basis for stochastic logic and
model checking in Section 3.3.

3.1 Markov Chains

First we provide some basic notions adopting the Q-matrix, a kind of “incidence
matrix” of the Markov Chain, as elementary notion (cf. [21]).

Definition 6 (Q-matrix). Let S be a countable set. A Q-matrix on S is a
real-valued matrix Q = Q(s, s′)s,s′∈S satisfying the following conditions:

Stochastic Analysis of Graph Transformation Systems 63

(i) 0 ≤ −Q(s, s) < ∞ for all s ∈ S,
(ii) Q(s, s′) ≥ 0 for all s = s′,
(iii)

∑
s′∈S Q(s, s′) = 0 for all s ∈ S.

The Q-matrix is also called transition rate matrix. We use Q-matrices in order
to define random processes. A random process is a family of random variables
X(t) where t is an indexing parameter. Depending on whether t is taken from
a discrete or continuous set, we speak of a discrete- or continuous-time process,
respectively.

We consider continuous-time random processes in which the number of times
the random variables X(t) changes value is finite or countable. Let t1, t2, t3, . . . be
the times at which the state changes occur. If we ignore how long the random pro-
cess remains in a given state, we can view the sequence X(t1), X(t2), X(t3), . . .
as a discrete-time process embedded in the continuous-time process, the so called
jump chain [21, 2.2].
Definition 7 (CTMC). A continuous-time Markov chain (CTMC) is a
continuous-time, discrete-state random process such that
1. The jump chain is a discrete-time Markov chain, i.e. a random process in

which the current state depends only on the previous state in the chain.
2. The time between state changes is a random variable T with a memoryless

distribution, i.e. P(T > t + τ | T > t) = P(T > τ) for all t, τ > 0.

A Q-matrix on a countable set of states S defines a CTMC in the following
way:

If s = s′ and Q(s, s′) > 0, then there is a transition from s to s′. If the
set {s′ | Q(s, s′) > 0} is not a singleton, then there is a competition between
the transitions originating in s. The probability that transition s → s′ wins the
“race” is −Q(s,s′)

Q(s,s) . This defines the jump chain.
The time T for leaving a state s to another state is exponentially distributed

with rate Q(s) = −Q(s, s) (the total exit rate), i.e. P(T > t) = e−Q(s)·t. The
exponential distribution is well-known to enjoy the memoryless-property [21,
2.3.1]. Thus a Q-matrix defines a Continuous-Time Markov Chain:
Definition 8 (CTMC with generating matrix Q). Let Q be a Q-matrix on
a countable set of states S. Then the continuous-time random process with jump
chain and state-change times as decried above is the Continuous-Time Markov
Chain with generator matrix Q.

Let Q be a Q-matrix on S and Q′ be a Q-matrix on S′. We call the CTMCs
generated by Q and Q′ isomorphic if there is a bijective mapping φ : S → S′ such
that Q′(φ(s), φ(t)) = Q(s, t) for all states s, t ∈ S. The transition probability
matrix P (t) = (Pss′ (t))s,s′∈S describes the dynamic behaviour. It is the minimal
non-negative solution of the equation

P ′(t) = QP (t), P (0) = I.

The (s, s′)-indexed entry of P (t) specifies the probability that the system is
in state s′ after time t if it is in state s at present. Given an initial distribution
π(0), the transient solution π(t) = (πs(t))s∈S is then

64 R. Heckel

π(t) = π(0)P (t).

In the finite case, P (t) can be computed by the matrix exponential function,
P (t) = eQt, but the numerical behaviour of the matrix exponential series is
rather unsatisfactory [25]. Apart from the transient solution, which specifies the
behaviour as time evolves, the steady state or invariant distribution is of great
interest. It is a distribution, i.e. a map π : S → [0, 1] with

∑
s∈S πs = 1, such

that πQ = 0 holds. The steady state gives information about the long term
behaviour of the Markov Chain.

3.2 Stochastic Graph Transformation Systems

A stochastic graph transformation system associates with each rule name a pos-
itive real number representing the rate of the exponentially distributed delay of
its application.

Definition 9 (stochastic GTS). A stochastic graph transformation system
SG = 〈TG, P, ρ〉 consists of a graph transformation system 〈TG, P 〉 and a func-
tion ρ : P → R+ associating with every rule its application rate ρ(p).

For the rules of our sample systems Grandom,Gsmart, fixed rates shall be
given by ρ(new) = ρ(kill) = 1 and ρ(disconnected) = 0, while the rates of
random, smart shall range over 10x for x = 1 . . . 4. That means, disconnected
shall never actually be applied, while the frequency of applying the rules for
creating shortcuts will vary considerably between the experiments. This will
allow us to answer the question if and under which conditions the protocol
proposed in [16] is superior to a random addition of links.

Next we show how a stochastic graph transformation system gives rise to
a Markov Chain, so that the analysis techniques described in Sect. 3.1 can be
applied.

Definition 10 (induced Markov chain). Let SG = 〈TG, P, ρ〉 be a stochas-
tic graph transformation system with start graph G0 and let the induced labelled
transition graph LTG(G, G0) = 〈L, S, T, pre, post, lab〉 be finitely-branching. As-
sume for all s ∈ S that ρ(p) = 0 if p ∈ R(s, s).

Then the Q-matrix on S, generating the induced Markov chain of SG is
defined by

Q(s, s′) =

⎧⎪⎪⎨⎪⎪⎩
∑

s
p

=⇒s′
ρ(p) , for s = s′

−
∑
t	=s

Q(s, t) , for s = s′.

The initial distribution π(0) is given by πs(0) = 1 for s = [G0] and πs(0) = 0
else. For a proof that this is well-defined, see [11].

Note that there may be multiple transitions linking two given states. As the
Q-matrix can hold only a single entry for every pair of states, the rates of all
these transitions have to be added up. Hence our notion of equality on transitions

Stochastic Analysis of Graph Transformation Systems 65

determines the rate in the Q-matrix. We regard two transitions as equal only if
the same rule is applied at the same match. For example, if two different peers
can decide to terminate themselves, these decisions should be independent, lead
to two different transitions, and finally add up to a higher rate.

3.3 Stochastic Temporal Logic

We use extended Continuous Stochastic Logic CSL as presented in [3] to describe
properties of CTMCs. Suppose that a labelling function L : S → 2AP is given,
associating to every state s the set of atomic propositions L(s) ⊆ AP that are
valid in s. The syntax of CSL is:

Φ ::= tt | a | ¬Φ | Φ1 ∧ Φ2 | S�p(Φ) | P�p(Φ1UIΦ2)

where � ∈ {≤,≥}, p ∈ [0, 1], a ∈ AP and I ⊆ R is an interval. The other
boolean connectives are defined as usual, i.e., ff = ¬tt, Φ∨Ψ = ¬(¬Φ∧¬Ψ) and
Φ → Ψ = ¬Φ∧Ψ . The steady-state operator S�p(Φ) asserts that the steady-state
probability of the formula Φ meets the bound �p. The operator P�p(Φ1UIΦ2)
asserts that the probability measure of the paths satisfying Φ1UIΦ2 meets the
bound �p.1

For example, the formula P≥0.02(true U [0,10] disconnected) expresses the fact
that the probability of reaching a state labelled disconnected within 10 time
units is at most 0.02, while S≤0.01(disconnected) that the long-term probability
of being in a state labelled disconnected is less than 0.01. Both operators are
also available as queries, asking for the probability of a certain formula to be
true. For example, S=?(disconnected) would return the probability of being in
a disconnected-labelled state, rather than true or false.

In order to use CSL for analysing stochastic graph transformation systems,
we have to define the atomic propositions AP and the labelling function L.

Definition 11 (interpreting CSL over labelled transition graphs). Let
LTG = 〈L, S, T, pre, post〉 be the labelled transition graph of a (stochastic) graph
transformation system G with initial graph G0. We define AP = L to be the set
of transition labels (rule names of G), and the labelling of states

L(s) = {p ∈ AP | ∃t : pre(t) = s}

to be given by the sets of labels of outgoing transitions.

Thus we can reason about the applicability of rules. Coming back to the
above example, a state labelled disconnected is therefore one where the rule
disconnected is applicable (which has an outgoing transition with that label).
S=?(disconnected) therefore queries the transition system for the probability of
being in a disconnected state.

Recall that rule disconnected does not have any effect on the state, i.e., it
is exclusively used to represent a state property. The transition rates of such
property rules are set to 0, so that they do not affect the Q-matrix.
1 The other path and state operators can be derived. Details are given in [3].

66 R. Heckel

4 Application

We have constructed an experimental tool chain consisting of Groove [23] for
generating the labelled transition graph of a graph transformation system, and
Prism [14] for probabilistic model checking. An adapter connects both tools by
translating the transition graph generated by Groove into a Prism transition
system specification, incorporating the transition rates ρ as specified in a separate
file 2.

As usual, the size of the state space to be generated and analysed is a limiting
factor. Presently the main bottleneck is not the actual state space generation in
Groove, which can handle up to 106 states, but its import into the Prism
model checker, which reaches its limits at a few thousand states. The actual
model checking, once the model is successfully imported, takes no more than a
few seconds.

The problem is caused by the low-level presentation of transition systems
generated by the transformation tool, which uses a single state variable s only.
Transitions are represented as conditional assignments as in the listing below,
where [new]s=176->1*new_rate:(s’=80) defines a transition from state 176
to state 80 using rule new at rate new rate = 1. The enumeration at the end
defines the labelling of states by atomic propositions (= rule names).

stochastic
// 605 Nodes
// 14322 Transitions
const int kill_rate=1;
const int smart_rate=1000;
const int new_rate=1;
const int disconnected_rate=0;
module M s : [0..604] init 438;

[new] s=176 -> 1*new_rate:(s’=80);
[kill] s=359 -> 2*kill_rate:(s’=537);
...
[disconnected] s=101 -> 4*disconnected_rate:(s’=422);

endmodule
// label "smart" = (s= 227, 159, 587, 247, 194);
// label "kill" = (s= 359, 174, 202, 151, 264, 126, ...);
// label "new" = (s= 176, 341, 324, ...);
// label "disconnected" = (s= 95, 364, 302, 116, 402, ...);

The limitation in the number of states requires a style of specification where
all operations are specified by single rules, rather than breaking them down into
smaller steps. The latter would lead to simpler rules, but create intermediate
states. The use of path expressions and application conditions is essential for
this style of specification.

The results of applying the tool chain to the two stochastic graph transfor-
mation systems defined in the previous section are visualised in Fig. 7.

2 http://www.ls10.de/sgt

Stochastic Analysis of Graph Transformation Systems 67

Fig. 7. Results of stochastic model checking

Both systems have been restricted to a maximum of 7 peers and one registry.
The bottom graph represents the behaviour of Gsmart whose transition graph
has 798 states and 16293 transitions.

We observe that, increasing the rate of rule smart by a factor of 10 we de-
crease the long-term probability for a disconnected network by about the same
factor: from 0.225300 for ρ(smart) = 10 to 0.000244 for ρ(smart) = 10000. In-
deed, for rates at least 10 times higher than those of kill and new, the probability
seems to go against 2.4 · ρ(smart)−1. That means, an estimate of the average
time it takes to execute (the implementation of) smart in relation with the rate
of peers entering and leaving the system would provide us with an estimate of
the networks reliability.

The upper graph in Fig. 7 represents the system Grandom which has 487 states
and 9593 transitions. We observe that the added redundancy does not have a
relevant effect on the reliability, even if the number of additional edges created
is roughly the same as in the other system (the overall number of states is only
slightly smaller). This shows the superiority of the first system.

5 Conclusion

In this paper we have developed a case study in stochastic graph transformation
to validate the practicability of the approach and understand its limitations.
The problem addressed, a protocol for adding redundant links in a P2P net-
work, has been modelled and analysed using an experimental tool chain. Let us
conclude this paper by discussing some of the issues and lessons learned in this
exercise.

68 R. Heckel

First, the model in this paper captures only a simplified version of the original
protocol. A complete presentation would have required even more advanced fea-
tures, like rule priorities or multi-objects, which are partly beyond the abilities
of available analysis tools. Alternatively, a high amount of encoding of standard
graph algorithms would have rendered the approach useless for model checking.

A possible solution to this problem is the use of procedural abstractions
as provided by programming-oriented graph transformation approaches like
Fujaba [26]. Ideas for structuring stochastic graph transformation systems
into modules could be used to encapsulate the implementation of these pro-
cedures [12].

Second, P2P networks often contain thousands or even millions of nodes.
Hence, the validity of the results of our analysis, which only considers seven peers,
can be questioned. However, this is not so much an issue of the formalism itself,
but of the analysis techniques and tools. We expect that much more realistic data
can be obtained by complementing model checking with stochastic simulation.

Finally, it depends on the specific application domain whether user behaviour,
as expressed in rules like new, kill, or system behaviour like in smart, random is
exponentially distributed. Future work will extend the approach to allow different
kinds of distributions.

Acknowledgement. The author wishes to express his gratitude to Arend Rensink
for numerous new versions of Groove to cater for the needs of the case study,
Sebastian Menge for his support with the transformation tool from Groove
to Prism transition systems, as well as Thomas Erlebach, Georgios Laijos, and
Leonardo Mariani for comments and discussions.

References

1. M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing.
John Wiley and Sons, 1995.

2. William G. Anderson. Continuous-Time Markov Chains. Springer, 1991.
3. Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Ka-

toen. Model checking continuous-time markov chains by transient analysis. In
Computer Aided Verification, pages 358–372. Springer, 2000.

4. Falko Bause and Pieter S. Kritzinger. Stochastic Petri Nets. Vieweg Verlag, 2nd
edition, 2002.

5. E. Brinksma and H. Hermanns. Process algebra and Markov chains. In J.-P. Katoen
E. Brinksma, H. Hermanns, editor, FMPA 2000, number 2090 in LNCS, pages 183–
231. Springer, 2001.

6. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3,4):241–266, 1996.

7. P.R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. IPA
Dissertation Series 1999-10, CTIT PhD-Thesis Series 99-25, University of Twente,
November 1999.

8. H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach.
In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–
180. IEEE, 1973.

Stochastic Analysis of Graph Transformation Systems 69

9. T. Gilb. Principles of Software Engineering Management. Addison-Wesley, 1988.
10. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application

conditions. Fundamenta Informaticae, 26(3,4):287 – 313, 1996.
11. R. Heckel, G. Lajios, and S. Menge. Stochastic graph transformation systems.

In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors, Proc. 2nd
Intl. Conference on Graph Transformation (ICGT’04), Rome, Italy, volume 3256
of LNCS, pages 210 – 225. Springer-Verlag, October 2004.

12. R. Heckel, G. Lajios, and S. Menge. Modulare Analyse Stochastischer Graphtrans-
formationssysteme. In P. Liggesmeyer, K. Pohl, and M. Goedicke, editors, Software
Engineering 2005, Essen, Germany, volume 64 of Lecture Notes in Informatics,
pages 141 – 152. GI, March 2005.

13. M. Korff and L. Ribeiro. Concurrent derivations as single pushout graph grammar
processes. In Proc. Joint COMPUGRAPH/SEMAGRAPH Workshop on Graph
Rewriting and Computation (SEGRAGRA), volume 2 of Electronic Notes in TCS,
pages 113–122. Elsevier Science, 1995.

14. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Proc. 12th Int.
Conf. on Modelling Techniques and Tools for Computer Performance Evaluation
(TOOLS’02), volume 2324 of LNCS, pages 200–204. Springer, 2002.

15. M. Löwe. Algebraic approach to single-pushout graph transformation. Theoret.
Comput. Sci., 109:181–224, 1993.

16. L. Mariani. Fault-tolerant routing for p2p systems with unstructured topology. In
Proc. International Symposium on Applications and the Internet (SAINT 2005),
Trento (Italy), 2005. IEEE Computer Society.

17. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoret.
Comput. Sci., 96:73–155, 1992.

18. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
19. M. K. Molloy. On the Integration of Delay and Throughput Measures in Distributed

Processing Models. PhD thesis, University of California, 1981.
20. S. Natkin. Les Réseaux de Petri Stochastiques et leur Application à l’Evaluation

des Systèmes Informatiques. PhD thesis, CNAM Paris, 1980.
21. James R. Norris. Markov Chains. Cambridge University Press, 1997.
22. C. Priami. Stochastic π-calculus. The Computer Journal, 38:578 – 589, 1995. Proc.

PAPM ’95.
23. A. Rensink. The GROOVE simulator: A tool for state space generation. In J.L.

Pfaltz, M. Nagl, and B. Böhlen, editors, Applications of Graph Transformation with
Industrial Relevance Proc. 2nd Intl. Workshop AGTIVE’03, Charlottesville, USA,
2003, volume 3062 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2004.

24. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, 1997.

25. W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

26. University of Paderborn Software Engineering Group. The Fujaba Tool Suite.
www.fujaba.de.

Component-Based Software Engineering�

The Need to Link Methods and Their Theories

He Jifeng1,��, Xiaoshan Li2, and Zhiming Liu1,� � �

1 International Institute for Software Technology,
United Nations University, Macao SAR, China

{hjf, lzm}@iist.unu.edu
2 Faculty of Science and Technology, University of Macau, Macao SAR, China

xsl@umac.mo

Abstract. We discuss some of the difficulties and significant issues that we need
to consider when developing a formal method for component-based software en-
gineering. We argue that to deal with the challenges, there is a need in research
to link existing theories and methods of programming for effective support to
component-based software engineering. We then present our initiative on a uni-
fied multi-view approach to modelling, design and analysis of component sys-
tems, emphasising the integration of models for different views.

Keywords: Components, Interfaces, Contracts, Protocols, Functionality, Con-
sistency, Composition, Refinement, Simulation.

1 Introduction

The idea to exploit and reuse components to build and to maintain software systems
goes back to “structured programming” in the 70s. It was a strong argument for de-
velopment of object oriented methods and languages in the 80s. However, it is today’s
growing complexity of systems that forces us to turn this idea into practice [5].

While component-based software development is understood to require reusable
components that interact with each other and fit into system architectures, there is so
far no agreement on standard technologies for designing and creating components, nor
on methods of composing them. Finding appropriate formal approaches for describing
components, the architectures for composing them, and the methods for component-
based software construction, is correspondingly challenging. It seems component-based
programming is now in the similar situation of object-oriented programming in the 80s:

My guess is that object-oriented programming will be in the 1980s what struc-
tured programming was in the 1970s. Everyone will be in favor of it. Every
manufacture will promote his products as supporting it. Every manager will

� Partly supported as a research task of E-Macao Project funded by the Macao Government.
�� On leave from East China Normal University, Shanghai, China. The work is partially

supported by the 211 Key project of the Ministry of Education, and the 973 project
2002CB312001 of the Ministry of Science and Technology of China.

� � � Corresponding author.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 70–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Component-Based Software Engineering 71

pay lip service to it. Everyone programmer will practice it (differently). And
no one will know just what it is [32]. – T. Rentsch, September 1982

In this paper, we discuss some of the concepts and issues that are important for a
formal method to support component-based software engineering (CBSE). We argue
that there is a need to integrate existing theories and methods of programming. We then
propose a unified multi-view modelling approach that is intended to support separation
of concerns. Different concerns are described in different viewpoints of a system at
different levels of abstraction, including those of the syntactic dependency among com-
ponents, static behavior, dynamic behavior and interactions of components. We show
how in the model to integrate a state-based model of functional behavior and an event-
based model of inter-component interactions. The state-based model is for white-box
specification to support component design and the event-based model is for black-box
specification used when composing components. Linking the theories will also shed
light on the integration of tools, such as model checkers, theorem provers and testing
tools, for system verification.

An integrated approach allows knowledge sharing among different people in a com-
ponent system development, such as requirement engineers and analysts, system assem-
blers, component designers, component certifiers and system verifiers. Different people
play different roles and are only concerned with and use the models of aspects relevant
to their jobs.

After this introduction, we will discuss in Section 2 the concepts of components,
interfaces and architectures. These are the three most primary concepts, on which peo-
ple have not yet reached an agreement. In Section 3, we will give an overview about
the recent frameworks for component systems modelling, and argue about the need to
link methods. We will in Section 4 give an outline of the framework that is being de-
veloped at UNU-IIST, and point out its difficulties and limitations. We will conclude in
Section 5 with a discussion about future work.

2 Components, Interfaces and Architectures

The notions of components, interfaces and architectures are the most important, but not
yet commonly defined three concepts in CBSE. This section discusses how different
views on these concepts can be reconciled.

2.1 Components

Looking into Oxford Advanced Learners Dictionary, we can find:

A component is any part of which something is made.

In software engineering, this would allow a software system to have as “components”
assembly language instructions, sub-routines, procedures, tasks, modules, objects,
classes, software packages, processes, sub-systems, etc1. This definition obviously is

1 Notice these entities have very different natures.

72 J. He, X. Li, and Z. Liu

too general for CBSE to provide anything new. To decide what is to be ruled in and
what is to be ruled out, we first clarify the purposes of using “components” in software
development, and then study their implications or necessary properties.

As we said earlier, the widely accepted goal of component-based development is
to build and maintain software systems by using existing software components, e.g.
[38,34,29,21,33,13,8]. It is understood that the components are required to be reusable
components. They must interact with each other in a system architecture
[36,4,29,12,40,33]. This goal of CBSE implies four orthogonal properties for a truly
reusable component [38]:

P1 contractually specified interfaces,
P2 fully explicit context dependencies,
P3 independent deployment,
P4 third party composition.

Based on these conditions, it is argued in [20] that an assembly language instruction and
software packages should not be treated as components, but classes in a class library
are components. However, classes can hardly be components if we require P3 when
composing components without access to the source code. On the other hand, we can
lift a class to make it usable as a component, by providing a description of its required
classes and methods.

The usage of a component in a software system includes using it to replace an out
of date component to upgrade the system or a failed component to repair the system,
adding it to the system to extend the system services, or composing it into the system
while the system itself is still being built. Some researchers insist on a component be-
ing reusable during dynamic reconfiguration. The implications of properties P1-P4 are
different when a component is used in different applications, for different purposes or
in different kinds of systems. This is the main reason why some people give more strin-
gent definitions than others (e.g. [8,34]). In [8], a component is defined by the following
three axioms :

A1 A component is capable of performing a task in isolation; i.e. without being com-
posed with other components.

A2 Components may be developed independently from each other.
A3 The purpose of composition is to enable cooperation between the constituent com-

ponents.

These properties are in fact those required for a “sub-system” in [37].
The paper [8] argues that the three axioms further imply a number of more proper-

ties, called corollaries of components:

C1 A component is capable of acquiring input from its environment and/or of present-
ing output to its environment.

C2 A component should be independent from its environment.
C3 The addition or removal of a component should not require modification of other

components in the composition.
C4 Timeliness of output of a component should be independent from timeliness of

input.

Component-Based Software Engineering 73

C5 The functioning of a component should be independent of its location in a compo-
sition.

C6 The change of location of a component should not require modifications to other
components in the composition.

C7 A component should be a unit of fault-containment.

The implication of the corollaries from the axioms is only argued informally. Property
C2 implies that a component has no state and this is also insisted on in [38]. This is
now generally understood to be only required in some limited circumstances, such as
for dynamic reconfiguration. Property C4 only applies to real-time systems and prop-
erties C5&C6 are only relevant to distributed mobile systems. We do not see why C7
is needed at all unless a component is to be used to replace another during the runtime
of the system. In fact, in many applications coordinators or managers can be used to
coordinate fault-prone components to achieve fault-tolerance [25].

On the other hand, it is argued in [34] that a software component itself is a static
abstraction with plugs which are not only used to provide services, but also to require
them. This implies that components are not usually used in isolation, but according to
a software architecture that determines how components are plugged together. This in
fact is the kind of component called a module in [37].

2.2 Interfaces

Although there is no consensus on what components are, all definitions agree on the
importance of interfaces of components, and interfaces are for composition without the
access to source code of components. This indicates that the differences are mainly
reflected in decisions on what information should be included in the interface of a com-
ponent.

We further argue that interfaces for different usages and different applications in
different environments may contain different information, and have different properties:

– An interface for a component in a sequential system is obviously different from one
in a communicating concurrent system. The later requires the interface to include a
description of the communicating protocol while the former does not.

– An interface for a component in a real-time application will need to provide the
real-time constraints of services, but an untimed application does not.

– Components in distributed, mobile or internet-based systems require their inter-
faces to include information about their locations or addresses.

– An interface (component) should be stateless when the component is required to be
used dynamically and independently from other components.

– A service component has different features from a middleware component.

Therefore, it is the interface that determines the external behavior and features of the
component and allows the component to be used as a black box.

Based on the above description, our framework defines the notion of an interface for
a component as a description of what is needed for the component be used in building
and maintaining software systems. The description of an interface must contain infor-
mation about all the viewpoints among, for example functionality, behavior, protocols,

74 J. He, X. Li, and Z. Liu

safety, reliability, real-time, power, bandwidth, memory consumption and communica-
tion mechanisms, that are needed for composing the component in the given architec-
ture for the application of the system. However, this description can be incremental
in the sense that newly required properties or view points can be added when needed
according to the application.

2.3 Architecture

The main concerns about programming in the small are the flow of control and the data
structure. The specifications, design and verification all focus on the algorithm and the
data structure of the program.

For programming in the large, the major concerns are components and their consis-
tent integration in an architectural context. The architectural design becomes a critical
issue because of the important roles it plays in communication among different stake-
holders, system analysis and large-scale reuse [4].

There are numerous definitions of software architecture, such as [2,4,29,37]. The
common basis of all of them is that an architecture describes a system as structural
decomposition of the system into subsystems and their connections. Architecture De-
scription Languages (ADLs), such as [2,4,29], are proposed for architecture description.
The basic elements of ADLs are components and connectors. An ADL also provides
rules for putting (composing) components together with connectors. They suffer from
the disadvantage that they can only be understood by language experts – they are inac-
cessible to domain and application specialists. Informal and graphical notations, such
as UML, are now also widely used by practical software developers for architecture
specification [10,33]. However, the semantic foundation for these UML-based models
has not yet been firmly established.

A mere structural description of a system is not enough in supporting further sys-
tem analysis, design, implementation, verification, and reconfiguration. More expres-
sive power is needed for an ADL [5]. In particular, an ADL should also support the
following kinds of views:

Interaction: the interaction protocol and mechanisms,
Functionality and Behavior: functional services, key properties of its components

(e.g. safety and reliability),
Resources and Quality of Service: hardware units required, real-time, power, band-

width, etc. These details allow analysis and critical appraisal, such as the quality of
service.

It is a great advantage if an architectural description supports the separation of these
concerns and allows them to be consistently integrated for system analysis.

One of the biggest challenges in formal CBSE is to develop a model that effectively
supports the separation of the views for analysis of different concerns, while they can
be consistently linked or combined in a whole system development process.

3 State of the Art of Formal Theories

This section gives an overview of existing component-based models, and summarises
the common requirements on component-based models.

Component-Based Software Engineering 75

3.1 Models of Architectures

Most of the early theories, such as [27,26,39,1,29], focus on modelling system archi-
tectures. All these models of architectures deal with coordinations among components,
in an event-based approach. They can also be used for specification of connectors and
coordinators. However, they do not go to the level of component design, implementa-
tion and deployment. This might be reason why ADLs still do not play any major role
in practical software engineering.

Recently, more delicate models are proposed for describing behavior of compo-
nents and their coordinations, such as [3,13]. Reo [3] is a channel-based model with
synchronous communication. The composition of components (and connectors) are de-
fined in terms of a few operators. The model is defined operationally and thus alge-
braic reasoning and simulation are supported for analysis. The disadvantage of this
approach is that it is not clear how it can be extended to deal with other viewpoints,
such as timing and resources. Also, being even-based, the model in [13] considers a
layered architecture for composition, provided by connectors (glueing operations). It
considers real-time constraints and scheduling analysis. The behavior of a component
is defined in a form of a timed automaton. This provides a good low level model of exe-
cution of a component. However, the use of local clocks for modelling delays can hardly
be said to be component-based. We need talk about a component at a higher level of
granularity.

The Stream Calculus [6,7,41] is a denotational framework, but otherwise similar
to those of [3,13] for being a channel-based model. In general a denotational model
supports the notion of stepwise development by refinement and links specifications at
different levels of abstraction better. With the scream calculus, Broy also proposes a
multi-view modelling to include interface model, state machine model, process model,
distributed system model, and data model [6,7].

The main disadvantage of message/event based approaches is that changes of the
data states of a component are not specified directly. While they are good at modelling
behavior of electronic devices and communicating protocols, they are not inclined to
the software engineering terminology and techniques. The relation of these models to
program implementations is not clear and practical software design techniques, such as
design patterns, is not well supported. These lead to difficulties in understanding the
consistency between the interaction protocol and the functionality.

3.2 The Need to Link Methods and Theories

The grand aim of CBSE is to support independently development of components and
compositional design, analysis and verification of overall systems.

To achieve this aim, it is essential that the approach provides a notation for multi-
view modelling, that allows separation of concerns and supports modelling and rea-
soning about properties at different levels of abstraction. The nature of multi-view and
separation of concerns allows us to independently identify, describe and compose dif-
ferent correctness conditions/aspects [19] of different views of components, including
syntactic interfaces, static and functional behavior, dynamic and synchronization be-
havior, interaction protocols, timing and resource constraints, etc. Separation is the key
principle to ensure the simplicity of the model [21].

76 J. He, X. Li, and Z. Liu

It is crucial that the model supports abstraction with information hiding so that we
can develop refinement and transformation based design techniques [21,6,11]. This will
provide a theoretical foundation for the integration of formal design techniques with
practical engineering development methods. Design in this way can preserve correct-
ness to a certain level of abstraction and support code generation that ensures certain
correctness properties (i.e. being correct by construction [30]).

Refinement in this framework characterises the substitutability of one component
for another. It involves the substitutability of all the aspects, but we should be able to de-
fine and carry out refinement for different features separately, without violating the cor-
rectness of the other aspects. The integration of event-based simulation and state-based
refinement facilitates assurance of global refinement by local refinement. Global refine-
ment is specified as set containment of system behavior (such as the failure-divergence
semantics of CSP). Global refinement is verified in a deductive approach supported
possibly with support of a theorem prover. Local refinement is specified in terms of pre
and post conditions of operations and verified by simulation often supported by a model
checker. Also, refinement in CBSE must be compositional in order to global reasoning
about the system can be done by local reasoning about the components [7].

We would also like the refinement calculus to support incremental and iterative de-
sign, analysis and verification. This is obviously important for scaling up the application
of the method to large scale software development, and for the development of efficient
tool support. We believe being incremental and iterative is closely related and comple-
mentary to being compositional, and important for lowering the amount of specification
and verification and reducing the degree of automation [30].

To benefit the advantages of different methods for dealing with different aspects of
component systems, an integration of these methods is needed so that their theories and
tools are linked to ensure the consistency of the different views of a system. For example,
the static functionality described by pre- and post conditions, dynamic behavior by
state machines (or transition systems) and interaction protocols by traces have to be
consistent.

Summary. A number of formal notations and theories have been well-established and
proved themselves effective as tools for the treatment of different aspects of computer
systems. Operational simulation techniques and model checking tools are believed to be
effective for checking correctness, consistency and refinement of interaction protocols,
while deductive verification and theorem provers are found better suited for reasoning
about denotational functionality specification. For CBSE, analysis and verification of
different aspects of correctness and substitutability can thus be carried out with differ-
ent techniques and tools. However, integration of components requires the integration
of the methods for ensuring different aspects of correctness and substitutability. The
integration requires an underlying execution model of component software systems.

A component may not have to be designed and implemented in an object-oriented
framework. However, the current component technologies such as COM, CORBA, and
Enterprise JavaBeans are all built upon object-oriented programming. Object programs
are now widely used in applications and many of them are safety critical. This leads
to the need to investigate the techniques of modelling, design and verification of ob-
ject systems and the construction of component systems on underlying object systems.

Component-Based Software Engineering 77

Also, the unification of the theories of imperative programming and object-oriented
programming is naturally achievable [16,24,14].

4 rCOS

At UNU-IIST, we are developing a model and calculus, called rCOS, for component
and object systems. In this section, we focus on the main theme and features of this
model, instead of technical details.

Based on discussion the previous sections, we intend to formalize the characteris-
tics of a component in a model with the following elements and notions which serve
different purposes for different people at different stages of a system development:

– interfaces: describe the structural nature of a system and are only used for check-
ing syntactic dependencies and compositionality. They are represented in terms of
signatures of service operations.

– contracts: are semantic specifications of interfaces. A contract relates an interface
to an application by specifying the (abstract) data model, functionality of the ser-
vice operations, synchronization protocols, and other required qualities of service
(QoS) depending on the application.
The model also provides a definition of consistency among these views and and
method for checking this consistency. A contract can be extended horizontally by
adding more services, more properties (e.g. QoS). In this paper, we are only con-
cerned with functionalities and protocols.

– components: are implementations of contracts. The execution model of component
is defined. The relation of a component to a contract is defined for the correctness
of the component.

– operations: are defined for interfaces, contracts and components so that they can
be composed in different ways.

– substitutability: is defined in terms of refinement which covers and relates state-
based refinement and even-based simulation.

– coordination: is defined as predicates on protocols to glue and manage a group of
components.

– class model: is used to define the data model that is more general than pure data
types and makes it easier to link a contract to a component with an object-oriented
implementation.

Interfaces and contracts are used by assemblers to check compatibilities of components
when assembling or maintaining a system. If components do not match with each other,
assemblers can consider to write connectors with glue code to put them together. Con-
nectors can sometimes be built as components. The protocols in the contracts are used
to avoid deadlock when putting components together. The functional specification of
the operations are used to ensure that the user (the other components) provides correct
inputs and the component returns with correct outputs.

The designer of a component has to ensure that the component satisfies its contract,
in particular to avoid livelock and design errors. The verifier (certifier) must have access
to the code of the component to verify the satisfaction of the contract by the component.

78 J. He, X. Li, and Z. Liu

4.1 UTP: The Semantic Basis

rCOS is based on Hoare and He’s Unifying Theories of Programming (UTP) [18].
UTP takes an approach to modelling the execution of a program in terms of a relation
between the states of the program. Here, a state of a program P is defined over a set of
variables called the alphabet of the program, denoted by α(P) (simply α when there is
no confusion). Given an alphabet α, a state of α is a (well-typed) mapping from α to
the value space of the alphabet.

Programs as Designs. For an imperative sequential program, we are interested in ob-
serving the values of the input variables inα and output variables outα. We use a Boolean
variable ok to denote whether a program is started properly and its primed version ok′ to
represent whether the execution has terminated. The alphabet α is defined as the union
inα ∪ outα ∪ {ok, ok′}, and a design is of the form

(p(x) � R(x, y′))
def
= ok ∧ p(x)⇒ ok′ ∧R(x, y′)

where

– p is the precondition, defining the initial states
– R is the postcondition, relating the initial states to the final states in terms the of

input value x and the output value y′. Note that some variable x is modified by a
program and in this case we say x ∈ inα and the primed version x′ ∈ outα.

– ok and ok′: describe start and termination, they do not appear in expressions or
assignments in program texts

The design represents a contract between the “user” and the program such that if the
program is started properly in a state satisfying the precondition it will terminate in a
state satisfying the postcondition.

A design is often framed in the form

β : (p � R) def= p � (R ∧ w′ = w)

where w contains all the variables in inα− β, which are the variables in in but not in β.
We can use the conventional operations on programs statements for designs too.

– Given two designs such that the output alphabet of P is the same as the primed
version of the input alphabet of Q, the sequential composition

P(inα1, outα1); Q(inα2, outα2)
def
= ∃m · P(inα1, m) ∧ Q(m, outα2)

– Conditional choice: (D1 � b � D2)
def
= (b ∧ D1) ∨ (¬b ∧ D2)

– Demonic and angelic choice operators:

D1 � D2
def= D1 ∨ D2 D1 D2

def= D1 ∧ D2

– while b do D is defined as the weakest fixed point of

X = ((D; X) � b � skip)

We can now define the meaning of primitive program commands as framed designs in
Table 1. Composite statements are then defined by operations on designs.

Component-Based Software Engineering 79

Table 1. Basic commands as designs

command: c design: [[c]] description

skip {} : true � true does not change anything, but termi-
nates

chaos {} : false � true
anything, including non-termination,
can happen

x := e {x} : true � x′ = val(e) side-effect free assignment; updates x
with the value of e

m(e; v)
[[var in, out]];

[[in:=e]]; [[body(m)]]; [[v:=out]];
[[end in, out]]

m(in; out) is the signature with input
parameters in and output parameters
out; body(m) is the body command of
the procedure/method

Refinement of Designs. The refinement relation between designs is then defined to
be logical implication. A design D2 = (α, P2) is a refinement of design D1 = (α, P1),
denoted by D1 � D2, if P2 entails P1

∀x, x′, . . . , z, z′ · (P2 ⇒ P1)

where x, x′, . . . , z, z′ are variables contained in α. We write D1 = D2 if they refine each
other.

If they do not have the same alphabet, we can use data refinement. Let ρ be a map-
ping from α2 to α1. Design D2 = (α2, P2) is a refinement of design D1 = (α1, P1) under
ρ, denoted by D1 �ρ D2, if (ρ; P1) � (P2; ρ). It is easy to prove that chaos is the worst
program, i.e. chaos � P for any program P. For more algebraic laws of imperative pro-
grams, please see [18].

The following theorem is the basis for the fact that the notion of designs can be used
for defining the semantics of programs.

Theorem 1. The notion of designs is closed under programming constructors:

((p1 � R1); (p2 � R2)) = ((p1 ∧ ¬(R1;¬p2)) � (R1; R2))
((p1 � R1) � (p2 � R2)) = ((p1 ∧ p2) � (R1 ∨R2))
((p2 � R1) (p2 � R2)) = ((p1 ∨ p2) � ((p1 ⇒ R1) ∧ (p2 ⇒ R2)))
((p1 � R1) � b � (p2 � R2)) = ((p1 � b � p2) � (R1 � b � R2))

Linking Designs with Predicate Transformers. A widely used method for program
analysis and design is the calculus of predicate transformers [9]. The link from the de-
sign calculus to the theory of predicate transformers is given by the following definition

wp(p � R, q)
def
= p ∧ ¬(R;¬q)

It gives the weakest precondition for the design p � R to ensure the post condition q.
Design p � R is feasible iff wp(p � R, false) = false, or equivalently

∀v • (p(v) ⇒ ∃v′ •R(v, v′)

meaning p � R can deliver a result whenever its execution terminates.
In [15], we show this definition of wp ensures validity of all the algebraic rules of

the wp transformer. For example

wp(true � x′ = f(x), q(x)) = q[f(x)/x] assignment
wp(D1 ∨D2, q) = wp(D1, q) ∧wp(D2, q) disjunction /non-determinism

80 J. He, X. Li, and Z. Liu

4.2 Interfaces

In our framework, the notion of interface is different from that in Section 2.2. There, an
“interface” is actually an interface specification and the same as the notion of contracts
that we are to define in the next subsection.

A primitive interface is a collection of features where a feature can be either a field
or a method. We thus define a primitive interface as a pair of feature declaration sections:

I = 〈FDec, MDec〉

where FDec is a set of field declarations, denoted by I.FDec, and MDec a set of method
declarations, denoted by I.MDec, respectively.

A member of FDec has the form x : T where x and T represent respectively the name
and type of this declared field. It is forbidden to declare two fields with the same name.

A method op(in inx, out outx) in MDec declares the name op, the list of input param-
eters inx and the list of output parameters of the method. Each input or output parameter
declaration is of the form u : U giving the name and type of the parameter.

The method name together with the numbers and types of its input and output pa-
rameters forms the signature of a method. In general both inx and outx can be empty.
For simplicity and without losing any generality in the theory, we assume a method
has one input parameter and one output parameter and thus can be represented in the
form op(in : U, out : V) by removing the key words in and out. Notice that the names of
parameters are irrelevant. Thus, op(in1 : U, out1 : V) and op(in2 : U, out2 : V) are treated
as the same method.

Interface Inheritance and Hiding Operations. Inheritance is a useful means for reuse
and incremental programming. When a component provides only part of the services
that one needs or some of the provided operations are not quite suitable for the need, we
may still use this component by rewriting some of the operations or extending it with
some operations and attributes.

Definition 1. (Interface inheritance) Let Ii (i = 1, 2) be interfaces. I1 and I2 are com-
posable if no field of Ii is redefined in Ij for i �= j. When they are composable, notation
I2 ⊕ I1 represents an interface with the following field and method sectors

FDec
def
= FDec1 ∪ FDec2

MDec
def
= MDec2 ∪ {op(in : U, out : V)|op ∈ MDec1 ∧ op /∈ MDec2}

To enable us to provide different services to different clients of a component, we al-
low to hide operations in an interface to make them invisible when the component is
composed with certain components. Hiding operations provides the opposite effect to
interface inheritance and is to be used to restrict an interface. In a graphical notation
like UML, this can be achieved by the notation of generalization alone.

Definition 2. (Hiding) Let I be an interface and S a set of method names. The notation
I\S denotes the interface I after removal of methods of S from its method declaration
sector.

FDec
def
= I.FDec, MDec

def
= I.MDec \ S

Component-Based Software Engineering 81

The hiding operator enjoys the following properties.

1. Hiding two sets of operations separately is the same as hiding all of the operations
in the two set together, (I\S1)\S2 = I\(S1 ∪ S2). Thus, the order in which two sets
of operations are hidden is inessential too.

2. Hiding distributes among operands of interface inheritance

(I⊕ J)\S = (I\S)⊕ (J\S)

4.3 Contract

A contract gives the functional specification of an interface.

Definition 1. (Contract) A contract is a pair Ctr = (I, MSpec), where

1. I is an interface,
2. MSpec maps each method op(in : U, out : V) of I to a specification of op that is a

design with the alphabet

inα
def
= {in} ∪ I.FDec, outα

def
= {out′} ∪ I.FDec′

For a contract Ctr = (I, MSpec), we will use Ctr.I, Ctr.FDec, Ctr.MDec and Ctr.MSpec to
denote respectively I, I.FDec, I.MDec and MSpec.

Two contracts can be composed to extend both of them only when their interfaces
are composable and the specifications of the common methods are consistent. This com-
position will be used to calculate the provided and required services when components
are composed.

Definition 2. (Composable contracts) Contracts Ctri = (Ii, MSpeci), i = 1, 2, are
composable if

1. I1 and I2 are composable, and
2. for any method op occurring in both I1 and I2,

MSpec1(op(x : U, y : V)) =
MSpec2(op(u : U, v : V))[x, x′, y, y′/u, u′, v, v′]

In this case their composition Ctr1‖Ctr2 is defined by

I
def
= I1 ⊕ I2, MSpec

def
= MSpec1⊕MSpec2

where MSpec1⊕MSpec2 denotes the overriding MSpec1(op) with MSpec2(op) if op occurs
in both I1 and I2.

Notice that for the purpose of compositional reasoning, condition (2) makes the com-
position conservative extension and serves as a limited form of UML generalization.

Based on this definition, a calculus of refinement of contracts and components is de-
veloped in [23]. In the rest of this section, we present the generalized notion of contracts
and components.

82 J. He, X. Li, and Z. Liu

4.4 Reactive Contracts

A contract defined in the previous subsection specifies the static functionality of a com-
ponent that does not require synchronization when the operations are used. Such com-
ponents are often used in the functional layer [11]. Business process and rules are,
however, accomplished by invoking particular sequences of operations. This means a
protocol of using the function operation must be imposed, often by composing a com-
ponent in the functional layer and a component in the system layer [11]. The component
then becomes reactive and only reacts to the calls of the operation that come in the right
order. To describe synchronisation, we introduce two Boolean observables wait and wait′

to the alphabet of an operation op(in : U, out : V) in a contract. A design D on such an
extended alphabet is called reactive ifW(D) ≡ D holds for the linking function

W(D)
def
= (true � wait′) � wait � D

And we extend the specification MSpec(op) to a guarded design (α, g, D) denoted as
g&D, where

– g is boolean expression over I.FDec and represents the firing guard of op
– D is a reactive design over α = {in, wait, ok} ∪ I.FDec ∪ {out′, ok′, wait′} ∪ I.FDec′.

The semantics of a guarded design g&D is defined as (true � wait′) � ¬g � D. The fol-
lowing theorem forms the theoretical basis for using reactive designs as the semantic
domain of a programming language.

Theorem 1. (Reactive designs are closed under programming constructors)

1. For any design p � R,W(p � R) is a design.
2. W maps a design to a reactive design:W2(D) ≡ W(D)
3. If D is a reactive design, so is the g-guarded version g&D.
4. W is monotonic:W(D1) � W(D2) iff (¬wait⇒ (D2 ⇒ D1)). So, all reactive designs

form a complete lattice.
5. Reactive designs are closed under the conventional programming operators.

We can now formally define a reactive contract.

Definition 3. (Reactive Contract) A reactive contract is tuple Ctr=(I, Init, MSpec, Prot),
where

– I is an interface
– Init is a design that initialises the state and is of the form

true � Init(v′) ∧ ¬wait′, where Init is a predicate

– MSPec assigns each operation to a guarded design (α, g, D).
– Prot, called the protocol, is a set of sequences of call events. Each is of the form

?op1(x1), . . . , ?opk(xk)

where ?opi(xi) is a (receipt of) call to operation opi in I.MDec with an input value xi.

We use guard(op) to denote the guard in MSPec(op) for an operation op ∈ MDec.

Component-Based Software Engineering 83

Notice that a contract defined in Section 4.3 can be used as the model of the static
behavior of the component, and can seen as special case of reactive contract with all the
guards of the operations being true, and the protocol being the whole set of sequences
of the operations MDec∗.

Definition 4. (Semantics of Contracts) The dynamic behavior of Ctr is described by
the triple (Prot, F(Ctr), D(Ctr)), where

– the set D(Ctr) consists of the sequences of interactions between Ctr and its envi-
ronment which lead the contract to a divergent state

D(Ctr)
def
= {〈?op1(x1), op1(y1)!, . . . , ?opk(xk), opk(yk)!, ?opk+1(xk+1)〉 · s |
∃v, v′, wait′ • (Init; g1&D1[x1, y1/in1, out′1];
. . . ;
gk&Dk[xk, yk/ink, out′k])[true/ok][false/ok′]}

where opi(yi)! represents the return event generated at the end of execution of opi

with the output value yi, in1 and outi are the input and output parameters of opi,
and gi&Di is the guarded design of method opi.

– F(Ctr) is the set of pairs (s, X) where s is a sequence of interactions between C
and its environment, and X denotes a set of methods which the contract may refuse
to respond to after it has engaged all events in s

rej
def= (true, false, true, false/ok, wait, ok’, wait′)

rej1
def
= (true, false, true, true/ok, wait, ok’, wait′)

F(Ctr)
def
= {(〈 〉, X) | ∃v′ • Init[rej] ∧ ∀?op ∈ X • ¬guard(op)[v′/v]}

∪

⎧⎪⎪⎨⎪⎪⎩
(〈?op1(x1), op1(y1)!, . . . , ?opk(xk), opk(yk)!〉, X) |
∃v′ • (Init; g1&D1[x1, y1/in1, out′1];
. . . ;
gk&Dk[xk, yk/ink, out′k])[rej] ∧ ∀?op ∈ X • ¬guarad(op)[v′/v]

⎫⎪⎪⎬⎪⎪⎭
∪

⎧⎪⎪⎨⎪⎪⎩
(〈?op1(x1), op1(y1)!, . . . , ?opk(xk), opk(yk)!〉, X) |
∃v′ • (Init; g1&D1[x1, y1/in1, out′1];
. . . ;
gk&Dk[xk, yk/ink, out′k])[rej] ∧ opk! �∈ X

⎫⎪⎪⎬⎪⎪⎭
∪

⎧⎪⎪⎨⎪⎪⎩
(〈?op1(x1), op1(y1)!, . . . , ?opk(xk)〉, X) |
∃v′ • (Init; g1&D1[x1, y1/in1, out′1];
. . . ;
gk−1&Dk−1[xk−1, yk−1/ink−1, out′k−1])[rej]; gk&Dk[xk/ink][rej1]

⎫⎪⎪⎬⎪⎪⎭
∪ {s, X) | s ∈ D(Ctr) ∧ ∀?op ∈ X • ¬gi[v′/v]}

F(Ctr) defines fives cases when events may be refused and thus deadlock may occur if
the environment only offers these refusals:

1. The first subset of the refusals records the cases when the operation call events ?op
in X cannot occur because their guards do not hold in the initial state.

2. The second subset identifies those cases where after a sequence of calls executed,
the system may reach a state where the guards of the events in X are false.

3. The third case is when the execution of an operation opk is waiting to output its
result.

84 J. He, X. Li, and Z. Liu

4. The fourth case defines the scenarios when the execution of an operation opk enters
a waiting state.

5. Finally, the fifth case takes the divergent traces into account.

We define the traces of a contract as those traces in the failure set

T(Ctr)
def
= {s | ∃X • (s, X) ∈ F(Ctr)}

which are prefix closed.
Notice that the guarded designs of the operations defines a state-based model of the

dynamic behavior of the component. It corresponds to a state transition system [28,17]
and it has a clear link to temporal logic approaches for analysis and verification [22,25].
When the state space can be reduced to a finite one, the specification of the operations
can be represented by a finite state machine or automaton, that model checking tools are
based on. From the guarded designs, we can obtain a the model of the static behavior
too. This is how a contract model combines the event-based model of the protocol, the
stated based model dynamic behavior and the pre- and postcondition specification of the
static behavior of a component. However, the protocol and the functional specification
of the operations have to be consistent.

Definition 5. (Consistency) A contract Ctr is consistent, denoted by Consistent(Ctr), if
it will never enter a deadlock state if its environment interacts with it according to the
protocol. That is for all 〈?op1(x1), . . . , ?opk(xk)〉 ∈ Prot,

wp(Init;g1&D1[x1/in1]; . . . ; gk&Dk[xk/ink],¬wait ∧ ∃op ∈ MDec•guard(op)) = true

It is shown in [15] that a contract Ctr is consistent if and only if for all sequences tr in
Prot

1. there is a trace s in T(Ctr) whose projection2 on operation calls s�{?} equals tr, and
2. for any failure (s, X) ∈ F(Ctr), if s�{?} is a prefix of tr then not all operations and

operation returns are refusals, that is X �= {?op, op! | op ∈ MDec}.

The following useful properties of consistency are proved in [15]:

1. The union of consistent protocols is a consistent protocol (with respect to a speci-
fication for the operations), that is, if Ctri = (I, Init, MSPec, Proti), i = 1, 2, are con-
sistent, so is Ctr = (I, Init, MSPec, Prot1 ∪ Prot2).

2. If contract Ctr1 = (I, Init, MSPec, Prot1) is consistent and Prot2 ⊆ Prot1, then contract
Ctr1 = (I, Init, MSPec, Prot2) is consistent. This allows us to restrict the services of a
component.

3. For contracts Ctri = (I, Initi, MSPeci, Prot), i = 1, 2, if Ctr1 is consistent, Init1 � Init2,
and MSPec1(m) � MSPec2(m), for all m ∈ I.MDec, then Ctr2 is consistent.

Therefore, for a given (I, Init, MSPec), there is more than one protocol consistent with it.
We call the largest one the weakest consistent protocol, denoted as WProt(I, Init, MSPec),
such that

Consitent(I, Init, MSPec, Prot)⇒ Prot ⊆ WProt(I, Init, MSPec)

2 We use � for the projection (or restriction) operator in general.

Component-Based Software Engineering 85

The weakest consistent protocol can be directly defined as

WProt
def
= {〈?op1(x1), . . . , ?opk(xk)〉|wp(Init; g1&D1[x1/in1]; . . . ; gk&Dk[xk/ink],
¬wait ∧ ∃op ∈ MDec • guard(op))}

We can prove that WProt is prefix closed [15]. We, for simplicity, use (I, Init, MSPec) to
denote (I, Init, MSPec, WProt).

Example 1. Consider a one-place buffer with an interface

BI = 〈empty : Boolean, {put(in : Item), get(out : Item))}〉

Given MSPec to assign put and get as

MSPec(put)
def
= empty&(true � ¬empty′), MSPec(get)

def
= ¬empty&(true � empty′)

With the initial condition Init
def
= empty, we can calculate the weakest consistent protocol

to be (?put, ?get)∗ which is the set of alternating sequences of put and get, starting with
a put. An n-place buffer can be similarly defined.

Definition 6. (Contract Refinement) Contract Ctr1 is refined by contract Ctr2, denoted
by Ctr1 � Ctr2, if

1. Ctr2 provides no less services than Ctr1:Ctr1.MDec ⊆ Ctr2.MDec

2. Ctr2 is not more likely to diverge than Ctr1: D(Ctr1) ⊇ D(Ctr2)�Ctr1.MDec, and
3. Ctr2 is not more likely to deadlock than Ctr1: T (Ctr1) ⊇ T (Ctr2)�Ctr1.MDec.

Notice that refinement allows us to add new services. The following two theorems (see
[15] for the proofs) link the notions of simulation and refinement and combine event-
based and state-based modelling.

Theorem 2. (Refinement by Downwards Simulation) Let Ctri = (Ii, Initi, MSPeci) be
two contracts. Ctr1 � Ctr2, if there exists a total mapping ρ(u, v′) from the fields FDec1

of Ctr1 to the fields FDec2 of Ctr2 such that the following conditions are satisfied

1. ρ preserves the initial condition: Init2 ⇒ (Init1; ρ)
2. ρ preserves the guards of all operations: ρ⇒ (guard1(op) = guard2(op)) for all

op ∈ MDec1.
3. The function specification of each operation by Ctr1 is preserved by Ctr2: for each

op ∈ MDec1

MSpec1(op); ρ � ρ; MSPec2(op)

Notice that the state mapping ρ is used as a design which does not change wait.

Theorem 3. (Refinement by Upwards Simulation) Let Ctri = (Ii, Initi, MSPeci) be
two contracts. Ctr1 � Ctr2, if there exists a surjective mapping ρ(v, u′) from the fields
FDec2 of Ctr2 to the fields FDec1 of Ctr1 such that the following conditions are satisfied

86 J. He, X. Li, and Z. Liu

1. ρ preserves the initial condition: (Init2; ρ)⇒ Init1
2. ρ preserves the guards of all operations: ρ⇒ (guard1(op) = guard2(op)) for all

op ∈ MDec1.
3. The function specification of each operation by Ctr1 is preserved by Ctr2: for each

op ∈ MDec1

MSpec2(op); ρ � ρ; MSPec1(op)

The same results can be found about transitions systems and the temporal logic of ac-
tions [22,25].

Theorem 4. (Completeness of simulations) If Ctr1 � Ctr2, then there exists a contract
Ctr such that

1. There is an upwards simulation from Ctr to Ctr1.
2. There is a downwards simulation from Ctr to Ctr2.

Contract Operations. All the operations defined by an interface are public, i.e, they
are directly accessible by the environment of the interface. We can remove cervices
from a contract as we did for an interface.

Definition 7. (Removing Services) Let Ctr = (I, Init, MSPec) be a contract and S a sub-

set of the operations MDec, then contract Crt\S def
= (I\S, Init, MSPec�(MDec− S)), where

we use “−” for set difference.

The behavior of Ctr\S is defined by

D(Ctr\S) = {s | s ∈ D(Crt) ∧ s ∈ {?op, op! | op ∈ MDec− S}∗}
F(Ctr\S) = {(s, X) | (s, X) ∈ F(Crt) ∧ s ∈ {?op, op! | op ∈ MDec− S}∗∧

X ⊆ {?op, op! | op ∈ MDec− S}}

When a component is to be implemented, an operation can be used in the code of
another. We would like to be able to remove the former from the interface but at the
same the implementation of the latter method should still work without the need for
any modification. To handle this problem, we introduce in this section the notion of
private (or internal) methods/operations, which are not available to the public, but can
be used by the component itself. For this we need to generalize the notation of contracts
to general contracts.

Definition 8. (General Contract) A general contract GCtr extends a contract Ctr with
a set of private methods declarations PriMDec and their specification PriMSPec

GCtr = (Ctr, PriMDec, PriMSPec)

The behavior of GCtr is defined to be that of Ctr.

Now we can hide a public operation in MDec of a general contract to make it internal.

Component-Based Software Engineering 87

Definition 9. (Hiding Service) Let GCtr = (Ctr, PriMDec, PriMSPec) be a general con-
tract, and S a subset of the public methods MDec. The restricted contract GCtr\S is
defined as

(Ctr\S, PriMDec ∪ S, PriMSPec ∪MSPec�S)

We are now ready to define the composition of two general contracts.

Definition 10. (Composition of Contracts) Let GCtri, i = 1, 2 be two general con-
tracts such that

1. all shared fields have the same types,
2. all shared methods have the same specification
3. the initial conditions of the two contracts are consistent, that is satisfiable.

The composition GCtr1‖GCtr2 is the general contract

GCtr = ((I, MSPec), PriMDec, PriMSPec)

where

I.FDec
def
= I1.FDec ∪ I2.FDec union of the fields

I.MDec
def
= I1.MDec ∪ I2.MDec union of the public methods

MSPec
def= MSpec1 ⊕MSPec2 overriding union of the specifications

PriMDec
def= PriMDec1 ∪ PriMDec2 union of the private methods

PriMSPec
def
= PriMSpec1 ⊕ PriMSPec2 overriding union of the specifications

Properties of the operations on contracts can be found in [15].

4.5 Components and Their Compositions

A component is an implementation of a contract. The implementation of an operation,
however, may call operations of other components. Therefore, a component may op-
tionally have a required interface as well as a provided interface and executable code.

Definition 11. (Component) A component C is a tuple

(I, MCode, PriMDec, PriMCode, InMDec)

where

1. I is an interface.
2. PriMDec is a set of method declarations which are private to the component.
3. The tuple (I, MCode, PriMDec, PriMCode) has the same structure as a general con-

tract, except that the functions MCode and PriMCode map each method op in the
sets I.MDec and PriMDec respectively to a guarded command of the form g −→ c,
where g is called the guard, denoted as guard(op) and c is a command, denoted as
body(op).

4. InMDec denotes the set of input methods which are called by public or internal
methods, but not defined in MDec ∪ PriMDec.

88 J. He, X. Li, and Z. Liu

We use C.I , C.Init, C.MCode, C.PriMDec, C.PriMCode and C.InMDec to denote the corre-
sponding parts of C.

The semantics of a component is defined to be a function that given a contract for the
required interface, returns a general contract calculated from the code of the operations.

Definition 12. (Semantics of Components) Let InCtr be a contract such that its inter-
face methods are the same as the required methods of C, InCtr.MDec = C.InMDec. The
behavior C(InCtr) of C with respect to InCtr is the general contract

((I, MSPec), Init, PriMDec, PriMSPec)

where

I.FDec
def
= C.FDec ∪ InCtr.FDec

I.MDec
def
= C.MDec ∪ InCtr.MDec

MSPec
def
= Φ�MDec

PriMSPec
def= Φ�PriMDec

Init
def= C.Init ∧ InCtr.Init

where function Φ assign each operation in Mdec ∪ PriMDec the guarded design calcu-
lated from the code:

Φ(op)
def
= guard(op)&[[body(op)]]

where if m ∈ InMDec is called in body(op), the specification of op assigned by InCtr is
used in the calculation [15].

It is easy to show that if InCtr1 � InCtr2, then C(InCtr1) � C(InCtr2)

Definition 13. (Component Refinement) A component C1 is refined by component C2,
denoted by C1 � C2, if C1.MDec ⊆ C2.MDec, C1.InMDec ⊇ C2.InMDec, and the contract
refinement C1(InCtr) � C2(InCtr) holds for all the input contracts InCtr.

Composition of Components. The most natural composition is to plug the provided
operations of one component into the required operation of the other to chain these two
together.

Definition 14. (Chaining) Let C1 and C2 be components such that

1. none of the provided or private methods of C2 appears in C1,
2. C1 and C2 have disjoint field declarations.

The chain C1〉〉C2 of C1 with C2 is the component, which has

– the fields C1FDec ∪ C2.FDec.
– the required operations C1.InMDec ∪ C2.InMDec− C1.MDec ∩ C2.InMDec
– the provide operation C1.MDec ∪ C2.MDec− C1.MDec ∩ C2.InMDec
– the initial condition C1Init ∧ C2.Init
– the code C1.Code ∪ C2.Code
– the private code C1.PriCode ∪ C2.PriCode

Component-Based Software Engineering 89

Theorem 5. For any given input contract InCtr

(C1〉〉C2)(InCtr)
def
= (C1(InCtr1)‖C2(InCtr2))\(C1.MDec ∩ C2.InMDec)

where

InCtr1
def
= InCtr�C1.InMDec

InCtr2
def
= InCtr�(C2.InMDec− C1.MDec)‖C1(InCtr1)�(C1.MDec ∩ C2.InMDec)

The chaining operator is monotonic and commutes with the hiding operator [15]. The
other often used composition is disjoint parallel composition.

Definition 15. (Disjoint Composition) Let C1 and C2 be components such that they
do not share fields, public operations. Then C1 ⊗ C2 is defined to be the composite
component which has the provided operations of C1 and C2 as its provided operations,
and the required operations of C1 and C2 as its required operations:

(C1 ⊗ C2)(InCtr)
def
= C1(InCtr�C1.InMDec)‖C2(InCtr�C2.InMDec)

Obviously, chaining C1〉〉C2 is the same as disjoint parallel composition C1 ⊗ C2 when
the provided services of C1 are disjoint from the required services of C2.

We also allow a provided operation to call another (possibly the same) provided
operation, so as to link a required a operation to a provided operation.

Definition 16. (Feedback) Let C be a component and m ∈ C.MDec and n ∈ C.InMDec.
C[m ↪→ n] is the component such that for any InCrt

C[m ↪→ n](InCtr) def= C(InCtr.MSPec⊕ {n �→ (g&[[c]]})\{m}

C.MCode(m) = g −→ c. Notice here the design [[c]] is the weakest fixed point of a recur-
sive equation if it calls other methods [15].

Putting Components Together. Please notice that the conditions for disjoint parallel
composition can be easily checked and carried out by either assemblers or designers.

When an putting two components together using the chaining composition C1〉〉C2,
one may not have access to the codes. In this case, a black box specification of Ci

must be given for Ci in the form of a pair of 〈PCtri, RCtri〉 of a provided (or promising)
contract and a required (or relied) contract for the components Ci. They are provided
by the designer who has checked to ensure

Ci(RCtri) � PCtri

In fact, in these black box specifications, it is not necessary for the specification of
operations to include the guards of the operations. The guards are only used by the
designers to ensure the consistency of the protocol and the functional behavior.

When C1 and C2 are to be chained, we need to check to ensure the compatibility of
PCtr1 and RCtr2, i.e. PCtr1 � RCtr2, so that the protocol in the required contract RCtr2
agrees with that in the provided protocol, and the functional designs of the operations
in the provided contract PCtr1 refine those in RCtr2.

90 J. He, X. Li, and Z. Liu

Furthermore, the components we have considered so far are passive components.
Therefore, we treat sequences in the required protocol in RCtr2 as non-deterministic
choices, but the provided protocol in PCtr1 as providing deterministic choice.

Let Speci = 〈PCtri, RCtri〉, i = 1, 2, be two black box specifications, PProti and
RProti the provided protocol and required protocol, and MDeci and InMDeci the pro-
vided and required operations, respectively. We define

PProt1/RProt2
def
= {s|∃t1 ∈ PProt1, t2∈RProt2•(t1�(InMDec2)[!/?] = t2∧

t1�(MDec1 − InMDec2) = s}

Definition 17. (Interaction compatibility) For a provided protocol PProt1 and a re-
quired protocol RProt2 given in the previous paragraph, we say they are compatible
if PProt1�InMDec2 ⊇ RProt2[?op/!op | op ∈ InMDec], where a sequence in the required
protocol is of the form 〈!op1(x1), . . . , !opk(xk)〉 and !opi(xi) is the call out event3to op-
eration op.

Furthermore, when they are compatible, we define the (largest) provided protocol
after the provided operations are plugged in the required operations

PProt1〉〉RProt2
def
= PProt1/RProt2

Example 2. For the one-place buffer, the provided protocol is (?put, ?get)∗. Assume a
producer requires to interact with the buffer to place items into the buffer only three
times. The required protocol would be {〈!put, !put, !put〉}. It is compatible with the pro-
vided protocol, and the protocol (?put, ?get)∗/{〈!put, !put, !put〉} = {〈!get, !get, !get〉}. So a
consumer that can be composed in must have such a required protocol.

When we have a number of components requiring services from following PProt1, the
chaining compositions can be done (compatibility checking too) one by one

PProt1〉〉RProt2〉〉 . . . 〉〉RProtk

The black box specifications of components are in fact the interfaces in UML. They
represent the static structural dependency among components as illustrated in Figure 1,
which is from the example in [23].

For general system assembly, the model of components needs to be extended by
adding the notion of ports to represent the Service Access Points (SAPs) [35]. Each
port is attached with a pair of provided and required interfaces specified by their con-
tracts 〈PCtr, RCtr〉, either can be optionally empty. We require that interfaces at different
ports are independent. For interaction between two components, a binding has to be
established between the required interface at a port of one component and a compatible
provided interface at a port of another. This extension allows us to refine a component
by adding ports.

4.6 Active Components and Connectors

The components (and contracts) we have studied so far are only passive components.
When a provided service is called (according to the protocol), the component starts to

3 It is different from op(y)! which is the return of the method op.

Component-Based Software Engineering 91

IParceLoc

IParcelInfo

CustomerService LocateParcel ()

<<component>>

GTS

ISomeInterface <<component>>

CarrierSystem

where()

<<component>>

MLS

<<component>>

GIS
DispatchParcel ()

Fig. 1. Static dependency among components

execute and during the execution it may call services of other components. In general
a component may be active (i.e. an actor in the sense of ROOM [35]) and have its own
control and once it is started it can execute its internal actions, call services of other
components, and wait to be called by other components. For purely active components,
we can simply give the specification of the required contracts, including the protocol.
The sequences in the protocol do not have to be non-deterministic choices in general.
However, it is always safe to assume the worst case, i.e. the choice over input (namely
method calls) is non-deterministic. Otherwise, the failure set must be given to describe
when a choice is in the refusal set.

For a more general active component the provided and required operations may
be tightly related and it is not always possible to separate the provided protocol and
required protocol by projections.

For example, an active producer that uses the buffer in Example 2 only produces
the next item after receiving an acknowledgement of the receipt of the previous one
from the consumer. The protocols of the producer Prd and the consumer Con are given
respectively as

Prd
def
= (!put, ?ack)∗, Con

def
= (!get, !ack)∗

Again, we can introduce ports into the mode of active components to represent inde-
pendently defined interfaces that allows components to be connected in arbitrary con-
figuration.

If we changed Prd to a pair of provided and required protocols by projections, we
would have the provided protocol (!put)∗ and the required protocol (?ack)∗. With these,
we would not have been able to check deadlock freedom when composing it with the
producer and the buffer.

We believe composing this kind of active element with gray box specifications will
require the full power of a theory of concurrency, such as a process algebra (CSP or
CCS) or automata theory. In fact, most of the existing models adopt such a gray box
specification approach, e.g. [2,6,3,13].

Connectors are often treated as first class elements in component-based architec-
ture description languages. In our framework, the simple connectors are defined by the
operations of chaining, disjoint parallel composition and hiding. More general connec-

92 J. He, X. Li, and Z. Liu

tors are defined as predicates of protocols of the form C(Prot1, . . . , Protk, Prot), where
Prot1, . . . , Protk can be seen as roles that are mapped to components’ protocols and Prot
can be seen as the glue which is the resulting protocol [2]. We call C a connector if the
roles are to be linked to the required protocols of components and the resulting protocol
is linked to the provided protocol of a component. C is a coordinator or manager if the
roles are to be linked to the provided protocols of components and the resulting protocol
is used as a provided protocol (i.e. linked to a required protocol). Connectors and coor-
dinators for passive components are often simple. More complicated coordinators and
glues can be defined for general active components. Again the need of writing compli-
cated glue codes would push the users away from using component-based development.

4.7 Component-Based and Object-Oriented Methods

In most books on component-based design in the UML framework, e.g. [10,31], a com-
ponents is taken as a family of collaborating objects (or class at the level of templates
or styles) without being formally defined. Some papers, e.g. [6,3], are critical to object-
orientation and think that objects or classes are not composable and thus cannot be
treated as objects. To some extent, this is true as objects or classes do not specify their
required interfaces. On the other hand, all the existing component technologies, such as
JavaBeans, EJB, .NET and COM, are based on object-oriented methods. Therefore, it
is useful to investigate the integration of the models of components and objects.

In our framework, we can take a class and translate it to primitive components easily
by calculating the required methods from the code of the class methods. However, in
general, a component in our proposed model can be realized by a family of collaborating
classes. Therefore, for a component C, we treat the interface methods of C and the
protocol as the specification of the use cases of the component and the components in
environment of C as the actors of these use cases. The design and implementation of
this component can then be carried out in a UML-based object-oriented framework.

The types of the fields in interfaces and components can be classes. The classes and
their associations form the information (data) model. This model can be represented
as a UML class diagram and formalized as class declaration in rCOS [16,14,24]. The
implementation of a contract in a component is based on the implementation of the
class model. Also, for example UML2.0, a port of a component is realized by a class
too (a port in an active component is realized by an active class). The component-based
part of rCOS presented here and its object-oriented part in [16,14,24] form a consistent
combination.

5 Conclusion and Future Work

We have discussed the basic concepts of components and argued for the need to link
methods and their theories for programming. The link will go in two dimensions. In the
horizontal direction, we need the integration of theories of state-based functional re-
finement [18], event-based interaction simulation, real-time [17,25,13], fault-tolerance
[25], security, mobility and general QoS. In the vertical dimension, we need to link
the theories of domain and requirements analysis, system construction by assembly of
components, component construction, and component deployment.

Component-Based Software Engineering 93

So far most models focus on the theories of interfaces and coordination models to
support system construction by composing components. The link of these theories and
model to software technology for component construction is still weak. We have pro-
vided some initial results towards this direction in rCOS. More work needed in the areas
of component-based domain and requirements analysis and component deployment. In
the horizontal direction, it is still a long way to deal with general QoS issues. Another
challenge is the combination of synchronous communication and asynchronous com-
munication. This could be done by adding message queues at the end of the receiving
components or allowing shared fields in components. However, it is not clear whether
there is any better way at a higher level of abstraction.

We have presented the ongoing research on rCOS to support this argument. We
realize the tradeoff between the simplicity of the model required for the support to
CBSE and the expressiveness of the model. While linking methods will help to ease the
difficulties by localising a method to a stage of the development, the need to develop
sophisticated ‘glueware’ to coordinate components in applications is one reason why the
saving from using “off-the-shelf” components is sometimes not as great as anticipated.
If general active components and coordinators among them have to be all covered,
the formal method and theory of CBSE cannot be expected to be simpler than those
established for general concurrent and distributed systems. On the other hand, linking
methods and their theories is useful for general software and system engineering.

Acknowledgement

We would like to thank Chris George, Liu Xiaojian, Chen Xin and Rodrigo Ramos for
their comments on earlier versions of the paper.

References

1. R. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon, School
of Computer Science, 1997.

2. R. Allen and D Garlan. A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology, 6(3):213 – 249, 1997.

3. F. Arbab. Reo: A channeled based coordination model for components composition. Math-
ematical Structures in Computer Science, 14(3):329–366, 2004.

4. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley,
1999.

5. G. Beneken and U. Hammerschall et al. Componentware - sate of the art 2003. Background
Paper for Understanding Components Workshop of the CUE Initiative, 2003.

6. M. Broy. Multi-view modeling of software systems. In Z.Liu and J. He, editors, Math-
ematical Frameworks for Component Software: Models for Analysis and Synthesis. World
Scientific, to appear.

7. M. Broy and K. Stølen. Specification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinement. Springer, 2001.

8. M.R.V. Chaudron and E. de Jong. Components are from Mars. In Proc. 15 IPDPS 2000
Workshops on Parallel and Distributed Processing, Lecture Notes In Computer Science; Vol.
1800, pages 727 – 733, 2000.

94 J. He, X. Li, and Z. Liu

9. E.W. Dijkstra. A Discipline of Programming. Prentece-Hall, INC, 1976.
10. D. D’Souza and A.C. Wills. Objects, Components and Framework with UML: The Catalysis

Approach. Addison-Wesley, 1998.
11. Hartmut Ehrig, Werner Damm, Jörg Desel, Martin Große-Rhode, Wolfgang Reif, Ecke-

hard Schnieder, and Engelbert Westkämper, editors. Integration of Software Specification
Techniques for Applications in Engineering, Priority Program SoftSpez of the German Re-
search Foundation (DFG), Final Report, volume 3147 of Lecture Notes in Computer Science.
Springer, 2004.

12. D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of component-based
systems. In G.T. Leavens and M. Sitaraman, editors, Foundations of Component-Based Sys-
tems, pages 47–68. Cambridge University Press, 2000.

13. G. Gössler and J. Sifakis. Composition for component-based modeling. Science of Computer
Programming, 55(1-3), 2005.

14. J. He, Z. Liu, and X. Li. rCOS: A refinement calculus for object systems. Technical Report
UNU-IIST Report No 322, UNU-IIST, P.O. Box 3058, Macau, March 2005.

15. J. He, Z. Liu, and X. Li. A theory of contracts. Technical Report UNU-IIST Report No 327,
UNU-IIST, P.O. Box 3058, Macau, July 2005.

16. J. He, Z. Liu, X. Li, and S. Qin. A relational model of object oriented programs. In Proceed-
ings of the Second ASIAN Symposium on Programming Languages and Systems (APLAS04),
Lecture Notes in Computer Science 3302, pages 415–436, Taiwan, March 2004. Springer.

17. T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-time sys-
tems. In Proceedings of the 8th ACM Annual Symposium on Principles of Programming
Languages, pages 269–276, U.S.A, 1991. ACM Press.

18. C.A.R. Hoare and J. He. Unifying theories of programming. Prentice-Hall International,
1998.

19. Tony Hoare. The verifying compiler: A grand challenge for computer research. Journal of
the ACM, 50(1):63–69, 2003.

20. J.P. Holmegaard, J. Knudsen, P. Makowski, and A.P. Ravn. Formalization in component
based development. In Z.Liu and J. He, editors, Mathematical Frameworks for Component
Software: Models for Analysis and Synthesis. World Scientific, to appear.

21. D. Hybertson. A uniform component modeling space. Informatica, 25:475–482, 2001.
22. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software

Engineers. Pearson Education, Inc., 2002.
23. Z. Liu, J. He, and X. Li. Contract-oriented development of component software. In Proc.

3rd IFIP International Conference on Theoretical Computer Science.
24. Z. Liu, J. He, and X. Li. rCOS: Refinement of component and object systems. Invited Talk

at 3rd International Symposium on Formal Methods for Component and Object Systems. To
Appear in Lecture Notes of Computer Science, 2005.

25. Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing and schedul-
ing. ACM Transactions on Languages and Systems, 21(1):46–89, 1999.

26. D.C. Luckham and J. Vera. An event-based architecture definition language. IEEE Transac-
tions on Software Engineering, 21(9):717–734, 1995.

27. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architec-
tures. In Proc. of 5th European Software Engineering Conference (ESEC95), pages 137–153.
Springer-Verlag, 1995.

28. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, New York, 1991.

29. N. Medvidovic and R.N. Taylor. A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering, 26(1):70–
93, 2000.

Component-Based Software Engineering 95

30. A. Pnueli. Looking ahead. Workshop on The Verification Grand Challenge February 21–23,
2005 SRI International, Menlo Park, CA.

31. R. Pooley and P. Steven. Using UML: Software Engineering with Objects and Component.
Addison-Wesley, 1999.

32. T. Rentsch. Object-oriented programming. SIGPLAN Notices, 17(2):51, 1982.
33. R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan, and D. Zhang. Understanding trade-

offs among different architectural modeling approaches. In Proceedings of the Fourth Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA04).

34. J.-G. Schneider and O. Nierstrasz. Components, scripts and glue. In L. Barroca, J. Hall, and
P. Hall, editors, Software Architectures Advances and Applications, pages 13 – 25. Springer,
1999.

35. B. Selic, G. Gullekson, and P.T. Ward. Real-Time object-oriented modeling. Wiley, 1994.
36. M. Shaw and D. Garlan. Software Architectures: Perspectives on an Emerging Discipline.

Prentice Hall, 1996.
37. I. Sommerville. Software Engineering (6th Edition). Addison-Wesley, 2001.
38. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-

Wesley, 1997.
39. R.N. Taylor, N. Medvidovic, K.M. Anderson, E. J. Whitehead Jr., J.E. Robbins, K.A. Nies,

P. Oreizy, and D.L. Dubrow. A component- and message-based architectural style for gui
software. IEEE Transactions on Software Engineering, 22(6):390 – 406, 1996.

40. A. van de Hoek, M. Rakic, R. Roshandel, and N. Medvidovic. Taming architecture evolution.
In Proceedings of the 6th European Software Engineering Conference (ESEC) and the 9th
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-9), 2001.

41. M. Wirsing and M. Broy. Algebraic state machines. In T. Rus, editor, Proc. 8th Internat.
Conf. Algebraic Methodology and Software Technology, AMAST 2000. LNCS 1816, pages
89–118. Springer, 2000.

Outfix-Free Regular Languages and Prime
Outfix-Free Decomposition�

Yo-Sub Han and Derick Wood

Department of Computer Science,
The Hong Kong University of Science and Technology

{emmous, dwood}@cs.ust.hk

Abstract. A string x is an outfix of a string y if there is a string w such
that x1wx2 = y, where x = x1x2 and a set X of strings is outfix-free
if no string in X is an outfix of any other string in X. We examine the
outfix-free regular languages. Based on the properties of outfix strings, we
develop a polynomial-time algorithm that determines the outfix-freeness
of regular languages. We consider two cases: A language is given as a set
of strings and a language is given by an acyclic deterministic finite-state
automaton. Furthermore, we investigate the prime outfix-free decom-
position of outfix-free regular languages and design a linear-time prime
outfix-free decomposition algorithm for outfix-free regular languages. We
demonstrate the uniqueness of prime outfix-free decomposition.

1 Introduction

Codes play a crucial role in many areas such as information processing, date
compression, cryptography, information transmission and so on [14]. They are
categorized with respect to different conditions (for example, prefix-free, suffix-
free, infix-free or outfix-free) according to the applications [11,12,13,15]. Since a
code is a set of strings, it is a language. The conditions that classify code types
define proper subfamilies of given language families. For regular languages, for
example, prefix-freeness defines the family of prefix-free regular language, which
is a proper subfamily of regular languages.

Based on such subfamilies of regular language, researchers have investigated
properties of these languages as well as their decomposition problems. A decom-
position of a language L is a catenation of several languages L1, L2, . . . , Lk such
that L = L1L2 · · ·Lk and k ≥ 2. If L cannot be further decomposed except for
L · {λ} or {λ} · L, where λ is the null-string, we say that L a prime language.

Czyzowicz et al. [5] studied prefix-free regular languages and the prime prefix-
free decomposition problem. They showed that the prime prefix-free decompo-
sition of a prefix-free language is unique and demonstrated the importance of
prime prefix-free decomposition in practice. Prefix-free regular languages are of-
ten used in the literature: to define the determinism of generalized automata [6]
and of expression automata [10], and to represent a pattern set [9].
� The authors were supported under the Research Grants Council of Hong Kong Com-

petitive Earmarked Research Grant HKUST6197/01E.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 96–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 97

Recently, Han et al. [8] studied infix-free regular languages and developed
an algorithm to determine whether or not a given regular expression defines an
infix-free regular language. They also designed an algorithm for computing the
prime infix-free decomposition of infix-free regular languages and showed that
the prime infix-free decomposition is not unique. Infix-free regular languages give
rise to faster regular-expression text matching [2]. Infix-free languages are also
used to compute forbidden words [1,4].

As a continuation of our investigations of subfamilies of regular languages,
it is natural to examine outfix-free regular languages and the prime outfix-free
decomposition problem. Note that Ito and his co-researchers [12] showed that
an outfix-free regular language is finite and Han et al. [7] demonstrated that
the family of outfix-free regular languages is a proper subset of the family of
simple-regular languages. On the other hand, there was no known efficient al-
gorithm to determine whether or not a given finite set of strings is outfix-free
apart from using brute force. Furthermore, the decomposition of a finite set of
strings is not unique and the computation of the decomposition is believed to
be NP-complete [17]. Therefore, our goal is to develop an efficient algorithm
for determining outfix-freeness of a given finite language and to investigate the
prime outfix-free decomposition and its uniqueness.

We define some basic notions in Section 2 and propose an efficient algorithm
to determine outfix-freeness in Section 3. Then, in Section 4, we show that an
outfix-free regular language has a unique prime outfix-free decomposition and
the unique decomposition can be computed in linear time in the size of the given
finite-state automaton. We suggest some open problems and conclude this paper
in Section 5.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the empty
language and the character λ denotes the null string. Given a string x = x1 · · ·xn,
|x| is the number of characters in x and x(i, j) = xixi+1 · · ·xj is the substring
of x from position i to position j, where i ≤ j. Given two strings x and y in Σ∗,
x is said to be an outfix of y if there is a string w such that x1wx2 = y, where
x = x1x2. For example, abe is an outfix of abcde. Given a set X of strings over
Σ, X is outfix-free if no string in X is an outfix of any other string in X . Given
a string x, let xR be the reversal of x, in which case XR = {xR | x ∈ X}.

A finite-state automaton A is specified by a tuple (Q, Σ, δ, s, F), where Q is
a finite set of states, Σ is an input alphabet, δ ⊆ Q×Σ ×Q is a (finite) set of
transitions, s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q|
be the number of states in Q and |δ| be the number of transitions in δ. Then,
the size |A| of A is |Q|+ |δ|. Given a transition (p, a, q) in δ, where p, q ∈ Q and
a ∈ Σ, we say p has an out-transition and q has an in-transition. Furthermore,
p is a source state of q and q is a target state of p. A string x over Σ is accepted
by A if there is a labeled path from s to a final state in F that spells out x. Thus,

98 Y.-S. Han and D. Wood

the language L(A) of a finite-state automaton A is the set of all strings spelled
out by paths from s to a final state in F . We define A to be non-returning if
the start state of A does not have any in-transitions and A to be non-exiting if
a final state of A does not have any out-transitions. We assume that A has only
useful states; that is, each state appears on some path from the start state to
some final state.

3 Outfix-Free Regular Languages

We first define outfix-free regular expressions and languages, and then present
an algorithm to determine whether or not a given language is outfix-free. Since
prefix-free, suffix-free, infix-free and outfix-free languages are related to each
other, we define all of them and show their relationships.

Definition 1. A language L is

– prefix-free if, for all distinct strings x, y ∈ Σ∗, x ∈ L and y ∈ L imply that
x and y are not prefixes of each other.

– suffix-free if, for all distinct strings x, y ∈ Σ∗, x ∈ L and y ∈ L imply that
x and y are not suffixes of each other.

– bifix-free if L is prefix-free and suffix-free.
– infix-free if, for all distinct strings x, y ∈ Σ∗, x ∈ L and y ∈ L imply that x

and y are not substrings of each other.
– outfix-free if, for all distinct strings x, y, z ∈ Σ∗, xz ∈ L and xyz ∈ L imply

y = λ.
– hyper if L is infix-free and outfix-free.

For further details and definitions, refer to Ito et al. [12] or Shyr [18].
We say that a regular expression E is outfix-free if L(E) is outfix-free. The

language defined by such an outfix-free regular expression is called an outfix-
free regular language. In a similar way, we can define prefix-free, suffix-free and
infix-free regular expressions and languages.

s

u

i

o

p
h

Fig. 1. A diagram to show inclusions of families of languages, where p,s,i,o and h
denote prefix-free, suffix-free, infix-free , outfix-free and hyper families, respectively,
and u denotes Σ∗. Note that the outfix-free family is a proper subset of the prefix-free
and suffix-free families and the hyper family is the common intersection between the
infix-free family and the outfix-free family.

Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 99

Let A = (Q, Σ, δ, s, F) denote a deterministic finite-state automaton (DFA)
for L. Han and Wood [10] showed that if A is non-exiting, then L is prefix-free.
Han et al. [8] proposed an algorithm to determine whether or not a given regular
expression E is infix-free in O(|E|2) worst-case time. This algorithm can also
solve the prefix-free and suffix-free cases as well. Therefore, it is natural to design
an algorithm to determine whether or not a given regular language is outfix-free.
Since an outfix-free regular language L is finite [12,14], the problem is decidable
by comparing all pairs of strings in L, although it is certainly undesirable to
do so.

3.1 Prefix-Freeness

Since the family of outfix-free regular languages is a proper subfamily of prefix-
free regular languages as shown in Fig. 1, we consider prefix-freeness of a finite
language first.

Given a finite set of strings W = {w1, w2, . . . , wn}, where n is the number
of strings in W , we construct a trie T for W . A trie is an ordered tree data
structure that is used to store a set of strings and each edge in the tree has a
single character label. For details on tries, refer to data structure textbooks [3,19].
Assume that wi is a prefix of wj , where i = j; it implies that |wi| < |wj |. Then,
wi and wj must have the common path in T from the root to the ith node q
that spells out wi. Therefore, if we reach q while constructing the path for wj

in T , we recognize that wi is a prefix of wj . Let us consider the case when we
construct a path for wj first and, then, construct a path for wi in T . The path
for wi ends at the |wi|th node q that already has a child node for the path for
wj . Therefore, we know that wi is a prefix of some other string. Note that we
can construct a trie for W in O(|w1| + |w2| + · · · |wn|) time, which is linear in
the size of W .

Lemma 1. Given a finite set W of strings, we can determine whether or not
W is prefix-free in linear time in the size of W by constructing a trie for W . We
can also determine suffix-freeness of W in the same runtime by constructing a
trie for WR.

3.2 Outfix-Freeness

We now consider outfix-freeness. Assume that we have two distinct strings w1
and w2 and w2 is an outfix of w1. It implies that w1 = xyz for some strings x, y
and z such that w2 = xz and y = λ. Moreover, w1 and w2 have the common
prefix x and the common suffix z. Fig. 2 illustrates it.

Based on these observations, we determine whether or not one string w1 is an
outfix of another string w2 for two given strings w1 and w2, where |w1| ≥ |w2|.
We compare two characters, one from w1 and the other from w2, from left to
right (from 1 to |w2|) until two compared characters are different; say the ith
characters are different. If we completely read w2, then we recognize that w2 is
a prefix of w1 and, therefore, w2 is an outfix of w1. We repeat these character-
by-character comparisons from right to left (from |w2| to 1) until we have two

100 Y.-S. Han and D. Wood

a b c a a b b b a a

a b c b a a

Fig. 2. A graphical illustration of an outfix string; abcbaa is an outfix of abcaabbbaa

different characters. Assume that the jth characters are different. If i > j, then
w2 is an outfix of w1. Otherwise, w2 is not an outfix of w1. For example, i = 4
and j = 3 in Fig. 2.

Lemma 2. Given two strings w1 and w2, where |w1| ≥ |w2|, w2 is an outfix of
w1 if and only if there is a position i such that w2(1, i) is a prefix of w1 and
w2(i + 1, |w2|) is a suffix of w1.

Let us consider the trie T for w1 and w2. Since w1 and w2 have the common
prefix, both strings share the common path from the root to a node q of height i
that spells out w2(1, i). Moreover, the path for w2(i+1, |w2|) in T is a suffix-path
for w1(i + 1, |w1|) in T . For example, in Fig. 3, the path for x is the common
prefix-path and the path for z is the common suffix-path. Thus, if a given finite
set W of strings is not outfix-free, then there is such a pair of strings. Since a
node q ∈ T gives the common prefix for all strings that pass through q, we only
need to check whether some path from q to a leaf is a suffix-path for some other
path from q to another leaf.

Let T (q) be the subtree of T rooted at q ∈ T . Then, we can determine
whether or not a path from q is a suffix-path for another path from q in T (q) by
determining the suffix-freeness of all paths from q to a leaf in T (q) based on the
same algorithm for Lemma 1. The running time is linear in the the size of T (q).

x

y
z

z

q

Fig. 3. An example of a trie for strings w1 = xyz and w2 = xz. Note that both paths
end with the same subpath sequence in the trie since w1 and w2 have the common
suffix z.

Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 101

3.3 Complexity of Outfix-Freeness

The subfunction is prefix-free(T) in Fig. 4 determines whether or not the set of
strings represented by a given trie T is prefix-free. Note that is prefix-free(T)
runs in O(|T |) time, where |T | is the number of nodes in T .

Given a finite set W = {w1, w2, . . . , wn} of strings, we can construct a trie T
in O(

∑n
i=1 |wi|) time and space, which is linear in the size of W , where n ≥ 1.

Prefix-freeness and suffix-freeness can be verified in linear time. Thus, the total
running time for the algorithm Outfix-freeness (OFF) in Fig. 4 is

O(|T |) +
∑
q∈T

|T (q)|,

where q is a node that has more than one child. In the worst-case, we have to
examine all nodes in T ; for example, T is a complete tree, where each internal
node has the same number of children. To compute the size of

∑
|T (q)|, let

us consider a string wi ∈ W that makes a path P from the root to a leaf in
T . If a node q ∈ T of height j in path P has more than one child, then the
suffix wi(j + 1, |wi|) of wi that starts from q is used in is suffix-free(T (q)) in
OFF. In the worst-case, all suffixes of wi can be used by is suffix-free(T (q)).
Therefore, wi contributes O(|wi|2) to the total running time of OFF. Fig. 5
illustrates a worst-case example.

Therefore, the total time complexity is O(|w1|2 + |w2|2 + · · ·+ |wn|2) in the
worse case. If the size of wi is O(k), for some k, then the running time is O(k2n).
On the other hand, the all-pairs comparison approach gives O(kn2) worst-case
running time. Note that the size of each string in W is usually much smaller
than the number of strings in W ; namely, k � n.

Theorem 1. Given a finite set W = {w1, w2, . . . , wn} of strings, we can de-
termine whether or not W is outfix-free in O(

∑n
i |wi|2) time using O(

∑n
i |wi|)

space in the worse-case.

Outfix-freeness(W = {w1, w2, . . . , wn})

Construct a trie T for W

if (is prefix-free(T) = no)
then return no

if (is suffix-free(T) = no)
then return no

for each q ∈ T that has more than one child
if (is suffix-free(T (q)) = no)

then return no

return yes

Fig. 4. An outfix-freeness checking algorithm for a given finite set of strings

102 Y.-S. Han and D. Wood

Fig. 5. All suffixes of a string w in T are used to determine the outfix-freeness by OFF.
The size of the sum of all suffixes is O(|w|2).

Now we characterize the family of outfix-free (regular) languages in terms of
closure properties.

Theorem 2. The family of outfix-free (regular) languages is closed under cate-
nation and intersection but not under union, complement or star.

Proof. We only prove the catenation case. The other cases can be proved straight-
forwardly.

Assume that L = L1 ·L2 is not outfix-free whereas L1 and L2 are outfix-free.
Then, there are two distinct strings s and t ∈ L, where t is an outfix of s. Namely,
s = xyz, t = xz and y = λ. Since s and t are catenation of two strings from L1
and L2, s and t can be partitioned into two parts; s = s1s2 and t = t1t2, where
si, ti ∈ Li for i = 1, 2. From the assumption that t is an outfix of s, s and t have
the common prefix and the common suffix as shown in Fig. 6. If we decompose
s and t into s1s2 and t1t2, then we have one of the following four cases:

1. s1 is a prefix of t1.
2. t1 is a prefix of s1.
3. s2 is a suffix of t2.
4. t2 is a suffix of s2.

Let us consider the first case as illustrated in Fig. 6. Since s1 is a prefix of
t1 and s1, t1 ∈ L1, L1 is not outfix-free — a contradiction. We can use a similar
argument for the other three cases. !

x y z
s1 s2

t1 t2

s

t x z

Fig. 6. The figure illustrates the first case in the proof of Theorem 2, where si and
ti ∈ Li for i = 1, 2. Since s1 is a prefix of t1, L1 is not outfix-free.

Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 103

3.4 Outfix-Freeness of Acyclic Deterministic Finite-State Automata

Acyclic deterministic finite-state automata (ADFAs) are a proper subfamily of
DFAs that define finite languages. For example, a trie is an ADFA. Since ADFAs
represent finite languages, they are often used to store a finite number of strings.
Moreover, ADFAs require less space than tries. For instance, we use O(|Σ|5)
space to store all strings of length 5 over Σ in a trie. On the other hand, we use
6 states with 5 × |Σ| transitions in an ADFA. We consider outfix-freeness of a
language given by an ADFA A = (Q,Σ, δ, s, f). Given A and a state q ∈ Q, we
define the right language L−→q to be the set of strings spelled out by paths from
q to f .

Assume that two strings w1 = xyz and w2 = xz are accepted by A, where
w2 is an outfix of w1. Note that w1 and w2 have the common prefix x and the
common suffix z and there is a unique path from s to a state q that spells out
x in A since A is deterministic. Then, yz and z are accepted by A−→q . It means
that L−→q is not suffix-free.

Lemma 3. Given an ADFA A = (Q,Σ, δ, s, f), L(A) is outfix-free if and only
if L−→q is suffix-free for any state q ∈ Q.

Proof.
=⇒ Assume that L−→q is not suffix-free. Then, there are two strings w1 and w2

in L−→q , where w2 is a suffix of w1. Since A has only useful states, there must be
a path from s to q that spells out a string x. It implies that A accepts both xw1
and xw2, where xw2 is an outfix of xw1 — a contradiction. Therefore, if L(A)
is outfix-free, then L−→q is suffix-free for any state q ∈ Q.

⇐= Assume that L(A) is not outfix-free. Then, there are two strings w1 =
xyz and w2 = xz accepted by A, where w2 is an outfix of w1. There is a unique
path from s to q that spells out x in A. Then, there are two distinct paths, one
is for yz and the other is for z, from q since A accepts w1 and w2. It implies that
A−→q accepts yz and z and L−→q is not suffix-free — a contradiction. Therefore, if
L−→q is suffix-free for any state q ∈ Q, then L(A) is outfix-free. !

Recently, Han et al. [8] proposed algorithms to determine prefix-freeness,
suffix-freeness, bifix-freeness and infix-freeness of a given a (nondeterministic)
finite-state automaton A = (Q,Σ, δ, s, f) in O(|Q|2 + |δ|2) time. We use their al-
gorithm to check suffix-freeness for each state. Given an ADFA A = (Q,Σ, δ, s, f)
and a state q ∈ Q, the size of A−→q is at most the size of A; namely, |A−→q | ≤ |A|.
Since it takes O(|Q|2 + |δ|2) time for each state to check suffix-freeness and there
are |Q| states, the total time complexity to determine outfix-freeness of A is
O(|Q|3 + |Q||δ|2). Since a DFA has a constant number of out-transitions from a
state, we obtain the following result.

Theorem 3. Given an ADFA A = (Q,Σ, δ, s, f), we can determine outfix-
freeness of L(A) in O(|Q|3) worst-case time.

104 Y.-S. Han and D. Wood

Furthermore, we determine infix-freeness of L(A) after an outfix-freeness test.
If L(A) is infix-free and outfix-free, then L(A) is hyper. Since the time complexity
for the infix-freeness test is O(|Q|2) for A [8], we can determine hyperness of L(A)
in O(|Q|3) time as well.

Theorem 4. Given an ADFA A = (Q,Σ, δ, s, f), we can determine hyperness
of L(A) in O(|Q|3) worst-case time.

4 Prime Outfix-Free Regular Languages and Prime
Decomposition

Decomposition is the reverse operation of catenation. If L = L1 ·L2, then L is the
catenation of L1 and L2 and L1 ·L2 is a decomposition of L. We call L1 and L2
factors of L. Note that every language L has a decomposition, L = {λ}·L, where
L is a factor of itself. We call {λ} a trivial language. We define a language L
to be prime if L = L1 · L2 for any two non-trivial languages. Then, the prime
decomposition of L is to decompose L into L1 ·L2 · . . . ·Lk, where L1, L2, . . . , Lk

are prime languages and k ≥ 1 is a constant.
Mateescu et al. [16,17] showed that the primality of regular languages is

decidable and the prime decomposition of a regular language is not unique even
for finite languages. Furthermore, they pointed out that no star language L
(L = K∗, for some K) can possess a prime decomposition. Czyzowicz et al. [5]
considered prefix-free regular languages and showed that the prime prefix-free
decomposition for a prefix-free regular language L is unique and the unique
decomposition for L can be computed in O(m) worst-case time, where m is the
size of the minimal DFA for L. Recently, Han et al. [8] investigated the prime
infix-free decomposition of infix-free regular languages and demonstrated that
the prime infix-free decomposition is not unique.

We examine prime outfix-free regular languages and decomposition. Even
though outfix-free regular languages are finite [12], the primality test for finite
languages is believed to be NP-complete [17]. Thus, the decomposition problem
for finite languages is not trivial at all. We design a linear-time algorithm to
determine whether or not a given finite language L is prime outfix-free. We
investigate prime outfix-free decompositions and uniqueness.

4.1 Prime Outfix-Free Regular Languages

Definition 2. A regular language L is a prime outfix-free language if L = L1 ·L2
for any outfix-free regular languages L1 and L2.

From now on, when we say prime, we mean prime outfix-free. Since we are
dealing with outfix-free regular languages, there are no back-edges in finite-
state automata for such languages. Furthermore, these finite-state automata are
always non-exiting and non-returning. Note that if a finite-state automaton is
non-exiting and has several final states, then all final states are equivalent and,
therefore, are merged into a single final state.

Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 105

Definition 3. We define a state b in a DFA A to be a bridge state if the fol-
lowing two conditions hold:

1. State b is neither a start nor a final state.
2. For any string w ∈ L(A), its path in A must pass through b. Therefore, we

can partition A at b into two subautomata A1 and A2.

Given a DFA A = (Q,Σ, δ, s, f) and a bridge state b ∈ Q, where L(A) is
outfix-free, we can partition A into two subautomata A1 and A2 as follows:
A1 = (Q1, Σ, δ1, s, b) and A2 = (Q2, Σ, δ2, b, f), where Q1 is a set of states of
A that appear on some path from s to b in A, Q2 = Q \ Q1 ∪ {b}, δ2 is a set
of transitions of A that appear on some path from b to f in A and δ1 = δ \ δ2.
Fig. 7 illustrates a partition at a bridge state.

b

1 2

3 4 6 7

8 9

1 2

3 4 bb 6 7

8 9

Fig. 7. An example of partitioning of an automaton at a bridge state b

It is easy to verify that L(A) = L(A1) · L(A2) from the second requirement
in Definition 3.

Lemma 4. If a minimal DFA A has a bridge state, where L(A) is outfix-free,
then L(A) is not prime.

Proof. Since A has a bridge state b, we can partition A into A1 and A2 at b. We
establish that L(A1) and L(A2) are outfix-free and, therefore, L(A) is not prime.
Assume that L(A1) is not outfix-free. Then, there are two distinct strings u and
v accepted by A1, where v is an outfix of u; namely, u = xyz and v = xz for some
strings x, y and z. Let w be a string from L(A2). Since L(A) = L(A1) · L(A2),
both uw = xyzw and vw = xzw are in L(A). It contradicts the assumption
that L(A) is outfix-free. Therefore, if L(A) is outfix-free, then L(A1) should be
outfix-free as well. With a similar argument, we can show that L(A2) should
be outfix-free. Hence, if A has a bridge state, then L(A) can be decomposed as
L(A1) · L(A2), where L(A1) and L(A2) are outfix-free, and, therefore, L(A) is
not prime. !

106 Y.-S. Han and D. Wood

Lemma 5. If a minimal DFA A does not have any bridge states and L(A) is
outfix-free, then L(A) is prime.

Proof. Assume that L is not prime. Then, L can be decomposed as L1 · L2,
where L1 and L2 are outfix-free. Czyzowicz et al. [5] showed that given prefix-
free languages A,B and C such that A = B · C, A is regular if and only if B
and C are regular. Thus, if L is regular, then L1 and L2 must be regular since
all outfix-free languages are prefix-free. Let A1 and A2 be minimal DFAs for L1
and L2, respectively. Since A1 and A2 are non-returning and non-exiting, there
are only one start state and one final state for each of them. We catenate A1 and
A2 by merging the final state of A1 and the start state of A2 as a single state b.
Then, the catenated automaton is the minimal DFA for L(A1) · L(A2) = L and
has a bridge state b — a contradiction. !

We can rephrase Lemma 4 as follows: If L is prime, then its minimal DFA
does not have any bridge states. Then, from Lemmas 4 and 5, we obtain the
following result.

Theorem 5. An outfix-free regular language L is prime if and only if the min-
imal DFA for L does not have any bridge states.

Lemma 4 shows that if a minimal DFA A for an outfix-free regular language L
has a bridge state, then we can decompose L into a catenation of two outfix-free
regular languages using bridge states. In addition, if we have a set B of bridge
states for A and decompose A at b, then B \ {b} is the set of bridge states for
the resulting two automata after the decomposition.

Theorem 6. Let A be a minimal DFA for an outfix-free regular language that
has k bridge states. Then, L(A) can be decomposed into k + 1 prime outfix-
free regular languages, namely, L(A) = L1L2 · · ·Lk+1 and L1, L2, . . . , Lk+1 are
prime.

Proof. Let (b1, b2, . . . , bk) be the sequence of bridge states from s to f in A. We
prove the statement by induction on k. It is sufficient to show that L(A) = L′L′′

such that L′ is accepted by a DFA A′ with k− 1 bridge states and L′′ is a prime
outfix-free regular language.

We partition A into two subautomata A′ and A′′ at bk. Note that L(A′) and
L(A′′) are outfix-free languages by the proof of Lemma 4. Since A′′ has no bridge
states, L′′ = L(A′′) is prime by Theorem 5. By the definition of bridge states,
all paths must pass through (b1, b2, . . . , bk−1) in A′ and, therefore, A′ has k − 1
bridge states. Thus, if A has k bridge states, then L(A) can be decomposed into
k + 1 prime outfix-free regular languages. !

Note that Theorem 6 guarantees the uniqueness of prime outfix-free decom-
position. Furthermore, finding the prime decomposition of an outfix-free regu-
lar language is equivalent to identifying bridge states of its minimal DFA by
Theorems 5 and 6.

Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 107

We now show how to compute a set of bridge states defined in Definition 3
from a given minimal DFA A in O(m) time, where m is the size of A. Let G(V,E)
be a labeled directed graph for a given minimal DFA A = (Q,Σ, δ, s, f), where
V = Q and E = δ. We say that a path in G is simple if it does not have a cycle.

Lemma 6. Let Ps,f be a simple path from s to f in G. Then, only the states
on Ps,f can be bridge states of A.

Proof. Assume that a state q is a bridge state and is not on Ps,f . Then, it
contradicts the second requirement of bridge states. !

Assume that we have a simple path Ps,f from s to f in G = (V,E), which
can be computed in O(|V |+ |E|) worst-case time. All states on Ps,f form a set
of candidate bridge states (CBS); namely, CBS = (s, b1, b2, . . . , bk, f).

We use DFS to explore G from s. We visit all states in CBS first. While
exploring G, we maintain the following two values, for each state q ∈ Q,

anc: The index i of a state bi ∈ CBS such that there is a path from bi to q
and there is no path from bj ∈ CBS to q for j > i. The anc of bi is i.
max: The index i of a state bi ∈ CBS such that there is a path from q to
bi and there is no path from q to bj for i < j without visiting any state in
CBS.

The max value of a state q means that there is a path from q to bmax. If bi
has a max value and max = i + 1, then it means that there is another simple
path from bi to bmax without passing through bi+1.

When a state q ∈ Q \ CBS is visited during DFS, q inherits anc of its
preceding state. A state q has two types of child state: One type is a subset T1
of states in CBS and the other is a subset T2 of Q \ CBS; namely, all states
in T1 are candidate bridge states and all states in T2 are not candidate bridge
states. Once we have explored all children of q, we update max of q as follows:

max = max(max
q∈T1

(q.anc),max
q∈T2

(q.max)).

Fig. 8 provides an example of DFS after updating (anc, max) for all states
in G.

s b1 b2 b3 b4 b5 b6 f
(1,2) (2,6) (3,4) (4,5) (5,7) (6,7)

(5,6)

(2,6)

(2,4)(2,6)

Fig. 8. An example of DFS that computes (anc, max), for each state in G, for a given
CBS = (s, b1, b2, b3, b4, b5, b6, f)

108 Y.-S. Han and D. Wood

If a state bi ∈ CBS does not have any out-transitions except a transition
to bi+1 ∈ CBS (for example, b6 in Fig. 8), then bi has (i, i + 1) when DFS is
completed. Once we have completed DFS and computed (anc, max) for all states
in G, we remove states from CBS that violate the requirements to be bridge
states. Assume bi ∈ CBS has (i, j), where i < j. We remove bi+1, bi+2, . . . , bj−1
from CBS since that there is a path from bi to bj; that is, there is another simple
path from bi to f . Then, we remove s and f from CBS. For example, we have
{b1, b2} after removing states that violate the requirements from CBS in Fig. 8.
This algorithm gives the following result.

Theorem 7. Given a minimal DFA A for an outfix-free regular language:

1. We can determine the primality of L(A) in O(m) time,
2. We can compute the unique outfix-free decomposition of L(A) in O(m) time

if L(A) is not prime,

where m is the size of A.

5 Conclusions

We have investigated the outfix-free regular languages. First, we suggested an
algorithm to verify whether or not a given set W = {w1, w2, . . . , wn} of strings is
outfix-free. We then established that the verification takes O(

∑n
i=1 |wi|2) worst-

case time, where n is the number of strings in W . We also considered the case
when a language L is given by an ADFA. Moreover, we have extended the algo-
rithm to determine hyperness of L by checking infix-freeness using the algorithm
of Han et al. [8].

We have demonstrated that an outfix-free regular language L has a unique
outfix-free decomposition and the unique decomposition can be computed in
O(m) time, where m is the size of the minimal DFA for L.

As we have observed, outfix-free regular languages are finite sets. However,
this observation does not hold for the context-free languages. For example, the
non-regular language, {w | w = aicbi, i ≥ 1} is context-free, outfix-free and
infinite. The decidability of outfix-freeness for context-free languages is open
as is the prime decomposition problem. Moreover, there are non-context-free
languages that are outfix-free; for example, {w | w = aibici, i ≥ 1}. Thus, it
is reasonable to investigate the properties and the structure of the family of
outfix-free languages.

References

1. M.-P. Béal, M. Crochemore, F. Mignosi, A. Restivo, and M. Sciortino. Computing
forbidden words of regular languages. Fundamenta Informaticae, 56(1-2):121–135,
2003.

2. C. L. A. Clarke and G. V. Cormack. On the use of regular expressions for searching
text. ACM Transactions on Programming Languages and Systems, 19(3):413–426,
1997.

Outfix-Free Regular Languages and Prime Outfix-Free Decomposition 109

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. McGraw-Hill Higher Education, 2001.

4. M. Crochemore, F. Mignosi, and A. Restivo. Automata and forbidden words.
Information Processing Letters, 67(3):111–117, 1998.

5. J. Czyzowicz, W. Fraczak, A. Pelc, and W. Rytter. Linear-time prime decompo-
sition of regular prefix codes. International Journal of Foundations of Computer
Science, 14:1019–1032, 2003.

6. D. Giammarresi and R. Montalbano. Deterministic generalized automata. Theo-
retical Computer Science, 215:191–208, 1999.

7. Y.-S. Han, G. Trippen, and D. Wood. Simple-regular expressions and languages.
In Proceedings of DCFS’05, 146–157, 2005.

8. Y.-S. Han, Y. Wang, and D. Wood. Infix-free regular expressions and languages.
To appear in International Journal of Foundations of Computer Science, 2005.

9. Y.-S. Han, Y. Wang, and D. Wood. Prefix-free regular-expression matching. In
Proceedings of CPM’05, 298–309. Springer-Verlag, 2005. Lecture Notes in Com-
puter Science 3537.

10. Y.-S. Han and D. Wood. The generalization of generalized automata: Expression
automata. International Journal of Foundations of Computer Science, 16(3):499–
510, 2005.

11. M. Ito, H. Jürgensen, H.-J. Shyr, and G. Thierrin. N-prefix-suffix languages. In-
ternational Journal of Computer Mathematics, 30:37–56, 1989.

12. M. Ito, H. Jürgensen, H.-J. Shyr, and G. Thierrin. Outfix and infix codes and
related classes of languages. Journal of Computer and System Sciences, 43:484–
508, 1991.

13. H. Jürgensen. Infix codes. In Proceedings of Hungarian Computer Science Confer-
ence, 25–29, 1984.

14. H. Jürgensen and S. Konstantinidis. Codes. In G. Rozenberg and A. Salomaa,
editors, Word, Language, Grammar, volume 1 of Handbook of Formal Languages,
511–607. Springer-Verlag, 1997.

15. D. Y. Long, J. Ma, and D. Zhou. Structure of 3-infix-outfix maximal codes. The-
oretical Computer Science, 188(1-2):231–240, 1997.

16. A. Mateescu, A. Salomaa, and S. Yu. On the decomposition of finite languages.
Technical Report 222, TUCS, 1998.

17. A. Mateescu, A. Salomaa, and S. Yu. Factorizations of languages and commuta-
tivity conditions. Acta Cybernetica, 15(3):339–351, 2002.

18. H.-J. Shyr. Lecture Notes: Free Monoids and Languages. Hon Min Book Company,
Taichung, Taiwan R.O.C, 1991.

19. D. Wood. Data structures, algorithms, and performance. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1993.

Solving First Order Formulae
of Pseudo-Regular Theory

Sébastien Limet and Pierre Pillot

LIFO, Université d’Orléans, France
{limet, pillot}@lifo.univ-orleans.fr

Abstract. In this paper1, we study the class of pseudo-regular relations
which is an extension of regular relations that weakens some restrictions
on the ”synchronization” between tuple components of the relation. We
choose logic programming as formalism to describe tree tuple languages
(i.e. relations) and logic program transformation techniques for comput-
ing operations on them. We show that even if pseudo-regular cs-programs
are syntactically less restrictive than regular ones, they define the same
class of tree tuple languages. However, pseudo-regular relations allow one
to define classes of term rewrite systems the transitive closure of which
is a regular relation. We apply this result to give a decidable class of
first order formulae based on the joinability predicate ↓?R where R is a
pseudo-regular term rewrite system.

1 Introduction

Term rewrite systems (TRS) are fundamental to fields like theorem proving,
system verification, or functional-logic programming. Applications there require
decision procedures e.g. for R-unifiability (for terms t and t′, are there a sub-
stitution σ and a term u such that tσ →∗

R u ∗R← t′σ?) or for reachability (is
term t′ reachable from term t by a rewriting derivation?). In this paper, we are
interested in solving formulae where the only predicate is the R-joinability ↓?

R

where R is a term rewrite system. R-joinability coincides with R-unification for
confluent rewrite systems.

Solving a single equation s ↓?
R t is known to be undecidable without any

strong restrictions on the TRS [4,5]. Some positive results have been shown
restricting the TRS to obtain a finitary equational problem (i.e. insuring that the
set of minimal solutions is finite). For example shallow or standard theories [3,12]
impose that the depth of all variables in the (un-oriented) TRS is one. In fact
standard property weakens a little this restriction by allowing variables at depth
more than one when they are not under a defined function symbol. For infinitary
theories (i.e. theories where the set of solutions of an equation s ↓?

R t may be
infinite) many results have been given to decide the existence of solutions using
the reachability problem (e.g. [14,15]) but very few of them [5,8] give a finite
representation of the solutions and even less go beyond solving a single equation.
1 A full version can be found in the LIFO RR-2005-2 at the following URL
http://www.univ-orleans.fr/lifo/prodsci/rapports/RR2005.htm.en

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 110–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Solving First Order Formulae of Pseudo-Regular Theory 111

In order to reach our aim, we have first to solve the problem of the repre-
sentation of a possibly infinite set of solutions of an equation s ↓?

R t. The most
common tools used for such a representation are tree languages recognizers [2]
such as tree automata or tree grammars. In our context, a tree language is a set
of ground terms that is represented by a logic program as in e.g. [6,11]. More
precisely, we use the class of cs-programs of [6].The operations on the languages
are computed thanks to logic program transformations inspired from [13].

Many of the tree tuple languages are not closed under all the set operations.
As far as we know the only class that is closed under those operation and have
decidable emptiness and membership tests are the regular relations [2]. Pseudo-
regular relations are tree tuple languages that allow some kind of duplications
between the components of the tuple. In [6], the emptiness and membership
tests as well as the intersection, projection, union and join (which can be seen
as a composition of relations) of pseudo-regular relations have been described
in term of logic program transformations, but no result about the complement
of a pseudo-regular relation is given. In this paper, we give an algorithm that
computes the complement of pseudo-regular relations.

Once the finite representation of infinite sets of solutions has been chosen,
we have to give an algorithm to compute a representation of the solutions of
equations s ↓?

R t. We use the method described in [7], where a term rewrite
system is transformed into a logic program that encodes the transitive closure
of the rewrite relation →∗

R. Thanks to this transformation, we can define a class
of TRS which corresponding logic programs are pseudo-regular. Then thanks to
the closure of pseudo-regular relation under the set operations, we can compute
the solutions of any formulae where ↓?

R is the only predicate when R belongs to
this class.

2 Preliminaries

We recall some basic notions and notations concerning terms, term rewrite sys-
tems and logic programming; for details see [1,9].

Let Σ be a finite set of symbols with arity, Var be an infinite set of variables,
and T (Σ,Var) be the first-order term algebra over Σ and Var . A term is linear
if no variable occurs more than once in it and a term without variable is called
a ground term. Σ consists of three disjoint subsets: the set F of defined function
symbols, the set C of constructor symbols and the set Pr of predicate symbols. The
terms of T (C,Var) are called data-terms and those of the form P (�t) where P is a
predicate symbol of arity n and �t is a vector of T (F ∪C,Var)n are called atoms.

A position p is a list of integers which length is denoted by |p|. For a term t,
Pos(t) denotes the set of positions in t, |t| = |Pos(t)| the size of t, and t|u the
subterm of t at position u. The term t[u←s] is obtained from t by replacing the
subterm at position u by s. Var(t) is the set of variables occurring in t. The
set ΣPos(t) ⊆ Pos(t) denotes the set of non-variable positions, i.e., t|u ∈ Var
for u ∈ ΣPos(t) and t|u ∈ Var for u ∈ Pos(t) \ ΣPos(t). The depth of a term
t ∈ T (F∪C,Var) denoted Depth(t) is 0 if t ∈ Var and Max({ |p| | p ∈ ΣPos(t) }

112 S. Limet and P. Pillot

otherwise. The depth of an atom P (�t) denoted Depth(P (�t)) is Max({Depth(s) |
s ∈ �t }).

A substitution is a mapping from Var to T (Σ,Var), which extends trivially
to a mapping from T (Σ,Var) to T (Σ,Var). The domain of a substitution σ,
Dom(σ), is the set { x ∈ Var | xσ = x }. For V ⊆ Var , σ|V denotes the restriction
of σ to the variables in V , i.e., xσ|V = xσ for x ∈ V and xσ|V = x otherwise. If
∀x ∈ Dom(σ), xσ is a data-term then σ is called a data substitution. If term t is
an instance of term s, i.e. t = sσ, we say that t matches s and s subsumes t.

Let CVar = {�i | i ≥ 1 } be the set of context variables distinct from Var ,
a n-context is a term t in T (Σ,Var ∪ CVar) such that each �i 1 ≤ i ≤ n
occurs once and only once in t and no other element of CVar occurs in t. �1
(also denoted �) is called the trivial context. For an n-context C, the expression
C[t1, . . . , tn] denotes the term C{�i �→ ti | 1 ≤ i ≤ n }.

A term rewrite system (TRS) is a finite set of oriented equations built over
T (F ∪ C,Var) and called rewrite rules. Lhs and rhs are shorthands for the left-
hand and right-hand side of a rule, respectively. A TRS is constructor based iff
every rule is of the form f(t1, . . . , tn) → r where all ti’s are data-terms and f
is a defined function symbol. For a TRS R, the rewrite relation is denoted by
→R and is defined by t →R s iff there exists a rule l → r in R, a non-variable
position u in t, and a substitution σ, such that t|u = lσ and s = t[u←rσ]. Such a
step is written as t→[u,l→r] s. If σ is a data-substitution then the step is called
a data-step. If a term t cannot be reduced by any rewriting rule, it is said to be
irreducible. The reflexive-transitive closure of →R is denoted by →∗

R.
The joinability relation ↓R is defined by t ↓R s iff t →∗

R u and s →∗ u for
some term u. Notice thatR-joinability is equivalent toR-unifiability for confluent
rewrite systems. In the context of constructor based TRS, a data-solution of a
joinability equation s ↓?

R t is a data-substitution σ such that sσ →∗
R u and

tσ →∗
R u where u is a data term and all rewriting steps are data-steps.

If H,A1, . . . , An are atoms then H ← A1, . . . , An is a Horn clause, H is
called the head and A1, . . . , An is called the body of the clause. The elements
of V ar(A1, . . . , An) \ V ar(H) are called existential variables. A logic program is
a set of Horn clauses. The body of the clause H ← B is said linear iff every
variable occurs at most once in B. A clause is said to be linear if both the
head and the body are linear. The Herbrand domain is the set of all ground
atoms. A set of ground atoms S is an Herbrand model of the clause H ← B iff
∀σ such that Bσ ⊆ S, Hσ ∈ S. S is an Herbrand model of the logic program
P if it is a model of all clauses of P . For a logic program P and a ground
atom A we write P |= A if A belongs to the least Herbrand model of P . The
language described by a n-ary predicate symbol P w.r.t. a program P is the set
{ (t1, . . . , tn) | P |= P (t1, . . . , tn) } of n-tuples of ground terms.

3 Pseudo-Regular Relations

This section first presents the logic programming formalism we use to repre-
sent the tree tuple languages and then some new results about pseudo-regular
relations.

Solving First Order Formulae of Pseudo-Regular Theory 113

3.1 Representing Tree Tuple Languages

A cs-program is simply a logic program consisting in Horn clauses with lin-
ear bodies and without function symbols. [6] introduces two subclasses of cs-
programs, called respectively regular and pseudo-regular programs. The first
class corresponds to the regular relations of [2], and the second one weakens the
syntax of regular programs.

Definition 1. Let H ← B be a clause such that B contains no function symbols.

– H ← B is called pseudo-regular-like (PR-like for short) iff each argument
of H is of the form f(x1, . . . ,xar(f)) where f is a function symbol and the
xis are pairwise distinct variables and there exists a mapping π:Var �→ IN
such that π(xl) = l for all l = 1, . . . , ar(f) and π(x) = π(y) for all variables
x and y occurring in the same body atom.

– H ← B is called pseudo-regular (PR for short) iff it is PR-like and B is
linear.

– H ← B is called regular (R for short) iff it is PR and H is linear.
– H ← B is called shared pseudo-regular (shared-PR for short) iff it is PR-like

and contains no existential variables.
– H ← B is called shared regular (shared-R for short) iff it is shared-PR and
H is linear.

A program is PR-like, PR, R, shared-PR or shared-R if all its clauses are of the
corresponding type.

Example 1. The clause P (c(x1, y1), c(x1, y2)) ← P1(y1), P2(x1, y2) is not PR-like
since x1 and y2 occur in the same body atom but they do not occur at the same
position in arguments of the head of the clause.

The clause P (c(x1, y1), c(x1, y2)) ← P2(y1, z), P2(y2, y1) is PR-like but it is
neither PR because the body is not linear nor shared-PR since z is an exitential
variable.

The following logic program is PR. Notice that the clauses defining Id2 are
regular since their heads are linear
Pf (s(x1), s(x2), s(x3)) ← Q(x1,x2,x3) Id2(c(x1, y1), c(x2, y2)) ← Id2(x1,x2),

Id2(y1, y2)
Pf (0, 0, 0) ← Id2(s(x), s(y)) ← Id2(x, y)
Pg(s(x), s(x)) Id2(0, 0) ←
Q(c(x1, y1), c(x1, y2), c(x2, y3)) ← Pg(x1,x2)Pf (y1, y2, y3)

Decidability of membership and emptiness tests as well as closure under
intersection of pseudo-regular relations have been shown in [6] using the logic
program transformation rules summarized below (see [6] for more details).

Definition 2. A definition is an equivalence of the form H ↔ B (abusively
written H ← B) where H is a single atom of depth 0 and B is a set of atoms.

A set of definitions, D is compatible with a logic program P, if all predicate
symbols occurring in the heads of the definitions occur in exactly one head and

114 S. Limet and P. Pillot

nowhere else in D and P the only exception are tautological definitions of the
form P (x) ← P (x) where P may occur without restriction throughout D and P.

A definition H ← B is called a general join-definition if H is linear and H,B
do not contain function symbols.

The rules transform states 〈P ,Dnew,Ddone, Cnew, Cout〉 where P is the input
logic program, Dnew are definitions not yet unfolded, Ddone are definitions al-
ready processed but still used for simplifying clauses, Cnew are clauses generated
from definitions by unfolding, and Cout is the cs-program generated so far.

We write S ⇒ S′ if S′ is a state obtained from state S by applying one of
the rules unfolding or definition introduction defined below. An initial state is
of the form 〈P ,D, ∅, ∅, ∅〉 where D is compatible with P . A final state is of the
form 〈P , ∅,D′, ∅,P ′〉. P and D are called the input of a derivation, P ′ its output.
A derivation is complete if its last state is final.

Unfolding.

〈P , Dnew
.
∪ {L←R

.
∪{A1, . . . , Ak}}, Ddone, Cnew, Cout〉

〈P , Dnew, Ddone ∪ {L←R∪{A1, . . . , Ak}}, Cnew ∪ C, Cout〉

where C is the set of all clauses (L ← R ∪ B1 ∪ · · · ∪ Bk)μ such that Hi ← Bi

is a clause in P for i = 1, . . . , k, and such that the simultaneous most general
unifier μ of (A1, . . . , Ak) and (H1, . . . , Hk) exists.

Definition Introduction.

〈P , Dnew, Ddone, Cnew
.
∪ {H ← B1

.
∪ · · ·

.
∪Bk}, Cout〉

〈P , Dnew ∪ D, Ddone, Cnew, Cout ∪ {H ← L1, . . . , Lk}〉

where B1, . . . ,Bk is a maximal decomposition of B1 ∪ · · · ∪ Bk into non-empty
variable-disjoint subsets,

Li =
{
Lη−1 if (L←Bi)η ∈ Ddone for some var. renaming η
Pi(x1, . . . ,xn) otherwise, {x1, . . . ,xn} being the vars. of Bi.

for 1 ≤ i ≤ k and new predicate symbols Pi, and where D is the set of all Li←Bi

such that Li contains a new predicate symbol.
The closure of pseudo-regular relations under intersection can be proved

thanks to the following result of [6].

Theorem 1. [6] Let P be a PR program, and let Dp a general join definition.
Any complete derivation with input P and {Dp} that unfolds in each unfolding
step all atoms simultaneously is finite and its output is a PR program.

Example 2. Let us consider the PR program of Example 1. The general join
definition I(x, y) ← Pg(x, y), Id2(x, y) defines the intersection of the relations
defined respectively by Pg and Id2. The ⇒-derivation with input program P

Solving First Order Formulae of Pseudo-Regular Theory 115

and the former join definition can be summarized as follows Ddone is omitted
and the last column indicates which rule has been applied:

Dnew Cnew Cout rule
I(x, y)← Pg(x, y),

Id2(x, y) U

I(s(x), s(x))← Id2(x, x) D

I ′(x)← Id2(x, x) I(s(x), s(x))← I ′(x) U

I ′(0)←
I ′(s(x))← Id2(x, x)
I ′(c(x, y))← Id2(x, x),

Id2(y, y)

D

I ′(0)←
I ′(s(x))← I ′(x)
I ′(c(x, y))← I ′(x), I ′(y)

The output program consists in the clauses of Cout.

The decidability of membership test and emptiness test of language defined
by PR programs come from the fact that PR-programs are cs-programs which
have these properties [6]. The closure under union is obvious.

3.2 Shared Pseudo-Regular Programs

In this section, we show how to compute the complement of a pseudo-regular
language using logic program transformation techniques. For that we use the
class of shared-PR programs. A program of this class can be transformed into
a PR program. Moreover if the clause heads of the input program are all linear
then the result is a regular program. This result proves the equivalence of pseudo-
regular relations and regular relations.

Theorem 2. Let P be a shared-PR program, and let Dp the set of all tautologies
P (x) ← P (x) such that P occurs in P. Any ⇒-derivation with input P and DP
is finite and its output is a PR program. If the input program P is shared regular
then the result is a regular program.

The proof of this theorem is closed to the proof of Theorem 1 given in [6]. The
differences are that one has to verify that no existential variables are introduced
during the ⇒-derivation and to slightly modify the termination argument. This
result has several interesting consequences.

Corollary 1. Any shared regular (resp. PR) program P can be transformed into
an equivalent regular (resp. PR) program.

If the input set of join definitions is the set of all tautologies P (�x)←P (�x) such
that P occurs in P , then the ⇒-derivation produces a regular (or PR) program
that defines the same predicates as P .

Corollary 2. Any PR program can be transformed into an equivalent finite reg-
ular program.

116 S. Limet and P. Pillot

Proof. Without loss of generality we can consider that the PR program does not
contain clauses with existential variables2. Let us observe that any PR clause
H ← B is equivalent to the shared regular clause H ′ ← B′

.
∪ Id where

– H ′ is a linear atom such that H = H ′σ where σ is a substitution from Var
to Var , B = B′σ and

– Id = {Idn(x1, . . . ,xn)|n > 1 and {x1, . . . ,xn} is the set of variables that
have the same image by σ} where each Idi are predicates defined by R
programs and define the set of i-tuples of identical terms.

H ′ ← B′
.
∪ Id is a shared regular since it has no existential variables, H ′ is

linear and ∀x, y ∈ V ar(A) with A ∈ B′
.
∪ Id , x and y occur at the same position

in the arguments of H ′. This shared-R program can be transformed into a R
program.

The equivalence of regular relations and pseudo-regular relations does not
decrease the interest for PR programs since they are syntactically less restrictive
than regular ones as Section 4 will show.

Now shared-PR programs are used to give an algorithm that computes the
complement of tree tuple language defined by a predicate P of a PR program P
using the ⇒ transformation. This algorithm is useful to compute the solutions
of pseudo-regular formulae thanks to logic programs transformations. It consists
in two steps. The first step computes from P a new shared regular program P
that defines the complement of P . The second step uses Corollary 1 to obtain a
regular program equivalent to P .

Let P be a predicate defined by the PR program P . Without loss of generality
we can consider that P has neither unproductive clauses (i.e. clauses that do not
contribute to the least Herbrand model), nor clauses with existential variables.
Then P is transformed into the shared regular program P ′ by the technique used
in proof of Corollary 2.

For each predicate Q of arity n of P ′ and each n-tuple (f1, . . . , fn) of Cn

we define the set of all clauses of P which head is Q(f1(�x1), . . . , fn(�xn)) as
AC(Q, (f1, . . . , fn)) = {Q(f1(�x1), . . . , fn(�xn)) ← B ∈ P ′}. Notice that since
the clause heads of P ′ are linear all the clause heads of AC(Q, �f) are equal up
to a variable renaming. In the following we consider them equal. For an atom
A = P (�t), A stands for P (�t).

Let �f = f1, . . . fn, �xi (1 ≤ i ≤ n) be pairwise distinct vectors of distinct
variables and AC(Q, �f) = {H ← B1, . . . , H ← Bk}. We define

AC(Q, �f) =

⎧⎨⎩ ∅ if H ←∈ AC(Q, �f)
Q(f1(�x1), . . . , fn(�xn)) ← if AC(Q, �f) = ∅
{H ← A1, . . . , Ak | ∀i ∈ [1, k]Ai ∈ Bi } otherwise

Example 3. Let consider the logic program consisting in the three following
clauses P (c(x1, y1), c(x2, y2)) ← P (x1,x2), P (c(x1, y1), c(x2, y2)) ← P (y1, y2)
and P (0, 0) ←
2 In the full version of the present paper we give an algorithm to eliminate existential

variables of R and PR programs.

Solving First Order Formulae of Pseudo-Regular Theory 117

AC(P, (0, c)) = ∅ AC(P, (0, c)) = {P (0, c(x, y))←}
AC(P, (c, 0)) = ∅ AC(P, (c, 0)) = {P (c(x, y), 0)←}
AC(P, (0, 0)) = {P (0, 0)←} AC(P, (0, 0)) = ∅
AC(P, (c, c)) = {

P (c(x1, y1), c(x2, y2))← P (x1, x2),
P (c(x1, y1), c(x2, y2))← P (y1, y2)}

AC(P, (c, c)) = { P (c(x1, y1), c(x2, y2))←
P (x1, x2), P (y1, y2)}

Lemma 1. Let P be a shared regular program without any unproductive clauses.
The program P consisting in the set of clauses

⋃
P∈P, �f∈Cn AC(P, �f) is such that

∀P ∈ P , ∀(t1, . . . , tn) ∈ T n
C ,P |= P (t1, . . . , tn) iff P |= P (t1, . . . , tn).

Proof. We show that P is obtained from P just using logical equivalences. Let
us denote H ← by H ← true. P is equivalent to {H ← false

∨
H←B∈P B |

H = P (f1(�x1), . . . , fn(�xn)), P ∈ P , (f1, . . . , fn) ∈ Cn } i.e. for any possible atom
H = P (f1(�x1), . . . , fn(�xn)), we collect the set of bodies of the clauses which have
the head H . These bodies are connected by the logical operator or. Notice that
since the clauses head are linear the symbol ← here is indeed an equivalence
↔. The negation of these formulae are {H ↔ true

∧
H←B∈P ¬B}. If one B is

the constant true then H is equivalent to false, therefore no clause is headed
by H in P . If the definition is reduced to H ← false meaning that none of
the ground instances of H are in the model of P then H ← is in P, meaning
that all ground instances of H are in the model of P. Finally, in the other cases,
true

∧
H←B∈P ¬B is reduced into a disjunction of conjunctions of negative atoms.

Each conjunction is of the form ¬A1 ∧ . . . ∧ ¬Ak where each Ai belongs to one
different Bi. These definitions produce the clauses {Q(f1(�x1), . . . , fn(�xn)) ←
A1, . . . , Ak | AC(Q, (f1, . . . , fn)) = {H ← B1, . . . , H ← Bk} and ∀i ∈ [1, k]Ai ∈
Bi } of P.

Lemma 2. Let P be a shared regular program without any unproductive clauses.
The program P is a shared regular program.

The proof of this lemma is obvious since no substitution but variable renam-
ings is used to define P so the mappings used to check the shared regularity of
P are preserved in P .

Theorem 3. Pseudo-regular relations are closed under complement

Proof. Let L be a pseudo-regular relation defined by the PR program P . First
compute an equivalent regular program P ′ without neither unproductive clauses
nor existential variables in the body of the clauses. P ′ defines the complement
of L in T n

C if L is of arity n.

For two languages L1 and L2 we have L1 \ L2 = L2 ∩ L1 therefore we have
the following corollary.

Corollary 3. Let P1 and P2 two PR programs, L1 and L2 two languages defined
by the predicates PL1 of P1 and PL2 of P2. The program that represents the lan-
guage L1 \L2 is computed in two phases. First compute the program P2 and then
compute P1 ∩ P2 from P1 ∪ P2 and the definition PL1\L2(�x) ← PL1(�x), PL2

(�x)
using ⇒-derivation.

Notice that the input definition of the second point is a general join definition.

118 S. Limet and P. Pillot

3.3 Non-greibach Logic Programs

Even if PR programs are less restrictive than regular ones, their syntax is still
very strict. This section aims at defining a class of logic programs that can be
transformed into a finite PR one. Our aim is to allow more than one function
symbol in the clause heads.

Definition 3. A Horn clause is called non-Greibach (NG for short) if at least
one of the arguments of the head is of depth more than one. Let H ← B be a
clause such that B contains no function symbols.

– H ← B is called NGPR-like iff none of the arguments of H are variables and
there exists a mapping π:Var �→ IN+ such that π(x) = u then all occurrences
of x in the arguments of H are at position u and π(x) = π(y) for all variables
x and y occurring in the same body atom.

– H ← B is called NGPR iff it is NGPR-like and B is linear.
– H ← B is called NGR iff it is NGPR and H is linear.
– H ← B is called NG-shared-PR iff it is NGPR-like and it contains no exis-

tential variables.
– H ← B is called NG-shared-R iff it is NG-shared-PR and H is linear.

A program is NGPR-like, NGPR, R, NG-shared-PR or NG-shared-R if all its
clauses are of the corresponding type.

For example, the clause P (c(s(x), y), s(s(z))) ← P (x, z), Q(y) is NGPR since
x and z occur both at occurrence 1.1 in the arguments of the head. (It is more
precisely NGR since the head is linear).

Lemma 3. Any NG-xxx clause H ← B has an equivalent finite set of xxx clauses
(xxx being either PR or shared-PR or R or shared-R).

Proof. Let P (f1(�t1), . . . , fn(�tn)) ← B,B1
.
∪ . . .

.
∪ Bk be a NGPR-like clause

where B is the set of atoms the variables of which occur all at depth one in the
argument of the head and each Bi is the set of atoms not occurring in B and the
variables of which have an image by π of the form i.u (u = ε).

Let us consider the atom P (f1(�x1), . . . , fn(�xn)) where �xi|j = �ti|j if �ti|j is a
variable and �xi|j is a new variable 3 otherwise. Let σ be a substitution such that
P (f1(�x1), . . . , fn(�xn))σ = P (f1(�t1), . . . , fn(�tn))

P (f1(�t1), . . . , fn(�tn)) ← B,B1
.
∪ . . .

.
∪ Bk is equivalent to the set of clauses

{P (f1(�x1), . . . , fn(�xn)) ← B, P1(�y1), . . . , Pk(�yk)}
⋃

i∈[1,k]{Pi(�yi)σ ← Bi} where
the Pis are new predicate symbols and �yi is the vector of all the variables z
occurring at position i in P (f1(�x1), . . . , fn(�xn)) and such that zσ = z.

The clause P (f1(�x1), . . . , fn(�xn)) ← B, P1(�y1), . . . , Pk(�yk) is PR-like by con-
struction and the clauses Pi(�yi)σ ← Bi are NGPR-like and have heads of depth
strictly inferior to the depth of P (f1(�t1), . . . , fn(�tn)). Therefore iterating this
process, we obtain a set of PR-like clauses. One can remark that
3 I.e. new introduced variables are pairwise different and also different from the vari-

ables of P (f1(
t1), . . . , fn(
tn)).

Solving First Order Formulae of Pseudo-Regular Theory 119

– no existential variable is introduced by the process so if the initial clause is
NG-shared-PR, the resulting clauses are all NG-shared-PR,

– the new variables introduced by the process are all different, therefore if
P (f1(�t1), . . . , fn(�tn)) ← B,B1

.
∪ . . .

.
∪ Bk is NGPR so are the resulting

clauses and moreover if P (f1(�t1), . . . , fn(�tn)) is linear the heads of the new
clauses are also linear.

Example 4. Consider the NG-shared-PR clause

Pf (s(c(x1, y1)), s(c(x1, y2)), s(c(x2, y3))) ← Pf (y1, y1, y3), Pg(x1,x2)

the equivalent set of shared-PR clauses is

Pf (s(x), s(y), s(z)) ← P1(x, y, z)
P1(c(x1, y1), c(x1, y2), c(x2, y3)) ← Pf (y1, y1, y3), Pg(x1,x2).

4 Solving Pseudo-Regular Formulae

In this section, we show how our results on pseudo-regular relations can be used
in the context of term rewriting theory. The aim is to solve formulae based on
joinability equations for the class of pseudo-regular TRS. First we define the class
of TRS and the type of formulae we deal with and then we give an algorithm to
solve such formulae.

4.1 Pseudo-Regular TRS and Formulae

The next definition uses the notion of possible redex for constructor based rewrite
system4, i.e. subterms of a term that may be rewritten.

Let R be a TRS and t a term. A position u in t is called a possible redex
position if t|u is of the form f(C1, . . . , Ck)[f1(�t1), . . . , fn(�tn)] where f, f1, . . . fn ∈
F and C1, . . . , Ck ∈ T (Σ,Var ∪CVar). f(C1, . . . , Ck) is called the possible redex
at occurrence u of t. The context C that does not contain any possible redex
and that is such that t = C[t1, . . . , tn] where ui for 1 ≤ i ≤ n is a possible redex
position, is called the irreducible part of t and is denoted IrrR(t).

Definition 4. A constructor based TRS R is called pseudo-regular if for all rule
f(t1, . . . , tn) → r ∈ R:

– there exists a mapping π:Var �→ IN+, such that π(x) = u implies that all
occurrences of x in each t1, . . . , tn and Irr(r) are at position u,

– each possible redex C at position u of r is of the form f(x1, . . . ,xn) where
∀1 ≤ i ≤ n xi ∈ V ar(f(t1, . . . , tn)) and π(xi) = u.

Example 5. R = {f(s(c(x, y)), s(c(x, z))) → p(c(g(x), f(y, y))), f(s(0), s(0)) →
0, g(s(x)) → s(x)} is pseudo-regular. The irreducible part of the lhs of the first
rule is p(c(�1,�2)) and it contains two possible redex positions namely 1.1 and
1.2 corresponding to the possible redexes g(x) and f(y, y). Notice that Defini-
tion 4 does not forbid duplicated variables in a single possible redex.
4 A similar notion was introduced in [7] for general TRS.

120 S. Limet and P. Pillot

Definition 5. Let R be a pseudo regular TRS. A pseudo-regular joinability equa-
tion s ↓?

R t is an equation such that s and t are built over T (F ,Var).

Let R be a pseudo-regular TRS, pseudo-regular R-formulae are defined by
the following grammar: e ::= s ↓?

R t|¬e|e ∨ e|e ∧ e|∃xe|∀xe
where s ↓?

R t is a pseudo-regular joinability equation.
The set of solutions of such a formula is defined as follows:

SOL(s ↓?
R t) is the set of data-solutions of s ↓?

R t
SOL(¬e) = { σ | σ ∈ SOL(e) }
SOL(e1 ∧ e2) = { σ | Dom(σ) = V ar(e1 ∧ e2), σ|V ar(e1) ∈ SOL(e1), σ|V ar(e2) ∈
SOL(e2) }
SOL(e1∨e2) = { σ | Dom(σ) = V ar(e1∨e2), σ|V ar(e1) ∈ SOL(e1) or σ|V ar(e2) ∈
SOL(e2) }
SOL(∃xe) = { σ | Dom(σ) = V ar(e) \ {x}, ∃σ′ ∈ SOL(e), σ = σ′|V ar(e)\{x} }
SOL(∀xe) = { σ | Dom(σ) = V ar(e) \ {x}, ∀σ′ ∈ SOL(e), σ = σ′|V ar(e)\{x} }

Even if the constructors are forbidden in the joinability equations, many
wanted properties for TRS can be expressed by a pseudo-regular formula. Among
them we can cite

– confluency ∀x, y¬(f(x, y) ↓?
R z ∧ f(x, y) ↓?

R z′) ∨ z ↓?
R z′,

– commutativity ∀x, yf(x, y) ↓?
R f(y,x),

– associativity ∀x, y, zf(x, f(y, z)) ↓?
R f(f(x, y), z),

– idempotency ∀xg(g(x)) ↓?
R x,

– fixed points of a function g(x) ↓?
R x.

– search for neutral elements ∀xf(x, y) ↓?
R x.

4.2 Solving Pseudo-Regular Formulae

Our algorithm is based on the results given in Section 3. The first step consists
in computing the solutions of a pseudo-regular joinability equation. For that we
use a technique introduced in [7] that encodes the rewrite relation by a logic
program. This translation intends to obtain logic programs that preserve as best
as possible syntactic properties of the TRS. It works for any term rewrite system
but the obtained logic program encodes only a subset of the rewriting relation
called basic rewriting. Fortunately, basic rewriting and rewriting relations coin-
cide when considering only data-steps.

Table 1 specifies the rules for transforming terms and rewrite rules to clause
logic. For a TRS R, let LP(R) denote the logic program consisting of the clauses
obtained by applying the fourth rule to all rewrite rules in R. For sake of sim-
plicity, we will denote by xu the fresh variable introduced in the third rule for
the subterm f(s1, . . . , sn) at occurrence u of a rhs s and Au the atom produced
by this rule.

For example, the first rewrite rule of Example 5 is transformed into
Pf (s(c(x, y)), s(c(x, z)), p(c(x1 ,x2))) ← Pg(x,x1), Pf (y, y,x2).

Theorem 4. Let R be a TRS, s a term such that s � 〈s′,G〉. s →∗ t iff t is a
data-term LP(R), |= Gμ and t = s′μ where μ is a data substitution.

Solving First Order Formulae of Pseudo-Regular Theory 121

Table 1. Converting rewrite rules to clause logic

�
v � 〈v, ∅〉

if v ∈ Var

s1 � 〈t1,G1〉 . . . sn � 〈tn,Gn〉
f(s1, . . . , sn) � 〈f(t1, . . . , tn),

⋃
i Gi〉

if f ∈ C

s1 � 〈t1,G1〉 . . . sn � 〈tn,Gn〉
f(s1, . . . , sn) � 〈x,

⋃
i Gi

⋃
{Pf (t1, . . . , tn, x)}〉

if f ∈ F

s � 〈t,G〉
f(s1, . . . , sn)→ s � Pf (s1, . . . , sn, t)← G

if f(s1, . . . , sn)→ s ∈ R

The rules of Table 1 slightly differ from those presented in [7] because [7]
deals with general TRS whereas we are working on constructor based TRS in
the present paper. Theorem 4 in [7] is also a little bit different because in [7]
the set of clauses PId is added to LP(R) to be able to stop rewrite derivation
at any step. For computing data-solutions of a joinability equation, we need to
compute rewrite derivation until reaching a data term so PId has been removed.

Lemma 4. Let R be a pseudo-regular TRS then LP(R) is a NG-shared-PR logic
program.

Proof. Each rule of a pseudo regular TRS is of the form
f(t1, . . . , tn) → C[f1(�x1), . . . , fk(�xk)]

where C is the irreducible part of the lhs of the rule, and f, f1, . . . , fk are func-
tion symbols. C and each ti contain no defined function symbols. Therefore the
clause produced for this rule is

Pf (t1, . . . , tn, C[xu1 . . . ,xuk
]) ← Pf1(�x1,xu1), . . . , Pfk

(�xk,xuk
)

Since all variables of f1(�x1), . . . , fk(�xk) are variables of f(t1, . . . , tn), the clause
contains no existential variables. By extending the mapping π of the pseudo-
regular rewrite rule f(t1, . . . , tn) → C[f1(�x1), . . . , fk(�xk)] to π′ = π ∪1≤i≤k

{xui �→ ui} we obtain that the clause is NG-shared-PR.

The data solutions of pseudo-regular joinability equations expressed as a
pseudo-regular language can be computed using the following algorithm.

Algorithm 1. Let R be a pseudo-regular TRS and s ↓?
R t a pseudo-regular

joinability equation, �x the variables occurring in s ↓?
R t. Let LP(s ↓?

R t) =
Id2(xs,xt), Gs, Gt where s � (xs, Gs) and t � (xt, Gt) (see Table 1) and Id2 is
a pseudo regular predicate that define equality of terms like in Example 1.

1. Compute LP(R)
2. Compute LP(s ↓?

R t)
3. Use ⇒ and Lemma 3 to compute a pseudo-regular program P from LP(R).
4. Use ⇒ to compute from P and the join definition Ps↓?Rt,�x(�x) ← LP(s ↓?

R t)
the PR program Ps↓?Rt.

122 S. Limet and P. Pillot

Theorem 5. Let R be a pseudo-regular TRS and s ↓?
R t a pseudo-regular join-

ability equation and Ps↓?Rt the resulting program of Algorithm 1.
Ps↓?Rt |= Ps↓?Rt,�x(�t) iff { �x|i �→ �t|i | 1 ≤ i ≤ length(�x) } ∈ SOL(s ↓?

R t).

Proof. From Lemma 4, we know that LP(R) is a NG-shared-PR program. Ac-
cording to Lemma 3 and Theorem 2, point 3 of Algorithm 1 produces a finite PR
program that is equivalent to LP(R). The definition Ps↓?Rt,�x(�x) ← LP(s ↓?

R t) is
a general join definition since all predicates of LP(s ↓?

R t) are defined by a PR
program and LP(s ↓?

R t) contains no function symbols since s and t contain no
constructor symbol. Therefore, from Theorem 1, the point 4 of the algorithm
produces a finite PR program.

From Theorem 4 we know that for any predicate Pf of LP(R), LP(R) |=
Pf (t1, . . . , tn, t) iff f(t1, . . . , tn) →∗ t. Pf (. . . ,xu, . . .) and Pg(�x,xu) belong to
LP(s ↓?

R t) iff either s or t contains the subterm f(. . . , g(�t), . . .) thus LP(s ↓?
R t)

simulates the composition of functions contained in s and t. Moreover the atom
Id2(xs,xt) insures that the respective results of the rewrite derivations from s
and t are equal.

Solving pseudo-regular formulae can be done using the following algorithm

Algorithm 2. Let R be a pseudo-regular TRS and e a pseudo-regular formula.

1. Solve each elementary formula s ↓?
R t by computing Ps↓?Rt

2. If Pe defines SOL(e) then Pe = P¬e defines SOL(¬e).
3. If Pe1 and Pe2 define respectively SOL(e1) and SOL(e2) then the program
Pe1∧e2 obtained by a complete derivation of ⇒ with inputs Pe1 ∪ Pe2 and
Pe1∧e2,�x(�x) ← Pe1,�x1(�x1), Pe2,�x2(�x2) where �x = V ar(e1∧e2), is a PR program
that defines SOL(e1 ∧ e2)

4. If Pe1 and Pe2 define respectively SOL(e1) and SOL(e2) then the program
Pe1∨e2 obtained by a complete derivation of ⇒ with inputs Pe1 ∪ Pe2 and
{Pe1∨e2,�x(�x) ← Pe1,�x1(�x1), Pe1∨e2,�x(�x) ← Pe2,�x2(�x2)} where �x = V ar(e1 ∧
e2), is a PR program that defines SOL(e1 ∨ e2).

5. If Pe defines SOL(e) then the program P∃xe obtained from Pe by a complete
⇒-derivation with P∃xe,�y(�y) ← Pe,�x′(�x′) as input definition is a PR program
that defines SOL(∃xe) since it is a projection on all arguments of Pe,�x′ but
the one defining the variable x.

Solving a ∀xe can be done by using well-known identity ∀xe ≡ ¬∃¬e.

Theorem 6. Let R be a pseudo-regular TRS and e a pseudo-regular formula
and Pe the resulting program of Algorithm 2. Pe |= Pe,�x(�t) iff { �x|i �→ �t|i | 1 ≤
i ≤ length(�x) } ∈ SOL(e).

Proof. It is done by an easy induction on the structure of the formula. From
Theorem 5, we know that for each elementary formula s ↓?

R t, Ps↓?Rt |= Ps↓?Rt,�x(�t)
iff { �x|i �→ �t|i | 1 ≤ i ≤ length(�x) } ∈ SOL(s ↓?

R t). Let e1 and e2 be two formulae
such that Pe1 and Pe2 computes the solutions of e1 and e2 respectively.

Solving First Order Formulae of Pseudo-Regular Theory 123

– From Theorem 3, we know that P¬e1 defines SOL(¬e1) and is regular.
– Pe1∧e2,�x(�x) ← Pe1,�x1(�x1), Pe2,�x2(�x2) is a general join definition since Pe1,�x1

and Pe2,�x2 are defined by a PR program, therefore from Theorem 1 Pe1∧e2

is a PR program that defines the solutions of e1 ∧ e2.
– Pe1∨e2,�x(�x) ← Pe1,�x1(�x1) and Pe1∨e2,�x(�x) ← Pe2,�x2(�x2) are general join defi-

nitions since Pe1,�x1 and Pe2,�x2 are defined by a PR program, therefore from
Theorem 1 Pe1∧e2 is a PR program that defines the solutions of e1 ∨ e2.

– P∃xe1,�y(�y) ← Pe1,�x′(�x′) is a general join definition since Pe1,�x′(�x′) is defined
by a PR program, therefore from Theorem 1 P∃xe1,�y is defined by a PR
program. Moreover P∃xe1,�y(�y) defines the solutions of ∃xe1 since Pe1,�x′(�x′)
defines SOL(e1) and therefore P∃xe1,�y(�y) defines SOL(e1)|{x}.

5 Conclusion and Future Work

The main contributions of this paper are the definition of an algorithm to com-
pute the complement of a pseudo-regular relation represented by a logic program
and the use of pseudo-regular relations to solve pseudo-regular formulae. The rep-
resentation of tree tuple languages by logic programs simplifies the connection
between term rewriting systems and tree languages. Indeed, it would have been
quite difficult to obtain the definition of pseudo regular TRS and pseudo-regular
formulae without NG-Shared-PR logic programs.

Since we know other classes of logic programs that can be transformed into
a finite pseudo-regular one, allowing some function symbols in the body of the
clauses, it would be possible to weaken some restrictions on the possible redexes
of the pseudo-regular TRS as well as on the pseudo-regular joinability equations.

We should study the actual expressiveness of pseudo-regular TRS by encod-
ing some problems coming from fields like theorem proving or system verification.
For example, we already have encoded the semantics of the so-called process al-
gebra of [10] by a regular TRS. We intend to study what pseudo-regularity can
bring to the model checking of process algebra.

It would be also interesting to implement the resolution of pseudo-regular for-
mulae. A prototype should be soon available since ⇒ and � (the transformation
of a TRS into a logic program) have already been implemented in Prolog.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, United Kingdom, 1998.

2. H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree
Automata Techniques and Applications (TATA).
http://www.grappa.univ-lille3.fr/tata, 1997.

3. H. Comon, M. Haberstrau, and J.-P. Jouannaud. Syntacticness, cycle-syn-
tacticness, and shallow theories. Information and Computation, 111(1):154–191,
1994.

124 S. Limet and P. Pillot

4. Heinz Faßbender and Sebastian Maneth. A strict border for the decidability of e-
unification for recursive functions. Journal of Functional and Logic Programming,
1998(4), 1998.

5. S. Limet and P. Réty. E-unification by means of tree tuple synchronized grammars.
Discrete Mathematics and Theoretical Computer Science, 1:69–98, 1997.

6. S. Limet and G. Salzer. Manipulating tree tuple languages by transforming logic
programs. Technical Report RR-2004-01, LIFO, Université d’Orléans, 2003.

7. S. Limet and G. Salzer. Proving properties of term rewrite systems via logic
programs. In V. van Oostrom, editor, Proc. 15th Int. Conf. on Rewriting Techniques
and Applications (RTA’04), volume 3091 of LNCS, pages 170–184. Springer, 2004.

8. S. Limet and F. Saubion. A general framework for R-unification. In C. Palamidessi,
H. Glaser, and K. Meinke, editors, proc of the Conf. on Principle of Declarative
Programming (PLILP-ALP), volume 1490 of LNCS, pages 266–281. Springer, 1998.

9. J.W. Lloyd. Foundations of Logic Programming. Springer, 1984.
10. D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-processes. Theoret-

ical Computer Science, 274(1-2):89–115, 2002.
11. F. Nielson, H. Riis Nielson, and H. Seidl. Normalizable horn clauses, strongly

recognizable relations and spi. In Proc. SAS’02, number 2477 in Lecture Notes in
Computer Science, pages 20–35. Springer-Verlag, 2002.

12. Robert Nieuwenhuis. Decidability and complexity analysis by basic paramodula-
tion. Information and Computation, 147:1–21, 1998.

13. M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this order, for
avoiding unnecessary variables in logic programs. Theoretical Computer Science,
142(1):89–124, 1995.

14. P. Réty. Regular sets of descendants for constructor-based rewrite systems. In
Proc. of the 6th conference LPAR, number 1705 in LNAI. Springer, 1999.

15. T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting
systems effectively preserve recognizability. In Proc. 11th Int. Conf. on Rewrit-
ing Techniques and Applications (RTA’00), volume 1833 of LNCS, pages 270–273.
Springer, 2000.

Splicing Array Grammar Systems

K.G. Subramanian1, A. Roslin Sagaya Mary2, and K.S. Dersanambika3,�

1 Department of Mathematics, Madras Christian College,
Chennai - 600 059, India
kgsmani1948@yahoo.com

2 Rovira I Virgili University,
Pl. Imperial Tarraco 1, 43005 Tarragona, Spain

3 Department of Computer Science and Engineering,
Indian Institute of Technology, Madras, Chennai - 600 036, India

dersanapdf@yahoo.com

Abstract. Splicing Array Grammar Systems (SAGS) generating pic-
tures of rectangular arrays of symbols are introduced. The components
consist of two-dimensional tabled matrix Grammars working in parallel
and arrays generated in two different components of the SAGS are al-
lowed to be “cut” and “pasted” according to array splicing domino rules.
This model is motivated by the study of Dassow and Mitrana (1996)
on string splicing grammar systems. Certain properties of SAGS are
obtained.

1 Introduction

Grammar systems are known to provide a formal framework for modelling dis-
tributed complex systems [2]. A grammar system consists of several grammars or
other language identifying mechanisms, that cooperate according to some well-
defined protocol. Among a variety of grammar system models, Parallel Commu-
nicating Grammar Systems, in which the components are generative grammars
working on their own sentential forms in parallel and communicating with each
other by sending their sentential forms by request, have been of intensive study
[1] and [2].

Head [7] and [8] defined the operation of splicing of strings while studying the
behaviour of DNA sequences under the action of restriction enzymes and ligases.
Making use of this operation, a new type of grammar system, called Splicing
Grammar System has been introduced in [3]. The component grammars work
in parallel in this system as in a parallel communicating grammar system but
communication between components is done by splicing of strings.

Several two-dimensional grammars have been proposed and studied [10] in
syntactic approaches to generation and recognition of picture patterns, consid-
ered as digitized arrays. As a simple and effective extension of the operation of
splicing on strings, a new method of splicing on rectangular arrays is introduced
in [9] . The idea here is that each of two rectangular arrays is “cut” between two
� This work is partially supported by University Grants Commission, India.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 125–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

126 K.G. Subramanian et al.

specified columns (respectively rows) and the “left” (‘upper”) part of the first
array is “pasted” with the “right” (“lower”)part of the second array, resulting
in a new array and the “cut” and “paste” operations are according to a set of
domino splicing rules.

Freund [5] has introduced and investigated cooperating distributed array
grammar systems extending the concept of cooperation in string grammar sys-
tems and using array grammars. Here, motivated by the study of Dassow and
Mitrana [3], we consider Grammar Systems that describe Pictures of rectangular
arrays. The components of these Grammar systems consist of two-dimensional
(2d) tabled matrix grammars [12] and domino splicing rules [9] with the gram-
mars working in parallel and splicing rules acting on arrays of two components
yielding rectangular arrays of symbols. The resulting systems are called Splicing
Array Grammar Systems (SAGS). Properties such as generative power, compar-
ison etc. are obtained.

2 Preliminaries

The basic notions and notations on arrays are now recalled [6] and [11].
Let Σ be a finite alphabet. Σ∗ is the set of all words over Σ including the

empty word λ. A picture A over Σ is a rectangular m × n array of elements of
Σ of the form

A =

⎡⎢⎣ a11 · · · a1n
...

. . .
...

am1 · · · amn

⎤⎥⎦
or in short A = [aij]m×n. We write an array A without enclosing it in square
brackets when there is no confusion. The set of all pictures is denoted by Σ∗∗.
A picture language or a two dimensional language over Σ is a subset of Σ∗∗.

Definition 1. For an array A of dimension m×n and an array B of dimension
m′ × n′, the column catenation AΦB is defined only when m = m′ and the row
catenation AΘB is defined only when n = n′. Informally speaking, in row cate-
nation AΘB, B is attached below A. In column catenation AΦB, B is attached
to the right of X. We refer to [6] and [11] for a formal definition of column and
row catenations of rectangular arrays.

We now recall the definition of a Two-dimensional(2d) tabled matrix grammar
[12].

Definition 2. A 2d tabled matrix grammar is a 3−tuple G = (G1, G2, Ω)
where
G1 = (H1, I1, P1, S) is a Regular, CF or CS grammar,
H1 is a finite set of horizontal nonterminals,
I1 = {S1, S2, · · · , Sk}, a finite set of intermediates, H1 ∩ I1 = ∅,
P1 is a finite set of production rules called horizontal production rules,
S is the start symbol, S ∈ H1,
G2 = (G21, G22, · · · , G2k) where

Splicing Array Grammar Systems 127

G2i = (V2i, T, P2i, Si), 1 ≤ i ≤ k are regular grammars,
V2i is a finite set of vertical nonterminals, V2i ∩ V2j = ∅, i = j,
T is a finite set of terminals,
P2i is a finite set of right linear production rules of the form X −→ aY or
X −→ a where X,Y ∈ V2i, a ∈ T
Si ∈ V2i is the start symbol of G2i.
Ω = {t1, ..., tn} for some n ≥ 1; Each tj ⊆ ∪P2i is a table of rules so that either
all the rules in tj are of the form X −→ aY or all the rules in tj are of the form
X −→ a.

The type of G1 gives the type of G , so we speak about regular, context-
free, context sensitive 2d matrix grammars if G1 is regular, context-free, context
sensitive respectively.

Derivations are defined as follows: First a string Si1Si2 · · · Sin ∈ I∗1 is
generated horizontally using the horizontal production rules of P1 in G1. That
is, S ⇒ Si1Si2 · · · Sin ∈ I∗1 . Vertical derivations proceed as follows: We write

Ai1 · · · Ain

⇓
ai1 · · · ain

Bi1 · · · Bin

if Aij → aijBij are rules in a table tj. The derivation terminates if Aij → amj

are all terminal rules in in a table tj.
The set L(G) of all matrices generated by G consists of all m × n arrays

[aij] such that 1 ≤ i ≤ m, 1 ≤ j ≤ n and S ⇒∗
G1

Si1Si2 · · · Sin ⇒∗
G2

[aij] .
We denote the picture language classes of regular, CF, CS 2d Tabled Matrix
grammars by 2dTRML, 2dTCFML, 2dTCSML respectively.

Remark 1. When the number of tables in Ω is just two, with one consisting of
all rules of the form X −→ aY and the other consisting of all rules of the form
X −→ a, then G in Definition 2 is a two-dimensional matrix grammar [11].

We now recall the notions of domino splicing rules and Splicing of arrays
using these rules [9].

Definition 3. Let V be an alphabet. #, $ are two special symbols, not in V . A

domino over V is of the form
a
b

or a b for some a, b ∈ V A domino column

splicing rule over V is of the form r = α1 #α2 $α3 #α4 where each αi =
a
b

for some a, b ∈ V ∪ {#} . A domino row splicing rule over V is of the form
r = β1 #β2 $ β3 #β4 where each βi = a b for some a, b ∈ V ∪ {#} .

We refer to α1, α2, α3, α4 of a column splicing rule r = α1 # α2 $ α3 # α4
as the first, second, third and fourth dominoes of r respectively. Similarly for a
row splicing rule r = β1 #β2 $ β3 #β4. β1, β2, β3, β4 are the first, second, third
and fourth dominoes of r respectively.

128 K.G. Subramanian et al.

Given two arrays X and Y of sizes m× p and m× q respectively,

X =

a11 · · · a1,j a1,j+1 · · · a1p
a21 · · · a2,j a2,j+1 · · · a2p
...

. . .
...

...
. . .

...
am1 · · · am,j am,j+1 · · · amp ,

Y =

b11 · · · b1,k b1,k+1 · · · b1q
b21 · · · b2,k b2,k+1 · · · b2q
...

. . . · · ·
...

. . .
...

bm1 · · · bm,k bm,k+1 · · · bmq

air, bis ∈ V, for 1 ≤ i ≤ m, 1 ≤ r ≤ p, 1 ≤ s ≤ q. We write (X,Y) |Φ Z
if there is a sequence r1, r2, ...rm of column splicing rules (not necessarily all
different) such that

ri =
ai,j

ai+1,j
#

ai,j+1

ai+1,j+1
$

bi,k
bi+1,k

#
bi,k+1

bi+1,k+1

for all i, 1 ≤ i ≤ m− 1 and for some j, k 1 ≤ j ≤ p− 1, 1 ≤ k ≤ q − 1 and

Z =

a11 · · · a1,j b1,k+1 · · · b1q
a21 · · · a2,j b2,k+1 · · · b2q
...

. . .
...

...
. . .

...
am1 · · · am,j bm,k+1 · · · bmq

In other words, we can imagine that a 2 × 1 window is moved down the jth

column of X The sequence of dominoes collected are the first dominoes of the
rules r1, r2, ..., rm (not all necessarily different). When a 2× 1 window is moved
down the j + 1st column of X the sequence of dominoes collected are the second
dominoes of the rules r1, r2, ..., rm. Likewise for the kth and k + 1st columns of
Y When such rules exist in the system, the column splicing of the arrays X and
Y amounts to the array X being vertically “cut” between jth and j+1st columns
and the array Y between kth and k+ 1st columns and the resulting left subarray
of X “pasted” (column catenated) with the right subarray of Y to yield Z We
now say that Z is obtained from X and Y by domino column splicing in parallel.
We can similarly define row splicing operation of two arrays U and V of sizes
p× n and q × n, using row splicing rules to yield an array W .

U =

c11 c12 · · · c1n
...

...
. . .

...
cr,1 cr,2 · · · cr,n
cr+1,1 cr+1,2 · · · cr+1,n

...
...

. . .
...

cp1 cp2 · · · cpn ,

V =

d11 d12 · · · d1n
...

...
. . .

...
ds,1 ds,2 · · · ds,n

ds+1,1 ds+1,2 · · · ds+1,n
...

...
. . .

...
dq1 dq2 · · · dqn

crj, dsj ∈ V, for 1 ≤ j ≤ n, 1 ≤ r ≤ p, 1 ≤ s ≤ q.

Splicing Array Grammar Systems 129

We write (U, V) |Θ W if there is a sequence r1, r2, · · · rn of row splicing rules
(not necessarily all different) such that

rj = cr,j cr,j+1 # cr+1,j cr+1,j+1 $ ds,j ds,j+1 # ds+1,j ds+1,j+1

for all j, 1 ≤ j ≤ n− 1 and for some r, s 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 1 and

W =

c11 c12 · · · c1n
...

...
. . .

...
cr,1 cr,2 · · · cr,n
ds+1,1 ds+1,2 · · · ds+1,n

...
...

. . .
...

dq1 dq2 · · · dqn

As done for the column splicing of arrays, we can imagine 1 × 2 windows
being moved over respective rows. The row splicing of the arrays U and V can
be thought of as U being horizontally “cut” between the rth and r + 1st rows
and V between sth and s + 1st rows and the upper subarray of U “pasted” (row
catenated) to the lower subarray of V to yield W We now say that W is obtained
from U and V by domino row splicing in parallel.

We illustrate with an example.

Example 1. Let V = {a, b},

Rc = {p1 :
a
b

$
b
a

p2 :
b
a

$
a
b

}

Rr = {q1 : a b # $ # b a

q2 : b a # $ # a b }

Column splicing in parallel of an array with itself using the rules given is
shown below:

a b
b a

a b
b a

|Φ a b a b
b a b a

Likewise, row splicing in parallel of an array with itself using the rules given is
shown below:

a b a b
b a b a

a b a b
b a b a

|Θ
a b a b
b a b a
a b a b
b a b a

A vertical bar ‘| ’ or a horizontal bar ‘−−’ indicates the place where splicing is
done.

130 K.G. Subramanian et al.

3 Splicing Array Grammar Systems

We now introduce the notion of Splicing array grammar system in which the
component grammars consist of rules of 2d tabled matrix grammars.

Definition 4. A Splicing Array Grammar system (SAGS) is a construct
Γ = (Vh, ΣI , Vv, T, (S1, R

h
1 , R

v
1), ..., (Sn, R

h
n, R

v
n),M) where,

Vh is a finite set of variables called horizontal variables;
Vv is a finite set of variables called vertical variables;
ΣI ⊆ Vv is a finite set of intermediates;
T is a finite set of terminals;
Si, 1 ≤ i ≤ n is the start symbol of the corresponding horizontal component;
Rh

i , 1 ≤ i ≤ n is a finite set of rules called horizontal productions
and the rules can be regular or context free or context sensitive;
Rv

i , 1 ≤ i ≤ n is a finite set tables of right linear rules called vertical produc-
tions;The productions in a table are all either of the form A → aB or of the
form A→ a;
M is a finite set of domino column or row splicing rules of the form

m = α1 # α2 $ α3 # α4 or β1 # β2 $ β3 # β4

where αi =
a
b

and βi = c d for some a, b, c, d ∈ Vv ∪ {T } ∪ {λ}.

The derivations take place in two phases as follows :

Each component grammar generates a word called intermediate word, over
intermediates starting from its own start symbol and using its horizontal produc-
tion rules ; the derivations in this phase are done with the component grammars
working in parallel.

In the second phase any of the following steps can take place :
(i) each component grammar can rewrite as in a two dimensional matrix gram-

mar using the tables of vertical rules, starting from its own intermediate
word generated in the first phase. (The component grammars rewrite in par-
allel and the rules of a table are applied together). Note that the component
grammars together terminate or together continue rewriting in the vertical
direction.

(ii) At any instant the array X generated in the ith component for some 1 ≤ i ≤
n and the array Y generated in the jth component for some 1 ≤ j ≤ n can
be spliced using column / row domino splicing rules as in definition 4, thus
yielding array Z in ith component and W in the jth component; In fact Z
will have a prefix of X column concatenated with a suffix of Y and W will
have a prefix of Y , column concatenated with a suffix of X, the prefixes and
suffixes being given by the splicing rules. In any other components (other
than ith, jth components), the arrays generated at this instant will remain
unchanged during this splicing process.

There is no priority between steps (i) and (ii).

Splicing Array Grammar Systems 131

The language Li(Γ) generated by the ith component of Γ consists of all ar-
rays, generated over T , by the derivations described above.

This language will be called the individual language of the system and we
may choose this to be the language of the first component and Lt(Γ) =

⋃n
i=1 Li(Γ)

as the total language. The family of individual languages generated by SAGS
with n components of type X for X ∈ {REG,CF} is denoted by IsagsLn(X),
and the corresponding family of total languages by TsagsLn(X) respectively and
YsagsLn(X) when Y ∈ {I, T}. We basically deal with individual languages al-
though the results obtained apply to total languages as well.

Remark 2. The image splicing grammar system (ISGS)introduced in [4] in which
the component grammars are 2d Matrix grammars [12]is a special case of SAGS.

Example 2. Let Γ = ({S,X, Y, Z} , {A,B,E,C} , {A,B,C,D,E, F, T, U} {.,x} ,
(S,Rh, Rv), (S,Rh, Rv), (S,Rh, Rv),M)

where
Rh = {S → AX,X → BX,X → BY, Y → EZ,Z → C}
Rv = {t1, t2, ..., t6}
t1 = {A→ xA,B → .B,E → .E, C → xC}.
t2 = {A→ xA,B → .D,E → .F, C → xC}.
t3 = {A→ xA,D → .D, F → .F, C → xC}.
t4 = {A→ xA,D → xT, F → yU,C → xC}
t5 = {A→ xA, T → .T, U → .U, C → xC}
t6 = {A→ x, T → ., U → ., C → x}

M = { .
.

#
x
x

$
x
x

#
.
.

.
y

#
x
x

$
x
x

#
.
x

y
.

#
x
x

$
x
x

#
x
.

.
U

#
x
C

$
x
A

#
.
T

The horizontal rules in a component generate intermediate words of the form
ABnEC with the same value of n ≥ 1 at a time. The vertical rules of the
components generate from an intermediate word rectangular pictures of digitized
token H surrounded in the left and right by x’s and the bottom border of the
form AT nUC. At this stage with domino splicing rules, column splicing of the
array in a component with the array in another component can take place before
rewriting is terminated in the components with terminating vertical rules. In fact
any picture generated in the individual language of this splicing array grammar
system will be rectangular pictures in which any row, except a middle row, will
be of the form x(.)knx and a middle row will be of the form x((x)ny)kx for some
kε{1, 2, 3}. One such picture obtained is shown in Figure 1.

132 K.G. Subramanian et al.

x
x
x x x x y
x
x
x

. . . .

. . . .
x x x y
. . . .
. . . .
. . . .

. . . . x

. . . . x
x x x y x
. . . . x
. . . . x
. . . . x

Fig. 1. A Picture of Example 2

Example 3. Let Γ = ({S,X} , {A,B,E} , {A,B,C,D,E} {.,x} , (S,Rh, Rv),
(S,Rh, Rv), (S,Rh, Rv),M) where

Rh = {S → EXE,X → AXB,X → AB}
Rv = {t1, t2, t3, t4, t5}
t1 = {A→ .A,B → .B,E → xE}
t2 = {A→ .C,B → .D,E → xE, }
t3 = {C → aY,D→ bZ,E → xE, }
t4 = {Y → .Y, Z → .Z, E → xE, }
t5 = {Y → ., Z → ., E → x}

and M = { b
.

#
x
x

$
x
x

#
a
.

.
b

#
x
x

$
x
x

#
.
a

.

.
#

x
x

$
x
x

#
.
.

.
Z

#
x
E

$
x
E

#
.
Y
}

The horizontal rules generate in a component intermediate words of the form
EAnBnE with the same value of n ≥ 1 at a time. The vertical rules of the com-
ponents generate from an intermediate word rectangle pictures of (.)’s with a
middle row of the form xambmx, and the bottom row of the form ECmDmE,
the leftmost column being a column of x’s ending with E and the rightmost
column being a column of x’s ending with E. At this stage with domino splic-
ing rules, column splicing of the array in a component with the array in an-
other component can take place before rewriting is terminated in the compo-
nents with terminating vertical rules. One such picture obtained is shown in
Figure 2.

x
x
x
x a a b b
x
x

. . . .

