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Preface

This volume constitutes the proceedings of the 2005 Advanced Research Working Con-
ference on Correct Hardware-like Design and Verification Methods. CHARME 2005
was held at the Victor’s Residenz-Hotel, Saarbrücken, Germany, 3–6 October 2005.

CHARME 2005 was the thirteenth in a series of working conferences devoted to the
development and the use of leading-edge formal techniques and tools for the specifica-
tion, design and verification of hardware and hardware-like systems. Previous confer-
ences under the CHARME name have been held in Turin (1991), Arles (1993), Frank-
furt (1995), Montreal (1997), Bad Herrenalb (1999), Edinburgh (2001) and L’Aquila
(2003). Prior events in the series were started in the early days of formal hardware ver-
ification, and were held under various names in Darmstadt (1984), Edinburgh (1985),
Grenoble (1986), Glasgow (1988), and Leuven (1989). It is now well established that
CHARME takes place on odd-numbered years, and rotates primarily in Europe. It is the
biennial counterpart of its sister conference FMCAD, which has taken place every even
year in the USA since 1996.

CHARME 2005 was sponsored by the IFIP TC10 / WG10.5 Working Group on
Design and Engineering of Electronic Systems and its Special Interest Group SIG-
CHARME. It was organized by the Computer Science Department of Saarland
University.

This year, two kinds of contributions were solicited: (i) full papers, describing orig-
inal research work, intended for an oral plenary presentation, (ii) short papers, describ-
ing ongoing less mature research work intended for presentation as posters or research
prototype demonstrations. Two very long sessions were allocated to poster and inter-
active presentations, with the aim of giving an emphasis on the “working” aspect of
the working conference, where discussion of new or unfinished results and feedback
are an essential aspect of the event. The community was extremely responsive to this
viewpoint: we received a total number of 79 submitted papers, out of which 21 long
contributions and 18 short contributions were accepted for presentation at the confer-
ence and inclusion in this volume. All papers received a minimum of three reviews.

For the conference program outside the refereed talks we put emphasis on the re-
lated topics of tool integration and pervasive system verification. The day preceding the
working conference featured hands-on demonstrations for numerous verification tools;
it also featured a tutorial on system verification by members of the Verisoft project. The
overall program of CHARME 2005 included an invited keynote address by Wolfram
Büttner on industrial processor verification and a round table discussion about mixed
techniques for very large hardware-software systems initiated with an invited presenta-
tion by Masaharu Imai and Akira Kitajima.

A quality conference such as CHARME results from the work of many people.
We wish to thank the members of the Program Committee and the external reviewers
for their hard work in evaluating the submissions and in selecting high quality papers.
The decision about many papers required long discussions among Program Commit-
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tee members, who provided countless hours of their time to reach a consensus. On
the organization side, we are grateful to the Web master Kristina Scherbaum, to Mark
Hillebrand for his hard work in preparing the proceedings, and to Sabine Nermerich
and Dirk Leinenbach. Our special thanks go to Tom In der Rieden who acted both as
Finance Chair and Local Arrangements Chair, and could so efficiently find many ideas
and solutions for the broadest range of questions. Finally, we would like to thank the
TIMA Laboratory for mailing the CHARME 2005 call for papers, Saarland University
for providing valuable support during the registration phase, and the companies who
provided financial support for the organization of the event: IBM, Infineon, and Intel.

October 2005 Dominique Borrione and Wolfgang Paul
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Wolfram Büttner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Verification Challenges in Configurable Processor Design with ASIP Meister
Masaharu Imai, Akira Kitajima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Tutorial

Towards the Pervasive Verification of Automotive Systems
Thomas In der Rieden, Dirk Leinenbach, Wolfgang Paul . . . . . . . . . . . . . . . . . 3

Functional Approaches to Design Description

Wired: Wire-Aware Circuit Design
Emil Axelsson, Koen Claessen, Mary Sheeran . . . . . . . . . . . . . . . . . . . . . . . . . 5

Formalization of the DE2 Language
Warren A. Hunt Jr., Erik Reeber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Game Solving Approaches

Finding and Fixing Faults
Stefan Staber, Barbara Jobstmann, Roderick Bloem . . . . . . . . . . . . . . . . . . . . 35

Verifying Quantitative Properties Using Bound Functions
Arindam Chakrabarti, Krishnendu Chatterjee, Thomas A. Henzinger,
Orna Kupferman, Rupak Majumdar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Abstraction

How Thorough Is Thorough Enough?
Arie Gurfinkel, Marsha Chechik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Interleaved Invariant Checking with Dynamic Abstraction
Liang Zhang, Mukul R. Prasad, Michael S. Hsiao . . . . . . . . . . . . . . . . . . . . . . 81



X Table of Contents

Automatic Formal Verification of Liveness for Pipelined Processors with
Multicycle Functional Units

Miroslav N. Velev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Algorithms and Techniques for Speeding (DD-Based)

Verification 1

Efficient Symbolic Simulation via Dynamic Scheduling, Don’t Caring, and
Case Splitting

Viresh Paruthi, Christian Jacobi, Kai Weber . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Achieving Speedups in Distributed Symbolic Reachability Analysis Through
Asynchronous Computation

Orna Grumberg, Tamir Heyman, Nili Ifergan, Assaf Schuster . . . . . . . . . . . . . 129

Saturation-Based Symbolic Reachability Analysis Using Conjunctive and
Disjunctive Partitioning

Gianfranco Ciardo, Andy Jinqing Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Real Time and LTL Model Checking

Real-Time Model Checking Is Really Simple
Leslie Lamport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Temporal Modalities for Concisely Capturing Timing Diagrams
Hana Chockler, Kathi Fisler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Regular Vacuity
Doron Bustan, Alon Flaisher, Orna Grumberg, Orna Kupferman,
Moshe Y. Vardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Algorithms and Techniques for Speeding Verification 2

Automatic Generation of Hints for Symbolic Traversal
David Ward, Fabio Somenzi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Maximal Input Reduction of Sequential Netlists via Synergistic
Reparameterization and Localization Strategies

Jason Baumgartner, Hari Mony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

A New SAT-Based Algorithm for Symbolic Trajectory Evaluation
Jan-Willem Roorda, Koen Claessen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238



Table of Contents XI

Evaluation of SAT-Based Tools

An Analysis of SAT-Based Model Checking Techniques in an Industrial
Environment

Nina Amla, Xiaoqun Du, Andreas Kuehlmann, Robert P. Kurshan,
Kenneth L. McMillan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Model Reduction

Exploiting Constraints in Transformation-Based Verification
Hari Mony, Jason Baumgartner, Adnan Aziz . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Identification and Counter Abstraction for Full Virtual Symmetry
Ou Wei, Arie Gurfinkel, Marsha Chechik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Verification of Memory Hierarchy Mechanisms

On the Verification of Memory Management Mechanisms
Iakov Dalinger, Mark Hillebrand, Wolfgang Paul . . . . . . . . . . . . . . . . . . . . . . 301

Counterexample Guided Invariant Discovery for Parameterized Cache
Coherence Verification

Sudhindra Pandav, Konrad Slind, Ganesh Gopalakrishnan . . . . . . . . . . . . . . . 317

Short Papers

Symbolic Partial Order Reduction for Rule Based Transition Systems
Ritwik Bhattacharya, Steven German, Ganesh Gopalakrishnan . . . . . . . . . . . 332

Verifying Timing Behavior by Abstract Interpretation of Executable Code
Christian Ferdinand, Reinhold Heckmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Behavior-RTL Equivalence Checking Based on Data Transfer Analysis with
Virtual Controllers and Datapaths

Masahiro Fujita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Deadlock Prevention in the ÆTHEREAL Protocol
Biniam Gebremichael, Frits Vaandrager, Miaomiao Zhang, Kees Goossens,
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Is Formal Verification Bound to Remain
a Junior Partner of Simulation?

Wolfram Büttner

OneSpin Solutions GmbH,
Theresienhöhe 12, 80339 Munich, Germany

wolfram.buettner@onespin-solutions.com

Abstract. After decades of research the late eighties and the nineties have pro-
duced a number of “checkers” verifying complex aspects of industrial designs
and thus raising the attention of early adopters. These achievements, however,
have not led to wide adoption. The generally accepted explanation of this resis-
tance is the required methodology change and the lacking ease of use. We see a
more fundamental reason in the difficulty to set up a compelling value proposition
based on isolated proven theorems.

With the advent of assertion-based verification the first two of the above ob-
stacles are being successfully tackled. In this framework formal verification is
piggybacking on advanced and established simulation platforms.

We foresee as a next step in the evolution of formal verification fully formal
solutions for important functional verification tasks. Similar to formal equiva-
lence checking these solutions will excel by extreme quality and improved pro-
ductivity. This claim is exemplified by reporting about the formal verification
of an industrial embedded processor within a large national initiative involving
industry and academia.

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, p. 1, 2005.
c© IFIP International Federation for Information Processing 2005



Verification Challenges in Configurable Processor
Design with ASIP Meister

Masaharu Imai1 and Akira Kitajima2

1 Graduate School of Information Science and Technology, Osaka University, Japan
imai@ist.osaka-u.ac.jp

2 Department of Computer Science, Osaka Electro-Communication University, Japan
kitajima@isc.osakac.ac.jp

Abstract. In this presentation, several verification problems in configurable
processor design synthesis are illustrated. Our research group (PEAS Project)
has been developing a novel design methodology of configurable processor, that
includes higher level processor specification description, HDL description gener-
ation from the specification, Flexible Hardware Model (FHM) for resource man-
agement for HDL generation, compiler and ISS (Instruction Set level Simulator)
generation. Based on this methodology, we develop a configurable processor de-
sign environment named ASIP Meister.

The processor design flow using ASIP Meister is as follows: Firstly, a designer
describes an instruction set architecture as a specification of a target processor in-
cluding pipeline specification, instruction formats, behavior description of each
instruction and interrupts, data type specification, and so on. Secondly, the de-
signer select resources for modules to implement some functions of instructions
from FHM database, that can generate various resources, such as registers, se-
lectors, adders, shifters, etc. Thirdly, the designer describes micro-operation level
behavior description with selected resources in each pipeline stages for each in-
struction and interrupt. Finally, HDL description of the pipeline processor and
machine-depend compiler information for a retargetable compiler are generated.

One of the most important issues in such a generation based design method-
ology is how to keep the consistency between a given instruction set architec-
ture specification and implementations. In the most state-of-the-art processor core
generation systems, including ASIP Meister, however, there are no efficient for-
mal methods to guarantee the correctness of a generated HDL description and
compiler that implement the given specification of instruction set architecture.

We will explain several problems that are expected to be solved by applying
formal verification techniques as reasonable solutions.

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, p. 2, 2005.
c© IFIP International Federation for Information Processing 2005



Towards the Pervasive Verification
of Automotive Systems

Thomas In der Rieden�, Dirk Leinenbach�, and Wolfgang Paul

Saarland University, Computer Science Dept., 66123 Saarbrücken, Germany
{idr, dirkl, wjp}@cs.uni-sb.de

Abstract. The tutorial reviews recent results from the Verisoft project [1]. We
present a uniform mathematical theory, in which we can formulate pervasive cor-
rectness proofs for very large portions of automotive computer systems.

The basic ingredients of this theory are (i) correctness of processors with
memory mamagement units and external interrupts [2], (ii) correctness of a com-
piler for (a subset of) C [3], (iii) correctness of the generic multitasking operating
system kernel CVM [4], (iv) formal modeling of I/O devices and correctness
of drivers [5], (v) correctness of serial interfaces [6], (vi) clock synchronization
[7,8], (vii) worst case execution time analysis using abstract interpretation [9].

Using ingredients (i), (iv), (v), and (vi) one can construct electronic control
units (ECU) consisting of processors and interfaces to a FlexRay like bus [10];
timers on the ECUs are kept synchronized. An OSEKTime like real time operat-
ing system is derived from CVM [11].

The programming model for applications under this operating system is very
simple: several (compiled) C programs run on each ECU in so called rounds
under a fixed schedule. With the help of system calls the applications can update
and poll a set of shared variables. The times for updating each shared variable are
fixed by the schedule, too. An update to a shared variable in round k is visible to
all application programs that poll this variable in round k +2. This programming
model is very close to the model used in [12], where formal correctness proofs
for a distributed emergency call application in cars are reported.

Worst case timing analysis permits to guarantee, that applications and drivers
satisfy the requirements of the schedule. If the requirements of the schedule are
satisfied and the interfaces are programmed as prescribed by the schedule, then
one can show that the user model is implememented by compiler, operating sys-
tem and hardware [6].

An effort for the formal verification of all parts of the theory presented here is
under way [13]. We report also on the status of this effort.

References

1. The Verisoft Consortium: The Verisoft Project. http://www.verisoft.de/
2. Dalinger, I., Hillebrand, M., Paul, W.: On the verification of memory management mecha-

nisms. In Borrione, D., Paul, W., eds.: Proceedings of the 13th Advanced Research Work-
ing Conference on Correct Hardware Design and Verification Methods (CHARME 2005).
Springer (2005).

� Work funded by the German Federal Ministry of Education and Research (BMBF) in the
Verisoft project under grant 01 IS C38.
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Wired: Wire-Aware Circuit Design

Emil Axelsson, Koen Claessen, and Mary Sheeran

Chalmers University of Technology
{emax, koen, ms}@cs.chalmers.se

Abstract. Routing wires are dominant performance stoppers in deep
sub-micron technologies, and there is an urgent need to take them into
account already at higher levels of abstraction. However, the normal
design flow gives the designer only limited control over the details of
the lower levels, risking the quality of the final result. We propose a
language, called Wired, which lets the designer express circuit function
together with layout, in order to get more precise control over the re-
sult. The complexity of larger designs is managed by using parameterised
connection patterns. The resulting circuit descriptions are compact, and
yet capture detailed layout, including the size and positions of wires.
We are able to analyse non-functional properties of these descriptions,
by “running” them using non-standard versions of the wire and gate
primitives. The language is relational, which means that we can build
forwards, backwards and bi-directional analyses. Here, we show the de-
scription and analysis of various parallel prefix circuits, including a novel
structure with small depth and low fanout.

1 Introduction

In deep sub-micron processes, the effects of wires dominate circuit behaviour and
performance. We are investigating an approach to circuit generation in which
wires are treated as first class citizens, just as components are. To successfully
design high-performance circuits, we must reach convergence not only on func-
tionality, but also simultaneously on other properties such as timing, area, power
consumption and manufacturability. This demands that we mix what have earlier
been separate concerns, and that we find ways to allow non-functional properties
to influence design earlier in the flow. We must broaden our notion of correct-
ness to include not only functionality but also performance in a broad sense. For
example, we might like to do high-level floor-planning that takes account of the
effects of the wires joining the top-level blocks, or to quickly explore the detailed
timing behaviour of a number of proposed architectures for a given arithmetic
block, without having to resort to full-custom layout. The Wired system is de-
signed to solve both of these problems, though our initial work has concentrated
on the latter: easing the design and analysis of data-paths.

Ever since the eighties, there has been much work on module generation. For
example, Becker et al explored the specification and generation of circuits based
on a calculus of nets [1]. As in μFP [8], the design notation took into account

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 5–19, 2005.
c© IFIP International Federation for Information Processing 2005
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geometric and topological information. However, the designer viewed wires as
”simple lines”, and did not consider their exact position (although the associ-
ated synthesis tool produced real layout using sophisticated algorithms). The
Wired user works at a lower level of abstraction and is in full control of the lay-
out, including the exact positions of wires. Our own work with Singh at Xilinx
on the use of Lava to give the designer fine control over the resources on the
FPGA indicated that for regular circuits such as data-paths, mixing structure
and behaviour in a single description gives good results [4]. Wired takes these
ideas a step further. It is primarily aimed at giving the designer full control in
standard-cell design. In both Lava and μFP, circuit behaviour is described as a
function from input to output, and combinators capture common connection pat-
terns. This use of functions can lead to a proliferation of connection patterns [8],
whereas a relational approach, such as that in Ruby [6], abstracts from direction
of data-flow and so avoids this problem. In Wired, the connection patterns pro-
vide a simple tiling, and the resulting behaviour is constructed by composing the
relations corresponding to the tiles or sub-circuits. Thus, ideas from Ruby are
reappearing. A major difference, though, is that Wired is embedded in Haskell,
a powerful functional programming language, which eases the writing of circuit
generators. As we shall see when we consider RC-delay estimation, the relational
approach lends itself to circuit analysis by non-standard interpretation.

Typically, we start in Lava, and step down to the Wired level when it becomes
necessary to consider effects that are captured only at that level. We have found
that programming idioms used in Lava (that is the net-list generator level) trans-
late surprisingly well into the lower Wired level. You might say that we aim to
make circuit description and design exploration at the detailed wire-aware level
as easy as it was at the higher net-list generator level – without losing the link
to functional verification. In a standard flow, an application might be in the gen-
eration of modules that adapt to their context (for example to the delay profile
of the inputs). The ideas are also compatible with recent work at Intel on the
IDV system (Integrating Design and Verification [12]), which gives the designer
full control in a setting based on refinement and a functional language. Our aim
is to develop a practical approach to power-aware design in such a setting.

2 The Wired System

2.1 The Core Language

Wired is built around combinators with both functional and geometrical inter-
pretations. Every description has a surface and a surface relation. A surface is
a structure of contact segments, where each contact may or may not carry a
signal. This structure specifies the interface of the description and keeps track
of different signal properties. When flattened, it can represent the description’s
geometrical appearance. Figure 1(a) shows an example of a simple two-input
and-gate. This is a 2-dimensional circuit, so the surface consists of four ports.
The left- and right-hand ports are i-contacts (contacts without signals) of size 2.
The inputs, on top, are two size 1 s-contacts (contacts with signals). The output,
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s 2

i 2 i 2

com [s 1,s 1]

and2

(a)

pA1 pD2

com [pB1,pB2]

com [pC1,pC2]

d1 d2

(b)

Fig. 1. (a) Two-input and-gate (b) Beside composition, d1*||*d2

on the bottom, is a size 2 output signal. This gate has a clear signal flow from
input to output, which is not always the case for Wired circuits.

