
Temporal Modalities for Concisely Capturing Timing
Diagrams

Hana Chockler1,2 and Kathi Fisler1

1 Department of Computer Science, WPI,
100 Institute Road, Worcester, MA 01609, USA

2 MIT CSAIL, 32 Vassar street,
Cambridge, MA 02139, USA

{hanac, kfisler}@cs.wpi.edu

Abstract. Timing diagrams are useful for capturing temporal specifications in
which all mentioned events are required to occur. We first show that translating
timing diagrams with both partial orders on events and don’t-care regions to LTL
potentially yields exponentially larger formulas containing several non-localized
terms corresponding to the same event. This raises a more fundamental question:
which modalities allow a textual temporal logic to capture such diagrams using
a single term for each event? We define the shapes of partial orders that are cap-
tured concisely by a hierarchy of textual linear temporal logics containing future
and past time operators, as well Laroussinie et al’s forgettable past operator and
our own unforeseen future operator. Our results give insight into the temporal ab-
stractions that underlie timing diagrams and suggest that the abstractions in LTL
are significantly weaker than those captured by timing diagrams.

1 Introduction

Timing diagrams are a commonly used visual notation for temporal specifications. Al-
though designers instinctively know when information can conveniently be expressed
as a timing diagram, few researchers have explored the formal connections between
timing diagrams and textual temporal logics. Understanding these formal connections
would be useful for understanding what makes specifications designer-friendly, as well
as for developing tools to visualize temporal logic specifications. Ideally, we would like
to have constructive decision procedures for determining when a specification, given in
a temporal logic or a specification language (such as LTL or PSL), can be rendered as a
timing diagram. These could aid in both understanding and debugging specifications.

Identifying diagrammable LTL specifications appears to be very hard. Its complex-
ity stems partly from the fact that a timing diagram contains several different visual
elements (events, orderings and timings between events, event synchronization) which
must be located within the more uniform syntax of a temporal logic formula. In ad-
dition, LTL formulas that capture timing diagrams appear to be at least one order of
magnitude (and sometimes two) larger than the diagrams and use multiple logical terms
for the same event. Before we can write an algorithm to recognize timing diagrams in
temporal logic formulas, we need to understand how the patterns over visual elements
that underlie timing diagrams would appear textually.

This paper explores this question by trying to identify textual temporal logic oper-
ators that capture timing diagrams concisely; the rendering problem would then reduce

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 176–190, 2005.
c© IFIP International Federation for Information Processing 2005

Temporal Modalities for Concisely Capturing Timing Diagrams 177

to recognizing uses of these operators in LTL. The core of a timing diagram is the partial
order it imposes on events. We view a formula as capturing a partial order concisely if
the formula characterizes instances of the partial order using exactly one term for each
event in the partial order. We study a progression of linear temporal logics including
LTL, PLTL, PLTL with forgettable past [10] and PLTL with forgettable past and un-
foreseeable future (which we have defined for this work). We identify the set of partial
orders that each logic can capture concisely and show that some partial orders defy con-
cise representation in even the richest of these logics. We do not address the rendering
question in this paper, as our results indicate that additional theoretical work is required
before pursuing that question.

Our results cover timing diagrams with both partial orders and don’t-care regions
(Section 2). To illustrate the subtleties in representing timing diagrams in LTL, Sec-
tion 3 presents a translation from diagrams to LTL and argues that a small translation
seems impossible. We provide a counterexample that shows that introducing don’t-care
regions explodes the size of the formula by forcing it to separately handle all possible
total-order instances of the partial order. Section 4 presents our algorithm for efficient
translation of a particular class of diagrams to formulas in LTL with the past-time and
forgettable-past-and-future modalities; this section also identifies a class of diagrams
that this logic cannot capture. Related work is mentioned throughout the paper.

2 Timing Diagrams

Timing diagrams depict changes in values on signals (events) over time. Figure 1 shows
an example. Waveforms capture each signal (lower horizontal lines represent false and
higher ones true), arrows order events, arrow annotations constrain the time within
which the tail event must follow the head event, vertical lines synchronize behavior
across signals, and bold lines indicate care regions in which the signal must hold the
depicted value. Non-care regions between events are called don’t-care regions; they al-
low the signal value to vary before the event at the end of the region occurs. The diagram
in Figure 1 has signals a, b, and c. The rising transition on b must occur 2 to 4 cycles
after the rising transition on a. The falling transition on a and the rising transitions on b
and c may occur in any order (since no arrows order them). Once c rises, it must remain
true until the second rising transition on a (due to the care region on c and the vertical
lines that synchronize the transition on a and the value on c into a single event). The
value of b may vary after its rise, since a don’t-care region follows the rise.

The timing diagrams literature contains many variations on this core notation: di-
agrams may support events that contain no transitions, busses, bi-directional arrows,
assumption events (to represent input from the environment) [3], or combinations of
timing diagrams using regular expression operators [2]. This paper considers timing
diagrams with don’t-care regions and partial orders between events.

Definition 1. The syntax of timing diagrams is captured as follows:

– A signal is a proposition; p and ¬p denote true and false values on signal p.
– A transition is a proposition annotated with a directional change: p↓ and p↑ denote

falling and rising transitions, respectively.