. . . .

. . . .
a a b b
. . . .
. . . .

. . . . x

. . . . x

. . . . x
a a b b x
. . . . x
. . . . x

Fig. 2. A Picture of Example 3

Splicing Array Grammar Systems 133

Theorem 1. For Y ∈ {I, T},
1. 2dRML = YisgsL1(REG) ⊂ 2dTRML = YsagsL1(REG)
2. 2dRML ⊂ YisgsL2(REG)
3. 2dCFML = YisgsL1(CF) ⊂ 2dTCFML = YsagsL1(CF)
4. 2dTRML ⊂ YsagsL2(REG)
5. 2dTCFML ⊂ YsagsL2(CF)
6. YsagsL3(REG)− CS = φ.

Proof. The equalities in statements (1) and (3) are clear from definitions and
the proper inclusions are known [12]. Statement (2) is proved in [4]. Inclusions
in statement (4)and(5) are clear. The proper inclusion in statement (4) is a con-
sequence of Example 2. In fact the picture language of the Example 2 even with
k = 2, cannot be generated by any 2dTRMG as the rules in both the horizon-
tal and vertical phases are only regular rules. Likewise the proper inclusion in
statement (5) is a consequence of Example 3even with two components since the
rules in the horizontal phase of a 2dCFMG are only CF rules but the pictures
generated will require CS rules.The last statement follows from example 2 as the
the pictures in Figure 1 require CS rules in the first phase to generate these.

Example 4. [4]
Let Γ = ({S1, · · ·Sn, X} , {A1, · · · , An, B1, · · · , Bn, C1, . . . , Cn, } ,
{A1, · · · , An, B1, · · · , Bn, C1, . . . , Cn, D1, . . . , Dn} ,
{.,x, a, b} , (S,Rh1 , Rv1), (S,Rh2 , Rv2), · · · , (S,Rhn , Rvn),M)

where
Rh1 = {S1 → A1X,X → B1X,X → C1}

Rv1 = {A1 → xA1, A1 → x, B1 → aD1, D1 → .D1, D1 → a, C1 → xC1, C1 →
x, Di → a if i ≥ 2 and i odd,Di → b if i ≥ 2 and i even,Ci → x}.

Fori > 1 and i even
Rhi = {Si → AiX,X → BiX,X → Ci}

Rvi = {Ai → xAi, Ai → x, Bi → bDi, Di → .Di, Ci → xCi, }.
Fori > 1 and i odd Rhi = {Si → AiX,X → BiX,X → Ci}
Rvi = {Ai → xAi, Ai → x, Bi → aDi, Di → .Di, Ci → xCi, }.

M = { a
.

#
x
x

$ #
x
x

b
.

#
x
x

$ #
x
x

.

.
#

x
x

$ #
x
x

.
Di

#
x
Ci

$ #
x
Ai

}

We note that the top and bottom rows of the rectangular arrays generated
in the individual language will be of the form xamxbmxamxbm...x as there
are n component grammars.

134 K.G. Subramanian et al.

Theorem 2. For Y ∈ {I, T},

1. 2dRML = YisgsL1(REG) ⊂ YisgsL2(REG) ⊂
· · · ⊂ YisgsLn(REG) ⊂ · · ·

2. 2dCFML = YisgsL1(CF) ⊂ YisgsL2(CF) ⊂
· · · ⊂ YisgsLn(CF) ⊂ · · ·

3. 2dTRML = YsagsL1(REG) ⊂ YsagsL2(REG) ⊂
· · · ⊂ YsagsLn(REG) ⊂ · · ·

4. 2dTCFML = YsagsL1(CF) ⊂ YsagsL2(CF) ⊂
· · · ⊂ YsagsLn(CF) ⊂ · · ·

The first statement has been proved in [4] using the Example 4. The remaining
statements can be seen similarly.

4 Conclusion

The splicing array grammar system introduced in this paper turns out to be
a powerful means of generating picture arrays. It extends the image grammar
system in [4] to tabled matrix grammars. It remains to compare other picture
generating mechanisms with these systems.

Acknowledgement. The authors thank the referees for their useful comments.

References

1. E. Csuhaj-Varjú: Grammar systems: 12 years, 12 problems (short version), In R.
Freund and A. Kelemenov (Eds.), Proceedings of the International Workshop on
Grammar Systems 2000, 2000, 77-92, Silesian University, Opava.

2. E. Csuhaj-Varjú, J. Dassow, J. Kelemen and Gh. Pǎun: Grammar systems: A
grammatical approach to distribution and cooperation, Gordon and Breach Science
Publishers, 1994.

3. J. Dassow and V. Mitrana: Splicing grammar systems, Computers and Artificial
Intelligence, 15, 1996, 109-122.

4. K.S. Dersanambika, K.G. Subramanian, A. Roslin Sagaya Mary: Image Splicing
grammar systems,Proc. Grammar systems Week 2004

5. R. Freund : Array Grammar Systems, Journal of Automata, Languages and Com-
binatorics, 5,1, 2000, 13-29.

6. D. Giammarresi and A. Restivo: Two-dimensional languages, In “Handbook of
Formal Languages” Vol.3, Eds. G. Rozenberg and A. Salomaa, Springer Verlag,
1997, 215-267.

7. T. Head, Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviours, Bull. Math. Biology, 49, 1987, 737-759.

8. T. Head, Gh. Păun and D. Pixton: Language theory and molecular genetics:
Generative mechanisms suggested by DNA recombination, In “Handbook of For-
mal Languages” Vol.2, Eds. G. Rozenberg and A. Salomaa, Springer Verlag, 1997,
295 - 360.

9. P. Helen Chandra, K.G. Subramanian, and D.G. Thomas: Parallel Splicing on
Images, Int. J. of pattern recognition and artificial intelligence, 2004.

Splicing Array Grammar Systems 135

10. A. Rosenfeld and R. Siromoney: Picture languages - a survey, Languages of design,
1, 1993, 229–245.

11. G. Siromoney, R. Siromoney and K. Krithivasan: Abstract families of matrices
and picture languages, Computer Graphics and Image Processing, 1, 1972, 234-307.

12. R. Siromoney, K.G. Subramanian, K. Rangarajan: Parallel /Sequential Rectan-
gular Arrays with Tables, Inter. J. Computer Math., 6, 1977, 143-158.

Compositionality of Fixpoint Logic with Chop

Naijun Zhan1,� and Jinzhao Wu2

1 Lab. of Computer Science, Institute of Software,
Chinese Academy of Sciences, 100080 Beijing, P.R. China

2 Lehrstuhl für Praktische Informatik II, Fakultät für Mathematik und Informatik,
Universität Mannheim, D7,27, 68163, Mannheim, Deutschland

Abstract. Compositionality plays an important role in designing reac-
tive systems as it allows one to compose/decompose a complex system
from/to several simpler components. Generally speaking, it is hard to de-
sign a complex system in a logical frame in a compositional way because
it is difficult to find a connection between the structure of a system to
be developed and that of its specification given by the logic. In this pa-
per, we investigate the compositionality of the Fixpoint Logic with Chop
(FLC for short). To this end, we extend FLC with the nondeterministic
choice “+” (FLC+ for the extension) and then establish a correspondence
between the logic and the basic process algebra with deadlock and termi-
nation (abbreviated BPAε

δ). Subsequently, we show that the choice “+”
is definable in FLC.

As an application of the compositionality of FLC, an algorithm is
given to construct characteristic formulae of BPAε

δ up to strong bisimu-
lation directly from the syntax of processes in a compositional manner.

Keywords: FLC, compositionality, verification, bisimulation, character-
istic formula, basic process algebra.

1 Introduction

As argued in [2], compositionality is very important in developing reactive sys-
tems for at least the following reasons. Firstly, it allows modular design and
verification of complex systems so that the complexity is tractable. Secondly,
during re-designing a verified system only the verification concerning the modi-
fied parts should be re-done rather than verifying the whole system from scratch.
Thirdly, compositionality makes it possible to partially specify a large system.
When designing a system or synthesizing a process, it is possible to have un-
defined parts of a process and still to be able to reason about it. For example,
this technique can be applied for revealing inconsistencies in the specification or
proving that with the choices already taken in the design no component supplied
for the missing parts will ever be able to make the overall system satisfy the orig-
inal specification. Finally, it can make possible the reuse of verified components;
their previous verification can be used to show that they meet the requirements
on the components of a large system.
� This work is supported in part by CNSF-60493200 and CNSF-60421001.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 136–150, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Compositionality of Fixpoint Logic with Chop 137

The μ-calculus [15] is a popular modal logic as most of modal and temporal
logics can be defined in it. However, [8] proved that only “regular” properties can
be defined in the μ-calculus, meanwhile [14] proved that all bisimulation invari-
ant properties of Monadic Second Order Logic can be defined in the modal μ-
calculus. In order to specify non-regular properties, [21] extended the μ-calculus
with the chop operator (denoted by “;”). It seems that the chop operator “;”
was first introduced in process logics [12,6], then adopted as the unique primitive
modality in interval-based logics, see [11,28,7], for example. In an interval-based
logic, it is easy to interpret a formula like φ;ψ by partitioning the given interval
into two parts such that φ is satisfied in the first segment and ψ is held in the
second one. But it is hard to interpret the operator in modal logics. Therefore,
in [21] the meaning of FLC is interpreted in second-order. [21] proved that FLC
is strictly more expressive than the μ-calculus as non-regular properties can be
expressed in FLC by showing that characteristic formulae of context-free pro-
cesses can be defined in FLC. Since then, FLC has attracted more attentions in
computer science because of its expressiveness. For example, [16,17] investigated
the issues of FLC model checking on finite-state processes.

Let us assume a setting in which the behavior of systems are modeled by
some process algebra and behavioral properties of systems are specified by some
specification logic. In order to exploit the compositionality inherent in the process
algebra it is desirable to be able to mimic the process algebra operators in the
logic (see [10]). That is, for any program constructor cons there should be an
operator cons of the logic such that

(a) Pi |= φi for i = 1, · · · , n implies cons(P1, · · · , Pn) |= cons(φ1, · · · , φn);
(b) cons(P1, · · · , Pn) |= cons(φ1, · · · , φn) is the strongest assertion which can

be deduced from Pi |= φi for i = 1, · · · , n.

It seems that FLC does not meet the above conditions. For example, the +
operator of process algebra has no counterpart in FLC and in addition it is still
an open problem if it is possible to derive a property from φ and ψ that holds
in P +Q in FLC, where P |= φ and Q |= ψ.

To achieve the goal, we first introduce the non-deterministic choice “+” that
was proposed in [10,18] as a primitive and denote the extension of FLC by FLC+ .
Intuitively, P |= φ+ψ means that there exist P1 and P2 such that P ∼ P1 +P2,
P1 |= φ and P2 |= ψ. Thus, it is easy to see that we can use φ+ψ as a specification
for the combined system P +Q. Then we show that the constructors of the basic
process algebra with termination and deadlock (BPAε

δ for short) correspond to
the connectives of FLC+ . Subsequently, we prove that the choice “+” can be
defined essentially by conjunction and disjunction in FLC.

As a result, we can use FLC to specify systems modeled by BPAε
δ in an

algebraical way, typically, this may allow much more concise descriptions of
concurrent systems and more easy composing/decomposing the verification of
a large systems from/to some similar and simpler ones of the subsystems. As
an example, we now show that using “+” as an auxiliary operator could make
senses in practice:

138 N. Zhan and J. Wu

i) It means one more step to the goal to exploit the structure of process terms
for model checking.

ii) It enables a precise and compact specification of certain nondeterministic
systems.

iii) It is very easy to modify the specification of a system when additional alter-
natives for the behavior of the system should be admitted.

iv) It enhances the possibility of modularity in model checking which is useful
in redesigning of systems.

i) depends on if it is possible to work out a syntax-directed model checker for
FLC on finite-state processes. In fact, we believe that it may be done exploiting
the connection between FLC+ and BPAε

δ that is presented in this paper. To
explain the issues ii), iii) and iv), we present the following example: Consider a
car factory that wants to establish an assembly line shown in the Fig. 1.,

mount_windscreenadjust
get_car

get_car

control

mount_windscreen

adjust control

put_car

put_car

Fig. 1. The Process P

which we denote by the process P , for one production step. If there is a car
available for P then P will either get the car, adjust the motor, mount the
windscreen, control the car, and then put the car on the conveyer belt or P will
get the car, mount the windscreen, adjust the motor, control the car, and then
put it back. Afterwards P may start again. The first option can be specified by

Spec1 =̂ [get car]; 〈adjust〉; 〈mount windscreen〉; 〈control〉; 〈put car〉
∧〈get car〉; true,

whereas the second is described by

Spec2 =̂ [get car]; 〈mount windscreen〉; 〈adjust〉; 〈control〉; 〈put car〉
∧〈get car〉; true.

We are now looking for a specification that admits only such systems that of-
fer both alternatives and that can be easily constructed from Spec1 and Spec2.
Obviously, Spec1 ∧Spec2 is not suitable whereas Spec1 ∨Spec2 allows for imple-
mentations that exhibit only one of the behavior. Spec1 + Spec2 describes the
behavior we have in mind and a system that offers this behavior repeatedly is
described by Spec =̂ νX.(Spec1 + Spec2);X.

Compositionality of Fixpoint Logic with Chop 139

It is easy to show that rec x.(P1 + P2); x |= Spec, where

P1 =̂ get car; adjust; mount windscreen; control; put car
P2 =̂ get car; mount windscreen; adjust; control; put car.

Let us now assume that the system specification should be modified to allow
for a third alternative behavior Spec3, then this specification may be simply
“added” to form

Spec′ =̂ νX.(Spec1 + Spec2 + Spec3);X.

If we establish P3 |= Spec3 then we obtain immediately that

rec x.(P1 + P2 + P3); x |= Spec′.

In addition, if we have to modify Spec1 to Spec′1 such that P ′1 |= Spec′1, and
obtain

rec x.(P ′1 + P2 + P3); x |= νX.(Spec′1 + Spec2 + Spec3);X.

Some preliminary results of this paper have been reported in [27].
The remainder of this paper is structured as follows: Section 2 briefly reviews

BPAε
δ. In Section 3, FLC+ is established and some preliminary results are given.

Section 4 establishes a connection between the constructors of BPAε
δ and the

connectives of FLC+ . Section 5 is devoted to showing that the choice “+” can
be defined in FLC. In Section 6, we sketch how to construct a formula ΨP for
each process P ∈ BPAε

δ according to its syntax and then show the formula
obtained by eliminating “+” in ΨP is the characteristic formula of P . Finally, a
brief conclusion is provided in Section 7.

2 Basic Process Algebra with Termination and Deadlock

Let Act = {a, b, c, · · · } be a set of (atomic) actions, and X = {x, y, z, ...} a
countable set of process variables. Sequential process terms, written Ps, are those
which do not involve parallelism and communication, which are generated by the
following grammar:

E ::= δ | ε | x | a | E1;E2 | E1 + E2 | rec x.E

Intuitively, the elements of Ps represent programs: δ stands for a deadlocked
process that cannot execute any action and keeps idle for ever; ε denotes a
terminated process that cannot proceed, but terminates at once; the other con-
structors can be understood as the usual ones.

In order to define an operational semantics for expressions of the form E1;E2,
we need to define a special predicate T over Ps to indicate if a given process
term is terminated or not. Formally, T ⊂ Ps is the least set which contains ε
and is closed under the following rules: (i) if T (E1) and T (E2) then T (E1;E2)
and T (E1 + E2); (ii) if T (E) then T (rec x.E).

140 N. Zhan and J. Wu

Act
a

a→ ε
Rec E[rec x.E/x] a→ E′

rec x.E
a→ E′ Seq-1 E1

a→ E′
1

E1; E2
a→ E′

1; E2

Seq-2 E2
a→ E′

2 ∧ T (E1)
E1; E2

a→ E′
2

Nd E1
a→ E′

1

E1 + E2
a→ E′

1, E2 + E1
a→ E′

1

Fig. 2. The Operational Semantics of Ps

An occurrence of a variable x ∈ X is called free in a term E iff it does not
occur within a sub-term of the form rec x.E′, otherwise called bound. We will use
fn(E) to stand for all variables which have some free occurrence in E, and bn(E)
for all variables which have some bound occurrence in E. A variable x ∈ X is
called guarded within a term E iff every occurrence of x is within a sub-term F
where F is prefixed with a subexpression F ∗ via “;” such that ¬T (F ∗). A term E
is called guarded iff all variables occurring in it are guarded. The set of all closed
and guarded terms of Ps essentially corresponds to the basic process algebra
(BPA) with the terminated process ε and the deadlocked process δ, denoted by
BPAε

δ, ranged over by P,Q, · · · , where BPA is a fragment of ACP [5].
An operational semantics of Ps is given in the standard Plotkin’s style, yield-

ing a transition system (Ps,→) with →⊆ Ps×Act×Ps that is the least relation
derived from the rules in the Fig.2.

Definition 1. A binary relation S ⊆ BPAε
δ ×BPAε

δ is called a strong bisimula-
tion if (P,Q) ∈ S implies:

– T (P) iff T (Q);
– whenever P

a→ P ′ then, for some Q′, Q
a→ Q′ and (P ′, Q′) ∈ S for any

a ∈ Act;
– whenever Q

a→ Q′ then, for some P ′, P
a→ P ′ and (P ′, Q′) ∈ S for any

a ∈ Act.

Given two processes P,Q ∈ BPAε
δ, we say that P andQ are strongly bisimilar,

written P ∼ Q, if (P,Q) ∈ S for some strong bisimulation S. We can extend the
definition of ∼ over Ps as: let E1, E2 ∈ Ps and fn(E1)∪ fn(E2) ⊆ {x1, · · · ,xn},
if E1{P1/x1, · · · , Pn/xn} ∼ E2{P1/x1, · · · , Pn/xn} for any P1, · · · , Pn ∈ BPAε

δ,
then E1 ∼ E2.

Convention: From now on, we use A op B to stand for {E1 op E2 | E1 ∈
A and E2 ∈ B}, A op E for A op {E}, where E ∈ Ps,A ⊆ Ps,B ⊆ Ps, and
op ∈ {+, ; }.

3 FLC with the Nondeterministic Operator “+” (FLC+)

FLC, due to Markus Müller-Olm [21], is an extension of the modal μ-calculus
that can express non-regular properties, and is therefore strictly more powerful
than the μ-calculus. In order to study the compositionality of FLC, we extend

Compositionality of Fixpoint Logic with Chop 141

FLC with the nondeterministic operator “+”, which is proposed as a primitive
operator in [10,18].

Let X,Y, Z, · · · range over an infinite set Var of variables, tt and ff be propo-
sitional constants as usual, and

√
another special propositional constant that is

used to indicate if a process is terminated. Formulae of FLC+ are generated by
the following grammar:

φ ::= tt | ff | √ | τ | X | [a] | 〈a〉 | φ1∧φ2 | φ1∨φ2 | φ1;φ2 | φ1+φ2 | μX.φ | νX.φ

where X ∈ Var and a ∈ Act. The fragment of FLC+ without “+” is called FLC
[21]. In what follows, we use a© to stand for 〈a〉 or [a], p for tt , ff or

√
, and σ

for ν or μ.
Some notations can be defined as in the modal μ-calculus, for example free

and bound occurrences of variables, closed and open formulae etc. The two fix-
point operators μX and νX are treated as quantifiers. We will use fn(φ) to stand
for all variables which have some free occurrence in φ and bn(φ) for all variables
that have some bound occurrence in φ.

Definition 2. In the following, we define what it means for a formula to be a
guard:

1. a© and p are guards;
2. if φ and ψ are guards, so are φ ∧ ψ, φ ∨ ψ and φ+ ψ;
3. if φ is a guard, so are φ;ψ and σX.φ, where ψ is any formula of FLC+ .

X is said to be guarded in φ if each occurrence of X is within a subformula
ψ that is a guard. If all variables in fn(φ) ∪ bn(φ) are guarded, then φ is called
guarded. A formula φ is said to be strictly guarded if φ is guarded and for
any X ∈ fn(φ) ∪ bn(φ), there does not exist a subformula of the forms X + ψ,
(X * χ) + ψ, (X ;ϕ) + χ or (X ;ϕ* χ) + ψ, where * ∈ {∨,∧}.

Intuitively, a variable X is said to be guarded means that each occurrence of
X is within the scope of a modality a© or a propositional letter p.

Example 1. Formulae 〈a〉;X ;Y, νX.(〈a〉∨〈b〉);X ; (Y +Z), ff ;X are guarded, but
X, 〈a〉 ∧X,μX.(X + Y) ∨ [a], μX.(〈a〉;X ∨ 〈b〉);μY.(Y + 〈a〉) are not. 〈a〉;X ;Y
and ff ;X are strictly guarded, however, νX.(〈a〉 ∨ 〈b〉);X ; (Y + Z) is not.

We will use LFLC+ to denote all formulae of FLC+ that are closed and
guarded, and LFLC for the fragment of LFLC+ without +. In the sequel, we
are only interested in closed and guarded formulae.

As in FLC, a formula of FLC+ is interpreted as a predicate transformer
which is a mapping f : 2BPAε

δ → 2BPAε
δ . We use MPTT to represent all these

predicate transformers over BPAε
δ.

The meaning of variables is given by a valuation ρ: Var → (2BPAε
δ → 2BPAε

δ)
that assigns variables to functions from sets to sets. ρ[X � f] agrees with ρ
except for associating f with X .

Definition 3. The meaning of a formula φ, under a valuation ρ, denoted by
[[φ]]ρ, is inductively defined as follows:

142 N. Zhan and J. Wu

[[tt]]ρ(A) = BPAε
δ

[[ff]]ρ(A) = ∅
[[
√

]]ρ(A) = {P ∈ BPAε
δ | T (P)}

[[τ]]ρ(A) = A
[[X]]ρ(A) = ρ(X)(A)

[[[a]]]ρ(A) = {P ∈ BPAε
δ | ¬T (P) ∧ ∀P ′ ∈ BPAε

δ.P
a→ P ′ ⇒ P ′ ∈ A}

[[〈a〉]]ρ(A) = {P ∈ BPAε
δ | ∃P ′ ∈ BPAε

δ.P
a→ P ′ ∧ P ′ ∈ A}

[[φ1 ∧ φ2]]ρ(A) = [[φ1]]ρ(A) ∩ [[φ2]]ρ(A)
[[φ1 ∨ φ2]]ρ(A) = [[φ1]]ρ(A) ∪ [[φ2]]ρ(A)

[[φ1;φ2]]ρ = [[φ1]]ρ · [[φ2]]ρ
[[φ1 + φ2]]ρ(A) = {P ∈ BPAε

δ | P ∼ P1 + P2 ∧ P1 ∈ [[φ1]]ρ(A) ∧ P2 ∈ [[φ2]]ρ(A)}
[[μX.φ]]ρ = {f ∈ MPTT | [[φ]]ρ[X�f] ⊆ f}
[[νX.φ]]ρ = !{f ∈ MPTT | [[φ]]ρ[X�f] ⊇ f}

where A ⊆ BPAε
δ, and · stands for the composition operator over functions.

Note that because ε and δ have different behaviour in the presence of ;, they
should be distinguished in FLC+ . To this end, we interpret [a] differently from
in [21]. According to our interpretation, P |= [a] only if ¬T (P), whereas in [21]
it is always valid that P |= [a] for any P ∈ Ps. Thus, it is easy to show that
ε |=

∧
a∈Act[a]; ff , while

∧
a∈Act[a]; ff is the characteristic formula of δ.

As the meaning of a closed formula φ is independent of any environment,
we sometimes write [[φ]] for [[φ]]ρ, where ρ is an arbitrary environment. We also
abuse φ(A) to stand for [[φ]]ρ(A) if ρ is clear from the context.

The set of processes satisfying a given closed formula φ is φ(BPAε
δ). A process

P is said to satisfy φ iff P ∈ [[φ]]ρ(BPAε
δ) under some valuation ρ, denoted

by P |=ρ φ. If ρ is clear from the context, we directly write P |= φ. φ ⇒ ψ
means that [[φ]]ρ(A) ⊆ [[ψ]]ρ(A) for any A ⊆ BPAε

δ and any ρ. φ ⇔ ψ means
(φ⇒ ψ) ∧ (ψ ⇒ φ). The other notations can be defined in the standard way.

Given a formula φ, the set of the atomic sub-formulae at the end of φ, denoted
by ESub(φ), is: {φ} if φ = p, τ,X or a©; ESub(φ1) ∪ ESub(φ2) if φ = φ1 op φ2
where op ∈ {∧,∨,+}; if φ = φ1;φ2 then if τ ∈ ESub(φ1) then ESub(φ2) else
(ESub(φ2)\{τ})∪ESub(φ1); ESub(φ′) if φ = σX.φ′. It is said that

√
only occurs

at the end of φ if
√

can only be in ESub(φ) as a sub-formula of φ.
As [16] proved that FLC has the tree model property, we can also show that

FLC+ has such property as well, i.e.,

Theorem 1. Given P,Q ∈ BPAε
δ, P ∼ Q iff for any φ ∈ LFLC+ , P |= φ iff

Q |= φ.

4 A Connection Between BPAε
δ and FLC+

In this section, we discuss how to relate the primitives of BPAε
δ to the connectives

of FLC+ .

Compositionality of Fixpoint Logic with Chop 143

4.1 Nondeterminism

From Definition 3, it is clear that “+” of BPAε
δ corresponds to “+” of FLC+ .

The connection can be expressed as follows:

Proposition 1. For any P,Q ∈ BPAε
δ, if P |= φ and Q |= ψ then P+Q |= φ+ψ.

4.2 Sequential Composition

In this subsection, we show that under some conditions, the sequential compo-
sition “;” of BPAε

δ can be related to the chop “;” of FLC+ .
From the definition of the semantics of BPAε

δ, it is clear that as far as the
execution of the process P ;Q is concerned, Q starts to be executed only if P
finishes the execution. A similar requirement on properties concerning P must be
considered in order to derive a combined property for P ;Q from the properties
for P and Q. For example, let P = a; b, Q = c; d, and it is therefore clear that
P |= 〈a〉 and Q |= 〈c〉, however P ;Q |= 〈a〉; 〈c〉. So, we require that the property
about P must specify full executions of P , that is, P |= φ;

√
.

On the other hand, it is easy to see that ε is a neutral element of “;” in BPAε
δ.

However,
√

, the counterpart of ε in FLC, is not the neutral element of the chop
“;”. Thus, we have to replace

√
occurring in properties of P with τ in order to

give a connection between “;” of BPAε
δ and the chop “;” of FLC+ . E.g., let P =

a; ε andQ = b; δ, φ = 〈a〉;√, and ψ = 〈b〉. It’s obvious that P |= φ;
√

andQ |= ψ,
but P ;Q |= φ;ψ. Furthermore, it is required that

√
can only appear at the end

of properties of P , because from Definition 3
√

as a subformula of φ makes all
subformulae following it with ; no sense during calculating the meaning of φ, but
they will play a nontrivial role in the resulting formula. E.g. ε |= √

; [a]; 〈b〉 and
a; c |= 〈a〉; 〈c〉, but ε; (a; c) |= (τ ; [a]; 〈b〉); (〈a〉; 〈c〉). In fact, such a requirement
can be always satisfied because all formulae can be transformed to such kind of
the form equivalently.

In summary, the following theorem indicates the connection between the
sequential composition “;” of BPAε

δ and the chop “;” of FLC+ .

Theorem 2. For any φ, ψ ∈ LFLC+ and any P,Q ∈ BPAε
δ, if

√
only occurs at

the end of φ, P |= φ;
√

and Q |= ψ then P ;Q |= φ{τ/√};ψ.

Remark 1. Generally speaking, the converse of Theorem 2 is not valid.

4.3 Recursion

In this subsection, we sketch how to relate rec x to νX . Thus, in the rest of this
sub-section all fixed point operators occurring in formulae will be referred to ν
if not otherwise stated. To this end, we first employ a relation called syntactical
confirmation between processes and formulae, with the type Ps × FLC+ �→
{tt, ff}, denoted by |=sc.

Definition 4. Given a formula φ, we associate a map from 2P
s

to 2P
s

with it,
denoted by φ̂, constructed by the following rules:

144 N. Zhan and J. Wu

√̂
(E) =̂ {E | E ∈ Ps ∧ T (E)}

t̂t(E) =̂ Ps

f̂f (E) =̂ ∅
τ̂ (E) =̂ E
X̂(E) =̂ {x;E | E ∈ E}
〈̂a〉(E) =̂ {E | ∃E′ ∈ E .E a→ E′}
[̂a](E) =̂ {E | ¬T (E) ∧ E is guarded ∧ ∀E′.E a→ E′ ⇒ E′ ∈ E}

φ̂1 ∧ φ2(E) =̂ φ̂1(E) ∩ φ̂2(E)

φ̂1 ∨ φ2(E) =̂ φ̂1(E) ∪ φ̂2(E)

φ̂1 + φ2(E) =̂ {E | ∃E1, E2.E = E1 + E2 ∧ E1 ∈ φ̂1(E) ∧ E2 ∈ φ̂2(E)}
φ̂1;φ2(E) =̂ φ̂1 · φ̂2(E)

σ̂X.φ(E) =̂ {(rec x.E1);E2 | E1 ∈ φ̂({ε}) ∧ E2 ∈ E}

where E ⊆ Ps.
|=sc (E, φ) = tt iff E ∈ φ̂({ε}); otherwise, |=sc (E, φ) = ff. In what follows,

we denote |=sc (E, φ) = tt by E |=sc φ and |=sc (E, φ) = ff by E |=sc φ .

Informally, P |=sc φ means that P and φ have a similar syntax, e.g.,

Example 2. Let E1=̂(a; x; x) + d, E2=̂x; (b + c); y, E3=̂a; b; c, φ=̂〈a〉;X ;X ,
ψ=̂X ; 〈b〉;Y and ϕ=̂[a]; 〈b〉; 〈c〉. We have E1 |=sc φ, E2 |=sc ψ, E3 |=sc ϕ.

The following theorem states that |=sc itself is compositional as well.

Theorem 3. Let
√

only appear at the end of φ1, φ2 and φ. Then,
i) if E1 |=sc φ1 and E2 |=sc φ2 then E1 + E2 |=sc φ1 + φ2;
ii) if E1 |=sc φ1 and E2 |=sc φ2 then E1;E2 |=sc φ1{τ/

√};φ2;
iii) if E |=sc φ then rec x.E |=sc σX.φ{τ/

√}.

Example 3. In Example 2, according to Theorem 3, we obtain E1+E2 |=sc φ+ψ,
E3; (E1 +E2) |=sc ϕ; (φ+ψ) and rec x. rec y.E3; (E1 +E3) |=sc νX.νY.(ϕ; (φ+
ψ)).

Theorem 4 establishes a connection between |=sc and |=, so that rec x is
related to νX .

Theorem 4. If P ∈ BPAε
δ,
√

only occurs at the end of φ and P |=sc φ, then
P |= φ;

√
.

Theorem 4 provides the possibility to compositionally verify a complex sys-
tem and even this can be done syntactically.

Example 4. For instance, let E1, E2, E3 and φ, ψ, ϕ be as defined in Example 2.
In order to verify rec x. rec y.E3; (E1 +E3) |= νX.νY.(ϕ; (φ+ψ)), we only need
to prove E1 + E2 |=sc φ + ψ and E3; (E1 + E2) |=sc ϕ; (φ + ψ). This proof can
further be reduced to E1 |=sc φ, E2 |=sc ψ and E3 |=sc ϕ. From Example 2, this
is true.

Compositionality of Fixpoint Logic with Chop 145

5 Reducing LFLC+ to LFLC

In this section, we will show that as far as closed and guarded formulae are
concerned, the + of FLC+ can be defined essentially by conjunction and dis-
junction, that is, for any φ ∈ LFLC+ , there exists a formula φ′ ∈ LFLC such
that φ⇔ φ′. This can be obtained via the following three steps: firstly, we show
that in some special cases “+” can be defined by conjunction and disjunction
essentially; then we prove that the elimination of “+” in a strictly guarded for-
mula φ of FLC+ can be reduced to one of the above special cases; and finally,
we complete the proof by showing that for any φ ∈ LFLC+ there exists a strictly
guarded formula φ′ ∈ LFLC+ such that φ⇔ φ′.

The following lemma claims that in some special cases, “+” can be defined
essentially by conjunction and disjunction.

Lemma 1. Let n, k≤m,{a1, · · · ,an} and {c1, · · · ,ck} be subsets of {b1, · · · ,bm},
where bi =bj if i =j. Assume < a1, · · · , an >=< b1, · · · , bn > and < c1, · · · , ck >
= < bl1 , · · · , blk >, where lj ∈ {1, · · · ,m} for j = 1 · · ·k. Then

(
n∧

i=1

ni∧
j=1

〈ai〉;φi,j ∧
m∧

i=1

[bi];ψi ∧ q1) + (
k∧

i=1

ki∧
j=1

〈ci〉;ϕi,j ∧
m∧
i=1

[bi];χi ∧ q2)

⇔
n∧

i=1

ni∧
j=1

〈ai〉; (φi,j ∧ ψi) ∧
k∧

i=1

ki∧
j=1

〈ci〉; (ϕi,j ∧ χli) ∧
m∧
i=1

[bi]; (ψi ∨ χi) ∧ q1 ∧ q2

where q1 ⇔ tt or q1 ⇔ τ , and q2 ⇔ tt or q2 ⇔ τ.

Proof (Sketch). According to Definition 3, it is easy to see that + and ; both
are monotonic. On the other hand, it is not hard to prove that 1. if P |= 〈a〉;φ,
then P + Q |= 〈a〉;φ for any Q ∈ BPAε

δ; 2. P |= [a];φ and Q |= [a];ψ, then
P + Q |= [a]; (φ ∨ ψ); 3. ([a];φ ∧ 〈a〉;ψ) ⇒ (〈a〉; (φ ∧ ψ) ∧ [a];φ). Thus, it is not
hard to prove the forward direction.

For the converse direction, we first prove that given a P ∈ BPAε
δ, there exists

a Q ∈ BPAε
δ of the form

∑
a∈Act

∑ia
j=1 a;Qa,j or δ such that P ∼ Q; then by

Theorem 1, P satisfies the formula of the right hand in the lemma iff Q also
meets it; subsequently, we design an algorithm to partition all summands of Q
into two parts Q1 and Q2 such that

∑
Q1 satisfies the first operand of “+”

in the left formula of the lemma,
∑
Q2 meets the second operand. Obviously,∑

Q1 +
∑
Q2 ∼ P . Therefore, the converse direction has been proved. ,

By applying the above lemma, induction on the given formula φ, we can show
that if φ is strictly guarded, then there exists φ′ such that φ ⇔ φ′ and no +
occurs in φ′, i.e.

Lemma 2. For any φ of FLC+ , if φ is strictly guarded, then there exists φ′ of
FLC such that φ′ ⇔ φ.

In the below, we will apply some rewriting techniques to prove that for any
closed and guarded formula φ of FLC+ , there exists φ′ that is strictly guarded
such that φ⇔ φ′, namely

146 N. Zhan and J. Wu

Lemma 3. For any φ ∈ LFLC+ , there is φ′ ∈ LFLC+ that is strictly guarded
such that φ⇔ φ′.

Proof (Sketch). In order to prove the lemma, we need to show the following
equations:

μX.φ1[a©; φ2[(X ! φ3) + φ4]] ⇔ μX.φ1[a©; φ2[μY.(φ1[a©; φ2[Y]]! φ3) + φ4]] (1)

νX.φ1[a©; φ2[(X ! φ3) + φ4]] ⇔ νX.φ1[a©; φ2[νY.(φ1[a©; φ2[Y]]! φ3) + φ4]] (2)

μX.φ1[a©;φ2[(X; φ3 ! φ4) + φ5]] ⇔ μX.φ1[a©; φ2[μY.(φ1[a©; φ2[Y]]; φ3 ! φ4) + φ5]] (3)

νX.φ1[a©;φ2[(X; φ3 ! φ4) + φ5]] ⇔ νX.φ1[a©; φ2[νY.(φ1[a©; φ2[Y]]; φ3 ! φ4) + φ5]] (4)

where * ∈ {∧,∨}, φi[] stands for a formula with the hole [], the formula at
the left side of each equation is guarded.

We will only prove (3) as an example, the others can be proved similarly.
Since φ1[a©;φ2[(X ;φ3 * φ4) + φ5]] is guarded, by Knaster-Tarski Theorem, it
is clear that μX.φ1[a©;φ2[(X ;φ3 * φ4) + φ5]] is the unique least solution of the
equation

X = φ1[a©;φ2[(X ;φ3 * φ4) + φ5]] (5)

Let Y be a fresh variable and Y = (X ;φ3 * φ4) + φ5. It is easy to see the
least solution of (5) is equivalent to the X-component of the least solution of the
following equation system:

X = φ1[a©;φ2[(X ;φ3 * φ4) + φ5]]
Y = (X ;φ3 * φ4) + φ5

Meanwhile, exploiting some rewriting techniques, it is easy to transform solving
the least solution of the above equation system to the following one equivalently,

X = φ1[a©;φ2[(X ;φ3 * φ4) + φ5]]
Y = (φ1[a©;φ2[Y]];φ3 * φ4) + φ5

It is not hard to obtain the least solution of the above equation system as
(μX.φ1[a©;φ2[μY.(φ1[a©;φ2[Y]];φ3*φ4)+φ5]], μY.(φ1[a©;φ2[Y]];φ3*φ4)+φ5).
Therefore, (3) follows.

Repeatedly applying (1)–(4), for any given formula φ ∈ LFLC+ , we can
rewrite it to φ′ which is strictly guarded such that φ⇔ φ′. ,

Remark 2. In the proof for Lemma 3, we only consider the cases that a variable
is guarded by a modality a©, and ignore the cases that a variable is guarded by a
propositional letter p, because according to Definition 3 it is easy to show that
p;φ⇔ p.

From the above lemmas, the following result is immediate.

Theorem 5. For any φ ∈ LFLC+ , there exists φ′ ∈ LFLC such that φ′ ⇔ φ.

We use the following example to demonstrate how to translate a closed and
guarded formula φ of FLC+ into a formula φ′ of FLC by applying the above
procedure.

Compositionality of Fixpoint Logic with Chop 147

Example 5. Let φ = μX.νY.〈a〉; (X +Y);X ;Y ; 〈b〉 ∨ 〈c〉. Applying (1), it follows

φ⇔ μX.νY.〈a〉; [μZ.(νV.〈a〉;Z;X ;V ; 〈b〉 ∨ 〈c〉) + Y];X ;Y ; 〈b〉 ∨ 〈c〉 =̂ φ′

where φ1[]=̂νY.[];X ;Y ; 〈b〉 ∨ 〈c〉, φ2[]=̂[], φ3=̂
{
tt if * = ∧
ff o.w. , φ4=̂Y . Further-

more, applying (2), we can get

φ′ ⇔ μX.νY.〈a〉; [μZ.νW.(〈a〉;W ;X ;Y ; 〈b〉 ∨ 〈c〉) + (νV.〈a〉;Z;X ;V ; 〈b〉 ∨ 〈c〉)];
X ;Y ; 〈b〉 ∨ 〈c〉 =̂ φ′′

where φ1[] =̂ [];X ;Y ; 〈b〉 ∨ 〈c〉, φ2[] =̂ μZ.[], φ3 =̂
{
tt if * = ∧
ff o.w. ,

φ4 =̂ νV.〈a〉;Z;X ;V ; 〈b〉 ∨ 〈c〉. Thus, using Lemma 2, we can eliminate “+” in
φ′′ as follows:

φ′′ ⇔ μX.νY.〈a〉; [μZ.νW.

⎛⎜⎜⎜⎜⎝
(〈a〉;W ;X ;Y ; 〈b〉+ 〈c〉)∨
(〈a〉;W ;X ;Y ; 〈b〉+
νV.〈a〉;Z;X ;V ; 〈b〉)∨
(νV.〈a〉;Z;X ;V ; 〈b〉+ 〈c〉)∨
(〈c〉+ 〈c〉)

⎞⎟⎟⎟⎟⎠];X ;Y ; 〈b〉 ∨ 〈c〉

⇔ μX.νY.〈a〉; [μZ.νW.

⎛⎜⎜⎜⎜⎝
((〈a〉;W ;X ;Y ; 〈b〉 ∧ 〈c〉)∨
(〈a〉;W ;X ;Y ; 〈b〉∧
νV.〈a〉;Z;X ;V ; 〈b〉)∨
(νV.〈a〉;Z;X ;V ; 〈b〉 ∧ 〈c〉)∨
〈c〉

⎞⎟⎟⎟⎟⎠ ;X ;Y ; 〈b〉 ∨ 〈c〉

=̂ φ∗

It is easy to see that φ⇔ φ∗ and no + occurs in φ∗. ,
In what follows, we will use en(φ) to denote the resulting formula by applying

the above procedure to φ in which + is eliminated.

6 Constructing Characteristic Formulae for Context-Free
Processes Compositionally

Given a binary relation R over processes, which may be an equivalence or a
preorder, the characteristic formula for a process P up to R is a formula φP such
that for any process Q, Q |= φP if and only if QRP . [21] presented a method to
derive the characteristic formula for a context-free process up to strong (weak)
bisimulation by solving the equation system induced by the rewrite system of
the process in FLC. In this section, we present an algorithm to construct the
characteristic formula for a process of BPAε

δ up to strong bisimulation directly
from its syntax in a compositional manner based on the above results, in contrast
to the semantics-based method given in [21]. We believe that our approach also
works for weak bisimulation, but it is necessary to re-interpret modalities of
FLC.

148 N. Zhan and J. Wu

It is easy to see that
∧

a∈Act[a]; ff (Φδ for short) is the characteristic formula
for δ, and

√
for ε.

For simplicity,
∧

a∈Act−A[a]; ff will be abbreviated as Φ−A from now on.

Definition 5. Given a process term E ∈ Ps, we associate with it a formula
denoted by ΨE derived by the following rules:

Ψδ =̂ Φδ, Ψε =̂
√
,

Ψx =̂ X, Ψa =̂ Φ−{a} ∧ (〈a〉 ∧ [a]),
ΨE1;E2 =̂ ΨE1{τ/

√};ΨE2 , ΨE1+E2 =̂ ΨE1 + ΨE2 ,
Ψrec x.E =̂ νX.ΨE{τ/

√}.

Regards Definition 5, we have

Lemma 4. 1. For any E ∈ Ps,
√

only occurs at the end of ΨE;
2. For any E ∈ Ps, E |=sc ΨE and E |=sc ΨE ;

√
;

3. For any P ∈ BPAε
δ, ΨP ;

√
is closed and guarded.

The following theorem states if two processes are strong bisimilar then the
derived formulae are equivalent.

Theorem 6 (Completeness). If E1 ∼ E2, then ΨE1 ⇔ ΨE2 .

We can show that en(ΨP ;
√

) is the characteristic formula of P up to ∼ for
each P ∈ BPAε

δ.

Theorem 7. For any P ∈ BPAε
δ, en(ΨP ;

√
) is the characteristic formula of P

up to ∼.

Remark 3. In Theorem 7, the condition that P is guarded is essential. Otherwise,
the theorem is not true any more. For instance, νX.(X + (〈a〉 ∧ [a] ∧ Φ−{a}))
is equivalent to Ψrec x.(x+a), nevertheless, (νX.(X + (〈a〉 ∧ [a] ∧ Φ−{a})));

√
is

not the characteristic formula of rec x.(x + a), since rex x.(x + b+ a) meets the
formula, but rex x.(x + b + a) ∼ rec x.(x + a).

Example 6. Let P =̂a; ε and Q=̂b; δ. Then, ΨP =̂(〈a〉 ∧ [a] ∧ Φ−{a});
√
, and ,

ΨQ=̂(〈b〉 ∧ [b] ∧ Φ−{b});Φδ by Definition 5.
It’s obvious that en(ΨP ;

√
) = ΨP ;

√
is the characteristic formula of P and

en(ΨQ;
√

) = ΨQ;
√

is the one of Q. Furthermore, by Definition 5,

en(Ψrec x.(P ;x;x;Q+P);
√

)

=̂ en([νX.
(

(〈a〉 ∧ [a] ∧ Φ−{a});X ;X ; ((〈b〉 ∧ [b] ∧ Φ−{b});Φδ)
+ (〈a〉 ∧ [a] ∧ Φ−{a})

)
];
√

)

⇔ [νX.
(

〈a〉;X ;X ; (〈b〉 ∧ [b] ∧ Φ−{b});Φδ ∧ 〈a〉∧
[a]; (τ ∨X ;X ; (〈b〉 ∧ [b] ∧ Φ−{b});Φδ) ∧ Φ−{a}

)
];
√

which is exactly the characteristic formula of rec x.(a; x; x; b; δ + a; ε). ,

Compositionality of Fixpoint Logic with Chop 149

7 Concluding Remarks

In this paper, we investigated the compositionality of FLC. To this end, inspired
by [10,18], we first extended FLC with the non-deterministic choice “+” and then
established a connection between the primitives of BPAε

δ and the connectives of
FLC+ , and finally, we proved that as far as closed and guarded formulae are
concerned, “+” can be defined essentially by conjunction and disjunction in
FLC.

Although introducing “+” cannot improve the expressive power of FLC, us-
ing it as an auxiliary can be applied to compositional specification and verifica-
tion of a complex system, some advantages have been argued in the Introduction.
As an application of the compositionality of FLC, we presented an algorithm to
construct the characteristic formula of each process of BPAε

δ directly according
to its syntax in contrast to the method in [21] which derives the characteristic
formula for a process from the transition graph of the process. We believe that
our approach also works for weak bisimulation, but it is necessary to re-interpret
modalities of FLC.

Various work concerning compositionality of modal and temporal logics have
been done, for example, [9,18] directly introduced the non-deterministic operator
“+” into the modal μ-calculus like logics so that the resulted logics have com-
positionality; [3,4] discussed the compositionality of linear temporal logic [23]
by introducing the chop into the logic, while [24] investigated some logic prop-
erties of the extension; [19,20] studied the compositionality of μ-calculus; [26]
investigated the compositionality of a fixpoint logic in assume-guarantee style.
Comparing with the previous work, the logics studied in previous work can only
express regular properties, but FLC which is investigated in this paper can define
non-regular properties. [9] gave a method to define characteristic formulae for
finite terms of CCS up to observational congruence, [25] furthered the work by
presenting an approach to define characteristic formulae for regular processes up
to some preorders; Moreover, [21] gave a method to define characteristic formu-
lae for context-free processes up to some preorders based on the rewriting system
of a given process. In contrast to [21], in our approach characteristic formulae of
BPAε

δ are constructed directly from syntax.
As future work, it is worth investigating the parallel operator and establishing

a proof system for FLC.

References

1. L. Aceto and M. Hennessy. Termination, deadlock, and divergence. Journal of
ACM, Vol. 39, No.1: 147-187. January, 1992.

2. H.R. Andersen, C. Stirling, G. Winskel. A compositional proof system for the
modal mu-Calculus. LICS’94, pp.144-153.

3. H. Barringer, R. Kuiper, A. Pnueli. Now you may compose temporal logic speci-
fications. In Proc. 16th STOC, pp. 51-63. 1984.

4. H. Barringer, R. Kuiper, A. Pnueli. A compositional temporal approach to a
CSP-like language. In Proc. IFIP conference, The Role of Abstract Models in
Information Processing, pp. 207-227. 1985.

150 N. Zhan and J. Wu

5. J.A. Bergstra and J.W. Klop. Algebra of communication processes with abstrac-
tion. Theoretical Computer Science, 37:77-121. 1985.

6. A. Chandra, J. Halpern, A. Meyer and R. Parikh. Equations between regular terms
and an application to process logic. In Proc. 13th STOC, pp.384-390. 1981.

7. B. Dutertre. On first order interval logic. LICS’95, pp. 36-43, 1995.
8. E.A. Emerson and C.S. Jutla. Tree automata, μ-calculus, and determinacy. In

Proc. 33rd FOCS, pp.368-377. 1991.
9. S. Graf and J. Sifakis. A modal characterization of observational congruence on

finite terms of CCS. Information and Control, 68:125-145. 1986.
10. S. Graf and J. Sifakis. A logic for the description of non-deterministic programs

and their properties. Information and Control, 68:254-270. 1986.
11. J. Halpern, B. Moskowski, and Z. Manna. A hardware semantics based on temporal

intervals. ICALP’83, LNCS 154, pp. 278-291, 1983.
12. D. Harel, D. Kozen and R. Parikh. Process Logic: Expressiveness, decidability,

completeness. In IEEE FOCS’80, pp. 129-142. 1980.
13. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
14. D. Janin and I. Walukiewicz. On the expressive completeness of the propositional

μ-calculus with respect to monadic second order logic. CONCUR’96, LNCS 1119,
pp.263-277. 1996.

15. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333-354. 1983.

16. M. Lange and C. Stirling. Model checking fixed point logic with chop. FOSSACS’02,
LNCS 2303, pp. 250-263. 2002.

17. M. Lange. Local model checking games for fixed point logic with chop. CON-
CUR’02, LNCS 2421, pp. 240-254. 2002.

18. K.G. Larsen and B. Thomsen. A modal process logic. In the proc. of LICS’88,
pp.203-210. 1988.

19. K.G. Larsen and X.X. Liu. Compositionality through an operational semantics of
contexts. ICALP’90, LNCS 443, pp.526-539. 1990.

20. K.G. Larsen and X.X. Liu. Equation solving using modal transition systems.
LICS’90, pp. 108-107. 1990.

21. M. Müller-Olm. A modal fixpoint logic with chop. STACS’99, LNCS 1563, pp.510-
520. 1999.

22. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
23. A. Pnueli. The temporal logic of programs. In Proc. 18th STOC, pp.232-239. 1977.
24. R. Rosner and A. Pnueli. A choppy logic. In the proc. of LICS’86, pp.306-313.

1986.
25. B. Steffen, A. Ingólfsdóttir. Characteristic formulae for processes with divergence.

Information and Computation, 110:149-163. 1994.
26. M. Viswanathan and R. Viswanathan. Foundations for circular compositional rea-

soning. ICALP’01, LNCS 2076, pp. 835-847, 2001.
27. Naijun Zhan. Compositional properties of sequential processes. In the proc. of

SVV’03, ENTCS 118, pp.111-128. 2005.
28. C.C. Zhou, C.A.R. Hoare, and A. Ravn. A calculus of durations. Information Pro-

cessing Letters, 40(5):269-276, 1991.

An SLD-Resolution Calculus
for Basic Serial Multimodal Logics

Linh Anh Nguyen

Institute of Informatics, University of Warsaw,
ul. Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl

Abstract. We develop semantics for modal logic programs in basic se-
rial multimodal logics, which are parameterized by an arbitrary combi-
nation of generalized versions of axioms T , B, 4, 5 (in the form, e.g.,
4 : �iϕ → �j�kϕ) and I : �iϕ → �jϕ. We do not assume any special
restriction for the form of programs and goals. Our fixpoint semantics
and SLD-resolution calculus are defined using the direct approach and
closely reflect the axioms of the used modal logic. We prove that our
SLD-resolution calculus is sound and complete.

1 Introduction

Classical logic programming is very useful in practice and has been thoroughly
studied by many researchers. There are three standard semantics for definite
logic programs: the least model semantics, the fixpoint semantics, and the SLD-
resolution calculus (a procedural semantics) [9]. SLD-resolution was first de-
scribed by Kowalski [8] for logic programming. It is a top-down procedure for
answering queries in definite logic programs. On the other hand, the fixpoint se-
mantics of logic programs is a bottom-up method for answering queries and was
first introduced by van Emden and Kowalski [16] using the direct consequence
operator TP . This operator is monotonic, continuous, and has the least fixpoint
TP ↑ω =

⋃ω
n=0 TP ↑n, which forms the least Herbrand model of the given logic

program P .
Multimodal logics are useful in many areas of computer science. For example,

multimodal logics are used in knowledge representation and multi-agent systems
by interpreting �iϕ as “agent i knows/believes that ϕ is true”. Modal extensions
have been proposed for logic programming. There are two approaches to modal
logic programming: the direct approach [6,1,2,10,13] and the translational ap-
proach [4,14]. The first approach directly uses modalities, while the second one
translates modal logic programs to classical logic programs.

In [4], Debart et al. applied a functional translation technique for logic pro-
grams in multimodal logics which have a finite number of modal operators �i

and �i of any type among KD, KT , KD4, KT 4, KF and interaction axioms
of the form �iϕ → �jϕ. The technique is similar to the one used in Ohlbach’s
resolution calculus for modal logics [15]. Extra parameters are added to pred-
icate symbols to represent paths in the Kripke model, and special unification

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 151–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

152 L.A. Nguyen

algorithms are used to deal with them. In [14], Nonnengart proposed a semi-
functional translation. His approach uses accessibility relations for translated
programs, but with optimized clauses for representing properties of the acces-
sibility relations, and does not modify unification. Nonnengart [14] applied the
approach for modal logic programs in basic serial monomodal logics. He also
gave an example in a multimodal logic of type KD45.

The translational approach seems attractive: just translate and it is done.
However, the problem is more complicated. Using modal logics adds more non-
determinism to the search process, which cannot be eliminated but must be
dealt with in some way. In the functional translation [4], the modified unifica-
tion algorithm may return many substitutions, which causes branching. In the
semi-functional translation [14], additional nondeterminism is caused by clauses
representing frame restrictions of the used modal logic. In the direct approach
considered shortly, additional nondeterminism is caused by modal rules which
are used as meta clauses. Our point of view is that the direct approach is jus-
tifiable, as it deals with modalities more closely and “modalities allow us to
separate object-level and epistemic-level notions nicely”.

Using the direct approach for modal logic programming, Balbiani et al. [1]
gave a declarative semantics and an SLD-resolution calculus for a class of logic
programs in the monomodal logics KD , T , and S4. The work assumes that the
modal operator � does not occur in bodies of program clauses and goals. In
[2], Baldoni et al. gave a framework for developing declarative and operational
semantics for logic programs in multimodal logics which have axioms of the form
[t1] . . . [tn]ϕ → [s1] . . . [sm]ϕ, where [ti] and [sj] are universal modal operators
indexed by terms ti and sj , respectively. In that work, existential modal operators
are disallowed in programs and goals.

In [10], we developed a fixpoint semantics, the least model semantics, and
an SLD-resolution calculus in a direct way for modal logic programs in all of
the basic serial monomodal logics KD , T , KDB , B , KD4, S4, KD5, KD45,
and S5. We also extended the SLD-resolution calculus for the almost serial
monomodal logics KB , K5, K45, and KB5. There are two important properties
of our approach in [10]: no special restriction on occurrences of � and � is
assumed and the semantics are formulated closely to the style of classical logic
programming (as in Lloyd’s book [9]).

The aim of this paper is to generalize the methods and results of our above-
mentioned work for the whole class of basic serial multimodal logics (BSMM).
A BSMM logic is an extension of the multimodal logic Km with the axioms of
seriality D : �iϕ→ �iϕ and any combination of axioms of the form T : �iϕ→ ϕ
or I : �iϕ→ �jϕ or ϕ→ �i�jϕ or �iϕ→ �j�kϕ or �iϕ→ �j�kϕ, where i,
j, k can be arbitrary or related somehow. Note that the last three schemata are
generalized versions of the axioms B, 4, and 5, respectively.

Using the framework presented in our manuscript [13], we give a fixpoint
semantics, the least model semantics, and an SLD-resolution calculus for modal
logic programs in any BSMM logic. We prove that the calculus is sound and

An SLD-Resolution Calculus 153

complete. Due to the lack of space, we do not present proofs involving with the
fixpoint semantics and the least model semantics.

From the view of SLD-resolution, our idea is to use labeled existential modal
operators to break a complex goal into simple goal atoms and to use modal
axioms as meta clauses. For example, we cannot break ← �i(A ∧ B) into
← �iA,�iB, but if we label the operator �i by X then we can safely break
← 〈X〉i(A ∧ B) into ← 〈X〉iA, 〈X〉iB. Additionally, for example, we use the
axiom �iϕ → �j�kϕ (and their reverse �j�kϕ → �iϕ) in the form of meta
clauses .�j�k.′E ←.�i.′E and .�i.′E ←.�j�k.′E, where . and .′
are sequences of modal operators and E is a classical atom.

2 Preliminaries

2.1 Syntax and Semantics of Quantified Multimodal Logics

A language for quantified multimodal logics is an extension of the language of
classical predicate logic with modal operators �i and �i, for 1 ≤ i ≤ m (where
m is fixed). The modal operators �i and �i can take various meanings. For
example, �i can stand for “the agent i believes” and �i for “it is considered
possible by agent i”. The operators �i are called universal modal operators,
while �i are called existential modal operators. Terms and formulas are defined
in the usual way, with the addition that if ϕ is a formula then �iϕ and �iϕ are
also formulas.

A Kripke frame is a tuple 〈W, τ,R1, . . . , Rm〉, where W is a nonempty set of
possible worlds, τ ∈ W is the actual world, and Ri for 1 ≤ i ≤ m is a binary
relation on W , called the accessibility relation for the modal operators �i, �i.
If Ri(w, u) holds then we say that u is accessible from w via Ri.

A fixed-domain Kripke model with rigid terms, hereafter simply called a
Kripke model or just a model, is a tuple M = 〈D,W, τ,R1, . . . , Rm, π〉, where
D is a set called the domain, 〈W, τ,R1, . . . , Rm〉 is a Kripke frame, and π is an
interpretation of constant symbols, function symbols and predicate symbols. For
a constant symbol a, π(a) is an element of D, denoted by aM . For an n-ary
function symbol f , π(f) is a function from Dn to D, denoted by fM . For an
n-ary predicate symbol p and a world w ∈ W , π(w)(p) is an n-ary relation on
D, denoted by pM,w.

A model graph is a tuple 〈W, τ,R1, . . . , Rm, H〉, where 〈W, τ,R1, . . . , Rm〉 is
a Kripke frame and H is a function that maps each world of W to a set of
formulas.

Every model graph 〈W, τ,R1, . . . , Rm, H〉 corresponds to a Herbrand model
M = 〈U ,W, τ, R1, . . . , Rm, π〉 specified by: U is the Herbrand universe (i.e. the set
of all ground terms), cM = c, fM (t1, . . . , tn) = f(t1, . . . , tn), and ((t1, . . . , tn) ∈
pM,w) ≡ (p(t1, . . . , tn) ∈ H(w)), where t1, . . . , tn are ground terms. We will
sometimes treat a model graph as its corresponding model.

A variable assignment V w.r.t. a Kripke model M is a function that maps
each variable to an element of the domain of M . The value of tM [V] for a term
t is defined as usual.

154 L.A. Nguyen

Given some Kripke model M = 〈D,W, τ,R1, . . . , Rm, π〉, some variable as-
signment V , and some world w ∈W , the satisfaction relation M,V,w � ψ for a
formula ψ is defined as follows:

M,V,w � p(t1, . . . , tn) iff (tM1 [V], . . . , tMn [V]) ∈ pM,w;
M,V,w � �iϕ iff for all v ∈W such that Ri(w, v), M,V, v � ϕ;
M,V,w � ∀x.ϕ iff for all a ∈ D, (M,V ′, w � ϕ),

where V ′(x) = a and V ′(y) = V (y) for y = x;

and as usual for the other cases (treating �iϕ as ¬�i¬ϕ, and ∃x.ϕ as ¬∀x.¬ϕ).
We say that M satisfies ϕ, or ϕ is true in M , and write M � ϕ, if M,V, τ � ϕ
for every V . For a set Γ of formulas, we call M a model of Γ and write M � Γ
if M � ϕ for every ϕ ∈ Γ .

If the class of admissible interpretations contains all Kripke models (with no
restrictions on the accessibility relations) then we have a quantified multimodal
logic which has a standard Hilbert-style axiomatization denoted by Km. Other
normal (multi)modal logics are obtained by adding certain axioms to Km. Mostly
used axioms are ones that correspond to a certain restriction on the Kripke
frame defined by a classical first-order formula using the accessibility relations.
For example, the axiom (D) : �iϕ → �iϕ corresponds to the frame restriction
∀x∃yRi(x, y). Normal modal logics containing this axiom (for all 1 ≤ i ≤ m)
are called serial modal logics.

For a normal modal logic L whose class of admissible interpretations can
be characterized by classical first-order formulas of the accessibility relations,
we call such formulas L-frame restrictions, and call frames with such properties
L-frames. We call a model M with an L-frame an L-model. We say that ϕ is L-
satisfiable if there exists an L-model of ϕ, i.e. an L-model satisfying ϕ. A formula
ϕ is said to be L-valid and called an L-tautology if ϕ is true in every L-model.
For a set Γ of formulas, we write Γ �L ϕ and call ϕ a logical consequence of Γ
in L if ϕ is true in every L-model of Γ .

2.2 Basic Serial Multimodal Logics

A normal multimodal logic can be characterized by axioms extending the system
Km. Consider the class BSMM of basic serial multimodal logics specified as
follows. A BSMM logic is a normal multimodal logic parameterized by relations
AD/1,AT/1,AI/2, AB/2,A4/3,A5/3 on the set {1, . . . ,m}, where the numbers
on the right are arities and AD is required to be full. These relations specify the
following axioms:

�iϕ→ �iϕ if AD(i)
�iϕ→ ϕ if AT (i)
�iϕ→ �jϕ if AI(i, j)
ϕ→ �i�jϕ if AB(i, j)
�iϕ→ �j�kϕ if A4(i, j, k)
�iϕ→ �j�kϕ if A5(i, j, k)

It can be shown that the above axioms correspond to the following frame
restrictions in the sense that by adding some of the axioms to the system Km

An SLD-Resolution Calculus 155

we obtain an axiomatization system which is sound and complete with respect
to the class of admissible interpretations that satisfy the corresponding frame
restrictions.

Axiom Corresponding Condition
�iϕ→ �iϕ ∀u ∃v Ri(u, v)
�iϕ→ ϕ ∀u Ri(u, u)
�iϕ→ �jϕ Rj ⊆ Ri

ϕ→ �i�jϕ ∀u, v (Ri(u, v) → Rj(v, u))
�iϕ→ �j�kϕ ∀u, v, w (Rj(u, v) ∧Rk(v, w) → Ri(u,w))
�iϕ→ �j�kϕ ∀u, v, w (Ri(u, v) ∧Rj(u,w) → Rk(w, v))

For a BSMM logic L, we define the set of L-frame restrictions to be the set
of the frame restrictions corresponding to the tuples of the relations AD, AT ,
AI, AB, A4, A5. We also use BSMM to denote an arbitrary logic belonging to
the BSMM class.

For further reading on first-order modal logic, see, e.g., [3,7].

2.3 Modal Logic Programs

A modality is a sequence of modal operators, which may be empty. A universal
modality is a modality containing only universal modal operators. We use . to
denote a modality and � to denote a universal modality. Similarly as in classical
logic programming, we use the clausal form �(ϕ ← ψ1, . . . , ψn) to denote the
formula ∀(�(ϕ ∨ ¬ψ1 . . . ∨ ¬ψn)). We use E to denote a classical atom.

A program clause is a formula of the form �(A← B1, . . . , Bn), where n ≥ 0
and A,B1, . . . , Bn are formulas of the form E, �iE, or �iE. � is called the
modal context, A the head, and B1, . . . , Bn the body of the program clause. An
MProlog program is a finite set of program clauses.

An MProlog goal atom is a formula of the form �E or ��iE. An MProlog
goal is a formula written in the clausal form ← α1, . . . , αk, where each αi is an
MProlog goal atom. We denote the empty goal (the empty clause) by /.

Let P be an MProlog program and G = ← α1, . . . , αk be an MProlog goal.
An answer θ for P ∪{G} is a substitution whose domain is the set of all variables
of G. We say that θ is a correct answer in L for P ∪ {G} if θ is an answer for
P ∪ {G} and P �L ∀((α1 ∧ . . . ∧ αk)θ).

It is shown in [11] that MProlog has the same expressiveness power as the
general Horn fragment in normal modal logics.

3 Semantics of MProlog Programs in BSMM

In this section, we present a fixpoint semantics, the least model semantics, and
an SLD-resolution calculus for MProlog programs in a BSMM logic L.

3.1 Labeled Modal Operators

When applying the direct consequence operator TL,P for an MProlog program
P in L, if we obtain an “atom” of the form .�iE, where . is a sequence

156 L.A. Nguyen

of modal operators, then to simplify the task we label the modal operator �i.
Labeling allows us to address the chosen world(s) in which this particular E
must hold. A natural way is to label �i by E to obtain 〈E〉i. On the other hand,
when dealing with SLD-derivation, we cannot change a goal ← �i(A ∧ B) to
← �iA,�iB. But if we label the operator �i, let’s say by X , then we can safely
change ← 〈X〉i(A ∧B) to ← 〈X〉iA, 〈X〉iB.

We will use the following notations:

– 0 : the truth symbol, with the usual semantics;
– E, F : classical atoms (which may contain variables) or 0;
– X , Y , Z : variables for classical atoms or 0, called atom variables;
– 〈E〉i, 〈X〉i : �i labeled by E or X ;
– ∇ : �i, �i, 〈E〉i, or 〈X〉i, called a modal operator;
– . : a (possibly empty) sequence of modal operators, called a modality;
– � : a universal modality;
– A, B : formulas of the form E or ∇E, called simple atoms;
– α, β : formulas of the form .E, called atoms;
– ϕ, ψ : (labeled) formulas (i.e. formulas that may contain 〈E〉i and 〈X〉i).

We use subscripts beside ∇ to indicate modal indexes in the same way as for
� and �. To distinguish a number of modal operators we use superscripts of the
form (i), e.g. �(1), �(2), ∇(i), ∇(i′).

A ground formula is a formula with no variables and no atom variables. A
modal operator is said to be ground if it is �i, �i, or 〈E〉i with E being 0
or a ground classical atom. A ground modality is a modality that contains only
ground modal operators. A labeled modal operator is a modal operator of the
form 〈E〉i or 〈X〉i.

Denote EdgeLabels = {〈E〉i | E ∈ B ∪ {0} and 1 ≤ i ≤ m}, where B is
the Herbrand base (i.e. the set of all ground classical atoms). The semantics
of 〈E〉i ∈ EdgeLabels is specified as follows. Let M = 〈D,W, τ,R1, . . . , Rm, π〉
be a Kripke model. A �-realization function on M is a partial function σ :
W × EdgeLabels → W such that if σ(w, 〈E〉i) = u, then Ri(w, u) holds and
M,u � E. Given a �-realization function σ, a world w ∈ W , and a ground
formula ϕ, the satisfaction relation M,σ,w � ϕ is defined in the usual way,
except that M,σ,w � 〈E〉iψ iff σ(w, 〈E〉i) is defined and M,σ, σ(w, 〈E〉i) � ψ.
We write M,σ � ϕ to denote that M,σ, τ � ϕ. For a set I of ground atoms, we
write M,σ � I to denote that M,σ � α for all α ∈ I; we write M � I and call
M a model of I if M,σ � I for some σ.

3.2 Model Generators

A modality is in labeled form if it does not contain modal operators of the form
�i or 〈0〉i. An atom is in labeled form (resp. almost labeled form) if it is of the
form .E (resp. .A) with . in labeled form.

A model generator is a set of ground atoms not containing �i, 〈0〉i, 0.
We will define the standard L-model of a model generator I so that it is a

least L-model of I (where a model M is less than or equal to a model M ′ if

An SLD-Resolution Calculus 157

Table 1. A schema for semantics of MProlog in BSMM

L = BSMM

Rules specifying ExtL and SatL:
#〈E〉iα→#�iα (1)
#�iα→#�iα (2)
#�iα→#α if AT (i) (3)
#α→#�iα if AT (i) (4)
#�iα→#�jα if AI(i, j) (5)
#�jα→#�iα if AI(i, j) (6)
#α→#�i�jα if AB(i, j) (7)
#�i�jα→#α if AB(i, j) (8)
#�iα→#�j�kα if A4(i, j, k) (9)
#�j�kα→ #�iα if A4(i, j, k) (10)
#�iα→#�j�kα if A5(i, j, k) (11)
#�j�kα→ #�iα if A5(i, j, k) (12)

Rules specifying rSatL:
#�iα←#〈X〉iα where X is a fresh atom variable (1)
#∇iα← #�iα (2)
plus a rule α← β for each k-th rule β → α specifying SatL,

k ≥ 3, with the same accompanying condition (3)..(12)

Comments w.r.t. [13]:
&L is denoted by & and defined in page 158.
No restrictions on L-normal form of modalities.
No rules specifying NFL and rNFL.

for every positive ground formula ϕ without labeled operators, if M � ϕ then
M ′ � ϕ). In the construction we will use the operator ExtL defined below.

A forward rule is a schema of the form α → β, while a backward rule is a
schema of the form α ← β. A rule can be accompanied with some conditions
specifying when the rule can be applied.

The operator ExtL is specified by the corresponding forward rules given in
Table 1. Given a model generator I, ExtL(I) is the least extension of I that
contains all ground atoms in labeled form that are derivable from some atom of
I using the rules specifying ExtL.

Define Serial = {�〈0〉i0 | 1 ≤ i ≤ m}.
Let I be a model generator. The standard L-model of I is defined as follows.

Let W ′ = EdgeLabels∗ (i.e. the set of finite sequences of elements of {〈E〉i | E ∈
B ∪ {0} and 1 ≤ i ≤ m}), τ = ε, H(τ) = ExtL(I) ∪ Serial. Let R′i ⊆ W ′ ×W ′

and H(u), for u ∈W ′, u = τ , be the least sets such that:

– if 〈E〉iα ∈ H(w), then R′i(w,w〈E〉i) holds and {E,α} ⊆ H(w〈E〉i);
– if �iα ∈ H(w) and R′i(w,w〈E〉i) holds, then α ∈ H(w〈E〉i).

158 L.A. Nguyen

Let Ri, for 1 ≤ i ≤ m, be the least extension of R′i such that {Ri | 1 ≤ i ≤ m}
satisfies all the L-frame restrictions except seriality (which is cared by Serial)1.
Let W be W ′ without worlds not accessible directly nor indirectly from τ via
the accessibility relations Ri. We call the model graph 〈W, τ,R1, . . . , Rm, H〉
the standard L-model graph of I, and its corresponding model M the standard
L-model of I. {R′i | 1 ≤ i ≤ m} is called the skeleton of M . By the standard �-
realization function on M we call the �-realization function σ defined as follows:
if R′i(w,w〈E〉i) holds then σ(w, 〈E〉i) = w〈E〉i, else σ(w, 〈E〉i) is undefined.

It is shown in [11] that the standard L-model of a model generator I is a least
L-model of I.

3.3 Fixpoint Semantics

We now consider the direct consequence operator TL,P . Given a model genera-
tor I, how can TL,P (I) be defined? Basing on the axioms of L, I is first extended
to the L-saturation of I, denoted by SatL(I), which is a set of atoms. Next,
L-instances of program clauses of P are applied to the atoms of SatL(I). This is
done by the operator T0L,P . Then TL,P (I) is defined as T0L,P (SatL(I)).

To compare modal operators we define � to be the least reflexive and tran-
sitive binary relation between modal operators such that �i � 〈E〉i � �i and
�i � 〈X〉i � �i.

An atom ∇(1) . . .∇(n)α is called an instance of an atom ∇(1′) . . .∇(n′)α′

if there exists a substitution θ such that α = α′θ and ∇(i) � ∇(i′)θ for all
1 ≤ i ≤ n (treating ∇(i′) as an expression). For example, 〈X〉1�2E is an instance
of �1〈F 〉2E.

A modality . is called an instance of .′, and we also say that .′ is equal to
or more general in L than . (hereby we define a pre-order between modalities),
if .E is an instance of .′E for some ground classical atom E.

Let � and �′ be universal modalities. We say that � is an L-context instance
of �′ if �′ϕ→ �ψ is L-valid (for every ψ). This is defined semantically, and in
general, the problem of checking whether � is an L-context instance of �′ for an
input BSMM logic L is perhaps undecidable. However, the problem is decidable
for many modal logics, including basic monomodal logics, multimodal logics of
belief [11], and regular grammar logics [5].

Let ϕ and ϕ′ be program clauses with empty modal context. We say that �ϕ
is an L-instance of (a program clause) �′ϕ′ if � is an L-context instance of �′

and there exists a substitution θ such that ϕ = ϕ′θ.
We now give definitions for SatL and T0L,P .
The saturation operator SatL is specified by the corresponding forward rules

given in Table 1. Given a model generator I, SatL(I) is the least extension of I
that contains all ground atoms in almost labeled form that are derivable from
some atom in I using the rules specifying SatL. (Note that the rules specifying
SatL are the same as the rules specifying ExtL, but these operators are different.)

1 The least extension exists due to the assumption that all L-frame restrictions not
concerning seriality are classical first-order Horn formulas.

An SLD-Resolution Calculus 159

When computing the least fixpoint of a modal logic program, whenever an
atom of the form .�iE is introduced, we “fix” the � by replacing the atom by
.〈E〉iE. This leads to the following definition. The forward labeled form of an
atom α is the atom α′ such that if α is of the form .�iE then α′ = .〈E〉iE,
else α′ = α.

Let P be an L-MProlog program. The operator T0L,P is defined as follows: for
a set I of ground atoms in almost labeled form, T0L,P (I) is the least (w.r.t. ⊆)
model generator such that if �(A← B1, . . . , Bn) is a ground L-instance of some
program clause of P and . is a maximally general2 ground modality in labeled
form such that . is an L-instance of � and .Bi is an instance of some atom of
I for every 1 ≤ i ≤ n, then the forward labeled form of .A belongs to T0L,P (I).

Define TL,P (I) = T0L,P (SatL(I)). By definition, the operators SatL and
T0L,P are both increasingly monotonic and compact. Hence the operator TL,P

is monotonic and continuous. By the Kleene theorem, it follows that TL,P has
the least fixpoint TL,P ↑ω =

⋃ω
n=0 TL,P ↑n, where TL,P ↑ 0 = ∅ and TL,P ↑n =

TL,P (TL,P ↑(n− 1)) for n > 0.
Denote the least fixpoint TL,P ↑ω by IL,P and the standard L-model of IL,P

by ML,P . It is shown in [11] that ML,P is a least L-model of P .

Example 1. Consider the multimodal logic L specified by m = 2, AD = {1, 2},
AT = {1}, AI = {(2, 1)}, and AB = A4 = A5 = ∅. In other words, the logic
is characterized by the axioms: �1ϕ → �1ϕ; �2ϕ → �2ϕ; �1ϕ → ϕ; and
�2ϕ→ �1ϕ. Consider the following program P :

ϕ1 = �2p(a) ←
ϕ2 = �2(�1q(x) ← �2p(x))
ϕ3 = �2(r(x) ← p(x), q(x))

We have TL,P ↑1 = {〈p(a)〉2p(a)} and

SatL(TL,P ↑1) = {〈p(a)〉2p(a), 〈p(a)〉2�1p(a), 〈p(a)〉2�2p(a)}

The program clause ϕ2 has two L-instances applicable to SatL(TL,P ↑ 1): the
clause ϕ2 itself and �1q(x) ← �2p(x). Applying these clauses to SatL(TL,P ↑1),
we obtain TL,P ↑ 2 = TL,P ↑ 1 ∪ {〈p(a)〉2�1q(a), �1q(a)}. Observe that the set
SatL(TL,P ↑2) contain both 〈p(a)〉2p(a) and 〈p(a)〉2q(a). Hence, by applying the
program clause ϕ3, we have 〈p(a)〉2r(a) ∈ TL,P ↑3 and arrive at

IL,P = TL,P ↑3 = {〈p(a)〉2p(a), 〈p(a)〉2�1q(a),�1q(a), 〈p(a)〉2r(a)}

3.4 SLD-Resolution

The main work in developing an SLD-resolution calculus for MProlog in L is to
specify a reverse analogue of the operator TL,P . The operator TL,P is a compo-
sition of SatL and T0L,P . So, we have to investigate reversion of these operators.

2 W.r.t. the pre-order between modalities described earlier.

160 L.A. Nguyen

A goal is a clause of the form ← α1, . . . , αk, where each αi is an atom.
The following definition concerns reversion of the operator T0L,P .
Let G = ← α1, . . . , αi, . . . , αk be a goal and ϕ = �(A ← B1, . . . , Bn) a

program clause. Then G′ is derived from G and ϕ in L using mgu θ, and called
an L-resolvent of G and ϕ, if the following conditions hold:

– αi = .′A′, with .′ in labeled form, is called the selected atom, and A′ is
called the selected head atom;

– .′ is an instance of a universal modality �′ and �′(A← B1, . . . , Bn) is an
L-instance of the program clause ϕ;

– θ is an mgu of A′ and the forward labeled form of A;
– G′ is the goal ← (α1, . . . , αi−1,.′B1, . . . ,.′Bn, αi+1, . . . , αk)θ.

As a reverse analogue of the operator SatL, we provide the operator rSatL,
which is specified by the corresponding backward rules given in Table 1. We say
that β = rSatL(α) using an rSatL rule α′ ← β′ if α← β is of the form α′ ← β′.
We write β = rSatL(α) to denote that “β = rSatL(α) using some rSatL rule”.

Let G = ← α1, . . . , αi, . . . , αk be a goal. If α′i = rSatL(αi) using an rSatL
rule ϕ, then G′ = ← α1, . . . , αi−1, α

′
i, αi+1, . . . , αk is derived from G and ϕ, and

we call G′ an (L-)resolvent of G and ϕ, and αi the selected atom of G.
Observe that rSatL rules are similar to program clauses and the way of

applying them is similar to the way of applying classical program clauses, except
that we do not need mgu’s.

We now define SLD-derivation and SLD-refutation.
Let P be an MProlog program and G a goal. An SLD-derivation from P∪{G}

in L consists of a (finite or infinite) sequence G0 = G,G1, . . . of goals, a sequence
ϕ1, ϕ2, . . . of variants of program clauses of P or rSatL rules, and a sequence
θ1, θ2, . . . of mgu’s such that if ϕi is a variant of a program clause then Gi is
derived from Gi−1 and ϕi in L using θi, else θi = ε (the empty substitution) and
Gi is derived from Gi−1 and (the rSatL rule variant) ϕi. Each ϕi is called an
input clause/rule of the derivation.

We assume standardizing variables apart as usual (see [9]).
An SLD-refutation of P ∪ {G} in L is a finite SLD-derivation from P ∪ {G}

in L which has the empty clause as the last goal in the derivation.
Let P be an MProlog program and G a goal. A computed answer θ in L of

P ∪ {G} is the substitution obtained by restricting the composition θ1 . . . θn to
the variables of G, where θ1, . . . , θn is the sequence of mgu’s used in an SLD-
refutation of P ∪ {G} in L.

Example 2. Reconsider the modal logic L and the program P given in Example 1.
Let G = ← �2r(x). We give below an SLD-refutation of P ∪ {G} in L with
computed answer {x/a}.

Goals Input clauses/rules MGUs
← �2r(x)
← 〈X〉2r(x) (1)
← 〈X〉2p(x), 〈X〉2q(x) ϕ3 {x2/x}

An SLD-Resolution Calculus 161

← 〈p(a)〉2q(a) ϕ1 {X/p(a),x/a}
← 〈p(a)〉2�1q(a) (3)
← 〈p(a)〉2�2p(a) ϕ2 {x5/a}
← 〈p(a)〉2�1p(a) (6)
← 〈p(a)〉2p(a) (4)
/ ϕ1

4 Soundness and Completeness of SLD-Resolution

In this section, we prove soundness and completeness of the SLD-resolution
calculus given for MProlog in BSMM, which are stated as follows.

Theorem 1. Let L be a BSMM logic, P an MProlog program, and G an MProlog
goal. Then every computed answer in L of P ∪ {G} is a correct answer in L of
P ∪ {G}. Conversely, for every correct answer θ in L of P ∪ {G}, there exists a
computed answer γ in L of P ∪ {G} which is more general than θ (i.e. θ = γδ
for some δ).

4.1 How to Prove?

In [13], we presented a general framework for developing fixpoint semantics, the
least model semantics, and SLD-resolution calculi for logic programs in mul-
timodal logics and proved that under certain expected properties of a concrete
instantiation of the framework for a specific multimodal logic, the SLD-resolution
calculus is sound and complete. The semantics of MProlog in BSMM presented
in the previous section and summarized in Table 1 are based on and compat-
ible with the framework given in [13]. For L = BSMM , we have applied the
following simplifications w.r.t. [13]:

– There are no restrictions on L-normal form of modalities and the normal-
ization operator NFL and it reverse rNFL are just identity operators. The
word L-normal is also omitted in “L-normal model generator”.

– There are no restrictions on BSMM-MProlog, i.e. every MProlog program
(resp. goal) is a BSMM-MProlog program (resp. goal).

– The index L is omitted in the notations SerialL, �L, and “L-instance” (of
an atom or a modality).

By the results of [13], to prove soundness and completeness of SLD-resolution
for MProlog in BSMM, we can prove Expected Lemmas 4 – 10 of [13] (w.r.t.
the schema given in Table 1). The Expected Lemma 6 is trivial. The Expected
Lemma 10 and the part of Expected Lemma 8 involving with NFL/rNFL can be
omitted because NFL and rNFL are identity operators. The Expected Lemmas
7 and 9 and the remaining part of Expected Lemma 8, which concern proper-
ties of the operators SatL and rSatL, can be verified in a straightforward way.
The remaining Expected Lemmas 4 and 5 are given below as Lemmas 1 and 2,
respectively, and will be proved in this section.

A model generator I is called an L-model generator of P if TL,P (I) ⊆ I.

162 L.A. Nguyen

Lemma 1. Let P be an MProlog program and I an L-model generator of P .
Then the standard L-model of I is an L-model of P .

Lemma 2. Let I be a model generator, M the standard L-model of I, and α a
ground MProlog goal atom. Suppose that M � α. Then α is an instance of some
atom of SatL(I).

4.2 Extended L-Model Graphs

To proceed we need extended L-model graphs and some properties of them. Let
I be a model generator. Define Ext′L to be the operator such that Ext′L(I) is
the least set of atoms extending I and closed w.r.t. the rules specifying ExtL.
Note that we allow Ext′L(I) to contain atoms not in labeled form and have that
ExtL(I) ⊆ Ext′L(I). The extended L-model graph of I is defined in the same way
as the standard L-model graph of I but with Ext′L(I) in the place of ExtL(I).

We need the two following auxiliary lemmas.

Lemma 3. Let I be a model generator, M the standard L-model graph of I, and
M ′ the extended L-model graph of I. Then M ′ has the same frame as M , and
furthermore, if M = 〈W, τ,R1, . . . , Rm, H〉 and M ′ = 〈W, τ,R1, . . . , Rm, H

′〉
then for every w ∈ W , H(w) ⊆ H ′(w) and H ′(w) −H(w) is a set of formulas
containing some unlabeled existential modal operators.

The proof of this lemma is straightforward.
If a modality . is obtainable from .′ by replacing some (possibly zero) ∇i

by �i then we call . a �-lifting form of .′. If . is a �-lifting form of .′ then
we call an atom .α a �-lifting form of .′α. For example, �1〈p(a)〉1�2q(b) is a
�-lifting form of 〈X〉1〈p(a)〉1�2q(b).

Lemma 4. Let I be a model generator and M = 〈W, τ,R1, . . . , Rm, H〉 be the
extended L-model graph of I. Let w = 〈E1〉i1 . . . 〈Ek〉ik be a world of M and
. = w be a modality. Then for α (resp. A) not containing 0, α ∈ H(w)
(resp. A ∈ H(w)) iff there exists a �-lifting form .′ of . such that .′α ∈
Ext′L(I) (resp. .′A ∈ SatL(I)).

This lemma can be proved by induction on the length of . in a straightfor-
ward way. We give below the main lemma of this subsection.

Lemma 5. Let I be a model generator and M = 〈W, τ,R1, . . . , Rm, H〉 be the
extended L-model graph of I. Then for any w and u such that Ri(w, u) holds:

– if �iα ∈ H(w) then α ∈ H(u),
– if α ∈ H(u) then �iα ∈ H(w).

Proof. Let {R′j | 1 ≤ j ≤ m} be the skeleton of M . We prove this lemma by
induction on the number of steps needed to obtain Ri(w, u) when extending
{R′j | 1 ≤ j ≤ m} to {Rj | 1 ≤ j ≤ m}.

Consider the first assertion. Suppose that �iα ∈ H(w). By Lemma 4, there
exists a �-lifting form . of w such that .�iα ∈ Ext′L(I). Since Ri(w, u) holds,
there are the following cases to consider:

An SLD-Resolution Calculus 163

– Case u = w〈E〉i and R′i(w,w〈E〉i) : The assertion holds by the definition
of M .

– Case AT (i) holds and u = w : Since .�iα ∈ Ext′L(I), we have .α ∈
Ext′L(I), and by Lemma 4, α ∈ H(u).

– Case AI(i, j) holds and Ri(w, u) is created from Rj(w, u) : Since .�iα ∈
Ext′L(I), we have .�jα ∈ Ext′L(I), and by Lemma 4, �jα ∈ H(w). Hence,
by the inductive assumption, α ∈ H(u).

– Case AB(j, i) holds and Ri(w, u) is created from Rj(u,w) : Since �iα ∈
H(w), by the inductive assumption, �j�iα ∈ H(u). By Lemma 4, there
exists a �-lifting form .′ of u such that .′�j�iα ∈ Ext′L(I). Thus .′α ∈
Ext′L(I). Hence, by Lemma 4, α ∈ H(u).

– Case A4(i, j, k) holds and Ri(w, u) is created from Rj(w, v) and Rk(v, u):
Since .�iα ∈ Ext′L(I), we have .�j�kα ∈ Ext′L(I), and by Lemma 4,
�j�kα ∈ H(w). Hence, by the inductive assumption, �kα ∈ H(v) and
α ∈ H(u).

– Case A5(j, k, i) holds and Ri(w, u) is created from Rj(v, u) and Rk(v, w):
Since �iα ∈ H(w), by the inductive assumption, �k�iα ∈ H(v). Hence,
by Lemma 4, there exists a �-lifting form .′ of v such that .′�k�iα ∈
Ext′L(I). Hence .′�jα ∈ Ext′L(I), and by Lemma 4, �jα ∈ H(v). By the
inductive assumption, it follows that α ∈ H(u).

The second assertion can be proved in a similar way (see [11]).

4.3 Remaining Proofs

We also need the following lemma (labeled Expected Lemma 2 in [13]), which
states that the standard L-model of I is really an L-model of I.

Lemma 6. Let I be a model generator, M the standard/extended L-model graph
of I, and σ the standard �-realization function on M . Then M is an L-model
and M,σ � I.

Proof. By Lemma 3, it suffices to prove for the case when M is the standard
L-model graph of I. By the definition, M is an L-model. It can be proved by
induction on the length of α that for any w ∈W , if α ∈ H(w), then M,σ,w � α.
The cases when α is a classical atom or α = 〈E〉iβ are trivial. The case when
α = �iβ is solved by Lemmas 3 and 5. Hence M,σ � I.

Proof of Lemma 1. Let I ′ be the least extension of I such that, if �ϕ is
a program clause of P , ϕ = (A ← B1, . . . , Bn), and ψ is a ground instance of
ϕ, then �pψ ∈ I ′, where pψ is a fresh 0-ary predicate symbol. Let M and M ′

be the extended L-model graphs of I and I ′, respectively. It is easy to see that
these model graphs have the same frame. Let M = 〈W, τ,R1, . . . , Rm, H〉 and
M ′ = 〈W, τ,R1, . . . , Rm, H

′〉. Clearly, M is an L-model. By Lemma 3, it suffices
to show that M � P .

Let �ϕ be a program clause of P , ϕ = (A ← B1, . . . , Bn), and ψ a ground
instance of ϕ. By Lemma 6, M ′ � �pψ. To prove that M � P it is sufficient

164 L.A. Nguyen

to show that for any w ∈ W , if pψ ∈ H ′(w) then M,w � ψ. Suppose that
pψ ∈ H ′(w).

Let . = w and �′ = �i1 . . .�ik be a �-lifting form of . . By Lemma 4, some
�-lifting form of .pψ belongs to SatL(I ′). This �-lifting form must be �′pψ.
Thus �′pψ ∈ SatL({�pψ}). Hence �pψ → �′pψ is L-valid and the program
clause �′ψ is a ground L-instance of �ϕ.

Let ψ = (A′ ← B′1, . . . , B
′
n) and suppose that M,w � B′i for all 1 ≤ i ≤ n.

We need to show that M,w � A′. For this, we first show that a �-lifting form
of .B′i belongs to SatL(I) for every 1 ≤ i ≤ n. Consider the following cases:

– Case B′i is a classical atom: The assertion follows from Lemma 4.
– Case B′i is of the form �jE: Since M,w � B′i, it follows that M,w〈0〉j � E,

and by Lemma 4, some �-lifting form of .〈0〉jE belongs to SatL(I), which
means that some �-lifting form of .B′i belongs to SatL(I).

– Case B′i is of the form �jE: Since M,w � B′i, there exists a world u such that
Rj(w, u) holds and M,u � E. By Lemma 5, it follows that �jE ∈ H(w).
Hence, by Lemma 4, some �-lifting form of .B′i belongs to SatL(I).

Therefore, by the definition of T0L,P , some �-lifting form α of .A′′,
where A′′ is the forward labeled form of A′, belongs to T0L,P (SatL(I)). Since
T0L,P (SatL(I)) = TL,P (I) ⊆ I, by Lemma 6, we have that M,σ � α, where σ
is the standard �-realization function on M . Hence M,w � A′. Thus M,w � ψ,
which completes the proof.

Proof of Lemma 2. Let M ′ = 〈W, τ,R1, . . . , Rm, H〉 be the extended L-model
graph of I, � = �i1 . . .�ik and w = 〈0〉i1 . . . 〈0〉ik . Suppose that α is of the
form �E. Since M � α, by Lemma 3, we have M ′, w � E. By Lemma 4, it follows
that �E ∈ SatL(I). Now suppose that α is of the form ��iE. Since M � α,
we have M,w � �iE, and by Lemma 3, M ′, w � �iE. There exists u such that
Ri(w, u) holds and M ′, u � E. By Lemma 5, it follows that �iE ∈ H(w). Hence
��iE ∈ SatL(I) (by Lemma 4).

We have proved Lemmas 1 and 2, which completes the proof of Theorem 1.

5 Conclusions

We have developed semantics for MProlog programs in BSMM and proved that
the given SLD-resolution calculus is sound and complete. The class BSMM of
basic serial multimodal logics is much larger than the class of multimodal logics
considered by Debart et al. using the translational approach [4] and is very
different from the class of grammar modal logics considered by Baldoni et al. [2].

This paper is an extension of our previous paper on programming in
monomodal logics [10] and is an instantiation of our general framework given
in [13]. The SLD-resolution calculus for BSMM presented in this paper together
with its soundness and completeness is, however, a strong and essential result.

The SatL/rSatL rules given for semantics of MProlog in BSMM are based
directly on the axioms of the used modal logic. This makes our fixpoint semantics

An SLD-Resolution Calculus 165

and SLD-resolution calculus intuitive. The clarity of the rules suggests that our
methods can be extended for other multimodal logics.

Our SLD-resolution calculus for MProlog in BSMM is elegant like a Hilbert-
style axiom system, but similarly to using a Hilbert-style axiom system for au-
tomatic reasoning, it is not very efficient. For more specific modal logics, as
reported in [12,13], we have implemented the modal logic programming system
MProlog. It uses optimization techniques like normalization of modalities, better
orderings of modal operators, options for restricting the search space.

In summary, we have successfully applied the direct approach for modal logic
programming in a large class of basic multimodal logics, while not assuming any
special restriction on the form of logic programs and goals.

References

1. Ph. Balbiani, L. Fariñas del Cerro, and A. Herzig. Declarative semantics for modal
logic programs. In Proceedings of the 1988 International Conference on Fifth Gen-
eration Computer Systems, pages 507–514. ICOT, 1988.

2. M. Baldoni, L. Giordano, and A. Martelli. A framework for a modal logic program-
ming. In Joint International Conference and Symposium on Logic Programming,
pages 52–66. MIT Press, 1996.

3. M.J. Cresswell and G.E. Hughes. A New Introduction to Modal Logic. Routledge,
1996.

4. F. Debart, P. Enjalbert, and M. Lescot. Multimodal logic programming using
equational and order-sorted logic. Theoretical Comp. Science, 105:141–166, 1992.

5. S. Demri. The complexity of regularity in grammar logics and related modal logics.
Journal of Logic and Computation, 11(6):933–960, 2001.

6. L. Fariñas del Cerro. Molog: A system that extends Prolog with modal logic. New
Generation Computing, 4:35–50, 1986.

7. M. Fitting and R.L. Mendelsohn. First-Order Modal Logic. Springer, 1998.
8. R.A. Kowalski. Predicate logic as a programming language. In J.L. Rosenfeld,

editor, Information Processing 74, Proc. of IFIP Congress 74, pages 569–574, 1974.
9. J.W. Lloyd. Foundations of Logic Programming, 2nd Ed. Springer-Verlag, 1987.

10. L.A. Nguyen. A fixpoint semantics and an SLD-resolution calculus for modal logic
programs. Fundamenta Informaticae, 55(1):63–100, 2003.

11. L.A. Nguyen. Multimodal logic programming and its applications to modal deduc-
tive databases. Manuscript (served as a technical report), available on Internet at
http://www.mimuw.edu.pl/∼nguyen/papers.html, 2003.

12. L.A. Nguyen. The modal logic programming system MProlog. In J.J. Alferes
and J.A. Leite, editors, Proceedings of JELIA 2004, LNCS 3229, pages 266–278.
Springer, 2004.

13. L.A. Nguyen. The modal logic programming system MProlog: Theory, design, and
implementation. Available at http://www.mimuw.edu.pl/∼nguyen/mprolog, 2005.

14. A. Nonnengart. How to use modalities and sorts in Prolog. In C. MacNish,
D. Pearce, and L.M. Pereira, editors, Proceedings of JELIA’94, LNCS 838, pages
365–378. Springer, 1994.

15. H.J. Ohlbach. A resolution calculus for modal logics. In E.L. Lusk and R.A.
Overbeek, editors, Proc. of CADE-88, LNCS 310, pages 500–516. Springer, 1988.

16. M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a pro-
gramming language. Journal of the ACM, 23(4):733–742, 1976.

Upside-Down Transformation in
SOL/Connection Tableaux and Its Application�

Koji Iwanuma1, Katsumi Inoue2, and Hidetomo Nabeshima1

1 University of Yamanashi,
4-3-11 Takeda, Kofu-shi,Yamanashi 400-8511, Japan
{iwanuma, nabesima}@iw.media.yamanashi.ac.jp

2 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ki@nii.ac.jp

Abstract. In this paper, we study an upside-down transformation of
a branch in SOL/Connection tableaux and show that SOL/Connection
tableaux using the folding-up operation can always accomplish a size-
preserving transformation for any branch in any tableau. This fact solves
the exponentially-growing size problem caused both by the order-
preserving reduction and by an incremental answer computation
problem.

1 Introduction

Given an axiom set, the task of consequence-finding [2] is to find out some
theorems of interest.1 To efficiently compute interesting consequences, Inoue [3]
defined SOL resolution, which is an extension of the Model Elimination (ME)
calculus [11] by adding the Skip rule to ME. When the Skip rule is applied to
the selected literal in SOL, it is just “skipped”. When a deduction with the
top clause C is completed, those skipped literals are collected and output. This
output clause is a logical consequence ofΣ∪{C}. Iwanuma et.al [5] proposed SOL
Tableaux, which is a reformulation of SOL within the framework of connection
tableaux [8,1,10].

In this paper, we study an upside-down transformation of a branch in SOL/
Connection tableaux. SOL/Connection tableau calculus suffers from redundant
duplicate computation which is induced by many contrapositives of an axiom
clause. Thus, the upside-down transformation studied here can shed some new
light on redundancy/efficiency of Connection (and thus, SOL) tableaux. We show
that SOL/Connection tableaux using the folding-up operation can always accom-
plish a size-preserving transformation for any branch in any tableau. This fact
solves the size-growing problem caused both by the order-preserving reduction
and by an incremental answer computation problem.
� This research was partially supported by the Grant-in-Aid from The Ministry of Edu-

cation, Science and Culture of Japan ((A)(1) No.13358004) and (B)(1) No.17300051.
1 A survey of consequence-finding in propositional logic is given in Marquis [12], and

an application of consequence-finding to abduction is summarized in [4].

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 166–179, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Upside-Down Transformation in SOL/Connection Tableaux 167

This paper is organized as follows: Section 2 gives several definition of SOL/
Connection tableaux, In Section 3, we study an upside-down transformation
of a branch in a tableau. In Section 4, we investigate some application of the
upside-down transformation to two open problems in automated deduction.

2 SOL Tableaux

We follow several definition of Connection Tableaux [8], thus define a clause as a
multiset of literals. We write ⊆ms to denote the inclusion relation over multisets
which is defined as usual.

Definition 1 (Subsumption). Let C and D be clauses, i.e., multisets of lit-
erals. C subsumes D if there is a substitution θ such that Cθ ⊆ms D. We say
C properly subsumes D if C subsumes D but D does not subsume C. For a set
of clauses Σ, μΣ denotes the set of clauses in Σ not properly subsumed by any
clause in Σ.

Definition 2 (Production Field [3]). A production field P is a pair
〈L, Cond 〉, where L is a set of literals closed under instantiation from the Her-
brand Universe, and Cond is a certain condition to be satisfied. When Cond is
not specified, P is just denoted as 〈L 〉. A clause C belongs to P = 〈L, Cond 〉 if
every literal in C belongs to L and C satisfies Cond. When Σ is a set of clauses,
the set of logical consequences of Σ belonging to P is denoted as ThP(Σ).

For example, if L+ is the set of positive literals in a language, and P1 is a
production field 〈 L+ 〉, then ThP1(Σ) is the set of all positive clauses derivable
from Σ. Notice that the empty clause φ is the unique clause in μThP(Σ) if
and only if Σ is unsatisfiable. This means that proof-finding is a special case of
consequence-finding.

Definition 3 (Connection Tableau [8]).

1. A clausal tableau T is a labeled ordered tree, where every non-root node of
T is labeled with a literal. If no confusion arises, we shall identify a node
with its label in T . If the immediate successor nodes of a node N are nodes.
i,e., literals, L1, . . . , Ln, then the clause L1 ∨ · · · ∨ Ln is called the tableau
clause below N ; the tableau clause below the root is called the top clause. T
is said to be a clausal tableau for a set Σ of clauses if every tableau clause
C in T is an instance of a clause D in Σ. Additionally, in such a case, D is
called an origin clause of C in Σ. Finally, the size of a clausal tableau T is
the number of nodes in T .

2. A connection tableau T is a clausal tableau such that, for every non-leaf
node L (except the root), there is an immediate successor of L which is
labeled with the complement L. A marked tableau is a clausal tableau T
such that some leaf nodes are marked with the labels closed or skipped.
The unmarked leaf nodes are called subgoals. T is solved if all leaf nodes are
marked. The literal of a node L in T is called a skipped literal if L is marked
with skipped. We denote the set of skipped literals in T as skip(T).

168 K. Iwanuma, K. Inoue, and H. Nabeshima

Notice that skip(T) is a set, not a multiset. skip(T) is sometimes identified
with a clause. In the following, we abbreviate a marked connection tableau as a
tableau if no confusion arises.

Definition 4 (Regularity, Skip-regularity and TCS-freeness). A marked
tableau T is regular if no two nodes on a branch in T are labeled with the
same literal. T is tautology-free if any tableau clause in T does not have a pair
of complementary literals. T is complement-free if no two non-leaf nodes on a
branch in T are labeled with complementary literals. A marked tableau T is skip-
regular if no node N in T is labeled with literal L such that the complement
L belongs to skip(T). T is TCS-free (Tableau Clause Subsumption free) for a
clause set Σ if no tableau clause C in T is subsumed by any clause in Σ other
than origin clauses of C.

Notice that skip-regularity is effective all over a tableau, so that it is effective
not only for subgoals but also for non-leaf and/or solved nodes in a tableau.

Definition 5 (SOL Tableau Calculus [5]). Let Σ be a set of clauses, C a
clause, and P a production field. An SOL-deduction deriving a clause S from
Σ + C and P consists of a sequence of tableaux T0, T1, . . . , Tn satisfying that:

1. T0 is a tableau consisting of the start clause C only. All leaf nodes of T0 are
unmarked.

2. Tn is a solved tableau, and skip(Tn) = S.
3. For each Ti (i = 0, . . . , n), Ti is regular, tautology-free, complement-free,

skip-regular and TCS-free for Σ∪{C}. Moreover, the clause skip(Ti) belongs
to P .

4. Ti+1 is constructed from Ti as follows. Select a subgoal K, then apply one
of the following rules to Ti to obtain Ti+1:
(a) Skip: If skip(Ti)∪{K} belongs to P , then mark K with label skipped.
(b) Skip-Factoring: If skip(Ti) contains a literal L, and K and L are

unifiable with mgu θ, then mark K with label skipped, and apply θ to
Ti.

(c) Extension: Select a clause B from Σ ∪ {C} and obtain a variant B′ =
L1 ∨ · · · ∨ Lm by renaming variables in B. If there is a literal Lj such
that K and Lj are unifiable with mgu θ, then first attach new nodes
L1, . . . , Lm to K as the immediate successors. Next, mark the node Lj

with label closed and apply θ to all literals in the extended tableau.
We say, the node Lj is the entering point of the new tableau clause
L1 ∨ · · · ∨ Lm.

(d) Reduction: If K has an ancestor node L on the branch from the root
to K, and K and L are unifiable with mgu θ, then mark K with label
closed, and apply θ to Ti.

The following theorem is due to [3,5].

Theorem 1 (Soundness and Completeness of SOL).
For the SOL tableau calculus, the following results hold [5].

Upside-Down Transformation in SOL/Connection Tableaux 169

1. If a clause S is derived by an SOL-deduction from Σ + C and P, then S
belongs to ThP(Σ ∪ {C}).

2. If a clause F does not belong to ThP(Σ) but belongs to ThP(Σ ∪{C}), then
there is an SOL-deduction deriving a clause S from Σ +C and P such that
S subsumes F .

A skeleton of a tableau T is a labeled ordered tree obtained from T by
eliminating any arc of which destination node is not an entering node. The
skeleton of a tableau is significantly helpful for understanding the upside-down
transformation proposed later. If no confusion arises, we identify a tableau with
its skeleton throughout this paper.

Example 1. Let us consider the set Σ of the following clauses:

(1) ¬goal ∨ U ∨ ¬Q, (2) T ∨Q ∨ ¬P , (3) S ∨ P ∨ ¬goal,
(4) ¬P ∨ ¬T , (5) ¬P ∨ ¬Q ∨ ¬U , (6) ¬S, (7) goal

The skeleton of a tableau for Σ is depicted in Fig.1, where the clause (7) is
used as the top clause. Each solid (or broken) line denotes an extension (or
respectively, reduction) operation. Each rectangle expresses a tableau clause,
and every incoming solid line indicates an entering point, i.e., a literal used for
an extension in a tableau clause.

3 Upside-Down Transformation

In this section, we investigate an upside-down transformation of a branch in
an SOL tableau. Connection tableau calculus suffers from redundant duplicate
computation which is caused by many contrapositives of a clause. For example,
the SOL tableau in Fig.2 is an alternative solved tableau for the same set Σ of
clauses in Ex.1, which can be easily constructed with contrapositive clauses in

T Q P

goal

S

QP U

goal U Q

P T

PS goal (3)

(6)

(2)

(4)

(1)

(5)

Fig. 1. The skeleton of an SOL tableau

170 K. Iwanuma, K. Inoue, and H. Nabeshima

T Q P

goal

S

QP U

goal U Q

P T PS goal

S

PS goal

T Q P

S

P T PS goal

S

PS goal

S

PS goal

(3)

(3)

(3)
(3)

(3)

(1)

(2)

Fig. 2. Another SOL tableau satisfying the order-preserving condition

general. This tableau is obviously redundant because of duplicate occurrences of
some tableau clauses, whereas the tableau in Fig.1 has the minimal size among
all solved SOL tableaux.

Notice that each of the right-most branches in the two tableaux has an upside-
down form for each other. The right-most branch of the tableau in Fig.1 con-
sists of the tableau clauses No.3, 2 and 1, whereas the right-most branch in
Fig.2 consists of the clauses No.1, 2 and 3 in the upside-down order. This is an
very important relationship between both SOL tableaux, which can clarify cer-
tain redundancy hidden in SOL/Connection Tableaux. Thus, the size-preserving
upside-down transformation theorem, shown later, can shed some new light on
redundancy/efficiency of Connection (and thus, SOL) Tableaux.

Definition 6 (Upside-Down Trasnformation). Let T be a solved tableau
for a set Σ of clauses. The upside-down transformation of T is the operation
which transforms T into a tableau T ′ such that

1. T ′ is a solved tableau for Σ and,
2. for an sequence C1, . . . , Ck of tableau clauses appearing in a branch in the

skeleton of T , there is an upside-down sequence Ck, . . . , C1 occurring in a
branch in the skeleton of T ′.

Figure 3 illustrates a problem to be solved in upside-down transformation of
an SOL tableau. Given the left-hand tableau in Fig. 3, the right-hand tableau
is obtained from the initial one by transposing the right-most branch in a naive
manner. The problem is that some reduction operations are no longer possible in
the upside-down branch of a resulting tableau. In the approach of this paper, we
replace such broken reductions with extensions in order to avoid such a problem.

Upside-Down Transformation in SOL/Connection Tableaux 171

1

4

P

Q

R

R

P

Q

P, Q, R

3

P, Q

2

P

4

3

2

1

R

P

P, Q

P, Q, R

reduction

Reduction is no longer available R

Q

P

Q

P

reduction literals

Fig. 3. A naive upside-down transformation of an SOL tableau

Figure 4 and 5 show how to recursively replace broken reductions with ex-
tensions using some copies of subtableaux which are already completed in early
induction steps.

Figure 4 depicts the basic transformation step, where the broken reduction
for the literal ¬P in the subtableau No.2 is replaced with the extension for
the subtableau No.1. Figure 5 explains the induction step for the upside-down
transformation. The broken reduction for the literal ¬Q in the subtableau No.3 is
replaced with the extension for the subtableau rooted by ¬Q which is completed
in the previous induction step, i.e., in the step depicted in Fig.4. The broken re-
duction for ¬P in the subtableau No.3 is similarly compensated. These repairing
operations are always applicable to any upside-down branch in any transformed
tableau. Thus we have the following:

3

2

reduction is not available

1

R

Q

Q

P

P

P

P, Q

3

2

reduction is not available

1

R

Q

P

P, Q

P1

P

Q

P

Fig. 4. Upside-down transformation: an example of the base step

172 K. Iwanuma, K. Inoue, and H. Nabeshima

3

1

R

Q

Q

P

P

P, Q

P
1

P
1

P

2

1

Q

P

P
P

1

P

2

Fig. 5. Upside-down transformation: an example of the induction step

Lemma1(Upside-Down Transformation). In SOL and Connection tableaux,
the upside-down transformation is always possible for any branch in any solved
tableau.

Notice that new serious drawback occurs after the above repairing operations,
that is, the size of resulting tableau grows up exponentially. We shall prevent
such an ill-growth of the size of a tableau by introducing a sort of lemmatization,
i.e., the folding-up operation [8]. Figure 6 and 7 explain the folding-up operation
in Connection/SOL tableaux, which consists of two phases: the first is for lemma
extraction and its embedding in a tableau branch; the second phase is for using

P

Q

R

P

closed

A sub-tableau
to be searched

P
The lemma generated
by the folding-up op.

Reduction

An obtained
sub-tableau

Fig. 6. Folding-up operation: lemmatization of the non-unit lemma ¬P ← Q ∧ R by
embedding the pseudo unit lemma P at the position of the ancestor literal Q in a
branch

Upside-Down Transformation in SOL/Connection Tableaux 173

P

Q

R

P

closed

A sub-tableau
to be searched

P
Reduction with

the lemma P

An obtained
sub-tableau

Fig. 7. Folding-up operation: reduction with an embedded non-unit lemma for other
subtableau

an embedded lemma in the form of the ordinary reduction, where an embedded
lemma plays a role of an ordinary ancestor literal in Connection Tableaux.

Let us consider an example depicted in Fig.6. Assume here that the sub-
tableau under the left occurrence of the literal P is closed, and also that the
literals Q and R are all ancestor literals which are used in reductions and ap-
pear in the branch from the root to P . In this situation, we can generate the
non-unit lemma (¬P ← Q ∧ R) from the solved subtableau below P in Fig.6.
Thus the folding-up operation embeds the lemma ¬P ← Q∧R as a pseudo unit
lemma P on the literal Q in a tableau. Notice that Q is the literal occurring at
the lowest position among the antecedent literals Q and R in the branch from

3

1

Q

P

R

Q

P
P

P
1

P
1

P

2

1

Q

P

P
P

1

P

2

P unit lemma

Q

folding-up

reduction

Fig. 8. The first application of the folding-up operation for an upside-down branch in
shown in Fig.5

174 K. Iwanuma, K. Inoue, and H. Nabeshima

the root. At the later stages, the pseudo unit lemma P is used as an ancestor
literal for pseudo reduction as shown in Fig.7. Such a reduction operation pre-
vents unnecessary computation for an identical subtableau under the literal P
appearing in the right part in Fig.7.

Now we can eliminate all duplicate subtableaux appearing in the previous
upside-down branch depicted in Fig.5 by using the folding up operation. Assume
here that the tableau construction is performed under a depth-first and leftmost-
first strategy. Figure 8 shows the first application of the folding-up to the left
most occurrence of the literal ¬P and the succeeding reductions to the second
and third occurrences of ¬P . Figure 9 also illustrates the second folding-up
operation for the left occurrence of ¬Q and the succeeding reduction for the

3

1

R

Q

Q

P

P
P

1

P
1

P

2

1

Q

P

P
P

1

P

2

P Q

Q
unit lemma

reduction
folding-up

Fig. 9. The second application of the folding-up operation for another branch in shown
in Fig.5

3

Q

R

P
1

Q

P

P

2

P Q

Q

unit lemma

reduction

folding-up

P

reduction

Fig. 10. The final tableau of the upside-down transformation with the folding-up op-
eration

Upside-Down Transformation in SOL/Connection Tableaux 175

right occurrence of ¬Q with the embedded lemma Q. Eventually, the upside-
down transformation with the folding-up operation produces the very concise
small tableau shown in Fig.10. The readers can easily verify that the subtableaux
No.1, 2 and 3 appear just once in the final tableau in Fig.10, respectively.

Strictly speaking, the tableau shown in Fig.10 has no exact upside-down
branch in it: the subtableau No.1 is not below in the subtablau No.2. This is the
reason why we need the following modified definition.

Definition 7 (Essentially Upside-Down Trasnformation). Let T be a
solved tableau for a set Σ of clauses. The essentially upside-down transformation
of T is the operation which transforms T into a tableau T ′ such that

1. T ′ is a solved tableau for Σ and,
2. for an sequence C1, . . . , Ck of tableau clauses appearing in a branch in the

skeleton of T , there is a subtableau T ′′ in T ′ satisfying that
(a) the top clause of T ′′ is Ck and
(b) Ck−1, . . . , C1 occur in T ′′ as tableau clauses.

Now, we have the following main theorem:

Theorem 2(Size-Preserving Essentially Upside-Down Transformation).
In SOL and Connection tableaux with the folding up operation, the essentially
upside-down transformation is always possible for any branch in any solved
tableau. Moreover the size of the upside-down tableau is identical with the one of
the original tableau.

We shall omit the formal proof here, because the space allowed to us is
limited. Precisely speaking, in all examples shown in this paper, the original
branch does not involve the folding up operation. However, the same upside-
transformation is always applicable for a branch containing the folding-up with-
out any difficulty.

4 Application

In this section, we investigate some application of the upside-down transforma-
tion to some open problems in the research field of automated deduction.

4.1 Order-Preserving Reduction

The order-preserving reduction [10] and the foothold refinement of ME calcu-
lus [13] were proposed as remedies for redundant duplicate computations ap-
pearing in the Connection (or Model Elimination) calculus. The both methods
can eliminate, without losing the completeness, some redundancy which is in-
duced by contrapositive clause of a initial clause. Unfortunately, the allowed
and remaining tableaux are sometimes exponentially larger than the eliminated
tableaux. This is a serious shortcoming in practical automated deduction.

176 K. Iwanuma, K. Inoue, and H. Nabeshima

Definition 8. Let Σ be a set of clauses, T a tableau for Σ and L a literal in
a tableau clause C in T . Suppose that C′ is the origin clause of C in Σ and
L′ ∈ C′ is the literal corresponding with L ∈ C. We denote L′ as LΣ. Given an
ordering ≺ over the literal occurrences in Σ, the extension ordering ≺T for T
is defined as the ordering on the literal occurrences in T such that, for any two
literal occurrences Li and Lj in T ,

1. Li ≺T Lj iff LΣ
i ≺ LΣ

j , and
2. Li and Lj are equal in ≺T if LΣ

i = LΣ
j

The order-preserving reduction preserves the completeness of SOL tableaux
[5].

Definition 9 (Order-preserving reduction [10]). Let ≺T be an extension
ordering over literal occurrences in a tableau T . A reduction step for a subgoal
L using an ancestor node N is said to preserve the extension ordering ≺T if the
literal occurrence L is not greater than the literal occurrence L′, which is the
entering point of the tableau clause below N .

Let us reconsider the clause set Σ in Example 1 and the SOL tableau T
depicted in Fig.1. We define here the ordering ≺ over the literal occurrences in
Σ as follows: Let L and L′ be literal occurrences in clauses C and C′, respectively.

1. L 2 L′ iff the identity number of C is less than the one of C’.
2. if C and C′ are identical, then L 2 L′ iff L occurs at the left-hand side of

L′ in C.

For example, the literal ¬goal in the clause (1) is greater than ¬goal in the
clause (3), and the literal ¬P in clause (2) is greater than the literal occurrence
¬P appearing in clauses (4) and (5).

unit lemmas

goal

QP U

goal U Q

T Q P

P T

S

PS goal

P

Q

folding-up

(1)

reduction

reduction

(3)

Fig. 11. An SOL tableau compressed with the folding-up operation

Upside-Down Transformation in SOL/Connection Tableaux 177

In the tableau T in Fig.1, the reduction for ¬goal in the clause (1) to the
ancestor literal goal in the top clause violates the order-preserving condition,
because the literal ¬goal in the clause (1) is greater than the literal ¬goal in the
clause (3), at which the tableau clause (3) is entered.

The upside-down transformation without the folding-up operation can pro-
duce another closed SOL tableau TC, already shown in Fig.2, where the branch
of the tableau clause (3) to the clause (1) in Fig.1 is inversely transposed. In
the tableau TC in Fig.2, all performed reductions satisfy the order-preserving
condition. Notice that no folding-up operation is applied in TC . Thus the size
of TC increases exponentially. This is a typical example of a serious drawback
of the order-preserving reduction and the foothold refinement [13].

If we apply the folding-up operation, then all duplication of subtableaux
can be eliminated. We can obtain the tableau TC

FD depicted in Fig.11 with the
folding-up operation. Notice that the tableau TC

FD has the exactly same size as
T in Fig.1.

Therefore, the following is an immediate consequence of Theorem 1.

Lemma 2. The order-preserving reduction does not increase the minimal size
of a closed SOL/Connection tableau if the folding-up operation is used together
with the order-preserving reduction.

4.2 Incremental Answer Computation

We studied answer computation in a multi-agent environment [6], where the
communication between agents is incomplete, e.g., answers/replies returned from
agents may be delayed and also be tentative, so answers might be changed at a
later stage. In such an communication environment, an incremental answer com-
putation becomes extremely important, because complete information is never
available before starting answer computation.

The use of answer literals proposed by Green is a well-known method for
computing correct answers [1]. A query ← Q(X) is a clause of the form ←
L1 ∧ · · · ∧ Ln where each Li is a literal. Let ¬Q(X) denote the disjunction
¬L1(X) ∨ · · · ∨ ¬Ln(X).

Proposition 1. [7] Let Σ be a set of clauses, ← Q(X) a query and ANS a
new predicate symbol not appearing in Σ nor Q. For any disjunctive answer
Q(X)θ1 ∨ · · · ∨Q(X)θn of ← Q(X), the following are equivalent:

1. Σ |= ∀(Q(X)θ1 ∨ · · · ∨Q(X)θn).
2. Σ ∪ {¬Q(X) ∨ANS(X)} |= ∀(ANS(X)θ1 ∨ · · · ∨ANS(X)θn).

Suppose that the production field P is the set of all positive literals of the
predicate ANS. Then SOL tableaux is complete to find out all disjunctive an-
swers provided that an appropriate clause is chosen as the top clause.

Now reconsider the incremental answer computation problem in a multi-
agent system. When new information P arrives at an agent in a certain stage,
the agent tries to compute an answer for a query Q(X) which is related to

178 K. Iwanuma, K. Inoue, and H. Nabeshima

Top clause:

P
Top clause:
Q (X) ANS (X)

P

P
Q (X) ANS (X)

Q (X) ANS (X)
P

Q (X) ANS (X)

Fig. 12. Two SOL tableaux of different top clauses

this new information P . In other words, the agent has no interest in computing
any answers irrelevant to the new information P . In order to achieve an efficient
answer computation, we have to investigate the selection problem of a top clause
in SOL tableaux. We have two alternatives for a top clause: one is the clause
P which is newly added to the agent; the other is the answer clause ¬Q(X) ∨
ANS(X) (see Fig.12).2

The question is which form is better for efficient answer computation. In this
paper, we suppose that the search strategy of SOL tableaux is the ordinary iter-
ative deepening strategy which is very common in automated theorem proving.
There are several important factors to be considered in the search space.

1. The most important factor is the size of minimal tableaux each of which
produces a new answer being relevant to a newly informed fact P .

2. The second is the number of solved tableau irrelevant to a new fact P

The second question can be immediately solved as follows; SOL tableaux
with the top clause ¬Q(X) ∨ANS(X) quite often produces redundant answers
which are irrelevant to the new fact P , because there are lots of minimal solved
tableaux not containing any occurrences of P , in general. On the other hand, if
we use a newly added clause P as a top clause, then the solved SOL tableaux
must contain at least one occurrence for each of P and the answer clause, thus
never produce answers being irrelevant to the new information P .

Theorem 2 solves the first difficult question. That is, Theorem 2 clearly shows
that the size of minimal solved tableaux is identical for both cases of the newly
added clause P and the answer clause ¬Q(X) ∨ANS(X) as a top-clause.

5 Conclusion

In this paper, we studied the upside-down transformation of SOL/Connection
tableau branch, and showed that SOL/Connection tableaux using the folding-up
operation can always accomplish a size-preserving transformation for any branch
in any tableau. This fact solves some open problems with respect to the order-
preserving reduction and also an incremental answer computation problem.
2 The both top clauses are admissible/complete for finding out all answers in SOL

tableaux.

Upside-Down Transformation in SOL/Connection Tableaux 179

References

1. Baumgartner, P., U. Furbach, and F. Stolzenburg. Computing answers with model
elimination. Artificial Intelligence, Vol.90, pp.135–176, 1997.

2. Lee, C.T. A completeness theorem and computer program for finding theorems
derivable from given axioms. Ph.D. thesis, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, CA, 1967.

3. Inoue, K. Linear resolution for consequence finding. Artificial Intelligence, Vol.56,
pp.301–353, 1992.

4. Inoue, K. Automated abduction. In: A.C. Kakas and F. Sadri, editors, Compu-
tational Logic: Logic Programming and Beyond—Essays in Honor of Robert A.
Kowalski, Part II, LNAI 2408, pp.311–341, Springer, 2002.

5. Iwanuma, K., Inoue, K., and Satoh, K. Completeness of pruning methods for
consequence finding procedure SOL. In: P. Baumgartner and H. Zhang, editors,
Proceedings of the 3rd International Workshop on First-Order Theorem Proving,
pp.89–100, 2000.

6. Inoue, K. and Iwanuma, K. Speculative Computation Through Consequence-
Finding in Multi-agent Environments. Ann. Math. Artif. Intell., Vol.42, No.1-3,
2004.

7. Kunen, K. The semantics of Answer Literals, J. Automated Reasoning, Vol.17,
pp.83–95, 1996.

8. Letz, R., C. Goller, and K. Mayr. Controlled integration of the cut rule into con-
nection tableau calculi. Journal of Automated Reasoning, Vol.13, pp.297–338, 1994.

9. Letz, R. Clausal tableaux. In: W. Bibel, P.H. Schmitt, editors, Automated Deduc-
tion: A Basis for Applications, Volume 1, pp.39–68, Kluwer, 1998.

10. Letz, R. Using Mating for Pruning Connection Tableaux, Proceedings of 15th. Inter.
Conf. on Automated Deduction (CADE-15) LNCS Vol.1421, pp.381–396, 1998.

11. Loveland, D.W. Automated Theorem Proving: A Logical Basis. North-Holland,
Amsterdam, 1978.

12. Marquis, P. Consequence finding algorithms. In: Dov M. Gabbay and Philippe
Smets, editors, Handbook for Defeasible Reasoning and Uncertain Management
Systems, Vol.5, pp.41–145, Kluwer Academic, 2000.

13. Spencer, B. Avoiding Duplicate Proofs with the Foothold Refinement. Ann. Math.
Artif. Intell., Vol.12 No.1-2, pp.117–140, 1994.

On the Stability Semantics
of Combinational Programs

Tran Van Dung

Hanoi University of Communication and Transport
tvdzung@hn.vnn.vn

Abstract. In this paper we prove some properties of combinational pro-
grams which is an improvement of the results presented in our previous
work. We prove the derivation of loop-programs for combinational ones
by both event semantics and stability semantics. We give a normal form
for syntactically well-formed combinational programs, and show that for
them Dimitrov’s multiple parallel approach and Zhu’s shared store par-
allel approach are equivalent.

1 Introduction

The VERILOG hardware description language [4] has simulation-oriented se-
mantics based on events [1]. This event semantics can actually model detailed
asynchronous behaviour, but is too fine-grained and does not support formal
verification. There are some attempts to give operational and denotational se-
mantics for Verilog in [8] and [9] to serve as a formal foundation for understanding
and verification of Verilog programs. The first [8] uses shared store parallel op-
eration between threads and the latter [9] uses fully parallel operation between
them. They both capture a large class of hardware programs, but are too com-
plex for our purposes. To use standard software verification techniques, in [7] we
restricted ourselves to a small subset of hardware programs, and gave relational
semantics to the programs in this class. We considered a class of combinational
programs, which can model the behaviour of some kinds of sequential circuits. In
that work, for each variable in a program, we have to use an additional variable
called a signal variable for showing the change of its value. Therefore, the number
of variables may be large for a large program. To overcome these disadvantages
in this paper we introduced the stability control in term of variables, and show
that combinational programs are indeed loop-programs with stability control.
Then using relational calculus in [2], [3] we derive and prove some properties of
these kind of programs. We then show the equivalence of two types of parallel
operations for the subclass of combinational programs which do not have any
dependency cycle.

The paper is organized as follows: in the next section, we briefly recall the
definition of combinational programs and their relational semantics [7]. In the
third section, we introduce the concept of stability condition and stability con-
trol. Then, first, we prove that the stability condition and the stability control

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 180–194, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Stability Semantics of Combinational Programs 181

are loop invariant for combinational programs. Secondly, we show that for them
the relational semantics and the stability semantics coincide. Then we can use
standard software verification techniques to prove the correctness of combina-
tional programs. In the fourth section, we generalize the definition of syntactic
combinational programs with no dependency cycle on variables, and improve on
some results in our previous work [7]. We give a more formal proof for the ter-
mination and uniqueness of the final states for these kind of programs. We also
show that for syntactic combinational programs the synchronous behaviour and
the asynchronous behaviour coincide. So, inside their atomic execution there is
no need for a clock, and threads can be connected arbitrarily with one another.

2 Combinational Programs and Relational Semantics

A sequential program is generated from multiple assignments and the SKIP
program by sequential composition, conditional and non-deterministic choice.
Global variables on index of the program are used to keep track of its execution.

Definition 1. (sequential program and index)

1. A finite sequential program is generated by the following grammar:

S ::= Π | v := E | S;S | S � b� S | S S,

where
– Π stands for the SKIP program, i.e., the program does nothing,
– v a vector of Boolean variables
– E a vector of Boolean expressions having the same length as v and
– a non-deterministic choice.

2. In sequential program, different assignments are indexed by different natural
numbers. Define
index(P opQ) =df index(P) ∪ index(Q) for op ∈ {; ,� b �, }

For each Boolean variable, a signal Boolean variable is introduced to mark
the change of its during the execution. Combinational circuits are usually acti-
vated by some kinds of input changes. The input changes are shown by signal
rising variables and signal falling variables. An event control marks the change
of variables or program inputs, and is defined as a disjunction of their signal
variables and some expected kind of signal inputs.

Definition 2. (signal variable and event control)

1. The signal Boolean variable of a Boolean variable x is denoted by ∼ x and
defined as: when x changes its value, ∼ x =true. When x is a global variable,
the ∼ x is a dimensioned logical vector, each its component ∼ x[i] is used to
inform a change of x for the subprogram indexed by i.

2. An event control g(S) of a program S is defined as
– Let

• S be an assignment x := E with index i,

182 T.V. Dung

• x = (x1, . . . ,xk) contains those variables which can occur on either
the left or right hand sides of S,

• p1, . . . , pl be those inputs which occur only in the expression E, and
• ↑ p be Boolean variable expressing the rising of the value of input p

and ↓ p be Boolean variable expressing the falling of the value of p.
– Define g(S) =df∼ x1[i]∨ ∼ x2[i] ∨ . . .∨ ∼ xk[i] ∨ t(p1)[i] ∨ . . . ∨ t(pl)[i],

where t(z) is ↑ z or ↓ z or ∼ z or ff and i an index of S. The ith compo-
nents of signal variables are used to keep information about changes of
the corresponding variables for the program S. So event control g(S) of
the program S shows there is or not any change of variables used in S
still triggering its execution.

– Define g(P opQ) =df g(P) ∨ g(Q) for op ∈ {; ,� b �, }.

Sequential programs are used to simulate combinational circuits. To con-
sider some properties of sequential circuits we introduce a parallel composition
of programs. Clearly, it is commutative, associative and distributed over non-
deterministic choices and conditional statements.

Definition 3. (parallel composition)

1. Parallel composition of two programs P and Q with disjoint index sets is
defined as

P‖Q =df (g(P) → P) (g(Q) → Q)

2. Define g(g(P) → P) =df g(P) and index(g(P) → P) =df index(P). So
g(P‖Q) = g(P) ∨ g(Q) and index(P‖Q) = indexP ∪ indexQ.

By an appearance of the definition at most one of P or Q will be executed,
but its iteration simulates asynchronous parallel composition of them. Now we
deal with sequential circuits which are somehow synchronous outside and asyn-
chronous inside. It means that they are built from combinational circuits which
may have a feedback and are connected with one another in some way so a
change of outside inputs to the whole circuit can trigger its execution only when
it is waiting for supplying new input, but any change of shared stored level can
affect any part using it at any instant of time. The event control of a program
is used to repeat its execution. This is formalized in the following definition.

Definition 4. (combinational program)

1. Combinational program has the form @ g(S) S, where S = P1‖P2‖ . . . ‖Pm,
and P1, P2, . . . , Pm, called threads of S, are sequential or combinational pro-
grams with disjoint index sets.

2. Define g(@ g(S) S) =df g(S) and index(@ g(S) S) =df index(S).

If a change of some variable x makes g(Pi) changing from ff to tt, then we say
the new value of x triggers the event control g(Pi), and the thread Pi becomes
enabled.

In [1] the behaviour of a combinational program with some threads is de-
scribed by an infinite sequence of simulation steps as:

On the Stability Semantics of Combinational Programs 183

1. At the beginning of each simulation step a value for each input is supplied.
The new values of inputs may trigger some event controls. Corresponding
threads become enabled.

2. The environment chooses non-deterministically one of enabled threads to
execute.

3. The execution of a chosen enabled thread Pi, which we call atomic step,
consists of following steps:
(a) Execute the program Pi.
(b) Clear the event control to indicate that it has been used to trigger the

chosen thread.
(c) Broadcast the change over variables caused by the execution of Pi.

4. If there are no more enabled threads, this simulation step terminates and
waits for the next input. If there is always at least one enabled thread af-
ter the execution of every atomic step, then this simulation step does not
terminate.

The behaviour of a simulation step can be modeled by an iteration of non-
deterministic choice of threads accompanied with some actions to clear and
record changes of variables. This internal atomic action of the executing thread
is called an event. The signal Boolean variable with index of executing thread
is set to false if the execution does not bring any change of the variable. At
the same time signal Boolean variables with all indexes of changed variables are
set to true to trigger all threads using them. In our paper [7], we provided a
relational description to it.

Definition 5. (event semantics) Let @ g(S) S be a combinational program with
n variables v1, . . . , vn and m different indexes. Suppose that one of its threads P
has an index set I. Its event semantics with index set I is defined by

(g(P) → Pe,I) =df (g[P])�; (P‖DISevent(P, I)),

where

1. The assumption b� =df Π � b � 0, where 0 is the miracle program, i.e.,
the program is impossible to carry out. Here g[P] is the assumption to start
the program P .

2. P‖DISQ represents the disjoint parallel composition of P and Q [3].
3. Program event(P, I) is used to clear the event control once the thread P is

executed and broadcast the changes of variables caused by the execution of
P :
event(P, I) =df ∃v′1, . . . , v′n • result(P) ∧ ∀k : 1 ≤ k ≤ n •

∼ v′k := (∼ vk ∧ clear(I)) ∨ (bool(vk = v′k))m

where
– the bullet symbol means that bound variables satisfy a following state-

ment;
– result(P) is a predicate describing the program P , which mentions values

of its variables v1, . . . , vn before the execution and their new values after
the execution by the corresponding dash variables v′1, . . . , v

′
n;

184 T.V. Dung

– m is the number of different indexes;
– the Boolean expression bool(b) has the value tt if b is true, otherwise it

takes the value ff;
– the m dimensioned logical vector (bool(b))m dimensioned logical vector

has all component values of bool(b) and
– clear(I) is a m dimensioned logical vector such that

clear(I)[i] = ff if i ∈ I, otherwise clear(I)[i] = tt
The program event(P, I) compares new and old value of every variable used
in P ; if these values are same then it sets all components of this signal
variables’ vector with indexes in I to be ff, i.e., clears them; if these values
are different then it sets all m components of this signal variables’ vector to
be tt, i.e., broadcasts the change of the variable.

4. We use a denotation Pe,I =df (P‖DISevent(P, I))

Now as in [7] we give a formal description to simulation step - an execution
of the whole combinational program from previous waiting and receiving new
values of inputs through its executing till to the next waiting. Indeed Simulation
step is an iteration of events executed by enable threads until all of them have not
been triggered. The program waits for new values of inputs and then starts the
next simulation step. Results of simulation steps give us external observations of
a program. A formal description of simulation step of a combinational program
fully characterizes it.

Definition 6. (simulation step) Let @ g(S) S be a combinational program, where
S = P‖ . . . ‖Q with disjoint index sets I, . . . , J , respectively. Define its simula-
tion step by the corresponding iteration of events made by enable threads

@ g(S) S =df (g(P) ∨ . . . ∨ g(Q)) ∗ (g(P) → Pe,I . . . g(Q) → Qe,J)

or shortly

@ g(S) S =df g(S) ∗ Se and we also use a notaion Comb S =df g(S) ∗ Se

where g(S) = g(P) ∨ . . . ∨ g(Q) and Se = g(P) → Pe,I . . . g(Q) → Qe,J .

For simplicity we omit variable’s declarations in this paper and suppose all
variables are global.

3 Combinational Programs and Stability Semantics

The actual behaviour of a hardware device available for an implementation of a
control system can be simulated by a program, and hence the same for the be-
haviour of combinational gates. This allows the correctness of a hardware device
to be proved by standard software techniques. Now we introduce the concept of
stability control of combinational programs, i.e., control is stable if variables do
not change their values and then we use it to check their effectiveness.

Definition 7. (stability control) The stability control of a combinational pro-
gram is defined syntactically as follows

On the Stability Semantics of Combinational Programs 185

1. r(x := E) =df bool(x = E) or for abbreviation r(x := E) =df (x = E).
2. r(P opQ) =df r(P) ∨ r(Q) for op ∈ {; , , ‖}.
3. r(P � b �Q) = (b ∧ r(P)) ∨ (¬b ∧ r(Q)).

A stability control can be used as a test for a proper execution of the corre-
sponding sequential program. If the variables did not change, but the assignment
is still done, then there is no effect.

Lemma 1. If S is a sequential program with I = index(S), then

1. S = S � r(S) �Π
2. Se,I = Se,I � r(S) � Πe,I

Proof. 1. Let S be an assignment x := E, then
S � r(S) �Π {P � b �Q = b→ P ¬b→ Q}

= r(S) → S ¬r(S) → Π {By Definition 7}
= x = E → x := E x = E → Π {(x = E)�;Π = (x = E)�; (x := E)}
= x = E → x := E x = E → x := E {b→ P c→ P = (b ∨ c) → P}
= (x = E ∨ x = E) → x := E {b ∨ ¬b = true}
= true → x := E

= x := E
= S

Similarly for other cases.
2. Let Se,I = S‖DISevent(S, I)), then

Se,I � r(S) �Πe,I

= r(S) → Se,I ¬r(S) → Πe,I {By Definition 5}
= r(S) → Se,I ¬r(S) → (Π‖DISevent(Π, I)) {¬r(S)�;S = ¬r(S)�;Π}

{event(¬r(S)�;S, I) = ¬r(S)�; event(Π, I)}
= r(S) → Se,I ¬r(S) → (S‖DISevent(S, I)) {By Definition 5}
= r(S) → Se,I ¬r(S) → Se,I

= (r(S) ∨ ¬r(S)) → Se,I

= true → Se,I

= Se,I

The state of a program is defined as a vector of values of its variables and it
becomes stable with respect to a program, when its execution brings no change
of variables.

Definition 8. (stability) Given a combinational program CombS. Let VAR the
set of all variables and STATE: VAR → {0, 1}.

1. (stable state) A state s ∈ STATE is stable with respect to CombS if
〈¬r(S)〉s = true, where the Boolean expression 〈¬r(S)〉s is obtained by re-
placing all free occurrences of variable x in ¬r(S) by value x in state s.

2. (stability condition) A stability condition c(S) for a program S is defined as
(a) If S = (x := E), then c(S) =df (¬g(S) ⇒ ¬r(S)).
(b) If S = P op Q, then c(S) =df c(P) ∧ c(Q) for op ∈ {; ,�b�, , ‖}.
(c) c(Comb S) = c(S)

186 T.V. Dung

If the stability condition of a program is its assumption, then it is waiting
for new inputs only at its stable state. The next lemma shows that stability
condition is invariant for an event executed by some thread of combinational
program.

Lemma 2. Given a combinational program Comb S = @g(S)S. Let c = c(S)
and S′e = Se � g(S) �Π. Then

c�;S′e = c�;S′e; c⊥

where ⊥ is the program responsible for a failure and the assertion c⊥ is defined
as c⊥ =df Π � c � ⊥. That means after execution of S′e the assertion c is
achieved.

Proof. It is sufficient to prove for combinational program Comb S, where S =
P‖Q. We use following abbreviation in the rest of the paper, when we deal with
a program S = P‖Q.

s′ = g(S) s = r(S)
p′ = g(P) p = r(P)
q′ = g(Q) q = r(Q)
c1 = p′ → p c2 = q′ → q
I = index(P) J = index(Q)
P ′ = Pe,I Q′ = Qe,J

Π1 = Πe,I and Π2 = Πe,J

Π ′ = (p′ → Π1 q′ → Π2) � s′ �Π

At first we show that event control p′ and q′ can be replaced by the stability
controls p and q: c�;S′e = c�; (p→ P ′ q → Q′) � s �Π ′. And then it follows
the invariant of stability condition.

c�;S′e {Definition 6}
= c�; (p′ → P ′ q′ → Q′) � s′ �Π {Lemma 1}
= c�; (p′ → (P ′ � p �Π1) q′ → (Q′ � q �Π2)) � s′ � Π{c = c1 ∧ c2}
= c�; c�1 ; c�2 ; (p′ ∧ p→ P ′ p′ ∧ ¬p→ Π1 {c1 ∧ p′ ∧ p = c1 ∧ p}

q′ ∧ q → Q′ q′ ∧ ¬q → Π2) � s′ �Π {c2 ∧ q′ ∧ q = c2 ∧ q}
= c�; (p→ P ′ q → Q′ p′ ∧ ¬p→ Π1 q′ ∧ ¬q → Π2) � s′ �Π

{s = p ∨ q and by Lemma 1 ¬p;Π1 = ¬p;Πe,I}
= c�; ((p→ P ′ q → Q′) � s � (p′ → Πe,I q′ → Πe,J)) � s′ �Π
= c�; ((p→ P ′ q → Q′) � s �Π ′) � s′ �Π {¬s′�;Π = ¬s′�;Π ′}
= c�; (p→ P ′ q → Q′) � s ∧ s′ �Π ′ {c ∧ s ∧ s′ = c ∧ s}
= c�; (p→ P ′ q → Q′) � s�Π ′ {p→ P ′ = p→ P ′; p′⊥}
= c�; (p→ P ′; p′⊥ q → Q′; q′⊥) � s �Π ′ {p′⊥ = p′⊥; c⊥}
= c�; ((p→ P ′; c⊥ q → Q′; c⊥) {¬s�;Π ′ = ¬s�;Π ′;¬s⊥}

� s � ¬s⊥;Π ′; c⊥) {¬s⊥ = ¬s⊥; c⊥}
= c�; ((p→ P ′ q → Q′) � s �Π ′); c⊥
= c�;S′e; c⊥

On the Stability Semantics of Combinational Programs 187

The stability condition is a loop invariant for whole combinational program,
too. A combinational program executes from a stable state to a stable state,
which have been proved in [6]:

Theorem 1. For any combinational program CombS with c = c(S) and s =
r(S):

1. c�;Comb S = c�;Comb S; c⊥
2. c�;Comb S = c�;Comb S;¬s⊥

Adding the stability control to the event control of a combinational program
has no effect on its behaviour as shown in [6]:

Lemma 3. For any combinational program CombS with c = c(S), s′ = g(S)
and s = r(S):

c�;CombS = c�; (s′ ∨ s) ∗ S′e

Proof. We have
c�; (s′ ∨ s) ∗ S′e {(b ∨ c) ∗R = b ∗R; (b ∨ c) ∗R}

= c�; s′ ∗ S′e; (s′ ∨ s) ∗ S′e { Theorem 1}
= c�; s′ ∗ S′e; c⊥;¬s′⊥; (s′ ∨ s) ∗ S′e {c⊥;¬s′⊥ = c⊥;¬s′⊥;¬s⊥}
= c�; s′ ∗ S′e;¬s′⊥;¬s⊥; (s′ ∨ s) ∗ S′e {b⊥; c⊥ = (b ∧ c)⊥}
= c�;CombS; (¬s′ ∧ ¬s)⊥; (s′ ∨ s) ∗ S′e {¬b⊥; b ∗R = ¬b⊥}
= c�;CombS

The stability control can replace the event control as a loop condition for
combinational programs. This loop program is really a software program with
no signal variables. From the stable state new input values are supplied and
the stability is broken. Next the simulation step occurs, it starts running and
continues the execution until reaching the next stable state.

Definition 9. (loop program) Iteration of a program S and its stability are de-
fined as S∗ =df r(S) ∗ S and r(S∗) =df r(S).

A loop program is used to describe one simulation step of the considered kind
of sequential circuits as the iteration of events made by executions of the enabled
threads. Then the loop program fully characterizes the whole corresponding com-
binational program. Finally, hardware combinational programs can be derived
to equivalent software loop programs with stability control as loop condition.

Theorem 2. For any combinational program Comb S with c = c(S) and s =
r(S):

c�;Comb S = c�; s ∗ S

188 T.V. Dung

Proof. Clearly

c�;Comb S {Definition 6}
= c�; s′ ∗ S′e {Lemma 3}
= c�; (s′ ∨ s) ∗ S′e {Theorem 1}
= c�; s ∗ S′e; (s′ ∨ s) ∗ S′e { Lemma 2}
= c�; s ∗ S′e; c⊥;¬s⊥; (s′ ∨ s) ∗ S′e {c⊥;¬s′⊥ = c⊥;¬s′⊥;¬s⊥}
= c�; s ∗ S′e;¬s′⊥;¬s⊥; (s′ ∨ s) ∗ S′e {¬s′⊥;¬s⊥ = (¬s′ ∧ ¬s)⊥}
= c�; s ∗ S′e;¬(s′ ∨ s)⊥; (s′ ∨ s) ∗ S′e {¬b⊥; b ∗R = Π}
= c�; s ∗ S′e {Signal variables are redundant}
= c�; s ∗ S

Then for combinational programs the relational event semantics and the sta-
bility semantics are equivalent. Now we can use software techniques for formal
verification as in the next section . If in the simulation step of a combinational
program we give the priority of choosing enable threads to recently executing
thread, i.e., every thread or composition of some threads continuously runs until
it does not become enabled in execution of the combinational program, then it
leads to deeper results.

Lemma 4. Suppose Comb S = Comb (P1‖P2‖ . . . ‖Pk‖ . . . ‖Pn) a combinational
program and Q � R to stand for the improvement ordering, comparing Q with
R (see [3]). Then

1. Comb S � Comb (Comb (P1‖P2‖ . . . ‖Pk)‖ . . . ‖Pn)
2. Comb S � Comb (Comb P1‖Comb P2‖ . . . ‖Comb Pn)

Proof. Clearly by the event semantics of combinational program.

4 Syntactic Combinational Programs

The assembly of combinational circuits is subject to the constraint that the
output wire of each circuit can be connected only to the input of some other
gate, and that a chain of gates connected in this way must never form a cycle.
Partial order on variables ensures that the first occurrence of each output wire
name is on the left hand side of its defining equation, and that the behaviour
of the device can be simulated by executing the equations as a sequence of
assignments in a high level language. The constraint is syntactic checkable and
can be formalized.

At first we investigate the subclass of combinational programs, whose threads
are idempotent.
Definition 10. (idempotent program) A program P is idempotent if P ;P = P

After execution of an idempotent program its state becomes stable. Clearly,
combinational programs have this property.
Lemma 5. Given any program P and any combinational program Comb S.
Then

1. The program P is idempotent, if and only if P = P ; r(P)⊥.
2. The combinational program Comb S is idempotent.

On the Stability Semantics of Combinational Programs 189

Proof. Obvious by Theorem 2 and the law s ∗ S = s ∗ S; (¬s)⊥.

If all threads are combinational circuits or sequential circuits which are sim-
ulated by combinational programs, then by the previous Lemma these compo-
nents are idempotent. So combinational programs with idempotent threads take
an important role.
Definition 11. (component-idempotent program) A combinational program is
component-idempotent if all its threads are idempotent.

In [6] we show that from an initial stable state component-idempotent com-
binational program with two threads can start from any component and follows
by another until it does not reach a stable state. That means in this case we can
eliminate parallel composition used in definition of a combinational program.

Theorem 3. Let S = P‖Q, where P and Q are idempotent programs, then
c�;CombS = c�;Comb (P ;Q Q;P)

Each gate has private input and output wires, and each wire has its separate
name. This can be formalized as follows:

Definition 12. (input, output variables) Given a program P in a normal form
of the parallel assignment (v1, . . . , vk := E1, . . . , Ek). Define

Out(P) =df {v1, . . . , vk}

i.e., Out(P) is a set of all variables which occur on the left hand side of the
expressions of a normal form of P . We suppose that none of variables occurs
more than once on the left hand side of assignments of P .

In(P) =df {vj |vj appears in Ei, ∀i : 1 ≤ i ≤ k}

i.e., In(P) is a set of all variables which occur on the right hand side of the
expressions of a normal form of P .

The pairs (vi, Ei) are called updates of the program P .

Combinational circuits are connected via variables, output variables of pre-
vious circuits are include in input of next ones.

Definition 13. (precedence relation) Given a collection of programs {Pi, i =
1, . . . , n}. Define a binary relation � on programs as follows

Pi � Pj if and only if Out(Pi) ∩ In(Pj) = ∅

i.e., some outputs of Pi are within inputs of Pj .

Naturally, sequential circuits are expected to terminate and behave correctly.
It is fine if these properties are syntactically checkable. Now we give a definition
of such class of component-idempotent combinational programs that all their
threads do not form a Precedence cycle and some of their threads may have a
feedback.

190 T.V. Dung

Definition 14. (component syntactic combinational program) Given a collec-
tion of idempotent programs {Pi | i = 1, . . . , n}, where Out(Pi) ∩ Out(Pj) = ∅
for all pairs of different threads. Then a combinational Comb (P1‖P2‖ . . . ‖Pn)
is called a component syntactic, if

1. The closure of the binary relation � is a partial order on the set {Pi | i =
1, . . . , n} and

2. All non-minimal threads Pi with respect to (�)∗ have no feedback: In(Pi) ∩
Out(Pi) = ∅ and only its minimal threads may have a feedback.

For simplicity we always suppose that Pi � Pj ⇒ i ≤ j.

Definition 15. (syntactic combinational program) Given a collection of updates
U = {(vi, Ei) | i = 1, . . . ,m} and every update is used only for one of the
programs P1, P2, . . . , Pn. Then a combinational Comb (P1‖P2‖ . . . ‖Pn) is said
to be syntactical, if

1. A combinational program Comb ((v1 := E1)‖(v2 := E2)‖ . . . ‖(vm := Em)) is
a component syntactic, and

2. Every thread Pi is constructed from some of these updates by any sequential
or multiple parallel or combinational compositions.

Given a component syntactic combinational program with threads in the form
of single assignments, i.e. given a collection of single idempotent updates with
no dependency cycle and only first precedence updates may have a feedback.
Then any combinational program reconstructed from them by some kinds of
compositions in some way is syntactical. We will show that a way, how threads
are built from these updates, does not effect to the final results.

Execution of a syntactic combinational program inside simulation step pre-
serves variable’s stability and their iteration brings the new variable to stable
states according to the associated partial order.

Lemma 6. Let Comb S = Comb (P1‖P2‖ . . . ‖Pn) be a component syntactic
combinational program. Then

1. (∧i≤k¬r(Pi))�;Pj = (∧i≤k¬r(Pi))�;Pj ; (∧i≤k¬r(Pi))⊥, ∀j.
2. (∧i<j¬r(Pi))�;Pj = (∧i<j¬r(Pi))�;Pj ; (∧i≤j¬r(Pi))⊥

Proof. Obvious by properties of a component syntactic combinational program.

If after each execution of single multiple assignment at least one of variables
becomes stable, then all variables will be stable during its iteration. Because
enable thread of a syntactic combinational program should be executed, then
every variable should become stable during execution of a syntactic combina-
tional program. It follows its termination.

Theorem 4. Any syntactic combinational program terminates.

On the Stability Semantics of Combinational Programs 191

Proof. If there is only single component-thread (v := E) = (v1, . . . , vh :=
E1, . . . , Eh), then without loss of generality we assume that vi � vj ⇒ i ≤ j.
It follows that (v := E) = (vh := Eh); . . . ; (v2 := E2); (v1 := E1). Then using it
and by Lemma 6 (2) we have

c�;Comb (v := E)
= c�; (v := E);Comb (v := E)
= c�; (vh := Eh); . . . ; (v1 := E1);Comb (v := E) {Lemma 6 (2)}
= c�; (vh := Eh); . . . ; (v1 := E1); (v1 = E1)⊥;Comb (v := E) {Similarly}
= c�; (v := E)2; (v1 = E1 ∧ v2 = E2)⊥;Comb (v := E) {Lemma 6 (1)}
= c�; (v := E)h; (∧1≤i≤hvi = Ei)⊥;Comb (v := E) {Theorem 2 }
= c�; (v := E)h

Let n be a number of components. Suppose by induction we have proved the
theorem for fewer number of components and m be a number such that for all
combinations R of n− 1 components of the program: Rm = Rm−1. By first part
of the proof for any component Pi let hi be a number such that P hi+1

i = P hi

i

and h = maxhi. Denote k = (m+ 1).h. Then

c(S)�;Comb S {Theorem 2}
= c(S)�;S∗

= c(S)�;Sk;S∗ {By the assumption}
= c(S)�;S(m+1)h;S∗ {P1 appears at least h times}
= c(S)�;Sm1 ;P1; . . . ;Smh ;P1;S∗ {Lemma 6 and P h

1 = P h
1 ;¬r(P1)}

= c(S)�;Sk; (¬r(P1))⊥;S∗

= c(S)�;Sk; (¬r(P1))⊥;Sk;S∗ {Lemma 6 and P h
2 = P h

2 ;¬r(P2)}
= c(S)�;Sk; (¬r(P1))⊥;Sk; (¬r(P2))⊥;S∗

= c(S)�;S2k; (¬r(P1) ∧ ¬r(P2))⊥;S∗ {By the iteration}
= c(S)�;Snk; (¬r(P1) ∧ . . . ∧ ¬r(Pn))⊥;S∗ {b⊥; c⊥ = (b ∧ c)⊥}
= c(S)�;Snk; (¬r(S))⊥; r(S) ∗ S
= c(S)�;Snk; (¬r(S))⊥

Lemma 7. A component syntactic combinational program terminates

Proof. Similar to second part of the previous proof.

In general different combinational constructions from single assignments give
differentially behaved programs as following example shows.

Example 1. Given two single assignments: x := p ∧ ¬y and y := p ∧ ¬x. Using
them we construct following combinational programs Comb ((x := p∧¬y)‖(y :=
p∧¬x)) and Comb (x, y) := (p∧¬y, p∧¬x), where p is used as an input and x, y
as variables. In the first one we use the shared store parallel composition and in
second - the synchronous parallel or multiple assignment. From the initial state
with x = y = false and p = false the new value of input p = true will trigger
both threads of two combinational programs.

192 T.V. Dung

1. In the shared store parallel approach the program Comb ((x := p∧¬y)‖(y :=
p ∧ ¬x)) terminates, but its final state is not deterministic:
– If first thread executes first and then second one: x := true ∧ ¬false =

true and y := true ∧ ¬true = false. The stable state (x = true, y =
false) is reached.

– If the second thread executes first and then first one: y := true∧¬false =
true and x := true ∧ ¬true = false. The stable state (x = false, y =
true) is reached.

2. In the multiple parallel approach the program Comb (x, y) := (p∧¬y, p∧¬x)
does not terminate. At first (x, y) := (true ∧ ¬false, true ∧ ¬false) =
(true, true) and then (x, y) := (true∧¬true, true∧¬true) = (false, false).
It does not reach a stable state.

Clearly, the behaviours of the two programs are not equivalent. There is a
dependency cycle on variables in two assignments.

But if a given set of updates is partially ordered by the precedence relation,
then any syntactic combinational program leads to the same result. At first we
show that component syntactic combinational program behaves like a sequential
composition of threads in order consistent with the dependency order.

Theorem 5. Given a component syntactic combinational program CombS =
Comb (P1‖P2‖ . . . ‖Pn), where Pi � Pj ⇒ i ≤ j. Then

1. c(S)�;CombS = c(S)�;P1;P2; . . . ;Pn

2. c(S)�;CombS = c(S)�;Comb (Pi1 ;Pi2 ; . . . ;Pin), where i1, i2, . . . , in is
some permutation of 1, 2, . . . , n.

3. c(S)�;CombS = c(S)�;Comb (P1‖SP2‖S . . . ‖SPn)
4. c(S)�;CombS = c(S)�;Comb (Comb (P1‖ . . . ‖Pk)‖ . . . ‖Pn)

Where ‖S is synchronous parallel composition of two output disjoint programs.

Proof. 1. Suppose Pi � Pj ⇒ i ≤ j.
c(S)�;Comb S {Theorem 2}

= c(S)�;S∗ {Lemma 1}
= c(S)�;S∗; (¬r(S))⊥ { (a ∧ b)⊥ = a⊥; b⊥}
= c(S)�;S∗; (¬r(P1))⊥; (¬r(S))⊥ {Lemma 1}
= c(S)�;S∗; (¬r(P1))⊥;P1; (¬r(S))⊥
= c(S)�;S∗;P1; (¬r(P2))⊥; (¬r(S))⊥ {Lemma 1}
= c(S)�;S∗;P1; (¬r(P2))⊥;P2; (¬r(S))⊥
= c(S)�;S∗;P1;P2; (¬r(S))⊥ {By the induction}
= c(S)�;S∗;P1;P2; . . . ;Pn {By the termination from Theorem 4}
= c(S)�;Sk;P1;P2; . . . ;Pn {By syntactical properties of Comb S:

(x := e; z := g; x := f) = (z := g; x := f), x not in g}
= c(S)�;P1;P2; . . . ;Pn

On the Stability Semantics of Combinational Programs 193

2. We denote Comb Q = Comb (Pi1 ; . . . ;Pin−1 ;Pin)
c(S)�;Comb (Pi1 ; . . . ;Pin−1 ;Pin)

= c(S)�; (Pi1 ; . . . ;Pin−1 ;Pin);Comb Q {Lemma 6(1)}
= c(S)�; (Pi1 ; . . . ;Pin−1 ;Pin); (¬r(P1);Comb Q {Lemma 6}
= c(S)�; (Pi1 ; . . . ;Pin−1 ;Pin)n; (¬r(P1) ∧ . . . ∧ ¬r(Pn))⊥;Comb Q
= c(S)�; (Pi1 ; . . . ;Pin−1 ;Pin)n; (¬r(P1) ∧ . . . ∧ ¬r(Pn))⊥ {Lemma 6(2)}
= c(S)�; (Pi1 ; . . . ;Pin−1 ;Pin)n; (¬r(P1) ∧ . . . ∧ ¬r(Pn))⊥;P1;P2; . . . ;Pn

= c(S)�; (Pi1 ; . . . ;Pin−1 ;Pin)n;P1;P2; . . . ;Pn {idempotent of minimal}
{(x := e; z := g; x := f) = (z := g; x := f), x not in g}

= c(S)�;P1;P2; . . . ;Pn {Part 1 of this Theorem}
= c(S)�;Comb (P1‖ . . . ‖Pn−1‖Pn)

3. Clearly
c(S)�;Comb (P1‖ . . . ‖Pn−1‖Pn) {Part 2 of this Theorem}

= c(S)�;Comb (Pn;Pn−1; . . . ;P2;P1) {Pn; . . . ;P1 = P1‖S . . . ‖SPn}
= c(S)�;Comb (P1‖SP2‖S . . . ‖SPn)

4. Obvious from Lemma 4.

Equivalent sequential executions of threads of a syntactic combinational pro-
gram are uniquely defined by their Precedence relation. It leads to its normal
form by a multiple parallel assignment.

Corollary 1. (normal form) Given a syntactic combinational program CombS=
Comb (P1‖P2‖ . . . ‖Pn) with the collection of updates U={(vi, Ei) | i = 1, . . . ,m}
such that vi � vj ⇒ i ≤ j. Then

c(S)�;CombS = c(S)�; (v := F)

where F1 =df E1, Fk+1 =df Ek+1[F1, . . . , Fk/v1, . . . , vk].

Proof. Clearly by the definition of a syntactic combinational program, every
thread Pi can be constructed from some of these updates by any sequential or
multiple parallel or combinational compositions.

c(S)�; (v := F)
{By definition of Fk}

= c(S)�; (v1 := E1); (v2 := E2); . . . ; (vk := Ek); . . . ; (vm := Em)
{Theorem 5}

= c(S)�;Comb ((v1 := E1)‖(v2 := E2)‖ . . . ‖(vk := Ek)‖ . . . ‖(vm := Em))
{Construction according to Pi and by Theorem 5}

= c(S)�;Comb (P1‖P2‖ . . . ‖Pn)

So all syntactic combinational programs with the same collection of updates
have the same normal form by the multiple assignment. Then the effect of a
syntactic combinational program is based on the collection of updates with no
dependency cycle from which it is constructed but does not depend on a way how
it is built of. It follows for them fully parallel and shared store parallel coincide.

194 T.V. Dung

Corollary 2. (equivalence of asynchronous and synchronous parallel) Given a
syntactic combinational program CombS = Comb (P1‖P2‖ . . . ‖Pn). Then

c(S)�;Comb (P1‖P2‖ . . . ‖Pn) = c(S)�;Comb (P1‖SP2‖S . . . ‖SPn)

where ‖S is synchronous parallel composition of two output disjoint programs.

5 Conclusion

The paper [1] describes an event semantics of combinational circuits so that the
execution of a combinational device, which is triggered by the change over its
input wires, will lead to a stable state. A well-designed sequential circuit always
terminates, and its behaviour is solely captured by the stable states. In papers
[6] and [7] the relational semantics to event and simulation step of some kinds
of sequential circuits is introduced where signal variables have been considered
in accompany with each state variable to keep information of its changes during
the execution. To overcome this disadvantage and fully use standard software
verification techniques in [2], [3] this paper presents stability semantics to these
sequential circuits and shows it is equivalent to the relational event semantics. We
examine some properties of combinational programs. We give more formal proofs
to some known results such that a syntactic combinational program terminates
and reaches unique stable state. The behaviour of a combinational program
depends on collection of updates from which it is built but not on how they are
combined if there is no dependency cycle on these updates. In this way the paper
presents their normal form and shows that for them Dimitrov’s multiple parallel
approach [9] and Zhu’s shared store parallel approach [8] are equivalent.

The author would like to thank He JiFeng for his valuable advises and
UNU/IIST for great support.

References

1. M. Gordon. Event and Cycle Semantics of Hardware Description Languages. Uni-
versity of Cambridge Computer Laboratory, (1998).

2. C.A.R Hoare et al. Laws of Programming. Comm. of the ACM 30 (8): 672-686
(1987).

3. C.A.R. Hoare and He Jifeng. Unifying Theory of Programming. Prentice - Hall
International, (1998).

4. Open VERILOG International. VERILOG Hardware Description Language Refer-
ence Manual, Version 1.0.

5. D.E. Thomas and P.R. Mooby. The VERILOG Hardware Description Language.
Kluwer Academic Publishers, (1995)

6. T.V. Dung and He JiFeng. A Theory of Combinational Programs. UNU/IIST Report
No 162.

7. T.V. Dung and He JiFeng. A Theory of Combinational Programs. Proceedings,
APSEC 2001, 325-328.

8. Z. Huibiao, J. Bowen and He JiFeng. Deriving Operational Semantics from Deno-
tational Semantics for Verilog. Proceedings, APSEC 2001, 177-184.

9. J. Dimitrov. Operational semantics for Verilog. Proceedings, APSEC 2001, 161-168.

Generating C Code from LOGS Specifications

Jianguo Zhou1 and Yifeng Chen2

1 Depart. of Computer Science, University of Leicester, Leicester LE1 7RH, UK
J.Zhou@mcs.le.ac.uk

2 Depart. of Computer Science, Durham University, Durham DH1 3LE, UK
Yifeng.Chen@dur.ac.uk

Abstract. This paper introduces a tool that automatically translates a concrete
form of specifications into C code linked with BSPlib. The translation tool is rig-
orously developed with important safety properties proved. A LOGS specification
for Bulk-Synchronous Parallelism is a relation of an initial state, a final state and
some intermediate states. Nondeterminism and parallelism correspond to disjunc-
tion and conjunction respectively. Various advanced specification commands can
be derived from the basic ones. The translator checks syntax, freedom of commu-
nication interference, type consistency and communication dependencies before
generating the target code. Static analysis (including both static checkings and
translation) is presented in abstract interpretation. It is shown that a few laws are
complete for transforming any specification into a normal form. These laws are
satisfied by the abstract functions. We demonstrate the actual effects of the ab-
stract functions by applying them on the normal form. The approach has been
implemented using an object-oriented language.

1 Introduction

Bulk-Synchronous Parallelism [13] is a programming paradigm based on variable shar-
ing and global synchronisation. In BSP, processes are synchronised at corresponding
synchronisation commands issued by individual processes. Arbitrarily many local com-
putation commands are allowed between consecutive synchronisations. Most commu-
nications are delayed until the following synchronisation point at which their delivery is
guaranteed. Synchronization points partition the execution of any BSP program into so-
called supersteps. BSP has a simple model for complexity analysis. However the main
challenge still lies in parallel program development [12]. The following BSP program
consists of one superstep comprising two processes in parallel:

(x := 1 � put y :=x− 1 � get x := y + 1 � sync) ‖ (y := 2 � sync)

We have omitted the syntax declaring x to be local to the first program and y to be local
to the second; put is a communication command that writes a value (calculated locally)
to a remote variable, and get is a command that reads the value (immediately before
the following synchronization) of a remote variable. Any communication is completed
at the following sync commands. Thus the final values of x and y are 3 and 0
respectively.

Traditionally BSP programs are developed in the SPMD style. One program is run
on multiple processors, each of which may process a segment of the input data. The

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 195–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

196 J. Zhou and Y. Chen

length and relative position of each segment in a large array must be calculated dy-
namically by the parallel program according the dynamic process’s pid. Such code is
difficult to write, as the size of the input data may not be exactly aligned for a particu-
lar partitioning method. Programmers must not only worry about the computation but
also the actual communications and the detailed partitioning. We try to develop tools to
automate these non-computation aspects of parallel programming in this paper.

Existing BSP implementations [9] actually allow MIMD programming. For exam-
ple, we can store different C procedures (as function pointers) in an array and use a sin-
gle program to call one of them according to the dynamic process’s pid number. This is
essentially MIMD programming: different processors run different program procedures
in execution.

A BSPlib-C program is a normal C program linked with BSPlib [9] that supports
several function calls. Command bsp pushregister registers a piece of memory
to be shared for communications; command bsp poporegister releases a piece
of memory from registration; command bsp sync synchronises with other processes’
bsp sync commands; command bsp put sends some data from a local address to
an address on a remote process, and the communication is delivered at the following
synchronisation; command bsp get requests some data from an address on a remote
process to to a local address, and the data arrives at the following synchronisation.

Chen and Sanders [3] introduced an intermediate specification language LOGS sup-
porting MIMD program development in BSP and PRAM [7] styles. It makes explicit the
intermediate global states at synchronisation points. Communications are abstracted in
LOGS. A number of algebraic and refinement laws have been identified for the language
and applied to the reasoning and refinement of (data-parallel) matrix multiplication and
(task-parallel) dining philosopher problem. For a vector w of program variables, the
primitives of LOGS are commands on w taking n steps. The refinement of specifica-
tions corresponds to removal of nondeterminism. The following table lists the primitive
commands of LOGS.

〈 p 〉n n -step command
P � Q sequential composition
P Q nondeterministic choice (disjunction)
P ! Q parallel composition (conjunction)
φf recursion

An n-step command is written 〈 p 〉n where p = p(←−w ,w0, . . . , wn−1,
−→w) . In it

each wk with k <n denotes the state at the (k+1)-th intermediate synchronisation
point. For example, 〈←−x + 1 =x0 =−→x − 1 〉1 is a 1LOGS command in which the pro-
gram variable x is increased by 1 before its first intermediate synchronisation point
x0 and increased by 1 again by termination. Another example of 0-step command〈←−x 2 +−→x 2 � 4

〉
0 respresents a local computation without synchronisation, and the

final state of x is implicitly related to its initial state by an inequation. The sequen-
tial composition of two processes merges into a longer one in which the final state of
the first process is associated with the initial state of the second process, and then the
interface is hidden. No additional synchronisation point is inserted by sequential com-

Generating C Code from LOGS Specifications 197

position. This reflects the fact that, in BSP, the sequential composition can be placed ei-
ther at a synchronisation point or between two consecutive synchronisation points. The
nondeterministic choice between two nLOGS commands is the disjunction of their in-
ternal predicates. The parallel composition of two nLOGS commands is the conjunction
of their internal predicates. More useful commands can be derived from the primitive
ones, including binary conditional, loop, repetitions, safety and liveness specifications.

A specification is concrete, if it is composed of only sequential and parallel compo-
sitions and a finite number of 0-step commands, each explicitly expressed as
〈−→w=f(←−w) 〉0 , and 1-step commands, each expressed as 〈w=g(←−w) ∧−→w=h(←−w ,w) 〉1
where f, g and h are expressions. The refinement from abstract specifications to con-
crete ones requires decision makings and is normally done manually [3]. A concrete
specification can be automatically transformed into program code. Chen and Sanders [2]
studied the refinement laws from LOGS to a simplified BSP language. The method is
mainly suitable for manual calculation.

In this paper concrete LOGS specifications are directly transformed into MIMD
code for BSPLib in C. The resulting code has the appearance of a common SPMD
program. However the single main function calls different sub-programs (stored in an
array) on different machines according to the pid of the machine. In short, different
programs execute different commands during the same superstep and hence form a
MIMD program. Program code is generated for each machine separately. This allows
the translator to calculate the approximated values of some expressions (e.g. indices of
array access) for specific individual processes during the phase of static analysis and
hence results in faster and safer code. Compared to other code generation methods for
executable specifications, our approach does automate a few aspects of coding that oth-
erwise are difficult to write manually. They include the automation of inserting code
for registration/communication/synchronisation, pre-defined data partitioning and dis-
tributing, and individual process based safety and consistency checking. The resulting
C code is impossible to write manually, because for example the boundary constants
of the loops are already pre-determined (and safety-checked) by the translator for each
individual processor (resulting code whose length grows with the number of processes).

Before generating target code, the translator needs to check the syntax, freedom
of communication interference, type consistency and communication dependencies be-
tween processes. The methods are presented in abstract interpretation. Abstract inter-
pretation [5,6] is a theoretical foundation of static-analysis methods based on deno-
tational semantics. For example, syntactical checking can be defined as an abstract
boolean function on program constructs. Code generation becomes an abstract func-
tion that transforms a program into a string in the target language.

Communication interference occurs in any shared-memory parallelism. It is repre-
sented as infeasibility and inconsistency in LOGS [3], modelled as nondeterminism in
most BSP semantic models [2,8], and implemented as runtime exception in BSPlib [9].
It is possible to check communication interference for basic LOGS specifications stati-
cally. Advanced commands such as multiple parallel composition and loops may require
some degree of approximation (see section 3).

Traditional type systems are founded in proof theory and defined with inference
rules in the style of operational semantics. Cousot [4] showed that types can be checked

198 J. Zhou and Y. Chen

using abstract interpretation. Simple (stateless) type inference rules directly correspond
to abstract functions on types, which can be regarded as abstract values. If type infer-
ence rules depend on the context (i.e. the state of the type checker), it is still possible to
encode the context as an argument of an abstract function.

How do we know that the definition of an abstract function is appropriate? Normal
form is a widely used technique in relational/predicative semantics [10,11]. Under some
algebraic laws, the syntax of a language may collapse to a normal form. This is known
as the completeness of the laws with respect to the normal form in algebraic semantics.
In this paper, we try to demonstrate the effect of an abstract function by applying it to
the normal form of LOGS specifications and calculate the result. This suffices to show
the effect of the function on every specification, if every specification can be reduced to
the normal form, and the abstract function satisfies the algebraic laws.

1-step LOGS commands (those containing only one global synchronization) repre-
sent stepwise design of both PRAM and BSP programs with synchronisations, while
0-step commands is a specific characteristic of BSP’s local computation without syn-
chronisations. Here, we use two special 1-step commands:

4p(←−w ,−→w)5 = 〈 p ∧w=−→w 〉1 early transition
6p(←−w ,−→w)7 = 〈 p ∧←−w =w 〉1 late transition.

An early transition (implementable with bsp put()) is a 1-step command that may
change state before the synchronisation point but maintains a stable state between the
intermediate and final states. For example, the specification

'−→x =←−y + 1('−→y =←−x − 1((1)

is a parallel composition of two early transitions. The values of x and y are changed
at the synchronisation point. The new values remain unchanged in the final state. Most
numeric computations with data parallelism can be characterised with early transitions.
A late transition (implementable with bsp get()) keeps a stable state up to the syn-
chronisation point but may have a different final state from the intermediate state. Other
processes can access a process’s initial state by observing its first intermediate state at
the synchronisation point. This is particularly convenient for task-parallel computations
such as the dining-philosopher problem [3].

A concrete 1-step specification 〈x= g(←−x) ∧ −→x =h(←−x ,x) 〉1 can always be trans-
formed into the sequential composition of an early transition and a 0-step command
with a fresh temporary variable y : 4−→x = g(←−x) ∧←−y =−→y 5 � 〈−→x = h(←−x ,←−y) 〉0 , or
similarly, the sequential composition of a 0-step command and a late transition. We
deal only with early transitions in this paper, although 0-step commands are already
implemented in our translator. The inconsistency in the original concrete specification
can be detected automatically, subject to a certain degree of abstraction (e.g. the abstract
interval analysis of array indices).

The LOGS translator is implemented in a highly flexible Object-Oriented language
language called FLEXIBO [1]. Although FLEXIBO is untyped, it simulates the
behaviours of types, allows ad hoc user-defined types (as objects) and checks type
consistency in runtime. Program constructs of the language can be inherited and ex-
tended for translation from a given source language (e.g. LOGS) into a more efficient

Generating C Code from LOGS Specifications 199

target language (e.g. C/C++). Runtime checkings (e.g. type checking) performed by the
FLEXIBO program actually become static analysis for the source language. For exam-
ple, FLEXIBO’s if-then-else statements are objects of a class called
SemBinaryConditional. Pre-defined methods such as evaluation and printing can
be overridden in its subclasses. When a reflected program is evaluated, user-defined
evaluation method instead of the pre-defined method will be invoked. FLEXIBO pro-
vides a platform on which various static-analysis methods can be systematically devel-
oped in an Object-Oriented manner.

2 Translation of Basic LOGS Commands

2.1 Syntactical Checking

FLEXIBO is essentially free of syntactical restrictions. For example, the operator
F1 #F2 represents a method invocation of F1 with argument F2 . F1 and F2 can
be arbitrary expressions. Even an expression like 1 # 2 is syntactically correct, al-
though its evaluation would generate a runtime exception, since the integer 1 cannot
provide the service of a method. If we ignore syntactical restrictions for priority order
and parenthesis, FLEXIBO’s syntax is completely flat:

F ::= F ‖ F | F � F | if F then F else F | early F | F ⊗F |
after F = F | F + F | F ∧ F | ¬F | before F | x | v .

