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Abstract. Large Systems on Chips (SoC) comprise multiple clock domains, and 
inter-domain data transfers require synchronization. Synchronizers may fail due 
to metastability, but when using proper synchronization circuits the probability 
of such failures can be made negligible. Failures due to unexpected order of 
events (caused by interfacing multiple unrelated clocks) are more common. 
Correct synchronization is independent of event order, and can be verified by 
model checking. Given a synchronizer, a correct protocol is guessed, 
verification rules are generated out of the protocol specification, and the model 
checker applies these rules to the given synchronizer. An alternative method 
verifies correct data transfer and seeks potential data missing or duplication. 
Both approaches require specific modeling of multiple clocks, allowing for non-
determinism in their relative ordering. These methods have been applied 
successfully to several synchronizers. 

1   Introduction 

Large systems of chip are typically partitioned into multiple clock domains. Clock 
frequencies of the various domains and their relative phases may be unknown a-priori, 
and may also change dynamically [1]. Data transfers between different clock domains 
require synchronization [2]. When data enters a domain and happens to change 
exactly when the receiving register is sampling its input may cause that register to 
become metastable and fail [3]. This problem is mitigated by properly employing 
synchronizers. This paper describes methods for formal verification of synchronizers 
using model-checking [4]. 

Synchronizers are designed to allow certain time for metastability resolution. The 
amount of resolution time is determined according to the desired level of probability 
of failures. In this paper we assume that sufficient time has been allowed and no 
failures are expected. However, following metastability the synchronizer may resolve 
non-deterministically to either 0 or 1, and consequently proper synchronization is still 
not guaranteed. To mitigate that non-determinism, synchronizers are encapsulated in a 
bidirectional handshake protocol. The goal of formal verification is to guarantee 
correct execution of that protocol.  

There are too many known synchronizer types and synchronization protocols, and 
it may be infeasible to define a single specification that could be used to verify all of 
them. Instead, we employ structural analysis to recognize synchronizers and to sort 
them into several a-priori known types. For each type, a set of properties has been 
defined, which, when proven to hold, guarantee correctness. 
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The paper describes how to generate formal verification executions of RuleBase (a 
model checker [5] using PSL [6]) for given synchronizers. We start with modeling of 
multiple clocks in Section 0. Next, in Section 0, we describe control verification 
method, based on converting the specification into PSL assertions. Data verification, 
which is not specification-dependent, is presented in Section 0. A more detailed 
description is given in [7]. 

2   Modeling Multiple Clocks 

The model checker (MC) [5] performs its algorithms in a sequence of atomic ticks. 
Each synchronous component of the system being verified (the design system) is 
assumed to operate in atomic clock cycles. Common model checking assumes a single 
clock, but synchronizers must be verified while observing multiple clocks. Thus, we 
need to add special modeling of multiple clocks to our specification. 

Clock modeling depends on how the clocks of the two domains are inter-related. If 
the two clocks are unrelated, they are modeled as two free variables. When the 
frequencies of the two clocks are assumed related by a rational number m/n (WLOG 
m>n) [8], then we specify to the MC that between any two edges of CLK2 there 

should be N active edges of CLK1, where ⌊m/n⌋≤N≤⌈m/n⌉ (see [7]).  A wide range 
of m/n ratios may be covered in a single execution of the MC if m/n is specified as a 
non-deterministic variable. 

3   Control Verification 

As stated above, data transferred between two mutually asynchronous clock domains 
are wrapped by a handshake protocol, implemented with control signals between the 
domains. We consider verification of the protocol by examining the control signals. 
The desired synchronizer handshake protocols are specified by means of STG (Signal 
Transition Graphs) that define the order of events (logic level transitions) in the 
synchronizer [9]. In this section we discuss how to convert the synchronizer STG 
directly into PSL assertions.  

We first generate assertions to prove that if a signal transition event is enabled, it 
eventually happens. Each event has its own condition that enables its execution. In 
STG, the condition is fulfilled by a marking (a mapping of tokens to arcs) where all 
arcs incoming into the event carry tokens, enabling firing of the event. The condition 
is converted into a rule that verifies that the enabled transition actually takes place 
before the enabling state is changed [7]: 

AG ( EnablingState(E) -> Transition(E) before !EnablingState(E) ) 

Next, we generate assertions that verify that events take place only when enabled: 

AG (Transition(E) -> SetOfEnablingStates) 

To verify that the given synchronizer complies with the specification STG, we 
prove the correctness of the constituent events with the above rules. The correct 
ordering of events is then implied by the ordering allowed by the STG. 
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4   Data Verification 

Verifying the synchronizer control, presented in the previous section, is subject to two 
limitations: First, it is protocol specific--the rules depend on the specific STG and 
cannot in general be applied to other synchronizers. Second, the STG may need to be 
modified (e.g. to satisfy complete state coding [10]), in order to enable rule derivation 
[7]. In this section we present data verification of the actual data transfer, irrespective 
of the control handshake protocol. If the controller has an error, it will be discovered 
through data verification. The goal of data transfer verification is to prove that any 
data item sent by the sender is eventually sampled exactly once by the receiver.  

The data transfer part of a synchronizer is shown in Fig. 1. The verifier interprets 
the loading of data DIN into the leftmost register as an attempt by the sender to send 
it. A sampling into the rightmost register is interpreted as an attempt by the receiver to 
receive data. The verifier must prove that no data item is either missed or sampled 
more than once by the receiver. 

R_BUFS_BUFDIN

L E

CLK1 CLK2

R_BUFS_BUFDIN

L E

CLK1 CLK2

 

Fig. 1. Cross-domain data transfer structure 

The first verification rule checks data integrity: 

AG ( CLK1 & L & DIN(0)=1 ->  
     next_event( CLK2 & E )( S_BUF(0)=1 )) 

A similar rule can be written for the value 0. Integrity is checked only for a single 
data bit because all the other bits will behave in the same way, as guaranteed by 
structural verification. In addition to data integrity, we should verify that: 

• Data is not duplicated—the receiver does not sample the data if the sender did not 
send any: 

AG ( CLK2 & E -> AX ( (CLK1 & L) before (CLK2 & E) )) 

• Data is not missed—the receiver eventually receives data that was sent by the 
sender: 

AG ( CLK1 & L -> AX ( (CLK2 & E) before! (CLK1 & L) )) 

In words, between any two send events there must be one reception, and vice versa. 
The second assertion uses the strong before! operator (with !) to verify that the event 
(CLK2 & E) eventually takes place even if the subsequent event (CLK1 & L) does not 
happen at all. 
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5   Conclusions 

We have demonstrated two methods for synchronizer verification using model 
checking. For control verification, a specification (in terms of STG) is employed to 
derive PSL assertions that are subsequently applied to the design. For data 
verification we seek correct data transfers (each sent data item is received exactly 
once) while ignoring the control operation. Both methods require specific modeling of 
multiple clocks, allowing for non-determinism in their relative ordering. 

These methods have been applied successfully to a number of synchronizers, such 
as the two-flip-flop synchronizer, a dual clock FIFO, and an Adaptive Predictive 
Synchronizer [8]. 
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