178 H. Chockler and K. Fisler

a

c

b

[2,4]
a 0 1 0 0 0 0 1 1 1 1
b 0 0 0 0 1 1 0 0 1 0
c 0 0 1 1 1 1 0 0 0 1

0 1 2 3 4 5 6 7 8 9

Fig. 1. A timing diagram with a word that satisfies its semantics

– An event is a conjunction of values and at least one transition on signals.
– A timing diagram is a tuple 〈E, C, M〉 where E is a set of events, C (the care

regions) is a set of tuples 〈e1, e2, p, v〉 where e1 and e2 are (uniquely identified1)
events in E, p is a signal name and v is a boolean value, and M (the timing con-
straints) is a set of tuples 〈e1, e2, l, u〉 where e1 and e2 are events in E, l is a positive
integer, and u is either an integer at least as large as l or the symbol ∞. For each
signal, any region that is not within a care region is called a don’t-care region.

The semantics of timing diagrams is defined in terms of languages over finite or
infinite words in which characters are assignments of boolean values to signals. A
word models a timing diagram if the earliest occurrence of each event that respects
the partial order in the timing constraints respects the care regions and durations of
timing constraints. The earliest occurrence requirement keeps the language unambigu-
ous. Formally, we define what it means for an index into a word to satisfy an event,
map events to indices in the word, and check that those mappings respect the
diagram.

Definition 2. Let E be an event v1∧. . .∧vk where each vi is a proposition, its negation,
or a rising or falling transition on a proposition. Let W be a word and i an index into
W . Let Wi(q) denote the value of proposition q at index i of W . Index i satisfies E if
for every vi, Wi(p) = 0 if vi = ¬p, Wi(p) = 1 if vi = p, Wi(p) = 0 and Wi+1(p) = 1
if vi = p ↑, and Wi(p) = 1 and Wi+1(p) = 0 if vi = p ↓.

Definition 3. Let 〈E, C, M〉 be a timing diagram, W be a word, and I a function from
E to indices into W (I is called an index assignment). I is valid iff

– For every event e ∈ E, I(e) satisfies e,
– For every care region 〈e1, e2, p, v〉, Wi(p) = v for all I(e1) < i ≤ I(e2), and
– For every timing constraint 〈e1, e2, l, u〉 ∈ M , l ≤ I(e2) − I(e1) ≤ u.

I is minimal iff for each event e ∈ E, I(e) is the smallest index into W that satisfies e
and occurs after all indices assigned to events that must precede E (by the partial order
induced by M).

Definition 4. Let D be a timing diagram and let W be a word. W |= D if there exists
a minimal and valid index assignment I for D and W . The set of all such words forms
the language of D (denoted L(D)).

1 A numbering scheme could distinguish syntactically similar events.

Temporal Modalities for Concisely Capturing Timing Diagrams 179

The semantics captures one occurrence of a timing diagram, rather than the multiple
occurrences needed to treat a timing diagram as an invariant. The one-occurrence se-
mantics provides a foundation for defining different multiple-occurrence semantics [5]
and enables efficient complementation of timing diagrams [6].

3 Translating Timing Diagrams to LTL

Formulas of linear temporal logics describe computations on infinite paths where each
state is labeled with a subset of atomic propositions AP that are true in that state. For
a computation π = w0, w1, . . . and i ≥ 0, let πi be the computation π starting at the
state wi. In particular, π0 = π. We use π, i |= ϕ to indicate that a formula ϕ holds in a
computation π with wi taken as a start position. The relation |= is inductively defined
for each of the logics we define in this paper.

LTL. Given a set AP of atomic propositions, the LTL formulas over AP are:

– true, false, p, or ¬p, for p ∈ AP ,
– ¬ψ or ψ ∨ ϕ, where ψ and ϕ are LTL formulas, or
– Gψ, Xψ, or ψUϕ, where ψ and ϕ are LTL formulas.

The temporal operators G (“always”), X (“next”) and U (“until”) describe time-
dependent events. F (“eventually”) abbreviates trueU .

For LTL, π, i |= ϕ is equivalent to πi, 0 |= ϕ, since formulas in LTL are not con-
cerned with past events. We use π |= ϕ as a shorthand for π, 0 |= ϕ.

– For all paths π, π |= true and π �|= false.
– For an atomic proposition p ∈ AP , π |= p iff p ∈ L(w0).
– π |= ¬ψ iff π �|= ψ.
– π |= ψ ∨ ϕ iff π |= ψ or π |= ϕ.
– π |= ψ ∧ ϕ iff π |= ψ and π |= ϕ.
– π |= Gψ iff for all i ≥ 0, πi |= ψ.
– π |= Xψ iff π1 |= ϕ.
– π |= ψUϕ iff there exists i ≥ 0 such that πi |= ϕ and for all j < i, πj |= ψ.

The rest of this section presents a translation from timing diagrams with partial
orders on events and don’t-care regions into LTL. Previous work [6] translated timing
diagrams with don’t-care regions and total orders on events to LTL. We could reuse the
prior algorithm by enumerating all the total orders corresponding to the partial order
and logically disjoining the result of converting each totally-ordered diagram to LTL.
This approach has the obvious drawback of potentially requiring exponentially many
disjuncts in the translated formula. We therefore wish to consider alternate approaches.