The program operators are, in order, the parallel composition ‖ (MIMD parallelism),
sequential composition � , binary conditional if-then-else, early transition, logi-
cal and ⊗ between internal predicates of early transitions, internal predicate in which
afterF stands for the final state of an individual program variable F , arithmetic plus
+ , boolean and & , boolean negation ¬ , initial state beforeF of a variable F , pro-
gram variable x∈X and constant value v ∈V . Note that we have listed only the basic
program constructs used by LOGS. The operators + , ∧ and ¬ are merely representa-
tives of arithmetic and logical operators allowed in LOGS. The specification (1) can be
written in the above syntax as follows:

Pex =̂ early (after x = before y + 1) ‖ early (after y = before x + 2) .
(2)

To facilitate effective static analysis and translation, we need more syntactical re-
strictions. A well-formed LOGS specification has the following hierarchical syntax:

P ::= P ‖P | S
S ::= S � S | if S then S else S | S � S | E � S | T
T ::= early I
I ::= I ⊗ I | W
W ::= A = E
A ::= after X
E ::= E + E | E ∧E | ¬E | before X | X | V
X ::= x
V ::= v .

200 J. Zhou and Y. Chen

Note that we have added two operators: nondeterministic choice and conditional
magic E � S (i.e. a partial ”if-then” command becoming infeasible with false con-
dition). They are by-products of static analysis and only appear in the normal form of
specifications (see section 2.2). For example, an if-then-else command can be
decomposed as the nondeterministic choice between two exclusive conditional mag-
ics [10]. Let P ,S, T , I, E ,X denote the sets of specifications, sequential processes,
early transitions, internal predicates, expressions and variables, respectively. Obviously,
we have T ⊆ S ⊆ P and X ⊆ E . As a convention, we use P, P1, P2, · · · to denote
individual specifications in P , and let S, S1, S2, · · · denote individual sequential pro-
cesses in S and so on. We also use S0 to denote the set of sequential processes without
the two additional operators. The above syntactical restrictions can be formalised with
abstract boolean functions α, αS , αI , αE , αX :F →{true, false} . A FLEXIBO ex-
pression F is a well-formed LOGS specification if and only if α(F)= true .

Def 1. α(F1 ‖ F2) = α(F1) ∧ α(F2) α(F1 � F2) = αS(F1 � F2)
α(if F1 then F2 else F3) = αS(if F1 then F2 else F3)
α(early F) = αS(early F)

αS(if F1 then F2 else F3) = αE(F1) ∧ αSF2 ∧ αS(F3)
αS(F1 � F2) = αS(F1) ∧ αS(F2) αS(early F) = αI(F)

αI(F1⊗F2) = αI(F1) ∧ αI(F2) αI(F1 = F2) = αW (F1 = F2)

αW (F1 = F2) = αA(F1) ∧ αE(F2)

αA(after F) = αX(F)

αE(F1 + F2) = αE(F1 ∧ F2) = αE(F1) ∧ αE(F2)
αE(¬F) = αE(F)
αE(before F) = αX(F)
αE(x) = αE(v) = true

αX(x) = true

We assume that, by default, every boolean function returns false for any expression
undefined in the above rules. For example, α(Pex)= true . This syntactical restrictions
can be implemented with a polymorphic method without side effect in FLEXIBO:

var LOGS:= class Reflection (
var SemExp:= class (superclass.SemExp) (

var alphaP := method [] false;
var alphaS := method [] false;
var alphaW := method [] false;
var alphaE := method [] false;
var alphaA := method [] false;
var alphaX := method [] false;

);
var SemOpOr:= class (superclass.SemOpOr) (

var alphaP := method []
e1.alphaP[] && e2.alphaP[];

);
......

); LOGS.flexibo[];

Generating C Code from LOGS Specifications 201

The above FLEXIBO program provides a real example how static analysis is imple-
mented in the language. Reflection is the root reflection system, a class containing
internal classes that represent program constructs. By extending Reflection, LOGS
also becomes a reflection system whose internal classes extend the original classes for
program constructs. The reflection system LOGS can then be used as a template to
convert syntactical constructs. Methods like alphaP[] will be re-directed to the cor-
responding classes in LOGS through dynamic binding.

2.2 Basic Assumptions, Normal Form and Completeness

Static analysis methods based on abstract interpretation are defined recursively for every
program constructs. We shall use the technique of normal form to demonstrate that the
abstract functions are indeed properly defined. The following laws are assumed to be
true for basic LOGS specifications.

Law 1 (Basic assumptions).
(1) associativity of (· ‖ ·) , (· � ·) , (· � ·) and (· ⊗ ·)
(2) distributivity of (· � ·) into (· � ·)
(3) if E then S1 else S2 = (E � S1) � (¬E � S2)
(4) E � (S1 � S2) = (E � S1) � (E � S2)
(5) E � (S1 � S2) = (E � S1) � S2

(6) E1 � (E2 � S) = (E1 ∧E2) � S

(7) true � S = S .

The above list is not a complete list of all laws satisfied by the concrete semantics
of LOGS specifications. For example, parallel composition also has commutativity in
the concrete semantics of dynamic behaviour. Nevertheless the list is complete for the
static-analysis methods in this paper.

Under the above assumed laws, LOGS syntax collapses to the following normal form
where

∏n
j=1 Kj =̂ K1 � K2 � · · · � Kn and

⊗m
i=1 Ai =̂ A1⊗A2⊗ · · · ⊗Am .

Norm 1. P ::=
�t

l=1

�s
k=1 Skl

S ::=
∏n

j=1 Kj

K ::= E � T

T ::= early
⊗m

i=1 after xi =Ei

The above normal form can be merged into one line where nondeterministic choices are
located in the outmost layer, and then parallel compositions, sequential compositions,
conditionals and finally, early transitions. The collapse of the syntax stops at the level
of LOGS expressions, which are not further reducible:

t�
l=1

s�
k=1

n∏
j=1

Ejkl �
(
early

m⊗
i=1

after xijkl =Eijkl

)
(3)

where t is a constant, but s = s(t) , n = n(s, t) and m = m(n, s, t) are dependent
functions. The proof of this following theorem in included in the appendix.

Theorem 1 (Completeness of basic assumptions). Any well-formed basic LOGS

specification can be reduced to the above normal form under the laws of basic
assumptions.

202 J. Zhou and Y. Chen

2.3 Detecting Communication Interference

We first introduce an abstract function β : (P ∪I)→P(X) to check interference for
the first superstep of all processes. In fact checking and analysing the set of variables
accessed during the first superstep are done at the same time. For example, if there is
interference between any two variables from the sets collected from two specifications,
the parallel composition will return the infinite set X indicating the occurrence of in-
terference. Any interference-free specification, however, returns a finite set of variables.

The interference relation is denoted: ��⊆X ×X . Primitive variables interfere iff
they are identical. We use the operator 9 to merge sets of variables: for any X1,X2 ⊆
X , if there exist X1 ∈X1 and X2 ∈X2 such that X1 ��X2 then X1 9 X2 = X ;
otherwise, X1 9 X2 = X1 ∪ X2.

Def 2. β(P1 ‖ P2) = β(P1))β(P2) β(S1 � S2) = β(S1)
β(if E then S1 else S2) = β(S1 �S2) = β(S1) ∪ β(S2)
β(E � S) = β(S)
β(early I) = β(I)

β(I1⊗ I2) = β(I1))β(I2)
β(after x = E) = {x}

For example, β(Pex)= {x, y} . Note that since sequential processes in a nondetermin-
istic choice or a binary conditional do not run at the same time, they will not interfere
with each other.

Proposition 2. The abstract function β satisfies all laws in Law 1.

Lemma 3. A well-formed specification P contains communication interference in its
first superstep iff β(P) = X .

Proof. For any P in normal form (3), if there exist i1, k1, l1 and i2, k2, l2 such that
i1 = i2 or l1 = l2 and xi11k1l1 �� xi21k2l2 , then β(P) = X ; otheriwse,
β(P) = {xi1kl | l� t, k� s, i�m} . �

We also need an abstract function γ :P → P ∪{II} to strip the first superstep
and get the tail of a specification. The tail of a specification with only one superstep
is a special construct II called skip. If there are unbalanced processes, the translator
can either report an error or simply ignore the shorter processes. We choose the latter
approach in the following definition. For example, we have γ(Pex)= II .

Def 3. γ(P1 ‖ P2) = γ(P1) ‖ γ(P2) (γ(P1) �=II, γ(P2) �= II)
γ(P1 ‖ P2) = γ(P1) (γ(P2) = II)
γ(P1 ‖ P2) = γ(P2) (γ(P1) = II)
γ(if E then S1 else S2) = γ(S1 � S2)
γ(S1 � S2) = γ(S1) � S2 (γ(S1) �=II)
γ(S1 � S2) = S2 (γ(S1) = II)
γ(S1 � S2) = γ(S1) � γ(S2) (γ(S1) �= II, γ(S2) �= II)
γ(S1 � S2) = γ(S1) (γ(S2) = II)
γ(S1 � S2) = γ(S2) (γ(S1) = II)
γ(E � S) = γ(S)
γ(early I) = II

Generating C Code from LOGS Specifications 203

Proposition 4. The abstract function γ satisfies all laws in Law 1.

Lemma 5. The abstract function γ returns the tail of a given well-formed specification.

Proof. For any P in normal form (3), γ(P) =
�t

l=1

�s
k=1: n(s,t)>1

∏n
j=2 Kjkl . �

The abstract function δ :P ∪{II} → {true, false} combines β and γ and
checks the whole specification superstep by superstep recursively: δ(S)=true , δ(II)=
true , δ(P) = false if β(P)=X , and δ(P) = δ(γ(P)) otherwise. For example,
δ(Pex)= true indicating the freedom of communication interference in Pex.

Theorem 6. A well-formed specification has communication interference iff the func-
tion δ returns false.

Proof. Shown from Lemma 3 and 5. �

2.4 Type Checking

Simple (stateless) typing rules directly correspond to an abstract function. For example,
Int and Bool are the types of integers and booleans. The following rules can be used
to infer the types of expressions and directly correspond to implementation consisting
of if-then-else conditional statements in structured programming style:

E1 :: Int E2 :: Int
E1 + E2 :: Int

E1 :: Bool E2 :: Bool
E1 ∧E2 :: Bool

E :: Bool
¬E :: Bool .

Alternatively, we may regard types as (abstract) values and introduce functions for
type calculation: Int +̂ Int = Int , Bool ∧̂ Bool = Bool and ¬̂ Bool = Bool. Typ-
ing rules can then be modelled as an abstact function ε :E →TYPE : ε(E1 + E2) =
ε(E1) +̂ ε(E2) , ε(E1∧E2) = ε(E1) ∧̂ ε(E2) and ε(¬E) = ¬̂ ε(E). Unlike inference
rules, abstract interpretation directly corresponds to implmentation in Object-Oriented
programming style with polymorphism. The abstract function can be implemented as
an overloaded method without side effect.

Let TYPE =̂ {Int, Bool, True, False}∪RANGE be the set of all types in
LOGS. The inferred type of an expression is True or False if its truth-value can be
determined statically; the inferred type is Bool if the precise type cannot be determined
statically. RANGE is a set of interval types each Range(a, b) of which represents a
range between integers a and b where a� b . Interval types are used in range analysis
(e.g. for array index). In particular, if the inferred type is Range(a, a) , that means the
dynamic value of the expression is constant and can be determined statically. The con-
stant a will directly appear in the generated target code. The additional definitions of
type calculation are as follows:

Range(a1, b1) + Range(a2, b2) = Range(a1 + a2, b1 + b2) .
Int +̂ Range(a, b) = Range(a, b) +̂ Int = Int
False ∧̂T = T ∧̂False = ¬̂True = False
True ∧̂T = T ∧̂True = T
Bool ∧̂Bool = Bool
¬̂Bool = Bool

where T = Bool,True,False . If an expression’s type is undefined, in the FLEXIBO
implementation, the translator program directly reports a runtime error, which is actu-
ally a compilation error for the source language LOGS.

204 J. Zhou and Y. Chen

The primitive types are primitive values in FLEXIBO. The rules of calculation are
already embedded in the language and can be inherited by the translator. Many more
types and arithmetic/logical/comparative operators are supported in FLEXIBO. RANGE
is implemented as a class in the translator. Each object of the class has two attributes a
and b . Type calculation rules and type checking become the methods of the class.

The type of an expression may depend on a context, i.e. the state of the type checker.
For example, the most accurate inferred type of an uninitialised variable is its de-
clared type. After initialising it to an integer 1, its inferred type may be changed to
Range(1, 1) . This can be easily represented using state-dependent inference rules in
the style of operational semantics. In abstract interpretation, it can be encoded as an
additional argument of abstract functions. In FLEXIBO, it is directly implemented as a
(polymorphic) method allowing side effects.

Let ρ :X →TYPE denote the mapping from variables to their types at the current
point of static analysis, μ :X →V a mapping from variables to their initial values,
τ :X →TYPE a mapping from variables to their declared types, and π :V →TYPE a
mapping from constant values to their inferred types. We assume π(n)= Range(n, n)
for any integer n, π(true) = True and π(false) = False .

The abstract function ε : E →TYPE evaluates the type of an expression in a given
state ρ .

Def 4. ε(E1 +E2) = ε(E1) +̂ ε(E2)
ε(¬E) = ¬̂ ε(E)
ε(x) = ρ(x)

ε(E1 ∧E2) = ε(E1) ∧̂ ε(E2)
ε(before x) = τ (x)
ε(v) = π(v)

Note that the inferred type of a variable of communication (in before y) is always
its declared type τ(x) , while that of an independent variable is context-related. For
example, suppose τ(x) = Int , then ε(before y + 1) = τ(y) +̂ Range(1, 1) = Int.
Another example is ε(1 + 1) = Range(1, 1) +̂Range(1, 1) = Range(2, 2) .

Before defining the type checking for LOGS, we introduce a subtyping partial or-
dering �. For example, the command after x = E trys to write to variable x
remotely. It requires that the inferred type of E be a subtype of the decalred type
of x. We assume that Range(a1, b1) � Range(a2, b2) � Int if a2 � a1 � b1 � b2
and True, False � Bool . The abstract function ε : (P ∪I)→{true, false} checks
whether a specification is type-consistent in a given state of static analysis.

Def 5. ε(P1 ‖ P2) = ε(P1) ∧ ε(P2) ε(S1 � S2) = ε(S1) ∧ ε(S2)
ε(if E then S1 else S2) = ε(E) � Bool ∧ ε(S1) ∧ ε(S2)
ε(S1 � S2) = ε(S1) ∧ ε(S2)
ε(early I) = ε(I)
ε(after x = E) = ε(E) � τ (x)

ε(E � S) = ε(E)� Bool ∧ ε(S)
ε(T1⊗T2) = ε(T1) ∧ ε(T2)

The condition in a conditional must be a boolean, and the inferred type of the ex-
pression E must be a subtype of the declared type of the accessed variable x in
after x=E .

Proposition 7. The abstract function ε satisfies all laws in Law 1.

Proof. Only need to check Law 1(6), which can be proved from Def 4. �

Generating C Code from LOGS Specifications 205

In FLEXIBO, LOGS type checking is implemented as a (polymorphic) method that
returns boolean value. We can assume ρ = τ for basic specifications, as they do not
modify the types of variables. For example, if x and y are declared as integers, we
then have:

ε(Pex) = ε(before y + 1) � τ (x) ∧ ε(before x + 2) � τ (y)
= (Int +̂ Range(1, 1)) � Int ∧ (Int +̂ Range(2, 2)) � Int
= Int� Int ∧ Int� Int
= true .

2.5 Variable Registration for Communication

In BSPlib, variables involved in communication (either read or written) need to be reg-
istered at the beginning of each process.

We first define an abstract function ω : E → P(X) that collects the set of all vari-
ables to be read in a given expression.

Def 6. ω(E1 + E2) = ω(E1)∪ω(E2)
ω(¬E) = ω(E)
ω(x) = { }

ω(E1 ∧E2) = ω(E1)∪ω(E2)
ω(before x) = {x}
ω(v) = { }

To generate the code for variable registration, we introduce an abstract function
ζ : (P ∪ I) → P(X) to collect the set of all variables that are either in after x or
before x . For example, ζ(Pex) = {x, y} .

Def 7. ζ(P1 ‖ P2)=ζ(P1)∪ ζ(P2)
ζ(if E then S1 else S2)=ζ(S1)∪ ζ(S2)
ζ(E � S)=ω(E)∪ ζ(S)
ζ(I1⊗ I2)=ζ(I1)∪ ζ(I2)

ζ(S1 � S2)=ζ(S1)∪ ζ(S2)
ζ(S1 � S2)=ζ(S1)∪ ζ(S2)
ζ(early I)=ζ(I)
ζ(after x=E)={x}∪ω(E)

Proposition 8. The abstract function ζ satisfies all the laws in Law 1.

Theorem 9. The set of all variables in after x and before x of a well-formed
specification P is ζ(P) .

Proof. For any P in normal form (3), we have ζ(P) =
⋃

ijkl (ω(Ejkl) ∪ {xijkl } ∪
ω(Eijkl)) . �

2.6 Analysis of Communication Dependencies

If a process writes a new value to a variable, it issues a bsp put communication to
every process that reads it. In this paper, we assume that the writing process will send
the new value to every process that may ever read the variable (not just in the subsequent
supersteps).

Before analysing the dependencies, we use an abstract function θ :P→N to count
the total number of sequential processes in a specification. For example, θ(Pex) = 2 .

Def 8. θ(P1 ‖ P2) = θ(P1) + θ(P2)
θ(S) = 1

Proposition 10. The abstract function θ satisfies all the laws in Law 1.

Theorem 11. The total number of sequential processes in any well-formed specifica-
tion P is θ(P) .

206 J. Zhou and Y. Chen

Proof. For any P in normal form (3), we have θ(P) = t . �

The process id of the communication destination must be identified for a bsp put
command. Process id numbers are absolute numbers relevant to the whole process. We
use an abstract function η : N×N× (P ∪I) → P(X) to collect the set of all variables
(in before x of process i) to be read. The first argument is the absolute process id,
the second argument is the relative starting process id of the specification, and the last
argument is a specification that may include several sequential processes. This design
guarantees the compositionality for the operation.

Def 9. η(i, n, P1 ‖ P2) = η(i, n, P1) ∪ η(i, n + θ(P1), P2)
η(i, n, S) = { } (i �= n)
η(i, n, if E then S1 else S2) = ω(E) ∪ η(i, n, S1 � S2) (i = n)
η(i, n, S1 � S2) = η(i, n, S1 � S2) = η(i, n, S1) ∪ η(i, n, S2) (i = n)
η(i, n, E � S) = η(i, n, E) ∪ η(i, n, S) (i = n)
η(i, n, early I) = η(i, n, I) (i = n)
η(i, n, I1⊗ I2) = η(i, n, I1) ∪ η(i, n, I2) (i = n)
η(i, n, after x= E) = ω(E) (i = n)

For example, η(i, i, Pex) = {y} , η(i, i+1, Pex) = {x}, but η(i, n, Pex) = { } if
n ∈ {i, i+1} .

Proposition 12. The function η satisfies all laws in Law 1.

Proof. Only need to check the associativity of (·‖·) :
η(i, n, P1 ‖ (P2 ‖ P3))

= η(i, n, P1) ∪ η(i, n + θ(P1), (P2 ‖ P3))
= η(i, n, P1) ∪ η(i, n + θ(P1), P2)∪ η(i, n + θ(P1)+ θ(P2), P3)
= η(i, n, P1 ‖ P2) ∪ η(i, n + θ(P1)+ θ(P2), P3)
= η(i, n, (P1 ‖ P2) ‖ P3) . �

Theorem 13. The abstract function η(i, n, P) collects the set of all variables read by
process i, a sequential process in a well-formed specification P with starting process
id n.

Proof. For any P in normal form (3), if n′� i′<n′+ t , we let l =̂ i′−n′+ 1 , and
then η(i′, n′, P) =

⋃
ijk (ω(Ejkl) ∪ ω(Eijkl)) ; otherwise, η(i′, n′, P) = { } . �

A process writing to a shared variable must issue a bsp put communication to
every process that may read another variable interfering with the shared variable.

2.7 Generating Code for Expressions

We use an abstract function φ : E → String to translate a LOGS expression into a C
expression (as a string). The operator str1 � str2 denotes string concatenation.

If the dynamic value of an sub-expression can be determined statically in type cal-
culation, the generated code for that sub-expression will be the static value itself; other-
wise, the sub-expression is converted to a string in C syntax. Specifically, if the inferred

Generating C Code from LOGS Specifications 207

type is a singleton range: ε(E)=Range(a, a) , then we let φ(E) be “a”, a string con-
verted from the integer a; if ε(E)=True or ε(E)= False , then φ(E)= “1” (i.e. the
boolean true in C) or φ(E)= “0” (i.e. the boolean false in C) respectively; other-
wise, the abstract function follows the following definition:

Def 10. φ(E1 + E2) = φ(E1) � “+” � φ(E2)
φ(E1 ∧E2) = φ(E1) � “&&” � φ(E2)
φ(¬E) = “ ! ” � φ(E)
φ(before x) = φ(x) = “x”
φ(v) = “v”.

For example, if τ(y) = Int , then φ(before y + 1) = “y + 1” , as ε(before y +1) =
Int +̂Range(1, 1) = Int ; on the other hand, φ(1 + 1) = “2” , because its value can
be determined statically in type calculation: ε(1 +1) = Range(1, 1) +̂Range(1, 1) =
Range(2, 2) .

2.8 Generating Code for Communications

The code for a sequential process that writes into a shared variable may involve other
processes in parallel. Thus the abstract function ψ : (S0 ∪I)×P→String of commu-
nication code generation must have the whole specification as an argument. Let λ(x, P)
denote the set of id numbers of the processes that may read variable x:

λ(x,P) =̂ {i < θ(P) | ∃y∈ η(i, 0, P) ·x �� y} .

For example, we have λ(x, Pex)= {1} , λ(y, Pex)= {0} , and for any other variable z ,
λ(z, Pex)= { } . In the following definition, we use

∫
to denote collective string con-

catenation. For example,
∫
i∈{1,3,4} stri = str1

� str3
� str4 . Note that code genera-

tion does not have to deal with nondeterministic choice and conditional magic, which
are by-products of static analysis.

Def 11. ψ(if E then S1 else S2, P) = “if” � φ(E) � “{” � ψ(S1, P) � “}” �

“else {” � ψ(S2, P) � “}”
ψ(S1 � S2, P) = ψ(S1, P) � ψ(S2, P)
ψ(early I, P) = ψ(I, P) � “bsp sync();”
ψ(I1⊗ I2, P) = ψ(I1, P) � ψ(I2, P)
ψ(after x = E, P) = “x := ” � φ(E) � “ ; ” �∫

i:λ(x,P) “bsp put(i,x,x,0,sizeof(τ (x));”

For example, ψ(early (after x = before y + 1), Pex) generates C code:

x:=y+1; bsp put(1,x,x,0,sizeof(int)); bsp sync();

The actual implementation of the above abstract function is a (polymorphic) method
that directly prints out the code as output.

2.9 Generating Code for Processes

A sequential process starts from bsp pushregister of shared variables and ends
with their release by bsp popregister. The function κ : (N×P ×P)→ String

208 J. Zhou and Y. Chen

generates the code for each process n. The first argument is the relative starting process
id, the second one is the sub-specification to be translated, and the last one is the whole
specification.

Def 12. κ(n, P1 ‖ P2, P) = κ(n, P1, P) � κ(n + θ(P1), P2, P)
κ(n, S, P) =“void process n {” �∫

x : ζ(P) “bsp pushregister(&x, sizeof(τ (x)));”�

ψ(S, P) �∫
x : ζ(P) “bsp pushregister(&x);”�

“}”

If a specification P passes syntactical checking, communication interference check-
ing and type checking, the target C code can be generated in the following structure:

“#include · · · ” � κ(0, P, P) � “void main() · · · ”

where we assume that ρ = τ .

3 Advanced Commands

Due to the length limit of this paper, we are unable to discuss in details the translation
and static analysis of advanced LOGS commands, although they are already imple-
mented.

SPMD parallelism corresponds to a command par x from E1 to E2 do S. The
values of the expressions E1 and E2 must be natural numbers statically determinable
during type calculation; otherwise, a typing error is reported. The command generates
a number of sequential processes in parallel in the target code. For each process, the
variable x takes a different singleton range Range(a, a) where a is any number be-
tween the values of E1 and E2 . Communication interference, type consistency and
communication dependencies are checked for each process independently.

To facilitate static analysis, the translator supports only a restricted form of iteration
for x from E1 to E2 do S . Again, E1 and E2 must be statically determinable.
Such a command always terminates and can be translated to a for-loop in C. Commu-
nication interference is checked superstep by superstep after unfolding the iteration. If
there are too many supersteps, a decision must be made on a limit n: the static analyser
will only check the freedom of communication interference for the first n supersteps.
Types and communication dependencies, on the other hand, are analysed without un-
folding the iteration. The range between the values of E1 and E2 will be used as the
inferred type of x recorded in the new state of the static analyser. The body of the
for-loop will be type-checked under the abstraction.

Note that both of the above commands may change the static analyser’s state. Thus
advanced specifications have an extended normal form incorporating an additional com-
mand that allows the state of the analyser to be changed before each early transition.
Both commands can then be decomposed into the normal form with that additional
command.

Early transition is a characteristic of both BSP and PRAM programming. 0-step
command local I , representing local computation without synchronisation, is specific

Generating C Code from LOGS Specifications 209

to BSP paradigm. 0-step commands can be included in the translation and has been
implemented. They tend to complicate the abstract functions with more exceptional
cases.

The operator x#E can be overridden to represent the access of array x at the
index E . Range analysis is important for the safety of the index expression. Two array
accesses interfere if they are on the same array and the type-inferred ranges of the index
expressions overlap with each other.

Partitionings can be defined as FLEXIBO classes. The choice of a particular parti-
tioning method can be inserted into a LOGS specification as an operator x :Partition
of an array x . Various checkings and the related code generation can be defined as
methods of the classes. This has opened a door to systematic studies on partitioning
methods in a class library.

4 Conclusions and Future Work

In this paper, we have introduced the basic static-analysis methods for generating C
code from LOGS specifications. The tool is still at an early experimental stage of devel-
opment. The syntax adopted is restrictive, but it already covers most numeric applica-
tions, supports powerful static-analysis methods and generates fast and safe BSPlib-C
code. The technique of normal form proves to be an illustrative tool for verifying the
correctness of the translator. The authors are not aware of any previous application of
the technique in abstract interpretation. This paper is to demonstrate the construction
of translators and their formal verification. Many algorithms (e.g. communication de-
pendencies) are subject to further refinement. The translator provides useful assistance
to human programmers by automatically adding communication commands, generating
code for each process, optimising expressions and partitioning data structures. Although
this paper is primarily presented in abstract interpretation, the actual implementation
sometimes “conveniently” deviates from the style of denotational semantics. For exam-
ple, it is convenient to allow side effect on the state of the static analyser during type
checking (especially for advanced commands), which is conveniently presented using
inference rules in the style of operational semantics. Nevertheless both styles can be
straightforwardly supported by Object-Oriented programming. This perhaps highlights
the integrating power of OO framework for static analysis. The translator generates a
separate code for every processor. This approach may not be applicable to massively
parallel machines. Systematic studies on partitioning methods in OO style is an inter-
esting area of future research.

References

1. Y. Chen. A language of flexible objects. Technical Report 29, Department of Computer
Science, Leicester University, 2004.

2. Y. Chen and J.W. Sanders. Top-down design of BSP programs. Parallel Processing Letters,
13(3):389–400, 2003.

3. Y. Chen and J.W. Sanders. Logic of global synchrony. ACM Transactions on Programming
Languages and Systems, 26(2):221–262, 2004.

210 J. Zhou and Y. Chen

4. P. Cousot. Types as abstract interpretations. In Proceedings of POPL, pages 316–331. ACM,
1997.

5. P. Cousot. Abstract interpretation based formal methods and future challenges. In In Infor-
matics, 10 Years Back - 10 Years Ahead, volume 2000 of LNCS, pages 138–156, 2001.

6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixedpoints. In Proceedings of 4th POPL,
pages 238–252. ACM, 1977.

7. S. Fortune and J. Wyllie. Parallelism in random access machines. In 10th Annual ACM
Symposium on Theory of Computing, pages 114–118. ACM Press, 1978.

8. J. He, Q. Miller, and L. Chen. Algebraic laws for BSP programming. In Euro-Par’96, volume
1124 of Lecture Notes in Computer Science, pages 359–367. Springer-Verlag, 1996.

9. J. M. D. Hill and et al. BSPlib: The BSP programming library. Parallel Computing,
24(14):1927–2148, 1998.

10. C. A. R. Hoare and et al. Laws of programming. Communications of the ACM, 30(8):672–
686, 1987.

11. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice Hall, 1998.
12. W. F. McColl. Compositional systems. In Symposium in Celebration of the work of

C.A.R. Hoare. 1999.
13. L.G. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103–111, 1990.

Formalizing the Debugging Process in Haskell�

Alberto de la Encina, Luis Llana, and Fernando Rubio

Departamento de Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, Spain
{albertoe, llana, fernando}@sip.ucm.es

Abstract. Due to its absence of side effects, it is usually claimed that
reasoning about functional programs is simpler than reasoning about
their imperative counterparts. Unfortunately, due to the absence of prac-
tical debuggers, finding bugs in lazy functional languages has been much
more complex until quite recently. One of the easiest to use Haskell de-
buggers is Hood, whose behavior is based on the concept of observation
of intermediate data structures. However, it can be hard to understand
how it works when dealing with complex situations.

In this paper, we introduce debugging facilities in the STG abstract
machine. Our goal is to obtain debugging information as close to the
one obtained by the Hood debugger as possible. By extending the STG
abstract machine, we do not only provide a formal framework to the de-
bugging process, but also an alternative method to implement debuggers.

Keywords: Functional programming, debugging, abstract machines.

1 Introduction

The debugging of lazy functional programs is currently an active area of research.
Although not much attention was paid to it in the past (see e.g. [17]), during the
last years there have been several proposals for incorporating execution traces to
lazy functional languages. In particular, we can highlight the work done with Hat
[16,18], HsDebug [5], the declarative debuggers Freja [10,11] and Buddha[14], and
specially the work done with the Haskell Object Observation Debugger (Hood)
[6,15]. All of them are designed to be used with the language Haskell [13], the
de facto standard in the lazy-evaluation functional programming community.

The approaches followed in each of the previous debuggers are quite different,
both from the point of view of the user of the system and from the implementa-
tion point of view. For instance, from an implementation point of view, most of
them strongly depend on the compiler being used, while that is not the case in
Hood. From the user point of view, Freja and Buddha are question-answer sys-
tems that directs the programmer to the cause of an incorrect value, while Hat
allows the user to travel backwards from a value along the redex history leading
to it. In this paper we will not concentrate on those differences (the interested
reader can find a detailed comparison between Freja, Hat and Hood in [1]). In
contrast, we will concentrate on how to improve one of them.
� Research supported by the Spanish MCYT project TIC2003–07848–C02–01, and the

Marie Curie project MRTN-CT-2003-505121/TAROT.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 211–226, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

212 A. de la Encina, L. Llana, and F. Rubio

Among all of the Haskell debuggers, Hood has an interesting advantage over
the rest, as it is the only one that can be used with different Haskell compilers.
The reason is that it is implemented as an independent library that can be
used from any Haskell compiler, provided that the compiler implements some
quite common extensions. Hood can currently be used with the Glasgow Haskell
Compiler, Hugs98, the Snowball Haskell compiler, and also with nhc98. Due to
its portability, Hood has become one of the most used Haskell debugger.

The way Hood works is relatively simple. First, the programmer instruments
the program marking the variables he wants to observe and, after finishing the
execution of the program, the system produces a printing of their final value. Let
us remark that final value does not necessarily mean normal form, but evaluation
to the degree required by the computation. Unfortunately, it is sometimes tricky
to understand what should be observed by using Hood in special situations.
In fact, as the author recognizes in [6], the semantics of observe (the main
debugging combinator of Hood) should be clearly defined to help understanding
these situations.

The problem can get more complicated when we consider different imple-
mentations of Hood. For instance, the Hugs interpreter currently incorporates
an observe combinator that differs from that of the original version of Hood.
Both the original debugging strategy and the debugging strategy implemented
in Hugs are useful and have advantages over each other. However, both of them
lack a formalization allowing to reason what should be expected about concrete
executions. Moreover, although both strategies are interesting, only one of them
can be used in each environment.

In this paper we propose an extension of the STG abstract machine [12] for it
to have debugging capabilities. We present three extensions in order to approach
gradually the behavior of the Hood debugger. By doing so, we obtain several
benefits. First, the semantics of the observations are clearly defined in terms of
the semantics of the STG abstract machine. Second, the implementation can be
trivially derived from the modified rules of the STG machine, overcoming some
limitations of the current Hood implementation.1 In this sense, we have reused
the work done in [4] to implement our versions of the Hood debugger. Following
the ideas of that paper we have proved [2] the the correctness of our modifications
to the standard STG machine. And third, by encoding the observations inside
the STG machine, we can easily study different types of observations. Thus,
variations of the Hood observe combinator can be introduced. Let us remark
that, when introducing such variations, we will trivially obtain its semantics.
Moreover, the implementation will also be obtained by modifying accordingly the
one of the STG machine. In fact, we have already implemented all the variations
appearing in the paper (and also others not shown).

Summarizing, we propose a cleaner and more modular approach to the trace
problem in lazy functional programming, allowing to easily provide both imple-
mentations and formal foundations for them.

1 The sharing of closures is partially lost when using the original implementation of
Hood.

Formalizing the Debugging Process in Haskell 213

The rest of the paper is structured as follows. In the next section we introduce
the main characteristics of Hood. In Section 3 we briefly review the main char-
acteristics of the STG machine. Then, in Section 4 we present how to modify the
STG machine to include Hood-like observations. In sections 5 and 6 we study
variations of the Hood observations that can be obtained by modifying the STG
rules. Finally, in Section 7 we present our conclusions and lines for future work.

2 An Introduction to Hood

In this section we show the basic ideas behind Hood. The interested reader is
referred to [6,7] for more details about it.

When debugging programs written in an imperative language, the program-
mer can explore not only the final result of the computation, but also the inter-
mediate values stored in the variables being used by the program. Moreover, it
is simple to follow how the value of each variable changes over time.

Unfortunately, this task is not that simple when dealing with lazy functional
languages. However, Hood allows the programmer to observe something similar
to it. In fact, Hood allows the programmer to observe any intermediate structure
appearing in a program. Moreover, by using GHood [15] we can also observe the
evolution in time of the evaluation of the structures under observation.

In order to illustrate what kind of observations can be obtained by using
Hood, let us consider an example. It will be complex enough to highlight im-
portant aspects of Hood, but also relatively simple to be easily understandable
without requiring knowledge about Haskell. Given a natural number, the follow-
ing Haskell function returns the list of digits of that number:
natural = reverse . map (‘mod ‘ 10)

. takeWhile (/= 0) . iterate (‘div ‘ 10)

That is, natural 3408 returns the list 3:4:0:8:[], where [] denotes the
empty list and : denotes the list constructor. Let us remark that, in order to
compute the final result, three intermediate lists were produced in the following
order:
-- after iterate
3408:340:34:3:0:_
-- after takeWhile
3408:340:34:3:[]
-- after map
8:0:4:3:[]

Notice that the first intermediate list is infinite, although only the first five
elements are computed. As the rest of the list does not need to be evaluated, it
is represented as (the underscore char).

By using Hood we can annotate the program in order to obtain the output
shown before. In order to do that, we have to use the observe combinator that
is the core of Hood. The type declaration of this combinator is: observe ::
String -> a -> a. From the evaluation point of view, observe only returns
its second value. That is, observe s a = a. However, as a side effect, the value
associated to a will be squirrelled away, using the label s, in a file that will be

214 A. de la Encina, L. Llana, and F. Rubio

analyzed after the evaluation finishes. It is important to remark that observe
returns its second parameter in a completely lazy, demand driven manner. That
is, the evaluation degree of a is not modified by introducing the observation, in
the same way that it is not modified when applying the identity function id.
Thus, as the evaluation degree is not modified, Hood can deal with infinite lists
like the one appearing after applying iterate (‘div‘ 10).

If we consider again our previous example, we can observe all of the inter-
mediate structures by introducing three observations as follows:
natural = reverse

. observe "after map" . map (‘mod ‘ 10)

. observe "after takeWhile " . takeWhile (/= 0)

. observe "after iterate " . iterate (‘div ‘ 10)

After executing natural 3408, we will obtain the desired result. Hood does
not only observe simple structures like those shown before. In fact, it can observe
anything appearing in a Haskell program. In particular, we can observe functions.
For instance,
observe "sum " sum (4:2:5:[])

will observe the application of function sum to its parameter, returning
-- sum

{ \ (4:2:5:[]) -> 11 }

Notice that what we observe can be read as when the function receives as
input the list 4:2:5:[], it returns as output the value 11. The elements 4, 2 and
5 appear explicitly because they were really demanded to evaluate the output.
However, when observing something like
observe "length " length (4:2:5:[])

we will obtain the following observation:
-- length

{ \ (_:_:_:[]) -> 3 }

That is, we are observing a function that when it receives a list with three
elements it returns the number 3 without evaluating the concrete elements ap-
pearing in the list. Note that only the number of elements is relevant, but not
the concrete elements.

As it can be expected, higher-order functions can also be observed. This
is done in a similar way as in the previous cases. For instance, in our initial
example, instead of observing the intermediate structures, we can observe the
higher-order function iterate:2

natural = reverse
. map (‘mod ‘ 10) . takeWhile (/= 0)
. observe "iterate " iterate (‘div ‘ 10)

In this situation, when applying natural to 3408, Hood returns
-- iterate

{ \ { \ 3 -> 0 , \ 34 -> 3 ,
\ 340 -> 34 , \ 3408 -> 340 } 3408

-> 3408 : 340 : 34 : 3 : 0 : _ }

2 This higher-order function applies infinite times the first function it receives. For
instance, applying iterate (+3) 1 returns the infinite list 1:4:7:10:13:...

Formalizing the Debugging Process in Haskell 215

That is, it observes that it is a function that returns 3408:340:34:3:0:_
when it receives as second parameter 3408 and as first parameter a function
(‘div‘ 10) that has been observed with four different input values: 3408, 340,
34 and 3.

Let us finally comment a drawback of Hood implementation. Even though
it is guaranteed that observe does not modify the evaluation degree of the
observed values, it does not completely preserve the sharing of closures. That
is, each time a structure is observed, the corresponding closure is cloned, and
its computation takes place without sharing the closure with the rest of the
program. Obviously, this is an inefficiency in terms of memory and also in terms
of runtime. However, by doing so, the implementation was easier.

It is important to remark that, as expressions under observation do not share
closures with other parts of the program, it is easier to decide who was the
responsible of evaluating each thing. That is, if we are observing a structure in a
given environment, we are not interested in the parts of the structure that were
evaluated due to other environments. For instance, if we are observing function
length in the following example

let xs = take 5 (1:2:3:4:5:6:7:[])
in (observe "length " length xs) + (sum xs)

we will obtain the output
-- length

{ \ (_:_:_:_:_:[]) -> 5 }

That is, even though all the elements of the list xs were actually computed (due
to function sum), they were not needed at all to compute any application of the
function length

However, the Hugs interpreter provides a modified version of Hood whose
behavior is quite different in this situation. In fact, when observing function
length in exactly the same situation as before, the observation that it returns is
-- length

{ \ (1:2:3:4:5:[]) -> 5 }

That is, Hugs does not observe what was really demanded by function
length. The main advantage of using Hugs-like observations instead of Hood is
that the sharing of closures is not lost in Hugs. Moreover, we obtain information
about the actual degree of evaluation of each structure. However, no information
is provided about what function was responsible for each evaluation, while Hood
does obtain it.

Summarizing, both the original version of Hood and the version implemented
in Hugs have advantages over each other. So, it is interesting to try to obtain
the best of both worlds.

3 The STG Abstract Machine

In this section we briefly describe a slightly modified version of the STG abstract
machine. The interested reader is referred to [12] for a very detailed description
of it and to [2,3] for details about the differences.

216 A. de la Encina, L. Llana, and F. Rubio

3.1 The Basic Language

Before starting the description of the rules governing our STG machine, let us
firstly present the core functional language used in the machine. The syntax of
this language, called FUN, is shown in Figure 1, where we assume n, k and m to
be integers such that n > 0, k ≥ 0 and m is an unboxed integer. We also assume
xi

n to represent n variables.
As it can be seen, FUN is a normalized λ-calculus, extended with recur-

sive let, constructor applications, case expressions and unboxed integers. The
normalization process forces constructor applications to be saturated and all ap-
plications to only have variables or unboxed values as arguments. Weak head
normal forms are lambda abstractions, constructions or unboxed integers.

Let us note that case expressions are not required to be saturated. In this
sense, two types of default alternatives are introduced. The difference between
them is that in the second one the result of the discriminant will be bound to
variable v, while in the first case it will be discarded. Let us also note that
applications are done to n arguments at once, not one by one. Finally, note that
the language includes unboxed integers. We would like to remark that it is not
possible to bind an unboxed value.

3.2 The STG Abstract Machine

A configuration in the STG machine is a quadruple of the form (Γ, e, E, S) where
Γ represents the heap, e is the control expression, E is the environment, and S is
the stack. The environment E binds the free variables of the control expression e
with the corresponding pointers. The heap Γ binds pointers to closures which are
presented by a pair (lf , E) where lf is a lambda expression and E represents the
environment which maps the free variables of lf to the corresponding pointers.
The stack S stores three kinds of objects: arguments pi of pending applications
(that should be unboxed values or pointers), case alternatives (alts , E) of pending
pattern matches, and marks #p of pending updates.

The reason why we need the environments is that control expressions, lambda
expressions and alternatives keep their original variables and in execution we
need to know their associated pointers.

The STG machine starts with an expression to be evaluated in an empty
heap, environment and stack. Its execution follows the rules shown in Figure 2.

e → e atomi
n -- application

| op atomi
n -- saturated built-in op

| atom -- variable or literal
| let xi = lf i

n
in e -- let

| letrec xi = lf i

n
in e -- recursive let

| case e of alts -- case expression

alts → Ci xj
ki �→ ei

k

.default -- algebraic alternative
| mi �→ ei

k.default -- primitive alternative

default → default �→ e -- default alternative
| v �→ e
| φ

lf → λ xi
n.e -- lambda abstraction

| C xi
k -- constructor application

| e -- expression

atom → x -- variable
| m -- primitive integers

op → +# | − # | ∗ # | /# -- primitive integer op

Fig. 1. FUN language

Formalizing the Debugging Process in Haskell 217

Heap Control Environment Stack rule
Γ let {xi = lf i} in e E S let (1)

⇒ Γ ∪ [qi �→ (lf i, E)] e E′ S

Γ letrec {xi = lf i} in e E S letrec (2)
⇒ Γ ∪ [qi �→ (lf i, E

′)] e E′ S

Γ case e of alts E S case1
⇒ Γ e E (alts, E) : S

Γ [q �→ (Ck xi, {xi �→ pi})] x E{x �→ q} (alts, E′) : S case2 (3)
⇒ Γ ek E′ ∪ {yki �→ pi} S

Γ [q �→ (Ck xi, {xi �→ pi})] x E{x �→ q} (alts.default− > e, E′) : S case2d (4)
⇒ Γ e E′ S

Γ [q �→ (Ck xi, {xi �→ pi})] x E{x �→ q} (alts.v− > e, E′) : S case2v (4)
⇒ Γ e E′ ∪ {v �→ q} S

Γ e xi
n E{xi �→ pi

n} S app1
⇒ Γ e E pi

n : S

Γ [q �→ (λxi
n.e, E′)] x E{x �→ q} pi

n : S app2
⇒ Γ e E′ ∪ {xi �→ pi

n} S

Γ ∪ [p �→ (e, E′)] x E{x �→ p} S var1
⇒ Γ e E′ #p : S

Γ [p �→ (λxi
k.λyi

n.e, E′)] x E{x �→ p} pi
k : #q : S var2 (5)

⇒ Γ ∪ [q �→ (x xi
k, E′′)] x E pi

k : S

Γ [q �→ (Ck xi, E
′)] x E{x �→ q} #p : S var3

⇒ Γ ∪ [p �→ (Ck xi, E
′)] x {x �→ p} S

Γ x E{x �→ k} S int#
⇒ Γ k {} S

Γ k E (alts, E′) : S case2# (3)
⇒ Γ ek E′ S

Γ k E (alts.default− > e, E′) : S case2d# (4)
⇒ Γ e E′ S

Γ k E (alts.v− > e, E′) : S case2v# (4)
⇒ Γ e E′ ∪ {v �→ k} S

Γ op x1 x2 E S op# (6)
⇒ Γ k1op k2 {} S

(1) qi are distinct and fresh w.r.t. Γ , let {xi = lf i} in e, and S. E′ = E ∪ {xi �→ qi}
(2) qi are distinct and fresh w.r.t. Γ , letrec {xi = lf i} in e, and S. E′ = E ∪ {xi �→ qi}
(3) Expression ek corresponds to the k-th alternative of Cj yji → ej in alts
(4) Ck not in alts
(5) E′′ = {x �→ p, xi �→ pi

k}
(6) ki =if isInt(xi) then xi else E(xi)

Fig. 2. The STG abstract machine

The STG machine presented above has some differences from the original one [12]
and they are deeply discussed in [4].

We will use the following notation to describe the rules. x and y represent
variables, while p and q represent pointers in the heap. From now on we will use
the term lambda forms to refer to both λ-abstractions and constructor applica-
tion. By using Γ ∪ [p �→ w] we denote that we are adding to the heap Γ a new
closure w, and we are locating it at position p; we assume that the pointer p is
not bound to any closure w in Γ . In contrast, Γ [p �→ w] means that closure w
is already in the position p of the heap. The same notation used for the heap is
also used with the environments. That is, E{x �→ p} means that variable x is
bound to pointer p in the environment. Moreover, if variable x was not bound,
by using E ∪ {x �→ p} we add a new binding so that variable x is now bound to

218 A. de la Encina, L. Llana, and F. Rubio

lf → λ xi
n.e -- lambda abstraction

| C xi
k -- constructor application

| e -- expression
| x@str -- observed variable

Fig. 3. Introducing observations in FUN

pointer p. In case x was already bound to something else, by using E ∪ {x �→ p}
we replace such previous binding with the new one.

As in the STG machine, lambda forms do not appear in control expressions.
The main reason for that is efficiency: we do not want to move continuously
lambda forms from heap to control and the other way around. Because of that,
weak head normal forms corresponds to pointers pointing to lambda forms. It is
easy to demonstrate that this is invariant under the application of all rules.

Let us briefly comment the transitions shown in Figure 2. The first two rules
(let, letrec) deal with let and letrec expressions. In this case, the body of the
let and letrec will be evaluated after adding to the heap all the bindings cor-
responding to their local definition. The evaluation of case (rules case1, case2,
case2d, case2v) expressions requires two steps: The first rule stores the list of
alternatives in the stack, and goes on evaluating the discriminant. After finishing
its computation, a weak head normal form will be obtained. In that moment, it
will be compared with the alternatives stored in the stack to decide what alter-
native of the case matches the result. In order to do that, three different rules are
needed (case2, case2d, case2v): one for applying conventional alternatives, and
two for applying each kind of default alternative. The case of the applications is
also split into two steps (app1, app2): first, the arguments are stored in the stack
until the function is computed, and then it is applied to those arguments. We
have three cases when evaluating a variable: if it is not evaluated (rule var1),
we put an update mark on the stack and start to evaluate the corresponding
expression; on the other hand if it is in normal form we update the heap with
the corresponding normal form (rules var2, var3). Finally, the last five rules deal
with unboxed integers.

4 Encoding Hood in the STG Abstract Machine

Let us consider now how to introduce Hood-like observations at STG level.
Let us remember that Hood users can annotate their programs to mark which
structures are to be observed. Thus, in our case we also have to be able to
annotate any structure. This can be trivially done by allowing to annotate as
observable any variable bound in a letrec. Thus, we only need to modify slightly
the FUN language to include an extra construction as shown in Figure 3. Notice
that x@str is the equivalent to the Hood expression observe str x.

Once the language allows us to include observations, we have to deal with
them in the abstract machine. The main idea is that each rule will have the
possibility of generating a side effect to write some observations in a log file. By
using this basic idea, we need to rewrite some of the transitions. In Figure 4,
the new transitions needed to model the observations are shown. We will need a

Formalizing the Debugging Process in Haskell 219

Heap Control Environment Stack Side Effect rule
Γ [q �→ closure] x@str E{x �→ q} S var1@1

⇒ Γ ∪ [q′ �→ closure] x {x �→ q′@<str>} S ∅

Γ [q �→ closure] x@str E{x �→ q@<strs>} S var1@2

⇒ Γ ∪ [q′ �→ closure] x {x �→ q′@<str++strs>} S ∅

Γ ∪ [q �→ (Ck xi, {xi �→ pi})] x E{x �→ q@<strs>} S observer@ (1)
⇒ Γ ′ x {x �→ q} S (strs, q �→ Ck p′

i)

Γ [q �→ (λxi
n.e, E′)] x E{x �→ q@<strs>} pi

n : S app2@ (2)
⇒ Γ ′ x {x �→ q′@<strs>} S (strs, q �→ (λp′

i

n
.q′))

Γ [q �→ (λxi
k.λyi

n.e, E′)] x E{x �→ q} pi
k : #q′@<strs> : S var2@1 (3)

⇒ Γ ∪ [q′ �→ (x xi
k, E′′)] x {x �→ q@<strs>} pi

k : S ¬(strs, q �→ pi
k)

Γ [q �→ (λxi
k.λyi

n.e, E′)] x E{x �→ q@<strs>} pi
k : #q′@<strs

′> : S var2@2 (4)
⇒ Γ ∪ [q′ �→ (x xi

k, E′′)] x {x �→ q@<strs++strs
′>} pi

k : S ¬(strs ′, q �→ pi
k)

(1) Γ ′ = Γ ∪ [p′

i �→ Γ (pi)] ∪ [q �→ (Ck xi, {xi �→ p′@<strs>
i })]

(2) Γ ′ = Γ ∪ [p′

i �→ Γ (pi)] ∪ [q′ �→ (e, E′ ∪ {xi �→ p′@<strs>
i

n

})]
(3) E′′ = {x �→ q@<strs>, xi �→ pi

k}

(4) E′′ = {x �→ q@<strs++strs
′>, xi �→ pi

k}

Fig. 4. Including the original version of Hood in the STG abstract machine

completely new rule (observer) to deal with the observation of the constructors,
and we will also have to add modifications of the rules var1, var2 and app2 of
the STG machine.

In Figure 4 it can be seen that there is an extra column containing the side
effects of the rules. Let us remark that the side effects are produced at the same
time as the evaluation of the program takes place. Thus, observations can be
obtained even in the case that the program does not finish its computation.

Before describing the concrete rules, we must introduce some notation. As
Hood allows to annotate with a string each observed structure, our pointers can
also be annotated with sets of strings (the notation < strs > represents a set
of strings). We use sets of strings instead of only one string because the same
closure could be observed in different environments with different marks.

As our pointers can now contain annotations, in the stack we can have two
different types of pointers: Normal pointers and pointers under observation. As
both types of pointers are still pointers, the transitions of the STG machine
equally apply to both types. However, in some situations we will be interested
in distinguishing both of them. In order to do that in a compact way, we will
use as notation that q refers to non-observed pointers, while p refers to any type
of pointer (under observation or not).

Let us describe the main differences with the STG machine shown in the
previous section. First, when a variable under observation is entered, the corre-
sponding closure is cloned, and then this new closure is observed (this is done in
the first two rules shown in Figure 4). It is important to remark that what we
are doing is to copy the behavior of Hood. In Hood, closures under observation
are not shared with other parts of the program. By doing so, it is easier to decide
who was the responsible for evaluating each part of the structure.

In order to better understand the rules, we assume x@str to represent a closure
that is to be observed under the name str , but that has not already been cloned.

220 A. de la Encina, L. Llana, and F. Rubio

It is worth to point out that this kind of closures can only be created by the
programmer. That is, once the original program is introduced, it is not possible
that new closures of this style appear due to the effects of the transitions of the
machine. In contrast, we would use p@<strs> to represent a cloned closure that
is being observed under the set of names strs.

Let us describe the modified rules one by one. Rules var1@1 and var1@2
clone an observed closure and annotate the pointer to the cloned closure as an
observed pointer. By doing so, we can remember that the closure has already
been cloned. Moreover, when the closure is reduced to weak head normal form
(whnf), the machine will be able to detect that a side effect has to be performed
to observe such a whnf. In addition to that, in the same moment, it will be
necessary to clone the closures appearing in such whnf, and also to annotate
them as observables.

The rule observer@ corresponds to the observation of a constructor applied
to a list of arguments. When obtaining the constructor, a side effect is produced.
Then, the closures corresponding to the arguments of the constructor are cloned.
Finally, those cloned closures are marked as observables.

From that moment, the evaluation goes on, but what is being evaluated is
not necessarily a variable associated to a pointer under observation. The reason
is that the observation has already been performed. Thus, the variable under
evaluation will only be under observation again when entering a closure that has
been marked appropriately.

Let us remark that the rule observer@ does not modify the stack, as its only
purpose is to perform an observation, not an evaluation.

As it can be seen, observing constructors is relatively simple. However, ob-
serving applications of functions will be a little bit more complex. In fact, such
observations are done at the same time as the normal computation, by using
rules app2@, var2@1 and var2@2.

Rule app2@ is used to observe a total application, that is, the application of
a function to all the arguments it requires. Let us remind that, due to efficiency
issues, the STG machine assumes that partial applications are never done.

In this app2@ rule, we have something of the form λxi
n.e (where e = λ) that

is being observed under the set of strings strs . Moreover, this function is going
to be applied to its arguments pin. Observe that in this situation what we need
to do to behave as Hood is to observe both the arguments of the function and
the result of the application. Thus, we proceed to observe both things: We clone
the closures of the arguments marking the new closures as observables; and we
create a new closure corresponding to the body of the lambda form, but marking
as observables all the arguments. Notice that, in case any of the pi are already
being observed due to another mark, then the corresponding p′i will have both
observation marks.

Rules var2@1 and var2@2 correspond to updates of partial applications.
In this case, closure q has been reduced to a partial application to its first k
parameters of the λ-abstraction stored at position p of the heap. In this situation,
an observation is generated indicating that we are not really observing the first

Formalizing the Debugging Process in Haskell 221

k parameters, and we go on evaluating the λ-abstraction marked as observable.
Notice that we need to record that it is an intermediate step needed before the
actual observation, but we do not want to show this intermediate step to the
user (this is represented in the rules by using the ¬ symbol). Thus, by using
this strategy we are obtaining more information than expected by the Hood
user. However, by using this kind of special intermediate marks, after the end
of the execution we can trivially postprocess the log file obtaining only those
observations corresponding to the actual behavior of Hood.

Let us finally comment that in rules var2@2 and var@2 we deal with the
situation where a closure is observed with several marks. Rule var2@2 join the
two sets of marks corresponding to the marks that were already attached to the
closure and to the marks of the new observation. Similarly, var@2 adds the new
mark to the previous set of marks. For the sake of simplicity, we use the same
symbol (++) to denote both the union of sets and adding an element to a set.

5 Sharing Closures: Hugs-Like Debugging

As we said in Section 2, when observing a structure in Hood, the sharing of
closures is completely lost. This implies that more memory is needed to run the
program, and it also implies that some computations can be duplicated. Thus,
both the runtime and the space efficiency are reduced.

In Section 2 we commented that the Haskell interpreter Hugs includes a
different version of Hood. One of the advantages of this version is that the
sharing of closures is not lost due to the observations. However, the results
obtained when using Hugs are not the same as when using Hood with other
compilers. The difference is that Hugs does not record who was responsible for
each evaluation, it only records whether a value was computed or not.

We can easily embed this variant of Hood by slightly modifying the rules
we introduced in the previous section. The new rules are shown in Figure 5.
Notice that rules var1@1 and var1@2 are nearly the same as in the previous
implementation, the difference being that now we do not clone any closure. Rule
observerH@ has also been modified to remove the duplication of the closure
under evaluation. By removing such duplications, we keep the sharing of closures,
like Hugs does.

Rule app2@ is also slightly modified to avoid cloning the closures correspond-
ing to the parameters of the application. However, it is necessary to use a new
pointer to bind the body of the lambda abstraction. This is done to be able to
observe the lambda form it evaluates to. However, we would like to remark that
we are not cloning the closure. That is, sharing is kept.

Finally, rules var2@1 and var2@2 are not changed at all. That is, they are
exactly the same as in the previous section. The reason is that the only difference
with the previous implementation is that we do not want to clone closures. How-
ever, we do not care about keeping the behavior of the original version of Hood.
The reason is that we are marking all the closures that are under observation,
but we are not taking care about the closures that are observing those observed
closures. Thus, in case function length is observed in a program like

222 A. de la Encina, L. Llana, and F. Rubio

Heap Control Environment Stack Side Effect rule
Γ x@str E{x �→ q} S var1@1

⇒ Γ x {x �→ q@<str>} S ∅

Γ x@str E{x �→ q@<strs>} S var1@2

⇒ Γ x {x �→ q@<str++strs>} S ∅

Γ ∪ [q �→ (Ck xi, {xi �→ pi})] x E{x �→ q@<strs>} S observerH@
⇒ Γ ∪ [q �→ (C xi, {xi �→ p@<strs>

i })] x {x �→ q} S (strs, q �→ C pi)

Γ [q �→ (λxi
n.e, E′)] x E{x �→ q@<strs>} pi

n : S app2@
⇒ Γ ∪ [q′ �→ (e, E′ ∪ {xi �→ p@<strs>

i

n

})] x {x �→ q′@<strs>} S (strs, q �→ (λpi
n.q′))

Γ [q �→ (λxi
k.λyi

n.e, E′)] x E{x �→ q} pi
k : #q′@<strs> : S var2@1 (1)

⇒ Γ ∪ [q′ �→ (x xi
k, E′′)] x {x �→ q@<strs>} pi

k : S ¬(strs, q �→ pi
k)

Γ [q �→ (λxi
k.λyi

n.e, E′)] x E{x �→ q@<strs>} pi
k : #q′@<strs

′> : S var2@2 (2)
⇒ Γ ∪ [q′ �→ (x xi

k, E′′)] x {x �→ q@<strs++strs
′>} pi

k : S ¬(strs ′, q �→ pi
k)

(1) E′′ = {x �→ q@<strs>, xi �→ pi
k}

(2) E′′ = {x �→ q@<strs++strs
′>, xi �→ pi

k}

Fig. 5. The Hugs-Hood abstract machine

let xs = take 5 (1:2:3:4:5:6:7:[])
in (observe "length " length xs) + (sum xs)

we have that xs is being observed, being function length its observer. Moreover,
xs is completely evaluated due to the demand of function sum. Then, although
function length only demands the spine of xs, the observation obtained would be
-- length

{ \ (1:2:3:4:5:[]) -> 5 }

That is, we obtain the same type of observations as Hugs, not that of the
original Hood. The reason is that the abstract machine is not considering who
is the observer of the observed structures. Thus, in case an observed closure is
demanded, its evaluation will be observed even if the reason of the computation
is not related with the observer function.

6 Hood Sharing Closures

As we showed in Section 4, by encoding Hood in the STG abstract machine
we can do exactly the same as in Hood. In fact, we have followed an approach
that was also losing the sharing of closures. Thus, it had the same efficiency
disadvantages.

In the previous section we have shown another implementation keeping the
sharing of closures. However, its behavior was not equivalent to that of the
original version of Hood.

Fortunately, when working at the level of the abstract machines we can eas-
ily overcome the previous problems. In fact, in this section we show how we can
embed Hood in the STG abstract machine without reducing the sharing of clo-
sures. That is, the observed programs will run using the same space as it would
be required to run the program without observations.

In Figure 6, the new transitions needed to model the observations are shown.
Before explaining them in detail, we would like to remark that there is no rule
where closures are cloned. That is, sharing of closures will be preserved.

Formalizing the Debugging Process in Haskell 223

As closures are not being cloned, it is now very important to clearly under-
stand not only what closure is being observed, but also what other closure is
observing it. For instance, in the expression letrec x = y@str . . . in e, we have
that y is a closure that is being observed, while x is the closure that is observing
it. That is, x is the observer of y. In this situation, even though we must re-
member that y is being observed with the mark str , when updating a value the
observation marks should be attached to the pointer corresponding to variable
x, and not to the pointer corresponding to variable y. That is, what we need to
do is to associate the observations to the entity that is observing, not to the one
that is being observed.

Following the previous ideas, x@str means that closure x is being observed by
other closure. Similarly, q@<strs> means that the closure located at position q of
the heap is being observed from other closures by using the set of marks strs. As a
consequence, closure q must be stored in the heap without any observation mark.

Rules var2@1 and var2@2 are exactly the same as in Section 4, that is, when
sharing was not preserved, except that now it is not necessary to add @<strs>
to the closure q′ added to the heap because annotation @<strs> means that
another closure is observing q′. However, rules var1@1, var1@2 and app2@ need
to be slightly rewritten, the only difference being that now we do not have to
clone any closure. That is, we have to use exactly the same rules as in the
Hugs-like machine.

Notice that in the new abstract machine we can not use the rules observer@
or observerH@. Rule observer is incorrect because closure p corresponds to the
closure that is being observed, not to the closure that is observing it. In the
first machine, as closure p was a copy of the original closure, we could mark it
without any risk, as it was only possible to enter this closure from the closures
that were observing it. However, now p is not cloned, and it can be entered both
from a closure that is observing it or from any other closure. Due to this reason,
now we need more rules to be able to distinguish both situations. Let us remark
that rule observerH is also incorrect in this situation, as it was not taking into
account who was the observer of each observed closure.

Let us describe the rest of the new rules, that are needed to substitute rule
observer. As we need to take care of both the observer and the observed closures,
we need to track the evolution of the computation transmitting the marks corre-
sponding to the closures under observation. Observe that rules case2@, case2d@,
case2v@ and var3@ are exactly the same as in the original STG machine, but
transmitting the marks and generating side effects.

Rules case2@, case2d@ and case2v@ deal with closures that has been reduced
to a constructor application, and that are being observed with the set of strings
strs. Thus, a side effect has to be generated to observe the constructor, and then
the machine has to go on evaluating the corresponding alternative of the outer
case expression. Notice that all the pointers appearing in the application of the
constructor are also marked as observable, so that we can actually observe them
when appropriate.

224 A. de la Encina, L. Llana, and F. Rubio

Heap Control Environment Stack Side Effect rule
Γ x@str E{x �→ q} S var1@1

⇒ Γ x {x �→ q@<str>} S ∅

Γ x@str E{x �→ q@<strs>} S var1@2

⇒ Γ x {x �→ q@<str++strs>} S ∅

Γ [q �→ (λxi
n.e, E′)] x E{x �→ q@<strs>} pi

n : S app2@(1)
⇒ Γ ′ x {x �→ q′@<strs>} S (strs, q �→ (λpi

n.q′))

Γ [q �→ (λxi
k.λyi

n.e, E′)] x E{x �→ q} pi
k : #q′@<strs> : S var2@1 (2)

⇒ Γ ∪ [q′ �→ (x xi
k, E′′)] x {x �→ q@<strs>} pi

k : S ¬(strs, q �→ pi
k)

Γ [q �→ (λxi
k.λyi

n.e, E′)] x E{x �→ q@<strs>} pi
k : #q′@<strs

′> : S var2@2 (3)
⇒ Γ ∪ [q′ �→ (x xi

k, E′′)] x {x �→ q@<strs++strs
′>} pi

k : S ¬(strs ′, q �→ pi
k)

Γ [q �→ (Ck xi, {xi �→ pi})] x E{x �→ q@<strs>} (alts, E′) : S case2@ (4)
⇒ Γ ek E′ ∪ {yki �→ p@<strs>

i } S (strs, q �→ Ck pi)

Γ [q �→ (Ck xi, {xi �→ pi})] x E{x �→ q@<strs>} (alts.default− > e, E′) : S case2d@ (5)
⇒ Γ e E′ S (strs, q �→ Ck pi)

Γ [q �→ (Ck xi, {xi �→ pi})] x E{x �→ q@<strs>} (alts.v− > e, E′) : S case2v@ (5)
⇒ Γ ek E′ ∪ {v �→ q@<strs>} S (strs, q �→ Ck pi)

Γ [q �→ (C xi, {xi �→ pi})] x E{x �→ q@<strs>} #p : S var3@ (6)
⇒ Γ ′ x {x �→ p} S (strs, q �→ C pi)

(1) Γ ′ = Γ ∪ [q′ �→ (e, E′ ∪ {xi �→ p@<strs>
i

n

})]
(2) E′′ = {x �→ q, xi �→ pi

k}
(3) E′′ = {x �→ q@<strs>, xi �→ pi

k}
(4) Expression ek corresponds to alternative Cj yji → ej in alts
(5) Ck not in alts

(6) Γ ′ = Γ ∪ [p �→ (C xi, {xi �→ p@<strs>
i })]

Fig. 6. The Hood abstract machine sharing closures

Rule var3@ deals with the update of closures. In this case, p is updated
recording the appropriate observation, the corresponding side effect is produced,
and the machine goes on evaluating p.

Let us finally remark that, although the new machine is not so simple as the
one presented in Section 4, it is still presented in a relatively simple an compact
way.

7 Conclusions and Future Work

In this paper we have presented a new view of the Hood debugger allowing both
to clarify its formal foundations and to easily implement different variations of
it. In particular, we have described how to embed Hood inside the STG abstract
machine, showing different possible implementations of it. In fact, by encoding it
at STG level we have shown how to improve the efficiency of the implementation,
as observations can now be done without cloning closures.

Note that the approach we use to embed Hood inside the STG machine can
also be done to embed any other Haskell debugger. In this sense, it could be used
as a common framework for describing (and also implementing) all of them.

As future work, we plan to extend our framework to deal with parallel ex-
tensions of Haskell. In this sense, we will pay special attention to the language
Eden[9], whose abstract machine is an extension of the STG machine. An inter-
esting feature of Eden is that it uses eager evaluation when sending values from

Formalizing the Debugging Process in Haskell 225

one process to another process. Due to this reason, unnecessary computations
are sometimes done, and it can be hard to discover how much data was pro-
duced speculatively. By using an extension of Hood we could detect the amount
of speculation, as we could see how much data was produced and how much was
actually demanded.

A more general framework to deal with different parallel extensions of Haskell
could also be used. Unfortunately, there does not exist a common abstract ma-
chine shared by different parallel languages. In this sense, the best choice is to
try to embed the debugging method inside the Jauja language[8], a very simple
parallel functional language that has already been used as a common framework
to describe three different languages, namely GpH, Eden and pH.

References

1. O. Chitil, C. Runciman, and M. Wallace. Freja, Hat and Hood — a comparative
evaluation of three systems for tracing and debugging lazy functional programs.
In Implementation of Functional Languages (IFL’00), LNCS 2011, pages 176–193.
Springer-Verlag, 2001.

2. A. Encina, L. Llana, and F. Rubio. Formalizing the debugging process in Haskell
(extended version). http://dalila.sip.ucm.es/miembros/albertoe/, 2005.

3. A. Encina and R. Peña. Proving the correctness of the STG machine. In Imple-
mentation of Functional Languages (IFL’01), LNCS 2312, pages 88–104. Springer-
Verlag, 2001.

4. A. Encina and R. Peña. Formally deriving an STG machine. In Principles and
Practice of Declarative Programming (PPDP’03), pages 102–112. ACM, 2003.

5. R. Ennals and S. Peyton Jones. HsDebug: Debugging lazy programs by not being
lazy. In 7th Haskell Workshop, pages 84–87. ACM, 2003.

6. A. Gill. Debugging Haskell by observing intermediate data structures. In 4th
Haskell Workshop. Technical Report of the University of Nottingham, 2000.

7. A. Gill. Hood homepage. http://www.haskell.org/hood, 2005.
8. M. Hidalgo-Herrero and Y. Ortega-Mallén. Continuation semantics for parallel

Haskell dialects. In First Asian Symposium on Programming Languages and Sys-
tems (APLAS’03), LNCS 1058, pages 303–321. Springer-Verlag, 2003.

9. U. Klusik, R. Loogen, S. Priebe, and F. Rubio. Implementation skeletons in
Eden: Low-effort parallel programming. In Implementation of Functional Lan-
guages (IFL’00), LNCS 2011, pages 71–88. Springer-Verlag, 2001.

10. H. Nilsson. Declarative debugging for lazy functional languages. PhD thesis, Dpt.
Computer and Information Science, Linköping University, Sweden, 1998.

11. H. Nilsson. How to look busy while being as lazy as ever: The implementation of a
lazy functional debugger. Journal of Functional Programming, 11(6):629–671, Nov
2001.

12. S. Peyton Jones. Implementing lazy functional languages on stock hardware: The
spineless tagless G-machine, version 2.5. Journal of Functional Programming,
2(2):127–202, 1992.

13. S. Peyton Jones and J. Hughes, editors. Report on the Programming Language
Haskell 98. URL http://www.haskell.org, February 1999.

14. B. Pope and L. Naish. Practical aspects of declarative debugging in Haskell 98. In
Principles and Practice of Declarative Programming (PPDP’03), pages 230–240.
ACM, 2003.

226 A. de la Encina, L. Llana, and F. Rubio

15. C. Reinke. GHood — graphical visualization and animation of Haskell object
observations. In 5th Haskell Workshop, volume 59 of ENTCS. Elsevier Science,
2001.

16. J. Sparud and C. Runciman. Tracing lazy functional computations using re-
dex trails. In Programming Languages, Implementations, Logics and Programs
(PLILP’97), LNCS 1292, pages 291–308. Springer-Verlag, 1997.

17. P. Wadler. Functional programming: Why no one uses functional languages. SIG-
PLAN Notices, 33(8):23–27, August 1998. Functional Programming Column.

18. M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multipleview tracing for
Haskell: a new Hat. In 5th Haskell Workshop, pages 151–170, 2001.

Finding Resource Bounds in the Presence
of Explicit Deallocation�

Hoang Truong and Marc Bezem

Department of Informatics, University of Bergen,
PB. 7800, N-5020 Bergen, Norway
{hoang, bezem}@ii.uib.no

Abstract. A software program requesting a resource that is not avail-
able usually raises an out-of-resource exception. Component software is
software that has been assembled from standardized, reusable compo-
nents which, in turn, may also composed from other components. Due to
the independent development and reuse of components, component soft-
ware has a high risk of causing out-of-resource exceptions. We present a
small component language and develop a type system which can stati-
cally prevent this type of errors .

This work continues our previous works [3,18] by including explicit
deallocation. We prove that the type system is sound with respect to
safe deallocation and that sharp resource bounds can be computed
statically.

1 Introduction

Component software is built from various components, possibly developed by
third-parties [15,17,8]. These components may in turn use other components.
Upon execution instances of these components are created. For example, when
we launch a web browser application it may create an instance of a dial-up
network connection, an instance of a menubar and several instances of a toolbar,
among others. Each toolbar may in turn create its own control instances such
as buttons, addressbars, bookmarks, and so on.

The process of creating an instance of a component x does not only mean
the allocation of memory space for x’s code and data structures, the creation
of instances of x’s subcomponents (and so on), but possibly also the binding
of other system and hardware resources. Usually, these resources are limited
and components are required to have only a certain number of simultaneously
active instances. In the above example, there should be only one instance of a
menubar and one instance of a modem for network connection. Other examples
come from the singleton pattern and its extensions (multitons), which have been
widely discussed in literature [10,9]. These patterns limit the number of objects
of a certain class dynamically, at runtime.

� This research was supported by the Research Council of Norway.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 227–241, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

228 H. Truong and M. Bezem

When building large component software it can easily happen that different
instances of the same component are created. Creating more active instances
than allowed can lead to errors or even a system crash, when there are not
enough resources for them. An example is resource-exhaustion DoS (Denial of
Service) attacks which cause a temporary loss of services. There are several
ways to meet this challenge, ranging from testing, runtime checking [9], to static
analysis.

Type systems are a branch of static analysis. Type systems have traditionally
been used for compile-time error-checking, cf. [1,4,11]. Recently, there are several
works on using type systems for certifying important security properties, such as
performance safety, memory safety, control-flow safety [14,6,5,12]. In component
software, typing has been studied in relation to integrating components such as
type-safe composition [21] or type-safe evolution [13]. In this paper we explore
the possibility of a type system which allows one to detect statically whether or
not the number of simultaneously active instances of specific components exceeds
the allowed number. Note that here we only control resources by the number of
instances. However, we can extend to more specific resources, such as memory,
by adding annotations to components using such resources.

For this purpose we have designed a component language where we have ab-
stracted away many aspects of components and have kept only those that are
relevant to instantiation, deallocation and composition. In the previous work
[3,18], the main features are instantiation and reuse, sequential composition,
choice, parallel composition and scope and the deallocation of instances is con-
trolled by scope mechanism. In this work, we consider sequencing and parallel
composition, choice and scope, add an explicit deallocation primitive, which al-
lows us to imperatively remove an instance in the same scope. For the sake of
simplicity, we do not consider the reuse primitive. However, we believe that the
combination of all the features is feasible.

Though abstract, the strength of the primitives for composition is consid-
erable. Choice allows us to model both conditionals and non-determinism. It
can also be used when a component have several compatible versions and the
system can choose one of them at runtime. Scope is a mechanism to deallocate
instances but it can also be used to model method calls. Parallel composition
allows several threads of execution. Sequential composition is associative.

We use a small-step operational semantics and as a result, we can prove
the soundness of our type system using the standard technique of Wright and
Felleisen [20].

The type inference algorithm for this system is almost the same as in [3]. We
still have a polynomial time type inference algorithm. Polynomial type inference
is of crucial importance since examining all possible executions of the operational
semantics is (at least) exponential.

The paper is organized as follows. Section 2 introduces the component lan-
guage and a small-step operational semantics. In Section 3 we define types and
the typing relation. The soundness and several other properties of the system
are presented in Section 4. Finally, we outline some future directions.

Finding Resource Bounds in the Presence of Explicit Deallocation 229

2 A Component Language

2.1 Syntax

Component programs, declarations and expressions are defined in Table 1. In the
definition we use extended Backus-Naur Form with the following meta-symbols:
infix | for choice and overlining for Kleene closure (zero or more iterations).

Table 1. Syntax

Prog ::= Decls ; E Program
Decls ::= x−≺E Declarations
E ::= Expression

| ε Empty
| newx Instantiation
| delx Deallocation
| (E + E) Choice
| (E ‖ E) Parallel
| {E} Scope
| E E Sequencing

Let a, . . . , z range over component names and A, . . . , E range over expres-
sions. We collect all component names in a set C.

The main ingredients in the component language are component declaration
and expression. We have two primitives (new and del) for creating and delet-
ing an instance of a component, and four primitives for composition (sequential
composition denoted by juxtaposition, + for choice, ‖ for parallel, and {. . .}
for scope). Together with the empty expression ε these generate so-called com-
ponent expressions. A declaration x−≺E states how the component x depends
on subcomponents as expressed in the component expression E. If x uses no
subcomponents then E is ε and we call x a primitive component. A component
program consists of declarations and ends with a main expression which sparks
off the execution, see Section 2.2.

The following example is a well-formed component program. In this example,
d and e are primitive components. Component a is the parallel composition of
{ newd} new e and new d followed by a deallocation of d. Component b has a
choice expression before deleting an instance of e.

d−≺ε e−≺ε

a−≺({ newd} new e ‖ newd) del d
b−≺(newa+ new e newd) del e;
new b

230 H. Truong and M. Bezem

2.2 Operational Semantics

Informally, expression E can be viewed as a sequence of commands of the form
newx, delx, (A + B), (A ‖ B), {A} in imperative programming languages and
the execution is sequential from left to right. In the operational semantics E is
paired with a local store, modelled by a multiset. The first three commands act
locally. When executing a command of the form newx, a new instance of x is
created in the local store and the execution continues with the ’body’ A, if the
declaration of x is x−≺A and A = ε. If A = ε the execution proceeds to the next
command after newx. Executing delx simply removes a x in the local store
then continues with the next command. Executing (A +B) means to choose A
or B to execute with the same store.

When the current command is of the form {E} the execution of the com-
mands after {E}, say A, is suspended, and the execution is transferred to E with
a new empty local store. When the execution of the new pair ([], E) terminates
in pair (M, ε), the instances in M are discarded and the execution resumes to the
expression A and its local store. We will use stacks for this scope mechanism.

Executing (E1 ‖ E2) suspends the execution of the commands after it and
creates two new empty stores for each E1 and E2 and these two new pairs
([], E1) and ([], E2), called child threads, are executed concurrently. When a
thread terminates in the pair (M, ε) the instances in M are returned to the
store at the top of its parent thread. When all the child threads terminated,
the execution resumes to the parent thread. The formal model is detailed as
follows.

The operational semantics is defined by a rewriting system [16] of configu-
rations. A configuration is a binary tree T of threads. A thread is a stack ST
of pairs of a local store and an expression (M,E), where M is a multiset over
component names C, and E is an expression as defined in Table 1. A thread is
active if it is a leaf thread. A configuration is terminal if it has only one (root)
thread of the form (M, ε). Figure 1 illustrates stacks and configurations. The
syntax of stacks and configurations is as follows.

ST ::= (M1, E1) ◦ ... ◦ (Mn, En) Stack
T, S ::= Configurations

Lf(ST) Leaf
| Nd(ST,T) Node with one branch
| Nd(ST,T,T) Node with two branches

The above stack ST has n elements where (M1, E1) is the bottom, (Mn, En)
is the top of the stack, and ’◦’ is the stack separator. A node in our binary trees
may have no child nodes Lf(ST), or one branch Nd(ST,T), or two branches
Nd(ST,T,T).

We assign to each node in our tree a location, illustrated in Figure 1. Let α, β
range over locations. A location is a sequence over {l, r}. The root is assigned
the empty sequence. The locations of two direct nodes from the root are l and
r. The locations of the two direct child nodes of l are ll and lr, and so on. In

Finding Resource Bounds in the Presence of Explicit Deallocation 231

Stack/thread Binary tree of stacks Locations of a tree

ST :
M1, E1

...
Mn, En

ST

ST

ST ST

ST

ε

l

ll lr

r

Fig. 1. Illustration of a tree of stacks

general, αl and αr are the locations of the direct children of α. We write α ∈ T
when α is a valid location in tree T.

By T[[]]α we denote a tree with a hole at the leaf location α. Filling this
hole with another tree S is denoted by T[[S]]α. One step reduction is defined first
by choosing an arbitrary active thread. Then depending on the pattern of the
chosen thread and the state of the configuration, the appropriate rewrite rule can
be applied. The rewriting rules for these patterns or subconfigurations, notation
S � S′, are called the basic reduction relation. The configuration T[[S]]α can take
a step to T[[S′]]α, notation T[[S]]α −→ T[[S′]]α, if S � S′. As usual, −→∗ is the
reflexive and transitive closure of −→ .

Table 2. Basic reduction rules

(osNew) x−≺A ∈ Decls
Lf(ST ◦ (M, newxE)) � Lf(ST ◦ (M + x, AE))

(osDel) x ∈ M
Lf(ST ◦ (M, delxE)) � Lf(ST ◦ (M − x, E))

(osChoice) i ∈ {1, 2}
Lf(ST ◦ (M, (A1 + A2)E)) � Lf(ST ◦ (M, AiE))

(osPush)
Lf(ST ◦ (M, {A}E)) � Lf(ST ◦ (M, E) ◦ ([], A))

(osPop)
Lf(ST ◦ (M, E) ◦ (M ′, ε)) � Lf(ST ◦ (M, E))

(osParIntr)
Lf(ST ◦ (M, (A ‖ B)E)) � Nd(ST ◦ (M, E), Lf(([], A)),Lf(([], B)))

(osParElimL)
Nd(ST ◦ (M, E), Lf((M ′, ε)), S) � Nd(ST ◦ (M + M ′, E), S)

(osParElimR)
Nd(ST ◦ (M, E), S, Lf((M ′, ε))) � Nd(ST ◦ (M + M ′, E), S)

(osParElim)
Nd(ST ◦ (M, E), Lf((M ′, ε))) � Lf(ST ◦ (M + M ′, E))

232 H. Truong and M. Bezem

The basic reduction relation is described in Table 2. Each basic reduction rule
has two lines. The first line contains a rule name followed by a list of conditions.
The second line has the form S � S′, which states that if a configuration T has
a subconfiguration of the form S and all the conditions in the first line hold,
then we can replace the subconfiguration S of T by subconfiguration S′ and get
the new state T[[S′]].

Multisets are denoted by [. . .], where sets are denoted, as usual, by {. . .}.
M(x) is the multiplicity of element x in the multiset M and M(x) = 0 if
x /∈M . The operation ∪ is union of multisets: (M ∪N)(x) = max(M(x), N(x)).
The operation + or 9 is additive union of multisets: (M + N)(x) = M(x) +
N(x). We write M + x for M + [x] and when x ∈ M we write M − x for
M − [x].

By the rules osNew, osDel, and osChoice we only rewrite the pair at the
top of a leaf stack. The rule osNew first creates a new instance of component
x in the local store. Then if x is a primitive component it continues to exe-
cute the remaining expression E; otherwise, it continues to execute A before
executing the remaining expression E. The rule osDel deallocates an instance
of x in the local store if there exists one. If there exists no instance of x in
the local store, the execution is stuck. Note that here we have abstracted away
the specific instance that will be deleted. The rule osChoice selects a branch to
execute.

The next two rules change the shape of a leaf stack. Rule osPush pushes an
element on the top of the leaf stack. The rule osPop pops the stack when the
stack has at least two elements. That means no stack in any configuration is
empty. The last four rules change the tree structure of the configuration. By
the rule osParIntr, a leaf is replaced by a branch of a node and two leaves. In
contrast, by the rules osParElimR, osParElimL, osParElim, a leaf is removed from
the tree and the instances left at the leaf are returned to the store at the top of
the parent thread. When appropriate, the parent node may be promoted to be
an active thread (osParElim).

The example at the end of Section 2.1 is used to illustrate the operational
semantics. There are many possible runs of the program due to the choice com-
position and when a configuration has more than one leaf thread, the number
of possible runs can be exponential as active threads have the same priority.
Here we only show one of the possible runs. To make it easier to follow, we
represent the trees graphically instead of using the formal syntax; ’↼’ and ’〈’ de-
note branches with one and two child nodes, respectively. At the starting point,
the configuration has one leaf Lf([], new b). After the first step, there are two
possibilities by the rule osChoice.

(Start) ([], new b)

(osNew) −→ ([b], (new a + new e new d) del e)

(osChoice) −→ ([b], new a del e) (or ([b], new e new d del e))

Now we continue with the first possibility. When the tree grows two more leaves
we draw a box around the leaf which is to be executed in the next step.

Finding Resource Bounds in the Presence of Explicit Deallocation 233

([b], new a del e)

(osNew) −→ ([b, a], ({ new d} new e ‖ new d) del d del e)

(osParIntr) −→ ([b, a], del d del e) 〈
([], { new d} new e)
([], new d)

(osNew) −→ ([b, a], del d del e) 〈 ([], { new d} new e)
([d], ε)

(osPush) −→ ([b, a], del d del e) 〈 ([], new e) ◦ ([], new d)
([d], ε)

(osNew) −→ ([b, a], del d del e) 〈
([], new e) ◦ ([d], ε)
([d], ε)

(osParElimL) −→ ([b, a, d], del d del e)↼ ([], new e) ◦ ([d], ε)

(osPop) −→ ([b, a, d], del d del e)↼ ([], new e)

(osNew) −→ ([b, a, d], del d del e)↼ ([e], ε)

(osParElim) −→ ([b, a, d, e], del d del e)

(osDel) −→ ([b, a, e], del e)

(osDel) −→ ([b, a], ε) (terminal)

As mentioned in Section 1, here we have abstracted resources by the number
of instances. When we want to account for specific resources, we can annotate
the source program with the resource consumption of relevant component. Then
the maximum resources the component program will use can be computed from
our inferred types and the annotation. Another way to find how much resources
a component program will probably use is declaring the specific resources as
primitive components. Other components will then instantiate these resources
in their declarations if they use the resources. Then our type system in the next
section can tell us the maximum resources the program needs.

3 Type System

We have two main goals in designing the type system. The first one comes from
the rule osDel of the dynamic semantics, where the program is stuck if the next
operation is a deallocation of a component and there exists no instance of that
component in the local store. In other words, the type system must guarantee the
safety of the deallocation operation. We solve the problem by keeping a store in
the typing environment, a technique inspired by linear type systems [19,12]. For
the second goal, we want to find the upper bounds of resources that a program
may request. Since we have abstracted the specific resources in the instances, the
upper bounds become the maximum numbers of simultaneously active instances.
In the rest of this section, we first define types and explain them informally; Then
then we present the formal typing rules and some typing examples.

Before defining types, we extend the notion of multiset in Section 2 to the
notion of signed multiset. Recall, a multiset over a set of elements S can be viewed

234 H. Truong and M. Bezem

as a map from S to the set of natural numbers N. Similarly, a signed multiset M ,
also denoted by [...], over a set S is a map from S to the set of integers Z. The
analogous operations of multisets are overloaded for signed multisets. M(x) is
the ’multiplicity’ of x (can be negative); M(x) = 0 when x is not an element of
M , notation x /∈M . Let M,N be signed multisets, then we define additive union:
(M +N)(x) = M(x) +N(x); substraction: (M −N)(x) = M(x)−N(x); union:
(M ∪N)(x) = max(M(x), N(x)); intersection: (M ∩N)(x) = min(M(x), N(x));
inclusion: M ⊆ N if M(x) ≤ N(x) for all x ∈ M . For example, [x,−y,−y] is a
signed multiset where the multiplicity of x is 1 and the multiplicity of y is −2.

Definition 1 (Types). Types of component expressions are tuples

X = 〈X i, Xo, X l〉

where X i is a multiset and Xo, X l are signed multisets.

Intuitively, the meaning of each part of a type triple is as follows. Suppose X
is the type of an expression E. Then X i is the upper bound of the number of
simultaneously active instances for all components during the execution of E.
Multisets are the right data structure to store this information. Next, Xo is the
maximum number of instances that ’survive’ at the end of the execution when
executing E alone, as in [3,18]. In this paper, we have the deallocation primitive
and its behaviour is opposite to instantiation so we use signed multisets. More-
over we want compositionality of typing, so in composition Xo is the maximal
net effect (with respect to the change in the number of instances) to the runtime
environment before and after the execution of E. Similarly, X i in composition
is the effect on the maximum during the execution. The pair 〈X i, Xo〉 is enough
to calculate the upper bound.

Besides, we want the safety of the deallocation primitives in composition.
When sequencing E and delx the safety of delx depends on the minimum
outcome of E. Therefore we need X l, which is the minimum number of sur-
viving instances after the execution of E. Like Xo, in composition, X l is the
minimal net effect to the runtime environment before and after the execution
of E. The discrepancy between Xo and X l is caused by choice composition +.
More explanation is given shortly in the exposition of typing rules below.

A basis is a list of declarations: x1−≺E1, . . . ,xn−≺En. Empty basis is denoted
by ∅. Let Γ,Δ range over bases. The domain of basis Γ = x1−≺E1, . . . ,xn−≺En,
notation dom(Γ), is the set {x1, . . . ,xn}. A store is a multiset (no negative
multiplicities) of component names. Let σ range over stores. An environment is
a pair of a store and a basis. A typing judgment is a tuple of the form

σ, Γ � E :X

and it asserts that expression E has type X in the environment σ, Γ .

Definition 2 (Valid typing judgments). Valid typing judgments σ, Γ � A :X
are derived by applying the typing rules in Table 3 in the usual inductive way.

Finding Resource Bounds in the Presence of Explicit Deallocation 235

Table 3. Typing rules

(Axiom)

[], ∅ � ε :〈[], [], []〉

(WeakenB)
σ1, Γ � A :X σ2, Γ � B :Y x /∈ dom(Γ)

σ1, Γ, x−≺B � A :X

(WeakenS)
σ, Γ � A :X σ ⊆ σ1

σ1, Γ � A :X

(New)
σ, Γ � A :X x /∈ dom(Γ)

σ, Γ, x−≺A � newx :〈Xi + x,Xo + x, Xl + x〉

(Del)
σ, Γ � A :X x ∈ dom(Γ)

[x], Γ � delx :〈[], [−x], [−x]〉

(Seq)
σ1, Γ � A :X σ2, Γ � B :Y A,B �= ε

σ1 ∪ (σ2 −Xl), Γ � AB :〈Xi ∪ (Xo + Y i), Xo + Y o, Xl + Y l〉
(Choice)

σ1, Γ � A :X σ2, Γ � B :Y
σ1 ∪ σ2, Γ � (A + B) :〈Xi ∪ Y i, Xo ∪ Y o, Xl ∩ Y l〉
(Parallel)

[], Γ � A :X [], Γ � B :Y
[], Γ � (A ‖ B) :〈Xi + Y i, Xo + Y o, Xl + Y l〉

(Scope)
[], Γ � A :X

[], Γ � {A} :〈Xi, [], []〉

These typing rules deserve some further explanation. The most critical rule is
Seq because sequencing two expressions can lead to increase in instances of the
composed expression. First, the semantics of the store in the typing judgment
requires that the store always has enough elements for deallocation commands
in the expression. So we need to increase the store when the minimum outcome
of A and its store, X l + σ1, is not enough for σ2. Consider a component x.
The premise of the rule Seq tells us that we need a store σ1 for executing A.
Thereafter, we have at least X l(x) instances of x, where X l(x) ∈ Z. Again by the
premise of the rule Seq we need σ2(x) instances for safely executing B. Therefore
we must start the execution of AB with at least (σ2−X l)(x) in the store (more
than σ2(x) if X l(x) < 0). Second, in the type expression of AB, the maximum
is the maximum of A or of the outcome of A together with the maximum of
B. So the first part of the type of AB is X i ∪ (Xo + Y i). The remaining parts,
Xo + Y o and X l + Y l, are easy referring to the semantics of these parts of the
types.

Other typing rules are straightforward. The rule Axiom is used for startup.
The rules WeakenB allows us to extend the type environments so that the rules
Seq, Choice, Parallel may be applied. The rule WeakenS plays a technical role in
some proofs and is a natural rule anyway: enlarging the store should preserve
typing. The rule New accumulates a new instance in type expression while the
rule Del reduces by one instance. The first signed multiset in the type of delx
is empty since it has no effect to the maximum in composition, but the last
two multisets are both [−x] since delx reduces the local stores by one x. The
judgment σ, Γ � A :X in the premise of this rule only guarantees that the basis Γ

236 H. Truong and M. Bezem

is legal. The rules Parallel and Scope require an empty store in the environment
because the semantics of deallocation applies to local store only.

Now we can define the notion of well-typed program with respect to our
type system. Basically, a program is well-typed if we can derive a type for the
main expression of the program from an empty store and a list of the program
declarations. As mentioned in the Introduction Section 1, we have an polynomial
algorithm (cf. [3]) which can automatically decide whether a program is well-
typed or not, and if so, infer a type.

Definition 3 (Well-typed programs). Program Prog = Decls ;E is well-
typed if there exists a reordering Γ of declarations in Decls such that [], Γ � E :X.

Using the example in Section 2.1 we derive type for new b. Note that we
omitted some side conditions as they can be checked easily and we shortened
the rule names to the first two characters (we do not use the rule WeakenS
so WeakenB is abbreviated to We). The signed multisets are simplified as well.
The elements of a signed multiset are listed in a string with the multiplicities
as superscripts, multiplicity 1 is not shown as supperscript and elements with
multiplicity 0 are not shown. The rule Axiom is also simplified.

We
Sc

Ne
[], ∅ � ε :〈[], [], []〉

[], d−≺ε � new d :〈d, d, d〉
[], d−≺ε � { new d} :〈d, [], []〉We

[], ∅ � ε :〈[], [], []〉 [], ∅ � ε :〈[], [], []〉
[], d−≺ε � ε :〈[], [], []〉

[], d−≺ε, e−≺ε � { new d} :〈d, [], []〉 (1)

Se
(1) Ne

We
[], ∅ � ε :〈[], [], []〉 [], ∅ � ε :〈[], [], []〉

[], d−≺ε � ε :〈[], [], []〉
[], d−≺ε, e−≺ε � new e :〈e, e, e〉

[], d−≺ε, e−≺ε � { new d} new e :〈de, e, e〉 (2)

Pa
(2) We

Ne
[], ∅ � ε :〈[], [], []〉

[], d−≺ε � new d :〈d, d, d〉 [], ∅ � ε :〈[], [], []〉

[], d−≺ε, e−≺ε � new d :〈d, d, d〉
[], d−≺ε, e−≺ε � ({ new d} new e ‖ new d) :〈d2e, de, de〉 (3)

Ne
Se

(3) De
(3) d ∈ dom(d−≺ε, e−≺ε)

[d], d−≺ε, e−≺ε � del d :〈[], d−1, d−1〉
[], d−≺ε, e−≺ε � ({ new d} new e ‖ new d) del d :〈d2e, e, e〉

[], d−≺ε, e−≺ε, a−≺ ({new d} new e ‖ new d) del d � new a :〈ad2e, ae, ae〉 (4)

Similarly, we can derive Γ � new b :〈abd2e, abd, b〉 where Γ = d−≺ε, e−≺ε, a−≺
({ newd} new e ‖ new d) del d, b−≺(newa+ new e newd) del e.

By the example we illustrate how we can infer the specific resources. If com-
ponent a and d each creates a database connection, then from the type of new b,
we know that the program, in particular the main expression new b, may need
three database connections (one by a and two by d). From another point of
view, we regard d as a database connection component, then we know that the
program needs maximum two database connections.

Finding Resource Bounds in the Presence of Explicit Deallocation 237

4 Formal Properties

4.1 Type Soundness

A fundamental property of static type systems is type soundness or safety [4].
It states that well-typed programs cannot cause type errors. In our model, type
errors occur when the program tries to delete an instance which is not in the
local store or when the program tries to instantiate a component x but there
is no declaration of x. We will prove that these two situations will not happen.
Besides, we will prove an additional important property which guarantees that
a well-typed program will not create more instances than a certain maximum
stated in its type.

Our proof of the type soundness is based on the approach of Wright and
Felleisen [20]. We will prove two main lemmas: Preservation and Progress. The
first lemma states that well-typedness is preserved under reduction. The latter
guarantees that well-typed programs cannot get stuck, that is, move to a non-
terminal state, from which it cannot move to another state. In order to use this
technique, we need to define the notion of well-typed configuration. We start with
some auxiliary definitions.

First, since the location of a parent node is a subsequence of the location of
its children (direct and indirect), we define the following binary prefix ordering
relation ≤ over locations. For location α = s0s1..sn where si ∈ {l, r}, α′ ≤ α
if α′ = s0s1..sm, 0 ≤ m ≤ n. The set of all locations in a tree and this binary
relation form a partially ordered set [7]. A maximal element of this partially
ordered set is the location of a leaf. We denote by leaves(T) the set of locations
of all the leaves of T and T(α) the stack at location α in T.

Second, we call α.k the position of the kth element (from the bottom) of the
stack T(α). Again the set of all positions α.k in tree T is a partially ordered set
with the following binary relation. α1.k1 ≤ α2.k2 if either α1 = α2 and k1 ≤ k2,
or α1 < α2.

Next, we formalize the notion of subtree. Given a tree T. The set of positions
L = {αi.ki ∈ T | 1 ≤ i ≤ m} is valid if αi.ki ≤ αj .kj for all i = j. The tree
T′ obtained from T by removing all elements at positions α.k ≥ αi.ki for all
1 ≤ i ≤ m is a subtree of T, notation T′ �L T or T′ = T|L. Consequently, T′

has the same root as T. When L is empty, we get T′ = T.
We denote by hi(ST) the height of the stack ST . By T(α.k) = (M,E) we

denote that the element at position α.k is the pair (M,E). We denote by [T(α.k)]
the store M at position α.k, by [T(α)] the additive union of all stores in the stack
at location α, and by [T] the multiset of all active instances in the tree T, i.e.
[T] =

⊎
α∈T[T(α)].

Now we calculate the multiset of instances that will be returned to a position
α.k. Due to the non-determinism of osChoice, we can only calculate the upper
bound and the lower bound of the collection. The minimal number of instances
returned to a position α.k, denoted by function retlT(α.k), is zero if k is not the
top of the stack at location α, or α is a leaf. Otherwise, it contains those in the
multisets at the bottom of its child nodes and the minimal number of instances

238 H. Truong and M. Bezem

which survive the expressions there. Since the bottom of a child node of α.k may
receive instances from its child nodes (osParElimL, osParElimR, osParElim) and so
on, we need to call the function recursively.

retlT(α.k) =

{
[], if k < hi(T(α)) or α ∈ leaves(T)⊎

β∈{αl,αr}(M +X l + retlT(β.1)), otherwise

where T(β.1) = (M,E) and M + retlT(β.1), Γ � E :X . Note that this recursive
definition is well-defined since first it is well-defined for all the positions at all
leaves. Then it is well-defined for the top position of the parents of all leaves.
And so on until the root.

The maximal number of instances that will be returned to a position α.k,
denoted by function retoT(α.k), is calculated analogously.

retoT(α.k) =

{
[], if k < hi(T(α)) or α ∈ leaves(T)⊎

β∈{αl,αr}(M +Xo + retoT(β.1)), otherwise

where T(β.1) = (M,E) and M + retlT(β.1), Γ � E :X .
By Lemma 5 below, these two functions always return multisets even though

signed multisets X l, Xo appear in their definitions.
Now we can define the notion of well-typed configuration. It guarantees that

the local store always has enough elements for typing its executing expression.
Hence deallocation operations are always safe to execute.

Definition 4 (Well-typed configuration). Configuration T is well-typed with
respect to a basis Γ , notation Γ |= T, if for all pair (M,E) at position α.k ∈ T
there exists X such that

M + retlT(α.k), Γ � E :X

Having the definition of well-typed configuration, the two main lemmas men-
tioned at the beginning of the section are stated as follows.

Lemma 1 (Preservation). If Γ |= T and T −→ T′, then T′ is well-typed.

Lemma 2 (Progress). If Γ |= T, then either T is terminal or there exists a
configuration T′ such that T −→ T′.

Next, we show some additional invariants which allow us to infer the resource
bounds of a well-typed program. Then we state the soundness theorem which
contains both goals mentioned at the beginning of the section.

Consider the pair (M,E) at position α.k in a well-typed configuration T.
By Definition 4 we have M + retlT(α.k), Γ � E :X for some X . The maximum
number of instances involved in the execution of the pair (M,E) is computed by:

ioT(α.k) = M + retoT(α.k) +X i

Lemma 3 (Invariants of retl, reto, and io). If Γ |= T and T −→ T′, then for
all positions α.k in both configurations T and T′ we have:

Finding Resource Bounds in the Presence of Explicit Deallocation 239

1. retlT(α.k) ⊆ retlT′(α.k),
2. retoT(α.k) ⊇ retoT′(α.k),
3. ioT(α.k) ⊇ ioT′(α.k).

Note that the inclusions are related to choice: less options means smaller maxima
and larger minima.

The maximum number of instances of a subtree T|L includes the maximum
of its leaves and all the active instances in all the stores inside the subtree.

maxins(T|L) =
⊎

α.k<L′
[T(α.k)] +

⊎
α.k∈L′

ioT(α.k)

where L′ is the set of all positions at the top of leaves of subtree T|L, i.e. L′ =
{α.hi(T|L(α)) | α ∈ leaves(T|L)}.

By the monotonicity of the function io, the function maxins also has this
property.

Lemma 4 (Invariant of maxins). If Γ |= T and T −→ T′, then for all valid
set of positions L′ of T′ there exists a valid set of positions L of T such that

maxins(T|L) ⊇ maxins(T′|L′)

Now we can state the soundness property together with the upper bounds of
instances that a well-typed program always respects.

Theorem 1 (Soundness). If program Prog = Decls ;E is well-typed, then there
exists a multiset M such that for every sequence of reductions Lf([], E) −→∗ T
we have T is not stuck and [T] ⊆M .

4.2 Typing Properties

This section lists some properties of the type system. They are needed to prove
the lemmas and theorem in the previous section. We start with some definitions.

Let Γ = x1−≺A1, . . . ,xn−≺An be a basis. Γ is called legal if σ, Γ � A :X for
some store σ, expression A and type X . A declaration x−≺A is in Γ , notation
x−≺A ∈ Γ , if x ≡ xi and A ≡ Ai for some i. Δ is an initial segment of Γ , if
Δ = x1−≺A1, . . . ,xj−≺Aj for some 1 ≤ j ≤ n.

We use X∗ for any of X i, Xo and X l. Recall X∗ are maps, we denote by
dom(X∗) = {x | X∗(x) = 0} the domain of X∗. For multiset M we denote
dom(M) = {x | M(x) = 0}. Let var(E) denote the set of variables occurring in
an expression:

var(newx) = var(delx) = {x}, var({A}) = var(A),
var(AB) = var((A +B)) = var((A ‖ B)) = var(A) ∪ var(B)

The following lemma collects a number of simple properties of a valid typing
judgment.

Lemma 5 (Legal typing). If σ, Γ � A :X, then

1. var(A) ⊆ dom(Γ), dom(X∗) ⊆ dom(Γ),
2. every variable in dom(Γ) is declared only once in Γ ,

240 H. Truong and M. Bezem

3. X i ⊇ Xo ⊇ X l, X i ⊇ [],
4. σ +X∗ ⊇ [].

The following lemmas show the associativity of the sequential composition
and the significance of the order of declarations in a legal basis.

Lemma 6 (Associativity). If σi, Γ � Ai :Xi, for i ∈ {1, 2, 3}, then the typing
judgments for (A1A2)A3 and A1(A2A3) are the same.

The following lemma is important in that it allows us to find a syntax-
directed derivation of the type of an expression. This lemma is sometimes called
the inversion lemma of the typing relation [11].

Lemma 7 (Generation).

1. If σ, Γ � newx :X, then there exist bases Δ, Δ′ and expression A such that
Γ = Δ,x−≺A,Δ′, and σ,Δ � A :Y with X = 〈Y i + x, Y o + x, Y l + x〉.

2. If σ, Γ � delx :X, then x ∈ σ, x ∈ dom(Γ) and X = 〈[], [−x], [−x]〉.
3. If σ, Γ � AB :Z with A,B = ε, then there exist X, Y such that σ, Γ � A :X,

σ +X l, Γ � B :Y and Z = 〈X i ∪ (Xo + Y i), Xo + Y o, X l + Y l〉.
4. If σ, Γ � (A + B) : Z, then there exist X, Y such that σ, Γ � A : X and

σ, Γ � B :Y and Z = 〈X i ∪ Y i, Xo ∪ Y o, X l ∩ Y l〉.
5. If σ, Γ � (A ‖ B) : Z, then there exist X, Y such that [], Γ � A : X and

[], Γ � B :Y , and Z = 〈X i + Y i, Xo + Y o, X l + Y l〉.
6. If σ, Γ � {A} :Z, then there exist multisets Xo and X l such that [], Γ � A :X

and Z = 〈X i, [], []〉.

5 Conclusions and Research Directions

This work follows a more liberal approach compared to our previous works [3,18]
where the resource bounds, i.e. the maximum number of instances for each com-
ponent, are known in advance and the type system checks these bounds in typing
rules. The dynamic semantics of the deallocation primitive here applies to local
stores only. Even though this style is rather common in practice, we plan to
extend the semantics of deallocation so that it can operate beyond scopes and
even threads. We are well aware of the level of abstraction of the component
language and plan to incorporate more language features. These include recur-
sion in component declarations, communication among threads and location of
resources.

References

1. H. Barendregt. Lambda Calculi with Types. In: Abramsky, Gabbay, Maibaum
(Eds.), Handbook of Logic in Computer Science, Vol. II, Oxford University Press.
1992.

2. M. Bezem and H. Truong. A Type System for the Safe Instantiation of Components.
In Electronic Notes in Theoretical Computer Science Vol. 97, July 2004.

Finding Resource Bounds in the Presence of Explicit Deallocation 241

3. M. Bezem and H. Truong. Counting Instances of Software Components, In Pro-
ceedings of LRPP’04, July 2004.

4. L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and
Engineering Handbook, chapter 103, pages 2208-2236. CRC Press, 1997.

5. K. Crary, D. Walker, and G. Morrisett. Typed Memory Management in a Calculus
of Capabilities. In Twenty-Sixth ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 262-275, San Antonio, TX, USA, January
1999.

6. K. Crary and S. Weirich. Resource Bound Certification. In the Twenty-Seventh
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 184-198, Boston, MA, USA, January 2000.

7. B. Dushnik and E. W. Miller. Partially Ordered Sets, American Journal of Math-
ematics, Vol. 63, 1941.

8. R. Englander. Developing Java Beans. 1st Edition, ISBN 1-56592-289-1, June 1997.
9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of

Reusable Object-Oriented Software, Addison-Wesley, ISBN 0201633612, 1994.
10. E. Meijer and C. Szyperski. Overcoming Independent Extensibility Challenges,

Communications of the ACM, Vol. 45, No. 10, pp. 41–44, October 2002.
11. B. Pierce. Types and Programming Languages. MIT Press, ISBN 0-262-16209-1,

February 2002.
12. B. Pierce. Advanced Topics in Types and Programming Languages. MIT Press,

ISBN 0-262-16228-8, January 2005.
13. J. C. Seco. Adding Type Safety to Component Programming. In Proc. of The

PhD Student’s Workshop in FMOODS’02, University of Twente, the Netherlands,
March 2002.

14. F. Smith, D. Walker and G. Morrisett. Alias Types. In European Symposium on
Programming, Berlin, Germany, March 2000.

15. C. Szyperski. Component Software: Beyond Object-Oriented Programming, 2nd edi-
tion, Addison-Wesley, ISBN 0201745720, 2002.

16. Terese. Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Sci-
ence, Vol. 55, Cambridge University Press, 2003

17. T. Thai, H. Lam. .NET Framework Essentials. 3nd Edition, ISBN 0-596-00302-1,
August 2003.

18. H. Truong. Guaranteeing Resource Bounds for Component Software. Martin Stef-
fen, Gianluigi Zavattaro, editors. In Proceedings of FMOODS’05, Athens, Greece,
June 2005. LNCS 3535, Springer, ISBN: 3-540-26181-8. pp. 179-194, May 2005.

19. P. Wadler. Linear types can change the world! In M. Broy and C. Jones, editors,
Programming Concepts and Methods, Sea of Galilee, Israel, April 1990. North Hol-
land. IFIP TC 2 Working Conference.

20. A. K. Wright and M. Felleisen, A Syntactic Approach to Type Soundness. In
Information and Computation, Vol. 115, No. 1, pp. 38–94, 1994.

21. M. Zenger, Type-Safe Prototype-Based Component Evolution. In Proceedings of
the European Conference on Object-Oriented Programming, Malaga, Spain, June
2002.

The Timer Cascade: Functional Modelling
and Real Time Calculi

Raymond Boute1 and Andreas Schäfer2

1 INTEC, Universiteit Gent, Belgium
Raymond.Boute@intec.UGent.be

2 Department für Informatik, Universität Oldenburg, Germany
Andreas.Schaefer@informatik.uni-oldenburg.de

Abstract. Case studies can significantly contribute towards improving
the understanding of formalisms and thereby to their applicability in
practice. One such case, namely a cascade of the familiar 24-hour timers
(in suitably generalized form) provides interesting gedanken experiments
and illustrations for presenting, illustrating and comparing various for-
malisms for modelling real-time behaviour of systems.

The timer cascade is first modelled in a general-purpose functional
formalism (Funmath) and various properties are derived, including an
interesting algebraic monoid structure of timer programs. Then it is de-
scribed and analyzed in duration calculus, thereby highlighting, similari-
ties and differences in the approach to modelling and reasoning, and also
the link between the formalisms.

Future work consists in using this case as a running example for ex-
ploring the same issues for other formalisms intended for real time and
hybrid systems. The underlying idea is that other authors join this effort
and contribute towards extending it, finally arriving at a broad compar-
ative survey of such formalisms.

Index Terms — Automata, cascade connection, Duration Calculus,
functional description, Funmath, hybrid systems, real time systems, sys-
tems modelling, timers.

1 Introduction: Motivation and Overview

Hybrid systems formalisms have become increasingly important for modelling
interacting continuous and discrete aspects [2,9,16,23]. Research was especially
fruitful in the past two decades, but the very wealth of techniques resulting from
these efforts may be a problem for integration into practice. We briefly elaborate.

A basis for comparison is the wide and problem-free integration of mathe-
matical software such as Maple, Mathematica, Matlab and Mathcad throughout
all branches of engineering. This is possible because the mathematics is clas-
sical (linear algebra, differential and integral calculus etc.) with long-standing
notational and calculational conventions. Standard high school and college math-
ematics suffice for direct use of such software, and engineers educated 50 years

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 242–256, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Timer Cascade: Functional Modelling and Real Time Calculi 243

ago apply it without further ado, yet quite reliably. Admittedly, use in discrete
mathematics is less safe due to errors as pointed out in [19] and remedied in [7].

The situation alters drastically as soon as nontrivial elements from logic enter
into the picture, as needed for software, digital hardware and hybrid systems.
The relevant concepts are neither supported by common mathematical software,
nor part of classical engineering background. Computer science students have
difficulties with logic [1], and in industry, applications with logic software often
requires external support by consultants (private or university researchers).

Quick introductions or trying to learn logic via tools are ill-advised. Habrias
[14] aptly warns against using tools without sufficient awareness. Safe use re-
quires a solid background in logic, including understanding as can be fostered
only by serious pencil-and-paper problem solving similar to common practice
in analysis and algebra. This holds for students, but even more for industrial
users.

As mentioned, the wealth of formalisms is a complicating factor. Notational
and calculational conventions are far less uniform than in classical mathematics;
hence commonality in software support is still remote. Choosing one tool ex-
cludes possibly crucial features present in an other one. Given this situation, the
(ideal) hybrid systems engineer must master several quite different formalisms,
awaiting the emergence of a common framework.

Meanwhile, there is no universal solution, only ways for alleviation.
In particular, case studies provide a good starting point for understanding

and comparing formalisms [16]. A widely studied example is the steam boiler
[22], which has proved a useful testbed for various systems aspects. However,
the crucial aspects to be highlighted are often diluted by other details.

Here we propose a case chosen to be as simple as possible and concentrating
on the time aspect in its purest form, while still offering interesting ramifications:
the 24 hour timer (somewhat generalized) and timer cascades. This turns out to
be very appropriate for studying how time is handled in different formalisms.

An important side issue is how well formalisms “scale down” in the sense that
simple systems can be described in a comparably simple way. Indeed, whereas
industrial applicability often relies on scaling up (to “large” systems with many
details), the intrinsic design quality and intellectual value of a formalism is often
characterized by its downscaling potential in the aforesaid sense.

Overview. Section 2 informally introduces the timer and the timer cascade.
Section 3 provides a formal description in the functional formalism Funmath
and illustrates the calculational derivation of interesting algebraic properties.
In section 4, similar issues are studied using Duration Calculus (DC). The link
between the two is briefly discussed in section 5, followed by an outline of future
work and suggestions for contributions by others.

2 The Timer Cascade: Informal Introduction

The 24-hour timer is a “common household” device that is plugged into a wall
outlet in order to supply power during predetermined time intervals (Fig. 1).

244 R. Boute and A. Schäfer

��
��� ��

� 	

 ���
������ ���

A.C.M.E. Timer

Model B 240V 15A

power
out���� ����

program
dial

(tabs
or

plugs)

���� ���

�

�

�

��
power

in

�

Fig. 1. A 24-hour timer

An interesting configuration arose by coincidence when storing a few of these
timers, while reducing the volume by inserting them into each other (Fig. 2).
This immediately raises the question what would be the behavior of the resulting
cascade, and what would be the best way to describe and analyze it. The idea
to use this as a testbed for real time formalisms came up during a session at
ICTAC 2004 in Guiyang, where several such formalisms were presented.

We make some basic assumptions explicit. Depending on the kind of timer,
the “power on” intervals are programmed by pushing tabs or inserting plugs (for
the analog variant with a timing motor) or via pushbuttons and a small screen
(for the digital variant with electronic clock). Some digital variants support
programs for longer periods (week, month) and have a battery that preserves
the program during power failures. However, the battery also keeps the timer
going during power out intervals, making the behavior of cascades uninteresting.

Hence our abstract model follows the analog variant: removal of power does
not erase the program (which is mechanical) but pauses the timer. We also make

�

�

�

��

�

�

�

�

�

�

Fig. 2. A timer cascade

The Timer Cascade: Functional Modelling and Real Time Calculi 245

the model generic by supporting infinitely long programs. This is done WLOG,
since a finite program can be modelled by a periodic infinite one. Conversely, a
cascade of 24-hour timers can realize certain programs with longer periods, but
such “practical” application is not envisaged since digital timers support longer
programs in a less challenging way. Here we only want interesting behavior.

3 Functional Modelling of the Timer Cascade

3.1 The Formalism Used

By formalism we mean a language (or notation) together with formal manipu-
lation rules. In this section we shall use Funmath (Functional mathematics).

The language of Funmath [4] consists of only 4 constructs: identifier, applica-
tion, abstraction and tupling. These suffice to synthesize common mathematical
conventions while removing all defects (ambiguities, inconsistencies) and to sup-
port new and very useful styles of expression, in particular point-free ones.

The calculation rules of Funmath [5] equip all these forms of expression,
including those that are rather loose in conventional mathematics, with a precise
formal basis for symbolic manipulation, “making the symbols do the work”. This
means that calculation is guided by the shape of the expressions [11,13].

The two main elements are: (i) a functional predicate calculus [5,7], enabling
engineers to calculate with predicates and quantifiers as fluently as they have
learned for derivatives and integrals; (ii) concrete generic functionals [5,6], pro-
viding similar fluency with higher order functions (functionals), with the point-
free style, and with smooth transition between styles.

Here we use Funmath mostly in the “conservative mode” of synthesizing
conventions familiar to readers with modest mathematical background and no
prior acquaintance with our formalism. The references provide further detail.

3.2 Modelling the (Abstract) Timer and the Timer Cascade
Conventions. We do not model power inputs and outputs as AC waveforms,
but as binary signals taking the values 0 (“off”) and 1 (“on”). Signals are them-
selves functions of time. We assume the time domain T := R≥0 and value do-
main B := {0, 1}, which is a subset of R. We prefer this over {f,t} for various
reasons. Adherents of {f,t} can adapt the sequel via a characteristic function
c : {f,t}→{0, 1} with c f = 0 and ct = 1 (or simply c := (f,t)− in Funmath) .

Timer Model. Our first signal space is the set of B-valued functions (predicates)

Sig := {P : T→B | P is p.c.} . (1)

The usual notion of piecewise continuity over a closed interval is assumed gen-
eralized to possibly infinite intervals: a function is piecewise continuous (p.c.)
over an interval iff in every finite closed subinterval it has at most a finite num-
ber of discontinuities, and left and right limits exist at each discontinuity (plus
right limit at the start and left limit at the end of each of the subintervals). If

246 R. Boute and A. Schäfer

the interval of interest is not stated explicitly, it is taken to be the domain of
the function. For the predicates at hand, p.c. amounts to piecewise constant.
Calculational reasoning about limits and derivatives using functional predicate
calculus is illustrated in [5,7].

Timer programs also have type Sig. In view of cascading timers, it does not
suffice to express behavior as the output signal with the program as the only
input parameter. Doing so would only model a single timer plugged into an outlet
(without power failures), i.e., an uninteresting autonomous system. Rather, we
model behaviors as input-output system functions of type Bvr := Sig→ Sig and
take programs as parameters, formalizing intuitive understanding by defining

def Tmr :Sig→Bvr with TmrP I t ≡ I t ∧ P (
∫
I t) . (2)

We chose mnemonic names P (program), I (input), t (time), so TmrP I t is the
timer output at time t for program P and input I. The operator

∫
: Sig→Sig is

defined by
∫
f t =

∫ t

0 fτ ·d τ for piecewise continuous (hence, integrable) f . Note
that

∫
I t remains constant whenever I t = 0 and grows with t whenever I t = 1.

A proof obligation raised by (2) is that TmrP I as specified by the r.h.s. is
indeed of type Sig, leading to a refinement beyond the scope of this discussion.

Cascade Model. Parametrized by a list of programs, with the convention that
indexing starts from the output side, the behavior of a cascade is modelled by

def Csc : Sig∗→Bvr with Csc p = © j :D p .Tmr (p (# p− 1− j)) (3)

where© is the elastic extension of function composition, extending ◦ in the same
way as

∑
extends +. For instance, if p = p0, p1 then Csc p = (Tmr p1) ◦ (Tmr p0).

hence Csc p I = Tmr p1 (Tmr p0 I) and Csc p I t ≡ Tmr p1 (Tmr p0 I) t.

3.3 Deriving Properties: A Few Typical Examples

Signal Flow Model. As outlined in [6], the signal flow model is obtained by
eliminating the time variable t from TmrP I t ≡ I t∧ P (

∫
I t), since time is not

a structural element. In the calculation, the generic operator ̂ denotes direct
extension for 2-place functions # such that (f #̂ f ′) t = f t # f ′ t, and does
the same for 1-place functions g, i.e., g f t = g (f t) (note: g f = g ◦ f). For full
definitions (with types) of these and other generic functionals, see [6]. Now

TmrP I t ≡ 〈Def. Tmr〉 I t ∧ P (
∫
I t)

≡ 〈Def. ◦〉 I t ∧ (P ◦
∫
I) t

≡ 〈Def. 〉 I t ∧ P (
∫
I) t

≡ 〈Def. ◦〉 I t ∧ (P ◦
∫
) I t

≡ 〈Def. ̂ 〉 (I ∧̂ (P ◦
∫
) I) t

and, by function equality, TmrP I = I ∧̂ (P ◦
∫
) I. The structural interpretation

is the signal flow circuit in figure 3, letting the direct extension symbols (for the
memoryless devices ∧ and P) be implicit in the boxes.

The Timer Cascade: Functional Modelling and Real Time Calculi 247

�

� �

�∧∫
P

I Tmr P I

(P ◦
∫
) I

Fig. 3. Signal flow model of a timer

The model of the timer cascade is the cascade of stages, each with its program.

State Space Model. A large class of systems [17] is modelled by a state function
stf and an output function out relating state s, input i, output u by

D s t = stf (s t, i t) and u t = out (s t, i t) (4)

where D s is the derivative of s. E.g., for linear circuits these functions are of the
form stf (s t, i t) = a t · s t+ b t · i t etc. or similar matrix expressions in case there
are several state, input or output variables.

A timer is not linear (due to the way in which it depends on P), but fits into
the generic model of (4) as follows, the state being the integrator output.

D s t ≡ I t and U t ≡ I t ∧ P (s t) . (5)

For an n-stage cascade, the state s is an n-tuple (of integrator outputs) with
∀ k : n . (D sk t ≡ ik t) ∧ (uk t ≡ ik t ∧ pk (sk t)) ∧ (k = 0 ⇒ ik t = uk−1 t) and
I, U = i0, un−1. For the block: n = {j : N | j < n}. The state space model is

∀ k : n .D sk t ≡ I t ∧ ∀ j : k . pj (sj t)
U t ≡ I t ∧ ∀ j : n . pj (sj t) . (6)

The calculation is based on logic only; linearity neither holds nor is assumed.

Convention. Since B = {0, 1}, we replace ∧ by ·, so TmrP I t = I t · P (
∫
I t).

For (5), this yields U t = I t · P (s t), whereas (6) can be written

∀ k : n .D sk t = I t ·
k−1∏
j=0

pj (sj t) and U t = I t ·
n−1∏
j=0

pj (sj t) . (7)

Algebraic Properties: Program Composition and the Program Monoid Since the
behavior of a timer is fully characterized by its program, we look for operators
on programs in order to reduce reasoning to programs only. Specifically, we wish
to study timer cascades via two-argument operators on programs.

A cascade of 2 timers with programs P and P ′ has behavior TmrP ◦TmrP ′.
The question is: can we calculate a program Q such that TmrQ = TmrP ◦TmrP ′

or, equivalently, an operator � : Sig2→ Sig satisfying the following condition?

Design requirement for � : Tmr (P � P ′) = TmrP ◦TmrP ′ (8)

Algebraic Derivation. Clearly, a timer plugged into a non-interrupted outlet re-
flects its own program at the output. Formally, for the constant signal 1 := T • 1

248 R. Boute and A. Schäfer

and any P : Sig we calculate TmrP 1 t = P (
∫

1 t) · 1 t = P t · 1 = P t (omitting
the obvious justifications), hence

TmrP 1 = P . (9)

So, TmrP =TmrP ′ ⇒〈Leibniz〉 TmrP 1= TmrP ′ 1 ⇒〈TmrP 1=P 〉 P =P ′,
from which we conclude the injectivity of Tmr. Therefore the inverse Tmr− satis-
fies Tmr− (TmrP) = P for any P : Sig and, by the preceding reasoning, an explicit
formula for Tmr− is Tmr− b = b 1 for any behavior b in RTmr, the range of Tmr.

If programs P and P ′ satisfy TmrP ◦TmrP ′ ∈ RTmr (hypothesis) and we
impose on � :Sig2→ Sig the design requirement Tmr (P � P ′) = TmrP ◦TmrP ′

(for any P , P ′), then

P � P ′ = 〈Tmr− (TmrP) = P 〉 Tmr− (Tmr (P � P ′))
= 〈Dsgn. requirement〉 Tmr− (TmrP ◦TmrP ′)
= 〈Hyp., Tmr− b = b 1〉 (TmrP ◦TmrP ′) 1
= 〈Definition ◦〉 TmrP (TmrP ′ 1)
= 〈TmrP 1 = P 〉 TmrP P ′

This yields an explicit formula for � namely P � P ′ = TmrP P ′, depending on
the condition TmrP ◦TmrP ′ ∈ RTmr. Next we verify that it is always satisfied.

Analytic Verification. It suffices proving that � defined by P � P ′ = TmrP P ′

satisfies the design requirement (8). Before doing so, observe that, when gen-
eralizing Sig to Sig := {f :R→R | f is p.c.} and

∫
and Tmr accordingly while

maintaining the image definition Tmr f g x = f (
∫
g x) ·g x, everything done since

replacing ∧ by · remains valid, because the proofs nowhere relied on any restric-
tion to B.

Theorem: Tmr (Tmr f g) = Tmr f ◦Tmr g for any signals f , g.
Proof: The successive domains are clearly equal. Also, for h : Sig and x : T,

Tmr (Tmr f g)hx = 〈Def. Tmr〉 Tmr f g (
∫
hx) · hx

= 〈Def. Tmr〉 f (
∫
g (
∫
hx)) · g (

∫
hx) · hx

= 〈Def. Tmr〉 f (
∫
g (
∫
hx)) · Tmr g hx

= 〈Lemma〉 f (
∫

(Tmr g h)x) · Tmr g hx

= 〈Def. Tmr〉 Tmr f (Tmr g h) x

= 〈Def. ◦ 〉 (Tmr f ◦Tmr g)hx

Thus far, the lemma justifying
∫
g (
∫
hx) =

∫
(Tmr g h)x is “wishful thinking”,

guided by the shape of Tmr g hx to enable the next step. Now we prove it.
Lemma:

∫
f ◦
∫
g =

∫
(Tmr f g) for p.c. f and g.

Proof: We shall invoke some properties for the derivative D, namely

(i) Fundamental theorem of calculus: D (
∫
f) = f 5D (D (

∫
f)) for p.c. f .

(ii) Leibniz’s rule: D (f ◦ g)=D f (g x) ·D g x provided the derivatives are p.c..
(iii) Delegation of equality to derivative: f=g ≡ f 0=g 0 ∧D f=D g (idem).
In applying (iii), (

∫
f ◦
∫
g) 0 =

∫
(Tmr f g) 0 is trivial since

∫
f 0 = 0 for p.c. f .

The Timer Cascade: Functional Modelling and Real Time Calculi 249

For the derivatives, the domains exclude undefined points and discontinuities do
not affect the integral [3, p. 311]. The images for x in the domain obey

D (
∫
f ◦
∫
g)x = 〈Leibniz’s rule〉 D(

∫
f) (

∫
g x) ·D(

∫
g)x

= 〈Fundam. thm.〉 f (
∫
g)x · g x

= 〈Definition Tmr〉 Tmrf g x

= 〈Fundam. thm.〉 D(
∫

(Tmrf g))x

We call
∫
(Tmrf g) the timer integral for obvious reasons.

Algebraic Properties of Program Composition. Having fulfilled all proof obliga-
tions, we can now assert that � defined (for f and g in the generalized Sig)
by

Definition of � : f � g = Tmr f g (10)

satisfies

Homomorphism: Tmr (f � g) = Tmr f ◦Tmr g . (11)

Recall also that Tmr is injective. We now derive some properties.
(a) The operator � is associative. Indeed,

f � (g � h) = 〈Defin. �〉 Tmr f (Tmr g h)
= 〈Defin. ◦〉 (Tmr f ◦Tmr g)h
= 〈Prop. (11)〉 Tmr (f � g)h
= 〈Defin. �〉 (f � g) � h

(b) The operator � has 1 := R • 1 as left and right identity. Indeed,

(1 � f)x = 〈Defin. �〉 Tmr 1 f x

= 〈Def. Tmr〉 1 (
∫
f t) · f x

= 〈Defin. 1〉 f x

(f � 1)x = 〈Def. Tmr〉 f (
∫

1x) · 1x

= 〈Defin. 1〉 f (
∫

1x)
= 〈
∫
1 x = x〉 f x

This makes Sig a monoid under � and Tmr an injective monoid homomorphism.

3.4 Conclusions

It is clear that Tmr and � have many algebraic properties, about which only the
tip of the iceberg has been explored.

One of the issues deserving further investigation is the periodicity of periodic
programs and (as a gedanken experiment) program synthesis by cascades of
periodic programs (which model the behavior of finite programs).

250 R. Boute and A. Schäfer

4 Modelling Using Duration Calculus

Duration Calculus (DC) [10,15] is an interval temporal logic. It incorporates the
integral operator and is thus able to reason about durations of system states.
This is a particular convenient feature for modelling and reasoning about the
timer cascade as each timer is in fact a stop-watch. As in the previous section
we investigate how a cascade of two timers can be expressed using only one
timer. Although DC is equipped with a powerful proof system, we put empha-
sis on automatic verification using model-checking techniques. Modelling and
the automatic verification are performed on a more concrete level than in the
functional modelling with Funmath.

4.1 Duration Calculus

The behavior of systems is described by time-dependent variables, so called ob-
servables which have in most cases finite domains. For each timer in the cascade
we use two observables power in and power out. The observable power in models
that the timer is connected to current and power out models that it supplies
current at its output. As we use only boolean observables in this example the
semantics of an observable is a function of type Sig thus I(X) : T → B. For the
integrals to exist, we further require the functions to be piecewise constant.

Boolean combinations of observables, so called state assertions are used to
to specify the state of the system for a certain point in time.

Duration Calculus is interpreted over time intervals. Therefore DC terms
associate a real number to each interval. An integral operator can be applied to
state assertions in order to measure its duration. Furthermore DC provides global
rigid variables and the special symbol $, denoting the length of the interval.

Formally, the set of DC terms is defined by the following EBNF

θ ::= x | f(θ1, . . . , θn) |
∫
P | $

where x denotes a global time-independent variable, f an n-ary function symbol
and P a state assertion. As usual, the value of a rigid variable is determined
by a valuation V . In addition to first order quantifiers and boolean connectives,
Duration Calculus uses a special modality � called “chop”. A formula F�G is
true on an interval, iff this interval can be partitioned into two subintervals, such
that F holds on the first part and G holds on the second part. Formally, DC
formulas are generated from the following EBNF

F ::= ¬F | F1 ∧ F2 | F1
�F2 | p(θ1, . . . , θn) | ∀x.F.

As usual, the other logical connectives can be derived as abbreviations. Addi-
tionally, we introduce the following abbreviations, to denote the point interval,

45 df
= $ = 0

To denote that the state assertion P is true almost everywhere on a non-point
interval, we use

4P 5 df
=
∫
P = $ ∧ $ > 0

The Timer Cascade: Functional Modelling and Real Time Calculi 251

The modalities ♦DC , �DC and �DC
0 are derived by

♦DCF
df
=true�F�true �DCF

df
=¬♦DC¬F �DC

0 F
df
=¬(¬F�true)

The modality ♦DC reads as “on some subinterval”, �DC as “on every subinter-
val” and �DC

0 as “on every subinterval starting at point zero”.

4.2 Modelling the Timer Cascade

As mentioned in the introduction, we employ two boolean observables power in
and power out to model the state of one timer in the cascade. Additionally, we
use the auxiliary observable pass to denote whether current can pass through
the timer or not. We use the index i to indicate the i-th timer. For each timer
we use three parameters,

– cyclei, the cycle time of the i-th timer,
– starti the start time of the i-th timer,
– stopi the stop time of the i-th timer.

We specify the behavior of a timer cascade using the following DC formulas.

If the duration of power ini is below the start value, pass has to be false, i.e.

�DC
0 ((

∫
power ini mod cyclei < starti) ⇒ true�4¬passi5)

If the value is between start and stop, pass is true.

�DC
0 ((starti ≤

∫
power ini mod cyclei ≤ stopi) ⇒ true�4passi5)

Above the stop value, the observable pass has to be false again.

�DC
0 ((

∫
power ini mod cyclei > stopi) ⇒ true�4¬passi5)

If power can pass through the timer and it is connected to current, the outlet is
powered.

45 ∨ 4(power ini ∧ pass) ⇔ power outi5

The observables power out and power in of two consecutive timers are connected.

45 ∨ 4power ini+1 ⇔ power outi5

As the first timer in the cascade should always be connected to the power
supply, we assume

45 ∨ 4power in05

The behavior of the complete cascade is specified by the DC formula TC which
is defined to be the conjunction of all the formulas given above.

252 R. Boute and A. Schäfer

4.3 Refinement

Duration Calculus can be used to describe systems at several levels of detail in
different phases of the design process. Especially, it can be used to establish a re-
finement relationship between a more abstract specification and a more concrete
implementation level.

In this section we investigate how a single abstract timer of cycle time cycleA

with program start startA and stop stopA where startA ≤ stopA can be imple-
mented by two concrete timers having the same shorter cycle-time cycleC .

To derive an implementation, we introduce the following abbreviation

ΔA df
= stopA − startA

denoting the length of the program. At first, we compute how many cycles of
the concrete the cascade has to wait until the program should start. We denote
by div and rem the result of the division and the remainder respectively of the
start time startA by the cycle time cycleC of the implementation, i.e.

startA = div · cycleC + rem

such that 0 ≤ rem < cycleC . We can now implement the abstract timer by a
cascade of two concrete timers using the program

startC0
df
= rem

stopC0
df
= rem +

cycleC

m

startC1
df
= div · cycle

C

m

stopC1
df
= div · cycle

C

m
+ΔA

for m = cycleA

cycleC ∈ N with the additional constraint that cycleC

m > ΔA. The

program of timer 0 must have a duration of cycleC

m to ensure that both timers
are in zero position after the first timer has completed m cycles. During the first
div cycles of timer 0, power outC1 is not activated. Only after div · cycleC + rem
time units power out1 becomes true for ΔA time units. This is ensured by the
extra condition cycleC

m > ΔA. It is not always possible to find an implementation
of the abstract timer, by two concrete ones. For example if the duration ΔA

of the abstract timer is greater than the cycle time of the concrete timers, it is
impossible to find an implementation. The definition above does not yield a valid
program in these cases, as the value of stopC1 exceeds the cycle time. Nevertheless,
if all time bounds are below the cycle time, we get a correct implementation of
the abstract specification. This is to be verified formally.

Let TCA denote the specification of the abstract timer and TCC be the spec-
ification of the concrete implementation, then we have to show the refinement
requirement e.g.

TCC ∧ TCA ⇒ 4power outC1 ⇔ power outA5.

The Timer Cascade: Functional Modelling and Real Time Calculi 253

4.4 Verification

Duration Calculus is equipped with numerous proof rules to facilitate this kind
of proofs. As we have shown such a calculation by hand in the previous section,
we concentrate on the application of tools here. DC is decidable for discrete
time domain – and undecidable for continuous time domain. A model-checker
called DCValid [18] is available, so we employ this tool for the verification of
the refinement requirement. As DCValid does not allow arbitrary computation,
we verify the refinement of one 24-hour timer by a cascade of two 12h timers.
Henceforth, we assume our two systems are defined by the following parameters.

startA = 15, stopA = 17, cycleA = 24,

startC0 = 3, stopC0 = 9,

startC1 = 6, stopC1 = 8, cycleC = 12.

As DCValid does not incorporate calculation of remainders, this calculation has
to be eliminated. To this end, we introduce 3 fresh observables zeroA,zeroC

1 , and
zeroC

2 to mark all points on which the respective timer is in zero position. We
specify that zero has to be true for one time unit after the timer having power in
activated for its cycle time. To this end, we define lower and upper bound for
zero by the following DC formulas.

¬♦DC(((4zero5�4¬zero5) ∧ (
∫
power in < cycle))�4zero5)

¬(((4¬power in5 ∨ 45)�4power in ∧ ¬zero5)�true)

¬♦DC(4zero5 ∧ $ > 1)

¬♦DC((4zero5�4¬zero5) ∧
∫

power in > cycle)

As we use discrete DC for automatic verification, we need not to specify a lower
bound on the duration of zero as a phase 4zero5 cannot have a duration below
one time unit. Having introduced these auxiliary observables, we can modify the
specification. Instead of looking at all intervals starting at the beginning and
calculating the measure of power in modulo the cycle time, we can just measure
the amount of time power in is true since the last phase on which zero holds.

Every interval starting with a phase on which zero is true and the measure
of power in is below the start of the timer, on the end of the interval pass does
not hold.

�DC(((4zero5 ∧ $ = 1�(4¬zero5 ∨ 45))
∧ (
∫

power in ≤ start))
⇒ (true�4¬pass5))

If the measure is between start and stop the interval must end in a phase satis-
fying pass.

�DC(((4zero5 ∧ $ = 1�(4¬zero5 ∨ 45))
∧ (
∫

power in > start ∧
∫
power in ≤ stop))

⇒ (true�4pass5))

254 R. Boute and A. Schäfer

If the measure is above stop it has to end in ¬pass.

�DC(((4zero5 ∧ $ = 1�(4¬zero5 ∨ 45)) ∧ (
∫
power in > stop))

⇒ (true�4¬pass5))

Using this definition, the refinement requirement can be automatically ver-
ified. DCValid takes 4.16 seconds on a 1.8 GHz Athlon XP 2200+ machine to
verify the validity. We employed manual optimisations exploiting the fact, that
power inA and power inC

2 are always true and therefore instead of calculating the
measure

∫
power inA and

∫
power inC

2 respectively, one can use the length of the
interval directly.

4.5 Conclusion

We presented how a specification of a timer cascade can be formalised in Dura-
tion Calculus. As DC incorporates the

∫
-operator, it allows natural modelling

of stop watches and henceforth the whole timer cascade. Duration Calculus can
be used in various stages of the design process. So we presented how an abstract
timer cascade can be refined and how the correctness of the refinement can be
automatically verified.

5 Final Remarks and Future Work

5.1 Linking Formalisms

Linking formalisms in a clear, formal way always contributes to a better under-
standing of all formalisms involved.

A promising approach to linking Duration Calculus as used in section 4 with
the functional approach as used in section 3 is similar to the one used for linking
R. Dijkstra’s Computation Calculus [12] to Calculational Semantics in [8].

Within the scope of this paper, only an outline can be given. Define the set
of intervals over a totally ordered time domain T by I := {[a, b] | a, b : (T2)≤}.
Various styles of DC can be defined in Funmath. Here are two of them.

– Interval style: predicates of type IP := I →B (predicates on intervals)
– Computation style: predicates of type CP := C→B where the set of compu-

tations is defined by C :=
⋃

I : I . I→S, given a suitable state space S.

In this outline, we concentrate on “chop” (�), the pivotal operator in DC.

– Interval style: � has type IP2→ IP, map (P�Q) I ≡ ∃ t : I . P I≤t ∧QI≥t

– Computation style: type CP2→CP, map (P�Q) γ ≡ ∃ t :D γ . P γ≤t∧Qγ≥t

Note: filtering (↓) is defined for any set S by S ↓ P = {x :S ∩D P | P x} and for
any function f by D fP = {x :D f ∩ DP | P x} with ∀x :D fP . fP x = f x; in
both cases P is any predicate. Abbreviating a ↓ b as ab (and a ↑ b as ab), together
with so-called partial application (as in ≤ t) explains the notation formally.

The Timer Cascade: Functional Modelling and Real Time Calculi 255

Crucial remark Parameters like I and γ appear only in basic definitions and
calculations where axioms of the axiomatic formulations of DC are derived as
theorems. In subsequent use, the formulas can be written in exactly the same
form as in the axiomatic formulations, and calculations are “point-free”. The
difference between interval style and computation style then becomes hidden.

For instance, associativity of “chop”, namely (P�Q)�R = P�(Q�R), is
easily proven from either definition using functional predicate calculus.

Another example: let ♦ be defined in the interval style by1 ♦P I ≡ ∃P⊆I .
Defining T := I • 1 (“1 for any interval”), one proves similarly ♦P = T�P�T.

While this is only an outline, it captures the flavor of the approach.

5.2 Future Work

Obviously, the most immediate task is the complete elaboration of the link be-
tween the functional and the DC models of the timer.

However, this paper is only a first step in a more ambitious effort towards
a broad comparative survey of formalisms for real time and hybrid systems. To
this effect, we shall study several other formalisms in a similar way, elaborating
for each two examples: one that highlights its strong points (dependent on the
formalism), and the timer cascade (the same running example for all). Most im-
portantly, links and the possibility of a common framework will be investigated.
Another issue is the interaction between tools supporting various formalisms.

We hope that other researchers join this effort, most conveniently by provid-
ing a brief outline of their preferred formalism and two examples as described.
For those who are interested, we will prepare a more extensive discussion of the
kind of specifications and verification obligations that would be most helpful.

References

1. Vicki L. Almstrum, ”Investigating Student Difficulties With Mathematical Logic”,
in: C. Neville Dean, Michael G. Hinchey, eds, Teaching and Learning Formal Meth-
ods, pp. 131–160. Academic Press (1996)

2. Rajeev Alur, Thomas A. Henzinger, Eduardo D. Sontag, eds., Hybrid Systems III,
LNCS 1066. Springer-Verlag, Berlin Heidelberg (1996)

3. Robert G. Bartle, The Elements of Real Analysis. Wiley, New York (1964)
4. Raymond T. Boute, Funmath illustrated: A Declarative Formalism and Applica-

tion Examples. Declarative Systems Series No. 1, Computing Science Institute,
University of Nijmegen (1993)

5. Raymond Boute, Functional Mathematics: a Unifying Declarative and Calcula-
tional Approach to Systems, Circuits and Programs — Part I: Basic Mathematics.
Course text, Ghent University (2002)

6. Raymond T. Boute, “Concrete Generic Functionals: Principles, Design and Ap-
plications”, in: Jeremy Gibbons, Johan Jeuring, eds., Generic Programming, pp.
89–119, Kluwer (2003)

1 In the functional predicate calculus, quantifiers are predicates over predicates, viz.,
∀P ≡ P = DP • 1 and ∃P ≡ P �= DP • 0. We write S • e for the constant function
mapping all elements of set S to e. Note: ∃P⊆I ≡ ∃J : I . J ⊆ I ∧ P J for P in IP.

256 R. Boute and A. Schäfer

7. Raymond Boute, “Functional declarative language design and predicate calculus:
a practical approach”, to appear in ACM Trans. Prog. Lang. and Syst.

8. Raymond Boute, “Calculational semantics: deriving programming theories from
equations by functional predicate calculus”, to appear in ACM Trans. Prog. Lang.
and Syst.

9. J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a framework for simu-
lating and prototyping heterogeneous systems”, International Journal of Computer
Simulation, spec. issue on Simulation Software Development (Jan. 1994)

10. Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. IPL,
40(5):269–276, 1991.

11. Edsger W. Dijkstra, “Under the spell of Leibniz’s dream”, EWD1298 (April 2000).
12. Rutger M. Dijkstra, “Computation calculus: Bridging a formalization gap”, in:

Johan Jeuring, ed., Mathematics of Program Construction, pp. 151–174. LNCS
1422, Springer (1998)

13. David Gries, “The need for education in useful formal logic”, IEEE Computer 29,
4, pp. 29–30 (April 1996)

14. Henri Habrias and Sébastien Faucou, “Linking Paradigms, Semi-formal and Formal
Notations”, in: C. Neville Dean and Raymond T. Boute, eds., Teaching Formal
Methods, pp. 166–184, Springer LNCS 3294 (Nov. 2004)

15. M. R. Hansen and Zhou Chaochen. Duration Calculus: A Formal Approach to Real-
Time Systems. EATCS: Monographs in Theoretical Computer Science. Springer,
2004.

16. Thomas Krilavičius, “Bestiarium of Hybrid Systems” (draft, Mar. 2005)
http://wwwhome.cs.utwente.nl/~krilaviciust/publications/bestiarium.pdf

17. Edward A. Lee and Pravin Varaiya. Structure and Interpretation of Signals and
Systems. Addison-Wesley (2003)

18. P.K. Pandya, Specifying and deciding qauntified discrete-time duration calculus
formulae using dcvalid. Technical report, Tata Institute of Fundamental Research,
2000.

19. William Pugh, “Counting Solutions to Presburger Formulas: How and Why”, ACM
SIGPLAN Notices 29, 6, pp. 121–122 (June 1994)

20. Andreas Schäfer, “Combining Real-Time Model-Checking and Fault Tree Analy-
sis”, in: D. Mandrioli and K. Araki and S. Gnesi, eds., FM 2003: 12th International
FME Symposium. LNCS 2805, Springer (2003)
http://csd.Informatik.Uni-Oldenburg.DE/pub/Papers/as03.pdf

21. Andreas Schäfer, “A Calculus for Shapes in Time and Space”, in: Z. Liu and K.
Araki, eds., Proc. ICTAC 2004. LNCS 3407, Springer (2005)

22. Graeme Smith, “Specifying Mode Requiremens of Embedded Systems”, in:
Michael Oudshoorn, ed., ACSC2002, pp. 251–257 (Jan.–Feb. 2002). Also:
http://www.itee.uq.edu.au/~smith/papers/acsc2002.pdf

23. Frits W. Vaandrager, Jan H. van Schuppen, eds., Hybrid Systems: Computation
and Control, LNCS 1569. Springer-Verlag, Berlin Heidelberg (1999)

A Robust Interpretation of Duration Calculus

Martin Fränzle1 and Michael R. Hansen2

1 Carl von Ossietzky Universität Oldenburg,
FK II, Dpt. Informatik, D-26111 Oldenburg, Germany

Phone: +49-441-9722 566
fraenzle@informatik.uni-oldenburg.de

2 Informatics and Mathematical Modelling, Technical University of Denmark,
Richard Petersens Plads, Bldg. 322, DK-2800 Kgs. Lyngby, Denmark

Phone: +45-4525 3727
mrh@imm.dtu.dk

Abstract. We transfer the concept of robust interpretation from arith-
metic first-order theories to metric-time temporal logics. The idea is that
the interpretation of a formula is robust iff its truth value does not change
under small variation of the constants in the formula. Exemplifying this
on Duration Calculus (DC), our findings are that the robust interpreta-
tion of DC is equivalent to a multi-valued interpretation that uses the
real numbers as semantic domain and assigns Lipschitz-continuous inter-
pretations to all operators of DC. Furthermore, this continuity permits
approximation between discrete and dense time, thus allowing exploita-
tion of discrete-time (semi-)decision procedures on dense-time properties.

Keywords: Metric-time temporal logic; Robust interpretation; Discrete
time vs. dense time.

1 Introduction

As embedded systems become more and more complex, early availability of un-
ambiguous specification of their intended behaviour has become an important
factor for quality and timely delivery. Consequently, the quest for automatic
analysis methods for specifications arises. This quest becomes even more pro-
nounced if specifications are to be formal, because formal specifications are often
found to be particularly hard to write and maintain. Therefore, decision proce-
dures for entailment between specifications, satisfiability of specifications, etc.,
may be extremely helpful in their design process. The price to be paid for such
procedures is, however, a firmly constrained expressiveness of the specification
formalisms: one has to sacrifice all elements that could give rise to undecidability.

However, the logically motivated notions of entailment between specifica-
tions, satisfiability of specifications, etc., have often been criticized from an en-
gineering standpoint, as their validity or invalidity may well depend on the exact
values of certain constants (e.g., the exact length of a steering rod relative to the
exact distance of two joints), while any technical realization of these constants
can only be approximate. In system design, the role of any decision problem

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 257–271, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

258 M. Fränzle and M.R. Hansen

prone to changing its truth value under arbitrarily small variations of constants
may be considered questionable. Based on this insight, research has in recent
years addressed more “robust” notions of property satisfaction, where a prop-
erty is considered to be robustly (in-)valid iff it does not change its validity under
small variation of constants and/or values of variables [6,8,3,1,4,9,10]. The ul-
timate hope is that, besides being more relevant to engineering problems, such
robust notions enhance decidability as, e.g., existence of non-computable reals
cannot influence their validity.

With respect to design of embedded systems, such robust properties have by
now mainly been investigated in the automata-based modeling context. Starting
with Gupta’s, Henzinger’s, and Jagadeesan’s [6] as well as Puri’s [8] investigation
of timed automata, the idea has been to exploit topological properties of sys-
tems in order to obtain robust answers. Asarin and Bouajjani [1] have applied
this approach to reach set computation of, a.o., hybrid automata and Turing
machines. Fränzle introduced a variant thereof in [3] by applying the concept to
decision problems about hybrid automata instead of reach-set computation, e.g.
invariance of a first-order property over hybrid states [3] or progress [4], thereby
obtaining automatic analysis procedures that succeed in all robust cases, even
such which are undecidable wrt. non-robust notions of property satisfaction.

Independently, constraint solving technology for numerical constraints over
the real numbers was developed that has perfectly corresponding properties: one
can solve otherwise undecidable constraints (containing functions over the real
numbers other than polynomials [14]), provided they are robust, in the sense
that their solvability does not change under small perturbations of the constants
the constraints contain [9,10,11]. Even in cases where constraints are decidable,
robust constraints can be solved much more efficiently.

In this paper, we unite above two lines of research by addressing logical mod-
els of embedded systems. In Section 3, we provide a robust interpretation of a
very expressive metric-time temporal logic, Duration Calculus [17,15], and show
its equivalence to a multi-valued interpretation that uses the real numbers as se-
mantic domain and assigns Lipschitz-continuous interpretations to all operators
of DC in Section 4. Sections 5 and 6 deal with approximation of the multi-
valued truth value, in particular discrete-time approximation of the dense-time
interpretation, and with decidability issues.

2 Duration Calculus

Duration Calculus (abbreviated DC in the remainder) is a real-time logic that
is specially tailored towards reasoning about durational constraints on time-
dependent Boolean-valued states. Since its introduction in [17], many variants
of Duration Calculus have been defined [15]. Aiming at a mechanizable design
calculus, we present a slight syntactic subset of the Duration Calculus as defined
in [17]. Our subset allows full treatment of the gas burner case study [13], the
primary case study of the ProCoS project. This indicates that our subset offers
an interesting vocabulary for specifying embedded real-time controllers.

A Robust Interpretation of Duration Calculus 259

1 2 3 4 5 6

ff

ff

0

O1

t

tt

tt
Q

P

Trajectory

Observation intervals

O2

O3

The formula
∫
Q > 3 holds on observation interval O1 = [0, 4], as the accu-

mulated duration of Q being true over this interval exceeds 3. Analogously,∫
(P ∧ ¬Q) ≥ 1 holds on observation interval O2 = [4, 6]. Consequently, the

formula (
∫
Q > 3) � (

∫
(P ∧ ¬Q) ≥ 1) holds on the catenation O3 = [0, 6] of

the other two observation intervals.

Fig. 1. The meaning of
∫
S ∼ k and of the chop modality

Syntax. The syntax of DC used in this paper is as follows.

φ ::=
∫
S ≥ c |

∫
S > c | ¬φ | (φ ∧ φ) | (φ � φ)

S ::= P | ¬S | (S ∧ S)
P ::∈ Varname
c ::∈ R ,

where Varname is a countable set of state-variable names. Note that, in contrast
to other expositions of DC, we allow negative constants as this makes the theory
more homogeneous.

Formulae are interpreted over trajectories providing Boolean-valued valua-
tion of state variables that vary finitely, in the sense of featuring only finitely
many changes over any finite interval of time. For a given bounded and closed
time interval, also called an “observation interval”, a formula is either true or
false. While the meaning of the Boolean connectives used in DC formulae should
be obvious, the temporal connective � (pronounced “chop”) may need some ex-
planation. A formula φ � ψ is true of an observation interval iff the observation
interval can be split into a left and a right subinterval s.t. φ holds of the left part
and ψ of the right part. A duration formula

∫
S ≥ k is true of an observation

interval iff the state assertion S, interpreted over the trajectory, is true for an
accumulated duration of at least k time units within the observation interval.
Fig. 1 provides an illustration of the meaning of these formulae.

Despite its simple syntax, DC is very expressive, as can be seen from the
following abbreviations frequently used in formulae:

–
∫
S < k

def= ¬
∫
S ≥ k means that S holds for strictly less than k time units in

the current observation interval;

260 M. Fränzle and M.R. Hansen

–
∫
S ≤ k

def= ¬
∫
S > k means that S holds for at most k time units in the

current observation interval,
– $ ≥ k

def=
∫
true ≥ k, where true is an arbitrary tautologous state assertion,

denotes the fact that the observation interval has length k or more; likewise,
$ ≤ k

def=
∫
true ≤ k, $ < k

def=
∫
true < k, etc.;1

– the temporal operators � and �, meaning ‘in some subinterval of the obser-
vation interval’ and ‘in each subinterval of the observation interval’, can be
defined as �φ

def= (true � φ � true) and �φ
def= ¬�¬φ.

Semantics. Duration Calculus is interpreted over trajectories Traj T , where T
is the time domain. We will deal here with the discrete-time interpretation (i.e.
T = N), the rational-time interpretation (i.e. T = Q≥0), and the real-time
interpretation (i.e. T = R≥0) of DC. The definition of trajectories is as follows:

Traj T
def= R≥0 → Varname → B ,

where for every tr ∈ Traj T , we require for each function P (t) = tr(t)(P), where
P ∈ Varname, that the discontinuity points of P belongs to T , and the func-
tion P is finitely varied, in the sense that it has at most a finite number of
discontinuity points in every bounded and closed interval.

Satisfaction of a formula φ by a trajectory tr is defined as a limit property
over a chain of finite chunks from tr called observations, where an observation is
a pair (tr , [a, b]) ∈ ObsT

def= Traj T × TimeIntervalT with TimeIntervalT being
the set of bounded and closed time intervals { [a, b] ⊆ R≥0 | a, b ∈ T }.

First, we will define when an observation (tr , [a, b]) satisfies a formula φ when
interpreted over time domain T , denoted tr , [a, b] |=T φ. For atomic duration
formulae

∫
S ≥ k or

∫
S > k, this is defined by

tr , [a, b] |=T

∫
S ≥ k iff

∫ b

t=a

χ ◦ [[S]] ◦ tr(t) dt ≥ k ,

tr , [a, b] |=T

∫
S > k iff

∫ b

t=a

χ ◦ [[S]] ◦ tr(t) dt > k ,

where [[S]](σ) canonically lifts a Boolean-valued interpretation σ : Varname → B
of state variables to an interpretation of the state assertion S, e.g. [[P ∧¬Q]](σ) =
σ(P) ∧ ¬σ(Q), and χ maps truth values to {0, 1} according to the convention
χ(false) = 0 and χ(true) = 1. I.e.,

∫
S ≥ k holds on (tr , [a, b]) iff S holds for

an accumulated duration of at least k time units within [a, b].
The interpretation of Boolean connectives is classical:

tr , [a, b] |=T ¬φ iff tr , [a, b] |=T φ ,
tr , [a, b] |=T φ ∧ ψ iff tr , [a, b] |=T φ and tr , [a, b] |=T ψ .

1 Note that � in � ∼ k is not a state variable, but a piece of concrete syntax that
denotes the length of the current observation interval.

A Robust Interpretation of Duration Calculus 261

Satisfaction of a chop formula φ � ψ, finally, requires that the observation
interval can be split into two subintervals [a,m] and [m, b] s.t. φ resp. ψ hold on
the two subintervals:

tr , [a, b] |=T φ � ψ iff ∃m ∈ T ∩ [a, b] .
(
tr , [a,m] |=T φ and tr , [m, b] |=T ψ

)
.

A trajectory tr satisfies a formula φ, which is denoted by tr |=T φ, iff any
prefix-observation of tr satisfies φ — formally, tr |=T φ iff tr , [0, t] |=T φ for each
t ∈ T . For notational convenience, we denote the set of models of φ over time
domain T (where T ∈ {N,Q≥0,R≥0}), i.e. the set of trajectories satisfying φ
wrt. to that interpretation, by MT [[φ]]. As usual, we say that φ is valid over T ,
denoted |=T φ, iff MT [[φ]] = TrajT .

3 Robust Interpretation of DC

From an engineering perspective, arguments that become invalid when an in-
finitesimally small change to the constants occurring in the argument appears,
are at least doubtful, if not even useless. Hence, we define a formula to be robustly
valid iff it remains valid under some small variation of constants:

Definition 1 (Robust validity). A DC formula φ is robustly valid over time
domain T iff there is ε > 0 such that |=T φ′ holds for each φ′ ∈ N (φ, ε), where
N (φ, ε) is the set of all DC formulae that are structurally equal to φ, yet may
differ from φ in the constants of the individual atomic formulae by at most ε.

I.e., N (φ, ε) is the ε-neighborhood of φ with respect to the following recur-
sively defined metrics on DC formulae:

d(
∫
S1 ≥ k,

∫
S2 ≥ l) =

{
|k − l| if S1 = S2,
∞ otherwise;

d(
∫
S1 > k,

∫
S2 > l) =

{
|k − l| if S1 = S2,
∞ otherwise;

d(¬φ,¬ψ) = d(φ, ψ) ;
d(φ1 ∧ φ2, ψ1 ∧ ψ2) = max{d(φ1, ψ1), d(φ2, ψ2)} ;
d(φ1 � φ2, ψ1 � ψ2) = max{d(φ1, ψ1), d(φ2, ψ2)} ;

d(φ, ψ) = ∞ if φ and ψ disagree on the
outermost operator.

In analogy to robust validity, we define robust satisfaction of formulae by
observations and by trajectories as follows:

Definition 2 (Robust satisfaction).

1. A formula φ is robustly satisfied (over time domain T) by an observation
obs ∈ ObsT iff there is ε > 0 such that obs |=T φ′ holds for each φ′ ∈ N (φ, ε).

2. A formula φ is robustly satisfied (over time domain T) by a trajectory tr ∈
Traj T iff there is ε > 0 such that tr |=T φ′ holds for each φ′ ∈ N (φ, ε).

262 M. Fränzle and M.R. Hansen

Note that this definition in fact yields a three-valued interpretation of satis-
faction by observations, as an observation may fail to robustly satisfy both φ and
¬φ, while in classical DC, exactly one of obs |=T φ or obs |=T φ does inevitably
hold. On the levels of satisfaction by trajectories or of validity, no fundamental
differences do arise. It is, however, a consequence of the definitions that robust
validity is more discriminative than classical validity: classical validity is a nec-
essary, yet not sufficient, condition for robust validity.

Unfortunately, the existential quantification of ε in the three definitions yields
that the relation between satisfaction by an observation, satisfaction by a tra-
jectory, and validity is different from the classical setting. Thus, the following
statements (which follow immediately from the definitions) are just single-sided
implications, while they are equivalences in the classical setting:

Lemma 1 (Satisfaction vs. validity).

1. For each trajectory tr ∈ Traj T it holds that φ is robustly satisfied (over time
domain T) by all observations of the form (tr , [0, e]) if φ is robustly satisfied
(over time domain T) by tr .

2. φ is robustly satisfied (over time domain T) by all trajectories tr if φ is
robustly valid (over time domain T).

4 Multi-valued Interpretation

As the definition of robust satisfaction or validity has an extra quantification over
formula neighborhoods, the robust interpretation is structurally more complex
than the standard semantics of DC. Fortunately, an equivalent semantics can be
derived by more direct means, namely by a multi-valued interpretation of DC.
The idea is to assign to each (sub-)formula a real-number denoting its slackness
in the following sense: each formula is mapped to the upper bound of variation
in constants it can take on the current observation without changing its truth
value. Such slackness information can be lumped together with the formula’s
truth value by mapping it to a signed slackness value: if the formula is satisfied
by the observation then we assign the slackness as its multi-valued “truth” value;
otherwise we assign minus its slackness. We will now define a truth-functional
version of this multi-valued interpretation and will then show that it coincides
with the robust interpretation.

In a first step, we define a real-valued interpretationMT [[·]] : DC → ObsT →
R of formulae on observations obs ∈ ObsT and over time domain T as follows:

MT [[
∫
S ≥ k]](tr , [a, b]) =

∫ b

t=a

χ ◦ [[S]] ◦ tr(t) dt− k

MT [[
∫
S > k]](tr , [a, b]) =

∫ b

t=a

χ ◦ [[S]] ◦ tr(t) dt− k

MT [[¬φ]]obs = −MT [[φ]](obs)
MT [[φ ∧ ψ]]obs = min {MT [[φ]](obs),MT [[ψ]](obs)}

MT [[φ � ψ]](tr , [a, b]) = sup
m∈T∩[a,b]

min {MT [[φ]](tr , [a,m]),MT [[ψ]](tr , [m, b])} .

A Robust Interpretation of Duration Calculus 263

In fact, the supremum operator in MT [[φ � ψ]](tr , [a, b]) could be replaced by
the maximum over interval [a, b], as Corollary 3 below shows the semantics to
be continuous such that closedness of the observation interval [a, b] implies that
the maximum exists (and trivially coincides with the supremum).

Finally, we overload the symbol MT [[·]] by defining the multi-valued in-
terpretations MT [[·]] : DC → Traj T → R over individual trajectories and
MT [[·]] : DC → R over the universe of trajectories to be

MT [[φ]](tr) = inf
e∈T

MT [[φ]](tr , [0, e]),

MT [[φ]] = inf
tr∈TrajT

MT [[φ]](tr)

This multi-valued semantics corresponds closely to the standard semantics:

Lemma 2 (Multi-valued semantics vs. classical semantics).

1. If MT [[φ]](obs) > 0 then obs |=T φ;
2. if MT [[φ]](obs) < 0 then obs |=T φ;
3. if MT [[φ]](tr) > 0 then tr |=T φ;
4. if MT [[φ]](tr) < 0 then tr |=T φ;
5. if MT [[φ]] > 0 then |=T φ;
6. if MT [[φ]] < 0 then |=T φ.

I.e., positivity of the multi-valued semantics is a sufficient, yet not necessary,
condition for satisfaction or validity (depending on the variant of MT [[φ]] used),
while negativity is a sufficient, yet not necessary, condition for dissatisfaction
or invalidity. Despite this close correspondence, the multi-valued interpretation
has a number of interesting properties that distinguish it from the standard
interpretation:

Lemma 3 (Lipschitz-continuity). For any DC formula φ, the semantic
mapping MT [[φ]] : ObsT → R is Lipschitz continuous with constant 1 with respect
to the metrics

d ((tr1, [b1, e1]) , (tr2, [b2, e2]))
def=

max

⎧⎪⎨⎪⎩
|b1 − b2|,
|e1 − e2|,∫min{e1,e2}
t=max{b1,b2} χ ◦ (tr1 = tr2)(t) dt

⎫⎪⎬⎪⎭
on observations.

This Lipschitz continuity, together with the following linearity properties, will
allow us to develop approximation schemes for MT [[φ]].

Lemma 4 (Linearity of multi-valued semantics). Let obs = (tr , [b, e]) be
an observation, let c ∈ R and d ∈ R>0. If MT [[φ]](obs) = x then

1. MT [[φ+c]](obs) = x+c, where φ+c is the formula obtained from φ by replacing
each positive occurrence of an atomic formula

∫
S ≥ k (or

∫
S > k) by

∫
S ≥

k − c (by
∫
S > k − c, resp.) and each negative occurrence by

∫
S ≥ k + c (by∫

S > k + c, resp.),

264 M. Fränzle and M.R. Hansen

2. Md·T [[φ·d]](obs ′) = xd, where d · T = {dt | t ∈ T } and φ·d is the formula ob-
tained from φ by replacing each occurrence of

∫
S ≥ k by

∫
S ≥ kd and each oc-

currence of
∫
S > k by

∫
S > kd, and observation obs ′ = (t �→ tr

(
t
d), [bd, ed]

)
.

Given these properties, which help in building verification support, as e.g.
the continuity property allows to remove whole parts (namely a ball of radius
δ in the observation space around obs) from the search space of a satisfiability
search once an observation obs with truth value MT [[φ]](obs) = −δ has been
found, it is interesting to see that the multi-valued semantics is in fact tightly
linked to the robust interpretation:

Theorem 1 (Robustness vs. multi-valued).

1. MT [[φ]](obs) > 0 iff obs robustly satisfies φ;
2. MT [[φ]](tr) > 0 iff tr robustly satisfies φ;
3. MT [[φ]] > 0 iff φ is robustly valid.

Proof. We show only (1.); the other cases are analogous:
As MT [[φ]](obs) assigns the slackness of the constants, i.e. corresponds to

the amount of variation of constants that can be applied without invalidating
satisfaction by obs , it is straightforward to show by induction on the structure of
φ that MT [[φ]](obs) > 0 implies that all formulae φ′ with d(φ, φ′) <MT [[φ]](obs)
are satisfied by obs . I.e., MT [[φ]](obs) > 0 implies that obs robustly satisfies φ.

Vice versa, if MT [[φ]](obs) ≤ 0 then MT [[φ+(−ε)]](obs) < 0 for each ε > 0.
I.e., according to Lemma 2, obs |= φ+(−ε) for all ε > 0. As d(φ, φ+(−ε)) = ε, this
shows that obs does not robustly satisfy φ. !

5 Approximability

Due to the Lipschitz continuity of the multi-valued semantics and due to its
correspondence to the robust interpretation, it turns out that the robust inter-
pretation is approximable in a variety of ways. E.g., we find that the discrete-
time interpretation approximates the real-time interpretation with a quantifiable
tolerance. Note that such results do inherently build on the multi-valued inter-
pretation.

5.1 Real Time Versus Rational Time

Before we can start with discrete-time approximation, we show that robust DC
cannot distinguish between real-valued and rational-valued time in the sense
that a robustly satisfying observation over real-valued time exists iff a robustly
satisfying observation over rational time exists:2

2 The same is, btw., true for the standard interpretation, yet for different reasons:
for every n ∈ N, existence of an observation with n discontinuities satisfying φ can
be expressed as a formula in FOL(R, +, <). As FOL(R, +,<) cannot distinguish
between rationals and reals, φ has a rational-time model with n state changes iff it
has a real-time model with n state changes.

A Robust Interpretation of Duration Calculus 265

Lemma 5 (Rational time vs. real time). MR≥0[[φ]] = MQ≥0[[φ]].

Proof. Let tr ∈ TrajR≥0 and e ∈ R≥0. Due to density of Q in R,

inf
tr ′∈TrajQ≥0,e

′∈Q≥0

d((tr , [0, e]), (tr ′, [0, e′])) = 0 .

Similarly, real-valued chop points can be arbitrarily closely approximated by
rational ones. Given the continuity of MT [[φ]], as expressed in Lemma 3, an easy
induction over the structure of φ thus shows

MR≥0[[φ]]

= inf
tr∈TrajR≥0,e∈R

MR≥0[[φ]](tr , [0, e]) [Def. of MR≥0[[φ]]]

= inf
tr∈TrajQ≥0,e∈Q

MQ≥0[[φ]](tr , [0, e]) [Density of Q in R]

= MQ≥0[[φ]] [Def. of MQ≥0[[φ]]]
 !

5.2 Approximation of Real Time Interpretation by the Discrete
Time Interpretation

Given the equivalence of the real-valued time and the rational-time interpreta-
tion expressed by Lemma 5, we can proceed towards approximation of real time
by discrete time:

Lemma 6 (Upper approximation by discrete time). Let φ be a DC for-
mula and let depth(φ) denote the nesting depth of chop operators in φ. Then

MR≥0[[φ]] ≤MN[[φ]] +
depth(φ)

2
.

Proof. Let obs = (tr , [a, b]) ∈ ObsN be a discrete-time (and hence also a real-
time) observation. We show by induction on the structure of φ that

MR≥0[[φ]](obs) ∈MN[[φ]](obs)± depth(φ)
2

,

where x± y denotes the set [x− y,x + y].

Base case: φ =
∫
S ≥ k or φ =

∫
S > k. Is simple as depth(φ) = 0 and

MR≥0[[φ]](obs) =
∫ b

t=a
χ ◦ [[S]] ◦ tr(t) dt− k = MN[[φ]](obs).

Induction steps φ = ¬ψ1 and φ = ψ1 ∧ ψ2 follow from the corresponding prop-
erties of ψi.

266 M. Fränzle and M.R. Hansen

Induction step: φ = ψ1 � ψ2. We establish the upper bound for MR≥0[[φ]](obs)
below. The lower bound is established similarly.

MR≥0[[φ]](obs)

= sup
m∈[a,b]

min
{
MR≥0[[ψ1]](tr , [a,m]),
MR≥0[[ψ2]](tr , [m, b])

}
[Def. MR≥0[[φ]]]

≤ sup
m∈N∩[a,b]

min
{
MR≥0[[ψ1]](tr , [a, m]),
MR≥0[[ψ2]](tr , [m, b])

}
+

1
2

[Lemma 3, d(N,R≥0) = 1
2]

≤ sup
m∈N∩[a,b]

min

{
MN[[ψ1]](tr , [a, m]) + depth(ψ1)

2 ,

MN[[ψ2]](tr , [m, b]) + depth(ψ2)
2

}
+

1
2

[Induction]

≤ sup
m∈N∩[a,b]

min

{
MN[[ψ1]](tr , [a, m]) + depth(φ)

2 ,

MN[[ψ2]](tr , [m, b]) + depth(φ)
2

}
[depth(ψi) + 1 ≤ depth(φ)]

= MN[[φ]](obs) +
depth(φ)

2
[Def. MN[[φ]]]

Thus, MR≥0[[φ]](obs) ∈ MN[[φ]](obs) ± depth(φ)
2 holds for φ = ψ1 � ψ2, which

ends the induction.
As a consequence,MR≥0[[φ]](obs) ≤MN[[φ]](obs)+ depth(φ)

2 holds for arbitrary
formulae φ and arbitrary discrete-time observations obs ∈ ObsN. As the universe
Traj N of discrete-time trajectories is properly included in the universe Traj R≥0
of real-time trajectories, we have:

MR≥0[[φ]]
= inf

tr∈TrajR≥0,e∈R≥0

MR≥0[[φ]](tr , [0, e]) [Def. MR≥0[[φ]]]

≤ inf
tr∈TrajN,e∈N

MR≥0[[φ]](tr , [0, e]) [N ⊂ R≥0]

≤ inf
tr∈TrajN,e∈N

MN[[φ]](tr , [0, e]) +
depth(φ)

2
[above induction]

= MN[[φ]] +
depth(φ)

2
[Def. MN[[φ]]]

 !

Therefore, dense-time formulae can be falsified using discrete-time reasoning: if
MN[[φ]]+ depth(φ)

2 is negative then φ is certainly robustly invalid, asMR≥0[[φ]] < 0
follows.

In case above approximation is too inexact, linearity of the multi-valued
semantics allows for scaling, thus yielding tighter approximation by using higher
“sampling rates”:

Corollary 1 (Discr. approx. with higher sampling rate). For any n ∈
N \ {0},

MR≥0[[φ]] ≤M 1
n ·N[[φ]] +

depth(φ)
2n

.

Proof. Follows directly from the previous lemma together with Lemma 4 and
the fact that depth(φ) = depth(φ·n):

A Robust Interpretation of Duration Calculus 267

MR≥0[[φ]]

=
1
n
MR≥0[[φ·n]] [Lemma 4]

≤ 1
n

(
MN[[φ·n]] +

depth(φ·n)
2

)
[Lemma 6]

=
1
n
MN[[φ·n]] +

depth(φ)
2n

[depth(φ) = depth(φ·n)]

= M 1
n

·N[[φ]] +
depth(φ)

2n
[Lemma 4]

 !

Unfortunately, the previous lemma and its corollary do only provide upper ap-
proximations of the real-valued time interpretation MR≥0[[φ]] by discrete time
with arbitrary sampling rates M 1

n ·N[[φ]]. Yet, these upper approximations are
complemented by a tightness result concerning rational time:

Lemma 7. infk≥l,k∈N M 1
k! ·N[[φ]] ≤ MQ≥0[[φ]] holds for each DC formula φ and

each l ∈ N.