The surface relation relates parts of the surface to each other. It can capture
both structural and functional constraints. A structural relation can, for exam-
ple, specify that the number of inputs is equal to the number of outputs, and a
functional relation could specify that two signals are electrically connected.

Wired is embedded in the functional programming language Haskell. The
data type that is used to represent descriptions internally is defined as:

data Description = Primitive Surface Relation

| Combined Combinator Description Description

| Generic Surface (Surface -> Maybe Description)

A description is either a primitive defined by a surface and a relation, or a com-
bination of two sub-descriptions. We will look more at generic descriptions in
section 2.2. The combinator describes how the two sub-surfaces are combined
into one, and indicates which surface parts are connected where the two blocks
meet. This implicitly defines a new surface and relation for the combined de-
scription. Figure 2 illustrates a combination of two (not necessarily primitive)
2-dimensional circuits with relations R1 and R2.

1R 2R2R1 R

Fig. 2. Combination of sub-descriptions

The combinator *||* (”beside”) places the first block to the left of the second,
while *=* (”below”) places the first block below the second. Figure 1(b) illustrates
d1*||*d2. Note how the resulting top and bottom ports are constructed. The
top ports of the sub-circuits are named pB1 and pB2, and the resulting top
port becomes the pair com [pB1,pB2]. The same holds for the side ports when
using *=*. We will also use variations of these, which have the same geometrical
meaning, but combine the surfaces differently. *||~ does the ”cons” operation;
if d1 has port pB1 and d2 has port com [pB21,pB22, ...], then the resulting
port becomes com [pB1,pB21,pB22, ...]. ~||* does ”cons” at the end of the
list, and ~||~ and -||- are two variations of the ”append” operation.
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The surface structure may be partially unknown. For example, a wire (wires
are normal descriptions, just like anything else) may not have a fixed length, but
can be instantiated to whatever length it needs to have. Such instantiation is
done – automatically by the system – by looking at the surrounding context of
each sub-description. The surrounding surfaces form a so-called context surface,
and we require, for all sub-descriptions, that the surface and the context surface
are structurally equal. This means that if, for example, a stretchy wire is placed
next to a block with known geometry, the wire will automatically be instantiated
to the appropriate length. The wire also has a relation that states that its two
sides have the same length. So, if we place yet another wire next to the first one,
size information will be propagated from the block, through the first one and
over to the new wire. In Wired, this circuit is written:

example1 = wireY *||* wireY *||* block3x3

wireY is a thin vertical wire with unknown length, and block3x3 is a pre-defined
block of size 3 × 3 units. Instantiating this description and asking for a picture
(through an interactive menu system) gives the layout in Figure 3(a).

3x3

(a)

and2 and2 and2 and2 and2

(b)

Fig. 3. (a) Layout after instantiation of example1 (b) Layout of 5-bit bit-multiplier

In Lava, circuits are constructed by just running their Haskell descriptions,
so most of the instantiation procedure comes for free, from Haskell. Since Wired
is relational, we cannot use the same trick here. Instead we have a separate
instantiation engine, which is implemented in Haskell. This engine works by
fix-point iteration – it traverses the description iteratively, propagating surface
information from contexts to sub-descriptions and instantiating unknown prim-
itive surfaces, until no more information can be gained.

2.2 Generic Descriptions and Connection Patterns

In example1 we saw wires that adapted to the size of their context. This is
very useful since the designer doesn’t have to give all wire sizes explicitly when
writing the code. Sometimes we want to have sub-blocks whose entire content
adapts to the context. For this we use the final constructor in the definition of
descriptions (section 2.1) – Generic. A generic description is defined by a surface
and an instantiation function. As the type (Surface -> Maybe Description)
indicates, this function reads its current surface and may choose, depending on
that information, to instantiate to a completely new description. Since this is a
normal function on the Haskell level, it is possible to make clever choices here.
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For example, in the context of non-functional analysis (section 3), we can choose
between two different implementations depending on some estimated value.

The most common use for generic descriptions is in defining connection pat-
terns which capture commonly used regular structures. The simplest connection
pattern is the row, which places a number of copies of the same component next
to each other. We can use it to define a bit multiplier circuit, for example:

bitMult = row and_bitM

where and_bitM = and2 *=* (cro *||* crT0)

The primitives used are: and2, an and-gate with the surface from figure 1(a), cro,
two wires crossing without connection and crT0, a T-shaped wire connection.
Figure 3(b) shows the layout of this circuit instantiated for 5 bits.

We define row as follows:

row d = generic "row" xpSurf (row_inst d)

row_inst d surf = do len <- lengthX surf

case len of N 0 -> newInst thinEmptyY

N _ -> newInst (d *||~ row d)

_ -> noInst

The pattern is parameterised by a description d, and has unknown initial surface
(xpSurf) and instantiation function row_inst (also parameterised by d). The
instantiation function looks at the current surface and does a case analysis on its
horizontal length. If the length is known to be 0 (the constructor N means known),
the row becomes a thin empty block. This is the base-case in the recursive
definition of row. For lengths greater than 0, we place one copy of d beside
another row, using the *||~ combinator. If the length of the context has not yet
been resolved (the last case), we do not instantiate.

A simpler alternative to the above definition of row is

rowN 0 _ = thinEmptyY

rowN n d = d *||~ rowN (n-1) d

This definition takes an extra length parameter n, and does the whole unrolling
on the Haskell level instead, before instantiation. This is both simpler and runs
faster, but has the down-side that the length has to be known in advance. In the
normal row, instantiation automatically resolves this length.

Generic descriptions or partially unknown surfaces are only present during
circuit instantiation. After instantiation, when we want to view the layout or
extract a net-list, we require all surfaces to be complete, and that all generic
parts have been instantiated away.

2.3 Signal Interpretation

Surfaces are structures of contact segments. A contact is a piece of area that may
or may not carry a signal. However, it is possible to have more information here.
The signal can, for example, be decorated with information about whether it is
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an input or an output, and about its estimated delay. This allows an analysis
that checks that two outputs are never connected, and a way to compute the
circuit’s delay from input to output. We want to separate the description from
the interpretation that we will later give to it, so that the same description
can be used with different interpretations. This is done by abstracting the signal
information on the Haskell type level. That is, we parameterise the Description
type by the signal type s. This type variable can be kept abstract as long as
we want, but before we instantiate the description, s must be given a particular
type.

At the moment, possible signal types are:

NoInfo No information, just a structural placeholder
Direction Signal direction (in/out)
UnitTime Delay estimation under unit delay model
Resistance Output driving resistance
Capacitance Input load capacitance
Time Accurate RC-delay estimation

The operator :+: combines signal types. Such combinations are needed since it
makes no sense to talk about delays if there is no notion of direction, for example.
To increase readability, we define some useful type macros. For example,

type Desc_RCDelay = Description (Direction :+: Resistance :+: Capacitance :+: Time)

3 Non-functional Analysis

3.1 Direction and Unit-Delay

Wired is a relational language, and is thereby not bound to any specific direction
of signal flow. Still, most circuits that we describe are functional, so we need to
be able to check that a description has a consistent flow from input to output.
Here we use the signal interpretation with direction. While it is usually known
for gates which signals are inputs and outputs, wire junctions normally have
undefined directions initially. However, we know that if one signal in a junction
is an input (seen from inside the junction), all the others must be outputs,
in order to avoid the risk of short-circuit. This constraint propagation can be
baked into the circuit relation, and this is enough to help the instantiation engine
resolve all directions (or report error). Figure 4 shows an example of a gate cell
and a wire junction. Signal sj,1 of the junction is indirectly connected to gate
output sg,5. If we assume that directions are propagated correctly through the
intermediate wires, the context will eventually constrain sj,1 to be an input, and
by direction propagation, sj,2 and sj,3 will be constrained to outputs.

The simplest model for circuit delay estimation is the unit-delay model, in
which each stage just adds a constant unit to the input delay – independent of
electrical properties, such as signal drive strength and load. This gives a rather
rough estimate of circuit delay.
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l2

l3

sg,4
sg,5

sj,1

sj,3

sj,2

sg,1

sg,2

sg,3
intTintD

l1

Fig. 4. Gate and wire junction

As with directions, unit-delay can be resolved by the instantiation engine,
provided that delays are propagated correctly through gates and wires. The gate
in the above example has intrinsic unit-delay Dint (and an accurate time delay
Tint, which will be used in the next section). Dk refers to the unit-delay of signal
sk. As instantiation proceeds, delay estimates of the input signals will become
available. Delay propagation can then set the constraints

Dg,4 = Dg,5 = max[Dg,1, Dg,2, Dg,3] + Dint

The model can easily be extended so that different input-output paths have
different delays.

For the wire junction, we want to capture the fact that longer wires have
more delay. This dependency is hidden in the function conv, which converts
distance to unit-delay. By choosing different definitions for conv, we can adjust
the importance of wire delays compared to gate delays. Once the delay of sj,1
becomes available, the following propagation can be performed:

Dj,k = Dj,1 + conv(l1 + lk) for k ∈ [2, 3]

These two propagation methods work for all wires and gates, independent of
number of signals and logical function, and they are part of the relations of all
wire and gate primitives. Since information is only propagated from inputs to
outputs, this is a forwards analysis. In the next section, we will use a combination
of forwards and backwards analysis.

3.2 RC-Delay

For a more accurate timing analysis, we use the model in Figure 5. A gate output
is a voltage source with intrinsic delay Tint and output resistance Ro. A wire
is a distributed RC-stage with r and c as resistance and capacitance per length
unit respectively. Gate input is a single capacitance Cg.

g

r,c
C

R

T int

o

Fig. 5. Circuit stage from output to input

A signal change on an output gives rise to a signal slope on connected inputs.
This slope is characterised by a time constant, τ . For output stages with equal
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rise and fall times (which is normally the case), it is standard to define wire
delay as the time from an output change until the input slope reaches 50% of its
final value. For a simple RC-stage, see Figure 6(a), the time constant is given by
τ = RC. The delay from the left terminal to the capacitor is then approximately
equal to 0.69τ . For a distributed RC-stage (Figure 6(b)) with total resistance
R = rL and capacitance C = cL, it can be shown that τdist ≈ RC/2.

Figure 6(c) shows a fanout composition of n RC-stages. Based on Elmore’s
formula [7], the delay from the left terminal to capacitor Ci can be approximated
by a simple RC-stage with the time constant

τ1,i = R1 ·
[ ∑

l∈[1..n]\i

Cl

]
+ (R1 + Ri)Ci = τ1 + R1 ·

[ ∑
l∈[2..n]

Cl

]
+ τi (1)

This formula also holds for distributed stages – Ri and Ci are then the total resis-
tance and capacitance of stage i – or for combinations of simple and distributed
stages. Note that the local time constants τ1 and τi are computed separately and
added, much as unit-delays of different stages were added. What is different here
is the extra fanout term, where R1 is multiplied by the whole load capacitance.
It is generally the case that the stages on the right-hand side are themselves
compound; the RC-stage is merely an approximation of their timing behaviour.
Therefore, load capacitance needs to be propagated backwards from the load,
through the stages and to the junction we are currently considering. So, for RC-
delay analysis, we need a combination of forwards and backwards analysis. This
is, however, a simple matter in a relational system like Wired.

L

τ

R
C

r,c

τ

n

R
C2

2

τ

R
C

1

τ

1
1

1,2

R
Cn

nτ2

τ

(a) (b) (c)

Fig. 6. (a) RC- and (b) distributed RC-stage (c) Composition of RC-stages

We describe gate and wire propagation from the example in Figure 4. Gates
always have known output resistances and input capacitances, so no such prop-
agation is needed. Therefore RC-delay propagation through gates behaves just
like for unit-delay. Propagation through wire junctions is more tricky. We use
Rk, Ck and τk to refer to the resistance, capacitance and RC-delay of the signal
sk. We also define R′

k, C′
k and τ ′k as the local resistance, capacitance and time

constant of the piece of wire going from sk to the junction. R′
k and C′

k can be
computed directly from the corresponding length lk, and τ ′k = R′

kC
′
k/2. The

drive resistance and time constant of sj,1, and the load capacitance of sj,2 and
sj,3 will be resolved from the context.
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The total load capacitance at the junction is given by Cjunc = Cj,2 + Cj,3 +
C′

j,2 + C′
j,3. Backwards capacitance propagation can then be done directly by

the constraint
Cj,1 = Cjunc + C′

1

From (1) we get the time constant at the junction as

τjunc = τj,1 +
Rj,1C

′
j,1

2
+ τ ′j,1 + (Rj,1 + R′

j,1) · Cjunc

Finally, forwards resistance and RC-delay propagation is done as

Rj,k = R′
j,k and τj,k = τjunc + τ ′j,k for k ∈ [2, 3]

Now, to perform an RC-analysis of a circuit, say bitMult from section 2.2,
we first select the appropriate signal interpretation:

bitMultRC = bitMult :: Desc_RCDelay

This description is then instantiated in a context surface that specifies resistance,
capacitance and delay on the inputs or outputs of the circuit.

4 Parallel Prefix Circuits

A modern microprocessor contains many parallel prefix circuits. The best known
use of parallel prefix circuits is in the computation of the carries in fast binary
addition circuits; another common application is in priority encoders. There are
a variety of well known parallel prefix networks, including Sklansky [11] and
Brent-Kung [2]. There are also many papers in the field of circuit design that
try to systematically figure out which topology is best for practical circuits. We
have been inspired by previous work on investigating the effect of wire delay
on the performance of parallel prefix circuits [5]. Our aim has been to perform
a similar analysis, not by writing a specialised simulator, but by describing the
circuits in Wired and using the instantiation engine to run RC-delay estimations.

4.1 The Parallel Prefix Problem

Given n inputs, x1, x2, . . . , xn, the problem is to design a circuit that takes these
inputs and produces the n outputs y1 = x1, y2 = x1 ◦ x2, y3 = x1 ◦ x2 ◦ x3,
. . . yn = x1 ◦ . . . ◦ xn, where ◦ is an arbitrary associative (but not necessarily
commutative) binary operator. One possible solution is the serial prefix circuit
shown schematically in Figure 7(a). Input nodes are on the top of the circuit,
with the least significant input (x1) being on the left. Data flows from top to
bottom, and we also count the stages or levels of the circuit in this direction,
starting with level zero on the top. An operation node, represented by a small
circle, performs the ◦ operations on its two inputs. One of the inputs comes
along the diagonal line above and to the left of the node, and the other along
the vertical line from the top. A node always produces an output to the bottom
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x1

yny1

xn level 0

level 7

(a) Serial prefix

p1

p2

(b) Composition

Fig. 7.

along the vertical line. It may also produce an output along a diagonal line
below and to the right of the node. Here, at level zero, there is a diagonal line
leaving a vertical wire in the absence of a node. This is a fork. The serial prefix
circuit shown contains 7 nodes, and so is said to be of size 7. Its lowest level
in the picture is level 7, so the circuit has depth 7. The fanout of a node is its
out-degree. In this example, all but the rightmost node have fanout 2, so the
whole circuit is said to have fanout 2. Examining Figure 7(a), we see that at each
non-zero level only one of the vertical lines contains a node. We aim to design
parallel prefix circuits, in which there can be more than one node per level.

For two inputs, there is only one reasonable way to construct a prefix circuit,
using one copy of the operator. Parallel prefix circuits can also be formed by com-
posing two smaller such circuits, as shown in Figure 7(b). Repeated application
of this pattern (and the base case) produces the serial prefix circuit.

For 2n + 1 inputs, one can use so-called forwards and backwards trees, as
shown in Figure 8(a). We call a parallel prefix circuit of this form a slice. At
the expense of a little extra fanout at a single level in the middle of the circuit,
one can slide the (lower) backwards tree up one level, as shown in Figure 8(b).
Composing increasing sized slices gives the well-known Brent-Kung construction
[2] shown in Figure 9(a). A shallower n-input parallel prefix circuit can be ob-

(a) (b)

Fig. 8. (a) Parallel prefix construction using a forwards and a backwards tree (b) The
same construction with the lower tree slid back by one level

tained by using the recursive Sklansky construction, which combines the results
of two separate n/2-input parallel prefix circuits [11], as shown in Figure 9(b).

We have studied new ways to combine slices like those used to build Brent-
Kung. By allowing the constrained use of fanout greater than 2, we have found
a way to make slices in which the forward and backwards trees have different
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(a) (b)

Fig. 9. (a) Brent Kung for 32 inputs (b) Sklansky for 32 inputs, with fanout 17

Fig. 10. A new arrangement of composed slices, with 67 inputs, depth 8 and fanout 4

depths, and this leads to parallel prefix structures that combine small depth with
low fanout. An example of such a structure is shown in Figure 10.

4.2 Wired Descriptions

All of our parallel prefix circuits can be built from the primitives in Figure 11(a).
d is the operator with inputs on the left and top ports, and output on the bottom.
Its companion d2 additionally feeds the left input over to the output on the right-
hand side. Although d2 is a primitive, it behaves as if there were a horizontal
wire crossing on top of it. w1, w2 and w3 are unit-size wire cells, and w4 is a
wire with adaptive length. Instead of hard-coding these into the descriptions, we
will supply them as parameters, which allows us to use the same pattern with a
different set of parameter blocks.

Just like for the row in section 2.2, we can choose between unrolling the
structure during instantiation, or in advance on the Haskell level. Here we choose
the latter, since it gives us more readable descriptions.