Amla et al. translate timing diagrams with partial orders but no don’t-care regions to
universal finite automata (∀FA) [1]. ∀FA differ from standard NFAs in accepting those
words on which all possible runs (rather than some run) through the automaton end in a
final state. Amla et al’s automata spawn one run for each event in the diagram, as well
as one run for each waveform in the diagram.

180 H. Chockler and K. Fisler

a

b

Fig. 2. Timing diagram motivating the need for an end marker

Since proper handling of partial orders is new for translations to LTL, we first focus
on this issue, returning afterwards to include don’t cares. For partial orders, we use a
similar idea to Amla et al’s: we construct a formula for each event and timing constraint
in the diagram, and then conjoin these formulas into one LTL formula. The translation to
LTL, however, is more difficult because LTL is inherently defined on infinite words. To
see why this is a problem, consider the diagram in Figure 2 (the arrow from the rising
to falling transition on a is dashed to indicate that it is implicit from the waveform).
Clearly, the formula must locate the rise and fall of a and the rise of b and capture the
ordering constraint (that the fall of a follows the rise of b).

We want a formula that is polynomial in the size of the diagram. Writing formulas
to capture the individual waveform shapes is easy but capturing the ordering constraint
is not. We cannot capture the waveforms together with the ordering constraint in one
pass through the diagram due to the unspecified order between the fall of a and the rise
of b. Writing one formula to capture that the fall of a follows the rise of a and another
formula to capture that the rise of b follows the rise of a also doesn’t work because both
formulas must locate the same fall of a. Separate constraints would accept the word
w = (ab) · (ab) · (ab) · (ab) · (ab) · (ab)ω which does not satisfy the diagram (where
p stands for ¬p). To align the searches for events, we will use LTL augmented with
existential quantification over atomic propositions to introduce a special symbol called
end into the word to mark the end of the diagram.2 This problem does not exist in ∀FA,
since all copies of the automaton must finish in an accepting state at the same time.
Thus, in some sense, the end marker is implicitly present in ∀FA.

Returning to capturing timing constraints, assume we want to define an LTL formula
ϕ(a, i) that is true at the ith transition on a, which happens to be a rise. Assume that na

is the number of transitions on a, finish(a) is the literal for the final value of a in the
diagram, and that we have a proposition end identifying the end of the diagram. Then

ϕ(a, i) = ¬a ∧ X(aU(¬aU(. . . U(finish(a)Uend) . . .))),

where the number of Uoperators is n − i − 1. Intuitively, the formula first describes
whether the transition is a rise or a fall (a fall would begin with a ∧ X¬a U...), then
captures the rest of the waveform as the second argument to the first U .

Using such formulas, the formula for a whole timing constraint 〈ai, bj, l, u〉, where
a is the ith transition on a and bj is the jth transition on b, and the transition on b
happens within the [l, u]-interval after the one on a, is captured by ξ(ai, bj, l, u), where

2 In general, adding quantification over atomic propositions increases the expressive power of
temporal logics [12,13,14]. The restricted version that we use here does not add expressiveness,
however, as all formulas that are created from timing diagrams can be translated to equivalent
formulas in LTL with both past and future modalities using Gabbay et al’s work [7,8].

Temporal Modalities for Concisely Capturing Timing Diagrams 181

ξ(ai, bj , l, u) = F (ϕ(a, i) ∧ (aUϕ(b, j)))

if a rises at i, and

ξ(ai, bj, l, u) = F (ϕ(a, i) ∧ (¬aUϕ(b, j)))

if a falls at i. If the timing constraint has time bounds (say [l, u]), then we replace
aUϕ(b, j) with

∨u
k=l ψ∧Xψ∧ . . .∧Xk−2ψ∧Xk−1ϕ, where Xm stands for m nested

X operators, and l and u are natural numbers. Let Ξ(D) be the set of all formulas
ξ(ai, bj, l, u), for all timing constraints in D.

For synchronization lines, the formulas that capture the fact that the ith transition
on a happens simultaneously with the jth transition on b are

γ(ai, bj) = F (ϕ(a, i) ∧ ϕ(b, j)).

Let Γ (D) be the set of all formulas γ(ai, bj) for all synchronization events.
Timing diagrams contain implicit ordering arrows between each pair of consecutive

events on a single waveform. Rather than encode these through ξ, we create a single
formula that precisely captures the shape of its waveform. For a signal a, let start(a)
be the literal for the initial value of a in the diagram (either a or ¬a), and let finish(a)
be the literal that corresponds to the final value of a in the diagram. The formula ψa

that describes the waveform of a is

ψ(a) = start(a)U(¬start(a)U(start(a)U . . . U(finish(a)Uend) . . .) (1)

where the number of Uoperators equals the number of transitions on a in the diagram.
Finally, we combine all these formulas into a formula θ(D) that describes the lan-

guage of the timing diagram D. The formula states that a word w belongs to the lan-
guage of D iff there exists a position r in w such that when w[r] is labeled with end,
the word can be mapped to D. The formula θ(D) is as follows.

θ(D) = ∃!end :
∧

a∈AP

ψa ∧
∧

Ξ(D) ∧
∧

Γ (D)), (2)

where ∃!end means that exactly one position is labeled with end.