Proof. Assume, on the contrary, that x
def= infk≥l,k∈N M 1

k! ·N[[φ]] > MQ≥0[[φ]].
Then there is a rational-time observation obs ∈ ObsQ≥0 with x >MQ≥0[[φ]](obs).
But as obs = (tr , [a, b]) is a rational-time observation, there is m ∈ N with m ≥ l
such that a, b ∈ 1

m ·N and tr is constant on [i
m , i+1

m) for each i ∈ N and that, fur-
thermore, all chop points characterizing (i.e., yielding the suprema in) MQ≥0[[φ]]
are in 1

m ·N. Therefore,M 1
n ·N[[φ]](obsn) = MQ≥0[[φ]](obs) holds for all multiples n

of m, where obsn = (trn, [a, b]) is the natural restriction of obs to over-sampled
discrete time obtained using the restriction trn of tr to domain 1

n · N. With
n = m!, this yields the contradiction x > MQ≥0[[φ]](obs) = M 1

n ·N[[φ]](obsn) ≥
infobs′∈Obs 1

n
·N
M 1

n ·N[[φ]](obs ′) = M 1
n ·N[[φ]] ≥ infk≥l,k∈N M 1

k! ·N[[φ]] = x. Conse-

quently, the assumption that infk≥l,k∈N M 1
k! ·N[[φ]] > MQ≥0[[φ]] must be wrong,

which proves infk≥l,k∈N M 1
k! ·N[[φ]] ≤MQ≥0[[φ]]. !

However, using Lemma 5, this tightness result carries over to real-valued time:

Corollary 2 (Asymptotic tightness of disc.-time approx.).
infk≥l,k∈N M 1

k! ·N[[φ]] ≤MR≥0[[φ]] holds for each DC formula φ and each l ∈ N.

5.3 Discrete Time with Different Sampling Rates

Given above approximation results between discrete time and real-valued time,
the rate of convergence of the discrete time interpretation when using increas-
ingly larger sampling rates becomes interesting. A close look at the proofs of
Lemma 6 and Corollary 1 reveals that they carry over from real-valued time to
using discrete time (with different sampling rates) on both sides. When replacing
MR≥0[[φ]] by M 1

k ·N[[φ]] for some arbitrary k ∈ N \ {0}, we obtain

268 M. Fränzle and M.R. Hansen

Lemma 8 (Approximation by sub-sampling). Let φ be a DC formula and
let k ∈ N \ {0}. Then

M 1
k ·N[[φ]] ≤MN[[φ]] +

depth(φ)
2

.

Proof. Substitute MR≥0[[φ]] with M 1
k ·N[[φ]] in the proof of Lemma 6. !

Again, we can scale this result using the linearity properties from Lemma 4, thus
obtaining a discrete-time variant of Corollary 1:

Corollary 3 (Sampling-rate conversion). For any m,n ∈ N \ {0},

M 1
mn ·N[[φ]] ≤M 1

n ·N[[φ]] +
depth(φ)

2n
.

Proof. Repeat the proof of Corollary 1 with MR≥0[[φ]] replaced by M 1
mn ·N[[φ]]

and Lemma 6 substituted with Lemma 8. !

Note that this implies that independently of the formula structure, finer sampling
cannot yield arbitrary changes in the multi-valued truth value. When moving
to an over-sampling, the possible increase in truth value is bounded by depth(φ)

2n ,
where n is the base sampling rate. In particular, the possible increase converges
against 0 for growing sampling rates.

6 Decidability

We will now turn to decidability and semi-decidability results over integer and
real-valued time.

6.1 Decidability over Discrete Time

In order to obtain a decision procedure for robust validity over discrete time, we
present a reduction of robust validity over discrete time to conventional validity
over discrete time. A simple induction shows

Lemma 9 (Robust vs. classical satisfaction). For each DC formula φ and
each observation obs ∈ ObsN, the equivalence MN[[φ]](obs) > 0 iff obs |=N φ◦

holds, where φ◦ is the formula φ with all positive occurrences of
∫
S ≥ k replaced

by
∫
S > k and all negative occurrences of

∫
S > k replaced by

∫
S ≥ k.

AsMN[[·]] maps formulae to integers, a corresponding reduction of robust validity
to classical validity can be derived.

Lemma 10 (Robust vs. classical validity). For a DC formula φ with integer
constants, MN[[φ]] > 0 iff |=N φ◦. I.e., φ is robustly valid over discrete time iff
φ◦ is valid over discrete time in the classical sense.

Proof. It follows from the definition of MT [[·]] that MN[[φ]](obs) ∈ Z ± C for
each obs ∈ ObsN, where C is the set of constants occurring in φ and M ±N =
{m+ n | m ∈M,n ∈ N} ∪ {m− n | m ∈M,n ∈ N}. Therefore,

A Robust Interpretation of Duration Calculus 269

MN[[φ]] > 0

iff inf
tr∈TrajN,e∈N

MN[[φ]](tr , [0, e]) > 0 [Def. MT [[φ]]]

iff ∀ tr ∈ Traj N, e ∈ N .
(
MN[[φ]](tr , [0, e]) > 0

)
[MN[[φ]](obs) ∈ Z± C, which has no accumulation point]

iff ∀ tr ∈ Traj N, e ∈ N .
(
(tr , [0, e]) |=N φ◦) [Lemma 9]

iff |=N φ◦ [Def. of classical validity]
 !

Thus, robust validity of φ over discrete time can be reduced to classical validity
of φ◦ over discrete time.

Theorem 2 (Decidability of robust validity over discrete time). It is
decidable whether a DC formula φ with integer constants is robustly valid over
discrete time.

Proof. According to Lemma 10 it suffices to decide classical validity of φ◦ instead.
This problem is known to be decidable via a reduction to an emptiness problem
of extended regular expressions; see [7] for details. 3 !

6.2 Semi-Decidability Over Dense Time

Using the approximation scheme between discrete and dense time exposed in
Section 5, above discrete-time decidability result does immediately generalize to
a dense-time semi-decision procedure:

Theorem 3 (Semi-decidab. of dense time rob. invalidity). If φ contains
rational constants only then it is semi-decidable whether MR≥0[[φ]] < 0, i.e.
whether φ is robustly invalid over real-valued time.

Proof. W.l.o.g. we may assume that φ contains integer constants only4 such
that MN[[φ·n]] ∈ Z for each n ∈ N. According to Corollaries 1 and 2, inequation
MR≥0[[φ]] < 0 holds iff M 1

n ·N[[φ]] < −depth(φ)
2n for some n ∈ N \ {0}. However,

M 1
n ·N[[φ]] < −depth(φ)

2n

iff MN[[φ·n]] < −depth(φ)
2

[Lemma 4]

3 Strictly speaking, we need to extend the procedure from reference [7] to handle arbi-
trary integer constants in duration inequations

∫
S ∼ k, as [7] deals with non-negative

constants only. However, given that durations
∫
S can only yield non-negative values,

this extension is straightforward: validity of an arbitrary formula φ is equivalent to
validity of its variant φN, where φN is derived from φ by replacing each occurrence
of
∫
S ≥ k or

∫
S > k with k < 0 by

∫
S ≥ 0.

4 If φ contains non-integer rational constants then we can use φ·d, with d being a
common denominator of all constants in φ, instead. According to Lemma 4, the
formulae φ and φ·d are equivalent wrt. robust validity over dense time.

270 M. Fränzle and M.R. Hansen

iff MN[[φ·n]] + 1 ≤ −
⌊

depth(φ)
2

⌋
[MN[[φ·n]] ∈ Z]

iff MN[[(φ·n)
+
(
1+

⌊
depth(φ)

2

⌋)]] ≤ 0 [Lemma 4]

iff (φ·n)
+
(
1+

⌊
depth(φ)

2

⌋) is not robustly valid over discrete time.

[Def. of robust validity]

The latter is decidable according to Theorem 2. Hence, in order to semi-decide
whether φ is robustly invalid over real-valued time, it suffices to decide robust
validity of (φ·n)+(1+6 depth(φ)

2 7) over discrete time for successively larger n ∈ N\{0}
until an invalid instance is found. !

7 Discussion

We have developed the concept of robust interpretation for the interval tempo-
ral logic Duration Calculus, and we have shown an equivalence result relating
robust interpretation to a multi-valued semantics, where real numbers is used
as semantic domain and Lipschitz continuous functions are associated with the
operators of Duration Calculus.

The multi-valued semantics provides insight concerning robustness of the
formula, as the meaning of a formula describes how much the constants in the
formula may be varied without changing the truth value of the formula. Fur-
thermore, this semantics was shown to provide a nice framework for studying
the relationship between different time domains.

Based on the multi-valued semantics, we have studied how a real-time seman-
tics of Duration Calculus can be approximated by a discrete-time semantics. This
extends dicrete-time approximation, as suggested by Chakravorty and Pandya
[2], to an interval-based temporal logic featuring accumulated durations. In our
setting, an asymptotically tight upper-bound approximation constitutes the ba-
sis for a semi-decision procedure. A similar lower-bound approximation would
give a decidability result. Unfortunately we do not have a corresponding lower-
bound approximation result yet, although it is likely that such do at least hold
for those fragments of Duration Calculus, where chop is confined to occur in
only one polarity (i.e., either in only positive or in only negative contexts).

Acknowledgements. The authors would like to thank Stefan Ratschan for his
detailed comments on an earlier draft of this paper. Work of the first author was
partly supported by the German Research Council (DFG) as part of the Trans-
regional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

References

1. Eugene Asarin and Ahmed Bouajjani. Perturbed turing machines and hybrid
systems. In Proceedings of the Sixteenth Annual IEEE Symposium on Logic in
Computer Science (LICS 2001). IEEE, 2001.

A Robust Interpretation of Duration Calculus 271

2. G. Chakravorty and P. K. Pandya. Digitizing Interval Duration Logic. In Proceed-
ings of CAV 2003, LNCS 2725, pages 167–179, Springer-Verlag 2003.

3. Martin Fränzle. Analysis of hybrid systems: An ounce of realism can save an
infinity of states. In Jörg Flum and Mario Rodŕıguez-Artalejo, editors, Computer
Science Logic (CSL’99), LNCS 1683, pages 126–140. Springer-Verlag, 1999.

4. Martin Fränzle. What will be eventually true of polynomial hybrid automata. In
Naoki Kobayashi and Benjamin C. Pierce, editors, Theoretical Aspects of Computer
Software (TACS 2001), LNCS 2215, pages 340–359. Springer-Verlag, 2001.

5. Martin Fränzle and Michael R. Hansen. A Robust Interpretation of Duration
Calculus (Extended abstract). In Paul Pettersson and Wang Yi, editors, Nordic
Workshop on Programming Theory, Technical report 2004-041, Department of In-
formation Technology, Uppsala University, pages 83–85, 2004.

6. Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan. Robust timed au-
tomata. In Oded Maler, editor, Proceedings of the First International Workshop on
Hybrid and Real-Time Systems (HART 97), LNCS 1201, pages 331–345. Springer-
Verlag, 1997.

7. Michael R. Hansen. Model-checking discrete duration calculus. Formal Aspects of
Computing, 6(6A):826–845, 1994.

8. Anuj Puri. Dynamical properties of timed automata. In Ravn and Rischel [12],
pages 210–227.

9. Stefan Ratschan. Continuous first-order constraint satisfaction. In J. Calmet,
B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, editors, Artificial Intelli-
gence, Automated Reasoning, and Symbolic Computation, LNCS 2385, pages 181–
195. Springer, 2002.

10. Stefan Ratschan. Quantified constraints under perturbations. Journal of Symbolic
Computation, 33(4):493–505, 2002.

11. Stefan Ratschan. Search heuristics for box decomposition methods. Journal of
Global Optimization, 24(1):51–60, 2002.

12. A. P. Ravn and H. Rischel, editors. Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT’98), LNCS 1486, Springer-Verlag, 1998.

13. Anders P. Ravn, Hans Rischel, and Kirsten M. Hansen. Specifying and verifying
requirements of real-time systems. IEEE Transactions on Software Engineering,
19(1):41–55, January 1993.

14. Alfred Tarski. A decision method for elementary algebra and geometry. RAND
Corporation, Santa Monica, Calif., 1948.

15. Zhou Chaochen and Michael R. Hansen. Duration Calculus — A Formal Ap-
proach to Real-Time Systems. EATCS monographs on theoretical computer sci-
ence. Springer-Verlag, 2004.

16. Zhou Chaochen, Michael R. Hansen, and Peter Sestoft. Decidability and unde-
cidability results for duration calculus. In P. Enjalbert, A. Finkel, and K. W.
Wagner, editors, Symposium on Theoretical Aspects of Computer Science (STACS
93), LNCS 665, pages 58–68. Springer-Verlag, 1993.

17. Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269–276, 1991.

Symbolic Model Checking of Finite Precision
Timed Automata�

Rongjie Yan1,2, Guangyuan Li1, and Zhisong Tang1

1 Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100080, China

2 Graduate School of the Chinese Academy of Sciences,
Beijing 100039, China
{yrj, ligy}@ios.ac.cn

Abstract. This paper introduces the notion of finite precision timed au-
tomata (FPTAs) and proposes a data structure to represent its symbolic
states. To reduce the state space, FPTAs only record the integer values
of clock variables together with the order of their most recent resets.
We provide constraints under which the reachability checking of a timed
automaton can be reduced to that of the corresponding FPTA, and then
present an algorithm for reachability analysis. Finally, the paper reports
some preliminary experimental results, and analyzes the advantages and
disadvantages of the new data structure.

Keywords: Finite precision timed automata, model checking, symbolic
methods.

1 Introduction

Timed automata (TAs) [1] provide a formal framework for the automatic analysis
and verification of real-time systems, and in the past few years several tools for
the model checking of TAs have been developed and used, including Uppaal [20],
Kronos [15,11], Red [22,23,24] and Rabbit [9].

State space explosion is likely to be the most serious problem that any model
checker has to deal with. Within the model checking community, there were many
different attempts to reduce memory consumption and to accelerate the speed
of exploration, including symmetry reduction [10,18], partial order reduction [6]
and active clock reduction [16] (all based on the structural characteristics of the
system being verified), as well as region equivalence partition of state space [1],
and the discretization of time models [3,9].

In addition to the approaches mentioned above, many works were based
on symbolic representations of the state space. The region equivalence of [1]
is the precursor of the symbolic methods in which the state space is covered

� Supported by 973 Program of China under Grant No. 2002cb312200; and the Na-
tional Natural Science Foundation of China under Grant Nos. 60273025, 60223005,
60421001.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 272–287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Symbolic Model Checking of Finite Precision Timed Automata 273

using regions with the same integer parts of clock values and the ordering of
fractional parts. As a result, an infinite state space may then become finite. A
zone, based on region equivalence, uses a set of clock difference constraints to
represent all the states satisfying these constraints. Currently, most of verifiers,
like Uppaal, Kronos, and Red, use zones to represent symbolic states. And there
exist different data structures to describe the constraint sets, for example, DBM
(difference bound matrices) [5] and BDD-like (binary decision diagrams) [13]
data structures. In DBMs, employed by Uppaal and Kronos, a constraint set is
expressed as a weighted, directed graph with vertices corresponding to all the
clock variables and a zero-vertex 0. In BDD-like data structures, a node of the
decision tree represents a clock difference, an edge is labelled with an integral
interval, and a node together with an outgoing edge represents a constraint.
Uppaal and Kronos implemented such data structures too [4,12].

Discrete timed automata [2] may achieve higher efficiency in analysis and
verification due to having fewer states, but they are not suitable to describe
asynchronous systems. On the other hand, timed automata with continuous
semantics [1] are appropriate to both synchronous and asynchronous systems,
but the complexity remains very high. To apply the mature techniques in discrete
time models to improve the efficiency of model checking, we try to discretize the
continuous time.

The present paper introduces a finite precision timed automaton (FPTA)
together with a data structure, different from DBMs and BDDs, for a symbolic
representation of the state space (note that Finite precision means that the
clocks have integral valuations). It can be shown that the reachability problem of
TA may be reduced to that of the corresponding FPTA under certain constraints
(see Theorm 1). The paper also develops a reachability analysis algorithm for
the FPTAs, and shows some initial experimental results.

The paper is organized as follows. In section 2, we briefly recall the definition
of TAs and their semantics. In section 3, we introduce FPTAs. In section 4, we
discuss the reachability problem equivalence for the TAs and FPTAs. In sec-
tion 5, we present the new symbolic data structure and the reachability analysis
algorithm for the FPTAs. In section 6, we give some experiment results. In the
concluding section, we discuss related work.

2 Timed Automata

A timed automaton (TA), proposed by Alur and Dill [1], is a finite state automa-
ton extended with a finite set of real-valued clock variables. Nodes of a TA rep-
resent locations, and arcs represent transitions between them. Clock constraints
within a node (invariants) restrict the time that can elapse in it. Constraints
labelling arcs act as guards for transitions between the nodes.

Definition 1. (Syntax of Timed Automata). Let X be a finite set of clocks, and
C(X) be the clock constraint set over X, given by the syntax:

φ ::= (x ∼ c) | φ1 ∧ φ2 | true

274 R. Yan, G. Li, and Z. Tang

where x ∈ X, ∼∈ {<,≤, >,≥} and c ∈ N+ (N+ is the set of non-negative
integers).

A timed automaton over X is a tuple A = 〈L, l0, Σ,X, I, E〉, where

– L is a finite set of locations, and l0 ∈ L is the initial location,
– I is a mapping that labels each location l ∈ L with some constraint in
C(X),and I(l) is called the invariant of l,

– Σ is a finite set of synchronization labels, and
– E ⊆ L× C(X)×Σ × 2X × L is the set of transitions.

A transition (l, φ, σ, Y, l′) ∈ E means that one can move from the location l
to l′ through a transition labelled with σ ∈ Σ. Moreover, φ the guard must be
satisfied by the current clock values, and all the clocks in Y (Y ⊆ X) are reset
to 0.

A clock valuation is a function μ : X �→ R+, where R+ is the set of non-
negative reals. μX denotes the set of all clock valuations over X . For t ∈ R+,
μ+ t denotes the clock valuation such that μ(x+ t) = μ(x)+ t, for all x ∈ X . For
Y ⊆ X , μ[Y := 0] denotes the clock valuation such that μ[Y := 0](x) = 0, for
all x ∈ Y and otherwise μ[Y := 0](x) = μ(x). μ satisfies a constraint φ ∈ C(X),
denoted by μ |= φ, if φ evaluates to true under the assignment given by μ.

The continuous semantics of a timed automaton A = 〈L, l0, Σ,X, I, E〉 over
X is defined as a transition system �A�C = 〈S, s0, Σ∪R+,→〉, where S = L×μX ;
s0 = (l0, μ0) is the initial state where μ0(x) = 0 for all x ∈ X ; and the transition
relation → comprises two kinds of moves:

– delay transition: (l, μ) δ−→ (l, μ+ δ), if δ ∈ R+ and μ |= I(l) and μ+ δ |= I(l);
– discrete transition: (l, μ) σ−→ (l′, μ[Y := 0]), if (l, φ, σ, Y, l′) ∈ E and μ |= φ

and μ[Y := 0] |= I(l′).

In the transition system ofA = 〈L, l0, Σ,X, I, E〉, for a state sk = (l, μ) where
l ∈ L, if there exists a transition sequence such that s0

α0−→ s1
α1−→ · · · αk−1−−−→ sk,

then sk is called reachable in the continuous semantics of A where αi ∈ Σ ∪R+.
Given a location l and a clock constraint φ, if there exists a reachable state (l, μ)
such that μ |= φ, then (l, φ) is called reachable in A.

3 Finite Precision Timed Automata

The syntax of FPTAs is the same as that of TAs. The feature that differentiates
an FPTA from a discrete time TA is that it can distinguish the ordering of clock
resets, by the introduction of an order. To define the semantics of FPTAs, we
introduce the notion of order firstly.

Definition 2. (Order). An order over X is a mapping o : X �→ N+, and the set
of all such mappings is denoted by oX . For x1,x2 ∈ X with o(x1) < o(x2), we
say that the order of x1 is less than that of x2.

Since different order valuations may represent the same ordering relationship
between the clocks, we introduce order normalization.

Symbolic Model Checking of Finite Precision Timed Automata 275

Definition 3. (Order Normalization).

1. An order o over X is normalized if the image o(X) is an initial interval of
N+.

2. Two orders, o and o′, are equivalent if o(x) ≤ o(y) iff o′(x) ≤ o′(y), for all
x, y ∈ X.

3. For each order o, we denote by norm(o) the unique normalized order which
is equivalent to o.

For example, the normalization of the order o1 = (1, 0, 3, 4, 3) is norm(o1) =
(1, 0, 2, 3, 2).

For an FPTA A = 〈L, l0, Σ,X, I, E〉, a clock valuation is a mapping v :
X �→ N+, and the set of all such valuations is denoted by vX . A state of A is
s = (l, (v, o)) where l ∈ L, v ∈ vX is a clock valuation, o ∈ oX is a normalized
order, and (v, o) is the clock information of the state. For a state s = (l, (v, o))
and a constraint φ ∈ C(X), if v |= φ, we say that s satisfies (l, φ), denoted by
s |= (l, φ).

The semantics of A is the transition system �A�FP = 〈S, s0, Σ,→〉, where
S = L× (vX ×oX); s0 = (l0, (v0, o0)) is the initial state where v0(x) = o0(x) = 0
for all x ∈ X ; and the transition relation → comprises two kinds of moves:

– delay transition: (l, (v, o)) ε−→ (l, (v, o)⊕ k) (or simply (l, (v, o)) → (l, (v, o)⊕
k)), if k ∈ N+ and (v, o)⊕ k |= I(l), where ((v, o) ⊕ k)(x) = (v(x) + (o(x) +
k) div m, (o(x) + k) mod m) for m = 1 + max o(X);

– discrete transition: (l, (v, o)) σ−→ (l′, (v′, o′)), if there exists (l, φ, σ, Y, l′) ∈
E such that v |= φ and v′ |= I(l′) and (v′, o′) = reset((v, o), Y) where
reset((v, o), Y) = (v[Y := 0], norm((o+ 1)[Y := 0])) and for each x ∈ X :

v[Y := 0](x) =
{

0 if x ∈ Y
v(x) if x ∈ X − Y,

(o+ 1)[Y := 0](x) =
{

0 if x ∈ Y
o(x) + 1 if x ∈ X − Y.

A run of an FPTA A is an infinite sequence of its discrete and delay transi-
tions:

(l0, (v0, o0))
α0−→ (l1, (v1, o1))

α1−→ (l2, (v2, o2))
α2−→ (l3, (v3, o3))

α3−→ . . .

where α ∈ Σ ∪ {ε}.
Here we show one of runs for the FPTA in Figure 1. For convenience, in

Figure 1, the discrete transition from l0 to l1 is called t1; the other is called t2.

x<5,y>=2

b

1l0l

x:=0

y>=3,x>=3
y:=0

a

y<=5

x<=5y<=4

Fig. 1. A simple timed automaton

276 R. Yan, G. Li, and Z. Tang

Example 1. One of the runs for the FPTA in Figure 1 is:1 (l0, 0000)→(l0, 1100)→
(l0, 2200) a−→ (l1, 2010) → (l1, 3001) → (l1, 3110) → (l1, 4101) → (l1, 4210) →
(l1, 5201)→ (l1, 5310) b−→ (l0, 0301)→ · · ·

Before discrete transitions, all the clock values will increase by one after every
time unit and the orders will not change. When the state (l0, 2200) is generated,
the guard of t1 is satisfied, and its occurrence leads to (l1, 2010). Now the guard
of t2 is not satisfied, and time elapses in location l1 on condition that its invariant
is satisfied. When (l1, 5310) is generated, transition t2 can occur and generate
successive states. �

Since safety and bounded liveness properties can be expressed in terms of
reachability [8], many model checkers for real-time systems concentrate on the
latter. The reachability checker of FPTAs will analyze whether (l, φ) is reachable.

Definition 4. (The Reachable State of FPTAs). Let A be an FPTA. For a state
(ln, (vn, on)), if there is a finite state sequence such that

(l0, (v0, o0))
α0−→ (l1, (v1, o1))

α1−→ (l2, (v2, o2))
α2−→ . . .

αn−1−−−→ (ln, (vn, on))

then (ln, (vn, on)) is called reachable. Given a location l and a clock constraint
φ, if there exists a reachable state (l, (v, o)) in A such that v |= φ, we say that
(l, φ) is reachable in A.

4 The Relationship Between FPTAs and TAs

In this section, we investigate the relationship between reachability in FPTAs
and TAs. We have left proofs of Lemma 1 and 2 to Appendix A.

Definition 5. (Left Closed and Right Open Timed Automata). A clock con-
straint φ generated by the syntax

φ ::= x ≥ c | x < c | φ1 ∧ φ2 | true

is called left-closed and right-open (lcro-constraint). If all the constraints of a
TA are of this kind, we call it an lcro-TA.

With the lcro-constraint φ, the clock valuation of TAs μ |= φ iff 6μ7 |= φ
(where 6μ7 is the mapping which assigns every x ∈ X an integer 6μ(x)7). Let
A be an lcro-TA, we will investigate the relationship between the continuous
semantics �A�C and the finite precision semantics �A�FP .

Definition 6. (Relation �). Let μ : X �→ R+ be a clock valuation of TAs, and
(v, o) be a clock information of FPTAs. Then μ � (v, o) if, for all x, y ∈ X,
v(x) = 6μ(x)7 and (frac(μ(x)) < frac(μ(y)) ⇒ o(x) < o(y)), where frac(r)
denotes the fractional part of a non-negative real r.
1 To simplify the representation of clock information, we list them as clock values

followed by clock orders, e.g., the first two values of 0000 are the values of clock
variable x and y, the last two values are their orders.

Symbolic Model Checking of Finite Precision Timed Automata 277

Lemma 1. For an lcro-TA A, if (l, μ) is reachable in �A�C , then there exists
(v, o) such that (l, (v, o)) is reachable in �A�FP , and μ � (v, o).

Definition 7. (Relation
). Let μ : X �→ R+ be a clock valuation of TAs, and
(v, o) be a clock information of FPTAs. Then μ
 (v, o) if, for all x, y ∈ X,
v(x) = 6μ(x)7 and (frac(μ(x)) < frac(μ(y)) ⇔ o(x) < o(y)).

Lemma 2. For an lcro-TA A, if (l, (v, o)) is reachable in �A�FP , then there
exists μ such that (l, μ) is reachable in �A�C , and (v, o)
 μ.

Let ReachC(A) = {(l, φ)|l ∈ L, φ ∈ C(X), and (l, φ) is reachable in the
continuous semantics}, and ReachFP (A) = {(l, φ)|l ∈ L, φ ∈ C(X), and (l, φ) is
reachable in the finite precision semantics}.

Theorem 1. Let A be an lcro-TA, φ be an lcro-constraint, then (l, φ) ∈
ReachC(A) iff (l, φ) ∈ ReachFP (A).

Proof. “⇒:” If (l, φ) is reachable in �A�C , then there exists a state (l, μ) such
that (l, μ) is reachable in �A�C and μ |= φ. Followed from the claim of Lemma 1,
there exists a state (l, (v, o)) such that it is reachable in �A�FP , and μ � (v, o).
Therefore, v |= φ by the Definition 6, then (l, φ) ∈ ReachFP (A).

“⇐:” The proof is similar to the above using Lemma 2 and Definition 7. �

In FPTAs, state equivalence is determined by the clock value and its order,
which is different from the region equivalence in TAs [1]. The clock information
of FPTAs (v, o) ; (v′, o′), if they hold the following relation:

– for all x ∈ X, either v(x) = v′(x), or (v(x) ≥ cx + 1) ∧ (v′(x) ≥ cx + 1 2),
– for all x ∈ X, o(x) = o′(x)

The equivalence classification can ensure the finiteness of the state space.
When the clock value of x is equal to or greater than cx + 1, it is recorded as
cx + 1, which prevents the infiniteness of the state space. The models proposed
in [22,23] are similar to FPTAs, which use integer to record clock values and
orders. However, they are based on the continuous semantics.

5 Reachability Analysis of FPTAs

One of the most common properties being checked by the verifiers is the reach-
ability whose analysis is based on the exploration of the graph. There are two
kinds of search strategies during state space exploration: forward and backward
search. Currently our tool uses the forward search technique.

To relieve the state space explosion problem, verifiers usually use symbolic
methods to record set of states. And the key issue is how to represent them.
Different from the constraint based symbolic methods, the checker of FPTAs

2 cx is the maximal constant in clock constraints on x in the automaton.

278 R. Yan, G. Li, and Z. Tang

uses a data structure to describe the state set explicitly, meaning that all the
sequences created by time delays are enumerated.

In this section, according to the characteristics of state space generation, we
first analyze the features and the representation of a sequence of states created
by time delays (called delay sequence). Then, based on the relation of the states
generated from a segment of delay sequence by the discrete transition, we propose
a data structure to represent the set of states symbolically. Thirdly, we present
the symbolic transition systems of FPTAs. Finally, we introduce the algorithm
for reachability analysis.

Let us fix for the rest of this section an FPTA A = 〈L, l0, Σ,X, I, E〉.

5.1 Representation of States in the Delay Sequence

The generation of the state space is started from the initial state (l0, (v0, o0)).
Whenever allowed by the invariant of l0, the sequence (l0, (v0, o0)) → (l0,
(v0, o0) ⊕ 1) → . . . can be generated by time delays, where ((v0, o0) ⊕ i) |=
I(l0), i ≥ 0. Here we introduce a symbolic representation for this kind of se-
quence.

Definition 8. (Symbolic Representation of Delay Sequence).

– Let (l, (v, o), k) denote the set of states {(l, (v, o) ⊕ 0), (l,
(v, o)⊕1), . . . , (l, (v, o) ⊕(k−1))}, where k ∈ N>0 (N>0 is the set of positive
integers).

– Let (l, (v, o),∞) denote the set of states {(l, (v, o) ⊕ 0), (l, (v, o) ⊕ 1), . . .}.
Based on the equivalence relation, for all x ∈ X, all the clock valuations
greater than cx +1 are treated as cx +1. Therefore, though time can progress
infinitely, the number of states in the delay sequence is finite.

We say that (l, (v, o), k) is a delay sequence(DS) generated by delay transitions
from the state (l, (v, o)), where k ∈ N>0 ∪ {∞} .

In a delay sequence, when some states satisfy the guard of a transition,
the corresponding discrete transition can be taken, leading to the new states.
From these new states, the execution of delay or discrete transitions will be
continued. So it is necessary to judge which state will satisfy the guard of the
discrete transition. To compare every state with the guard is time-consuming.
In this paper, we can get a set of such states rapidly according to the form of
inequations in the guards.

According to the Definition 1, the guard is the conjunction of the inequations
of the form x ∼ c,∼∈ {<,≤, >,≥}. The inequations in the forms of x > c and
x ≥ c determine the minimum value the clock variable should be to switch to
other locations; and inequations in the forms of x < c and x ≤ c determine the
maximal clock value to take discrete actions. By computing the sets of states
satisfying the two kinds of constraints, we can get those that satisfy the guard
of the discrete transition. Then the successors can be generated.

Symbolic Model Checking of Finite Precision Timed Automata 279

Next, we will generalize the features of the delay sequence. For example, the
delay sequence formed from the initial state in Figure 1 is

(l0, 0000, 5) = {(l0, 0000), (l0, 1100), (l0, 2200), (l0, 3300), (l0, 4400)}.

With the increase of i, we can compute every state in the sequence respectively
with (v, o) ⊕ i, 0 ≤ i < 5. Moreover, there is an ordering between the clock
information of the states. Because of the convex nature of the constraints, if
we find the state with the maximal clock value satisfying the constraints in the
form of x < c or x ≤ c, all its pre-states in the delay sequence will meet the
constraints too. Similarly, when we get the state with the minimum clock value
satisfying the constraints in the form of x > c or x ≥ c, all its subsequent states
in the delay sequence will satisfy this kind of constraints. The following definition
describes how to determine the delay sequence restricted by constraints.

To facilitate the computation, let c ∈ N+, we assume that ∞− c = ∞, and
∞ > c.

Definition 9. (Constrained Delay Sequence). Let (l, (v, o), k) be a delay se-
quence, and φ ∈ C(X) be the constraint, the constrained delay sequence (l, (v, o),
k)|φ is defined recursively as follows.

1. if φ is true, (l, (v, o), k)|φ is (l, (v, o), k).
2. if φ is (x ≤ c), let lc = min{(c − v(x)) ∗ m + m − o(x), k} where m =

1 + max o(X), then (l, (v, o), k)|x≤c is (l, (v, o), lc).
3. if φ is (x ≥ c), let d = (c − v(x)) ∗ m − o(x), if 0 ≤ d < k, let (v′, o′) =

(v, o) ⊕ d, gc = k − d, then (l, (v, o), k)|x≥c is (l, (v′, o′), gc). If d ≥ k, then
(l, (v, o), k)|x≥c is empty. When v(x) ≥ c, the original sequence keeps un-
changed.

4. if φ = φ1 ∧ φ2, (l, (v, o), k)|φ is ((l, (v, o), k)|φ1)|φ2 .

Now let us consider the model in Figure 1 again, to interpret the function of
the above computation in the state space generation process.

Example 2. Computation on the Constrained Delay Sequence.
Here, we try to determine the states capable of switching to l1 by discrete

transition t1, with the guard x < 5 and y ≥ 2. Since I(l0) is y ≤ 4, the delay se-
quence started from the initial state is (l0, 0000, 5). First, the result of constrained
delay sequence by x < 5 is (l0, 0000, 5); (l0, 2200, 3) is the result of (l0, 0000, 5)
being constrained by y ≥ 2, whose states can take discrete transition t1. �

To check whether (v1, o1) ∈ ((v, o), k), we can judge whether there exists k′

such that (v, o) ⊕ k′ = (v1, o1) and k′ < k, where k′ = max{(v1(x) − v(x)) ∗
m + o1(x) − o(x)|x ∈ X and v1(x) ≤ cx}. Let (l, (v, o), k) and (l, (v1, o1), k1)
be two sets of states, if (v, o) ∈ ((v1, o1), k1) or (v1, o1) ∈ ((v, o), k), then the
intersection of the two sets is not empty.

5.2 The Formation of Symbolic States

In the last subsection we have analyzed the features and the representation of the
delay sequence. If we use it as the symbolic method to record the state space,

280 R. Yan, G. Li, and Z. Tang

the number of the symbolic states is still larger. However, if we can organize
them into a coarser data structure, based on some relationship between these
delay sequences, the number of the symbolic states can be reduced effectively.

In Figure 1, started from the initial state, the segment that can take discrete
transition t1 is (l0, 2200, 3) = {(l0, 2200), (l0, 3300), (l0, 4400)}. The occurrence of
t1 leads to the new set {(l1, 2010), (l1, 3010), (l1, 4010)}. Among the new states,
the clock information of y is (0, 0) at every state, and the clock value of x
increases monotonically.

Then given a state generated by the discrete transition, we can compute all
other new successors from the states in the same delay sequence. Let (vr, or) be
the clock information after a discrete transition, where Y is the reset clock set.
The clock information of the ith state from (vr, or) is (vir , oir) = ((vr , or)�i)\Y ,
where (((v, o) � i) \ Y)(x) =⎧⎨⎩ (v(x)+(o(x)−1 + i) div m′, (o(x) + i−1) mod m′ + 1) if x /∈ Y and Y = ∅

(0, 0) if x ∈ Y and Y = ∅
(v(x), o(x)) if Y = ∅

,

and m′ = max o(X).

Definition 10. (Series of Delay Sequences). Let (l, (v, o)) be a state, θ ∈ N>0

and Y ⊆ X, we use (l, (v, o), θ, Y) as the symbolic representation for the set of
states {(l, (v′, o′))|(v′, o′) = ((v, o)�i)\Y, 0 ≤ i < θ}. We call this representation
the series of delay sequence (SDS). When Y = ∅, (l, (v, o), θ, Y) is (l, (v, o), 1, ∅).

For instance, (l1, 2010, 3, {y}) = {(l1, 2010), (l1, 3010), (l1, 4010)} is a set of states
in the example of Figure 1.

A symbolic state consists of a set of so-called start states, which are generated
from states in the same delay sequence by a discrete transition. And new delay
sequences will be generated from these start states.

In certain cases, some start states of the symbolic state may not satisfy the
invariant of the new location. So we should determine the start states that meet
the new invariant.

Definition 11. (Constrained Symbolic State by Invariants (l′,(v, o), θ, Y)�I(l′)).
Let (l′, (v, o), θ, Y) be a symbolic state, and φ = I(l′) be the invariant of l′.

– if Y = ∅, assume that (l′, (v, o),∞)|φ = (l′, (v′, o′), g), then (l′, (v, o), θ, Y) �φ
is (l′, (v′, o′), 1, ∅).

– if Y = ∅.
• if φ is true, then (l′, (v, o), θ, Y) �φ is (l′, (v, o), θ, Y).
• if φ is x ≤ c, and x /∈ Y , let θ′ = min{θ, (c− v(x))∗m′+m′− o(x)+1},

then (l′, (v, o), θ, Y) �x≤c is (l′, (v, o), θ′, Y).
• if φ is x ≥ c, and x /∈ Y , let d = (c− v(x)) ∗m′+1− o(x). If 0 ≤ d < θ′,

let (v′, o′) = ((v, o) � d) \ Y, θ′′ = θ′ − d, then (l′, (v, o), θ′, Y) �x≥c is
(l′, (v′, o′), θ′′, Y). If d ≥ θ′, (l′, (v, o), θ′, Y) �x≥c is empty.

• if φ = φ1 ∧ φ2, then (l′, (v, o), θ, Y) �φ is ((l′, (v, o), θ, Y) �φ1) �φ2 .

Symbolic Model Checking of Finite Precision Timed Automata 281

The inclusion relation between the series of delay sequences can be judged
quickly, which is similar to the judgement between delay sequences.

Let (l, (v1, o1)), (l, (v2, o2)) be two states which are generated from a delay
sequence by the same discrete transition (with reset clock set Y = ∅), and
v1(x) ≤ v2(x) for all x ∈ X . To simplify the representation, we introduce a
function len((v1, o1), (v2, o2), Y) ={

max{(v2(x) − v1(x)) ∗m′ + o2(x) − o1(x)|x ∈ Z} if Z = ∅
max{(cx − v1(x)) ∗m′ +m′ − o1(x)|x ∈ X − Y } if Z = ∅ ,

where Z = {x|v2(x) ≤ cx, and x ∈ X − Y },m′ = max o1(X).
Let (l, (v, o), k) be a delay sequence meeting the guards of a discrete transi-

tion (l, φ, σ, Y, l′). Then the successor generated from (l, (v, o), k) with transition
(l, φ, σ, Y, l′) is (l′, (vr , or), θ, Y), where

– (vr, or) = reset((v, o), Y),
– θ = dist((v, o), k, Y),
– dist((v, o), k, Y) =⎧⎨⎩1 if Y = ∅ or Y = X

len((vr, or), reset((v, o) ⊕ (k − 1), Y)) + 1 else if k = ∞
max{(cx − vr(x) + 1) ∗m′ − or(x)|x ∈ X − Y }+ 1 else

,

– m′ = max or(X).

For example, when the discrete transition t1 in Figure 1 is taken, the delay
sequence (l0, 2200, 3) will generate the new symbolic state (l1, 2010, 3, {y}).

5.3 The Symbolic Transition Systems of FPTAs

The symbolic transition system of FPTA A=〈L, l0, Σ,X, I, E〉 is 〈S, s0, Σ,� 〉.
S = L × D is the set of symbolic states where D = {((v, o), θ, Y)|(v, o) ∈
(vX × oX), Y ⊆ X, θ ∈ N>0}. s0 = (l0, D0) is the initial symbolic state, where
l0 ∈ L,D0 = ((v0, o0), 1, ∅) ∈ D is the initial symbolic clock information. The
symbolic transition relation � is defined as follows, which explains how the
symbolic successor is created.

Definition 12. (Symbolic Transition Relation �). Let (l, D), (l′, D′) ∈ L × D
be two symbolic states, where D = ((v, o), θ, Y), D′ = ((v′, o′), θ′, Y ′). We say
((l, D), (l′, D′)) ∈�, if there exist an integer i ∈ {0, 1, 2, . . . , θ − 1} and a tran-
sition e = (l, φ, α, Y ′, l′) ∈ E, such that ((v′, o′), θ′, Y ′) = ((vr , or), θr, Y ′) �I(l′),
where

– (vr, or) = reset((v′′, o′′), Y ′),
– θr = dist((v′′, o′′), gφ, Y ′), and
– ((v′′, o′′), gφ) = (((v, o) � i) \ Y,∞)|I(l)∧φ.

With the state equivalent relation in FPTAs, the symbolic semantics results
in a finite symbolic state space.

282 R. Yan, G. Li, and Z. Tang

Example 3. The Generation of Symbolic States of the Model in Figure 1.
The initial symbolic state is s0 = (l0, 0000, 1, ∅). Then it just has one delay

sequence (l0, 0000, 5), in which some states can take discrete transition t1. The
occurrence of t1 leads to the symbolic state s1 = (l1, 2010, 3, {y}). Time can
elapse in l1 when its invariant is satisfied. Among the states resulting from time
delays, only the state (l1, 5310) created from the start state (l1, 2010) can meet
the guard of t2. So the next symbolic state is s2 = (l0, 0301, 1, {x}) �

5.4 Algorithms for Reachability Analysis

In this subsection we firstly present a reachability analysis algorithm. Then we
list the generated symbolic states during the state space exploration in the ex-
ample of Figure 1.

During the forward search of the state space, we use two lists W and P to
record the states waiting for checking and being examined respectively. Another
function of P is to avoid revisiting parts of the state space. W and P are empty
in the beginning. Then the initial symbolic state is pushed into W . In every
repetition, if the popped symbolic state from W has not been examined, the
satisfiability of (l, φ) is checked. If it is satisfied, the whole process is completed.
Otherwise, it is stored in P , and then successors are generated and pushed into
W . The process can be described as Algorithm 1.

Algorithm 1 ReachabilityAnalysis

SDS: wa;
List of State: Succ;
List of SDS:P, W := ∅;
wa := (l0, (v0, o0), 1, ∅);
W := {wa};
while W �= ∅ do

get wa from W ;
if wa /∈ P then

if Satisfy(wa, l, φ) then
return(true)

else
Add(wa,P);
Succ :=Unfolding(wa);
CreateSuccessive(Succ)

end if
end if

end while

In Algorithm 1, Satisfy is true if there exists a state s in a delay sequence
of a start state in wa such that s |= (l, φ). Succ stores the start states unfolded
from the symbolic state by the unfolding function, which computes all the start
states meeting the invariant of the current location. CreateSuccessive computes

Symbolic Model Checking of Finite Precision Timed Automata 283

the successive symbolic states from the start states in Succ. If the new symbolic
states have no inclusion relation with the states in P , they are pushed into W .

Here we use the example in Figure 1 to explain how the whole state space is
generated. The steps to compute the symbolic states can refer to the definitions
and examples above. We just list the symbolic states in P and W during the
reachability analysis process in Table 1.

Table 1. Symbolic states in W and P

Step W P

1 {(l0, 0000, 1, ∅)} {}
2 {(l1, 2010, 3, {y})} {(l0, 0000, 1, ∅)
3 {(l0, 0301, 1, {x})} {(l0, 0000, 1, ∅), (l1, 2010, 3, {y})
4 {(l1, 0010, 2, {y})} {(l0, 0000, 1, ∅), (l1, 2010, 3, {y}), (l0, 0301, 1, {x})}
5 {(l0, 0401, 1, {x})} {(l0, 0000, 1, ∅), (l1, 2010, 3, {y}), (l0, 0301, 2, {x}), (l1, 0010, 2, {y})}
6 {} {(l0, 0000, 1, ∅), (l1, 2010, 3, {y}), (l0, 0301, 2, {x}), (l1, 0010, 2, {y})}

In the 5th step of Table 1, the successor of (l1, 0010, 2, {y}) is (l0, 0301, 2, {x}).
However, it includes the state (l0, 0301, 1, {x}) in P . After P is updated, the
unexamined part (l0, 0401, 1, {x}) is pushed into W . The generated state in step
6 is already in P , so W is empty. Then the whole state space is generated.

6 Experiment

We have implemented a prototype to support the verification of real-time systems
with multi-processes, synchronizations, and broadcasts. The tool is available at
http://lcs.ios.ac.cn/∼xyz/FPTA. Due to the page limit, we only use Fischer’s
mutual exclusive protocol [19] (see Figure 2) as the example. We compare the
results with those of Uppaal 3.4.6 in various assignments of a and b, when the
whole state space is created in breadth first search strategy. The environment
is Intel P4 2.60GHz Dell PC with 512MB memory. In Table 2, we list the time
consumption in seconds and the number of generated symbolic states (zones or
SDSs) in the passed list. “-” indicates that the verification did not terminate
within 600 seconds, and “N/A” stands for “not available”.

The time and space consumption of Uppaal will not be quite different with
various assignments of a and b. However, our prototype may be sensitive to the

x:=0k:=id,
k=0
x:=0

x>=b,k!=id

k:=0

43 x>=b,k=id
x<a
21

Fig. 2. Fischer’s mutual exclusive protocol

284 R. Yan, G. Li, and Z. Tang

Table 2. Results with Fischer’s mutual exclusive protocol

Uppaal(a=2,b=4) FPTA(a=2,b=4) FPTA(a=9,b=19)no
Time(s) Zones Time(s) SDSs Time(s) SDSs

2 0.12 21 0 23 0.02 23
3 0.12 145 0.06 271 0.22 413
4 0.14 1073 0.61 1907 69.24 15185
5 1.13 8581 27.13 27155 - N/A
6 41.09 75385 - 497980 - N/A

maximal constant of the constraints. And with the increasing number of pro-
cesses or clock variables, the performance of FPTA checker is not so well as that
of Uppaal, which has employed many methods to improve the efficiency of model
checking [17]. Currently, except for the active clock reduction method [16], our
prototype does not use other techniques to reduce the state space, or to compress
the data yet. From this point of view, there is a great gap between the proto-
type and Uppaal. Though there are lots of work to be done, the discretization
of FPTA is still a promising attempt, based on the preliminary results.

7 Related Work and Conclusion

Though FPTAs have integer clock valuations, they are different from the discrete
time models, which do not concern about the ordering of events in a time unit.
The model in [21] uses a global clock as the reference. The ordering of events
happened in one time unit is distinguishable. But when the global clock reaches
an integer point, all clock values will increase by 1. Then the ordering information
disappears. FPTAs can keep the ordering until the next reset happens. The
model in [14] uses integer clock valuations too. In its model, if no clock is reset
in a discrete transition, all clock values will increase by 1. Otherwise, only reset
clocks will be set to 0, and others will not change.

As to the data structures, recording time constraints in a DBM can reduce the
sensitivity to the maximal constant of clock constraints. However, it can only
express convex zones, and is not suitable for the data sharing. The BDD-like
structures, like CDDs [4], REDs [22,23], and CRDs [24], can express non-convex
zones, and are easy to share the existed data. But the ordering between variables
will affect the memory consumption greatly. An SDS enumerates all the delay
sequences in the state space, which is different from the structures based on the
constraints. Compared with DBMs, memory consumption is low in SDSs. And
all operations on SDSs are very simple with linear complexity, lower than that
of DBMs [7]. The shortcoming of SDSs is that the number of states described
by one SDS may be smaller than that by a DBM. Compared with BDD-like
data structures, SDSs avoid state space explosion caused by the inappropriate
ordering between processes and variables. And they need not consider the nor-
malization of different forms. But SDSs are sensitive to the number of clocks
variables.

Symbolic Model Checking of Finite Precision Timed Automata 285

Based on the discussion, our future work will be as follows. Firstly, the perfor-
mance of the prototype must be improved and more industrial examples should
be carried out. Then the research on the features of FPTAs will be continued.
Finally, the data structure needs to be adjusted to facilitate the data sharing,
and to reduce the sensitivity to the number of clock variables and the maxi-
mal constant. SDSs are just an attempt as one of data structures of FPTAs, we
will apply more mature techniques in discrete time models such as BDD data
structure in the checker.

Acknowledgements. Thanks to Maciej Koutny for suggestions not only to the
English but also to some technical content, and Yubo Xu and Chunming Liu for
the implementation of the prototype. We also thank the anonymous referees for
their helpful criticisms, comments, and suggestions.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science
126(2), (1994) 183-235

2. Alur, R., Henzinger, T.A.: A Really Temproal Logic. IEEE FOCS (1989) 164-169
3. Asarin, E., Bozga, M., Kerbrat, A., Maler, O., Pnueli, A., Rasse, A.: Data-

Structures for the Verification of Timed Automata. In Proceedings of the Interna-
tional Workshop on Hybrid and Real-Time Systems, LNCS 1201 (1997) 346-360

4. Behrmann, G., Larsen, K.G., Weise, C., Wang, Y., Pearson, J.: Efficient Timed
Reachability Analysis Using Clock Difference Diagrams. CAV (1999) 341-353

5. Bellman, R.: Dynamic Programming. Princeton University Press (1957)
6. Bengtsson, J., Jonsson, B., Lilius, J., Wang, Y.: Partial Order Reductions for Timed

System. CONCUR (1998) 485-500
7. Bengtsson, J., Wang,Y.: Timed Automata: Semantics, Algorithms and Tools.

LNCS 3098 (2004) 87-124
8. Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Sch-

noebelen, P.: Systems and Software Verification: Model-Checking Techniques and
Tools. Springer (2001)

9. Beyer, D., Lewerentz, C., Noack, A.: Rabbit: A Tool for BDD-based Verification
of Real-Time Systems. CAV (2003) 122-125

10. Bosnacki, D., Dams, D., Holenderski, L.: A Heuristic for Symmetry Reductions
with Scalarsets. LNCS 2021, FME (2001) 518-533

11. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a
Model-Checking Tool for Real-Time Systems. LNCS 1427, CAV (1998) 298-302

12. Bozga, M., Maler, O., Pnueli, A., Yovine, S.: Some Progress in the Symbolic Veri-
fication of Timed Automata. LNCS 1254, CAV (1997) 179-190

13. Bryant, R.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35(8) (1986) 677-691

14. Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Binary Reachability
Analysis of Discrete Pushdown Timed Automata. LNCS 1855, CAV (2000) 69-84

15. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. Hybrid Systems
III, LNCS 1066 (1996) 208-219

16. Daws, C., Yovine, S.: Reducing the Number of Clock Variables of Timed Automata.
IEEE RTSS (1996) 73-81

286 R. Yan, G. Li, and Z. Tang

17. Gerd, B., Johan, B., Alexandre, D., Larsen, K.G., Paul, P., Wang, Y.: UPPAAL
Implementation Secrets. FTRTFT (2002) 3-22

18. Hendriks, M., Behrmann, G., Larsen, K.G., Vaandrager, F.: Adding Symmetry
Reduction to Uppaal. FORMATS (2003) 46-59

19. Lamport, L.: A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer
Systems, 5(1), (1987) 1-11

20. Larsen, K.G., Pettersson, P., Wang, Y.: UPPAAL in a Nutshell. International Jour-
nal on Software Tools for Technology Transfer, 1(1/2), (1997) 134-152

21. Raskin, J.F., Schoebbens, P.: Real-Time Logics: Fictitious Clock as an Abstraction
of Dense Time. LNCS 1217, TACAS (1997) 165-182

22. Wang, F.: Efficient Data Structure for Fully Symbolic Verification of Real-Time
Software Systems. TACAS (2000) 157-171

23. Wang, F.: Region Encoding Diagram for Fully Symbolic Verification of Real-Time
Systems. COMPSAC (2000) 509-515

24. Wang, F: Efficient Verification of Timed Automata with BDD-like Data-Structures.
VMCAI (2003) 189-205

25. Wang, F.: Formal Verification of Timed Systems: A Survery and Perspective. In
Proceedings of the IEEE, 92(8), (2004) 1283-1307

A Proofs of Lemma 1 and 2

A.1 Lemma 1

Proof. According to the definition of transition relations, it suffices to show the
following:

– if μ � (v, o), then for all d ∈ R+, there exists k ∈ N+ such that (μ + d) �
(v, o)⊕ k.

– if μ1 � (v1, o1) and (l1, μ1)
σ−→ (l2, μ2), then there exists (v2, o2) such that

μ2 � (v2, o2) and (l1, (v1, o1))
σ−→ (l2, (v2, o2)).

Firstly, we prove that the states resulting from delay transitions in FPTAs
and TAs satisfy the � relation. Suppose this is not true, and D is the set of all d
such that there is no k ∈ N+ such that (μ+d)� (v, o)⊕k. Let d0 be the infimum
of D, then d0 ∈ D.

Let Z = {x ∈ X | frac(μ(x) + d0) = 0}, then Z is the set of clocks whose
values will become integer after x increased by d0. If Z is empty, no clocks will
be integer when time increased by d0. Then (μ + d0) � (v, o), contrary to the
hypothesis. So Z is nonempty.

Since clock values increased by d0 will cause the change of fractional parts
of clock values, so will the ordering. Let δ2 = 1

2 min{{1} ∪ {frac(μ(x) + d0) |x ∈
X−Z}}, then (μ + d0 − δ2) will not affect the ordering of the fractional parts.

If there exists k1, such that (μ + d0 − δ2) � (v, o) ⊕ k1, then let k2 = 1 +
max{o1(x) − o1(y) |x, y ∈ Z}, where o1 = o⊕ k1. Therefore, (μ+ d0) � (v, o)⊕
(k1 + k2), contrary to the fact that d0 ∈ D.

It is straightforward to prove the states generated by discrete transitions hold
the relation. Let (v2, o2) =reset((v1, o1), Y), then μ2 � (v2, o2), where Y is the
reset clock set in the transition. �

Symbolic Model Checking of Finite Precision Timed Automata 287

A.2 Lemma 2

Proof. According to the definition of transition relations, it suffices to show the
following:

– if (v, o)
 μ, then for all k ∈ N+, there exists d ∈ R+ such that (v, o) ⊕ k

(μ + d).

– if (v1, o1)
 μ1 and (l1, (v1, o1))
σ−→ (l2, (v2, o2)), then there exists d ∈ R+

such that (v1, o1)
 (μ1 + d), (l1, μ1 + d) σ−→ (l2, μ2) and (v2, o2)
 μ2.

Firstly we prove that the states resulting from delay transitions in FPTAs
and TAs satisfy the
 relation. Assume this is not true, and K is the set of all k
such that there is no d ∈ R+ such that (v, o) ⊕ k
 (μ + d). Let k0 be the least
element in K, then k0 > 0 (otherwise (v, o) ⊕ 0
 μ, then k0 /∈ K, contrary to
the fact that k0 ∈ K).

If there exists d1, such that (v, o)⊕ (k0−1)
 (μ+d1), then let d2 = min{1−
frac(μ(x)+ d1) |x ∈ X}. So after time increased by d1 + d2, the clock value with
the largest fractional part will become integer. Therefore,(v, o)⊕ (k0 − 1 + 1) =
(v, o)⊕ k0
 (μ + d1 + d2), contrary to the fact that k0 ∈ K.

Now we prove the second claim. Let d = 1
2 min{1− frac(μ(x))|x ∈ X}. Since

min{1− frac(μ(x))} is the real number that causes some clock values to become
integer, μ + d will not affect the relative ordering of fractional parts of clock
values. So (v1, o1)
 (μ1 + d).

Let μ2 = (μ1 + d)[Y := 0] where Y is the clock set to be reset, then (l1, μ1 +
d) σ−→ (l2, μ2) and (v2, o2)
 μ2. �

Covarieties of Coalgebras: Comonads
and Coequations

Ranald Clouston and Robert Goldblatt�

Centre for Logic, Language and Computation,
Victoria University of Wellington, New Zealand

Abstract. Coalgebras provide effective models of data structures and
state-transition systems. A virtual covariety is a class of coalgebras closed
under coproducts, images of coalgebraic morphisms, and subcoalgebras
defined by split equalisers. A covariety has the stronger property of clo-
sure under all subcoalgebras, and is behavioural if it is closed under
domains of morphisms, or equivalently under images of bisimulations.
There are many computationally interesting properties that define classes
of these kinds.

We identify conditions on the underlying category of a comonad G
which ensure that there is an exact correspondence between
(behavioural/virtual) covarieties of G-coalgebras and subcomonads of G
defined by comonad morphisms to G with natural categorical properties.
We also relate this analysis to notions of coequationally defined classes
of coalgebras.

1 Introduction

Coalgebras of functors on the category of sets have proven effective in modelling
various computational systems, including data structures (infinite lists, streams,
trees), state-based systems (automata, labelled transition systems, process alge-
bras) and classes in object-oriented programming languages [1,2,3,4,5,6]. Con-
sequently, the study of coalgebras has developed as a distinctive theme in the
theory of computing over the last decade.

One significant notion is that of a behavioural covariety: a class of coalgebras
that is closed under coproducts and images of bisimulation relations. A covariety
is defined by the weaker requirement of closure under coproducts, images of
coalgebraic morphisms, and subcoalgebras. Historically, the concept of covariety
arose by dualising that of a variety as being a class of universal algebras closed
under products, subalgebras and homomorphic images. A famous theorem of
Garrett Birkhoff [7] characterised varieties as being those classes of algebras
that are definable by equations.

Behavioural covarieties correspond to computationally significant behaviours.
For example, suppose the coalgebras in question are state-transition systems

� The authors acknowledge support from a Logic and Computation programme funded
by the New Zealand Institute of Mathematics and its Applications.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 288–302, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Covarieties of Coalgebras: Comonads and Coequations 289

having a Hennessy-Milner style logic [8] for specifying their behaviour. Then the
class of all models of a logical formula, or set of formulas, will in general be a
behavioural covariety.

This paper generalises and extends work of the second author [9] that gave
a comonadic characterisation of behavioural covarieties of coalgebras for certain
endofunctors T : Set → Set on the category of sets. Under the assumption that
the forgetful functor on T -coalgebras has a right adjoint, it was shown that there
is a bijective correspondence between behavioural covarieties of T -coalgebras and
certain subcomonads of the comonad GT induced on Set by this adjunction.
The subcomonads corresponding to behavioural covarieties were identified by
the requirement that the natural transformations on which they are based be
cartesian, i.e. all their naturality squares are pullbacks.

Here we replace Set by an abstract category C and seek to analyse the
conditions on C that are needed for this bijective correspondence to obtain.
Moreover we work with classes of G-coalgebras for an arbitrary comonad G on
C, rather than classes of T -coalgebras for an endofunctor T : C → C. This
covers the work of [9] as a special case, since if GT is the comonad induced on
Set as above, then the category of T -coalgebras is isomorphic to the category
of GT -coalgebras.

Furthermore we go beyond the analysis of [9] to give a comonadic character-
isation of covarieties themselves. For this we must confront the fact that there
has been more than one notion of “covariety” developed in work that dualises
Birkhoff’s theorem, depending on how “subcoalgebra” is interpreted. Over Set,
a subcoalgebra is given by an inclusion function that is a coalgebraic morphism.
But abstracting this to the concept of subobject, i.e. monomorphism, allows
pathological cases, since there can be monomorphisms that are not injective. In
fact over Set a T -morphism is injective iff it is a regular mono, i.e. an equaliser
in the category of T -coalgebras [10, 3.4] and experience has shown that it is this
concept of regular subobject that provides the most suitable notion of subcoal-
gebra in the abstract.

Awodey and Hughes [11,12,13] showed, in a suitable setting, that covarieties
given by this regular notion of subcoalgebra are precisely those classes defined,
in a certain way, by coequations. They defined a coequation to be a regular
mono whose codomain is injective for regular monos. This dualised the analysis
of Banaschewski and Herrlich [14], who observed that equations for classical
algebras can be identified with regular epis (coequalisers) having a free algebra
as domain, and then replaced the free algebras by their more intrinsic property
of being an algebra that is projective for regular epis.

Adámek and Porst [15] focused on coequations as regular monos with cofree
codomain. Working with an endofunctor T on a suitable category C, they showed
that classes of T -coalgebras defined by such coequations are precisely those that
are closed under coproducts, images of morphisms and retracts, where A is a
retract of B when there is a regular mono A → B whose underlying arrow splits
(has a left inverse) in C. These closure conditions define what we will call a
virtual covariety.

290 R. Clouston and R. Goldblatt

It will be shown below that under certain general conditions on a comonad G
on C, virtual covarieties of G-coalgebras correspond bijectively to all subcomon-
ads of G, while covarieties (closed under all regular subcoalgebras and not just
retracts) correspond bijectively to subcomonads whose underlying transforma-
tion is cartesian for regular monos only. Behavioural covarieties continue, as in
the Set-case, to correspond to subcomonads that are fully cartesian-based. We
also show in the final Section how these characterisations relate to the work that
has been done on coequations.

These ideas are illustrated (in Section 6) by properties of non-deterministic
acceptors, represented as coalgebras for a power-object functor on a category
that models the starting-state and accepting-state structure of such systems.

2 Coalgebras, Comonads, Covarieties

Given a category C with an endofunctor G : C → C, a G-coalgebra A =
(A,αA) consists of an underlying C-object A and a C-arrow αA : A→ GA that
is sometimes called the transition (structure) of the coalgebra. A G-morphism
f : A → B = (B,αB) is given by a C-arrow f : A→ B that preserves transitions
in the sense that αB ◦ f = Gf ◦αA. The G-coalgebras and their morphisms form
a category CG with a forgetful functor UG : CG → C that acts by UGA = A
on objects and UGf = f on arrows (so we often write f when we mean UGf).
UG creates and preserves any kind of colimit that exists in C. Thus if C has
coproducts, then any set {Ai : i ∈ I} of G-coalgebras has a coproduct ΣIAi in
CG whose underlying object is the coproduct ΣIAi in C.

We will need to know how UG treats epi arrows. Since UG is faithful (injective
on hom-sets), it reflects epis, i.e. UGf epi in C implies f epi in CG. But it seems
some condition on C is needed for preservation of epis. A category is said to
have cokernel pairs if for each arrow f there is a pair of arrows g, g′ making a
pushout of f with itself:

• f ��
f ��

•
g′

��
• g �� •

In particular, f is epi iff it has a cokernel pair with g = g′. So if f is a CG-epi
and f has a cokernel pair (g, g′) in C, then since such C-colimits are created by
UG, it follows readily that g = g′. This implies

Lemma 1. If C has cokernel pairs, then UG preserves epis. !
A comonad G = (G, ε, δ) on C consists of a functor G : C → C and two

natural transformations ε : G → 1 and δ : G → GG such that the following
diagrams commute for each C-object A:

GA
δA ��

δA
��

G2A

δGA
��

G2A
GδA

�� G3A

GA
1

�����
��
��

δA
��

1

���
���

���

GA G2A
GεA

��
εGA

�� GA

(2.1)

Covarieties of Coalgebras: Comonads and Coequations 291

A G-coalgebra is a G-coalgebra A for which the following commute:

A
αA ��

αA
��

GA

δA
��

GA
GαA

�� G2A

A
1

���
��

��
�

αA
��

GA εA

�� A

(2.2)

For example, (2.1) implies that GA = (GA, δA) is a G-coalgebra for any A: it is
the cofree G-coalgebra over A. The square in (2.2) states that the transition αA
is itself a G-morphism αA : A → GA.

We denote by CG the full subcategory of CG consisting of the G-coalgebras.
Arrows in CG, i.e. G-morphisms between G-coalgebras, may be referred to as G-
morphisms. The assignment A �→ GA is the object part of a functor G : C → CG

that is right adjoint to the forgetful functor UG : CG → C, which accounts for the
cofreeness of GA. The transition-morphisms αA : A → GA are the components
of the unit 1 → G ◦ UG of this adjunction. Since UG is a left adjoint it preserves
colimits, so altogether a G-morphism is epi in CG iff it is epi in C. UG also creates
any colimits that exist in C [16, dual of Proposition 4.3.1]. This implies that if
C has coproducts, then every set of G-coalgebras has a coproduct in CG that is
the same as its coproduct in CG, i.e. CG is closed under coproducts in CG.

Assume from now on that G is a comonad on a category C that has cokernel
pairs and a coproduct of any set of C-objects. Let D be any full subcategory of
CG, and K a class of D-objects. K is called a quasi-covariety in D if it is closed
under coproducts and under codomains of epis in D. The latter means that for
any D-epi A � B, if A ∈ K then B ∈ K.

A regular mono m : A → B in D will be called a subcoalgebra of B in D. In
that case, A is a retract of B in D if Um splits in C, i.e. if there is a C-arrow
g : B → A with g ◦m = 1A. If K is a quasi-covariety in D, then:

– K is a virtual covariety in D if it is closed under retracts in D;
– K is a covariety in D if it is closed under subcoalgebras in D; and
– K is a behavioural covariety in D if it is closed under domains of

D-morphisms, i.e. for any D-arrow A → B, if B ∈ K then A ∈ K.

It can be shown that a class K is a behavioural covariety in D iff it is closed
under coproducts and under images of bisimulation relations in D (see [11], [9,
2.1]). The present definition is easier to work with.

Theorem 1. CG is a virtual covariety in CG.

Proof. In [9, 5.1] it is shown that if C = Set, then CG is a covariety in CG.
Closure of CG under coproducts holds as there, as explained above. The proof of
closure under codomains of epis depends on a CG-epi being epi in C, and that is
provided here by our Lemma 1. The proof that a CG-subcoalgebra m : A → B
of B ∈ CG has A ∈ CG depends on G2m being mono in C. In Set we can use
the fact that any endofunctor on Set preserves monos with non-empty domain.
Here, if we assume instead that m splits in C, then G2m will also split in C and
hence be mono. So the proof adapts to show that CG is closed under retracts. !

292 R. Clouston and R. Goldblatt

3 Coregular Factorisations and Inverse Images

A category has coregular factorisations if each arrow f factors as f = m◦ e with
m a regular mono and e an epi. Such a factorisation is unique up to a unique
isomorphism: if m′ ◦ e′ is a second such factorisation of f , then there is a unique
iso arrow i : domm→ domm′ factoring m through m′ and e′ through e.

Hughes [12, Section 1.2.3] gives results about the lifting of coregular factori-
sations from C to CG and their preservation by UG. Here are the corresponding
versions of these results for CG and UG.

Theorem 2.

(1) If G : C → C takes regular monos to monos, then UG reflects regular monos.
(2) If C has coregular factorisations, and G : C → C preserves regular monos,

then CG has coregular factorisations which are preserved and reflected by
UG. Moreover, UG preserves regular monos. !

Theorem 3. If C has coregular factorisations, and G : C → C preserves regular
monos, then CG is a covariety in CG.

Proof. Take a CG-subcoalgebra m : A → B with B ∈ CG. In the proof of
Theorem 1 we noted that A ∈ CG if G2m is a C-mono. By the dual of [12,
1.2.15], UG preserves regular monos, so m is regular mono in C, hence so is
G2m. Thus CG is closed under subcoalgebras. !

Given a regular mono m : A→ B and an arrow f : C → B, an inverse image
of m with respect to f is a pullback of m along f :

D

m∗
��

f∗
�� A

��
m

��
C

f
�� B

A category has inverse images if all such pullbacks exist. A functor H preserves
inverse images if the H-image of any such pullback is also a pullback and Hm
is a regular mono. With the help of Theorem 2(2) we can show:

Theorem 4. If C has coregular factorisations and inverse images, and G pre-
serves regular monos and inverse images, then CG has inverse images preserved
by UG. !

4 Comonad Morphisms

From now on we assume C has coregular factorisations as well as cokernel pairs
and coproducts. A morphism from comonad F = (F, εF , δF) to comonad G =
(G, εG, δG) on C [17, Section 3.6] is a natural transformation σ : F → G making
the diagrams

Covarieties of Coalgebras: Comonads and Coequations 293

FA
σA ��

εF
A ���

��
��

��
GA

εG
A��

A

FA

σA

��

δF
A �� FFA

(σA)2
��

GA
δG

A �� GGA

(4.1)

commute for all C-objects A, where (σA)2 = GσA ◦ σFA = σGA ◦ FσA:

FFA
σF A ��

FσA
��

GFA

GσA
��

FGA
σGA �� GGA

(4.2)

We will see later that, under some natural assumptions on C, any quasi-covariety
K in CG gives rise to such a comonad morphism to G. This will be constructed
from a “coreflection” functor CG → K which takes each G-coalgebra to its
largest subcoalgebra that belongs to K.

A comonad morphism σ : F → G is cartesian if the diagram

FA

σA

��

Ff �� FB
σB

��
GA

Gf �� GB

is a pullback in C for any C-arrow f : A→ B. σ is cartesian for regular monos
if this square is a pullback whenever f is a regular mono in C. σ is regularly
monomorphic if all of its components σA are regular monos in C.

Now any morphism σ : F → G induces a mapping ϕσ from CF to CG, taking
each F-coalgebra A to the G-coalgebra ϕσA = (A, σA ◦ αA : A → FA → GA)
on the same underlying object. We write Imϕσ for the full subcategory of CG

based on the class of all G-coalgebras of the form ϕσA for some F-coalgebra A.
In [9, Section 6] it is verified that ϕσA is a G-coalgebra and that ϕσ becomes a
functor CF → CG that leaves the underlying C-arrow of morphisms unchanged
(UGϕσf = f), and so is faithful (injective on hom-sets). Furthermore, if σ is
regularly monomorphic then ϕσ is also full (surjective on hom-sets) and injective
on objects, making CF isomorphic to Imϕσ.

This ϕσ construction is functorial in the sense that ϕ(σ ◦ τ) = ϕσ ◦ ϕτ
whenever σ and τ are comonad morphisms whose composition σ ◦ τ is defined.
The map σ �→ ϕσ gives a bijection between comonad morphisms F → G and
those functors CF → CG that commute with the forgetful functors to C [17,
Section 3.6].

Theorem 5. If σ : F → G is regularly monomorphic and G preserves regular
monos, then:

(1) Imϕσ is a virtual covariety in CG.
(2) If σ is cartesian for regular monos, then Imϕσ is a covariety in CG.
(3) If σ is cartesian, then Imϕσ is a behavioural covariety in CG.

294 R. Clouston and R. Goldblatt

Proof. (1) In [9, 6.3] it is shown that Imϕσ is a quasi-variety when G is any
comonad on Set. Closure of Imϕσ under coproducts continues to hold here,
as ΣIϕσAi = ϕσΣIAi. The proof that any CG-epi f : ϕσB → A has
A ∈ Imϕσ requires that f is epi in C, which holds as UG preserves epis, and
that GσA is mono, which holds now by our assumptions on σ and G. It also
requires that there is a C-arrow β making a commuting diagram

B
f �� ��

αB
��

A
αA

���
��

��
��

β

��
FB

Ff
�� FA ��

σA

�� GA

This holds by diagonalization in C because f is epi and σA is regular mono. It
can then be shown that (A, β) is an F-coalgebra with A = ϕσ(A, β) ∈ Imϕσ,
by the argument of [9] and using that GσA is mono.
Now for something new. Suppose A is a retract of ϕσB, with a regular mono
f : A → ϕσB that has a left inverse h : B → A in C. Let g, g′ : B → C
be a cokernel pair for f in both CG and C. By the universal property of
pushouts, g has a left inverse j in C with j ◦ g′ = f ◦ h:

A
f ��

f ��

B
g′

�� f◦h

		

B
g ��

1

C j

��
B

This means that A
f �� B

g
��

g′
��
C is (the dual of) a split fork and so is an

absolute equaliser: any functor H on C makes Hf an equaliser of Hg and
Hg′ [18, VI.6]. Consider the diagram

A
f ��

αA

��

β

��

B

αB
��

g
��

g′
��
C

FA
Ff ��

σA

����
��
��

FB

σB

��

Fg
��

Fg′
��
FC

σC

��
GA

Gf
�� GB

Gg
��

Gg′
��
GC

From some diagram chasing and the fact that σC is mono, we get Fg ◦
(αB ◦ f) = Fg′ ◦ (αB ◦ f), and hence, because Ff equalises Fg and Fg′,
there is a unique β : A → FA as shown making αB ◦ f = Ff ◦ α. Then
Gf ◦ αA = Gf ◦ σA ◦ β, so as G preserves the regular mono f , αA = σA ◦ β
and A = ϕσ(A, β). It can be checked that (A, β) is an F-coalgebra, and we
conclude that Imϕσ is closed under retracts.

(2) Given a regular CG-mono f : A → ϕσB, f is a regular C-mono by Theorem
2(2), so the lower quadrangle of the diagram

Covarieties of Coalgebras: Comonads and Coequations 295

A
f ��

αA

��

β ���
��

B
αB��

FA
Ff ��

σA

�����
��

FB
σB��

GA
Gf �� GB

is a pullback as σ is cartesian for regular monos. Hence the arrow β exists as
shown to make the whole diagram commute. It can be checked that (A, β)
is an F-coalgebra. Then A = ϕσ(A, β), so we conclude that Imϕσ is closed
under subcoalgebras in CG.

(3) If σ is cartesian, then the lower quadrangle of the diagram in (2) is a pullback
for any CG-morphism f : A → ϕσB, so we get that Imϕσ is closed under
domains of all such morphisms. !

There is an equivalence σ1 ; σ2 between regularly monomorphic σi : Fi → G
that holds when there exists a morphism τ : F1 → F2 that factors σ1 through
σ2, i.e. σ1 = σ2 ◦ τ , and likewise a morphism τ ′ : F2 → F1 factoring σ2 through
σ1. If such τ, τ ′ exist then they are unique, because the components of the σi

are mono, and are mutually inverse, giving a natural isomorphism between the
underlying functors of F1 and F2. The functoriality of the ϕσ construction then
gives a commuting functor diagram

CF1

ϕτ

ϕσ1 ���
��

��
�

CF2

ϕτ ′
��

ϕσ2
����
��
��

CG
which implies that Imϕσ1 = Imϕσ2. Conversely if Imϕσ1 = Imϕσ2, then from
ϕσi : CFi

∼= Imϕσi we get isomorphisms between CF1 and CF2 that are of the
form ϕτ and ϕτ ′ for some τ, τ ′ that establish σ1 ; σ2.

Now two equivalent regularly monomorphic σi : Fi → G can be regarded as
representing the same subcomonad of G, so in this sense the map σ �→ Imϕσ
injectively assigns virtual covarieties in CG to regularly monomorphic comonad
morphisms with codomain G. In the next sections we will identify further con-
ditions on C and G that ensure this map is surjective and gives a bijective
correspondence between virtual covarieties in CG and subcomonads of G. We
will also show that it restricts to give a bijection between covarieties and sub-
comonads whose morphism σ is cartesian for regular monos, as well as a bijection
between behavioural covarieties and subcomonads with fully cartesian σ.

5 Coreflective Subcategories

We assume from now on that
– C has coregular factorisations, cokernel pairs, coproducts and inverse images.
– C is regularly well-powered, i.e. for each object A there is a set of represen-

tatives of all the isomorphism classes of regular subobjects of A.
– G = (G, ε, δ) is a comonad on C with G preserving regular monos and inverse

images.

296 R. Clouston and R. Goldblatt

Recall that the adjunction UG , G : CG → C has counit ε, and unit η with
components ηA = A αA−−→ GA for all G-coalgebras A.

Let K be a quasi-covariety of G-coalgebras, regarded as a full subcategory of
CG. Then K is a regular-mono-coreflective subcategory of CG, which means that
the inclusion functor I : K ↪→ CG has a right adjoint (coreflector) R : CG → K
whose counit εR has regular mono components (coreflections) εRB : RB B for
all G-coalgebras B. This is a well-known result (essentially the dual of [19, 37.1]).
Briefly, R is constructed by taking a set {Aj

mj−−→ B : j ∈ J} representing all the
subcoalgebras of B with domain Aj in K, and taking εRB to be the regular-mono

part of the coregular factorisation of the coproduct arrow ΣJAj
ΣJmj−−−−→ B. The

important point for us is that if A ∈ K, then any G-morphism f : A → B factors
uniquely through εRB :

RB �� εR
B �� B

A

��

f

��											

In particular, εRB is the largest subcoalgebra of B with domain in K.

By composing the adjunctions K
I

�� CG

R��
UG

�� C
G�� we obtain the functor

GK = R ◦ G : C → K right adjoint to the forgetful functor UK = UG ◦ I :
K → C. For each C-object A, let σK

A be the coreflection morphism εRGA. This
associates with K a natural transformation σK : GK → G, with the regular-mono
component σK

A giving the largest K-subobject of GA.
Now let GK = (GK , εK , δK) be the comonad on C induced by the adjunc-

tion UK , GK . Thus GK = UK ◦ GK : C → C, and εK is the counit of this
adjunction. We write ηK for its unit, with components ηK

A : A → GKA. Applying
the forgetful functor to the components of σK defines a natural transformation
GK → G which we will also denote by σK . Standard calculations for composition
of adjunctions [18, IV.8] give the formulas

εA ◦ σK
A = εKA (5.1)

σK
A ◦ ηK

A = ηA = αA (5.2)

The transformation δK has components δKA = ηK
GKA : GKA → GKGKA, which

is a G-morphism GKA → GKGKA for each A, the unique one factoring the
identity on GKA through εKGKA, so

εKGKA ◦ δKA = 1GKA, (5.3)

and thus by (5.2),
σK
GKA ◦ δKA = αGKA. (5.4)

By the reasoning of [9, 6.1], σK : GK → G is a (regularly monomorphic) comonad
morphism from GK to G. Hence, by the work of Section 4, σK induces a functor

Covarieties of Coalgebras: Comonads and Coequations 297

ϕσK : CGK → CG making CGK isomorphic to ImϕσK . The theory of comonads
also provides the quasi-covariety K with a comparison functor χK : K → CGK

that acts on objects by χKA = (A, ηK
A), and leaves the underlying C-arrow of

morphisms unchanged.

Theorem 6. If K is a virtual covariety in CG, then χK is an isomorphism of
categories with inverse ϕσK , and so K = ImϕσK :

CGK

ϕσK

�� K ↪→ CG

χK

��

 !
By this Theorem, the correspondence σ �→ Imϕσ from subcomonads of G to
virtual covarieties in CG is surjective: every virtual covariety is of the form
Imϕσ. Together with our earlier work it follows that the correspondence is bi-
jective. It remains to show that it also gives a bijection between covarieties and
subcomonads whose morphism σ is cartesian for regular monos, as well as a bi-
jection between behavioural covarieties and subcomonads with cartesian σ. This
is provided by the following results together with parts 2 and 3 of Theorem 5.

Theorem 7. If K is a covariety, then σK is cartesian for regular monos. If K
is a behavioural covariety, then σK is cartesian.

Proof. Given a regular mono C-arrow f : A→ B, consider the diagram

GKA

σK
A

��

GKf

��
l

��
C

k
��

j
�� GKB

σK
B��

GA Gf
�� GB

The inner square is a pullback giving an inverse image k of σK
B along Gf in

CG. This exists by Theorem 4. k is a subcoalgebra of GA, being a pullback of
a regular mono. The outer perimeter of the diagram commutes by naturality of
σK , so a unique G-morphism l exists as shown to make the subcoalgebra σK

A

factor through k. We will show that l is an isomorphism.
Now G preserves limits, being a right adjoint, so Gf is a regular mono, hence

its pullback j is a subcoalgebra of GKB ∈ K. As K is a covariety, the domain C of
the GA-subcoalgebra k belongs to K. But σK

A is the largest such subcoalgebra of
GA, so k in turn factors through σK

A , making these two subcoalgebras equivalent.
Hence l is an iso, and therefore the perimeter is also a pullback, making σK

A an
inverse image of σK

B along Gf . But UG preserves inverse images (Theorem 4) so

GKA
GKf ��

σKA
��

GKB

σKB
��

GA
Gf �� GB

is a pullback in C, proving σK is cartesian for regular monos.

298 R. Clouston and R. Goldblatt

Finally, if K is a behavioural covariety, then the domain C of j will be in K
for any G-morphism j to to GKB, regardless of whether Gf is regular mono, so
the last diagram will be a pullback for every C-arrow f , i.e. σK is cartesian. !

6 Acceptors

To illustrate some of these ideas we define an acceptor space to be a triple
A = (A,Ast, Aac) consisting of two distinguished subsets Ast, Aac of a set A
which is itself thought of as a set of states. Ast comprises the starting states and
Aac the accepting states. An acceptor space morphism f : A → B = (B,Bst, Bac)
is a function f : A → B preserving the subsets, i.e. f(Ax) ⊆ Bx for x = st, ac.
This defines a category Asp of acceptor spaces, in which monos are injective
and the regular monos are those for which f(A)x = f(A) ∩ Bx. This category
is complete and cocomplete, and has all the properties required of the category
C at the start of Section 5. Actually Asp is a quasi-topos (see [20, 31.7] for a
description of a quasi-topos of sets with a single distinguished subset).

A nondeterministic acceptor within input set I has an I-labelled state-
transition relation x

i�→ y, meaning that y is a possible next state on input
of i ∈ I to state x. Letting α(x) be the map assigning {y : x

i�→ y} to each
i ∈ I gives a function α : A → (PA)I , where PA is the powerset of A. Finitely
branching nondeterminism can be modelled by using the finitary powerset op-
eration Pω, where PωA is the set of all finite subsets of A. This determines a
functor Pω : Asp → Asp that has PωA = (PωA,PωA,PωA) and takes each
morphism f : A → B to the function Pωf assigning to each X ⊆ A its image
fX ⊆ B. A functor T = (Pω−)I : Asp → Asp is then defined on objects by
TA = (PωA)I = ((PωA)I , (PωA)I , (PωA)I) and on arrows by Tf(g) = (Pωf)◦g.

We write FinacI for the category of (Pω−)I -coalgebras over Asp. Its objects
A = (A, αA) can be identified with the nondeterministic acceptors with input set
I that are image-finite, i.e. the set {y : x

i�→ y} of possible next states is finite for
all pairs (x, i). Its arrows f : A → B can be characterised as those acceptor space
morphisms f : A → B for which f(x) i�→ z iff ∃y ∈ A(x i�→ y and f(y) = z).

It can be shown that the forgetful functor on FinacI has a right adjoint,
and that FinacI is isomorphic to the category of G-coalgebras for the associ-
ated adjunction. So there is an exact correspondence between (quasi/virtual/
behavioural) covarieties in FinacI and the same kinds of subcategory of the
category of G-coalgebras. (Pω−)I preserves regular monos, so the forgetful func-
tor on FinacI preserves and reflects regular monos. (Pω−)I preserves inverse
images, and so FinacI has inverse images preserved by this forgetful functor.

There are many properties of acceptors that define covarieties in FinacI ,
such as the following:

– Every state x is recurrent, in the sense that there is a transition path x
i�→

y
i′
�→ · · · �→ x returning to x.

– There are no deadlocked states, where x is deadlocked if there is no transition
x

i�→ y starting from x.

Covarieties of Coalgebras: Comonads and Coequations 299

– Every non-deadlocked state can reach a deadlocked one in finitely many
transitions.

– Every transition path x
i�→ y

i′
�→ y �→ · · · is finite (i.e. eventually reaches a

deadlocked state).

The last three in fact define behavioural covarieties. Virtual covarieties can be
defined by considering existential properties of starting and accepting states.
For instance, let K be the class {A : Aac = ∅} of all coalgebras having at least
one accepting state. This property is evidently preserved by coproducts (disjoint
unions) and codomains of epis (indeed by codomains of all morphisms). It is
also preserved by retracts, for if the underlying Asp-arrow of some FinacI -
arrow B → A has a left inverse in Asp, and A has an accepting state, then this
state will be preserved by the left-inverse, i.e. carried to an accepting state in
B. However K is not a covariety: let A ∈ K be any one-state acceptor whose
one state is both starting and accepting, while B is the empty acceptor. Then
the inclusion function is a regular mono B → A giving a subcoalgebra of A with
B ∈ K.

Some other properties defining virtual covarieties that are not closed under
subcoalgebras are:

– There is a state that is both starting and accepting.
– There exist starting states and all of them can reach an accepting state.
– There exist accepting states and they include all the deadlocked states.

Further examples can be given by various combinations of the properties listed,
e.g. “there exists an accepting state but no deadlocked states”, and so on.

7 Coequations

Birkhoff’s theorem [7] states that the varieties of universal algebras are precisely
those classes that are definable by equations. This has been dualised to a notion
of coequation giving characterisations of covarieties of coalgebras. In this final
Section we briefly review this theory and indicate how it relates to our work with
cartesian comonad morphisms.

An algebraic equation t1 = t2 with variables from a set X is given by a pair
of terms that can be taken as elements of the free algebra FX generated by X .
If E is the smallest congruence on FX containing (t1, t2), then the quotient map
e : FX � FX/E is a regular epi (coequaliser) identifying t1 and t2. Moreover, an
algebraA satisfies t1 = t2 iff every homomorphism FX → A factors as e followed
by a homomorphism FX/E → A, a property that is expressed by saying that
A is injective for e. Abstracting, the notion of an equation became in [14] the
notion of a regular epi with free domain, and the class defined by an equation
became the class of algebras injective for it.

Dually, a coequation associated with a comonad G can be defined as a regular
mono i : A GC in CG with cofree codomain. Another regular mono i′ : A′ →
GC will be taken to represent the same coequation as i if it represents the same
subobject of GC. A coalgebra B is projective for coequation i if every morphism
B → GC factors through i:

300 R. Clouston and R. Goldblatt

B

�� ��

A
i

�� GC

The class (i)⊥ of objects projective for i is invariably a virtual covariety [15, 6.16].
If i and i′ represent the same coequation, then (i)⊥ = (i′)⊥. If i is a coequation
over 1 (i.e. C = 1 is terminal in C), then (i)⊥ is a behavioural covariety. This is
because G1 is terminal in CG, so if B ∈ (i)⊥, then the unique morphism B → G1
is factored through i by some g : B → A, so given any G-morphism f : B′ → B,
the unique B′ → G1 is factored through i by g ◦ f . Hence B′ ∈ (i)⊥, and (i)⊥ is
closed under domains of G-morphisms.

Now it was shown in [11, 4.2] that if C has a terminal 1, then any behavioural
covariety K in CG is equal to (εRG1)⊥, where εR is the co-unit of the coreflector
R : CG → K described in Section 5. But by definition εRG1 = σK

1 , where σK is
the comonad morphism to G determined by K. The maps i �→ (i)⊥ and K �→ σK

1
provide a bijection between (equivalence classes of) coequations over 1 in CG and
behavioural covarieties of G-coalgebras. In fact for any regularly monomorphic
cartesian σ : F → G, there is a G-coalgebra (F1, α) based on F1 such that σ1 is a
coequation (F1, α) → G1. This can be shown from the fact that σ1 ; σK

1 where
K = Imϕσ, and the fact that the components of σK are G-morphisms. We thus
have the picture of correspondences shown in Figure 1. Any virtual covariety K
of G-coalgebras is coequational in the sense that there is a class E of coequations
A GC such that K = E⊥ = the class of all coalgebras that are projective
for every member of E [15, 6.16]. In fact E can be taken to be the class of all
coreflection morphisms εRB with B a cofree coalgebra GC. Since εRGC = σK

C , we
see that the class of coequations defining a virtual covariety K is just the class

{σK
C : C is any C-object} (7.1)

of all components of the comonad morphism σK .
Now as we saw in Section 6, there are coequational classes (virtual covarieties)

that are not covarieties, so to obtain a coequational characterisation of covarieties

Behavioural covarieties
of G-coalgebras

K �→ σK

��

K �→ σK
1

��Subcomonads of G
with cartesian σ

σ �→ Imϕσ

��

σ �→ σ1

��Coequations over 1

i �→ (i)⊥

��

i �→ σ(i)⊥��

Fig. 1.

Covarieties of Coalgebras: Comonads and Coequations 301

themselves we need some refinement of the notion of coequation. For equations,
such a refinement was given in [14] by replacing free domains by domains that
are regular-projective, i.e. projective for every regular epi, this being a property
enjoyed by classical free universal algebras. Dually we contemplate coequations
as regular monos i whose codomain is regular-injective, i.e. injective for every
regular mono. Then the class (i)⊥ will be an abstract covariety, i.e. closed under
coproducts, codomains of epis and regular subobjects.

For the converse of this to work it is required that the ambient category has
enough injectives, i.e. each object is a regular subobject of some regular-injective
object. Then it can be shown that each abstract covariety is equal to E⊥ where
E is some class of regular monos with regular-injective codomains [11,12,13,21].
For categories of coalgebras, if C has enough injectives, then so does CG: in fact
GC is regular-injective in CG whenever C is regular-injective in C, and from
this it can be shown that CG has enough regular-injectives that are cofree. Then
each covariety K of G-coalgebras is the coequational class (EK)⊥ for some class
EK of regular monos with cofree regular-injective codomains [11,13]. Indeed, in
our present terminology, we can take EK = {σK

C : C is regular-injective in C},
giving a direct comparison via (7.1) with the case that K is a virtual covariety.

Note that in the presence of enough injectives there can still be coequational
classes of coalgebras that are not covarieties. For example, this happens when C
is the category Asp of acceptor spaces of Section 6. The regular-injective objects
of Asp are just those acceptor spaces that have at least one starting state that
is also accepting (Ast ∩Aac = ∅). We can always expand a space by adding such
a state if there is none, which implies that Asp has enough injectives.

References

1. Reichel, H.: An approach to object semantics based on terminal co-algebras. Math-
ematical Structures in Computer Science 5 (1995) 129–152

2. Jacobs, B.: Objects and classes, coalgebraically. In Freitag, B., Jones, C.B.,
Lengauer, C., Schek, H.J., eds.: Object-Orientation with Parallelism and Persis-
tence. Kluwer Academic Publishers (1996) 83–103

3. Rutten, J.J.M.M.: A calculus of transition systems (towards universal coalgebra).
In Ponse, A., de Rijke, M., Venema, Y., eds.: Modal Logic and Process Algebra.
CSLI Lecture Notes No. 53. CSLI Publications, Stanford, California (1995) 231–
256

4. Rutten, J.: Universal coalgebra: a theory of systems. Theoretical Computer Science
249 (2000) 3–80

5. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of
the European Association for Theoretical Computer Science 62 (1997) 222–259

6. Jacobs, B.: Exercises in coalgebraic specification. In Backhouse, R., Crole, R.,
Gibbons, J., eds.: Algebraic and Coalgebraic Methods in the Mathematics of Pro-
gram Construction. Volume 2297 of Lecture Notes in Computer Science. Springer
(2002) 237–280

7. Birkhoff, G.: On the structure of abstract algebras. Proceedings of the Cambridge
Philosophical Society 31 (1935) 433–454

302 R. Clouston and R. Goldblatt

8. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the Association for Computing Machinery 32 (1985) 137–161

9. Goldblatt, R.: A comonadic account of behavioural covarieties of coalgebras. Math-
ematical Structures in Computer Science 15 (2005) 243–269

10. Gumm, H.P., Schröder, T.: Coalgebraic structure from weak limit preserving func-
tors. Electronic Notes in Theoretical Computer Science 33 (2000)

11. Awodey, S., Hughes, J.: The coalgebraic dual of Birkhoff’s variety theorem. Techni-
cal Report CMU-PHIL-109, Department of Philosophy, Carnegie Mellon University
(2000)

12. Hughes, J.: A Study of Categories of Algebras and Coalgebras. PhD thesis,
Carnegie Mellon University (2001)

13. Awodey, S., Hughes, J.: Modal operators and the formal dual of Birkhoff’s com-
pleteness theorem. Mathematical Structures in Computer Science 13 (2003) 233–
258

14. Banaschewski, B., Herrlich, H.: Subcategories defined by implications. Houston
Journal of Mathematics 2 (1976) 149–171

15. Adámek, J., Porst, H.E.: On varieties and covarieties in a category. Mathematical
Structures in Computer Science 13 (2003) 201–232

16. Borceux, F.: Handbook of Categorical Algebra 2. Categories and Structures. Cam-
bridge University Press (1994)

17. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer-Verlag (1985)
18. Mac Lane, S.: Categories for the Working Mathematician. Springer-Verlag (1971)
19. Herrlich, H., Strecker, G.: Category Theory. Allyn and Bacon, Newton, MA (1973)
20. Wyler, O.: Lecture Notes on Topoi and Quasitopoi. World Scientific (1991)
21. Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD

thesis, Ludwig-Maximilians-Universität München (2000)

Linking Theories of Concurrency

He Jifeng1,� and C.A.R. Hoare2

1 International Institute for Software Technology,
The United Nations University, P.O.Box 3058, Macau

jifeng@iist.unu.edu
2 Microsoft Research, Cambridge CB3 0FB, UK

Abstract. We construct a Galois connection between the theories that
underlie CCS [7] and CSP [4]. It projects the complete transition system
for CCS onto exactly the subset that satisfies the healthiness conditions
of CSP. The construction applies to several varieties of both calculi: CCS
with strong, weak or barbed simulation, and CSP with trace refinement
or failures refinement, or failures/divergence. We suggest the challenge
of linking other theories of concurrency by Galois connection.

1 Introduction

Process algebra is the branch of mathematics which studies systems, computa-
tional or natural, that act and react continuously with each other and with their
common environment. A wide variety of process algebra has been developed
to meet widely varying needs. They have been comprehensively classified into
an elegant hierarchies. This paper contributes to further clarification the close
links between the full range of theories of concurrency that underlie apparently
disparate process algebra.

In our definition, a theory of concurrency consists of two components. Firstly,
it specifies a labelled directed graph, whose nodes represent process states and
whose arcs represent transitions between the states. The labels on the arcs are the
names of events that trigger or accompany the transition. Secondly, it specifies a
pre-ordering relation between the nodes, which permits the replacement of one
process state by another that is equivalent to it, or possibly better than it in
some interesting sense.

A process algebra based on such a theory adds a syntax of constants and
operators, which names particular nodes in the transition system. The local
properties of the graph surrounding each named node are specified by the rules of
a structured operational semantics. In this paper, we will ignore these important
aspects of syntax and semantics of a process algebra, to concentrate on the
underlying theories of concurrency. Our results thereby apply to whole classes
of algebra based on the same underlying transition system.

� On leave from the SEI of East China Normal University, Shanghai. The work
is partially supported by the 211 Key Project of the MoE, and the 973 project
(2002CB312001) of the MoST of China.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 303–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

304 J. He and C.A.R. Hoare

Extant theories of concurrency can be classified into two flourishing schools.
The first of them owes its origin to CCS [7]. The underlying transition system is
a universal graph, containing every other labelled graph as a sub-graph (up to
isomorphism). Its pre-ordering relation is called similarity, or bi-similarity if it is
symmetric – as it is usually required to be. Similarity is defined co-inductively,
as the weakest relation that weakly commutes with all the transitions. It can be
efficiently computed by model checking, and it permits elegant manual proofs
by induction.

The second of the schools owes its origin to CSP [4]. Its underlying transition
system is not universal, but is required to satisfy certain ’healthiness’ conditions.
Its notion of pre-ordering (called refinement) is defined as inclusion of the sets
of observations that can be made of the two processes. An observation consists
primarily of a trace of all the events in which a process engages, possibly followed
by a ’barb’, describing a property of the final state. Refinement represents a
correctness relation between processes and their specifications. Failure of the
ordering can easily be demonstrated by a single counter-example. Reasoning
about correctness may exploit the full power of the mathematics of sets and
sequences.

A Galois connection provides an interesting way of comparing two pre-
ordered sets. It is like an isomorphism, but weaker and therefore more inter-
esting. It consists of a pair of functions, one from each theory to the other. They
are approximate mutual inverses, in the sense that their composition is not an
identity, but rather a reducing function in one case, and an increasing function
in the other. Each function is interpreted as mapping a member of either set to
its closest approximation in the other.

We show how to construct a Galois connection between a pre-order based
on simulation and one based on observation sets. We apply the method to three
kinds of simulation, strong, weak and barbed, and to three kinds of refinement,
traces, failures and failures/divergences. The connection is defined in terms of
the familiar automata-theoretic concept of a derivative: If P is a process and a is
an event, then ’P after a’ denotes the most general process that behaves exactly
the way(s) that P would behave after performing the action a.

This connection is of a particularly strong kind, known as a retraction. The
function from the observation-based transition system to the simulation-based
one is a projection. The other function is the identity function over the range of
the projection. This means that the processes of CSP are effectively just a subset
of those of CCS. The subset consists exactly of the fixed points of the projection:
the fixed point equation expresses the healthiness conditions of CSP. Over this
subset simulation agrees exactly with observational inclusion. Furthermore, the
projection is a decreasing function, and so it preserves the least fixed point
operator of both calculi.

The next section gives a brief tutorial introduction to the notions of pre-
order, fixed points, derivatives, and Galois connections. Section 3 introduces the
notions of simulation and refinement. It proves the fundamental theorem that
is applied in subsequent sections. Section 4 links strong simulation with trace

Linking Theories of Concurrency 305

refinement. Section 5 introduces the silent event τ , and links weak simulation
with the appropriate redefinition of trace refinement. Section 6 introduces barbs
as properties of the final states of a process, and links barbed simulation with
barbed trace refinement. Section 7 applies these results to the failures and diver-
gences of CSP. The concluding section suggests that the same techniques might
be applied to other varieties of simulation and refinement, perhaps including
time or probability.

2 Background

A pre-order is a reflexive and transitive relation over a set. A special case is an
equivalence relation, defined as a symmetric pre-order. Another special case is a
partial order, which is anti-symmetric. A pre-order set is a set together with a
pre-ordering relation over it.

Let (P, ≤) and (Q, �) be pre-ordered sets. A Galois connection between
them is a pair of monotonic functions (f : P → Q, g : Q→ P) such that for all
p ∈ P and for all q ∈ Q:

p ≤ g(q) iff f(p) � q

It follows that f · g is a decreasing function in Q, and g · f is increasing in P :

p ≤ g(f(p)) and f(g(q)) � q

An interior operator on a pre-ordered set is a function F from the set to itself
that is monotonic, decreasing and idempotent in the sense that

F (F (x)) = F (x)

In this case, (F, id) is a Galois connection, where id is the identity function. The
subset of elements in the range of F is called F -healthy.

Relations are sets of ordered pairs. The set of relations over a given set is
partially ordered by set inclusion. The graph of a function is a relation, which
we will often call by the same name. If r and s are relations, their composition
(r; s) is defined as

{(x, z) | ∃y • (x, y) ∈ r ∧ (y, z) ∈ s}

Composition is associative and monotonic, and has the identity relation id as its
unit. The set of relations over a given set is thereby a monoid.

The Kleene closure of a relation r is defined as the least pre-order that
includes r:

r∗ = id ∪ r ∪ (r; r) ∪ ...
We use u to denote the universal relation over the set. The complement and the
converse of a relation are defined as usual

r − bar =df {(x, y) | (x, y) ∈ u ∧ (x, y) /∈ r}

r − cup =df {(x, y) | (y, x) ∈ r}

306 J. He and C.A.R. Hoare

If s and t are relations, their residual is defined

t/s = (t− bar; s− cup)− bar = {(x, y) | ∀z • (y, z) ∈ s ⇒ (x, z) ∈ t}

The pair (; s, /s) forms a Galois connection, because

(r; s) ⊆ t iff r ⊆ (t/s)

A complete lattice is an ordered set of which every subset has a greatest lower
bound and (consequently) a least upper bound. The bottom of the lattice is the
greatest lower bound of the whole lattice. Let G be a monotonic function from
a complete lattice to itself. A point x of the set is called a fixed point of G if

G(x) = x

By the famous Knaster-Tarski theorem, the set of fixed points of G constitutes a
complete lattice; it therefore has a greatest lower bound μX •G(x), which itself
a fixed point of G.

Let F be an interior operator on a complete lattice S. Then the set T of
F -healthy elements of F are just its fixed points, which form a complete lattice.
Let G be a monotonic function which commutes with F , in the sense that

F ·G = G · F

Then G maps T to T . Furthermore, the least fixed point of G taken over the
complete lattice S is the same as the least fixed point of the function G, when
taken over just the F -healthy operands.

Proof. We use μSG and μTG to represent the least fixed points of the function
G over the sets S and T respectively.

μSG = G(μSG)

⇒ F (μSG) = F (G(μSG)) {F ·G = G · F}
⇒ F (μSG) = G(F (μSG)) {least fixed point}
⇒ F (μSG) ≥ μSG {F (x) ≤ x}
⇒ F (μSG) = μSG

This shows that μSG is a member of the set T . Since T ⊆ S, it is the least fixed
point in T as well

μSG = μTG

In [5], the semantics of a programming language is embedded into a richer space
of program specifications by means of healthiness conditions, usually defined
as the fixed points of some suitably defined idempotent function F . All the
operators G of the programming language are then required to be monotonic
and to commute with F . The theorem proved above ensures that the meaning
of recursion in the programming language can be defined by Tarski’s fixed point
construction, and the result will always be healthy. Recursive processes defined
in the programming language are therefore guaranteed to be healthy.

Linking Theories of Concurrency 307

3 Refinement and Simulation

Definition 3.1. (Observations)
Let P be a set of processes. A set B of binary relations over P is an observation
set if it is a monoid, i.e.,

(1) it is closed under the relational composition.

(2) it has a total relation idB as its unit.

Remark 1: The relations b, c,... in B are usually only partial. It is quite possible
that the composition (b; c) is empty; that means only that the observation c is
impossible after b.

Remark 2: idB is not necessary the identity relation idP on P . In the case of
weak simulation we will select idB = τ→∗

. �

Definition 3.2. (B-simulation)
A binary relation r is a B-simulation if it satisfies for all b ∈ B

(r; b) ⊆ (b; r)

We will use ≤B to stand for the greatest B-simulation. �

≤B can be defined as the greatest fixed point.

Theorem 3.1. ≤B= μx •
⋂

b∈B ((b; x)/b)

Proof. RHS; b {fixed point theorem}
⊆ ((b;RHS)/b); b {(x/y); y ⊆ x}
⊆ (b;RHS)

which indicates RHS is a B-simulation. Because ≤B is the greatest B simulation
we conclude RHS ⊆ LHS. Furthermore one has

true {Defining inequations of ≤B}
⇒ (LHS; b) ⊆ (b;LHS) {(x; y) ⊆ z iff x ⊆ (z/y)}
⇒ LHS ⊆ (b;LHS)/b

which implies that LHS ⊆
⋂

b∈B((b;LHS)/b). The conclusion LHS ⊆ RHS
follows from Tarski’s greatest fixed point theorem [14]. �

≤B is transitive.

Lemma 3.1. ≤B;≤B=≤B
Proof. From the fact that (≤B; b ⊆ b;≤B) we can show prove that LHS is also
a B-simulation, which implies LHS ⊆ RHS. The opposite inequation follows
from the fact that idP ⊆≤B. �

Definition 3.3. (B-refinement)
A binary relation r on P is a B-refinement if for all b ∈ B

(r; b;U) ⊆ (b;U)

308 J. He and C.A.R. Hoare

where U denotes the universal relation over P . We use �B to denote the greatest
B-refinement, and define ≡B=df (�B ∩ �B −cup). �

Theorem 3.2. �B=
⋂

b∈B ((b;U)/(b;U))

Proof. Similar to Theorem 3.1. �

Lemma 3.2. �B; b;U = b;U
Proof. The inequation LHS ⊇ RHS follows from the fact idP ⊆�B. The
opposite one follows from Definition 3.3. �

Corollary. �B;�B=�B �

Simulation implies refinement.

Theorem 3.3. ≤B⊆�B
Proof. ≤B; b;U {Definition 3.2}

⊆ b;≤B;U {≤B⊆ U and U ;U = U}
⊆ b;U

which implies that ≤B is a B-refinement. �

A process can be identified by a set of observations which it can present during
its execution.

Definition 3.4. (Behaviours)
behB(P) =df {b : B | P ∈ dom(b)}

where dom(b) denotes the domain of b. �

Lemma 3.3. (b1; b2) ∈ behB(P) implies b1 ∈ behB(P)

Proof. From the fact that

dom(b1; b2) = dom(b1; b2;U) ⊆ dom(b1;U) = dom(b1) �

Lemma 3.4. behB(P) =
⋃
{behB(Q) | P �B Q}

Proof. From Lemma 3.2. �

Theorem 3.4.

P �B Q iff behB(P) ⊇ behB(Q).

Proof. P �B Q {Lemma 3.4}
⇒ behB(P) ⊇ behB(Q) {{(P, Q)}; b;U ⊆ b;U}
⇒ {(P, Q)} ⊆ �B
⇒ P �B Q �

A deterministic transition system is traditionally defined by a partial binary
function (which we denote by \, read as ’after’), mapping nodes and labels to
nodes, p\b is the node that describes exactly the behaviour of the process p,

Linking Theories of Concurrency 309

after it has engaged in the event b. The process p\b is defined exactly when p is
in the domain of b. In the deterministic transition system, there is always just
one arrow labelled b from p to p\b, whenever the latter is defined. In a non-
deterministic system, there may be more than one such arrow. Or there may be
none. In order to rule out such a transition system, we have to postulate the
existence of an ’after’ function with the following properties

(1) p ∈ dom(b; c) iff (p\b, p\(b; c)) ∈ c

(2) p ∈ dom(b; c) iff (p\b) ∈ dom(c)

(3) p\b\c = p\(b; c)

Lemma 3.5. dom(\b) = dom(b)

Proof. Let c = idB in the property (2) of \. �

Lemma 3.6. If P ∈ dom(b), then behB(P\b) = {c | (b; c) ∈ behB(P)}
Proof. From the property (2) of the definition of \. �

Corollary 1. If P\b �B Q and QcR then P\(b; c) � R �

Corollary 2. If P �B Q, then P\b �B Q\b �

In the case that p = p\idB, we can derive from the property (1)

p ∈ dom(c) if and only if (p, p\c) ∈ c

That suggests that we explore the subset of nodes p of the transition system
that satisfy the condition. We will show that on this subset, B-simulation has
the same meaning as B-refinement.

Theorem 3.5. D� �B is a B-simulation.
where D is the range of \, and D� �B denotes the sub-relation of �B whose
domain is restricted to the set D.
Proof. D� �B ; b {Lemma 3.5}

= {(P\c, Q) | P ∈ dom(c) ∧ P\c �B Q} ; b {Definition of ; }
= {(P\c, R) | P ∈ dom(c) ∧

∃Q • P\c �B Q ∧ (QbR)} {property (2) of \}
⊆ {(P\c, P\(c; b) | P ∈ dom(c; b)};

{(P\(c; b), R) | P ∈ dom(c; b) ∧
∃Q • P\c �B Q ∧ (QbR)} {property (1) of \}

⊆ c; {(P\(c; b), R) | P ∈ dom(c; b) ∧
∃Q • P\c �B Q ∧ (QbR)} {Corollary 1}

⊆ c; {(P\(c; b), R) | P ∈ dom(c; b) ∧
P\(c; b) �B R} {Definition of D}

⊆ c;D� �B �

310 J. He and C.A.R. Hoare

Definition 3.6.
HB(P) =df (P\idB)

From Lemma 3.5 it follows that HB is a total function. �

The following theorem states that HB is a link.

Theorem 3.6.
(1) HB is monotonic: if P �B Q then HB(P) ≤B HB(Q)

(2) HB keeps the behaviour unchanged: HB(P) ≡B P
(3) HB is idempotent: H2

B(P) = HB(P)

(4) HB is a weakening: HB(P) ≤B P
(5) (idP , HB) forms a Galois connection

P �B Q iff HB(P) ≤B Q
Proof of (1). P �B Q {Corollary 2}

⇒ HB(P) �B HB(Q) {Theorem 3.5}
⇒ HB(P) ≤B HB(Q)

(2) From Lemma 3.6.

(3) From the property (3) of \.
(4) The conclusion follows from the conclusion (2) and Theorem 3.5.

Proof of (5). P �B Q {Theorem 3.6(2)}
≡ HB(P) �B Q {Theorems 2.3 and 3.5}
≡ HB(P) ≤B Q �

4 Strong Simulation

We use L to represent the set of all visible actions which appear at the interface
of the system, and λ range over this set. Let τ denote an invisible action, which
usually stands for a silent event, and is entirely internal to the system. We will
use α to range over the set A =df L∪{τ}, and A∗ to denote the set of all finite
sequences of elements of A.

Definition 4.1. (Labelled transition system)
A labelled transition system over A is a pair (P , T) consisting of

(1) a set P of processes;

(2) a set T of binary relations on P : T = { α→ | α ∈ A}
Define for s ∈ A∗

s→=df

{
idP s = ε

α→; t→ s = 〈α〉 · t
where ε denotes the empty sequence.

Linking Theories of Concurrency 311

Define B =df T ∗ = { s→ | s ∈ A∗}. B is a set of observations.

Lemma 4.1.
(1) ε→ is the unit of B

(2) s→; t→= s·t→ �

Definition 4.2. (Strong simulation [8])
The strong simulation ≤s is defined as the greatest relation r satisfying for all
α ∈ A

(r; α→) ⊆ (α→; r) �

Theorem 4.1. ≤B=≤s.

Proof. From the definition of B it follows that for all α ∈ A one has α→∈ B. As
a result, one concludes that ≤B satisfies

(≤B; α→) ⊆ (α→;≤B)

which implies that leqB is a subset of ≤s.

On the other hand by induction on the length of t one can show that

(≤s;
t→) ⊆ (t→;≤s)

from which it follows that ≤s⊆≤B. �

A trace of the behaviour of a process is a finite sequence of events in which the
process has engaged up to some moment in time. We define tracesA(P) as the
set of all possible traces of P :

tracesA(P) =df {s : A∗ | P ∈ dom(s→)}

Theorem 4.2.
P �B Q iff tracesA(P) ⊇ tracesA(Q)

Proof. From the fact that s ∈ tracesA(P) iff s→∈ behB(P) �

Definition 4.3.
Define P\ s→ \ t→ =df P\ s·t→, and

P ∈ dom(
s·〈α〉→)

(P\ s→) α→ (P\ s·〈α〉→)

Theorem 4.3. \ satisfies the defining properties of Definition 3.5.

Proof. From Definition 4.3 it follows that that P ∈ dom(s·t→) implies that

(P\ s→) t→ (P\ s·t→)

i.e., the property (1) of Definition 3.5 holds.

312 J. He and C.A.R. Hoare

Definition 4.3 also indicates

(P\ s→) ∈ dom(t→) if and only if P ∈ dom(s·t→)

which implies the property (2) of Definition 3.5 �

Define Hs(P) =df P\idP .

Theorem 4.4. tracesA(P) ⊇ tracesA(Q) iff Hs(P) ≤s Q

Proof. From Theorems 3.6(5), 4.1, 4.2 and 4.3. �

5 Weak Simulation

Define ⇒=df
τ→
∗
, and λ⇒=df (⇒; λ→;⇒) for λ ∈ L.

For e ∈ L∗, define

e⇒=df

{⇒ if e = ε

λ⇒; e′
⇒ if e = 〈λ〉e′

Let B =df { e⇒ | e ∈ L∗}.

Lemma 5.1. B is an observation set with ⇒ as its unit. �

Definition 5.1. (Weak simulation [8])
≤w is defined as the greatest relation r satisfying

(1) (r; τ→) ≤ (⇒; r)

(2) (r; λ→) ≤ (λ⇒; r) for all λ ∈ L �

Theorem 5.1. ≤B=≤w.

Proof. ≤B; τ→ { τ→⊆⇒}
⊆ ≤B;⇒ {Definition 3.2}
⊆ ⇒;≤B

≤B; λ→ { λ→⊆ λ⇒}

⊆ ≤B; λ⇒ {Definition 3.2}

⊆ λ⇒;≤B
which implies ≤B⊆≤w. On the other hand, one has

≤w;⇒ {Definition 5.1(1)}
⊆ ⇒∗;≤w {⇒∗=⇒}
= ⇒;≤w

≤w; λ⇒ { λ⇒= (⇒; λ→;⇒)}

= ≤w;⇒; λ→;⇒ {(≤w;⇒) ⊆ (⇒;≤w)}

Linking Theories of Concurrency 313

⊆ ⇒;≤w; λ→;⇒ {Definition 5.1(2)}

⊆ ⇒; λ⇒;⇒;≤w {Lemma 5.1}

= λ⇒;≤w

which indicates ≤w is a sub-relation of ≤B. �

Define tracesL(P) =df {e : L∗ | P ∈ dom(e⇒)}
Theorem 5.2. P �B Q iff tracesL(P) ⊇ tracesL(Q)

Proof. From the fact that e ∈ tracesL(P) if and only if e⇒∈ behB(P) �

Define P\ s⇒ \ t⇒=df P\ s·t⇒, and

P ∈ dom(
s·〈λ〉
=⇒)

(P\ s⇒) λ→ P\(s · 〈λ〉)

Theorem 5.3. \ satisfies the defining properties of Definition 3.5. �

Define Hw(P) =df P\ ⇒.

Theorem 5.4. tracesL(P) ⊇ tracesL(Q) iff Hw(P) ≤w Q

Proof. From Theorems 3.6(5), 5.1, 5.2 and 5.3. �

6 Barbed Simulation

A barb is used to denote a property of states, rather than an action which changes
the state. For example, the following barbs have suggestive names.

(1) candiverge is a property of states which can engage in an infinite sequence
of invisible action τ .

(2) Let X be a subset of L. The barb canrefuse(X) indicates a deadlocked
state, which cannot perform in any of the actions in the set X .

P has canrefuse(X) if init(P) ∩ (X ∪ {τ}) = ∅
where init(P) =df {α : A | P ∈ dom(α→)}.
In order to treat a barb b in the same way as a labelled transition, we encode it
as a binary relation as follows:

P has the barb b iff P
b→ 0

where the notation 0 represents a process which does not engage in any transi-
tion, nor lie in the domain of any barb. For convenience, sometimes we will use
b to abbreviate b→ in the later discussion.

Let Barbs be a set of barbs. Define

B =df { e⇒ | e ∈ (L ∪Barbs)∗}

314 J. He and C.A.R. Hoare

Lemma 6.1. B is a set of observations, and

B = {∅} ∪ { s⇒ | s ∈ L∗} ∪ {s·〈b〉⇒ | s ∈ L∗ ∧ b ∈ Barbs}
Proof. From the fact that for b ∈ Barbs

s⇒; e⇒ = s·e⇒ s ∈ L∗ ∧ e ∈ (L ∪Barbs)∗

s·〈b〉⇒ ; e⇒ = ∅ s ∈ L∗ ∧ e ∈ (L ∪Barbs)∗ ∧ e = ε �

Lemma 6.2. b;≤B= b for all b ∈ Barbs

Proof. From the fact that behB(0) = ∅ it follows that

0 ≤B P ≡ (P = 0) �

Definition 6.2. (Barbed simulation)
The barbed simulation ≤Barbs is defined as the greatest relation r satisfying

(1) (r; s⇒) ⊆ (s⇒; r) for all s ∈ L∗

(2) (r; b) ⊆ b for all b ∈ Barbs �

Definition 6.2. (Barbed traces)

Btraces(P) =df {(s, b) : L∗ ×Barbs | P ∈ dom(
s〈b〉⇒)} �

In the following discussion we will confine ourselves to those Barbs which satisfy
the following properties:

(1) (⇒; b) = b for all b ∈ Barbs

(2)
⋃

b∈Barbs dom(b) = P .

where the property (1) requires that the τ event keeps its invisibility in the the-
ory of barbed simulations, while (2) indicates that the set Barbs covers a wide
range of properties of states. Section 7 will present the barb set with these two
properties.

Theorem 6.1. ≤B=≤Barbs

Proof. Because s⇒∈ B one conclude that (≤B; s⇒) ⊆ (s⇒;≤B).

We are going to show that ≤B also meets the defining property (2) of Definition
6.2., i.e., ≤B is a subset of ≤Barbs.

Proof. ≤B; b {b ⊆ b⇒}

= ≤B; b⇒ {Definition 3.2}

⊆ b⇒;≤B {Property (1) of Barbs and range(b) = {0}}
= b;≤B {Lemma 6.2}
⊆ b

In the following we will show that for all b ∈ Barbs

≤Barbs;
b⇒⊆ b⇒;≤Barbs

Linking Theories of Concurrency 315

which implies that for all c ∈ B one has (≤Barbs; c) ⊆ (c;≤Barbs), i.e., ≤Barbs

is a subset of ≤w.

≤Barbs;
b⇒ {Property (2) of Barbs}

= ≤Barbs; b;⇒ {(2) of Definition 6.2}
= b;⇒ {idP ⊆⇒ and idP ⊆≤Barbs}

⊆ ⇒; b;⇒;≤Barbs {Def of b⇒}

= b⇒;≤Barbs �

Theorem 6.2. P �B Q iff Btraces(P) ⊇ Btraces(Q)

Proof. From the property (2) of the set Barbs one concludes that

P ∈ dom(s⇒) if and only if ∃b ∈ Barbs • P ∈ dom(
s〈b〉⇒)

which implies

behB(P) = {s〈b〉⇒) | (s, b) ∈ Btraces(P)} ∪ { s⇒ | ∃b • (s, b) ∈ Btraces(P)}
which leads to the conclusion. �

Definition 6.3.

Define P\ s〈b〉⇒ =df 0 whenever P ∈ dom(
s〈b〉⇒). and

P ∈ dom(
s·〈λ〉⇒)

(P\ s⇒) λ→ (P\ s·〈λ〉⇒)
λ ∈ L, P ∈ dom(

s〈b〉⇒)

(P\ s⇒) b→ 0

Define HBarbs(P) =df P\ ⇒. �

Theorem 6.3. \ satisfies the defining properties of Definition 3.5. �

Theorem 6.4. Btraces(P) ⊇ Btraces(Q) iff HBarbs(P) ≤Barbs Q

Proof. From Theorem 3.6(5), 6.1, 6.2 and 6.3.

7 Failures and Divergences Refinement

Let X be a subset of visible actions. Define the barb mayrefuseX by

mayrefuseX =df candiverge ∨ (⇒; canrefuseX)

Define the barb set

RefDiv =df {candiverge} ∪ {mayrefuseX | X ⊆ L}.
Lemma 7.1. RefDiv satisfies the properties of Barbs defined in Section 6.

Proof. From the fact that (⇒;⇒) =⇒ it follows that

(⇒;mayrefuseX) = mayrefuseX

316 J. He and C.A.R. Hoare

which implies the property (1) defined in Section 6. The property (2) follows
from the fact that dom(mayrefuse ∅) = P . �

Failures/divergences are due to Brookes and Roscoe [2].

Definition 7.1. (Failures/Divergences)
Failures(P) =df {(s, X) | s ∈ L∗ ∧ X ⊆ L ∧ ∃Q •P s⇒ Q ∧ QmayrefuseX}
Divergences(P) =df {s | s ∈ L∗ ∧ ∃Q • P s⇒ Q ∧ Q candiverge}

Define P �FD Q =df (Failures(P) ⊇ Failures(Q))∧
(Divergences(P) ⊇ Divergences(Q)) �

Lemma 7.2. �B=�FD

Proof. From Theorem 6.2 and the following facts:

(1) s ∈ Divergences(P) iff (s, candiverge) ∈ Btraces(P)

(2) (s, X) ∈ Failures(P) iff (s, mayrefuseX) ∈ Btraces(P) �

Notice that the property candiverge is undecidable, it is infeasible to refer to

the premise P ∈ dom(
s〈candiverge〉⇒) in a transition rule. In the following we

replace the second transition rule of Definition 6.3 by

P
s⇒ Q

(P\ s⇒) τ→ Q

and show that the new rule does implement the old one.

Lemma 7.3. If P ∈ dom(
s〈b〉⇒) then (P\ s⇒) has the barb b.

Proof. For all b ∈ RefDiv one has

P ∈ dom(
s〈b〉⇒) {s〈b〉⇒ = (s⇒; b⇒)}

⇒ ∃Q • (P s⇒ Q ∧ Q
b⇒ 0) {The new transition rule}

⇒ ∃Q • ((P\ s⇒) τ→ Q ∧ Q has the barb b) {⇒; b = b}
⇒ P\(s⇒) has the barb b �

Theorem 7.1. P �FD Q iff HBarbs(P) ≤Barbs Q

Proof. From Theorem 6.4 and Lemmas 7.1 and 7.2. �

8 Conclusion

Many methods of unifying theories of concurrency have been proposed in the
literature. A simple method is by postulation of a sufficient collection of algebraic
laws, more than in the usual definition of structural equivalence [7]. An indirect
method is by defining a specification language, the modal mu calculus, and
then restricting its expression power so that it cannot recognise distinctions

Linking Theories of Concurrency 317

that one wishes to ignore. Two processes are equated if they satisfy the same
specifications. Gardiner achieved unification by a definition of simulation based
on sets of states rather than individual states [3].
This paper aims to unify the study of process algebras, by establishing a Galois
connection between similarity and refinement. This is achieved by additional
transition rules, suitable for inclusion at will in the operational semantics of any
calculus that seeks reconciliation. The new transitions may be interpreted by an
implementer of the calculus as permission to be kind to the user of the process,
in the sense of giving the user more opportunities to avoid deadlock. The new
transitions also offer additional possibilities for resolving non-determinism at
compile time; they valid more algebraic laws, so giving more opportunities for
optimisations.

References

1. J.A. Bergstra and J.W. Klop. “Algebra of communicating processes with abstrac-
tion”. Theoretical Computer Sciences, Vol 37(1): 77–121, (1985).

2. S.D. Brookes, C.A.R. Hoare and A.W. Roscoe. “A theory of communicating se-
quential processes”, Journal of the ACM, Vol 31, (1984)

3. P. Gardiner. “Power simulation and its relation to Traces and Failures Refine-
ment”. Theoretical Computer Science, 309(1): 157–176, (2003).

4. C.A.R. Hoare. “Communicating sequential processes”, Prentice Hall, (1985)
5. C.A.R. Hoare and He Jifeng. “Unifying theories of programming”, Prentice Hall,

(1998)
6. K.G. Larsen and A. Skou. “Bisimulation through probabilistic testing”, Information

and control 94(1), (1991)
7. R. Milner. “Communication and concurrency”, Prentice Hall, (1989)
8. R. Milner “Communicating and mobile systems: the π -calculus” Cambridge Uni-

versity Press, (1999)
9. R. Milner and D. Sangiorgi. “Barbed simulation”. Lecture Notes in Computer Sci-

ence 623, : 685–695, (1992)
10. R. De Nicola and M. Hennessy. “Testing equivalence for processes”, Theoretical

Computer Science 34, (1983)
11. D.M.R. Park. “Concurrency and automata on infinite sequences”, Lecture Notes

in Computer Science, Vol 14, (1980)
12. G.D. Plotkin. “A structural approach to operational semantics”, Report DAIMI-

FN-19, Computer Science Department, Arhus University, Denmark, (1981)
13. A.W. Roscoe. “The theory and practice of concurrency”, Prentice Hall, (1998)
14. A. Tarski. “A lattice-theoretical fixedpoint theorem and its applications”. Pacific

Journal of Mathematics, Vil 5: 285–309, (1955).

On Cool Congruence Formats
for Weak Bisimulations

(Extended Abstract)

Robert Jan van Glabbeek

National ICT Australia and School of Computer Science and Engineering,
The University of New South Wales

rvg@cs.stanford.edu

Abstract. In TCS 146, Bard Bloom presented rule formats for four
main notions of bisimulation with silent moves. He proved that weak
bisimulation equivalence is a congruence for any process algebra defined
by WB cool rules, and established similar results for rooted weak bisim-
ulation (Milner’s “observational congruence”), branching bisimulation
and rooted branching bisimulation. This study reformulates Bloom’s re-
sults in a more accessible form and contributes analogues for (rooted)
η-bisimulation and (rooted) delay bisimulation. Moreover, finite equa-
tional axiomatisations of rooted weak bisimulation equivalence are pro-
vided that are sound and complete for finite processes in any RWB cool
process algebra. These require the introduction of auxiliary operators
with lookahead. Finally, a challenge is presented for which Bloom’s for-
mats fall short and further improvement is called for.

Introduction

Structural Operational Semantics [8,10] is one of the main methods for defining
the meaning of operators in system description languages like CCS [8]. A system
behaviour, or process, is represented by a closed term built from a collection of
operators, and the behaviour of a process is given by its collection of (outgo-
ing) transitions, each specifying the action the process performs by taking this
transition, and the process that results after doing so. For each n-ary operator
f in the language, a number of transition rules are specified that generate the
transitions of a term f(p1, . . . , pn) from the transitions (or the absence thereof)
of its arguments p1, . . . , pn.

For purposes of representation and verification, several behavioural equiva-
lence relations have been defined on processes, of which the most well-known is
strong bisimulation equivalence [8], and its variants weak and branching bisimu-
lation equivalence [8,7], that feature abstraction from internal actions. In order
to allow compositional system verification, such equivalence relations need to be
congruences for the operators under consideration, meaning that the equivalence
class of an n-ary operator f applied to arguments p1, . . . , pn is completely de-
termined by the equivalence classes of these arguments. Although strong bisim-
ulation equivalence is a congruence for the operators of CCS and many other

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 318–333, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Cool Congruence Formats for Weak Bisimulations 319

languages found in the literature, weak bisimulation equivalence fails to be a
congruence for the choice or alternative composition operator + of CCS. To by-
pass this problem one uses the coarsest congruence relation for + that is finer
than weak bisimulation equivalence, characterised as rooted weak bisimulation
equivalence [8,3], which turns out to be a minor variation of weak bisimulation
equivalence, and a congruence for all of CCS and many other languages. Anal-
ogously, rooted branching bisimulation is the coarsest congruence for CCS and
many other languages that is finer than branching bisimulation equivalence [7].

In order to streamline the process of proving that a certain equivalence is
a congruence for certain operators, and to guide sensible language definitions,
syntactic criteria (rule formats) for the transition rules in structural operational
semantics have been developed, ensuring that the equivalence is a congruence for
any operator specified by rules that meet these criteria. One of these is the GSOS
format of Bloom, Istrail & Meyer [5], generalising an earlier format by De
Simone [11]. When adhering to this format, all processes are computably finitely
branching, and strong bisimulation equivalence is a congruence [5]. Bloom [4]
defines congruence formats for (rooted) weak and branching bisimulation equiv-
alence by imposing additional restrictions on the GSOS format. As is customary
in this field, finer equivalences have wider formats, so Bloom’s BB cool GSOS for-
mat, which guarantees that branching bisimulation equivalence is a congruence,
is more general than his WB cool GSOS format, which suits weak bisimulation
equivalence; also his RWB cool GSOS format, suiting rooted weak bisimulation,
is more general than the WB cool GSOS format, and his RBB cool GSOS format,
guaranteeing that rooted branching bisimulation equivalence is a congruence, is
the finest of all. The prime motivating example for these formats is the struc-
tural operational semantics of CCS [8]. All CCS operators are RWB cool, and
the CCS operators other than the + are even WB cool.

Bloom’s formats involve a fast bookkeeping effort of names of variables, used
to precisely formulate the bifurcation rules that his formats require. To make
his work more accessible, Bloom also presents simpler but less general versions
of his formats, obtained by imposing an additional syntactic restriction. This
restriction makes it possible to simplify the bifurcation rules to patience rules ,
which do not require such an extensive bookkeeping. Fokkink [6] generalises
Bloom’s simply RBB cool format to a format he calls RBB safe, and writes
“The definition of bifurcation rules is deplorably complicated, and we do not
know of any examples from the literature that are RBB cool but not simply RBB
cool. Therefore, we refrain from this generalisation here.” Ulidowski [12,13,14]
studies congruence formats for variations of the semantic equivalences mentioned
above with a different treatment of divergence. Ulidowski’s formats form the
counterparts of Bloom’s simply cool formats only.

The main aim of the present study is to simplify and further clarify Bloom’s
work, so as to make it more accessible for the development of applications, vari-
ations and extensions. In passing, analogous results are obtained for two equiva-
lences, and their rooted variants, that bridge the gap between weak and branch-
ing bisimulation. Moreover, the method of Aceto, Bloom & Vaandrager [1]
to extract from any GSOS language a finite equational axiomatisation that

320 R.J. van Glabbeek

is sound and complete for strong bisimulation equivalence on finite processes,
is adapted to rooted weak bisimulation equivalence. In the construction fresh
function symbols may need be added whose transition rules have lookahead and
thereby fall outside the GSOS format.

One of the simplifications of Bloom’s formats presented here stems from the
observation that the operators in any of the cool formats can be partitioned
in principal operators and abbreviations, such that the abbreviations can be re-
garded as syntactic sugar, adding nothing that could not be expressed with prin-
cipal operators. For any abbreviation f there exists a principal operator f� that
typically takes more arguments. For instance, f(x1,x2) could be an abbrevia-
tion of f�(x1,x1,x2). The rules for the abbreviations are completely determined
by the rules for the principal operators, and for principal operators patience
rules suffice, i.e. one does not need the full generality of bifurcation rules. More-
over, the simply cool formats can be characterised by the requirement that all
operators are principal. These observations make it possible to define the cool
formats of Bloom without mentioning bifurcation rules altogether. It also en-
ables a drastic simplification of the congruence proofs, namely by establishing
the congruence results for the simply cool formats first, and reducing the gen-
eral case to the simple case by means of some general insights in abbreviation
expansion.

Even though any operation that fits the cool formats can also be defined
using merely the simply cool formats, in practice it may be handy to work with
the full generality of the cool formats. The unary copying operator cp of [5]
(page 257) for instance does not fit the cool formats directly, but can be made
to fit by adding an auxiliary binary copying operator to the language, of which
the unary one is an abbreviation. Dumping the abbreviation from the language
would appear unnatural here, as the unary operator motivates the rules for both
itself and its binary expansion, the latter being needed merely to make it work.

Another simplification contributed here is in the description of the RWB cool
format. Bloom requires for every operational rule with target t the existence of
two terms t1 and t2, and seven types of derived operational rules. I show that
without limitation of generality it is always possible to choose t2 = t, thereby
making four of those seven types of rules redundant. Thus, the same format is
obtained by requiring only t1 and two types of derived rules (the third being a
patience rule, that was already required for its own sake).

After defining the basic concepts in Section 1, I present the simply cool
congruence formats in Section 2. Section 3 presents the theory of abbreviations
that lifts the results from the simple to the general formats, and Sect. 4 deals
with the rooted congruence formats. Section 5 compares my definitions of the
cool formats with the ones of Bloom. Section 6 recapitulates the method of [1] to
provide finite equational axiomatisations of strong bisimulation equivalence that
are sound and complete for finite processes on an augmentation of any given
GSOS language, and Sect. 7 extends this work to the rooted weak equivalences.
Finally, Sect. 8 presents a fairly intuitive GSOS language for which the existing
congruence formats fall short and further improvement is called for.

On Cool Congruence Formats for Weak Bisimulations 321

1 Preliminaries

In this paper V = {x1,x2, . . .} and Act are two sets of variables and actions.

Definition 1. A signature is a collection Σ of function symbols f ∈ V equipped
with a function ar : Σ → IN. The set TT(Σ) of terms over a signature Σ is defined
recursively by:

• V ⊆ TT(Σ),

• if f ∈ Σ and t1, . . . , tar(f) ∈ TT(Σ) then f(t1, . . . , tar(f)) ∈ TT(Σ).

A term c() is abbreviated as c. For t ∈ TT(Σ), var(t) denotes the set of variables
that occur in t. T (Σ) is the set of closed terms over Σ, i.e. the terms p ∈ TT(Σ)
with var (p) = ∅. A Σ-substitution σ is a partial function from V to TT(Σ). If
σ is a substitution and S is any syntactic object, then σ(S) denotes the object
obtained from S by replacing, for x in the domain of σ, every occurrence of x in S
by σ(x). In that case σ(S) is called a substitution instance of S. A Σ-substitution
is closed if it is a total function from V to T (Σ).

Definition 2. Let Σ be a signature. A positive Σ-literal is an expression t a−→ t′

and a negative Σ-literal an expression t a−→ with t, t′ ∈ TT(Σ) and a ∈ Act.
A transition rule over Σ is an expression of the form H

α with H a set of Σ-
literals (the premises of the rule) and α a positive Σ-literal (the conclusion).
The left- and right-hand side of α are called the source and the target of the
rule, respectively. A rule H

α with H = ∅ is also written α. A transition system
specification (TSS), written (Σ,R), consists of a signature Σ and a set R of
transition rules over Σ. A TSS is positive if the premises of its rules are positive.

Definition 3. [5] A GSOS rule is a transition rule such that

• its source has the form f(x1, . . . ,xar(f)) with f ∈ Σ and xi ∈ V ,

• the left-hand sides of its premises are variables xi with 1 ≤ i ≤ ar(f),

• the right-hand sides of its positive premises are variables that that are all
distinct, and that do not occur in its source,

• its target only contains variables that also occur in its source or premises.

A GSOS language, or TSS in GSOS format, is a TSS whose rules are GSOS
rules.

Definition 4. A transition over a signature Σ is a closed positive Σ-literal.
With structural recursion on p one defines when a GSOS language L generates
a transition p

a−→ p′ (notation p
a−→L p′):

f(p1, . . . , pn) a−→L q iff L has a transition rule H

f(x1,...,xn) a−→t
and there is a

closed substitution σ with σ(xi) = pi for i = 1, ..., n and σ(t) = q, such that
pi

c−→L σ(y) for (xi
c−→ y) ∈ H and ¬∃r(pi c−→L r) for (xi c−→) ∈ H .

Henceforth a GSOS language L over a signature Σ is assumed, and closed Σ-
terms will be called processes. The subscript L will often be suppressed. More-
over, Act = A

.
∪ {τ} with τ the silent move or hidden action.

322 R.J. van Glabbeek

Definition 5. Two processes t and u are weak bisimulation equivalent or weakly
bisimilar (t↔w u) if tRu for a symmetric binary relation R on processes (a weak
bisimulation) satisfying, for a ∈ Act,

if pRq and p
a−→ p′ then ∃q1, q2, q

′ such that q =⇒ q1
(a)−→ q2 =⇒ q′ ∧ p′Rq′. (*)

Here p =⇒ p′ abbreviates p = p0
τ−→ p1

τ−→ · · · τ−→ pn = p′ for some n ≥ 0,
whereas p (a)−→ p′ abbreviates (p a−→ p′) ∨ (a = τ ∧ p = p′).

t and u are η-bisimilar (t↔η u) if in (*) one additionally requires pRq1;
t and u are delay bisimilar (t↔d u) if in (*) one additionally requires q2 = q′;
t and u are branching bisimilar (t↔b u) if in (*) one requires both;
t and u are strongly bisimilar (t↔ u) if in (*) one simply requires q

a−→ q′.
Two processes t and u are rooted weak bisimulation equivalent (t↔rw u), if they
satisfy

if t a−→ t′ then ∃u1, u2, u such that u =⇒ u1
a−→ u2 =⇒ u′ and t′↔w u′, and

if u a−→ u′ then ∃t1, t2, t such that t =⇒ t1
a−→ t2 =⇒ t′ and t′↔w u′.

They are rooted η-bisimilar (t↔rη u) if above one additionally requires u1 = u,
t1 = t, and t′ ↔η u

′, they are rooted delay bisimilar (t ↔rd u) if one requires
u2 = u′, t2 = t′ and t′↔d u

′, and they are rooted branching bisimilar (t↔rb u) if
one requires u1 = u, u2 = u′, t1 = t, t2 = t′ and t′↔b u

′.

It is well known and easy to check that the nine relations on processes defined
above are equivalence relations indeed [2,7], and that, for x ∈ {weak, η, de-
lay, branching, strong}, x-bisimulation equivalence is the largest x-bisimulation
relation on processes. Moreover, p↔rx q implies p↔x q.

Definition 6. An equivalence relation ∼ on processes is a congruence if

pi ∼ qi for i = 1, . . . , ar(f) ⇒ f(p1, . . . , par(f)) ∼ f(q1, . . . , qar(f))

for all f ∈ Σ. This is equivalent to the requirement that for all t ∈ TT(Σ) and
closed substitutions σ, ν : V → T (Σ)

σ(x) = ν(x) for x ∈ var (t) ⇒ σ(t) = ν(t).

This note, and Bloom [4], deal with syntactic conditions on GSOS languages
that guarantee that the equivalence notions of Definition 5 are congruences.

2 Simply Cool GSOS Languages

In this section I define simply XB cool rule formats, for X∈ {W,D,H,B}, such
that on XB cool GSOS languages, X-bisimulation equivalence is a congruence.
In [5] it is shown that strong bisimulation equivalence is a congruence on any
GSOS language. The proof is pretty straightforward; it consists of showing that
the congruence-closure of ↔ is a bisimulation. The same idea can be applied
almost verbatim to ↔w , ↔d , ↔η and ↔b , once we have lemmas like Lemma 1
below. The simply XB cool formats contain the simplest syntactic requirements
that guarantee these lemmas to hold.

On Cool Congruence Formats for Weak Bisimulations 323

Definition 7. Let L be a positive GSOS language. For an operator f in L, the
rules of f are the rules in L with source f(x1, ...,xar(f)).
• An operator in L is straight if it has no rules in which a variable occurs

multiple times in the left-hand side of its premises. An operator is smooth if
moreover it has no rules in which a variable occurs both in the target and
in the left-hand side of a premise.

• An argument i ∈ IN of an operator f is active if f has a rule in which xi

appears as left-hand side of a premise.
• A variable x occurring in a term t is receiving in t if t is the target of a rule

in L in which x is the right-hand side of a premise. An argument i ∈ IN of
an operator f is receiving if a variable x is receiving in a term t that has a
subterm f(t1, . . . , tn) with x occurring in ti.

• A rule of the form
xi

τ−→ y

f(x1, . . . ,xn) τ−→ f(x1, . . . ,xn)[y/xi]
with 1 ≤ i ≤ n is

called a patience rule for the ith argument of f . Here t[y/x] denotes term t
with all occurrences of x replaced by y.

Definition 8. A GSOS language L is simply WB cool if it is positive and

1. all operators in L are straight,

2. patience rules are the only rules in L with τ -premises,

3. every active argument of an operator has a patience rule,

4. every receiving argument of an operator has a patience rule,

5. all operators in L are smooth.

The formats simply DB cool, simply HB cool and simply BB cool are defined
likewise, but skipping Clause 4 for DB and BB, and Clause 5 for HB and BB.

The simply WB and BB cool formats above coincide with the ones of [4], whereas
the simply DB cool format coincides with the eb format of [13].

Lemma 1. Let L be simply WB cool, let H

s
a−→t

be a rule in L, and let ν be a
closed substitution such that ν(x)=⇒ (c)−→=⇒ν(y) for each premise x

c−→y in H.
Then ν(s) =⇒ (a)−→=⇒ ν(t).

Similar lemmas can be obtained for the other three formats, and these yield the
following congruence results. The proofs are in the full version of this paper.

Theorem 1. On any simply WB cool GSOS language, ↔w is a congruence.
On any simply DB cool GSOS language, ↔d is a congruence.
On any simply HB cool GSOS language, ↔η is a congruence.
On any simply BB cool GSOS language, ↔b is a congruence.

3 Cool GSOS Languages

In this section I will extend the simply XB cool rule formats to XB cool rule
formats and establish the associated congruence theorems (X∈ {W,D,H,B}).

324 R.J. van Glabbeek

Definition 9. A GSOS language is two-tiered if its operators are partitioned
into abbreviations and principal operators, and for every abbreviation f a prin-
cipal operator f� is specified, together with a substitution
σf : {x1, . . . ,xar(f�)} → {x1, . . . ,xar(f)}, such that the rules of f are{

σf (H)

f(x1, . . . ,xar(f))
a−→ σf (t)

∣∣∣∣∣ H

f�(x1, . . . ,xar(f∗))
a−→ t

is a rule of f�

}
.

Write f(i) for the j such that σf (xi) = xj ; take f� = f and f(i) = i in case f is
a principal operator.

Trivially, any positive GSOS language can be extended (straightened) to a two-
tiered GSOS language whose principal operators are straight and smooth [1].

Example 1. Let L have an operator f with rule x1
a−→ y, x1

b−→ z

f(x1,x2)
a−→ f(x1, (f(y,x2))

.
L is straightened by adding a operator f� with

x1
a−→ y, x2

b−→ z

f�(x1,x2,x3,x4)
a−→ f(x3, f(y,x4))

.

In this case σf (x1) = σf (x2) = σf (x3) = x1 and σf (x4) = x2.

Equally trivial, f�(pf(1), ..., pf(n))
a−→ t iff f(p1, ..., pn) a−→ t;

so f�(pf(1), ..., pf(n))↔ f(p1, ..., pn).

Definition 10. A two-tiered GSOS language L is WB cool if it is positive and

1. all principal operators in L are straight,

2. patience rules are the only rules of principal operators with τ -premises,

3. every active argument of a principal operator has a patience rule,

4. if argument f(i) of f is receiving, then argument i of f� has a patience rule,

5. all principal operators in L are smooth.

The formats DB cool, HB cool and BB cool are defined likewise, but skipping
Clause 4 for DB and BB, and Clause 5 for HB and BB. Clause 4 may be weakened
slightly; see Sect. 3.1.

Note that the simply cool formats defined before are exactly the cool formats
with the extra restriction that all operators are principal.

Theorem 2. On any WB cool GSOS language, ↔w is a congruence.
On any DB cool GSOS language, ↔d is a congruence.
On any HB cool GSOS language, ↔η is a congruence.
On any BB cool GSOS language, ↔b is a congruence.

Given that the cool GSOS languages differ from the simply cool GSOS language
only by the addition of operators that can be regarded as syntactic sugar, the
theorems above are a simple consequence of the corresponding theorems for
simply cool GSOS languages. Details are in the full version of this paper.

On Cool Congruence Formats for Weak Bisimulations 325

3.1 A Small Extension

Say that an argument i of an operator f is ignored if f� has no argument k with
f(k) = i. In that case there can be no rule with source f(x1, . . . ,xar(f)) with xi in
its premises or in its target. A subterm u of a term t is irrelevant if occurs within
an ignored argument ti of a subterm f(t1, . . . , tar(f)) of t. Now Definition 7 of an
argument of an operator being receiving may be strengthened by replacing “a
subterm f(t1, . . . , tn) with x occurring in ti” by “a relevant subterm f(t1, . . . , tn)
with x a relevant subterm of ti”. This yields a slight weakening of Clause 4 in
Definition 10, still sufficient to obtain Theorem 2.

Example 2. Let L have a rule
x1

a−→ y

g(x1)
a−→ f(h(f(x1, y)), k(y))

. By Definition 7

both the arguments of h and k are receiving, so Clause 4 in Definition 10 demands
patience rules for both h� and k�. Now suppose that h� = h, k� = k, ar(f�) = 1
and σf (x1) = x1. This means that f(x1,x2) is an abbreviation for f�(x1) and
the second argument of f is ignored. In such a case f(p, q)↔ f(p, r) for all closed
terms p, q and r. Now the weakened Clause 4 does not demand a patience rule
for either h� or k�, since the arguments of h and k are no longer receiving.

4 Rooted Cool GSOS Languages

In this section I will define the (simply) RWB, RDB, RHB and RBB cool rule
formats and establish the associated congruence theorems. In order to formulate
the requirements for the RWB and RDB cool GSOS languages I need the concept
of a ruloid, this being a kind of derived GSOS rule.

Definition 11. For r transition rule, let RHS(r) denote the set of right-hand
sides of its premises. Let L be a positive GSOS language. The class of L-ruloids
is the smallest set of rules such that

• x
a−→y

x
a−→y

is an L-ruloid, for every x, y ∈ V and a ∈ Act;

• if σ is a substitution, L has a rule H

s
a−→t

, and for every premise x
c−→ y in H

there is an L-ruloid ry = Hy

σ(x) c−→σ(y)
such that the sets RHS(ry) are pairwise

disjoint and each RHS(ry) is disjoint with var(σ(s)), then
⋃

y∈H Hy

σ(s) a−→σ(t)
is an

L-ruloid.

Note that a transition α, seen as a rule ∅
α , is an L-ruloid iff it is generated by

L in the sense of Definition 4. The left-hand sides of premises of a ruloid are
variables that occur in its source, and the right-hand sides are variables that are
all distinct and do not occur in its source. Its target only contains variables that
also occur elsewhere in the rule.

Example 3. Let L contain the rule
x1

a−→ y1 x2
b−→ y2

f(x1,x2)
a−→ g(x1, y1)

. Then L has ruloids

x
a−→ x′ y

b−→ y′

f(x, y) a−→ g(x,x′)
and

x
a−→ x′ y

b−→ y′ z
b−→ z′

f(f(x, y), z) a−→ g(f(x, y), g(x,x′))
.

326 R.J. van Glabbeek

Definition 12. A GSOS language L is RWB cool if the operators can be par-
titioned in tame and wild ones, such that

1. the target of every rule contains only tame operations;

2. the sublanguage Ltame of tame operators in L is WB cool;

3. L is positive, and for each rule H

s
a−→t

there is a term u and a substitution
σ : var(u) → var(s) such that
– there is an L-ruloid K

u
a−→v

with σ(K) = H and σ(v) = t,

– and for every premise x
c−→ y in K, L has a rule σ(x) τ−→y

s
τ−→σ(u[y/x])

;

(4. if argument f(i) of f is receiving, then argument i of f� has a patience rule.)

The formats RDB cool, RHB cool and RBB cool are defined likewise, adapting
“WB cool” in the second clause appropriately, but skipping the third clause for
RHB and RBB, and the last one for RDB and RBB. The last clause cannot
be skipped for RHB. The simply RXB cool rule formats (X∈ {W,D,H,B}) are
obtained by requiring the sublanguage of tame operators to be simply XB cool.

Note that in the third clause, u, σ and the ruloid can always be chosen in such a
way that v = t. The instance of this clause with s = f(x1, . . . ,xar(f)) for a tame
operator f is (in the full version of this paper) easily seen to be redundant.

The last clause above appeared before as Clause 4 in Definition 10 of the
WB and HB cool formats. Given that a term with a receiving variable cannot
contain wild operators, this clause is almost implied by Clause 2 above. All it
adds, is that the requirement of Clause 4 for the sublanguage of tame operators
applies to “receiving in L” instead of merely “receiving in Ltame ”. Thus, the
rules for the wild operators help determine which variables in a term t count as
receiving. The following results are obtained in the full version of this paper.

Proposition 1. In the definition of RWB cool above, Clause 4 is redundant.

Theorem 3. On any RWB cool GSOS language, ↔rw is a congruence.
On any RDB cool GSOS language, ↔rd is a congruence.
On any RHB cool GSOS language, ↔rη is a congruence.
On any RBB cool GSOS language, ↔rb is a congruence.

Example 4. The following fragment of CCS has the constant 0, unary operators
a. , binary operators + and ‖, and instances of the GSOS rules below. Here a
ranges over Act = N

.
∪ N

.
∪ {τ} with N a set of names and N = {a | a ∈ N}

the set of co-names. The function · extends to N ∪N (but not to Act) by a = a.
x1

a−→ y1

x1 + x2
a−→ y1

x2
a−→ y2

x1 + x2
a−→ y2

a.x1
a−→ x1

x1
a−→ y1

x1‖x2
a−→ y1‖x2

x2
a−→ y2

x1‖x2
a−→ x1‖y2

x1
a−→ y1 x2

a−→ y2

x1‖x2
τ−→ y1‖y2

The sublanguage without the + is simply WB cool, and the entire GSOS lan-
guage is simply RWB cool. Clause 3 of Definition 12 applied to the ith rule for
the + is satisfied by taking u = x, σ(x) = xi, and the ruloid x

a−→yi

x
a−→yi

.

On Cool Congruence Formats for Weak Bisimulations 327

5 Comparison with Bloom’s Formats

Bloom’s definitions of the cool formats differ in five ways from mine.
First of all Bloom requires bifurcation rules for all operators in Ltame, whereas

I merely require patience rules for the principal operators. As principal operators
in Ltame are straight, and bifurcation rules for straight operators are exactly
patience rules, the difference is that I dropped the bifurcation requirement for
abbreviations (non-principal operators). This is possible, because by Definition 9,
which corresponds to Definition 3.5.5 in [4], the rules for the abbreviations are
completely determined by the rules for their straightenings, and it turns out
that a bifurcation rule of an abbreviation f is exactly what is determined by the
corresponding patience rule for its straightening f�.

Bloom requires the existence of bifurcation/patience ruloids for receiving
variables in any term, whereas I require them for receiving arguments of oper-
ators, which is a more syntactic and easy to check requirement. The two ap-
proaches are shown equivalent in the full version of this paper when using the
extension of my formats of Sect. 3.1, this being the reason behind that extension.

Bloom’s WB and RWB cool formats use a so-called ε-presentation. This
entails that rules may have premises of the form x

ε−→ y. In terms of Definition 4,
the meaning of such premises is given by the requirement that σ(x) = σ(y) for
(x ε−→ y) ∈ H . By using ε-premises, any rule can be given a form in which the
target is a univariate term, having no variables in common with the source.
This allows a simplification of the statement of the bifurcation ruloids. Any ε-
presented GSOS language can be converted to ε-free form by substitution, in
each rule r, x for y for every premise x

ε−→ y of r. I believe that my conventions
for naming variables improve the ones of [4].

Bloom’s rendering of the RWB cool format doesn’t fea-
ture Clause 4 (and in view of Prop. 1, neither does mine),
but Clause 3 is much more involved. For every rule with
conclusion s

a−→ t Bloom requires the existence of two
terms t1 and t2 and seven types of derived operational
rules, such that the diagram on the right commutes. My

s t

t1 t2

a

a

a

a

τ τ

τ τ

Clause 3 stems from the observation that, given Bloom’s other restrictions, t
necessarily has the rules required for t2, so that one may always choose t2 = t.
This leaves only t1 (called u in Definition 12) and three types of rules, one of
which (the t1-loop in the diagram above) is in fact a bifurcation rule whose
existence is already implied by the requirements of Definition 10.

In Clause 3 of Definition 12, Bloom requires that

var(u) = {y′ | y∈var (t)} and σ(y′) =
{

x if H contains a premise x
c−→ y

y otherwise.
(1)

In order to match Bloom’s format I could have done the same, but this condition
is not needed in the proof and reduces the generality of the format.

328 R.J. van Glabbeek

Proposition 2. A GSOS language is WB cool, respectively RWB, BB or RBB
cool, as defined here, with the extension of Sect. 3.1 and the restriction (1) above,
iff it is WB cool, resp. RWB, BB or RBB cool, as defined in Bloom [4].

Moreover, my proofs that cool languages are compositional for bisimulation
equivalences greatly simplify the ones of Bloom [4] by using a reduction of the
general case to the simple case, instead of treating the general formats directly.

6 Turning GSOS Rules into Equations

This section recapitulates the method of [1] to provide finite equational axioma-
tisations of ↔ on an augmentation of any given GSOS language.

Definition 13. A process p, being a closed term in a GSOS language, is finite
if there are only finitely many sequences of transitions p a1−→ p1

a2−→ · · · an−→ pn.
The length n of the longest sequence of this form is called the depth of p.

Definition 14. An equational axiomatisation Ax over a signature Σ is a set
of equations t = u, called axioms, with t, u ∈ TT(Σ). It respects an equivalence
relation ∼ on T (Σ) if σ(t) ∼ σ(u) for any closed substitution σ : V → T (Σ).

An instance of axiom t = u is an equation σ(C[t/x]) = σ(C[u/x]) where σ is
a substitution and C a term with var(C)={x}, and x occurring only once in C.
An equation p = q is derivable from Ax, notation p =Ax q, if there is a sequence
p0, . . . , pn of terms with n ≥ 0 such that p = p0, q = pn and for i = 1, . . . , n the
equation pi−1 = pi is an instance of one of the axioms.

Ax is sound for ∼ if p =Ax q implies p ∼ q for p, q ∈ T (Σ). Ax is complete
for ∼ on finite processes if p ∼ q implies p =Ax q for finite processes p and q.

Note that Ax is sound for ∼ iff Ax respects ∼ and ∼ is a congruence.

Definition 15. A GSOS language L extends BCCS (basic CCS) if it contains
the operators 0, a. and + of Example 4.
A basic process is a closed term build from the operators mentioned above only.
A head normal form is a closed term of the form 0+a1.p1+ · · ·+an.pn for n ≥ 0.
An axiomatisation on L is head normalising if any term f(p1, . . . , par(f)) with
the pi basic processes can be converted into head normal form.

Proposition 3. Let L be a GSOS language extending BCCS, and Ax a head
normalising equational axiomatisation, respecting ↔ , and containing the axioms
A1–4 of Table 1. Then Ax is sound and complete for ↔ on finite processes.

Proof. Using induction on the depth of p and a nested structural induction, the
axioms can convert any finite process p into a basic process. Here one uses that
strongly bisimilar processes have the same depth. Now apply the well-known fact
that the axioms A1–4 are sound and complete for ↔ on basic processes [8].

For the parallel composition operator ‖ of CCS no finite equational head nor-
malising axiomatisation respecting strong bisimulation equivalence exists [9].

On Cool Congruence Formats for Weak Bisimulations 329

Table 1. Complete equational axiomatisations of BCCS and the parallel composition

x + (y + z) = (x + y) + z A1 x‖y = x‖−y + y‖−x + x|y CM1
x + y = y + x A2 a.x‖−y = a.(x‖y) CM2
x + x = x A3 0‖−y = 0 CM3
x + 0 = x A4 (x + y)‖−z = x‖−z + y‖−z CM4

a.x|a.y = τ.(x‖y) CM5
a.(τ.(x + y) + x) = a.(x + y) T1 a.x|b.y = 0 (if b �= a) CM6

τ.x + x = τ.x T2 0|x = x|0 = 0 CM7
a.(τ.x + y) + a.x = a.(τ.x + y) T3 (x + y)|z = x|z + y|z CM8

x|(y + z) = x|y + x|z CM9

However, Bergstra & Klop [3] gave such an axiomatisation on the language
obtained by adding two auxiliary operators, the left merge ‖− and the communi-

cation merge |, with rules
x1

a−→ y1

x1‖−x2
a−→ y1‖x2

and
x1

a−→ y1 x2
a−→ y2

x1|x2
τ−→ y1‖y2

, provided

the alphabet Act of actions is finite. The axioms are CM1–9 of Table 1, in which
+ binds weakest and a. strongest, and a, b range over Act.

Aceto, Bloom & Vaandrager [1] generalise this idea to arbitrary GSOS
languages with finitely many rules, each with finitely many premises, and assum-
ing a finite alphabet Act. I recapitulate their method for positive languages only.

A smooth operator (Definition 7) only has rules of the form
{xi

ci−→ yi | i∈I}
f(x1, . . . ,xn) a−→ t

.

The trigger of such a rule is the partial function ↑r: {i, . . . , n} ⇀ Act given by
↑r (i) = ci if i∈I, and ↑r (i) is undefined otherwise.

Definition 16. [1] A smooth GSOS operator f is distinctive, if no two rules of
f have the same trigger, and the triggers of all rules of f have the same domain.

All operators of CCS, as well as ‖− and |, are smooth. The operators 0, a. , ‖−
and | are distinctive, but ‖ is not. Its triggers have domains {1}, {2} and {1, 2}.

For every smooth and distinctive operator f , Aceto, Bloom & Vaan-
drager declare four types of axioms. First of all, for every rule r as above there
is an axiom f(σ(x1), . . . , σ(xn)) = a.σ(t), where σ : {x1, . . . ,xn} → TT(Σ) is the
substitution given by σ(xi) = ci.yi for i ∈ I and σ(xi) = xi for i ∈ I. Such an
axiom is called an action law. Examples are CM2 and CM5 in Table 1.

Secondly, whenever I is the set of active arguments of f , but f has no rule of
the form above (where the name of the variables yi is of no importance), there
is an axiom f(σ(x1), . . . , σ(xn)) = 0, with σ as above (for an arbitrary choice of
distinct variables yi). Such an axiom is an inaction law. An example is CM6. If
f has k active arguments, in total there are |Act|k action and inaction laws for
f , one for every conceivable trigger with as domain the active arguments of f .

Finally, for any active argument i of f , there are laws

f(x1, . . .xi−1, 0,xi+1, . . . ,xn) = 0 and
f(x1, . . . ,xi + x′i, . . . ,xn) = f(x1, . . . ,xi, . . . ,xn) + f(x1, . . . ,x

′
i, . . . ,xn).

330 R.J. van Glabbeek

Examples for the second type of inaction law are CM3 and CM7, and examples
of distributivity laws are CM4, CM8 and CM9.

It is not hard to see that all axioms above respect ↔ and that together they
bring any term f(p1, . . . , par(f)) with the pi basic processes in head normal form.

The method of [1] makes three types of additions to a given finite GSOS
language L, and provides an equational head normalising axiomatisation on the
resulting language, that respects strong bisimulation.

First of all, the operators 0, a. and + are added, if not already there. The
corresponding axioms are A1–4 of Table 1. If all other operators are smooth and
distinctive, for each of them the axioms just described are taken, which finishes
the job. (In the presence of negative premises, this step is slightly more complex.)

In case there are operators f that are smooth but not distinctive, the set of
operational rules of f is partitioned into subsets D such that no two rules in D
have the same trigger, and the triggers of all rules in D have the same domain.
Note that such a partition can always be found—possibly by taking exactly one
rule in each subset D. Now for any subset D in the partition, an operator fD with
ar(fD) = ar(f) is added to the language, whose rules are exactly the rules in
that subset, but with fD in the source. By definition, fD is distinctive. Now add
an axiom f(x1, . . . ,xar(f)) =

∑
fD(x1, . . . ,xar(f)), where the sum is taken over

all subsets in the partition, and apply the method above to the operators fD.
Again, it is trivial to check that the axioms respect ↔ and are head normalising.
Applied to the ‖ of CCS, this technique yields the left merge and communication
merge as auxiliary operators, as well as a right merge, and the axiom CM1.

In case of operators f that are not smooth, a smooth operator f� is added
to L, of which f is an abbreviation in the sense of Definition 9 (cf. Example 1).
The treatment of f� proceeds as above, and the project is finished by the axiom

f(p1, ..., pn) = f�(pf(1), ..., pf(n)).

Besides completeness for finite processes, using an infinitary induction prin-
ciple the method of [1] even yields completeness for arbitrary processes. I will
not treat this here, as it does not generalise to weak equivalences.

7 Turning Cool GSOS Rules into Equations

The method of [1] does not apply to ↔w , ↔d , ↔η , and ↔b , because these
equivalences fail to be congruences for the +. However, Bloom [4] shows that the
method applies more or less verbatim to ↔rb . This section observes that the
same holds for ↔rη , and finds an adaptation to yield finite equational axioma-
tisations of ↔rw (resp. ↔rd) that are sound and complete for finite processes
on an augmentation of any RWB cool (resp. RDB cool) GSOS language.

On basic processes, the axioms A1–4 together with T1–T3 are complete for
↔rw [8], whereas complete axiomatisations for ↔rd , ↔rη and ↔rb are obtained
by dropping T3, T2 or both, respectively [7]. So in order to get axiomatisations
of these equivalences that are complete for finite processes, all that is needed is
head normalisation. The simplest approach is to use the same head normalising

On Cool Congruence Formats for Weak Bisimulations 331

axioms as in the previous section, reasoning that axioms that respect ↔ surely
respect a coarser equivalence like ↔rb or ↔rw . The only way this approach
could fail is when the auxiliary operators generated by [1] fail to be congruences
for the equivalence relation at hand. The operators 0, a. and + are WB cool,
and thus unproblematic. As observed in [4], for any RBB cool GSOS language,
the augmented language is also RBB cool. Namely, the new operators do not
show up in targets of new rules, so classifying all auxiliary operators as wild is
sufficient. Since the auxiliary operators do not increase the collection of receiving
arguments of operators either, it follows likewise that for any RHB cool GSOS
language, the augmented language is also RHB cool. Hence one obtains

Proposition 4. The method of [1], together with axiom T1 (and T3), yields
finite equational axiomatisations of ↔rb (resp. ↔rη) that are sound and com-
plete for finite processes on an augmentation of any RBB cool (resp. RHB cool)
GSOS language.

For ↔rw and ↔rd this approach fails. In particular, these equivalences fail to
be congruences for the communication merge: one has τ.a.0↔rd τ.a.0 + a.0 but

0↔ (τ.a.0|a.b.0) ↔rd ((τ.a.0 + a.0)|a.b.0)↔ τ.b.0.

Conjecture. There exists no GSOS language including the parallel composition
of CCS and ≥2 visible actions that admits a finite equational axiomatisation of
weak bisimulation equivalence that is sound and complete for finite processes.

Nevertheless, such an axiomatisation was found by Bergstra & Klop [3],
using a variant of the communication merge that is not a GSOS operator. Their
axiomatisation of ‖ is obtained from the one in Table 1 by requiring a, b = τ
in CM6, and adding the axioms τ.x|y = x|τ.y = x|y. Here I generalise their
approach to arbitrary RWB cool (or RDB cool) GSOS languages.

The RWB cool format can be extended by allowing wild operators f , besides
GSOS rules satisfying Clause 3 of Definition 12, also to have rules of which
all premises have the form x =⇒ c−→ y with c ∈ A. For such rules Clause 3
is not required, but in fulfilling Clause 4, they do count in determining which
arguments are receiving. A similar extension applies to the RDB cool format.

Theorem 4. On any extended-RWB cool TSS, ↔rw is a congruence.
On any extended-RDB cool TSS, ↔rd is a congruence.

In an RWB (or RDB) cool language, the smooth operators f� that are needed to
axiomatise a non-smooth operator f are unproblematic. For tame operators f ,
they are already in the language, and for a wild f it is not hard to define them
in such a way that the augmented language remains RWB (or RDB) cool. Of the
operators fD needed to axiomatise a non-distinctive operator f , those that have
exactly one active argument can be made to satisfy Clause 3 of Definition 12
by including the relevant τ -rule in D. All operators fD with another number of
active arguments cannot have τ -premises, by Definitions 12 and 10. These op-
erators fD are replaced by counterparts f ′D, obtained by replacing each premise

332 R.J. van Glabbeek

x
c−→ y in a rule for fD by x =⇒ c−→ y. By Theorem 4, ↔rw (or ↔rd) is

a congruence for f ′D. Furthermore, f(x1, . . . ,xar(f))↔rw

∑
f ′D(x1, . . . ,xar(f)).

Now the required axiomatisation is obtained by omitting all inaction laws for
the modified operators f ′D with σ(xi) = τ.yi for some active argument i, and
instead adding τ-laws f ′D(x1, . . . , τ.xi, . . . ,xn) = f ′D(x1, . . . ,xi, . . . ,xn).

8 A Challenge

All equivalences of Definition 5 are congruences of the GSOS language with rules

x1
a−→ y

f(x1)
a−→ g(y)

x1
τ−→ y

g(x1)
τ−→ g(y)

g(x1)
τ−→!x1

x1
a−→ y

!x1
a−→ y‖!x1

x1
a−→ y1

x1‖x2
a−→ y1‖x2

x2
a−→ y2

x1‖x2
a−→ x1‖y2

for a∈Act. Here, the operator !x can be understood as a parallel composition of
infinitely many copies of x. The rules for f , g and ‖ are WB cool, but the one
for ! is not. It is not even RBB safe in the sense of [6].

Open problem. Find a congruence format that includes the language above.

Acknowledgement. My thanks to Simone Tini for inspiration.

References

1. L. Aceto, B. Bloom & F.W. Vaandrager (1994): Turning SOS rules into
equations. Information and Computation 111(1), pp. 1–52.

2. T. Basten (1996): Branching bisimulation is an equivalence indeed! Information
Processing Letters 58(3), pp. 141–147.

3. J.A. Bergstra & J.W. Klop (1985): Algebra of communicating processes with
abstraction. Theoretical Computer Science 37(1), pp. 77–121.

4. B. Bloom (1995): Structural operational semantics for weak bisimulations. Theo-
retical Computer Science 146, pp. 25–68.

5. B. Bloom, S. Istrail & A.R. Meyer (1995): Bisimulation can’t be traced. Jour-
nal of the ACM 42(1), pp. 232–268.

6. W.J. Fokkink (2000): Rooted branching bisimulation as a congruence. Journal of
Computer and System Sciences 60(1), pp. 13–37.

7. R.J. van Glabbeek & W.P. Weijland (1996): Branching time and abstraction
in bisimulation semantics. Journal of the ACM 43(3), pp. 555–600.

8. R. Milner (1990): Operational and algebraic semantics of concurrent processes.
In J. van Leeuwen, editor: Handbook of Theoretical Computer Science, chapter 19,
Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242. Alternatively see
Communication and Concurrency, Prentice-Hall International, Englewood Cliffs,
1989, or A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, 1980.

9. F. Moller (1990): The nonexistence of finite axiomatisations for CCS congru-
ences. In Proceedings 5th Annual Symposium on Logic in Computer Science,
Philadelphia, USA, IEEE Computer Society Press, pp. 142–153.

On Cool Congruence Formats for Weak Bisimulations 333

10. G.D. Plotkin (2004): A structural approach to operational semantics. The Journal
of Logic and Algebraic Programming 60–61, pp. 17–139. First appeared in 1981.

11. R. de Simone (1985): Higher-level synchronising devices in Meije-SCCS. Theo-
retical Computer Science 37, pp. 245–267.

12. I. Ulidowski (1992): Equivalences on observable processes. In Proceedings 7th

Annual Symposium on Logic in Computer Science, Santa Cruz, California, IEEE
Computer Society Press, pp. 148–159.

13. I. Ulidowski & I. Phillips (2002): Ordered SOS rules and process languages for
branching and eager bisimulations. Information & Computation 178, pp. 180–213.

14. I. Ulidowski & S. Yuen (2000): Process languages for rooted eager bisimulation.
In C. Palamidessi, editor: Proceedings of the 11th International Conference on
Concurrency Theory, CONCUR 2000, LNCS 1877, Springer, pp. 275–289.

Externalized and Internalized Notions
of Behavioral Refinement�

Michel Bidoit1 and Rolf Hennicker2

1 Laboratoire Spécification et Vérification (LSV),
CNRS & ENS de Cachan, France

2 Institut für Informatik,
Ludwig-Maximilians-Universität München, Germany

Abstract. Many different behavioral refinement notions for algebraic
specifications have been proposed in the literature but the relationship
between the various concepts is still unclear. In this paper we provide a
classification and a comparative study of behavioral refinements accord-
ing to two directions, the externalized approach which uses an explicit
behavioral abstraction operator that is applied to the specification to
be implemented, and the internalized approach which uses a built-in
behavioral semantics of specifications. We show that both concepts are
equivalent under suitable conditions. The formal basis of our study is
provided by the COL institution (constructor-based observational logic).
Hence, as a side-effect of our study on internalized behavioral refine-
ments, we introduce also a novel concept of behavioral refinement for
COL-specifications.

1 Introduction

The investigation of behavioral refinement notions is motivated by the fact that,
in general, an implementation does not need to satisfy literally the properties
of an abstract specification but it can nevertheless be considered as correct if
this implementation respects the observable consequences of the specification to
be implemented. In the framework of algebraic specifications this idea has been
taken into account in many approaches in the literature proposing behavioral (or
observational) refinement (or implementation) concepts; see e.g. [9,17,19,12,13,4]
and, for an overview, [16,8]. However, due to the various different formalizations,
there is still no clear picture of the relationships between the various approaches.

In this paper we propose a classification based on two principal directions
that can be identified when we analyze behavioral refinement concepts. The
first direction, in the following called the externalized view, uses an explicit be-
havioral abstraction operator to relax the (semantics of the) specification to be
implemented. The general idea is then that the models of an implementing spec-
ification not necessarily have to lie in the model class of the specification to be
implemented but it is sufficient if they lie in its “abstracted” model class (see

� This work is partially supported by the German BMBF-project GLOWA-Danube.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 334–350, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Externalized and Internalized Notions of Behavioral Refinement 335

e.g. [17,19,16,4]). Of course, there is again a variety of proposed behavioral ab-
straction operators which are either based on observational equivalences between
algebras (see, e.g., [17,16]) or on observational equalities between the elements
of algebras (see, e.g., [4]). Since in many cases both approaches can be expressed
by each other (see [7]), we will restrict here to behavioral abstraction opera-
tors that are based on observational equalities between elements. As a concrete
formalism we use the notion of observational equality defined in [5] which is
based on distinguished sets of constructor operations (determining the relevant
values from the user’s point of view) and observer operations (determining the
indistinguishability of elements). As a first result, we show in Section 3 (Theo-
rem 1) that behavioral refinement relations based on the externalized view can
be characterized by standard, non-behavioral refinements if we use a quotient
construction as an implementation constructor.

Then, in Section 4, we consider the second direction to behavioral refinement,
in the following called the internalized view. Here the idea is to use a built-in be-
havioral semantics that is used both for the specification to be implemented and
for the implementing specification. A built-in behavioral semantics is most ap-
propriately obtained by the use of a behavioral institution that provides a logical
system focusing on the behavioral aspects of system specifications (as with hid-
den algebra [10] or the constructor-based observational logic COL [5]). A behav-
ioral refinement concept based on hidden algebra is studied in [13], a behavioral
refinement concept for COL-specifications is introduced in Section 4. This refine-
ment concept is based on the notion of a COL-implementation constructor which
can be applied to the models of the implementing COL-specification SPICOL to
produce models of the COL-specification SPCOL to be implemented. A crucial
property of COL-implementation constructors is that they have to be compati-
ble with behavioral isomorphisms. We show that under mild assumptions reduct
functors along (standard) signature morphisms are indeed COL-implementation
constructors (Lemma 1) and we discuss the need for such constructions (in con-
trast to reduct functors along COL-signature morphisms which are appropriate
for encapsulation of specifications but not adequate for refinement).

In Section 5 we discuss the relationships between the externalized and the
internalized views on behavioral refinements. We show that the behavioral com-
patibility assumption of COL-implementation constructors is closely related to
the notion of stability (introduced by Schoett [20]) which requires that imple-
mentation constructors preserve observational equivalences between algebras.
Indeed, considering the externalized view, stability is the crucial criterion to ob-
tain composability of behavioral refinement steps (see [19]), also called vertical
composition. For the internalized view vertical composition of behavioral refine-
ments is guaranteed by definition, according to the built-in behavioral semantics
of the implementing specification. As the central result of this paper we show
in Theorem 2 that, under suitable assumptions, externalized and internalized
notions of behavioral refinement can be expressed by each other. As pointed
out in Section 6, this leads to a useful proof rule for internalized behavioral
refinements.

336 M. Bidoit and R. Hennicker

2 Basic Concepts

2.1 Algebraic Preliminaries and Structured Specifications

We assume that the reader is familiar with the basic notions of algebraic spec-
ifications (see, e.g., [22,1]), like the notions of (many-sorted) signature Σ =
(S,OP) (where S is a set of sorts and OP is a set of operation symbols op :
s1, . . . , sn → s), signature morphism σ : Σ → Σ′, (total) Σ-algebra A =
((As)s∈S , (opA)op∈OP), The class of all Σ-algebras is denoted by Alg(Σ). To-
gether with Σ-morphisms this class forms a category which, for simplicity, is
also denoted by Alg(Σ). For any signature morphism σ : Σ → Σ′, the reduct
functor |σ : Alg(Σ′) → Alg(Σ) is defined as usual.