As shown in figure Figure 9(b), Sklansky consists of two smaller recursive
calls, and something on the bottom to join their results. This leads to the fol-
lowing description in Wired:

sklansky 0 = thinEmptyX1

sklansky dep = join *=~ (sklansky (dep-1) ~||~ sklansky (dep-1))

where

join = (row w1 ~||* w3) -||- (row d2 ~||* d)

where (d,d2,w1,_,w3,_) = params

The parameter blocks are taken from the global variable params. The local
parameter dep determines the depth of the circuit. For each recursive call, this
parameter is decreased by one. Figure 12 shows this structure instantiated for
16 inputs, both for bits and for pairs of bits. The distinction between the two
cases is simply made by choosing parameter blocks from Figure 11(a) or (b).
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O --- O ---

(a) (b)

Fig. 11. Parameters d, d2, w1, w2, w3 and w4 for (a) 1-bit, and (b) 2-bit computations
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(a) (b)

Fig. 12. 16-bit Sklansky: (a) For single bits (b) For pairs of bits

Brent-Kung consists of a sequence of the slices from Figure 8(b). Each slice
contains a forwards and a backwards tree. The forwards tree is:

fwdTree 1 = thinEmptyX1

fwdTree dep = join *=~ (fwdTree (dep-1) ~||~ fwdTree (dep-1))

where

join = (row w1 ~||* w3) -||- (row w2 ~||* d)

where (d,d2,w1,w2,w3,_) = params

Note the similarity to the definition of sklansky. Only a parameter to the second
occurrence of row has changed.

backTree shares the same structure, but with extra control to take care of
the slide-back (Figure 8(b)). Brent-Kung is then defined as

(d,_,w1,_,w3,w4) = params

bk True 1 = colN 1 $ w3 *||* d

bk _ 1 = rowN 2 w4 ~=~ ((w1 *||* w3) *=* (w3 *||* d))

bk first dep = wFill ~=~ bk False (dep-1)

~||~ (backTree first True dep ~=~ fwdTree dep)

where

wFill = if depth==2 then thinEmptyX

else row w4 ~=~ (row w4 ~||* (w3 *=* w3))

The recursive case places a smaller Brent-Kung next to a slice consisting of a
forwards and backwards tree. The rest of the code is a bit messy due to the fact
that slide-back destroys the regularity around the base case.

The new structure in Figure 10 is also based on slices, and can be described
in Wired without introducing any new ideas. Its Wired layout is shown in Fig-
ure 13.
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Fig. 13. Wired layout of the new design

4.3 Results

The parameters used in our estimations are (see also Figure 5):

Tint Ro Cg r c
50.1ps 23.4kΩ 0.072fF 0.0229Ω/λ 1.43aF/λ

We analyse for a 100nm process (λ = 50nm, half the technology feature size),
following a similar analysis by Huang and Ercegovac [5]. This is not a normal
process node, but rather a speculative process derived from NTRS’97 [10]. The
gate parameters refer to a min. size gate, but in the analyses, the output re-
sistance is that of a 5× min. size device, while input capacitance is 1.5× min.
size. Wiring parameters r and c are obtained by assuming a wire width of 4λ
(see formula(4) in [5]). The operator cells are square, with a side length of
160λ.

The delays in nanoseconds resulting from the analsysis for Sklansky, Brent-
Kung and the new structure for 64 bits are (starting from the least significant
output):

Sklansky 0.010, 0.058, 0.10, 0.11, . . . 0.42, 0.42, 0.42, 0.42
Brent-Kung 0.015, 0.066, 0.11, 0.12, . . . 0.51, 0.51, 0.55, 0.36
New 0.012, 0.062, 0.11, 0.11, . . . 0.40, 0.44, 0.44, 0.40

The result for Sklansky is very closely in line with those in [5], and the results
for the new structure are promising.

5 Discussion

We have shown how the Wired system allows the user to describe and anal-
yse circuits at a level of detail that captures not only the size and position of
wires and components but also the overall behaviour. The descriptions are pa-
rameterised on the building blocks (such as gates, wires and junctions) used
in the construction, and these blocks can also model non-functional aspects of
circuit behaviour. This permits detailed circuit analyses such as the RC-delay
estimation shown here. The instantiation engine that is used to propagate size
information through the circuit based on information both from the circuit and
its context is also used to perform these analyses. Circuit behaviour, whether
functional or non-functional, is captured as a relation that is the composition
of the relations for the sub-circuits. Thus, the analyses can be relational in na-
ture (as the RC-delay estimation is), involving the flow of data in more than
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one direction, and multiple iterations before a fixed point is reached. Compared
to a purely functional approach such as that used in Lava, this gives a strict
increase in the range of analyses that can be performed by non-standard inter-
pretation. Once the non-functional behaviour of the lowest level building blocks
has been modelled, it becomes easy to explore the properties of a variety of dif-
ferent circuits to implement the same function. The fact that the descriptions are
compact and quick to write is important here, and this has been demonstrated
in our exploration of both standard and new parallel prefix circuits.

So far, we have only seen descriptions with 2-dimensional surfaces. We call
these hard circuits, since they have a strict geometrical interpretation. Wired also
supports hard 3-dimensional and soft circuits. Hard 3D descriptions are used to
make realistic circuits in processes with several metal layers, but if we only need
to see and analyse a simplified layout, we prefer to use hard 2D descriptions, as
they are much simpler. Soft descriptions do not have the geometrical constraints
that hard descriptions have. They are used to fill in parts of the geometry that we
don’t want to describe exactly. It is possible to convert soft descriptions to hard,
and vice versa. These operations only replace the outer surface of the description
and keep the internal contents unchanged. Using these ideas about soft and hard
circuits, we hope to return to the problem of high-level floor-planning that takes
account of the effects of wires between blocks.

Currently, the only available output format is the kind of postscript picture
shown here. The next step is to produce layout in a format such as GDSII. We
will also, in the style of Lava, perform net-list extraction and produce input
for verification tools. This will allow quick sanity checks during design explo-
ration.

Work on Wired will continue to be driven by case studies. Building on our
work on the generation of reduction trees [9] and on parallel prefix circuits, we
plan to build, using Wired, a fast binary multiplier circuit. This will involve
the study of buffer generation and of methods of folding circuits to improve
layout.

The resulting circuit descriptions are highly parameterised, raising the ques-
tion of how to provide generic verification methods. This is an important ques-
tion, and we have no easy answers. We feel, however, that Hunt’s work on
the DUAL-EVAL language [3] and his current work that builds upon it is the
best available starting point. We hope that others in the community will be
inspired to tackle the problem of how to verify highly parameterised circuit gen-
erators.
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Abstract. We formalized the DE2 hierarchical, occurrence-oriented fi-
nite state machine (FSM) language, and have developed a proof the-
ory allowing the mechanical verification of FSM descriptions. Using the
ACL2 functional logic, we have defined a predicate for detecting the well-
formedness of DE2 expressions. Furthermore, we have defined a symbolic
simulator for DE2 expressions which also serves as a formal cycle-based
semantics for the DE2 language. DE2 is deeply embedded within ACL2,
and the DE2 language includes an annotation facility that can be used
by programs that manipulate DE2 descriptions. The DE2 user may
also specify and prove the correctness of programs that generate DE2
descriptions. We have used DE2 to mechanically verify components of
the TRIPS microprocessor implementation.

1 Introduction

We present a formal description of and proof mechanism for the DE2 hierarchi-
cal, occurrence-oriented finite state machine (FSM) description language, which
we use to design and verify FSM-based designs or to optimize existing designs in
a provably correct manner. This definition is primarily aimed at the representa-
tion and verification of hardware circuits, but DE2 could also be used in other
areas such as protocols and software processes. Defining a hardware description
language (HDL) is difficult because of the many different ways in which it may
be used; for example, a HDL may be used to specify a simulation semantics,
define what circuits can be specified, restrict allowable names, enforce circuit
interconnect types, estimate power consumption, and provide layout or other
manufacturing information. We have formally described the DE2 language us-
ing the ACL2 logic [16], and we have formally verified DE2 descriptions using
the ACL2 theorem prover.

DE2 is designed to permit the rigorous hierarchical description and hierar-
chical verification of finite-state machines (FSMs). We call our language DE2
(Dual-Eval 2) because of the two-pass approach that we employ for the language
recognizers and evaluators. DE2 is actually a general-purpose language for spec-
ifying FSMs; users may define their own language primitives. We recognize valid
DE2 descriptions with an ACL2 predicate that defines the permissible syntax,
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names, and hierarchy, of valid descriptions. The DE2 language also provides a
rich annotation language that can be used to enforce syntactic and semantic
design restrictions.

We begin our presentation by listing DE2 language characteristics, contrast-
ing the DE2 language with other related efforts, and presenting some DE2
language examples. We next present the definition of DE2’s simulation-based
semantics. We conclude by describing how we use the DE2 language to verify
circuits from the TRIPS microprocessor design [7].

2 DE2 Language Features

The development of DE2 required balancing many demands. In particular, the
demand for hardware verification requires that it be as simple as possible to
evaluate, translate, and extend. In this section we list the resulting characteristics
of DE2.

– Hierarchical: A module is defined by connecting submodules.
– Occurrence-Oriented: Each reference to a previously defined module is

called an occurrence. All named modules are defined as a sequence of occur-
rences (unnamed lambda modules are discussed in Section 4.2).

– Deep Embedding in ACL2: DE2 modules are represented as ACL2 con-
stants. Using the terminology defined by Boulton et al. [13], DE2 is deeply
embedded in the ACL2 language. This embedding allows us to write ACL2
functions which simulate, analyze, generate, and manipulate DE2 modules.

– Annotation Mechanisms: We use annotations to describe elements of a
circuit which are not defined by evaluation (e.g. layout information). In DE2,
annotations are first class objects.

– Parameterized Finite Types: In DE2, every module input and output
is a bit vector of parameterized length. When the lengths of all the inputs
and outputs are known, we may appeal to BDD- and SAT-based techniques
for verification.

– Two-pass Evaluation: A DE2 module is evaluated by twice interpreting
its list of occurrences. This two-pass evaluation necessitates a level-order for
the combination functions.

– Representation of Internal State: We represent the internal state of
a module as an arbitrary block of memory that is implicitly part of the
module’s input and output and is updated during the second evaluation
pass. This representation limits us to designing FSMs, but greatly simplifies
the design and verification of these machines.

– User-defined Primitive Modules: We allow users to define primitive
modules, rather than requiring that primitive modules be built into the lan-
guage.

– User-selectable Libraries: Sets of primitives can become libraries. Li-
braries can be loaded into similar projects, which allows reuse of modules
and verification efforts.
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– Verified DE2 Language Generators: We can write ACL2 functions
which generate DE2 modules. Since the semantics of DE2 have been for-
malized in ACL2, these functions can be shown to always generate correct
DE2 code.

– Hierarchical Verification: Our verification process involves verifying
properties of submodules and then using these properties to verify larger
modules built from these submodules. This hierarchical technique allows us
to avoid reasoning about the internals of complex submodules.

– Books for Verification Support: We have defined a number of ACL2
“books” to assist the verification of DE2 modules. When loaded into the
theorem prover, these books use the ACL2 semantics of DE2 to verify prop-
erties of DE2 modules. We have used these books on a number of verification
projects, some of which involve the verification of ACL2 functions that gen-
erate DE2 circuits.

3 Related Work

The hardware verification community has taken two approaches [13] to defin-
ing the semantics of circuits: shallow and deep embedding. Shallow embedding
defines a circuit description as a first-class object in a well-defined subset of a
formal language. The syntax and formal semantics of the HDL are therefore a
subset of the semantics of the formal language. Deep embedding defines a circuit
description as a constant in a formal language. The syntax and semantics of the
HDL are then written in the formal language.

The DE2 language has been defined by deeply embedding it inside the ACL2
language, a primitive recursive functional subset of Lisp [17]. By embedding
DE2 within ACL2, we are given access to a theorem proving environment which
has successfully verified large-scale hardware systems [8,9]. The formalization
of the DE2 language is similar in style to the embedding of the DUAL-EVAL
HDL in NQTHM [11] and the DE language in ACL2 [10]. The DE language is
different from DUAL-EVAL in that DE permits user-defined primitives, re-usable
libraries, annotations, and contains a different structuring of data for state-
holding elements. The DE2 language contains the new features of DE, but also
has a parameterized type system, a more sophisticated system for applying non
user-defined primitives (implemented as ACL2 functions), and a more automated
verification system.

In other hardware verification efforts with ACL2, hardware descriptions were
translated directly to ACL2 models in the style of shallow-embedding [8,9]. These
efforts do not permit the syntactic analysis of the circuits so represented; that
is, it is not possible to treat the circuit descriptions as data so a program may
be used to analyze its suitability.

Tom Melham used the HOL system [12] to deeply embed some elements
of a hardware description language [12]. Boyer and Hunt attempted to deeply
embed a subset of VHDL in the ACL2 logic, but this specification grew to more
than 100 pages of formal mathematics, and its usefulness became suspect. Deeply
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embedding a HDL into another language brings great analytical power at the cost
of having to manage all of the logical formalisms required—but these formalisms
represent the real complexity that are inherit in such languages and in their
associated analysis and simulation systems. To make such an embedding useful,
a serious effort needs to be made to ensure an absolute economy of complexity,
and there needs to be libraries that ease the use of such an embedding.

A significant amount of work has focused on the use of functional program-
ming languages to simplify the writing of HDL-based descriptions. Mary Sheeran
has developed the language Lava [1] and she has used it to design fast multi-
pliers [2]. The strengths of Lava is its facilities to write programs that generate
hardware—similar to the ACL2 programs we write to generate DE2 descriptions
—and its ability to embed layout information in the Lava language—similar to
annotations in DE2. The Lava implementation does not include an associated
reasoning system, but a user can appeal to SAT procedures to compare one Lava
description with another.

Our recent verification methodology, which combines a SAT-based decision
procedure with theorem proving, was partially inspired by the work at Intel com-
bining symbolic trajectory evaluation with theorem proving. This work makes
use of the functional languages Lifted-FL [4] and reFLect [3]. Some of the ways
DE2 differs from these languages include its simpler semantics (e.g. two pass
evaluation), its simple syntax, its close correspondence to a subset of Verilog,
and its embedding within a general-purpose theorem prover.

4 Example

The use of the DE2 language is similar to the use of other hardware description
languages. Circuits are specified in a hierarchical manner, and the syntactic form
of the hierarchical circuit description also defines the hierarchical structure of a
description’s associated state. Here we give an example of a DE2 circuit speci-
fication, and describe some of the restrictions imposed by the DE2 language.

Our DE2 language definition is a tremendous abstraction of the physical
reality. The DE2 language defines finite-state machines by permitting a user to
define primitive elements. For this section, we assume the definition of Boolean
connectives and state-holding elements have already been given. Issues such as
clocking, wire delay, race conditions, power distribution, and heat, have been
largely ignored.

Informally, the DE2 language hierarchically defines Mealy machines—i.e. the
outputs and next state of every module is a function of its inputs and internal
state. By successively repeating the evaluation of an identified FSM, the DE2
system can be used to emulate typical finite-state machine operation. DE2 lan-
guage definitions obey the syntax of Lisp constant expressions; that is, module
definitions are represented as Lisp data rather than Lisp function definitions,
macros, or other such constructs. We first give an example of several combina-
tional circuits, where we exhibit some of the restrictions our evaluation approach
imposes. Later we exhibit a sequential circuit.
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4.1 Combinational Modules

Consider the circuit shown in Figure 1. In DE2, this circuit is represented as
follows.

Register

1 0
MUX

sel

+

load

in

out

adder−out

Accumulator

width

width

width

mux−out

width

Fig. 1. Schematic of an Accumulator

(accumulator

(params width)

(outs (out width))

(ins (in width) (load 1))

(wires (adder-out width) (mux-out width))

(sts reg)

(labels (out ’data) (in ’data) (adder-out ’data)

(mux-out ’data) (load ’control))

(occs

(reg (out) (register width ’data) (mux-out))

(adder (adder-out) (bufn width ’data) ((bv-adder width in out)))

(mux (mux-out) (bufn width ’data) ((bv-if load in adder-out)))))

A module is identified by its name, in this case accumulator. Each module
is composed of a set of key-value pairs whose entries depend on the type of
the module. All modules have lists of parameters, outputs, inputs, and states
identified by params, ins, sts, and outs, respectively. Modules can also have
a list of wires local to the module, identified by wires. This module also has a
labels entry, which is an annotation. Annotations are not required, but can be
used to enable optimizations, assist verification, or provide information to other
tools. In this case, we use the labels annotation, along with a static checker,
to ensure that we do not use a data wire when a control wire was expected
or vice versa. Annotations can also be used to represent layout information or
other physical attributes—a user may define their own annotations.
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A module will also include occurrences which define the relationship between
its inputs, outputs, and internal modules. Each occurrence consists of a unique
occurrence name, a list of outputs, a module reference combined with its pa-
rameter list, and a list of inputs. For example, the first occurrence in the above
example is named reg. The reg occurrence consists of an instance of a register
module with the parameter width, input mux-out, and output out. The fact that
reg occurs in the accumulatormodule’s sts list denotes that it is a state-holding
occurrence. Each input to an occurrence is specified by an ACL2 expression of
the inputs and internal “wires” of the module. Our primitive simulation-based
evaluator only defines a finite list of ACL2 functions (e.g. bv-adder and bv-if)
for use in such an expression.

The DE2 language evaluation semantics define the outputs of a module as
a function of its inputs and internal state. The next state of a module is also a
function of a module’s inputs and internal state. Evaluation is discrete; that is,
there is an implicit notion of time which is broken into discrete steps.

Module evaluation begins by binding input values to a module’s inputs and
binding state values to a module’s states. Each occurrence is then evaluated in
the order of its appearance. An occurrence is evaluated by binding its inputs
and state to the specified arguments and then evaluating the reference itself. For
the module defined above, the occurrence reg is evaluated first; the output of
a register depends only on its internal state, not its inputs. After the value of
mux-out is determined by evaluating the mux occurrence then internal state of
the reg occurrence is updated.

In Section 6.1 we present some properties of this example which we have
proven mechanically. Using the ACL2 theorem prover, we prove that for any
data-path width a LOAD of A (i.e. load is high, in is A) followed by an ADD
of B (i.e. load is low, in is B) produces the addition of A and B.

4.2 Primitives

A primitive module, corresponding to a hardware component built-in to a synthe-
sis tool, has a similar definition to that of a non-primitive module. The difference
between a primitive module is that rather than being defined in terms of occur-
rences of submodules, a primitive module is defined by lisp functions accessed
through lambda modules. A lambda module has formals corresponding to the
occurrence’s list of parameters followed by the occurrence’s list of inputs. The
lambda module evaluates to a list with its first element being the state of the
lambda module followed by its outputs. For example, the following is a definition
of the primitive module bufn, which is a submodule of our accumulator.

(bufn

(type primitive)

(params n sig-type)

(outs (q n))

(ins (x n))

(labels (q sig-type) (x sig-type))

(occs (st (q)

((lambda (x) (list ’nil x)))

(x))))
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The bufnmodule instantiates a single lambda module. Since the bufn module
has no state, this lambda expression evaluates to a list whose first element is nil.
The output of the bufn module, which corresponds to the second element of the
list, is equal to its input. The other primitive module found in our accumulator
example, register, is defined as follows.