Example 1. As an illustration, consider a diagram D and its waveform formulas:

a

c

b
[2,5]

[3,9] ψ(a) = ¬aU(aU(¬aUend))
ψ(b) = ¬bU(bU(¬bUend))
ψ(c) = ¬cU(cUend)

The arrows connect the rise of a with the rise of c, the rise of c with the fall of a, and
the fall of a with the fall of b. The rise of a is characterized by the formula ϕ(a, 1) =
¬a ∧ X(aU(¬aUend)), and similarly for other transitions. The timing constraints are

ξ(a1, c1, 2, 5) = ϕ(a, 1)U[2,5]ϕ(c, 1)
ξ(c1, a2, 1, ∞) = ϕ(c, 1)Uϕ(a, 2)
ξ(a2, b2, 3, 9) = ϕ(a, 2)U[3,9]ϕ(b, 2)

182 H. Chockler and K. Fisler

Finally, the formula θ(D) is

∃!end : ψ(a) ∧ ψ(b) ∧ ψ(c) ∧ ξ(a1, c1, 2, 5) ∧ ξ(c1, a2, 1, ∞) ∧ ξ(a2, b2, 3, 9)).

Observation 1 (Complexity of θ(D)). The formula θ(D) is polynomial in the size of
the diagram D. Let D be a timing diagram of size n. The number of waveform formulas
ψ(a) is equal to the number of signals in D. The size of a waveform formula ψ(a) is
linear in the number of transitions, thus is O(n). Since ϕ(a) is a subformula of ψ(a),
we have that |ϕ(a)| = O(n). The number of events in D is bounded by n. Therefore,
the total size of θ(D) is bounded by O(n2).

Observation 2 (Adding Don’t Cares). The ξ and γ formulas capture the diagram’s
constraints under the assumption that the ith transition as identified from the end of the
diagram is the ith transition from the beginning of the diagram. This assumption may
be false in the presence of don’t-care regions; the end marker does not help because it
isn’t clear which occurrences of events should count. Handling both partial orders and
don’t cares seems to require enumerating the total orders for the partial order, which
yields a formula of a (possibly) exponential complexity in the size of the diagram.

4 Cleanly Capturing Diagrams Through Textual Logics

The previous section shows the complex structure of an LTL formula that captures a
timing diagram with partial orders and don’t cares. Some of this complexity arises from
using separate subformulas for waveforms and timing constraints, which is needed to
capture partial orders on events. The diagram in Figure 2 illustrates a core incompat-
ibility between timing diagrams and LTL: LTL cannot cleanly capture separate paths
converging on a future event while timing diagrams express this naturally.

This problem suggests that timing diagrams rely on a different set of temporal ab-
stractions than those provided by the LTL operators. This raises an interesting question:
how fundamental are these differences? Visually, timing diagrams define (potentially
overlapping) windows that are bounded by events and contain other events and win-
dows. In LTL, [φUψ] defines a window bounded on the left by the current position in a
word and bounded on the right by positions satisfying ψ. Since the occurrence of φ can
extend beyond that of ψ (if ψ were Fp, for example), LTL also supports some degree of
overlapping windows. The future-time nature of LTL biases window locations towards
future positions in a word, however, and leads to blowup when windows align on the
right boundaries. Past-time temporal operators, however, could capture windows that
align on right boundaries. Our question is whether operators that fix window bound-
aries on one end of the word are rich enough to capture the window structure in timing
diagrams while using only one term for each event in the diagram.

The restriction to one term per event is important because it is a distinguishing
feature of timing diagrams. We are trying to understand the differences between textual
temporal logics and timing diagrams from a logical perspective. In this work, we hold
formulas to the one-term requirement and study the restrictions that this in turn places
on the semantics of the operators. For the rest of this paper, we consider timing diagrams
with ordering between events but no timing constraints on those orders. Such diagrams

Temporal Modalities for Concisely Capturing Timing Diagrams 183

c

b

a

c

b

a

a

b

c

d

e

Fig. 3. Timing diagrams with various shapes of partial order

still blow up when translated to LTL but allow us to focus on the fundamental question
of how well LTL-like logics capture the partial orders allowed in timing diagrams. We
begin with several examples of timing diagrams with different shapes of partial orders
and discuss which textual temporal logic operators capture them cleanly.

Tree-Shaped Partial Orders. Two observations arise from the diagram in Figure 2.
First, we could cleanly capture the diagram in LTL if the common event lay at the begin-
ning of the partial order (i.e., if the orderings on events were reversed): we would locate
the first event, then independently locate the remaining two events. Second (though re-
lated), this diagram appears easier to capture if we use past-time operators: we could
locate the falling transition on a that is common to both chains of events, then look
backwards to find the (now independent) rising transitions on a and b. These obser-
vations give rise to our first two claims about partial orders and clean temporal logic
formulas: partial orders that form trees (or forests) can be cleanly translated into LTL,
while those that form trees with their edges reversed can be cleanly translated into Past-
LTL. Note that Past-LTL here means LTL with only past-time temporal operators. We
will use PLTL to mean the temporal logic with both future time and past-time operators.

Partial Orders with Multiple Minimal Events. The leftmost diagram in Figure 3 has
multiple minimal events. A formula capturing this diagram cannot start simultaneous
(i.e. conjoined) searches from the rising transitions on a and b because those searches
converge on the falling transition on a. Using both past and future-time operators, how-
ever, a formula could search for the first rising transition on a followed by the falling
transition on a; at that point, the search could split into two independent searches: one
forward for the second rise on a, and another backward for the transitions on b followed
by a forward search for the transition on c. All of the edges in the partial order are
edges in the tree specifying this search, but some of those edges are reversed in the tree.
Intuitively, this criterion characterizes when a search can be captured in PLTL.

