

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 359 – 362, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Formal Verification of Synchronizers

Tsachy Kapschitz and Ran Ginosar

VLSI Systems Research Center, Electrical Engineering Department
Technion–Israel Institute of Technology, Haifa 32000, Israel

ran@ee.Technian.ac.il

Abstract. Large Systems on Chips (SoC) comprise multiple clock domains, and
inter-domain data transfers require synchronization. Synchronizers may fail due
to metastability, but when using proper synchronization circuits the probability
of such failures can be made negligible. Failures due to unexpected order of
events (caused by interfacing multiple unrelated clocks) are more common.
Correct synchronization is independent of event order, and can be verified by
model checking. Given a synchronizer, a correct protocol is guessed,
verification rules are generated out of the protocol specification, and the model
checker applies these rules to the given synchronizer. An alternative method
verifies correct data transfer and seeks potential data missing or duplication.
Both approaches require specific modeling of multiple clocks, allowing for non-
determinism in their relative ordering. These methods have been applied
successfully to several synchronizers.

1 Introduction

Large systems of chip are typically partitioned into multiple clock domains. Clock
frequencies of the various domains and their relative phases may be unknown a-priori,
and may also change dynamically [1]. Data transfers between different clock domains
require synchronization [2]. When data enters a domain and happens to change
exactly when the receiving register is sampling its input may cause that register to
become metastable and fail [3]. This problem is mitigated by properly employing
synchronizers. This paper describes methods for formal verification of synchronizers
using model-checking [4].

Synchronizers are designed to allow certain time for metastability resolution. The
amount of resolution time is determined according to the desired level of probability
of failures. In this paper we assume that sufficient time has been allowed and no
failures are expected. However, following metastability the synchronizer may resolve
non-deterministically to either 0 or 1, and consequently proper synchronization is still
not guaranteed. To mitigate that non-determinism, synchronizers are encapsulated in a
bidirectional handshake protocol. The goal of formal verification is to guarantee
correct execution of that protocol.

There are too many known synchronizer types and synchronization protocols, and
it may be infeasible to define a single specification that could be used to verify all of
them. Instead, we employ structural analysis to recognize synchronizers and to sort
them into several a-priori known types. For each type, a set of properties has been
defined, which, when proven to hold, guarantee correctness.

360 T. Kapschitz and R. Ginosar

The paper describes how to generate formal verification executions of RuleBase (a
model checker [5] using PSL [6]) for given synchronizers. We start with modeling of
multiple clocks in Section 0. Next, in Section 0, we describe control verification
method, based on converting the specification into PSL assertions. Data verification,
which is not specification-dependent, is presented in Section 0. A more detailed
description is given in [7].

2 Modeling Multiple Clocks

The model checker (MC) [5] performs its algorithms in a sequence of atomic ticks.
Each synchronous component of the system being verified (the design system) is
assumed to operate in atomic clock cycles. Common model checking assumes a single
clock, but synchronizers must be verified while observing multiple clocks. Thus, we
need to add special modeling of multiple clocks to our specification.

Clock modeling depends on how the clocks of the two domains are inter-related. If
the two clocks are unrelated, they are modeled as two free variables. When the
frequencies of the two clocks are assumed related by a rational number m/n (WLOG
m>n) [8], then we specify to the MC that between any two edges of CLK2 there

should be N active edges of CLK1, where ⌊m/n⌋≤N≤⌈m/n⌉ (see [7]). A wide range
of m/n ratios may be covered in a single execution of the MC if m/n is specified as a
non-deterministic variable.

3 Control Verification

As stated above, data transferred between two mutually asynchronous clock domains
are wrapped by a handshake protocol, implemented with control signals between the
domains. We consider verification of the protocol by examining the control signals.
The desired synchronizer handshake protocols are specified by means of STG (Signal
Transition Graphs) that define the order of events (logic level transitions) in the
synchronizer [9]. In this section we discuss how to convert the synchronizer STG
directly into PSL assertions.

We first generate assertions to prove that if a signal transition event is enabled, it
eventually happens. Each event has its own condition that enables its execution. In
STG, the condition is fulfilled by a marking (a mapping of tokens to arcs) where all
arcs incoming into the event carry tokens, enabling firing of the event. The condition
is converted into a rule that verifies that the enabled transition actually takes place
before the enabling state is changed [7]:

AG (EnablingState(E) -> Transition(E) before !EnablingState(E))

Next, we generate assertions that verify that events take place only when enabled:

AG (Transition(E) -> SetOfEnablingStates)

To verify that the given synchronizer complies with the specification STG, we
prove the correctness of the constituent events with the above rules. The correct
ordering of events is then implied by the ordering allowed by the STG.