(register

(type primitive)

(params width sig-type)

(outs (q width))

(ins (d width))

(sts st)

(st-decls (st width))

(labels (q sig-type) (d sig-type))

(occs

(st (q)

((lambda (width st d) (list d st)) width)

(st d))))

The register example shows how a state-holding primitive is defined in DE2.
The state of the register module is accessed through a lambda module named
st, which turns the implicit input and output of state into an explicit input
and output. The lambda module returns its input d as the next state and its
state st as its output. Note that the register module also has a new field,
st-decls, that declares the state element st to be a bit-vector of length width.
This declaration is not a requirement of DE2 modules, but enables the later use
of decision procedures.

5 The DE2 Evaluator

The definition of the DE2 evaluator is composed of two groups, each containing
two mutually recursive functions. These four functions implement the entire
hierarchical evaluation of the outputs and next-state values for any well-formed
hierarchical FSM defined using the DE2 language, except for the evaluation of
the lambda and ACL2 (primitive) expressions. This set of functions was designed
with a number of different goals in mind, so design decisions were made to
attempt to implement the desired properties while keeping the size of the system
as small as possible.

The DE2 language can be thought of as having two parts: primitive op-
erations and interconnect. We have defined different primitive evaluators, de-
pending on our needs. The primitive evaluator we use for verification of gate-
like primitives interprets such primitive modules by applying ordinary Boolean
operations. If we are interested in the fan-out of a set of signals, we use a
different primitive evaluator. If we want to generate a count of the number
of and type of primitive modules required to implement a referenced mod-
ule, we use a primitive evaluator that collects that information from every
primitive encountered during an evaluation pass — note that this does not



Formalization of the DE2 Language 27

just count the number of defined modules, but it counts the number of ev-
ery kind of modules required to realize the FSM being evaluated. If we want to
compute a crude delay or power estimate, we use other primitive evaluators.

The semantic evaluation of aDE2 design proceeds by binding actual (evalu-
ated) parameters (both inputs and current states) to the formal parameters of
the module to be evaluated; this in turn causes the evaluation of each submod-
ule. This process is repeated recursively until a primitive module is encountered,
and the specified primitive evaluator is called after binding the necessary argu-
ments. This part of the evaluation can be thought of as performing all of the
“wiring”; values are “routed” to appropriate modules and results are collected
and passed along to other modules or become primary outputs. This set of defini-
tions is composed of four (two groups of) functions (given below), and these func-
tions contain an argument that permits different primitive evaluators to be used.

The following four functions completely define the evaluation of a netlist of
modules, no matter which type of primitive evaluation is specified. The func-
tions presented in this section constitute the entire definition of the simulator
for the DE2 language. This definition is small enough to allow us to reason
with it mechanically, yet it is rich enough to permit the definition of a variety
of evaluators. The se function evaluates a module and returns its primary out-
puts as a function of its inputs. The de function evaluates a module and returns
its next state; this state will be structurally identical to the module’s current
state, but with updated values. Both se and de have sibling functions, se-occ
and de-occ respectively, that iterate through each sub-module referenced in
the body of a module definition. We present the se and de evaluator func-
tions to make clear the importance we place on making the definition compact.

The se and de functions both have a flg argument that permits the selec-
tion of a specific primitive evaluator. The fn argument identifies the name of
a module to evaluate; its definition should be found in the netlist. The ins
and st arguments provide the primary inputs and the current state of the fn
module. The params argument allows for parameterized modules; that is, it is
possible to define modules with wire and state sizes that are determined by this
parameter. The env argument permits configuration or test information to be
passed deep into the evaluation process.

The se-occ function evaluates each occurrence and returns an environment
that includes values for all internal signals. The se function returns a list of
outputs by filtering the desired outputs from this environment. To compute the
outputs as functions of the inputs, only a single pass is required.

(defun se (flg fn params ins st env netlist)

(if (consp fn)

;; Primitive Evaluation.

(cdr (flg-eval-lambda-expr flg fn params ins env))

;; Evaluate submodules.

(let ((module (assoc-eq fn netlist)))

(if (atom module)

nil

(let-names
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(m-params m-ins m-outs m-sts m-occs)

(m-body module)

(let*

((new-env (add-pairlist m-params params nil))

(new-env (add-pairlist (strip-cars m-ins)

(flg-eval-list flg ins env)

new-env))

(new-env (add-pairlist m-sts

(flg-eval-expr flg st env)

new-env))

(new-netlist (delete-assoc-eq-netlist fn netlist)))

(assoc-eq-list-vals

(strip-cars m-outs)

(se-occ flg m-occs new-env new-netlist))))))))

(defun se-occ (flg occs env netlist)

(if (atom occs) ;; Any more occurrences?

env

;; Evaluate specific occurrence.

(let-names

(o-name o-outs o-call o-ins)

(car occs)

(se-occ flg (cdr occs)

(add-pairlist

(o-outs-names o-outs)

(flg-eval-list

flg (parse-output-list

o-outs

(se flg (o-call-fn o-call)

(flg-eval-list flg

(o-call-params o-call)

env)

o-ins o-name env netlist))

env)

env)

netlist))))

Similarly, the functions de and de-occ perform the next-state computation
for a module’s evaluation; given values for the primary inputs and a structured
state argument, these two functions compute the next state of a specified module.
This result state is structured isomorphically to its input’s state. Note that
the definition of de contains a reference to the function se-occ; this reference
computes the value of all internal signals for the module whose next state is
being computed. This call to se-occ represents the first of two passes through
a module description when DE is computing the next state.

(defun de (flg fn params ins st env netlist)

(if (consp fn)

(car (flg-eval-lambda-expr flg fn params ins env))

(let ((module (assoc-eq fn netlist)))

(if (atom module)
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nil

(let-names

(m-params m-ins m-sts m-occs) (m-body module)

(let*

((new-env (add-pairlist m-params params nil))

(new-env (add-pairlist (strip-cars m-ins)

(flg-eval-list flg ins env)

new-env))

(new-env (add-pairlist m-sts

(flg-eval-expr flg st env)

new-env))

(new-netlist (delete-assoc-eq-netlist fn netlist))

(new-env (se-occ flg m-occs new-env new-netlist)))

(assoc-eq-list-vals

m-sts

(de-occ flg m-occs new-env new-netlist))))))))

(defun de-occ (flg occs env netlist)

(if (atom occs)

env

(let-names

(o-name o-call o-ins) (car occs)

(de-occ flg (cdr occs)

(cons

(cons

o-name

(de flg (o-call-fn o-call)

(flg-eval-list flg (o-call-params o-call) env)

o-ins o-name env netlist))

env)

netlist))))

This completes the entire definition of the DE2 evaluation semantics. This
clique of functions is used for all different evaluators; the specific kind of eval-
uation is determined by the flg input. We have proved a number of lemmas
that help to automate the analysis of DE2 modules. These lemmas allow us to
hierarchically verify FSMs represented as DE2 modules. We have also defined
simple functions that use de and se to simulate a DE2 design through any
number of cycles.

An important aspect of this semantics is its brevity. Furthermore, since we
specify our semantics in the formal language of the ACL2 theorem prover, we
can mechanically and hierarchically verify properties about any system defined
using the DE2 language.

6 Our Use of the DE2 System

Having an evaluator for DE2 written in ACL2 enables many forms of verifica-
tion. In Figure 2 we illustrate our verification system, which is built around the
DE2 language.
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Fig. 2. An overview of the DE2 verification system

We typically use the DE2 verification system to verify Verilog designs. These
designs are denoted in the upper left of Figure 2. Currently, the subset of Ver-
ilog includes arrays of wires (bit vectors), instantiations of modules, assignment
statements, and some basic primitives (e.g. &, ?: and |). We also allow the
instantiation of memory (array) modules and vendor-defined primitives.

We have built a translator that translates a Verilog description into an equiv-
alent DE2 description. Our translator parses the Verilog source text into a Lisp
expression, and then an ACL2 program converts this Lisp expression into a DE2
description.

We have also built a translator that converts a DE2 netlist into a cycle-
accurate ACL2 model. This translator also provides an ACL2 proof that the
DE2 description is equivalent to the mechanical produced ACL2 model. The
process of translating a DE2 description into its corresponding ACL2 model
includes a partial cone-of-influence reduction; an ACL2 function is created for
each module’s output and parts of the initial design which are irrelevant to that
output are removed. The DE2 to ACL2 translator allows us to enjoy both the
advantages of a shallow embedding (e.g. straightforward verification) and the
advantages of a deep embedding (e.g. syntax resembling Verilog).

We start with an informal specification of the design in the form of English
documents, charts, graphs, C-models, and test code which is represented in the
upper right of Figure 2. This information is converted manually into a formal
ACL2 specification. Using the ACL2 theorem prover, these specifications are
simplified into a number of invariants and equivalence properties. If these prop-
erties are simple enough to be proven by our SAT-based decision procedure,
we prove them automatically; otherwise, we simplify such conjectures using the
ACL2 theorem prover until we can successfully appeal to some automated deci-
sion procedure.
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We also use our system to verify sets of DE2 descriptions. This is accom-
plished by writing ACL2 functions that generate DE2 descriptions, and then
proving that these functions always produce circuits that satisfy their ACL2
specifications.

Since DE2 descriptions are represented as ACL2 constants, functions that
transform DE2 descriptions can be verified using the ACL2 theorem prover.
By converting from Verilog to DE2 and from DE2 to back into Verilog, we
can use DE2 as an intermediate language to perform verified optimizations.
Another use of this feature involves performing reductions or optimizations on
DE2 specifications prior to verification. For example, one can use a decision
procedure to determine that two DE2 circuits are equivalent and then use this
fact to avoid verifying properties of a less cleanly structured description.

We can also build static analysis tools, such as extended type checkers, in
DE2 by using annotations. In DE2, annotations are first-class objects (i.e. an-
notations are not embedded in comments). Therefore an annotation, such as the
labels annotation in Section 4, is parsed as easily as any core language feature.
Such static checkers, since they are written in ACL2, can be analyzed and can
also assist in the verification of DE2 descriptions. Furthermore, annotations can
be used to embed information into a DE2 description to assist with synthesis.

6.1 Verification Example

To verify the DE2 circuit in Section 4, we first generate an ACL2 model which
is equivalent to the DE2 circuit. The following theorems, which are proven
automatically through a proof generated by our translator, prove that the ACL2
functions accumulator-next-st and accumulator-out produce the next state
and the out output of the accumulator module from Section 4.

(defthm accumulator-de-rewrite

(implies (accumulator-& netlist)

(equal (de flg ’accumulator params ins st env netlist)

(let ((st (flg-eval-expr flg st env))

(in (get-nth-value 0 flg ins env))

(load (get-nth-value 1 flg ins env))

(width (nth 0 params)))

(accumulator-next-st st width in load)))))

(defthm accumulator-se-rewrite

(implies (accumulator-& netlist)

(equal (se flg ’accumulator params ins st env netlist)

(let ((st (flg-eval-expr flg st env)))

(list (accumulator-out st))))))

We now can prove properties about the ACL2 model using the ACL2 theorem
prover. For example, consider the following theorem:

(thm

(let* ((state1 (accumulator-next-st state0 width A (LOAD)))
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(state2 (accumulator-next-st state1 width B (ADD))))

(equal (accumulator-out state2) (bv-adder width a b))))

In this theorem, state1 is the state of our accumulator after an arbitrary
LOAD instruction (i.e. the load input to the accumulator is high), and state2
is the state after following this LOAD with an ADD instruction (i.e. the load
input is low). The theorem then states that the output of the accumulator is
the addition of each cycles’ inputs. We proved this theorem using the ACL2
theorem prover for any width accumulator. If we choose a specific width (e.g.
a 32-bit accumulator), then this theorem can be proven automatically with our
SAT-based decision procedure.

6.2 Verifying Components of the TRIPS Processor

We are using our verification system to verify components of the TRIPS pro-
cessor. The TRIPS processor is a prototype next-generation processor being
designed by a joint effort between the University of Texas and IBM [7]. One
novel aspect of the TRIPS microprocessor is that its memory is broken up into
four pieces; each piece of memory has a separate cache and Load Store Queue
(LSQ). We plan to verify the LSQ design, based on the design described in
Sethumadhavan et al [6], using our verification system. We have already verified
properties of its Data Status Network (DSN) component.

The DSN hardware provides the communication and buffering between four
LSQ instances. Its design consists of 584 lines of Verilog code (including around
200 lines of comments), which we compile into a 427-line DE2 description (with
no comments). We use our verifying compiler to translate this DE2 description
into an ACL2 model and then prove the equivalence of the DE2 description
and its ACL2 specification. Using a mixture of theorem proving and a SAT-
based decision procedure, we have proved properties that relate the output of
the four DSN instances, communicating with each other over multiple cycles, to
the output of a simplified machine; this simplified machine specifies the output
that would be immediately produced if all communication were instantaneous.

7 Conclusion

The definition of the DE2 language provides a user with a hierarchical lan-
guage for specifying FSMs. By deeply embedding the definition of DE2 within
the ACL2 functional logic, we have provided a proof theory for verifying DE2
module descriptions with respect to a number of primitive interpretations. The
extensible structure of the DE2 language and its general-purpose annotation
language allow a user to embed other types of information, such as a mod-
ule’s size, specification, layout, power requirements, and signal types. Instead of
just verifying large netlists, we often compare netlists or transform one netlist
into another netlist in a provably correct manner. We have extended the ACL2
theorem-proving system with a SAT procedure that can provide counter ex-
amples. We also have proved the correctness of functions that automatically
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generate circuits; this can greatly reduce the amount of DE2 module definitions
written by a user.

We believe that the design of DE2 more closely fulfills the needs of mod-
ern hardware design and specification than traditional HDLs. The increasing
demands placed on hardware or FSM specification languages is presently being
served by embedding all kinds of extra information in the form of comments into
a traditional HDL. This process forces non-standard, non-portable use of HDLs,
and prevents there from being a single design description that can be accessed
by all pre- and post-silicon development tools. We believe that DE2 is the first
formal attempt to integrate disparate design data into a single formalism. We
believe future design systems should include similar features.

The DE2 language, annotation system, and semantics provide a user with
a uniform means of specifying and verifying a wide variety of both functional
and extrinsic properties. We continue to expand the size and type of designs
that we have verified. In the future, we want to use DE2 to capture existing
design elements to ease the reuse problem. Typically, in an industrial design
flow, when a previously designed and verified design element is used in a new
design, the verification has to be completely redone. Our ability to specify and
verify modules in a hierarchical manner permits the reuse of prior verifications,
and perhaps this verification reuse is the real key. Being able to reuse the design
and the effort required to validate it will greatly reduce the effort of reusing
previously designed modules.
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Finding and Fixing Faults�

Stefan Staber, Barbara Jobstmann, and Roderick Bloem

Graz University of Technology

Abstract. We present a method for combined fault localization and correction
for sequential systems. We assume that the specification is given in linear-time
temporal logic and state the localization and correction problem as a game that
is won if there is a correction that is valid for all possible inputs. For invariants,
our method guarantees that a correction is found if one exists. The set of fault
models we consider is very general: components can be replaced by arbitrary new
functions. We compare our approach to model based diagnosis and show that it is
more precise. We present experimental data that supports the applicability of our
approach, obtained from a symbolic implementation of the algorithm in the Vis
model checker.

1 Introduction

Knowing that a program has a bug is good. Knowing its location is even better, but only
a fix is truly satisfactory.

Even if a failure trace is available, it may be hard work to find the fault contained in
the system. Researchers have taken different approaches to alleviate this problem. One
approach is to make the traces themselves easier to understand. In the setting of model
checking, [JRS02] introduces an approach that identifies points of choice in the failure
trace that cause the error and [RS04] proposes a method to remove irrelevant variables
from a counterexample derived using bounded model checking. Similarly, in the setting
of software testing, Zeller and Hildebrandt [ZH02] consider the problem of simplifying
the input that causes failure.

A second approach to help the user understand a failure (which is not necessarily the
same as locating the fault) is to consider several similar program traces, some of which
show failure and some success [Zel02, GV03, BNR03, RR03, Gro04]. The similarities
between failure traces and their differences with the successful traces give an indication
of the parts of the program that are likely involved in the failure.

A third approach, which aims to locate the fault, is based on a theory of diagnosis,
originally developed for physical systems. We discuss this approach in Section 2 as it
warrants a more detailed description.

In this paper, we take the view that a component may be responsible for a fault if it
can be replaced by an alternative that makes the system correct. Thus fault localization
and correction are closely connected, and we present an approach that combines the
two. We assume a finite-state sequential system, which can be hardware or finite-state
software. We furthermore assume that a (partial) specification is given in linear-time
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temporal logic (LTL), and we endeavor to find and fix a fault in such a way that the
new system satisfies its specifications for all possible inputs. Our fault model is quite
general: we assume that any component can be replaced by an arbitrary function in
terms of the inputs and the state of the system.

Jobstmann et al. [JGB05] present a method for the repair of a set of suspect com-
ponents. The most important weakness in that work is that a suspicion of the location
of the fault has to be given by the user. We solve that weakness by integrating fault
localization and correction.

We consider the fault localization and correction problem as an infinite game in
which the system is the protagonist and the environment the antagonist. The winning
condition for the protagonist is the satisfaction of the specification. The system first
chooses which component is incorrect and then, at every clock cycle, which value to
use as the output of the component. If for any input sequence, the system can choose
outputs of the component such that the system satisfies the specification, the game is
won. If the corresponding strategy is memoryless (the output of the component depends
only on the state of the system and its inputs), it prescribes a replacement behavior for
the component that makes the system correct. The method is complete for invariants,
and in practice works well for general LTL properties, even though it is not complete.

Much work has been done in correcting combinational circuits. Typically, a correct
version of the circuit is assumed to be available. (For instance, because optimization
has introduced a bug.) These approaches are also applicable to sequential circuits, as
long as the state space is not re-encoded. The work of [MCB89] and [LTH90] discusses
formal methods of fault localization and correction based on Boolean equations. The
fault model of [MCB89] is the same one we use for sequential circuits: any gate can
be replaced by an arbitrary function. Chung, Wang, and Hajj [CWH94] improve these
methods by pruning the set of possible faults. They consider only a set of simple, fre-
quently occurring design faults. In [TYSH94] an approach is presented that may fix
multiple faults of limited type by generating special patterns.