Diamond-Shaped DAGs. The events in the middle diagram in Figure 3 form a dia-
mond (between the rising transition on a and the falling transition on b). If a formula
searches for the rising transition on a first, it cannot then spawn independent searches
for the rising transitions on b and c (the “bulge” of the diamond) because they must
meet up again at the falling transition on b. Searching first for the falling transition in b
causes similar problems. We could conduct this search cleanly if we had a way to “re-
member” the location of the rising transition on a, then search forwards for the falling

184 H. Chockler and K. Fisler

transition on b, then backwards for the rising transitions on b and c, but with these last
two searches bounded by the remembered position of the search on a.

Laroussinie, Mackey, and Schoebelen’s linear temporal logic with forgettable past
(NLTL) does exactly this. It adds an operator N to PLTL that restricts the path to the
suffix starting from the position at which the N is encountered. Using N , we could
capture the diamond pattern roughly as FN(a↑ ∧ F (b↑ ∧ F (b↓ ∧ P (c↑)))). The N
prevents the backwards search for c↑ from going beyond the location of a↑.

The rightmost diagram in Figure 3 contains one diamond pattern nested inside an-
other. This diagram is hard to capture cleanly using just NLTL because both prefixes
and suffixes must be truncated during the search. We therefore introduce an analogous
operator to N , called Ñ , that limits the scope of a search to a prefix of the path.

The following subsections formalize our observations about the temporal operators
needed to cleanly capture various shapes of partial orders. We define the logics PLTL
and NÑLTL and present an algorithm for translating a subset of partial orders into
formulas in NÑLTL. We prove that the translation is correct and show a richer partial
order that NÑLTL cannot capture. Characterizations of the partial orders captured by
LTL, PLTL, and Past-LTL follow from the correctness of the translation algorithm.

4.1 The Logics

PLTL. The logic PLTL (LTL+Past) is the logic LTL extended with past time modal-
ities: Y (“yesterday”) is the opposite of X , that is, it denotes an event that happened
in the previous step; P (“past”) is the opposite of F , that is, it denotes an event that
happened somewhere in the past; and S (“since”) is the opposite of U . We refer to Y ,
P , and S as past modalities, and to X , U , F , and G as future modalities. The semantics
for the past modalities is as follows.

– π, i |= Y ψ iff i > 0 and π, i − 1 |= ψ.
– π, i |= ψSϕ iff π, j |= ϕ for some 0 ≤ j ≤ i such that π, k |= ψ for all j < k ≤ i.

We use P as a shortcut for trueS.

The N and Ñ Modalities. The logic NLTL (LTL with forgettable past) is defined
by extending the logic PLTL with the unary modality N [10]. The semantics of N is
defined as follows: Nϕ is satisfied in the ith position of a path π iff ϕ is satisfied in
the path ρ = πi. In other words, N ignores everything that happened in π prior to the
position i. Formally, π, i |= Nϕ iff πi, o |= ϕ.

NÑLTL includes N and a similar modality for the unforeseeable future. The unfore-
seeable future modality (“up to now”) is denoted by Ñ . Semantically, Ñϕ is satisfied
in the ith position of a path π iff ϕ is satisfied in the last position of the finite path ρ
obtained from π by cutting off its suffix πi+1. That is, ρ = π[0..i].

Gabbay [7,8] proved that any linear-time temporal property expressed using past-
time modalities can be translated into an equivalent (when evaluated at the beginning
of the path) pure future formula. In other words, PLTL is not more expressive than
LTL. Gabbay’s proof can be extended to NLTL as well [10]. Since the modality Ñ
is symmetrical to N ; the same proof applies to NÑLTL. Gabbay’s translation yields a

Temporal Modalities for Concisely Capturing Timing Diagrams 185

Gen-Formula(P)
if P contains multiple connected components P1, . . . Pk return

Vi=k
i=1 Gen-Formula(Pi)

elseif P has a valid schedule tree T and no dividing events return Gen-Tree(P, T, root(T))
else let e1, . . . , en be a sequence of dividing events for P

return ϕe1
∧ Ñ(Gen-Formula(R0))
∧XNF (ϕe2

∧ Ñ (Gen-Formula(R1))
∧XNF (ϕe3

∧ . . . ∧ XNF (ϕen
∧Ñ (Gen-Formula(Rn−1))
∧XNF (Gen-Formula(Rn)) . . .)