The notion of an institution was introduced by Goguen and Burstall [11] to
formalize the general concept of a logical system from a model-theoretic point
of view; see [21] for an overview on the basic definitions and the theory of in-
stitutions. Any institution provides a suitable framework for defining a set of
specification-building operators which are independent from the concrete form
of the institution. We will use the following four fundamental operators intro-
duced in [18] for constructing structured specifications over an institution I. The
semantics of a specification SP is always determined by its signature, denoted
by Sig [SP], and by its class of models, denoted by Mod [SP].

presentation : Any pair 〈Σ,Φ〉 consisting of a signature Σ and of a set Φ of
Σ-sentences is a specification with semantics:
Sig [〈Σ,Φ〉] def= Σ

Mod [〈Σ,Φ〉] def= {M ∈ Mod(Σ) |M |=Σ Φ}
union: For any two specifications SP1 and SP2 with the same signature

Sig [SP1] = Sig [SP2] = Σ, the expression SP1 ∪ SP2 is a specification with
semantics:
Sig [SP1 ∪ SP2]

def= Σ

Mod [SP1 ∪ SP2]
def= Mod [SP1] ∩Mod [SP2]

translation : For any specification SP and signature morphism σ : Sig [SP] →
Σ, the expression translate SP by σ is a specification with semantics:
Sig [translate SP by σ] def= Σ

Mod [translate SP by σ] def= {M ∈ Mod(Σ) |M |σ ∈Mod [SP]}
hiding : For any specification SP and signature morphism σ : Σ → Sig [SP], the

expression derive from SP by σ is a specification with semantics:
Sig [derive from SP by σ] def= Σ

Mod [derive from SP by σ] def= IsoΣ({M |σ |M ∈Mod [SP]}) ,
where IsoΣ() denotes the closure under Σ-isomorphisms in Mod(Σ).

2.2 Observability Concepts

In this section we recall the underlying observability notions that will be used
hereafter to formalize behavioral refinements (see [5] for more details). Note,

Externalized and Internalized Notions of Behavioral Refinement 337

however, that the forthcoming study of behavioral refinement notions is in prin-
ciple independent of the chosen formal basis.

To capture the behavioral aspects of system specifications we consider distin-
guished sets of constructor and observer operations. Intuitively, the constructor
operations determine those elements which are of interest from the user’s point
of view while the observers determine a set of observable experiments that a user
can perform to examine hidden states. Thus we can abstract from junk elements
and also from concrete state representations whereby two states are considered
to be “observationally equal” if they cannot be distinguished by observable ex-
periments.

Formally, a constructor operation is an operation symbol cons : s1, . . . , sn →
s with n ≥ 0. The result sort s of cons is called a constrained sort. An observer
operation is a pair (obs , i) where obs is an operation symbol obs : s1, . . . , sn → s
with n ≥ 1 and 1 ≤ i ≤ n. The distinguished argument sort si of obs is called a
state sort (or hidden sort). If obs : s1 → s is a unary observer we simply write
obs instead of (obs , 1).

If we consider a standard algebraic signature Σ = (S,OP) together with
a distinguished set OPCons of constructor operations and a distinguished set
OPObs of observer operations we obtain a so-called COL-signature ΣCOL =
(Σ,OPCons,OPObs) with underlying (standard) signatureΣ.1 The set SCons ⊆ S
of constrained sorts (w.r.t. OPCons) consists of all sorts s such that there exists
at least one constructor in OPCons with range s. The set SLoose ⊆ S of loose sorts
consists of all non-constrained sorts, i.e. SLoose = S \ SCons . The set SState ⊆ S
of state sorts (or hidden sorts, w.r.t. OPObs) consists of all sorts si such that
there exists at least one observer (obs , i) in OPObs , obs : s1, . . . , si, . . . , sn → s.
The set SObs ⊆ S of observable sorts consists of all sorts which are not a state
sort, i.e. SObs = S \ SState .

The set OPCons of constructor operations (of a COL-signature ΣCOL) de-
termines a set of constructor terms. A constructor term is a term t of a con-
strained sort s ∈ SCons which is built only from constructor operations of OPCons
and from variables of loose sorts. In particular, if all sorts are constrained, i.e.,
SCons = S, the constructor terms are exactly the (S,OPCons)-ground terms
which are built by the constructor symbols. The set of constructor terms deter-
mines, for any Σ-algebra A, a family of subsets of the carrier sets of A, called
the generated part and denoted by GenΣCOL(A), which consists of those ele-
ments that can be constructed by the interpretations of the given constructors
(starting from constants and from arbitrary elements of loose sorts, if any). The
ΣCOL-generated part represents those elements which are of interest from the
user’s point of view according to the given constructor operations. A Σ-algebra
A is reachable (w.r.t. ΣCOL) if its carrier sets coincide with the carrier sets of
its ΣCOL-generated part.

1 The terminology “COL-signature” stems from the constructor-based observational
logic institution COL. Our study is however independent from the COL institution
as long as we do not consider the internalized view of behavioral refinements studied
in Section 4.

338 M. Bidoit and R. Hennicker

The set OPObs of observer operations determines a set of observable contexts
which represent the observable experiments that a user can perform. An observ-
able context is a term c of observable sort s′ ∈ SObs which is built only from
observer operations of OPObs and which contains a distinguished variable zs of
some hidden sort s ∈ SState. s is called the application sort and s′ is called the
observable result sort of c. The set of observable contexts determines, for any
Σ-algebra A, an indistinguishability relation, called observational equality and
denoted by ≈ΣCOL,A. For any two elements a, b ∈ A, a ≈ΣCOL,A b holds if
either a = b and a, b are observable (i.e. belong to a carrier set of observable sort
s ∈ SObs) or if a and b cannot be distinguished by the application of observ-
able contexts. A Σ-algebra A is fully abstract if the observational ΣCOL-equality
coincides with the set-theoretic equality.

The constructor and the observer operations induce certain constraints on
Σ-algebras. First, since the constructor operations determine the values of inter-
est, we require that the non-constructor operations should (up to observational
equality) respect the constructor-generated part of an algebra, i.e. by the ap-
plication of non-constructor operations one should at most be able to obtain
elements which are observationally equal to some element of the constructor-
generated part. Technically this means that for a given Σ-algebra A we first
consider the smallest Σ-subalgebra 〈GenΣCOL(A)〉Σ of A containing the ΣCOL-
generated part because this subalgebra represents the only elements a user can
compute (over the loose carrier sets) by invoking operations of Σ. Then we
require that each element of 〈GenΣCOL(A)〉Σ is observationally equal to some
element of the ΣCOL-generated part GenΣCOL(A) of A. This condition is called
reachability constraint.

Secondly, since the declaration of observer operations determines a particu-
lar observational equality on any Σ-algebra A, the (interpretations of the) non-
observer operations should respect this observational equality, i.e. a non-observer
operation should not contribute to distinguish non-observable elements. To en-
sure this we require that the observational equality is a Σ-congruence on the sub-
algebra 〈GenΣCOL(A)〉Σ . (Note that it is sufficient to consider 〈GenΣCOL(A)〉Σ
instead of A because computations performed by a user can only lead to elements
in the Σ-subalgebra 〈GenΣCOL(A)〉Σ .) This condition is called observability con-
straint.

A Σ-algebra A which satisfies both the reachability and the observability
constraints induced by a COL-signature ΣCOL = (Σ,OPCons,OPObs) is called
ΣCOL-algebra (or simply COL-algebra). Note that any Σ-algebra A which is
reachable and fully abstract w.r.t. ΣCOL is a ΣCOL-algebra. The class of all
ΣCOL-algebras is denoted by AlgCOL(ΣCOL).

The satisfaction of the reachability and observability constraints allows us
to construct for each ΣCOL-algebra A its black box view which is a reachable
and fully abstract algebra representing the behavior of A from the user’s point
of view. The black box view is constructed in two steps. First, we restrict to
the ΣCOL-generated subalgebra 〈GenΣCOL(A)〉Σ of A thus forgetting junk val-
ues. Then, we identify all elements of 〈GenΣCOL(A)〉Σ which are observationally

Externalized and Internalized Notions of Behavioral Refinement 339

equal. Hence the black box view of a ΣCOL-algebra A is given by the quo-
tient algebra of 〈GenΣCOL(A)〉Σ w.r.t. ≈ΣCOL,A which, for simplicity, will be
denoted by A/≈ΣCOL,A. Two ΣCOL-algebras A and B are observationally equiv-
alent (w.r.t. ΣCOL), denoted by A ≡ΣCOL B, if their black box views A/≈ΣCOL,A

and B/≈ΣCOL,B are isomorphic Σ-algebras.
The observability notions defined above provide a generalization of the ap-

proach in [7] which is based on partial observational equalities≈Obs,In,A. The dif-
ference here is the declaration of the constructor and observer operations which
provide much more flexibility than declaring just observable sorts Obs and input
sorts In as done in [7]. In fact, any standard signature Σ = (S,OP) together
with distinguished sets In ⊆ S of input sorts and Obs ⊆ S of observable sorts in-
duces a COL-signature ΣIn,Obs

COL = (Σ,OPCons,OPObs) where OPCons consists of
all operation symbols cons ∈ OP with range s ∈ S \In and OPObs consists of all
pairs (obs , i) with obs ∈ OP, obs : s1, . . . , si, . . . , sn → s and si ∈ S \Obs. Then,
for any Σ-algebra A, the partial observational equality ≈Obs,In,A coincides (on
〈GenΣCOL(A)〉Σ) with ≈ΣCOL,A. In particular, in this case each Σ-algebra is also
a COL-algebra. Hence the results on behavioral refinements developed in the
following sections are also valid for all observability notions based on fixed sets
of observable sorts (and input sorts) which are frequently found in the literature,
see, e.g., [15,17].

3 Behavioral Refinement: The Externalized View

In this section we consider the institution FOLEq of many-sorted first-order logic
with equality (as detailed, e.g., in [3]) and we consider structured specifications
over FOLEq built by the specification building operations defined in Section 2.1.
A simple refinement relation between two specifications SP (the abstract speci-
fication to be implemented) and SPI (the implementing specification) can be de-
fined by requiring that both specifications have the same signature and that the
model class of the implementing specification SPI is included in the model class
of SP, see, e.g., [22]. To take into account that an implementation usually involves
some construction steps the notion of constructor implementation has been in-
troduced in [19] (and similarly in other implementation concepts; see [16,8] for an
overview). According to [19] an implementation constructor is a function which
maps algebras over the signature of the implementing specification to algebras
over the signature of the abstract specification. Since an implementation con-
struction must not necessarily be defined on all algebras but only on the models
of the implementing specification we allow partial functions as implementation
constructors. (An example of a partial implementation constructor is the for-
mation of observational quotients used below.) On the other hand, we assume
that implementation constructions are performed in a uniform way, i.e. preserve
isomorphisms.

Definition 1 (Implementation constructor). Let Σ, ΣI be two signatures.
An implementation constructor from ΣI to Σ (also simply called a constructor)

340 M. Bidoit and R. Hennicker

is a partial function κ : Alg(ΣI) → Alg(Σ) which is iso-preserving, i.e. for all
AI,BI ∈ Alg(ΣI),

if AI is ΣI -isomorphic to BI and κ(AI) is defined
then κ(BI) is defined and κ(AI) is Σ-isomorphic to κ(BI).

The definition domain of κ is denoted by Dom(κ).

An example of an implementation constructor is, for a given signature mor-
phism σ : Σ → ΣI which renames abstract sorts and operations into those
offered by the implementation, the reduct functor |σ : Alg(ΣI) → Alg(Σ) (see
also [19]). Note that in FOLEq this constructor can also be expressed by the
derive specification-building primitive.

Definition 2 (Refinement). Let SP, SPI be two specifications with signatures
Σ, ΣI resp. and let κ be a constructor from ΣI to Σ. SPI is a refinement of
SP w.r.t. κ, denoted by SP �κ SPI, if

Mod [SPI] ⊆ Dom(κ) and κ(Mod [SPI]) ⊆Mod [SP].

Many examples show that the above refinement definition is too restrictive
since an implementation does not need to satisfy literally all requirements of
an abstract specification but can nevertheless be considered as correct if the
implementation respects the observable properties of the specification to be
implemented. This fact has inspired a lot of work on adequate notions of be-
havioral refinement relations. A popular idea is to relax the model class of
the specification SP to be implemented by some behavioral abstraction oper-
ation, see, e.g., [17,19,16,4]. We call this direction the externalized view of be-
havioral refinement because, only for the purpose of refinement, a behavioral
abstraction operation is applied on top of the given (standard) model class of
SP. In contrast to that idea, other approaches use a built-in behavioral seman-
tics which is used for both specifications, the specification to be implemented
and the implementing specification, see [13]. We call this direction the inter-
nalized view of behavioral refinement which will be more closely considered in
the next section. In this section we focus on the externalized view using as
a behavioral abstraction operation the following behavior operator which con-
structs for a given class C of Σ-algebras the class of all algebras whose black
box view belongs to C. The behavior operator is defined according to distin-
guished sets of constructor operations and observer operations, i.e. w.r.t. a COL-
signature.

Definition 3 (Behavior operator). Let ΣCOL = (Σ,OPCons,OPObs) be a
COL-signature. For any class C of Σ-algebras,

BehΣCOL(C) def= {A ∈ AlgCOL(ΣCOL) | A/≈ΣCOL,A ∈ C}.

A class C of Σ-algebras is called behaviorally closed w.r.t. a COL-signature
ΣCOL if C ⊆ BehΣCOL(C) or, equivalently, if any Σ-algebra A ∈ C is a COL-
algebra and its black box view A/≈ΣCOL,A belongs also to C. A specification SP
is behaviorally closed if its model class Mod [SP] is behaviorally closed.

Externalized and Internalized Notions of Behavioral Refinement 341

When considering the externalized view of behavioral refinement the idea is,
of course, to apply the behavior operator to the model class of the specification
to be implemented. This leads to the following notion of behavioral refinement.

Definition 4 (Behavioral refinement: the externalized view). Let SP,
SPI be two specifications with signatures Σ, ΣI resp., let ΣCOL be a COL-
signature of the form (Σ,OPCons,OPObs) and let κ : Alg(ΣI) → Alg(Σ) be a
constructor. SPI is a behavioral refinement of SP w.r.t. ΣCOL and κ, denoted
by SP ΣCOL �κ SPI, if

Mod [SPI] ⊆ Dom(κ) and κ(Mod [SPI]) ⊆ BehΣCOL(Mod [SP]).

The given behavioral refinement notion is essentially based on the use of
the observational equality of elements induced by a COL-signature. Other ap-
proaches in the literature, which follow the externalized view, use for behav-
ioral abstraction not an indistinguishability relation between elements but an
abstraction equivalence between algebras, see, e.g., [17,15]. According to the re-
sults in [7,4] there is, however, no difference between both approaches if the
abstraction equivalence is factorizable (see [7]) and if the specification to be
implemented is behaviorally closed.

Example 1. The following specification Set specifies properties of sets of natural
numbers.
spec Set =

sorts bool , nat , set
ops true, false : bool ;

0 : nat ; succ : nat → nat ; plus : nat × nat → nat ;
empty : set ; add : nat × set → set ;
isin : nat × set → bool ;

axioms
∀x , y : nat ; s : set
%% standard axioms for booleans and natural numbers, plus
• isin(x , empty) = false
• isin(x , add(x , s)) = true
• x = y ⇒ isin(x , add(y, s)) = isin(x , s)
• add(x , add(x , s)) = add(x , s) (1)
• add(x , add(y, s)) = add(y, add(x , s)) (2)

end
For the implementation of sets we first abstract from the Set specification by us-
ing as an observer operation the membership test isin to observe sets. More pre-
cisely, we consider the COL-signature ΣSetCOL = (Sig [Set], ∅, {(isin, 2)}). For
the concrete implementation we use the specification List shown below and a sig-
nature morphism σSetasList : Sig [Set]→Sig [List] such that σSetasList(set)=
list, σSetasList(add) = cons and σSetasList(x) = x otherwise. Hence the imple-
mentation constructor κ is the reduct functor |σSetasList : Alg(Sig [List]) →
Alg(Sig [Set]).

342 M. Bidoit and R. Hennicker

Thus we obtain the refinement relation Set ΣSetCOL �κ List.2

spec List =
sorts bool , nat , list
ops true, false : bool ;

0 : nat ; succ : nat → nat ; plus : nat × nat → nat ;
empty : list ; cons : nat × list → list ;
head : list → nat ; tail : list → list ;
isin : nat × list → bool ;

axioms
∀x , y : nat ; l : list
%% standard axioms for booleans and natural numbers, plus
• head(cons(x , l)) = x
• tail(cons(x , l)) = l
• isin(x , empty) = false
• isin(x , cons(x , l)) = true
• x = y ⇒ isin(x , cons(y, l)) = isin(x , l)

end

Let us still point out that inspired by the results in [3] we can characterize
externalized behavioral refinements by standard refinements in the sense of Def-
inition 2 if we use behavioral quotient constructors which are induced by the
black box views of COL-algebras.

Definition 5 (Behavioral quotient constructor). Let ΣCOL be a COL-
signature with underlying signature Σ. The behavioral quotient constructor
(w.r.t. ΣCOL) is given by /≈ΣCOL : Alg(Σ) → Alg(Σ), where

/≈ΣCOL(A) def= A/≈ΣCOL,A if A is a ΣCOL-algebra,
/≈ΣCOL(A) is undefined otherwise.3

Theorem 1 (Characterization of externalized behavioral refinements).
Let SP, SPI be two specifications with signatures Σ, ΣI resp., let ΣCOL be a
COL-signature with underlying signature Σ and let κ : Alg(ΣI) → Alg(Σ) be a
constructor.

SP ΣCOL �κ SPI if and only if SP �κ; /≈ΣCOL SPI.

Proof. The proof is a direct consequence of the definitions, in particular of
the fact that κ(Mod [SPI]) ⊆ BehΣCOL(Mod [SP]) is equivalent to the inclusion
κ(Mod [SPI])/≈ΣCOL ⊆Mod [SP]. !

2 The correctness proof is easy: First, the implementation indeed satisfies the non-
observable equations (1) and (2) of Set due to the behavioral abstraction. That
the reduct functor yields COL-algebras w.r.t. ΣSetCOL follows from the observer
complete form of the axioms; see [6] for more details.

3 Obviously, /≈ΣCOL is iso-preserving.

Externalized and Internalized Notions of Behavioral Refinement 343

4 Behavioral Refinement: The Internalized View

The idea of the internalized view of behavioral refinement is to use a built-in
behavioral semantics for specifications. For this purpose behavioral institutions
which are tailored towards the behavioral aspects of system specifications pro-
vide an appropriate basis. Examples of such institutions are the framework of
hidden algebra (see [10]) and the constructor-based observational logic institu-
tion COL (see [5]). In the following we will consider the COL institution for
which no behavioral refinement concept has been investigated yet while for hid-
den algebra a refinement notion has been discussed in [13]. The COL institution
has as signatures COL-signatures and as models COL-algebras as described in
Section 2. COL-signature morphisms are standard signature morphisms which
fulfill additional properties related to the preservation of constructor and ob-
server operations and COL-morphisms between COL-algebras reflect behavioral
relationships (see [5] for details). In particular, two ΣCOL-algebras A and B
are ΣCOL-isomorphic if they are observationally equivalent (w.r.t. ΣCOL), i.e. if
A ≡ΣCOL B.

A crucial concept to obtain a built-in behavioral semantics is the behavioral
satisfaction relation, denoted by |=ΣCOL , which generalizes the standard satis-
faction relation of first-order logic by abstracting with respect to reachability
and observability. From the reachability point of view, the valuations of vari-
ables are restricted to the elements of the ΣCOL-generated part GenΣCOL(A)
only. From the observability point of view, the equality symbol “=” occurring
in a first-order formula ϕ is not interpreted by the set-theoretic equality but by
the observational equality ≈ΣCOL,A of elements.

In the following of this section we consider structured specifications over
COL built by the specification building operations defined in Section 2.1. For
instance, a basic COL specification SPCOL = 〈ΣCOL,Ax〉 consists of a COL-
signature ΣCOL and a set Ax of Σ-sentences, called axioms. The semantics of
SPCOL is given by its signature ΣCOL and by its class of models

Mod [SPCOL] = {A ∈ AlgCOL(ΣCOL) | A |=ΣCOL Ax}.

In order to define behavioral refinements for COL-specifications we can simply
transfer the notions of implementation constructor and refinement used for the
FOLEq institution in Definitions 1 and 2 to the COL institution. In particular,
this means that COL-implementation constructors are required to preserve COL-
isomorphisms, i.e. behavioral equivalences of algebras.

Definition 6 (COL-implementation constructor). Let ΣCOL, ΣICOL be
two COL-signatures. A COL-implementation constructor from ΣICOL to ΣCOL
(also simply called a COL-constructor) is a partial function κCOL :
AlgCOL(ΣICOL) → AlgCOL(ΣCOL) which is COL-iso-preserving, i.e. for all
AI,BI ∈ AlgCOL(ΣICOL),

if AI ≡ΣICOL BI and κCOL(AI) is defined
then κCOL(BI) is defined and κCOL(AI) ≡ΣCOL κCOL(BI).

The definition domain of κCOL is denoted by Dom(κCOL).

344 M. Bidoit and R. Hennicker

Definition 7 (Behavioral refinement: the internalized view). Let SPCOL,
SPICOL be two COL-specifications with signatures ΣCOL, ΣICOL resp. and let
κCOL be a COL-constructor from ΣICOL to ΣCOL. SPICOL is a behavioral re-
finement of SPCOL w.r.t. κCOL, denoted by SPCOL �κCOL SPICOL, if

Mod [SPICOL] ⊆ Dom(κCOL) and κCOL(Mod [SPICOL]) ⊆Mod [SPCOL].

An important question is, of course, which implementation constructors are
appropriate for COL-refinements. As a first approach one could simply con-
sider COL-signature morphisms σCOL : ΣCOL → ΣICOL. Since COL is an in-
stitution, the corresponding COL-reduct functor |σCOL : AlgCOL(ΣICOL) →
AlgCOL(ΣCOL) preserves COL-isomorphisms, i.e. is a COL-implementation con-
structor. Hence it is tempting to consider COL-refinements where the syntactic
relationship between the specification SPCOL to be implemented and the imple-
menting specification SPICOL is established by a COL-signature morphism. This
approach has, however, a serious drawback because the implementing specifica-
tion SPICOL usually has constructor and observer operations OPICons, OPIObs
which are unrelated to the constructor and observer operations OPCons, OPObs
of the specification SPCOL to be implemented. As a simple example we con-
sider below the implementation of sets by lists where the observer for sets is the
membership test isin while the observer operations for lists are, as usual, the
head and tail operations. Hence the COL-specifications of sets and lists cannot
be related by a COL-signature morphism which would require the preservation
of constructor and observer operations.This is the reason why we want to con-
sider standard signature morphisms and their reduct functors as implementation
constructors for COL-specifications.

But before let us still point out that from a methodological point of view
it is indeed adequate not to stick to COL-signature morphisms when we con-
struct implementations. COL-signature morphisms are the appropriate tool to
ensure encapsulation of COL-specifications (formally expressed by the satisfac-
tion condition of an institution) which is indeed important when we construct
large specifications in a modular way (often called horizontal composition). But
when we discuss refinements and compositions of refinement steps (often called
vertical composition) this is a totally different matter. Indeed, talking about en-
capsulation when relating abstract and concrete specifications makes no sense.
An extensive discussion of this issue can also be found in [13].

Hence, let us consider two COL-specifications SPCOL, SPICOL with sig-
natures ΣCOL, ΣICOL resp. together with a (standard) signature morphism
σ : Σ → ΣI (where Σ and ΣI are the underlying standard signatures of ΣCOL
and ΣICOL resp.). Moreover, let us consider the reduct functor |σ : Alg(ΣI) →
Alg(Σ) as a partial function |σ : AlgCOL(ΣICOL) → AlgCOL(ΣCOL),4 where

|σ(AI) def= AI|σ if AI|σ is a ΣCOL-algebra,
|σ(AI) is undefined otherwise.

4 By abuse of notation we use the same symbol |σ for the (total) reduct functor on
Alg(ΣI) and for its induced partial reduct function on AlgCOL(ΣICOL).

Externalized and Internalized Notions of Behavioral Refinement 345

The next lemma provides a simple criterion under which the (partial) reduct
function on COL-algebras is COL-iso-preserving, i.e. is a COL-implementation
constructor.

Lemma 1. Let ΣCOL, ΣICOL be COL-signatures with underlying signatures Σ,
ΣI resp. Let SObs, SIObs be the observable sorts and SLoose, SILoose be the loose
sorts induced by ΣCOL, ΣICOL resp. (see Section 2). If σ(SObs) ⊆ SIObs and
σ(SLoose) ⊆ SILoose then |σ : AlgCOL(ΣICOL) → AlgCOL(ΣCOL) is a COL-
implementation constructor.

Proof. We have to show that for all AI,BI ∈ AlgCOL(ΣICOL) the following
holds:

1. If AI ≡ΣICOL BI and AI|σ is a ΣCOL-algebra then BI|σ is a ΣCOL-algebra.
2. If AI ≡ΣICOL BI then AI|σ ≡ΣCOL BI|σ.

Proof of (1): LetAI≡ΣICOLBI and AI|σ be aΣCOL-algebra. Then AI/≈ΣICOL,AI

iso BI/≈ΣICOL,BI . Hence (AI/≈ΣICOL,AI)|σ iso (BI/≈ΣICOL,BI)|σ. Due to the
assumption σ(SObs) ⊆ SIObs and σ(SLoose) ⊆ SILoose, we can conclude that
AI|σ is a ΣCOL-algebra iff (AI/≈ΣICOL,AI)|σ is a ΣCOL-algebra. Hence,
(AI/≈ΣICOL,AI)|σ is a ΣCOL-algebra and so is (BI/≈ΣICOL,BI)|σ. Again, by
using the assumption, we conclude that BI|σ is a ΣCOL-algebra
Proof of (2): Let In def= SLoose, Obs

def= SObs, InI
def= SILoose, and ObsI

def= SIObs.
Due to the assumption σ(In) ⊆ InI, σ(Obs) ⊆ ObsI and according to [4] (Ex-
ample 3.15), the reduct functor |σ : Alg(ΣI) → Alg(Σ) is behavior respecting
w.r.t. the partial observational equalities≈Obs,In and ≈ObsI,InI in the sense of [4]
(Def. 3.12). Since AI,BI are ΣICOL-algebras, ≈ObsI,InI,AI = ≈ΣICOL,AI and
≈ObsI,InI,BI = ≈ΣICOL,BI and hence AI ≡ΣICOL BI iff AI ≡ObI,InI BI.
Since |σ is behavior respecting, AI|σ ≡Obs,In BI|σ. Since both reducts are
ΣCOL-algebras this is equivalent to AI|σ ≡ΣCOL BI|σ. !

Example 2. In contrast to Example 1 let us now consider COL-specifications of
sets and lists. First, the COL-specification SetCOL of sets is given by including
the observer isin into the COL-signature of the specification. (For simplicity, we
do not consider constructor operations here.)
spec SetCOL =

sorts bool , nat , set
ops true, false : bool ;

0 : nat ; succ : nat → nat ; plus : nat × nat → nat ;
empty : set ; add : nat × set → set ;
isin : nat × set → bool ;

observer (isin, 2)
axioms
%% the same axioms as in Set (see Example 1)

end
The following specification ListCOL provides a COL-specification of lists. As
in any usual approach for a behavioral specification of lists we use the operations
head and tail as observers for lists.

346 M. Bidoit and R. Hennicker

spec ListCOL =
sorts bool , nat , list
ops true, false : bool ;

0 : nat ; succ : nat → nat ; plus : nat × nat → nat ;
empty : list ; cons : nat × list → list ;
head : list → nat ; tail : list → list ;
isin : nat × list → bool ;

observers head , tail
axioms
%% the same axioms as in List (see Example 1)

end
For the implementation construction we use the same (standard) signature mor-
phism σSetasList as in Example 1 and the partial function

|σSetasList : AlgCOL(Sig [ListCOL]) → AlgCOL(Sig [SetCOL])

induced by the reduct functor |σSetasList on standard algebras. It is important
to note that the (image of the) observable sorts of SetCOL are included in the
observable sorts of ListCOL and hence, due to Lemma 1, the reduct functor is
indeed a COL-implementation constructor, denoted by κCOL. Thus we obtain
the refinement relation SetCOL �κCOL ListCOL.5

5 Relating the Externalized and the Internalized Views
of Behavioral Refinements

Let us first relate the implementation constructors used in the different ap-
proaches. Since any COL-algebra is also a (standard) algebra it is obvious that
any implementation constructor κ : Alg(ΣI) → Alg(Σ) gives rise to a (partial)
function κCOL : AlgCOL(ΣICOL) → AlgCOL(ΣCOL) where

κCOL(AI) def= κ(AI) if κ(AI) is defined and is a ΣCOL-algebra,
κCOL(AI) is undefined otherwise.

If this partial function is COL-iso-preserving then κCOL is a COL-implementa-
tion constructor induced by κ. In particular this means that κ is compatible with
observational equivalences between COL-algebras, a property which is frequently
used in the literature in different contexts having its origin in the notion of
stability introduced by Schoett [20]. Thus constructors κ which induce COL-
constructors will synonymously be called stable constructors. A criterion for
the stability of reduct functors along standard signature morphisms has been
provided in Lemma 1. The following lemma states a useful consequence of stable
constructors.
5 The correctness proof can be reduced to the proof of the refinement relation of Exam-

ple 1 due to the forthcoming Theorem 2 which relates externalized and internalized
views of behavioral refinements.

Externalized and Internalized Notions of Behavioral Refinement 347

Lemma 2. Let κ be a constructor fromΣI toΣ and κCOL be a COL-constructor
from ΣICOL to ΣCOL induced by κ. Then, for any class CI ⊆ Alg(ΣI) of ΣI -
algebras and for any iso-closed class C ⊆ Alg(Σ) of Σ-algebras, it holds:
If CI ⊆ Dom(κ) and κ(CI) ⊆ BehΣCOL(C)
then BehΣICOL(CI) ⊆ Dom(κ) and κ(BehΣICOL(CI)) ⊆ BehΣCOL(C).

Proof. Let AI ∈ BehΣICOL(CI). Then AI/≈ΣICOL,AI ∈ CI and, by assump-
tion, κ(AI/≈ΣICOL,AI) ∈ BehΣCOL(C). Hence, in particular, κ(AI/≈ΣICOL,AI)
is a ΣCOL-algebra. Thus κCOL(AI/≈ΣICOL,AI) is defined. Since AI ≡ΣICOL

AI/≈ΣICOL,AI and κCOL is a COL-constructor, κCOL(AI) is defined as well,
i.e. κ(AI) is a ΣCOL-algebra and thus BehΣICOL(CI) ⊆ Dom(κ).

Moreover, since κCOL is COL-iso-preserving, κ(AI) = κCOL(AI) ≡ΣCOL

κCOL(AI/≈ΣICOL,AI) = κ(AI/≈ΣICOL,AI) ∈ BehΣCOL(C). Since C is iso closed,
BehΣCOL(C) is closed under COL-iso, i.e. under ≡ΣCOL . Thus we obtain, as de-
sired, κ(AI) ∈ BehΣCOL(C). !

From Lemma 2 we can easily conclude that for stable constructors, behavioral
refinement steps according to the externalized view compose, i.e.

SP ΣCOL �κ SPI, SPI ΣICOL �κ′
SPI′ implies SP ΣCOL �κ′; κ SPI′.

Indeed, it has been pointed out already in [19] that the preservation of ob-
servational equivalences is crucial to guarantee vertical composition of so-called
abstractor implementations which are a variant of the externalized approach. For
the internalized approach, vertical composition is trivially guaranteed according
to the built-in behavioral semantics which is used for both the specification to
be implemented and for the implementing specification, i.e.

SPCOL �κCOL SPICOL, SPICOL �κ′
COL SPI′COL implies

SPCOL
ΣICOL �κ′

COL; κCOL SPI′COL.

In the following of this section we will show that under certain conditions (sta-
bility of constructors and behavioral closedness of specifications), externalized
behavioral refinements and internalized behavioral refinements are expressible
by each other. To relate the two approaches we first define a trivial syntactic
translation ForgetCOL from COL-specifications into standard specifications over
FOLEq according to the structure of specifications:

ForgetCOL(〈ΣCOL,Ax〉) def= 〈Σ,Ax〉
where Σ is the underlying standard signature of ΣCOL

ForgetCOL(SP1,COL ∪ SP2,COL) def=
ForgetCOL(SP1,COL) ∪ ForgetCOL(SP2,COL)

ForgetCOL(translate SPCOL by σCOL) def=
translate ForgetCOL(SPCOL) by σ
where σ is the underlying standard signature morphism of σCOL

348 M. Bidoit and R. Hennicker

ForgetCOL(derive from SPCOL by σCOL) def=
derive from ForgetCOL(SPCOL) by σ
where σ is the underlying standard signature morphism of σCOL

We implicitly assume in the following that for any structured COL-specification
SPCOL its associated FOLEq-specification ForgetCOL(SPCOL) is denoted by SP
and similarly for SPICOL etc. The following lemma states that COL-
specifications and behavioral abstractions of their associated FOLEq-
specifications are semantically equivalent.

Lemma 3. Let SPCOL be a COL-specification with signature ΣCOL and let SP
be its associated FOLEq-specification. Assume that in the structured specification
SP, each occurrence of the derive construct (if any) is applied to a behaviorally
closed specification. Then Mod [SPCOL] = BehΣCOL(Mod [SP]).6

Proof. The proof of the lemma is straightforward by induction on the structure
of specifications. For the basic step we use the fact (see [5]) that for any ΣCOL-
algebra A and Σ-sentence ϕ, A |=ΣCOL ϕ iff A/≈ΣCOL,A |= ϕ (where |= denotes
the standard satisfaction relation of first-order logic). The induction step for
the union of two specifications is trivial and the induction steps for translate
and derive utilize the fact that reduct functors w.r.t. COL-signature morphisms
commute with black box constructions; see Theorem 51 of [5]. !

Theorem 2 (Relating externalized and internalized behavioral refine-
ments). Let SPCOL, SPICOL be two COL-specifications with signatures ΣCOL,
ΣICOL resp. and let SP, SPI be the associated FOLEq-specifications with sig-
natures Σ, ΣI resp. Again we assume that in the structured specifications SP
and SPI, each occurrence of the derive construct (if any) is applied to a behav-
iorally closed specification. Let κCOL be a COL-constructor from ΣICOL to ΣCOL
induced by a constructor κ from ΣI to Σ.

1. If SP ΣCOL �κ SPI then SPCOL �κCOL SPICOL.
2. If SPI is behaviorally closed w.r.t. ΣICOL then

SP ΣCOL �κ SPI if and only if SPCOL �κCOL SPICOL.

Proof. (1): By assumption,
Mod [SPI] ⊆ Dom(κ) and κ(Mod [SPI]) ⊆ BehΣCOL(Mod [SP]).

Hence, by Lemma 2 (and since Mod [SP] is iso-closed)
BehΣICOL(Mod [SPI]) ⊆ Dom(κ) and
κ(BehΣICOL(Mod [SPI])) ⊆ BehΣCOL(Mod [SP]).

Since, by Lemma 3,
Mod [SPICOL]=BehΣICOL(Mod [SPI]) and Mod [SPCOL]=BehΣCOL(Mod [SP])

we obtain, as desired,
Mod [SPICOL] ⊆ Dom(κCOL) and κCOL(Mod [SPICOL]) ⊆Mod [SPCOL].

6 In this equation the ΣCOL-algebras on the left-hand side are considered as standard
Σ-algebras.

Externalized and Internalized Notions of Behavioral Refinement 349

(2): Conversely, if
Mod [SPICOL] ⊆ Dom(κCOL) and κCOL(Mod [SPICOL]) ⊆Mod [SPCOL],

then we obtain, again by Lemma 3,
BehΣICOL(Mod [SPI]) ⊆ Dom(κ) and
κ(BehΣICOL(Mod [SPI])) ⊆ BehΣCOL(Mod [SP]).

Since SPI is behaviorally closed w.r.t. ΣICOL, Mod [SPI] ⊆ BehΣICOL(Mod [SPI])
and therefore Mod [SPI] ⊆ Dom(κ) and κ(Mod [SPI]) ⊆ BehΣCOL(Mod [SP]). !

6 Conclusion

We have studied the relationships between externalized and internalized behav-
ioral refinements which we believe is useful for further elaborations of behavioral
refinement notions in the context of particular specification frameworks, like,
e.g., the algebraic specification language Casl [2]. Indeed the essential results
of our study, in particular the main theorem pointing out the equivalence of the
external and the internal views of behavioral refinements (under certain assump-
tions), are in principle independent of the chosen formalism. Hence, it should be
possible to generalize our results to a more abstract category-theoretic setting,
e.g. along the lines of [14].

An important further issue concerns proof techniques to verify behavioral
refinements. It seems that the most efficient way would be to reduce both, the
externalized and the internalized notions, to the proof of refinement relations
between standard first-order logic specifications (possibly involving sort genera-
tion constraints). Indeed Theorem 1 an 2 induce immediately the following two
proof rules:

SP �κ; /≈ΣCOL SPI

SP ΣCOL �κ SPI

SP ΣCOL �κ SPI

SPCOL �κCOL SPICOL

Then, further proof rules are needed for proving SP �κ; /≈ΣCOL SPI. A
useful source for this purpose are the proof techniques for the validity of first-
order sentences in behavioral quotient specifications provided in [3].

References

1. E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors. Algebraic Founda-
tions of Systems Specification. Springer, 1999.

2. E. Astesiano, H. Kirchner M. Bidoit, B. Krieg-Brückner, P.D. Mosses, D.T. San-
nella, and A. Tarlecki. Casl: The Common Algebraic Specification Language.
Theoretical Computer Science, 286(2):153–196, 2002.

3. M. Bidoit, M.-V. Cengarle, and R. Hennicker. Proof systems for structured speci-
fications and their refinements. In [1], chapter 11, pages 385–433. Springer, 1999.

d

350 M. Bidoit and R. Hennicker

4. M. Bidoit and R. Hennicker. Modular correctness proofs of behavioural implemen-
tations. Acta Informatica, 35:951–1005, 1998.

5. M. Bidoit and R. Hennicker. Constructor-based observational logic. Journal of
Logic and Algebraic Programming, 2005, to appear. Preliminary version available
at www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BID-HEN-JLAP.pdf.

6. Michel Bidoit and Rolf Hennicker. Observer complete definitions are behaviourally
coherent. In Proc. OBJ/CafeOBJ/Maude Workshop at Formal Methods’99,
Toulouse, France, Sep. 1999, pages 83–94. THETA, 1999.

7. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor
specifications. Science of Computer Programming, 25(2–3):149–186, 1995.

8. H. Ehrig and H.-J. Kreowski. Refinement and implementation. In [1], chapter 7,
pages 201–242. Springer, 1999.

9. J. Goguen and J.A. Meseguer. Universal realization, persistent interconnection and
implementation of abstract modules. In Proc. ICALP’82, volume 140 of Lecture
Notes in Computer Science, pages 265–281. Springer, 1982.

10. J. Goguen and G. Roşu. Hiding more of hidden algebra. In J.M. Wing, J. Wood-
cock, and J. Davies, editors, Proc. Formal Methods (FM’99), volume 1709 of Lecture
Notes in Computer Science, pages 1704–1719. Springer, 1999.

11. Joseph Goguen and Rod Burstall. Institutions: abstract model theory for specifi-
cation and programming. Journal of the ACM, 39(1):95–146, 1992.

12. R. Hennicker. Observational implementation of algebraic specifications. Acta In-
formatica, 35:951–1005, 1998.

13. G. Malcolm and J. Goguen. Proving correctness of refinement and implementation.
Technical Report PRG-114, Oxford University Computing Laboratory, 1994.

14. Michal Misiak. Behavioural semantics of algebraic specifications in arbitrary logical
systems. In Recent Trends in Algebraic Development Techniques, volume 3423 of
LNCS, pages 144–161. Springer, 2004.

15. M.P. Nivela and F. Orejas. Initial behaviour semantics for algebraic specifications.
In Recent Trends in Data Type Specification, volume 332 of LNCS, pages 184–207.
Springer, 1988.

16. F. Orejas, M. Navarro, and A. Sanchez. Implementation and behavioural equiva-
lence. In Recent Trends in Data Type Specification, volume 655 of Lecture Notes
in Computer Science, pages 93–125. Springer, 1993.

17. D. Sannella and A. Tarlecki. On observational equivalence and algebraic specifica-
tion. Journal of Computer and System Sciences, 34:150–178, 1987.

18. Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76:165–210, 1988.

19. D.T. Sannella and A. Tarlecki. Toward formal development of programs from
algebraic specifications: implementation revisited. Acta Informatica, 25:233–281,
1988.

20. O. Schoett. Data abstraction and correctness of modular programming. Technical
Report CST-42-87, University of Edinburgh, 1987.

21. Andrzej Tarlecki. Institutions: An Abstract Framework for Formal Specification.
In [1], chapter 4, pages 105–130. Springer, 1999.

22. Martin Wirsing. Algebraic Specification. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, chapter 13, pages 676–788. Elsevier Science Pub-
lishers B.V., 1990.

Information Flow Is Linear Refinement
of Constancy

Fausto Spoto

Dipartimento di Informatica, Università di Verona, Italy
fausto.spoto@univr.it

Abstract. Detecting information flows inside a program is useful to
check non-interference of program variables, an important aspect of soft-
ware security. Information flows have been computed in the past by using
abstract interpretation over an abstract domain IF which expresses sets
of flows. In this paper we reconstruct IF as the linear refinement C→ C
of a basic domain C expressing constancy of program variables. This is
important since we also show that C → C, and hence IF, is closed w.r.t.
linear refinement, and is hence optimal and condensing. Then a compo-
sitional, input-independent static analysis over IF has the same precision
of a non-compositional, input-driven analysis. Moreover, we show that
C → C has a natural representation in terms of Boolean formulas, effi-
ciently implementable through binary decision diagrams.

1 Introduction

Language-based security is recognised as an important aspect of modern pro-
gramming languages design and implementation [11]. One of its aspects is non-
interference, which determines the pairs of program variables that do not affect
each other’s values during the execution of a program. From non-interference
it is then possible to study the confinement of confidential information injected
in the program through some input variables. Non-interference is often imple-
mented above an information-flow analysis, which tracks the flows of information
in a program [15,12,3,11,6].

Information flows in a program can be computed through abstract interpre-
tation [4] by using an abstract domain, that we call IF in this paper, which
models sets of flows [11,6]. Abstract interpretation consists in executing the pro-
gram over the description of the concrete data as provided by IF. Correctness
states that if a program features a flow, then it must be included in the de-
scription that the analysis computes. The domain IF has been implemented by
using Boolean formulas [6] to represent sets of flows. This leads to an efficient
analysis [7] which uses binary decision diagrams [2] to implement such formulas.
Moreover, that analysis is input-independent i.e., it is performed only once, with-
out any assumption on the input provided to the program. The input variables
containing confidential information are specified after the analysis is performed.
An input-driven analysis, instead, would require the input to be available before

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 351–365, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

352 F. Spoto

the analysis, so that it must be re-executed for each different input. Hence it is
not possible to analyse a library independently from the applications that use it.

In this paper we show that IF coincides with the linear refinement C → C of
an abstract domain C which expresses constancy of program variables i.e., the
set of variables that are definitely bound to a constant value in a given program
point. Linear refinement [10] is a formal technique which adds input/output
relational information to an abstract domain. In our case, the added relational
information over C corresponds to the flows of information between variables.

This result is important since

– it shows that an independently developed abstract domain such as IF can be
reconstructed through a methodological technique such as linear refinement;

– we later prove that C → C is closed w.r.t. linear refinement. This entails that
C → C (and hence IF) is an optimal and condensing abstract domain [9].
This means that IF is the minimal abstract domain which models information
flows and all relational information between them (optimality) and that it
can be used for a compositional, input-independent static analysis without
sacrifying precision w.r.t. a non-compositional, input-driven static analysis
(condensing). None of these properties was known before for IF;

– we finally show that the elements of C → C, and hence of IF, have a natural
representation in terms of Boolean formulas. This formally justifies the use
of Boolean formulas to implement IF [6].

The rest of this paper is organised as follows. Section 2 presents the preliminaries
and defines C. Section 3 formalises the abstract domain IF. Section 4 shows that
IF = C → C. Section 5 proves that C → C is closed w.r.t. linear refinement,
and is hence optimal and condensing. Section 6 provides a representation of the
elements of C → C in terms of Boolean formulas. Section 7 concludes.

2 Preliminaries

2.1 Functions and Ordered Sets

A total (partial) function f is denoted by �→ (→). The domain of f is dom(f)
We denote by [v1 �→t1, . . . , vn �→tn] the function f where dom(f) = {v1, . . . , vn}
and f(vi) = ti for i = 1, . . . , n. Its update is f [w1 �→ d1, . . . , wm �→ dm], where
the domain may be enlarged. By f |s (f |−s) we denote the restriction of f to
s ⊆ dom(f) (to dom(f) \ s). The composition f ◦ g of functions f and g is
such that (f ◦ g)(x) = g(f(x)). A poset is a set S with a reflexive, transitive
and antisymmetric relation ≤. An upper (respectively, lower) bound of S′ ⊆ S
is an element u ∈ S such that u′ ≤ u (respectively, u′ ≥ u) for every u′ ∈ S′.
A complete lattice is a poset where least upper bounds (!) and greatest lower
bounds () always exist. The top and bottom elements of a lattice are denoted
by 0 and ⊥, respectively.

2.2 Denotations

We model the state of an interpreter of a computer program at a given program
point as a function from the variables in scope to their values. We consider

Information Flow Is Linear Refinement of Constancy 353

integers as values, but any other domain of values would do. Our state can be
seen as the activation frame on top of the activation stack of the interpreter.
Since in this paper we use a denotational semantics of programs [16], we do
not need to model to whole activation stack. Instead, we assume that procedure
calls are resolved by plugging the meaning or interpretation of a procedure in
the calling point. This is standard in denotational semantics, and has been used
for years in the semantics of logic programs [1].

Definition 1 (State). Let V be a finite set of variables (this will be assumed
in the rest of the paper). A state over V is a total function from V into integer
values. The set of states over V is ΣV , where V is usually omitted.

The set V contains only the variables in scope in the program point under
analysis.

Example 1. An example of state σ ∈ Σ is such that σ(v) = 3 for each v ∈ V .

A denotational semantics associates a denotation to each piece of code i.e., a
function from input states to output states. Possible divergence is modelled by
using partial functions as denotations.

Definition 2 (Denotation). A denotation over V is a partial function δ :
ΣV → ΣV . The set of denotations is ΔV , where V is usually omitted. Let σ ∈
ΣV . If v ∈ V and δ(σ) is not defined, then we let δ(σ)(v) = undef .

A denotational semantics is a compositional (i.e., inductive) definition of the
denotations of each language construct. This definition is irrelevant here, since
expressivity and precision of a static analysis are domain-related issues [4]. Hence
we give complete freedom to the language designer, so that for instance we
impose no constraint on the denotations of Definition 2. The interested reader
can find in [16] an example of denotational semantics.

Example 2. The denotation for the assignment y := x+1 is δ1 such that δ1(σ) =
σ[y �→ σ(x) + 1] for all σ ∈ Σ. That is, the successor of the input value of x is
stored in the output value of y. The other variables are not modified.

Example 3. The denotation of the assignment x := 4 is δ2 such that δ2(σ) =
σ[x �→ 4] for all σ ∈ Σ. That is, the output value of x is constantly bound to 4.
The other variables are not modified.

Example 4. The denotation of if y = 0 then x := 4 else while true do skip
is δ4, compositionally defined as

δ4(σ) =

{
δ2(σ) if σ(y) = 0
δ3(σ) if σ(y) = 0,

where δ2 is the denotation of x := 4 (Example 3) and δ3 is the denotation of
while true do skip, which is always undefined.

354 F. Spoto

Example 5. The denotation of x := 4; y := x+1 is the functional composition
δ2 ◦ δ1 (Examples 3 and 2). In general, ◦ is the semantical counterpart of the
sequential composition of commands.

Constancy is a property of denotations. Namely, a variable v is constant in
a denotation δ when δ always binds v to a given value.

Definition 3. Let δ ∈ Δ. The set of variables which are constant in δ is

const(δ) = {v ∈ V | for all σ1, σ2 ∈ Σ we have δ(σ1)(v) = δ(σ2)(v)}.

Example 6. The denotation δ1 of Example 2 copies x+1 into y. Hence const(δ1) =
∅. The denotation δ2 of Example 3 binds x to 4. Then const(δ2) = {x}.

Constancy is closed w.r.t. composition of denotations. Namely, for any δ, δ ∈ Δ
and v ∈ V , if v ∈ const(δ) then v ∈ const(δ ◦ δ).

2.3 Abstract Domains and Abstract Interpretation

Let C be a complete lattice playing the role of the concrete domain. For in-
stance, in this paper C will be the powerset ℘(Δ) of the concrete denotations of
Subsection 2.2. Each element of C is an abstract property. For instance, the set
of concrete denotations which bind x to 4 is an element of ℘(Δ) expressing the
property: “x holds 4 in the output of the denotation”. An abstract domain A is
a collection of abstract properties i.e., a subset of C.

Example 7 (The Abstract Domain C). Let us use ℘(ΔV) as concrete domain and
let v1 · · ·vn = {δ ∈ ΔV | vi ∈ const(δ) for 1 ≤ i ≤ n}. An abstract domain of
℘(ΔV) is

CV = {v1 · · ·vn | {v1, . . . , vn} ⊆ V }.
It expresses the properties of being constant for a set of variables in a denota-
tion. Its top element is ∅. We will usually omit V in CV . From Example 6 we
conclude that δ1 ∈ ∅ and δ2 ∈ x. However, δ2 ∈ xy since y is not constant in δ2
(Example 3).

Abstract interpretation theory [4] requiresA to be meet-closed, which guarantees
the existence in A of a best approximation for each element of C. That is, A must
be a Moore family of C i.e., a complete meet-sublattice of C (for any Y ⊆ A
we have CY ∈ A). Note that A is not, in general, a complete sublattice of C ,
since the join !A might be different from !C .

Example 8. The set C of Example 7 is closed w.r.t. intersection i.e., the
operation on ℘(Δ). Hence C deserves the name of abstract domain. Namely,
(v1 · · ·vn) ∩ (w1 · · ·wm) = x1 · · ·xp where {x1, . . . ,xp} = {x | x ∈ {v1, . . . vn}
and x ∈ {w1, . . . , wm}}.

For any X ⊆ C , we denote by �X = { C I | I ⊆ X} the Moore closure of X
i.e., the least Moore family of C containing X . Hence the operation � constructs
the smallest abstract domain which includes the set of properties X .

Information Flow Is Linear Refinement of Constancy 355

Example 9. We write the set of denotations where x is constant as x = {δ ∈
Δ | x ∈ const(δ)}. The abstract domain of Example 7 can be constructed as
CV = �{x | x ∈ V }. We write the elements of C as v1 · · ·vn, standing for
∩{vi | 1 ≤ i ≤ n}. If vs ⊆ V then by vs we mean ∩{v | v ∈ vs}.

Once an abstract domain is defined, abstract interpretation theory provides
the abstract semantics induced by each given concrete semantics. Hence, from
a theoretical point of view, the abstract domain is an exhaustive definition of
an abstract semantics for a programming language, which can then be imple-
mented and used for static analysis. For this reason, and for space concerns, we
concentrate in this paper on abstract domains only, without any consideration
on the induced abstract semantics.

2.4 Linear Refinement

The definition of an appropriate abstract domain for a static analysis is not
in general easy. Although a basic abstract domain A can be immediately con-
structed (�) from the abstract properties one wants to model, there is no guar-
antee that the induced abstract semantics is precise enough to be useful. The
intuition and experience of the abstract domain designer helps in determing
what A is missing in order to improve its precision. In alternative, there are
more methodological techniques which refine A to get a more precise domain.

Reduced product [5] allows one to refine two abstract domains A1 and A2 into
an abstract domain A1 A2 = �(A1 ∪ A2) which expresses the conjunction of
properties of A1 and A2.

Linear refinement [10] is another domain refinement operator. It allows one
to enrich an abstract domain with information relative to the propagation of the
abstract properties before and after the application of a concrete operator �. It
requires the concrete domain C to be a quantale w.r.t. � i.e.,

1. C must be a complete lattice;
2. � : C × C → C must be (in general partial and) associative;
3. for any a ∈ C and {bi}i∈I ⊆ C with I ⊆ N we must have a � (!i∈Ibi) =
!i∈I{a� bi} and (!i∈Ibi) � a = !i∈I{bi � a}.

For instance, the complete lattice ℘(Δ), ordered by set-inclusion, is a quantale
w.r.t. the composition operator ◦, extended to sets of denotations as d1 ◦ d2 =
{δ1 ◦ δ2 | δ1 ∈ d1 and δ2 ∈ d2}.

Let a, b ∈ C . The abstract property a→� b which transforms every element
of a into an element of b is

a→� b =
⊔
C

{c ∈ C | if a� c is defined then a� c ≤C b}.

Given a ∈ C , I ⊆ N and {bi}i∈I ⊆ C , we have a→� (i∈Ibi) = i∈I(a→� bi).

Definition 4 (Linear Refinement). The (forward) linear refinement of an
abstract domain A1 ⊆ C w.r.t. another abstract domain A2 ⊆ C is the abstract
domain A1 →� A2 = �{a →� b | a ∈ A1 and b ∈ A2}. That is, it collects all
possible arrows between elements of A1 and elements of A2.

356 F. Spoto

The following results hold [10]

1. →� is argument-wise monotonic;
2. A1 →� (A2 →� A3) = (A1 →� A2) →� A3, so parentheses are not relevant;
3. A1 →� A2 →� A3 = (A1 A2) →� A3, where is the reduced product.

We now instantiate →� over the quantale 〈℘(Δ), ◦〉. The intuition under the
choice of ◦ for � is that the denotational semantics of an imperative program is
defined by composing smaller denotations to form larger denotations [16]. Hence
we must refine the composition operation if we want to improve the precision of
the abstractions of ℘(Δ).

We first provide an explicit definition for →◦.

Proposition 1. Let d1, d2 ⊆ Δ. Then d1 →◦ d2 = {δ ∈ Δ | for every δ ∈
d1 we have δ ◦ δ ∈ d2}.

Proof.

d1 →◦ d2 =
⋃
{d ∈ ℘(Δ) | if d1 ◦ d is defined then d1 ◦ d ⊆ d2}

=
⋃
{d ∈ ℘(Δ) | d1 ◦ d ⊆ d2}

=
⋃
{d ∈ ℘(Δ) | {δ ◦ δ | δ ∈ d1 and δ ∈ d} ⊆ d2}

= {δ ∈ Δ | {δ ◦ δ | δ ∈ d1} ⊆ d2}
= {δ ∈ Δ | for every δ ∈ d1 we have δ ◦ δ ∈ d2}.

The intuition behind d1 →◦ d2 is that it is the set of denotations that when
composed with a denotation in d1 become a denotation in d2.

Example 10. Consider the abstract domain C of Example 7 and its two elements
x and y. The denotation δ1 of Example 2 belongs to x →◦ y since δ1 stores the
input value of x plus 1 in the output value of y, so that if x is constant in δ1’s
input then y is constant in δ1’s output.

From now on, we will omit ◦ in →◦.

3 A Classical Domain for Information Flow Analysis

We present here a traditional abstract domain for information flow analysis. It
expresses which termination-sensitive flows [3] are allowed in a denotation.

Definition 5 (Information-Flow). Let δ ∈ Δ and x, y ∈ V . We say that δ
features an information flow from x to y [11] if there exist σ1, σ2 ∈ Σ such that

1. σ1|V \x = σ2|V \x (σ1 and σ2 agree on x);
2. δ(σ1)(y) = δ(σ2)(y) (the input value of x affects the output value of y).

Definition 5 entails that σ1(x) = σ2(x). Moreover, if exactly one between δ(σ1)
and δ(σ2) is defined, then by Definition 2 the condition δ(σ1)(y) = δ(σ2)(y)
holds. This is why Definition 5 formalises termination-sensitive information flows.

Information Flow Is Linear Refinement of Constancy 357

Example 11. The denotation δ1 of Example 2 is such that δ1(σ) = σ[y �→ σ(x)+
1] for every σ ∈ Σ. Let σ1 and σ2 be such that σ1(v) = 0 for every v ∈ V ,
σ2(x) = 1 and σ2(v) = 0 for every v ∈ V \ x. We have σ1|V \x = σ2|V \x and
δ1(σ1)(y) = 1 = 2 = δ1(σ2)(y). Then δ1 features a flow from x to y. Moreover,
δ1(σ1)(x) = 0 and δ1(σ2)(x) = 1. Then δ1 features a flow from x to x. These
are both explicit flows [11] i.e., generated by copying input values into output
values in a denotation. They are the only flows featured by δ1. For instance,
δ1 does not feature any flow from y to y, since for every σ1, σ2 ∈ Σ such that
σ1|V \y = σ2|V \y we have δ1(σ1)(y) = σ1(x) + 1 = σ2(x) + 1 = δ1(σ2)(y).

Example 12. The denotation δ4 of Example 4 features a flow from y to x. Namely,
take σ1 and σ2 such that σ1(v) = 0 for every v ∈ V , σ2(v) = 0 for every v ∈ V \y
and σ2(y) = 1. We have σ1|V \y = σ2|V \y, δ4(σ1)(x) = 4 = undef = δ4(σ2)(x).
Since we consider termination-sensitive flows, the denotation δ4 actually features
a flow from y to any variable v ∈ V , since the initial value of y determines
the termination of the conditional statement in Example 4. These flows are
called implicit [11] since they arise from the conditional execution of program
statements on the basis of the initial value of some variables.

The abstract domain for information flow analysis is the powerset of the set of
flows. Each abstract element expresses which flows a denotation can feature.

Definition 6 (Abstract Domain IF). Let xi, yi ∈ V for i = 1, . . . n. We define

x1�y1, . . . ,xn�yn =
{
δ ∈ ΔV

∣∣∣∣ if δ features a flow from x to y then
there exists i such that x ≡ xi and y ≡ yi

}
.

The abstract domain for information flow analysis is

IFV = {x1�y1, . . . ,xn�yn | n ≥ 0 and xi, yi ∈ V for every i = 1, . . . , n}

where V is usually omitted. It is ordered by inverse set-inclusion.

Each element of IF is a set of denotations. In order to justify the name of abstract
domain for IF, we must prove that the set of its elements is closed by intersection.

Proposition 2. The set IF is a Moore family of ℘(Δ).

Proof. Let f i = xi
1�yi

1, . . . ,x
i
ni�yi

ni ∈ IF with I ⊆ N and i ∈ I. We prove that
X = {x�y | x�y ∈ f i for all i ∈ N} (which belongs to IF) is their intersection.
We have δ ∈ ∩i∈If

i if and only if δ ∈ f i for each i ∈ I, if and only if whenever δ
features a flow from x to y then x�y ∈ f i for each i ∈ I, if and only if whenever
δ features a flow from x to y then x�y ⊆ X , if and only if δ ∈ X .

Figure 1 shows the abstract domain IF{x,y}. The top of the domain allows deno-
tations to feature any flow, and hence coincides with Δ.

Example 13. Assume V = {x, y}. The denotation δ1 of Example 2 belongs to
x�x,x�y since it only features flows from x to y and from x to x (Example 11).
It also belongs to the upper bound x�x,x�y, y�y. However, δ1 does not belong
to x�x since δ1 features a flow from x to y (Example 11), not allowed in x�x.

358 F. Spoto

4 The Linear Refinement C → C

Example 7 defines a basic domain for constancy C which models the set of
variables which are constant in the output of a denotation. Here, we linearly
refine C into C → C, which is a new abstract domain for constancy propagation.
Then we show that IF and C → C coincide.

The following result shows that C → C includes C.

Proposition 3. We have C ⊆ C → C. If #V ≥ 2, the inclusion is strict.

Proof. Since ∅ ∈ C and ∅ = ℘(Δ), then for every v ∈ V we have ∅ → v ∈ C →
C. If we show that ∅ → v = v, we conclude that C ⊆ C → C. Let δ ∈ ∅ → v
and ι be the identity denotation, such that ι(σ) = σ for every σ ∈ Σ. We have
ι ∈ ∅ = ℘(Δ), so that ι ◦ δ = δ ∈ v. Conversely, let δ ∈ v. Constancy is closed
by composition, so δ ◦ δ ∈ v for every δ ∈ ℘(Δ) = ∅. Hence δ ∈ ∅ → v.

To prove the strict inclusion, let x, y ∈ V , x ≡ y. Let ι be the identity
denotation. Since no variable is constant in ι, we have ι ∈ ∅ and ι ∈ c for
all c ∈ C \ {∅}. We have ι ∈ x → x. This is because for all δ ∈ x we have
δ ◦ ι = δ ∈ x. To prove that C ⊂ C → C is then enough to show that x → x = ∅.
Consider δ such that δ(σ) = σ[x �→ σ(y)]. We have δ ∈ ∅ since no variable is
constant in δ. But δ ∈ x → x, since if we take δ ∈ x such that δ(σ) = σ[x �→ 0]
we have δ ◦ δ = δ ∈ x (no variable is constant in δ).

The following lemma states that if a denotation does not feature any flow
from a set of variables V \S into a given variable y, then y’s value in the output
of the denotation depends only on the input values of the variables in S.

Lemma 1. Let σ1, σ2 ∈ Σ, y ∈ V , S ⊆ V and δ ∈ Δ which does not feature
any flow v�y with v ∈ V \ S. Then σ1|S = σ2|S entails δ(σ1)(y) = δ(σ2)(y).

Proof. Let V \ S = {v1, . . . , vn}. Define σ0
1 = σ1, σ0

2 = σ2 and σi
1 = σi−1

1 [vi �→
max(σ1(vi), σ2(vi)], σi

2 = σi−1
2 [vi �→ max(σ1(vi), σ2(vi)] for 1 ≤ i ≤ n. Note

that whether σi
1 = σi−1

1 or they differ at vi ∈ V \ S only. The same holds for
σi

2 and σi−1
2 . Since δ does not feature any flow vi�y, in both cases we have

δ(σi
1) = δ(σi−1

1) and δ(σi
2) = δ(σi−1

2). Moreover, σn
1 = σn

2 . Hence δ(σ1) =
δ(σ0

1) = δ(σ1
1) = · · · = δ(σn

1) = δ(σn
2) = · · · = δ(σ1

2) = δ(σ0
2) = δ(σ2).

We can now state that IF coincides with C → C. We first prove that IF ⊆
C → C, by implementing each element of IF through an element of C → C.

Lemma 2. Let f = x1�y1, . . . ,xn�yn ∈ IF. We have

f = ∩{S(y) → y | y ∈ V and S(y) = {xi | xi�y ∈ f}}.

Proof. Let δ ∈ x1�y1, . . . ,xn�yn. We prove that δ ∈ S(y) → y for each y ∈ V .
Let δ ∈ S(y) and σ1, σ2 ∈ Σ. We have δ(σ1)|S(y) = δ(σ2)|S(y). Moreover, δ does
not feature any flow v�y with v ∈ S(y). By Lemma 1 we have (δ ◦ δ)(σ1)(y) =
δ(δ(σ1))(y) = δ(δ(σ2))(y) = (δ ◦ δ)(σ2)(y) i.e., δ ◦ δ ∈ y.

Conversely, assume that δ ∈ S(y) → y for every y ∈ V . We show that if δ
features a flow v�w then v ≡ xi and w ≡ yi for some 1 ≤ i ≤ n.

Information Flow Is Linear Refinement of Constancy 359

x�x
x�y
y�x
y�y

����
����

����
����

����
����

�

��
��
��

x�y
y�x
y�y

��
��

�

��
��

��
��

���
���

���
���

���
���

���
���

��

x�x
x�y
y�y

��
��
�

��
��

�

��
��

��
��

��
��

��
��

��
��

x�x
y�x
y�y

��
��
�

��
��

�

��
��
��
��
��
��
��
��
��
��

x�x
x�y
y�x

��
��
�

��
��
��
��

���
���

���
���

���
���

���
���

��

x�y
y�y

��
��
��
��

����
����

����
����

����
����

��
x�x
y�y

����
����

����
����

����
����

��

x�x
y�x

����
����

����
����

����
����

��

��
��

��
��

�
y�x
y�y

����
� ����

�
x�y
y�x

���
�� ����

�
x�x
x�y

����
�

���
��

y�y y�x x�y x�x

∅

��������������������������
�������

�������
��������������������������

Fig. 1. The abstract domain IF{x,y}

w ∈ {y1, . . . , yn}. Let by contradiction w ∈ {y1, . . . , yn}. There exist σ1, σ2 ∈ Σ
such that σ1|V \v = σ2|V \v and δ(σ1)(w) = δ(σ2)(w). Since S(w) = ∅, we
have δ ∈ ∅ → w = w. Then δ(σ1)(w) = δ(σ2)(w), a contradiction.

v ∈ {xi | xi�w ∈ f}. Let by contradiction v ∈ {xi | xi�w ∈ f} i.e., v ∈ S(w).
There exist σ1, σ2 ∈ Σ such that σ1|V \v = σ2|V \v and δ(σ1)(w) = δ(σ2)(w).
Let δ be such that δ(σ) = σ1[v �→ σ(v)]. We have δ(σ1) = σ1, δ(σ2) = σ2.
Moreover, we have δ ∈ S(w) since v ∈ S(w). We conclude that δ ◦ δ ∈ w.
But (δ ◦ δ)(σ1)(w) = δ(δ(σ1))(w) = δ(σ1)(w) = δ(σ2)(w) = δ(δ(σ2))(w) =
(δ ◦ δ)(σ2)(w), which is a contradiction.

Example 14. Consider the abstract element y�y over V = {x, y}. We have
S(x) = ∅ and S(y) = {y}. Then x�y = (∅ → x) ∩ (y → y) = x ∩ (y → y).

We prove now that C → C ⊆ IF. We first show that each single arrow in
C → C belongs to IF (Lemma 3) and then lift this result to arbitrary elements
of C → C (Proposition 4).

Lemma 3. Let x1, . . . ,xn, y ∈ V . We have

x1 · · ·xn → y = {v�w | v ∈ V and w ∈ V \ y} ∪ {v�y | v ∈ {x1, . . . ,xn}}.

Proof. Let δ ∈ x1 · · ·xn → y. Assume that δ features a flow v�w. If w ≡ y then
v�w ∈ {v�w | v ∈ V and w ∈ V \y}. Assume then w ≡ y. We must prove that
v ∈ {x1, . . . ,xn}. Let by contradiction v ∈ {x1, . . . ,xn}. There are σ1, σ2 ∈ Σ
such that σ1|V \v = σ2|V \v and δ(σ1)(y) = δ(σ2)(y). Let δ(σ) = σ1[v �→ σ(v)].
We have δ(σ1) = σ1 and δ(σ2) = σ2. Moreover, since v ∈ {x1, . . . ,xn}, we have
δ ∈ x1 · · ·xn. Then δ ◦ δ ∈ y. But (δ ◦ δ)(σ1)(y) = δ(δ(σ1))(y) = δ(σ1)(y) =
δ(σ2)(y) = δ(δ(σ2))(y) = (δ ◦ δ)(σ2)(y), which is a contradiction.

Conversely, let δ feature flows in {v�w | v ∈ V and w ∈ V \ y}∪{v�y | v ∈
{x1, . . . ,xn}} only. Let δ ∈ x1 · · ·xn. We must prove that δ◦δ ∈ y. Given σ1, σ2 ∈

360 F. Spoto

Σ, we have δ(σ1)|{x1,...,xn} = δ(σ2)|{x1,...,xn} since δ ∈ x1 · · ·xn. Moreover, δ
does not feature any flow from any v ∈ V \ {x1, . . . ,xn} to y. By Lemma 1 we
have (δ ◦ δ)(σ1)(y) = δ(δ(σ1))(y) = δ(δ(σ2))(y) = (δ ◦ δ)(σ2)(y). Since σ1 and σ2
are arbitrary, we conclude that δ ◦ δ ∈ y.

Example 15. Consider the abstract element x∩(y → y) and assume V = {x, y}.
By Lemma 3 we have x = ∅ → x = {v�w | v ∈ V and w ∈ V \ x} ∪ {v�x |
v ∈ ∅} = {x�y, y�y} ∪ ∅ = {x�y, y�y}. By the same lemma, y → y =
{v�w | v ∈ V and w ∈ V \ y} ∪ {v�y | v ∈ {y}} = {x�x, y�x} ∪ {y�y} =
{x�x, y�x, y�y}. The intersection of x and y → y is then {y�y}. Compare
this result with Example 14.

Corollary 1. Let vs1, vs2 ⊆ V and y ∈ V . We have (vs1 → y) ∩ (vs2 → y) =
(vs1 ∩ vs2) → y.

Proof. By Lemma 3 we have (vs1 → y)∩ (vs2 → y) = ({v�w | v ∈ V and w ∈
V \ y}∪{v�y | v ∈ vs1})∩ ({v�w | v ∈ V and w ∈ V \ y}∪{v�y | v ∈ vs2}) =
{v�w | v ∈ V and w ∈ V \ y} ∪ ({v�y | v ∈ vs1} ∩ {v�y | v ∈ vs2}) = {v�w |
v ∈ V and w ∈ V \ y} ∪ {v�y | v ∈ vs1 ∩ vs2} = (vs1 ∩ vs2) → y.

We can now prove that the traditional domain for information flow analysis
is the linear refinement of the basic domain for constancy.

Proposition 4. We have IF = C → C.

Proof. By Lemma 2 we conclude that IF ⊆ C → C. Conversely every element of
C → C is the intersection of arrows of the form vs → vs′. We can assume that
vs ′ is a single variable, since vs → (vs1∩vs2) = (vs → vs1)∩ (vs → vs2) (Sub-
section 2.4). By Lemma 3 and since IF is closed by intersection (Proposition 2)
we conclude that C → C ⊆ IF.

As a consequence, the abstract domain in Figure 1 can be rewritten in terms
of elements of C → C. The result is in Figure 2. You can pass from Figure 1 to
Figure 2 by using Lemma 2 (as in Example 14) and from Figure 2 to Figure 1 by
using Lemma 3 (as in Example 15). Note that in Figure 2 there is one variable at
most on the left of arrows. This is because, if V = {x, y}, then xy → x = xy →
y = ℘(Δ), so that these arrows are tautologies (if everything is constant in the
input, the output must be constant). This is false for larger V . For instance, in
C{x,y,z} → C{x,y,z} the arrow xy → x is not a tautology.

5 IF Is Optimal and Condensing

We have just seen that C → C = IF. We show now that, if we linearly refine
C → C, we end up with C → C itself. Hence C → C already contains all possible
dependencies between constancy of variables. This entails [9] that IF is optimal
and condensing i.e., a compositional, input-independent static analysis over IF,
such as that implemented in [7], has the same precision as a non-compositional,
input-driven analysis. These results were unknown for IF up to now.

The following result states that an arrow between an element of C → C and
an element of C is equal to an element of C → C.

Information Flow Is Linear Refinement of Constancy 361

Σ{x,y}

�������
�������

�������
����

���
���

!!!!!!!
!!!!!!!

!!!!!!!
!!!!

y→x

"""
"""

""

##
##

##
##

##
#

 x→x

$$$
$$$

$$
"""

"""

%%
%%

%%
%%

%%
%%

%%
%%

%%
%%

% y→y

$$$
$$$

"""
"""

"

&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&

x→y

$$$
$$$

$

''
''
''
''
''
'

����
����

����
����

����
����

�

x

''
''
''
''
''
'

 (x→x)∩(y→y)

����
����

����
����

����
����

y

����
����

����
����

����
����

��

((
((

((
((

((
(

(y→x)∩(y→y)

 ���

���
(x→y)∩(y→x)

 ���

���
(x→x)∩(x→y)

 ���

���

x∩(y→y) y∩(y→x) x∩(x→y) y∩(x→x)

x∩y

!!!!!!!!!!!!!!!!!!!!!!!!
$$$$$$

""""""
������������������������

Fig. 2. The abstract domain C{x,y} → C{x,y}

Lemma 4. Let V = {v1, . . . , vn} and vs i ⊆ V for 1 ≤ i ≤ n. Then

((vs1 → v1) ∩ . . . ∩ (vsn → vn)) → y = (∩{vi | vs i = ∅}) → y.

Proof. Let δ ∈ ((vs1 → v1) ∩ . . . ∩ (vsn → vn)) → y. Let vs = {vi | vsi = ∅}
and δ ∈ vs. We must prove that δ◦δ ∈ y. Assume by contradiction that δ◦δ ∈ y.
Then there are σ1, σ2 ∈ Σ such that (δ ◦ δ)(σ1)(y) = (δ ◦ δ)(σ2)(y).

We can assume without any loss of generality that δ(σ)(v) = σ(v) for every
σ ∈ Σ and v ∈ V \ vs , since otherwise we can take δ

′
such that δ

′
(σ) = σ[v �→

δ(σ)(v) | v ∈ vs], σ′1 = δ(σ1), σ′2 = δ(σ2) and still have δ
′ ∈ vs, (δ

′ ◦ δ)(σ′1)(y) =
δ(δ

′
(δ(σ1)))(y) = δ(δ(σ1))(y) = δ(δ(σ2))(y) = δ(δ

′
(δ(σ2)))(y) = (δ

′ ◦ δ)(σ′2)(y).
Let k1, k2 be two distinct concrete values. Define δ′ such that, for all σ ∈ Σ,

δ′(σ)(vi) =

⎧⎪⎨⎪⎩
σ1(vi) if vs i = ∅ and for all w ∈ vsi we have σ(w) = k1

σ2(vi) if vs i = ∅ and for some w ∈ vs i we have σ(w) = k1

k1 otherwise.

Define the states ς1, ς2 such that ς1(w) = k1 and ς2(w) = k2 for every w ∈ V .
By construction, we have δ′ ∈ ((vs1 → v1) ∩ . . . ∩ (vsn → vn)). Moreover,

we have δ′(ς1)(v) = σ1(v) and δ′(ς2)(v) = σ2(v) for every v ∈ V \ vs . Since
we assume that δ leaves the variables in S \ vs unaffected, we conclude that
δ′ ◦ δ ∈ ((vs1 → v1) ∩ . . . ∩ (vsn → vn)). Moreover, for i = 1, 2 we have

(δ′ ◦ δ)(ςi)(v) = (δ(δ′(ςi)))(v) =

{
δ(σi)(v) if v ∈ vs
δ′(ςi)(v) = σi(v) = δ(σi)(v) if v ∈ vs .

Then ((δ′ ◦ δ) ◦ δ)(ς1)(y) = (δ((δ′ ◦ δ)(ς1)))(y) = (δ(δ(σ1)))(y) = (δ(δ(σ2)))(y) =
(δ((δ′◦δ)(ς2)))(y) = ((δ′◦δ)◦δ)(ς1)(y). But by definition of δ, we have (δ′◦δ)◦δ ∈
y, which is a contradiction.

Conversely, let δ ∈ (∩{vi | vsi = ∅}) → y. Let δ ∈ ((vs1 → v1)∩. . .∩(vsn →
vn)). We must prove that δ ◦ δ ∈ y. For each i such that vsi = ∅ we have
δ ∈ ∅ → vi = vi. We conclude that δ ∈ ∩{vi | vsi = ∅} and then δ ◦ δ ∈ y.

362 F. Spoto

Corollary 2. We have C → C → C = C → C.

Proof. By monotonicity (Subsection 2.4) and Proposition 3 we have C → C →
C = C → (C → C) ⊇ C → C. Conversely, each element of C → C → C = (C →
C) → C is the intersection of arrows a1 → vs with a1 ∈ C → C and vs ∈ C. We
can assume that vs = y with y ∈ V since a1 → (vs1∩vs2) = (a1 → vs1)∩(a1 →
vs2). The set a1 is the intersection of arrows vs1 → vs′1 ∩ . . . ∩ vsn → vs′n
with vs i, vs ′i ⊆ V for 1 ≤ i ≤ n. We can assume that each vs ′i is a singleton
variable vi for the same reason used above for vs. Moreover, we can assume
that v1, . . . , vn are all distinct (and hence n is finite) since if otherwise vi ≡ vj
with i = j, then by Corollary 1 we can substitute (vsi → vi) ∩ (vsj → vj) with
(vsi ∩ vsj) → vi. Moreover, we can assume that {v1, . . . , vn} = V since if there
is v ∈ V \ {v1, . . . , vn} then we can add the tautological arrow ∩{w | w ∈ V } →
v = Δ. In conclusion, every element e of (C → C) → C is the intersection of
arrows of the form ((vs1 → v1) ∩ . . . ∩ (vsn → vn)) → y with v ∈ V , vsi ⊆ V
and vi ∈ V for each 1 ≤ i ≤ n. By Lemma 4, e is equal to the intersection of
arrows (∩{vi | vsi = ∅}) → y i.e., to the intersection of elements of C → C.
Since C → C is closed by intersection, we have the thesis.

It is easy now to prove that C → C is closed w.r.t. linear refinement, and is hence
optimal and condensing [9].

Proposition 5. We have (C → C) → (C → C) = C → C.

Proof. We have (C → C) → (C → C) = ((C → C) C) → C (Subsection 2.4) and
since C ⊆ C → C (Proposition 3) we conclude that (C → C) C = C → C [5] and
hence (C → C) → (C → C) = (C → C) → C. The thesis follows by Corollary 2.

6 A Logical Representation for IF

We have seen in Section 4 that IF coincides with C → C. We show here that
Boolean formulas can be used to represent elements of C → C.

Since the elements of C → C express dependencies between the constancy of
variables in the input and the constancy of variables in the output, we need to
distinguish such variables. Hence we write v̌ for the variable v in the input of a
denotation, and v̂ for the same variable in the output of a denotation [6].

Definition 7 (Denotational Formulas). The denotational formulas over V
are the Boolean (propositional) formulas over the variables {v̌ | v ∈ V } ∪ {v̂ |
v ∈ V }, modulo logical equivalence.

Definition 8. Let vs ⊆ V . We define v̌s = {v̌ | v ∈ vs} and v̂s = {v̂ | v ∈ vs}.
Let vs ⊆ {v̌ | v ∈ V } ∪ {v̂ | v ∈ V }. We define ∧vs = ∧{v | v ∈ vs}.

We specify now the meaning or concretisation of a denotational formula φ. It is
the set of denotations whose behaviour w.r.t. constancy is consistent with the
propositional models of φ.

Information Flow Is Linear Refinement of Constancy 363

Definition 9. The concretisation of a denotational formula φ is

γ(φ) = {δ ∈ Δ | for all δ ∈ Δ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= φ}.

Lemma 5. Let φ1, φ2 be denotational formulas. Then γ(φ1∧φ2) = γ(φ1)∩γ(φ2).

Proof.

γ(φ1 ∧ φ2) = {δ ∈ Δ | for all δ ∈ Δ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= (φ1 ∧ φ2)}

=
{
δ ∈ Δ

∣∣∣∣ for all δ ∈ Δ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= φ1

and ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= φ2

}
= {δ ∈ Δ | for all δ ∈ Δ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= φ1}
∩ {δ ∈ Δ | for all δ ∈ Δ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= φ2}

= γ(φ1) ∩ γ(φ2).

Lemma 6. Let x ∈ V . We have γ(x̂) = x.

Proof.

γ(x̂) = {δ ∈ Δ | for all δ ∈ Δ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= x̂}
= {δ ∈ Δ | for all δ ∈ Δ we have x ∈ const(δ ◦ δ)}
= {δ ∈ Δ | x ∈ const(δ)} = x,

since if x ∈ const(δ ◦ δ) then x ∈ const(δ) since we can choose δ = ι, the identity
denotation. Conversely, if x ∈ const(δ) then x ∈ const(δ ◦ δ).

Lemma 7. Let {x1, . . . ,xn} ⊆ V , y ∈ V X̌ = ∧1≤i≤nx̌i and X̂ = ∧1≤i≤nx̂i.
Then γ(X̌ ⇒ ŷ) = γ(X̂) → γ(ŷ).

Proof.

γ(X̌ ⇒ ŷ) = {δ ∈ Δ | for all δ ∈ Δ we have ˇconst(δ) ∪ ˆconst(δ ◦ δ) |= X ⇒ y}

=

⎧⎨⎩δ ∈ Δ

∣∣∣∣∣∣
for all δ ∈ Δ

(xi ∈ const(δ) for all i such that 1 ≤ i ≤ n) entails
y ∈ const(δ ◦ δ)

⎫⎬⎭
=

⎧⎨⎩δ ∈ Δ

∣∣∣∣∣∣
for all δ ∈ Δ

(δ ∈ γ(x̂i) for all i such that 1 ≤ i ≤ n) entails
δ ◦ δ ∈ γ(ŷ)

⎫⎬⎭
= {δ ∈ Δ | for all δ ∈ γ(X̂) we have δ ◦ δ ∈ γ(ŷ)} = γ(X̂) → γ(ŷ).

Proposition 6. The domain IF = C → C is isomorphic to the set of denota-
tional formulas of the form ∧v̌s ⇒ ∧ŵs with vs ,ws ⊆ V .

Proof. By Lemmas 5, 6 and 7, since vs → (w1 ∩ · · · ∩wm) = (vs → w1)∩ · · · ∩
(vs → wm) and ∧v̌s ⇒ (w1 ∧ · · · ∧ wm) = (∧v̌s ⇒ w1) ∧ · · · ∧ (∧v̌s ⇒ wm).

Figure 3 shows the Boolean representation of IF{x,y} = C{x,y} → C{x,y}.

364 F. Spoto

true

))))))
))))))

))))))
))))

*

			
			

	

++++++
++++++

++++++
++++

y̌⇒x̂

��
��

��

,,
,,

,,
,,

,,
,

���
���

���
���

���
���

���
� x̌⇒x̂

���
���

�

-

��
��

��
��

��
��

��
��

��
��

��
y̌⇒ŷ

...
...

.
��

��
��

��
��
��
��
��
��
��
��
��
��
��

x̌⇒ŷ

��
��
��

//
//
//
//
//
/

���
���

���
���

���
���

���
�

x̂

00
00
00
00
00
0

���
���

���
���

���
���

���
���

� (x̌⇒x̂)∧(y̌⇒ŷ)

���
���

���
���

���
���

���
�

���
���

���
���

���
���

���
� ŷ

���
���

���
���

���
���

���
���

�

11
11

11
11

11
1

y̌⇒(x̂∧ŷ)

���
��� ���

���
(x̌⇒ŷ)∧(y̌⇒x̂)

...
...

.

- x̌⇒(x̂∧ŷ)

���
��� ���

���

x̂∧(y̌⇒ŷ) ŷ∧(y̌⇒x̂) x̂∧(x̌⇒ŷ) ŷ∧(x̌⇒x̂)

x̂∧ŷ

22222222222222222222

.......

))))))))))))))))))))

Fig. 3. The representation of IF{x,y} = C{x,y} → C{x,y} through denotational formulas

7 Conclusion

We have used linear refinement to reconstruct an existing domain for information
flow analysis, to prove it optimal and condensing, and to provide an efficient
representation in terms of Boolean formulas. The size of the abstract domain
IFV = CV → CV grows exponentially with V , but V only contains the variables in
scope in the program point under analysis. Its actual application to the analysis
of relatively large programs has been experimentally validated in [7].

Our work has similarities with the reconstruction through linear refinement
of abstract domains for groundness analysis of logic programs [13]. In particular,
constancy is the imperative counterpart of groundness in logic programming.
There, however, two iterations of linear refinement (only one here) are needed to
reach an abstract domain which is closed w.r.t. further refinements. There might
also be relations with strictness analysis of functional programs, which has also
been proved to enjoy some optimality property [14]. There, optimality means
that precision cannot be improved as long as constant symbols are abstracted
away. It is enlightening to observe that the same abstraction is used in groundness
analysis of logic programs, where all functor symbols are abstracted away. In
information flow analysis, values are abstracted away, and only their constancy
is observed. These similarities might not be casual.

We are confident that our work can be generalised to declassified forms of
non-interference, such as abstract non-interference [8]. One should consider a de-
classified form of constancy as the basic domain to refine. Declassified constancy
means that a variable, in the output of a denotation, is always bound to a given
abstract value, as specified by the declassification criterion.

References

1. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-Semantics Approach:
Theory and Applications. Journal of Logic Programming, 19/20:149–197, 1994.

2. R. E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

Information Flow Is Linear Refinement of Constancy 365

3. D. Clark, C. Hankin, and S. Hunt. Information Flow for Algol-like Languages.
Computer Languages and Security, 28(1):3–28, April 2002.

4. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Proc. of the 4th ACM Symposium on Principles of Programming Languages
(POPL), pages 238–252, 1977.

5. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Proc. of the 6th ACM Symp. on Principles of Programming Languages, pages
269–282, 1979.

6. S. Genaim, R. Giacobazzi, and I. Mastroeni. Modeling Secure Information Flow
with Boolean Functions. In P. Ryan, editor, ACM SIGPLAN and GI FoMSESS
Workshop on Issues in the Theory of Security, pages 55–66, April 2004.

7. S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In
R. Cousot, editor, Proc. of the Sixth International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI’05), volume 3385 of Lecture
Notes in Computer Science, pages 346–362, Paris, France, January 2005.

8. R. Giacobazzi and I. Mastroeni. Abstract Non-Interference: Parameterizing
Non-Interference by Abstract Interpretation. In Proc. of the 31st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’04), pages 186–197, Venice, Italy, January 2004. ACM-Press.

9. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making Abstract Domains Condensing.
ACM Transactions on Computational Logic (ACM-TOCL), 6(1):33–60, 2005.

10. R. Giacobazzi and F. Scozzari. A Logical Model for Relational Abstract Do-
mains. ACM Transactions on Programming Languages and Systems, 20(5):1067–
1109, 1998.

11. A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

12. A. Sabelfeld and D. Sands. A PER Model of Secure Information Flow in Sequential
Programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

13. S. Scozzari. Logical Optimality of Groundness Analysis. Theoretical Computer
Science, 277(1-2):149–184, 2002.

14. M. C. Sekar, P. Mishra, and I. V. Ramakrishnan. On the Power and Limita-
tion of Strictness Analysis Based on Abstract Interpretation. In Proc. of the 18th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’91), pages 37–48, Orlando, Florida, January 1991.

15. D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure Flow
Analysis. Journal of Computer Security, 4(2,3):167–187, 1996.

16. G. Winskel. The Formal Semantics of Programming Languages. The MIT Press,
1993.

On Typing Information Flow�

Gérard Boudol

INRIA Sophia Antipolis

Abstract. We investigate the issue of typing confidentiality in a
language-based information-flow security approach, aiming at improv-
ing some previously proposed type systems, especially for higher-order
languages with mutable state à la ML. We show that the typing of termi-
nation leaks can be largely improved, by particularizing the case where
the alternatives in a conditional branching both terminate. Moreover,
we also provide a quite precise way of approximating the confidentiality
level of an expression, that ignores the level of values used for side-effects
only.

1 Introduction

In a world where more and more information is digitalized, and where more
and more people have access to it, most often by means of dedicated software,
protecting confidential data is a concern of growing importance. Controlling
access rights is obviously necessary, and access control techniques have indeed
been developed and implemented long ago. However, access control is not enough
to ensure confidentiality. One issue is to prevent authorized users to publicly
disclose confidential data. For instance, a software dedicated to the selling of
articles in electronic journals should obviously have the right to access all the
articles – a private information. The selling service must also be accessible to
anyone – malicious or not, like a search engine. Still, the selling software could
contain programming bugs allowing a client to obtain articles for free. Therefore,
one should have means to control that programs do not contain such bugs, that
is, that programs do not implement illegal flow of information. This is the aim
of language-based information-flow security.

Language-based information-flow security is a well established theory, provid-
ing static analysis techniques for programs to ensure a security property known
as non-interference [6] (or strong independence [3]). Since the pioneering work
of Volpano & al. [18], these static analyses are now implemented by means of
type systems, which are well-suited for preventing programming errors. This has
been applied in particular to languages such as Java [10] or Caml [11]. (For a
complete review of results and issues – up to year 2002 – in the area of language-
based information-flow security, we refer to the survey [12].) However, the theory
of information flow security is not yet widely used, and there are still a number
of issues to investigate in order to make it practically useful – see [20] for a
review of some of the challenges.
� Work partially supported by the CRISS project of the ACI Sécurité Informatique.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 366–380, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Typing Information Flow 367

One of the challenges is to design new security properties and static analy-
sis techniques to accept programs that intentionally declassify information. For
instance, although it should not release electronic articles for free, the selling
software must deliver information to clients who have paid for it, or who iden-
tify themselves as regular subscribers of the journal. That is, although confi-
dential information should normally be kept secret, one should also be able to
declassify it when some run-time conditions are met (we refer to [14] for a dis-
cussion of this topic). To this end, we introduced in [1] a specific construct for
declassifying computations, together with a confidentiality property generalising
non-interference, so that a type system ensuring the security property can be
designed for a language including the declassification construct. The language
we used in [1] is an extension of Core ML, a higher-order language with mutable
state, and our type system is a direct generalization of those commonly used for
simple imperative languages, such as the ones in [2,15,18].

Another pragmatic concern, which is not specific to typing information flow,
is that, to be useful, a type system should not reject too many programs. It
is well-known that a decidable static analysis technique cannot, in general, be
complete with respect to the property to ensure, like not running into an error
of some kind, because the latter is generally undecidable. Then a trade-off has to
be found, between the most conservative way – of not accepting any program –
and a complete but non-computable method. In this respect, an issue that is
specific to language-based security is the typing of termination leaks. This kind
of leak arises when performing (or not) some public operation depends on the
termination of another program which, in turn, terminates or not depending on
confidential information. For instance, assume that we have a secret, or High
memory location uH , and a public, or Low memory address vL, both containing
boolean values tt or ff . Then the program

(while !uH do ()) ; vL := ff (1)

(where !uH is the dereferencing operation of ML, and () means termination)
implements a flow of information from uH to vL, since the value that can (or
cannot) be read from this location depends on secret information. Many re-
search works avoid this issue by only considering weak, or termination insensitive
non-interference. Although this may be acceptable when dealing with sequen-
tial programs, one has to seriously take into account termination leaks when
dealing with concurrent threads, where a program such as (1) is dangerous (see
[2,7,15,16,17]). Similarly, dealing with declassification, as we do in [1], relies on
a termination sensitive security property.

Termination leaks may be ruled out using very severe restrictions, like allow-
ing only predicates of the lowest confidentiality level in the while loops [16,17].
This would be even worse in a language, like Core ML, in which while loops are
recursively defined by means of conditional branching, since the predicate in the
branching construct would then be restricted to be of the lowest confidentiality
level only – an unacceptable constraint. Here we will improve on a solution to
this issue introduced in [2] (and independently in [15]), which we followed in
[1]. This solution essentially consists in recording the confidentiality level of the
predicate of a conditional branching as a “termination level” that is used to

368 G. Boudol

control information flow in sequential composition. In this way, a program such
as (1) is rejected, but loops or conditional branchings on high predicates are
allowed. However, this typing discipline is still quite inflexible, since for instance
any program of the form

(if !uH then P else Q) ; vL := ff (2)

is rejected. Here we show that such a program is secure in the case where both
branches P and Q are known to terminate. This provides us with an improved
type system for termination leaks, where the termination level of a conditional
branching may be ignored when the branches terminate. As far as we can see,
such a refined typing has not been previously suggested (the proof of type sound-
ness is quite elaborate).

Another contribution we make in this paper is in the way the typing of
information flow in a simple imperative language is extended to a more expressive
one, like the higher-order core of ML, with mutable state. In the simple “while”
language of [18], which is very often considered as a kernel language in the
information flow literature, the typing is as follows: an expression has for “type”
an upper bound of the confidentiality level of memory locations that are read
to compute the value of the expression, and a program has for “type” a lower
bound of the confidentiality level of memory locations it may update. In the
system of [2,15], one adds, as we have seen, a “termination level”. In a language
like Core ML, an expression is a program, and therefore it may have side-effects,
and its evaluation may diverge. Then the “security effect” of an expression in
such a language is a triple (r, w, t) where r is the reading effect, or confidentiality
level, w is the writing effect and t is the termination effect of the expression.
This is the basis on which we built our type system in [1]. However, the way we
generalize in [1] the typing, from “pure” expressions to expressions having side-
effects is rather coarse, since we build the reading effect as an upper bound of the
confidentiality level of all the memory locations that are read while evaluating
the expression. This may be improved, as we will show here. More specifically, we
will exploit the fact that some read operations do not contribute to the specific
value an expression may have (a similar observation is made in [4] to motivate the
“informativeness” predicate). For instance, readings performed while evaluating
E do not influence the value of E ; E′, which is the one of E′. Similarly, the
value returned by a reference creation (ref E) does not depend on the readings
performed by E, and the same holds for an assignment E := E′ or E′ := E,
which returns the value (). In this paper we will show that recording as the
confidentiality level of an expression only the level of readings that may influence
its value is enough to perform a safe information flow analysis. This, together
with the improvement in typing termination leaks we suggested above, results
in a type system that accepts many more programs than the one of [1], while
still ensuring the same security property.

The paper is organized as follows. In the next section we introduce the se-
curity lattices we use, and we give the syntax and operational semantics of our
language. In Section 3 we define the security property we aim at establishing,

On Typing Information Flow 369

and in Section 4 we introduce our type and effect system, formalizing the intu-
itions we gave above. Finally we explain some of the steps of the type soundness
proof, and conclude. For lack of space, the proofs are omitted.

2 The Language

The information flow analysis we are aiming at relies, as usual, on a notion of
security level, and on assigning such levels to memory locations – also called
references. (More generally, one would classify in this way any “container” in
which information is stored, like files, database entries, libraries, and so on.)
However, instead of using a lattice of security levels as it is standard [5], we will
be using a pre-lattice structure, which is a pair (L,�) where � is a preorder on
L, such that for any $, $′∈L there exist a meet $�$′ and a join $�$′ for $ and $′.
More specifically, we assume given a set P of principals, ranged over by p, q . . .,
and a confidentiality level is any set of principals, that is any subset $ of P . The
intuition is that whenever $ is the confidentiality label of a reference, it represents
a set of programs that are allowed to read the reference. From this point of view,
a reference labelled P (also denoted ⊥) is a most public one – every program
is allowed to read it –, whereas the label ∅ (also denoted 0) indicates a secret
reference. Reverse inclusion of security levels may be interpreted as indicating
allowed flows of information: if a reference u is labelled $, and $ ⊇ $′ then the
value of u may be transferred to a reference v labelled $′, since the programs
allowed to read this value from v were already allowed to read it from u.

The declassification construct we introduced in [1] consists in declaring flow
relations, or flow policies having a local scope. A flow policy is a binary relation
over P . We let F , G . . . range over such relations. A pair (p, q) ∈ F is to be
understood as “information may flow from principal p to principal q”. We denote,
as usual, by F ∗ the preorder generated by F (that is, the reflexive and transitive
closure of F). Then the security pre-lattices we use are defined as follows:
Definition (Security Pre-Lattices) 0.1. A confidentiality level is any sub-
set $ of the set P of principals. Given a flow policy F ⊆ P×P , the confidentiality
levels are pre-ordered by the relation

$ �F $′ ⇔def ∀q ∈ $′. ∃p ∈ $. p F ∗ q

The meet and join, w.r.t. F , of two security levels $ and $′ are respectively given
by $ ∪ $′ and

$�F $′ = { q | ∃p ∈ $. ∃p′ ∈ $′. p F ∗ q & p′ F ∗ q }

The language we consider is a higher-order language with mutable state à la ML,
extended with a construct for dynamically creating concurrent threads, and a
construct for declassifying computations. The syntax is given in Figure 1, where
x is any variable, and u�,θ is a triple made of a reference u, a type θ (see Section
4 below) and a label $ which is a confidentiality level. The type and security
label have no operational significance, as can be checked from the description of
the semantics given below. They are only used for the purpose of the proof of
type soundness.We denote by loc(M) the set of decorated references occurring

370 G. Boudol

M, N . . . ∈ Expr ::= W | (if M then N else N ′) | (MN) expressions

| M ; N | (ref
,θ N) | (!N) | (M := N)

| (threadM) | (flow F in M)

W ∈W ::= V | xW pseudo-values

V ∈ Val ::= x | u
,θ | λxM | tt | ff | () values

Fig. 1. Syntax

in M . These addresses are regarded as providing the inputs of the expression
M . Recursive definitions are introduced by the construct *xW , which binds the
variable x in W . We denote by loop the expression *xx, and we may use the
following standard abbreviation:

(while M do N) =def (yλx(if M then N ; (yx) else x)())

We denote by {x �→W}M the capture-avoiding susbtitution of W for the free
occurrences of x in M , where W ∈ W. The evaluation relation is a transition
relation between configurations of the form (P, μ) where P is a process, written
according to the following syntax:

P, Q . . . ∈ Proc ::= M | (P ‖ Q)

and μ, the memory (or heap), is a mapping from a finite set dom(μ) of decorated
references to values. In what follows we shall only consider well-formed configu-
rations, that is pairs (P, μ) such that loc(P) ⊆ dom(μ) and for any u�,θ∈dom(μ)
we have loc(μ(u�,θ)) ⊆ dom(μ) (this property will be preserved by the oper-
ational semantics). The operation of updating the value of a reference in the
memory is denoted, as usual, μ[u�,θ := V]. We say that the name u is fresh for
μ if v�,θ ∈ dom(μ) ⇒ v = u. The operational semantics consists of a small-step
transition relation (P, μ) → (P ′, μ′) between (well-formed) configurations. This
is defined by means of an auxiliary transition relation (M,μ) N−→→ (M ′, μ′), as
follows:

(M, μ)
()−→→ (M ′, μ′)

(M, μ)→ (M ′, μ′)

(M, μ) N−−→→ (M ′, μ′) N �= ()

(M, μ) → ((M ′ ‖ N), μ′)

(P, μ) → (P ′, μ′)

((P ‖ Q), μ)→ ((P ′ ‖ Q), μ′)

(P, μ) → (P ′, μ′)

((Q ‖ P), μ)→ ((Q ‖ P ′), μ′)

As usual we denote by ∗→ the reflexive and transitive closure of →. The meaning
of (M,μ) N−→→ (M ′, μ′) is that the expression M , in the context of the memory
μ, makes a computing step, possibly spawning a thread with body N , and re-
configures itself as M ′, while updating the memory into μ′. In order to define
this auxiliary transition system, we introduce evaluation contexts:

E ::= | F[E] | (flow F in E)

F ::= (if then M else N) | (N) | (V)

| ; N | (ref
,θ) | (!) | (:= N) | (V :=)

On Typing Information Flow 371

((if tt then M else N), μ)
()−→→ (M, μ)

((if ff then M else N), μ)
()−→→ (N, μ)

((λxMV), μ)
()−→→ ({x �→V }M, μ)

(V ; N, μ)
()−→→ (N, μ)

((ref
,θ V), μ)
()−→→ (u
,θ, μ ∪ {u
,θ �→V }) u fresh for μ

((!u
,θ), μ)
()−→→ (V, μ) μ(u
,θ) = V

((u
,θ := V), μ)
()−→→ ((), μ[u
,θ := V])

((thread M), μ) M−−→→ ((), μ)

((flow F in V), μ)
()−→→ (V, μ)

(xW,μ)
()−→→ ({x �→xW}W,μ)

(M, μ)
()−→→ (M ′, μ′)

(E[M], μ)
()−→→ (E[M ′], μ′)

(M, μ) N−−→→ (M ′, μ′) N �= ()

(E[M], μ)
(flow �E in N)−−−−−−−−−−→→ (E[M ′], μ′)

Fig. 2. Transitions

and we denote by 4E5 the flow policy enforced by the context E. This is defined
as follows:

� � = ∅
�F[E]� = �E�

�(flow F in E)� = F ∪ �E�

The relation N−→→ is given in Figure 2. We shall use, somewhat abusively, the
notation −→→ for the transition relation defined as ∃N N−→→. Then we introduce the
strong convergence predicate M⇓, meaning that in the context of any memory
μ, the evaluation of M , as the main thread, terminates on a value, while possibly
spawning some new threads:

M⇓ ⇔def ∀μ∃V ∈ Val ∃μ′. (M, μ) ∗−→→ (V, μ′)

It is easy to see that, for instance, the expressions given by the following grammar
are strongly converging:

T ::= V | (if T then T0 else T1) | T ; T ′ | (ref
,θ T) | (!T) | (T := T ′)

| (thread M) | (flow F in T)

3 The Non-disclosure Policy

In this section we introduce our security property. Roughly speaking, it says
that a process is secure if, at each step, it satisfies a non-interference property

372 G. Boudol

with respect to the flow policy that holds for this particular step. This policy
is obtained by extending the given global flow policy G with the flow relations
introduced by the flow declarations in the scope of which the computational
step is performed. To state this formally, we first introduce a new transition
relation (P, μ) −→

F
(P ′, μ′), where F is the local flow policy that holds for this

step. This is defined exactly as (P, μ) → (P ′, μ′), using an auxiliary transition
relation (M,μ) N−→

F
→ (M ′, μ′) given by

(M, μ)
()−→→ (M ′, μ′)

(E[M], μ)
()−−−→

�E
→ (E[M ′], μ′)

(M, μ) N−−→→ (M ′, μ′) N �= ()

(E[M], μ)
(flow �E in N)−−−−−−−−−−→

�E
→ (E[M ′], μ′)

The meaning of F in a transition (P, μ) −→
F

(P ′, μ′) is that what is read by P at

confidentiality level $ at this step can be regarded as having level $′ if information
is allowed to flow from $ to $′ by the global policy G extended with the local flow
policy F , that is if $ �G∪F $′. Then P is secure if, for any confidentiality level $,
it does not reveal, by writting in the memory at a level lower than $, information
that it reads at levels not lower than $. As we just said, from the reading point of
view, confidentiality levels are compared with respect to G∪F , whereas from the
writing point of view, the levels are to be compared with respect to the global
policy G only, because the updates in the memory are read by other expressions
that are not, a priori, in the scope of the declarations introducing F .

As usual, the property that a process does not transfer information from a
“high” part (not below $) of the memory to a “low” part (below $) is formalized
by requiring that the process preserves in a sense the “low equality” of memories.
Two memories are equal up to level $ if they assign the same value to every
location with security level lower than $. Here we have to explicitly indicate
which is the flow policy that is used to compare confidentiality levels. The low
equality of memories is thus defined:

μ
F,
 ν ⇔def ∀u
′,θ ∈ dom(μ) ∩ dom(ν). �′ �F � ⇒ μ(u
′,θ) = ν(u
′,θ)

Following [13], our security property is defined in terms of bisimulations, which
are relations over processes: a process is defined to be secure if it is bisimilar
to itself. The notion of a bisimulation we use here is relative not only to a
confidentiality level $, determining what is regarded as being “low”, but also to
the global flow policy G. The definition is as follows:
Definition (Bisimulation) 0.2. A (G, $)-bisimulation is a symmetric relation
R on processes such that if
P RQ & (P, μ) −→

F
(P ′, μ′) & μ
F ∪G,
 ν & u
′,θ ∈ dom(μ′ − μ) ⇒ u is fresh for ν

then there exist Q′ and ν′ such that
(Q,ν) ∗→ (Q′, ν′) & P ′RQ′ & μ′
G,
 ν′

On Typing Information Flow 373

(It is implicit in this definition that the configurations (P, μ) and (Q, ν) are well-
formed.) For instance, the set Val×Val of pairs of values is a (G, $)-bisimulation.
Values are just a particular case of “high” processes, which never modify the
“low” part of the memory. Let us define:
Definition (Operationally High Processes) 0.3. A set H of processes is
said to be a set of operationally (G, $)-high processes if the following holds for
any P ∈H:

(P, μ) → (P ′, μ′) ⇒ μ′
G,
 μ & P ′ ∈H

It is easy to see that there exists a largest set of operationally (G, $)-high pro-
cesses, which we denote by HG,�. Then we have:
Lemma and Notation 0.4. If H is a set of (G, $)-high processes, then the
relationH×H is a (G, $)-bisimulation. We denote by �G,� the (G, $)-bisimulation
HG,� ×HG,�.

As we have just seen, (G, $)-bisimulations exist, for any G and $. Moreover, the
union of a family of (G, $)-bisimulations is a (G, $)-bisimulation, and therefore
there is a largest (G, $)-bisimulation, which we denote ◊G,�. This is the union of
all such bisimulations. One should observe that ◊G,� is not reflexive. Indeed, a
process which is not bisimilar to itself, like vL := !uH if H �G L, is not secure.
As in [13], our definition states that a program is secure if it is bisimilar to itself:
Definition (The Non-Disclosure Policy) 0.5. A process P satisfies the
non-disclosure policy (or is secure from the confidentiality point of view) with
respect to the flow policy G if it satisfies P ◊G,� P for any $. We then write
P ∈ ND(G).

It is easily seen that the set ND(G) is non-empty. For instance, any value is
secure, as well as any “pure” expression, that never touches the memory. As a
matter of fact, any “mute” expression, that does not update the memory (like
in particular an expression written without using the assignment construct) is
secure, and this is intuitively quite natural, since such an expression cannot
disclose any information.

4 The Type and Effect System

The analysis of information flow in a program will be done by means of an effect
system [9], where the effects are, roughly speaking, confidentiality levels at which
the program reads or writes. The types for expressions involve confidentiality
levels, namely, in the types θ ref� for references, for classification purposes, and
in the types for functions, which record a latent effect, that is the effect a function
may have when applied to an argument. The functional types also record the
“latent flow relation”, which is assumed to hold when a function is applied to
an argument. The syntax of types is

τ, σ, θ . . . ::= t | bool | unit | θ ref
 | (τ s−→
F

σ)

where t is any type variable and s is any “security effect” – see below. The
judgements of the type and effect system have the form

374 G. Boudol

G; Γ �M : s, τ

where G is a flow relation, Γ is a typing context, assigning types to variables, s
is a security effect, that is a triple ($0, $1, $2) of confidentiality levels, and τ is a
type. The intuition is:

– G is the current flow policy that is in force when evaluating M ;
– $0, also denoted by s.c, is the confidentiality level of M . This is an upper

bound (up to the current flow relation) of the confidentiality levels of the
references the expression M reads that may influence its resulting value;

– $1, also denoted s.w, is the writing effect, that is a lower bound (w.r.t. the
relation �) of the level of references that the expression M may update;

– $2, also denoted s.t, is an upper bound (w.r.t. the current flow relation) of
the levels of the references the expression M reads that may influence its
termination. We call this the termination effect of the expression.

There is actually an implicit parameter in the type system, which is a set T of
expressions that is used in the typing of conditional branching. We could make
it apparent, writing for instance the judgements as G;Γ �T M : s, τ . The single
property that we will assume about this set in our proof of type soundness is
that it only contains strongly converging expressions, that is:

M ∈ T ⇒ M⇓ (∗)

The security effects s = (c, w, t) are ordered componentwise, in a covariant man-
ner as regards the confidentiality level c and the termination effect t, and in a
contravariant way as regards the writing effect w. Then we abusively denote by
⊥ and 0 the triples (⊥,0,⊥) and (0,⊥,0) respectively. In the typing rules for
compound expressions, we will use the join operation on security effects:

s �G s′ =def (s.c �G s′.c, s.w ∪ s′.w, s.t �G s′.t)

as well as the following convention:
Convention. In the type system, when the security effects occurring in the
context of a judgement G;Γ �M : s, τ involve the join operation �, it is assumed
that the join is taken w.r.t. G, i.e. it is �G. Moreover, by s.r we mean s.c�G s.t.

The typing system is given in Figure 3. We refer to [1] for comments explaining
the constraints on the flow of information (that is, the inequations involving �
in the premises) in the rules. In particular, all the examples given in this paper
showing that these constraints are necessary are still valid here. With respect to
the system introduced in [1], the main differences are the following:
(i) In the (Cond) rule for conditional branching, we do not record the confi-

dentiality level of the predicate M in the termination effect of the compound
expression if both branches are in the set T .

(ii) In the rules (Seq), (Ref) and (Assign), we do not record the confidentiality
level of the expression M in the effect of the compound expression, and
similarly for N in (Assign). Moreover, the constructs for creating a reference
and updating the memory do not introduce any non-trivial confidentiality
level.

On Typing Information Flow 375

G; Γ � u
,θ : ⊥, θ ref

(Loc)
G; Γ, x : τ � x : ⊥, τ

(Var)

F ;Γ, x : τ �M : s, σ

G; Γ � λxM : ⊥, (τ s−→
F

σ)
(Abs)

G; Γ � () : ⊥, unit
(Nil)

G; Γ � tt : ⊥, bool
(BoolT)

G; Γ � ff : ⊥, bool
(BoolF)

G; Γ �M : s,bool G; Γ � Ni : si, τ s.r �G s0.w ∪ s1.w

G; Γ � (if M then N0 else N1) : s � s0 � s1 � (⊥,!, t), τ
(Cond)

where

t =

{
⊥ if N0, N1 ∈ T
s.c otherwise

G; Γ � M : s, τ
s′
−→
F

σ G; Γ � N : s′′, τ s.t �G s′′.w s.r � s′′.r �G s′.w

F, G; Γ � (MN) : s � s′ � s′′ � (⊥,!, s.c � s′′.c), σ
(App)

G; Γ �M : s, τ G; Γ � N : s′, σ s.t �G s′.w

G; Γ �M ; N : (⊥, s.w, s.t) � s′, σ
(Seq)

G; Γ �M : s, θ s.r �G �

G; Γ � (ref
,θ M) : (⊥, s.w, s.t), θ ref

(Ref)

G; Γ � M : s, θ ref

G; Γ � (!M) : s � (�,!,⊥), θ
(Deref)

G; Γ �M : s, θ ref
 G; Γ � N : s′, θ s.t �G s′.w, s.r � s′.r �G �

G; Γ � (M := N) : (⊥, s.w ∪ s′.w ∪ �, s.t � s′.t), unit
(Assign)

G; Γ �M : s, unit

G; Γ � (threadM) : (⊥, s.w,⊥), unit
(Thread)

G; Γ, x : τ � V : s, τ

G; Γ � xV : s, τ
(Rec)

F, G; Γ � M : s, τ s.c �G∪F c s.t �G∪F t

G; Γ � (flow F in M) : (c, s.w, t), τ
(Flow)

Fig. 3. The Type and Effect System

One should also observe that, since both the confidentiality level and the ter-
mination effect of an expression are always smaller in this system than in the
one of [1], the flow constraints where these are involved – in the rules (Cond),
(App), (Seq), (Ref) and (Assign) – are less constraining here. Indeed, for each
of these constraints one can find an expression that is accepted in our system

376 G. Boudol

but rejected by the system of [1]. For instance, the expression of Example (2) is
accepted, provided that P,Q ∈ T , and that the writing level of P and Q is not
lower than H . One can see also that if M is an expression with side-effects, then
vL := M is generally accepted, provided that the confidentiality level of M is
less than L, even though to perform the side-effects of M involves reading in a
part of the memory that is not lower than L. Typically, for instance

vL := (uH := !wH) ; ! v′
L (3)

is now accepted, whereas it was rejected by the system of [1].
We conclude this section with some technical definitions and results that are

useful for our proof of type soundness. First, we notice that the writing effect of
an expression is indeed a lower bound of the level of references that are updated
while evaluating the expression:
Lemma 0.6. G;Γ � E[(u�,θ := V)] : s, τ ⇒ s.w � $.

This justifies the following definition:
Definition (Syntactically High Expressions) 0.7. An expression M is
syntactically (G, $)-high if G;Γ � M : s, τ with s.w �G $. The expression M is

a (G, $)-high function if G;Γ �M : s, (τ s′
−→
F

σ) with s′.w �G $.

Indeed, we have:
Lemma 0.8.
(i) A syntactically (G, $)-high expression is operationally (G, $)-high.
(ii) If (MN) is typable in the context of the flow relation G, with M,N ∈HG,�

and M is a (G, $)-high function then (MN) ∈HG,�.

5 Type Soundness

Our main result is the type soundness property, stating that typable expressions
are secure:
Theorem (Soundness). If M is typable in the context of a flow policy G,
that is if for some Γ , s and τ we have G;Γ � M : s, τ , then M satisfies the
non-disclosure policy with respect to G, that is M ∈ ND(G).

To prove this result, for any security level $ we exhibit a (G, $)-bisimulation that
contains the pair (M,M) for any G-typable expression M . A simple but cru-
cial observation regarding the operational semantics of our language is that if
the evaluation of an expression M differs in the context of two distinct memo-
ries while not creating two distinct references, this is because M is performing a
dereferencing operation, which yields different results depending on the memory,
that is M = E[(!u�,θ)]. Now trying to see to which bisimulation a pair (M,M)
where M is G-typable may belong, we see that we have in particular to examine
the case where M = E[(!u�′,θ)], so that the bisimulation we are seeking would
contain the pair (E[V0],E[V1]) where V0 and V1 are respectively the values stored

On Typing Information Flow 377

at location u�′,θ in memories μ and ν such that μ
G∪�E�,� ν, with $′ �G∪�E� $.
A case analysis on the evaluation context E justifies the following definition.
Given a global flow policy G and a confidentiality level $, we define inductively
three mutually recursive binary relations UG,�, SG,� and RG,� on expressions,
as follows:

M UG,�N if M and N are both G-typable with s.r �G $, and one of the following
holds:

(Clause 1) M = N , or
(Clause 2) M = (if M0 then M1 else M2) and N = (if N0 then M1 else M2) with

M0 UG,
 N0, or
(Clause 3) M = (M0M1) and N = (N0N1) with Mi UG,
 Ni (i = 0, 1), or
(Clause 4) M = M0 ; M1 and N = N0 ; N1 with M0 SG,
 N0 and M1 UG,
 N1, or
(Clause 5) M = (ref
′,θ M0) and N = (ref
′,θ N0) with

(a) either M0 UG,
 N0, or
(b) �′ ��G � and M0 SG,
 N0, or

(Clause 6) M = (!M0) and N = (!N0) with M0 UG,
 N0, and both M0 and N0 have
type θ ref
′ for some θ and �′ such that �′ �G �, or

(Clause 7) M = (M0 := M1) and N = (N0 := N1) with
(a) either M0 UG,
 N0 and M1 UG,
 N1, or
(b) M0 SG,
 N0 and M1 SG,
 N1, and both M0 and N0 have type θ ref
′ for some θ
and �′ such that �′ ��G �, or

(Clause 8) M = (flow F in M0) and N = (flow F in N0) with M0 UF ∪G,
 N0.

M SG,� N if M and N are both G-typable with s.t �G $, and one of the following
holds:

(Clause 1) M and N are both values, or
(Clause 2) M, N ∈ HG,
 ∩ T , or
(Clause 3) M = N , or
(Clause 4) M = (if M0 then M1 else M2) and N = (if N0 then M1 else M2) with

(a) either M0 UG,
 N0, or
(b) M0 SG,
 N0 and M1 SG,
 M2, or

(Clause 5) M = (M0M1) and N = (N0N1) with Mi UG,
 Ni (i = 0, 1), or
(Clause 6) M = M0 ; M1 and N = N0 ; M1 with M0 SG,
 N0, or
(Clause 7) M = (ref
′,θ M0) and N = (ref
′,θ N0) with

(a) either M0 UG,
 N0, or
(b) �′ ��G � and M0 SG,
 N0, or

(Clause 8) M = (!M0) and N = (!N0) with M0 SG,
 N0, or
(Clause 9) M = (M0 := M1) and N = (N0 := N1) with

(a) either M0 UG,
 N0 and M1 UG,
 N1, or
(b) M0 SG,
 N0 and M1 SG,
 N1, and both M0 and N0 have type θ ref
′ for some θ
and �′ such that �′ ��G �, or

(Clause 10) M = (flow F in M0) and N = (flow F in N0) with M0 SF ∪G,
 N0.

M RG,� N if M and N are both G-typable and one of the following holds:

(Clause 1) M and N are both values, or
(Clause 2) M = N , or

378 G. Boudol

(Clause 3) M = (if M0 then M1 else M2) and N = (if N0 then M1 else M2) with
(a) either M0 UG,
 N0, or
(b) M0RG,
 N0 and M1 �G,
 N1, or

(Clause 4) M = (M0M1) and N = (N0N1) with
(a) either M0 UG,
 N0 and M1 UG,
 N1, or
(b) M0 SG,
 N0 and M1RG,
 N1 and M0, N0 are (G, �)-high functions, or
(c) M0RG,
 N0 and M1 �G,
 N1 and M0, N0 are (G, �)-high functions, or

(Clause 5) M = M0 ; M1 and N = N0 ; M1 with
(a) either M0 SG,
 N0, or
(b) M0RG,
 N0 and M1 ∈HG,
, or

(Clause 6) M = (ref
′,θ M0) and N = (ref
′,θ N0) with
(a) either M0 UG,
 N0, or
(b) �′ ��G � and M0RG,
 N0, or

(Clause 7) M = (!M0) and N = (!N0) with M0RG,
 N0, or
(Clause 8) M = (M0 := M1) and N = (N0 := N1) with

(a) either M0 UG,
 N0 and M1 UG,
 N1, or
(b) M0 SG,
 N0 and M1RG,
 N1, and both M0 and N0 have type θ ref
′ for some θ
and �′ such that �′ ��G �, or
(c) M0RG,
 N0 and M1 �G,
 N1, and both M0 and N0 have type θ ref
′ for some
θ and �′ such that �′ ��G �, or

(Clause 9) M = (flow F in M0) and N = (flow F in N0) with M0RF ∪G,
 N0.

Finally we may define the bisimulation R�
G,� we were looking for as follows:

M RG,
 N

M R�
G,
 N

P �G,
 Q QR�
G,
 R

P R�
G,
 R

P R�
G,
 Q Q �G,
 R

P R�
G,
 R

P R�
G,
 Q R ∈HG,

P R�
G,
 (Q ‖ R)

P R�
G,
 Q R ∈HG,

(P ‖ R)R�
G,
 Q

P R�
G,
 P ′ QR�

G,
 Q′

(P ‖ Q)R�
G,
 (P ′ ‖ Q′)

6 Conclusion

In this paper we have explored two directions in which type systems for informa-
tion flow could be improved. Regarding termination leaks, we have shown that
there is no such leak in cases where some subexpressions are known to termi-
nate, and the typing discipline can therefore be relaxed accordingly. Moreover,
we have shown that the side-effects of an expression are in many cases not a
source of information leakage, and, again, this can be reflected in the type sys-
tem. We believe that these two observations are quite simple and natural, and
that they could be adapted to other programming styles than the functional
(and imperative) one of ML.

It is not easy to compare the type systems for information flow we find in
the literature with the one we have proposed, for various reasons. A first remark
is that most type systems for functional languages are not – with the exception

On Typing Information Flow 379

of [4] – “store-oriented”, but “value-oriented”. That is, they most often assign a
security level to values, whereas we have taken the point of view that the “pure”
fragment of the language is secure. Indeed, we think that some communication
medium (the references in our case) is needed for implementing the idea that
information flows from one place to another. Assigning security levels to values
amounts to regarding these levels as channels along which information may be
communicated. We think it is better to make the operational existence of such
channels explicit, and not to confuse them with the abstract notion of a confiden-
tiality level. Indeed, it is shown in [4] that a typically “value-oriented” approach
to typing information flow, as it can be found in [19], can be encoded in a “store-
oriented” approach, simply by making any value available as the contents of a
reference (a similar result regarding the SLam calculus of [7] is presented in the
workshop version of [4]).

Another difference with type systems for functional languages is that these,
including the one of [4], are most often only dealing with weak, termination in-
sensitive non-interference, as we already pointed out in the introduction. Then
such type systems cannot ensure our “non-disclosure policy”, and therefore they
are not well-suited to support declassification, as we have formulated it. Then
our type system is to be compared with the ones that are used when dealing with
termination sensitive non-interference, that is, with type systems for concurrent
and imperative languages. As we said in the introduction, our typing of termi-
nation leaks improves a lot on the various proposals made regarding concurrent
and imperative languages.

We have shown that our type system is sound, whatever choice is made as
regards the set T of strongly converging expressions, but obviously to obtain a
practical type system, we have to instantiate this parameter into a computable
set of expressions. Then an obvious topic of research, which is left open in this
paper, is the characterization of a class T of strongly converging expressions
which would be as large as possible, including in particular the ability of using
functions. This is not the case of the class we mentioned at the end of Section
2, which only contains simple imperative programs. An obvious idea would be
to exploit the classical results regarding strong normalization in typed λ-calculi.
However, there is a technical difficulty, which is known since a long time but has,
as far as I can see, no solution up to now. Namely, it is known since Landin’s
pioneering work on the implementation of functional languages [8] that circular
higher-order references introduce non-termination, like for instance in (using ref
without subscripts)

(let x = (ref λyy) in x := λy((!x)y) ; ((!x)V))

This particular expression cannot be typed in our type and effect system, but a
variant of it like

(let y = refλx.(!refλx.(!refλxx)x)x in y := λx.(! y)x ; !y)

is accepted. Then, to obtain a computable set of strongly converging expressions
where functions can be used is still problematic. This issue is left for further
work.

380 G. Boudol

References

1. A. Almeida Matos, G. Boudol, On declassification and the non-disclosure policy,
to appear in the proceedings of the 18th IEEE Computer Security Foundations
Workshop (2005).

2. G. Boudol, I. Castellani, Non-interference for concurrent programs and thread
systems, Theoretical Comput. Sci. Vol. 281, No. 1 (2002) 109-130.

3. E. Cohen, Information transmission in computational systems, 6th ACM Symp.
on Operating Systems Principles (1977) 133-139.

4. K. Crary, A. Kliger, F. Pfenning, A monadic analysis of information flow se-
curity with mutable state, J. of Functional Programming, Vol. 15 No. 2 (2005)
249-291.

5. D.E. Denning, A lattice model of secure information flow, CACM Vol. 19 No. 5
(1976) 236-243.

6. J.A. Goguen, J. Meseguer, Security policies and security models, IEEE Symp.
on Security and Privacy (1982) 11-20.

7. N. Heintze, J. Riecke, The SLam calculus: programming with secrecy and in-
tegrity, POPL’98 (1998) 365-377.

8. P.J. Landin, The mechanical evaluation of expressions, Computer Journal Vol. 6
(1964) 308-320.

9. J.M. Lucassen, D.K. Gifford, Polymorphic effect systems, POPL’88 (1988) 47-
57.

10. A. Myers, JFlow: practical mostly-static information flow control, POPL’99
(1999).

11. F. Pottier, V. Simonet, Information flow inference for ML, ACM TOPLAS Vol.
25 No. 1 (2003) 117-158.

12. A. Sabelfeld, A.C. Myers, Language-based information-flow security, IEEE J.
on Selected Areas in Communications Vol. 21 No. 1 (2003) 5-19.

13. A. Sabelfeld, D. Sands, Probabilistic noninterference for multi-threaded pro-
grams, CSFW’00 (2000).

14. A. Sabelfeld, D. Sands, Dimensions and principles of declassification, Proceed-
ings of the 18th IEEE Computer Security Foundations Workshop (2005).

15. G. Smith, A new type system for secure information flow, CSFW’01 (2001).
16. G. Smith, D. Volpano, Secure information flow in a multi-threaded imperative

language, POPL’98 (1998).
17. D. Volpano, G. Smith, Eliminating covert flows with minimum typings, CSFW’97

(1997) 156-168.
18. D. Volpano, G. Smith, C. Irvine, A sound type system for secure flow analysis,

J. of Computer Security, Vol. 4, No 3 (1996) 167-187.
19. S. Zdancewic, Programming Languages for Information Security, PhD Thesis,

Cornell University (2002).
20. S. Zdancewic, Challenges for information-flow security, PLID’04 (2004).

Representation and Reasoning on RBAC:
A Description Logic Approach

Chen Zhao, Nuermaimaiti Heilili, Shengping Liu,
and Zuoquan Lin

LMAM, Department of Informatics,
School of Math., Peking University,

Beijing 100871, China
{zchen,nur,lsp,lz}@is.pku.edu.cn

Abstract. Role-based access control (RBAC) is recognized as an ex-
cellent model for access control in large-scale networked applications.
Formalization of RBAC in a logical approach makes it feasible to reason
about a specified policy and verify its correctness. We propose a formal-
ization of RBAC by the description logic language ALCQ. We also show
that the RBAC constraints can be captured by ALCQ. Furthermore, we
demonstrate how to make access control decision, perform the RBAC
functions as well as check the consistency of RBAC via the description
logic reasoner RACER.

1 Introduction

Role-Based Access Control (RBAC)[1,2] has been recognized as a strategy which
reduces the cost and complexity of security administration in large-scale net-
worked applications. RBAC represents a major advancement in flexibility from
traditional discretionary and mandatory access control. In RBAC, permissions
are associated with roles, and users are made members of appropriate roles,
thereby acquiring the appropriate permissions. Moreover, the use of role hier-
archies provides additional advantages since one role may implicitly include the
permissions that are associated with another role.

A formal analysis of RBAC will help to design and implement access control
policy. Sandhu et al. [1] proposed the RBAC96 model based on set theory, which
first formally defined the relations among user, role and permission using the
notion of set membership. Koch et al. [3,4] presented a formalization of RBAC
using graph transformations.

Moreover, there has been a considerable interest in logical framework for the
reasoning of access control models [5,6,7,8,9,10,11,12]. A major advantage of a
logical framework is that it becomes feasible to reason about a specified policy
and verify its correctness. The first attempt was made by Woo and Lam [5], who
proposed a language based on default logic. A logic for reasoning about RBAC
is presented by Massacci [7]. It enhances an access control calculus [6] to express
role hierarchies, and its semantics is based on the Kripke model of modal logics.
Appel and Felten [8] introduced the idea of proof-carrying authorization (PCA),

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 381–393, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

382 C. Zhao et al.

an authorization framework that is based on a higher-order logic (AF logic).
Jajodia et al.[9] presented a logic language for specifying security policies and
Bertino el al. [11] proposed a formal framework based on C-Datalog language.
Recently Crescini and Zhang [12] presented a logic-based authorization system
by the use of a first-order logic language, L, for defining, updating and querying
of access control policies.

The constraints are an important aspect of RBAC and are always regarded
as one of principal motivations for RBAC, which impose restrictions on accept-
able configurations of the different components of RBAC. Nevertheless, it was
discussed informally in the RBAC96 model [1]. There are also some efforts to
express constraints formally. Gligor el al. [13] defined a wide variety of separation
of duties (SOD) policies on the basis of first-order logic. Mossakowski el al. [14]
used temporal logic to extend the RBAC model and express SOD policies. Ahn
and Sandhu [15] proposed an intuitive formal language for specifying role-based
authorization constraints named RCL 2000, and showed that any property writ-
ten in RCL 2000 may be translated into an expression written in a restricted
form of first-order logic.

Some of these works are depended upon proprietary languages, which do not
have efficient implementations. The properties of these languages, such as com-
putational complexity, are not well understood by researchers. Others are based
on first-order logic or its extensions. These logic languages have enough expres-
siveness for representation of access control policies. However, excessively rich ex-
pressiveness may bring on complex computation and confusion. For instance, it is
difficult to give a rational interpretation for the expression ¬read(UserA, doc1)∨
¬read(UserA, doc2).

In this paper, we present a novel formalization of RBAC with a description
logic approach. Description Logics (DLs) [16] are a family of languages used
to describe and classify concepts and their instances. Knowledge representation
systems based on description logics have been proven useful for representing the
terminological knowledge of an application domain in a structured and formally
well understood way. Compared with first-order logic, DLs achieve a better trade-
off between the computational complexity of reasoning and the expressiveness
of the language. We choose a DL language ALCQ [17] to represent and reason
on RBAC according to the features of RBAC. ALCQ extends the well-known
description logic ALC [18] by qualified number restrictions. We show how to ex-
press constraints in ALCQ and check the consistency of RBAC with constraints.
In practice there are highly optimized reasoners, such as RACER [19,20], that
handle real problems in a desirable performance. To be intuitive, we develop a
case study about reasoning on RBAC via RACER.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the RBAC96 model. In Section 3, we introduce the description logic language
ALCQ. In Section 4, the representation and reasoning on RBAC in ALCQ are
developed. In Section 5, we present a case study and show how to perform
some RBAC functions by RACER. In Section 6, we show how to express the
constraints in ALCQ. Finally, conclusions are drawn in Section 7.

Representation and Reasoning on RBAC: A Description Logic Approach 383

2 RBAC96 Model

We review the RBAC96 model which we refer to in this paper. The RBAC96
model includes sets of three basic data elements called users, roles and permis-
sions. A user is a human being in most cases, and may be extended to include
autonomous agents. A role is a job function in the context of an organization
with some associated semantics regarding the authority and responsibility con-
ferred on a member of the role. A permission is an approval of a particular mode
of access to one or more objects in the system or some privilege to carry out spec-
ified actions. User assignment and permission assignment are two many-to-many
relations in the model, which connect roles to users and permissions respectively.
In addition, the model includes a set of sessions where each session is a mapping
from a user to an activated subset of roles that are assigned to the user. A user
can create a session and choose to activate some subset of the user’s roles.

Fig. 1. Summary of the RBAC96 model

There is a family of four conceptual models in the RBAC96 model. RBAC0
is the base model that indicates the minimum requirement for any system that
supports RBAC. RBAC1 and RBAC2 both include RBAC0, but add role hi-
erarchies (situations where roles can inherit permissions from other roles) and
constraints (which impose restrictions on acceptable configurations of the differ-
ent components of RBAC) respectively. RBAC1 and RBAC2 are incomparable
to one another. RBAC3 is the consolidated model that includes all the essential
components of RBAC. Figure 1 illustrates their essential characteristics.

Role hierarchies define an inheritance relation among roles. We say that role
r1 “inherits” role r2 if all privileges of r2 are also privileges of r1, denoted as
r1 ≥ r2. The RBAC1 model defined in [1] consists of the following components:

384 C. Zhao et al.

– Users, Roles, Perms, and Sessions (users, roles, permissions and sessions
respectively),

– PA ⊆ Perms×Roles, a many-to-many permission to role assignment rela-
tion,

– UA ⊆ Users×Roles, a many-to-many user to role assignment relation,
– RH ⊆ Roles× Roles is a partial order on Roles (also written as ≥),
– user : Sessions→ Users is a function mapping each session s to the single

user user(s) (constant for the session’s lifetime), and
– roles : Sessions → 2Roles is a function mapping each session s to a set of

roles roles(s) ⊆ {rr|∃ rr′ ≥ rr, (user(s), rr′) ∈ UA} (which can change with
time) and session s has the permissions

⋃
rr∈roles(s){p|∃ rr′ ≤ rr, (p, rr′) ∈

PA}.

The constraints are introduced informally inRBAC2. Two typical constraints
are separation of duties (SOD) and role cardinality constraint. SOD is achieved
by ensuring that mutually exclusive roles must be invoked to complete a sensitive
task, such as requiring an accounting clerk and account manager to participate
in issuing a check. That is, the same user can be assigned to at most one role in
a mutually exclusive set. Role cardinality constraint means that a role can have
a maximum number of members. For instance, there is only one person in the
role of chairman of a department.

3 The Description Logic for Representing the RBAC96
Model

We introduce the description logic languageALCQ that will be used to represent
the RBAC96 model. In DLs, the domain of interest is modelled by means of in-
dividuals, concepts, and roles, denoting objects of the domain, unary predicates,
and binary predicates respectively. Atomic concepts (denoted by A) and atomic
roles (denoted by R) are elementary descriptions and complex ones can be built
from them inductively with constructors. ALCQ concepts (denoted by C or D,
possibly with a subscript) are composed inductively according to the following
syntax rule (n denotes a natural number):

C ::= A | 0 | ¬C | C D | ∃R.C | (≥ nR.C).

In DLs, 0 is defined as universal concept, and ⊥ is defined as bottom concept,
such that ⊥ = ¬0. In ALCQ, we also can define the constructors: ∀R.C =
¬(∃R.¬C) and (≤ nR.C) = ¬(≥ (n + 1)R.C).

From a semantic point of view, concepts are interpreted as subsets of an ab-
stract domain, while roles are interpreted as binary relations over such a domain.
More precisely, an interpretation I = (ΔI , ·I) consists of a domain of interpre-
tation ΔI , and an interpretation function ·I mapping every atomic concept A to
a subset of ΔI and every atomic role R to a subset of ΔI ×ΔI . The syntax and
semantics of ALCQ is summarized in Table 1, where #S denotes the cardinality
of the set S.

Representation and Reasoning on RBAC: A Description Logic Approach 385

Table 1. The syntax and semantics of ALCQ

Constructor Syntax Semantics

universal concept ! ΔI

atomic concept A AI

concept negation ¬C ΔI −CI

intersection C "D CI ∩DI

existential restriction ∃R.C {x ∈ ΔI |∃y ∈ ΔI , (x, y) ∈ rI ∧ y ∈ CI}
qualified number restriction ≥ nR.C {x ∈ ΔI |#{y|(x, y) ∈ rI ∧ y ∈ CI} ≥ n}

A Knowledge Base (KB) in description logics comprises two components,
the TBox and the ABox. TBox (denoted as T) is a finite set of terminological
axioms which make statements about how concepts are related to each other.
Generally, they have two forms: C ≡ D or C � D, where C, D are concepts. The
first kind is called equalities which states that CI is equivalent to DI , and the
second is called inclusions which states that CI is a subset of DI for all I. Since
the ALCQ’s terminology is acyclic, we will focus on the acyclic terminology in
the following. ABox (denoted as A) is a finite set of individual assertions in
which there are also two kinds: C(a) or r(a, b), where C is a concept, r is a role,
a, b are individuals. The first kind is called concept assertions which states that
aI ∈ CI , and the second is called role assertions which states that (aI , bI) ∈ rI

for all I.
The basic reasoning services in DL are satisfiability and subsumption. De-

termining satisfiability of a concept C in a KB K amounts to check whether K
admits a model in which the extension of C is nonempty. Determining subsump-
tion between two concepts C and D in K, amounts to check whether CI ⊆ DI

for every interpretation I of K, denoted as K |= C � D. Subsumption can be
easily reduced to satisfiability as follows: A concept C is subsumed by a concept
D in K if and only if C ¬D is not satisfiable in K. Upon that it is sufficient to
consider concept satisfiability only.

4 Representation and Reasoning on the RBAC96 Model
in ALCQ

We will now describe how to conceptualize the RBAC96 model and construct
a DL knowledge base capturing the characteristics of RBAC. Given a RBAC1
model, we define a DL knowledge base K. We assume that the role set and
the permission set are finite. In an access control policy each role and permis-
sion must be concretely (one by one) specified, so this assumption is feasible in
practise.

The alphabet of K includes the following atomic concepts and roles:

– the atomic concepts User, CRole, Permission, and Session, represent the users,
roles, permissions and sessions respectively,

– for each role rr ∈ Roles, one atomic concept RR,

386 C. Zhao et al.

– for each permission p ∈ Perms, one atomic concept P,
– the atomic role assign, connects the user to the roles assigned to him,
– the atomic role cando, connects the role to the permissions assigned to it,
– the atomic role authorize, connects the user to the permissions authorized

through his assigned roles,
– the atomic role founder, connects the user to the sessions established by him,
– the atomic role activate, connects the session to the roles activated in it,
– the atomic role grant, connects the session to the permissions available in it.

Each concept RR is a subconcept of CRole. Similarly, each concept P is a
subconcept of Permission. The concept ∃assign.RR describes the concept of “users
assigned to the role rr”, and ∃cando.P describes the concept of “roles associated
with the permission p”, and so on.

The TBox of K includes three catalogs of axioms: role inclusion axioms,
permission assignment axioms, and authorization axioms.

Role inclusion axioms express the role hierarchies in RBAC. For each role
hierarchy relation rr1 ≥ rr2, rr1, rr2 ∈ Roles, role inclusion axioms have the
form RR1 � RR2, where RR1 and RR2 are atomic concepts corresponding to the
role rr1 and rr2. In addition, we should set up axioms RR � CRole for each
rr ∈ Roles.

Permission assignment axioms express the permission assignments in RBAC.
For each permission-role relation (p, rr) ∈ PA, permission assignment axioms
have the form RR � ∃cando.P. In RBAC, the senior role inherits the junior one’s
permissions. Permission assignment axioms can capture this feature. Given a
role rr1 ∈ Roles, a permission p ∈ Perms, if rr1 ≥ rr2 and (rr2, p) ∈ PA, then
we get RR1 � RR2, and RR2 � ∃cando.P, subsequently, RR1 � ∃cando.P. That
is to say that rr1 is contained in the roles which have the permission p.

Authorization axioms make statements about how user acquire the permis-
sions by assigned roles. For each p ∈ Perms, the associated authorization axioms
have the form

∃assign.(∃cando.P) � ∃authorize.P

∃activate.(∃cando.P) � ∃grant.P

The concept ∃authorize.P is interpreted as the set of users that are authorized
the permission p, and the concept ∃assign.(∃cando.P) is interpreted as the set
of users that are assigned to at least one of the roles holding the permission p.
The first axiom indicates that a permission can be given to the user who has
been assigned to the role associated with that permission. Similarly, the second
axiom indicates that in a session a permission can be given to the user who has
activated the role associated with that permission.

The ABox of K includes following six catalogs of axioms: Role concept asser-
tions have the form RR(rr) and declare each role to be an instance of correspond-
ing role concept. User concept assertions specify users, and Session concept as-
sertions specify sessions. Role activation assertions have the form activate(s, rr)
and indicate that the role rr has been activated by the session s. Session cre-
ation assertions and have the form founder(u, s), and indicate that the specific

Representation and Reasoning on RBAC: A Description Logic Approach 387

session s are created by the user u. User role assignment assertions have the
form assign(u, rr), and indicate that the user u is assigned to the role rr.

We then show how to use the operations Tell and Ask to achieve some
reasoning tasks and make access control decision. Tell is often used to add
sentences into KB, and Ask is used to query KB. We can use following query
statement to check if a user u is assigned to a role rr:

Ask{ ∃assign.RR(u)}

that refers to assert if u is an instance of ∃assign.RR. If we have defined
assign(u, rr) in the ABox of K, then K |= (∃assign.RR)(u). If assign(u, rr) is
not defined in the ABox of K, instead we defined assign(u, rr′), where the role
rr′ is senior to rr, that is rr′ ≥ rr, then we still get K |= (∃assign.RR)(u), be-
cause ∃assign.RR’ � ∃assign.RR. This indicates that if a user u is assigned to
a role rr, then u has user role assignment relation with all descendants of the
role rr.

We can ask K to query whether a user u is given permission p:

Ask{(∃authorize.P)(u)}

According to authorization axioms ∃assign.(∃cando.P) � ∃authorize.P, we get
that if the user u is assigned anyone role in ∃cando.P, there exists authorization
relation between the user u and the permission p, i.e. the user u is given the
permission p. More reasoning tasks will be discussed in next section with an
practical example.

Since there is no knowledge about sessions in K initially, we should add these
information into K by some Tell operations before we can make access control
decision. The set of sentences added by Tell is denoted as S. Firstly, we add
session concept assertions and creation assertions into the ABox of K by

Tell{Session(s)},Tell{founder(u, s)}

Secondly, users should activate their roles. Before a user activate a role rr, we
must judge whether the user is assigned to the role rr. We can use the following
query statement:

Ask{(∃assign.RR)(u)}

If K |= (∃assign.RR)(u), we can conclude that there does not exist assignment
relation between user u and role rr. Therefore it is not allowed for user u to
activate role rr. Otherwise, we can add role activation assertion into the ABox
of K by

Tell{activate(s, rr)}

Then, we can query whether the user u is granted the permission p within the
session s by

Ask{(∃grant.P)(s)}

If K ∪ S |= (∃grant.P)(s), the user u has the permission p within the session s.
Otherwise, the user’s operation is prohibited.

388 C. Zhao et al.

5 A Case Study

In this section, we show a practical example and demonstrate how to accom-
plish reasoning tasks via RACER and RICE [21] — a RACER interactive client
environment.

Supervior

TestEngineer Programmer

Member

Fig. 2. The role hierarchy in a software development

Suppose, for example, that in a software development there are four roles:
Supervisor, TestEngineer, Programmer, Member, and three permissions: Execute,
WriteSrc, ReadDocs. The role hierarchy is shown in Figure 2. Supervisor is senior
to TestEngineer and Programmer which are both senior to Member. We suppose
that TestEngineer has the permission to execute the project, Programmer has
the permission to write source code, and Memeber has the permission to read
documents.

To formalize the above policies, we define the concept of roles: CSupervisor,
CTestEngineer, CProgrammer, CMember, and the concept of permissions: Execute,
WriteSrc, ReadDocs. The inheritance relations among these roles are described
by following role inclusion axioms:

CSupervisor � CTestEngineer,CSupervisor � CProgrammer

CTestEngineer � CMember,CProgrammer � CMember

We define permission assignment axioms as follows:

CTestEngineer � ∃cando.Execute

CProgrammer � ∃cando.WriteSrc

CMember � ∃cando.ReadDocs

We define authorization axioms as follows:

∃assign.(∃cando.Execute) � ∃authorize.Execute

∃assign.(∃cando.WriteSrc) � ∃authorize.WriteSrc

∃assign.(∃cando.ReadDocs) � ∃authorize.ReadDocs

∃activate.(∃cando.Execute) � ∃grant.Execute

∃activate.(∃cando.WriteSrc) � ∃grant.WriteSrc

∃activate.(∃cando.ReadDocs) � ∃grant.ReadDocs

Representation and Reasoning on RBAC: A Description Logic Approach 389

We assume that there are four users: Tom, Bob, Alice and John, and they
are assigned to the role Supervisor, TestEngineer, Programmer and Member re-
spectively. We can define the corresponding ABox as follows:

User(Tom),User(Bob),User(Alice),User(John),
CSupervisor(Supervisor),CTestEngineer(TestEngineer),
CProgrammer(Programmer),CMember(Member),
assign(Tom, Supervisror), assign(Alice, T estEngineer),
assign(Bob, Programmer), assign(John,Member).

If Bob want to login as the role Programmer, we should use following RACER
command to check Bob’s role assignment first:

(individual-instance? Bob (some assign CProgrammer))

In this example, we can get the result0. Then we go on with Tell operations,
adding sentences associated with the session information into KB.

Tell{Session(s1)}
Tell{founder(Bob, s1)}
Tell{activate(s1, P rogrammer)}

In RACER, it can be written as:

(instance s1 Session)

(related Bob s1 founder)

(related s1 programmer activate)

We can check whether Bob has the permission to read the document in the
session s1 as follows:

(individual-instance? s1 (some grant WriteSrc))

Table 2. Some reasoning tasks on RBAC performed by RACER

RACER command and description Result
(concept-instances (some assign CProgrammer)) (TOM BOB)
fetch all users assigned to the role Programmer
(concept-instances (some authorize Execute)) (TOM ALICE)
fetch all users authorized to the permission Execute
(concept-instances (some founder (some activate
CMember))

(BOB)

fetch all users activating the role Programmer currently
(individual-instance? alice (some assign CMember)) !
check if Alice is assigned to the role Member (including im-
plicit assignment)
(individual-fillers alice assign) (TESTENGINEER)
fetch the roles which Alice is explicitly assigned to

390 C. Zhao et al.

We can get the result 0. We also can check if Bob has the permission to execute
the program in the session s1:

(individual-instance? s1 (some grant Execute))

The result will be NIL. Then we will assert that Bob has no permission to execute
the project in the session s1.

Other related reasoning tasks on RBAC which can performed by RACER
are listed in Table 2, and see RACER manual for more.

6 Express Constraints

In this section we will complement the KB K introduced in Section 4 by adding
relevant concepts and constraint axioms to express static SOD, dynamic SOD
and role cardinality constraint.

6.1 Static Separation of Duty

Static separation of duty (SSOD) is the simplest mode of SOD. If we define two
roles as mutually exclusive, then no user can be assigned to the two roles simul-
taneously. More generally, if a set of roles which is denoted by CR are mutually
exclusive, any user can be assigned to at most k roles in CR simultaneously. A
SSOD policy can be denoted as (CR, k).

For each SSOD policy (CR, k), we define a atomic concept CR and a con-
straint axiom:

≥ (k + 1) assign.CR � ⊥

where the complex concept ≥ (k+1) assign.CR represents a set of users who have
assignment relations with at least k + 1 instances of CR. This complex concept
is a subconcept of bottom concept. That is to say, the user who is assigned to
at least k + 1 roles in CR does not exist.

We refer to the above practical example in Section 5, assuming that the roles
Programmer and TestEngineer are mutually exclusive. We should define concept
CR1 and add following sentences into K:

CR1(Programmer),CR1(TestEngineer)
≥ 2 assign.CR1 � ⊥,CR1 � CRole

If we assign the two roles Programmer and TestEngineer to the user Jack si-
multaneously:

User(Jack), assign(Jack, T estEngineer), assign(Jack, Programmer)

It is obvious that the Abox is not consistent. Then following warning will be
reported in RACER, and reasoning can not be continued:

RACER Exception while retrieving instances: ABox DEV-DEPT is incoherent.

Representation and Reasoning on RBAC: A Description Logic Approach 391

6.2 Dynamic Separation of Duty

Dynamic separation of duty (DSOD) refers to restrict the roles activated during
a session. If we denote a set of dynamic mutually exclusive roles as CR, a user
can be assigned to any roles in CR arbitrarily, but the user can activate at most
k roles in CR in a session simultaneously. We still use (CR, k) to define a DSOD
policy. For each policy (CR, k), we define a concept CR and another constraint
axiom:

≥ (k + 1) activate.CR � ⊥
which means that the user which has activated at least k + 1 roles in CR does
not exist.

6.3 Role Cardinality Constraint

Role cardinality constraint is used to specify the number of users assigned to or
activated a role. Similar to SOD, role cardinality can be differentiated between
static and dynamic role cardinality. Static role cardinality specifies the maximum
number of users assigned to a role simultaneously, while dynamic role cardinality
specifies the maximum number of users activating a role simultaneously.

We introduce the inverse relation of user role assignment “assigned” and add
inverse user role assertion for each user role assignment assertion. For exam-
ple, when assigning the role Programmer to Bob, we should add the assertion
assign(Bob, Programmer) as well as assigned(Programmer, Bob).

Given a role rr, if its role cardinality is b, static role cardinality constraint
will be expressed as:

≥ (b+ 1) assigned.RR � ⊥
Similarly, we need to add the inverse relation of role activation “activated”

to express dynamic role cardinality, which can be written as

≥ (b+ 1) activated.RR � ⊥

We can also extend ACLQ by adding the inverse constructor. But this way
will increase the computational complexity of reasoning. Moreover, it is unneces-
sary to define inverse relation for each one. In fact it is easy to add the inverse role
assignment assertions and inverse role activation assertions in implementation.

7 Conclusion

The goal of this paper is to demonstrate that expressive description logics are
well suited to represent and reason about RBAC. We have provided a formalism
of RBAC using the description logic language ALCQ, and demonstrated how to
make authorization decision and perform RBAC functions via the description
logic reasoner RACER. The query can be done efficiently by taking advantage of
the reasoning methods associated to the DLs. We have also represented how to
express constraints using ALCQ, including separation of duty and role cardinal-
ity constraint. We have showed that the consistency of RBAC with constraints

392 C. Zhao et al.

can be checked automatically via RACER. In the future, we will add the neg-
ative authorization into RBAC and look for an appropriate solution to handle
conflicts in access control.

Acknowledgements. This work was supported by Nation Natural Science
Foundation of China (grant numbers 60373002 and 60496322) and by a Na-
tional Key Basic Research Project of China (2004CB318000). This work was
also financially supported by UNU-IIST. We would like to thank Jing Mei and
Zhangang Lin for their valuable suggestions on earlier drafts of this paper.

References

1. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control mod-
els. IEEE Computer 29 (1996) 38–47

2. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramoli, R.: Proposed
nist standard for role-based access control. ACM Transactions on Information and
System Security (TISSEC) 4 (2001) 224–274

3. Koch, M., Mancini, L.V., Parisi-Presicce, F.: A formal model for role-based access
control using graph transformation. In: Proceedings of the 6th European Sympo-
sium on Research in Computer Security. (2000) 122–139

4. Koch, M., Mancini, L.V., Parisi-Presicce, F.: A graph-based formalism for rbac.
ACM Transactions on Information and System Security (TISSEC) 5 (2002) 332–
365

5. Woo, T.Y., Lam, S.S.: Authorization in distributed systems: A new approach.
Journal of Computer Security 2 (1993) 107–136

6. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in
distributed systems. ACM Transactions on Programming Languages and Systems
15 (1993) 706–734

7. Massacci, F.: Reasoning about security: A logic and a decision method for role-
based access control. In: Proceeding of the International Joint Conference on
Qualitative and Quantitative Practical Reasoning (ECSQARU/FAPR-97). (1997)
421–435

8. Appel, A.W., Felten, E.W.: Proof-carrying authentication. In: Proceedings of
the 6th ACM Conference on Computer and Communications Security, Singapore
(1999)

9. Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems 26 (2001)
214–260

10. Bacon, J., Moody, K., Yao, W.: A model of oasis role-based access control and its
support for active security. ACM Transactions on Information and System Security
(TISSEC) 5 (2002) 492–540

11. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reason-
ing about access control models. ACM Transactions on Information and System
Security (TISSEC) 6 (2003) 71–127

12. Crescini, V.F., Zhang, Y.: A logic based approach for dynamic access control.
In: Proceedings of 17th Australian Joint Conference on Artificial Intelligence (AI
2004), Cairns, Australia (2004)

Representation and Reasoning on RBAC: A Description Logic Approach 393

13. Gligor, V.D., Gavrila, S.I., Ferrailolo, D.: On the formal definition of separation-
of-duty policies and their composition. In: Proccedings of IEEE Symposium on
Security and Privacy, Oakland, California (1998) 172–185

14. Mossakowski, T., Drouineaud, M., Sohr, K.: A temporal-logic extension of role-
based access control covering dynamic separation of duties. In: Proceedings of the
4th International Conference on Temporal Logic. (2003) 83–90

15. Ahn, G.J., Sandhu, R.: Role-based authorization constraints specification. ACM
Transactions on Information and System Security (TISSEC) 3 (2000) 207–226

16. Baader, F., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press (2002)

17. Giacomo, G.D., Lenzerini, M.: A uniform framework for concept definitions in
description logics. Journal of Artificial Intelligence Research 6 (1997) 87–110

18. Schmidt-SchauB, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artifical Intelligence 48 (1991) 1–26

19. Haarslev, V., Moller, R.: RACER system description. In: International Joint
Conference on Automated Reasoning (IJCAR’2001), Siena, Italy (2001) 18–23

20. Haarslev, V., Moller, R.: Description of the RACER system and its applications.
In: International Workshop on Description Logics (DL-2001), Stanford, USA (2001)

21. RICE (RACER Interactive Client Environment),
http://www.b1g-systems.com/ronald/rice/.

Revisiting Failure Detection and Consensus
in Omission Failure Environments

Carole Delporte-Gallet1, Hugues Fauconnier2, and Felix C. Freiling3,�

1 Institut d’électronique et d’informatique Gaspard-Monge (IGM),
Marne-la-Vallée, France

2 Laboratoire d’Informatique Algorithmique, Fondements et Applications (LIAFA),
University Paris VII, France

3 Laboratory for Dependable Distributed Systems,
RWTH Aachen University, Germany

Abstract. It has recently been shown that fair exchange, a security
problem in distributed systems, can be reduced to a fault tolerance prob-
lem, namely a special form of distributed consensus. The reduction uses
the concept of security modules which reduce the type and nature of ad-
versarial behavior to two standard fault-assumptions: message omission
and process crash. In this paper, we investigate the feasibility of solving
consensus in asynchronous systems in which crash and message omission
faults may occur. Due to the impossibility result of consensus in such
systems, following the lines of unreliable failure detectors of Chandra
and Toueg, we add to the system a distributed device that gives infor-
mation about the failure of other processes. Then we give an algorithm
using this device to solve the consensus problem. Finally, we show how
to implement such a device in an asynchronous system using some weak
timing assumptions.

1 Introduction

In systems with electronic business transactions, fair exchange is a fundamental
problem. In fair exchange, the participating parties start with an item they want
to trade for another item. They possess an executable (i.e., machine-checkable)
description of the desired item and they know from which party to expect the de-
sired item and which party is expecting their own item. An algorithm that solves
fair exchange must ensure three properties: (1) every honest party eventually ei-
ther delivers its desired item or aborts the exchange (termination property).
(2) If no party misbehaves and all items match their descriptions then the ex-
change should succeed (effectiveness property). (3) If the desired item of any
party does not match its description, then no party can obtain any (useful) in-
formation about any other item (fairness property). Fair exchange algorithms
should guarantee these properties for mutually untrusted parties, i.e., even in
the presence of arbitrary (malicious) misbehavior of a subset of participants.
Therefore, fair exchange is usually considered a problem in the area of security.
� Work by Felix Freiling was performed in part while visiting LIAFA and supported

by the French Ministry of Research ACI project FRAGILE.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 394–408, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Revisiting Failure Detection and Consensus 395

It has recently been shown [4] that fair exchange, a security problem, can
be reduced to a fault-tolerance problem, namely a special form of consensus.
In the consensus problem, a set of processes must reach agreement on a single
value out of a set of values, values which the individual processes have each
proposed. The reduction from fair exchange to consensus holds in a model where
each participating party is equipped with a tamper proof security module like
a smart card. Roughly speaking, the security modules are certified pieces of
hardware executing a well-known algorithm so they can establish confidential
and authenticated channels between each other. However, since they can only
communicate by exchanging messages through their (untrusted) host parties,
messages may be intercepted or dropped. Overall, the security modules form
a trusted subsystem within the overall (untrusted) system. The integrity and
confidentiality of the algorithm running in the trusted subsystem is protected
by the shield of tamper proof hardware. The integrity and confidentiality of
data sent across the network is protected by standard cryptographic protocols.
These mechanisms reduce the type and nature of adversarial behavior in the
trusted subsystem to message loss and process self-destruction, two standard
fault-assumptions known under the names of omission and crash in the area of
fault-tolerance. To summarize, problems from the area of security motivate us
to revisit the consensus problem in omission failure environments.

A central assumption for the reduction of fair exchange to consensus to hold
is that the system be synchronous. A synchronous system has known upper
bounds on all important timing parameters of the system like message delivery
delay and relative process speeds. Synchronous systems are rare in practice. More
common are asynchronous systems, i.e., systems with no or merely uncertain
timing guarantees. This holds especially true for systems in which smart cards
are used as security modules. Smart cards do not possess any device to reliably
measure real-time since they are totally dependent on power supply from their
host. If we would like to implement fair exchange using smart cards as security
modules, we need an asynchronous consensus algorithm under the assumption
of crash and omission faults.

In this paper, we investigate the feasibility of solving consensus in totally
asynchronous systems in which crash and message omission faults may occur.
Since a result by Fischer, Lynch, and Paterson [11] states that solving consensus
deterministically is impossible even if only crash faults can happen, we must
strengthen the model so that solutions are possible. We do this using the ap-
proach of unreliable failure detectors pioneered by Chandra and Toueg [6]. In
this approach, the asynchronous model is augmented with a device that gives
information about the failures of other processes. Failure detectors have proven
to be a very powerful abstraction of timing assumptions that can express nec-
essary and sufficient conditions for the solvability of problems in the presence
of failures. In practice, we want to build a system that solves a certain prob-
lem (like consensus). So interesting for practical purposes is the question: What
type of failure detector is sufficient to solve that problem? If such a failure de-
tector is found, we only need to implement the failure detector to implement

396 C. Delporte-Gallet, H. Fauconnier, and F.C. Freiling

the algorithm in practice, usually reducing the complexity of solving the overall
problem substantially. Interesting from a theoretical standpoint is the question:
What type of failure detector is necessary to solve a problem? Answers to this
question point to the minimum level of timing information which is needed to
solve that problem. If only less is available, the problem is impossible to solve.

Here, we focus on the sufficiency part of the question, i.e., what type of failure
detector is sufficient to solve consensus in asynchronous systems in which crash
and omission faults can occur and what are the timing assumptions needed to
solve consensus. Omission faults, meaning that a process drops a message either
while sending or while receiving it, were introduced by Hadzilacos [12] and later
generalized by Perry and Toueg [16]. We make the following two contributions
in this paper:

– We define a new type of failure detector, which we call Ω in analogy to
Chandra, Hadzilacos and Toueg [5], and give a protocol that solves consensus
in omission failure environments as long as a majority of processes remains
fault-free.

– We exhibit a set of weak timing assumptions in the spirit of earlier work
[1,3] that allow to implement Ω. More precisely, we show that the existence
of some process with which every other process eventually can communicate
in a timely way is sufficient to implement Ω.

The timing assumptions we exhibit are weaker than any other assumptions pro-
posed up to now for the omission model. They therefore allow to implement
consensus, and hence fair exchange, in a larger class of practical systems than
before.

This paper is structured as follows: Section 2 introduces the system model,
Section 3 specifies the new type of failure detector. Section 4 presents the al-
gorithm to solve consensus using the failure detector from Section 3. Section 5
shows how to implement the failure detector under very weak synchrony assump-
tions. Finally, Section 6 concludes the paper. For lack of space, some proofs have
been omitted and can be found elsewhere [7].

2 Definitions and Model

We model a distributed system by a set of n processes Π = {p1, p2, . . . , pn}
that communicate using message passing over a network of channels in a fully
connected topology. The communication primitives we assume are send and
receive. Communication channels are reliable, i.e., every message sent is even-
tually received and every received message was previously sent. Processes can
be faulty, as explained later.

We assume that the network is asynchronous, i.e., there is neither a bound
on the relative process speeds nor on the message delivery delays. This means
that while one process takes a single step within the execution of its local al-
gorithm, any other process can take an arbitrary (but finite) number of steps.
Also, messages can take an arbitrary (but finite) amount of time to travel from
the source to the destination.

Revisiting Failure Detection and Consensus 397

2.1 Failure Assumption

There are three ways in which processes can fail: (1) Processes can crash, i.e.,
they stop to execute steps of their local algorithm. Crashed processes never
recover. (2) Processes can experience send omission failures, i.e., a message which
is sent by a process is never placed into the communication channel. (3) Processes
can experience receive omission failures, i.e., a message which arrives over the
communication channel is never actually received by the algorithm of the process.
Crash faults model, the usual hardware or operating system crashes, omission
faults model overruns of internal I/O buffers within the operating system.

The types of failures result in three distinct failure assumptions:
– the send omission model, in which processes can crash and experience only

send-omissions (and no receive omissions),
– the receive omission model (analogous to the send-omission model), and
– the send/receive omission model (sometimes also called general omission),

in which processes can crash and experience either send-omissions or receive
omissions.

A process p is correct if it does not make any failure at all, i.e., it never crashes
and experiences neither send nor receive omissions. Process p is crash-correct if
it never crashes. If process p crashes at some time we say it is crash-faulty.

Due to the omissions, some processes could be disconnected forever from cor-
rect processes. More precisely, we say that process p is in-connected, if infinitely
often it receives messages from some correct processes. In analogy, we say that
process p is out-connected, if an infinity of its messages are received by some
correct processes. A process is connected if it is in-connected and out-connected.

Clearly, in the send-omission failure model every process is in-connected, and
in the receive omission failure model every process is out-connected.

2.2 Relations to Crash Model

Transient omissions refer to cases when a process regularly omits a message but
equally regularly sends/receives a message over the channel. Such omissions can
be masked by piggybacking information about previous messages on every new
message sent over a channel.

Since omissions introduce asymmetry in the communication relation, it is also
an issue who can communicate with whom. For example, a process with receive
omissions may receive messages from a correct process p but may fail to receive
messages from another correct process q. We can mask parts of this asymmetry
by using the relay algorithm of Figure 1 which defines new primitives Send
and Receive. These primitives ensure that if a process p is in-connected then it
receives infinitely often messages from all correct processes. Correspondingly, if
a process is out-connected, then infinitely many of its messages are received by
all correct processes. However note that the relay algorithm is costly concerning
the communication load (each message from p to q generates 2n− 1 messages).

In the following algorithms we avoid to use this relay algorithm. But it shows
that if all crash-correct processes are connected, then by piggybacking old mes-
sages and with the relay algorithm all omissions can be masked and the omission

398 C. Delporte-Gallet, H. Fauconnier, and F.C. Freiling

Code for p:
1 on receive (m, d) from q
2 if d = p ∧m not delivered before then Receive m
3 else if d �= p then send (m, d) to d

4 to Send(m) to d:
5 send (m,d) to all

Fig. 1. Send/Receive with relay

models become equivalent to the crash failure model. Interesting cases arise if
not all crash-correct processes are always connected.

2.3 Consensus

We use the standard definition of Uniform Consensus in this paper. The problem
is defined using two primitives called propose and decide, both taking a binary
value v. An algorithm solving consensus must satisfy the following properties:

– (Termination) Every correct process eventually decides.
– (Uniform Agreement) No two processes decide differently.
– (Validity) The decided value must have been proposed.

3 Failure Detectors for Omission Failure Environments

In this section we revisit failure detectors in crash environments and give a
suitable definition for such a failure detector in omission failure environments.

The definition of failure detectors in the crash model are standard [6] and
the literature contains a lot of definitions of failure detectors for crash failures.
Among these, the failure detectorΩ is particularly interesting: It has been proved
to be the weakest failure detector to solve the consensus problem in the crash
failure model with a majority of correct processes [5]. The output of Ω for each
process p is the identity of one process, the assumed leader for p, such that
eventually all correct processes have the same leader forever and this leader is a
correct process. Hence Ω implements an eventual leader election.

We now extend the definition of failure detector Ω to omission models. In
the omission model, the definition of Ω from the crash model would naively
translate to an eventual leader election of a correct process (i.e., neither does it
experience a crash nor any omission). This is generally too restrictive, because it
could be impossible to ensure that the chosen eventual leader does not experience
permanent omissions. So we consider the following weaker definition:

Definition 1. Failure detector Ω for omission models is a failure detector that
outputs at each time for each process one process, called the leader, such that (1)
there is a time after which, this leader is the same forever at all correct processes
and (2) this process is crash-correct and connected.

Revisiting Failure Detection and Consensus 399

Note that in contrast to the definition of Ω in the crash model, our definition
of Ω allows the eventual leader process to be faulty: The leader may experience
send and receive omissions as long as it remains connected.

In the following algorithms the output of the failure detector Ω for process
p is given by the value of local variable Leader.

4 Solving Consensus

We now show that the failure detector Ω introduced in the previous section is suf-
ficient to solve consensus with a majority of correct processes in the send/receive
omission model. Figure 2 depicts our consensus algorithm. It employs the well-
known rotating coordinator paradigm, i.e., processes run through asynchronous
rounds (counted using the variable r in task 1) and in every such round one
process C is chosen as the coordinator. The processes start with v being their
proposal value of consensus and spawn three concurrent tasks. In task 0, the
coordinator is urged (by using COORD messages) to “impose” its value on all
processes by sending ONE messages (task 1). Processes then evaluate the value
they receive from the coordinator (stored in estfromC). Unless it comes from
the leader (referred to by Ω), a ⊥ value is stored. In the second part of the algo-
rithm, all processes broadcast their received value to all other processes (TWO
messages). If such messages are received from a majority of processes, the non-
⊥ value given in the messages is the decided value and an appropriate decision
message is broadcast to all. Task 2 just ensures that eventually all processes who
receive the decision message actually do decide.

Proposition 1. If Leaderp is the output of the failure detector Ω, the algo-
rithm of Figure 2 implements consensus for a majority of correct processes in
the send/receive omission model.

We just give the main lines of the proof here, the full version can be found
elsewhere [7]. In the proofs of algorithms, by convention, given a variable x of
process p, xτ

p denotes the value of x in p at time τ .
To prove the proposition, we first state the two following lemmas:

Lemma 1. If p and q end the first part (lines 13 to 18) of a round r, then:

(1) if estFromCp = x for some x = ⊥ then estFromCq ∈ {⊥,x},

If p and q end line 21 of a round r, then:

(2) if Lp = {x} for some x = ⊥ then Lq = {x} or Lq = {x,⊥},
(3) if Lp = {⊥,x} for some x = ⊥ then Lq = {x} or Lq = {x,⊥} or Lq = {⊥}.

Lemma 2. If every process p begins some round r, with variable v equal to the
same value d then all processes q ending this round either decide d or have vq = d
at the end of this round.

Now we show that the algorithm satisfies the properties of consensus.

400 C. Delporte-Gallet, H. Fauconnier, and F.C. Freiling

Code for p:
1 Initialization:
2 r := 0 /* round number */
3 v := 〈proposed value〉
4 start Task 0 and Task 1 and Task 2
Task 0:
5 upon receive(COORD, ∗, k) for the first time
6 let (COORD, w, k) be such a message
7 send(ONE, w, k) to all

8 upon receive(ONE, ∗, k) for the first time from another process
9 let (ONE, w, k) be such a message
10 send(ONE, w, k) to all
Task 1:
11 loop forever
12 C := 1 + r mod n /* coordinator */
13 send(COORD, v, r) to pC

14 wait until (receive (ONE, ∗, r) from pC) or (pC �= Leader)
15 if (ONE, w, r) is received then
16 estfromC := w
17 else
18 estFromC := ⊥

19 send(TWO, estFromC,r) to all
20 wait until receive(TWO,∗, r) from a majority of processes
21 let L = {w | (TWO,w, r) is received }
22 if L = {rec} for some rec �= ⊥ then
23 send (DECIDE, rec) to all
24 decide(rec)
25 halt
26 else
27 if L = {rec,⊥} for some rec �= ⊥ then
28 v := rec
29 r := r + 1

Task 2:
30 upon received(DECIDE, k) from q
31 send(DECIDE, k) to all
32 decide(k)
33 halt

Fig. 2. Consensus algorithm for the send/receive omission model using Ω

Lemma 3. The algorithm ensures the agreement property.

Proof. Consider the first time a process, say p, sends a message (DECIDE, d)
for some d. By an easy induction, this sending occurs in task 1, say in round r.
In this round, after line 21, Lp is {d}. Let q be any other process ending round
r, by Lemma 1, in this round Lq is either {d} and q decides in round r, or {d,⊥}
and q ends the round r with v = d.

Revisiting Failure Detection and Consensus 401

By Lemma 2 and an easy induction, in every round r′ ≥ r, every process
either decides d or ends the round with v = d. Hence, all processes which decide
in task 1, decide d. If a process decides in task 2, by an easy induction, this
decision is issued from a process which has decided in task 1. This proves the
agreement property. !
Lemma 4. The algorithm ensures the validity property.

Proof. In the algorithm, all the processes send the values they have just received
and by an easy induction they never insert in the algorithm a value of their own.

 !
Lemma 5. The algorithm ensures the termination property.

Proof. If there is no correct process, termination is trivial. If any correct process
decides by task 2 or task 1 then clearly all correct processes decide.

Assume that no correct process decides, then we prove that all correct pro-
cesses participate to an unbounded number of rounds. For this, assume the
contrary and let r0 be the minimal round number in which at least one correct
process is blocked forever. Let p be such a process in round r0:

– p cannot be blocked in Line 14: if the current coordinator pC is not crash-
correct or is not connected, there is a time after which it cannot be leader
and then p cannot be blocked. If the current coordinator is crash-correct and
connected, by an easy induction p will eventually receive a ONE message
from the coordinator.

– p cannot be blocked in Line 20: by an easy induction all correct processes
will reach round r and send a TWO message for this round. As there is a
majority of correct processes, p will receive a majority of TWO messages.

By the property of the eventual leader election, there is a time τ after which all
correct processes have the same leader pl and this leader is connected. Consider
R the set of rounds in which correct processes are at this time τ . Let r0 be the
first round number such that pl is the coordinator for r0 and r0 is greater than
all elements of R. When all correct processes are in round r0, they do not suspect
coordinator pl of the round r0. Then they adopt for estFromC the value sent
by pl. And so their L set is reduced to one element which is different from ⊥
and they decide. !
This concludes the proof of the proposition.

5 Implementing Failure Detectors

In this section we give algorithms to implement eventual leader election in the case
of send and send/receive omissions. All these algorithms make some additional
assumptions [6,14,2], that are needed if we want to implement consensus deter-
ministically [11]. We also assume that all processes are able to measure time.1

1 In fact they can measure time with a very low accuracy: it is sufficient that (1) the
time interval measure is not decreasing, (2) for each finite time interval I there is an
integer n such that the measure for I is always less than n, and (3) if the measure
of interval time I is less than n then I is a finite time interval.

402 C. Delporte-Gallet, H. Fauconnier, and F.C. Freiling

5.1 Partially Synchronous Models and Eventual Leader Election

In the omission models, messages from p to q are not received by q only due
to send omissions from p or receive omission from q. Hence all communication
links are assumed to be reliable. There is no duplication of messages and every
message received has been sent before.

Concerning timeliness, a communication link (p, q) is eventually timely if
there is a Δ and time τ0 after which every message sent at time τ by p to q is
received by time τ+Δ. Following previous work [1,3], we define eventual sources
and bisources:

Definition 2. Process p is an eventual source if and only if (1) p is a correct
process and (2) for all correct processes q, communication link (p, q) is eventually
timely. Process p is an eventual bisource if and only if (1) p is a source and (2)
for all correct processes q, communication link (q, p) is eventually timely.