Work on sequential diagnosis and correction is more sparse. In the sequential set-
ting, we assume that it is not known whether the state is correct at every clock tick, either
because the reference model has a different encoding of the state space, or because the
specification is given in a logic rather than as a circuit. Wahba and Borrione [WB95]
discuss a method of finding single errors of limited type (forgotten or extraneous in-
verter, and/or gate switched, etc.) in a sequential circuit. The specification is assumed
to be another sequential circuit, but their approach would presumably also work with a
specification given in a temporal logic. Their algorithm finds the fault using a given set
of test patterns. It iterates over the time frames, in each step removing from suspicion
those gates that would, if changed, make a correct output incorrect or leave an incorrect
output incorrect. Our work improves that of Wahba and Borrione in two respects: we
use a more general fault model, and we correct the circuit for any possible input, not
just for a given test sequence. Both improvements are important in a setting where a
specification is available rather than a reference model. As far as we are aware, there
are currently no complete approaches to correct a broken system with a fault model of
comparable generality.
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The paper is structured as follows. In Section 2, we discuss the relation of our ap-
proach to model based diagnosis and argue that the consistency-based approach is in-
sufficiently precise. Section 3 gives the necessary definitions together with a motivating
example. In Section 4, we show how the game can be solved and we prove the correct-
ness and completeness of our approach. In Section 5, we show experimental evidence
of the usability of our approach. We assume a basic understanding of LTL, see [CGP99]
for an introduction.

2 Model Based Diagnosis for Fault Localization

Model based diagnosis provides a general, logic-based approach to fault localization.
In this section, we describe the approach and discuss its shortcomings, which are ad-
dressed by our approach.

Model based diagnosis originates with the localization of faults in physical systems.
Console et al. [CFTD93] show its applicability to fault localization in logic programs.
In model based diagnosis, a model is derived from the source code of the program. It
describes the actual, faulty behavior of the system. An oracle provides an example of
correct behavior that is inconsistent with the actual behavior of the program. Using the
model and the desired behavior, model based diagnosis yields a set of components that
may have caused the fault.

Model based diagnosis comes in two flavors: abduction-based and consistency-
based diagnosis [CT91]. Abduction-based diagnosis [PGA87] assumes that the set of
fault models is enumerated, i.e., it is known in which ways a component can fail. Using
these fault models, it tries to find a component of the model and a corresponding fault
that explains the observation.

The set of fault models that we consider in this work is quite large (doubly exponen-
tial in the number of inputs and state variables to the system), and we do not consider it
wise to enumerate all possible fault models. Thus, our approach should not be consid-
ered abductive.

Consistency-based diagnosis [KW87, Rei87] does not require the possible faults to
be known, but rather tries to make the model consistent with the correct behavior by
finding a component such that dropping any assumption on the behavior of the compo-
nent causes the contradiction between the model and the correct behavior to disappear.
In this setting, components are described as constraints, for example, an AND gate x
with inputs i1 and i2 is described as

¬faultyx ⇒ (outx ⇔ i1 ∧ i2),

where faultyx means that x is considered responsible for the failure. Note that nothing
is stated about the behavior of the gate when faulty is asserted. The task of consistency-
based diagnosis is to find a minimal set Δ of components such that the assumption
{faultyc | c ∈ Δ} ∪ {¬faultyc | c ∈ COMP \ Δ} is consistent with the oracle (where
COMP is the set of components).

Fahim Ali et al. [FAVS+04], for example, present a SAT-based method for consis-
tency-based diagnosis of sequential circuits in which they unroll the circuits and use
multiplexers with one free input instead of the faulty predicate.
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Consistency-based reasoning has weaknesses when multiple instances of a compo-
nent appear, for instance in the unrolling of a sequential circuit. (A similar observation
is made in [SW99] for multiple test cases.) In diagnosis of sequential circuits, as in its
combinational counterpart, the aim is to find a small set of components that explains
the observations. A single incorrect trace is given and diagnosis is performed using
the unrolling of the circuit as the model. A single faulty predicate is used for all occur-
rences of a given component. Hamscher and Davis [HD84] show that consistency-based
diagnosis is indiscriminate in this setting: If dropping the constraints of a component
removes any dependency between input and output, that component is a diagnosis. In
sequential circuits, because of the replication of components, this is likely to hold for
many components.

For instance, consider the sequential circuit shown in Figure 1. Suppose the initial
state of the circuit is (0, 0) and the specification is (out = 0)∧G((out = 0) ↔ X(out =
1)). Figure 2 shows the unrolling of the circuit corresponding to a counterexample of
length 2. Consider the XOR gate. Any output is possible if the constraints on the outputs
of this gate are removed, so it is a diagnosis. The AND gate is also a diagnosis.

The conclusion that either gate can be the cause of the failure, however, is incorrect.
There is no replacement for the XOR gate that corrects the circuit: for the output of the
circuit to be correct for the given inputs, the output of the XOR gate needs to be 0 in the
first and 1 in the second time frame. This is impossible because the inputs to the gate
are necessarily 0 in both time frames. The circuit can be corrected, but the only single
consistent replacement to fix the circuit for the given input sequence is to replace the
AND gate by a gate whose output is 1 when both inputs are 0.

In diagnosis of physical systems, faults may be intermittent, and a consistent expla-
nation of the faulty behavior may not be required. In the setting of correction, however,
the replacement must be consistent and functional. Thus, correctability is the proper
notion for fault localization, and for maximum precision, the combination of fault lo-
calization and correction is essential.

Model based diagnosis gives a general, formal methodology of fault localization,
but its two flavors each have significant shortcomings. The abduction-based approach
can only handle a small set of possible faults, and the consistency-based method is un-
able to differentiate between correctable and non-correctable diagnoses. Furthermore,
model based diagnosis does not deal with the problem of correcting a system for any
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possible input, but only finds a correction that is valid for a single input. Our approach
is precise and finds corrections that are valid for all inputs.

3 Games for Localization and Correction

Using the simple example introduced in the previous section we explain the basic ideas
of our approach. Additionally, we introduce some formalisms necessary for the proof
of correctness in Section 4.2.

In order to identify faulty components, we need to decide what the components of
the system are. In this paper, the components that we use for circuits are gates or sets
of closely related gates such as full adders. For finite-state programs, our set of com-
ponents consists of all expressions and the left-hand side of each assignment. Thus,
for finite-state programs both diagnosis and correction are performed at the expression
level, even though an expression may correspond to multiple gates on the implementa-
tion level.

Given a set of components our approach searches for faulty components and cor-
responding replacement functions. The range of the replacement function depends on
the component model, the domain is determined by the states and inputs. Note that the
formulation of our approach is independent of the chosen set of components.

We show how to search for faulty components and correct replacements by means
of sequential circuits, where the specification F is the set of runs that satisfies some
LTL formula ϕ. Our approach can handle multiple faults, but for simplicity we use a
single fault to explain it. Thus, a correction is a replacement of one gate by an arbitrary
Boolean function in terms of the primary inputs and the current state.

A circuit corresponds to a finite state machine (FSM)M = (S, s0, I, δ), whereS is a
finite set of states, s0 ∈ S is the initial state, I is a finite set of inputs, and δ : S×I → S
is the transition function. For example, if we are given the circuit in Figure 1 and we
want it to fulfill the specification (out = 0) ∧ G((out = 0) ↔ X(out = 1)), we obtain
the FSM shown in Figure 3.

We extend the FSM to a game between the system and the environment. A game G
is a tuple (S, s0, I, C, δ,F ), where S is a finite set of states, s0 ∈ S is the initial state,
I and C are finite sets of environment inputs and system choices, δ : S × I × C → S
is the complete transition function, and F ⊆ Sω is the winning condition, a set of
infinite sequences of states. To simplify matters, we translate the given specification in
a corresponding set of sequences. In our example (out = 0)∧G((out = 0) ↔ X(out =
1)) corresponds to all sequences in which D1 is 0 in the first two time frames and
alternates between 1 and 0 afterwards.

Suppose we are given a circuit and the gates in the circuit are numbered by 0 . . .n.
We extend the corresponding FSM M = (S, s0, I, δ) to a game by the following two
steps

1. We extend the state space to (S × {0 . . .n}) ∪ s′0. Intuitively, if the system is in
state (s, d), we suspect gate d to be incorrect. s′0 is a new initial state. From this
state, the system can choose which gate is suspect.

2. We extend the transition relation to reflect that the system can choose the output of
the suspect gate.
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If gate d is suspect, it is removed from the combinational logic of our circuit, and we
obtain new combinational logic with one more input (and some new outputs, which we
ignore). Let the function computed by this new circuit be given by δd : S×I×{0, 1} →
S, where the third argument represents the new input.

We construct the game G = (S′, s′0, I, C
′, δ′,F ′), where

S′ = (S × {0, . . . , n}) ∪ s′0,
C′ = {0 . . .n},

δ′(s′0, i, c) = (s0, c),
δ′((s, d), i, c) = (δd(s, i, c mod 2), d),

F ′ = {s′0, (s0, d0), (s1, d1), · · · | s0, s1, · · · ∈ F}.
Note that the full range of the system choice ({0 . . .n}) is only used in the new initial
state s′0 to choose the suspect gate. Afterwards, we only need two values to decide the
correct output of the gate (0 and 1), so we use the modulo operator. Also note that
the decision which gate is suspect does not depend on the inputs: δ′(s′0, i, c) does not
depend on i.

For our simple example, we obtain the game shown in Figure 5. In the initial state
the system chooses which of the gates (G0 or G1) is faulty. The upper part of the game
in Figure 5 corresponds to an arbitrary function for gate G0, the lower one represents a
replacement of gate G1. The edges are labeled with the values of environment input i
and the system choice c separated by a slash, e.g., the transition from state 100 to 010
labeled with −/0 means that starting at D0 = 1 and D1 = 0 and assuming G0 to be
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Table 1. Function for the system choice

State Input Choice
S × {0, 1} I C′

D0 D1 d i c

0 0 0 0 1
0 0 0 1 1
0 1 0 0 -
0 1 0 1 -
1 0 0 0 1
1 0 0 1 1
1 1 0 0 1
1 1 0 1 1

faulty, the system choice C = 0 forces the latches to be D0 = 0 and D1 = 1 in the next
state regardless of the input.

Once we have constructed the game, we select system choices that restrict the game
to those paths that fulfill the specification. In our example, first we choose a transi-
tion from s′0 to either the upper or the lower part of the game. Choosing the transition
from s′0 to 000 means we try to fix the fault by replacing gate G0. In state 000 we
select transitions that lead to paths that adhere to the given specification. In Figure 5
the bold arrows only allow paths with the sequence 001010. . . for D1 as required by
the specification. Taking only these transitions into account we get the function shown
in Table 1 for the system choice c. For the 3rd and 4th Line in Table 1 we can choose
arbitrary values for the system choice. This choice gives us freedom in picking the de-
sired correction. Since we aim for corrections that yield simple modified systems, we
choose the simplest implementation, which sets c = 1 all the time. Using the corre-
sponding transitions in the original model (Figure 3) yields the correct model shown in
Figure 4.

Choosing the right transitions of the game corresponds to searching a memoryless
winning strategy for the system that fulfills the winning condition F ′. Formally, given
a game G = (S, s0, I, C, δ,F ), a memoryless strategy is a function σ : S × I → 2C ,
which fixes a set of possible responses to an environment input. A play on G according

to σ is a finite or infinite sequence π = s0
i0c0−→ s1

i1c1−→ . . . , such that ci ∈ σ(si, ii),
si+1 = δ(si, ii, ci), and either the play is infinite, or ∃n : σ(sn, in) = ∅, which
means that the play is finite. A play is winning (for the system) if it is infinite and
s0s1 · · · ∈ F . A strategy σ is winning on G if all plays according to σ on G are win-
ning. Depending on the winning condition we distinguish different types of games. The
winning condition of an LTL game is the set of sequences satisfying an LTL formula
ϕ. A safety game has the condition F = {q0q1 · · · | ∀i : qi ∈ A} for some A. The
type of the game for localizing and correction depends on the specification. In Section
4, we explain how to obtain a winning strategy and we prove the correctness of our
approach.

In order to handle multiple faults we extend the game to select a set of suspect
components in the initial state. In every following state the system chooses an output
for the suspect component. Thus, the range of the replacement function consists of
tuples of outputs, one output for each suspect component.
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4 Solving Games

In Section 4.1, we summarize the approach of [JGB05] to find a winning strategy for
a game, which we adopt. We describe the approach for safety games in some detail,
and briefly recapitulate how to find a strategy when the specification is given in LTL. In
Section 4.2, we prove that a winning strategy corresponds to a valid correction and that
for invariants a winning strategy exists iff a correction exists.

4.1 Strategies

For a set A ⊆ S let

MXA = {s | ∀i ∈ I ∃c ∈ C, s′ ∈ A : (s, i, c, s′) ∈ δ}
be the set of states from which, for any input, the system can force a visit to a state in
A in one step. We define MGA = νZ.A ∩ MXZ to be the set of states from which the
system can avoid leaving A. (The symbol ν denotes a greatest fixpoint, see [CGP99].)
Note that the MX operation is similar to the preimage computation in symbolic model
checking, apart from the quantification of the input variables. The MG operation mir-
rors EG.

If the specification is an invariant A, the set MGA is exactly the set of states from
which the system can guarantee that A is always satisfied. If the initial state is in MGA,
the game is won. The strategy for a safety game is then easily found. From any state,
and for any input, select any system choice such that the next state is in MGA:

σ(q, i) = {c ∈ C | δ(q, i, c) ∈ A}.
Note that the strategy is immaterial for nodes that are unreachable. The same holds for
states that are not winning: they will never be visited.

For LTL specifications, the situation is more intricate.
A finite-state strategy determines the set of allowed system choices using a finite-

state machine that has a memory of the past input and system choices. A finite-state
strategy may, for example, alternately pick two different choices for one and the same
system state and input.

We can compute a finite-state strategy for a game with winning condition ϕ by
finding a strategy on the product of the game and a deterministic automaton for ϕ. A
finite-state strategy corresponds to a correction in which the new FSM is the product
automaton. Thus, it would add state that corresponds to the automaton for ϕ.

Finding a deterministic automaton for ϕ is hard in terms of implementation and
needs doubly exponential space. Furthermore, it is probably a bad idea to fix a sim-
ple fault by the addition of a large amount of state. Therefore, [JGB05] proposes a
heuristic approach. The approach constructs a nondeterministic Büchi automaton from
ϕ in the standard way [VW94], which causes only a singly exponential blowup. It then
constructs the product of the Büchi automaton and the game. The result is a Büchi
game, which in general has a finite-state strategy. To avoid adding state to the circuit,
[JGB05] presents a heuristic to turn a finite-state strategy into a memoryless strategy.
The heuristic works by finding choices that are common to all states of the finite-state
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strategy. These two heuristics imply that the method is not complete: if the property is
not an invariant, a correction may not be found even if it exists. We take the view that
this tradeoff is necessary for efficiency and simplicity of the correction.

Jobstmann et al. [JGB05] show how a simple correction statement is extracted from
a memoryless strategy.

The complexity of the approach is comparable to that of symbolic model checking
of a property on the game that has O(k · lg |COMP|) more Boolean state variables than
the original system, where k is the number of faults assumed.

4.2 Localization and Correction

If a winning positional strategy for the system exists, it determines (at least) one in-
correct gate plus a replacement function. To see this, we need some definitions. For a
function f : S × I → {0, 1}, let δ[d/f ] be the transition function obtained from δ by
replacing gate d by combinational logic specified by f : δ[d/f ](s, i) = δd(s, i, f(s, i)).
Let M [d/f ] be the corresponding FSM. Let σ : ((S × {0 . . .n}) ∪ s′0) × I → 2{0...n}

be a winning finite-state strategy. Since the transition from the initial state s′0 does not
depend on the input i, neither does the strategy for this state. Let D = σ(s′0, i) for some
i.

Let Fd be the set of all functions f : S× I → {0, 1} such that f(s, i) ∈ {c mod 2 |
c ∈ σ((s, d), i)}. We claim that D contains only correctable single-fault diagnoses
and {Fd}d∈D contains only valid corrections, and that for invariants there are no other
single correctable diagnoses or corrections.

Theorem 1. Let d ∈ {0 . . .n} and let f : S × I → {0, 1}. We have that d ∈ D and
f ∈ Fd implies that M [d/f ] satisfies F . If F is an invariant, then M [d/f ] satisfies F
implies d ∈ D and f ∈ Fd.

Proof. Suppose d ∈ D and f ∈ Fd. Let π = (s′0, (s0, d), (s1, d), . . . ) be the play of
G for input sequence i′0, i0, i1, . . . so that (sj+1, d) = δ′((sj , d), ij , f(sj , ij)). Since
f(sj , ij) ∈ σ((sj , d), ij) (mod 2), π is a winning run and s0, s1, · · · ∈ F . Now note that
(sj+1, d) = δ′((sj , d), ij , f(sj , ij)) = (δd(s, ij , f(sj, ij)), d) = (δ[d/f ](sj , ij), d).
Thus, s0, s1, . . . is the run of M [d/f ] for input sequence i0, i1, . . . , and this run is in F .

For the second part, suppose F is an invariant, and say M [d/f ] satisfies F . Then
for any input sequence, the run of M [d/f ] is in F , and from this run we can construct a
winning play as above. The play stays within the winning region, and by construction of
the strategy for a safety game, all system choices that do not cause the play to leave the
winning region are allowed by the strategy. Thus, the play is according to the winning
strategy, so d ∈ D and f ∈ Fd. ��

Note that for LTL properties, the theorem holds in only one direction. The primary
reason for this is that a memoryless strategy may not exist for an LTL formula. Further-
more, even if a repair exists, our heuristics may fail to find it [JGB05].

5 Experiments

In this section we present initial experiments that demonstrate the applicability of our
approach. We have implemented our algorithm in VIS-2.1 [B+96]. In the current ver-
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sion of the algorithm, the examples are manually instrumented in order to obtain and
solve the corresponding games. The instrumentation can easily be automated.