Gen-Tree(P,T,e)
if e has no successors return ϕe

else let en1, . . . , enk be successors of e in T in same direction as in P

let ep1, . . . , epj be successors of e in T in opposite direction as in P

return ϕe ∧
Vk

i=1(XF Gen-Tree(P, T, en)) ∧
Vj

i=1(P Gen-Tree(P, T, ep))

Fig. 4. The formula generation algorithm. ϕe denotes the formula that captures an event e: ¬a ∧
X(a) captures a↑ and a ∧ X(¬a) captures a↓.

formula whose size is assumed to be non-elementary in the size of the initial formula.
It was recently proved that PLTL is at least exponentially more succinct than LTL, and
that NLTL is at least exponentially more succinct than PLTL [9]. It is easy to see that
the proof of exponential gap in succinctness can be used almost without change for Ñ .
That is, introducing either N or Ñ is enough for the exponential gap. Observe that in
general, chopping off the prefix is not equivalent to chopping off the suffix, since the
former leaves us with an infinite path, while the latter preserves only a finite portion
of the path. However, Laroussinie et al.’s proof uses only propositional formulas. The
same proof therefore works if we reverse the direction of the input, switch past and
future modalities in formulas and use Ñ instead of N . While using both N and Ñ
modalities proves to be helpful in translating timing diagrams, it seems that having
both of them does not introduce an additional gap in succinctness as opposed to having
only one. That is, the logic NÑLTL seems to be no more succinct than NLTL.

4.2 Compiling Partial Orders to NÑLTL

The diagrams in Figure 3 illustrate how the events in timing diagrams bound windows
in which other events must occur. Our discussion illustrates how the N and Ñ operators
are useful for enforcing these boundaries in temporal logic. Our translation strategy is
to use N and Ñ to (recursively) scope the window boundaries at the outermost levels
and to use PLTL to capture the events that fall within these windows. This approach
works when the contents of windows form forests (or can be further decomposed into
subwindows). We limit the algorithm to these cases, then show a richer structure that
NÑLTL is not capable of capturing.

The algorithm appears in Figure 4. It finds window boundaries by locating dividing
events in the partial order.

Definition 5. An event e of a diagram D is a dividing event iff there exists a partition
of the events of D minus e into sets E1 and E2 such that e � e1 for all e1 ∈ E1 and

186 H. Chockler and K. Fisler

e ≺ e2 for all e2 ∈ E2. Given a sequence of dividing events, e1 ≺ e2 ≺ . . . ≺ en,
the region Ri is the set of events e such that ei ≺ e ≺ ei+1 (with R0 containing those
events that precede e1 and Rn containing those events that follow en).

By definition, the dividing events are totally ordered and thus can be captured by a
sequence of nested LTL F operators. All remaining events fall into regions encapsulated
by the dividing events. Our translation algorithm bounds these regions in the formula
by inserting N and Ñ at the beginning and the end of regions.

If a partial order contains no dividing events, then each connected component within
the partial order is compiled to a formula in PLTL. This translation relies on a schedule
tree that specifies the order in which to search for each event in the component.

Definition 6. Given a partial order P , a schedule tree T of P is a tree with directed
edges such that the set of nodes in T is the set of nodes in P . We call a schedule tree
valid if for each edge e1 → e2 in T , P contains either an edge from e1 to e2, or an edge
from e2 to e1. In other words, all edges in T must be justified by edges in P , but the
edges in T may occur in the reversed direction from those in P .

Note that a single partial order could have several schedule trees. As a simple example,
the partial order a ≺ b, b ≺ c, and a ≺ c could schedule b or c in either order.

Definition 7. Given a partial order P , a schedule forest F of P is a set of trees with
directed edges such that the set of nodes in F is the set of nodes in P and each tree in
F is a schedule tree for its subset of nodes.

The following theorem establishes that the result of Gen-Formula(P) is a formula
that recognizes all valid instances of P .

Theorem 3. Let D be a diagram with partial order P . Let R be the set of regions (sub-
orders) between each pair of subsequent dividing events of P . Then, if the partial order
for each region R ∈ R can be translated to a schedule forest, Gen-Formula(P) is of
size O(|P |) and defines the same language as D.

Proof. We argue the size and correctness claims from the theorem separately, starting
with size. Formulas describing individual events are constant in size. Each dividing
event is included in the formula one time (in the final return of Gen-Formula). The
formula returned from Gen-Tree has linear size in the number of events in the tree
by construction. Each non-dividing event appears in at most one schedule tree, so the
formula resulting from Gen-Formula(P) has linear size in the number of events in P .

For the correctness claim, we will prove that Gen-Formula(P) requires exactly those
event orderings contained in P . Let ϕ be the result of Gen-Formula(P). We first show
that the formula enforces every ordering edge in P . Let e → e′ be an edge in P . One of
the following cases must hold:

– e is a dividing event in some portion of P . Then ϕ contains the subformula ϕe ∧
φ∧XNψ where the term for e′ occurs in ψ. The use of N ensures that e occurs no
later than e′ and the use of X ensures that e occurs strictly later than e′.

Temporal Modalities for Concisely Capturing Timing Diagrams 187

– e′ is a dividing event in some portion of P . Then e must lie in the region preceding
e′ (unless e was a dividing event, which the previous case covered). ϕ contains the
subformula ϕe′ ∧ Ñ(R), where R is the region containing e. The Ñ ensures that
e occurs before e′ (no X is needed here because Ñ cuts off the future between the
two halves of e′ while two positions are needed to capture both halves of e).

– Neither e nor e′ is a dividing event, which means the subformula containing their
terms was generated by a call to Gen-Tree on some schedule tree T over a portion
of P . By the definition of valid schedule trees, T must contain an edge between e
and e′ (in one direction or the other). If e → e′ was an edge in T , then the XF in
the output of Gen-Tree ensures that e occurs before e′. If e′ → e was an edge in T ,
then the P in the output of Gen-Tree ensures that e occurs before e′.