Note that if we have at least one eventual bisource in the system, the system
is eventually rather synchronous: If all messages are broadcast and relayed one
time, as eventually all links from correct processes to the eventual bisource and
all the links from this eventual bisource to every correct process are eventually
timely, there is a time after which all messages sent by correct processes are
received in a timely way by all correct processes. Nevertheless, note that in the
partially synchronous model of Dwork, Lynch and Stockmeyer [10], it is assumed
that eventually all links between processes are timely. This assumption is strictly
stronger than the existence of an eventual bisource in the system. Having an
eventual bisource does not exclude that the communication delay between two
processes is unbounded if one of these process is faulty but crash-correct. For
example, the communication delays from (faulty but crash-correct process) p to
(correct process) q are unbounded, if p makes infinitely often send omissions to
all processes but q, the communication from p to q (or every other processes to
which q could relay messages from p) is not timely.

5.2 Eventual Leader Election

In the following, we assume for the send omission model that there is at least one
eventual source and at least one eventual bisource for the send/receive or receive
omission model. In these algorithms every process monitors the timeliness of the
communication links. For this each process sends “ping” messages regularly and
verifies that the messages arrive with a bounded delay. If this is not the case, the
origin of the message is suspected to be faulty. But, even if all the ping messages
from some process are received, due to the omission model, other messages from
this process could not be received. Then in order to simplify the presentation
we assume that all messages of the processes are piggybacked in the “ping”
messages, in this way, if there is no omission of “ping” messages from p to q then
there is no omission of any message from p to q.

Eventual Leader Election in the Send Omission Model. The algorithm in
Figure 3 implements Ω for the case of send omission faults under the assumption
that there is one eventual source.

Revisiting Failure Detection and Consensus 403

In the algorithm, T imer[q] is a special variable that is decremented at each
clock tick. When T imer[q] achieves a value equal to zero, we say that T imer[q]
expires. The principles of the algorithm are rather simple. Each process main-
tains a variable δ that is the assumed communication delay. This variable is
incremented each time a communication of a process exceeds the assumed com-
munication delay. Each process sends periodically (every η clock ticks) a message
to all other processes and maintains a vector V counting the number of times
each process p exceeds the assumed communication delay δ. This vector is piggy-
backed in each message and each process updates its own vector V accordingly
to the received vector (by taking the maximum of the two vectors). In this way,
each vector V will evaluate the number of times a process exceeds the assumed
communication delay. The leader will be the process having the minimal value
in V (in case there is more than one such process, the process with the smallest
identity is chosen).

Intuitively, if a process p makes an infinite number of send omission to some
out-connected process, then eventually, the V [p] of every out-connected crash-
correct process will be unbounded. However, if V [p] is bounded by b for some
out-connected crash-correct process, then it will be bounded by b for every out-
connected crash-correct process. Then eventually all the V [p] of out-connected
crash-correct processes will be equal. Assuming that V [p] is bounded for at least
one process, choosing as leader the minimal p with the smallest value in vector V ,
ensures then that every out-connected crash-correct process eventually chooses
p forever.

Then if s is an eventual source, it is straightforward to verify that V [p] is
bounded for every crash-correct process ensuring that every crash-correct process
eventually chooses forever the same leader.

Note that this leader is not necessarily a correct process: if p makes infinitely
often send omission to some process q that is not out-connected, it is possible
that p is chosen as leader by all correct processes. In this case, the leader for q
could be different from p. However, if there is at least one eventual source in the
system, this algorithm implements failure detector Ω:

Proposition 2. In the algorithm of Figure 3, if there is at least one eventual
source then there is a crash-correct out-connected l and a time after which ev-
ery out-connected process has l as leader. Moreover, all correct processes receive
infinitely often messages from l.

Eventual Leader Election for Send/Receive Omission Models. For the
algorithm of Figure 4, we assume that at least a majority of processes are correct
and that there is at least one eventual bisource. The principles of this algorithm
are similar to the previous one: each process approximates in δ a bound on
the communication delay. The main difference here is that processes maintain
an array M to count the number of times messages from p to q exceeded the
assumed bound. Moreover in order to ensure that the leader is in-connected it
penalizes itself if it sees that it does not receive messages in a timely way from
a majority of processes.

404 C. Delporte-Gallet, H. Fauconnier, and F.C. Freiling

Initialization:
1 δ := 1
2 for all q : V [q] := 0
3 for all q : T imer[q] := δ

Task 1:
4 each η clock ticks
5 send V to all

Task 2:
6 on receive X from q
7 for all q : V [q] := max{V [q], X[q]}
8 set T imer[q] to δ

Task 3:
9 on T imer[q] expired
10 V [q] := V [q] + 1
11 δ := δ + 1
12 set T imer[q] to δ

Task 4:
13 forever do
14 Leader := min r such that V [r] := min{V [q]|q ∈ Π}

Fig. 3. Implementation of Ω in a system with at least one eventual source and a
majority of correct processes

As processes may make receive omissions, the value of M [p, q] does not nec-
essarily mean that q has made M [p, q] send omissions, and so the choice of the
leader is more intricate. For this, for each process q, we consider all the sets
containing a majority of processes and for each such set the maximum value of
M [p, q], then the estimate for q is the minimum of these values.

If there is at least one bisource in the system, this algorithm implements Ω:

Proposition 3. In the Algorithm of Figure 4, if there is at least one eventual
bisource there is a crash-correct connected l and a time after which every crash-
correct connected process has l as leader.

We again just give a sketch of the proof: Note first that eventually infor-
mation from out-connected processes reaches all in-connected and crash-correct
processes:

Lemma 6. If p is out-connected and q is in-connected and crash-correct, then
for all τ , there is a time τ ′ such that M τ

p ≤M τ ′
q .

If p is not in-connected and crash-correct, there is a time τ after which p does
not receive any message from any correct process, as there is a majority of correct
processes after time τ+η strictly less than n/2 processes belong to GoodInputsp,

Revisiting Failure Detection and Consensus 405

Initialization:
1 δ := 1
2 for all q : T imer[q] := δ
3 for all q, r : M [q, r] := 0
4 GoodInputs := ∅

Task 1:
5 each η clock ticks
6 if (|GoodInput| ≤ n/2) then
7 for all q : M [q, p] := M [q, p] + 1
8 send (M) to all

Task 2:
9 on receive A from q
10 for all x, y : M [x, y] := max{M [x, y], A[x, y]}
11 add q to GoodInputs
12 set T imer[q] to δ

Task 3:
13 on T imer[q] expired
14 remove q from GoodInputs
15 M [p, q] := M [p, q] + 1
16 δ := δ + 1
17 set T imer[q] to δ

Task 4:
18 forever do
19 for all r do
20 V [r] := min{max{M [q, r]|q ∈ L} such that |L| = #n

2 $+ 1}
21 Leader := min r such that V [r] := min{V [q]|q ∈ Π}

Fig. 4. Implementation of Ω in a system with at least one eventual bisource and a
majority of correct processes

and at each η, p increments for all q M [q, p] and then limτ→∞Mp[q, p] = ∞ for
all q. Then by Lemma 6:

Lemma 7. If p is crash-correct and not in-connected then for all in-connected
and crash-correct processes q and for all r limτ→∞M τ

q [r, p] = ∞.

If p is crash-faulty or not out-connected, there is a time after which no mes-
sages from p are received by correct processes and then for every correct process
q T imer[p] expires infinitely often, and Mq[q, p] is incremented infinitely often
and limτ→∞M τ

q [q, p] = ∞. By Lemma 6:

Lemma 8. If p is crash-faulty or not out-connected then for all in-connected
and crash-correct q: limτ→∞M τ

q [q, p] = ∞.

As at least a majority of processes is correct, any subset of more than n/2
processes contains at least one correct process, then if p is crash-faulty or not

406 C. Delporte-Gallet, H. Fauconnier, and F.C. Freiling

out-connected or not in-connected by the previous lemmas, max{M τ
q [r, p]|r ∈

L s.t. |L| = 6n
2 7 + 1} is unbounded for every in-connected and crash-correct

process q:

Lemma 9. If p is crash-faulty or not out-connected or not in-connected then
limτ→∞ V τ

q [p] = ∞ for every in-connected and crash-correct process q.

By lemma 6:

Lemma 10. If limτ→∞ V τ
q [p] = k for some out-connected crash-correct q, then

limτ→∞ V τ
r [p] = k for all in-connected crash-correct process r.

Now let s be an eventual bisource, then there a Δ and a time τ after which,
(1) every message sent by a correct process to s and (2) every message sent by
s to any correct process p is received within Δ. Then as δs is incremented each
time a timer expires, there is a time τs > τ after which every correct process
are in GoodInputss, as there is a majority of correct processes, after time τs
|GoodInputss| > n/2 and s will not increment Ms[p, s] for any p. In the same
way, there is a time τ ′ > τs after which no messages from s will exceed δp for
any correct process p and then Mp[p, s] will not increase. Then:

Lemma 11. If s is an eventual bisource then for all in-connected crash-correct
process p, limτ→∞ V τ

p [s] <∞.

Hence, consider the set S of processes q such that for all correct processes
p limτ→∞ V τ

p [q] < ∞. From Lemma 9, S contains only crash-correct connected
processes. By the previous lemma, if there is at least one bisource this set is not
empty. By Lemma 10, for every q ∈ S all the limτ→∞ V τ

p [q] for p correct are
equal to, say kq. Let q0 be the process belonging to S with minimal identity such
that kq is minimal. It is easy to verify that eventually all correct processes will
chose q0 as leader. This concludes the proof.

6 Comparison with Previous Work and Conclusion

Failure detection and consensus in omission environments have been studied
previously in unpublished work by Dolev et al. [8,9]. The failure detector ♦S(om)
which they use to solve consensus is different but rather close in power to our
definition of Ω. In contrast to Dolev et al. [8,9], we focus on the implementability
of that failure detector under weak synchrony assumptions. To the best of our
knowledge, our consensus algorithm using Ω is also novel in this model.

Concerning timeliness assumptions enabling to solve consensus, Dwork, Lynch
and Stockmeyer [10] proved that consensus is solvable if all correct processes are
eventually timely. Other work [2] obtained the same timeliness assumptions as
here. Note that in both cases, the authors consider the Byzantine failure model
that is strictly stronger than omission faults. Also, these solutions do not use a
modular approach with failure detectors.

In this paper we studied consensus in models where processes can crash and
experience message omissions. This model was motivated from the area of se-
curity problems where omission models can be used to model security problems

Revisiting Failure Detection and Consensus 407

with smart cards. In this paper we were mainly interested in proving the fea-
sibility of solving consensus in such models, i.e., finding solutions, we were not
interested in their efficiency. Hence, most of the algorithms presented here can
probably be improved to ensure better performance. For example, in the case of
send-omissions and implementation of Ω by algorithm of Figure 3, this algo-
rithm could be improved: In task 0, there is no need to relay the messages ONE
because with send-omissions the eventual chosen leader is not only in-connected
but already receives infinitely many messages from correct processes.

One interesting open problem is to define the weakest failure detector to solve
consensus with omission models, i.e., asking the rather fundamental question
on what failure detector is necessary. In particular it is not proved that really
the existence of an eventual bisource is needed for receive (and send/receive)
omissions models.

The Ω implementation in the send omission model assumes only that there is
at least one eventual source in the system, whereas for the receive or send-receive
omission model we assume here that there is at least one eventual bisource. We
conjecture that in the receive and send-receive omission models an eventual
source is not enough.

Another line of future work is to make our “paper and pencil mathematics
style” proofs more rigorous and verify them using machine-assisted tools. Previ-
ous and ongoing work in the area of fault-tolerant systems is very encouraging
[13,15].

References

1. M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Stable leader elec-
tion (extended abstract). In 15th International Symposium on Distributed Com-
puting (DISC), LNCS 2180, pages 108–122. Springer-Verlag, 2001.

2. M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Communication-
efficient leader election and consensus with limited link synchrony. In 23rd ACM
Symposium on Principles of Distributed Computing (PODC), pages 328–337, St.
Johns, Newfoundland, Canada, 2004.

3. M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. On implementing
Omega with weak reliability and synchrony assumptions. In 22nd ACM Symposium
on Principles of Distributed Computing (PODC), pages 306–314, 2003.

4. G. Avoine, F. C. Gärtner, R. Guerraoui, and M. Vukolic. Gracefully degrading fair
exchange with security modules. In In Proceedings of the 5th European Dependable
Computing Conference(EDCC), pages 55–71, Apr. 2005.

5. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for
solving consensus. J. ACM, 43(4):685–722, July 1996.

6. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, Mar. 1996.

7. C. Delporte-Gallet, H. Fauconnier, and F. C. Freiling. Revisiting failure detection
and consensus in omission failure environments. Technical Report AIB-2005-13,
RWTH Aachen, June 2005.

8. D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure detectors in omission
failure environments. Technical Report TR96-1608, Cornell University, Computer
Science Department, Sept. 1996.

408 C. Delporte-Gallet, H. Fauconnier, and F.C. Freiling

9. D. Dolev, R. Friedmann, I. Keidar, and D. Malkhi. Failure detectors in omission
failure environments (brief announcement). In 16th ACM Symposium on Principles
of Distributed Computing (PODC), 1997.

10. C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, Apr. 1988.

11. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

12. V. Hadzilacos. Issues of Fault Tolerance in Concurrent Computations. PhD thesis,
Harvard University, 1984. also published as Technical Report TR11-84.

13. Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing and
scheduling. ACM Transactions on Programming Languages and Systems, 21(1):46–
89, 1999.

14. A. Mostéfaoui, E. Mourgaya, and M. Raynal. Asynchronous implementation of
failure detectors. In Dependable Systems and Networks (DSN), pages 351–360.
IEEE Computer Society, 2003.

15. U. Nestmann and R. Fuzzati. Unreliable failure detectors via operational semantics.
In Advances in Computing Science - ASIAN 2003 Programming Languages and
Distributed Computation, 8th Asian Computing Science Conference, volume 2896
of Lecture Notes in Computer Science, pages 54–71, Mumbai, India, Dec. 2003.
Springer-Verlag.

16. K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Transactions on Software Engineering, 12(3):477–482,
Mar. 1986.

Congruences and Bisimulations for Continuous-Time
Stochastic Logic

Ernst-Erich Doberkat�

Chair for Software Technology, University of Dortmund
ernst-erich.doberkat@udo.edu

Abstract. Continuous stochastic logic (CSL) deals with the verification of sys-
tems operating in continuous time, it may be traced to the well known tree logic
CTL. We propose a probabilistic interpretation of this logic that is based on
stochastic relations without making specific assumptions on the underlying dis-
tribution, and study the problem of bisimulations in a fairly general context from
the viewpoint of congruences for stochastic relations. The goal is finding minimal
sets of formulas that permit efficient checking of models.

1 Introduction and Motivation

The logic CSL [1] is a stochastic version and variant of the popular logic CTL for
model checking. The user is supplied with the usual arsenal of expressions for state
formulas, it includes a steady-state operator for modelling asymptotic phenomena, it
has the until-, as well as the next-operator, and it has finally a family of path quanti-
fiers that model existential and universal quantification over paths through probabilistic
counterparts. The logic has considerable expressive power, as is demonstrated convinc-
ingly in [1]. Recently, Desharnais and Panangaden [3] have proposed an interpretation
of a fragment of CSL over a continuous domain, hereby providing a general framework
for the treatment of bisimulations. The originally given interpretation in [1] is based
on a finite state space and investigates the computational side of model checking using
CSL. A comparison with [3] suggests that the wide and well-assorted toolkit provided
by probabilities over non-finite state spaces is a welcome addition for investigating the
properties of this logic. This is particularly true when it comes to investigating bisimula-
tions. A bisimulation induced by a set F of formulas says that two states are equivalent,
provided they behave in the same manner on F (either they both satisfy a formula, or
they both don’t), and provided the transitions from these states work probabilistically
identical on the equivalence classes.

Here the interesting problem arises of determining those states that behave in the
same manner, and of factoring the system accordingly. Unfortunately there are infinitely
many formulas, so that a direct identification is usually difficult, and one has to investi-
gate ways in which a representing set of formulas can be found: if states behave iden-
tical on these representatives, then they will identical on the set of all formulas as well.
The bisimulation problem boils down to investigate the problem of identifying such a
set. Clearly, a set of formulas yields an equivalence relation on all states by saying the

� Research funded in part by Deutsche Forschungsgemeinschaft, grant DO 263/8-1, Algebra-
ische Eigenschaften stochastischer Relationen.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 409–423, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

410 E.-E. Doberkat

two states are equivalent iff they satisfy exactly the same formulas from this set. This
very equivalence relation turns out to be the central tool in these investigations: How
large can the set of formulas get and still preserve the equivalence relation? This kind
of relation has quite an interesting structure the investigation of which will further our
understanding of the bisimulation problem.

The present paper observes that [3] does not deal with the full CSL but rather with a
fragment in which the steady-state operator is missing. It observes structurally that the
probabilistic approach is unnecessary restrictive, since the interpretations of CSL are
based on a rate function. The present paper proposes a more general setting by mod-
elling both, state transitions and transition rates, through stochastic independent prob-
abilistic relations. This permits a more general approach, rendering the probabilistic
arguments more transparent. In particular the tools collected from investigating con-
gruences for stochastic relations can be used to some advantage. This requires fitting
the probabilistic approach into the framework provided for stochastic relations. This is
done explicitly and easily in Section 3, so that we work with a relation between states
and paths, i.e., infinite alternating sequences of times and states. Of course, this relation
has the rate based relations from [1, 3] as special cases. Given the formulation in terms
of transition probabilities, we spend some time for an investigation of sets of infinite
paths (Section 3), showing that the sets of states resp. paths in which a formula is valid
is measurable indeed. A particular difficulty lies in dealing with those states that satisfy
an infinitesimal condition (such as e.g., that the behavior will stabilize asymptotically).
Only through showing that these sets are measurable the probabilities for these events
to occur could not be computed.

All this preliminary work serves to interpret CSL stochastically. This interpretation
is introduced in Section 4 by defining the semantics of CSL-formulas. Section 5 defines
the class of smooth equivalence relations. The class of these relations is well known in
the theory of Borel sets.

This leads quite naturally to the investigation of congruences for stochastic rela-
tions, and the set of formulas which we need to investigate lead to congruences. Thus
subsets of CSL and congruences for investigating them are quite intertwined; what hap-
pens exactly there is investigated in Section 6 from a rather algebraic point of view. The
discussion provides the tools for answering the questions we did start with: given two
states x and x′ that satisfy the same formulas from a set F of CSL-formulas, can we say
whether or not they satisfy the same formulas in cl(F), where cl(F) is the smallest set
of formulas that contains F , and that is closed under the logic’s operators? Can we say
that for particularly easily described formulas, viz., the atomic propositions AP ? Un-
fortunately, the answer to the latter question is less clearly cut than one would expect (or
hope: cl(AP) is the set of all formulas); criteria for answering the last question are de-
rived. The paper closes in Section 7 with a look at possible further developments which
may be pursued. Lack of space prevents giving always complete proofs; the reader is
referred to the full paper [6] for a complete discussion.

Related Work. This paper is a companion and an extension to [3]. It extends the latter
paper by taking a considerably more general probabilistic approach, by treating the full
logic, and by a systematic use of congruences as a tool for investigating the problems
at hand.

Congruences and Bisimulations for Continuous-Time Stochastic Logic 411

2 The Logic CSL

Fix AP as a countable set of atomic propositions. We define recursively state formulas
and path formulas for CSL:

State formulas are defined through the syntax

φ ::= 0 | a | ¬φ | φ ∧ φ′ | S�p(φ) | P�p(ψ)

Here a ∈ AP is an atomic proposition,ψ is a path formula, � is one of the relational
operators <,≤,≥, >, and p ∈ [0, 1] is a rational number.

Path formulas are defined through

ψ ::= X I φ | φ UI φ′

with φ, φ′ as state formulas, I ⊆ R+ a closed interval of the non-negative real
numbers R+ with rational bounds (including I = R+ itself).

We denote the set of all state formulas by LAP .
The operatorS�p(φ) gives the steady-state probability for φ to hold with the bound-

ary condition � p; the formula P replaces quantification: the path-quantifier formula
P�p(ψ) holds for a state x iff the probability of all paths starting in x and satisfying ψ
is specified by � p. Thus ψ holds on all paths starting from x iff x satisfies P≥1(ψ), a
path being an alternating infinite sequence σ = 〈x0, t0,x1, t1, . . . 〉 of states xi and of
times ti. The next-operator X I φ is assumed to hold on path σ iff x1 satisfies φ, and
t0 ∈ I holds. Finally, the until-operator φ1UI φ2 holds on path σ iff we can find a point
in time t ∈ I such that the state σ@t which σ occupies at time t satisfies φ2, and for
all times t′ before that, σ@t′ satisfies φ1. Paths and operators on them will be discussed
more formally in Section 4.

3 Paths: Probabilities and Measurability

This section collects some of the preparatory work that needs to be done for interpreting
CSL probabilistically. We will define the probabilistic model as a stochastic relation
between states and alternating sequences of times and states. It will be shown that the
usual model which is based on rate functions and the exponential distribution is a special
case, and it will turn out during the course of the present discussion that many properties
which are derived with the specific, exponentially based model in mind hold also in the
more general framework.

We fix throughout this paper X as the set of states; X is assumed to be an analytic
space, i.e. the Borel image of a Polish space. Polish spaces in turn are topological spaces
with a countable dense subset which are metrizable as complete spaces. Recall that a
stochastic relation K : X1 � X2 between two analytic spaces X1 and X2 assigns to
each x1 ∈ X1 a probability measure K(x1) on (the Borel sets of) X2 so that x1 �→
K(x1)(B2) constitutes a Borel measurable function on X1 for each B2 ∈ B(X2).

We will assume that we work with a family (Kn)n∈N of stochastic relations Kn :
X � X , so that at the discrete time-point n ∈ N the state transitions are governed by

412 E.-E. Doberkat

Kn, hence Kn(x)(D) is interpreted as the probability that the new state in step n + 1
is a member of the Borel set D ⊆ X , provided the state at step n is x. In a similar
way we assume that we have a family (Ln)n∈N of stochastic relations Ln : X � R+
which gives the time in which transitions are triggered: suppose the system is at n in
state x, then Ln(x)([s, t]) is the probability that jumping from x to another state occurs
within the time interval [s, t]. Changes of state and times of change are stochastically
independent.

Observation 1. The usual approach to interpreting continuous time Markov chains
runs via a rate function [1] which is adapted to the case of continuous state spaces
through a transition measure [3]. Assume that R represents the rate, then

1. ∀x ∈ X : R(x) is a finite measure on X such that E(x) := R(x)(X) > 0 always
holds,

2. ∀B ∈ B(X) : x �→ R(x)(B) is a measurable function X → R+.

The rate function models the transition rate: if the system is in state x, then the transition
rate for jumping to a new state that is a member of the Borel set D ⊆ X is given by
R(x)(D). This transition rate is assumed to be finite. We also assume in the rate model
that there is no blind state, so transitions are assumed to be possible from all states, thus
E(x) > 0.

Put K(x)(D) := R(x)(D) · E(x)−1 and set for the probability of making a tran-
sition from state x within t time units L(x)([0, t]) := 1 − e−E(x)·t, then L(x)(F) =
E(x)−1 ·

∫
F e−E(x)·t dt is also independent of n. Consequently, the approach discussed

here fits into the usual set up to model continuous time Markov processes, and even
generalizes it. —

Fix a state x ∈ X , and proceed inductively: Put M1(x) := L1(x)⊗K1(x), and set
in the inductive step for the Borel set D ⊆ (R+ ×X)n+1

Mn+1(x)(D) :=
∫

(R+×X)n

(Ln+1(πn,X(w)) ⊗Kn+1(πn,X(w)) (Dw) Mn(x)(dw),

where Dw := {〈t′,x′〉 | 〈w, t′,x′〉 ∈ D} is the set of all times and states 〈t′,x′〉 such
that 〈w, t′,x′〉 is a member of D, and πn,X(w) is just the nth state component of w.

Analyzing the expression, we see that at time n + 1 the probability that the pair
of timing a transition and changing a state is an element of Dw is computed from the
product measure (Ln+1(xn)⊗Kn+1(xn)) (Dw) , provided the corresponding times
and states that have been run through during steps 1, . . . , n is w which is captured
through Mn(x)(dw) with xn := πn,X(w) as the last state.

Standard arguments show that Mn : X � (R+ × X)n is a stochastic relation
which renders the probability for alternating paths of times and states of length n given
an initial state. This probability will be extended to infinite paths now.

Lemma 1. There exists a unique stochastic relation M : X � (R+ ×X)∞ such that
M(x)(A×

∏
j>n(R+ ×X)) = Mn(x)(A) for each A ∈ B((R+ ×X)n).

We will use this construction for an investigation of path probabilities, because
M(x)(A) is the probability for an infinite alternating path constructed from states and

Congruences and Bisimulations for Continuous-Time Stochastic Logic 413

transition times that starts at state x to be in the Borel set A ∈ B((R+ × X)∞). The
construction proposed in [1, Section 3.2] and in [3, Definition 3.1] works a wee bit
different: it starts with an initial probability π on X and constructs a measure M∗

π on
B(X × (R+ ×X)∞), only to specialize π to δx, the Dirac measure on x. It is easy to
see that M∗

δx
= M(x), and that vice versa

M∗
π(A) =

∫
X

M(x)(A) π(dx)

holds for A ∈ B((R+ × X)∞). Which way to chose is a matter of taste and of con-
venience: The approach proposed here makes it easier to use the tools from stochastic
relations, as we will see soon.

Let’s talk about paths: The logic has path formulas, which will of course be in-
terpreted on paths. A path σ is an element of the set PATHS := (X × R+)∞. Path

σ = 〈x0, t0,x1, t1, . . . 〉 is sometimes written as x0
t0−→ x1

t1−→ . . . and given the
interpretation that ti is the time spent in state xi. Given i ∈ N, denote xi by σ[i] as the
(i + 1)st state of σ, and let δ(σ, i) := ti. Let for t ∈ R+ the index i be the smallest
index k such that t <

∑k
i=0 ti, and put σ@t := σ[i], if i is defined; set σ@t := #,

otherwise (here # is a new symbol not in X ∪ R+). X# denotes X ∪ {#}; this is an
analytic space again (and will be briefly needed only in Lemma 2). The definition of
σ@t differs slightly from the one employed by [1]: while that paper takes the smallest
index k with t ≤

∑k
i=0 ti, we take in accordance with [3] strict inequality. This has

technical reasons which are based on the observation that for any time t we can find a
rational time t′ with σ@t = σ@t′.

We will deal only with infinite paths. This is no loss of generality because events that
happen at a certain time with probability 0 will have the effect that the corresponding
infinite paths occur only with probability 0. Thus we do not prune the path; this makes
the notation somewhat easier to handle without losing anything.

The following Lemma looks innocent, but will turn out as an important device:

Lemma 2. 〈σ, t〉 �→ σ@t is a Borel measurable map from PATHS × R+ to X#. In
particular, the set {〈σ, t〉 | σ@t ∈ X} is a measurable subset of PATHS × R+.

We obtain from this the measurability of some sets and maps which will be im-
portant for the later development. A notational convention will be observed: the letter
σ will always denote a generic element of PATHS, and the letter τ always a generic
element of R+ × PATHS, while t ∈ R+ is a typical time.

Proposition 1. We observe the following properties:

1. {σ |
∑

i≥0 δ(σ, i) is finite} is a measurable subset of PATHS,
2. {〈σ, t〉 | limi→∞ δ(σ, i) = t} is a measurable subset of PATHS × R+,
3. For each Borel set A ⊆ X , x �→ lim inft→∞M(x)({τ | 〈x, τ〉@t ∈ A}) and

x �→ lim supt→∞M(x)({τ | 〈x, τ〉@t ∈ A}) are measurable maps X → R+.

As a consequence we obtain that the set on which the asymptotic behavior of the
transition times is reasonable in the sense that it tends probabilistically to a limit is well
behaved in terms of measurability:

414 E.-E. Doberkat

Corollary 1. Let A ⊆ X be a Borel set, then

1. The set QA := {x ∈ X | limt→∞M(x)({τ | 〈x, τ〉@t ∈ A}) exists} on which the
limit exists is a Borel subset of X ,

2. x �→ limt→∞M(x)({τ | 〈x, τ〉@t ∈ A} is a measurable map QA → R+.

Using these results one can prove for example that the set of all Zeno paths (i.e.,
the set of all paths the timing information of which is summable to a finite sum) consti-
tutes a set of measure zero provided the probabilities given by (Ln)n∈N are uniformly
bounded. The reader is referred to [1], and to the full paper [6] for a discussion.

4 Interpreting the Logic

Now that we know how to describe the behavior of paths probabilistically, we are ready
for a probabilistic interpretation of CSL. This is done using the sequences (Kn)n∈N

and (Ln)n∈N, from which the stochastic relation M : X � R+ × PATHS has been
constructed. The interpretations for the formulas are established, and we show that the
sets of states resp. paths on which formulas are valid are Borel measurable.

To get started on the formal definition of the semantics, we assume that we know for
each atomic proposition which state it is satisfied in, so we fix a map L : AP → B(X).

The semantics is then described recursively through relation |= between states resp.
paths, and formulas as follows:

1. x |= 0 is true for all x ∈ X .
2. x |= a iff x ∈ L(a), provided a is an atomic expression.
3. x |= φ1 ∧ φ2 iff x |= φ1 and x |= φ2.
4. x |= ¬φ iff x |= φ is false.
5. x |= S�p(φ) iff limt→∞M(x)({τ | 〈x, τ〉@t |= φ}) exists and is � p.
6. x |= P�p(ψ) iff M(x)({τ | 〈x, τ〉 |= ψ}) � p.
7. σ |= X I φ iff σ[1] |= φ and δ(σ, 0) ∈ I.
8. σ |= φ1 UI φ2 iff ∃t ∈ I : σ@t |= φ2 and ∀t′ ∈ [0, t[: σ@t′ |= φ1.

Denote by [[φ]] the set of all states for which the state formula φ holds, resp. the set of all
paths for which the path formula φ is valid. We do not distinguish notationally between
these sets, as far as the basic domains are concerned, since it should always be clear
whether we describe a state formula or a path formula.

We show that we have measurable sets before us. The until-operator requires some
attention, thus we single it out, before diving into a general discussion on measurability
again.

Lemma 3. Assume that A1 andA2 are Borel subsets of X , and I ⊆ R+ be an interval,
then U(I, A1, A2) ∈ B(PATHS), where
U(I, A1, A2) := {σ | ∃t ∈ I : σ@t ∈ A2 ∧ ∀t′ ∈ [0, t[: σ@t′ ∈ A1}.

Proof. Remember that, given a path σ and a time t ∈ R+ there exists a rational time
t′ ≤ t with σ@t = σ@t′. Consequently, U(I, A1, A2) equals the countable union⋃

t∈Q∩I

(
{σ | σ@t ∈ A1} ∩

⋂
t′∈Q∩[0,t]{σ | σ@t′ ∈ A2}

)
. The inner intersection is

Congruences and Bisimulations for Continuous-Time Stochastic Logic 415

countable and is performed over measurable sets by Lemma 2, thus forms a measur-
able set of paths. Intersecting it with a measurable set and forming a countable union
yields a measurable set again. ,

This is the crucial step towards establishing

Proposition 2. The set [[φ]] is Borel, whenever φ is a state formula or a path formula.

Proof. The proof proceeds by induction on the structure of the formulaφ. The induction
starts with the formula 0, for which the assertion is true, and with the atomic proposi-
tions, for which the assertion follows from the assumption on L: [[a]] = L(a) ∈ B(X).
Assuming for the induction step that we have established that [[φ]] is Borel measur-
able we will focus here on the steady state behavior. The until-operator is treated eas-
ily through Lemma 3, the other cases are quite straightforward, see [6]. Put $φ(x) :=
limt→∞M(x)({τ | 〈x, τ〉@t ∈ [[φ]]}), then we infer from Corollary 1 that the set
Q[[φ]] := {x ∈ X | $φ(x) exists} is a Borel set, and that $φ constitutes a Borel measur-
able function on Q[[φ]]. Consequently, [[S�p(φ)]] = {x ∈ Q[[φ]] | $φ(x) � p} is a Borel
set. ,

Measurability of the sets on which a given formula is valid is of course a prerequisite
for computing interesting properties. So we can compute e.g.

P≥0.5((¬down) U [10,20] S≥0.8(up2 ∨ up3)))

as the set of all states that with probability at least 0.5 will reach a state between 10
and 20 time units so that the system is operational (up2, up3 ∈ AP) in a steady state
with a probability of at least 0.8; prior to reaching this state, the system must be oper-
ational continuously (down ∈ AP) [1, p. 529]. This set can be computed recursively
from its components, given the semantics of the logic; for X finite, algorithms for its
computation are investigated in [1].

5 Congruences

Suppose that we have a set F of state formulas, then F induces an equivalence relation
on the set of states. It would be tremendously practical if one could deduce from the
behavior of the states on F properties that holds for the system as a whole. Consider e.g.
F = AP , then validity for a given state can be decided upon inspection of L. Before
going deeper into this issue, we need smooth equivalence relations as a tool from the
theory of Borel sets. We will define smooth equivalence relations, and investigate some
of their helpful properties. It will become apparent that the notion of an invariant Borel
set is quite central to the discussions that will be undertaken later, so we study the σ-
algebra of these sets. We use a somewhat surprising property of invariant sets: they
uniquely determine the equivalence relation from which they stem, which means that
whenever we know the invariant sets, we are able to identify the relation. This will be
most helpful later on.

The reader may have wondered why we work in the context of analytic spaces,
given that analyticity did not really have an impact for the constructions undertaken

416 E.-E. Doberkat

so far. This is true: All constructions until now could have been carried out in general
measurable spaces. But the notion of a smooth equivalence relation is not particular
fruitful in these general spaces, so from now on the assumption of working in an analytic
space will become instrumental.

Definition 1. An equivalence relation ρ on X is called smooth iff there exists a se-
quence (An)n∈N of Borel set in X such that x ρ x′ ⇔ [∀n ∈ N : x ∈ An ⇔ x′ ∈ An] .
The relation ρ is said to be determined by (An)n∈N.

Smooth relations are a helpful tool for the theory of Borel sets [8], for the theory
of stochastic relations [5], and, indirectly, for the theory of labelled Markov transition
systems [2, 4].

Let ρ be a smooth equivalence relation, denote as usual the equivalence class of
x ∈ X by [x]ρ and by ηρ : X → X/ρ the factor map. Invariant Borel sets will be at the
core of the discussion:

Definition 2. A Borel set A is called ρ-invariant iff A =
⋃
{[x]ρ | x ∈ X}, thus

x ∈ A,x ρ x′ together imply x′ ∈ A. Denote by INV (B(X), ρ) the set of all ρ-
invariant Borel sets.

It is well known [8, Lemma 3.1.6] that INV (B(X), ρ) forms a σ-algebra, and that
INV (B(X), ρ) equals σ({An | n ∈ N}), provided the sequence (An)n∈N determines
ρ. The identity relation ΔX and the universal relation UX are always smooth equiva-
lence relations. The invariant Borel sets are easy determined: It is not difficult to see
that INV (B(X), ΔX) = B(X) and INV (B(X), UX) = {∅, X}.

Invariant Borel sets have some interesting properties:

Lemma 4. Let ρ be a smooth equivalence relation, then

1. X/ρ is an analytic space the Borel sets of which are the final σ-algebra with respect
to ηρ : X → X/ρ.

2. The ρ-invariant Borel sets on X are the inverse image of B(X/ρ) under ηρ, thus
INV (B(X), ρ) = η−1

ρ [B(X/ρ)] .
3. If C ⊆ B(X) is a countably generated sub-σ-algebra of the Borel sets of X , then

there exists a unique smooth equivalence relation ρC on X with
C=INV (B(X), ρC) .

Let us have a look at what Lemma 4 entails. The first property is structurally im-
portant: it says that factoring through a smooth relation keeps us within the realm of
analytic spaces, and it gives a specific procedure telling us how to construct the Borel
sets on this analytic space. Polish spaces do not have this property. This is why analytic
spaces, being more robust, are of interest here. The second property states that if we
take an arbitrary ρ-invariant Borel set B′ ∈ INV (B(X), ρ), then we always find a
Borel set B0 ⊆ X/ρ with B′ = η−1

ρ [B0] . The third property indicates that the equiva-
lence relation is uniquely determined by its invariant sets, thus if we can infer that two
smooth equivalence relations have the same invariant sets, then we may conclude that
these equivalences coincide. We will investigate below equivalence relations which are
defined by a set F of formulas, and through the property 3 in Lemma 4 we are provided

Congruences and Bisimulations for Continuous-Time Stochastic Logic 417

with considerable degrees of freedom for selecting a generating set of formulas. This
will be capitalized upon later.

For technical reasons we will need to construct the countable product of equivalence
relations, and it will be important that smoothness is preserved; the invariant sets of the
product relation can be characterized in terms of the individual components.

Lemma 5. Assume that (Hn)n∈N is a sequence of analytic spaces, and let ζn be a
smooth equivalence relation on Hn for each n ∈ N. Define the equivalence relation
(×n∈N ζn) through (an)n∈N (×n∈N ζn) (a′n)n∈N iff ∀n ∈ N : an ζn a

′
n. Then×n∈N ζn

is a smooth equivalence relation on
∏

n∈N Hn, and INV
(
B(
∏

n∈N Hn),×n∈N ζn
)

=⊗
n∈N INV (B(Hn), ζn) .

Thus the (×n∈N ζn)-invariant Borel sets of the product are just the product of the
Borel sets for the components. A finite version is available as well: the product of two
smooth equivalence relations is smooth again, and the invariant Borel sets for the prod-
uct are just the product of the Borel sets for the factors.

Now let V,W be analytic spaces, and G : V � W a stochastic relation. Then
equivalent behavior is described by a congruence, which is a pair (α, β) of smooth
equivalence relations with the following property: if two inputs v and v′ cannot be
separated through α, then G(v) and G(v′) behave in the same way on those Borel sets
of W that cannot be separated through β. Here a set B cannot be separated through β
iff w ∈ B and w β w′ together imply w′ ∈ B, hence iff B is β-invariant. This leads to

Definition 3. The pair (α, β) of smooth equivalence relations on V resp. W is said to
be a congruence for the stochastic relation G : V � W iff the following holds v α v′

implies G(v)(B) = G(v′)(B) for each β-invariant Borel subset B ⊆ W . If V = W ,
and α = β, then α alone is called a congruence for G.

Let (α, β) be a congruence for G : V � W , and define Gα,β([v]α)(D) :=
G(v)(η−1

β [D]) for v ∈ A and D ∈ B(W/β), then it can be shown that Gα,β : V/α →
W/β is a stochastic relation, and that the pair of factor maps (ηα, ηβ) constitutes a
morphism, see [5]. We will use this construction for a special case when we define
bisimulations induced by sets of formulas in Section 6.

We will assume for the rest of the paper that both Kn and Ln are independent of
n, so that we work with K resp. L instead. Thus the probabilities for a transition and
those governing the time for staying in a state are independent of the step in which we
are considering the system. This assumption is still considerably more general than the
rate model in [1, 3].

As a first consequence of making the basic probabilities independent of step n we
obtain a recursive formulation for the transition law M : X � (R+×X)∞ that reflects
the domain equation (R+ ×X)∞ = (R+ ×X)× (R+ ×X)∞.

Lemma 6. If D ∈ B((R+ ×X)∞), then

M(x)(D) =
∫

R+×X

M(x′)(D〈t,x′〉) M1(x)(d〈t,x′〉)

holds for all states x ∈ X .

418 E.-E. Doberkat

This decomposition indicates that we may first select in state x a new state and a
transition time; with these data the system then works just as if the selected new state
would have been the initial state. New states and transition times are being averaged
over. Lemma 6 may accordingly be interpreted as a Markov property for a process the
behavior of which is independent of the specific first step.

6 Bisimulations

Returning to the logic, fix a set F of state formulas, and define the — central — equiv-
alence relation x ρF x′ ⇔ ∀φ ∈ F : [x |= φ⇔ x′ |= φ] , then ρF is smooth due to F
being countable. We will investigate in this Section the equivalence ρF . First, the clo-
sure cl(F) of F will be defined as the smallest set of formulas containing F and being
closed under the logic’s operators, and it will be investigated under which conditions
ρcl(F) = ρF holds. An answer to this question makes life easier, since testing satis-
faction only on F is presumably much easier than testing on cl(F), in particular when
F = AP (so that cl(F) = LAP). We will examine an enabling condition, using smooth
equivalence relations and congruences as the decisive tool. This leads to a discussion of
bisimulations, the results obtained for congruences will be transported for an investiga-
tion of bisimilar states. Conditions under which AP -bisimilarity and the satisfaction of
the same formulas will be formulated at the end of this Section.

Definition 4. The closure cl(F) of F is defined as the smallest set of formulas in LAP

which contains F and is closed under the defining operations for the logic.

Thus we start in building up F -formulas from elements of F as the base, just as
we started building up LAP from the set AP of atomic propositions. Observe that
cl(AP) = LAP . We will investigate the smooth relations ρF and ρcl(F) and will estab-
lish that under a mildly restrictive condition ρF = ρcl(F) holds. This result looks rather
modest, but it has some interesting consequences in terms of bisimulations which will
be discussed right away.

The mild condition that will enable us to establish the relations’ equality was de-
tected by Desharnais and Panagaden in [3] for their fragment.

Definition 5. A set F of formulas is said to satisfy the DP-condition iff F has these
properties: F is closed under conjunctions, and P�p(X I φ) ∈ F whenever φ ∈ F, p ∈
[0, 1] rational, I ⊆ R+ a closed interval with rational endpoints.

Closedness under conjunction is a technical condition that will enable us to carry a
property from a set of generators to the σ-algebra generated from it, in the present case
from {[[φ]] | φ ∈ F} to INV (B(X), ρF) . Closedness under the next operator will
have a special consequence, as we will see in a moment.

The DP-condition makes sure that the probabilities for a transition of ρF -equivalent
states into a state in which a formula in F is valid are identical. This is quite comparable
to the observation one makes for stochastic Kripke models for modal logics: there it can
be shown that the probabilities for making a move into a state in which the same formula
is satisfied after an action coincide for equivalent states as well, see [2, 4].

Congruences and Bisimulations for Continuous-Time Stochastic Logic 419

Lemma 7. If x ρF x′ and φ ∈ F , then K(x)([[φ]]) = K(x′)([[φ]]), provided F satisfies
the DP-condition.

Proof. Suppose that we find for x ρF x′ a formula φ′ ∈ F such that K1(x)([[φ′]]) <
r ≤ K1(x′)([[φ′]]), where r may be assumed to be rational. Since

{τ | 〈x, τ〉 |= XR+ φ′} = (R+ × [[φ′]])× (R+ ×X)∞,

we conclude that K1(x)([[φ′]]) = M(x)({τ | 〈x, τ〉 |= XR+ φ′}). But this implies that
x |= P<r(XR+ φ′), similarly, x′ |= P<r(XR+ φ′). But the DP-condition implies that
P<r(XR+ φ′) ∈ F, which is a contradiction. ,

This Lemma is actually a first step towards establishing that ρF generates a con-
gruence for M . This requires an extension of the equivalence relation ρF on X to
(R+ × X)∞. The basic idea is to relate the alternating states in such a sequence
through ρF , and to leave the times alone, hence to relate them through the identity
relation ΔR+ . Thus 〈t0,x1, t1, . . .〉 will be related to 〈t′0,x′1, t′1, . . .〉 iff xi ρF x′i and

ti = t′i for all indices i. In view of Lemma 5 we form the product relation ρ
(∞)
F :=

×n∈N

(
ΔR+ × ρF

)
= (ΔR+ × ρF)∞.

Proposition 3. Assume that F satisfies the DP-condition, then cF := (ρF , ρ
(∞)
F) is a

congruence for M : X � (R+ ×X)∞.

Analyzing the proof (see [6]), it becomes apparent that the DP-condition on F is
needed to establish the initial step in this induction. This property is also responsible
for maintaining invariance in the induction step through the integral representation ren-
dering the Markov property.

The intermediate goal is to prove that ρF = ρcl(F) holds. Because by construction
F ⊆ cl(F), and because F �→ ρF is anti-monotonic, for establishing the equality above
we need to show that ρF ⊆ ρcl(F) is true . We will first investigate ρF -invariant Borel
sets with respect to a smooth equivalence relation on PATHS related to ρF and ΔR+ .

Some auxiliary operators are introduced: let A,A1, A2 be subsets of X , B be a
subset of PATHS, and I ⊆ R+ an interval with rational bounds, then

P�p(B) := {x ∈ X |M(x)({τ | 〈x, τ〉 ∈ B}) � p}.
QA := {x ∈ X | lim

t→∞
M(x)({τ | 〈x, τ〉@t ∈ A}) exists}.

fA(x) := lim
t→∞

M(x)({τ | 〈x, τ〉 ∈ A}), if x ∈ QA.

S�p(A) := {x ∈ QA | fA(x) � p}.
X(I, A) := {σ | σ[1] ∈ A ∧ δ(σ, 0) ∈ I}.

We observe the following properties:

Lemma 8. Let F be a set of formulas, and recall that ρF × ΔR+ denotes the smooth
equivalence relation 〈x, t〉 (ρF ×ΔR+) 〈x′t′〉 iff x ρF x′ ∧ t = t′ on X ×R+. Assume
that F satisfies the DP-condition. We observe the following properties:

420 E.-E. Doberkat

1. If B ∈ INV
(
B(PATHS), ρ(∞)

F

)
, then P�p(B) ∈ INV (B(X), ρF) .

2. If A ∈ INV (B(X), ρF), then both QA and S�p(A) are ρF -invariant Borel sets,

and X(I, A) ∈ INV
(
B(PATHS), ρ(∞)

F

)
.

3. U(I, A1, A2) ∈ INV
(
B(PATHS), ρ(∞)

F

)
, providedA1, A2 are ρF -invariant Borel

sets.

This Lemma is instrumental in establishing our main result on bisimulations. Its
proof is technically somewhat awkward due to the necessity of keeping track of many
smooth relations at once.

Proposition 4. Let F = ∅ be a set of formulas, denote by ρF the equivalence relation
on the set of states imposed by F , and let cl(F) be the closure of F under the logic’s
operators. Then ρF = ρcl(F) holds, provided F satisfies the DP-condition.

Proof. Because ρcl(F) ⊆ ρF is trivial, and since ρcl(F) is determined by the countable
set {[[φ]] | φ ∈ cl(F)} of Borel sets, it is by Lemma 4, part 3 sufficient to show that [[φ]] ∈
INV (B(X), ρF) holds for each φ ∈ cl(F). Since for each φ ∈ F we have trivially
[[φ]] ∈ INV (B(X), ρF) , an inductive reasoning with Lemma 8 on the structure of
F -state formulas and of F -path formulas establishes the assertion. ,

As an interesting direct and first consequence of Proposition 4 we obtain that the
equivalence of states on the atomic propositions determines their equivalence of all
formulas, provided the DP-condition is satisfied. If it is not, we force it: Define for a set
F of formulas

dp(F) :=
⋂
{G ⊆ LAP | F ⊆ G,G has the DP-condition}

as the smallest set of formulas that satisfy the DP-condition (this construction is sensible
because the set LAP of all formulas satisfies the condition under consideration).

We obtain from Proposition 4 right away:

Corollary 2. ρdp(AP) = ρLAP .

This result is not yet fully satisfying; in practice it means that one has to have a look
at the formulas in the DP-closure for concluding whether or not a given property holds
for all formulas. It is, however, desirable to restrict oneself to observing properties on
the atomic propositions alone, and then to say that this property holds for the entirety
of formulas. This is what we want to investigate now.

The basic idea is to find a suitable representation for dp(F) and then to capitalize
on Lemma 4, part 3, for identifying the equivalence relation as ρdp(F).

Let F be a non-empty set of formulas. Define for Ψ ⊆ LAP the set valued map

H(Ψ) := F ∪ {
∧

1≤i≤n

φi | n ∈ N, φ1, . . . , φn ∈ Ψ}

∪ {P�p(X [a,b] φ) | φ ∈ Ψ, a, b, p rational},

then the least fixed point H∗ := μΨ.H(Ψ) exists by the celebrated Kleene-Knaster-
Tarski Fixed Point Theorem, and H∗ =

⋃
n∈N H

(n)(∅) holds, with H(n) as the nth

iterate of H . Similarly, define for a family A of Borel sets in X

Congruences and Bisimulations for Continuous-Time Stochastic Logic 421

h(A) := {[[φ]] | φ ∈ F} ∪ A ∪ {P�p(X([a, b], A)) | A ∈ A, a, b, p rational}.

Again invoking the Kleene-Knaster-Tarski Theorem, we know that the smallest fixed
point C∗ := μA.h(A) exists, and can be computed through C∗ =

⋃
n∈N h

(n)(∅). Here
h(n) is of course the nth iterate of h.

As witnessed by the use of the path quantifier, both constructs are closely related:

Lemma 9. Construct the set H∗ of formulas and the family C∗ of Borel sets as above.
Then H∗ = dp(F), and σ(C∗) = INV

(
B(X), ρdp(F)

)
, thus the ρdp(F)-invariant sets

are generated from H∗.

Let us define F -bisimulations in order to put these results into the proper context.
Define for F ⊆ LAP and for each state x ∈ X the set LF (x) := {φ ∈ F | x |= φ} as
the set of all formulas in F that are satisfied by x.

Definition 6. Let F be a set of formulas, then a smooth equivalence relation ≡F is
called an F -bisimulation iff

1. LF (x) = LF (x′), whenever x ≡F x′.
2. K(x)(D) = K(x′)(D), whenever x ≡F x′ and D ∈ INV (B(X),≡F).

An F -bisimulation is concentrated on the behavior that manifests itself on states,
rather than on paths. Hence we use for its formulation the relation K rather than M .
If ≡F is an F -bisimulation, condition 2 tells us that this relation is in particular a con-
gruence, so we may define the factor relation K≡F ([x]≡F

)(D) := K(x)((η−1
≡F

[D]))
whenever D ∈ B(X/≡F) in a Borel set in the factor space (cp. Lemma 4). It has the
additional property that the map LF : X → F is constant on the equivalence classes.
This observation yields a characterization of F -bisimulations in terms of congruences:

Proposition 5. Let ρ be a smooth equivalence relation onX . Then ρ is anF -bisimulation
iff ρ is a congruence for K with x ρ x′ ⇒ LF (x) = LF (x′).

Consequently, bisimilar states accept exactly the same formulas in F , and they be-
have in exactly the same way on the ≡F -invariant Borel sets. As a first result towards
relating the results obtained so far to bisimulations, we see that under the mild condition
of F being closed under conjunctions, ρF is actually one:

Proposition 6. The relation ρF is an F -bisimulation for eachF ⊆ LAP which satisfies
the DP-condition.

The relation ρF is provided naturally with F , so it plays a prominent role among
all the F -bisimulations (there are other F -bisimulations, e.g., the identity is one, but
probably not the most interesting among all the candidates):

Definition 7. The states x,x′ ∈ X are called F -bisimilar iff x ρF x′ holds.

This is a characterization of F -bisimilarity:

Theorem 1. Let ∅ = F ⊆ LAP be a set of formulas which satisfy the DP-condition,
then two states are F -bisimilar iff they satisfy exactly the same formulas in cl(F).

Proof. This follows immediately from Proposition 4 in conjunction with Proposition 6.
,

422 E.-E. Doberkat

Specializing to the set of atomic formulas, we obtain at once:

Corollary 3. Two states are dp(AP)-bisimilar iff they satisfy exactly the same formulas
in LAP .

This is not yet satisfying for practical purposes, because one has to construct the clo-
sure dp(AP) of the set of all atomic propositions which can be done iteratively through
the computation of a fixed point, as the discussion leading to Lemma 9 shows. Never-
theless it leads to an infinite process, handling a countable set of objects. But suppose
we are in the situation in which both the state transitions K and the jump times L are
determined through a rate function R (cp. Observation 1). Now an easy computation
reveals x |= P�p(X I φ) ⇔ L(x)(I) ·K(x)([[φ]]) � p. Thus the σ-algebra of ρdp(AP)-
invariant Borel sets is by Lemma 9 determined by the ρAP -invariant Borel sets and by
the smallest σ-algebra TR on X that renders the map x �→ R(x)(A) measurable for
each A ∈ INV (B(X), ρAP). This observation yields

Corollary 4. If x �→ R(x)(A) is a INV (B(X), ρAP)-B(R+) -measurable map for
each ρAP -invariant Borel set A, then the following conditions are equivalent for any
two states x,x′ ∈ X:

1. x and x′ are AP -bisimilar.
2. x and x′ satisfy exactly the same formulas in LAP .

The proof capitalizes on the uniqueness of the invariant sets for a smooth equiva-
lence relation: since we are able to identify these sets, we may conclude what shape the
relation has. This shows that a closer inspection of the invariant Borel sets bears some
— probably unexpected — fruits.

Remark 1. The look at [1, Theorem 5] and [3, Theorem 6.3/6.4], in which a similar
equivalence as in Corollary 4 is proposed without additional conditions, is slightly con-
fusing. The paper [1] refers to the paper [3], but the latter paper investigates a logic
without a steady state operator (which the former paper has). On the other hand, there
is reference in [3, Theorem 6.3/6.4] to a corresponding result in [1, Theorem 5]. —

The condition imposed in the Corollary above is satisfied in the finite case whenever
the rate function is constant on the equivalence classes for ≡AP . This can be checked
quite efficiently once the classes are computed, as [1] demonstrates.

7 Conclusion

The paper proposes a stochastic interpretation of CSL imposing minimal assumptions
on the stochastic independence of state changes and residence times. The state space is
an analytic space, hence a rather general type of space that includes finite state spaces
as well as Polish or compact spaces. This permits understanding the interpretation as
a stochastic relation, enabling the use of the tools developed for investigating these
relations.

The main contribution of the paper are the incorporation of a steady state opera-
tor into the stochastic interpretation, yielding a uniform approach, the investigation of

Congruences and Bisimulations for Continuous-Time Stochastic Logic 423

bisimulations as congruences and the development of criteria for the equivalence of dif-
ferent notions of bisimulations, and finally the formulation of a general approach for the
investigation of bisimulations for this type of logic through the theory of congruences
for stochastic relations.

The investigation of logics with stochastic methods has proven to be useful, both
for the logical side and for getting a better understanding of the stochastic issues. While
usually computational aspects appear as the foremost concern in these investigations, it
becomes evident both from [3] and from the present work that structural properties need
to be looked at for their own interest, and from the understanding gained there a deeper
understanding of the applications arises [2, 4, 5]. It may be helpful to continue with
this programme from both points of view. To mind comes a closer investigation into the
probabilistic semantics of logics such as PDL and the incorporation of the μ-calculus
into the framework [7].

References

[1] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Koert. Model-checking algorithms for con-
tinuous time Markov chains. IEEE Trans. Softw. Eng., 29(6):524 – 541, June 2003.

[2] J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation of labelled Markov-processes.
Information and Computation, 179(2):163 – 193, 2002.

[3] J. Desharnais and P. Panangaden. Continuous stochastic logic characterizes bisimulation of
continuous-time Markov processes. J. Log. Alg. Programming, 56(1-2):99 – 115, 2003.

[4] E.-E. Doberkat. Semi-pullbacks and bisimulations in categories of stochastic relations. In
Proc. ICALP’03, volume 2719 of Lecture Notes in Computer Science, pages 996 – 1007,
Berlin, 2003. Springer-Verlag.

[5] E.-E. Doberkat. Stochastic relations: congruences, bisimulations and the Hennessy-Milner
theorem. SIAM J. Computing, 2005. (in print).

[6] E.-E. Doberkat. Zeno paths, congruences and bisimulations for continuous-time stochastic
logic. Technical Report 155, Chair for Software Technology, University of Dortmund, March
2005.

[7] M. Narasimha, R. Cleaveland, and P. Iyer. Probabilistic temporal logics via the modal mu-
calculus. In W. Thomas, editor, Proc. FOSSACS’99, number 1578 in Lecture Notes in Com-
puter Science, pages 288 – 305, Berlin, 1999. Springer-Verlag.

[8] S. M. Srivastava. A Course on Borel Sets. Graduate Texts in Mathematics. Springer-Verlag,
Berlin, 1998.

A Logic for Quantum Circuits and Protocols�

(Extended Abstract)

Manas Patra1,2

1 School of Computer Science and Engineering,
The University of New South Wales, Sydney 2052, Australia

2 CQCT, Macquarie University, Sydney NSW 2109, Australia
manasp@cse.unsw.edu.au

Abstract. A logic for reasoning about quantum circuits and proto-
cols is proposed. It incorporates the basic features of quantum theory-
probability, unitary dynamics, tensor products and measurement. The
underlying language could be used for verification and synthesis of quan-
tum circuits. Important algorithms like the quantum search algorithm of
Grover are discussed. The logic also forms the foundation on which more
elaborate formal systems for reasoning about quantum protocols could
be based. A sound and complete axiomatization is presented. Algorithms
for circuit verification, circuit equivalence (exact and approximate) are
outlined. Some related complexity issues are also discussed.

Keywords: Probability logic, quantum computing, quantum circuits,
complexity.

1 Introduction

There exist several equivalent approaches to formal models of computing. Physi-
cists and computer scientists dealing with quantum computation and informa-
tion have focused on the circuit model [Yao93] or the quantum version of Turing
machine model [BV97]. There is another approach to computing, due to Post,
viz. formal systems [Smu61]. This paper is about this approach. For formal rea-
soning, specification and algorithmic verifications a formal approach is often
more suitable. By this I mean a deductive system with precise syntax, axioms
and rules of inference. It must be concise yet expressive enough to be useful.
This paper is an attempt towards that. The resulting logic is more expressive-
the quantum circuits correspond to a special class of formulas. For example,
it is not only expressible that the Grover search algorithm is correct but also
that in any fixed dimension such an algorithm exists. Even for circuits a for-
mal language may be easier to reason with and develop algorithms. Compare
the use of formal circuit model and propositional logic (perhaps extended with
additional logical/modal operators) for reasoning about classical combinational

� Work supported by a scholarship from an ARC Discovery Grant to Ron van der
Meyden.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 424–438, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Logic for Quantum Circuits and Protocols 425

and sequential circuits. In many cases dealing with decidability and complex-
ity issues, formal models are easier to handle than the corresponding circuit
models. Moreover, the axiomatic approach would facilitate the use of powerful
theorem provers for reasoning about quantum systems. Finally, it is an alter-
native viewpoint which complements the quantum circuit model. In an earlier
work [MP03b]. Meyden and Patra had laid the foundations of such a language.
Although expressive enough to formalise important physical concepts like super-
position, the uncertainty principle and quantum state tomography it was lacking
two notions crucial for quantum computation and information viz. tensor prod-
ucts and measurement. This was dealt with in [Pat04]. The approach in that
paper was somewhat more general. There are two equivalent “pictures” of quan-
tum systems. The first is the Schroedinger picture, in which the dynamics is
carried by the state and the bases in which measurements are performed remain
unchanged. In contrast, in the Heisenberg picture, the bases carry the dynam-
ics and the state remains unchanged. Of course, both pictures make identical
probabilistic predictions. In the works cited above I had followed the Heisenberg
picture. The proofs of certain important results are more transparent in that
picture. In the present work, I loosely follow the Schroedinger picture favoured
by the quantum computing community. The present approach is pragmatic one
somewhat akin to the operational approach in quantum measurement theory
[PBL95]. Other approaches notably functional programming approach [vT03]
and categorical approach [AC04]. The formulation in [MS04] is closer to the
current approach. Of these, the categorical semantics of [AC04] is quite elegant.
Baltag and Smets [BS04] discuss a propositional dynamic logic type semantics for
quantum programmes and the “quantum computational logic” gven in [CGL05]
exploits the properties of some basic gates (Toffoli, CNOT) to develop a seman-
tics for quantum computation. The present work was motivated by the following
considerations.

1. Any logic dealing with probabilities must deal with real expressions[FHM90].
If we also have to include order relations then the theory of real closed fields
seems a natural building block because it is a well investigated field with
sophisticated decision procedures[BPR03].

2. We can develop algorithms for efficiently translating the formulas of the
present logic to those in a real closed field hence any decision procedure for
the latter can be used for verification of a large class of formulas in quantum
theory which includes quantum circuits and many protocols.

3. As I show later we can use the language for synthesis of quantum circuits.
Important example are the Grover search circuit[Gro96] and the teleporta-
tion circuit. We can formulate and in principle, prove the existence of such
circuits. Such formulas are most naturally expressed by quantified formulas.

4. The language is close to the informal language of physicists. Let us remember
that the real measurable quantities are the probabilities.

5. It has a relatively small set of axioms (compare with the full scale axioma-
tization of the Hilbert space formalism). It is not only a logically consistent
theory but physically consistent. No counterfactual reasoning is admitted.

426 M. Patra

A brief outline of the paper follows. I assume some familiarity with the for-
malism of quantum mechanics in finite dimensional Hilbert spaces. Section II
deals with the syntax and semantics of the language. The language components
appearing in [MP03b] are only discussed briefly. A symbol for tensor product
is introduced which resembles a function symbol in a multi-sorted language.
New symbols for two types of measurement is introduced and their properties
discussed.

In Section III some applications are presented. An algorithm for translating
any combinational quantum circuit to the language is sketched. The important
Grover quantum search circuit [Gro96] is discussed including some aspects of
synthesis of such circuits.

In the next section (IV) I give a sound and complete axiomatization. Some
complexity theorems are stated. As a corollary one obtains yet another proof of
the complexity upper bounds discovered in [BV97]. In the conclusion, I discuss
some possible extensions of the language and future developments.

2 Syntax and Semantics

Any logic for probabilistic reasoning must deal with real numbers. One could
express some concepts using rational integers only. But then one has to restrict
to linear relations only to ensure that one stays within the domain of integers
[FHM90]. However, quantum probabilities are inherently nonlinear as they de-
pend quadratically on certain complex quantities- the amplitudes. Even in the
classical case, to express notions like conditional probability we require nonlin-
ear relations (essentially inequalities) and hence the domain has to be expanded
to real numbers. More precisely, we have to include the first order theory of
real closed fields as in [FHM90]. In case of quantum probabilities it gets more
complicated because the complex amplitudes, though directly unobservable, give
rise to observable probability distributions. Refer to Feynman’s excellent dis-
cussion on the subtle differences between classical and quantum probabilities
[RPFS65]. Hence, a logic designed to capture quantum probabilities has to in-
clude a theory that deals with real numbers (probabilities) as a subfield of com-
plex numbers (amplitudes). I briefly outline below one such theory, RC, since
its properties are crucial in the proof of similar properties of the logic. First,
a few well known facts. The first order theory of real and algebraically closed
fields are decidable (every closed formula or its negation is provable [Sho67])
and complete (every consistent formula is satisfiable). Moreover, both admit the
elimination of quantifiers: every formula is provably equivalent to a quantifier
free formula.

The language of RC consists of two binary function symbols +and · for
addition and multiplication. As usual these operations will be written in the
infix notation and the symbol · often omitted. There are three basic constants’:
0, 1 and i. There are two predicate symbol R and <. Informally, R defines the
set of real elements. It is implicit that RC is a first order theory with equality.
The nonlogical axioms of RC are (informally) stated below.

A Logic for Quantum Circuits and Protocols 427

1. All the field axioms. In other words any model of RC is a field.
2. The axiom of algebraic closure. A term t of RC is a polynomial in several

variables. The term may also be treated as polynomial in a single variable
with variable coefficients. The axiom states that the polynomial equation
t = 0 has a solution for all values of the coefficients.

3. The real elements, that is all x for which R(x) is true constitute a totally
ordered field with respect to the order relation <. Two elements can be
compared iff both are real. The identity elements 0 and 1 are real.

4. Every element z can be uniquely written as z = x + iy with x and y real,
and i2 + 1 = 0

All the important algebraic properties of real numbers as a subfield of complex
numbers can be deduced from these. For example, sum of squares of reals can
not be 0 unless each summand is 0. Any polynomial of odd degree with real
coefficients has a real solution. The last property makes the set of reals, a real
closed field. One may now define a real number x to be positive if x > 0. The real
and imaginary parts of a complex numbers are defined as usual. It is convenient
to add several defined constants and functions. These defined symbols can always
be eliminated. I assume that there is a constant symbol for each positive integer.
Thus, the integer k is equivalent to 1+1+ . . . (k times). Also there is constant
n1/k positive kth root for positive n and k. The usual definition of positive and
negative powers will be assumed. The defined function symbols are the complex
conjugate, the modulus |z|2 = zz = x2 + y2 and the square root. Of the two
square roots of a complex number we always pick up the one with positive real
part if the latter is not 0. If the real part is 0, pick out the one with positive
imaginary part. The most important properties of RC are summarised below.

Theorem 1. RC is a complete theory that admits elimination of quantifiers.

The logic presented in this work is a first order interpreted theory [Sho67]. It is
interpreted in the theory RC which it extends. The language of the logic, denoted
by Ln(P, t,M, S,U). The language Ln(P, t,M, S,U) consists of the following. It
will be convenient to treat it as a sorted language.

The variables of RC are written as x, y, z etc. with subscripts possibly. In-
stead of saying the “real” predicate R holds for some term t of RC I write that
t is real sort. It is clear that one can dispense with the sorted syntax by intro-
ducing extra predicates. There is a special basis symbol b. Associated with b
are the ’atomic basis formulas’ (b-formulas) {b0, . . . , bn−1}. They are also called
basis components. Intuitively, the basis symbol b will denote a basis in the n-
dimensional Hilbert space C n and b0, . . . , bn−1 will denote the corresponding
basis vectors. Thus, if B and C are b-formulas then so are B∨C and ¬B. Call b
the irreducible basis symbol. Now define the composite basis symbol recursively
as follows: t(b, b) is a (composite) basis symbol and if X and Y are basis symbols
then so is t(X,Y). Call the number of t-operators appearing in a basis symbol
the t-degree(for tensor degree) of that symbol. The t-operator will be interpreted
as the tensor or direct product of bases. If the t-degree of a basis symbol is k
then its interpretation is as a product basis in (Cn)⊗k ∼= Cnk

. The t-operator

428 M. Patra

extends to a map of basis formulas of composite bases. Thus, associated with a
composite basis symbol of t-degree k are, nk atomic basis formulas defined re-
cursively as follows. Assume the components of a basis symbol X,Y of respective
t-degrees r, s < k are already defined. These components will always be denoted
as subscripts.

t(X,Y)i ≡ t(X,Y)j2r+k
def= t(Xj , Yk)

0 ≤ j < ns and 0 ≤ k < nr
(1)

For a basis symbol X of t-degree k define dim(X) = nk It will be seen that
due to the associativity of the tensor product several products are semantically
equivalent. Again we take the Boolean combination of basis components of a
fixed t-degree. Note that Boolean combination of formulas of different t-degrees
are not allowed. I assume right associativity:t(b, b, b) def= t(b, t(b, b)). Similarly
for higher degree expressions. Note that the basis components of t(X,Y) are
uniquely determined by the components X and Y . For example, if n = 2 then
t(b, b, b)i = t(b[i/22], t(bb)i mod 22) = t(bj2 , t(bj1 , bj0)), where [x] denotes the
greatest integer ≤ x and j2j1j0 is the binary representation of i as a 3-bit string.

Next we introduce probability terms over b-formulas. If B is any b-formula
of t-degree k then P (B) is a probability term of degree k. If P (B1), . . . , P (Br)
are probability terms of the same degree k and q(x1, . . . ,xm) is a polynomial
in RC then the expression obtained by substituting uniformly the P (Bi)’s for
some of the variables in q is also a probability term. A probability atom is an
expression of the form T ≥ 0, where T is a probability term. Intuitively, the
probability formulas like P (bi) > a asserts that the probability of obtaining the
state corresponding to bi when the quantum system in some initial state ψ is
measured in the basis corresponding to b. These are a priori probabilities that
we assign to the quantum state ρ. No actual measurement need be performed. A
probability formula is a boolean combination of probability atoms of the same
degree. It is clear that binary relations like T < 0 can be defined as ¬(T ≥ 0).
Note that, by definition, we do not combine basis or probability formulas of
different degrees. The next construction is for the basic unitary operations. An
m × m complex matrix U is called unitary if its entries U(ij) satisfy UU † =
Im = δij , where Im is the m × m identity matrix and the Kronecker symbol
δij = 1 if i = j and 0 otherwise. Call m the order of U . The unitary property can
also be written as UU † = Im = δij . Here U † is the transposed conjugate of U . It is
also called the hermitian conjugate. Sometimes, I quantify over unitary matrices,
∃U or ∀U . This is simply a shorthand for the n2 variables xij = U(ij) of RC
which satisfy unitary conditions. If Φ is a probability formula of degree k then it
is formula of Ln(P, t,M, S,U). For any such probability formula and any unitary
matrix of order 2k, [U]Φ is also a formula of Ln(P, t,M, S,U). The intuition of
the [U] operators is that, [U]Φ is true in a state ρ if Φ is true in the transformed
state U−1 · ρ. This will be further clarified in the section on semantics. The
final syntactic constructs are measurement operators, MX and SXi , where X is
some basis symbol and Xi are its components. Thus, there is one measurement
operator for every basis X and the number of selection operators SXi equals

A Logic for Quantum Circuits and Protocols 429

dim(X). The operator MX expresses that a complete measurement is performed
in the basis X although the outcome may not be known. The operator SXi , in
contrast, captures the situation where the outcome of the above measurement
is known or selected to be Xi. One of the Xi,s must occur and SXi(Φ) is true
if Φ is true after the selection of Xi in the measurement. The degree of the
measurement operators MX and SXi is defined to be the t-degree of X . It must
match the degree of Φ on which they operate. Note that the term “operator” is
intentionally overloaded. In the context of the syntax the operators [U],MX are
syntactic operators acting on formulas.

The semantics of Ln(P, t,M, S,U) is described next. As stated above the
language is to be ultimately interpreted in RC, but an intermediate interpre-
tation in an appropriate Hilbert space will make the connection with quantum
theory clear. Since we have to interpret arbitrary tensor formulas a fixed vector
space will not suffice. For a positive integer m let Hm denote the vector space
Cm with standard inner product. First, variables of real and complex sort will
be interpreted as such in RC. I omit the description except for the remark that
there are some technical formalities to be observed when deducing properties of
an interpreted theory from the properties of the theory which is the domain of
interpretation [Sho67].

It is convenient to first consider a simpler fragment of Ln(P, t,M, S,U) con-
sisting of all formulas without the t-operator, that is, formulas of t-degree 0.
Hence, there is only one basis symbol b. Call this fragment Ln(P,M, S,U). A
structure for Ln(P,M, S,U) is made up of an n-dimensional complex Hilbert
space Hn and L(Hn) the space of linear operators on Hn. The vectors of Hn,
written as |α〉 are n × 1 matrices with components zi. The dual 〈α| is a row
vector with entries zi. The inner product 〈α|β〉 of two vectors is defined to be∑

i αiβi and the length of a vector |α〉 is |||α〉|| = 〈α|α〉.
An interpretation of Ln(P,M, S,U) in a structure Hn is function π, such

that for the basis variable b, π(b) is an orthonormal basis ψ0, . . . , ψn−1 of H ;
(we write π(b)i for ψi and occasionally suppress the |〉 notation). If M = (mij)
is an n× n unitary matrix and B = {ψ1, . . . , ψn} is a sequence of vectors of H ,
we write MB for the sequence of vectors ψ′1, . . . , ψ

′
n, where ψ′i = Σn

i=1mikψi.
If B is an orthonormal basis of H then so is MB. Extend the interpretation
π to terms t of various sorts as follows. A (quantum) state ρ is a hermitian
matrix with nonnegative eigenvalues such that Tr(ρ) = 1, where Tr denotes the
trace of a matrix. It is called a pure state if ρ2 = ρ. If ρ is a pure state then
ρ = |α〉〈α| for some unit vector α ∈ Hn. Then it is a projection operator since
|α〉〈α|(|β〉) = (〈α|β〉)|α〉. Given the term t, a state ρ and an interpretation π,
define the interpretation [[t]]π,ρ of t with respect to π and ρ as follows. Inter-
pret b-formulas as projection operators on H (these may also be understood as
representing the subspaces of Hn onto which they project): [[bi]]π,ρ = |ψi〉〈ψi|,
where ψi = π(b)i; and [[α1∧α2]]π,ρ = [[α1]]π,ρ · [[α2]]π,ρ (this is the projection onto
intersection of the subspaces of H that are the images of the projectors [[α1]]π,ρ

and [[α1]]π,ρ). [[¬α]]π,ρ = [[α]]⊥π,ρ is the projection operator projecting onto the
orthogonal complement of the image of H under [[α]]π,ρ. Unitary matrices are

430 M. Patra

interpreted as such, that is, an array of complex numbers satisfying the unitarity
condition

∑
k U(ik)U(jk) = δjk.

The interpretation of the probability terms are: [[P (α)]]π,ρ = Tr([[α]]π,ρ · ρ).
To give semantics to formulas of Ln(P,M, S,U), we define recursively a relation
of satisfaction of a formula Φ at a state ρ in a structure Hn, with respect to an
interpretation π, denoted by H,π, ρ |= Φ. If Φ is an probability atom it is of the
form q(P (bi)) > 0 for some multivariate real polynomial q. Then,

Hn, π, ρ |= Φ iff q([[P (bi)]]π,ρ) > 0

If Φ is a Boolean combination of probability atoms then the conditions for sat-
isfiability is standard. Finally,

Hn, π, ρ |= [U]Φ iff Hn, π, [U−1] · ρ[b] |= φ

Recall that the action of a unitary matrix V on ρ is given by V · ρ = V ρV −1,
where the rhs denotes ordinary matrix multiplication. In the above formula I
write ρ[b] to indicate that the matrix ρ is to be written in the basis π(b). Thus
a numerical matrix may represent different linear operators depending on the
interpretation π. The reason for operating the state with U−1 = U † instead of
U is that it preserves matrix multiplication. Hence, U → [U] is a morphism.

The intended interpretation of the t-operator is as a tensor product. Let

H =
∑
k

Hk
n

def=

k times︷ ︸︸ ︷
H ⊗ . . .⊗H,

where the sum is direct and the inner product is the one induced on each
summand. That is, a vector |α〉 ∈ H is finite sum of the form

∑
k |αk〉 with

|αk〉 ∈ Hk
n. Then for two such vectors 〈α|β〉 =

∑
k〈αk|βk〉. Since all but a fi-

nite number of summands are 0 this is well defined. Note that the subspaces
Hk

m are orthogonal for different k. With the above notation define recursively
π(t(Xi, Yj) ≡ {π(Xi) ⊗ π(Yj)}- the basis in Hk+r

m consisting of tensor product
of the vectors in two bases. Interpretation of various terms of the full language
Ln(P, t,M, S,U) is now straightforward. A formula of degree k is interpreted in
the space H⊗k

n . The definitions are identical to the degree 0 case. We restrict
to homogeneous formulas, that is, all the atomic formulas are of same degree.
This corresponds to the intuition that the dimension of the quantum system
under discussion is fixed. Semantics for the general inhomogeneous case can be
given. The state in which a (homogeneous) formula is interpreted lives in the
appropriate Hilbert space. Note that the t-degree is arbitrary. The associativity
of the tensor product (α⊗ (β⊗γ) = (α⊗β)⊗γ) has an interesting consequence.
Any basis symbol of t-degree k is equivalent to the basis t(b, . . . , b)(k times).
Hence, it is easy to see that the basis component t(b, . . . , b)i corresponds to the
product t(bjk−1 , . . . , bj0) where jn−1 · · · j0 is the representation of i in base n as
a string of length k. I will discuss some examples in the next section to illustrate.
Finally, for measurements

H,π, ρ |= MX(Φ) iff H,π,
∑
i

π(Xi)ρπ(Xi) |= Φ.

A Logic for Quantum Circuits and Protocols 431

i.e. formula MX(Φ) is true at a state ρ iff Φ is true in the post-measurement
state

∑
i π(bi)ρπ(bi). The latter is a convex linear combination of the post-

measurement states; the coefficients being the respective probabilities. For the
selection operator H,π, ρ |= SXi(Φ) iff H,π, π(Xi) |= Φ ∧ P (Xi) = 0. Thus,
SXi(Φ) is true in a state ρ if Φ is true in the state π(Xi). This corresponds to
the fact that the outcome of the measurement is known to be Xi. The additional
condition P (Xi) = 0 captures the fact in the opposite case P (Xi) = 0 and the
the state corresponding to Xi is the “impossible” event in the state ρ. This
happens when ρ is orthogonal to π(Xi).

3 Examples

In this section I discuss examples and applications. The main focus will be on
quantum circuits although a lot more can be expressed in the logic. For quantum
protocols one needs several other operators to capture various classical actions.
I only discuss the amazing quantum teleportation protocol. The dimension n of
the irreducible basis will be fixed throughout this section: n = 2. In the quantum
computing folklore any such 2-dimensional system is a qubit.

Quantum Circuits
In any dimension there are uncountably many unitary operators. Efficient quan-
tum circuits must be built out of a small set of basic operations called gates,
involving only a few qubits. Obviously, a finite set of gates can not generate all
unitary operations. Hence, we may only approximate an arbitrary operator with
the basic gates. A set of gates which is sufficient to approximate any unitary
operator is called a universal set. Several such universal set of gate are known
to exist [NC01]. First, I introduce some notation. Let Jm = {0, . . . ,m − 1},
for any positive integer m. Let U = U(i, j) be a given unitary matrix in di-
mension 2k, S = {s0, . . . , sk} ⊂ Jm and S′ = Jm − S. Recall that i, j are
represented in binary base as i = rn−1(i) . . . r0(i) possibly with leading zeroes.
Let N = 2m and m ≥ k. The notation V (i, j) = U [s1, . . . , sk] means that the
operator U acts on the indices s0, . . . , sk leaving the rest unaffected. Explicitly,

V (i, j) = V (rm−1(i) . . . r0(i), rm−1(j)) . . . r0(j) =∏
l∈S′

δrl(i)rl(j) · U(rsk
(i) . . . rs0(i), rsk

(j) . . . rs0(j)).

For disjoint {q1, . . . , qk} and {s1, . . . , sl} one may take the product of commuting
unitaries U [q1, . . . , qk] · V [s1, . . . , sl] of appropriate dimension. Let tn(b) stand
for the n-fold tensor product of the basis symbol b with itself. The examples
below make it clear. First, some quantum gates which will treated as “matrix
constants”.

X =
(

0 1
1 0

)
H =

(
1 1
1 −1

)
C =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠

432 M. Patra

The matrix X and H are single qubit operators called Pauli-X gate and
Hadamard gate respectively. The matrix C is the controlled-not gate [NC01].
Henceforth, I follow tradition and write the interpretation of
π(b0) = |0〉 and π(b1) = |1〉, and the tensor product π(t(bik−1 , . . . , bi0)) =
|ik−1〉 · · · |i0〉 ≡ |i〉, where i is the unique integer whose binary representation
of length k is ik−1 · · · i0. A quantum circuit is specified as a labelled graph. The
labels on the vertices are the unitary gates and the connecting ’wires’ are the
edges. This description is similar to the classical case but with a stipulation that
the number of in and out edges are equal. Besides, there is a ’measurement’ with
respect to a specified basis at the output. Starting with specially labelled input
vertices as level 0 one recursively defines level k+1 as the vertices connected to
level k. In [Pat04] an algorithm for translating a quantum circuit specification
into a different logic was given. I briefly sketch a similar algorithm for translation
into L2(P, t,M, S,U).

1. Initialise input to a basis tn(b). The formula for the initialisation is In ≡
P (tn(b)) = 1.

2. Let {S1
1 , . . . , S

1
r1
} be a partition of Jn = {1, . . . , n}, such that the unitary

operators U (1)
i ∈ UB, 1 ≤ i ≤ r1 is applied to the qubits in Si. Of course, it is

assumed that the order of the matrix U (1)
i is 2|S

1
i |. The formula corresponding

to output of level 1 is

Φ1 ≡ [U †(1)1 [S1
1]] . . . [U †(1)r1

[S1
r1

]](
∧
j

(P (tn(b)j) ∼ xj)) (2)

Here, the symbol ∼ is either an equality or inequality. The operator cor-
responds to U † = U−1 instead of U because then the latter operates on
the state. The range of j is as yet unspecified as are the real variables xj .
Next, suppose Φk is defined as the output of the circuit at level k and let
{Sk

1 , . . . , S
k
rk
} be a partition of Jn such that unitary operator U (i) ∈ is ap-

plied to the qubits in Sk
i . Then,

Φk+1 = [U †(k)
1 [Sk

1]] . . . [U †(k)
r1

r1[Sk
rk

]]Φk (3)

An important point to be noted is that the matrices U (k)
i [Sk

i], i = 1, . . . , rk in
level k commute among themselves. Therefore, the ordering of the matrices
in a fixed level do no matter. Let Φ be the final formula after all the levels,
i.e. , when the output nodes have been reached.

3. The final step is a measurement (if necessary). The circuit C is represented by

C
def= In ∧ Φ ∧X, (4)

where X is a formula of RC, usually in the terms of the matrix entries of
the unitary gates.

As an application of the above algorithm consider the Grover search circuit
[NC01]. Suppose we have an unstructured set of 2n = N distinct numbers in
binary strings of length n and we are looking for a particular number a. Let
r =

√
N . a. Let Oq be the unitary ’oracle’ given by

Oq(ij) = δr1(i)r1(j)[δr0(i)r0(j)(1− δr1(i)a) + (1− δr0(i)r0(j))δr1(i)a]

A Logic for Quantum Circuits and Protocols 433

The oracle is unitary matrix of order N + 1 acting in the space (C2)⊗n ⊗ C2

that sends |x〉|q〉 → |x〉|q ⊕ f(x)〉 where f(x) = δxa and ⊕ is addition modulo 2.
Let V be unitary matrix of order N given by V (ij) = 2N−1 − δij . The formula
for the Grover circuit is

G ≡P (b0) = 1 ⇒ [V [Sn]Oq]k[H [1]] . . . [H [n]][HX [N + 1]]

(P (tn+1(b)a0 ∨ tn+1(b)a1) > 3/4)
(5)

First, the probability lower bound can be improved but it serves the purpose
of illustration of the application of the logic. Secondly, the formula really cor-
responds to the Grover theorem as it is an assertion about the probability of
obtaining a particular state after the application of Grover circuit. Hence, the
language serves as a verification language. In the full paper, Grover circuit is
treated as an approximation to a unitary transformation and these circuit ap-
proximations can be easily expressed in the language.

Let us pretend that we are not aware of the Grover result. Can we deduce
the existence of such circuits in a given dimension? The answer is, in principle,
yes. Consider the formula

∃V (P (b0) = 1 ⇒
k times︷ ︸︸ ︷

[V Oq] . . . [V Oq][H [1]] . . . [H [n]]

[HX [n+ 1]](P (tn+1(b)a0 ∨ tn+1(b)a1) > 1/2)).
(6)

If the formula is satisfiable, that is, if there is one matrix which, if applied k times
in conjunction with the oracle, finds the desired item with high probability. In
the next section, I state a result which says that corresponding to any formula
of L2(P, t,M, S,U) there is a formula of RC such that satisfiability of one is
equivalent to the satisfiability of the other. Now, RC is a complete and hence
decidable theory (it is recursively axiomatized). Thus, satisfiability of a formula
like the above can be done in two steps. First, reduce to the equivalent formula
in formula in RC and then use an existing decision algorithm for real closed field
to test for satisfiability of the latter[BPR03]. The bad news is that the existing
decision algorithms for the real closed fields, essentially based on systematic
elimination, have at least exponential runtime. However, in some special cases
of quantum, circuits it is possible to get an approximate linearisation. Then, it
is problem of linear programming and efficient algorithms are available for the
latter. Therefore, the logics presented here may be used for synthesis of quantum
circuits. It is also possible to write a formula for the Shor factorisation algorithm
if one makes the effort to encode the language of modular arithmetic.

In the examples considered above I have not used the measurement operators
MX and SXi . They can be used to express circuits in which measurements, not
unitary gates, are used as the primitive unit of computation[Nie03]. They are
also necessary in the discussion of quantum protocols [NC01]. For example, in
the teleportation protocol Alice and Bob share a qubit each of an entangled pair.
Then Alice applies unitary transformation to her share of the pair and another
qubit in unknown state and then performs a measurement. Due to entangle-
ment Bob’s qubit gets affected. By applying unitary transformations depending

434 M. Patra

on Alice’s measurement outcome Bob can change the state of his qubit to that
of the unknown one. Since the qubits are entangled Bob’s qubit gets affected
by the measurement. Alice knows the outcome of the measurement. The corre-
sponding formula is given below. Let A def= H [1]C[1, 2]C[2, 3]H [2](P (t3(b)0)) =
1 and B def= P (t(0,0, b0)) = 1.

Φ ≡ [U](P (t(b0,0,0)) = 1) ⇒(S00A ⇒ [U]B) ∧ (S01A ⇒ [U][X]B)∧
(S10A ⇒ [U][Z]B) ∧ (S10A ⇒ [U][ZX]B)

(7)

This formula is quite easy to understand actually. Alice has qubits 1 and 2
and Bob has the third. Alice and Bob start with the entangled pair 2 and 3,
which is achieved by applying C[2, 3]H [2]. Then Alice applies H [1]C[1, 2] and
the four alternatives correspond to the four outcomes of a measurement in the
computational basis. after running the protocol the state of the third qubit
(Bob’s) is identical to that of the unknown qubit they started with. Although this
formula is valid it does not capture the actual knowledge or information that the
agents have at each stage. Some preliminary work in this direction may be found
in [MP03a] where knowledge and temporal operators are introduced. Let Φ(V) be
the formula obtained from Φ by replacing H [1]C[1, 2] by V a “unitary” variable.
We may ask ∃V Φ(V [1, 2]). That is, whether there exist unitary operation on
Alice’s qubit such that “teleportation” takes place. In fact it can be verified quite
easily by a simple procedure. We may formulate and verify more complicated
questions. The point is, since the theory is decidable it is not too hard to devise
algorithms answer such questions. Alternatively, it is in principle possible to
utilise theorem provers like PVS or Isabelle using the axiomatization below.

4 Axiomatization

In this section I present an axiomatization of Ln(P, t,M, S,U) and some of
the general properties of the resulting theory. I also discuss some complexity
questions. The axioms are grouped under several headings, one for each of the
constructs of the logic. Many of the axioms are dealt with in detail in [MP03b].
Hence, the discussion will be mostly brief. First, for basis formulas. For a basis
symbol of degree k let N = nk. By definition, there are N components of X .
Call N the dimension of X .

B1 X0 ∨ . . . ∨Xn−1 B2 ¬(Xi ∧Xj) for i = j

Call a basis formula B is a b-tautology, and write �b B if it can be derived from
these axioms alone. If a basis symbol has dimension N , let 0N stand for the
basis formula X0 ∨ . . . Xn−1-the certain event. From B1 above it is a tautology.
The following are axioms for probability operator. I assume that φ, φ1 and φ2
are basis formulas:

P1 0 ≤ P (φ) ≤ 1 P2 P (φ) = 1 if φ is a b− tautology
P3 P (φ1 ∧ φ2) + P (φ1 ∧ ¬φ2) = P (φ1) and
P4 P (φ1) = P (φ2) if φ1 ⇔ φ2 is a b-tautology

A Logic for Quantum Circuits and Protocols 435

As Ln(P, t,M, S,U) extends RC I assume that axioms of RC are included in
the axiomatization of the former. The axioms for tensor operator are as follows.

Tensor1 P (t(t(X,Y), Z)i) = P (t(X, t(Y, Z))i)

Tensor2 P (t(X,Y)0) = 1 ⇒ P (t(X ′, Y ′)jk = P (t(X ′j ,0N))P (t(0M , Yk))

where M and N are the dimensions of X and Y respectively. The first ax-
iom expresses the associativity of tensor product. The associativity property is
expressed in terms of probabilities. Since this is valid, that is, true for every
interpretation in all states, we can deduce the actual equality of the correspond-
ing vectors for any interpretation. This axiom combined with the substitution
axiom for “=” implies that for a fixed degree k we may fix an arbitrary prod-
uct basis symbol of that degree, for example tk(b), since we have to deal only
with probability formulas over bases. The second axiom asserts that if the quan-
tum system is in a state which is a tensor product state then the probability of
outcome of a measurement in some other product basis is the product of mea-
surements done separately to the constituent bases X and Y . Note that the
introduction of the 0 symbols is to keep the formula homogeneous. Also for the
notation t(X ′, Y ′)jk refer to equation 1. The only bases I have considered are
tensor product bases. Surely, there are bases which are “entangled” that is can
not be written as a product basis. These bases are indirectly generated by the
unitary operations. The present logic though adequate for quantum computing
is slightly less expressive than those considered in [MP03b] and [Pat04]. The
formulas corresponding to the unitary operators are presented below. Let ΓN

denote the formula
∑N−1

k=0 U(ik)U(jk) = δij , for a unitary matrix of order N .
Below Φ is a formula in dimension N and IN is the unit matrix in that dimension.

Unitary1 Φ⇔ [IN]Φ Unitary2 [U][V]Φ⇔ [UV]Φ

Unitary3 P (Xi) = 1 ⇒ [U]P (Xj) = |Uij |2 ∧ ΓN

The first axiom is the normalisation axiom. It states that the unit matrix does
not affect the valuation of a formula. The second axiom states that if the system
is known to be in a state of a basis π(Xi) vector then the application of the
unitary operator U transforms it into a state

∑
k U(ik)π(Xk) and hence the

probability of Xj is as stated in the axiom. The third axiom formalises the fact
that the map U → [U] preserves products. The next axiom is the consistency
axiom. Let us fix the dimension N and let:

Uk
def=
∧
i

(P (Xi) = xi) ⇒ ∃z11z12 . . . zNN

(
N∧

i=1

zii = xi ∧ ∀y1 . . . yN (
∑
ij

yizijyj ≥ 0))∧

k∧
j=1

n∧
i=1

([Uj]P (Xi) = ΣN
r,s=1Uj(ri)zrsUj(is)))

(8)

436 M. Patra

This formula simply asserts the existence of a state which satisfies probability
formulas for k unitary operators. The consistency axiom is given below.

Cons. In dimension N the formulas Uk are satisfied for all k ≤ N2−N + 1.
This is the most complicated axiom. However, in N -dimensions the following
theorem holds.

Theorem 2. If the formula Uk are satisfied for any set of k unitary matrices
for k ≤ N2 −N + 1 then the corresponding formula is satisfiable for all k.

The theorem states that given an arbitrary number of formulas of the type
[Ui](∧iP (Xi) = ai), for i = 1, 2, . . . k if every subset of formulas of cardinality
N2 − N + 1 are satisfiable (k ≥ N2 −N + 1) then the whole set of formulas is
satisfiable. This theorem is crucial in the proof of completeness theorem. Finally
we have the axioms for measurement operators.

Measure1
∧
ij

[U](P (Xi) = xi) ⇒MX([V]P (Xj) =
∑
k

|V (jk)|2xk).

The axiom captures the fact that measurement of state in a basis yields as
outcome the state Xi with probability xi. A further measurement in some other
basis which transforms Xi to VXi is the sum

∑
k |V (jk)|2xk. Note that the

|V (jk)|2 is the transition probability of getting an outcome Xi if the system is
known to be in a state V Xi.

Selection SXi([V]P (Xj)) = |V (ij)|2.
The motivation of the axiom is clear since the post-measurement state is already
known to be Xi. Finally, we have the following axiom and inference rules for both
measurement operators.

Denote by L either of the measurement operators. Then the axiom schema
for boolean combinations is:

Measure2 L(Φ1 ∧ Φ2) ⇔ L(Φ1) ∧ L(Φ2) Measure3 L(¬Φ) ⇔ ¬L(Φ)

Moreover, for both measurement operators add the rule
K. From � Φ infer LΦ.

If a formula is theorem then by the soundness of the theory it is valid and hence
true in any state. I call it K because a similar rule goes by the same name in
modal logic. Let Axn(P, t, U,M, S) be the theory given by the above axioms. Its
properties are summarised below.

Theorem 3. Axn(P, t, U,M, S) is sound and complete.

The proof of the theorem is rather long. It is sketched in [Pat04]. The de-
tailed proof will appear in my dissertation. The first step is to prove satisfiability
of a consistent formula ignoring tensor structures, and then to prove that the
constraints imposed by tensor structures are satisfiable if the formula is con-
sistent. Both parts of the proof use a systematic reduction of a given formula
of Ln(P, t,M, S,U) to an equivalent formula in RC. I state that as a separate
result since it gives us decision procedure for the logic.

A Logic for Quantum Circuits and Protocols 437

Theorem 4. Given a formula Φ of Ln(P, t,M, S,U) there is a polynomial time
algorithm which results in a formula Φ∗ of RC such that Φ is satisfiable iff Φ∗
is satisfiable.

As an immediate corollary we get a result proved in [BV97].

Theorem 5. Satisfiability of a formula in Ln(P, t,M, S,U) can be decided in
exponential space. If the formula is quantifier free, then its satisfiability can be
decided in polynomial space.

The proof of this result makes use of results of Ben-Or, Kozen and Reif
[BKR86] for the full language, and of Canny [Can88] for the quantifier free case.
As in the proof of the theorem the idea is to reduce the formula to that of a real
closed field. It is obvious that the reduction algorithm is in PSPACE. Using
the above theorem, since the algorithm for a quantum circuit yields a quantifier
free formula and the validity of a set of equations and inequalities can reduced
to satisfiability of the negated formula. The latter is in PSPACE by the results
in the references cited. Thus we get another proof that classical simulation of
quantum circuits is in PSPACE.

5 Conclusion

A complete axiomatization of a logic for quantum computation and information
is presented. It is expressive enough to write formulas for quantum circuits. The
formulas of the language can be used for classical and quantum simulation. This
would help facilitate a comparative study of the respective complexity classes. I
have illustrated it with some examples. Other cases will be dealt with elsewhere.
Another possible application would be to use it as a language for specifica-
tion, verification and synthesis of quantum circuits possibly with extra modal
operators. It would be possible to use the language for verification of quantum
hardware (model checking). I am also experimenting with some extensions of the
language-in particular, bounded quantifiers over the integer indices and quanti-
fied boolean variables-for more efficient representation. Another potential field
of application is quantum cryptography. Some preliminary work in this direc-
tion has been done. Yet another interesting avenue to explore is the descriptive
characterisation[Imm89] of quantum complexity classes[BV97].

I wish to thank R. van der Meyden for many illuminating discussions.

References

[AC04] S. Abramsky and B. Coecke. A categorical semantics of quantum proto-
cols. Research Report RR-04-02, Oxford University Computing Laboratory,
2004.

[BKR86] M. Ben-Or, D. Kozen, and J. H. Reif. The complexity of elementary algebra
and geometry. Journal of Computer and System Sciences, 32(1):251–264,
1986.

438 M. Patra

[BPR03] S. Basu, R. Pollack, and M-F. Roy. Algorithms in real algebraic geometry.
Springer, 2003.

[BS04] A. Baltag and S. Smets. A logic for quantum programs. In Proc. of QPL
2004, pages 39–56, 2004.

[BV97] E. Bernstein and U. V. Vazirani. Quantum complexity theory. SIAM. J.
Computing, 26(5):1411–1473, 1997.

[Can88] J. F. Canny. Some algebraic and geometric computations in PSPACE. In
Proc. 20th ACM Symp. on Theory of Computing, pages 460–467, 1988.

[CGL05] M. L. Dalla Chiara, R. Guntini, and R. Leporoni. Quantum computational
logics and fock space semantics. Int. Journal of quantum information,
3(1):9–16, 2005.

[FHM90] R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about
probabilities. Information and Computation, 87(1/2):78–128, 1990.

[Gro96] L. Grover. A fast quantum mechanical algorithm for database search. In
Proc. 28th. annual ACM symposium on Theory of computing, pages 212–
210, New York, 1996. ACM.

[Imm89] N. Immerman. Descriptive and computational complexity. In Computa-
tional complexity theory, Proc. Symp. App. Math, pages 75–91. AMS, 1989.

[MP03a] R. v. Meyden and M. Patra. Knowledge in quantum systems. In Theoretical
aspects of knowledge and rationality, Bloomington, 2003. ACM.

[MP03b] R. v. Meyden and M. Patra. A logic for probability in quantum systems.
In Proc. Computer Science Logic and 8th Kurt Gdel Colloquium, Vienna,
2003. Springer-Verlag.

[MS04] P. Mateus and A. Serandas. Reasoning about quantum systems. In Logics
in Artificial Intelligence JELIA04, pages 239–251. Springer-Verlag, 2004.

[NC01] M. A. Nielsen and I. L. Chuang. Quantum computation and information.
CUP, 2001.

[Nie03] M. Nielsen. Universal quantum computation using only projective mea-
surement, quantum memory, and preparation of the 0 state. Physics Lett.
A, 308(2-3):96–100, 2003.

[Pat04] M. Patra. Logics for quantum computation and information.
cse.unsw.edu.au/db/staff/info/mansp.html, 2004.

[PBL95] M. Grabowski P. Busch and P. J. Lathi. Operational Quantum Physics.
Springer, Berlin, 1995.

[RPFS65] R. B. Leighton R. P. Feynman and M. Sands. Feynman Lectures on Physics
Vol.III. Addison-Wesely, Reading, Mass., 1965.

[Sho67] J. R. Shoenfield. Mathematical Logic. Addison-Wesely, 1967.
[Smu61] R. M. Smullyan. Theory of Formal Systems. Princeton University Press,

Princeton, 1961.
[vT03] A. van Tonder. A lambda calculus for quantum computation. arXiv e-Print

(http://arxiv.org/abs/quant-ph/03071509), 2003.
[Yao93] A. C-C. Yao. Quantum circuit complexity. In Proc. 34th. Symp. on Foun-

dations of computer science, pages 352–360, Los Alamitos, 1993. IEEE.

Quantitative Temporal Logic
Mechanized in HOL

Orieta Celiku

Åbo Akademi University and Turku Centre for Computer Science,
Lemminkäisenkatu 14 A, 20520 Turku, Finland

Abstract. The paper describes an implementation in the HOL theo-
rem prover of the quantitative Temporal Logic (qTL) of Morgan and
McIver [18,14]. qTL is a branching-time temporal logic suitable for rea-
soning about probabilistic nondeterministic systems. The interaction be-
tween probabilities and nondeterminism, which is generally very difficult
to reason about, is handled by interpreting the logic over real- rather than
boolean-valued functions. In the qTL framework many laws of standard
branching-time temporal logic generalize nicely giving access to a number
of logical tools for reasoning about quantitative aspects of randomized
algorithms.

1 Introduction

Randomization is very useful for improving algorithms’ efficiency and solving
problems where standard methods fail, but reasoning about randomized algo-
rithms is notoriously difficult. As a result the interest in the computer-aided
verification of randomized algorithms has been increasing, both in the model-
checking as well as in the theorem-proving communities. Recent work on using
theorem provers for such verifications includes Hurd et al.’s [9] mechanization in
HOL [5] of Morgan’s probabilistic Guarded Command Language (pGCL) [19] and
its associated program logic [21]. We extend this work with the mechanization
of the quantitative Temporal Logic (qTL) — the probabilistic generalization of
temporal logic — and its associated algebra [18,14].

Our interest in the mechanization of qTL is several-fold. To start with,
pGCL and qTL provide a unified framework in which to model, specify tem-
poral properties of, and reason about probabilistic systems. The properties that
can be specified and verified are quantitative and thus very general. For example,
one can reason about “the probability that a walker eventually reaches a position
on the number line”; more generally one can reason about the expected value
of a random variable of interest when certain strategies for deciding whether
to continue executing the program are applied. That nondeterminism — the
mathematical notion underlying abstraction and refinement — is retained in
the framework makes it possible to work at various abstraction levels, including
at the level of program code. Moreover, nondeterminism’s ability to abstract
over probability distributions enables switching from quantitative to qualitative

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 439–453, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

440 O. Celiku

analyses, when one is interested in properties that hold with probability 1 [13].
Another useful application of qTL is provided by the relationship of its oper-
ators to McIver’s operators for reasoning about performance-related aspects of
probabilistic programs [16].

Our newly-mechanized qTL is suitable for both high-level analyses of prop-
erties of probabilistic programs, which may make use of the many algebraic laws
we verify for qTL, as well as for concrete verifications, which are supported by
the HOL interactive correctness tools built for pGCL programs [9].

In this paper we describe how qTL is implemented in HOL. Although we
briefly summarize qTL itself, we refer the reader to [14] for a thorough discussion
of it. In Sec. 2 we describe the probabilistic semantics and HOL theories [9] on
which the implementation of qTL builds. In Sec. 3 the syntax and semantics of
qTL is given. We then continue in Sec. 4 with showing the algebra of qTL which
supplies many useful properties for verification. A non-trivial result for (non-
homogeneous) random walkers satisfying certain properties is verified in Sec. 5.
Finally, we conclude with some remarks on the present state of computer-aided
verification for probabilistic programs in Sec. 6.

Notation: We use “.” for function application. We write α for a (fixed) underlying
state space. Functions from α to the non-negative reals are called expectations ;
they are ordered by lifting pointwise the order ≤ on the reals — we denote
the order on expectations by �. Given two expectations A and B, they are
equivalent, denoted A ≡ B, exactly when A � B and B � A. Operations on
expectations are pointwise liftings of those on the reals. c denotes the constant
function returning c for all states. cA denotes c×A, where A is an expectation.
If pred is a predicate, then we write [pred] for the characteristic function which
takes states satisfying pred to 1, and to 0 otherwise.

2 Probabilistic Semantics

In this section we briefly describe the quantitative program logic [21,14] — the
probabilistic semantics that has inspired the choice of semantics for qTL.

Unlike standard programs, probabilistic programs do not produce definite
final states — although any single execution of such a program will result in
the production of some specific state, which one in particular might well be
impossible to predict (if its computation is governed by some random event).
However over many executions the relative frequencies with which final states
occur will be correlated with the program’s known underlying random behavior.
For example executing the probabilistic choice

b := T 2/3⊕ b := F , (1)

a large number of times results in roughly 2/3 of the executions setting b to T.
The language pGCL [19] — the Guarded Command Language [3] augmented

with the probabilistic choice construct mentioned above — and its associated
quantitative logic [14] were developed to express such programs and to derive

Quantitative Temporal Logic Mechanized in HOL 441

their probabilistic properties by extending the classical assertional style of pro-
gramming [20]. Programs in pGCL are modeled (operationally) as functions (or
transitions) which map initial states in α to (sets of) discrete probability distri-
butions over final states, where a probability distribution is a function from α
to the interval [0, 1] which is normalized to 1. The program at (1) for instance
operates over a state space of size 2, and has a single transition which maps any
initial state to a (single) final distribution; we represent that distribution as a
normalized function d, evaluating to 2/3 when b = T and to 1/3 when b = F.

Since properties now involve numeric frequencies they are expressed via a
logic of (non-negative) real-valued functions, or expectations. For example the
property “the final value of b is T with probability 2/3” can be expressed
as “the expected value of [b = T] with respect to the distribution d above is
2/3× 1+1/3× 0 = 2/3”. However, direct appeal to the operational semantics is
often unwieldy — better is the equivalent transformer-style semantics which is
obtained by rationalizing calculations in terms of expectations rather than tran-
sitions. The post-expectation [b = T] has been transformed to the pre-expectation
2/3 by the program (1) above so that they are in the relation “2/3 is the expected
value of [b = T] with respect to the program’s result distribution”.

More generally, having access to real-valued functions makes it possible to
express many properties as “random variables” of interest, which for us are
synonymous with expectations. Then given a program P , an expectation A and
a state s ∈ α, we define wp.P.A.s to be the expected value of A with respect to
the result distribution of program P if executed initially from state s [14]. We
say that wp.P is the expectation transformer relative to P . In our example that
allows us to write

2/3 ≡ wp.(b := T 2/3⊕ b := F).[b = T] . (2)

When P contains genuine nondeterminism its execution results in a set of
possible distributions and the definition of wp is modified to take account of
this — in fact wp.P.A.s may be defined so that it delivers either the least - or
greatest expected value with respect to all distributions in the result set. Those
choices correspond respectively to a demonic or angelic resolution of the nonde-
terminism — which interpretation is used depends very much on the application.

With the transformer approach it is possible to express temporal properties
of systems. For example, fixing the underlying computation to be the expecta-
tion transformer relative to the program at (1), the modal primitive next time
“◦” has a natural interpretation relative to an expectation, say [b = T] — the
intended interpretation of ◦[b = T] is “2/3”, and expresses as Eqn. 2 does, that
the probability of (b = T)’s holding after one execution step is 2/3. More gen-
erally, given an expectation transformer step, and an expectation A, ◦A is the
expected value of A when transformed as explained above by step.

Reachability properties can also be expressed, using while-loops. For example
since the following loop

do (b = F) → b := T 2/3⊕ b := F od ,

442 O. Celiku

iterates as long as (b = F) holds, its termination probability is in fact the proba-
bility of eventually establishing (b = T) by repeatedly executing the probabilistic
choice. By a simple fact of probability theory this probability is 1. Although many
temporal properties can be expressed in the pGCL framework, analysis of more
complex temporal behavior requires the introduction of an extra logical layer.

The quantitative Temporal Logic (qTL) [18,14] — the probabilistic extension
of temporal logic — was developed to express such properties and provide a set
of logical tools to reason about them. The underlying computation is viewed
as an expectation transformer, as described above, and the temporal operators
eventually (�), always (�), and unless (�), are defined in terms of fixed points
over expectations. We will set out the formal semantics in Sec. 3; in the remainder
of this section we describe the HOL theories of non-negative reals, expectations
and their transformers, which are the basis of the qTL mechanization.

2.1 Formalized Expectation Transformers

Non-negative reals have been formalized in HOL by Hurd et al. [9] as a type of
higher-order logic, called posreal. The posreal type also includes a constant ∞,
which dominates other elements of the type with respect to the natural order ≤
on posreal. The usual arithmetic operations are defined over this type.

Expectations, formalized in HOL by Hurd et al., are functions of type:

(α)expect =̂ α→ posreal .

where α, the type of the state space, is polymorphic and can be instantiated to
any type of higher-order logic. The order and operations on posreal are lifted
pointwise to operations on expectations. The space of expectations bounded by
any constant expectation c forms a complete partial order, and fixed points are
well-defined for any monotonic function on such expectations.

We define some extra operations on expectations which are needed in the
probabilistic context; in Fig. 1 we name a few. These operations generalize stan-
dard operations on predicates; however since we are working in the more general
context of the reals there may be several suitable generalizations for each oper-
ation on predicates. For example, both “ ” and “&” are suitable, in different
contexts, as generalizations of conjunction. The first sanity check when picking
the operators is whether the truth tables are as expected for standard predicates.
The choice of the operators is fully-motivated in [14].

Expectation transformers are functions from expectations to expectations:

(α)transformer =̂ (α)expect → (α)expect .

For us the interesting expectation transformers are those that determine the
wp-meaning of pGCL programs, that is, describe how pGCL commands trans-
form post-expectations into pre-expectations. For example, assignments induce
substitutions, and probabilistic choices average according to the specified prob-
abilities. We show in Fig. 2 the definitions for the straight-line commands; the
wp-semantics for the complete pGCL (including Boolean choice, and while-loops)
has been formalized in HOL by Hurd et al. [9].

Quantitative Temporal Logic Mechanized in HOL 443

A " B =̂ (λs • A.s min B.s) minimum
A % B =̂ (λs • A.s max B.s) maximum
¬A =̂ (λs • 1−A.s) complement
A & B =̂ (λs • A.s + B.s− 1) conjunction
A −� B =̂ (λs • 1− (A.s−B.s)) implication, �-adjoint of &
P ⇒ Q =̂ [P ⇒ Q] “standard” implication

A, B range over (α)expect; P, Q over standard (boolean-valued) predicates.
¬ binds tightest, whereas the order relations �,≡ weakest.
We will also use more general versions of some of the above operations, with β —
a scalar from posreal — substituted for 1. They can be viewed as scaling by β the
corresponding operation. Such operators will be denoted by say &β instead of &.

Fig. 1. Some operations on expectations

skip wp.skip.A =̂ A ,
assignment wp.(x := E).A =̂ A[x := E] ,
sequential composition wp.(r; r′).A =̂ wp.r.(wp.r′.A) ,
probabilistic choice wp.(r p⊕ r′).A =̂ p× wp.r.A + (1−p)× wp.r′.A ,
multi-way prob. choice wp.(r0@p0 | . . . | rn@pn).A =̂ p0 × wp.r0.A+. . .+pn × wp.rn.A,
nondeterm. choice wp.(r [] r′).A =̂ wp.r.A " wp.r′.A .

The state space here is instantiated to string → Z.
E is an integer-valued state function, expectation p is 1-bounded, and p0 + . . .+pn ≡ 1.
Nondeterminism is interpreted demonically, that is minimal-seeking.

Fig. 2. Structural definitions of wp for straight-line pGCL

feasible t =̂ ∀A, c • A � c ⇒ t.A � c
monotonic t =̂ ∀A, B • A � B ⇒ t.A � t.B
sublinear t =̂ ∀A, B, c, c1, c2 • t.(c1A + c2B − c) � c1(t.A) + c2(t.B)− c

t ranges over (α)transformer, A, B over (α)expect, and c, c1, c2 over posreal.
Feasibility implies t.A � %A, so t.0 ≡ 0.
Sublinearity generalizes conjunctivity of standard predicate transformers.
Monotonicity is a consequence of sublinearity.
The wp-operator (part of which is given in Fig. 2) satisfies all three conditions [14,9].

Fig. 3. Healthiness conditions for demonic transformers

We do not discuss the full semantics of pGCL here because the structure of
the wp-operator is not of importance in the development of the qTL theory.1,2

More important are the properties characterizing the wp-transformers, which
generalize Dijkstra’s healthiness conditions characterizing standard programs.

1 It is however imperative when verifying concrete algorithms. For such verifications
correctness tools [9] can be used to reduce reasoning about goals of the form “A �
wp.Prog.B” to reasoning about relationships between ordinary expectations.

2 We will not make any assumptions about how the state space is implemented, which
increases the utility of the mechanized theory.

444 O. Celiku

The healthiness conditions for demonic probabilistic transformers are shown in
Fig. 3; they are part of the HOL expectations theory formalized in HOL by Hurd
et al. [9]. Monotonicity, for example, ensures that the fixed-points (μX • t.X)
(least), and (νX • t.X) (greatest) are well-defined for a transformer t.

3 qTL and Its Semantics

In this section we show the syntax and semantics of qTL, Morgan and McIver’s
[18,14] probabilistic extension of temporal logic.

The syntax of qTL formulas, set out in Fig. 4, is defined in HOL as a new
datatype called formula. Note that any expectation can be transformed into
a qTL formula of the form Atom(A).

formula =̂ Atom(A)
| ¬a | a % b | a " b | a & b | a −� b | a ⇒ b
| ◦a | �a | a � b

A is an expectation. Lower-case letters a, b, . . . range over formulas.
The second row contains state formulas. To improve readability here we use the same
symbols as for the operators on expectations.
The third row describes proper temporal formulas, which are read as usual: next time,
eventually, (weak) unless. always is defined in terms of unless:

�a =̂ a � (Atom(false))

where false =̂ 0.
Temporal operators associate to the right, and apart from ¬ bind tighter than the rest
of the operators.

Fig. 4. The syntax of qTL

As hinted in the previous section, when interpreting the temporal formulas
we do so with respect to a fixed expectation transformer step, which describes
the underlying computation; the intention is that most of the time and whenever
convenient step is wp.Step, where Step is a syntactic pGCL program.

The formal semantics of qTL is defined on the structure of the formulas and is
set out in full in Fig. 5 — it essentially generalizes standard modal μ-calculus [11]
from Booleans to reals, and takes the temporal subset of that [14]. We postpone
explaining β’s appearance in the definitions until further down in this section.

The operational interpretation of the quantitative temporal operators re-
quires thinking in terms of games. Take �(Atom(A)): if A is a standard expecta-
tion — there exists a predicate P such that A ≡ [P] — then the interpretation of
�(Atom(A)) is in fact the probability that P is eventually established. However,
in the more general case when A is a proper expectation, thinking in terms of

Quantitative Temporal Logic Mechanized in HOL 445

||Atom(A)||(β,step) =̂ A " β

||¬a||(β,step) =̂ β − ||a||(β,step)

||a " b||(β,step) =̂ ||a||(β,step) " ||b||(β,step)

||a % b||(β,step) =̂ ||a||(β,step) % ||b||(β,step)

||a & b||(β,step) =̂ ||a||(β,step) &β ||b||(β,step)

||a −� b||(β,step) =̂ ||a||(β,step)−�β||b||(β,step)

||b ⇒ b||(β,step) =̂ ||a||(β,step) ⇒β ||b||(β,step)

||◦a||(β,step) =̂ step.||a||(β,step)

||�a||(β,step) =̂ (μA • ||a||(β,step) % step.A)
||a � b||(β,step) =̂ (νA • ||b||(β,step) % (||a||(β,step) " step.A))

step is a (α)transformer. β is a posreal scalar.
The (least μ and greatest ν) fixed points are defined over the complete partial order of
expectations bounded by β. For a monotonic step the fixed points are well-defined.
For finite β, % and " are duals: ||a % b||(β,step) ≡ ||¬(¬a " ¬b)||(β,step).

Fig. 5. The semantics of qTL

“establishing A” does not make sense. The interpretation of �(Atom(A)) in the
general case relies on a game-like analogy, and we quote directly from [13]:

[I]t is the supremum, over all strategies that determine in each state
whether to make another transition or to stop, of the expected value of
A when the strategy says “stop”; the strategy “never stop” gives 0 by
definition.

The other operators are interpreted similarly. Note for example that non-termina-
tion in the case of � is interpreted as a success, and that the interpretation of
� involves a mixture of minimizing and maximizing strategies.

With the game analogy in mind it is clear that there is no need to focus
exclusively on expectations bounded by 1 when specifying the semantics of qTL,
although admittedly most of the time this is sufficient (since most often than
not we are interested in temporal behavior relative to standard expectations).
Especially as far as the implementation in HOL is concerned, it is advantageous
to parameterize the semantic operator with the bound “β”. This is so because
proving properties for an arbitrary bound β (although sometimes under the as-
sumption that β = ∞) is no more difficult than in the 1-bounded case. Moreover,
specializing to the 1-bounded expectations is trivial, and clearly we also have
access to reasoning about unbounded expectations, although as expected the
properties available in this case are fewer.

We conclude this section with a few words on the expressibility of qTL.
Recall that in the wp-definition (Fig. 2) we interpreted nondeterminism demoni-
cally. With such an interpretation we can only describe universal versions of the
temporal operators, since demonic interpretations give us guarantees on least
expected values. For a logic that also admits existential versions of the oper-
ators the transformer step should also allow angelic interpretations. However,

446 O. Celiku

the price to pay is that sublinearity does not generally hold for transformers
containing angelic nondeterminism [14]. Note however that for the semantics to
be well-defined monotonicity is all that is needed.

4 The Algebra of qTL

In this section we show some of the qTL properties [14], which generalize laws of
standard branching-time temporal logic [1]. They are essential logical tools when
verifying algorithms since often direct appeal to the semantics is impractical. The
results have been derived in HOL from the semantics of qTL (Fig. 5) and the
main general healthiness assumptions about the transformer step (Fig. 3).

A useful property in concrete verifications is feasibility, which can be proved
easily if step is feasible:

∀β, step, a • ||a||(β,step) � β .

From now on to improve readability we identify formulas with their se-
mantics; we identify the semantic bound β when that can be ambiguous, in
particular, we mark those properties that assume that the bound is finite. We
also pretty-print Atom(A) as simply A. As far as the computation step is con-
cerned we assume throughout that it is feasible and monotonic. However many
of the interesting properties require step be sublinear (i.e. demonic). We will
point out when the sublinearity assumption is necessary. Although a (purely)
demonic step is in most situations expressive enough, there are some situa-
tions when it is more advantageous to interpret nondeterminism angelically.
McIver [16], for example, showed how temporal operators working with an an-
gelic transformer can be used to reason about the efficiency of probabilistic
programs.

The properties of “◦” are trivially inherited from those of the transformer
step. In Fig. 6 we show some basic consequences of the monotonicity of step.

Next we prove the basic fixed points laws for �,�, and �, which are shown
in Fig. 7. The greatest law for always, for example, is a very useful tool for
bounding from below the probability that invariance properties hold. Moreover
the verification conditions in such cases can be discharged with the help of total
correctness calculators [9].

We also note that the usual “double” laws hold in our setting:

��a ≡ �a double, eventually ,
��a ≡ �a double, always .

The most challenging and interesting properties are shown in Fig. 8. As noted
in [14] it can require some ingenuity to describe the intuition behind some of
them. However, what is clear is that these properties allow breaking down the
reasoning to more manageable pieces, and achieving modularity of proofs. The
example in the next section illustrates the usefulness of such properties.

Quantitative Temporal Logic Mechanized in HOL 447

a � b ⇒ ◦a � ◦b monotonic, next time
a � b ⇒ �a � �b monotonic, eventually
a � b ⇒ �a � �b monotonic, always
a � b ⇒ ¬b � ¬a antimonotonic, complement (∗)

(∗) assumes β �=∞.
Because some of the formulas, e.g. those containing −� , are neither “logically positive”
nor “negative”, a more general result for the (anti)monotonicity of positive (negative)
formulas cannot be established.
For op any of the monotonic operators, it is easy to prove:

op(a) % op(b) � op(a % b) subdistributes %
op(a " b) � op(a) " op(b) supdistributes "

Fig. 6. (Anti)Monotonicity properties

�a ≡ a % ◦�a fixed point, eventually
a % ◦b � b ⇒ �a � b least, eventually

◦a % ◦�a � �a
a � b ≡ b % (a " ◦(a � b)) fixed point, unless

d � b % (a " ◦d) ⇒ d � a � b greatest, unless
�a ≡ a " ◦�a fixed point, always

b � a " ◦b ⇒ b � �a greatest, always
�a � ◦a " ◦�a

The monotonicity of step suffices for these properties.

Fig. 7. Fixed point properties of �, �, and �

5 Example: The Jumping Bean

The verification of the example presented in this section follows very closely
Morgan’s presentation of the proof [17]; the same result is also proved in [14],
although the presentation there is given in terms of while-loops. Throughout this
section we assume that the semantic bound β is 1. Moreover, we assume that
the computation step is given in terms of wp.

The Jumping Bean sits on the number line and hops some integer distance,
either up or down. Informally, the Bean must move according to the following
rules:

1. With some nonzero probability, it must move at least one unit up or down.
2. There is a uniform maximum distance, arbitrarily large but fixed, that it can

travel in one jump.
3. Its expected movement is never down: on average, it either moves up or stays

where it is.

448 O. Celiku

�a & �b � �(a & b) always subdistributes &
�(a −� b) � �a −� �b always supdistributes−�

a & �(a ⇒ ◦a) � �a
�(a −� b) & �a � �b

�a � ¬�(¬a) always-eventually duality
�a & �(◦a ⇒ a) � a

�a & �b � �(a & b)

The properties assume β �=∞, and that step is sublinear.

Fig. 8. Duality properties and more

For example, the symmetric walker :

SymmetricWalker =̂ n := n− 1 1/2⊕ n := n+ 1 , (3)

trivially satisfies the required behavior: it moves with probability 1, the maxi-
mum distance of each jump is 1, and on average it stays in place. A less trivial
example of an acceptable behavior is that of this demonic walker :

DemonicWalker =̂

⎛⎝n := n+ 2 @ 1/4
skip @ 5/12
n := n− 1 @ 1/3

⎞⎠ []
(
n := n + 1 @ 1/2
n := n− 1 @ 1/2

)
(4)

On each step the walker can choose to move according to the distribution spec-
ified in the left statement or the one in the right — which choice will be made
cannot be predicted in advance. However, each of the alternatives satisfies the
movement conditions set above, thus the demonic walker ’s behavior is in the
acceptable range.

We will prove that under the three assumptions above (which we state for-
mally below), and given any number H on the integer line, the Bean will even-
tually jump over it with probability 1:

�[H ≤ n] ≡ 1 . (5)

Here n is the variable recording the current position of the Bean on the line. First
we note that we can easily establish �[H ≤ n] � 1 from the feasibility of the
formulas. However the other direction is nontrivial to show since the least fixed
point property works the other way around. Moreover, since we do not know the
exact probabilities involved in the jumps we cannot just solve the fixed-point
equation. This is an indication that we need to check whether some zero-one
law is at work. The next theorem shows an example of such a law for eventually.

Theorem 1 (Zero-one law for eventually). If the probability of eventually
establishing a standard predicate P is everywhere bounded away from 0 then it
is in fact 1:

Quantitative Temporal Logic Mechanized in HOL 449

(∃c • 0 < c ∧ c � �[P]) ⇒ �[P] ≡ 1

Note that we are assuming that step is nondivergent.3

Another zero-one law we have available for � of a standard expectation [P]
is a lot like the variant-rule for probabilistic loops [14]. Informally, if we can find
an integer-valued function of the state — a variant — that

– is bounded from below and above while P is not established,
– and the probability of its increasing on every computation step is bounded

away from 0,

then we know that with probability 1, P will eventually be established.

Theorem 2 (Variant-rule for eventually). For any standard predicate P ,
an integer-valued state variant V ,

(∃c, L,H •

0 < c ∧ ¬(P ⇒ L ≤ V < H) ∧ (∀N • c[¬P ∧ (V = N)] � ◦[N < V])) ⇒
�[P] ≡ 1

From the informal assumptions the position of the Bean must increase with some
probability, if the Bean must move on each step and its expected movement is
never down. However, we cannot apply Thm. 2 directly to our initial goal because
we cannot bound our variant n from below.

Instead we argue that given any (finite) position L to the left of H , if the
Bean starts from a position within the interval [L . . .H) then

– it eventually escapes from that interval with probability 1,
– the probability of its escaping from the right can be bounded away from 0

— this probability depends on how low L is chosen.

The glue to all the pieces is the following lemma:

Lemma 3. For any H,L

�[¬(L ≤ n < H)] & [L ≤ n] � [H ≤ n] � �[H ≤ n] .

The part that needs some explanation is when for the chosen L the initial position
of n falls to the left of the interval [L . . .H). Then trivially the first conjunct
of the left-hand side is 1, however since both [L ≤ n] and [H ≤ n] are 0, by the
semantics of � and the definition of & we get on the left-hand side 0, which in
other words means that we cannot say anything nontrivial about the probability
of (H ≤ n)’s establishment. Clearly L should be chosen such that it is lower
than n’s initial position (when this itself is lower than H). We show that L can
be chosen low enough so that the probability of escaping to the right of H is at
least 1/2, which allows us to prove the following:

�[¬(L ≤ n < H)] & [L ≤ n] � [H ≤ n]
� 1 & 1/2 To show later (6,7)
≡ 1/2 . Definition of &, Fig 1

3 For pGCL programs nondivergence means that they terminate with probability 1 [14].

450 O. Celiku

Having bounded �[H ≤ n] away from 0, by appeal to Thm. 1, we can conclude
that the Bean’s eventual escape to the right of H is almost certain, i.e. occurs
with probability 1.

Now we fill in the missing steps, for which we first state the assumptions
about the Jumping Bean formally in Fig. 9.

∀L, H • L ≤ H ⇒
∃c • 0 < c⇒ JB1
∀N • c[L ≤ n < H ∧ (n = N)] � ◦(N < n)

JB1 encodes the requirement that the Bean must move on each step; more precisely
that it must move up with some probability.

∃K • 0 < K∧
∀L, H • L ≤ H ⇒ JB2
〈L : n : H〉 � ◦〈L : n : H + K〉

where
〈L : n : H〉 =̂ [L ≤ n ≤ H]× (n− L) + [H < n]× (H − L) .

K in JB2 is the maximum distance the Bean can travel in one step; recall that in our
informal assumption we required that such a distance be bounded. JB2 also encodes
the requirement that the movement never be down: take L + 1 = H = N , where N is
the Bean’s initial position (in state s). Then 〈L : n : L + 1〉 in s is 1, and the only way
for 1 ≤ ◦〈L : n : L + 1 + K〉.s is if finally N ≤ n.
We also assume that the jump is nondivergent.

Fig. 9. Jumping Bean assumptions

Appealing to Thm. 2 with state-variant n we directly conclude from JB1
that:

∀L,H • L ≤ H ⇒ �[¬(L ≤ n < H)] ≡ 1 . (6)

Next we prove that under assumption JB2 the bound L can be chosen such
that:

1/2 � [L ≤ n] � [H ≤ n] . (7)

First we note that given an initial position N of the Bean, if H ≤ N then the
right-hand side trivially evaluates to 1, and thus it is enough to choose any
L ≤ H (for which (6) is true). So we can safely assume that N < H initially.

Using the least-fixed point property for unless, and some transformations of
JB2 which we do not show here because the details are rather unenlightening,
we can prove:

〈L : n : H +K〉
H +K − L

� [L ≤ n] � [H ≤ n] .

For any initial position of the Bean N (to the left of H), we can see that choosing
L = 2N − (H +K), makes the left-hand side 1/2.

Quantitative Temporal Logic Mechanized in HOL 451

We have thus proved the claim we set about to:

Theorem 4 (Jumping Bean). Given any number H on the number line, a
Jumping Bean satisfying the assumptions JB1 and JB2 (see Fig. 9) will eventu-
ally jump over it with probability 1:

�[H ≤ n] ≡ 1 .

This result is more general than similar ones found in probability textbooks: the
actual transition probabilities may vary from place to place since the probability
distributions can be functions of state, so our walkers may be non-homogeneous.
Allowing nondeterministic moves is a further generalization to traditional such
theorems — the transition probabilities may vary not only on different places
of the number line but also on different visits to the same place (see Demon-
icWalker (4)). We also note that the state space is infinite, and the theorem is
parameterized on the limit on the jump.

To give an idea of the mechanization effort involved in the verification, the
proofs of this section (including those for the zero-one laws) required around
2000 lines of proof script. However, proving that the SymmetricWalker (see (3))
and DemonicWalker (see (4)) satisfy the assumptions is by comparison much
easier, and the proofs were around 100 and 150 lines respectively. The latter ver-
ifications can also be supported by correctness tools built for pGCL [9], cutting
the verification effort further.

Verifications in a theorem prover are most useful if properties about classes
of probabilistic programs can be proved — this is possible either as in our ex-
ample, by stating the assumptions as generally as possible, or by specifying the
syntactic pGCL program as abstractly as possible and using refinement to de-
rive the property for concrete programs. The refinement approach is justified by
theorems such as the following:

∀β, step, step′ • step � step′ ⇒ ||a||(β,step) � ||a||(β,step′) ,

where step � step′ denotes that step′ refines step — formally that ∀A • wp.Step.A
� wp.Step′.A — and a is a positive formula.

6 Conclusions and Related Work

The importance of having methods suitable for reasoning about randomized algo-
rithms is already widely recognized. A recent survey on a number of approaches
used to verify the correctness of such algorithms is presented by Norman [22].
As far as computer-aided verification is concerned much work has been done
in the area of model checking, with PRISM [12,23], ETMCC [4], Ymer [24],
RAPTURE [10], and ProbVerus [6] being some of the model-checking tools for
probabilistic systems. They differ in whether they model-check purely proba-
bilistic systems (ETMCC, Ymer, ProbVerus), or probabilistic nondeterministic
systems (PRISM, RAPTURE); the temporal logics used to express the proper-
ties to be model-checked also vary, although they mainly fall into two categories:

452 O. Celiku

logics that keep the formulas standard and associate probabilities with computa-
tion paths, and those that have formulas denote probabilities rather than truth
values. qTL falls into the latter category.

Although impressive work has been done to tackle the problems inherent in
model-checking approaches, such as state explosion, model-state finiteness, and
the inability to parameterize systems, as concluded in [22] most of the prob-
abilistic model-checking tools are not yet sufficiently developed compared to
their non-probabilistic peers; as such they still are applicable to only complete,
finite-state models.

Theorem provers can deal with infinite-state systems, and parameteriza-
tion — our Jumping Bean theorem is one such example. However, verification us-
ing theorem provers is still labor-intensive. Compared to model-checking efforts
not much work has been done on providing theorem prover support for verifying
probabilistic systems. To our knowledge the first work on verifying probabilistic
programs using a theorem prover is that of Hurd [8], who formalized probabil-
ity theory in HOL and implemented tools for reasoning about correctness of
(purely) probabilistic algorithms. More recently work on formalizing pGCL and
its quantitative logic in HOL has appeared [9,2], and it is this work that we ex-
tended. Similarly, support for probabilistic reasoning in the pGCL style is being
incorporated in the B method [7,15].

Acknowledgments

I thank Annabelle McIver for answering my questions with regard to qTL and
commenting on a draft of this paper. I also thank Carroll Morgan for making
available the nice Jumping Bean slides.

References

1. M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta
Informatica, 20:207–226, 1983.

2. O. Celiku and A. McIver. Cost-based analysis of probabilistic programs mechanised
in HOL. Nordic Journal of Computing, 11(2):102–128, 2004.

3. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
4. Erlangen-Twente Markov Chain Checker.

http://www.informatik.uni-erlangen.de/etmcc/.
5. M. J. C. Gordon and T. F. Melham. Introduction to HOL (A theorem-proving

environment for higher order logic). Cambridge University Press, 1993.
6. V. Hartonas-Garmhausen, S. V. A. Campos, and E. M. Clarke. Probverus: Prob-

abilistic symbolic model checking. In Formal Methods for Real-Time and Proba-
bilistic Systems, 5th International AMAST Workshop, Proceedings, volume 1601
of Lecture Notes in Computer Science, pages 96–110. Springer, 1999.

7. T. S. Hoang, Z. Jin, K. Robinson, A. McIver, and C. Morgan. Probabilistic invari-
ants for probabilistic machines. In ZB 2003: Formal Specification and Development
in Z and B,Proceedings, volume 2651 of Lecture Notes in Computer Science, pages
240–259. Springer, 2003.

Quantitative Temporal Logic Mechanized in HOL 453

8. J. Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University
of Cambridge, 2002.

9. J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded commands mechanized
in HOL. In Proc. of QAPL 2004, Mar. 2004.

10. B. Jeannet, P. D’Argenio, and K. Larsen. Rapture: A tool for verifying Markov
Decision Processes. In I. Cerna, editor, Tools Day’02, Brno, Czech Republic, Tech-
nical Report. Faculty of Informatics, Masaryk University Brno, 2002.

11. D. Kozen. Results on the propositional μ-calculus. Theoretical Computer Science,
27:333–354, 1983.

12. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In Proceedings of TOOLS 2002, volume 2324 of Lecture Notes in Computer
Science, pages 200–204. Springer, Apr. 2002.

13. A. McIver and C. Morgan. Almost-certain eventualities and abstract probabilities
in the quantitative temporal logic qTL. Theoretical Computer Science, 293(3):507–
534, 2003.

14. A. McIver and C. Morgan. Abstraction, refinement and proof for probabilistic
systems. Springer, 2004.

15. A. McIver, C. Morgan, and T. S. Hoang. Probabilistic termination in B. In ZB
2003: Formal Specification and Development in Z and B, Proceedings, volume 2651
of Lecture Notes in Computer Science, pages 216–239. Springer, 2003.

16. A. K. McIver. Quantitative program logic and expected time bounds in probabilis-
tic distributed algorithms. Theoretical Computer Science, 282:191–219, 2002.

17. C. Morgan. Probabilistic temporal logic: qTL. Lectures on Probabilistic For-
mal Methods for the 2004 RSISE Logic Summer School. Slides available at
http://www.cse.unsw.edu.au/∼carrollm/canberra04/.

18. C. Morgan and A. McIver. An expectation-transformer model for probabilistic
temporal logic. Logic Journal of the IGPL, 7(6):779–804, 1999.

19. C. Morgan and A. McIver. pGCL: Formal reasoning for random algorithms. South
African Computer Journal, 22:14—27, 1999.

20. C. C. Morgan. Programming from Specifications. Prentice-Hall, 1990.
21. C. C. Morgan, A. K. McIver, and K. Seidel. Probabilistic predicate transformers.

ACM Transactions on Programming Languages and Systems, 18(3):325–353, May
1996.

22. G. Norman. Analysing randomized distributed algorithms. In Validation of
Stochastic Systems, volume 2925 of Lecture Notes in Computer Science, pages 384–
418. Springer-Verlag, 2004.

23. Probabilistic Symbolic Model Checker. http://www.cs.bham.ac.uk/dxp/prism/.
24. Ymer. http://www.cs.cmu.edu/∼lorens/ymer.html.

Weak Stochastic Bisimulation for
Non-Markovian Processes�

Natalia López and Manuel Núñez

Dpt. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid

{natalia, mn}@sip.ucm.es

Abstract. In this paper we introduce a novel notion of bisimulation to
properly capture the behavior of stochastic systems with general distri-
butions. The key idea consists in the identification of different sequences
of random variables if the additions of the random variables of each
sequence are identically distributed. That is, we will not only identify
sequences of internal actions with one of them (as it is usually done
in weak bisimulations) but we will also reduce (in some conditions) se-
quences of stochastic transitions to only one transition. Therefore, we will
identify processes that are considered non-equivalent in previous notions
of bisimulation for this kind of languages.

1 Introduction

Process algebras [Hoa85, Hen88, Mil89, BW90] are a powerful mechanism to
specify the functional behavior of concurrent and distributed systems. Never-
theless, the original formulations were not able to accurately represent systems
where quantitative information, such as time and probabilities, played a funda-
mental role. Therefore, several timed and/or probabilistic extensions of process
algebras have been proposed in the literature. In timed process algebras time
information is mainly specified in two different forms: Either by adding a delay
operator or by including information about the time when actions are enabled.
So, no information about the probability associated with this temporal informa-
tion is included. However, there are processes in which we would like to specify
that the probability of performing an action changes as time passes. For example,
the event of cars arriving to a petrol station follows a Poisson distribution.

A natural evolution has appeared with the introduction of stochastic process
algebras (e.g. [GHR93, ABC+94, Hil96, Her98, BG98, HS00, LN01, HHK02])
where time information is incremented with some probabilistic information. For
example, one may specify a system where a message is expected to be received
with probability 1

2 in the interval (0, 1], with probability 1
4 in (1, 2], and so

on. This is an advantage with respect to timed processes where we could only
specify that the message arrives in the interval (0,∞). There are two main ways
of specifying this (stochastic) time information: Either by adding a timer to
� Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01

and the Junta de Castilla-La Mancha project PAC-03-001.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 454–468, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Weak Stochastic Bisimulation for Non-Markovian Processes 455

actions or by specifying (random) delays. In the first case, an expression as
(a, ξ) ;P indicates that the probability of performing a, before time t has passed,
is equal to the probability that the random variable ξ takes values less than or
equal to t. After a is performed, the process behaves as P . For example, if ξ is
uniformly distributed over the interval [1, 2] the probability of executing a before
time 2

3 is equal to 0, the probability of executing a before time 3
2 is equal to 1

2 , and
so on. Examples of such languages are [Hil96, BG98, LN00]. In the second case,
an expression as ξ ;P indicates that the process will be delayed according to ξ and
then it will behave as P . Again, if ξ is uniformly distributed over [1, 2], P starts
before time 5

4 with probability 1
4 , before time 2 with probability 1, etc. Examples

of such languages are [Her98, DKB98, LN01, HHK02, BG02]. In this paper
we have preferred to take the second approach because the separation between
stochastic and functional behaviors makes (semantic) definitions simpler.

With a few exceptions most stochastic models consider that distributions
are restricted to be exponential. This restriction simplifies several of the prob-
lems that appear when considering general distributions. In particular, some
quantities of interest, like reachability probabilities or steady-state probabilities,
can be efficiently calculated by using well known methods on Markov chains. Be-
sides, the (operational) definition of the language is usually simpler than the one
for languages allowing general distributions. Nevertheless, this restriction does
not allow to properly specify some kind of systems where time distributions
are not exponential. Moreover, the main weakness of non-exponential models,
the analysis of properties, can be (partially) overcome by restricting the class
of distributions. A good candidate are phase-type distributions. This kind of
distributions has some good properties: they are closed under minimum, maxi-
mum, and convolution, and any other distribution over the interval (0,∞) can
be approximated by arbitrarily accurate phase-type distributions. Moreover, the
analysis of performance measures can be efficiently done in some general cases.

Our aim in this paper is to define an equivalence relation that, on the one
hand, properly captures the branching structure of stochastic processes and that,
on the other hand, it is sufficiently abstract with respect to stochastic transitions.
Even though most of the semantics presented for stochastic process algebras
are bisimulation-like semantics,1 in our opinion previous definitions do not ade-
quately abstract stochastic transitions because these transitions are (essentially)
treated as visible ones. For example, consider the processes depicted in Figure 1
whose initial states are s1 and s2. We think that s1 and s2 could be equivalent
(for a suitable choice of ξ in the second process) but they are usually consid-
ered to be non-equivalent. The reason is that s1 may consecutively perform two
stochastic transitions while s2 may perform only one. This situation represents
a big difference with respect to timed process algebras where, for example, the
following process delay(1) ; delay(2) ;Q is always considered to be equivalent to
delay(3) ;Q, where delay(n) indicates that the process is delayed n units of time
(in this case, the delay is fixed). Following this reasoning, we should be able to

1 Two notable exceptions are [BC00, LN01] where testing semantics are defined for
stochastic process algebras.

456 N. López and M. Núñez

identify s1 and s2 for an appropriate ξ. A good candidate is to consider that
ξ is distributed as the addition of ξ1 and ξ2. But here appears a drawback of
exponential distributions: They are not closed under addition, that is, if ξ1 and
ξ2 are exponentially distributed, then the random variable ξ1 + ξ2 is not expo-
nentially distributed. For this reason, the restriction to exponential distributions
does not allow to define a semantics with our expected characteristics. However,
to the best of our knowledge, even when considering general distributions, such
a semantics has not been previously presented.

We propose a new bisimulation semantics for stochastic processes. Regarding
the treatment of usual actions, our definition follows the classical weak bisimu-
lation. Let us present some simple examples to show which processes we would
like to identify according to their stochastic behaviors. Consider s3, s4 and s5 in
Figure 1. The first two ones are weakly bisimilar, so we would like to identify
them. On the contrary, s5 is always considered to be different. The reason is sim-
ilar to the case of s1 and s2: A stochastic transition may be performed from s5
while this is not the case for s3 or s4. But this transition leads to the same state
s5, so the intended meaning of this process is “If a is offered by the environment,
then a is performed; if the delay is consumed, then the process comes back to
the initial state”. In other words, we should not be able to distinguish between
s4 and s5 because both can perform a as soon as it is offered by the environ-
ment. Using a similar reasoning, s6 should be also equivalent to the previous
processes. Consider now s7 and s8. Assuming that ψ1 and ψ2 are not identically

s1

ξ1

ξ2

P

s2

ξ

P

s′
2

s3

τ

a

P

s4

a

P

s5

a

P

ξ
s6

ψ1

a

a

P

P

s7

ψ1

a

P

s8

ψ2

a

P

s9

ξ1

ξ

ξ2

ξ

P P

s10

min(ξ1, ξ2)

ξ

P

s11

min(ξ1, ξ2) + ξ

P

s12

ξ1

ψ1

a

ξ2

ψ2

a

s13

ξ ψ1

P Q

s′′
13s′

13

s14

ξ ψ2

P Q

s′′
14s′

14

s15

ξ1

ψ1

ρ1

a

ρ2

b

ψ2

ρ1

a

ρ2

b

ξ2

ψ1

ρ1

a

ρ2

b

ψ2

ρ1

a

ρ2

b

ξ3

ψ3

ρ3

a

ρ4

a

siv
15 s′′′

15

s′′
15

s′
15

s16

min(ξ1, ξ2)

min(ψ1, ψ2)

ρ1

a

ρ2

b

ξ3

ψ3

min(ρ3, ρ4)

a

s17

min(ξ1, ξ2)

min(ψ1, ψ2)

ρ1

a

ρ2

b

ξ3

ψ3 + min(ρ3, ρ4)

a

s′′
17

s′
17

Fig. 1. Examples of stochastic processes

Weak Stochastic Bisimulation for Non-Markovian Processes 457

distributed, the probabilities of performing a after n units of time have passed
are different. So, s7 and s8 should not be identified (and they are usually not).
Consider now s9, s10 and s11. The first two processes are usually identified in
stochastic bisimulation semantics (so we do). The idea is that the fastest delay
will be taken, and so we must consider a random variable distributed as the min-
imum of ξ1 and ξ2. Besides, following a reasoning similar to that for s1 and s2,
we also consider that s11 is equivalent to both s9 and s10. This example presents
the key point of our semantics: First, we have to check if some transitions may
be joined (by using the minimum) because they lead to equivalent states, and
then we have to check if the continuation must be added to the resulting random
variable. But there are situations where no stochastic transitions are joined at
all. For example, if we consider s12 and we take into account the previous com-
ments on s7 and s8, we should not join the two initial random variables because
they lead to non-equivalent states. So, this process will not be equivalent to any
other process (up to trivial renaming of random variables).

The combination of minimums and additions, that we have commented be-
fore, produces that the definition of the desired semantics is far from trivial.
Consider s15, s16, and s17 in Figure 1. All these processes will be identified in
our semantics. This example illustrates that the minimum is chosen among all
the random variables that lead to equivalent states. The transitions labelled by
ξ1 and ξ2 are joined by the minimum. Afterwards, there does not exist the possi-
bility of adding the following transition (in this case min(ψ1, ψ2)) due to the fact
that this would produce a change in the stochastic choice at the root. Besides,
the states located after ρ1 and ρ2 are not equivalent, so they cannot be joined.
Finally, we can add ψ3 and min(ρ3, ρ4) as in s10 and s11.

In order to keep the presentation as simple as possible, we have preferred to
introduce our semantics on a class of (stochastic) labelled transition systems. As
we said before, we will separate between usual actions and stochastic actions.
Random variables associated with stochastic transitions may have any kind of
probability distribution. In Section 2 we present this class of labelled transition
systems. In Section 3, we define three notions of bisimulation (strong, weak, and
weak stochastic). As usually, weak bisimulation is weaker than strong bisimu-
lation. We will also show that the new defined weak stochastic bisimulation is
weaker than weak bisimulation. Finally, in Section 4 we present our conclusions
and some lines for future work.

2 Stochastic Labelled Transition Systems

In this section we define our model of stochastic processes. We consider a class
of labelled transition systems where transitions are labelled either by an action
or by a random variable. First, we introduce some concepts on random variables.
We will consider that the sample space (that is, the domain of random variables)
is the set of real numbers IR and that random variables take positive values only
in IR+, that is, given a random variable ξ we have P(ξ ≤ t) = 0 for all t < 0. The
reason for this restriction is that random variables are always associated with

458 N. López and M. Núñez

time distributions. We also introduce the function ⊕. This operator will be used
when random variables associated with the same state are combined.

Definition 1. Let ξ be a random variable. We define its probability distribution
function, Fξ : IR → [0, 1], as the function such that Fξ(x) = P(ξ ≤ x), where
P(ξ ≤ x) is the probability that ξ assumes values less than or equal to x. We
denote by unit the random variable such that Funit (x) = 1 for all x ≥ 0.

Let ξ1, ξ2 be independent random variables with probability distribution
functions Fξ1 and Fξ2 , respectively. We define the combined addition of ξ1 and
ξ2, denoted by ξ1 ⊕ ξ2, as the random variable with probability distribution
function Fξ1⊕ξ2(x) = Fξ1(x) + Fξ2(x) − Fξ1(x) · Fξ2(x). This operator can be
generalized to an arbitrary (finite) number of random variables. Let Ψ = {ξi}i∈I

be a non-empty finite set of independent random variables. We define the com-
bined addition of the variables in Ψ , denoted by ⊕Ψ , as the random variable such
that F⊕Ψ (x) =

∑
∅⊂Φ⊆Ψ (−1)(|Φ|+1)F⊗Φ(x) where F⊗Ψ (x) = Π i∈I Fξi(x). !

Let us note that for singleton sets, Ψ = {ξ}, we have ⊕Ψ = ξ. Also note that
this operator does not correspond to the usual definition of addition of random
variables (we will denote the addition of random variables by +). Actually, it
can be shown that ⊕ computes the minimum of a set of random variables.

Lemma 1. Let Ψ = {ξ1, ξ2, . . . , ξn} be a non-empty set of independent random
variables, and let ξ be a random variable distributed as the random variable
min{ξ1, ξ2, . . . , ξn}. For all x ∈ IR we have Fξ(x) = F⊕Ψ (x).

We suppose a fixed set of actions Act (a, a′, . . . to range over Act) and a
special action τ /∈ Act to represent internal activity. We denote by Actτ the set
Act∪{τ} (α, α′, . . . to range over Actτ). We denote by V the set of random vari-
ables (ξ, ξ′, ψ, . . . to range over V). Finally, γ, γ′, . . . will denote generic elements
in Actτ ∪ V .

Definition 2. A stochastic labelled transition system P is a pair (S,−→) where
S is a finite set of states, and −→⊆ S × (Actτ ∪ V)× S is a transition relation.

We will use the following conventions: s
γ−−→ s′ stands for (s, γ, s′) ∈−→ ;

s
γ−−→ stands for there exists s′ ∈ S such that s

γ−−→ s′; we write s
γ
−−→ if there

does not exist such an s′ ∈ S. We say that s is stable if s τ−−→ . We denote by
τ==⇒ the reflexive and transitive closure of τ−−→ ; given γ = τ , we write s

γ
==⇒ s′

if there exist s1, s2 such that s τ==⇒ s1
γ−−→ s2

τ==⇒ s′. Given a set A ⊆ Actτ ∪V ,
we write s A−−→ (resp. s A==⇒) if there exists γ ∈ A such that s

γ−−→ (resp. s
γ

==⇒),
and we write s A−−−−→ (resp. s A=⇒) if there does not exist such a γ. !

Intuitively, a transition s a−−→ s′ indicates that a process may evolve from
s to s′ by performing the (visible) action a. A transition s τ−−→ s′ indicates

that a process may internally evolve from s to s′. Finally, a transition s
ξ−−→ s′

expresses that a process may evolve from the state s to the state s′ once the
(random) delay indicated by ξ has been elapsed. In order to avoid side effects,

Weak Stochastic Bisimulation for Non-Markovian Processes 459

we suppose that all the random variables labeling transitions of a process are
independent. In particular, this implies that the same random variable cannot
appear in different transitions. Note that this restriction does not forbid to have
identically distributed random variables (as far as they have different names).
This assumption would not be necessary if we defined stochastic delays by using
probability distribution functions. Anyway, for the sake of convenience, we will
sometimes use the same random variable in different transitions. For example,
two transitions labelled by the same random variable ξ (e.g. s9 in Figure 1) is
a shorthand to indicate that these transitions are labelled by two identically
distributed independent random variables ψ1 and ψ2.

The following examples show how the race policy (i.e. the fastest delay is
always taken in a process) identifies some processes that apparently should not
be equivalent.

Example 1. Consider s13 and s14 in Figure 1. Suppose that ξ is uniformly dis-
tributed over [0, 2], ψ1 is uniformly distributed over [1, 5], and that the proba-
bility distribution function of ψ2 is given by:

Fψ2(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ≤ 1
x−1

4 if 1 < x ≤ 4
x
2 −

5
4 if 4 < x ≤ 9

2
1 if 9

2 < x

Taking into account that ψ1 and ψ2 are not identically distributed, we could
think that s13 and s14 are not equivalent. However, as the fastest delay will be
taken in these states, after two units of time ξ will be chosen with probabil-
ity 1 because P(ξ ≤ 2) = 1. Since we have that ψ1 and ψ2 are identically dis-
tributed over the interval [0, 4], so are they over [0, 2]. Thus, s13 and s14 should be
equivalent. !

Example 2. Consider again s13 and s14 in Figure 1, but now suppose that ξ is
uniformly distributed over [0, 1

2] and that ψ1 and ψ2 are defined as in Example 1.
We have that the probability of performing either ψ1 or ψ2 would be zero. In this
case, both s13 and s14 should be equivalent, and they should be also equivalent to
s2 (also in Figure 1). This is so because the delay associated with ξ is performed
with probability 1 after a half of a unit of time, and at that time ψ1 and ψ2
cannot be performed. !

We also consider that internal actions are urgent, that is, given the fact
that they do not need to interact with the environment, they will be performed
as soon as possible, so no delay is allowed. This property, usually known as
maximal progress, appears in most timed and stochastic models. Moreover, we
will consider that if a state can evolve neither internally nor stochastically, this
state can wait any amount of time before any visible action is performed.

Definition 3. Let P = (S,−→) be a stochastic labelled transition system, s, s′ ∈
S, ξ, ψ ∈ V , t0 ∈ IR+, and C ⊆ S. We define the following concepts:

Maximum waiting time. The maximum waiting time for a state s, denoted
by maxW (s), is defined as

460 N. López and M. Núñez

maxW (s) =

{
0 if s τ−−→
min{t | ∃ξ ∈ V : s

ξ−−→ ∧Fξ(t) = 1} otherwise

Identically distributed random variables. We say that ξ and ψ are identically
distributed with respect to states s and s′, denoted by ξ =s,s′ ψ, if maxW (s) =
maxW (s′) and for all t ≤ maxW (s) we have Fξ(t) = Fψ(t).

Feasible random variable. We say that the random variable ξ is feasible with
respect to t0, denoted by fact t0(ξ), if t0 > min{t | Fξ(t) > 0}.

Set positively reached. We say that s may positively reach C, denoted by
s↗C, if there exist s′ ∈ C and ξ ∈ V such that s

ξ−−→ s′ and factmaxW (s)(ξ). !
The function maxW (s) will ensure maximal progress. If the state can evolve

internally, it cannot wait to perform any delay, and so maxW (s) = 0. If the state
is stable, then the function maxW (s) computes the maximum amount of time
that s can wait until a delay is performed with probability 1. We have considered
min ∅ = ∞. So, if s is stable and has no stochastic transitions then it can wait
as long as one of its transitions is enabled.

The predicate =s,s′ will be used to compare random variables. As previous
examples illustrate, probability distribution functions associated with random
variables are compared only in the interval of time limited by the maximum
waiting time of the corresponding states. For example, if we consider Example 1
we have ψ1 =s13,s14 ψ2 because maxW (s13) = maxW (s14) = 2. For that reason,
the states s13 and s14 should be equivalent. Meanwhile, in Example 2 the tran-
sitions ψ1 and ψ2 will not be taken into consideration (and so, we will say that
they are not feasible).

In order to avoid the computation of the minimum of an empty set of random
variables we have defined the predicate s↗C. This predicate holds if s can reach
C ⊆ S by performing a stochastic transition.

3 Stochastic Bisimulations

Next we define our notions of bisimulation. The first two ones correspond to the
typical notions of strong and weak bisimulations for stochastic processes (see for
example [Her98, BG98] for similar notions on a Markovian setting). The third
notion, that we call weak stochastic bisimulation, represents a refinement (i.e. it
is weaker) of the previous notions. We consider that not only internal actions may
be (partially) abstracted but also (in some cases) sequences of random variables
may be abstracted.

We start by giving the definition of strong bisimulation. First, we introduce
an auxiliary definition to combine random variables that, starting from the same
state, reach equivalent states.

Definition 4. Let P = (S,−→) be a stochastic labelled transition system, and
C ⊆ S. We define the strong random variable associated with the execution of
stochastic transitions from a state s ∈ S leading to C, denoted by ξs(s, C), as

ξs(s, C) = ⊕{ξ | ∃s′ ∈ C : s
ξ−−→ s′}. !

Weak Stochastic Bisimulation for Non-Markovian Processes 461

The function ξs(s, C) combines all the random variables leading from s to a
state belonging to C by using the function ⊕. Let us remind that ⊕ computes
the minimum of a set of random variables.

Definition 5. We say that an equivalence relation R is a strong bisimulation
on P = (S,−→) if for all pair of states s1, s2 ∈ S we have that s1Rs2 implies:

– For all α ∈ Actτ , s1
α−−→ s′1 implies ∃s′2 such that s2

α−−→ s′2 and s′1Rs′2.
– For all C ∈ S/R, s1↗C implies s2↗C and ξs(s1, C) =s1,s2 ξs(s2, C).

We say that two states s1, s2 ∈ S are strongly bisimilar, denoted by s1 ∼s s2,
if there exists a strong bisimulation that contains the pair (s1, s2). !

The definition of strong bisimulation mimics the one for non-stochastic sys-
tems: A transition from a state must be simulated by the same transition in the
other one. The first clause of the definition is the usual one for strong bisimula-
tion. The second clause is used to join several stochastic transitions leading to
the same equivalence class. Note that ξs(s1, C) and ξs(s2, C) do not need to be
equal for any time value; they have to take equal values for any time lower than
or equal to the maximum waiting time of both states. Finally, let us note that
the symmetric cases, where s1 and s2 exchange roles, are omitted because we
already force R to be an equivalence relation (and so R is symmetric).

Example 3. Consider the states s2, s13, and s14 from Figure 1 together with the
random variables defined in Examples 1 and 2. Let us define the sets of states C1
and C2 such that s′2, s′13, s′14 ∈ C1 and s′′13, s

′′
14 ∈ C2. Considering the values of

the random variables given in Example 1, we have ξs(s13, Ci) =s13,s14 ξs(s14, Ci)
for i ∈ {1, 2} (note that maxW (s13)=2=maxW (s14)). So, s13 ∼s s14.

Let us consider the random variables as defined in Example 2. In this case we
have that ξs(s2, C1) =s2,s13 ξs(s13, C1) =s13,s14 ξs(s14, C1). Note that the values
ξs(sj , C2) for j ∈ {2, 13, 14} should not be computed. So, s2 ∼s s13 ∼s s14. !

Next we present a notion of weak bisimulation for stochastic processes. As
in the strong case, we will also impose the condition of reachability (given in
Definition 3) before we compute ξs. Nevertheless, the corresponding transitions
have to reach C τ instead of C, where C τ = {s | ∃s′ ∈ C : s τ==⇒ s′}.

Definition 6. We say that an equivalence relation R is a weak bisimulation
on a stochastic labelled transition system P = (S,−→) if for any pair of states
s1, s2 ∈ S we have that s1Rs2 implies:

– For all α ∈ Actτ , s1
α−−→ s′1 implies ∃s′2 such that s2

α==⇒ s′2 and s′1Rs′2.
– For all C ∈ S/R, s1

τ==⇒ s′1↗C τ implies ∃s′2 such that s2
τ==⇒ s′2↗C τ and

ξs(s′1, C
τ)=s′

1,s
′
2
ξs(s′2, C

τ).

We say that two states s1, s2 ∈ S are weakly bisimilar, denoted by s1 ∼w s2,
if there exists a weak bisimulation that contains the pair (s1, s2). !

462 N. López and M. Núñez

As in the definition of strong bisimulation, we distinguish between stochastic
transitions and usual action transitions. The first clause of the previous defini-
tion is the usual one for weak bisimulation. The last clause checks whether the
random variables associated with the states are identically distributed up to the
corresponding maximum waiting time. In this case, in order to (partially) ab-
stract internal transitions, it is also allowed the evolution by a (possibly empty)
sequence of internal actions.

Strong and weak bisimulations fulfill the usual properties. The proof is an
adaptation of the one given in [Mil89] by taking into account that, also in our
setting, the relation ∼s (resp. ∼w) can be defined as the union of all the relations
that are strong (resp. weak) bisimulations.

Lemma 2. Let P = (S,−→) be a stochastic labelled transition system. The
strong (resp. weak) bisimilarity relation on P , that is, ∼s (resp. ∼w) is an
equivalence relation on P . Moreover, ∼s (resp. ∼w) is a strong (resp. weak)
bisimulation on P and it is the largest strong (resp. weak) bisimulation on P .

Example 4. Consider Figure 2. States s21 and s22 are both strong and weak
bisimilar. Besides, s23 is weakly equivalent (but not strongly) to both s21 and s22.
In contrast, s24 and s25 are not equivalent under any of the bisimulations defined
in this paper. These examples show that these notions are conservative with
respect to the non-stochastic framework (see forthcoming Lemma 3).

Stochastic transitions leading to the same equivalence class must be joined.
Consider s26 and s27. These two states are (strongly and weakly) bisimilar due
to the fact that both stochastic transitions outgoing from s26 lead to the same
equivalence class. In this way, the delay after which P is enabled will be the
minimum of both random variables, that is, the same as in s27. Consider now s2
in Figure 1 and s28 in Figure 2. They are not strongly bisimilar because s2

τ−−→
while s28

τ−−→ . However, s2 ∼w s28. The states s28 and s29 are not identified.
If s28 evolves by performing a τ transition then s29 cannot simulate this tran-
sition. This is a desired result (and standard in stochastic models) because the
identification of these two states would produce that a pure internal decision (as
in s28) should be treated as a probabilistic one. !

These two notions of bisimulation restricted either to labelled transition sys-
tems, or to stochastic labelled transition systems where distributions are always
exponential, are equivalent to the classical notions of bisimulation, and to the

s21

a

b

a

b

s22

a

b

s23

a

b

τ

a

b

s24

a

b c

s25

a

b

a

c

s26

ξ1 ξ2

P P

s′
26 s′′

26

s27

min(ξ1, ξ2)

P

s28

τ

ξ

τ

ξ

P P

s′
28 s′′

28

s29

ξ ξ

P P

Fig. 2. Examples of strongly/weakly bisimilar processes

Weak Stochastic Bisimulation for Non-Markovian Processes 463

notions of bisimulation defined in [Her98], respectively. In the latter case it is
enough to take into account that when restricted to exponential distributions
we have that, for all s ∈ S, maxW (s) is equal either to 0 or ∞. Besides, for any

C ⊆ S, we have that s↗C can be simplified as ∃s′ ∈ C such that s
ξ−−→ s′. Un-

fortunately, it is not easy to compare our definitions with the corresponding to
models with general distributions. For example, [BG02] uses a preselection pol-
icy (instead of a race policy), while the clocks mechanism of [DKB98] is difficult
to compare with our model.

Lemma 3. Restricted to non-stochastic labelled transitions systems, ∼s (resp.
∼w) is equivalent to the strong (resp. weak) bisimulation defined in [Mil89].

Restricted to Markovian stochastic labelled transitions systems, ∼s (resp.
∼w) is equivalent to the strong (resp. weak) bisimulation defined in [Her98].

Nevertheless, this notion of weak bisimulation presents a drawback. Specifi-
cally, it considers stochastic transitions almost as visible ones. Obviously,
stochastic transitions cannot be considered to be just τ transitions because they
carry some information that τ transitions do not. However, as discussed in the
introduction, in some situations sequences of stochastic transitions should be
identified. This is the case for s1 and s2 in Figure 1 for some particular random
variables ξ1, ξ2, and ξ.

Next, we define our new notion of bisimulation that we call weak stochastic
bisimulation. It is needed again an auxiliary function to compute the probability
of reaching a set of states from a state. First, we introduce some predicates
to indicate conditions on the continuations after evolving by internal and/or
stochastic transitions.

Definition 7. Let P = (S,−→) be a stochastic labelled transition system, R be
an equivalence relation on S, and s ∈ S. We define the following predicates:

Equivalence class. We denote by [s]R the equivalence class induced by R on
S containing s, that is, the set [s]R = {s′ ∈ S | sRs′}.

Stabilization of a state. We say that s′ is a stabilization of s with respect to
R, denoted by S tabR(s, s′), if s′ ∈ [s]R and s′

τ−−→ , and for all r ∈ S we have
s

τ==⇒ r implies r ∈ [s]R.
Stochastically nondeterministic state. We say that s is stochastically nonde-

terministic with respect to R, and we write SndR(s), if there exist s1, s2 ∈ S
such that s↗[s1]R, s↗[s2]R, and [s1]R = [s2]R.

Deterministically reached state. We say that s deterministically reaches s′ by
stochastic transitions with respect to R, denoted by DR(s, s′), if [s]R = [s′]R
and exists s′′ ∈ S such that S tabR(s, s′′) and s′′↗[s′]R, and for all r ∈ S such
that s′′↗[r]R we have [s′]R = [r]R.

Stochastically deterministic state. We say that s is stochastically deterministic
with respect to R, denoted by SdR(s), if for any state r ∈ S we have s τ==⇒ r
implies r ∈ [s]R and one of the following two conditions holds:

– s
V−−−−→ .

– For all s′ ∈ [s]R, ∃s′′ ∈ S such that s′↗[s′′]R implies [s′′]R = [s]R. !

464 N. López and M. Núñez

The predicate S tabR(s, s′) indicates that either s is stable or it stays in its
equivalence class after performing any sequence of internal transitions. We will
use any stable state s′ belonging to the class of s to study its associated random
variables.

The predicate SndR(s) indicates the case when continuations after the per-
formance of a stochastic action should not be added. We reject to (immediately)
study the continuations if the states reached after performing stochastic tran-
sitions do not belong to the same equivalence class. As we have already say,
it is important to note that not all the stochastic transitions outgoing from a
state are considered. For example, the state s13 appearing in Example 2 is not
stochastically nondeterministic. Consider s31 in Figure 4. In this case, the con-
tinuations after the execution of the initial stochastic transitions, (that is, after
ξ1, ξ2 and ξ3) are not equivalent if ψ1 and ψ2 are not identically distributed.
That is, s′31 and s′′′31 will not be equivalent. Let us consider that ξ1, ξ2 and ξ3
are such that maxW (s31) > min{t | Fξi(t) > 0} for i ∈ {1, 2, 3}. In this case, all
the stochastic transitions are considered. So, we have that s31 is a stochastically
nondeterminist state.

Meanwhile, the predicate DR(s, s′) represents the reverse case. The contin-
uations will be joined when all the stochastic transitions outgoing from a state
lead to states belonging to the same equivalence class. For example, in Figure 4,
we have that s′37 deterministically reaches the state s′′37. So, if ξ = ψ+ (ψ1⊕ψ2)
then s37 should be equivalent to s2 in Figure 1.

Finally, the predicate SdR(s) represents the case when all the stochastic and
internal transitions outgoing either from s or from any state of its equivalence
class reach states belonging to [s]R. For example, in Figure 1, we have that s5
is a stochastically deterministic state.

The following function represents the core of the definition of weak stochastic
bisimulation. The key point is the addition of the continuations only when it does
not distort the choice in the upper level. A similar approach, that is, to introduce
an auxiliary function to define weak bisimulation, is taken in [BH97] although
for a much simpler model.

Definition 8. Let P = (S,−→) be a stochastic labelled transition system, R an
equivalence relation on S, and C ∈ S/R. We define the weak stochastic random
variable associated with the stochastic transitions outgoing from a state s0 of P
leading to a state belonging to C, denoted by ξwst(s0, C,R), in Figure 3. !

Let us note that the previous function is partial because not all the classes of a
given equivalence relation will be stochastically reached with a weak stochastic
random variable. Let us remind that unit is the random variable given in Def-
inition 1 and that for any class A, Aτ is the set {s ∈ S | ∃s′ ∈ A : s

τ==⇒ s′}.
The first clause is applied if s0 belongs to the class we are interested in (or this
class can be reached after the execution of several internal transitions) and it is
stochastically deterministic. For example, for s4 and s5 in Figure 1, if we con-
sider R such that [s4]R = [s5]R then the random variables associated with s4 to
reach [s4]R and with s5 to reach [s5]R are identically distributed as unit .

Weak Stochastic Bisimulation for Non-Markovian Processes 465

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

unit if s0 ∈ C τ ∧ SdR(s0)

ξs(s,C τ) if s0 �∈ C τ ∧ S tabR(s0, s) ∧⎛⎜⎜⎜⎜⎝
s Act−−−−→ ∨ SndR(s) ∨

∃s′ ∈ S :

⎛⎜⎝DR(s, s′) ∧(
s′ Act

===⇒ ∨
∃s′′ ∈ S : (¬S tabR(s′, s′′) ∨ SndR(s′′))

)⎞⎟⎠
⎞⎟⎟⎟⎟⎠

ξs(s, [s′]τR)
+

ξwst(s′, C,R)

if s0 �∈ C τ ∧ S tabR(s0, s) ∧ s
Act−−−−�→ ∧ DR(s, s′) ∧ s′ � Act

===⇒ ∧
∃s′′ ∈ S : DR(s′, s′′)

Fig. 3. Definition of the weak stochastic random variable ξwst(s0, C,R)

The other two cases are considered when s0 is not in C τ . The second case
is applied if there exists a stable state s ∈ S, reached from s0 after performing
internal transitions, and either s may perform a visible action, or not all of
the feasible initial stochastic transition (or their continuations) lead to the same
equivalence class. In this case, we do not add the continuations. Consider Figure 4
and an equivalence relation R such that [s31]R = {s31}, [s′31]R = {s′31, s′′31}, and
[s′′′31] = {s′′′31}. We have ξwst(s31, [s′31]R,R) = ξwst(s31, [s′′31]R,R) = ξ1 ⊕ ξ2, and
ξwst(s31, [s′′′31]R,R) = ξ3.

The third clause is taken if all the feasible initial stochastic transitions are
joined and their continuations lead to equivalent states. In this case, we should
not stop counting after the initial transitions. We join the initial stochastic
transitions (by using ξs) and then we add the results to the random variable
corresponding to the continuations. Consider the states s15 and s17 in Fig-
ure 1 and an equivalence relation R such that [s15]R = {s15, s17} = [s17]R,
[s′15]R = {s′15, s′17} = [s′17]R, and [s′′′15]R = {s′′′15, siv15, s′′17} = [s′′17]R. In this case,
ξwst(s′15, [s

′′′
15]R,R) = ξwst(s′17, [s

′′
17]R,R) = ψ3 + (ρ3 ⊕ ρ4). Finally, it is obvious

to check that the three cases are mutually exclusive.
In the previous definitions of bisimulation we have imposed s↗C, before

computing ξs(s, C), to ensure that this function was defined. But this condition

s31

ξ1

ψ1

ξ2

ψ1

ξ3

ψ2

P P P

s′
31 s′′

31 s′′′
31

s32

min(ξ1, ξ2)

ψ1

ξ3

ψ2

P P

s33

min(ξ1, ξ2) + ψ1 ξ3 + ψ2

P P

s34

a ξ

a
P

P

s35

a

P

s36

a ξ1

ξ2

a

P

P

s37

ψ

τ

ψ1 ψ2

τ

ψ1 ψ2

PPPP

s′
37

s′′
37

Fig. 4. Examples of weakly stochastic bisimilar processes

466 N. López and M. Núñez

is not enough to assure that ξwst(s, C,R) is defined. There exist two reasons
why this function could be indefinite: Either there does not exist a path to
reach C from s or there exists a path but it is illegal. We will say that a path

p ≡ s
ξ1==⇒ s1 . . . sn−1

ξn==⇒ sn is legal if the states of the path fulfill the conditions
of any of the three clauses of the definition of ξwst(s, C,R). Intuitively, we need
to consider only those paths such that the function ξwst can be applied in every
step of the computation.

Definition 9. Let P = (S,−→) be a stochastic labelled transition system, C ⊆
S, R an equivalence relation on S, and s0, si ∈ S, ξi ∈ V with 1 ≤ i ≤ n. We

say that p ≡ s0
ξ1==⇒ s1

ξ2==⇒ s2 · · · sn−1
ξn==⇒ sn is a legal path to reach C with

respect to R, denoted by legalR(p, C), if one of the following conditions hold:

1. s0 ∈ C τ , SdR(s0), and n = 0.
2. s0 ∈ C τ , n = 1, there exists s ∈ S such that S tabR(s0, s), factmaxW (s)(ξ1),

s1 ∈ C τ , and
(
s Act−−−−→ ∨ SndR(s) ∨ (DR(s, s1) ∧ s1

Act===⇒) ∨
(DR(s, s1) ∧ ∀s′′ ∈ S : S tabR(s1, s′′) implies SndR(s′′))

)
.

3. s0 ∈ C τ , there exists s ∈ S such that S tabR(s0, s), s
Act−−−−→ , DR(s, s1), and

for all 1 ≤ i ≤ n−1 we have si Act===⇒ and DR(si, si+1) and, finally, sn ∈ C τ

and SdR(sn).

We say that C is stochastically reached from s0 with respect to R, denoted
by s0 =⇒RC, if there exists a path p from s0 such that legalR(p, C). !

Let us remark that if there exists a legal path p from s to C then all the
paths from s to states in C whose stochastic transitions are feasible are also legal.
This is so because the condition to be a legal path considers all the stochastic
transitions that each state can perform. Actually, the predicate s =⇒RC is used
to check that one of the clauses in Definition 8 holds.

Lemma 4. Let P = (S,−→) be a stochastic labelled transition system, C ⊆ S,R
an equivalence relation in S and s ∈ S. If s =⇒RC then the function ξwst(s, C,R)
is well defined.

Once we have defined the previous predicate, we present the notion of weak
stochastic bisimulation.

Definition 10. We say that an equivalence relation R is a weak stochastic
bisimulation on P = (S,−→) if for any pair of states s1, s2 ∈ S we have that
s1Rs2 implies:
– For all α ∈ Actτ , s1

α−−→ s′1 implies ∃s′2 such that s2
α==⇒ s′2 and s′1Rs′2.

– For all C ∈ S/R, s1
τ==⇒ s′1, s′1

τ−−→ , and s′1 =⇒RC implies ∃s′2 such that
s2

τ==⇒ s′2 =⇒RC and ξwst(s′1, C,R) =s′
1,s

′
2
ξwst(s′2, C,R).

We say that two states s1, s2 ∈ S are weakly stochastic bisimilar, denoted by
s1 ∼wst s2, if there exists a weak stochastic bisimulation that contains the pair
(s1, s2). !

Weak Stochastic Bisimulation for Non-Markovian Processes 467

The difference between ∼w and ∼wst comes from the definition of ξwst and
the new condition (s =⇒RC) to ensure that ξwst(s, C,R) is computed only if there
exists a legal path from s reaching C.

Example 5. Consider s31, s32, and s33 in Figure 4. Let us suppose that all the
stochastic transitions are feasible with respect to the state they lead from. We
have that s31 and s32 are both weakly and weakly stochastic bisimilar. On the
contrary, s33 is not equivalent to them. The point is that while the choice ap-
pearing in s31 and s32 is made between ξ3 and the minimum of ξ1 and ξ2, in the
case of s33 the choice is distorted by ψ1 and ψ2.