The game constructed from a program proceeds in three steps:

1. decide which component is faulty,
2. read the inputs to the program, and
3. execute the extended version of the program, in which one component is left unim-

plemented.

Because the selection of the faulty component is performed before any inputs are passed
to the program, the diagnosis does not depend on the inputs, and is valid regardless of
the inputs.

Our implementation is still incomplete: it builds a monolithic transition relation for
the corrected system, which is intractable for large designs. We are investigating the use
of partitioned relations.

5.1 Locking Example

Figure 6 shows an abstract program which realizes simple lock operations [GV03].
Nondeterministic choices in the program are represented by *. The specification must
hold regardless of the nondeterministic choices taken, and thus the program abstracts a
set of concrete programs with different if and while conditions. The method lock()
acquires the lock, represented by the variable L, if it is available. If the lock is already
held, the assertion in Line 11 is violated. In the same way, unlock() releases the lock,
if it is held. The fault is located in Line 6, which should be within the scope of the if
command. This example is interesting because the error is caused by switching lines,
which does not fit our fault model.

The components of the program that are considered for correction are the expres-
sions in the if statement in Line 1, the while statement in Line 7, and the right-hand
side (RHS) of the assignments to got_lock in Line 3 and 6.

In order to illustrate the instrumentation of the source code, Figure 8 shows an in-
strumented version of the program. In Line 0 we have introduced a variablediagnose.
The game chooses one of four lines for diagnose. Function choose represents a
system choice. The result of the function is one of its parameters: l1, l3, l6 or l7.

If a line is selected by diagnose, the game determines a new value for the right-
hand side in that line (again represented by the function choose. Note that in the other
suspect lines the original values are kept.

The algorithm finds three possible error locations: Line 1, 6, or 7. The correction
for Line 1 suggests to set the if-condition to !L. Both lock() and unlock() are
then called in every loop iteration. Note that the condition could also be set to true,
but the algorithm cannot exclude the possibility of reaching Line 1 with L=1 before
it fixes the strategy. The algorithm also suggests to set the loop condition to false in
Line 7. Clearly that works, because the loop is now executed only once and the wrong
value of got_lock does not matter. Finally, the algorithm suggests to set got_lock
to 0 in Line 6. This is a valid correction, because now unlock() is only called if
got_lock has been incremented before in Line 3. The last suggestion is satisfactory:
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int got_lock = 0;
do{

1 if (*) {
2 lock();
3 got_lock = got_lock + 1;}
4 if (got_lock != 0) {
5 unlock();}
6 got_lock = got_lock - 1;
7 } while(*)

void lock() {
11 assert(L = 0);
12 L = 1; }

void unlock(){
21 assert(L = 1);
22 L = 0; }

Fig. 6. Locking Example

1 int least = input1;
2 int most = input1;

3 if(most < input2)
4 most = input2;
5 if(most < input3)
6 most = input3;
7 if(least > input2)
8 most = input2;
9 if(least > input3)
10 least = input3;

11 assert (least <= most);

Fig. 7. MinMax Example

it is a correction for the program no matter which concrete conditions are used for the
if and while conditions.

Note that our method does not recognize the intent of the designer to place the as-
signment to got_lock within the scope of the if, but it finds a correction regardless.

5.2 Minmax Example

Minmax is a simple program to evaluate the maximum and the minimum of three input
values [Gro04]. The minimum is stored in least, the maximum is stored in most.
The fault is located of Line 8 in Figure 7. Instead of assigning input2 to least the
value is assigned to most.

We consider as possible faults the left-hand sides and right-hand sides of the as-
signments in Lines 4, 6, 8, and 10, and the expressions in Line 3, 5, 7, and 9. Note
that a correction for a left-hand side should be independent of the state of the pro-
gram. Therefore, the corrections for the left-hand side are decided together with the
faulty components before the inputs are read. The assertion in Line 11 is replaced by
if !(least <= most) error=1 and we check the property G(error = 0).

The algorithm provides two diagnoses and the corresponding corrections. The al-
gorithm suggests to set the if-condition in Line 7 to false. In Line 8 more than one
correction is possible. The algorithm suggests to change the LHS of the assignment
to least, or to change the RHS either to input1 or to input3. It is obvious that
all of the suggested corrections are valid for the assertion (least <= most), but
that assertion does not guarantee the intended behavior of the program, namely that the
minimum value is assigned to least and the maximum value to most. We make the
specification more precise:

(least <= input1) && (least <= input2) && (least <= input3) &&
(most >= input1) && (most >= input2) && (most >= input3)
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0 diagnose = choose{l1, l3, l6, l7}
int got_lock = 0;
do{

1.0 if (diagnose = l1)
1.1 tmp = choose(true, false);
1.2 else
1.3 tmp = *;
1.4 if (tmp) {
2 lock();
3.0 if (diagnose = l3)
3.1 tmp = choose(0,..,n-1);
3.2 else
3.3 tmp = got_lock + 1;
3.4 got_lock = tmp;}
4 if (got_lock != 0) {
5 unlock();}
6.0 if (diagnose = l6)
6.1 tmp = choose(0,..,n-1);
6.2 else
6.3 tmp = got_lock - 1;
6.4 got_lock = tmp;
7.0 if (diagnose = l7)
7.1 tmp = choose(true, false);
7.2 else
7.3 tmp = *;
7.4 } while(tmp)

Fig. 8. Instrumented Lock Example

With this specification we find one diagnosis and correction: Change the LHS from
most to least in Line 8.

As stated before, our approach is not restricted to invariants. In order to show the
applicability of our approach, we change the program and the specification. In a modi-
fied program version we initialize error with 1 and set it to 0 if the assignment holds.
We change the specification to the LTL formula XX F(error = 0), meaning: “After
two steps error must eventually be equal to 0”. This is clearly not an invariant. Our
algorithm is again able to find the correction.

5.3 Sequential Multiplier

The four-bit sequential multiplier shown in Figure 9 is introduced in [HD84]. The mul-
tiplier has two input shift-registers A and B, and a register Q which stores intermediate
data. If input INIT is high, shift registers A and B are loaded with the inputs and Q is
reset to zero. In every clock cycle register A is shifted right and register B is shifted left.
The least significant bit (LSB) of A is the control input for the multiplexer. If it is high,
the multiplexer forwards the value of B to the adder, which adds it to the intermediate
result stored in register Q. After four clock cycles Q holds the product A ∗ B.
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Fig. 9. Sequential Multiplier

The multiplier has a fault in the adder: The output of the single-bit full adder re-
sponsible for bit 0 always adds 1 to the correct output. The components we use for fault
localization are the eight full adders in the adder, the eight AND gates in the multiplexer,
and the registers A, B, and Q.

Our approach is able to find the faulty part in the adder and provides a correction
for all possible inputs. It suggests to use a half adder for bit 0. This is simpler than
the correction we expected and still correct: In the first time step, Q is 0 and in all
subsequent steps, the LSB of B is 0 because B is shifted left. Thus, a carry never occurs.

Let us consider the candidates for correction that model-based diagnosis finds. If
we load A and B with 6 and 9, respectively, the output is 58 instead of 54. Consistency-
based diagnosis finds the registers B and Q, the AND gate for bit two in the multiplexer
and the full adders for the three least significant bits as candidates. We can reduce the
number of diagnoses by using multiple test cases and computing the intersection of
the reported diagnoses. However, the full adder for bit one is a candidate in every test
case. To see this, note that after four time slices the computed result is the correct value
plus four. Regardless of the inputs, the carry bit of the full adder for bit 1 will have
value 1 in at least one time step. If we change this value to 0, the calculated result of
the multiplication is reduced by four and we obtain the correct result. Similarly Q is
a diagnosis for every test case. This example shows once more that consistency-based
diagnosis finds candidates that cannot have caused the fault.

The example can also be used to show that it is not possible to correct a fault using a
single test case: for any single test case there is a valid correction for the full adder for bit
one. There is not, however, one correction that is valid for all test cases. This conclusion
can only be reached by considering multiple inputs, which is what our approach does.

6 Conclusions

We have presented an integrated approach to localizing and correcting faults in finite-
state systems with a specification given in LTL. Our approach uses a very general fault
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model in which a component is replaced by an arbitrary new function. Though it has
been formulated for single faults, it is applicable to localization and correction of mul-
tiple faults as well.

The approach, which is based on infinite games, is sound in the sense that a sug-
gested correction is valid for all possible input sequences. If the specification is an
invariant, our approach is complete: if a single point of failure exists, the fault is always
found and corrected. For general LTL properties, the approach is sound and it performs
well in practice, though it is not complete.

We have also shown that the most important competing localization method, model
based diagnosis using consistency, does not provide the same precision in locating er-
rors. Other known methods work with very restricted fault models, which are very use-
ful when the fault is incurred during an incorrect optimization or re-encoding step, but
does not appear to be applicable for systems for which no reference model is available.
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Abstract. We define and study a quantitative generalization of the tra-
ditional boolean framework of model-based specification and verification.
In our setting, propositions have integer values at states, and properties
have integer values on traces. For example, the value of a quantitative
proposition at a state may represent power consumed at the state, and
the value of a quantitative property on a trace may represent energy
used along the trace. The value of a quantitative property at a state,
then, is the maximum (or minimum) value achievable over all possible
traces from the state. In this framework, model checking can be used
to compute, for example, the minimum battery capacity necessary for
achieving a given objective, or the maximal achievable lifetime of a sys-
tem with a given initial battery capacity. In the case of open systems,
these problems require the solution of games with integer values.

Quantitative model checking and game solving is undecidable, ex-
cept if bounds on the computation can be found. Indeed, many interest-
ing quantitative properties, like minimal necessary battery capacity and
maximal achievable lifetime, can be naturally specified by quantitative-
bound automata, which are finite automata with integer registers whose
analysis is constrained by a bound function f that maps each system K
to an integer f(K). Along with the linear-time, automaton-based view
of quantitative verification, we present a corresponding branching-time
view based on a quantitative-bound μ-calculus, and we study the rela-
tionship, expressive power, and complexity of both views.

1 Introduction

Traditional algorithmic methods for the verification of finite-state systems, with
a set P of boolean propositions, translate a system into a transition graph in
which each vertex corresponds to a state of the system and is labeled by the
propositions that hold in the state. A property of the system is specified by a
temporal-logic formula over P or by an automaton over the alphabet 2P . When
the system is closed (i.e., its behavior does not depend on the environment), ver-
ification is reduced to model checking [7]; for open systems, verification requires
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game solving [1]. While successful for verifying hardware designs [5] and com-
munication protocols [12], this approach cannot adequately handle infinite-state
systems that arise, for example, in general software verification. Much research
has therefore focused on infinite-state extensions, such as models whose vertices
carry a finite, but unbounded amount of information, e.g., a pushdown store,
or integer-valued registers [14]. Much of the reasoning about such systems, how-
ever, has still focused on boolean specifications (such as “is the buffer size always
bounded by 5?”) rather than answering quantitative questions (e.g., “what is the
maximal buffer size?”). Moreover, the main challenge in most infinite-state for-
malisms has been to obtain decidability for checking boolean properties, usually
by limiting the expressive power of the models or properties.

In contrast, the solution of quantitative questions, such as system power re-
quirements and system lifetime, has been considered on a property-by-property
basis. Often the solution consists, however, of two basic steps: first, a suitable
system of constraints is set up whose solution gives the intended quantitative
answer (a “dynamic program”); and second, by considering the characteristics
of the system (number of states or maximal initial battery power), a bound is
provided on the number of iterations required to solve the dynamic program.
We systematize this ad-hoc approach to answering quantitative questions about
infinite-state systems in order to make it accessible to design engineers. For this
purpose, we extend the traditional boolean verification framework to an integer-
based framework, which due to its generality permits the modeling of a wide
variety of quantitative aspects and properties of systems [6,4].1 In particular, we
generalize traditional boolean specification formalisms such as automata to the
integer-based framework, so that an engineer can express the desired quantitative
properties in a natural way. These quantitative automata are then automatically
translated into dynamic programs for model checking and game solving. Finally,
from parametric bounds given by the engineer, such as bounds on the value
of a quantity or on the number of automaton steps necessary for computing a
property, we automatically derive iteration bounds on solving the corresponding
dynamic program. In all the examples we study, such as maximal lifetime of
a system with given initial battery capacity, our generic, systematic approach
matches the best known previous, property-specific algorithms.

Specifically, the models we consider, quantitative structures, are graphs with
finitely many vertices, but every vertex is labeled by a set of quantitative propo-
sitions, each taking an integer value. For example, the label at each vertex may
represent the amount of power consumed when the vertex is visited, or it may
represent a buffer size, a time delay, a resource requirement, a reward, a cost,
etc. The properties we check are quantitative properties of infinite paths, each
representing a run of the system. For instance, we may ask for the peak power

1 It should be noted that we use the term quantitative, as in quantitative verification,
quantitative property, or quantitative μ-calculus, simply as referring to “integer-
based” rather than “boolean.” This is not to be confused with some literature, where
the term quantitative is used to refer to “probabilistic” systems, and real values are
obtained as results of evaluating boolean specifications [2,13,16,10].
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consumption along a path, or for the lifetime of a battery along the path given a
certain amount of initial battery power (i.e., the number of transitions along the
path until the initial battery power is used up). Such properties can be specified
by an extension of traditional automata. While a traditional automaton maps
infinite paths of a graph with boolean propositions (i.e., infinite words over the
alphabet 2P ) to “accept” or “reject”, we define quantitative automata, which
map each infinite path of a graph with quantitative propositions (i.e., infinite
words over the alphabet N

P ) to an integer. For example, if the proposition p ∈ P
describes the amount of power consumed when the current input letter is read,
then an automaton specifying battery lifetime, given initial power a ∈ N, maps
each word o1o2o3 . . . to the maximal k ≥ 0 for which

∑k
i=1 oi(p) is at most a. In

model checking, boolean properties of infinite paths can be interpreted either in
an existential or universal way, asking whether the property is true on some or
all paths from a given state. In quantitative verification, we ask for the maximal
or minimal value of a property over all paths from a state. For the battery life-
time property, this amounts to computing the maximal or minimal achievable
lifetime (note that this corresponds to the battery lifetime in the cases that a
scheduler resolves all nondeterminism in a friendly vs. an adversarial manner).
In a game, where two players (system components) decide which path is taken,
boolean properties are interpreted in an ∃∀ fashion (“does player 1 have a strat-
egy so that for all player 2 strategies the property is satisfied?”). Accordingly,
we interpret quantitative properties in a max min fashion (“what is the maximal
value of the property that player 1 can achieve no matter how player 2 plays?”).

Since quantitative automata subsume counter machines, model checking and
game solving are undecidable. However, unlike much previous work on infinite-
state verification, we do not focus on defining decidable subclasses, but we note
that in many examples that arise from verification applications, it is often easy
and natural to give a bound function. This function specifies, for given system
parameters (such as number of states, maximal constants, etc.), a threshold
when it is safe to conclude that the value of a quantitative property tends to
infinity. Accordingly, we specify a quantitative property as a quantitative-bound
automaton, which is a pair consisting of a quantitative automaton and a bound
function. Note that bounds are not constant but depend on the size of the struc-
ture over which a specification is interpreted; they are functions. We consider
value-bound functions, which constrain the maximal value of an automaton reg-
ister, and iteration-bound functions, which constrain the maximal number of
automaton transitions that need to be analyzed in order to compute the value
of the property specified by the automaton. Iteration bounds directly give ter-
mination bounds for dynamic programs, and thus better iteration bounds yield
faster verification algorithms. In particular, for the battery lifetime property, the
generic dynamic-programming algorithms based on iteration bounds are more
efficient than the finite-state algorithms derived from value bounds, and they
match the best known algorithms that have been devised specifically for the
battery lifetime property [6]. Given a value-bound function f , we can always ob-
tain a corresponding iteration-bound function g: for quantitative automata with
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|Q| control locations and k registers, and quantitative structures G, the itera-
tion bound g(G) = O(|Q| · |G| · f(G)k) is sufficient and necessary. Moreover, for
certain subclasses of quantitative automata it is possible to derive better itera-
tion bounds. For instance, for monotonic quantitative-bound automata (without
decreasing register values), we derive iteration-bound functions that are linear
with respect to given value-bound functions.

The verification problems for properties specified by quantitative-bound au-
tomata are finite-state, and therefore decidable. However, instead of reducing
these problems to boolean problems, we provide algorithms that are based on
generic and natural, integer-based dynamic programming formulations, where
the bound function gives a termination guarantee for the evaluation of the dy-
namic program. We expect these algorithms to perform well in practice, as they
(1) avoid artificial boolean encodings of integers and (2) match, in all the exam-
ples we consider, the complexity of the best known property-specific algorithms.
The use of bound functions can be viewed as a generalization of bounded model
checking [3] from the boolean to the quantitative case. In bounded model check-
ing, the engineer provides a bound on the number of execution steps of a system
along with a property. However, the bound is usually a constant independent
of the structure, whereas our bound functions capture when search can be ter-
minated without losing information about the structure. Therefore, in bounded
model checking, only the structure diameter constitutes a bound function in
our sense, because smaller bounds may give counterexamples but not proofs. Of
course, as in bounded model checking, our approach could be used to quickly
find counterexamples for quantitative verification problems even if the bound
function gives values that are smaller than necessary for proof.

Quantitative automata specify dynamic programs. There is a second natural
way to specify iterative computation: through the μ-calculus [15]. In a quantita-
tive extension of the μ-calculus, each formula induces a mapping from vertices
to integers, and bound functions naturally specify a bound on the number of
iterations for evaluating fixpoint expressions. More precisely, for a μ-formula ϕ,
an iteration-bound function g specifies that if, during the iterative calculation
of the value of a fixpoint expression in ϕ on a structure G, a stable value is
not reached within g(G) iterations, then the value is infinity. While quantitative
extensions of the μ-calculus [13,16,10] have been defined before, they were inter-
preted over probabilistic structures and gave no iteration bounds. Finally, we give
a translation from linear-time quantitative-bound automata to the branching-
time quantitative-bound μ-calculus. For the purpose of game solving, as in the
boolean case, the translation requires that the automaton is deterministic. This
gives us symbolic algorithms for the quantitative verification of closed and open
systems. Moreover, we show that the relationship [9] between boolean μ-formulas
over transition graphs and boolean μ-formulas over game graphs carries over to
the quantitative setting: a quantitative-bound μ-formula computes a particu-
lar quantitative property over two-player game graphs iff the formula computes
the property over both existential and universal transition graphs (i.e., game
graphs where one of the two players has no choices). This shows that the same
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integer-based symbolic iteration schemes can be used for verifying a quantitative
property over both closed and open systems, provided the single-step operation
is modified appropriately; this was previously known only for boolean structures,
where the dynamic programs are degenerate [9].