We now argue that ϕ does not require any event orders beyond those in P . Let e1
and e2 be unordered events (directly or transitively) in P . Since e1 and e2 are unordered,
no dividing event can occur between them, so they must lie in the same region R of the
diagram. There are two possible cases:

– e1 and e2 are in different connected components of R. Gen-Formula connects sepa-
rate components only through ∧, which induces no temporal ordering, so ϕ respects
the lack of order between e1 and e2.

– e1 and e2 are in the same connected component of R. In this case, both events
will be in the schedule tree T for their enclosing component. If e1 and e2 are in
different branches within T , ϕ relates them only by ∧ and thus respects their lack
of ordering. Assume that e1 and e2 are on a common branch, and assume without
loss of generality that e1 is closer to the root of T than is e2. The path from e1 to e2
must contain at least one edge that occurs in the same direction as in P and one that
occurs in the opposite direction as in P (otherwise, P would order e1 and e2). This
means that both an F and a P operator will separate e1 and e2 in ϕ. This allows e2
to occur on either side of e1 (no N or Ñ operator can intervene because those are
dropped only at dividing events), so the theorem holds. �

Lemma 1. If the directed graph induced by partial order P forms a tree, then there
exists a formula in LTL that recognizes P .

Proof. In this case, P is a valid schedule tree of itself. Gen-Tree uses only future time
operators when the edges in the schedule tree match the edge direction in P .

Lemma 2. If the directed graph constructed by reversing every edge in a partial order
P forms a tree, then there exists a formula in Past-LTL that recognizes P .

Proof. Follows by similar argument as for Lemma 1. The expressions for events that
use the X operator can be rewritten to use Y .

Lemma 3. If the graph induced by partial order P is a tree with multiple minimal
events, then there exists a formula in PLTL that captures P .

Proof. True by the definition of Gen-Tree since such a P has a valid schedule tree.

Note that don’t cares are handled implicitly by not being present as events in P .
The care regions are present in P as separate events for each care position, and the
complexity in this case would also depend on the unary representation of the length of
the care region.

188 H. Chockler and K. Fisler

4.3 Limitations of NÑLTL

The Gen-Formula algorithm uses the F and P operators only to search for events.
These uses all take the form F/P (e ∧ ψ), where e is an event and ψ is an NÑLTL
formula. We call these forms of F and P search operators. NÑLTL restricted to search
operators cannot capture all timing diagrams using only one term per event. Consider
the following diagram Dbad, which has no dividing events and as many arrows as it
does events (which precludes a schedule tree). The partial order over events in this di-
agram appears on the right. The rise and subsequent fall of a correspond to the events
e1 and e2, and the rise and subsequent fall of b correspond to the events e4 and e3,
respectively.

a

b e3

e2
e4e1

Dbad is expressible in NÑLTL as F (F (e2) ∧ F (e3) ∧ P (e1) ∧ P (e4)). The outer-
most F locates an index lying within the windows on a and b from which to start the
search; it effectively performs existential quantification on the starting position. This
is a rather different use of F from the search operators. The following lemma argues
that Dbad’s partial order cannot be expressed concisely in NÑLTL using only search
operators.

Lemma 4. No NÑLTL formula restricted to search operators captures Dbad with ex-
actly one term per event.

Proof (sketch). Any NÑLTL formula that captures Dbad using only search operators
must search for the events in some tree-shaped order (corresponding to the order in
the formula’s parse tree). The restriction that each event appear once in the formula
allows the proof to exhaustively consider each order of the four events. Intuitively, N
and Ñ cannot be used since there is no common minimal or maximal event: dropping
an N marker at e1 or e4 before the other has been located would induce an unwanted
ordering between these events; a similar problem with Ñ governs e2 and e3. There-
fore, no event can serve as a valid starting point for the search embodied in the parse
tree. None of the remaining operators help encode constraints in which one node is
incident on two others. Any attempt to construct a formula that captures all order-
ings therefore either omits an arrow or imposes an order that does not exist in the
diagram. �

Dbad has the simplest partial order with n events and n non-transitive
edges forming an undirected cycle. Larger orders of this form cannot
be expressed in NÑLTL even by using F to search for a starting po-
sition. The analogous formula for the order on the right, for example,
would induce unwanted constraints on unrelated events (such as e2
and e4).3 We defer the proof to a full paper.

e1 e4

e6

e5

e3

e2

3 Thanks to Shriram Krishnamurthi for suggesting this example.

Temporal Modalities for Concisely Capturing Timing Diagrams 189

Note that while the partial order in Dbad is diamond shaped, the direction of the
arrows is different from the expressible diamond shape in the middle diagram from
Figure 3. The diamond in the Figure 3 diagram has one minimal and one maximal event,
while Dbad has two minimal and two maximal events. Multiple extremal events (and
their common incident events) are at the heart of the argument for Lemma 4 because
they preclude dividing events that decompose the search.

5 Conclusions and Future Work

LTL is often viewed as the canonical linear temporal logic for formal specification.
Although newer logics such as PSL and OVA challenge this view in practical settings,
LTL is still a benchmark logic for theoretical verification research. Timing diagrams
are often viewed as just a pretty interface for LTL. This paper questions that view by
illustrating the distance between the LTL operators and the temporal abstractions that
timing diagrams express so naturally. Our translation from timing diagrams to LTL—
the first to handle both partial event orders and don’t-care regions—illustrates the gap,
while our results on concisely capturing various shapes of partial orders in temporal
logics put the mismatch in a formal context.