Consider s34, s35, and s36, the first two ones are weakly stochastic bisimilar
(they are not weakly bisimilar). However, s34 and s36 are not weakly stochastic
bisimilar because s34 is always able to perform a while this is not the case for
s36. If the stochastic transition s36

ξ1−−→ is performed then this process will not
be able to perform a until the delay ξ2 is elapsed. !

This new bisimulation also fulfills the usual properties. The proof is a little
bit more involved than the ones for strong and weak bisimulations because of
the definition of ξwst.
Lemma 5. Let P = (S,−→) be a stochastic labelled transition system. Weak
stochastic bisimilarity on P (that is, the relation ∼wst) is an equivalence relation
on P . Moreover,∼wst is a weak stochastic bisimulation on P and the largest weak
stochastic bisimulation on P .
Theorem 1. Let P = (S,−→) be a stochastic labelled transition system, and
s1, s2 ∈ S. We have that s1 ∼s s2, implies s1 ∼w s2. Besides, if s1 ∼w s2, then
s1 ∼wst s2.

Corollary 1. ∼s � ∼w � ∼wst.

4 Conclusions and Future Work

In this paper we have studied bisimulation semantics for a class of stochastic pro-
cesses with general distributions. We have presented a notion of weak stochastic
bisimulation to solve some of the counterintuitive results that appeared in previ-
ous definitions. One key point that we have not addressed in this paper is how
our results can be extended to a more complex language. In particular, to define
a parallel operator in the context of general distributions is always involved.
We obtained some preliminary results in [LNR04], but the formulation of the
resulting (weak) bisimulation relation is very involved.

Acknowledgments. We would like to thank David de Frutos for helpful dis-
cussions on the topic of this paper.

References

[ABC+94] M. Ajmone Marsan, A. Bianco, L. Ciminiera, R. Sisto, and A. Valenzano.
A LOTOS extension for the performance analysis of distributed systems.
IEEE/ACM Transactions on Networking, 2(2):151–165, 1994.

468 N. López and M. Núñez

[BC00] M. Bernardo and W.R. Cleaveland. A theory of testing for markovian
processes. In CONCUR’2000, LNCS 1877, pages 305–319. Springer, 2000.

[BG98] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of con-
current processes with nondeterminism, priorities, probabilities and time.
Theoretical Computer Science, 202:1–54, 1998.

[BG02] M. Bravetti and R. Gorrieri. The theory of interactive generalized semi-
Markov processes. Theoretical Computer Science, 282(1):5–32, 2002.

[BH97] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic pro-
cesses. In Computer Aided Verification’97, LNCS 1254, pages 119–130.
Springer, 1997.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in
Computer Science 18. Cambridge University Press, 1990.

[DKB98] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. An algebraic approach
to the specification of stochastic systems. In Programming Concepts and
Methods, pages 126–147. Chapman & Hall, 1998.

[GHR93] N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed
system design: The integration of functional specification and performance
analysis using stochastic process algebras. In 16th Int. Symp. on Com-
puter Performance Modelling, Measurement and Evaluation (PERFOR-
MANCE’93), LNCS 729, pages 121–146. Springer, 1993.

[Hen88] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
[Her98] H. Hermanns. Interactive Markov Chains. PhD thesis, Universität

Erlangen-Nürnberg, 1998.
[HHK02] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for perfor-

mance evaluation. Theoretical Computer Science, 274(1-2):43–87, 2002.
[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cam-

bridge University Press, 1996.
[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[HS00] P.G. Harrison and B. Strulo. SPADES – a process algebra for discrete

event simulation. Journal of Logic Computation, 10(1):3–42, 2000.
[LN00] N. López and M. Núñez. NMSPA: A non-markovian model for stochastic

processes. In International Workshop on Distributed System Validation
and Verification (DSVV’2000), pages 33–40, 2000.

[LN01] N. López and M. Núñez. A testing theory for generally distributed stochas-
tic processes. In CONCUR 2001, LNCS 2154, pages 321–335. Springer,
2001.

[LNR04] N. López, M. Núñez, and F. Rubio. An integrated framework for the anal-
ysis of asynchronous communicating stochastic processes. Formal Aspects
of Computing, 16(3):238–262, 2004.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

On Refinement of Software Architectures

Sun Meng1,3,�, Lúıs S. Barbosa2,��, and Zhang Naixiao3

1 School of Computing, National University of Singapore, Singapore
2 Department of Informatics, Minho University, Portugal

3 LMAM, School of Mathematical Science, Peking University, China
sunm@comp.nus.edu.sg, lsb@di.uminho.pt, znx@pku.edu.cn

Abstract. Although increasingly popular, software component
techniques still lack suitable formal foundations on top of which rigorous
methodologies for the description and analysis of software architectures
could be built. This paper aims to contribute in this direction: building on
previous work by the authors on coalgebraic semantics, it discusses com-
ponent refinement at three different but interrelated levels: behavioural,
syntactic, i.e., relative to component interfaces, and architectural. Soft-
ware architectures are defined through component aggregation. On the
other hand, such aggregations, no matter how large and complex they
are, can also be dealt with as components themselves, which paves the
way to a discipline of hierarchical design. In this context, a major contri-
bution of this paper is the introduction of a set of rules for architectural
refinement.

Keywords: Software component, software architecture, refinement,
coalgebra.

1 Introduction

As the size and complexity of software increase continuously, the design and
specification of the overall software architecture [28] becomes a central design
problem. Software architecture [28] is an important aspect of software engineer-
ing, which has a major impact in system’s efficiency, adaptability, reusability,
and maintainability. Research on software architecture is still in its progressing
phase as witnessed by the emergence, in recent years, of a significative number of
approaches and methodologies (see, among many other, [3,10,14,22,27]). In the
object-oriented paradigm, where development methods like the Unified Modeling
Language (UML) [8,25,23] and the Unified Process (UP) [13] are widely used,
architectural design forms a critical element of the whole design process [1].

� Partially supported by the National Natural Science Foundation of China, under
grant 60473056, and a Public Sector Research grant from the Agency of Science,
Technology and Research (A*STAR), Singapore.

�� Funded by the Portuguese Foundation for Science and Technology, in the context of
the PURe project, under contract POSI/ICHS/44304/2002.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 469–484, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

470 S. Meng, L.S. Barbosa, and N. Zhang

The importance of software architecture for the working software engineer is
highlighted by the ubiquitous use of architectural descriptions containing infor-
mation about systems, subsystems, components and interfaces which comprise
the whole architecture. Expressions like ‘client-server organization” [7], “layered
system”, “pipeline”, etc., quite popular in the software engineering jargon, de-
note in fact particular architectural styles.

The primary focus of architecture-driven software development shifted from
code organization to the definition and manipulation of coarser-grained archi-
tectural elements, their interactions, and the overall interconnection structure.
However, there still lacks a systematic approach to the architectural development
process encompassing both aggregation and refinement in a coherent way.

Previous work on specification refinement, understood as the the process
of transforming an ‘abstract’ into a more ‘concrete’ design (see, e.g., Hoare’s
landmark paper [12]), has concentrated on preservation of invariance properties.
There is, however, a wide range of ways of understanding both what substitution
means, and what such a transformation should seek for. In data refinement [9],
for example, the ‘concrete’ model is required to have enough redundancy to
represent all the elements of the ‘abstract’ one. This is captured by the definition
of a surjection from the former into the latter (the retrieve map). However, these
well established refinement approaches [11,21] are of limited use for refinement
of component-based systems, since they are based on semantic frameworks that
consider only the relational behaviour of sequential programs.

The main contribution in this paper is a methodology for the refinement of
software architectures. Our work is based on a coalgebraic model for compo-
nent based systems [4,5,6] in which components can be aggregated through a
number of combinators to build hierarchical models of complex systems. Refer-
ence [19] introduces the basic results on interface and behavioural refinement of
generic components, including a soundness result, upon which a notion of ar-
chitectural refinement is proposed in this paper. Note that, while interface-level
refinement is concerned with the manipulation and adjustment of component
interfaces, and behavioural refinement relates blackbox behaviours of compo-
nents, architectural refinement allows us to refine a component by a subsystem
architecture as well as to refine a system by another system with a different
architecture.

This paper is organized as follows: The underlying coalgebraic model for
components and its calculus are briefly reviewed in sections 2 and 3, respectively.
Three kinds of refinement relations are introduced in section 4, followed by a
family of refinement rules for refinement of system architectures. The paper
closes with a brief discussion on what has been achieved in section 5.

2 Components

A software system is defined in terms of a collection of components and con-
nectors among those components. The components interact with each other by
the connectors, exchanging information in terms of messages of specified types.
Such systems may in turn be used as components in larger designs.

On Refinement of Software Architectures 471

2.1 Components as Coalgebras

We adopt a coalgebraic model for state-based components which follows closely
the “components as coalgebras” approach proposed by L. Barbosa et al in [4,5].
This approach provides an observational semantics for software components and
a generic assembly calculus. Qualificative generic means that the proposed con-
structions are parametric on a (mathematical) model of behaviour.

Components interact with their environment via interfaces. Every interface
provides a set of typed channels for receiving and sending messages, acting as
a type for the corresponding component. Let C be a set of channel identifiers.
Then a component interface is defined as follows: we can define the interface of
a component as follows:

Definition 1. Let I ⊆ C and O ⊆ C be sets of typed input and output channels,
respectively. The pair (I,O), is called an interface and any component p with
such an interface is typed as p : I → O.

In the simplest, deterministic case, the behaviour of a component p is cap-
tured by the output it produces, which is determined by the supplied input. But
reality is often more complicated, for one may have to deal with components
whose behavioural pattern is, e.g., partial or even non deterministic. Therefore,
to proceed in a generic way, the behaviour model is abstracted to a strong monad
B. Of course, B = Id retrieves the simple deterministic behaviour, whereas B = P
or B = Id + 1 would model non deterministic or partial behaviour, respectively.
Therefore, a component p : I → O can be modelled by a pointed concrete
coalgebra

〈np, Up, αp : Up → B(Up ×O)I , u0 ∈ Up〉 (1)

for the Set endo-functor TB = B(Id×O)I . In detail, np is the component’s name,
a specific value u0 is taken as its ‘initial state’ (or ‘seed’) and the dynamics is
captured by currying the state-transition function αp : Up × I → B(Up × O).
Notice that the computation of p will not simply produce an output and a
continuation state, but a B-structure of such pairs.

For a component p as given in (1), we define the operators name.p, in.p, out.p
and beh.p to return np, I, O and αp respectively. In the following sections, for
simplicity, we may sometimes omit the occurrence of np and u0, and just use the
TB-coalgebra 〈Up, αp〉 to denote component p.

Successive observations of a component p reveal its allowed behavioural pat-
terns. For each state value u ∈ Up, the behaviour of p at u (more precisely,
from u onwards) organize itself into a tree-like structure, because it depends on
the sequences of input items processed. Such trees, whose arcs are labelled with
I values and nodes with O values, can be represented by functions from non
empty sequences of I to B-structures of output items. In other words, the space
of behaviours of a component with interface (I,O) is the set (BO)I

+
, which is in

fact the carrier νT of the final TB-coalgebra (νT, ωT : νT → TBνT). Therefore, by
finality, from any other TB-coalgebra p, there is a unique morphism [(αp)] making
the following diagram to commute:

472 S. Meng, L.S. Barbosa, and N. Zhang

νT
ωT� B(νT ×O)I

Up

[(αp)]

αp� B(Up ×O)I

B([(αp)]×O)I

Applying morphism [(p)] to a state value u ∈ Up gives the observable behaviour
of a sequence of p transitions starting at u. By instantiating B with concrete
strong monads, such as P and Id + 1, it is possible to model different behaviour
patterns such as non-determinism and partial behaviour respectively.

3 Architectures

This section recalls the basic mechanisms for component aggregation along the
lines of [4,5,6]. A simple, but precise, notion of software architecture is introduced
as a composition pattern for a number of components.

3.1 Composing Components

In the coalgebraic framework revisited in the previous section, components be-
come arrows in a (bicategorical) universe Cp whose objects are sets, which
provide types to input/output parameters (the components’ interfaces), and
component morphisms h : p −→ q are functions relating the state spaces of p =
〈np, Up, αp : Up→ B(Up ×O)I , up ∈ Up〉 and q = 〈nq, Uq, αq : Uq→ B(Uq ×O)I ,
uq ∈ Uq〉 and satisfying the following seed preservation and homomorphism con-
ditions:

h up = uq and αq · h = B (h×O)I · αp (2)

For each triple of objects 〈I,K,O〉, a composition law is given by functor ;I,K,O :
Cp(I,K)×Cp(K,O) −→ Cp(I,O) whose action on objects p and q is

p ; q = 〈np;q, Up × Uq, αp;q, 〈up, uq〉〉 with

αp;q = Up × Uq × I
∼=−−−−→ Up × I × Uq

αp×id−−−−→ B(Up ×K)× Uq

τr−−−−→ B(Up ×K × Uq)
∼=−−−−→ B(Up × (Uq ×K))

B(id×αq)−−−−−−→ B(Up × B(Uq ×O)) Bτl−−−−→ BB(Up × (Uq ×O))
∼=−−−−→ BB(Up × Uq ×O)

μ−−−−→ B(Up × Uq ×O)

Similarly, for each object K, an identity law is given by a functor copyK : 1 −→
Cp(K,K) whose action is the constant component 〈∗ ∈ 1, η1×K〉. Note that the
definitions above rely solely on the monadic structure of B.

In [5,4] a collection of component combinators was defined upon Cp in a
similar parametric way and their properties studied. In particular it was shown
that any function f : A −→ B can be lifted to Cp as

On Refinement of Software Architectures 473

�f� = 〈n�f�,1, η(1×B) · (id× f), ∗ ∈ 1〉

A wrapping mechanism p[f, g] which encodes the pre- and post-composition of a
component with Cp-lifted functions is defined as a combinator which resembles
the renaming connective found in process algebras (e.g., [20]). Let p : I −→ O be
a component and consider functions f : I ′ −→ I and g : O −→ O′. By p[f, g] we
will denote component p wrapped by f and g, typed as I ′ −→ O′ and defined
by input pre-composition with f and output post-composition with g. Formally,
the wrapping combinator is a functor

−[f, g] : Cp(I,O) −→ Cp(I ′, O′)

which is the identity on morphisms and maps a component 〈np, Up, αp, up〉 into
〈np[f,g], Up, αp[f,g], up〉, where

αp[f,g] = Up × I ′
id×f−−−−→ Up × I

αp−−−−→ B(Up ×O)
B(id×g)−−−−−→ B(Up ×O′)

Component aggregation is catered by three generic tensors, capturing, re-
spectively, external choice (� : I + J −→ O+R), parallel (� : I × J −→ O×R)
and concurrent (� : I + J + I × J −→ O + R + O × R) composition. When
interacting with p � q : I + J −→ O + R, the environment chooses either
to input a value of type I or one of type J , which triggers the correspond-
ing component (p or q, respectively), producing the relevant output. In its
turn, parallel composition corresponds to a synchronous product: both com-
ponents are executed simultaneously when triggered by a pair of legal input
values. Note, however, that the behavioural effect, captured by monad B, prop-
agates. For example, if B expresses component failure and one of the argu-
ments fails, the product will fail as well. Concurrent composition combines
choice and parallel, in the sense that p and q can be executed independently
or jointly, depending on the input supplied. Finally, generalized interaction is
catered through a sort of ‘feedback’ mechanism on a subset of the inputs. This
can be defined by a new combinator, called hook, which connects some input to
some output wires and, consequently, forces part of the output of a component
to be fed back as input. Formally, for each tuple of objects I, O and Z, we
define − �Z : Cp(I + Z,O + Z) −→ Cp(I + Z,O + Z). This combinator is
the identity on arrows and maps each component p : I + Z −→ O + Z to
p�Z : I + Z −→ O + Z given by

p�Z = 〈np�Z , Up, αp�Z , up〉

where

αp�Z = Up × (I + Z)
αp �� B(Up × (O + Z))

B((id×ι1+id×ι2)·dr)�� B(Up × (O + Z) + Up × (I + Z))
B(η+ap) �� B(B(Up × (O + Z)) + B(Up × (O + Z)))

μ·B� �� B(Up × (O + Z))

474 S. Meng, L.S. Barbosa, and N. Zhang

3.2 Systems

From the architectural point of view, a software system comprises a finite set of
interconnected components. In itself such a system can be thought of as a new
component, which paves the way to hierarchical decomposition. this motivates
the following definition:

Definition 2. A system is defined as a tuple S = 〈nS , IS , OS , C,R〉, where
nS is its unique identifier, IS ⊆ C and OS ⊆ C are the sets of input and
output channels, respectively, C = {pk}1≤k≤n denotes a finite set of compo-
nents pk = 〈nk, Uk, αk : Uk → B(Uk ×Ok)Ik , uk ∈ Uk〉 for k = 1, 2, · · · , n, R =
{〈opj , Cj〉}1≤j≤m denotes a finite set of combinators together with the compo-
nents being combined by them, where Cj = {pj1 , pj2 , · · · | ∀i.pji ∈ C}.

Note that it is useful to introduce a notion of (input/output) channels IS and
OS as system’s external interfaces. Therefore, for a given system S, we define
the operators name.S, in.S, out.S, comps.S and combs.S to return nS , IS , OS ,
C and R respectively. Moreover, we have

in.C Δ=
⋃
c∈C

in.c and out.C Δ=
⋃
c∈C

out.c

as the union of input or output channels for the components in S.
In fact, we hope to decompose systems hierarchically, and regard them as

ordinary component. Therefore, we introduce the set of channels IS and OS as
the external interfaces of the system.

3.3 Black-Box and Glass-Box Views of Systems

There are two ways of interpreting a system’s specification. The first one em-
phasises its black-box behaviour and arises from the observation that a system,
being composed by component aggregation, is itself a component, actually a
(final) coalgebra over its space of behaviours. In other words, as a component
whose state space is specified as (BOS)IS

+
. Such component abstracts over all

internal structure the system may bear, and is simply defined as

pS = 〈nS , US = (BOS)IS
+
, αS : US → B(US ×OS)IS , 〈u1, u2, · · · , un〉〉

For a given system S, we use the notation [[S]] to denote pS which captures only
the externally visible behaviour of the system. Thus, its internal architecture and
organization is not characterized by such an interpretation. It does not reflect,
for example, the internal structural decomposition of the system, the internal
communication between its components, its internal states, and so on. Thus, it
gives a pure black-box view of the system, which is mainly used in the early
stages of a system development.

In later stages of development, the software engineer is also concerned with
structural aspects of the design, and a glass-box view is then required. Such
a glass-box view is provided by Definition 2, on top of which a hierarchical
decomposition function ξ is defined. Formally,

On Refinement of Software Architectures 475

Definition 3. For a given system S = 〈nS , IS , OS , C,R〉, a decomposition func-
tion ξ : C −→ P(C) is a function which satisfies:

– ∃ ! p ∈ C . p /∈
⋃
ran(ξ), denoted by ξSroot;

–
⋃
ran(ξ) = C \ {ξSroot} and ∀p ∈ C \ {ξSroot} . (∃ ! p′ ∈ C \ {p} . p ∈ ξ(p′));

– ∀C′ ⊆ C . (C′ = ∅ ⇒ (∃p ∈ C′ . C′ ∩ ξ(p) = ∅)).

4 Architecture Refinement

From a practical point of view, it is impossible to get a concrete architecture
of a large system from the abstract requirements in just one step. Therefore, a
stepwise development process is needed where software architectures are refined
systematically in a number of steps. In this section, we investigate three kinds of
refinement relations, namely, behavioural, interface and architectural refinement.

4.1 Behavioural Refinement

The most fundamental notion of refinement in our approach is behavioural re-
finement [19], based on a simulation preorder between components with identi-
cal interfaces. Since morphisms between such components are in fact coalgebra
homomorphisms, therefore entailing bisimilarity, there is a need to seek for a
weaker notion of a morphism between components, still preserving the source
component dynamics.

We say that a component p behaviourally refines component q if the be-
havioural patterns observed for p are a structural restriction, with respect to the
behavioural model captured by monad B, of those of q. To make such a ‘defi-
nition’ more precise we describe behavioural patterns concretely as generalized
transitions. Thus a possible (and intuitive) way of regarding component p as a
behavioural refinement of q is to consider that p transitions are preserved in q.
For non deterministic components this is understood simply as set inclusion. But
one may also want to consider additional restrictions. For example, to stipulate
that if p has no transitions from a given state, q should also have no transitions
from the corresponding state(s). Recall that a component morphism from p to q
is a seed preserving function h : Up −→ Uq such that B(h× id)·αp = αq ·(h×id).
In terms of transitions, this equation is translated into the following two require-
ments (by a straightforward generalization of an argument in [26]):

u
〈i,o〉−→p u′ ⇒ h u

〈i,o〉−→q h u′ (3)

h u
〈i,o〉−→q v′ ⇒ ∃u′∈U s.t. u

〈i,o〉−→p u′ ∧ v′ = h u′ (4)

which captures the fact that, not only p dynamics, as represented by the induced
transition relation, is preserved by h (3), but also q dynamics is reflected back
over the same h (4).

To define a weaker notion of coalgebra morphism, let ≤ be an order on a
Set endo-functor T [15] (concretely, mapping every set U into a collection of

476 S. Meng, L.S. Barbosa, and N. Zhang

preorders ≤TU), referred to as a refinement preorder. Also assume that functor
T is stable wrt order ≤1. Then,

Definition 4. Let T be an extended polynomial functor on Set and consider
two T-coalgebras p = (U, α : U → T(U)) and q = (V, β : V → T(V)). A forward
morphism h : p→ q with respect to a refinement preorder ≤, is a function from
U to V such that

T h · α ≤ β · h
The existence of a forward morphism connecting two components p and q

witnesses a refinement situation whose symmetric closure coincides, as expected,
with bisimulation. Behavioural refinement is therefore defined as the existence
of a forward morphism up to bisimulation 2. Formally,

Definition 5. Given components p and q, p is a behavioural refinement of q,
written p �B q, if there exist components r and s such that p ∼ r, q ∼ s and
r �F s, where r �F s stands for the existence of a (seed preserving) forward
morphism h from r to s.

We refer to p as the concrete or refined component and q as the abstract compo-
nent.

In [19] we have proved the soundness of simulation for behavioural refinement,
which is given in the following lemma3:

Lemma 1. To prove p �B q it is sufficient to exhibit a simulation R relating
components p and q.

On the other hand, for two components p and q, if p behaviourally refines
q, then we can always get a simulation R between them, which is defined as
∼ ◦Graph(h)◦ ∼. To prove the result, we first recall from [15] the following
result:

Lemma 2. Let T be a functor stable wrt order ≤. Then,

– If R is a bisimulation, then both R and Rop are simulations;
– Simulations are closed under composition.

and prove that

1 Given a Set endofunctor T and a refinement preorder ≤, a lax relation lifting is an
operation Rel≤(T) mapping relation R to ≤ ◦Rel(T)(R) ◦ ≤, where Rel(T)(R) is
the lifting of R to T (defined, as usual, as the T-image of inclusion 〈r1, r2〉 : R −→
U × V , i.e., 〈Tr1, Tr2〉 : TR −→ TU × TV). A functor T is stable wrt a order ≤ if
the associated lax relation lifting operation Rel≤(T) commutes with substitution.

2 In [19] the dual notion of a backwards morphism, i.e., one that satisfies β ·h ≤ T h·α,
is also studied, leading to a notion of backward refinement which do have some
applications, although the underlying intuition seems less familiar.

3 Here we adopt a generic definition of simulation due to Jacobs and Hughes in [15]:
Given T-coalgebras α and β, a simulation is a Rel≤(T)-coalgebra over α and β, i.e.,
a relation R such that, for all u ∈ U, v ∈ V , 〈u, v〉 ∈ R ⇒ 〈α u, β v〉 ∈ Rel≤(T)(R).

On Refinement of Software Architectures 477

Lemma 3. The graph of a forward morphism h between two T-coalgebras p =
(U, α) and q = (V, β) is a simulation.

Proof. Define a relation R ⊆ U × V as 〈u, v〉 ∈ R iff h(u) = v. Because h is a
forward morphism, for all u ∈ U , the following diagram commutes:

u
h � h(u) = v

α(u)

α
�

Th� Th(α(u)) ≤TV β(v)

β
�

Since ≤ is a preorder, we have α(u) ≤TU α(u). Therefore, for any u ∈ U and
v ∈ V , if 〈u, v〉 ∈ R, then 〈α(u), β(v)〉 ∈≤ ◦Rel(T)(R)◦ ≤. That means, R is a
simulation.

Then,

Theorem 1. For two components p and q, if p behaviourally refines q, and this
is witnessed by a forward morphism h, then ∼ ◦Graph(h)◦ ∼ is a simulation
between them.

Proof. Immediate by combination of lemmas 2 and 3.

4.2 Properties of Behavioural Refinement

Behavioural refinement of components has a number of pleasant properties. First
of all it is a preorder:

p �B p

p �B q ∧ q �B r⇒ p �B r

Proof. The reflexivity is obvious: we just need to take the identity function
id on p as the forward morphism (the graph of id is a bisimulation). For the
transitivity, we can first derive two simulations R and R′ from p �B q and
q �B r respectively, then from Lemma 2, we can know that R′ ◦ R is also a
simulation. By Lemma 1, p is a behaviour refinement of r.

In the case of a large system consisting of many components, it is not practi-
cal to consider the whole system each time one of its components is to be refined.
On the contrary, we would like to decompose the original system, perform refine-
ment locally and reconstruct the relevant services from the refined components.
To make this possible behavioural refinement should also be a pre-congruence.
Formally,

Lemma 4. For any refinement preorder ≤, behavioural refinement �B is mono-
tonic with respect to combinators:

478 S. Meng, L.S. Barbosa, and N. Zhang

p[f, g] �B q[f, g]
p ; r �B q ; t
p� r �B q � t

p� r �B q � t

p� r �B q � t

p�Z �B q�Z

whenever p �B q and r �B t.

Proof. Let R1 and R2 be the simulation relations witnessing p �B q and r �B t
respectively. For wrapping and the hook combinator, we just need to define R =
R1. Let 〈u, v〉 ∈ R, then for all i ∈ I, we can easily derive 〈αp(u, i), αq(v, i)〉 ∈≤
◦Rel≤(B(Id×O))(R)◦ ≤ from p �B q. Therefore,

〈αp[f,g](u), αq[f,g](v)〉 ∈≤ ◦Rel≤(B(Id×O′)I
′
)(R)◦ ≤

≡∀i′ ∈ I ′. 〈αp[f,g](u, i′), αq[f,g](v, i′)〉 ∈≤ ◦Rel≤(B(Id ×O′))(R)◦ ≤
≡〈B(id× g) · αp · (id× f)(u, i′),B(id× g) · αq · (id× f)(v, i′)〉 ∈
≤ ◦Rel≤(B(Id×O′))(R)◦ ≤

≡{let f(i′) = i}
〈B(id× g) · αp(u, i),B(id× g) · αq(v, i)〉 ∈≤ ◦Rel≤(B(Id ×O′))(R)◦ ≤

≡B(id× g) · 〈αp(u, i), αq(v, i)〉 ∈≤ ◦Rel≤(B(Id×O′))(R)◦ ≤
≡〈αp(u, i), αq(v, i)〉 ∈≤ ◦Rel≤(B(Id×O))(R)◦ ≤
≡TRUE

The proof for the hook combinator can be similarly obtained. Proofs for the
monotonicity of �B for other combinators can be found in [18].

4.3 Interface Refinement

Behavioural refinement characterizes the preservation of component behaviour.
But if we rely solely on behavioural refinement, the inability to change the syn-
tactic interface will force us to work at the same level of interface abstraction
throughout the whole development process. To avoid this, a more general notion
of refinement, called interface refinement is introduced, which relates components
with different interfaces.

Definition 6. Let p : I → O and q : I ′ → O′ be components. If there exist
functions w1 : I ′ → I and w2 : O→ O′, such that

p[w1, w2] �B q

then p is an interface refinement of q modulo the downwards function w1 and
the upwards function w2, written as p �(w1,w2) q.

On Refinement of Software Architectures 479

Interface refinement supports the systematic construction of new components
from existing ones. Generally, for any component p, and functions w1, w2,

p �(w1,w2) p[w1, w2]

One situation where this technique is useful is when we have an already com-
pleted off-the-shelf component and want to adapt the syntactic interface of this
component to fit some context requirements. Therefore, interface refinement pro-
vides a systematic pattern for interface adaptation of components.

As explained previously, the behavioural refinement relation on components
is both reflexive and transitive. Moreover, behavioural refinement is monotonic
with respect to the combinators defined in the component calculus. This allows
system development in a flexible top-down manner. The following properties
show that interface refinement combines nicely with behavioural refinement:

p1 �B p2 ∧ p2 �(w1,w2) p3 ⇒ p1 �(w1,w2)) p3

p1 �(w1,w2) p2 ∧ p2 �B p3 ⇒ p1 �(w1,w2)) p3

Furthermore, we have transitivity in the sense that

p1 �(w1,w2) p2 ∧ p2 �(w3,w4) p3 ⇒ p1 �(w3·w1,w2·w4) p3

4.4 Architectural Refinement

By architectural refinement we mean behavioural refinement of a complex system
regarded as a component on its own. Formally,

Definition 7. Let S = 〈nS , IS , OS , C,R〉 and S′ = 〈nS′ , IS′ , OS′ , C′, R′〉 be two
systems. If IS = IS′ , OS = OS′ , and [[S]] �B [[S′]], then we say that S is an
architectural refinement of S′, written as S �A S′.

From the transitivity of behavioural refinement relation, one gets,

S1 �A S2 ∧ S2 �A S3 ⇒ S1 �A S3

This definition becomes really useful if it can be translated on concrete re-
finement rules concerned with structural changes in the design. A number of
them, easily derived from the definitions, are stated below in the format

precondition

refinement

where precondition is the condition to be satisfied for the refinement relation to
hold.

Behavioural refinement. A system can be refined by refining one of its
components and leave other components unchanged. For a given system S =
〈nS , IS , OS , C,R〉, let p ∈ C be a component and p′ is a behavioural refinement
of p, then we can get a refinement of the whole system:

480 S. Meng, L.S. Barbosa, and N. Zhang

p ∈ C
p′ �B p

C′ = (C \ {p}) ∪ {p′}
R′ = {〈opj , (Cj \ {p}) ∪ {p′} � p ∈ Cj � Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C
′, R′〉

S′ �A S

Adding output channels. New output channels may be added to a component p if
it is neither connected to a system component, nor part of the system interface.
For a given system S = 〈nS , IS , OS , C,R〉, let p ∈ C be a component, then

O′ ⊆ C \ (in.C ∪ out.C)
p = 〈np, Up, αp : Up → B(Up ×Op)Ip , up ∈ Up〉

p′ = 〈np, Up, αp′ : Up → B(Up × (Op +O′))Ip , up ∈ Up〉
∀u ∈ Up, i ∈ Ip . αp′(u, i) = αp(u, i)

C′ = (C \ {p}) ∪ {p′}
R′ = {〈opj , (Cj \ {p}) ∪ {p′} � p ∈ Cj � Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C
′, R′〉

S′ �A S

Removing output channels. An output channel of component p being not used
in the system can be removed from the component. For a given system S =
〈nS , IS , OS , C,R〉, let p ∈ C be a component, then

o /∈ OS ∪ in.C
p = 〈np, Up, αp : Up → B(Up ×Op)Ip , up ∈ Up〉

O′p = Op \ {o}
p′ = 〈np, Up, αp′ : Up → B(Up ×O′p)

Ip , up ∈ Up〉
∀u ∈ Up, i ∈ Ip . αp′(u, i) = αp(u, i)

C′ = (C \ {p}) ∪ {p′}
R′ = {〈opj , (Cj \ {p}) ∪ {p′} � p ∈ Cj � Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C
′, R′〉

S′ �A S

Adding input channels. An input channel can be added to a component p pro-
vided that it is already in the output of some other component or input of the
system. For a given system S = 〈nS , IS , OS , C,R〉, let p ∈ C be a component,
then

i′ ∈ IS ∪ out.C
p = 〈np, Up, αp : Up → B(Up ×Op)Ip , up ∈ Up〉

I ′p = Ip ∪ {i′}
p′ = 〈np, Up, αp′ : Up → B(Up ×Op)I

′
p , up ∈ Up〉

∀u ∈ Up, i ∈ Ip . αp′(u, i) = αp(u, i)
C′ = (C \ {p}) ∪ {p′}

R′ = {〈opj , (Cj \ {p}) ∪ {p′} � p ∈ Cj � Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C
′, R′〉

S′ �A S

On Refinement of Software Architectures 481

Removing input channels. If the behaviour of a component p does not depend
on the input from an input channel, then the channel can be removed. For a
given system S = 〈nS , IS , OS , C,R〉, let p ∈ C be a component, then4

p = 〈np, Up, αp : Up → (B(Up ×Op) + 1)Ip , up ∈ Up〉
i′ ∈ in.p

∀u ∈ Up . αp(u, i′) = ∗
I ′p = Ip \ {i′}

p′ = 〈np, Up, αp′ : Up → B(Up ×Op)I
′
p , up ∈ Up〉

∀u ∈ Up, i ∈ I ′p . αp′(u, i) = αp(u, i)
C′ = (C \ {p}) ∪ {p′}

R′ = {〈opj , (Cj \ {p}) ∪ {p′} � p ∈ Cj � Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C
′, R′〉

S′ �A S

Adding new components. We can simply add a new component nil = �id∅� to a
system, which does not change the global system behaviour. For a given system
S = 〈nS , IS , OS , C,R〉, we have

∀p ∈ C . name.p = name.nil
C′ = C ∪ {nil}

S′ = 〈nS , IS , OS , C
′, R〉

S′ �A S

Removing old components. Components may be removed from a system if it does
not have output that affects the system. For a given system S=〈nS , IS , OS , C,R〉
and a component p ∈ C, we have

out.p = ∅
C′ = C \ {p}

R′ = {〈opj , (Cj \ {p}) � p ∈ Cj � Cj〉}1≤j≤m

S′ = 〈nS , IS , OS , C
′, R〉

S′ �A S

Decomposing components. Sometimes we may want to change the hierarchical
structure of a system. For example, a lift system might consist of a lift controller,
several doors and buttons. Especially, in later phases of a system development,
we might consider the glass-box view of the system, and thus need to expand
components into architectures. For a given system S = 〈nS , IS , OS , C,R〉 and
a component p ∈ C, which has the same behaviour with the architecture T =
〈nT , IT , OT , CT , RT 〉, i.e., p is behaviour equivalent to T , we have

4 The monad B+1 specifies the possibility of partial behaviour of components, where
∗ is the only element in the singleton set 1.

482 S. Meng, L.S. Barbosa, and N. Zhang

p ∼ [[T]]
∀q ∈ C, q′ ∈ CT . name.q = name.q′

out.CT ∩ out.C = out.p
C′ = (C \ {p}) ∪ CT

R′ = {〈opj , (Cj \ {p}) ∪ {ξTroot} � p ∈ Cj � Cj〉}1≤j≤m ∪RT

S′ = 〈nS , IS , OS , C
′, R′〉

S′ �A S

Folding components. If T = 〈nT , IT , OT , CT , RT 〉 is a subarchitecture of a sys-
tem S = 〈nS , IS , OS , C,R〉, then we can fold it into a new component p =
〈np, Up, αp : Up → B(Up ×Op)Ip , up∈ Up〉, which has the same behaviour with T .

p ∼ [[T]]
CT ⊆ C

∀q ∈ C \ CT . name.q = np

C′ = (C \ CT) ∪ {p}
R′′ = (R \ (RT ∪ {〈opj , Cj〉 | ∃p′ ∈ CT ∩ Cj}))

R′ = R′′ ∪ {〈opj, (Cj \ CT) ∪ {p}〉 | ∃p′ ∈ CT ∩ Cj . 〈opj , Cj〉 ∈ R}
S′ = 〈nS , IS , OS , C

′, R′〉
S′ �A S

5 Conclusions

This paper discusses refinement of software architectures in the context of a
broader research agenda on coalgebraic semantics for componentware. From our
experience to date, the appropriateness of the coalgebraic approach for compo-
nent based systems is driven by the following two key ideas: first, the ‘black-box’
characterization of software components favors an observational semantics; sec-
ondly, the proposed constructions are generic in the sense that they do not
depend on a particular notion of component behaviour. This led both to the
adoption of coalgebra theory [26] to capture observational semantics and to the
abstract characterization of possible behaviour models (e.g., partiality or dif-
ferent degrees of non-determinism) by strong monads acting as parameters in
the resulting calculus [4,5]. Our work provides three basic refinement relations,
which can be used for refinement of systems at different granularity.

A large body of work on software architectures using process algebraic ADLs
can be found in the literature (see, e.g., [10,28]). These approaches are usually
biased towards specific behavioural models and therefore less generic than the
one sketched in this paper. An approach closer to ours is that of [22], where
a refinement mapping is defined to provide a syntactical translation between
abstract and concrete architectures. However, such a mapping is required to be
faithful, which means that both the positive and the implicit negative facts in
the abstract architecture should be preserved in the concrete one. This makes
both definition and proof of refinement difficult. Yet another interesting calculus
was proposed in [24] to deal with refinement of information flow architectures.
However, it only deals with the refinement of system’s internal organization.

On Refinement of Software Architectures 483

Our work is based on some preliminary results on behavioural refinement of
generic state-based components documented in [19]. In this paper we proved a
completeness result connecting simulation to behavioural refinement and pro-
vided further insight on refinement at both interface and architectural levels.
Both of them can be reduced to the simple behavioural refinement relationship.
A family of refinement rules was provided for local, stepwise modification of ar-
chitectural designs. The genericity of the underlying coalgebraic model makes
our approach not limited to any sort of architecture style. Whether it scales up to
more sophisticated architectural models, namely the ones based on component
coordination by anonymous communication and independent connectors (as in,
e.g., [2] or [17,16]), is still an open research question.

References

1. Aynur Abdurazik. Suitability of the UML as an Architecture Description Language
with Applications to Testing. Technical Report ISE-TR-00-01, Information and
software engineering, George Mason University, 2000.

2. Farhad Arbab. Abstract Behavior Types: A Foundation Model for Components
and Their Composition. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem-Paul de Roever, editors, Formal Methods for Components and
Objects: First International Symposium, FMCO 2002, Leiden, The Netherlands,
November 2002, Revised Lectures, volume 2852 of LNCS, pages 33–70. Springer,
2003.

3. Farhad Arbab and Jan Rutten. A coinductive calculus of component connec-
tors. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, Recent Trends in
Algebraic Development Techniques: 16th International Workshop, WADT 2002,
Frauenchiemsee, Germany, September 24-27, 2002, Revised Selected Papers, vol-
ume 2755 of LNCS, pages 34–55. Springer-Verlag, 2003.

4. Lúıs Soares Barbosa. Towards a Calculus of State-based Software Components.
Journal of Universal Computer Science, 9(8):891–909, August 2003.

5. Lúıs Soares Barbosa and José Nuno Fonseca de Oliveira. State-based compo-
nents made generic. In H. Peter Gumm, editor, Elect. Notes in Theor. Comp. Sci.
(CMCS’03 - Workshop on Coalgebraic Methods in Computer Science), volume 82.1,
Warsaw, April 2003.

6. Lúıs Soares Barbosa, Sun Meng, Bernhard K. Aichernig, and Nuno Rodrigues.
On the semantics of componentware: a coalgebraic perspective. In Jifeng He and
Zhiming Liu, editors, Mathematical Frameworks for Component Software.- Models
for Analysis and Synthesis, chapter 2. World Scientific, 2004. To be published.

7. Alex Berson. Client/Server Architecture. McGraw-Hill, 1992.
8. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-

guage User Guide. Addison Wesley, 1999.
9. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented

Proof Methods and their Comparison. Cambridge University Press, 1998.
10. David Garlan. Higher-order connectors. Proceedings of Workshop on Composi-

tional Software Architectures, January 1998.
11. C. A. R. Hoare, He Jifeng, and Jeff W. Sanders. Prespecification in data refinement.

Information Processing Letters, 25:71–76, 1987.
12. Charles Antony Richard Hoare. Proof of correctness of data representations. Acta

Information, 1:271–281, 1972.

484 S. Meng, L.S. Barbosa, and N. Zhang

13. John Hunt. The Unified Process for Practitioners: Object Oriented Design, UML
and Java. Practitioner. Springer, 2001.

14. Paola Inverardi and Alexander L. Wolf. Formal specification and analysis of soft-
ware architectures using the chemical abstract machine model. IEEE Transactions
on Software Engineering, 21(4), 1995.

15. Bart Jacobs and Jesse Hughes. Simulations in coalgebra. In H. Peter Gumm,
editor, Elect. Notes in Theor. Comp. Sci. (CMCS’03 - Workshop on Coalgebraic
Methods in Computer Science), volume 82, pages 245–263, Warsaw, April 2003.

16. M. A. Marco A. Barbosa and Lúıs Soares Barbosa. A Relational Model for Com-
ponent Interconnection. Journal of Universal Computer Science, 10(7):808–823,
July 2004.

17. M. A. Marco A. Barbosa and Lúıs Soares Barbosa. Specifying software connectors.
In K. Araki and Z. Liu, editors, 1st International Colloquium on Theorectical As-
pects of Computing (ICTAC’04), pages 53–68, Guiyang, China, September 2004.
Springer Lect. Notes Comp. Sci. (3407).

18. Sun Meng and Lúıs Soares Barbosa. On Refinement of Generic Components.
Technical Report 281, UNU/IIST, May 2003.

19. Sun Meng and Lúıs Soares Barbosa. On Refinement of Generic State-based Soft-
ware Components. In C. Rattray, S. Maharaj, and C. Shankland, editors, Algebraic
Methodology And Software Technology, 10th International Conference, AMAST’04,
Proceedings, volume 3116 of LNCS, pages 506–520. Springer, 2004.

20. Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
21. Carroll Morgan. Programming from Specifications, Second Edition. Prentice Hall,

1994.
22. Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider. Correct architecture

refinement. IEEE Transactions on Software Engineering, 21(4):356–372, 1995.
23. OMG. OMG Unified Modeling Language Specification, Version 1.3 , 2000.
24. Jan Philipps and Bernhard Rumpe. Refinement of information flow architectures.

In M. Hinchey, editor, Proceedings of ICFEM’97. IEEE CS Press, 1997.
25. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-

guage Reference Manual. Addison Wesley Longman, 1999.
26. Jan Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Sci-

ence, 249:3–80, 2000.
27. J.-G. Schneider and O. Nierstrasz. Components, scripts, glue. In L. Barroca,

J. Hall, and P. Hall, editors, Software Architectures - Advances and Applications,
pages 13–25. Springer-Verlag, 1999.

28. Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

POST: A Case Study for an Incremental Development in rCOS�

Quan Long1, Zongyan Qiu1, Zhiming Liu2,��, Lingshuang Shao3, and He Jifeng2

1 LMAM and Department of Informatics, School of Mathematical Sciences,
Peking University, Beijing, China

{longquan, qzy}@math.pku.edu.cn
2 International Institute for Software Technology,

United Nations University, Macao, China
{lzm, hjf}@iist.unu.edu

3 Software Engineering Institute, Peking University, Beijing, China
shaolsh04@sei.pku.edu.cn

Abstract. We have recently developed an object-oriented refinement calculus
called rCOS to formalize the basic object-orient design principles, patterns and
refactoring as refinement laws. The aim is of rCOS is to provide a formal sup-
port to the use-cased driven, incremental and iterative Rational Unified Process
(RUP). In this paper, we apply rCOS to a step-wised development of a Point of
Sale Terminal (POST) system, from a requirement model to a design model, and
finally, to the implementation in Visual C#.

Keywords: Refinement, Software design, Object-orientation, Refactoring, UML.

1 Introduction

In the imperative paradigm, the specification of a problem is mainly concerned with
the control and data structures of the program. The program development is the design
and implementation of data structures and algorithms through a number of steps of
refinement. Verification is needed to prove that each step preserves the specification of
the control and data structures in the previous step. Various formal methods, especially
those state-based models [5,10] such as VDM [11] and Z [4], are widely found helpful
in correct and reliable construction of such a program.

The object-oriented requirement analysis, design and programming are popular re-
cently in practical software engineering. Recent development and application of UML
and the Rational Unified Process (RUP) have led to the use of design patterns and refac-
toring more effective.

However, the research in the formal aspects and techniques does not reflect or
provide enough support to these newly developed objected-oriented engineering prin-
ciples and development processes. It is still hard to obtain assurance of correctness
in object-oriented developing process using old fashioned programming techniques.
Model-based formalisms have been extended with object-oriented techniques, via lan-
guages such as Object-Z [1], VDM++ [6], and methods such as Syntropy [3] which

� Supported by NNSFC(No. 60173003) and NKBRPC(2004CB318000).
�� Partly supported as a research task of E-Macao Project funded by the Macao Government.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 485–500, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

486 Q. Long et al.

uses the Z notation, and Fusion [2] that is related to VDM. Whilst these formalisms
are effective at modelling data structures as sets and relations between sets, they do
not capture the main principles of object-oriented decomposition, including function-
ality delegation, class decomposition, and object-oriented refinement. Object-oriented
refinement must capture the notation of substitutability of a group of associated classes
by another group of associated classes. The development of rCOS is mainly motivated
by these problems [8].

In this paper, we use the case study of a Point of Sale Terminal (POST) system,
originally from [12] to demonstrate how a system can be formally and systematically
developed supported by the rCOS based development process. A POST system is typ-
ically used in a retail store or supermarket. It includes hardware components such as a
computer and a bar code scanner, and the software to control the system. The case study
also shows how the techniques could be used in the development of other systems. It
mainly demonstrates how functionality is decomposed in the object-oriented settings
by the expert pattern, and how object-oriented structure is refined by refactoring rules.

The rest of this paper is organized as follows. We first briefly introduce rCOS and
related development process in Section 2 and Section 3 respectively. And then, in Sec-
tion 4, we present the development process, or refinement process of POST software
system. The executable product developed from the final refined design is illustrated in
Section 5. Finally, in Section 6, we conclude the paper and discuss some future research
directions.

2 Overview of rCOS

In this section we give a brief introduction to the rCOS model and our earlier work
based on it. We refer the readers to [8,9,15] for more details.

2.1 rCOS Syntax

rCOS is a refinement calculus of object-oriented sequential systems. In rCOS, a system
(or program) S is of the form cdecls • P, consisting of class declaration section cdecls and
a main method P. The main method P is a pair (glb, c) of a set glb of global variables
declarations and a command c. P can also be understood as the main method in Java.
The class declaration section cdecls is a sequence of class declarations cdecl1; . . . ; cdeclk,
where each class declaration cdecli is of the form

[private] class N extends M {
private (Ui ui = ai)i:1..m; protected (Vi vi = bi)i:1..n; public (Wi wi = ci)i:1..k;
method m1(T 11 x1, T 12 y

1
, T 13 z1){c1}; · · · ; m
(T
1 x
, T
2 y

, T
3 z
){c
}}

Note that

– A class can be declared as private or public, but by default it is assumed as
public. Only the public classes and primitive types can be used in the global vari-
able declarations glb.

– N and M are distinct names of classes, and M is called the direct superclass of N.

POST: A Case Study for an Incremental Development in rCOS 487

– Attributes annotated with private are private attributes of the class, and simi-
larly, the protected and public declarations for the protected and public attributes.
Types and initial values of attributes are also given in the declaration.

– The method declaration declares the methods, their value parameters (T i1 xi), result
parameters (T i2 y

i
), value-result parameters (T i3 zi) and bodies (ci). We sometimes

denote a method by m(paras){c}, where paras is the list of parameters of m, and c

is the body command of m. The method body ci is a command that will be defined
later.

We use Java convention to write a class specification, and assume an attribute protected
when it is not tagged with private or public. We have these different kinds of attributes
to show how visibility issues can be dealt with. We can also have different kind of
methods for a class, however, it is omitted here for simplicity of the theory. Instead, we
assume all methods in public classes are public and can be inherited by a subclass and
accessed by the main method, and all methods in private classes are protected.

When we write refinement laws, we use the following notation to denote a class
declaration of class N .

N[M, pri, prot, pub, op]

where M is the name of the direct superclass of N, pri, prot and pub are the sets of
the private, protected and public attribute declarations, and op is the set of the method
declarations of N. When there is no confusion, we only explicitly give the parameters
that we are concerned. For example, we use N[op] to denote a class with a set op of
methods, and N[prot, op] a class with a protected attributes prot and methods op.

Commands. rCOS supports typical object-oriented programming constructs, but it
also allows some commands for the purpose of specification and refinement:

c ::= skip | chaos | var T x=e | end x | c; c | c � b � c | c " c
| b ∗ c | le.m(e, v, u) | le := e| C.new(x)[e]

where b is a Boolean expression, e is an expression, and le is an expression which may
appear on the left side of an assignment and is of the form le ::= x | le.a, where x is a
simple variable and a an attribute of an object. We use le.m(e, v, u) to denote a call of
method m of the object denoted by le with actual value parameters e for input to the
method, actual result parameters v for the return values, and value-result parameters u

that can be changed during the execution of the method and with their final values as
return values too. The command C.new(x)[e] creates a new object of class C with the
initial values of its attributes assigned by the values of the expressions in e and assigns
it to variable x. Thus, C.new(x)[e] uses x with type C to refer to the newly created object.
The other commands, c; c, c � b � c, c " c and b ∗ c denote the conventional commands
of sequential composition, choice, non-determined choice, and iteration respectively.

The expressions e appear in the commands are defined in a usual way. We ignore
them here.

2.2 Semantics and Refinement of Object Systems

rCOS adopts an observation-oriented and relational semantics. The model describes
the behavior of an object-oriented program by a design containing seven logical vari-

488 Q. Long et al.

ables as its free variables that form the alphabet “α” in [10] of the program. They are
cname, attr, op, superclass, Σ, glb and locvar. They record both static structure of
the classes and dynamic state of the system.

Commands and class declarations, as well as an object system as a whole, are se-
mantically defined as a framed design D(α, P) with the form {α} : pre(x) � Post(x, x′).
That is, the effect of any piece of code are defined by the pre- and post states of the
above mentioned alphabet. Please see [9] for details if interested.

Based on the relational model, rCOS supports refinement of object-oriented de-
signs at different levels of abstraction during a system development. It includes design
refinement, data refinement, refinement of classes and refinement of a whole system.

In [9], the Design refinement and Data refinement are defined similar to traditional
ones. In this section we only present the definitions of System refinement and Class
refinement as follows.

Definition 1. (System refinement) Let S1 and S2 be object programs which have the
same set global variables glb. S1 is a refinement of S2, denoted by S2)sys S1, if its
behavior is more controllable and predictable than that of S2:

∀x, x′ · (S1 ⇒ S2)

where x are variables in glb.

This indicates the external behavior of S1, that is, the pairs of pre- and post global states,
is a subset of that of S2. To prove one program S1 refines another S2, we require that
they have the same set of global variables and the existence of a refinement mapping
between the variables of S1 to those of S2 that is identical on global variables.

Definition 2. (Class refinement) Let cdecls1 and cdecls2 be two declaration sections.
cdecls1 is a refinement of cdecls2, denoted by cdecls2)class cdecls1, if the former can
replace the later in any object system:

cdecls2)class cdecls1 =df ∀P · (cdecls2 • P)sys cdecls1 • P)

where P stands for a main method (glb, c).

Intuitively, it states that cdecls1 supports at least the same set of services as cdecls2.
As stated in the introduction section, in our earlier work [9] and [16], we have

given many useful refinement laws that capture the nature of incremental development
in object-oriented programming. Please refer to them if interested.

2.3 Some Refinement Laws

We introduce some laws in [9] and [16] that will be used in the case study.

Law 1 (Law 7. in [9] Introducing a private attribute has no effect). If neither N nor any
of its superclasses and subclasses in cdecls has x as an attribute, then

N[pri]; cdecls) N[pri ∪ {T x = d}]; cdecls.

Law 2 (Law 8. in [9] Changing private attributes into protected supports more
services).

N[pri ∪ {T x = d}, prot]; cdecls) N[pri, prot ∪ {T x = d}]; cdecls.

POST: A Case Study for an Incremental Development in rCOS 489

Law 3 (Law 9. in [9] Adding a new method refines a declaration). If m is not in N, let
m(paras){c} be a method with distinct parameters paras and a command c, then

N[ops]; cdecls) N[ops ∪ {m(paras){c}}]; cdecls

Law 4 (Law 10. in [9] Refining a method refines a declaration). If c1) c2,

N[ops ∪ {m(paras){c1}}]; cdecls) N[ops ∪ {m(paras){c2}}]; cdecls

Law 5 (Law 1. (Extract Method) in [16]). Assume that m1(){c} is a method in op of
class M. Let op1 = op\{m1(){c}}. Then

cdecls; M[op]) cdecls; M[op1 ∪ {m1(){m2()}, m2(){c}}]

where m2 is a method name that is not used in cdecls and op.

Law 6 ((Law 10. (Move Method) in [16]). Let op and op1 be sets of method declara-
tions. Assume that N b is an attribute of M, and m(){ĉ} is a method of M, m() is not in
op1 of N, and command c only refers attributes b.x and methods b.n() of class N. Define

– ôp to be the methods obtained from op by replacing each occurrence of m() in every
method with b.m()

– command c to be the command obtained from ĉ by replacing each attribute b.x with
x and each method call b.n() with n().

cdecls; M [N b, op ∪ {m(){ĉ}]; N [op1]
) cdecls; M [N b, ôp]; N [op1 ∪ {m(){c}}]

provided that m() is not called from outside M on the left-hand-side of).

Law 7 ((Law 12. (Extract Class) in [16]). Assume N is a fresh name which is not used
in cdecls and m2() does not refer any attribute of M . Then we have

cdecls; M [m1(), m2()] • P * cdecls′; M [N n, m̂1()]; N [m2()] • P ′

where cdecls′ is gain from cdecls by substitute all M.m2() to N.m2(), P ′ is gain from P

by substitute all M.m2() to N.m2(), and m̂1() = m1()[n.m2()/m2()].

Law 8 ((Law 59. (Strategy) in [16]). Assume all the newly introduced names are fresh
ones. We have

Context0[Strategy s,op()]; Strategy[algorithm0()]
) Context[Strategy s,op()]; Strategy[algorithm()];

StrategyA[algorithm()]; StrategyB[algorithm()]

where

– op() =df {s.algorithm()}.
– In class StrategyA, algorithtm() =df {cA}, where cA is a sequence of commands for a

particular algorithm.
– In class StrategyB, algorithtm() =df {cB}, where cB is a sequence of commands for

another particular algorithm.
– algorithm0() =df {cA � b � cB}, where b is a boolean variable for making a choice

between algorithm cA and cB.

490 Q. Long et al.

Finally, we have a shorthand notation ∃o : T which stands for the existing of a ref-
erence o which refers to an object of type T . It can be formally defined using rCOS
semantics. We use it here to replace the standard notations for simplicity and intuition.
Also, we do not have return keyword in the syntax of rCOS. But it can be defined using
local variable declaration. We will use it for intuition.

3 rCOS Support to RUP

Now we discuss how rCOS supports a step-wised, incremental and iterative develop-
ment process. For more formal details, please refer to [15].

The incremental development initiates in the requirement analysis to reach the Use
Cases of the system [13], then, the Conceptual Model and Design Model [15,14] are
built sequentially. From an informal view, a Conceptual Model can be thought as a
class diagram in which all classes have only attributes without methods, and Design
Model a class diagram in which all classes have attributes and method specifications
(not necessarily code) as well.

The process starts with the creation of a requirement model (specification) of the
system. The requirement model consists of a conceptual class diagram and a use-case
model. The conceptual model is specified as a rCOS class declaration section with-
out methods. Use cases are specified as use-case controller class with the user opera-
tions as its methods. The conceptual model is created by identifying the domain con-
cepts as classes and relations among the concepts as attributes of classes [13,15]. This
can be carried out incrementally by adding more and more use cases, classes and at-
tributes. Each incremental step is a refinement in rCOS [9]. This is called the horizontal
refinements.

The design can take the use cases in turns, planned according to their significance,
urgency, and risks. In the design of a use case, each use case operation is decomposed
by delegation its sub-functionalities (responsibilities) to the classes which maintains the
information for the realization of the functionalities. These classes are called the experts
of the functionalities. This will also transform the conceptual class diagram by adding
the specifications or code of these responsibilities to their expert classes, producing a
design class model. This activities are also proven to be rCOS refinement.

Then implementation can also take the designs of the tasks in turns, by coding
the methods of the classes. The refinement from the requirement specifications to the
designs and to the implementations is called the vertical refinement.

4 A Development of POST

In this section, we present our incremental development as a sequence of refinement
steps. During the development, we always denote the system as a sequence of class
declarations. Initially, POST1 stands for the first version, the Conceptual Model, of the
system. And then, with the support of the refinement laws in Section 2, we refine it
to POST2. Similarly, POST2 can be refined to POST3. At last, the system reaches POST7
which is the final version of the design. Intuitively, each version of the sequence of class
declarations is depicted by a corresponding UML class diagram.

POST: A Case Study for an Incremental Development in rCOS 491

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

Post

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g p catalo g

Payment

flo at amo u n t
in t ty p e

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

*1

1 *

1

*

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

1*

1

1

1

*
*

*

Fig. 1. Conceptual Model

4.1 Conceptual Model

At the beginning, we should determine the basic components of the system. After the
requirement analysis, we decide to have the classes as follows: A Product Catalog
as a database to store the information of all possible on sale products of the given
supermarket. Each item of the database is a Product Specification. When a sale begins,
we need to build a Sale object which is composed of many Sales Line Item to record
all the products purchased. At last, the customer has to make a payment. Thus we need
another object Payment. During the execution, we will create many instances of Sale,
Sales Line Item, and Payment. Finally, we need a class as the user interface which is the
use case controller of the system. We name it as Post.

Our next job is to add the attributes to achieve the Conceptual Model. During the
requirement analysis, we realize that these classes should have attributes as follows:

– Post, which act as the interface of the system, should maintain at least three at-
tributes: sale refers to the current sale object, sales as a list of sale objects to record
all the handled sales, and a reference to the database ProductCatalog.

– ProductCatalog has a list of references to its ProductSpecifications.
– ProductSpecification should have a name, an attribute upc which stands for “Universal

Product Code” as its key in the database, and another attribute price.
– Sale should have at least four attributes: a business time time, a reference to

ProductCatalog, a reference to the payment object and a list of its SalesLineItem.
– SalesLineItem should have a reference to its corresponding ProductSpecification and a

integer, quantity, to record how many products of this kind are purchased.
– The last class, Payment should remember how much money the customer should

pay in its attribute amount and the payment way in type. Here we only deal with two
kinds of payment: type = 0 stands for pay by cash and type = 1 for pay by credit
card.

In our relational OO model, we can add private attributes and change a private
attribute into a protected one by Law 1 and Law 2. We can apply these laws repeatedly
to add all the above mentioned attributes to our classes.

492 Q. Long et al.

Thus we reach the class diagram in which all the attributes have been filled in their
corresponding classes, that is, the Conceptual Model of the system. Fig. 1 illustrated
the class diagram.

We denote the classes depicted in Fig. 1 as POST1 which is a sequence of class
declarations.

4.2 Use Case Controller Class

Having the Conceptual Model, POST1, next we consider to refine the system to the
Design Model which includes all the method specifications. We start from the controller
class Post in which each method specification represents a formal use case specification.
As the result of the use case analysis, we realize that Post has to offer at least five
methods: makeSale() to initiate a business by creating a new object sale of type Sale;
enterItem() to add a sale line item to the sale object; makePayment() to summarize the
price and create a payment object; printSale() and endSale() to print and end the business
respectively. Further, endSale() has another job which is adding the reference of current
sale object to the sales list.

Here we formally give the details of the method specifications as follows:

– makeSale(Time time)
pcatalog �= nil � sale′.time = time ∧ sale′.pcatalog = pcatalog

– enterItem(UPC upc, int quantity)
pcatalog �= nil ∧ sale �= nil ∧ quantity �= 0 �
∃item : SalesLineItem • sale.items′ = sale.items ∪ {item}
∧item.upc = upc ∧ item.quantity = quantity
∧(∃ps : ProductSpecification • ps ∈ pcatalog ∧ item.ps = ps ∧ ps.upc = upc)

– makePayment(int type)
sale �= nil ∧ type ∈ {0, 1} �
∃payment : Payment • sale.payment′ = payment
∧payment.amount =

∑
item∈items item.ps.price× item.quantity

∧((type = 0 ∧ {Paid by cash}) ∨ (type = 1 ∧ {Paid by credit}))
where {Paid by cash} stands for customer’s completion of paying by cash, and
{Paid by credit} stands for customer’s completion of paying by credit card.

– printSale()
sale �= nil ∧ done(makePayment) � {Print the sales line item report}.

where the predicate done(makePayment) means the customer has made payment, and
{Print the sales line item report} stands for printing the receipt for customer.

– endSale()
sale �= nil ∧ done(makePayment) � sale′ = nil ∧ sales′ = sales ∪ {sale}

The class diagram is depicted in Fig. 2. We denote the corresponding class declara-
tions as POST2. With the support of Law 3 we can prove that adding a method is a refine-
ment to the system. So, trivially, applying this law five times, we have POST1) POST2.

4.3 Design Model

Having added the interface methods to the system, the next task we confront with is to
develop all the methods of the classes to complete our Design Model.

POST: A Case Study for an Incremental Development in rCOS 493

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

Post

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

1*

1

1

1

*
*

*

Fig. 2. Use Case Controller

Firstly, we delegate some of the tasks of Post to Sale. To achieve this, we first develop
the following two methods in the class Sale. For the same reason to subsection 4.2, the
new system added these methods refines the former version.

– makeLineItem(UPS ups, int quantity)
pcatalog �= nil ∧ quantity �= 0 �
∃item : SalesLineItem • items′ = items ∪ {item} ∧ item.upc = upc ∧ item.quantity =
quantity ∧ (∃ps : ProductSpecification • ps ∈ pcatalog ∧ item.ps = ps ∧ ps.upc = upc)

– makePayment(int type)
type ∈ {0, 1} � ∃payment : Payment • payment′ = payment
∧payment.amount =

∑
item∈items item.ps.price× item.quantity

∧((type = 0 ∧ {Paid by cash}) ∨ (type = 1 ∧ {Paid by credit}))

Secondly, we can implement, or refine, in our model, the methods enterItem(), and
makePayment() in class Post by invoking the above developed methods as follows:

– enterItem′(UPC upc, int quantity)={sale.makeLineItem(upc, quantity)}
– makePayment′(int type)={sale.makePayment(type)}

Now after adding the methods makeLineItem() and makePayment() to the class Sale,
we substitute enterItem(), makePayment() with enterItem′(), makePayment′() in class Post.
We denote the new system as POST3.

Using the semantic model of [9], we can prove that in class Post, enterItem()
) enterItem′() and makePayment()) makePayment′(). By applying Law 4 we have
POST2) POST3.

We will still use unprimed names enterItem() and makePayment() to denote the newly
refined methods in POST3. We make this abuse only for avoiding too many notations.
In the rest of this paper we will adopt this abuse where no confusion will be made. The
corresponding class diagram of POST3 is depicted in Fig. 3.

Next, we will continue to delegate the tasks of Sale to ProductCatalog and Payment.
Similar to the above process, we develop a new method Search() in class ProductCatalog

494 Q. Long et al.

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

Post

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

1*

1

1

1

*

*

*

Fig. 3. Primary Design Model

and invoke it in the method makeLineItem() of class Sale. Let us see the specification of
the new method:

Search(UPC upc, ProductSpecification ps):
pslist �= nil � (ps′ = null) � (∃ps ∈ pslist ∧ ps.upc = upc) � (ps′ = ps)

This method searches a valid Product Specification from ProductCatalog and return it
when success. Supported by this method, we can implement the method makeLineItem
in class Sale as follows:

makeLineItem′(UPC upc, int quantity) =
{varProductSpecification ps;
Search(upc, ps);
(ps �= null) � {

var SalesLineItem sli;
ProductSpecification.new(sli,[ps,quantity])}

items.Add(sli);
end ps}

Also, motivated by delegating a task of class Sale to class Payment, we develop a
new method pay() in the class Payment:

pay() = {{Paid by cash}� (type = 0) � {Paid by credit}}
Supported by this method, we implement makePayment(int type) in class Sale as

Sale.makePayment′(int type) =
{skip � (type = 0 ∨ type = 1)�
{
var float amount = 0;
foreach (SalseLineItem item ∈ items)

amount = amount + item.prise*item.quantity;
Payment.new(payment,[amount,type]);
ayment.pay()
}

}
In the semantic model we can prove in class Sale makeLineItem()) makeLineItem′()

and makePayment()) makePayment′().

POST: A Case Study for an Incremental Development in rCOS 495

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

Post

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

p ay ()

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

.

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

Search (UPC u p c,
Pro d u ctSp ecificatio n p s)

1*

1

1

1

*
*

*

Fig. 4. Design Model

With similar process, we can get a new system as POST4 by adding Search() to class
ProductCatalog and pay() to class Payment, substituting old makeLineItem(), makePayment()
with new ones in class Sale. And also, we have POST3) POST4. The corresponding
class diagram of POST4 is depicted in Fig. 4.

4.4 Refactoring: Extract Method and Move Method

After the efforts, we have reached the Design Model. Now we are ready to implement
the system with any OO language. But there might be some K. Beck and M. Fowler’s
“bad smells” [7] existing in the design. In the rest of this section we will refactor the
model to enhance the flexibility and maintainability.

After carefully reviewing of the design, we find a piece of typical code needed to be
refactorred: the method makePayment() in class Sale uses the attributes of SalesLineItem
many times. It could be better if the computation happens in SalesLineItem itself to re-
duce the coupling, or interaction, between classes. So we would like to extract a method
in class Sale and then move it to class SalesLineItem.

We formally make the refactoring as follows:
Firstly, supported by the Law 5 (Extract Method) we have

Sale[makePayment()])
Sale[makePayment()[subtotal()\(item.prise ∗ item.quantity)]]

where

– subtotal() = {return item.prise ∗ item.quantity}
– [a\b] means to substitute b with a.

The right hand can be refactorred further. With the Law 6 (Move Method) we have

Sale[makePayment()]; SalesLineItem[])
Sale[makePayment()[item.subtotal()\subtotal()]]; SalesLineItem[subtotal()]

where, in the class SalesLineItem, subtotal() = {return prise ∗ quantity}.

496 Q. Long et al.

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

Post

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

p ay ()

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

Su b To tal()

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

Search (UPC u p c,
Pro d u ctSp ecificatio n p s)

1*

1

1

1

*
*

*

Fig. 5. Extract method and Move method

Thus we get the new class declarations POST5 whose corresponding class diagram
is depicted in Fig. 5. Again, we have POST4) POST5.

4.5 Refactoring: Extract Class

Next, we have a closer look at the class Post. It has an attribute sales which is a list
to record all the past sales. For one thing, it is not suitable to let the interface class
maintain such a long list. For another, there may be several instances of Post working in
parallel. They should share the same list1. So we need another class to maintain the list.
We would like to extract a new class RecordStore to do the job instead.

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

Post

Sale s ale
Reco rd Sto re rs to re
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

p ay ()

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

Su b To tal()

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

Search (UPC u p c,
Pro d u ctSp ecificatio n p s)

1*

1

1

1

*
*

*

RecordStore

Lis t s ales <Sale>

ad d Sale(Sale s ale)

1 *

Fig. 6. Extract Class

1 This list can be considered as a database for all the records.

POST: A Case Study for an Incremental Development in rCOS 497

Supported by the Law 7 (Extract Class) we have

Post[List sales〈Sale〉]) Post[RecordStore rstore]; RecordStore[List sales〈Sale〉]

Similar to subsection 4.4, we can extract a method addSale(Sale sale) in class Post,
which adds the current sale object to the sales list rstore.sales. And then, we move it to
the newly developed class RecordStore, and have the class diagram in Fig. 6. We denote
the corresponding class declarations as POST6 and again POST5) POST6.

4.6 Pattern-Directed Refactoring: Strategy

Now it comes to the last phase of the refinement. This is a pattern-directed refactoring
in which we introduce Strategy design pattern to the existing system.

In method pay() of class Payment, we have a piece of code “c1 � type = 0 � c2” in
which the value of type will affect the behavior of the method. Now, directed by Strategy
Pattern, we would like to refactor it by replacing the type code with polymorphism.

Supported by Law 8 (Strategy) we have

Sale[makePayment(int type)]; Payment[int type,pay()])
Sale[makePayment(int type)]; Payment[pay()];
CashPayment[Payment,pay()]; CreditPayment[Payment,pay()]

where

– The method makePayment(int type) on the right hand is different to the one on the left
hand. We delete the command “Payment.new(payment,[amount,type]);” from the old
method and substitute it with another command:

CashPayment.new(payment,[amount]) � (type = 0)�
CreditPayment.new(payment,[amount]);

– The method body of pay() in class Payment is empty. It is implemented by its sub-
classes.

– In class CashPayment, method pay() = {Paid by cash}, and in class CreditPayment,
method pay() = {Paid by credit}.

CreditPayment

CashPayment

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g p catalo g
Pay men t p ay men t
Lis t items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

Post

Sale s ale
Reco rd Sto re rs to re
Pro d u ctCatalo g p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t

p ay ()

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

Su b To tal()

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

Search (UPC u p c,
Pro d u ctSp ecificatio n p s)

1*

1

1

1

*
*

*

RecordStore

Lis t s ales <Sale>

ad d Sale(Sale s ale)

1 *

Fig. 7. Strategy Pattern-Directed Refactoring

498 Q. Long et al.

Now the type code is replaced by polymorphism by introducing two subclasses.
We denote the new class declarations as POST7, and have POST6) POST7. The class
diagram is depicted in Fig. 7.

After the above refinement process, we gain the final design POST7 from POST0.
This ends our refinement. The classes in the final design is very near to executable code.
It is easy to implement it in any OO programming languages. We have implemented it
using Visual C# .Net.

5 Implementation

Supported by the C� and the .Net developing environment, we implement an executable
software product for the final design model.

The main interface of the system, depicted in Fig. 8, is composed of five “Button”s
which represent the five methods in class Post. Also we have two “TextBox”s to input the
UPC and quantity of the current purchasing product, a “ListBox” to show the content
of the current sale, and a pair of “RadioButton”s to choose payment ways. After the
payment way is chosen, when the “Print Sale” button is pressed, the system will pop-up
a form to show the receipt for customers.

An executing snapshot of our software is depicted in Fig. 9.

Fig. 8. Interface of POST System Fig. 9. POST System in Execution

6 Conclusions and Future Work

As stated in the introduction, the main motivation of this paper is to show the power
of rCOS refinement calculus in incremental software development by presenting the
POST case study. From this study, we could draw the conclusions about the advantages,
and a tiny disadvantage as well, of rCOS.

– As we have shown in the refinement process, rCOS supports a wide range of object-
oriented techniques. So it is a suitable calculus for OO development.

POST: A Case Study for an Incremental Development in rCOS 499

– In the rCOS based software development, we can prove the correctness of each
developing step. So at least for highly critical systems, rCOS is a useful supporting
model. Further, in teamwork of large scale software development, rCOS also offers
a robust support for rigorous correctness formal proof.

– It is proven that rCOS can be used as a formal framework for the use-cased driven,
incremental and iterative Rational Unified Process (RUP). And also, the rCOS
based process is practical and scalable in software engineering.

– In practice, rCOS also offers a nice semantic model for correctly refactoring the
existing design, and further, might give a choice for refactoring supporting tools
development.

– The limitations. During the development of the POST system, we realized that there
are some tiny limitations existing in the current version of rCOS. For instance, we
do not have exception handling in the syntax of rCOS, making no chance to use
such mechanism to deal with dynamic errors in the software development.

As for the future work, we would like to provide tool support for our refinement
calculus. We hope, given the proof obligation of a refinement equation, the tool can
search whether there is a refinement law syntactically matches. In rCOS, we have not
yet had a result about the completeness of the laws. We will look into this problem in
future work and discuss the relationship of all of our laws. Another important future
work is, as mentioned above, we need to extend the current version of rCOS to support
more features, such as exception handling, of OO programming languages. There, we
believe, will be no essential difficulty.

References

1. D. Carrington, et al. Object-Z: an Object-Oriented Extension to Z. North-Halland, 1989.
2. D. Coleman, et al. Object-Oriented Development: the FUSION Method. Prentice-Hall, 1994.
3. S. Cook and J. Daniels. Designing Object Systems: Object-Oriented Modelling with Syn-

tropy. Prentice-Hall, 1994.
4. J. Davis and J.P. Woodcock. Using Z: Specification, Refinement and Proof. Prentice Hall,

1996.
5. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program semantics. Springer,

1989.
6. E. Dürr and E.M. Dusink. The role of V DM++ in the development of a real-time tracking

and tracing system. In J. Woodcock and P. Larsen, editors, Proc. of FME’93, LNCS 670.
Springer-Verlag, 1993.

7. Martin Fowler. Refectoring, Improving the Design of Existing Code. Addison-Wesley, 2000.
8. J. He, Z. Liu, and X. Li. rCOS: A refinement calculus for object sys-

tems. Technical Report 322, UNU/IIST, P.O. Box 3058, Macao SAR China, 2005.
http://www.iist.unu.edu/newrh/III/1/page.html.

9. J. He, Z. Liu, X. Li, and S. Qin. A relational model for object-oriented designs. In Pro.
APLAS’2004, LNCS 3302, Taiwan, 2004. Springer.

10. C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
11. C.B. Jones. Software Development: A Rigorous Approach. Prentice Hall International, 1980.
12. C. Larman. Applying UML and Patterns, An Introduction to Object-Oriented Analysis and

Design and the Unified Process. Prentice-Hall, 2001.

500 Q. Long et al.

13. X. Li, Z. Liu, and J. He. Formal and use-case driven requirement analysis in UML. In
COMPSAC01, pages 215–224, Illinois, USA, October 2001. IEEE Computer Society.

14. Z. Liu. Object-oriented software development with UML. Technical Report 259, UNU/IIST,
P.O. Box 3058, Macao SAR China, 2002. http://www.iist.unu.edu/newrh/III/1/page.html.

15. Z. Liu, J. He, X. Li, and Y. Chen. A relational model for formal requirements analysis in
UML. In J.S. Dong and J. Woodcock, editors, Formal Methods and Software Engineering,
ICFEM03, LNCS 2885, pages 641–664. Springer, 2003.

16. Q. Long, J. He, and Z. Liu. Refactoring and pattern directed refactoring : A formal per-
spective. Technical Report 318, UNU/IIST, P.O. Box 3058, Macao SAR China, 2005.
http://www.iist.unu.edu/newrh/III/1/page.html.

Implementing Application-Specific
Object-Oriented Theories in HOL

Kenro Yatake1, Toshiaki Aoki1,2, and Takuya Katayama1

1 Japan Advanced Institute of Science and Technology,
1-1 Asahidai Nomi Ishikawa 923-1292, Japan

{k-yatake, toshiaki, katayama}@jaist.ac.jp
2 PRESTO JST

Abstract. This paper presents a theory of Object-Oriented concepts
embedded shallowly in HOL for the verification of OO analysis models.
The theory is application-specific in the sense that it is automatically
constructed depending on the type information of the application. This
allows objects to have attributes of arbitrary types, making it possible to
verify models using not only basic types but also highly abstracted types
specific to the target domain. The theory is constructed by definitional
extension based on the operational semantics of a heap memory model,
which guarantees the soundness of the theory. This paper mainly focuses
on the implementation details of the theory.

1 Introduction

The Object-Oriented developing method is becoming the mainstream of the soft-
ware development. In the upstream phase of the development, analysis models
are constructed with a language such as UML (Unified Modeling Language [1]).
To ensure the correctness of the models, formal semantics must be given to them
and verification method such as theorem proving must be applied.

A lot of OO semantics have been implemented in theorem provers of higher-
order logic and most of them are for the verification of OO languages such
as Java [5][6][7]. In these theories, available types are limited to the primitive
ones such as integers and boolean sufficient for the program verification. But
for the verification of analysis models, this type restriction is disadvantage as
the models are constructed with highly abstracted types specific to the target
domain, e.g. tree, stack, date, money. Therefore, an OO semantics which can
accommodate various types are required. So, we defined a theory in the HOL
system [2] as a semantics of OO concepts in which arbitrary concrete types can
be incorporated in the types of object attributes. In general, an object is a data
which holds multiple attributes of arbitrary types and even allows referencing
and subtyping. This concept is too complex to implement as a general type in
the simple first-order type system of HOL. To cope with this problem, we take
the approach of automatically constructing the theory depending on the class
model of the application which defines the type information of the system.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 501–516, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

502 K. Yatake, T. Aoki, and T. Katayama

The theory is constructed by definitional extension. This is a standard method
to construct sound theories in HOL, where new theories are derived from exist-
ing sound theories by only allowing introduction of definition and derivation by
sound inference rules. Specifically, the theory is derived from the operational
semantics of a heap memory model. If a class model is given in advance, objects
and their referencing and subtyping are realized by a linked-tuple structure in
the heap memory and the resulting theory becomes quite simple.

In this paper, we present the definition of the theory and its implementation
details in HOL. As a verification example, we prove that a UML collaboration di-
agram satisfies an invariant written in OCL (Object Constraint Language [3]). In
this paper, we call the theory ASOOT (for Application-Specific Object-Oriented
Theory).

This paper is organized as follows. In section 2 and 3, we explain the definition
of the class model and the definition of the theory corresponding to the class
model. In section 4, we explain the implementation details. In section 5, we
show the example verification. In section 6, we cite related works and section 7
is conclusion and future work.

2 Class Models

The theory depends on the class model of each system which defines the static
structure of the system like UML class diagrams. The class model is defined as
a six tuple:

CM = (C,A,Mattr,Minher, T ,V)

The sets C and A are class names and attribute names which appear in the
system, respectively. The mapping Mattr : C → Pow(A) relates a class to the
attributes defined in the class. The mapping Minher : C → Pow(C) relates a
class to its direct subclasses. We assume single inheritance. The mapping T :
C×A→ T ype relates an attribute to its type. The set T ype is a set of arbitrary
concrete types in HOL. We assume C ⊂ T ype and define the type of an object
to be the name of the class it belongs to. The mapping V : C × A → V alue
relates an attribute to its default value. The set V alue is a set of values of
all types in T ype. By a symbol �, we denote the super-sub relationship. The
expression c1 � c2 means c2 is a direct subclass of c1, which is equivalent to
c2 ∈ Minher(c1). In addition, c1 �+ c2 means c2 is a descendant class of c1 and
c1 �∗ c2 means c1 = c2 or c1 �+ c2. By attr(c), we denote the attributes and
inherited attributes of the class c, i.e. attr(c) = {a|a ∈Mattr(d), d �∗ c}.

In the following, we visualize the class models like Fig.1. The class fig is a
class of figures which has two attributes x and y as its coordinate position. The

fig
x:int,y:int

rect
h:num,w:num c:color

crect

Fig. 1. A class model example

Implementing Application-Specific Object-Oriented Theories in HOL 503

class rect is a class of rectangles which has two attributes w and h as its width
and height. The class crect is a class of colored-rectangle which has an attribute
c as its color. The type color is an enumeration type which has several colors
as its elements.

3 Definition of ASOOT

The theory is defined in HOL by mapping the class model elements to types
and constants in the theory and introducing axioms on them. As the embedding
policy, we chose a shallow embedding because our verification target is individual
applications of the class model (the comparison of a shallow embedding and a
deep embedding is found in [4]). We first explain the overview of the theory with
the example, and then give the formal definition.

3.1 Overview

In order to implement object referencing, the concept store is introduced in the
theory. The store is an environment which holds the attribute values of all alive
objects in the system and defined as a type store. Objects are references to their
data in the store and defined as types of their belonging class name. For example,
the type of objects of the class fig is fig. Types of objects are ”apparent” types
and their type can be transformed to other types by casting.

Several kinds of constants are introduced in the theory by mapping from the
elements in the class model as shown in Fig.2. For example, corresponding to
the class fig, two constants fig_new and fig_ex are introduced. The function
fig_new creates a new fig instance in the store. It takes a store as an argument
and returns a pair of a newly created object and the store after the creation.
The predicate fig_ex tests if a fig object exists in the store. It takes a fig
object and a store as arguments and return the result as a boolean value. The
first axiom is a property about these operators saying ”The newly created object
is alive in the store after the creation.”

Corresponding to the attribute x of the class fig, read and write operators
fig_get_x and fig_set_x are introduced. The function fig_get_x takes a fig

rect
h:num
w:num

fig
x:int
y:int

fig_ex : fig -> store -> bool
fig_new : store -> fig # store

fig_get_x : fig -> store -> int
fig_set_x : fig -> int -> store -> store
fig_cast_rect : fig -> store -> rect
rect_cast_fig : rect -> store -> fig
fig_is_rect : fig -> store -> bool

[A1]|- !s. let (f,s1) = fig_new s in fig_ex f s1
[A2]|- !f v s. fig_ex f s ==> (fig_get_x f (fig_set_x f v s) = v)
[A3]|- !r s. rect_is_rect r s ==> fig_is_rect (rect_cast_fig r s) s

rect_is_rect : rect -> store -> bool

Fig. 2. The mapping from the class model to the theory

504 K. Yatake, T. Aoki, and T. Katayama

object and a store as arguments and returns the current value of the attribute
x. The function fig_set_x takes a fig object, a new integer value and a store
as arguments and returns the store after updating the attribute x to the new
value. The second axiom says ”If the fig object is alive in the store, the value
of the attribute x of the object obtained just after updating it to v equals to v.”

Corresponding to the inheritance relationship between the two classes fig
and rect, type casting operators and instance-of operators are introduced. The
function fig_cast_rect takes a fig object as an argument and casts it down-
ward from fig to rect. The function rect_cast_fig takes a rect object and
casts it upward from rect to fig. The predicate fig_is_rect tests if a fig
object is an instance of the class rect. After an object is created, its appar-
ent type can be changed by casting operators, but instance-of operators play
a role of remembering the actual type of the object. For example, by applying
rect_cast_fig to the rect instance which is created by rect_new, its appar-
ent type is changed to fig, but as fig_is_rect holds for the fig object, it is
identified as an instance of the class rect. The third axiom state this.

3.2 Types and Constants

The store is represented by a type store. It has a constant Emp as its initial
value which represents the empty store. Objects of the class c are represented as
a type c. Each type c has a constant Nullc : c which represents the null object.

Following operators are defined on the store:

Exc : c→ store→ bool (c ∈ C)
Getca : c→ store→ T (c, a) (c ∈ C, a ∈ attr(c))
Setca : c→ T (c, a) → store→ store (c ∈ C, a ∈ attr(c))
Castcd : c→ store→ d (c, d ∈ C, c �+ d or d �+ c)
Newc : store→ c ∗ store (c ∈ C)
Iscd : c→ store→ bool (c, d ∈ C, c �∗ d)

The predicate Exc tests if the class c object is alive in the store. The function
Getca reads the attribute a of the class c object. If it is applied to an object
not alive in the store, the constant Unknownc

a : T (c, a) which represents the
undefined value is returned. The function Setca updates the attribute a of the
class c object. The function Castcd transforms the object types from c to d. The
function Newc creates a new instance of the class c in the store. The predicate
Iscd tests if the class c object is an instance of the class d.

3.3 Axioms

Here, we introduce axioms for the operators defined above. There are 36 axioms
altogether, but we show only main ones because of space limitations.

1. ∀o s. Exc o s = Iscd1
o s ∨ ... ∨ Iscdn

o s ({d1, ..., dn} = {d | c �∗ d})
The c object o alive in the store is an instance of either the class c or one of
the descendant-classes of c.

Implementing Application-Specific Object-Oriented Theories in HOL 505

2. ∀o s. Iscd o s⇒ ¬(Isce o s) (d = e)
If the c object o is an instance of the class d, it is not an instance of the class
e different from d, i.e. is-operators are exclusive.

3. ∀o s. Isde o s⇒ Isce (Castdc o s) s (c �+ d)
If the d object o is an instance of the class e, the object cast to the superclass
c is also the instance of e, i.e. the actual type is invariable by casting.

4. ∀o s. Iscc o (Snd (Newc s)) = (o = Fst (Newc s)) ∨ Iscc o s

The c object o is an instance of the class c in the store after creating a new
instance of the class c iff o is either the newly created object or the object
which was already an instance of c before the creation.

5. ∀o s. ¬(Exc (Fst (Newc s)) s)
The newly created object does not exist in the previous store. This axiom
implies that the new object is distinct from all previous objects.

6. ∀o1 o2 s. Exd o1 s ∧Exd o2 s⇒
¬(o1 = o2) ⇒ ¬(Castdc o1 s = Castdc o2 s) (c �+ d)
If two c objects o1 and o2 are different objects, the two object obtained by
casting to the superclass c are also different objects, i.e. cast-operators are
injective.

7. ∀o s. Isce o s⇒ (Castdc (Castcd o s) s = o) (c �+ d, d �+ e)
If the c object o is an instance of the class e which is a descendant class of
d, the object obtained by down-casting to d and then up-casting to c equals
to o itself.

8. ∀o s. Getda o s = Getca (Castdc o s) s (c �+ d and a ∈Mattr(c))
When an attribute a is defined in the class c, getting a of the object o of the
descendant-class d is the same as getting a by casting o to c.

9. ∀o s. Exc o s⇒ (Getca o (Setca o x s) = x)
If the object o is alive in the store, the attribute a of o obtained just after
updating it to x equals to x.

10. ∀o1 o2 s. ¬(o1 = o2) ⇒ (Getca o1 (Setca o2 x s) = Getca o1 s)
If the two objects o1 and o2 are different, getting the attribute a of o1 is not
affected by the updating of the same attribute of o2.

11. ∀o1 o2 s. Get
c
a o1 (Setdb o2 x s) = Getca o1 s ((c �∗ d and d �∗ c) or a = b)

If the two classes c and d are not in inheritance relationship or the attribute
name a and b are different, getting the attribute is not affected by the up-
dating.

3.4 Modeling OO Concepts in the Theory

Basic OO concepts such as methods, inheritance, overriding and dynamic binding
are expressible in the theory. We show a typical way to model these concepts
using examples. In HOL, we denote the operators Exc, Newc, Getca, Setca, Castcd
and Iscd as c_ex, c_new, c_get_a, c_set_a, c_cast_d and c_is_d, respectively.

Methods are defined using Get, Set, New, Cast and functions provided in
HOL. Let us consider that the class fig has a method move which changes its
position by dx and dy. This method is defined as follows.

506 K. Yatake, T. Aoki, and T. Katayama

fig_move : fig -> int -> int -> store -> store
fig_move f dx dy s =

let (x,y) = (fig_get_x f s, fig_get_y f s) in
fig_set_y f (y+dy) (fig_set_x f (x+dx) s)

Method inheritance is modeled by calling the superclass method from the
subclass method, i.e. by casting the object to the superclass type and apply-
ing the superclass method. If the class rect inherits the method move of the
superclass fig, this method is defined as follows.

rect_move : rect -> int -> int -> store -> store
rect_move r dx dy s = fig_move (rect_cast_fig r s) dx dy s

Method overriding is modeled in the same manner as method inheritance. If
the class crect overrides the superclass method move to change the color to red
after changing the position, this method is defined as follows.

crect_move : crect -> int -> int -> store -> store
crect_move c dx dy s =

let s1 = rect_move (crect_cast_rect c s) dx dy s in
crect_set_color c red s1

Dynamic binding is a mechanism to dynamically switch method bodies ac-
cording to which class the applied object is instance of. This is modeled by
defining a virtual method which selects the method body using Is. The virtual
method v_fig_move corresponding to the method fig_move is defined as follows.

v_fig_move : fig -> int -> int -> store -> store
v_fig_move f dx dy s =
if fig_is_fig f s then fig_move f dx dy s
else if fig_is_rect f s then rect_move (fig_cast_rect f s) dx dy s
else if fig_is_crect f s then crect_move (fig_cast_crect f s) dx dy s
else s

4 Implementing ASOOT in HOL

We implemented a tool called ASOOT generator which inputs a class model and
outputs the theory specific to the model. As mentioned in the introduction, the
theory is constructed by definitional extension and thus sound. It implements the
operational semantics of a heap memory using primitive theories such as natural
numbers, lists and pairs and derives the theory from the operational semantics.
We first explain the overview of the implementation using the example, and
then, explain it formally.

4.1 Overview

The store is represented as a heap memory to store object attributes. Fig.3
shows a snapshot of the heap memory for the example model. The heap memory
consists of three sub-heaps which are introduced corresponding to the three

Implementing Application-Specific Object-Oriented Theories in HOL 507

classes fig, rect and crect. Each sub-heap is represented by a list and the
whole heap is represented by a tuple of them.

Object references are represented by indices of the memory. In the case of
the fig memory, the reference f1, f2,... of type fig is represented by a natural
number 1,2, ... The reference f0 is used as a null reference fig_null. Object
instances are represented by a tuple or several tuples in the sub-heaps. For

(2,3,r0)
f0
f1
f2
f3
f4
f5

(-4,5,r1)
(1,-2,r2)
(10,0,r3)
(0,0,r4)

(10,8,f2,c0)
r0
r1
r2
r3
r4

(6,12,f3,c1)
(4,10,f4,c0)
(5,8,f5,c2)

(red,r2)
c0
c1
c2 (blue,r4)

fig rect crect

Fig. 3. Representation of the store

example, the tuple in f_1 represents a fig instance whose attribute are x=2 and
y=3. Two tuples in f2 and r1 together represent a rect instance whose attribute
are x=-4, y=5, w=10, and h=8. Three tuples in f3, r2, and c1 together represent
a crect instance whose attribute are x=1, y=-2, w=6, h=12, and c=red. Multiple
tuples which compose an instance are linked to each other by storing object
references. The two tuples in f2 and r1 which compose a rect instance link
to each other by storing the references r1 and f2, respectively. If there are no
tuples for a tuple to link, the null references are stored. As the tuple in f1 does
not link to any rect tuples, it stores the null reference r0. Object subtyping is
modeled by this linked-tuple structure. For example, three references f3, r2 and
c1 all point at the same crect instance. This means crect instance can have
three apparent types fig, rect, and crect.

Now, we explain how the operators on the store are implemented in the heap
memory. The New operator rect_new is implemented as a function to add new
tuples in the sub-heaps for fig and rect and connects them to each other. The
Ex operator fig_ex is implemented as a predicate to test if the fig reference
is not null and not out of bounds of the sub-heap for fig . The Cast operator
fig_cast_rect is implemented as a function to read the rect reference stored in
the tuple pointed by the fig reference. The Get and Set operator fig_get_x and
fig_set_x are implemented as functions to read and update the first element
in the tuple pointed by the fig reference. The Is operator fig_is_rect is
implemented as a predicate to test if the tuple pointed by the fig reference is
linked with a tuple in the sub-heap for rect.

4.2 Representation of the Store: A Heap Memory Model

A sub-heap is defined independent of the class model and is represented generally
as ′a list. Addresses of data is represented by list indices, or natural numbers 0,
1, 2... The initial value of a sub-heap is defined as [null] which is a list with a
dummy constant null : ′a in the address 0. Four operators add, valid, read and
write are defined on the sub-heap as follows.

508 K. Yatake, T. Aoki, and T. Katayama

add x l = (Length l, Append l [x])
valid n l = (0 < n) ∧ (n < length l)
read n l = if valid n l then read1 n l else unknown

(read1 0 l = Hd l) ∧ (read1 (Suc n) l = read1 n (T l l))
write n x l = if valid n l then write1 n x l else l

(write1 0 x l=x :: (T l l))∧ (write1 (Suc n)x l=(Hd l) :: (write1 n x (T l l)))

The function add adds the new data x at the tail of the list and returns the new
address and the list after the operation. The predicate valid tests if a data is
stored in the address n. The address is valid if it is in the range greater than 0
and less than the current list length. The function read reads the data in the
address n. If the address is not valid, the constant unknown which represents
undefined data is returned. The function write updates the data in the address
n by the data x. If the address is not valid, the list is left unchanged.

Sub-heaps are introduced corresponding to each class and each of them stores
different types of tuples depending on the class. The type of tuples stored in the
sub-heap for the class c is defined as:

tuplec ≡ T (c, a1) ∗ ... ∗ T (c, an) ∗ d ∗ e1 ∗ ... ∗ em (ai ∈ Mattr(c), d � c, c � ej)

The first n elements are the attributes defined in c. The next element is a refer-
ence of a superclass object. The lastm elements are references of subclass objects.
The type of the sub-heap storing these tuples is defined as heapc ≡ tuplec list.

The type of object references of the class c is obtained by defining bijections
between the type c and natural numbers as follows.

HOL datatype c = AbsObjc of num, RepObjc (AbsObjc n) ≡ n

The function AbsObjc maps a natural number to a c object reference. The func-
tion RepObjc maps a c object reference to a natural number. The null object is
represented by 0, i.e. Nullc ≡ AbsObjc 0.

The whole heap memory is obtained by gathering sub-heaps into a tuple.
The type of the heap memory is defined as:

Heap ≡ heapc1 ∗ ... ∗ heapcn (ci ∈ C)

The four operators on the sub-heap add, valid, read and write are extended
to operate on the whole heap as follows.

Addc : tuplec → Heap→ c ∗Heap, V alidc : c→ Heap→ bool

Readc
u : c→ Heap→ T, Writecu : c→ T → Heap→ Heap

The function Addc adds a new tuple in the sub-heap of the class c. The predicate
V alidc tests if the c object is valid in the sub-heap of the class c. The function
Readc

u reads the element u in the tuple referenced by the c object. The element
u is either one of ai for attributes, d for the superclass object, or ej for the

Implementing Application-Specific Object-Oriented Theories in HOL 509

subclass object. In the case u = ai, T = T (c, a) and for other case, T = u. The
function Writecu writes at the same location in the heap as Readc

u reads. These
operators are easily defined using pair functions Fst and Snd and the bijections
AbsObjc and RepObjc.

4.3 Representation of ASOOT Constants

We define constantsEmpRep,ExRepc, CastRepcd,GetRep
c
a, SetRepca,NewRepc

and IsRepcd using the operators defined on the heap memory. They are the heap
representations of the ASOOT constants Emp, Exc, Castcd, Get

c
a, Set

c
a, Newc

and Iscd, respectively.
The constant EmpRep is defined as:

EmpRep ≡ ([null : tuplec1], ..., [null : tuplecn]) (ci ∈ C)

The empty store is represented by a tuple of the initial values of the sub-heaps.
The predicate ExRepc is defined as:

ExRepc o H ≡ V alidc o H

The existence of an object in the store is represented by the validity of the object
reference in the heap memory.

The function CastRepcd is defined as:

CastRepcd o H ≡{
if ExRepc o H then Readc

d o H else Nulld (c � d or d � c)
CastReped (CastRepce o H) H ((c � e, e �+ d) or (d �+ e, e � c))

In the case that the two classes c and d are in the direct super-sub relationship,
the casting is represented by reading the d object in the tuple referenced by
the c object. If the c object does not exists, it is cast to the null object Nulld.
In the case that c and d are in the ancestor-descendant relationship but not in
the direct super-sub relationship, the casting is applied transitively, i.e. first the
c object is cast to the direct superclass e and then the e object is cast to the
class d.

The functions GetRepca is defined as:

GetRepca o H ≡{
if ExRepc o H then Readc

a o H else Unknownc
a (a ∈Mattr(c))

GetRepda (CastRepcd o H) H (d � c, a ∈ attr(d))

In the case that the attribute a is defined in the class c, getting a of a c object is
represented by reading the element a in the tuple referenced by the c object. If the
c object does not exists, a constant Unknownc

a which represents the undefined
value is returned. In the case that the attribute a is defined in the ancestor-class,
the c object is cast to the superclass d and then GetRepda is applied.

510 K. Yatake, T. Aoki, and T. Katayama

The function Setca is defined in the same way as Readc
a:

SetRepca o x H ≡{
if ExRepc o H then Writeca o x H else H (a ∈ Mattr(c))
SetRepda (CastRepcd o H) x H (d � c, a ∈ attr(d))

If the c object does not exists, the heap is left unchanged.
The function NewRepc is defined as:

NewRepc H ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Addc defaultc H (c is the root class)
let (o1, H1) = NewRepd H in

let (o2, H2) = Addc defaultc H1 in

let H3 = Linkd
c o1 o2 H2 in (o2, H3) (d � c)

where

Linkd
c o1 o2 H ≡Writecd o2 o1 (Writedc o1 o2 H)

defaultc ≡ (V(c, a1), ...,V(c, an), Nulld, Nulle1, ..., Nullem)
(ai ∈Mattr(c), d � c, c � ej)

This function creates a linked-tuple structure recursively on the inheritance
chain. As a base step, where the class c is the root class of the inheritance
tree, the c instance is created by simply adding a new tuple to the sub-heap
for c. As induction steps, first, the instance of the superclass d is created by
NewRepd and then, a new tuple is added to the sub-heap for c, and finally, the
newly obtained object o1 and o2 is linked by Linkd

c . The tuple value defaultc
added to the sub-heap for c contains default values for attributes and null objects
for the superclass and subclass objects.

The predicate IsRepcd is defined as:

IsRepc
d o H ≡

{
ExRepc o H ∧

∧
j ¬ExRepej (CastRepc

ej
o H) H (c = d, c � ej)

ExRepc o H ∧ IsRepd
e (CastRepc

d o H) H (c � e, e �∗ d)

This predicate tests that the c object is the instance of the class d. This is tested
by examining if the links are traversed from the c object reference up to a tuple
in the sub-heap of d. Link traversing is realized by cast operators. If c = d, the
c object is the very c instance, so there must not exist any links to any of the
subclasses e1, ..., em. If c is the ancestor-class of d, the c object is cast to the
subclass e and the e object must be an instance of d. In both cases, the c object
must exist in the store.

4.4 Abstracting ASOOT from the Heap Memory

Finally, we abstract ASOOT from the heap representation by creating the type
store, defining ASOOT constants and deriving axioms.

The type store is created from a subset of the type Heap. In HOL, it takes
the following steps to create a new type t1 from an existing type t2.

Implementing Application-Specific Object-Oriented Theories in HOL 511

1. Define the predicate p : t2 → bool which determines the subset of t2.
2. Prove the theorem � ∃x. p x, i.e. the subset is not an empty set.
3. Assert that there are bijections between t1 and the subset of t2 determined

by p.

The predicate which determines the subset of Heap is defined as IsStoreRep
as follows1.

IsStoreRep H ≡ ∀P. IsInv P ⇒ P H

where

IsInv P ≡ P EmpRep ∧∧
c,a

(∀o x H. P H⇒ SetRepca o x H)∧
∧
c

(∀H. P H⇒ Snd (NewRepc H))

The elements of the subset represented by IsStoreRep are those which sat-
isfy the predicate P which is an invariant proved by the following induction:
as a base step, prove that EmpRep satisfies P , and as induction steps, as-
sume that P holds for a heap and prove that the heaps obtained by apply-
ing SetRepca and NewRepc maintain P . The existence of an element is proved
as a theorem th ≡ � IsStoreRep EmpRep. The existence of bijections be-
tween store and the subset is asserted automatically by calling the ML function
new type definition(store, th). Let us say the bijections are RepStore : store→
Heap and AbsStore : Heap→ store.

ASOOT constants are defined by taking a map with their heap representa-
tions as follows.

Emp ≡ AbsStore EmpRep, Exc o s ≡ ExRepc o (RepStore s)
Getca o s ≡ GetRepca o (RepStore s)
Setca o x s ≡ AbsStore (SetRepca o x (RepStore s))
Castcd o s ≡ CastRepcd o (RepStore s), Iscd o s ≡ IsRepcd o (RepStore s)
Newc s ≡ let (o,H) = NewRepc (RepStore s) in (o,AbsStore H)

All the ASOOT axioms are derived from the definition we presented so far.
The axioms are divided into two groups according to how they are derived. One
is those which are derived simply by expanding the definitions. The axioms 2,
4, 5, 8, 9, 10 and 11 are in this group. The other is those which are proved as
invariants on the store. The axioms 1, 3, 6 and 7 are in this group. Invariants are
proved by the induction given in IsInv. Let us consider the proof of the axiom
1 defined as Inv as follows.

Inv s ≡ ∀o. Exc o s = Iscd1
o s ∨ ... ∨ Iscdn

o s (di ∈ {d | c �∗ d})

First, we define the heap representation of the axiom as follows.

InvRep H ≡ ∀o. ExRepc o H = IsRepcd1
o H ∨ ... ∨ IsRepcdn

o H

1 There is a logically equivalent implementation of the theory where the number of
steps of the induction in IsInv becomes only 1 + 2c.

512 K. Yatake, T. Aoki, and T. Katayama

Then, we prove the theorem � IsInv InvRep based on the structural induc-
tion. If this holds, the theorem � ∀H. IsStoreRep H ⇒ InvRep H is de-
rived from the definition of IsStoreRep. And as IsStoreRep (RepStore s)
holds (from the bijection theorem not presented here), we obtain the theorem
� ∀s. InvRep (RepStore s). From this theorem and the definitions of Exc and
Iscd, we obtain � ∀s. Inv s.

5 A Verification Example

In this section, we show an example verification using ASOOT, where a UML
collaboration diagram is verified to satisfy an invariant written in OCL. The
UML class diagram and collaboration diagram of the library system are shown
in Fig.4. The system consists of four classes. The class library is the main
class of the system and has the methods for operations such as item lending and
customer registration. It has association with the classes customer and item
which represent the customers and items registered in the library, respectively.
There are two kinds of items: books and CDs. They are represented as subclasses
book and cd. The class lend keeps the lending information between a customer
and an item. In the class model, an association is defined as an attribute whose
type is a list of objects, e.g. the association for library with customer is defined
as an attribute customerlist of type customer list.

The lending operation is defined as a method lend of the class library
and its collaboration proceeds as follows. First, the method is applied to an
library object lib with two inputs: a customer ID (cid) and an item ID (iid).
Then, it checks if the customer is qualified to lend the item (1.1). The conditions

book
isbn:num

iid:num
title:string

item

days:int
lend

cid:num
name:string

customer

max:num
days:num
nextcid:num
nextiid:num

library

cd

Max number of items
a customer can keep
at a time
Max number of days
a customer can
keep an item

Next customer ID
and item ID to be issued

Customer ID

Item ID

Remaining days of the lent

:library

:customer :item:lend

<<new>>

1.1:[lib.check_lend(cid,iid)]
1.2:cst:=lib.get_customer(cid)
1.3:itm:=lib.get_item(iid)
1.4:d:=lib.get_days()
1.6:lib.add_lend(lnd)

1:lib.lend(cid,iid)

1.5:lnd:=new_lend(d,cst,itm)

1.5.4:cst.add_lend(lnd) 1.5.5:itm.add_lend(lnd)
1.5.1:lnd.set_days(d)
1.5.2:lnd.add_customer(cst)
1.5.3:lnd.add_item(itm)

Fig. 4. The class diagram and the lending collaboration

Implementing Application-Specific Object-Oriented Theories in HOL 513

library_lend : library -> num -> num -> store -> string # store
library_lend lib cid iid s = (* 1 *)
 if library_check_lend lib cid iid s then (* 1.1 *)
 let cst = library_get_customer lib cid s in (* 1.2 *)
 let itm = library_get_item lib iid s in (* 1.3 *)
 let d = library_get_days lib s in (* 1.4 *)
 let (lnd,s1) = new_lend d cst itm s in (* 1.5 *)
 library_add_lend lib lnd s1 (* 1.6 *)
 else s

new_lend : num -> customer -> item -> store -> lend # store
new_lend d cst itm s =
 let (lnd,s1) = lend_new s in
 let s2 = lend_set_days lnd d s1 in (* 1.5.1 *)
 let s3 = lend_add_customer lnd cst s2 in (* 1.5.2 *)
 let s4 = lend_add_item lnd itm s3 in (* 1.5.3 *)
 let s5 = customer_add_lend cst lnd s4 in (* 1.5.4 *)
 let s6 = item_add_lend itm lnd s5 in (* 1.5.5 *)
 (lnd,s6)

library_get_customer : library -> num -> store -> customer
library_get_customer lib cid s =
 let l = library_get_customerlist lib s in
 HD (FILTER (\x. customer_get_cid x s = cid) l)

lend_add_customer : lend -> customer -> store -> store
lend_add_customer lnd cst s =
 let l = lend_get_customerlist lnd s in
 lend_set_customerlist lnd (cst::l) s

Inv1 : library -> store -> bool
Inv1 lib s = library_ex lib s ==>
 (library_get_customer_lendsum lib s = library_get_item_lendsum lib s)

library_get_customer_lendsum lib s =
 let l = library_get_customerlist lib s in
 LENGTH (FLATTEN (MAP (\x. customer_get_lendlist x s) l))

library_get_item_lendsum lib s =
 let l = library_get_itemlist lib s in
 LENGTH (FILTER (\x. 0 < LENGTH (item_get_lendlist x s)) l)

Collaboration

Invariant

Fig. 5. Definitions of the collaboration (partially) and the invariant in HOL

to check are: if the IDs are valid, if the customer currently keeps at most the
maximum number of items specified by the library (max) and if the item is
available. If the check is passed, the customer object (cst) and the item object
(itm) corresponding to the IDs are obtained (1.2, 1.3) and the maximum number
of days for the lent specified by the library (days) is obtained (1.4). Then, a new
lend object (lnd) is created by the creation method new_lend (1.5). In this
method, the lend object is set the remaining days for the lent (1.5.1) and linked
to the customer object and the item object (1.5.2-1.5.5). Finally, the lend object
is linked to the library object (1.6).

One of the invariants which must be met by the systems is: ”The total number
of books lent by all the customers is equal to the number of items unavailable.”
The OCL expression of this invariant is written as follows.

library
customer.lend->size = item->select(lend->size>0)->size

The method and the invariant are translated into a function library_lend
and a predicate Inv1, respectively, as shown in Fig.5. We have not defined the
formal translation, but it is our future work.

514 K. Yatake, T. Aoki, and T. Katayama

The methods in the collaboration is defined as HOL functions and the whole
collaboration is represented as their application sequence. This is a merit of
ASOOT compared to the UML/OCL verification based on B [13][14] where
methods are defined only as as pre- and post-conditions. ASOOT enables to
define even the internal operation of the methods using HOL functions. For ex-
ample, the method call at 1.2 is defined as a function library_get_customer.
This method returns a customer object which has the ID equals to cid and
is defined making use of the list function FILTER. The method call at 1.5 is
defined as a function new_lend and the collaboration proceeds to the next
depth. The method call at 1.5.2 is defined as a function lend_add_customer.
This function adds the object cst to the attribute customerlist using the Get
and Set operators. As for the invariant, the left-hand-side is defined as a func-
tion library_get_customer_lendsum. The navigation customer.lend is repre-
sented by getting the lendlist of all the customer object using MAP, and then,
flattening the nested list using FLATTEN. The set operation size is represented
by LENGTH. The predicate Inv1 takes the library object as its first argument.
This represents the context object.

The fact that the invariant is maintained by application of the collaboration
is proved as the following theorem.

|- !lib cid iid s.
Inv1 lib s /\ Inv2 lib s ==> Inv1 lib (library_lend lib cid iid s)

The predicate Inv2 is another invariant required as lemma which we omit to
explain the details. The whole proof proceeds on the abstract level of ASOOT
(without expanding the definition of ASOOT constants).

6 Related Work

J. Berg et al. [9] and Claude Marché et al. [10] define memory models for reason-
ing Java programs annotated with JML specifications. The first work defines the
memory with untyped blocks, so that it can store arbitrary Java objects. The
second work introduces multiple heap memories for different types in order to
statically tell the types of each memory contents. Our memory model differs from
them in that it can store values of arbitrary types not limited to the primitive
ones in Java. This is important when it comes to the verification on the analysis
level as the models are abstracted with high-level types such as list, set, and
tree. We made this possible by constructing the memory depending on the type
information of the application. Moreover, we can take advantage of the plenti-
ful mathematical libraries and the powerful type definition package provided by
HOL to define high-level types. Actually, those types can be implemented using
Java classes with primitive types, but it will take additional proof steps to derive
type properties from those class implementations compared to use HOL types
directly.

A. Poetzsch-Heffer et al. [8] defines a Hoare-style logic for the verification of
OO programs. As a logical foundation of the logic, it defines an OO theory based

Implementing Application-Specific Object-Oriented Theories in HOL 515

on the store model in HOL. The operators on the store are get, set, new, alive.
The last one corresponds to Ex in our theory. It does not have the operators
concerning subtyping like Cast and Is in our theory, and the axioms about
subtyping are defined on the Hoare-logic level. In our theory, we included the
axioms about subtyping on the store level by introducing the subtyping operators
Cast and Is. As a result, the store theory becomes independent of the Hoare
logic.

W. Naraschewski et al. [11] defines an object as an extensible record in Is-
abelle/HOL. This is a record in which a type variable is embedded as one of its
element. Although this record enables structural subtyping of objects, it does not
work as a reference. To allow object referencing, we defined our theory based on
the store. With the referencing mechanism, verification of object collaboration
becomes possible.

T. Aoki et al. [12] defines a semantics for the statechart-based verification
of invariants about object attributes in HOL. The semantics is constructed by
directly introducing axioms in HOL. The advantage of this axiomatic theory
construction is that the mapping between the model elements and the theory
element becomes clear, but the problem is that it may weaken the reliability
of the theory. On the other hand, the definitional construction adopted in this
paper guarantees the soundness of the theory.

7 Conclusion and Future Work

In this paper, we presented an OO theory for the verification of analysis models
which we implemented in HOL. In order to allow arbitrary types in object at-
tributes, the theory is automatically constructed depending on the class model
of the system. The theory is derived from the operational semantics of a heap
memory model and is guaranteed to be sound by definitional extension mech-
anism. Using the theory, a UML collaboration diagram is verified to satisfy an
OCL invariant.

Future work includes the formalization of the UML collaboration diagram
and its translation to the theory. We are considering to develop a Hoare-style
logic for the verification of collaborations and implementation of a verification
condition generator to make proof efficient. One of the future goal is to apply
the verification method to collaboration-based designs [15] [16].

References

1. OMG. Unified Modeling Language. URL: http://www.omg.org/.
2. The HOL system. URL: http://hol.sourceforge.net/.
3. J. Warmer and A. Kleppe. The object constraint language: precise modeling with

UML. Addison-Wesley, 1999.
4. Tobias Nipkow, David von Oheimb and Cornelia Pusch. μJava: Embedding a Pro-

gramming Language in a Theorem Prover. In Foundations of Secure Computation.
IOS Press, 2000.

516 K. Yatake, T. Aoki, and T. Katayama

5. Bart Jacobs et al. LOOP project, http://www.cs.kun.nl/ bart/LOOP/
6. David von Oheimb. Hoare Logic for Java in Isabelle/HOL. Concurrency and Com-

putation: Practice and Experience, vol.13 pp.1173-1214, 2001.
7. A. Poetzsch-Heffer and P. Muller. A programming logic for sequential Java. Pro-

gramming Languages and Systems (ESOP’99), vol.1576 LNCS Springer-Verlag,
1999.

8. A. Poetzsch-Heffer and P. Muller. Logical Foundations for Typed Object-Oriented
Languages. Programming Concepts and Methods (PROCOMET), 1998.

9. J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory
model for verification of sequential Java programs. Techn. Rep. CSI-R9924, Com-
put. Sci. Inst., Univ. of Nijmegen, 1999.

10. Claude Marché and Christine Paulin-Mohring. Reasoning on Java programs with
aliasing and frame conditions. In 18th International Conference on Theorem Prov-
ing in Higher Order Logics (TPHOLs 2005), LNCS, August 2005.

11. W. Naraschewski and M. Wenzel. Object-Oriented Verification based on Record
Subtyping in Higher-Order Logic. Tecnische Universitat Munchen, 1998.

12. Toshiaki Aoki, Takaaki Tateishi, and Takuya Katayama. An Axiomatic Formal-
ization of UML Models. Practical UML-based Rigorous Development Methods,
pp.13-28 2001.

13. Using B formal specifications for analysis and verification of UML/OCL mod-
els. Marcano, R. and N. Levy. Workshop on consistency problems in UML-based
software development. 5th International Conference on the Unified Modeling Lan-
guage. Dresden, Germany, October 2002.

14. K. Lano, D. Clark and K. Androutsopoulos. UML to B: Formal Verification of
Object-Oriented Models. Integrated Formal Methods: 4th International Confer-
ence, IFM 2004, Cnaterbury, UK, April 4-7, 2004.

15. Y. Smaragdakis and D. Batory. Implementing layered designs with mixin lay-
ers. Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), 1998.

16. Kathi Fisler and Shriram Krishnamurthi. Modular verification of collaboration-
based software designs. In Symposium on the Foundation of Software Engineering,
2001.

Constructing Open Systems via Consistent
Components

Nguyen Truong Thang and Takuya Katayama

School of Information Science,
Japan Advanced Institute of Science and Technology

{thang, katayama}@jaist.ac.jp

Abstract. Open systems capable of handling unanticipated future
changes are very desirable. A common approach towards open systems is
based on components. There are some essential issues of the component-
based software paradigm. First, the most challenging analysis issue is
about component consistency - namely a component does not violate
some property in another when composed. The paper presents a for-
mal approach to the issue by including consistency semantic to compo-
nent specification. Based on this semantic information, components can
be efficiently cross-checked for the consistency among components. The
second issue is on how components are realized from the formal speci-
fication. The layered architecture is recommended for component-based
system design in which component specifications are separated into lay-
ers. Subsequently, each layer can be then respectively implemented by a
corresponding module via aspect-oriented programming. The target sys-
tem simply involves composing those modules together in a well-defined
order.

1 Introduction

Open systems are the ultimate goal of software. Their most vital characteristic
is the ability in handling changes, even unanticipated. A system is open for fur-
ther changes in the sense that changes can be consistently integrated into the
system; and the overall cost is kept at minimum. Component-based approach is
a promising candidate towards those goals of open systems. Component-based
software is especially flexible to changes - the vital quality of open systems. If
changes can be locally managed within a single or a few related components,
the complexity to handle changes is greatly reduced. This paper addresses two
essential topics during component-based software development: analysis of com-
ponent consistency; design and implementation of components from the formal
component specification.

First, within the component-based approach, composing components prop-
erly is the most important analysis issue. Component-based software idealizes
the plug-and-play concept. However, usually, components do not play after being
syntactically plugged [1,2]. A main cause of this phenomenon is the violation of

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 517–531, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

518 T.T. Nguyen and T. Katayama

a component to some property inherent to another. To better resolve the com-
position problem, in this paper, the semantic constraints for component consis-
tency are introduced. Associated with a component is a certain set of inherent
properties. Another component interacting with that component must preserve
constraints at the interface of the former so that those inherent properties con-
tinue to hold. Based on the proposed specification, the paper then introduces an
efficient and scalable algorithm to analyze consistency between components.

Second, the paper illustrates briefly an approach to realize components based
on the corresponding specifications. The layered architecture is advocated for
component-based software design because it closely links with the way compo-
nents extend/refine existing systems. Each component is separately encapsulated
within a layer. A component refines the system formed by all components of lay-
ers on top of it. The layering style is especially resilient with changes. A change
to a system is usually kept local to the associated layer or at most to some
neighbor layers. As its effect is kept from propagating to system-wide level, the
overall layered architecture is not much affected by the change.

Also, the aspect-oriented programming technique [3] is utilized to illustrate
the implementation of components in separate modules. The target system is
then constructed via a well-defined composition of modules.

In this paper, Section 2 introduces a formal dynamic behavior model of com-
ponents. Section 3 is about component consistency and how to verify it. Later,
Section 4 is concerned with specification of components and their composition.
Section 5 briefs the connection of the formal component specification with the
design (via the layered architecture) and implementation (via aspect-oriented
programming) of open systems.

2 A Formal Model of Components

The most common form of components is Commercial-Off-The-Shelf (COTS)
on very independent components. The computation paths of these components
rarely interleave. The relationship between COTS can be named functional ad-
dition. Besides COTS, there is another aspect of components, functional re-
finement, in which components interleave their execution paths. Typically, a
refinement extends the basic scenarios of a base component. Even though the
discussion in this paper focuses on component refinement, the results can be well
applied to COTS.

In the typical case of component refinement, there are two interacting compo-
nents: base and extension (or refinement). Between the base and its extension,
on the base side, is an interface consisting of exit and reentry states. An exit
state is the state where control is passed to the extension. A reentry state is the
point at which the base regains control. Correspondingly, the extension interface
contains in- and out-states at which the refinement component receives and re-
leases system control. Let AP be a set of atomic propositions. The behavior of
a component is separately specified by a state transition model.

Constructing Open Systems via Consistent Components 519

Definition 1. A state transition model M is represented by a tuple 〈S,Σ, s0,
R, L〉 where S is a set of states, Σ is the set of input events, s0 ∈ S is the initial
state, R ⊆ S×PL(Σ) → S is the transition function (where PL(Σ) denotes the
set of guarded events in Σ whose conditions are propositional logic expressions),
and L : S → 2AP labels each state with the set of atomic propositions true in
that state.

A base is expressed by a transition model B = 〈SB , ΣB, soB , RB, LB〉 and
an interface I = 〈exit, reentry〉, where exit, reentry ⊆ SB. An extension is
similarly represented by a model E = 〈SE , ΣE ,⊥, RE , LE〉 (⊥ denotes no-care
value) and an interface J = 〈in, out〉.

E can be syntactically plugged with B via compatible interface states between
I and J . Logically, along the computation flow, when the system is in an exit
state ex ∈ I.exit ofB matched with an in-state i ∈ J.in of E (ex ↔ i), it can only
enter E if the conditions to accept extension events, namely the set of atomic
propositions at i, are satisfied. In other words,

∧
LB(ex) ⇒

∧
LE(i), where

∧
is the inter-junction of atomic propositions. For the matching of a reentry state
re ∈ I.reentry of B and an out-state o ∈ J.out of E, it is similar, i.e. re ↔ o if∧
LE(o) ⇒

∧
LB(re).

Definition 2. Composing the base B with the extension E, through the interface
I produces a composition model C = 〈SC , ΣC , s0C , RC , LC〉 as follows:

– SC = SB ∪ SE; ΣC = ΣB ∪ΣE; s0C = s0B ;
– RC is defined from RB and RE in which RE takes precedent, namely any

transition in B is overridden by another transition in E if they share the
same starting state and input event;

– ∀s ∈ SB, s ∈ I.exit ∪ I.reentry : LC(s) = LB(s);
– ∀s ∈ SE , s ∈ J.in ∪ J.out : LC(s) = LE(s);
– ∀s ∈ I.exit ∪ I.reentry : LC(s) = LB(s).

Component constraints in this paper belong to temporal logic CTL which is
more powerful than constraints in current technology like CORBA, UML and
OCL [4]. CTL∗ logic is formally expressed via two quantifiers A (“for all paths”)
and E (“for some path”) together with five temporal operators X (“next”), F
(“eventually”), G (“always”), U (“until”) and R (“release”) [5]. CTL (Compu-
tation Tree Logic) is a restricted subset of CTL∗ in which each temporal operator
must be preceded by a quantifier.

Definition 3. The closure of a property p, cl(p), is the set of all sub-formulae
of p including itself.

– p ∈ AP : cl(p) = {p}
– p is one of AX f,EX f,AF f,EF f,AG f,EG f : cl(p) = {p} ∪ cl(f)
– p is one of A [f Ug],E [fUg],A [f R g],E [fR g] : cl(p) = {p}∪ cl(f)∪ cl(g)
– p = ¬f : cl(p) = cl(f)
– p = f ∨ g or p = f ∧ g : cl(p) = cl(f) ∪ cl(g)

520 T.T. Nguyen and T. Katayama

Definition 4. The truth values of a state s with respect to a set of CTL proper-
ties ps within a model M = 〈S,Σ, s0, R, L〉, denoted as VM (s, ps), is a function:
S × 2CTL → 2CTL.

– VM (s, ∅) = ∅
– VM (s, {p} ∪ ps) = VM (s, {p}) ∪ VM (s, ps)

– VM (s, {p}) =
{
{p} if M, s |= p
{¬p} otherwise

Hereafter, VM (s, {p}) = {p} (or {¬p}) is written in the shorthand form as
VM (s, p) = p (or ¬p) for individual property p.

An incremental verification technique for CTL properties has been attempted
by [6]. It is named open incremental model checking (OIMC) for the open and
incremental characteristics of the algorithm. Suppose that a base component is
refined by another. The approach consists of the following steps:

1. Deriving a set of preservation constraints at the interface states of the base
such that if those constraints are preserved, the property inherent to the
base under consideration is guaranteed.

2. The refinement preserves the above constraints during its execution.

OIMC is particularly useful for open systems - future extensions are not known in
advance. In the typical case of component refinement, the composite model C is
regarded as the combination of two sequential components B and E. Besides ex-
ecution paths defined in B, a typical execution path in C consists of three parts:
initially in B, next in E and then back to B. Associated with each reentry state
re of E is a computation tree in B represented by a set of temporal properties. If
these properties at re are known, without loss of correctness, we can efficiently
derive the properties at the upstream states in E by ignoring model checking in
B to find the properties at re. Instead, we start from these reentry states with
the associated properties; check the upstream of the extension component, and
then the base component if needed 1. The properties associated with a reentry
state re are assumed with truth values from B, As(re) = VB(re, cl(p)). As is
the assumption function of this assumption model checking [7]. Of course, this
method is reliable if As(re) is proper. Hereafter, As is considered to be proper.

3 Inter-component Consistency

Given a structure B = 〈SB , ΣB, s0B , RB, LB〉 as in Definition 1, a property p
holding in B is denoted by B, s0B |= p. Later, C is formed by composing B and
E. B and E are consistent with respect to p if C, s0B |= p.

3.1 A Theorem on Component Consistency

Due to the inherently inside-out characteristic of model checking, after verifying
p in B, at each state s, VB(s, cl(p)) are recorded.
1 There is no need to check the base again if the consistency constraints associated

with the exit states of B are preserved at the corresponding in-states of E.

Constructing Open Systems via Consistent Components 521

Definition 5. B and E are in conformance at an exit state ex (with respect to
cl(p)) if VB(ex, cl(p)) = VE(ex, cl(p)).

In this definition, VE(ex, cl(p)) are derived from the assumption model checking
within E, and the seeded values at a reentry state re are As(re) = VB(re, cl(p)).

Theorem 6. Given a base B and a property p holding on B, an extension E is
composed with B. B and E are consistent with respect to p if B and E conform
with each other at all exit states.

The proof details are in [6]. Even though this paper focuses on component re-
finement, with regards to COTS, the above theorem also holds. A COTS com-
ponent can be indeed regarded as a special case of refinement in which there
is only a single exit state and no reentry state with the base. The computa-
tion tree of the COTS deviates from the base and never joins the base again.
After being composed with a COTS, instead of an assumption model checking
within the COTS, a standard model checking procedure can be executed en-
tirely within the COTS to find the properties at the exit state. The conformance
condition to ensure the consistency between the two components can be applied
as usual. The only difference in Definition 5 lies in VE(ex, cl(p)) for each exit
state ex. In component refinement, these truth values are derived from the as-
sumption model checking within E with the assumption values VB(re, cl(p)) at
any reentry state re. On the contrary, in COTS, there is no assumption at all.
Hence, the model checking procedure in E is then exactly standard CTL model
checking.

Figure 1 depicts the composition preserving the property p = A [f Ug] when
B and E are in conformance. The composition is done via a single exit state ex.
E overrides the transition ex-s3 in B. B′ is the remainder of B after removing
the overridden transition. Within B, p = A [f U g] holds at s1, s2 and ex. The
figure only shows VE(ex, p) = VB(ex, p) = A [f U g]. In fact, B and E conform
at ex with respect to cl(p). After removing the edge ex-s3, the new paths in
E together with the remaining computation tree in B′ still preserve p at ex
directly; and consequently s2 and s1 indirectly. p is preserved at the initial state
s1, namely B and E are consistent. In this figure, although the reentry state re
is not explicitly displayed 2, the arguments are still valid when the downstream
of E converges to the reentry state re.

3.2 Open Incremental Model Checking

Component consistency between B and E can be verified via OIMC. Initially,
a CTL property p is known to hold in B. We need to check that E does not
violate p. From Theorem 6, the incremental verification method only needs to
verify the conformance at all exit states between B and E. Corresponding to
each exit state ex, within E, the algorithm to verify constraints VB(ex, cl(p))
can be briefly described as follows:

2 This figure is intended to represent both component refinement and COTS.

522 T.T. Nguyen and T. Katayama

ex

s1

s2

s1

s2

f

g

f

g

ex

.

E

.

B’

. . .

s3 s3g

f

f

B, ex |= A [f U g] B’, ex |= A [f U g]

E, ex |= A [f U g]

g g f

C, ex |= A [f U g]

ev

ev

f

.

B

. . .

A [f U g]

A [f U g]

g g
f
A [f U g]

A [f U g]

g g

A [f U g]
f

A [f U g]
f

g g

Fig. 1. An illustration of conformance VE(ex, cl(p)) = VB(ex, cl(p)) where E overrides
B. The property p = A [f U g] is preserved in B due to the conformance.

1. Seeding VB(re, cl(p)) at any reentry state re. This step defines the assump-
tion function As: As(re) = VB(re, cl(p)). In case of COTS, there is no as-
sumption function, i.e. no seeding.

2. Executing a CTL assumption model checking procedure within E to check
φ, ∀φ ∈ cl(p).

3. Checking if VE(ex, cl(p)) = VB(ex, cl(p)).

At the end of the algorithm, if the truth values with respect to cl(p) at in-
states of E and exit states of B are matched respectively, B and E are consistent
with respect to p.

3.3 Scalability of OIMC

We consider the general case of the n-th version of the component (Cn) during
software evolution as a structure of components B, E1, E2, ..., En where Ei

is the refining component to the (i − 1)-th evolved version (C(i−1)), i = 1, n.
The initial version is C0 = B and Ci = Ci−1 + Ei. We check for any potential
conflict between B and Ei regarding p via OIMC. Theorem 7 claims that OIMC
is scalable. The detailed proof is in [6].

Theorem 7. If all respective pairs of base (C(i−1)) and refining (Ei) compo-
nents conform, the complexity of OIMC to verify the consistency between En

and B is independent from the n-th version Cn, i.e. it only executes within En.

4 Component Specification and Consistency Verification

This paper advocates the inclusion of an additional semantic aspect of com-
ponent specification to facilitate proper component composition. Given a base
component B = 〈SB, ΣB, soB , RB, LB〉 and an inherent property p, the seman-
tic aspect is represented by consistency constraints VB(s, cl(p)) at any interface
state s of the component (due to Theorem 6 in Section 3).

Constructing Open Systems via Consistent Components 523

Component signatures are the fundamental aspect to the component inter-
face. The traditional interface signature of a component contains attributes and
operations. Through attributes, the current state of a software component may
be externally observable. The component’s clients can observe and even change
the values of those attributes. On the other hand, the clients interact with the
component through operations.

The interface signature only shows the individual elements of the component
for interaction with clients in syntactic terms. Components may be subject to
a number of further semantic constraints regarding their use. In general, there
are two types of such constraints: internal to individual components and inter-
component relationships. The first type is simple [1,2,4]. For example: pre- and
post-condition of an operation, or value range of an attribute. Regarding the
second type, current component technology such as OMG’s CORBA IDL (In-
terface Definition Language), UML and OCL [4] etc is limited to a simple logic
in terms of expressiveness. For example, different attributes in components may
be inter-related by their value settings; or an operation of a component can only
be invoked when a specific attribute value of another is in a given range etc [1].
The underlying logic only expresses the constraint at the moment an interface
element is invoked, i.e. static view, regardless of execution history.

The paper introduces a semantic for inter-component constraint emphasiz-
ing on how to make components play once they are syntactically plugged. This
constraint type is expressed in terms of CTL so its scope of expressiveness is
enormous. In contrast to the logic above, CTL can describe whole execution
paths of a component, i.e. dynamic view. Via OIMC in Section 3.2, a refining
client E to a base component B can be efficiently verified on whether it preserves
the property p of B.

Component specification can be represented via interface signatures and con-
straints written in an illustrative specification language. Figure 2 shows the dy-
namic model of a simple component, while below is the corresponding specifica-
tion of the component. The interface specification should describe the behavior
model of the component including states and transitions among states as for-
mally defined in Definition 1. The next part involves the declaration of static
component elements, i.e. attributes and operations, in the object-oriented style.
At the end are the semantic constraints of the component for inherent temporal
properties at potential interface states. For illustration purpose and due to space
limitation, this producer-consumer example is very much simplified so that only

one (1) two (2)

three (3)

t1: [test] e1

t2: [!test] e1

Fig. 2. The dynamic behavior model of the “black” component

524 T.T. Nguyen and T. Katayama

(d) aggregation hierarchy(a) Original diagram (c) Second refinement(b) First refinement

1_black 2_black

3_black 1_brick

i1_brick

i3_brick

i2_brick

i3_white

1_white

i2_white

Fig. 3. Component refinements and component composition via class aggregation

some key transitions and states are shown. Because of this over-simplified model,
the whole dynamic behavior of the component is visible to clients. In practice,
regarding the encapsulation principle, only essential part of the model for future
extension is visible. The rest of the model is hidden. In the example, there are
three components: “black” (the base B of Figure 3a - supporting the producer
function); “brick” (the first refinement E of Figure 3b - allowing variable buffer
size; and item-consuming function); and “white” (the second refinement E′ of
Figure 3c - optimizing data buffer).

Component B {
Signature:

states 1 black, 2 black, 3 black;

// edge declarations
edge t1: 1 black -> 2 black
condition test // OK if adding k items to buffer
input event e1 // producing k items
do { produce(k)... }; // t1 action

edge t2: 1 black -> 3 black;
... // similarly defined

// operations and attributes declaration
boolean test;
int cons, prod;// consumed, produced items
int buffer[];
init(){ state = 1 black; ...};
produce(n){ prod = prod + n;...};

Constraint:
// compatible plugging conditions - CC
1 black cc: cons = prod;
2 black cc: test = true, cons < prod;
3 black cc: test = false, cons ≤ prod;

// Inherent properties - IP
1 black ip: AG (cons ≤ prod), cons ≤ prod;
2 black ip: AG (cons ≤ prod), cons ≤ prod;
3 black ip: AG (cons ≤ prod), cons ≤ prod;

}

Constructing Open Systems via Consistent Components 525

Component E {// for refining black
Signature:

states 1 brick, i1 brick, i2 brick, i3 brick;

// edges declaration

edge t3: i2 brick -> i3 brick

condition ... // ready to consume

input event ... // consuming k items

do { consume(k)... }; // t3 action

edge t4: i1 brick -> 1 brick

condition ... // ready to change buffer size

input event ... // change the size

do { changesize();... }; // t4 action

edge t5: 1 brick -> i3 brick;

edge t6: i2 brick -> i2 brick;

... // similarly defined

// operations and attributes declaration

consume(n){ cons = cons + n;...};
changesize(){ buffer = malloc();...};

Constraint:

1 brick cc: cons ≤ prod;

i1 brick cc: cons ≤ prod;

i2 brick cc: test = true, cons < prod;

i3 brick cc: test = false, cons < prod;

}

Component E′ {// for refining black + brick

Signature:

states 1 white, i2 white, i3 white;

// edges declaration

edge t7: i2 white -> 1 white

condition ... // ready to compact buffer

input event ...// compacting the data buffer

do { resetbuffer();... }; // t7 action

edge t8: 1 white -> i3 white;

... // similarly defined

// operations and attributes declaration

resetbuffer(){ prod = prod - cons; cons = 0;...};

526 T.T. Nguyen and T. Katayama

Constraint:

1 white cc: cons ≤ prod, cons = 0;

i2 white cc: test = true, cons ≤ prod;

i3 white cc: test = false, cons ≤ prod;

}
The following explains the preservation of the constraint in B by all sub-

sequent two component refinements E and E′. Informally, the property means
that under any circumstance, the number of produced items by the component
is always greater or equal to that of consumed items. In terms of CTL notation,
p = AG (cons ≤ prod). The closure set of p is hence cl(p) = {p, a}, where
a = (cons ≤ prod).

Initially, B is composed with E. Interface plugging conditions are used to map
compatible interface states among components. The base exposes three interface
states 1 black, 2 black and 3 black. On the other hand, the refinement component
exposes four interface states, namely 1 brick, i1 brick, i2 brick and i3 brick.
Based on the respective atomic proposition sets at those states, correspond-
ing interface states are mapped accordingly. For instance, as

∧
LB(1 black) =

(cons = prod) ⇒
∧
LE(i1 brick) = (cons ≤ prod), according to the conditions

of interface mapping, i1 brick ↔ 1 black. Similarly, i2 brick ↔ 2 black and
i3 brick ↔ 3 black. Here, i1 brick and i2 brick perform in-states of E, while
i2 brick and i3 brick are out-states.

The composite model of the two components C1 = B + E is shown in Fig-
ure 3b. After the modeler decides on the mapping configuration between interface
states, and properly resolves any mismatches at the syntactic level between B
and E, the consistency between the two components is in focus. The OIMC
algorithm in Section 3.2 is applied as follows:

1. Copying VB(s, cl(p)) to the respectively mapped out-states of E where s is
a reentry state such as 2 black (i2 brick) and 3 black (i3 brick).

2. Executing an assumption model checking to check φ, ∀φ ∈ cl(p), within E
only to find VE(i1 brick, cl(p)) and VE(i2 brick, cl(p)).

3. Checking if the two components conform by comparing VE(i1 brick, cl(p))
and VE(i2 brick, cl(p)) with the inherent-property constraints at respective
exit states 1 black and 2 black (previously written in the specification of B).

The actual model checking is very simple and hence its details are skipped. At
the end, B and E components conform at all exit states. According to Theorem 6,
p is preserved by E after evolving to C1 = B + E.

C1 is then extended with E′, C2 = C1 + E′ as shown in Figure 3c. The
approach in composing E′ with C1 is similar to the above, the following mapping
configuration between interface states is derived: i2 white↔ 2 black, i3 white↔
3 black. OIMC is similarly applied. The same result is achieved, p is preserved
by E′. More importantly, the verification procedure is executed within E′ only.

In brief, p is preserved by both extensions E and E′. In this example, the scal-
ability of OIMC is maintained as it only runs on the refinements, independently
from the bases B and C1 respectively.

Constructing Open Systems via Consistent Components 527

5 Designing and Implementing Open Systems

This section presents briefly a possible way to realize components from their
formal specifications. In particular, there are two topics: design architecture and
implementation of component-based systems.

5.1 Layered Architecture for Component-Based Software

The major goal of the illustrative specification language in the example of Sec-
tion 4 is to minimize the “conceptual distance” between architectural abstrac-
tions and their implementation [8]. The specification language is similar to that
of [8] for declaring and refining state machines in layering style.

The layered architecture is very effective in separating concerns [3]. A system
usually consists of several concerns which are essentially high-level abstraction
of some system requirements or goals. At the core of software engineering is the
“separation of concerns” concept. Concerns are the primary motivation for or-
ganizing and decomposing software into manageable and comprehensible parts.
It is difficult to manage and to evolve several concerns together, especially when
they tangle each other. System complexity can be reduced significantly if each
concern can be separately managed. In terms of system design, the layered ar-
chitecture facilitates the concept by assigning each concern to a layer.

Fundamentally, given a system with several concerns, there are several asso-
ciated dimensions of concerns such as: class, function, feature etc [3]. Thus, there
could be several layered architectures for the system due to the system partition
in different dimensions. The best layered architecture is the one in accordance
to the dimension in which the tangling degree among layers is at minimum.

Regarding component refinement as of this paper, the layered architecture
resembles the way components refine each other. The base component and each
refinement are expressed as separate specifications that are encapsulated in dis-
tinct layers. As components are composed with each other, they can be progres-
sively refined/extended in layering manner. The process adds states, transitions
and actions to an existing component’s behavior model. Figure 3d shows the
layering hierarchy for the example in Section 4: the top layer corresponds to the
specification from Figure 2 or Figure 3a; the below layers are in turn respectively
associated with component specifications in Figures 3b and 3c.

With respect to general component-based software, the layered architecture
also plays an important role in terms of both system development and evolu-
tion. First, for system development, each component targets a particular system
function/service. From the layered architecture’s perspective, each layer then
corresponds to a component or a group of closely-related components. The lay-
ers are ordered from top to bottom according to the sequence of component
compositions, i.e. base component on top, and then refinements sequentially. In
the example of Section 4, the layers are mapped with the base component B and
refinements E, E′ from top to bottom in accordance with the dependency among
components. The development process then simply involves the composition of
layers in a proper order. Because the separation of concerns is achieved, the total
development cost is significantly reduced.

528 T.T. Nguyen and T. Katayama

Second, with regards to system evolution, the layered architecture is espe-
cially resilient to system changes - the vital characteristic of open systems. The
changes can arise in the form of either providing new functions/services to or re-
moving some parts from the system. Even so, the system architecture still keeps
its layering quality. If each service is encapsulated within a layer, any new service
can be positioned into the proper position in the layering hierarchy. On the con-
trary, a service can be disabled from the system by removing the associated layer
from the architecture. The key issue is then about whether system consistency
among layers is maintained after some layers are inserted to or removed from the
architecture. This issue is in essence about the consistency among components
mentioned in Sections 3 and 4.

In brief, with inherent advantages such as the separation of concerns and the
resilience to changes, the layered architecture is regarded as a candidate for open
systems design, at least in terms of architectural abstraction.

5.2 Implementing Components via Aspect-Oriented Programming

Based on the proposed specification in Section 4, components are usually imple-
mented as classes in typical object-oriented languages. Component composition
is then done via class aggregation. All members of the class implementing the
base component in Figure 3a are aggregated with the refinement of Figure 3b;
and the newly formed class is in turn united with the refinement of Figure 3c.

There are possibly many approaches to implement components from their
specifications. For example, traditional object-oriented implementation tech-
niques, mixin layer [9] or aspect-oriented programming (AOP) [10,11] etc. This
paper recommends the use of AOP. Aspect-oriented programming currently at-
tracts a great deal of research from the community for its advantage in handling
cross-cutting concerns. In fact, AOP outperforms object-oriented programming
in capturing software concerns in modular way. Object-oriented technology fo-
cuses on its dominant dimension, i.e. class. From the layered architecture’s per-
spective, every layer is associated to exactly a unique class. If concerns crosscut
multiple objects as they usually do, the class dimension does not capture system
variations well. As a result, corresponding codes for those concerns are scattered
among objects. The evolution cost is then certainly high, i.e. a change in any
concern will trigger simultaneous updates at cross-cut objects.

The most notable AOP languages are AspectJ [12] and Hyper/J [10]. Their
common approach is to capture multi-object crosscutting concerns of a system
in separate modules. Each concern corresponds to a module. As their codes are
centralized, the cost to handle changes to concerns is significantly improved. The
job of the AOP languages is to weave the codes of such concerns into existing
object-oriented classes of the system at appropriate places, e.g. joint points [12].
The overall result of the approach is the absence of code-tangling among objects.

The example in Section 4 is realized into concrete codes via Java and Hy-
per/J. Each component is implemented by a Java class which corresponds to a
concern or hyperslice among “black”, “brick” and “white”. The component B is
sketched below. Only traditional component attributes and operations are sup-

Constructing Open Systems via Consistent Components 529

ported by Java classes. The dynamic behavior model of components are ignored
in the subsequent implementation.

package example.Black;// defined in file Black/ExampleComponent.java

public class ExampleComponent {
// class fragment for the Black (item-producing) concern

// attributes declaration

private boolean m bTest;

private int m nCons, m nProd;// consumed, produced items

private int m aBuffer[];

...

// operations declaration

ExampleComponent(){ m nCons = m nProd = 0;...};// constructor

void Produce(n){ m nProd = m nProd + n;...};
...

}// END class ExampleComponent

The other components E and E′ are similarly implemented. The concern
mapping files corresponding to the three components are then defined. For ex-
ample, the first line indicates that all classes, interfaces and members in the
example.Black package address the “Black” concern in Feature dimension.

package example.Black : Feature.Black

package example.Brick : Feature.Brick

package example.White : Feature.White

Three above hyperslices are subsequently mapped by Hyper/J via a hyper-
module file. The directive mergeByName indicates that classes, attributes and
operations with the same name in different concerns are merged into one.

hypermodule BlackBrickWhite

hyperslices:

Feature.Black,

Feature.Brick,

Feature.White;

relationships:

mergeByName;

end hypermodule;

6 Related Work

Modular model checking is rooted at assume-guarantee model checking [13,14].
However, unlike the counterpart in hardware verification [13,15] focusing on par-
allel composition of modules, software modular verification [7] is restricted by its

530 T.T. Nguyen and T. Katayama

sequential execution nature. Therefore, properties at the interface states are re-
quired to be stricter. Incremental model checking inspires verification techniques
and the theoretical foundation further. Comparing to some modular verification
works such as [13,14,15], there is a fundamental difference in characteristic be-
tween those and the proposed approach. Modular verification in those works
are rather closed. Even though it is based on component-based modular model
checking, it is not prepared for component addition. If a component is added to
the system, the whole system of many existing components and the new com-
ponent are re-checked altogether. On the contrary, the approach in this paper
is incrementally modular and hence more open. We only check the new system
partially in terms of new component and its interface with the rest of the sys-
tem. Certainly, this merit comes at the cost of “fixed” preservation constraints
at exit states. These constraints can deliver a false negative for some cases of
component conformance.

Besides, similar to [16], the proposed specification of component interface in
Section 4 is actually a state-full interface specification. Components (or modules)
can be checked for consistency before composition. Both approaches are state-
based. This paper simply relies on state transition model in the most general
sense, while [16] presents a finer realization of state-full model in which states
are represented by control points in operations 3 of components; and edges are
actually operation calls. In addition, the two approaches target different aspects
of consistency. This paper is concerned with component consistency in terms
of CTL properties, whereas [16] is involved with the correctness and complete-
ness of operation declarations within components. Instead of the substitution
of each other, the two approaches are hence more about complement to each
other.

7 Conclusion

This paper presents a formal approach towards open systems via consistent
components. There are two important issues during open systems development
via component-based approach. They are: component consistency analysis and
component realization. First, to overcome the failure of component matching at
the syntactic level, the paper advocates the inclusion of component consistency
written in CTL to the component interface. Based on the proposed specification,
an efficient and scalable model checking method is utilized to verify whether
components are consistent. Second, regarding the realization of open systems
from the proposed formal specification, the aspect-oriented software development
is advocated. Specifically, in terms of system design, the layered architecture is
recommended due to its advantage and flexibility to changes - the prominent
characteristic of open systems. For component-based software implementation,
the combination of object-oriented (e.g. Java) and aspect-oriented programming
(e.g. Hyper/J) languages are briefly illustrated for the implementation of open
systems in modular way.
3 In [16], operations are named as methods.

Constructing Open Systems via Consistent Components 531

References

1. Han, J.: An approach to software component specification. In: Proceedings of
International Workshop on Component Based Software Engineering. (1999)

2. Liu, Y., Cunningham, H.C.: Software component specification using design by
contract. In: Proceedings of the SouthEast Software Engineering Conference. (April
2002)

3. Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.: N-degrees of separation: Multi-
dimensional separation of concerns. In: Proc. ICSE. (1999) 109 – 117

4. Warmer, J., Kleppe, A.: The Objects Constraint Language: Precise Modeling with
UML. Addison-Wesley (1999)

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
6. Nguyen, T.T., Katayama, T.: Handling consistency of software evolution in an

efficient way. In: Proc. IWPSE. (2004) 121–130
7. Laster, K., Grumberg, O.: Modular model checking of software. In: Conference on

Tools and Algorithms for the Constructions and Analysis of Systems. (1998)
8. Batory, D., Johnson, C., MacDonald, B., Heeder, D.V.: Achieving extensibility

through product-lines and domain-specific languages: A case study. In: Proc. In-
ternational Conference on Software Reuse. (2000)

9. Smaragdakis, Y., Batory, D.: Implementing layered designs with mixin layers. In:
Proc. ECOOP. (1998)

10. Tarr, P., Ossher, H.: Hyper/J(TM) User and Installation Manual. IBM Research,
IBM Corp. (2000)

11. Kiczales, G., Lamping, J., et al.: Aspect-oriented programming. In: Proc. European
Conference on Object-Oriented Programming - ECOOP’97, Springer (1997) 220–
242

12. The AspectJ Team: The AspectJ(TM) Programming Guide. Xerox Corporation.
(2001)

13. Kupferman, O., Vardi, M.Y.: Modular model checking. In: Compositionality:
The Significant Difference. Volume 1536 of Lecture Notes in Computer Science.,
Springer-Verlag (1998)

14. Pasareanu, C.S., Dwyer, M.B., Huth, M.: Assume-guarantee model checking of
software: A comparative case study. In: Theoretical and Practical Aspects of SPIN
Model Checking. Volume 1680 of Lecture Notes of Computer Science., Springer-
Verlag (1999)

15. Grumberg, O., Long, D.E.: Model checking and modular verification. In: In-
ternational Conference on Concurrency Theory. Volume 527 of Lecture Notes of
Computer Science., Springer-Verlag (1991)

16. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Jurdzinski, M., Mang, F.Y.C.:
Interface compatibility checking for software modules. In: Proceedings of the
Computer-Aided Verification - CAV, LNCS Springer-Verlag (2002)

A Sub-quadratic Algorithm for Conjunctive
and Disjunctive Boolean Equation Systems

Jan Friso Groote1 and Misa Keinänen2

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 Laboratory for Theoretical Computer Science,

Department of Computer Science and Engineering,
Helsinki University of Technology,

P.O. Box 5400, FI-02015 TKK, Finland
J.F.Groote@tue.nl, Misa.Keinanen@tkk.fi

Abstract. We present a new algorithm for conjunctive and disjunctive
boolean equation systems which arise frequently in the verification and
analysis of finite state concurrent systems. In contrast to the previously
known O(e2) time algorithms, our algorithm computes the solution to
such a fixpoint equation system with size e and alternation depth d in
O(e log d) time (here d < e). We show the correctness and complexity
of the algorithm. We discuss heuristics and describe how the algorithm
can be efficiently implemented. The algorithm is compared to a previous
solution via experiments on verification examples. Our measurements
indicate that the new algorithm makes the verification of a large class of
fixpoint expressions more tractable.

1 Introduction

A boolean equation system [5,8] is a sequence of boolean equations with minimal
and maximal fixpoints. It gives a useful framework for the verification of finite
state concurrent systems. This is due to the fact that many interesting properties
of systems can naturally be specified in the modal μ-calculus [7], and a μ-calculus
formula and a transition system can be straightforwardly translated to a boolean
equation system. A pleasant feature of a boolean equation system is that it gives a
concise way of representing the model checking problem, laying bare the essential
problem of computing the fixpoints.

We examine conjunctive and disjunctive fragments of boolean equation sys-
tems. Many practically relevant properties of systems can be expressed by means
of fixed points that lead to boolean equation systems in such forms. It is there-
fore interesting to develop specific resolution techniques for these particular frag-
ments. The system properties that can be encoded in conjunctive and disjunctive
boolean equation systems include, e.g., typical safety, liveness and fairness prop-
erties; examples can be can be found in Section 5.

All previous algorithms for solving conjunctive and disjunctive classes, in-
cluding those from [5,8], take at least quadratic time in the size of a system

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 532–545, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Sub-quadratic Algorithm 533

in the worst case. For large boolean equations, which are typically encountered
in model checking and preorder/equivalence checking of realistic systems, these
algorithms may lead to unpleasant running times.

The contribution of this paper is to present an especially fast algorithm for
finding a solution to a boolean equation system in either conjunctive or disjunc-
tive form. Given such a system with size e and alternation depth d where d < e,
our algorithm finds the solution using time O(e log d) in the worst case. This im-
proves the previously best known upper bound. In addition, our computational
experiments indicate that the new algorithm makes the verification of a large
class of fixpoint expressions more tractable.

Our algorithm is a variation of Tarjan’s hierarchical clustering algorithm [12],
and it combines essentially three techniques: binary search, divide-and-conquer,
and graph theoretic techniques for finding strong components [11]. King, Kupfer-
man and Vardi [6] gave a related algorithm in the realm of parity word automata
which also resorts to the ideas in [12].

We have implemented the new algorithm and have done various computa-
tional experiments to show that the theoretical improvement also leads to prac-
tical improvements over existing algorithms. In addition, we have investigated
various heuristics for speeding up the search for solutions.

The paper is organized as follows. Section 2 introduces basic notions con-
cerning boolean equation systems. Section 3 describes the previously best known
algorithm for solving conjunctive and disjunctive boolean equation systems, and
discusses its strengths and weaknesses. Section 4 presents our proposed new algo-
rithm, and deals with its correctness and complexity. Section 5 describes exper-
imental results on protocol verification examples. Section 6 deals with heuristics
for speeding up the new algorithm. Section 7 presents the conclusions.

2 Boolean Equation Systems

A boolean equation system is an ordered sequence of fixpoint equations over
boolean variables, with associated fixpoint signs, μ and ν, specifying the polarity
of the fixpoints. The equations are of the form σx = α, where α is a positive
boolean expression. The sign, σ, is μ if the equation is a least fixpoint equation
and ν if it is a greatest fixpoint equation.

Let X = {x1,x2, ...,xn} be a set of boolean variables. The set of positive
boolean expressions over X is denoted by B(X), and given by the grammar:

α ::= x | α ∧ α | α ∨ α

where x ∈ X . We define the syntax of boolean equation systems as follows.

Definition 1 (The syntax of a boolean equation system). A boolean equa-
tion is of the form σixi = αi, where σi ∈ {μ, ν}, xi ∈ X , and αi ∈ B(X).
A boolean equation system is an ordered sequence of boolean equations

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

534 J.F. Groote and M. Keinänen

where all left-hand side variables are different. We assume that the order on
variables and equations are in synchrony, and that all variables are from X .

The semantics of boolean equation systems is such that each system E has
a uniquely determined solution which is a valuation assigning a constant value
in {0, 1} to variables occurring in E . More precisely, the solution is a truth
assignment to the variables {x1,x2, ...,xn} satisfying the fixpoint equations such
that the right-most equations have higher priority over left-most equations (see
e.g. [1,8,9]). In particular, we are interested in the value of the left-most variable
x1 in the solution of a boolean equation system. This is characterized in the
following way.

Let α be a closed positive boolean expression (i.e. without occurrences of
variables in X). Then α has a uniquely determined value in the set {0, 1} which
we denote by ‖α‖. We define a substitution for positive boolean expressions.
Given boolean expressions α, β ∈ B(X), let α[x := β] denote the expression α
where all occurrences of variable x are substituted by β simultaneously.

Similarly, we extend the definition of substitutions to boolean equation sys-
tems in the following way. Let E be a boolean equation system over X , and let
x ∈ X and α ∈ B(X). A substitution E [x := α] means the operation where
[x := α] is applied simultaneously to all right-hand sides of equations in E . We
suppose that substitution α[x := α] has priority over E [x := α].

Definition 2 (The solution to a boolean equation system). The solution
to a boolean equation system E, denoted by [[E]], is a boolean value inductively
defined by

[[E]] =
{
‖α[x := bσ]‖ if E is of the form (σx = α)
[[E ′[x := α[x := bσ]]]] if E is of the form E ′(σx = α)

where bσ is 0 when σ = μ, and bσ is 1 when σ = ν.

The following example illustrates the above definition of the solution.

Example 1. Let X be the set {x1,x2,x3} and assume we are given a boolean
equation system

E ≡ (νx1 = x2 ∧ x1)(μx2 = x1 ∨ x3)(νx3 = x3).

The solution, [[E]], is given by
[[(νx1 = x2 ∧ x1)(μx2 = x1 ∨ x3)(νx3 = x3)]] =
[[(νx1 = x2 ∧ x1)(μx2 = x1 ∨ x3)[x3 := 1]]] =
[[(νx1 = x2 ∧ x1)(μx2 = x1 ∨ 1)]] =
[[(νx1 = x2 ∧ x1)[x2 := x1 ∨ 1]]] =
[[(νx1 = (x1 ∨ 1) ∧ x1)]] = ‖((1 ∨ 1) ∧ 1)‖ = 1

There are also alternative characterizations of the solution to a boolean equation
system, e.g. Proposition 3.6 in [8] and Definition 1.4.10 in [2], which coincide with
the above definition, and may help to provide more insight in the semantics.

In order to formally estimate computational costs we need to define the size
and the alternation depth of boolean equation systems.

A Sub-quadratic Algorithm 535

Definition 3 (The size of a boolean equation system). The size of a
boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

is
n∑

i=1

1 + |αi|

where |αi| is the number of variables in αi.

We have taken a definition of alternation depth based on the sequential oc-
currences of μ’s and ν’s in a boolean equation system. More formally, the notion
of alternation depth can be defined as follows.

Definition 4 (The alternation depth of a boolean equation system).
Let

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

be a boolean equation system. The alternation depth of E, denoted by ad(E), is
the number of variables xj (1 ≤ j < n) such that σj = σj+1.

An alternative definition of alternation depth which abstracts from the syn-
tactical appearance can be found in Definition 3.34 of [8]. The idea is that to
determine the alternation depth only chains of equations in a boolean equa-
tion system must be followed that depend on each other. Using for instance
Lemma 3.22 of [8] a boolean equation system can be reordered such that our
notion of alternation depth and the notion of [8] coincide. Notice that for each
equation system E with variables from X we have that ad(E) < |X |. That is, the
alternation depth of a boolean equation system is always less than the number
of variables involved.

We define conjunctive and disjunctive boolean equation systems in the fol-
lowing way.

Definition 5 (Disjunctive boolean equation system). Let (σx = α) be an
equation. We call this equation disjunctive if no conjunction symbol ∧ appears
in α. Let E be a boolean equation system. We call E disjunctive if each equation
in E is disjunctive.

Definition 6 (Conjunctive boolean equation system). Let (σx = α) be an
equation. We call this equation conjunctive if no disjunction symbol ∨ appears
in α. Let E be a boolean equation system. We call E conjunctive if each equation
in E is conjunctive.

Given such a conjunctive or disjunctive system, we can view its variables as
vertices of a graph and the dependencies between the variables as directed edges,
obtaining another representation as defined below.

Definition 7 (The dependency graph of a boolean equation system).
Let E be a conjunctive or disjunctive boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn).

536 J.F. Groote and M. Keinänen

The dependency graph of E is a directed graph GE = (V,E, $) where

– V = {i | 1 ≤ i ≤ n} is the set of nodes;
– E ⊆ V ×V is the set of edges such that, for all equations σi xi = αi, (i, j) ∈ E

iff a variable xj occurs in αi

– $: V → {μ, ν} is a labelling function defined by $(i) = σi.

We now turn to the solution algorithms which refer to the disjunctive case
only. The conjunctive case is fully dual and is therefore not treated explicitly.

3 The Depth-First Search Based Algorithm

The following essential lemma comes from [5], and it gives a useful characteri-
zation of a solution to a disjunctive boolean equation system.

Lemma 1. Let E be a disjunctive boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

and let GE = (V,E, $) be the dependency graph of E. Let [[E]] be the solution to
E. Then the following are equivalent:

1. [[E]] = 1
2. ∃j ∈ V with $(j) = ν such that:

(a) j is reachable from node 1 in G, and
(b) G contains a cycle of which the lowest index of a node on this cycle is j.

Based on the above lemma, one can give a relatively simple algorithm to solve
disjunctive boolean equation systems which relies on Tarjan’s depth-first search
algorithm [11] on directed graphs. This kind of approach is presented in [5]
and we briefly review it here because in Section 5 we conduct experiments and
comparisons with the algorithms.

The essential idea of the approach is to calculate maximal strongly connected
components using the algorithm from [11]. A strongly connected component in a
graph G = (V,E, $) is a set of vertices W ⊆ V such that for each pair of vertices
k, l ∈ W it is possible to reach l from k by following directed edges in E. In
the sequel, we assume that all strongly connected components are maximal in
the sense that there does not exist a larger set of vertices that is also a strongly
connected component. When a strongly connected component is detected, a
standard depth-first search is initiated for all ν labelled nodes residing in the
component, in order to determine whether the component contains a node which
satisfies condition 2 of Lemma 1.

This approach is well suited for many boolean equation systems. Since Tar-
jan’s algorithm performs only a single depth-first search and can detect com-
pleted strongly connected components even before the whole graph has been
traversed, the algorithm may find the solution by searching only a small portion
of the dependency graph. In many cases, this leads to a very early detection of
the solution.

A Sub-quadratic Algorithm 537

�
�
���

�
��

��
�

�
�

�
��

�
�

�	�
�

��

�
�
�
�
�
��

�
�
�

1

2

3

...

n − 1

n

μ

ν

μμ

ν

Fig. 1. A worst-case example for the depth-first search based algorithm from [5]

A disadvantage of the approach from [5] is that, in the worst case, it requires
quadratic time in the size of an input dependency graph. For instance, consider
the following example.

Example 2. For some even n ∈ N s.t. n ≥ 4, consider the boolean equation
system:

(μx1 = x2)

(νx2 = x1 ∨ x3)

(μx3 = x1 ∨ x4)

...

(μxn−1 = x1 ∨ xn)

(νxn = x1)

The above equation system is disjunctive, and the solution to variable x1 is 0.
Consider the dependency graph of this system depicted in Figure 1. In order to
solve the system with the depth-first search based algorithm from [5] we need at
least O(n2) steps.

Unfortunately, all previously known algorithms for solving conjunctive and
disjunctive boolean equation systems take at least quadratic time in the size
of a system in the worst case. For large boolean equations, which are typically
encountered in model checking and preorder/equivalence checking of realistic
systems, this often leads to unpleasant running times.

In the next section, we present a new sub-quadratic algorithm for finding a
solution to a boolean equation system in disjunctive form. Then, in Section 5
the new algorithm is compared to the depth-first search based algorithm through
experiments on protocol verification examples.

538 J.F. Groote and M. Keinänen

4 The Algorithm Based on Hierarchical Clustering

Tarjan [12] presents a hierarchical clustering algorithm for constructing a strong
component decomposition tree for a directed weighted graph. Tarjan’s cluster-
ing algorithm is an off-line, partially dynamic algorithm which is heavily based
on three well-known techniques: binary search, divide-and-conquer, and graph
theoretic technique for finding strongly connected components [11].

It turns out that the ideas behind the hierarchical clustering algorithm are
also suited to solve conjunctive and disjunctive boolean equation systems. We
provide here such an algorithm to solve disjunctive boolean equation systems.
The conjunctive case is dual.

4.1 The New Algorithm

To enhance the readability, our presentation is at a high level of description. We
chose not to show all the actual details of the implementation of our algorithm
because they would substantially impede the clarity of presentation.

Before presenting the algorithm, we define a few useful notions that will be
needed.

Definition 8. Let

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

be a boolean equation system. An index j is a ν-starting point of E if σj = ν,
and either j = 1 or σj−1 = μ. If j is a ν-starting point then the ν-segment of
j are those indices j, j + 1, . . . , j + k such that σj+i = ν (0 ≤ i ≤ k) and either
j + k = n or σj+k+1 = μ.

Note that the alternation depth of a boolean equation system is twice the number
of ν-starting points of a boolean equation system minus 0, 1 or 2 depending on
whether or not there are initial and trailing μ’s.

Definition 9. Let G = (V,E, $) be a dependency graph and k ∈ V . We define
a restricted graph G�k = (V,E�k, $) by taking

– E�k = {〈i, j〉 ∈ E | i ≥ k and j ≥ k}.

In general, we may assume that a dependency graph of a boolean equation
system does not contain any self-loops (i.e. an edge from a node to itself) because
such edges can easily be removed from dependency graphs. Furthermore, we may
assume that all nodes in a dependency graph of a boolean equation system are
reachable from node 1 because the nodes that are not reachable from node 1 do
not affect the solution. Thus, by Lemma 1, the condition that needs to be checked
is whether there is a cycle in the dependency graph of which the lowest numbered
node has label ν. The following algorithm performs this task efficiently.

To apply the algorithm on a boolean equation system E with n equations,
MinNuLoop(k, n,G) must be executed where G is the dependency graph of E
and k is the first ν-starting point of E . If such a starting point does not exist,
then it holds that [[E]] = 0 and E is already solved.

A Sub-quadratic Algorithm 539

Algorithm. We define the algorithm MinNuLoop(k1, k2, G) where k1 and k2
are indices such that k1 ≤ k2, G = (V,E, $) is a dependency graph, $(k1) = ν
and |E| ≥ |V |. The algorithm MinNuLoop calculates whether there is an index
k with k1 ≤ k ≤ k2, $(k) = ν and k is the smallest node on some cycle of G.
The algorithm consists of the following steps:

1. Let s be the number of ν-starting points on k1, . . . , k2. Let k3 be the index of
the 4 1

2s5-th ν-starting point on k1, . . . , k2. Calculate the strongly connected
components of G�k3. A strongly connected component is called trivial if it
consists of one node and has no self-loop. Check whether any node on the
ν-segment of k3 resides in a non-trivial strongly connected component. If
so, report “found” and stop. In the following steps, let C(k) represent the
strongly connected component of G�k3 containing node k ∈ V .

2. Here and in 5 below we check nodes in the range k1, . . . , k3 − 2. Calculate
the graph G′ = (V ′, E′, $′) by

V ′ = {min{C(i)} | i ∈ V and ∃j.〈i, j〉 ∈ E and C(i) = C(j)},
E′ = {〈min{C(i)},min{C(j)}〉 ∈ V ′ × V ′ | 〈i, j〉 ∈ E, C(i) = C(j)} and

$′(min{C(i)}) =
{
$(i) if C(i) trivial,
μ otherwise.

3. Let k4 be the smallest index of a ν-starting point larger than k3. We check
nodes in the range k4, . . . , k2 (see also item 6). Calculate the graph G′′ =
(V ′′, E′′, $) by

V ′′ = {i ∈ V | C(i) is not trivial} and
E′′ = {〈i, j〉 ∈ V ′′ × V ′′ | 〈i, j〉 ∈ E and C(i) = C(j)}.

4. Forget G.
5. If k1 ≤ k3 − 2, execute MinNuLoop(k1, k3 − 2, G′).
6. If k4 ≤ k2, execute MinNuLoop(k4, k2, G

′′).

The algorithm stops reporting “found” iff a cycle with a minimal ν-labelled
node exists, or in other words iff the solution to the boolean equation system is
[[E]] = 1.

Notice that the algorithm MinNuLoop splits up the input dependency graph
G into two graphs G′ and G′′, and then recurs on these new graphs. More pre-
cisely, in steps 2 and 5, the graph G′ is a condensed version of the graph G, in
which nodes belonging to the same strongly connected component of G�k3 (cal-
culated in step 1) are compressed into a single node. In steps 3 and 6, the graph
G′′ is a subgraph of G, in which edges connecting different strongly connected
components of G�k3 (calculated in step 1) are removed.

4.2 Correctness and Complexity

Since the algorithm MinNuLoop is closely related to Tarjan’s clustering algo-
rithm, its correctness and complexity can be seen along the lines set out in [12].
However, as our presentation significantly differs from [12] and [6] – in that we

540 J.F. Groote and M. Keinänen

work in the setting of boolean equation systems – we sketch the correctness and
complexity arguments from scratch.

The correctness of the algorithm can be seen as follows. In step 1 it is straight-
forwardly checked whether any node in the ν-segment of k3 is the smallest ν-
labelled node on a cycle.

When investigating whether some of the nodes in the range k1, . . . , k3 − 2
(node k3−1 is μ-labelled) is the smallest ν-labelled node on a cycle, the internal
structures of non-trivial strongly connected components of G�k3 are irrelevant,
and can therefore be safely collapsed. Thus, it suffices that all strongly connected
components calculated in step 1 occur as compressed nodes of G′. In addition,
we can take as edges of G′ exactly those edges of E that bridge the strongly
connected components ofG�k3. Furthermore, nodes in V ′ without outgoing edges
cannot contribute to cycles and can therefore be removed. Note that as all nodes
without outgoing edges are removed from G′, the precondition that |E′| ≥ |V ′|
to invoke MinNuLoop is met.

When investigating whether some node in the range k4, . . . , k2 is the smallest
ν-labelled node on a cycle, we do not need to consider edges that connect nodes
belonging to different strongly connected components of G�k3 because such edges
cannot participate in any cycle whose smallest index is in the range k4, . . . , k2.

The time complexity of the algorithm MinNuLoop(k1, k2, G) is O(|E| logA)
where G = (V,E, $) and A is the number of ν-starting points on k1, . . . , k2. As
noted elsewhere in this paper 2A is approximately the alternation depth of the
boolean equation system that corresponds to G.

The time complexity has a nice justification. In step 1 of MinNuLoop it takes
O(|V |) ≤ O(|E|) to determine k3. Calculating G�k3, the strongly connected
components and checking whether any node on the ν-segment of k3 resides on a
non-trivial strongly connected component requires O(|E|) time.

In step 2, 3 and 4 the graphs G′ and G′′ are constructed to replace G. This
can clearly be done in time O(|E|).

A crucial observation is that for each edge 〈i, j〉 ∈ E at most one edge shows
up in either E′ or E′′, depending on whether C(i) = C(j). This means that
|E′| + |E′′| ≤ |E|. Furthermore, if the number of ν-starting points in k1, . . . , k2
is A, then there are at most 1

2A ν-starting points in both k1, . . . , k3 − 1 and
k4, . . . , k2. So MinNuLoop(k1, k3 − 1, G′) has time complexity O(|E′| log 1

2A)
and MinNuLoop(k4, k2, G

′′) has time complexity O(|E′′| log 1
2A). So, the time

complexity of MinNuLoop(k1, k2, G) is

O(|E|)+O(|E′| log
1
2
A)+O(|E′′| log

1
2
A) ≤ O(|E|+ |E| log

1
2
A) = O(|E| logA).

The time complexity for solving a boolean equation system also contains the
generation of the dependency graph, and is easily seen to be O(e log d) where e
is the size of the boolean equation system and d the alternation depth.

The space complexity of MinNuLoop(k1, k2, G) is O(|E|). In order to see this
it suffices to note that the graphs constructed in step 2 and 3 are together smaller
than the graph G, which is thrown away in step 4. So, the memory footage is
only reduced while executing the algorithm. As generating the dependency graph

A Sub-quadratic Algorithm 541

also takes linear space, solving a disjunctive boolean equation system also takes
linear space.

5 Experiments with Sliding Window Protocols

We have implemented both the depth-first search based algorithm from [5] and
the new algorithm in the C programming language. We have done experiments
with models of sliding window protocols described in [10]. To investigate and
compare the performance of the algorithms, we have studied three variants of
the protocol with different behaviours:

– Variation 1 : This is an unidirectional version of the protocol where a sender
receives data through a channel and passes it to a receiver. There are 2 data
elements, window size is 2, and buffer size is 4 at both receiving and sending
side.

– Variation 2 : This is a bidirectional, one bit sliding window protocol where,
in addition to the feature of variation 1, also the receiver receives data via a
channel and passes it to the sender. There is 1 data element, window size is
1 and buffer size is 2 at both receiving and sending side.

– Variation 3 : As variation 2, this is a bidirectional version with buffer size 2,
window size 1, and 1 data element. However, piggy backing is used to guar-
antee a better bandwidth, i.e. acknowledgements, which are sent between
the sender and the receiver, are appended to data elements.

Each of the variations was modelled with the μCRL tool set [3] and its
state space, combined with liveness and fairness related formulas, was converted
to boolean equation systems for input by our implementations of the solution
algorithms. In the conversion, we used the translation from μ-calculus to boolean
equation systems as described in [8].

The results of our experiments are shown in Table 1. The first column con-
tains the names of the checked formulas which are given explicitly below the
table. The column marked “Equation system” gives the number of left hand
side variables and the size of the corresponding boolean equation system. The
columns marked “New algorithm” and “Algorithm in [5]” give the execution
times in seconds for the algorithms to solve the boolean equation systems mea-
sured as cpu time. The reported times are the average of three runs on a 1.0Ghz
AMD Athlon running Linux with sufficient main memory.

The checked μ-calculus formulas can be explained as follows1. Formula A
states unconditional fairness for the reception of data by requiring that reception
of data happens infinitely often along every infinite execution. Formula B is
related to counting silent actions and states the property that the protocol does
only finitely many τ -actions, no matter what else it does. Formula C is a liveness
property which states that whenever a message is sent then eventually it is
received. Formula D expresses a strong fairness property that delivery of data
1 We use standard syntax and semantics of μ-calculus, see e.g. [4] for detailed defini-

tions.

542 J.F. Groote and M. Keinänen

Table 1. Comparison of the new algorithm and the algorithm from [5] for checking
property φ for different versions of the sliding window protocol

Variation 1: 44540 states, 183344 transitions
φ Equation system New algorithm Algorithm in [5]
A 54265 193069 0.10 29.69
B 87464 226268 0.32 244.90
C 76348 325660 0.70 0.01
D 69476 269152 1.66 86.29
E 115716 507376 0.51 1.44

Variation 2: 17040 states, 79472 transitions
φ Equation system New algorithm Algorithm in [5]
A 19185 81617 0.08 69.35
B 33904 96336 0.10 44.88
C 30376 146344 0.21 0.00
D 36832 137892 0.79 46.48
E 48600 232648 1.39 4.37

Variation 3: 23728 states, 112960 transitions
φ Equation system New algorithm Algorithm in [5]
A 26337 115569 0.06 14.51
B 47152 136384 0.07 62.81
C 42808 208816 0.11 0.00
D 50560 194356 0.28 407.03
E 70072 338364 2.38 4.37

r1(x) ≡ receive data x
s4(x) ≡ send data x

A ≡ νX.μY.([r1(d1)]X ∧ [¬r1(d1)]Y)
B ≡ μX.νY.([τ]X ∧ [¬τ]Y)
C ≡ νZ.([s4(d1)](μY.〈−〉! ∧ [¬r1(d1)]Y) ∧ [−]Z)
D ≡ νX.μY.νZ.([s4(d1)]X ∧ (〈s4(d1)〉! ⇒ [¬s4(d1)]Y) ∧ [¬s4(d1)]Z)
E ≡ νY.([s4(d1)]ψ ∧ [−]Y) where ψ is given below
ψ ≡ μX.νY 1.(([s4(d1)]⊥ ∨ [¬r1(d1)](νY 2.([r1(d1)]⊥ ∨X) ∧ [¬r1(d1)]Y 2)) ∧ [¬r1(d1)]Y 1)

via send action is fairly treated. The last formula is a more involved property
which expresses liveness under fairness. More precisely, property E says that, for
any execution, if the sender is enabled infinitely often and the receiver is enabled
infinitely often, then whenever a message is sent eventually it is received.