2 The Integer-Based Quantitative Setting

Quantitative Properties. Let P be a nonempty, finite set of quantitative
propositions (propositions, for short). A quantitative observation (observation,
for short) is a function o: P → N mapping each proposition to a natural number
(possibly 0). Let O be the set of observations. A quantitative trace (trace, for
short) is an infinite sequence w ∈ Oω of observations. A quantitative property
(property, for short) is a function π: Oω → N ∪ {∞} mapping each trace to a
natural number or to infinity. Let Π denote the set of properties. These defi-
nitions generalize the boolean interpretation [7], where observations are maps
from propositions to {0, 1}, and properties are maps from traces to {0, 1}. The
following examples describe some quantitative properties.

Example 1 (Response time). Let P = {p}. Given a ∈ N, the property
rta: Oω → N maps each trace w to rta(w) = sup{k | ∃w′ ∈ O∗, w′′ ∈
Oω such that w = w′ · (p �→ a)k · w′′}. Thus, rta(w) is the supremal number
of consecutive observations mapping the proposition p to the value a in the
trace w. This may model the maximal time between a request and a response.
The supremum may be infinity. This happens if w = w′ · (p �→ a)ω, or if for all
k ≥ 0, the trace w contains a subsequence with at least k successive observations
mapping p to a (for example, p may be mapped to abaabaaabaaaab . . .).

Example 2 (Fair maximum). Let P = {p, q}. The property fm: Oω → N

maps each trace w to the supremal value of the proposition p on w if the
proposition q is nonzero infinitely often on w, and to 0 otherwise. The proposi-
tion q may model a fairness condition on traces [6]. Formally, fm(o0o1o2 . . .) is
sup{oj(p) | j ≥ 0} if lim sup{oj(q) | j ≥ 0} �= 0, and 0 otherwise. The supremum
may be infinity.

Example 3 (Lifetime). Let P = {p, c}. Given a ∈ N, the property lta: Oω →
N maps each trace w = o0o1o2 . . . to lta(w) = sup{k | ∑k

j=0(−1)cj · oj(p) ≤ a},
where cj = 0 if oj(c) = 0, and cj = 1 otherwise. Intuitively, if a zero (resp.,
nonzero) value o(c) denotes resource consumption (resp., resource gain) in a
single step of o(p) units, then lta(w) is the supremal number of steps that can be
executed without exhausting the resource, given a initial units of the resource.

Example 4 (Peak running total). Let P = {p, c} as in the previous exam-
ple. The property prt: Oω → N maps each trace w = o0o1o2 . . . to prt(w) =
sup{∑k

j=0(−1)cj · oj(p) | j ≥ 0}, where again cj = 0 if oj(c) = 0, and cj = 1
otherwise. Intuitively, if a resource is being consumed or gained over the trace w,
then prt(w) is the initial amount of the resource necessary so that the resource
is never exhausted.
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Quantitative Structures. A quantitative system (system, for short) is a tuple
K = (S, δ, s0, 〈·〉), where S is a finite set of states, δ ⊆ S ×S is a total transition
relation, s0 ∈ S is an initial state, and 〈·〉: S → O is an observation function
that maps each state s to an observation 〈s〉. A two-player quantitative game
structure (game, for short) is a tuple G = (S,S1,S2, δ, s0, 〈·〉), where S, δ, s0,
and 〈·〉 are as in systems, and S1 ∪ S2 = S is a partition of the state space
into player-1 states S1 and player-2 states S2. At player-1 states, the first player
chooses a successor state; at player-2 states, the second player. Note that systems
are special cases of games: if Si = S, for i ∈ {1, 2}, then the game is called a
player-i system. We use the term structure to refer to both systems and games.

s1
2

s0
2

s2
1

s3
5

s4
2

s5
3

Fig. 1.

A trajectory of the structure G is an infinite sequence
t = r0r1r2 . . . of states rj ∈ S such that the first state
r0 is the initial state s0 of G, and (rj , rj+1) ∈ δ for
all j ≥ 0. The trajectory t induces the infinite sequence
〈t〉 = 〈r0〉〈r1〉〈r2〉 . . . of observations. A trace w ∈ Oω is
generated by G if there is a trajectory t of G such that
w = 〈t〉. A player-i strategy, for i ∈ {1, 2}, is a function ξi:
S∗ × Si → S that maps every nonempty, finite sequence
of states to a successor of the last state in the sequence;
that is, (s, ξi(t, s)) ∈ δ for every state sequence t ∈ S∗ and
state s ∈ Si. Intuitively, ξi(t, s) indicates the choice taken
by player i according to strategy ξi if the current state of
the game is s, and the history of the game is t. We write Ξi for the set of player-i
strategies. For two strategies ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2, the outcome tξ1,ξ2 of ξ1 and
ξ2 is a trajectory of G, namely, tξ1,ξ2 = r0r1r2 . . . such that r0 = s0 and for all
j ≥ 0 and i ∈ {1, 2}, if rj ∈ Si, then rj+1 = ξi(r0r1 . . . rj−1, rj).

Consider the system K shown in Figure 1, with the initial state s0. Each
state si of K is labeled with the value 〈si〉(p) for a proposition p. Consider the
property rt2 from Example 1. For all traces w that correspond to trajectories of
K of the form (s0s1s2s3)∗, we have rt2(w) = 2. For all traces w that correspond
to trajectories of the form (s0s1s4s5)∗, we have rt2(w) = 3. Moreover, rt2(w) ≤ 3
for all traces w generated by K. Now consider a game played on the same struc-
ture K, where the state s1 is a player-2 state. Consider the property lt14 from
Example 3, supposing that 〈s〉(c) = 0 for all states s of K. The goal of player 2 is
to maximize lifetime given initially 14 units of the resource. Consider the strategy
where player 2 chooses s4 at the first visit to s1, and chooses s2 thereafter. This
strategy generates a trace w along which p is mapped to 2223 (2215)ω; hence
lt14(w) = 7. Note that all memoryless (i.e., history-independent) strategies lead
to smaller lifetimes.

3 Quantitative-Bound Automata

3.1 Specifying Quantitative Properties

Syntax. We specify properties using automata. Let O be a given finite set of ob-
servations. Quantitative automata run over input traces in Oω. The configuration
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of a quantitative automaton consists of a control location and an array of regis-
ters with values in N. The transitions of quantitative automata are guarded by
conditions on the values of the registers and the input observation, and involve,
in addition to an update of the control location, also an update of the register
values. A k-register update function is a recursive function u: N

k×O ⇀ N
k which

may be partial. Let U denote the set of update functions. A quantitative automa-
ton (automaton, for short) is a tuple A = 〈Q, k, q0, γ〉, where Q is a finite set of
control locations, k ∈ N is a number of registers, q0 ∈ Q is an initial location,
and γ: Q → 2U×Q is a transition function that maps each location q to a finite
set γ(q) of pairs consisting of an update function and a successor location. We
require that the transition function γ defines a total relation, namely, for each
location q ∈ Q, each observation o ∈ O, and all register values x ∈ N

k, there
exists (u, q′) ∈ γ(q) such that u(x, o) is defined. For technical convenience, we
furthermore assume that the automaton has a sink location qhalt ∈ Q: if the cur-
rent location is qhalt , then for all observations, the next location is qhalt and the
values of the registers remain unchanged; that is, γ(qhalt) = {(λx. λo.x, qhalt )}.
We write R for the array of registers, and R[i] ∈ N for the value of the i-th
register, for 0 ≤ i < k.

Semantics. A configuration of the automaton A is a tuple (q, v0, v1, . . . , vk−1) ∈
Q × N

k that specifies the current control location and the values of the reg-
isters. The initial configuration of the automaton is cinit = (q0, 0, 0, . . . , 0),
where all k registers are initialized to 0. For an input o ∈ O, the config-
uration c′ = (q′, v′0, v

′
1, . . . , v

′
k−1) is an o-successor of the configuration c =

(q, v0, v1, . . . , vk−1), denoted by c
o−→c′, if there is a transition (u, q′) ∈ γ(q) such

that u(v0, v1, . . . , vk−1, o) = (v′0, v′1, . . . , v′k−1). A run of the automaton A over
a trace o0o1o2 . . . ∈ Oω is an infinite sequence c0c1c2 . . . of configurations such
that c0 = cinit, and cj

oj−→ cj+1 for all j ≥ 0. The value of the run r = c0c1c2 . . .
is defined as valA(r) = lim sup{R[0](cj) | j ≥ 0}, that is, the value of r is
the maximal value of the register R[0] which occurs infinitely often along r, if
this maximum is bounded; and otherwise the value is infinity. In other words,
valA(r) = ∞ iff for all k ≥ 0, the value of the register R[0] is infinitely often
greater than k.

An automaton is monotonic if along every run, the value of each register can-
not decrease. An automaton is deterministic if for every configuration c and input
o ∈ O, there is exactly one o-successor of c. While a deterministic automaton has
a single run over every input trace, in general an automaton may have several
runs over a given trace, each with a possibly different value. According to the
nondeterministic (or existential) interpretation of automata, the value of an au-
tomaton A over a trace w, denoted valnondet

A (w), is the supremal value of all runs
of A over w. Formally, valnondet

A (w) = sup{valA(r) | r is a run of A with 〈r〉 =
w}. An alternative is the universal interpretation of automata, where the value
of A over a trace w, denoted valuniv

A (w), is the infimal value of all runs of A over
w; that is, valuniv

A (w) = inf{valA(w, r) | r is a run of A with 〈r〉 = w}. Note
that a deterministic automaton A can be viewed as both a nondeterministic and
a universal automaton. The (nondeterministic) automaton A specifies (or com-



Verifying Quantitative Properties Using Bound Functions 57

putes) the property π ∈ Π if for all traces w ∈ Oω , we have valnondet
A (w) = π(w).

This definition captures traditional Büchi automata as a special case: keep one
register R[0], which is set to 1 whenever the automaton visits a Büchi accepting
control location, and set to 0 otherwise.

Model Checking and Game Solving. Let K be a quantitative system. For
a quantitative automaton A, the max-value of K with respect to A, denoted
valmax

A (K), is the supremal value of all traces generated by K, where we choose
the nondeterministic (rather than the universal) interpretation of automata.
Formally, valmax

A (K) = sup{valnondet
A (w) | w is a trace generated by K}. The

min-value of K with respect to A, denoted valmin
A (K), is the infimal value

of all traces generated by K; that is, valmin
A (K) = inf{valnondet

A (w) |
w is a trace generated by K}. Now consider a game G. The value of a strat-
egy pair ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2 with respect to a deterministic automaton A
is the value valA(ξ1, ξ2) = valA(tξ1,ξ2) of A over the outcome of the strategies
ξ1 and ξ2. The game-value of G with respect to a deterministic automaton A,
denoted valmaxmin

A (G), is defined as supξ1∈Ξ1
infξ2∈Ξ2 valA(ξ1, ξ2). This is the

supremal value of A that player-1 can achieve against all player-2 strategies.
The symmetric definition is omitted for brevity.

Given a system K and an automaton A, the quantitative model-checking
problem (model checking, for short) is to determine valmax

A (K) and valmin
A (K).

Given a game G and a deterministic automaton A, the quantitative game-solving
problem (game solving, for short) is to determine valmaxmin

A (G). Since registers
can contain arbitrary natural numbers, we can encode 2-counter machines as
monotonic automata, and hence the model-checking and game-solving problems
are undecidable.

3.2 Bound Functions for Automata

Quantitative-Bound Automata. In order to solve model-checking prob-
lems and games, we equip quantitative automata with bound functions. A
quantitative-bound automaton (QBA) (A, f) consists of a quantitative automa-
ton A and a recursive function f : G → N, where G is the set of quantitative
structures (systems and games). To compute a property on a structure G, a
QBA works with a bound f(G) that depends on G. The motivation is that for
many properties, the designer can provide a bound on the maximal value of the
automaton registers, or on the number of automaton transitions that need to be
executed in order to compute the value of the property if the value is finite. We
thus have two interpretations of the bound function f : the value-bound inter-
pretation, where f(G) is a bound on the register values, and the iteration-bound
interpretation, where f(G) is a bound on the automaton transitions.

We define the value of a QBA over a trace generated by a structure for
the two possible interpretations. Given a QBA (A, f), a structure G, and a
trace w generated by G, let r be a run of the automaton A over w. The
value of r = c0c1c2 . . . over w for the value-bound interpretation, denoted
valvbound(A,f)(r), is defined as follows: if there are an index j ∈ N and a register
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R[i], for 0 ≤ i < k, such that R[i](cj) > f(G), then valvbound(A,f)(r) = ∞; oth-
erwise valvbound(A,f)(r) = valA(r). Intuitively, the value-bound interpretation
maps every trace that causes some register to exceed the value bound at some
point, to ∞. The value of the run r over w for the iteration-bound interpreta-
tion, denoted val ibound(A,f)(r), is defined as follows: if for all 0 ≤ i < k, we have
max{R[i](cj) | f(G) ≤ j ≤ 2 · f(G)} = max{R[i](cj) | 2 · f(G) ≤ j ≤ 3 · f(G)},
then val ibound(A,f)(r) = max{R[0](cj) | f(G) ≤ j ≤ 2 · f(G)}; otherwise
val ibound(A,f)(r) = ∞. Intuitively, the iteration-bound interpretation checks if
the maximal values of all registers stabilize within the iteration bound, and
maps a trace to ∞ if some maximal register value does not stabilize.

Given a QBA (A, f), a system K, a game G, a trace generated by K
or G, and two interpretations bound ∈ {vbound, ibound}, we define the val-
ues valnondet

bound(A,f)(w), valmax
bound(A,f)(K), valmin

bound(A,f)(K), and valmaxmin
bound(A,f)(G)

analogous to the corresponding definitions in Section 3.1 using valbound(A,f)(r)
instead of valA(r). The QBA (A, f) specifies (or computes) the property π on a
structure G if for all traces w generated by G, we have valnondet

bound(A,f)(w) = π(w).
The following examples illustrate the idea.2

Example 5 (Fair maximum). The following QBA (A, f) specifies the prop-
erty fm from Example 2 on all structures G. There are two registers. The register
R[1] keeps track of the maximal value of proposition p seen so far. Whenever
proposition q has a nonzero value, the value of R[1] is copied to R[0]; otherwise
R[0] is set to zero. If q has a nonzero value infinitely often, then the maximal
value of p occurs infinitely often in R[0]; otherwise from some point on, R[0]
contains the value 0. The bound function f is defined as follows: if G contains
the maximal value Δ for p, then f(G) = Δ is a suitable value-bound function;
if G has N states, then f(G) = N is a suitable iteration-bound function.

Example 6 (Lifetime). The property lta from Example 3 can be computed
on all structures G by the following QBA (A, f). Let A = 〈{q0, qhalt}, 2, q0, γ〉,
where for all inputs o ∈ O, we have γ(q0) = {(o(c) �= 0 ∧ R′[0] = R[0] + 1 ∧
R′[1] = R[1] − o(p), q0), (o(c) = 0 ∧R[1] + o(p) ≤ a ∧R′[0] = R[0] + 1 ∧R′[1] =
R[1] + o(p), q0), (o(c) = 0 ∧R[1] + o(p) > a∧R′[0] = R[0]∧R′[1] = R[1], qhalt)}.
In register R[0] the automaton stores the number of transitions already taken,
and in R[1] it tracks the amount of the resource used so far; it continues to make
transitions as long as it has a sufficient amount of the resource. If G contains
N states and the maximal value Δ for p, then f(G) = a + (N + 1) · Δ is a
suitable value-bound function, and f(G) = N · a + N · (N + 1) · Δ is a suitable
iteration-bound function.

3.3 Quantitative-Bound Model Checking and Game Solving

Given a system K and a QBA (A, f), the quantitative-bound model-checking
problem is to determine valmbound(A,f)(K), where bound ∈ {vbound, ibound} and
2 In the examples, we write update functions as relations u(x, o, x′), where unprimed

variables denote the values of variables before the update, and primed variables
denote the values after the update.
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m ∈ {max,min}. Similarly, given a game G and a deterministic QBA (A, f), the
problem of solving quantitative-bound games is to determine valmaxmin

bound(A,f)(G),
for bound ∈ {vbound, ibound}. Quantitative-bound model checking and game
solving are decidable. In the case of value bounds, the state space is bounded
by O(|G| · |Q| · (f(G) + 2)k), where |Q| is the size of the automaton with k
registers, |G| is the size of the structure, and f is the value-bound function. Let
G be a structure such that for all propositions p ∈ P and states s ∈ S, we have
〈s〉(p) ≤ Δ. Let C0 be the maximal constant that appears syntactically in the
description of the automaton A, and let C1 = f(G). Call B = max{Δ, C0, C1}
the oblivion bound for the QBA (A, f) and structure G. Let g(G) = |G| · |Q| ·
(B + 2)k, where A has k registers. Then valmvbound(A,f)(G) = valmibound(A,g)(G),
for m ∈ {max,min,maxmin}. Thus, we can derive an iteration bound from a
value bound.

Formally, the decision problem QBA-VMC (resp., QBA-VGS) takes as input
a system K (resp., game G), a QBA (A, f), the oblivion bound B, and a value a ∈
N∪{∞}, and returns “Yes” if valmax

vbound(A,f)(K) ≥ a (resp., valmaxmin
vbound(A,f)(G) ≥

a). The decision problems QBA-IMC and QBA-IGS are defined analogously
using valmax

ibound(A,f)(K) and valmaxmin
ibound(A,f)(G). We give the oblivion bound as an

input to the problems, because the value of f(G) can be unboundedly larger
than the descriptions of f and G. We assume that updates take unit time.