Perspective. Our results relating partial orders to temporal logics serve two purposes.
First, they suggest temporal abstractions that we would need to be able to recognize
in textual formulas (in any logic) in order to render specifications as timing diagrams.
Translating textual specifications to diagrams is attractive as an aid for understanding
and debugging complex specifications. One interpretation of our work is that we have
partly reduced the problem of recognizing that a formula can be drawn as a diagram
to one of recognizing when an LTL formula captures a (more compact) NÑLTL for-
mula. Our work suggests that recognizing diagrams in formulas might not make sense
for LTL, as we do not expect designers would ever write LTL formulas as complicated
as our translations of timing diagrams. Rendering diagrams that approximate tempo-
ral specifications may be a more realistic approach that would still benefit from our
observations.

Second, our results suggest than a good textual analog to timing diagrams needs a
different semantic philosophy than LTL. LTL and its extensions break paths into win-
dows in which subformulas are satisfied, but these windows are strictly bounded at one
end. This characteristic captures nested windows and windows that are ordered on one
side, but not windows that overlap one another with constraints on both ends. Timing
diagrams capture these richer spatial operators between windows. The inexpressible di-
agram in Section 4.3 provides an example of complex constraints between windows
that do not fit within the styles of operators traditional in LTL extensions.

Future Work. Characterizing the class of diagrams for which there are no equiva-
lent NÑLTL formulas of the same size remains an open problem. Section 4.3 presents
initial steps in this direction. Given such a characterization, we must confirm that our
algorithm handles all expressible partial orders other than Dbad. We have not yet con-
sidered the impact of timing constraints on our conciseness results. Logics such as

190 H. Chockler and K. Fisler

PSL in which windows in words are an explicit part of the semantics may provide a
better textual analog for timing diagrams. We intend to perform a similar analysis to
the one in this paper for PSL. This exercise should give a different perspective on the
temporal operators that are fundamental to timing diagrams yet natural to capture tex-
tually. If existing windows-based logics also prove insufficient for cleanly capturing
timing-diagram-like specifications, developing native verification techniques for timing
diagrams may well prove beneficial. Similar comparisons to interval-based temporal
logics would also be instructive [4,11]. Finally, it would be useful to understand the
shapes of partial orders that designers frequently express in timing diagrams in prac-
tice. While we have seen examples that require rich partial orders, we lack more detailed
data about the frequency of each of these shapes in practice.

Acknowledgments. Research funded by NSF grants CCR-0132659 and CCR-
0305834.

References

1. N. Amla, E. A. Emerson, and K. S. Namjoshi. Efficient decompositional model checking for
regular timing diagrams. In IFIP Conference on Correct Hardware Design and Verification
Methods, 1999.

2. N. Amla, E. A. Emerson, K. S. Namjoshi, and R. J. Trefler. Visual specifications for modular
reasoning about asynchronous systems. In International Conference on Formal Techniques
for Networked and Distributed Systems, pages 226–242, 2002.

3. E. Cerny, B. Berkane, P. Girodias, and K. Khordoc. Hierarchical Annotated Action Dia-
grams. Kluwer Academic Publishers, 1998.

4. L. Dillon, G. Kutty, L. Moser, P. M. Melliar-Smith, and Y. S. Ramakrishna. A graphical
interval logic for specifying concurrent systems. ACM Transactions on Software Engineering
and Methodology, 3(2):131–165, Apr. 1994.

5. K. Fisler. Timing diagrams: Formalization and algorithmic verification. Journal of Logic,
Language, and Information, 8:323–361, 1999.

6. K. Fisler. On tableau constructions for timing diagrams. In NASA Langley Formal Methods
Workshop, 2000.

7. D. Gabbay. The declarative past and imperative future. In B. Banieqbal, H. Barringer,
and A. Pnueli, editors, Temporal Logic in Specification, volume 398 of Lecture Notes in
Computer Science, pages 407–448. Springer-Verlag, 1987.

8. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proc.
7th ACM Symp. on Principles of Programming Languages, pages 163–173, January 1980.

9. F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable past. In
Proc. 17th IEEE Symp. Logic in Computer Science (LICS’2002), pages 383–392, 2002.

10. F. Laroussinie and P. Schnoebelen. A hierarchy of temporal logics with past. In Proc. 11th
Symp. on Theoretical Aspects of Computer Science, Caen, February 1994.

11. B. Moszkowski. A temporal logic for multi-level reasoning about hardware. IEEE Computer,
pages 10–19, February 1985.

12. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symp.
on Principles of Programming Languages, pages 179–190, Austin, January 1989.

13. A. Sistla. Theoretical issues in the design of distributed and concurrent systems. PhD thesis,
Harvard University, Cambridge, MA, 1983.

14. A. Sistla, M. Vardi, and P. Wolper. The complementation problem for Büchi automata with
applications to temporal logic. Theoretical Computer Science, 49:217–237, 1987.

	Introduction
	Timing Diagrams
	Translating Timing Diagrams to LTL
	Cleanly Capturing Diagrams Through Textual Logics
	The Logics
	Compiling Partial Orders to N\~{N}LTL
	Limitations of N\~{N}LTL

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