 Formal Verification of Synchronizers 361

4 Data Verification

Verifying the synchronizer control, presented in the previous section, is subject to two
limitations: First, it is protocol specific--the rules depend on the specific STG and
cannot in general be applied to other synchronizers. Second, the STG may need to be
modified (e.g. to satisfy complete state coding [10]), in order to enable rule derivation
[7]. In this section we present data verification of the actual data transfer, irrespective
of the control handshake protocol. If the controller has an error, it will be discovered
through data verification. The goal of data transfer verification is to prove that any
data item sent by the sender is eventually sampled exactly once by the receiver.

The data transfer part of a synchronizer is shown in Fig. 1. The verifier interprets
the loading of data DIN into the leftmost register as an attempt by the sender to send
it. A sampling into the rightmost register is interpreted as an attempt by the receiver to
receive data. The verifier must prove that no data item is either missed or sampled
more than once by the receiver.

R_BUFS_BUFDIN

L E

CLK1 CLK2

R_BUFS_BUFDIN

L E

CLK1 CLK2

Fig. 1. Cross-domain data transfer structure

The first verification rule checks data integrity:

AG (CLK1 & L & DIN(0)=1 ->
 next_event(CLK2 & E)(S_BUF(0)=1))

A similar rule can be written for the value 0. Integrity is checked only for a single
data bit because all the other bits will behave in the same way, as guaranteed by
structural verification. In addition to data integrity, we should verify that:

• Data is not duplicated—the receiver does not sample the data if the sender did not
send any:

AG (CLK2 & E -> AX ((CLK1 & L) before (CLK2 & E)))

• Data is not missed—the receiver eventually receives data that was sent by the
sender:

AG (CLK1 & L -> AX ((CLK2 & E) before! (CLK1 & L)))

In words, between any two send events there must be one reception, and vice versa.
The second assertion uses the strong before! operator (with !) to verify that the event
(CLK2 & E) eventually takes place even if the subsequent event (CLK1 & L) does not
happen at all.

362 T. Kapschitz and R. Ginosar

5 Conclusions

We have demonstrated two methods for synchronizer verification using model
checking. For control verification, a specification (in terms of STG) is employed to
derive PSL assertions that are subsequently applied to the design. For data
verification we seek correct data transfers (each sent data item is received exactly
once) while ignoring the control operation. Both methods require specific modeling of
multiple clocks, allowing for non-determinism in their relative ordering.

These methods have been applied successfully to a number of synchronizers, such
as the two-flip-flop synchronizer, a dual clock FIFO, and an Adaptive Predictive
Synchronizer [8].

References

[1] A. Iyer and D. Marculescu, “Power Efficiency of Voltage Scaling in Multiple Clock,
Multiple Voltage Cores", IEEE/ACM Int. Conf. on Computer Aided Design (ICCAD), pp.
379-386, Nov. 2002.

[2] W. J. Dally and J. W. Poulton, “Digital System Engineering”, Cambridge University
Press, 1998.

[3] L. Kleeman, A. Cantoni, “Metastable behavior in digital systems”, IEEE Design and Test
of Computers, pp. 4-19, Dec. 1987.

[4] E.M. Clarke, O. Grumberg and D.A. Peled, “Model Checking”, The MIT Press, 2000.
[5] I. Beer, S. Ben-David, C. Eisner, A. Landver, “RuleBase: an industry-oriented formal

verification tool”, Design Automation Conference, pp. 665-660 June 1996.
[6] M. Gordon, J. Hurd and K. Slind, “Executing the formal semantics of the Accellera

Property Specification Language by mechanised theorem proving,” CHARME, LNCS
2860, pp. 200–215, 2003.

[7] T. Kapschitz and R.Ginosar, “Formal Verification of Synchronizers,” CCIT Tech. Rep.
536, EE Dept., Technion, 2005.

[8] U. Frank and R. Ginosar, “A Predictive Synchronizer for Periodic Clock Domains,”
PATMOS, LNCS 3254, pp. 402–412, 2004.

[9] T. A. Chu, C. K. C. Leung, T. S. Wanuga, "A Design Methodology for Concurrent VLSI
Systems", in Proc. of ICCD, 407-410, 1985.

[10] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Yakovlev, “Complete
state encoding based on the theory of regions”, 2nd Int. Symp. Asynchronous Circuits
and Systems, pp. 36-47, March 1996.

	Introduction
	Modeling Multiple Clocks
	Control Verification
	Data Verification
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