In almost all cases the time consumption by the new algorithm was consider-
ably less than by the algorithm from [5]. In only three cases, namely variations
1-3 C, the time consumed by the new algorithm was slightly more than that by
the algorithm [5]. For instance, in variation 3 the new algorithm spent less than
3 seconds to solve all formulas A-E while the corresponding total running time
for [5] was around 8 minutes. Based on these computational results we may draw
the conclusion that the new algorithm substantially outperforms the one from
[5] in time.

A Sub-quadratic Algorithm 543

We were not able to conduct a comparative study with other approaches be-
cause our formulas have non-zero alternation depths. All other publicly available
tools are for alternation-free boolean equation systems (e.g. [9]).

6 Heuristic Issues

As indicated by the performance measures in the previous section, there exist ex-
amples where the new algorithm fares worse than the one from [5]. This suggests
to use heuristics to guide the new algorithm to find solutions more quickly.

In steps 5 and 6 of MinNuLoop algorithm, two distinct recursive calls are
done. It turns out that the order of these recursive calls does not affect the
correctness of the algorithm. Steps 5 and 6 might as well be executed in any
possible order as long as they are both executed after step 4. But, the differences
in the execution order certainly may be reflected in the performance of the
algorithm. To investigate the impact of changing the execution order of the
recursive calls, various heuristics were used.

The results are shown in Table 2. Only the performance for the new algorithm
is described in the table. The meaning of the first two columns is the same as
in Table 1. The remaining columns contain the measures for the heuristics; the
number indicates the cpu time in seconds to find the solution. Here, the column
“None” agrees with the column “New algorithm” in Table 1. Finally, the last
row describes the total cpu time in seconds to solve all the problems.

The following heuristics were investigated:

H1 Reversed execution order of the recursive calls in steps 5 and 6; i.e. execute
step 6 first, and then execute step 5.

Table 2. Effect of heuristics on the new algorithm

Equation system Heuristic
Variation φ None H1 H2 H3

1 A 0.10 0.10 0.11 0.09
1 B 0.32 0.17 0.16 0.32
1 C 0.70 0.22 0.23 0.78
1 D 1.66 0.18 0.19 1.69
1 E 0.51 0.36 0.36 0.52
2 A 0.08 0.05 0.05 0.08
2 B 0.20 0.07 0.07 0.09
2 C 0.21 0.09 0.10 0.21
2 D 0.79 0.10 0.10 0.79
2 E 1.39 0.17 0.16 1.39
3 A 0.06 0.06 0.06 0.06
3 B 0.07 0.07 0.07 0.07
3 C 0.11 0.11 0.10 0.10
3 D 0.28 0.13 0.13 0.29
3 E 2.38 0.20 0.20 2.35

Total cpu time 8.86 2.08 2.09 8.83

544 J.F. Groote and M. Keinänen

H2 Selects those recursive calls that lead to smaller graphs first; i.e. if the graph
G′ constructed in step 2 has less edges than the graph G′′ constructed in
step 3, execute step 5 first, and then execute step 6. Otherwise, execute step
6 first, and then execute step 5.

H3 Selects those recursive calls that lead to larger graphs first; i.e. if the graph
G′ constructed in step 2 has more edges than the graph G′′ constructed in
step 3, execute step 5 first, and then execute step 6. Otherwise, execute step
6 first, and then execute step 5.

As the table shows, heuristics H1 and H2 performed up to a factor 10 better
than using no heuristic at all. The performance of heuristic H3, which selects
those recursive calls that lead to larger graphs first, was the worst.

One must notice that the differences in the performance are very small and,
therefore, they can be influenced by other factors too. Of course, some heuristics
might work well on some boolean equation systems, and poorly for others. But,
the results indicate that changing the execution order of the recursive calls has
a clear impact on the solution times.

7 Conclusions

We have presented an alternative to the algorithms in [5,8] for solving conjunctive
and disjunctive boolean equation systems. Our algorithm has better estimation
of its worst-case complexity than the previous algorithms. Practical evaluation
on protocol verification benchmarks shows that the theoretical improvement
also leads to practical improvements over the existing algorithm [5]. The new
algorithm is often able to find solutions more quickly, and additional reduction in
time consumption can be gained by using suitable heuristics to guide the search.

Acknowledgments. Jaco van de Pol is thanked for providing useful comments.
The work of Misa Keinänen was funded by Academy of Finland (project 211025)
and Helsinki Graduate School in Computer Science and Engineering.

References

1. H.R. Andersen. Model checking and boolean graphs. Theoretical Computer Sci-
ence, 126 (1994) 3-30.

2. A. Arnold and D. Niwinski. Rudiments of μ-calculus. Studies in logic and the
foundations of mathematics, 146. Elsevier, 2001.

3. S. Blom, W. Fokkink, J. Groote, I. van Langevelde, B. Lisser and J. van de Pol.
μCRL: a toolset for analysing algebraic specifications. In Proceedings of the 13th
Conference on Computer Aided Verification (CAV’2001), Paris, Lecture Notes in
Computer Science 2102, pp. 250-254, Springer-Verlag, July 2001.

4. J. Bradfield and C. Stirling. Modal Logics and mu-Calculi: An introduction. Chap-
ter 4 of Handbook of Process Algebra. J.A. Bergstra, A. Ponse and S.A. Smolka,
editors. Elsevier, 2001.

A Sub-quadratic Algorithm 545

5. J.F. Groote and M.K. Keinänen. Solving Disjunctive/Conjunctive Boolean Equa-
tion Systems with Alternating Fixed Points. In K. Jensen and A. Podelski, editors,
Proc. 10th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’2004), volume 2988 of Lecture Notes in
Computer Science, pages 436-450. Springer, 2004.

6. V. King, O. Kupferman and M.Y. Vardi. On the complexity of parity word au-
tomata. Proc. of 4th International Conference on Foundations of Software Science
and Computation Structures, volume 2030 of Lecture Notes in Computer Science,
pages 276–286. Springer, 2001.

7. D. Kozen. Results on the propositional μ-calculus. Theoretical computer Sci-
ence 27 (1983) 333-354.

8. A. Mader. Verification of Modal Properties using Boolean Equation Systems. PhD
thesis, Technical University of Munich, 1997.

9. R. Mateescu. A Generic On-the-Fly Solver for Alternation-Free Boolean Equation
Systems. In Proceedings of Conf. on Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science 2619 (Springer Verlag,
2003) 81-96.

10. A. Tanenbaum. Computer Networks. Prentice Hall PTR, fourth edition, 2003.
11. R.E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of

Computing. 1(2):146-160, 1972.
12. R.E. Tarjan. A hierarchical clustering algorithm using strong components. Infor-

mation Processing Letters, 14(1):26-29, 1982.

Using Fairness Constraints
in Process-Algebraic Verification

Antti Puhakka

Tampere University of Technology,
Institute of Software Systems,

P.O. Box 553, FIN-33101 Tampere, Finland
antti.puhakka@tut.fi

Abstract. Although liveness and fairness have been used for a long time
in classical model checking, with process-algebraic methods they have
seen far less use. One problem is that it is difficult to combine fairness
constraints with the compositionality of process algebra. Here we show
how a class of fairness constraints can be applied in a consistent way to
processes in the compositional setting. We use only ordinary, but possibly
infinite, LTSs as our models of processes. In many cases the infinite LTSs
are part of a larger system, which can again be represented as a finite
LTS. We show how this finiteness can be recovered, namely, we present
an algorithm that checks whether a finite representation exists and, if
it does, constructs a finite LTS that is equivalent to the infinite system.
Even in the negative case, the system produced by the algorithm is a
conservative estimate of the infinite system. Such a finite representation
can be placed as a component in further compositional analysis just like
any other LTS.

1 Introduction

In the verification of concurrent systems it is often important to show that the
system eventually performs some desired task. Such properties are called liveness
properties [2]. For proving liveness properties some fairness assumptions [3,9,14]
often have to be added to the system, meaning that the system is not allowed
to continually favour some choices at the expense of others.

Within classical model checking [6,22] liveness and fairness have been used
in one form or another for quite some time. However, in the context of process-
algebraic methods such as CCS [16] and CSP [12,23] they have seen relatively
little use. As shown in [21], one reason for this is that fairness properties are
tricky to combine with the compositionality of process algebra, because out-
side processes can interfere with the actions used in the fairness constraint. As
also discussed in [21], another problem is that most process-algebraic seman-
tics do not preserve enough fairness-related information about the behaviour of
systems.

In this article we use a variant of CSP called CFFD (Chaos-Free Failures
Divergences), which is especially well suited for handling liveness properties, be-
cause it preserves both divergences (livelocks) and the behaviour after executing

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 546–561, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using Fairness Constraints in Process-Algebraic Verification 547

a divergence trace. Also, it allows the use of infinite and infinitely branching
processes [13,27,26].

Some previous approaches have aimed at using a “global” fairness assumption
in a process-algebraic system, meaning that all processes or enabled actions
should eventually proceed. This has been done either by changing the operational
semantics, as in [8], or by considering only the fair executions in the semantics, as
in [5,11,17]. Others have suggested adding some extra constraints to the process
to restrict the infinite executions, such as ω-regular expressions [18] or Büchi
states [7]. However, a potential problem in such an approach is that a process
may be unable to fulfill the requirements of the additional constraint, which
creates a situation with no meaningful interpretation. Furthermore, this can
happen as the result of the parallel composition of “healthy” subprocesses, as
discussed in [21]. These and a number of other references are discussed in more
detail in [20].

In this paper we use only ordinary LTSs (Labelled Transition Systems), so
processes will always have an unambiguous behaviour, and we can clearly define
how fairness constraints should change the behaviour of systems. The fairness
requirements are expressed in linear temporal logic, and we allow the resulting
LTSs to be infinite, if necessary. However, we will see that such infinite processes
are often part of a larger system which can again be represented as a finite LTS.
We will describe an algorithm for checking whether a finite representation exists
and, if so, for constructing a finite LTS that is equivalent to the original system.
The result can then be used as a component in further compositional analysis. In
fact, even when no exact finite representation of the fair system exists, the finite
model is a conservative estimate of the fair system. However, it turns out that
the complexity of deciding whether an exact finite representation exists is higher
than that of building the representation. Fortunately, the parameter system of
the analysis can be significantly smaller than the full state-space of the system.

This paper extends the earlier work in [21] by using a significantly more gen-
eral class of fairness constraints, by presenting the above-mentioned algorithm
for constructing a finite model of the fair system, and also by extending the set
of systems to which such constraints can be applied.

The paper is organised as follows. In the next section we will review the basic
definitions concerning LTSs, process operators and behavioural equivalences. In
Section 3 we will consider fairness operators that add fairness constraints to
systems, and we state the requirements we believe these operators should fulfill
in order to be meaningful in process-algebraic verification. Then, in Section 4
we present the class of fairness properties that we will use. These are properties
of the form “if something happens infinitely many times, then something else
also has to happen infinitely many times”. In Section 5 we define a fairness
operator that implements the fairness constraints by placing the target system
in parallel with a “fairness LTS”. We then show that the operator fulfills all
the stated requirements. In Section 6 we present an algorithm for constructing
a finite representation of the fair system. In Section 7 we present some examples
using the approach, and in Section 8 we present our conclusions.

548 A. Puhakka

2 Background

The behaviour of a process consists of executing actions. There are two kinds of
actions: visible and invisible. Invisible actions are denoted with a special sym-
bol τ . The behaviour of a process is represented as a labelled transition system.
This is a directed graph whose edges are labelled with action names, with one
state distinguished as the initial state.

Definition 1. A labelled transition system, abbreviated LTS, is a four-tuple
(S,Σ,Δ, ŝ), where

– S is the set of states,
– Σ, the alphabet, is the set of the visible actions of the process; we assume

that τ /∈ Σ,
– Δ ⊆ S × (Σ ∪ {τ})× S is the set of transitions, and
– ŝ ∈ S is the initial state.

We also use ΣL to denote the alphabet of L, and similarly with SL, ΔL and ŝL.
Let A∗ denote the set of finite and Aω the set of infinite sequences of elements
of a set A. The empty sequence is denoted with ε, and aω denotes the infinite
sequence of the symbol a. For a finite or infinite sequence ρ, the restriction of ρ
to B, denoted restr(ρ,B), means the result of removing all actions from ρ that
are not in B.

The following notation is useful for talking about the execution of a process.
The “ −ρ→ ”-notation requires that all actions along the execution path are
listed, while the τ -actions are skipped in the “ =η⇒ ”-notation.

Definition 2. Let (S,Σ,Δ, ŝ) be an LTS, let s, s′ ∈ S, a, a1, a2, . . . ∈ Σ ∪ {τ}.
We write
– s−a→ s′ if and only if (s, a, s′) ∈ Δ,
– s−a1a2 · · ·an→s′ if and only if there are s0, s1, . . . , sn ∈ S such that s = s0,
sn = s′ and si−1 −ai→ si when 1 ≤ i ≤ n,

– s−a1a2a3 · · ·→ is defined similarly for an infinite execution,
– s−a1a2 · · · an→ if and only if there is s′ ∈ S such that s−a1a2 · · · an→ s′.

We also write s =σ⇒ s′ for σ ∈ Σ∗ if and only if there is ρ ∈ (Σ ∪ {τ})∗ such
that s−ρ→s′ and restr(ρ,Σ) = σ, and similarly for s=η⇒ , where η ∈ Σ∗∪Σω.

We need the following semantic sets extracted from an LTS. A trace of an
LTS is the sequence of visible actions generated by any finite execution that
starts in the initial state. An infinite execution that starts in the initial state
generates either an infinite trace or a divergence trace, depending on whether the
number of visible actions in the execution is infinite or finite. The stable failures
describe the ability of the LTS to refuse actions after executing a particular
trace.

Definition 3. Let L = (S,Σ,Δ, ŝ) be an LTS.

– Tr(L) =
{
σ ∈ Σ∗

∣∣ ŝ =σ⇒
}

is the set of traces of L.

Using Fairness Constraints in Process-Algebraic Verification 549

– Inftr(L) =
{
ξ ∈ Σω

∣∣ ŝ=ξ⇒
}

is the set of infinite traces of L.
– Divtr(L) =

{
σ ∈ Σ∗

∣∣ ∃s ∈ S : ŝ=σ⇒ s∧s−τω→
}

is the set of divergence
traces of L.

– Sfail (L) =
{

(σ,A) ∈ Σ∗×2Σ
∣∣ ∃s ∈ S : ŝ=σ⇒s∧∀a ∈ A∪{τ} : ¬(s−a→)

}
is the set of stable failures of L.

The parallel composition operator defined below forces precisely those com-
ponent processes to participate in the execution of a visible action that have the
action in their alphabets. The invisible action is always executed by exactly one
component process at a time. We first define the product of LTSs as the LTS that
satisfies the above description and has as its set of states the Cartesian product
of the component state sets. We then define parallel composition by picking the
part of the product that is reachable from the initial state of the product.

Definition 4. Let L1 = (S1, Σ1, Δ1, ŝ1), . . . , Ln = (Sn, Σn, Δn, ŝn) be LTSs.
Their product is the LTS (S′, Σ,Δ′, ŝ) such that the following hold:

– S′ = S1 × · · · × Sn

– Σ = Σ1 ∪ · · · ∪Σn

– ((s1, . . . , sn), a, (s′1, . . . , s
′
n)) ∈ Δ′ if and only if either

• a = τ , and (si, τ, s′i) ∈ Δi for some 1 ≤ i ≤ n,
and sj = s′j for all 1 ≤ j ≤ n, j = i

• a ∈ Σ, and for each 1 ≤ i ≤ n either a ∈ Σi and (si, a, s′i) ∈ Δi, or
a /∈ Σi and si = s′i

– ŝ = (ŝ1, · · · , ŝn)

The parallel composition L1|| · · · ||L2 is the LTS (S,Σ,Δ, ŝ) such that

– S =
{
s ∈ S′

∣∣ ∃σ ∈ Σ∗ : ŝ=σ⇒ s
}

– Δ = Δ′ ∩ (S × (Σ ∪ {τ})× S)

It is straightforward to show that “||” is symmetric and associative, so that
L1||L2 ∼= L2||L1 and (L1||L2)||L3 ∼= L1||(L2||L3), where “∼=” denotes isomor-
phism. Therefore, if we wish, we can discard the parentheses and write L1||L2||L3,
and similarly with any greater number of processes.

The hiding operator converts given visible actions into τ -actions and removes
them from the alphabet.

Definition 5. Let L = (S,Σ,Δ, ŝ) be an LTS and X any set of action names.
Then hideX in L is the LTS (S,Σ′, Δ′, ŝ) such that the following hold:

– Σ′ = Σ −X
– (s, a, s′) ∈ Δ′ if and only if
a = τ ∧ ∃b ∈ X : (s, b, s′) ∈ Δ, or a /∈ X ∧ (s, a, s′) ∈ Δ.

We now define the CFFD-model and CFFD-equivalence, which will be our
main equivalence notion in this article. We also define CFFD-preorder. Intu-
itively, preorder means that the smaller process is “better” or “more determin-
istic” than the larger one.

550 A. Puhakka

Definition 6. Let L and L′ be LTSs with the same alphabet.

– The CFFD model of L is the 3-tuple (Sfail(L),Divtr(L), Inftr(L))
– L ;CFFD L′ ⇐⇒

[Sfail(L) = Sfail (L′) ∧Divtr(L) = Divtr(L′) ∧ Inftr(L) = Inftr(L′)]
– L ≤CFFD L′ ⇐⇒

[Sfail(L) ⊆ Sfail(L′) ∧Divtr(L) ⊆ Divtr(L′) ∧ Inftr(L) ⊆ Inftr(L′)]

The traces are not included in the CFFD model because they can be de-
termined from Sfail and Divtr by the equation Tr(L) = Divtr(L) ∪

{
σ ∈

Σ∗
∣∣ (σ, ∅) ∈ Sfail(L)

}
[27].

It should be noted that when certain process-algebraic operators are used, a
component called stability must be included in the CFFD model. This one bit of
information tells whether or not there are τ -transitions from the initial state of
the LTS. However, with parallel composition and hiding this component is not
needed, so we will not use it here.

An important property of an equivalence is that when a component process
in a system is replaced by an equivalent process, the system should remain equiv-
alent to the original one. This is formally captured by the congruence property.

Definition 7. An equivalence “;” is a congruence with respect to a process
operator op(L1, . . . , Ln) if and only if L1 ; L′1 ∧ · · · ∧ Ln ; L′n implies
op(L1, . . . , Ln) ; op(L′1, . . . , L′n).

CFFD-equivalence is a congruence with respect to parallel composition and
hiding. Similarly, CFFD-preorder is a precongruence (monotonic) with respect
to parallel composition and hiding. [27]

3 Temporal Logic and Fairness Operators

The desired properties of reactive and concurrent systems are often expressed by
using linear temporal logic [15,19]. We next present a straightforward adaptation
of the logic to our process-algebraic framework.

Definition 8. A formula is generated by the grammar ψ ::= true | a | ¬ψ |
ψ∨ψ | ψUψ, where a is an action name. We also use the following denotations:
false ≡ ¬true, ψ ∧ φ ≡ ¬(¬ψ ∨ ¬φ), ψ ⇒ φ ≡ ¬ψ ∨ φ, �ψ ≡ true Uψ
(“eventually”), �ψ ≡ ¬�¬ψ (“always”).

We will define the semantics of formulas on the infinite executions of systems.

Definition 9. Let L = (S,Σ,Δ, ŝ) be an LTS. The set of the infinite executions
of L is infex (L) =

{
s0a1s1a2s2a3 · · ·

∣∣ ŝ = s0 ∧ ∀i ≥ 1 : si−1 −ai→ si
}
.

Below we use the following notation: if η = s0a1s1a2s2a3 · · · is an infinite exe-
cution, then acts(η) is the sequence of actions a1a2a3 · · · and ηi is the ith suffix
siai+1si+1ai+2 · · · .
Definition 10. Let L = (S,Σ,Δ, ŝ) be an LTS and η = s0a1s1a2s2a3 · · · an
infinite execution of L. Then

Using Fairness Constraints in Process-Algebraic Verification 551

– (L, η) |= true
– (L, η) |= a iff a1 = a
– (L, η) |= ¬ψ iff not (L, η) |= ψ
– (L, η) |= ψ ∨ φ iff (L, η) |= ψ or (L, η) |= φ
– (L, η) |= ψ Uφ iff ∃j ≥ 0 : (L, ηj) |= φ and ∀k, 0 ≤ k < j : (L, ηk) |= ψ

The properties of reactive systems are usually divided into safety proper-
ties, expressing requirements of the form “nothing bad must ever happen”, and
liveness properties, expressing requirements of the form “something good must
eventually happen” [2]. Fairness properties are liveness properties which state
that even though the system makes nondeterministic choices, it does not in-
finitely favour some choices at the expense of others.

Often to verify liveness properties we first add fairness constraints to the
system. These are fairness properties that are assumed to hold of the system,
expressing the idea that the modelled system is behaving fairly. To use such
assumptions in process-algebraic verification, we want to have, for each fairness
constraint φ, a corresponding “fairness operator” Φφ that can be applied to an
LTS, and which produces a new LTS having the same finite behaviour, namely
traces and stable failures, and precisely those infinite behaviours (infinite traces
and divergences) that can be executed while assuming the fairness constraint.
We should notice, however, that not every fairness constraint can be applied
to every system. This is because the constraint may require something that the
system is unable to do without also changing its finite behaviour. For this reason
we assume that for each fairness formula we have defined a corresponding set of
compatible LTSs, denoted by COMP , to which φ may be applied.

However, it will sometimes be very useful to associate a hiding operation with
the fairness operator. Namely, we can apply the fairness constraint to a wider
class of systems if there is a guarantee that certain actions in the constraint will
be hidden immediately after applying the fairness operator. This will be illus-
trated in Section 7. Therefore, the compatibility set will depend on both ψ and a
“hiding set” H , which is to be hidden after applying the fairness operator (notice
that the latter is different from [20] and [21]). We formulate the requirement as
follows:

Definition 11. An operator Φφ is a fairness operator for formula φ with com-
patibility set COMP(φ,H) if and only if for every L ∈ COMP(φ,H)

– Tr(L1) = Tr(L2) and Sfail (L1) = Sfail(L2), and
– Divtr(L1) ={

σ ∈ Σ∗L2

∣∣ ∃η ∈ infex (L) : ((L, η) |= φ) ∧ restr(acts(η), ΣL2) = σ
}
, and

– Inftr(L1) ={
ξ ∈ Σω

L2

∣∣ ∃η ∈ infex (L) : ((L, η) |= φ) ∧ restr(acts(η), ΣL2) = ξ
}
,

where L1 = hideH in Φφ(L) and L2 = hideH in L.

However, some care must be taken in using fairness in the compositional
setting of process algebra, because in such a setting other, yet unknown, processes
may interfere with the behaviour of the process for which we define the fairness

552 A. Puhakka

constraint. Firstly, when we are using a particular behavioural equivalence, we
should make sure that this a congruence with respect to the fairness operator.
Furthermore, the fairness operator would typically be applied to some subprocess
L (e.g., a communication channel) which can be placed in a larger context C[·]
(e.g., a protocol system). The property of the underlying system expressed by
the fairness constraint should remain the same in the larger context. Therefore,
within some reasonable limits, it should make no difference whether the same
fairness constraint is assumed of L or of the composition C[L]. We will refer to
these desired properties of the fairness operator as context-independence:

Definition 12. Let Φφ be a fairness operator for formula φ which is expressed
in terms of the actions F. We say that Φφ is context-independent with respect
to “;”, if and only if “;” is a congruence with respect to Φφ, and for all L in
COMP(ψ,H) it holds that

– Φφ(L) ||L′ ; Φφ(L ||L′) for any LTS L′ such that ΣL′ ∩H = ∅
– hideX in Φφ(L) ; Φφ(hideX in L) for any X such that X ∩ F = ∅.

4 A Class of Fairness Constraints

Some types of fairness properties (such as weak fairness and strong fairness)
require the execution of an action if it is sufficiently often enabled. However,
as discussed in [21], it is difficult to use such properties with weak behavioural
process-algebraic semantics, because these do not preserve information about the
enabledness of actions in infinite executions. Therefore, we here concentrate on
fairness properties that can be used with such semantics. These will be fairness
properties of the form “if something happens infinitely often, then something
else also has to happen infinitely often”.

In [21], fairness formulas of the form ��a1∨· · ·∨��am ⇒ ��b1∨· · ·∨��bn
were used. Here, we consider formulas of the form

α⇒ β

where α and β are any formulas constructed from action names by using the
operators “∨”, “∧” and “��” (“infinitely often”), with the restriction that every
action name must reside within the scope of at least one “��”-operator (because
we are interested in fairness properties, not individual actions).

Formally, α and β are any formulas generated by the grammar φ ::= false |
φ ∧ φ | φ ∨ φ | ��φ1 and φ1 ::= φ1 ∧ φ1 | φ1 ∨ φ1 | ��φ1 | a, where a is any
visible action name. Because we allow β to be false , the complete formula may
become ¬α.

Let us denote the set of formulas of this form by F . We next transform the
fairness formulas into a normal form where, for technical convenience, the left
side is in a conjunctive form and the right side in a disjunctive form; the detailed
proof is given in [20].

Proposition 1. Every formula in F that is not trivially true can be given in
the form

Using Fairness Constraints in Process-Algebraic Verification 553

A1 ∧A2 ∧ · · · ∧Am ⇒ B1 ∨B2 ∨ · · · ∨Bn,

where Ai = ��ai
1∨��ai

2∨· · ·∨��ai
ui

, Bj = ��bj1∧��bj2∧· · ·∧��bjvj
, and ai

k

and bjl are names of actions. If n = 0, then the formula is ¬(A1∧A2∧· · ·∧Am).

From now on we will assume that the fairness formulas have already been
given in the above form. We will denote such a formula by

ψ(A1, . . . ,Am; B1, . . . ,Bn).

We will use Ai andBj to denote the sets of actions {ai
1, . . . , a

i
ui
} and {bj1, . . . , bjvj

},
respectively, and, we will write A for A1 ∪ · · · ∪Am, and B for B1 ∪ · · · ∪Bn.

As indicated above, we must define a set of LTSs which are compatible with
the fairness formula. One intuitive idea could be to require that the actions ai

k

always have an alternative τ -transition or a transition that will be hidden, so
that the system can always nondeterministically choose a different route. In fact,
it turns out that a closely related but weaker requirement suffices:

Definition 13. LTS L=(S,Σ,Δ, ŝ) is in COMP(ψ,H) if and only if A ∪B⊆Σ,
H∩A = ∅ and ∀(σ,X) ∈ Sfail (L) : (σ,X∪H) /∈ Sfail (L)∨(σ,X∪A) ∈ Sfail (L).

Notice that the given condition can be determined from the CFFD-model of an
LTS. It is also straightforward to show that if L is in COMP(ψ,H) then so are
L||L′ and hideX in L with the same restrictions as in Definition 12.

5 Fairness LTS and Fairness Operator

We will next define a “fairness LTS” that corresponds to a fairness formula.
We first illustrate the idea with some examples. Figure 1 shows a fairness LTS
corresponding to the fairness constraint ��a⇒ ��b. It has an infinite number
of branches with lengths 1, 2, 3, . . . and it can execute any finite number of
consecutive a-actions, but not infinitely many, before executing a b-action and
returning to the initial state. Then, the same can be repeated.

We can easily add new actions to the formula in a disjunctive manner by
simply adding new parallel arcs to the LTS with the new action names. Us-
ing conjunctive conditions, on the other hand, requires a more elaborate struc-
ture. Figure 2 shows a fairness LTS that corresponds to the fairness constraint

b

a
b

a b a

a

b b b

a
b

a

Fig. 1. A fairness LTS for the constraint ��a ⇒ ��b

554 A. Puhakka

b

c d

bd

c
b

d
cb

a

d

a b

d a

c

a
d

b

d b

d

d

b
c

d
c

d

b

a

b
b

c

da
c

a
b

c

d b

c

c
a

d

b a d a

db

a
c

b

c

b a

bd d b

a

c a

d a
c

b

c

d

cd

b

d

d
b a

c
a c

a

b

c

d

d

b
ab

c
a

d a
bc

d
b

d

b
c

c

a

c

a

a

b

d

b

d

d

a

a

b

c
c

c

b

a

d
a

b
b

d
a

c

a
c

c

b

d

d

d

b

a
d

a

c

b

Fig. 2. A fairness LTS for the constraint ��a ∧��c ⇒ ��b ∧ ��d

��a ∧ ��c ⇒ ��b ∧��d. Like before, there are branches of length 1, 2, 3,
and so on. However, now there are two branches of each length, one of which
limits action a to the given finite number and the other which limits action c.
Furthermore, each branch has an internal structure which keeps track of which
of the two actions b and d have been detected so far. Once both b and d have
been detected we return to the initial state.

We should point out that the fairness LTS is a theoretical concept that allows
us to handle the fairness constraint by using the well-known properties of parallel
composition, and, as we will later see, we do not have to construct such LTSs in
actual verification. The following gives the formal definition of a fairness LTS.

Definition 14. For a formula ψ(A1, . . . ,Am; B1, . . . ,Bn), Lψ is the LTS
(S,Σ,Δ, ŝ), where

– S = {()} ∪
{

(A, l, r, B) ∈ 2A × N× N× 2B
∣∣ ∃i ∈ {1, . . . ,m} : A = Ai

∧ 0 ≤ r ≤ l ∧ ∀j ∈ {1, . . . , n} : Bj ⊆ B
}

– Σ = A ∪B and ŝ = ()
– Δ = {ŝ}×B×{ŝ} ∪

{
(ŝ, a, (A, l, l, ∅)) ∈ {ŝ}×A×S

∣∣ l ≥ 1 ∨ a ∈ A
}

∪
{

((A, l, r, B), a, (A, l, r−1, B)) ∈ S×A×S
∣∣ a ∈ A

}
∪
{

((A, l, r, B), a, (A, l, r, B)) ∈ S×A×S
∣∣ a /∈ A

}
∪
{

((A, l, r, B), b, (A, l, r, B ∪ {b})) ∈ S×B×S
∣∣ true

}
∪
{

((A, l, r, B), b, ŝ) ∈ S×B×{ŝ}
∣∣ ∃j : Bj ⊆ B ∪ {b}

}

Using Fairness Constraints in Process-Algebraic Verification 555

It can be shown that the fairness LTS has the following properties; the proof
is given in [20]. It should be noted that our construction is not unique in the
sense that there are many LTSs with the same properties, and, indeed, we could
use any such LTS, but our construction shows that at least one such LTS exists.

Proposition 2. For Lψ =(S,Σ,Δ, ŝ) it holds that Tr(Lψ)=Σ∗, Divtr(Lψ)=∅,
Sfail (Lψ) ⊆ Σ∗ × 2A, and Inftr(Lψ) =

{
η ∈ Σω

∣∣ η |= ψ
}
.

Now we define the fairness operator. As indicated above, it works simply by
placing the target system in parallel with the fairness LTS.

Definition 15. Given the formula ψ, operator Ψ ||ψ is the following mapping from

LTSs to LTSs: Ψ ||ψ(L) = L ||Lψ.

The following results show that Ψ ||ψ really is a fairness operator, in the sense of
Definition 11, and context-independent with respect to CFFD. The proofs, which
are based on the previous proposition and the properties of parallel composition
and hiding, can be found in [20], although the former requires some modifications
to cater for the hiding set H .

Theorem 1. Ψ
||
ψ is a fairness operator for ψ with compatibility set

COMP(ψ,H).

Theorem 2. Ψ
||
ψ is context-independent with respect to “;CFFD”.

It is also straightforward to show that our fairness operators commute, and the
compatibility of an LTS is preserved by fairness operators that do not use the
actions in the hiding set H .

6 Algorithm for Verification

In this section we will show how the fairness operators can be used in verification
without having to construct infinite systems. As a starting point we assume a
system P composed by using “||” and “hide” from LTSs. Next, we want to add
some fairness constraints and we change the system by adding fairness operators
Ψ
||
1 , . . . , Ψ

||
k so that each Ψ

||
i is applied to a subsystem that is in COMP(ψi, Hi),

and which is, if Hi is nonempty, under a hiding operator that hides Hi. The new
“fair” system is denoted by Pfair .

For technical convenience, we will from now on assume that any actions that
are hidden in an expression of the form hideX inR only occur in the subsystem
R. We do not lose any generality in this assumption; if it does not hold we
can simply rename the hidden actions in hideX in R with new, unique names
without affecting the end result. Also, we will denote by F the actions that are
used in some fairness formula, and by Fh those of F that are also used in some
hiding operator.

Pfair can be (and typically is) infinite. Therefore, our aim in the following
algorithm is to construct a finite representation of Pfair , that is, a finite LTS
P ∗fair such that

556 A. Puhakka

P ∗fair ;CFFD Pfair .

Step 1: Construct a system P † in the same way as P except that the actions
Fh are not hidden.

The significance of this step is revealed by the following proposition, which
shows that the fairness operators and the hiding of the related actions can be
moved to the outmost level in the system, so that we can examine their effect
on the remaining finite parameter system P †. The proof is based on the context-
independence property and other properties of operators. The (lengthy) details
are given in [20].

Proposition 3. Pfair ;CFFD hide Fh in Ψ
||
1 (· · ·Ψ ||k (P †) · · ·).

Intuitively, any divergence (cycle of τ -actions) that shows up in the complete
system is caused by a cycle consisting of actions Fh ∪ {τ} in P †. Furthermore,
each such cycle is a part of a unique maximal strongly connected component of
actions Fh ∪ {τ}. Next we identify all such components (see the next section for
illustrating examples), which we will call Fτ

h-components .

Step 2: Taking into account only the actions Fh∪{τ} in P †, identify the maximal
nontrivial strongly connected components C1, . . . , Ct (e.g., by using Tarjan’s
algorithm [1]).

For each component C, we remove all transitions and states of C except
one state sC , which can be any state of C, but if C contains the initial state,
this is selected as sC . We redirect transitions in and out of C into sC . If there
are transitions between states of C which themselves are not part of C, those
transitions become loops from sC to itself. We also check (see below) whether
C contains an infinite execution (starting from any state) that is allowed by the
fairness formulas. If it does, we add a τ -loop from sC to itself. When this has
been done for each C, we hide the actions Fh.

Step 3: for C in [C1, . . . , Ct] do
if ŝP † ∈ SC then sC := ŝP † else choose any sC ∈ SC

SP † := SP † \ (SC \ {sC})
ΔP † := {(s1, b, s2) | ∃(s′1, b, s′2) ∈ ΔP † \ΔC :

(s′1 /∈ SC ∧ s1 = s′1 ∨ s′1 ∈ SC ∧ s1 = sC)∧
(s′2 /∈ SC ∧ s2 = s′2 ∨ s′2 ∈ SC ∧ s2 = sC)}

if C has an infinite execution η such that η |= ψ1, . . . , ψk then
ΔP † := ΔP † ∪ {(sC , τ, sC)}

Step 4: Hide the actions Fh.

The result of the above steps is our finite model P ∗fair . We will show that
P ∗fair is an exact model of Pfair if one exists, and otherwise it is a conservative
estimate of it. However, let us first consider the complexity of the construc-
tion. Other parts of the algorithm can be done in time linear in the number of
states and transitions, except checking for allowed infinite executions in a com-
ponent. Infinite sequences of τ -actions are allowed by the formulas and can be

Using Fairness Constraints in Process-Algebraic Verification 557

detected with a depth-first search. One way to detect allowed sequences with in-
finitely many Fh-actions is by using a variation of the Büchi automata [25] based
verification of linear temporal logic [10]. We can construct an automaton with
O(k

∏k
i=1 |ψi|) states that accepts precisely the infinite Fh-sequences that fulfill

the formulas ψ1, . . . , ψk; here, |ΔC | is the number of transitions in C, and |ψi| is
the length of the formula ψi. In this way we can show (see [20] for details) that
checking whether an Fτ

h-component C contains an acceptable infinite execution
can be done in time O(|ΔC | k

∏k
i=1 |ψi|).

The following result states that P ∗fair has precisely the same stable failures
and divergences as Pfair . This can be shown by a modification of the proof of The-
orem 40 in [20] to cater for the hiding set H ; the proof is based on the fact that
replacing the components preserves traces of ΣP -actions in the system, on the
definition of compatibility, and the fact and that our construction adds τ -loops
to precisely the states that replace components with allowed infinite executions.

Proposition 4. Sfail (P ∗fair) = Sfail(Pfair) and Divtr(P ∗fair) = Divtr(Pfair)

It only remains to consider the set of infinite traces, Inftr . It can be shown
that our construction preserves both finite and infinite traces, so Inftr(P ∗fair) =
Inftr(P). Therefore, the question is now whether the fairness operators also
preserve infinite traces, that is, whether Inftr(Pfair) = Inftr(P). If they do, then
our model P ∗fair and Pfair are equivalent. However, if they do not, then it turns
out that a finite model of Pfair does not even exist. This is stated in the following;
we again refer to the proof of Theorem 40 in [20].

Theorem 3. If Inftr(Pfair) = Inftr(P) then P ∗fair ;CFFD Pfair .
If Inftr(Pfair) = Inftr(P), then there does not exist a finite LTS Q ;CFFD Pfair .

We still need an algorithm for checking whether Inftr(Pfair) = Inftr(P). Unfor-
tunately, it turns out that the complexity of checking this is higher than that
of constructing the model P ∗fair . By using a similar construction as above we
can reduce this problem to language containment of Büchi automata, and solve
it by using the Büchi automaton complementation construction in [24] (with a
small modification to include τ -actions), as shown in [20]. The result is that the
problem can be decided in PSPACE (|SP † | k

∏
1≤i≤k |ψi|).

Fortunately, even in the negative case, P ∗fair can only have some infinite
traces that Pfair does not have. Therefore, in every case P ∗fair , the product of
the algorithm, is a conservative estimate of the possibly infinite Pfair , and so it
is always safe to use it in place of Pfair in verification.

Theorem 4. Pfair ≤CFFD P ∗fair .

It is also important to remember that the system P † which is used as a
parameter in the construction, is not the complete state-space of the original
system, but an intermediate system where the actions of the fairness formulas
have been left visible. P † can be constructed by using any semantics-preserving
reduced LTS construction method.

558 A. Puhakka

7 Examples

As a simple example, consider a semaphore S that controls the access of two
processes P1 and P2 to a critical region, as shown in Figure 3. We look at the
system from the point of view of P2, and hide all actions except use res2, and
reduce the system with a CFFD-preserving reduction algorithm. We notice that
there is a divergence in the result, so P2 may never get access to the resource.
We therefore add the fairness constraint ψ ≡ ��p1 ⇒ ��p2 which forces S to
eventually give access to P2. Notice that we cannot add the constraint directly to
S; intuitively, this is because if S were connected with a different P2-process that
could refuse p2, this would create a new deadlock. However, when we connect
P1 and P2 to S, we can see that the system is in COMP (ψ, {p2}). We construct
the LTS P †, and the result has one Fτ

h-component, as shown in Figure 4. This
Fτ

h-component does not have an allowed infinite execution, so when we finish the
algorithm and reduce the result, we get the rightmost process in Figure 4, and
this behaviour is clearly satisfactory.

We will next consider the classic example of the alternating bit protocol [4],
which is used for sending data messages over unreliable channels. The protocol is
based on retransmitting data messages for which an acknowledgement message
does not arrive in time, and using sequence numbers 0 and 1 to distinguish new
messages from retransmissions. The sender S, receiver R, data channel DC and
acknowledgement channel AC of the protocol are shown in Figure 5.

After receiving a message, DC chooses either the action passd (pass the
data message through) or losed (lose it). AC works similarly. When the entire
system is constructed and reduced, we see that there are two τ -loops in the
behaviour, as shown in Figure 6. We can guess that these represent an infi-
nite sequence of message losses and retransmissions. Therefore, we will first try
applying the condition ψDC ≡ ��losed ⇒ ��passd on DC. We notice that
DC ∈ COMP(ψDC , {passd}), so we can use it on DC. We obtain a P † that

P1 S P2 P

hide X in +CFFD|| ||
τ

τ
p

1
p

2

p
2

use_res

v

use_res 1 2

use_res 2

use_res{ v, , p }use_res , }{ 1 v p ,{ 11 1 2 2 2 use_res 2,2 ,1 2

v1 2

, p p v v }{

v2v
1

p
1

}

Fig. 3. The semaphore system (alphabets shown), where X = {p1, v1, use res1, p2, v2}

P † Pfair

p
2

p
1 use_res 2

use_res 2

Fig. 4. P † of the semaphore system with an Fτ
h-component shown, and the final result

Using Fairness Constraints in Process-Algebraic Verification 559

rd0

rd1

rd0sa0

sa1

rec

R

recrd1

sd1 send

ra0ra1

send
S

ra1

sd0

ra0

sd0
sd1

DC

rd0

rd1

sa0
sa1

AC

ra0

ra1

losed passd

losedpassd

passa

losea

losea

passa

Fig. 5. The processes of the alternating bit protocol

ττ

τ

τ τ
τ

rec

send send

rec

send

rec

Fig. 6. The reduced behaviour of ABP without fairness, with ψDC , and with ψDC∧ψAC

has 11 states and four Fτ
h-components, one of which has an allowed infinite ex-

ecution. After replacing the components, hiding, and reducing the result, we
get the second process in Figure 6. We notice that one of the divergences has
disappeared, but one remains. We therefore add a similar requirement for the
acknowledgement channel, ψAC ≡ ��losea ⇒ ��passa. In the new P † (with 52
states), none of the Fτ

h-components contain an allowed infinite execution. The fi-
nal result is the rightmost LTS in Figure 6, which clearly satisfies any reasonable
specification of the behaviour of the protocol.

8 Conclusions

In this article we have shown how a class of fairness constraints can be added to
process-algebraic systems in a consistent way. We have presented an algorithm
for constructing a finite representation of the resulting system in every case that
one exists. The result can be placed as a component in further compositional
analysis just like any other LTS. A remaining task is to build the approach into
tools supporting LTS-based verification. Also, we believe that the theory can be
extended to other types of fairness constraints and a wider class of systems.

References

1. Aho, A. V., Hopcroft, J. E. & Ullman, J. D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company 1974, 470 p.

2. Alpern, B. & Schneider, F. B.: “Defining Liveness”. Information Processing Letters,
Vol. 21 (No. 4) 1985, North-Holland, pp. 181–185.

560 A. Puhakka

3. Apt, K., Francez, N. & Katz, S.: “Appraising Fairness in Languages for Distributed
Programming”. Distributed Computing Vol. 2 (No. 4) 1988, Springer-Verlag, pp.
226–241.

4. Bartlett, K. A., Scantlebury, R. A. & Wilkinson, P. T.: “A Note on Reliable Full-
Duplex Transmission Over Half-Duplex Links”, Communications of the ACM Vol.
12 (No. 5) 1969, pp. 260–261.

5. Brinksma, E., Rensink, A. & Vogler, W.: “Fair Testing”. Proc. CONCUR’95,
LNCS 962, Springer-Verlag 1995, pp. 313–327.

6. Clarke, E. M. & Emerson, E. A.: “Synthesis of Synchronization Skeletons for
Branching Time Temporal Logic”. Proc. Logic in Programs: Workshop, 1981,
LNCS 131, Springer-Verlag 1981, pp. 52–71.

7. Cleaveland, R. & Lüttgen, G.: “A Semantic Theory for Heterogeneous System
Design”. Proc. FST TCS 2000. LNCS 1974, Springer-Verlag 2000, pp. 312–324.

8. Costa, G. & Stirling, C.: “A Fair Calculus of Communicating Systems”. Acta In-
formatica Vol. 21 (No. 1) 1984, Springer-Verlag, pp. 417–441.

9. Francez, N.: Fairness. Springer-Verlag 1986, 295 p.
10. Gerth, R., Peled, D., Vardi M. Y. & Wolper, P.: “Simple On-the-fly Automatic

Verification of Linear Temporal Logic”. Proc. Fifteenth IFIP International Sym-
posium on Protocol Specification, Testing and Verification, 1995, IFIP Conference
Proceedings 38, pp. 3–18.

11. Hennessy, M.: “An Algebraic Theory of Fair Asynchronous Communicating Pro-
cesses”. Theoretical Computer Science Vol. 49 (Nos 2,3) 1987, North-Holland,
pp. 121–143.

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall 1985, 256 p.
13. Kaivola, R. & Valmari, A.: “The Weakest Compositional Semantic Equivalence

Preserving Nexttime-less Linear Temporal Logic”. Proc. CONCUR’92, LNCS 630,
Springer-Verlag 1992, pp. 207–221.

14. Lehmann, D., Pnueli, A. & Stavi, J.: “Impartiality, Justice and Fairness: The Ethics
of Concurrent Termination”. Proc. ICALP’81, LNCS 115, Springer-Verlag 1981,
pp. 264–277.

15. Manna, Z. & Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems,
Volume I: Specification. Springer-Verlag 1992, 427 p.

16. Milner, R.: Communication and Concurrency. Prentice-Hall 1989, 260 p.
17. Older, S.: “Strong Fairness and Full Abstraction for Communicating Processes”.

Information and Computation Vol. 163 (No. 2) 2000, pp. 471–509.
18. Parrow, J.: Fairness Properties in Process Algebra with Applications in Communi-

cation Protocol Verification. Ph.D. thesis, Uppsala University, 1985, 176 p.
19. Pnueli, A.: “A Temporal Logic of Concurrent Programs”. Theoretical Computer

Science, Vol. 13, 1981, North Holland, pp. 45–60.
20. Puhakka, A.: Using Fairness in Process-Algebraic Verification. Tampere Uni-

versity of Technology, Institute of Software Systems Report 24, 2003.
http://www.cs.tut.fi/ohj/VARG/publications/

21. Puhakka, A. & Valmari, A.: “Liveness and Fairness in Process-Algebraic Verifica-
tion”. Proc. CONCUR’01, LNCS 2154, Springer-Verlag 2001, pp. 202–217.

22. Queille, J. P. & Sifakis, J.: “Specification and Verification of Concurrent Systems
in CESAR”. Proc. Fifth International Symposium on Programming, LNCS 137,
Springer-Verlag 1982, pp. 337–351.

23. Roscoe, A. W.: The Theory and Practice of Concurrency. Prentice-Hall 1998, 565 p.
24. Sistla, A. P., Vardi, M. Y. & Wolper, P.: “The Complementation Problem for Büchi

Automata with Applications to Temporal Logic”. Theoretical Computer Science
Vol. 49 (Nos 2,3) 1987, North Holland, pp. 217–237.

Using Fairness Constraints in Process-Algebraic Verification 561

25. Thomas, W.: “Automata on Infinite Objects”. In van Leeuwen, J., editor, Handbook
of Theoretical Computer Science, Volume B, Elsevier 1990, pp. 133–191.

26. Valmari, A.: “A Chaos-Free Failures Divergences Semantics with Applications to
Verification”. Millennial Perspectives in Computer Science: Proceedings of the 1999
Oxford–Microsoft Symposium in honour of Sir Tony Hoare, Palgrave ”Cornerstones
of Computing” series, 2000, pp. 365–382.

27. Valmari, A. & Tienari, M.: “Compositional Failure-Based Semantic Models for
Basic LOTOS”. Formal Aspects of Computing Vol. 7 (No. 4) 1995, Springer-Verlag,
pp. 440–468.

Maximum Marking Problems with Accumulative
Weight Functions

Isao Sasano1, Mizuhito Ogawa2, and Zhenjiang Hu3

1 RIEC, Tohoku University,
2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

sasano@riec.tohoku.ac.jp
2 School of Information Science, JAIST,

1-1 Asahidai, Nomi-shi, Ishikawa 923-1292, Japan
mizuhito@jaist.ac.jp

3 Department of Mathematical Informatics,
School of Information Science and Technology, University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
hu@mist.i.u-tokyo.ac.jp

Abstract. We present a new derivation of efficient algorithms for a class
of optimization problems called maximum marking problems. We extend
the class of weight functions used in the specification to allow for weight
functions with accumulation, which is particularly useful when the weight
of each element depends on adjacent elements. This extension of weight
functions enables us to treat more interesting optimization problems such
as a variant of the maximum segment sum problem and the fair bonus
distribution problem. The complexity of the derived algorithm is linear
with respect to the size of the input data.

Keywords: Program derivation, Maximum marking problem, Accumu-
lative weight function, Optimization problem.

1 Introduction

One way to guarantee the correctness of programs is to derive programs from
specification [PP96, BdM96]. For this approach to be practical, we need high-
level theorems that provide solutions for a wide class of problems. Such theorems
should also guide the programmer in casting the specification in a form that
fulfills the prerequisite conditions of the theorems.

The optimization theorem presented by Sasano et al. [SHTO00, SHT01] is
such a theorem, designed for solving the maximum marking problem [Bir01] (also
called the maximum weightsum problem). The core of the theorem is generic
dynamic programming; it clarifies a class of problems that can be solved by
dynamic programming.

The maximum marking problem, MMP for short, is the problem of mark-
ing the entries of some given data structure D to maximize a given weight
function w under a given constraint p. This covers a wide variety of problems

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 562–578, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Maximum Marking Problems with Accumulative Weight Functions 563

[BLW87, BPT92] (by instantiating D, p and w), including the well-known maxi-
mum segment sum problem [Bir89, Gri90], the maximum independent set prob-
lem [SHTO00], some knapsack problems [SHTO01], some optimized range prob-
lems in data mining [SHTO02], and the register allocation problem [OHS03].

MMP was first considered in a work on graph algorithms [BLW87], which
showed that MMP can be solved in linear time for a certain class of graphs.
Borie et al. [BPT92] presented a way to derive a linear time algorithm for MMP
from properties described by logical formulae. Their work is elegant in theory;
but prohibitive in practice due to the huge constant factor. Our work [SHTO00]
facilitated a flexible description of the constraint p by recursive functions and
reduced the constant factor drastically. Our subsequent work [SHT01] extended
the way the constraint p is described with accumulation. Bird showed a relational
derivation for MMP [Bir01], and we demonstrated how to apply the optimization
theorem to program analysis [OHS03].

Existing theorems, in a functional [SHTO00], logical [BPT92], or relational
[Bir01] setting, can deal with a general data structure D and a powerful con-
straint p. However, they require the weight function w to be in homomorphic
form, and hence do not allow for some simple modifications of the weight func-
tions. For instance, consider a variant of the maximum segment sum problem,
where the sum is computed by alternately changing the sign. Even this simple
example cannot be dealt with by the existing theorems, because the distribu-
tivity condition with respect to maximum does not hold, but is required by the
theorems.

In this paper, we present two new optimization theorems (calculational rules)
for deriving efficient algorithms for a wider class of MMP, by allowing weight
functions to be accumulative both in a top-down and bottom-up way. These
weight functions are useful when the weight of each element depends on adja-
cent elements. This extension enables us to treat more interesting optimization
problems such as a variant of the maximum segment sum problem (which re-
quires a top-down accumulative weight function) and the fair bonus distribution
problem (which requires a bottom-up accumulative weight function). The de-
rived algorithm is linear in the size of the data.

Throughout the paper we will use the notation of Haskell [PJH99], a func-
tional language, to describe our derivation as well as derived programs.

2 Preliminaries

In this section we define maximum marking problems on polynomial data types.
We describe polynomial data types in the following form:

D α = A1 (α,D1, . . . , Dn1) | A2 (α,D1, . . . , Dn2) | · · · | Ak (α,D1, . . . , Dnk
)

where every Di is just Dα, and Ai’s are called data constructors, applied to
an element of type α and bounded number of recursive components. Though
they seem restrictive, these polynomial data types are powerful enough to cover

564 I. Sasano, M. Ogawa, and Z. Hu

commonly used data types such as lists, binary trees, and rooted trees [BLW87].
Moreover, other data types like rose trees, a regular data type defined by

RTree α = Node α [RTree α],

can be encoded by a polynomial data type (see Section 4.3). The fold operation
foldD on D α is defined as follows:

foldD ϕ1 . . . ϕk = f
where f (Ai (x, t1, . . . , tni)) = ϕi (x, f t1, . . . , f tni) (i = 1, . . . , k).

Maximum marking problems are specified on polynomial data types in the
following form:

max w ◦ filter p ◦ genD M.

The function genD generates all possible markings by using a finite list of marks
M :: [Mark]:

genD :: [Mark] → D α→ [D (α,Mark)].

Mark is the type of marks. We treat data types that have a single type parameter
α, and the elements of type α in the input data are the marking targets. We
implement marking as a pair of an element and a mark, so the type of marked
elements is (α,Mark) and the type of marked data is D (α,Mark).

The functions max and genD are defined as follows:

max w [] = error ”No solution.”
max w [x] = x
max w (x : xs) = bmax w x (max w xs)
bmax f a b = if f a > f b then a else b
genD M = foldD ξ1 . . . ξk
ξi (x, ts1, . . . , tsni) = [Ai (x∗, t1, . . . , tni) | x∗ ← [(x,m) | m←M],

t1 ← ts1, . . . , tni ← tsni]
(i = 1, . . . , k)

Here we define mutumorphisms on the data type D α.

Definition 1 (Mutumorphisms). Functions f1, f2, . . . , fn are mutumor-
phisms on a recursive data type D α if each function fi is defined mutually
by

fi (Aj (x, t1, . . . , tnj)) = ϕij (x, h t1, . . . , h tnj)
where h = (f1 � f2 � . . . � fn) (j = 1, . . . , k).

Note that f1 � f2 � . . . � fn represents a function defined as follows:

(f1 � f2 � . . . � fn) x = (f1 x, f2 x, . . . , fn x).

We say that a function f is finite mutumorphic [SHTO00] if the function f is
defined as mutumorphisms along with other functions, each of which has finite
range. A finite mutumorphic function f can be represented as a composition of
a projection function π whose domain is finite and a folding function:

f = π ◦ foldD ϕ1 ϕ2 . . . ϕk.

Maximum Marking Problems with Accumulative Weight Functions 565

In the following sections, we use the following fusion theorem:

Theorem 1 (Fusion). If the following equation holds for i = 1 . . . k,

f (φi (x, t1, . . . , tni)) = ψi (x, f t1, . . . , f tni)

then the following equation holds:

f ◦ foldD φ1 . . . φk = foldD ψ1 . . . ψk.

3 Top-Down Accumulative Weight Functions

In this section we define top-down accumulative weight functions on polynomial
data types and present a new optimization theorem.

3.1 The Top-Down Optimization Theorem

Definition 2 (Top-Down Accumulative Weight Function). A function w
is top-down accumulative if it is defined as follows:

w :: D (α,Mark) → Weight
w x = w′ x e0
w′ :: D (α,Mark) → Acc→ Weight
w′ (Ai (x, t1, . . . , tni)) e = φi (x, w′ t1 (δi1 x e), . . . , w′ tni (δini x e)) e

where the range of δij is finite and φi (i = 1, . . . , k) satisfies the following dis-
tributivity condition wrt maximum:

maximum {φi (x, w1, . . . , wni) e | w1 ∈ S1, . . . , wni ∈ Sni} =
φi (x, maximum S1, . . . ,maximum Sni) e

Theorem 2 (Top-Down Optimization Theorem). If property p is finite
mutumorphic:

p = π ◦ foldD ρ1 . . . ρk

and weight function w is top-down accumulative, MMP specified by

max w ◦ filter p ◦ genD M

has an O(|Acc|d · |C|d · |M | · n) algorithm described by

opttd φ1 . . . φk δ11 . . . δknk
(λ(c, e). (π c) ∧ (e = e0)) ρ1 . . . ρk M Acc

where C is the domain of π, M is the list of marks, d = maximum {ni | 1 ≤
i ≤ k}, and n is the size of the input data. The definition of the function opttd
is given in Fig. 1.

3.2 Proof of the Top Down Optimization Theorem

Here we prove Theorem 2 by showing the correctness and complexity of the
function opttd.

566 I. Sasano, M. Ogawa, and Z. Hu

opttd φ1 . . . φk δ11 . . . δknk
accept ρ1 . . . ρk M Acc =

third ◦ max second ◦ filter (accept ◦ first) ◦ foldD ζ1 . . . ζk

where ζi (x, t1, . . . , tni) =
eachmax [((ρi (x∗, c1, . . . , cni), e),

φi (x∗, w1, . . . , wni) e,
Ai (x∗, r1, . . . , rni)) |

x∗ ← [(x,m) | m ← M],
((c1, e1), w1, r1) ← t1, · · · , ((cni , eni), wni , rni)← tni ,
e ← Acc, δi1 x∗ e=e1, . . . , δini x∗ e=eni] (i=1, . . . , k)

eachmax xs = foldl f [] xs
where f [] (c, w, cand) = [(c, w, cand)]

f ((c, w, cand) : opts) (c′, w′, cand′) =
if c == c′ then if w > w′ then (c, w, cand) : opts

else opts + +[(c′, w′, cand′)]
else (c, w, cand) : f opts (c′, w′, cand′)

first (x, ,) = x, second (, x,) = x, third (, , x) = x

Fig. 1. Optimization function opttd

Correctness. We show the correctness by transforming the specification into
opttd as in Fig. 2. In the transformation we use the auxiliary functions ζ

′
i (i =

1, . . . , k) and an underline notation for simple representation:

ζ
′
i (x, t1, . . . , tni) =

[((ρi (x∗, c1, . . . , cni), e), φi (x∗, w1, . . . , wni) e, Ai (x∗, r1, . . . , rni))
| x∗ ← [(x,m) | m←M],
((c1, e1), w1, r1) ← t1, . . . , ((cni , eni), wni , rni) ← tni ,
e← Acc, δi1 x∗ e = e1, . . . , δini x∗ e = eni]

x = λ((, y), ,). x == y

The first step is simply unfoldings of p and genD.
The second step is

∀ε. foldD ξ1 . . . ξk = map third ◦ filter ε ◦ foldD ζ
′
1 . . . ζ

′
k,

which is proved by induction on the structure of input data. In the case of
Ai (x, t1, . . . , tni),

RHS
= { unfolding of foldD }
map third (filter ε
[((ρi (x∗, c1, . . . , cni), e), φi (x∗, w1, . . . , wni) e, Ai (x∗, r1, . . . , rni))
| x∗ ← [(x,m) | m←M], ((c1, e1), w1, r1) ← foldD ζ

′
1 . . . ζ

′
k t1, . . . ,

((cni , eni), wni , rni) ← foldD ζ
′
1 . . . ζ

′
k tni ,

e← Acc, δi1 x∗ e = e1, . . . , δini x∗ e = eni])

Maximum Marking Problems with Accumulative Weight Functions 567

max w ◦ filter p ◦ genD M
= { unfold p and genD }

max w ◦ filter (π ◦ foldD ρ1 . . . ρk) ◦ foldD ξ1 . . . ξk

= { ∀ε. foldD ξ1 . . . ξk = map third ◦ filter ε ◦ foldD ζ
′
1 . . . ζ

′
k }

max w ◦ filter (π ◦ foldD ρ1 . . . ρk) ◦map third ◦ filter e0 ◦ foldD ζ
′
1 . . . ζ

′
k

= { filter p ◦map f = map f ◦ filter (p ◦ f) }
max w ◦map third ◦ filter (π ◦ foldD ρ1 . . . ρk ◦ third) ◦ filter e0 ◦ foldD ζ

′
1 . . . ζ

′
k

= { max w ◦map third ◦ foldD ζ
′
1 . . . ζ

′
k = third ◦max second ◦ foldD ζ

′
1 . . . ζ

′
k }

third ◦max second ◦ filter (π ◦ foldD ρ1 . . . ρk ◦ third) ◦ filter e0 ◦ foldD ζ
′
1 . . . ζ

′
k

= { filter p ◦ filter q = filter q ◦ filter p }
third ◦max second ◦ filter e0 ◦ filter (π ◦ foldD ρ1 . . . ρk ◦ third) ◦ foldD ζ

′
1 . . . ζ

′
k

= {map (foldD ρ1 . . . ρk ◦ third) ◦ foldD ζ
′
1 . . . ζ

′
k =

map (fst ◦ first) ◦ foldD ζ
′
1 . . . ζ

′
k}

third ◦max second ◦ filter e0 ◦ filter (π ◦ fst ◦ first) ◦ foldD ζ
′
1 . . . ζ

′
k

= { max second = max second ◦ eachmax }
third ◦max second ◦ eachmax ◦ filter e0 ◦ filter (π ◦ fst ◦ first) ◦ foldD ζ

′
1 . . . ζ

′
k

= { filter p ◦ filter q = filter (p ∧ q) }
third ◦max second ◦ eachmax ◦ filter ((π ◦ fst ◦ first) ∧ e0) ◦ foldD ζ

′
1 . . . ζ

′
k

= { eachmax ◦ filter ((π ◦ fst ◦ first) ∧ e0)=filter ((π ◦ fst ◦ first) ∧ e0) ◦ eachmax }
third ◦max second ◦ filter (π ◦ fst ◦ first ∧ e0) ◦ eachmax ◦ foldD ζ

′
1 . . . ζ

′
k

= { eachmax ◦ foldD ζ
′
1 . . . ζ

′
k = foldD ζ1 . . . ζk }

third ◦max second ◦ filter ((π ◦ fst ◦ first) ∧ e0) ◦ foldD ζ1 . . . ζk

= { fold opttd }
opttd φ1 . . . φk δ11 . . . δknk

(λ(c, e). (π c) ∧ (e == e0)) ρ1 . . . ρk M Acc

Fig. 2. A proof of the top-down optimization theorem

= { distributing filter }
map third
[((ρi (x∗, c1, . . . , cni), ε), φi (x∗, w1, . . . , wni) ε, Ai (x∗, r1, . . . , rni))
| x∗ ← [(x,m) | m←M],

((c1, e1), w1, r1) ← filter δi1 x∗ ε (foldD ζ
′
1 . . . ζ

′
k t1), . . . ,

((cni , eni), wni , rni) ← filter δini x∗ ε (foldD ζ
′
1 . . . ζ

′
k tni)]

= { distributing map }
[Ai (x∗, r1, . . . , rni)
| x∗ ← [(x,m) | m←M],

((c1, e1), w1, r1) ← map third (filter δi1 x∗ ε (foldD ζ
′
1 . . . ζ

′
k t1)), . . . ,

((cni , eni), wni , rni) ← map third (filter δini x∗ ε (foldD ζ
′
1 . . . ζ

′
k tni))]

= { induction hypothesis }
[Ai (x∗, r1, . . . , rni)
| x∗ ← [(x,m) | m←M], ((c1, e1), w1, r1) ← foldD ξ1 . . . ξk t1, . . . ,

((cni , eni), wni , rni) ← foldD ξ1 . . . ξk tni]

568 I. Sasano, M. Ogawa, and Z. Hu

= { folding of foldD }
LHS.

The third step is the commutativity of map and filter [Bir87].
The fourth step is

max w ◦map third ◦ foldD ζ
′
1 . . . ζ

′
k = third ◦max second ◦ foldD ζ

′
1 . . . ζ

′
k.

This means that the second element is the weight of the third element, which is
proved by induction on the structure of the argument of type D α.

The fifth step is commutativity of filters.
The sixth step is

map (foldD ρ1 . . . ρk ◦ third) ◦ foldD ζ
′
1 . . . ζ

′
k = map (fst ◦first) ◦ foldD ζ

′
1 . . . ζ

′
k.

This equation means the first part of the first element is equal to the value of
foldD ρ1 . . . ρk applied to the third element, which is proved by induction on
the structure of the argument of type D α.

The seventh step is

max second = max second ◦ eachmax.

This holds because max second returns the rightmost optimal solution, and
eachmax returns a list which consists of the rightmost optimal solution for each
value of the first element, preserving the order.

The eighth step is an equation concerning filter, which can be proved by
induction on the structure of the argument list.

The ninth step is

eachmax ◦ filter ((π ◦ fst ◦ first) ∧ e0) = filter ((π ◦ fst ◦ first) ∧ e0) ◦ eachmax

which means the commutativity between the functions filter and eachmax. This
equation holds because the predicate ((π ◦ fst◦first)∧ e0) is concerned only with
the first elements, and the functions filter and eachmax preserve the order.

The tenth step is

eachmax ◦ foldD ζ
′
1 . . . ζ

′
k = foldD ζ1 . . . ζk

which follows from the fusion theorem (Theorem 1). The prerequisite condition
for applying the fusion theorem is that the equations below hold for i = 1, . . . , k:

eachmax (ζ
′
i (x, t1, . . . , tni)) = ζi (x, eachmax t1, . . . , eachmax tni).

Since eachmax and ζ
′
i preserve the order, the following equations hold for i =

1, . . . , k:

ζi (x, t1, . . . , tni) = ζi (x, eachmax t1, . . . , eachmax tni).

Maximum Marking Problems with Accumulative Weight Functions 569

msas = third . foldr1 (bmax second) . filter (accept . first) . h
accept ((c1,c2,c3),e) = c1 && e == True
h [] = [((rho1,e), phi1 e, [])| e <- [True,False]]
h (x:xs) = eachmax [((rho2 y c, e), phi2 y w e, y:r)

| y <- [(x,True),(x,False)],
((c,e’),w,r) <- h xs,
e <- [True,False], delta y e == e’]

phi1 e = 0
phi2 y w e = if kind y then (if e then weight y else - weight y) + w

else w
delta y e = if kind y then not e else e
rho1 = (True, True, True)
rho2 y (c1,c2,c3) = if kind y then (c2,c2,False) else (c1,c3,c3)

Fig. 3. A linear-time Haskell program for the MSAS problem

Since ζi = eachmax ◦ ζ ′
i , the prerequisite condition holds.

The eleventh step is simply the folding of opttd.

Complexity. The complexity of the function opttd:

opttd φ1 . . . φk δ11 . . . δknk
(λ(c, e). (π c) ∧ (e = e0)) ρ1 . . . ρk M Acc

is O(|Acc|d+1 · |C|d+1 · |M | · n) where C is the domain of π, M is the list of
marks, d = maximum {ni | 1 ≤ i ≤ k}, and n is the size of the input data. The
complexity follows from that the complexity of the function

ζi (x, t1, . . . , tni)

is O(|Acc|d · |C|d · |M | · n) and it is computed n times. The function ζi firstly
generates a list that contains at most |Acc| · |C| · |M | elements. Next, the function
eachmax reduces it to a list that has at most |Acc| · |C| elements. With a list
implementation (as in Fig. 1), this reduction takes O(|Acc|d+1 · |C|d+1 · |M |)
time; however, with an array implementation (as in [SHT01]), it is reduced to
O(|Acc|d · |C|d · |M |) time. For readability, throughout the paper, we describe
algorithms by list implementations.

3.3 The Maximum Segment Alternate Sum Problem

Consider the following list problem: find a consecutive sublist from the input
list such that the selected sublist has the maximum alternate sum, where the
alternate sum is computed by alternately changing the sign. For example, given
a list [−3, 5, 2, 7, 6], the sublist [5, 2, 7] gives the maximum alternate sum of
5 + (−2) + 7 = 10 among all the consecutive sublists (segments) in the in-
put list. We call this the maximum segment alternate sum problem (MSAS for
short).

570 I. Sasano, M. Ogawa, and Z. Hu

The property p and the weight function w are written as follows:

p = π0 ◦ foldr ρ (True,True,True)
where ρ x (r0, r1, r2) = if kind x then (r1, r1,False) else (r0, r2, r2)

π0 (r0, r1, r2) = r0
w xs = w′ xs True
w′ [] e = 0
w′ (x : xs) e = φcons x e (w′ xs (δ x e))
φcons x e r = if kind x then

(if e then weight x else − weight x) + r
else r

kind (x,m) = m
weight (x,m) = x

where φcons satisfies the following distributivity condition:

maximum {φcons x e w | w ∈ S} = φcons x e (maximum S).

The function foldr is a folding function on lists [Bir98]. Applying Theorem 2
immediately yields the linear algorithm in Fig. 3. Note that the weight function
written in the following homomorphic form

w [] = 0
w (x : xs) = if kind x then weight x− w xs else w xs

does not meet the prerequisite of the theorems in previous work of MMP.

4 Bottom-Up Accumulative Weight Functions

In some cases as shown in Section 4.3, we need weight functions that accumulate
in bottom-up way.

4.1 The Bottom-Up Optimization Theorem

Definition 3 (Bottom-up Accumulative Weight Function). A weight
function w on D is bottom-up accumulative if w is defined as follows:

w :: D (α,Mark) → Weight
w (Ai (x, t1, . . . , tni)) = ηi x (w t1) . . . (w tni) (q t1) . . . (q tni)

(i = 1, . . . , k)
q :: D (α,Mark) → Acc
q = foldD σ1 . . . σk

where Acc is a finite set and ηi (i = 1, . . . , k) satisfies the following distributivity
condition:

maximum {ηi x w1 . . . wni e1 . . . eni | w1 ∈ S1, . . . , wni ∈ Sni} =
ηi x (maximum S1) . . . (maximum Sni) e1 . . . eni (j = 1, . . . , ni)

Theorem 3 (Bottom-up Optimization Theorem). If property p is finite
mutumorphic:

Maximum Marking Problems with Accumulative Weight Functions 571

optbu η1 . . . ηk σ1 . . . σk accept ρ1 . . . ρk M =
third ◦ max second ◦ filter (accept ◦ first) ◦ foldD ψ1 . . . ψk

where ψi (x, t1, . . . , tni) =
eachmax [((ρi (x∗, c1, . . . , cni), σi (x∗, q1, . . . , qni)),

ηi (x∗, (w1, q1), . . . , (wni , qni)),
Ai (x∗, r1, . . . , rni)) |

x∗ ← [(x, m) | m ← M],
((c1, q1), w1, r1)← t1, · · · , ((cni , qni), wni , rni) ← tni]

(i = 1, . . . , k)

Fig. 4. Optimization function optbu

p = π ◦ foldD ρ1 . . . ρk

and weight function w is bottom-up accumulative, MMP specified by

max w ◦ filter p ◦ genD M

has an O(|Acc|d · |C|d · |M | · n) algorithm described by

optbu η1 . . . ηk σ1 . . . σk (λ(c, q). π c) ρ1 . . . ρk M

where Acc is the range of q, C is the domain of π, M is the list of marks,
d = maximum {ni | 1 ≤ i ≤ k}, and n is the size of the input data. The
definition of the optimization function optbu is given in Fig. 4.

4.2 Proof of the Bottom-Up Optimization Theorem

Here we prove Theorem 3 by showing the correctness and complexity of the
function optbu.

Correctness. We show the correctness by transforming the specification into
optbu as in Fig. 5. In the transformation we use the auxiliary functions ψ

′
i (i =

1, . . . , k) defined by

ψ
′
i (x, t1, . . . , tni) = [((ρi (x∗, c1, . . . , cni), σi (x∗, q1, . . . , qni)),

ηi (x∗, (w1, q1), . . . , (wni , qni)),
Ai (x∗, r1, . . . , rni))

| x∗ ← [(x,m) | m ∈M],
((c1, q1), w1, r1) ← t1, · · · , ((cni , qni), wni , rni) ← tni].

The transformation is simpler than that in the proof of Theorem 2, so we omit
the detail.

Complexity. Similarly to opttd, the complexity is O(|Acc|d+1 · |C|d+1 · |M | ·n),
but O(|Acc|d · |C|d · |M | · n) is achieved if we use array implementation.

572 I. Sasano, M. Ogawa, and Z. Hu

max w ◦ filter p ◦ genD M
= { unfold p and genD }

max w ◦ filter (π ◦ foldD ρ1 . . . ρk) ◦ foldD ξ1 . . . ξk

= { foldD ξ1 . . . ξk = map third ◦ foldD ψ
′
1 . . . ψ

′
k }

max w ◦ filter (π ◦ foldD ρ1 . . . ρk) ◦map third ◦ foldD ψ
′
1 . . . ψ

′
k

= { filter p ◦map f = map f ◦ filter (p ◦ f) }
max w ◦map third ◦ filter (π ◦ foldD ρ1 . . . ρk ◦ third) ◦ foldD ψ

′
1 . . . ψ

′
k

= { max w ◦map third ◦ foldD ψ
′
1 . . . ψ

′
k = third ◦max second ◦ foldD ψ

′
1 . . . ψ

′
k }

third ◦max second ◦ filter (π ◦ foldD ρ1 . . . ρk ◦ third) ◦ foldD ψ
′
1 . . . ψ

′
k

= {map (foldD ρ1 . . . ρk ◦ third) ◦ foldD ψ
′
1 . . . ψ

′
k =

map (fst ◦ first) ◦ foldD ψ
′
1 . . . ψ

′
k}

third ◦max second ◦ filter (π ◦ fst ◦ first) ◦ foldD ψ
′
1 . . . ψ

′
k

= { max second = max second ◦ eachmax }
third ◦max second ◦ eachmax ◦ filter (π ◦ fst ◦ first) ◦ foldD ψ

′
1 . . . ψ

′
k

= { eachmax ◦ filter (π ◦ fst ◦ first) = filter (π ◦ fst ◦ first) ◦ eachmax }
third ◦max second ◦ filter (π ◦ fst ◦ first) ◦ eachmax ◦ foldD ψ

′
1 . . . ψ

′
k

= { eachmax ◦ foldD ψ
′
1 . . . ψ

′
k = foldD ψ1 . . . ψk }

third ◦max second ◦ filter (π ◦ fst ◦ first) ◦ foldD ψ1 . . . ψk

= { fold optbu }
optbu η1 . . . ηk σ1 . . . σk (π ◦ fst) ρ1 . . . ρk M

Fig. 5. A proof of the bottom-up optimization theorem

4.3 The Fair Bonus Distribution Problem

As an example for the bottom-up accumulative optimization theorem, we con-
sider the fair bonus distribution problem. There is some profit T to distribute to
people in a company. The company has a hierarchical structure; that is, supervi-
sor relationships form a tree rooted at the president. As a natural requirement,
the bonus of a supervisor should be more than that of a subordinate. In order
to reduce employee complaints, the sum of the difference in bonus between an
employee and his/her immediate supervisor should be minimized.

Fig. 6 shows an optimal distribution for T = 6. It is not easy to give an
optimal distribution, as there are many possibilities. A naive solution is to gen-
erate all the distributions, filter out the invalid distributions, and then select
the optimal one. Though this naive solution is exponential, we can reduce it to
O(T 4n) by specifying it as MMP and applying our new theorem.

Specification. Before we give the specification, we define the trees as follows:

RTree α = Node α [RTree α].

This data type is called a rose tree and is used to represent a general tree, each
node of which can have arbitrarily many children.

Maximum Marking Problems with Accumulative Weight Functions 573

1

3

0

00

2

Fig. 6. Fair bonus distribution (total = 6)

To specify the problem as MMP we need to define a finite list of marks M ,
property p, and weight function w.

We use marks to represent the amount of bonus given to each person, so

M = [0, 1, . . . , T].

Property p checks whether the sum of the distributed bonuses is T and
whether the bonus of each person is more than those of his/her subordinates.
Checking the sum can be written as follows:

csum t = (bonusSum t = T)
bonusSum (Node x []) = bonus x
bonusSum (Node x (t : ts)) = bonusSum t+ bonusSum (Node x ts)

Checking to determine whether the bonus of a supervisor is more than those of
his/her subordinates can be written as follows:

more (Node x []) = True
more (Node x (t : ts)) = bonus x > bonus (root t) ∧ more t

∧ more (Node x ts)
root (Node x ts) = x

Using these functions, property p can be defined as follows:

p t = csum t ∧ more t.

Weight function w sums up the difference of amount of bonus between an
employee and his or her immediate supervisor. In order to minimize the sum of
the difference, w returns a negative value.

w (Node x []) = 0
w (Node x (t : ts)) = bonus (root t)− bonus x + w t + w (Node x ts)

Therefore, we can specify the problem as follows:

fbd = max w ◦ filter p ◦ genRTree M.

When total T is not enough, there may be no solution. In such a case the
result is ”No solution.” by the definition of max w.

574 I. Sasano, M. Ogawa, and Z. Hu

x

t1 t2 tn...
r2b

r2b t1

r2b t2

r2b tn x

...

Fig. 7. Isomorphism between rose trees and leaf-labeled binary trees

Derivation. We have specified the bonus problem as an MMP. Rose tree is
not a polynomial data type, so we encode it by leaf-labeled binary tree as in
[SHTO00]:

BTree α = Tip α
| Bin (BTree α) (BTree α)

Rose trees and leaf-labeled binary trees are isomorphic and we exploit the iso-
morphism between them, as illustrated in Fig. 7, for converting functions on
rose trees into functions on leaf-labeled binary trees. Transformations between
the two structures can be implemented in linear time as follows:

r2b (Node x []) = Tip x
r2b (Node x (t : ts)) = Bin (r2b t) (r2b (Node x ts))
b2r (Tip x) = Node x []
b2r (Bin t1 t2) = let Node x ts = b2r t2 in Node x ((b2r t1) : ts)

Meanwhile, we would like to convert p :: RTree (α,M) → Bool into p′ ::
BTree (α,M) → Bool, which satisfies the following equation:

p′ t = p (b2r t)

By fusion, we get the following:

p′ t = csum′ t ∧ more′ t
csum′ t = bonusSum′ t == T
bonusSum′ (Tip x) = bonus x
bonusSum′ (Bin t1 t2) = bonusSum′ t1 + bonusSum′ t2
more′ (Tip x) = True
more′ (Bin t1 t2) = bonus (root′ t2) > bonus (root′ t1) ∧

more′ t1 ∧ more′ t2
root′ (Tip x) = x
root′ (Bin t1 t2) = root′ t2

Similarly, we convert w into w′, which satisfies w′ t = w (b2r t). By fusion,
we get the following:

w′ (Tip x) = 0
w′ (Bin t1 t2) = bonus (root′ t1)− bonus (root′ t2) + w′ t1 + w′ t2

Maximum Marking Problems with Accumulative Weight Functions 575

Using these functions we get the following form:

fbd = b2r ◦max w′ ◦ filter p′ ◦ genBTree M ◦ r2b.

Property p′ is defined as mutumorphisms with csum′, bonusSum′,more′, root′,
but bonusSum′ and root′ do not have finite range. As for bonusSum′, we use the
cutting method [SHTO01] by introducing the function cut.

csum′ t = cut (bonusSum′ t) == T
cut s = if s ≤ T then s else T + 1

Let cbs = cut ◦ bonusSum′, and we get

csum′ t = cbs t == T
cbs (Tip x) = cut (bonus x)
cbs (Bin t1 t2) = cut (cbs t1 + cbs t2).

As for root′, we let br = bonus ◦ root′. By fusion we get

br (Tip x) = bonus x
br (Bin t1 t2) = br t2.

Using these functions the property p′ is described as finite mutumorphisms.
The weight function w′ is described using the above function br as follows:

w′ (Tip x) = ηtip x
w′ (Bin t1 t2) = ηbin (w′ t1) (w′ t2) (br t1) (br t2)
ηtip x = 0
ηbin w1 w2 e1 e2 = e1 − e2 + w1 + w2

This is bottom-up accumulative, because ηbin satisfies the monotonicity:

w11 ≤ w12 ∧ w21 ≤ w22 ⇒ ηbin w11 w21 e1 e2 ≤ ηbin w12 w22 e1 e2

and hence satisfies the distributivity condition. By applying Theorem 3, we get
an O(T 6n) algorithm (by an array implementation, it is reduced to O(T 4n)) in
Fig. 8, where n is the size of the input tree. When total = 6, the expression

fbd (Node ’a’ [Node ’b’ [Node ’c’ [], Node ’d’ []],
Node ’e’ [], Node ’f’ []])

computes the following result:

Node (’a’,3) [Node (’b’,1) [Node (’c’,0) [],Node (’d’,0) []],
Node (’e’,2) [],Node (’f’,0) []].

576 I. Sasano, M. Ogawa, and Z. Hu

fbd = b2r . third . foldr1 (bmax second) .
filter (accept . first) . h . r2b

h (Tip x) = [(((m,True),m),0,Tip (x,m)) | m <- [0..total]]
h (Bin t1 t2) = eachmax [(((cut (c1+c2),q2 > q1 && m1 && m2),q2),

q1-q2+w1+w2,Bin r1 r2)
| (((c1,m1),q1),w1,r1) <- h t1,
(((c2,m2),q2),w2,r2) <- h t2]

accept ((a,b),c) = a == total && b

Fig. 8. An O(T 6n) Haskell program for the bonus problem

5 Comparison with the Relational Approach

One of the studies that is closely related to our work is derivation by relational
calculus [BdM96]. This work showed many optimization problems can be dealt
with in a uniform way by relational calculus. Bird showed that MMP can be dealt
with by relational calculus [Bir01]. Bird and de Moor gave theorems for deriving
efficient greedy, dynamic programming, and thinning algorithms, which cover
our optimization theorems. Though they are general, they are not good guides
for programmers to write specifications that meet their prerequisite condition.
For example, see the thinning theorem [BdM96]:

Theorem 4. [BdM96] If Q ⊆ R and S is monotonic on Q◦, then

min R ◦ foldF(thin Q ◦ Λ(S ◦ F ∈)) ⊆ min R ◦ Λ(foldF S).

This roughly means that the right side, min R ◦ Λ(foldF S), is the specification,
where S is a generating function and min R selects the optimal results, and
the left side is the derived algorithm. In the example of MMP, filter p ◦ gen
corresponds to Λ(foldF S) and max w corresponds to min R. In order to apply
this theorem, we have to find Q to satisfy the required conditions with respect
to S and R; this may be a little burdensome for programmers using the theorem.

Our target is less general, but still includes a useful class of problems called
MMP; we provide theorems to automatically derive efficient algorithms with a
more friendly interface that guides programmers in writing specifications.

6 Conclusions and Future Work

We have presented a new method for deriving efficient algorithms for a class of
optimization problems called maximum marking problems. The main contribu-
tion of this work is two new powerful optimization theorems, which allow weight
functions to be accumulative both in a top-down and bottom-up way. The ex-
amples, which cannot be handled by existing approaches, are variants of the
maximum segment sum problem and the fair bonus distribution problem. For
simplicity, we focused on weight functions and used only finite mutumorphisms

Maximum Marking Problems with Accumulative Weight Functions 577

as property descriptions; however, the extension for the property description
with accumulators (as in [SHT01]) is straightforward.

Our problem remained, as demonstrated in the fair bonus distribution prob-
lem, is that the derived algorithm may have a relatively large constant factor.
We expect reduction of the constant factor by using automata compression to
eliminate unnecessary states; our current method may produce redundant states
due to simple tupling of the property description functions.

Another plan is to apply our new method to more practical real-world prob-
lems such as program analysis. Our work [OHS03] solved register allocation
without rescheduling as a maximum marking problem. When taking into ac-
count the rescheduling of instructions, we will need accumulative information
and we expect that the new theorem would play a key role in deriving efficient
algorithms for solving these problems.

References

[BdM96] Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall,
1996.

[Bir87] Richard Bird. An introduction to the theory of lists. In Manfred Broy,
editor, Logic of Programming and Calculi of Discrete Design, volume F36
of NATO ASI Series, pages 5–42. Springer-Verlag, 1987.

[Bir89] Richard Bird. Algebraic identities for program calculation. The Computer
Journal, 32(2):122–126, 1989.

[Bir98] Richard Bird. Introduction to Functional Programming using Haskell (sec-
ond edition). Prentice Hall, 1998.

[Bir01] Richard Bird. Maximum marking problems. Journal of Functional Pro-
gramming, 11(4):411–424, 2001.

[BLW87] Marshall W. Bern, Eugene L. Lawler, and A. L. Wong. Linear-time com-
putation of optimal subgraphs of decomposable graphs. Journal of Algo-
rithms, 8:216–235, 1987.

[BPT92] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic gen-
eration of linear-time algorithms from predicate calculus descriptions of
problems on recursively constructed graph families. Algorithmica, 7:555–
581, 1992.

[Gri90] D. Gries. The maximum-segment-sum problem. In E. W. Dijkstra, edi-
tor, Formal Development of Programs and Proofs, pages 33–36. Addison-
Wesley, 1990.

[OHS03] Mizuhito Ogawa, Zhenjiang Hu, and Isao Sasano. Iterative-free program
analysis. In Proceedings of the 8th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’03), pages 111–123, Uppsala,
Sweden, August 2003. ACM Press.

[PJH99] Simon Peyton Jones and John Hughes, editors. The Haskell 98 Report.
February 1999. Available from http://www.haskell.org/definition/.

[PP96] Albert Pettrossi and Maurizio Proietti. Rules and strategies for transform-
ing functional and logic programs. ACM Computing Surveys, 28(2):360–
414, June 1996.

578 I. Sasano, M. Ogawa, and Z. Hu

[SHT01] Isao Sasano, Zhenjiang Hu, and Masato Takeichi. Generation of efficient
programs for solving maximum multi-marking problems. In Walid Taha,
editor, Semantics, Applications, and Implementation of Program Genera-
tion (SAIG’01), volume 2196 of Lecture Notes in Computer Science, pages
72–91, Firenze, Italy, September 2001. Springer-Verlag.

[SHTO00] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito Ogawa. Make it
practical: A generic linear-time algorithm for solving maximum-weightsum
problems. In Proceedings of the 5th ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’00), pages 137–149, Montreal,
Canada, September 2000. ACM Press.

[SHTO01] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito Ogawa. Solving
a class of knapsack problems on recursive data structures (in Japanese).
Computer Software, 18(2):59–63, 2001.

[SHTO02] Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito Ogawa. Deriva-
tion of linear algorithm for mining optimized gain association rules. Com-
puter Software, 19(4):39–44, 2002.

Toward an Abstract Computer Virology

G. Bonfante, M. Kaczmarek, and J.-Y. Marion

Loria, Calligramme project, B.P. 239, 54506 Vandœuvre-lès-Nancy, Cédex, France
and École Nationale Supérieure des Mines de Nancy, INPL, France

Abstract. We are concerned with theoretical aspects of computer
viruses. For this, we suggest a new definition of viruses which is clearly
based on the iteration theorem and above all on Kleene’s recursion the-
orem. We show that we capture in a natural way previous definitions,
and in particular the one of Adleman. We establish generic constructions
in order to construct viruses, and we illustrate them by various exam-
ples. We discuss the relationship between information theory and viruses
and we propose a defense against a kind of viral propagation. Lastly, we
show that virus detection is Π2-complete. However, since we are able
to deal with system vulnerability, we exhibit another defense based on
controlling system access.

1 Introduction

Computer viruses seem to be an omnipresent issue of information technology;
there are a lot of books, see [14] or [17], discussing practical issues. But, as far
as we know, there are only a few theoretical studies. This situation is even more
amazing because the word “computer virus” comes from the seminal theoretical
works of Cohen [4,5,6] and Adleman [1] in the mid-1980’s. We do think that
theoretical point of view on computer viruses may bring some new insights to
the area, as it is also advocated for example by Filiol [8], an expert on computer
viruses and cryptology. Indeed, a deep comprehension of mechanisms of computer
viruses is from our point of view a promising way to suggest new directions
on virus detection and on defence against attacks. On theoretical approach to
virology, there is an interesting survey of Bishop [2] and we are aware of the paper
of Thimbleby, Anderson and Cairns [10] and of Chess and White paper [3].

This being said, the first question is what is a virus? In his Phd-thesis [4],
Cohen defines viruses with respect to Turing Machines. Roughly speaking, a
virus is a word on a Turing machine tape such that when it is activated, it
duplicates or mutates on the tape. Adleman took a more abstract formulation
of computer viruses based on recursive function in order to have a definition
independent from computation models. A recent article of Zuo and Zhou [22]
completes Aldeman’s work, in particular in formalizing polymorphic viruses. In
both approaches, a virus is a self-replicating device. So, a virus has the capacity
to act on a description of itself. That is why Kleene’s recursion theorem is central
in the description of the viral mechanism.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 579–593, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

580 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

This paper is an attempt to use computability and information theory as a
vantage point from which to understand viruses. We suggest a definition which
embeds Adelman’s as well as Zuo and Zhou’s definitions in a natural way.

A virus is a program v which is solution of the fixed point equation

ϕv(p,x) = ϕB(v,p)(x) , (1)

where B is a function which describes the propagation and mutation of the virus
in the system. The intuition behind the definition is given in Section 3. This
approach has at least three advantages compared with others mentioned above.
First, a virus is a program and not a function. Thus, we switch from a purely
functional point of view to a programming perspective.

Second, we consider the propagation function, unlike others. So, we are able
to have another look at virus replications. All the more so since B corresponds
also to a system vulnerability. Lastly, since the definition is clearly based on
recursion theorem, we are able to describe a lot of types of virus smoothly.
To illustrate our work, we establish a general construction of trigger virus in
Section 3.3.

The results and the organization of this paper is as follows. Section 2 presents
the theoretical tools needed to define viruses. We will focus in particular on the
s-m-n theorem and the recursion theorem. In section 3, we propose a virus defi-
nition and we pursue by a first approach to self-duplication. Section 4 is devoted
to Adleman’s virus definition. Then, we explore another duplication methods
by mutations. We compare our work with the Zuo and Zhou definition of poly-
morphic viruses. Lastly, Section 6 ends with a discussion on the relation with
information theory. From that, we deduce an original defense against some par-
ticular kind of viruses, see 6.3. The last Section is about virus search complexity
which turns out to Π2-complete. It is worth to mention that we conclude the
paper on some research direction to study system flaws, see Theorem 8.

2 Iteration and Recursion Theorems

2.1 Programming Languages

We are not taking a particular programming language but we are rather con-
sidering an abstract, and so simplified, definition of a programming language.
However, we shall illustrate all along the theoretical constructions by bash pro-
grams. The examples and analogies that we shall present are there to help the
reader having a better understanding of the main ideas but also to show that
the theoretical constructions are applicable to any programming language.

We briefly present the necessary definitions to study programming languages
in an independent way from a particular computational model. We refer to the
book of Davis [7], of Rogers [16] and of Odifreddi [15].

Throughout, we consider that we are given a set D, the domain of the com-
putation. As it is convenient, we take D to be the set of words over some fixed
alphabet. But we could also have taken natural numbers or any free algebra as
domains. The size |u| of a word u is the number of letters in u.

Toward an Abstract Computer Virology 581

A programming language is a mapping ϕ from D → (D → D) such that for
each program p, ϕ(p) : D → D is the partial function computed by p. Following
the convention used in calculability theory, we write ϕp instead of ϕ(p). Notice
that there is no distinction between programs and data.

We write f ≈ g to say that for each x, either f(x) and g(x) are defined and
f(x) = g(x) or both are undefined on x.

A total function f is computable wrt ϕ if there is a program p such that
f ≈ ϕp. If f is a partial function, we shall say that f is semi-computable. Sim-
ilarly, a set is computable (resp. semi-computable) if its characteristic function
is computable (semi-computable).

We also assume that there is a pairing computable function (,) such that
from two words x and y of D, we form a pair (x, y) ∈ D. A pair (x, y) can
be decomposed uniquely into x and y by two computable projection functions.
Next, a finite sequence (x1, . . . ,xn) of words is built by repeatedly applying the
pairing function, that is (x1, . . . ,xn) = (x1, (x2, (. . . ,xn) . . .)).

So, from now on, we won’t make the distinction between a n-uple and its
encoding. Every function is formally considered unary even if we have in mind
a binary one. The context will always be clear.

It is worth to mention that the pairing function may be seen as an encryption
function and the projections as decryption function.

Following Uspenski [20] and Rogers [16], a programming language ϕ is ac-
ceptable if

1. For each semi-computable function f , there is a program p ∈ D such that
ϕp ≈ f .

2. There is an universal program u which satisfies that for each program p ∈ D,
ϕu(p,x) ≈ ϕp(x). item There is a program s such that

∀p,x, y ∈ D ϕp(x, y) ≈ ϕϕs(p,x)(y) .

Of course, the function ϕs is the well-known s-m-n function written S.

The existence of an acceptable programming language was demonstrated by
Turing [19]. The existence of the s-m-n function is also known as the Iteration
Theorem [12].

Kleene’s Iteration Theorem yields a function S which specializes an argument
in a program. The self-application that is S(p,p) corresponds to the construction
of a program which can read its own code p. By analogy with bash programs,
it means that the variable $0 is assigned to the text, that is p, of the executed
bash file.

We present now a version of the second recursion theorem which is due to
Kleene. This theorem is one of the deepest results in theory of recursive functions.
As it is the cornerstone of the paper, we write its proof. We could also have
presented Rogers’s recursion theorem but we have preferred to focus on only one
recursion theorem in order not to introduce any extra difficulties. It is worth also
to cite the paper [11] in which the s-m-n function and the recursion theorem are
experimented;

582 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

Theorem 1 (Kleene’s second recursion Theorem). If g is a semi- com-
putable function, then there is a program e such that

ϕe(x) = g(e,x) . (2)

Proof. Let p be a program of the semi-computable function g(S(y, y),x). We
have

g(S(y, y),x) = ϕp(y,x)
= ϕS(p,y)(x) .

By setting e = S(p,p), we have

g(e,x) = g(S(p,p),x)
= ϕS(p,p)(x)
= ϕe(x) .

3 The Viral Mechanism

3.1 A Virus Definition

A virus may be thought of as a program which reproduces, and executes some
actions. Hence, a virus is a program whose propagation mechanism is described
by a computable function B. The propagation function B searches and selects a
sequence of programs p = (p1, . . . ,pn) among inputs (p,x). Then, B replicates
the virus inside p. In other words, B is the vector which carries and transmits
the virus to a program. On the other hand, the function B can be also seen as a
flaw in the programming environment. Indeed, B is a functional property of the
programming language ϕ which is used by a virus v to enter and propagate into
the system. We suggest below an abstract formalization of viruses which reflects
the picture that we have described above.

Definition 1. Assume that B is a semi-computable function. A virus wrt B is
a program v such that for each p and x in D,

ϕv(p,x) = ϕB(v,p)(x) . (3)

The function B is called the propagation function of the virus v.

Throughout, we call virus a program, which satisfies the above definition.
As we have said above, we make no distinction between programs and data.

However we write in bold face words of D, like p,v, which are intended to denote
programs. On the other hand, the argument x does not necessarily denote a data.
Nevertheless, in both cases, p or x refer either to a single word or a sequence of
words. (For example x = (x1, . . . ,xn).)

Toward an Abstract Computer Virology 583

3.2 Self-reproduction

A distinctive feature of viruses is the self-reproduction property. This has been
well developed for cellular automata from the work of von Neumann [21]. Hence,
Cohen [4] demonstrated how a virus reproduces in the context of Turing machines.

We show next that a virus can copy itself in several ways. We present some
typical examples which in particular illustrate the key role of the recursion
Theorem.

We give a first definition of self-reproduction. (A second direction will be
discussed in Section 5.) A duplication function Dup is a total computable func-
tion such that Dup(v,p) is a word which contains at least an occurrence of v.
A duplicating virus is a virus, which satisfies ϕv(p,x) = Dup(v,p). The exis-
tence of duplicating viruses is a consequence of the following Theorem by setting
f = Dup.

Theorem 2. Given a semi-computable function f , there is a virus v such that
ϕv(p,x) = f(v,p)

Proof. For set g(y,p,x) = f(y,p). Recursion Theorem implies that the semi-
computable function g has a fixed point that we call v. We have ϕv(p,x) =
g(v,p,x) = f(v,p).

Next, let e be a code of g, that is g ≈ ϕe. The propagation function B induced
by v is defined by B(v,p) = S(e,v,p), since

ϕB(v,p)(x) = ϕS(e,v,p)(x)
= g(v,p,x) = ϕv(p,x) .

It is worth saying that the propagation function lies on the s-m-n S function.
The s-m-n S function specializes the program e to v and p, and thus it drops the
virus in the system and propagates it. So, in some sense, the s-m-n S function
should be considered as a flaw, which is inherent to each acceptable programming
language.

To illustrate behaviors of duplicating viruses, we consider several examples,
which correspond to known computer viruses.

Crushing
A duplication function Dup is a crushing if Dup(v,p) = v.

This basic idea is in fact the starting point of a lot of computer viruses.
Most of the email worms use this methods, copying their script to many direc-

tories. The e-mail worm “loveletter” copies itself as “MSKernel32.vbs”. Lastly,
here is a tiny bash program which copies itself.
cat $0 > $0 . copy

Cloning
Suppose that p = (p1, . . . ,pn). Then, a virus is cloning wrt Dup, if Dup(v,p) =
(d(v,p1), . . . , d(v,pn)) where d is a duplication function. A cloning virus keeps

584 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

the structure of the program environment but copies itself into some parts. For
example, we can think that p is a directory and (p1, . . . ,pn) are the files inside.
So a cloning virus infects some files in the directory.

Moreover, a cloning virus should also verify that |d(v,pi)| ≤ |pi|. Then, the
virus does not increase the program size, and so the detection of such non-size
increasing virus is harder.

A cloning virus is usually quite malicious, because it overwrites existing pro-
gram. A concrete example is the virus named “4870 Overwriting”. The next bash
program illustrates of a cloning virus.

for FName in $ (l s ∗ . i n f e c t . sh) ;do
LENGTH=‘wc −m ./$FName ‘
i f [. /$FName != $0 −a ”193” − l e ”${LENGTH%∗./$FName}”

] ; then
echo [$0 i n f e c t . /$FName]
cat $0 > . /$FName

f i
done

Ecto-Symbiosis
A virus is ecto-symbiotic if it lives on the body surface of the program v. For
example, Dup(v,p) = v · p where · is the word concatenation.

The following bash code adds its own code at the end of every file.

for FName in $ (l s ∗ . i n f e c t . sh) ;do
i f [. /$FName != $0] ; then
echo [$0 i n f e c t . /$FName]
t a i l $0 −n 6 | cat >> . /$FName

f i
done

The computer virus “Jerusalem” is ecto-symbiotic since it copies itself to
executable file (that is, “.COM” or “.EXE” files).

3.3 Implicit Viruses

We establish a result which constructs a virus which performs several actions
depending on some conditions on its arguments. This construction of trigger
viruses is very general and embeds a lot of practical cases.
Theorem 3. Let C1, . . . , Ck be k semi-computable disjoint subsets of D and
V1, . . . , Vk be k semi-computable functions There is a virus v which satisfies for
all p and x, the equation

ϕv(p,x) =

⎧⎪⎪⎨⎪⎪⎩
V1(v,p,x) (p,x) ∈ C1
...
Vk(v,p,x) (p,x) ∈ Ck

. (4)

Toward an Abstract Computer Virology 585

Proof. Define

F (y,p,x) =

⎧⎪⎪⎨⎪⎪⎩
V1(y,p,x) (p,x) ∈ C1
...
Vk(y,p,x) (p,x) ∈ Ck

.

The function F is computable and has a code e such that F ≈ ϕe. Again, recur-
sion Theorem yields a fixed point v of F which satisfies the Theorem equation.
The induced propagation function is V (v,p) = S(e,v,p).

4 Comparison with Adleman’s Virus

Adleman’s modeling is based on the following scenario. For every program, there
is an “infected” form of the program.

The virus is a computable function from programs to “infected” programs. An
infected program has several behaviors which depend on the input x. Adleman
lists three actions. In the first (5) the infected program ignores the intended
task and executes some “destroying” code. That is why it is called injure. In
the second (6), the infected program infects the others, that is it performs the
intended task of the original, a priori sane, program, and then it contaminates
other programs. In the third and last one (7), the infected program imitates the
original program and stays quiescent.

We translate Adleman’s original definition into our formalism.

Definition 2 (Adleman’s viruses). A total computable function A is said to
be a A-viral function (virus in the sense of Adleman) if for each x ∈ D one of
the three following properties holds:

Injure

∀p,q ∈ D ϕA(p)(x) = ϕA(q)(x) . (5)

This first kind of behavior corresponds to the execution of some viral func-
tions independently from the infected program.

Infect

∀p,q ∈ D ϕA(p)(x) = A(ϕp(x)) . (6)

The second item corresponds to the case of infection. One sees that any part
of ϕp(x) is rewritten according to A.

Imitate

∀p,q ∈ D ϕA(p)(x) = ϕp(x) . (7)

The last item corresponds to mimic the original program.

586 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

Our definition respects Adleman’s idea and implies easily the original in-
fection definition. In Adleman’s paper, the infection definition is very close to
the crushing virus as they have defined previously. However, our definition of
the infect case is slightly stronger. Indeed, there is no condition or restric-
tion on the application of the A-viral function to A to ϕp(x) unlike Adle-
man’s definition. Indeed, he assumes that ϕp(x) = (d,p1, . . . ,pn) and that
A(ϕp(x)) = (d, a(p1), . . . , a(pn)) where a is a computable function which de-
pends on A.

Theorem 4. Assume that A is a A-virus. Then there is a virus that performs
the same actions as A.

Proof. Let e be the code of A, that is ϕe ≈ A. There is a semi-computable
function App such that App(x, y, z) = ϕϕx(y)(z). Suppose that q is the code of
App. Take v = S(q, e). We have

ϕA(p)(x) = ϕϕe(p)(x)
= App(e,p,x)
= ϕq(e,p,x)
= ϕS(q,e)(p,x)
= ϕv(p,x) .

We conclude that the propagation function is B(v,p) = A(p).

5 Polymorphic Viruses

Until now, we have considered viruses which duplicate themselves without mod-
ifying their code. Now, we consider viruses which mutate when they duplicate.
Such viruses are called polymorphic; they are common computer viruses. The
appendix gives more “practical information” about them.

This suggests a second definition of self-reproduction. A mutation function
Mut is a total computable function such that Mut(v,p) is a word which contains
at least an occurrence of a virus v′. The difference with the previous definition
of duplication function in Subsection 3.2 is that v′ is a mutated version of v
wrt p.

5.1 On Polymorphic Generators

Theorem 2, and the implicit virus Theorem 3, shows that a virus is essentially
a fixed point of a semi-computable function. In other words, a virus is obtained
by solving the equation: ϕv(p,x) = f(v,p,x). And solutions are fixed points of
f . Rogers [16] established that a computable function has an infinite number of
fixed points. So, a first mutation strategy could be to enumerate fixed points of
f . However, the set of fixed points of a computable function is Π2, and worst it
is Π2-complete for constant functions.

Toward an Abstract Computer Virology 587

So we can not enumerate all fixed points because it is not a semi-computable
set. But, we can generate an infinite number of fixed points.

To illustrate it, we suggest to use a classical padding function ’Pad’ which
satisfies

1. Pad is a one-one function.
2. For each program q and each y, ϕq ≈ ϕPad(q,y).

Lemma 1. There is a computable padding function Pad.

Proof. Take T : D×D → D as a computable bijective encoding of pairs. Let π1
be first projection function of T . Define Pad(q, y) as the code of π1(T (q, y)).

Theorem 5. Let f be a computable function. Then there is a computable func-
tion Gen such that

Gen(i) is a virus (8)
∀i = j, Gen(i) = Gen(j) (9)

ϕGen(i)(p,x) = f(Gen(i),p) . (10)

Proof. In fact, Gen(i) is the ith fixed point of f wrt to a fixed point enumeration
procedure. A construction of a fixed point enumeration procedure is made by
padding Kleene’s fixed point given by the proof of the recursion Theorem.

For this, suppose that p is a program of the semi-computable function
g(S(y, y),x). We have

g(S(y, y),x) = ϕp(y,x) .

By setting Gen(i) = S(Pad(p, i),Pad(p, i)), we have

g(S(Pad(p, i),Pad(p, i)),x) = ϕp(Pad(p, i),x)
= ϕPad(p,i)(Pad(p, i),x) Pad’s dfn
= ϕS(Pad(p,i),Pad(p,i))(x) .

Remark 1. For a virus writer, a mutation function is a polymorphic engine, such
as the well known “Dark Avenger”. A polymorphic engine is a module which
gives the ability to look different on replication most of them are encryptor,
decryptor functions.

5.2 Zuo and Zhou’s Viral Function

Polymorphic viruses were foreseen by Cohen and Adleman. As far as we know,
Zuo and Zhou’s are the first in [22] to propose a formal definition of the virus
mutation process. They discuss on viruses that evolve into at most n forms, and
then they consider polymorphism with an infinite numbers of possible mutations.

588 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

Definition 3 (Zuo and Zhou viruses). Assume that T and I are two dis-
joint computable sets. A total computable function ZZ is a ZZ-viral polymorphic
function if for all n and q,

ϕZZ(n,q)(x) =

⎧⎪⎨⎪⎩
D(x) x ∈ T Injure
ZZ(n + 1, ϕq(x)) x ∈ I Infect
ϕq(x) Imitate

. (11)

This definition is close to the one of Adleman, where T corresponds to a set
of arguments for which the virus injures and I is a set of arguments for which
the virus infects. The last case corresponds to the imitation behavior of a virus.
So, the difference stands on the argument n which is used to mutate the virus
in the infect case. Hence, a given program q has an infinite set of infected forms
which are {ZZ(n,q) | n ∈ D}. (Technically, n is an encoding of natural numbers
into D.)

Theorem 6. Assume that ZZ is a ZZ-viral polymorphic function. Then there is
a virus which performs the same actions as ZZ wrt a propagation function.

Proof. The proof is a direct consequence of implicit virus Theorem 3 by setting
p = (n,q).

6 Information Theory

There are various ways to define a mutation function. A crucial feature of a virus
is to be as small as possible. Thus, it is much harder to detect it. We now revisit
clone and symbiote virus definitions.

6.1 Compressed Clones

A compressed clone is a mutated virus Mut(v,p) such that |Mut(v,p)| < |v|.
A compression may use information inside the program p. There are several
compression algorithms which perform such replications.

6.2 Endo-Symbiosis

An endo-symbiote is a virus which hides (and lives) in a program. A spyware is
a kind of endo-symbiote. For this, it suffices that

1. We can retrieve v and p from Mut(v,p). That is, there are two inverse
functions V and P such that ϕV (Mut(v,p)) ≈ ϕv and ϕP (Mut(v,p)) ≈ ϕp

2. To avoid an easy detection of viruses, we impose that

|Mut(v,p)| ≤ |p| .

3. We suppose furthermore that

|V (Mut(v,p))| + |P (Mut(v,p))| ≤ |Mut(v,p)| .

Toward an Abstract Computer Virology 589

Both examples above show an interesting relationship with complexity in-
formation theory. For this, we refer to the book of Li and Vitányi [13]. Com-
plexity information theory leans on Kolmogorov complexity. The Kolmogorov
complexity of a word x ∈ D wrt ϕe and knowing y is Kϕe(x|y) = min{|q| :
ϕe(q, y) = x}. The fundamental Theorem of Kolmogorov complexity theory
yields: There is an universal program u such that for any program e, we have
Kϕu(x|y) ≤ Kϕe(x|y)+c where c is some constant. This means that the minimal
size of a program which computes a word x wrt y is Kϕu(x|y), up to an additive
constant.

Now, suppose that the virus v mutates to v′ from p. That is Mut(v,p) = v′.
An interesting question is then to determine the amount of information which
is needed to produce the virus v′. The answer is Kϕu(v′|(v,p)) bits, up to an
additive constant.

The demonstration of the fundamental Theorem implies that the shortest
description of a word x is made of two parts. The first part e encodes the word
regularity and the second part q represents the “randomness” side of x. And,
we have ϕe(q, y) = x. Here, the program e plays the role of an interpreter which
executes q in order to print x. Now, let us decompose v′ into two parts (i) an
interpreter e and (ii) a random data part q such that ϕv′ = ϕϕe(q,v,p). In this
construction, the virus introduces an interpreter for hiding itself. This is justified
by the fundamental Theorem which says that it is an efficient way to compress a
virus. In [9], Goel and Bush use Kolmogorov complexity to make a comparison
and establish results between biological and computer viruses.

6.3 Defense Against Endo-Symbiotes

We suggest an original defense (as far as we know) against some viruses based
on information Theory. We use the notations introduced in Section 6 about
endo-symbiosis and Kolmogorov complexity.

Our defense prevents the system to be infected by endo-symbiote. Suppose
that the programming environment is composed of an interpreter u which is a
universal program. We modify it to construct u′ in such way that ϕu′(p,x) =
ϕϕu(p)(x). Hence, intuitively a program for ϕu′ is a description of a program
wrt ϕu.

Given a constant c, we define a c-compression of a program p as a program
p′ such that ϕu(p′) = p and |p′| ≤ Kϕu(p)+c. Observe that ϕu′(p′,x) = ϕp(x).

Now, suppose that v is an endo-symbiote. So, there is a mutation func-
tion Mut and two associated projections V et P . We have by definition of
endo-symbiotes that |V (Mut(v,p′))| + |P (Mut(v,p′))| ≤ |Mut(v,p′)| ≤ |p′|.
By definition of P , we have ϕp′ = ϕP (Mut(v,p′)). As a consequence, ϕu(p′) =
ϕu(P (Mut(v,p′))) = p. So, |P (Mut(v,p′))| ≥ Kϕu(p). Finally, the space
|V (Mut(v,p′))| to encode the virus is bounded by c. Notice that it is not diffi-
cult to forbid ϕu′ to execute programs which have less than c bits. In this case,
no endo-symbiote can infect p′. Therefore, c-compressed programs are safe from
attack by endo-symbiotes.

590 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

Of course, this defense strategy is infeasible because there is no way to ap-
proximate the Kolmogorov complexity by mean of a computable function. In
consequence, we can not produce c-compressed programs. However, we do think
this kind of idea shed some light on self-defense programming systems.

7 Detection of Viruses

Let us first consider the set of viruses wrt a function B. It is formally given by
VB = {v | ∀p,x : ∃y : ϕv(p,x) = y ∧ ϕB(v,p)(x) = y}. As the formulation of VB
shows it, we have:

Proposition 1. Given a recursive function B, VB is Π2.

Theorem 7. There are some functions B for which VB is Π2-complete.

Proof. Suppose now given a computable function t, it has an index q. It is well
known that the set T = {i | ϕi = t} is Π2-complete. Define now B(y, p) =
S(q, p). Observe that a virus v verify: ∀p,x : ϕv(p,x) = t(p,x). The pairing
procedure being surjective, v is an index of t. Conversly, suppose that e is not a
virus. In that case, there is some p,x for which ϕe(p,x) = ϕB(e,p)(x) = t(p,x).
As a consequence, it is not an index of t. So, VB = T .

Theorem 8. There are some functions B for which it is decidable whether p is
a virus or not.

Proof. Let us define f(y,p,x) = ϕy(p,x). Being recursive, it has a code, say
q. Application of s-m-n Theorem provides S(q, y,p) such that for all y,p,x, we
have ϕS(q,y,p)(x) = f(y,p,x). Let us define B(y,p) = S(q, y,p). It is routine to
check that for all d, d is a virus for B. So, in that case, any index is a virus.

A consequence of this is that there are some weakness for which it is decidable
whether a code is a virus or not. This is again, as far as we know, one of the
first positive results concerning the detection of viruses.

References

1. L. Adleman. An abstract theory of computer viruses. In Advances in Cryptology —
CRYPTO’88, volume 403. Lecture Notes in Computer Science, 1988.

2. M. Bishop. An overview of computer viruses in a research environment. Technical
report, Hanover, NH, USA, 1991.

3. D. Chess and S. White. An undetectable computer virus.
4. F. Cohen. Computer Viruses. PhD thesis, University of Southern California,

January 1986.
5. F. Cohen. Computer viruses: theory and experiments. Comput. Secur., 6(1):22–35,

1987.
6. F. Cohen. Models of practical defenses against computer viruses: theory and ex-

periments. Comput. Secur., 6(1), 1987.

Toward an Abstract Computer Virology 591

7. M. Davis. Computability and unsolvability. McGraw-Hill, 1958.
8. E. Filiol. Les virus informatiques: théorie, pratique et applications. Springer-Verlag

France, 2004.
9. S. Goel and S. Bush. Kolmogorov complexity estimates for detection of viruses in

biologically inspired security systems: a comparison with traditional approaches.
Complex., 9(2):54–73, 2003.

10. S. Anderson H. Thimbleby and P. Cairns. A framework for medelling trojans and
computer virus infection. Comput. J., 41:444–458, 1999.

11. N. Jones. Computer implementation and applications of kleene’s S-m-n and recur-
sive theorems. In Y. N. Moschovakis, editor, Lecture Notes in Mathematics, Logic
From Computer Science, pages 243–263. 1991.

12. S. C. Kleene. Introduction to Metamathematics. Van Nostrand, princeton, nj
edition, 1964.

13. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applica-
tion. Springer, 1997. (Second edition).

14. M. Ludwig. The Giant Black Book of Computer Viruses. American Eagle Publi-
cations, 1998.

15. P. Odiffredi. Classical recursion theory. North-Holland, 1989.
16. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw

Hill, New York, 1967.
17. P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley Pro-

fessional, 2005.
18. A. Turing and J.-Y. Girard. La machine de Turing. Seuil, 1995.
19. A. M. Turing. On computable numbers with an application to the entschei-

dungsproblem. Proc. London Mathematical Society, 42(2):230–265, 1936. Tra-
duction [18].

20. V.A. Uspenskii. Enumeration operators ans the concept of program. Uspekhi
Matematicheskikh Nauk, 11, 1956.

21. J. von Neumann and A. W. Burks. Theory of self-reproducing automata. University
of Illinois Press, Champaign, IL, 1966.

22. Z. Zuo and M. Zhou. Some further theorical results about computer viruses. In
The Computer Journal, 2004.

A Polymorphic Viruses

A method widely used for virus detection is file scanning. It uses short strings,
refered as signatures, resulting from reverse engineering of viral codes. Those
signatures only match the considered virus and not healthy programs. Thus,
using a search engine, if a signature is found a virus is detected.

To avoid this detection, one could consider and old virus and change some
instructions in order to fool the signature recognition. As an illustration, consider
the following signature of a viral bash code

for FName in $ (l s ∗ . i n f e c t . sh) ;do
i f [. /$FName != $0] ; then
cat $0 > . /$FName

f i
done

592 G. Bonfante, M. Kaczmarek, and J.-Y. Marion

The following code denotes the same program but with an other signature

OUT=cat
for FName in $ (l s ∗ . i n f e c t . sh) ;do
i f [. /$FName != $0] ; then
$OUT $0 > . /$FName
f i

done

Polymorphic viruses use this idea, when it replicates, such a virus changes
some parts of its code to look different.

Virus writers began experimenting with such techniques in the early nineties
and it achieved with the creation of mutation engines. Historically the first one
was “Dark Avenger”. Nowadays, many mutation engines have been released,
most of them use encryption, decryption functions. The idea, is to break the
code into two parts, the first one is a decryptor responsible for decrypting the
second part and passing the control to it. Then the second part generates a new
decryptor, encrypts itself and links both parts to create a new version of the
virus.

A polymorphic virus could be illustrated by the following bash code, it is a
simple virus which use as polymorphic engine a swap of two characters.

SPCHAR=007
LENGTH=17
ALPHA=

azertyuiopqsdfghjklmwxcvbnAZERTYUIOPQSDFGHJKLMWXCVBN
CHAR1=${ALPHA: ‘ expr $RANDOM % 52 ‘ : 1}
CHAR2=${ALPHA: ‘ expr $RANDOM % 52 ‘ : 1}
#add the decryp tor
echo ”SPCHAR=007” > . / tmp
echo ” t a i l −n $LENGTH \$0 | sed −e \” s /$CHAR1/\$SPCHAR/g\

” −e \” s /$CHAR2/$CHAR1/g\” −e \” s /\$SPCHAR/$CHAR2/g\”
−e \” s /SPCHAR=$CHAR2/SPCHAR=$SPCHAR/g\”> . / vx” >> . /
tmp

echo ” . / vx” >> . / tmp
echo ” e x i t 0” >> . / tmp
#encrypt and add v i r a l code
cat $0 | sed −e ” s /$CHAR1/$SPCHAR/g” −e ” s /$CHAR2/$CHAR1/

g” −e ” s /$SPCHAR/$CHAR2/g” −e ” s /SPCHAR=$CHAR2/SPCHAR=
$SPCHAR/g” >> . / tmp

#in f e c t
for FName in $ (l s ∗ . i n f e c t . sh) ;do

cat . / tmp >> . /$FName
done
rm −f . / tmp

Toward an Abstract Computer Virology 593

B Metamorphic Viruses

To detect polymorphic computer viruses, antivirus editors have used code em-
ulation techniques and static analysers. The idea of emulation, is to execute
programs in a controled fake environment. Thus an encrypted virus will decrypt
itself in this environment and some signature detection can be done. Concerning
static analysers, they are improved signature maching engines which are able to
recognize simple code variation.

To thward those methods, since 2001 virus writers has investigated metamor-
phism. This is an enhanced morphism technique. Where polymorphic engines
generate a variable encryptor, a metamorhic engine generates a whole variable
code using some obfuscation functions. Moreover, to fool emulation methods
metamorphic viruses can alter their behavior if they detect a controled environ-
ment.

When it is executed, a metamorphic virus desassembles its own code, reverse
engineers it and transforms it using its environment. If it detects that his envi-
ronment is controled, it transforms itself into a healthy program, else it recreates
a new whole viral code using reverse ingineered information, in order to generate
a replication semantically indentical but programmatically different.

Such a virus is really difficult to analyse, thus it could take a long period to
understand its behavior. During this period, it replicates freely.

Intuitively, polymorphic viruses mutates without concidering their environ-
ment whereas metamophic viruses spawn their next generation using new in-
formation. As a matter of fact, to capture this notion, one must consider the
equation ϕv(p,x) = f(v,p,x) in its entirety.

On Superposition-Based Satisfiability
Procedures and Their Combination

Hélène Kirchner, Silvio Ranise, Christophe Ringeissen, and Duc Khanh Tran

LORIA & INRIA-Lorraine

Abstract. We study how to efficiently combine satisfiability procedures
built by using a superposition calculus with satisfiability procedures for
theories, for which the superposition calculus may not apply (e.g., for
various decidable fragments of Arithmetic). Our starting point is the
Nelson-Oppen combination method, where satisfiability procedures co-
operate by exchanging entailed (disjunction of) equalities between vari-
ables. We show that the superposition calculus deduces sufficiently many
such equalities for convex theories (e.g., the theory of equality and the
theory of lists) and disjunction of equalities for non-convex theories (e.g.,
the theory of arrays) to guarantee the completeness of the combination
method. Experimental results on proof obligations extracted from the
certification of auto-generated aerospace software confirm the efficiency
of the approach. Finally, we show how to make satisfiability procedures
built by superposition both incremental and resettable by using a hier-
archic variant of the Nelson-Oppen method.

1 Introduction

Satisfiability procedures for theories of data types such as arrays, lists, and in-
tegers are at the core of many state-of-the-art verification tools. The task of de-
signing, proving correct, and implementing satisfiability procedures is far from
simple. One of the main problem is proving the correctness of satisfiability pro-
cedures. Furthermore, data structures and algorithms for each new procedure
are implemented from scratch, with little software reuse and high risk of errors.

To overcome these difficulties, an approach to flexibly build satisfiability
procedures based on superposition has been proposed in [2] and it has been
shown competitive with ad hoc satisfiability procedures in [3,1]. Following this
approach, the correctness proof of a procedure for a theory T reduces to show
the termination of the fair and exhaustive application of the rules of the super-
position calculus [12] on an axiomatization of T and an arbitrary set of literals.
Furthermore, the implementation of the satisfiability procedure for T becomes
easy by using (almost) off-the-shelf an available prover implementing the super-
position calculus. In this way, years of careful engineering and debugging can
be effortlessly reused. Unfortunately, this approach does not allow one to build
satisfiability procedures for the fragments of Arithmetic which are required by
most (if not all) verification problems. Hence, there is a need to combine satis-
fiability procedures obtained by superposition with satisfiability procedures for
the various fragments of Arithmetic based on ad hoc techniques (see e.g., [8]).

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 594–608, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Superposition-Based Satisfiability Procedures 595

The method proposed by Nelson and Oppen (N-O) [11] allows one to combine
satisfiability procedures for theories (satisfying some requirements) by exchang-
ing equalities or disjunction of equalities between variables. Such equalities (or
their disjunction) must be entailed by the input set of literals in each component
theory. Since a set S of literals entails an equality (or a disjunction of equalities)
φ if and only if the conjunction of S and the negation of φ is unsatisfiable, there
does not seem to be any problem in using a satisfiability procedure based on
superposition in a N-O combination. However, as it is well known (see e.g. [6]),
to implement the combination method efficiently, the satisfiability procedure for
the component theories must be capable of deriving the formulae to exchange
with other procedures. This is not obvious for satisfiability procedures obtained
by superposition since latter is not known to be complete for consequence find-
ing, i.e. we are not guaranteed that a clause which is a logical consequence of
a set of clauses will be eventually derived by applying the rules of the calculus.
The first contribution of this paper is to show that satisfiability procedures
obtained by superposition deduce sufficiently many equalities between variables
for convex theories (e.g., the theory of lists) or disjunction of equalities between
variables for non-convex theories (e.g., the theory of arrays) to guarantee the
completeness of the N-O combination method.

The capability of detecting entailed equalities is not the only requirement to
efficiently implement the N-O method: the component satisfiability procedures
must be incremental and resettable, i.e. it must be possible to add and remove
literals to and from the state of the procedure without restarting it. Actual
state-of-the-art theorem provers based on superposition do not satisfy these two
requirements and each time a literal is added or removed, provers must be in-
voked from scratch. This may result in an unacceptable overhead. To overcome
this difficulty, the second contribution of this paper is to propose a hierarchic
variant of the N-O combination method, where the superposition prover is used
as a front-end of a congruence closure algorithm which is then combined with a
satisfiability procedure for Arithmetic by the standard N-O method.

Our motivation for this work is to give a firm basis to a theorem proving
system, called haRVey [3], which we are currently developing. Experimental
results on a set of benchmarks [4] extracted from program verification problems
clearly show the advantages of the proposed approach.

Plan of the paper. In Section 2, we introduce some basic notions. In Section 3,
we show how to directly extract entailed (disjunction of) equalities between vari-
ables from satisfiability procedures built by superposition for various theories, we
discuss some experimental results, and we conclude by describing a refinement
of the N-O method. In Section 4, we discuss some related work. In Section 5, we
conclude and sketch the future work. All omitted proofs can be found in [9].

2 Background

We assume the usual first-order syntactic notions of signature, term, position,
and substitution, as defined, e.g., in [5]. If l and r are two terms, then l = r

596 H. Kirchner et al.

is an equality and ¬(l = r) (also written as l = r) is a disequality. A literal is
either an equality or a disequality. A first-order formula is built in the usual way
over the universal and existential quantifiers, Boolean connectives, and symbols
in a given first-order signature. We call a formula ground if it has no variable.
A clause is a disjunction of literals. A unit clause is a clause with only one
disjunct, equivalently a literal. The empty clause is the clause with no disjunct,
equivalently an unsatisfiable formula.

We also assume the usual first-order notions of model, satisfiability, validity,
logical consequence, and theory. A first-order theory is a set of first-order for-
mulae with no free variables. When T is a finitely axiomatized theory, Ax(T)
denotes the set of axioms of T . All the theories in this paper are first-order theo-
ries with equality, which means that the equality symbol = is always interpreted
as the equality relation. The theory of equality is denoted with E . A formula
is satisfiable in a theory T if it is satisfiable in a model of T . Two formulas ϕ
and ψ are equisatisfiable in T if for every model A of T , ϕ is satisfiable in A
iff ψ is satisfiable in A. The satisfiability problem for a theory T amounts to
establishing whether any given finite conjunction of literals (or equivalently, any
given finite set of literals) is T -satisfiable or not. A satisfiability procedure for T
is any algorithm that solves the satisfiability problem for T (the satisfiability of
any quantifier-free formula can be reduced to the satisfiability of sets of literals
by converting to disjunctive normal form and then splitting on disjunctions).
The reader should observe that free variables in a formula ϕ behave as (Skolem)
constants when ϕ is checked for satisfiability. In the rest of the paper, we use
variables and constants interchangeably when the context allows us to do so, i.e.
when combining satisfiability procedures.

2.1 The Superposition Calculus SP
In the following, = is (unordered) equality, ≡ is identity, �� is either = or =,
l, r, u, t are terms, v, w,x, y, z are variables, all other lower case letters are con-
stant or function symbols. The rules of the superposition calculus SP used in [2]
and in this paper are depicted in Figures 1 and 2.

Given a set S of clauses, an expansion inference in Figure 1 adds the clause
in its conclusion to S while a contraction inference rule in Figure 2 either simpli-
fies (e.g. Simplification reduces to (ordered) rewriting when C is a unit clause)
or deletes a clause from S. Notice that the premises and conclusion of an ex-
pansion rule are clauses while those of a contraction rule are sets of clauses.
The rules in Figures 1 and 2 are well-known in the theorem proving literature
(see e.g., [12]). A fundamental feature of SP is the usage of a total reduction
ordering (TRO) 2 [5] on terms. The ordering 2 is extended to literals in such
a way that only maximal sides of maximal instances of literals are considered
when applying the expansion rules of Figure 1. Since later we need a total re-
duction ordering 2c on clauses, we extend the TRO 2 on terms to clauses
as follows: C 2c D if ms(C) (2mul)mul ms(D), where C and D are clauses,
2mul is the multiset extension of the TRO 2 over terms (see [5] for details),
and ms(s1 = s′1 ∨ . . . ∨ sn = s′n ∨ t1 = t′1 ∨ . . . tm = t′m) returns the multi-

On Superposition-Based Satisfiability Procedures 597

Superposition (SP)
Γ ⇒ Δ, l[u′] = r Π ⇒ Σ, u = t

σ(Γ, Π ⇒ Δ, Σ, l[t] = r)
(i), (ii), (iii), (iv)

Paramodulation (PM)
Γ, l[u′] = r ⇒ Δ Π ⇒ Σ, u = t

σ(l[t] = r, Γ, Π ⇒ Δ, Σ)
(i), (ii), (iii), (iv)

Reflection (R)
Γ, u′ = u⇒ Δ

σ(Γ ⇒ Δ)
∀L ∈ Γ ∪Δ : σ(u′ = u) �≺ σ(L)

Eq. Factoring (EF)
Γ ⇒ Δ, u = t, u′ = t′

σ(Γ, t = t′ ⇒ Δ, u = t′)
(i), ∀L ∈ Γ : σ(u) �� σ(L),

∀L ∈ {u′ = t′} ∪Δ : σ(u = t) �≺ σ(L)

where a clause ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bn is written in sequent style as
{A1, . . . , An} ⇒ {B1, . . . , Bm} (where the Ai’s and Bj ’s are literals), equality is the
only predicate symbol, σ is the most general unifier of u and u′, u′ is not a variable in
Superposition and Paramodulation, L is a literal, and the following hold:

(i) σ(u) �� σ(t), (ii) ∀L ∈ Π ∪ Σ : σ(u = t) �� σ(L), (iii) σ(l[u′]) �� σ(r),
and (iv) ∀L ∈ Γ ∪Δ : σ(l[u′] = r) �� σ(L).

Fig. 1. Expansion inference rules of SP

Subsumption
S ∪ {C, C′}

S ∪ {C}

if for some substitution θ, θ(C) ⊆
C′ and for no substitution ρ,
ρ(C′) ≡ C

Simplification
S ∪ {C[l′], l = r}

S ∪ {C[θ(r)], l = r}
if l′ ≡ θ(l), θ(l) - θ(r), and
∀L ∈ C[θ(l)] : L - (θ(l) = θ(r))

Deletion
S ∪ {Γ ⇒ Δ, t = t}

S

where C and C′ are clauses and S is a set of clauses.

Fig. 2. Contraction inference rules of SP

set {{s1, s1, s′1, s′1}, . . . , {sn, sn, s′n, s′n}, {t1, t′1}, . . . , {tm, t′m}}. (By abuse of no-
tation, we abbreviate 2c with 2.)

A clause C is redundant with respect to a set S of clauses if either C ∈ S or
S can be obtained from S ∪ {C} by a sequence of application of the contraction
rules of Figure 2. An inference is redundant with respect to a set S of clauses
if its conclusion is redundant with respect to S. A set S of clauses is saturated
with respect to SP if every inference of SP with a premise in S is redundant
with respect to S. A derivation is a sequence S0, S1, . . . , Si, . . . of sets of clauses
where at each step an inference of SP is applied to generate and add a clause
(cf. expansion rules in Figure 1) or to delete or reduce a clause (cf. contraction
rules in Figure 2). A derivation is characterized by its limit, defined as the set
of persistent clauses S∞ =

⋃
j≥0

⋂
i>j Si.

Lemma 1 ([12]). Let S0, S1, . . . , Sn, . . . be a derivation and let C be a clause
in (

⋃
i Si)\S∞. Then C is redundant with respect to S∞.

A derivation S0, S1, ..., Si, ... with limit S∞ is fair with respect to SP if for every
inference in SP with premises in S∞, there is some j ≥ 0 such that the inference
is redundant in Sj .

598 H. Kirchner et al.

Theorem 1 ([12]). If S0, S1, . . . is a fair derivation of SP, then (i) its limit
S∞ is saturated with respect to SP, (ii) S0 is unsatisfiable iff the empty clause
is in Sj for some j, and (iii) if such a fair derivation is finite, i.e. it is of the
form S0, . . . , Sn, then Sn is saturated and logically equivalent to S0.

We say that SP is refutation complete since it is possible to derive the empty
clause with a finite derivation from an unsatisfiable set of clauses (cf. (ii) of
Theorem 1).

2.2 A Superposition Approach to Satisfiability Procedures

The rewrite-based methodology [2] uses SP to build in an uniform way sat-
isfiability procedures for theories which can be finitely axiomatized by a set
of clauses. For a term t, depth(t) = 0, if t is a constant or a variable, and
depth(f(t1, . . . , tn)) = 1+max{depth(ti) | 1 ≤ i ≤ n}. A term is flat if its depth
is 0 or 1. For a literal, depth(l �� r) = depth(l) + depth(r). A positive literal is
flat if its depth is 0 or 1. A negative literal is flat if its depth is 0. A flat clause is
a clause containing only flat literals. Let V be a set of variables. A V -elementary
equality is an equality of the form x = y for x, y ∈ V . A V -elementary clause is
a disjunction of V -elementary equalities.

The rewrite-based methodology for T -satisfiability consists of two phases:

1. Flattening: all ground literals are flattened by introducing new constants,
yielding an equisatisfiable T -reduced flat problem.

2. Ordering selection and termination: any fair derivation of SP is shown to
be finite when applied to a T -reduced flat problem, provided that the TRO
2 satisfies a few properties depending on T .

If T is a theory to which the rewrite-based methodology applies, a T -satisfiability
procedure can be built by implementing the flattening (this can be done once
and for all), and by using a prover mechanizing SP with a suitable TRO 2. If
the final set of clauses returned by the prover contains the empty clause, then
the T -satisfiability procedure returns unsat; otherwise, it returns sat.

2.3 The Nelson-Oppen Method

The N-O combination method allows us to solve the problem of checking the
satisfiability of a conjunction Φ of quantifier-free literals in the union of two
signature-disjoint theories T1 and T2 for which two satisfiability procedures are
available. Since the literals in Φ may be built over symbols in T1 or in T2, we need
to purify them by introducing fresh variables to name subterms. This process
leaves us with a conjunction Φ1 ∧ Φ2 which is equisatisfiable to Φ where Φi

contains only literals with symbols of Ti, for i = 1, 2. In this way, literals in Φi

can be dispatched to the available decision procedure for Ti.
To show the correctness of the N-O method [10,13], the theories T1 and

T2 must be stably-infinite. Roughly, a theory is stably infinite if any satisfiable
quantifier-free formula is satisfiable in a model having an infinite cardinality. All

On Superposition-Based Satisfiability Procedures 599

theories considered in this paper (the theory of equality, the theory of lists, the
theory of arrays, and the theory of Linear Arithmetic) are stably infinite.

An efficient description of the N-O method is based on the availability of
satisfiability procedures with the following properties (see [6] for an in depth
discussion on these issues):

Deduction completeness. It must be capable of efficiently detecting elemen-
tary clauses which are implied by the input conjunction of literals.

Incrementality & resettability. It must be possible to add and remove lit-
erals to and from the state of the procedure without restarting it. Also,
processing each literal must be computationally cheap.

The N-O method for satisfiability procedures satisfying the requirements
above is depicted in Figure 3 when T1 is the theory of equality for which the
superposition calculus is known to be a satisfiability procedure (see e.g., [2])
and T2 is Linear Arithmetic (LA) for which various satisfiability procedures are
available (see e.g., [8]). Such a combination method simply consists of exchanging
elementary clauses between the two procedures until either unsatisfiability is
derived by one of the two, or no more elementary clauses can be exchanged. In
the first case, we derive the unsatisfiability of the input formula; in the second
case, we derive its satisfiability. N-O method terminates because only finitely
many elementary clauses can be constructed by using the variables of both Φ1
and Φ2.

It is sufficient to exchange only elementary equalities when combining convex
theories. A theory is convex if for any conjunction Γ of equalities, a disjunction
D of equalities is entailed by Γ if and only if some disjunct of D is entailed by Γ .
Examples of convex theories are the theory of equality, the theory of lists, and the
theory of Linear Arithmetic over the Rationals (LA(R)). Since both procedures
are assumed to be deduction complete, the combination method only needs to

Backtracking

Dispatcher
Purification&

input literals

Linear
Arithmeticequalities

equalities equalities

disjunction of equalitiesdisjunction of equalities

Superposition
Prover

purified equality literals purified arithmetic literals

Case−Splitting

Fig. 3. The Nelson-Oppen Combination Method

600 H. Kirchner et al.

pass around elementary equalities between the procedures as soon as they detect
them. Adding the newly detected equalities can be done efficiently as long as
the procedures are also assumed to be incremental.

When combining at least one non-convex theory such as the theory of arrays
or the theory of Linear Arithmetic over the Integers (LA(I)), the combina-
tion method is more complex since the procedures should exchange elementary
clauses. Although the procedures are capable of deriving the entailed elementary
clauses, their processing is problematic since they are only capable of handling
conjunctions of literals. The standard solution, as depicted in Figure 3, is to
case-split on the derived elementary clauses and then consider each disjunct in
turn by using a backtracking procedure; this can be efficiently done (see e.g., [6]
for details) since both procedures are assumed to be incremental and resettable.

3 Deduction Complete, Incremental, and Resettable
Satisfiability Procedures Based on Superposition

As discussed in Section 2.3, satisfiability procedures must be deduction complete,
incremental, and resettable to be efficiently combined à la N-O. Here, we show
how to extend the satisfiability procedures based on superposition of [2] with
such capabilities.

3.1 Deduction Completeness

First, we need a formal definition of deduction completeness to precisely state
our results.

Definition 1. A T -satisfiability procedure is deduction complete with respect
to elementary clauses (resp. elementary equalities) if for any T -satisfiable set S
of clauses (resp. unit clauses), it returns, in addition to sat, a set of elementary
clauses (resp. elementary equalities) D such that for any elementary clause (resp.
elementary equality) C, we have T |= S ⇒ C if and only if D |= C (i.e. S ⇒ C
is T -valid if and only if C is a logical consequence of D).

We now show how the methodology in [2] (summarized in Section 2.2) can be
extended to build satisfiability procedures which are deduction complete w.r.t.
elementary clauses. To this end, we must prove the following conjecture.

Conjecture 1. Let Ax(T) be the set of axioms of a stably infinite theory T for
which the methodology in [2] yields a satisfiability procedure, S be a T -satisfiable
set of ground literals, and V be the set of all constants in S. If S′ is the saturation
of Ax(T)∪ S and DV ⊆ S′ is the set of all V -elementary clauses, then for every
V -elementary clause C which is a logical consequence of T ∪ S, C is a logical
consequence of DV .

If we are capable of proving Conjecture 1 for a certain theory T , we can build
a deduction complete satisfiability procedure for T by simply extracting from
a saturated set S′ of clauses (not containing the empty clause) the elementary

On Superposition-Based Satisfiability Procedures 601

clauses which entail all elementary clauses entailed by S′. Indeed, this is sufficient
for the completeness of the N-O method depicted in Figure 3.

Since Conjecture 1 must be proved for each theory T for which the method-
ology of [2] (cf. Section 2.2) yields a superposition-based satisfiability procedure,
we extend such a methodology with the following phase:

3. Deduction completeness : any set of clauses saturated by SP (not containing
the empty clause) is shown to contain a set of elementary clauses entailing
all elementary clauses which are logical consequences of the initial set of
clauses.

Below, we assume that 2 is a TRO such that t 2 c for each constant
c and term t containing a function symbol of arity bigger than 0. This
requirement is easy to realize in practice (see [2] for more details). We also assume
that the contraction rules of SP have higher priority than expansion rules. This
is a reasonable assumption: before enlarging the search space by adding a new
clause via the application of an expansion rule, one would try to reduce it as
much as possible via the application of as many contraction rules as possible.

Theory of Equality E. Let S be a set of ground literals and Ax(E) be the
empty set since equality is built-in the rules of SP . For any TRO 2, the fair and
exhaustive applications of the rules of SP on Ax(E) ∪ S always terminates and
so SP can be used to build a satisfiability procedure for E (see [2] for details).
Here, for the sake of generality, we consider S to be a set of clauses and not
simply of literals.

Theorem 2. Let S be a satisfiable set of ground clauses and V be the set of all
constants occurring in S. Let S′ be a saturation of S with respect to SP and DV

be the set of all V -elementary clauses in S′. Then for every V -elementary clause
C, S |= C implies DV |= C.

Proof. Since S and S′ are logically equivalent, S |= C if and only if S′ |= C. Let
C ≡ c1 = c′1 ∨ c2 = c′2 ∨ . . .∨ cn = c′n, then S′ |= c1 = c′1 ∨ c2 = c′2 ∨ . . .∨ cn = c′n
is equivalent to S′ ∪ {c1 = c′1, c2 = c′2, . . . , cn = c′n} is unsatisfiable.

By the refutation completeness of SP , we can derive the empty clause from
S′ ∪ {c1 = c′1, c2 = c′2, . . . , cn = c′n} using the inference system SP . Since
S′ is already saturated, only inferences between clauses in S′ and clauses in
{c1 = c′1, c2 = c′2, . . . , cn = c′n} could derive the empty clause. But then,
only Paramodulation, Simplification and Reflection can apply since clauses in
{c1 = c′1, . . . , cn = c′n} are all negative. Now let us analyze the form of clauses
used by these three rules to derive the empty clause.

– Paramodulation: a clause of the form c1 = c′1 ∨ c2 = c′2 ∨ . . . ∨ cm = c′m
(m ∈ {1, . . . , n}) in S′ and c1 = c′1 are used to derive in one step c2 =
c′2 ∨ . . . ∨ cm = c′m. The rule repeatedly applies until the empty clause is
obtained. That means the clause c1 = c′1 ∨ c2 = c′2 ∨ . . . ∨ cm = c′m must
be in S′ and hence in DV . But c1 = c′1 ∨ c2 = c′2 ∨ . . . ∨ cm = c′m |= C,
consequently DV |= C.

602 H. Kirchner et al.

– Simplification: a clause cj = c′j in {c1 = c′1, c2 = c′2, . . . , cn = c′n} is simplified
(by one or many steps) to the clause a = a; and Reflection applies to derive
the empty clause. But Simplification uses equalities to simplify clauses. In
addition, these equalities must be elementary since they are used to simplify
a disequality between constants. In other word cj = c′j is a consequence of
a set of elementary equalities which is itself a subset of DV . Thus we have
DV |= C.

– Reflection: a = a is used in Reflection and hence either a = a ∈ S′ or
a = a ∈ {c1 = c′1, c2 = c′2, . . . , cn = c′n}. But that type of clause cannot
be in S′ that is saturated and does not contain the empty clause. If it is
in {c1 = c′1, c2 = c′2, . . . , cn = c′n}, this simply means that c1 = c′1 ∨ c2 =
c′2 ∨ . . . ∨ cn = c′n is a tautology clause; and we have DV |= C.

In all cases, we have DV |= C. !

Corollary 1. Let S be a satisfiable set of ground literals and V be the set of
all constants occurring in S. Let S′ be a saturation of S with respect to SP and
ΓV be the set of all V -elementary equalities in S′. Then for every V -elementary
equality c = c′, S |= c = c′ implies ΓV |= c = c′.

Corollary 2. SP is a deduction complete (with respect to elementary equalities)
satisfiability procedure for E.

Proof. By Corollary 1, it is immediate to see that a deduction complete satisfi-
ability procedure for E is obtained by computing a saturation of the input set
of literals (unit clauses) and then collecting the elementary equalities in such a
saturated set of clauses. !

Theory of Lists à la Shostak. The (convex) theory L of lists à la Shostak [16]
is axiomatized by the following set Ax(L) of axioms:

car(cons(X,Y)) = X (L1)
cdr(cons(X,Y)) = Y (L2)

cons(car(X), cdr(X)) = X (L3)

where X and Y are implicitly universally quantified variables.

Lemma 2 ([2]). Let S be a finite set of ground flat L-literals. The clauses
occurring in the saturation of Ax(L) ∪ S w.r.t. SP are of the following types
only, where X,Y are variables, a, b, c are constants, and ��∈ {=, =}:

i) the empty clause;
ii) the axioms in Ax(L): 1) car(cons(X,Y)) = X; 2) cdr(cons(X,Y)) = Y ;

and 3) cons(car(X), cdr(X)) = X;
iii) ground flat literals of the forms: 1) c �� c′; 2) car(a) = b; 3) cdr(a) = b;

and 4) cons(a, b) = c;
iv) equalities of the form cons(b, cdr(a)) = a or cons(car(a), b) = a, where a, b

are constants.

On Superposition-Based Satisfiability Procedures 603

A consequence of this lemma [2] is that SP is a satisfiability procedure for
L. This is so because all saturations of Ax(L) ∪ S are finite, since only finitely
many literals of types i)–iv) can be built out of a finite signature.

Lemma 3. Let S be a finite L-satisfiable set of ground flat L-literals and V be
the set of constants occurring in S. Let Sg be the set of all ground clauses in
the saturation of Ax(L) ∪ S w.r.t. SP. Then, for every V -elementary equality
c = c′, we have that
A) if L ∪ S |= c = c′ then Sg |= c = c′, and
B) L ∪ S ∪ {c = c′} is unsatisfiable iff Sg ∪ {c = c′} is unsatisfiable.

Proof. Let S′ be a saturation of Ax(L) ∪S. Since S is L-satisfiable, S′ does not
contain the empty clause.

A) Notice that L ∪ S |= c = c′ is equivalent to S′ ∪ {c = c′} is unsatisfiable;
that also means we can derive the empty clause from S′ ∪ {c = c′} using SP .
Since S′ is saturated, we only consider inferences between clauses in S′ and
c = c′. For that, we consider all possible inferences between clauses listed in
Lemma 2 and c = c′. We can easily see that only inferences between clauses of
type (iii .1) and c = c′ are possible. In other words, c = c′ is a consequence of a
subset of Sg; consequently, Sg |= c = c′.

B) We have that L∪S∪{c = c′} is unsatisfiable if and only if S′∪{c = c′} is
unsatisfiable. Since S′ is saturated, we only consider inferences between clauses
in S′ and c = c′. Again, we consider all possible inferences between clauses listed
in Lemma 2 and c = c′ to derive the empty clause. We can see that only the
following inferences are possible: (iii) and c = c′, (iv) and c = c′. This simply
means c = c′ is a consequence of Sg. !

Theorem 3. Let S be a finite L-satisfiable set of ground flat L-literals and V be
the set of constants occurring in S. Let ΓV be the set of V -elementary equalities
that belong to the saturation of Ax(L)∪S w.r.t. SP. Then for every V -elementary
equality c = c′ which is a logical consequence of Ax(L) ∪ S, c = c′ is a logical
consequence of ΓV .

Proof. It follows from Lemma 3 that the subset Sg containing the ground clauses
in the saturation of S is sufficient to derive V -elementary equalities, i.e. for every
ground V -elementary equality c = c′, S |= c = c′ implies Sg |= c = c′. By
Corollary 1, Sg |= c = c′ implies ΓV |= c = c′. !

Corollary 3. SP is a deduction complete (with respect to elementary equalities)
satisfiability procedure for L.

Other convex theories. The result obtained for L can be extended to other convex
theories considered in [2,1], namely the theory of lists à la N-O, a theory of
encryption, or a theory of records by proceeding along the lines of what has been
done for L: show that only the ground clauses in a saturation are sufficient to
derive entailed elementary equalities and then use Corollary 1 to conclude that
the elementary equalities in the saturation are sufficient to derive all entailed
elementary equalities. We do not do this here for lack of space.

604 H. Kirchner et al.

Theory of Arrays. The (non-convex) theory A of arrays (see e.g., [2]) is ax-
iomatized by the following finite set Ax(A) of axioms:

select(store(A, I, E), I) = E (A1)
I = J ⇒ select(store(A, I, E), J) = select(A, J) (A2)

where A, I, J, E are implicitly universally quantified variables.

Lemma 4 ([2]). Let S be a finite set of ground flat A-literals. Then, the clauses
occurring in the saturation of Ax(A)∪S with respect to SP are of the following
types only, where X is a variable, and a, a′, e, e′, i, i1, i

′
1, . . . , in, i

′
n, j1, j

′
1 . . . , jm,

j′m for n ≥ 0, m ≥ 0 are constants, and ��∈ {=, =}:

i) the empty clause;
ii) the axioms in Ax(A);
iii) ground flat literals;
iv) non-unit clauses of the form:

a) clauses of the form select(c,X) = select(c′, X) ∨ X = i1 ∨ . . .X =
in ∨ j1 �� j

′
1 ∨ . . . ∨ jm �� j′m;

b) select(a, i) �� e ∨ i1 �� i
′
1 ∨ . . . ∨ in �� i′n;

c) t = a′ ∨ i1 �� i
′
1 ∨ . . . ∨ in �� i′n, where t is either a or store(a, i, e);

d) e �� e′ ∨ i1 �� i
′
1 ∨ . . . ∨ in �� i′n;

e) i1 �� i
′
1 ∨ i2 �� i′2 ∨ . . . ∨ in �� i′n;

A consequence of this lemma [2] is that SP is a satisfiability procedure for A.

Lemma 5. Let S be a finite A-satisfiable set of ground flat A-literals and V be
the set of constants occurring in S. Let Sg be the set of all ground clauses in
the saturation of Ax(A) ∪ S with respect to SP. Then, for every V -elementary
clause D, we have that
A) Ax(A) ∪ S |= D ⇒ Sg |= D, and
B) Ax(A) ∪ S ∪ {D} is unsatisfiable if and only if Sg ∪ {D} is unsatisfiable.

Theorem 4. Let S be a finite A-satisfiable set of ground flat A-literals and V
be the set of constant occurring in S. Let DV be the set of V -elementary clauses
that belong to the saturation of Ax(A) ∪ S with respect to SP. Then for every
V -elementary clause C which is a logical consequence of Ax(A)∪S, C is a logical
consequence of DV .

Proof. It follows from Lemma 5 that the subset Sg containing the ground clauses
in the saturation of S is sufficient to derive V -elementary clauses, i.e. for every
ground V -elementary clause C, S |= C implies Sg |= C. By Theorem 2, Sg |= C
implies DV |= C. !

Corollary 4. SP is a deduction complete (with respect to elementary clauses)
satisfiability procedure for A.

Other non-convex theories. The result obtained for A can be extended to the
theory of arrays with extensionality and a simple theory of sets with and without
extensionality considered in [2]. For lack of space, we do not develop this further.

On Superposition-Based Satisfiability Procedures 605

3.2 Experiments

In order to show the efficiency of the deduction complete satisfiability procedures
based on superposition presented above, we have implemented the combination
method described in Figure 3 in the theorem prover haRVey [3]. In particular, the
E prover [15] implements SP and we have implemented a module to inspect the
saturated sets of clauses computed by the E prover and extract the elementary
clauses. We have also implemented a deduction complete procedure for LA(R)
along the lines of [8].

For benchmarks, we used a selection of proof obligations from those generated
to certify auto-generated aerospace software in [4]. We selected 107 (out of 356)
unsatisfiable proof obligations expressing the property that each access to an
array element are within the appropriate range. For example, an array variable
a is modeled as the constant a and its i-element a[i] is written as sel(a, i);
hence, we need to reason about a combination of E and LA(I). As it is common in
software verification, we use the decision procedure for LA(R) as a semi-decision
procedure for LA(I). On these benchmarks, this is sufficient since all proof
obligations have been checked unsatisfiable already over the rationals. In [4],
the proof obligations come with a set of axioms which approximates LA(I) and
should be sufficient to discharge (almost) all of them. Since haRVey is capable
of handling virtually any theory which can be finitely axiomatized, we compared
the behavior of the system haRVey(SP) with the E prover alone handling the
supplied axioms for LA(I) and the system haRVey(SP +LA(R)) featuring the
combination between the decision procedure for LA(R) and the superposition
prover without axioms for LA(I).

Table 1. Experimental results

time-out don’t know unsat
haRVey(SP) 5 17 85
haRVey(SP + LA(R)) 0 0 107

Experiments were performed on a Pentium-IV 2 GHz running Linux with
256 Kb of RAM and 1 Gb of disk space. We set a time-out of 60 seconds. A
comparison of haRVey(SP) and haRVey(SP+LA(R)) is shown in Table 1. The
column “don’t know” means that the prover returned with satisfiable but since
the axiomatization of LA(I) is necessarily incomplete we interpreted it as non
conclusive. From Table 1, it is clear that the incorporation of LA(R) in haRVey
is successful since it both eliminates the need of an explicit axiomatization of the
background theory and makes the system more reliable. We believe that these
results clearly show that Arithmetic reasoning has been efficiently combined
with superposition theorem proving to discharge the proof obligations arising in
typical software verification problems.

3.3 Incrementality and Resettability

Although the combination method in Figure 3 is already efficient in practice
to tackle interesting proof obligations arising in verification (as shown in Sec-

606 H. Kirchner et al.

purified arithmetic literals

Congruence
Closure

Superposition
prover

Linear
Arithmetic

Handler

equalities

disjunction of equalitiesdisjunction of equalities

equalities

equalities equalities

Dispatcher
Purification&

input literals

Case−Splitting

purified equality literals

Fig. 4. The Hierarchic Nelson-Oppen Combination Method

tion 3.2), there is still room for improvement. In fact, Lemmas 3.B) and 5.B)
allow us to observe that when new elementary clauses (deduced from another
satisfiability procedure) must be added to a saturated set of clauses, it is only
necessary to consider the ground clauses in the saturated set. This implies that
it is sufficient to use the superposition calculus as a front-end for the congruence
closure algorithm, which can be turned into a deduction complete, incremental,
and resettable satisfiability procedure for E (see e.g., [6]). So, the superposi-
tion calculus must be applied only once before the combination loop in which
the congruence closure algorithm and another satisfiability procedure exchange
elementary clauses. Figure 4 depicts the hierarchic combination method which
allows us to obtain satisfiability procedures which are both incremental and re-
settable. We are currently implementing the method in haRVey and we expect
further improvements in performances. It is interesting to notice that this ap-
proach can be used in any theorem proving system featuring a combination of
satisfiability procedures à la N-O, offering an easy and efficient way to incorpo-
rate procedures for a variety of theories extending E .

4 Related Work

Our approach to efficiently combine a theory processed by superposition with a
procedure for LA(R) is based on the N-O method. An alternative combination
method has been proposed by Shostak [16]. Such a method assumes that the
theories to be combined are such that there exist functions for reducing terms
to canonical form (canonizers) and for solving equations (solvers) [13]. There
are essentially two different ways to use canonizers and solvers for deciding the
satisfiability problem in unions of disjoint theories.

First, one can use a solver and a canonizer to build a satisfiability proce-
dure having the capability of computing entailed elementary equalities. Then,
this satisfiability procedure can be combined with others using the N-O method.
So, combining theories à la Shostak can be directly viewed as a refinement of
the Nelson-Oppen combination method [13]. In this way, solvers and canonizers

On Superposition-Based Satisfiability Procedures 607

can be readily integrated with the satisfiability procedures based on superposi-
tion described in this paper. A second approach consists in extending the use of
canonizers and solvers in order to deal with terms built over the union of the sig-
natures of the component theories. In contrast to the N-O method, one does not
need to purify the input literals. Rather, the input literals are processed directly
by solvers and canonizers having the capability of transforming heterogeneous
terms. This approach was initiated by Shostak and has been followed by many
other papers revisiting this combination method (see again [13] for details). Re-
cently, this approach has been used in [7] to integrate a canonizer and a solver
in the superposition calculus. This yields a refutationally complete calculus on
ground clauses whose terms are built over the union of the signatures of the
component theories. This is particularly interesting to integrate some form of
Arithmetic reasoning with superposition. The main drawback of this approach
is the ordering relation used to restrict the applicability of the inference rules
which is quite complex. Instead, our approach uses the standard and well under-
stood framework of the superposition calculus (including the standard techniques
to define ordering relations) which allows us to re-use a wide range of existing
results.

5 Conclusion

In [2], the authors give a general and flexible approach to derive satisfiability
procedures by superposition. In this work, we have shown that such satisfia-
bility procedures deduce sufficiently many (disjunctions of) equalities between
variables to be combined à la Nelson and Oppen with other satisfiability pro-
cedures without loosing completeness. Experimental results on typical software
verification problems show the efficiency of the proposed approach. Moreover, it
is possible to obtain a certain degree of incrementality and resettability by using
a hierarchic variant of the N-O method.

There are several main lines for future work. First, we want to derive a more
precise characterization of the theories for which deduction complete superpo-
sition based satisfiability procedures can be built with the methodology of [2].
Second, we intend to empirically evaluate the efficiency of our hierarchic variant
of N-O combination method by conducting some experiments in haRVey [3].
Finally, we plan to study, along the line of [14], the combination of superposi-
tion based satisfiability procedures with satisfiability procedures for non stably
infinite theories, for which the N-O method does not directly apply.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. On a rewriting approach to
satisfiability procedures: extension, combination of theories and an experimental
appraisal. In Proc. of the 5th Int. Workshop on Frontiers of Combining Systems
(FroCos’05), LNCS. Springer-Verlag, 2005. To appear.

2. A. Armando, S. Ranise, and M. Rusinowitch. A Rewriting Approach to Satisfia-
bility Procedures. Info. and Comp., 183(2):140–164, June 2003.

608 H. Kirchner et al.

3. D. Déharbe and S. Ranise. Light-Weight Theorem Proving for Debugging and
Verifying Units of Code. In Proc. of the Int. Conf. on Software Engineering and
Formal Methods (SEFM03). IEEE Comp. Soc. Press, 2003.

4. E. Denney, B. Fischer, and J. Schumann. Using automated theorem provers to cer-
tify auto-generated aerospace software. In Proc. of Int. Joint Conf. On Automated
Reasoning (IJCAR’04), volume 3097 of LNCS, 2004.

5. N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science,
volume B, chapter 6: Rewrite Systems, pages 244–320. Elsevier Science Publishers
B. V. (North-Holland), 1990.

6. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A Theorem Prover for Program
Checking. Technical Report HPL-2003-148, HP Laboratories, 2003.

7. H. Ganzinger, T. Hillenbrand, and U. Waldmann. Superposition modulo a Shostak
theory. In F. Baader, editor, Automated Deduction — CADE-19, volume 2741 of
LNAI, pages 182–196. Springer-Verlag, 2003.

8. D. Kapur and X. Nie. Reasoning about Numbers in Tecton. In Proc. 8th Inl.
Symp. Methodologies for Intelligent Systems, pages 57–70, 1994.

9. H. Kirchner, S. Ranise, C. Ringeissen, and D. K. Tran. On Superposition-Based
Satisfiability Procedures and their Combination (Full Version). Available at
http://www.loria.fr/~ranise/pubs/long-ictac05.ps.gz.

10. G. Nelson. Techniques for program verification. Technical Report CS-81-10, Xerox
Palo Research Center California USA, 1981.

11. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, Oct. 1979.

12. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
A. Robinson and A. Voronkov, editors, Hand. of Automated Reasoning. 2001.

13. S. Ranise, C. Ringeissen, and D.-K. Tran. Nelson-Oppen, Shostak and the Ex-
tended Canonizer : A Family Picture with a Newborn. In First International Col-
loquium on Theoretical Aspects of Computing — ICTAC 2004, Guiyang, China,
volume 3407 of LNCS, pages 372–386. Springer, Sep 2004.

14. S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with non-
stably infinite theories using many-sorted logic. In Proc. of the 5th Int. Workshop
on Frontiers of Combining Systems (FroCos’05), LNCS. Springer-Verlag, 2005. To
appear.

15. S. Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications,
15(2/3):111–126, 2002.

16. R. E. Shostak. Deciding combinations of theories. J. of the ACM, 31:1–12, 1984.

A Summary of the Tutorials at ICTAC 2005

Dang Van Hung�

International Institute for Software Technology,
The United Nations University, P.O. Box 3058, Macau

dvh@iist.unu.edu

Abstract. Five tutorials were provided by ICTAC 2005. They were con-
ducted by internationally recognised experts. A brief summary of each
tutorial is include here.

1 Introduction

One of the aims of ICTAC is to bridge the digital divide between the developing
world and the developed world. The tutorial program at ICTAC is an efficient
way toward the achievement of this aim. It provides opportunities for the confer-
ence attendees, many of whom are from developing countries, to get knowledge,
insights and abilities on key subjects on theoretical aspects of computing and
software engineering.

The tutorial program at ICTAC 2005 has five tutorials which cover advanced
topics in theories, practical formal engineering methods and tools that we believe
to be very popular, useful and relevant to the audience. Two of the five tutorials
introduce model checking techniques and tools from different approaches. The
others give a theory for dynamic component composition, coalgebraic structures
and their application, and answer set programming. The abstracts of these five
tutorials are given in the following section.

2 The Tutorials

Tutorial 1A: Compositional Models for Dynamic Component
Composition

Lecturer: Farhad Arbab, Center for Mathematics and Computer Science (CWI),
Amsterdam, The Netherlands.

Abstract: This tutorial has two parts. In the first part of this tutorial, a for-
mal model of components is introduced which extends object-orientation with
additional structuring and abstraction mechanisms to support a modeling dis-
cipline based on interfaces. This component model formalizes the concepts of
roles, ports, interfaces, and connectors. Components in this model encapsulate
their internal structure and interact only through ports. The behavior of ports is
� On leave from the Institute of Information Technology, Hanoi, Vietnam.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 609–612, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

610 D.V. Hung

generically described by roles. Roles export information about required and pro-
vided operations by means of interfaces. Finally, connectors wire roles of different
components together to form a component-based application.

Next, a fully abstract trace semantics for this object-oriented component
model is discussed. This semantics is formalized in terms of a new notion of
abstract behavior types for components, which provides a description of the
externally observable behavior of a component, inspired by UML sequence dia-
grams. Such a description abstracts from the actual implementation given, for
example, by UML state-machines. The full abstraction result is based on a may-
testing semantics of abstract behavior types which involves a composition of
components in terms of cross-border dynamic class instantiation through com-
ponent interfaces. This is the first such result for a concurrent object-oriented
language with dynamic class instantiation.

In the second part of this tutorial, models for dynamic component com-
position using mobile channels are discussed. The notion of mobile channels
is introduced, and their implementation and utility in distributed platforms is
shown.

Next the lecture describes how mobile channels form the basis for a surpris-
ingly expressive distributed coordination model, called Reo. Reo is an exoge-
nous coordination language wherein complex coordinators, called connectors are
compositionally built out of simpler ones, based on a calculus of channel com-
position. Reo offers a “glue language” for compositional construction of reusable
connectors that orchestrate component instances in a component based system.
Each connector in Reo imposes a specific coordination pattern on the entities
(e.g., component instances) that perform I/O operations through that connector,
without the knowledge of those entities.

Tutorial 1B: Answer Set Programming

Lecturer: Tran Cao Son, New Mexico State University, USA.

Abstract: Answer set programming is a new programming paradigm based on
Logic Programming under answer set semantics. In this paradigm, a problem
to be solved is translated to a program whose answer sets correspond one-to-
one to the solutions of the original problem, and can be computed using an
answer set solver. Answer set programming has become popular recently. This
tutorial provides an overview of answer set programming and its applications,
and pointers to state-of-the-art answer set solvers. This tutorial also discusses
the current issues and research problems in the area of answer set programming.

Tutorial 2A: Model Checking with SPIN and Its Industrial
Applications

Lecturer: Jay S. Bagga and Adrian Heinz, Ball State University, USA, and
Dang Van Hung, UNU-IIST, Macao.

A Summary of the Tutorials at ICTAC 2005 611

Abstract: Industrial use of software has grown rapidly in the last few decades.
Industries such as telecommunications, automotive, manufacturing, defense, and
aerospace use software to run and control their applications, processes, and sys-
tems. Many critical applications in such industries require that the software be
accurate and highly reliable, since a malfunction can lead to catastrophic losses.
Formal methods are used to improve the reliability of software and hardware
systems. A formal method called model checking uses efficient search techniques
to check that a model of the system being developed satisfies the specifications
(properties).

The specifications that the system must have can be generally written in
terms of logical propositions. A verification technique called temporal logic model
checking was developed in the 1980s by Clarke, Emerson, Quielle and Sifakis.
Specifications are expressed as formulas in propositional temporal logic. A finite
state-transition model of the system is formed, and the model is checked by using
efficient search procedures for the validity of the formulas. Over the last two
decades, various model-checking tools have been developed and used. One such
popular model-checker is SPIN, a tool developed by Holzmann. SPIN has been
used in verification of several types of software systems including communication
protocols, and some hardware verification.

This tutorial aims to provide academic faculty members, students, and prac-
ticing IT professionals a formal training in software verification methods. The
tutorial consists of four sessions, each approximately one hour-long, as described
below.

– Session 1: Introduction to Model Checking: This session will provide the
basic notions of model checking, temporal logic, LTL and CTL, and model
checking algorithms.

– Session 2: SPIN and PROMELA: This session will introduce SPIN and
PROMELA and provide hands-on training with examples.

– Session 3: Case Study: An assembly line simulator. This model is composed of
several components to load, transport and process mechanical pieces. Every
component works independently of the other components and communicates
with the rest of the system by the use of channels. An implementation of the
assembly line simulator in SPIN will be presented.

– Session 4: Case Study: The second case study used for this tutorial is a
telephone switch system taken from the SPIN Modelchecker book with some
improvements for modeling the system and its desired properties. We show in
this case study how to model the essential elements of a system in incremental
way using the language PROMELA, and how to manage the complexity by
using abstraction techniques.

Tutorial 2B: Coinductive Reasoning by Calculation

Lecturer: Luis Barbosa, Universidade do Minho, Portugal.
Abstract: Both initial algebras and final coalgebras are devices which provide ab-
stract descriptions of a variety of phenomena in programming, particularly data

612 D.V. Hung

and behavioural structures. Both initiality and finality, as universal properties,
entail definitional and proof principles, i.e., a basis for the development of pro-
gram calculi directly based on (actually driven by) type specifications. Moreover,
such properties can be turned into programming combinators and used, not only
to calculate programs, but also to program with. In functional programming the
role of such universals has been fundamental to a whole discipline of algorithm
derivation and transformation. On the coalgebraic side, coalgebraic modelling of
dynamical systems and reasoning by coinduction has recently emerged as active
area of research. This tutorial provides an introduction to coalgebraic structures
and their application to systems construction. Its main focus, however, is placed
on reasoning principles for such structures developing an entirely calculational
approach to coinduction which avoids the explicit construction of bisimulations,
and therefore, promotes a reasoning style closer to the actual program construc-
tion practice. The presentation of basic concepts is illustrated by discussion of
small examples in reactive programing.

Tutorial 3: Regular Model Checking: Application to the Analysis of
Parametrized Systems and Multithreaded Recursive Programs

Lecturer: Tayssir Touili, LIAFA, CNRS & University of Paris 7, France.

Abstract: This tutorial presents the framework of regular model checking where
sets of configurations of a system are represented by regular word/tree languages
and its dynamics is modeled by a word/term rewrite system. In this framework,
the verification of safety properties is reduced to computing the reachability set
R∗(L) where R is a rewrite system and L is a regular language representing
the initial configurations. The construction of this set is not possible in general.
Therefore, this lecture presents:

1. A general acceleration technique, called regular widening which allows to
speed up the convergence of iterative fixpoint computations in regular mod-
elchecking; and which can be applied uniformly to various kinds of transfor-
mation. In particular, the lecture shows the application of this technique to
the verification of parametrized systems. Moreover, it proves that the widen-
ing technique can emulate many existing algorithms for special significant
classes of transformation.

2. Exact and approximate algorithms that compute the reachability sets for a
special class of rewrite system called Process Rewrite System (PRS). This
tutorial shows how these results can be applied to the analysis of programs
with complex features such as recursion and dynamic thread creation.

Author Index

Aoki, Toshiaki 501

Barbosa, Lúıs S. 469
Bezem, Marc 227
Bidoit, Michel 334
Bonfante, G. 579
Boudol, Gérard 366
Boute, Raymond 242

Celiku, Orieta 439
Chen, Yifeng 195
Clouston, Ranald 288

de la Encina, Alberto 211
De Nicola, Rocco 49
Delporte-Gallet, Carole 394
Dersanambika, K.S. 125
Doberkat, Ernst-Erich 409
Dung, Tran Van 180

Fauconnier, Hugues 394
Fränzle, Martin 257
Freiling, Felix C. 394

Goldblatt, Robert 288
Groote, Jan Friso 532

Han, Yo-Sub 96
Hansen, Michael R. 257
He, Jifeng 70, 303, 485
Heckel, Reiko 53
Heilili, Nuermaimaiti 381
Hennicker, Rolf 334
Hoare, C.A.R. 303
Hu, Zhenjiang 562
Hung, Dang Van 609
Hung, Kieu Van 29
Huy, Phan Trung 29

Inoue, Katsumi 166
Iwanuma, Koji 166

Kaczmarek, M. 579
Katayama, Takuya 501, 517

Keinänen, Misa 532
Kirchner, Hélène 594

Li, Guangyuan 272
Li, Xiaoshan 70
Limet, Sébastien 110
Lin, Zuoquan 381
Liu, Shengping 381
Liu, Zhiming 70, 485
Llana, Luis 211
Long, Quan 485
López, Natalia 454

Marion, J.-Y. 579
Meng, Sun 469
Meseguer, José 1

Nabeshima, Hidetomo 166
Nguyen, Linh Anh 151
Nguyen, Truong Thang 517
Núñez, Manuel 454

Ogawa, Mizuhito 562

Patra, Manas 424
Pillot, Pierre 110
Puhakka, Antti 546

Qiu, Zongyan 485

Ranise, Silvio 594
Ringeissen, Christophe 594
Roslin Sagaya Mary, A. 125
Rubio, Fernando 211

Sasano, Isao 562
Schäfer, Andreas 242
Shao, Lingshuang 485
Spoto, Fausto 351
Subramanian, K.G. 125

Tang, Zhisong 272
Tran, Duc Khanh 594
Truong, Hoang 227

Van, Do Long 29
van Glabbeek, Robert Jan 318

614 Author Index

Wood, Derick 96
Wu, Jinzhao 136

Yan, Rongjie 272
Yatake, Kenro 501

Zhan, Naijun 136
Zhang, Naixiao 469
Zhao, Chen 381
Zhou, Jianguo 195

	Frontmatter
	Invited Speakers
	A Rewriting Logic Sampler
	Codes and Length-Increasing Transitive Binary Relations
	Languages and Process Calculi for Network Aware Programming -- Short Summary -
	Stochastic Analysis of Graph Transformation Systems: A Case Study in P2P Networks
	Component-Based Software Engineering

	Formal Languages
	Outfix-Free Regular Languages and Prime Outfix-Free Decomposition
	Solving First Order Formulae of Pseudo-Regular Theory
	Splicing Array Grammar Systems

	Computer Science Logics
	Compositionality of Fixpoint Logic with Chop
	An SLD-Resolution Calculus for Basic Serial Multimodal Logics
	Upside-Down Transformation in SOL/Connection Tableaux and Its Application

	Program Construction
	On the Stability Semantics of Combinational Programs
	Generating C Code from LOGS Specifications
	Formalizing the Debugging Process in Haskell
	Finding Resource Bounds in the Presence of Explicit Deallocation

	Real-Time Systems
	The Timer Cascade: Functional Modelling and Real Time Calculi
	A Robust Interpretation of Duration Calculus
	Symbolic Model Checking of Finite Precision Timed Automata

	Concurrency and Refinement
	Covarieties of Coalgebras: Comonads and Coequations
	Linking Theories of Concurrency
	On Cool Congruence Formats for Weak Bisimulations
	Externalized and Internalized Notions of Behavioral Refinement

	Software Security
	Information Flow Is Linear Refinement of Constancy
	On Typing Information Flow
	Representation and Reasoning on RBAC: A Description Logic Approach
	Revisiting Failure Detection and Consensus in Omission Failure Environments

	Quantitative Logics
	Congruences and Bisimulations for Continuous-Time Stochastic Logic
	A Logic for Quantum Circuits and Protocols
	Quantitative Temporal Logic Mechanized in HOL
	Weak Stochastic Bisimulation for Non-markovian Processes

	Object-Orientation and Component Systems
	On Refinement of Software Architectures
	POST: A Case Study for an Incremental Development in r{\sc COS}
	Implementing Application-Specific Object-Oriented Theories in HOL
	Constructing Open Systems via Consistent Components

	Model-Checking and Algorithms
	A Sub-quadratic Algorithm for Conjunctive and Disjunctive Boolean Equation Systems
	Using Fairness Constraints in Process-Algebraic Verification
	Maximum Marking Problems with Accumulative Weight Functions

	Applied Logics and Computing Theory
	Toward an Abstract Computer Virology
	On Superposition-Based Satisfiability Procedures and Their Combination

	Tutorials at ICTAC 2005
	A Summary of the Tutorials at ICTAC 2005

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