Theorem 1. (1) QBA-VMC is PSPACE-complete and QBA-IMC is
EXPTIME-complete. (2) QBA-VGS and QBA-IGS are EXPTIME-complete.
(3) Let |G| be the size of the structure and |Q| the automaton size for (A, f)
and G. Let S = |Q| · |G| · (f(G)+ 2)k). QBA-VMC and QBA-VGS can be solved
in time O(S) and O(S2) respectively. QBA-IMC and QBA-IGS can be solved in
time O(|Q| · |G| · f(G)).

Note that these complexity results reflect the sizes of the state space in which the
solution lies. In practice, however, the reachable state space can be much smaller.
Hence, on-the-fly state space exploration can be used instead of constructing
the entire state space a priori. The following examples show that our approach,
while being generic and capturing several interesting quantitative verification
problems [6] as special cases, still remains amenable to efficient analysis.

Example 7 (Fair maximum). Consider the deterministic QBA (A, f) with
value-bound function f from Example 5, which computes the property fm from
Example 2. This property is exactly the winning condition for the “threshold
Büchi games” described in [6]. For a game G, the state space with the value
bound has size O(|G| · |Q| · Δ), where Δ is the maximal value of proposition p
in G. This is exponential in |G|. However, the iteration bound for this problem
is |G|, and this gives an O(|G|2) algorithm, which is the same complexity as the
algorithm of [6].3

3 However, computing an iteration-bound function automatically using the optimal
value-bound function would lead to a suboptimal iteration-bound function g(G) =
|G| · |Q| · Δ.
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Example 8 (Peak running total). The property prt from Example 4 is ex-
actly the winning condition for the “energy games” of [6]. This property can be
computed by a deterministic QBA with two registers and value-bound function
f(G) = |G|·Δ, where Δ is the maximal value of p in G. A game-solving algorithm
based on value bounds would require time O(|G|6 · Δ4), whereas an algorithm
designed specifically to solve this game [6] runs in time O(|G|3 · Δ). However,
even for this problem, our generic approach, using the optimal iteration-bound
function h(G) = |G|2 · Δ achieves the best known complexity of O(|G|3 · Δ).

In the special case of monotonic automata, efficient iteration bounds can be
automatically derived from value bounds. Consider a structure G with N states
and a monotonic QBA (A, f) with value-bound function f , location set Q, and
k registers. Since the value of each register only increases, within |Q| · k · N ·
f(G) steps of every run of A over a trace generated by G, either an automaton
configuration repeats, or there is a register such that the value of the register has
crossed the threshold f(G). Thus valmax

vbound(A,f)(G) is achieved by a run within
|Q| · k ·N · f(G) steps. Since we only require the monotonicity of the registers in
the limit, this observation can be generalized to reversal-bounded automata [18],
where a bounded number of switches between increasing and decreasing modes
of the registers are allowed.

Proposition 1. Let A be a monotonic automaton with location set Q and k
registers, let f : G → N be a recursive function, and let g(G) = |Q| · k ·N · f(G)
for all structures G with N states. Then valmvbound(A,f)(G) = valmibound(A,g)(G)
for all structures G and m ∈ {max,min,maxmin}.

As with the other components of a quantitative automaton, the designer
has to provide the bound function f . Unfortunately, the task of providing a
good value or iteration bound function f , that is, an f that satisfies valmA (G) =
valmbound(A,f)(G) for all structures G, cannot be automated.

Proposition 2. There is a class of update functions involving only increment
operations and equality testing on registers, such that the following two problems
are undecidable: (1) given an automaton A, determine if there is a recursive
function f such that valmax

A (K) = valmax
vbound(A,f)(K) for all systems K; (2) given

a QBA (A, f), determine if valmax
A (K) = valmax

vbound(A,f)(K) for all systems K.

4 The Quantitative-Bound μ-Calculus

We now provide an alternative formalism for defining quantitative properties: a
fixpoint calculus. Our integer-based μ-calculus generalizes the classical μ-calculus
[15], and provides an alternative set of iterative algorithms for model checking
and game solving.

Unbounded Formulas. Let P be a set of propositions, let X be a set of
variables, and let F be a set of recursive functions from N× N to N. We require
that max,min ∈ F . The formulas of the quantitative μ-calculus4 are defined as
4 This is different from the μ-calculi over probabilistic systems defined by [13,10,16].
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ϕ ::= k | p | X | upd(ϕ,ϕ) | pre(ϕ) | μ[(X,ϕ), . . . , (X,ϕ)] | ν[(X,ϕ), . . . , (X,ϕ)],

where k ranges over the constants in N ∪ {∞}, p over the propositions in P ,
X over the variables in X , and upd over the functions in F . If pre ranges over
the set {Epre,Apre} of existential and universal next-time operators, we obtain
the system calculus; if pre ranges over the set {Cpre1,Cpre2} of player-1 and
player-2 controllable next-time operators, we obtain the game calculus. Each
least-fixpoint subformula μ[(X1,ϕ1), . . . , (Xm,ϕm)] and each greatest-fixpoint
subformula ν[(X1,ϕ1), . . . , (Xm,ϕm)] binds a set {X1, . . . , Xm} of variables. A
formula ϕ is closed if all occurrences of variables in ϕ are bound.

The formulas of the quantitative μ-calculus are interpreted over quantitative
structures (systems or games). Consider a game G = (S,S1,S2, δ, s0, 〈·〉). A
quantitative valuation (valuation, for short) is a function θ: S → N ∪ {∞} that
maps each state s to a natural number or infinity. We write Θ for the set of
valuations. The semantics [[ϕ]] of a closed formula ϕ over the structure G is a
valuation in Θ, which is defined as follows. An environment E: X → Θ maps
each variable to a valuation. Given an environment E, we write E[X := θ] for
the environment that maps X to θ, and maps each Y ∈ X \ {X} to E(Y ). Each
update function upd ∈ F defines a transformer [upd ]: Θ × Θ → Θ that maps
a pair of valuations to the valuation obtained by the point-wise application of
upd . Each next-time operator pre defines a transformer [pre]: Θ → Θ that maps
valuations to valuations. Specifically, [Epre](θ)(s) = max{θ(s′) | (s, s′) ∈ δ};
[Apre](θ)(s) = min{θ(s′) | (s, s′) ∈ δ}; [Cpre1](θ)(s) = [Epre](θ)(s) if s ∈ S1,
and [Cpre1](θ)(s) = [Apre](θ)(s) if s ∈ S2; [Cpre2](θ)(s) = [Apre](θ)(s) if s ∈ S1,
and [Cpre2](θ)(s) = [Epre](θ)(s) if s ∈ S2. For an environment E, the semantics
[[ϕ]]E of a (not necessarily closed) formula ϕ over G is defined inductively:

[[k]]E(s) = k; [[p]]E(s) = 〈s〉(p); [[X ]]E(s) = E(X)(s);
[[upd(ϕ1,ϕ2)]]E(s) = [upd ]([[ϕ1]]E, [[ϕ2]]E)(s);
[[pre(ϕ)]]E(s) = [pre]([[ϕ]]E)(s);
[[μ[(X1,ϕ1), . . . , (Xm,ϕm)]]]E(s) = lim sup{E

μ
j (X1)(s) | j ≥ 0};

[[ν[(X1,ϕ1), . . . , (Xm,ϕm)]]]E(s) = lim sup{E
ν
j (X1)(s) | j ≥ 0}.

The environment E
μ
j is defined inductively by E

μ
0 (Xi) = (λs. 0) and E

μ
j+1(Xi) =

[[ϕi]]Eμ
j

for all 1 ≤ i ≤ m; and E
μ
j (Y ) = E(Y ) for all Y ∈ X \ {X1, . . . , Xm} and

j ≥ 0. The environment E
ν
j is defined like E

μ
j except that E

ν
0(Xi) = (λs.∞) for

all 1 ≤ i ≤ m. For monotone boolean formulas, the limsup semantics coincides
with the usual fixpoint semantics of the μ-calculus [15]. For a closed formula ϕ,
we define [[ϕ]] as [[ϕ]]E, for an arbitrary environment E. Given a structure G, the
closed formula ϕ specifies the valuation [[ϕ]](G) = [[ϕ]](s0), where s0 is the initial
state of G.

Bound Functions. A quantitative-bound μ-formula (QBF) (ϕ, f) consists of
a quantitative μ-formula ϕ and a recursive function f : G → N that provides
a bound f(G) on the number of iterations necessary for evaluating μ and
ν subformulas on any given structure G. The semantics [[(ϕ, f)]]E of a QBF
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(ϕ, f) over a structure G is defined like the semantics of the unbounded for-
mula ϕ except that each fixpoint subformula is computed by unrolling the fix-
point only O(f(G)) times. Formally, a variable X is f(G)-stable at a state s
with respect to a sequence {Ej | j ≥ 0} of environments if max{Ej(X)(s) |
f(G) ≤ j ≤ 2 · f(G)} = max{Ej(X)(s) | 2 · f(G) ≤ j ≤ 3 · f(G)}. We
define [[μ[(X1,ϕ1), . . . , (Xm,ϕm)], f ]](s) to be max{E

μ
j (X1)(s) | f(G) ≤ j ≤

2 · f(G)} if all variables Xi, for 1 ≤ i ≤ m, are f(G)-stable with respect to
{E

μ
j | j ≥ 0}; otherwise [[μ[(X1,ϕ1), . . . , (Xm,ϕm)], f ]](s) = ∞. The semantics

[[ν[(X1,ϕ1), . . . , (Xm,ϕm)], f ]] of greatest-fixpoint subformulas is defined analo-
gously, using the sequence {E

ν
j | j ≥ 0} of environments instead. A QBF formula

(ϕ, f) defines an iterative algorithm for computing the valuation [[(ϕ, f)]](G)
for any given structure G. Assuming updates take unit time, we can compute
[[(ϕ, f)]](G) in O(f(G)�) time, where � is the alternation depth of ϕ (i.e., the
maximal number of alternations between occurrences of μ and ν operators; for
a precise definition see [11]).

We now give examples for which a QBF (ϕ, f) can be found to specify
the same property as the unbounded formula ϕ over all structures; that is,
[[(ϕ, f)]](G) = [[ϕ]](G) for all structures G. We use addition, subtraction, and
comparison as update functions in F , and we use the natural numbers 0 and 1
to encode booleans. For instance, we write ϕ1 = ϕ2 for min(ϕ1 ≤ ϕ2, ϕ2 ≤ ϕ1),
and ¬ϕ1 for 1 − ϕ. The case formula case{(ψ1,ϕ1), . . . , (ψn,ϕn)} stands for
max(min(ψ1,ϕ1), . . . ,min(ψn,ϕn)), where the n-ary max operator is obtained by
repeated application of the binary max operator. In order to relate the branching-
time framework of the quantitative μ-calculus to the linear-time framework of
quantitative properties (and quantitative automata), we say that the closed QBF
(ϕ, f) computes the property π if for all structures G, [[(ϕ, f)]](G) = sup{π(w) |
w is a trace generated by G}. In this way, linear and branching time are related
existentially (through sup rather than inf); hence we use only the Epre operator
to compute properties. Alternately, we could define a universal semantics where
[[(ϕ′, f)]](G) = inf{π(w) | w is a trace generated by G}, and the Apre operator
is used.

Example 9 (Fair maximum). Recall the property fm from Example 2. The
property fm is computed over all structures G by the QBF (ϕ, f)
with ϕ = μ[(X,min{max{p,X,min{Epre(X),Z}},Z})], where Z =
ν[(X,μ[(Y,Epre(max{min{q, X}, Y })])], and f(G) = N , where N is the number
of states of G. Since the longest simple path in G has length at most N − 1,
every fixpoint is found in N iterations or less.

Example 10 (Lifetime). Over all structures G with N states, the property
lta from Example 3 is computed by the QBF (ϕ, f) with ϕ = μ[(X, case{((c =
0) ∧ (p + Epre(Y ) ≤ a), X + 1), (c �= 0, X + 1), (1, X)}), (Y, case{(((c = 0) ∧
(p + Epre(Y ) ≤ a)), p + Epre(Y )), (c �= 0,Epre(Y ) − a), (1, Y )})] and f(G) =
N · a+N · (N + 1) ·Δ, where Δ is the maximal value of the proposition p in G.
If a fixpoint is not reached in N · a + N · (N + 1) · Δ iterations, then there is
a reachable cycle Γ in G with nonpositive resource consumption, and repeated
traversal of Γ ensures an infinite lifetime.
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Example 11 (Peak running total). Over all structures G with N states and
maximal value Δ for the proposition p, the property prt from Example 4 is com-
puted by the QBF (ϕ, f) with ϕ = (μ[(X, case{(c = 0, p+max{0,Epre(X)}), (c �=
0,max{0,Epre(X)} − p)})], f) and f(G) = N · Δ. If a fixpoint is not reached
in N · Δ iterations, then there is no reachable cycle with nonpositive resource
consumption, and it is not possible to traverse G forever starting with a finite
amount of resources.

From Automata Bounds to μ-Calculus Bounds. We establish the connec-
tion between properties specified by quantitative automata (a linear-time for-
malism) and those computed by the quantitative μ-calculus (a branching-time
formalism). We show that every deterministic QBA can be converted to a QBF
that computes the same property over all systems. This provides an alternative
algorithm for quantitative model checking. We then show that the construction
is robust [9], and hence, the resulting QBF can also be used for game solv-
ing. To formalize this, we define a quantitative μ-calculus over traces, extending
the boolean linear-time μ-calculus [17]. The quantitative-bound trace formulas
(QBTs) are identical to the quantitative-bound μ-formulas, except that they
contain the single next-time operator Pre. A QBT is interpreted over the traces
w generated by a given structure G. To define [[(ϕ, f)]](w) formally, we view the
trace w = o0o1o2 . . . as an infinite-state system without branching, analogous
to the boolean definition in [9]. However, even though w is infinite-state, the
evaluation of every fixpoint subformula in ϕ is bounded by f(G), which is finite.

Consider a structure K, a game G, and a QBT (ϕ, f). The sys-
tem value valmax

(ϕ,f)(K) (resp., valmin
(ϕ,f)(K)) is the supremal (resp., infimal)

value of the formula (ϕ, f) over all traces generated by K. Formally,
valmax

(ϕ,f)(K) = sup{[[(ϕ, f)]](w) | w is a trace generated by K}, and valmin
(ϕ,f)(K)

is the inf of the same set. For strategies ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2, de-
fine val (ϕ,f)(ξ1, ξ2) = [[(ϕ, f)]](〈tξ1 ,ξ2〉). The game value valmaxmin

(ϕ,f) (G) =
supξ1∈Ξ1

infξ2∈Ξ2 val (ϕ,f)(ξ1, ξ2) is the supremal value that player 1 can achieve
against all player-2 strategies. The following two theorems generalize the re-
sults of [9] from boolean to quantitative verification: Theorem 2 establishes the
connection between deterministic QBAs and QBTs; Theorem 3 presents a nec-
essary and sufficient criterion, called robustness, when a QBT can be used for
game solving. Moreover, the QBT constructed in Theorem 2 is robust. Given
a QBT (ϕ, f), let (ϕ[Epre], f) (resp., (ϕ[Apre], f)) be the QBF that results by
replacing all occurrences of the next-time operator Pre with Epre (resp., Apre).

Theorem 2. Every deterministic QBA (A, f) can be translated into a QBT
(ϕ, g) such that for all systems K, both valmax

(A,f)(K) = valmax
(ϕ,g)(K) =

[[(ϕ[Epre], g)]](K) and valmin
(A,f)(K) = valmin

(ϕ,g)(K) = [[(ϕ[Apre], g)]](K).

Theorem 3. Given a QBT (ϕ, f), the following two conditions, called robust-
ness, are equivalent. (1) For all systems K, both valmax

(ϕ,f)(K) = [[(ϕ[Epre], f)]](K)
and valmin

(ϕ,f)(K) = [[(ϕ[Apre], f)]](K). (2) For all games G, valmaxmin
(ϕ,f) (G) =

[[(ϕ[Cpre1], f)]](G).
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Theorem 2 is proved using a standard (boolean) construction of a fixpoint for-
mula from an automaton [8]. Theorem 3 follows from the existence of finite-
memory optimal strategies for QBTs.
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Abstract. Abstraction is the key for effectively dealing with the state explosion
problem in model-checking. Unfortunately, finding abstractions which are small
and yet enable us to get conclusive answers about properties of interest is no-
toriously hard. Counterexample-guided abstraction refinement frameworks have
been proposed to help build good abstractions iteratively. Although effective in
many cases, such frameworks can include unnecessary refinement steps, leading
to larger models, because the abstract verification step is not as conclusive as it
can be in theory. Abstract verification can be supplemented by a more precise
but much more expensive thorough check, but it is not clear how often this check
really helps. In this paper, we study the relationship between model-checking and
thorough checking and identify practical cases where the latter is not necessary,
and those where it can be performed efficiently.

1 Introduction

Abstraction is arguably the most effective technique for dealing with the state explosion
problem in model-checking. The goal of abstraction is to build a system which is small
enough to analyze yet the one that allows to verify properties of interest. Such abstrac-
tions may be very hard to build; instead, we typically start with an abstraction which
may be too crude for certain properties, and then refine it, attempting to reach a definite
answer.

The best-known method for abstraction refinement, guided by counterexamples, has
been suggested by Clarke et al. [5] and is outlined in Figure 1(a). This framework
assumes that the abstraction Kα is an overapproximation of the system of interest Kc,
i.e., every execution of Kc is an execution of Kα. When a universal property ϕ holds in
Kα, this result can be trusted. Otherwise, either ϕ does not hold in Kc, or the abstraction
is too crude. To tell between these cases, a counterexample obtained by verifying ϕ in
Kα is checked for feasibility by playing it back in Kc. This either establishes the failure
of ϕ, or enables the refinement of Kα that eliminates the spurious counterexample.

Several researchers [12,22,4,9,11] proposed an improvement of this framework that
enables reasoning about arbitrary CTL formulas. In their framework, outlined in Fig-
ure 1(b), an abstract model Kα is 3-valued, which combines over- and under-approxi-
mation of Kc. Model-checking a CTL formulaϕ on Kα either yields true or false, which
can be trusted without the need to resort to the counterexample, or it returns maybe,
i.e., inconclusive. In this case, the counterexample can be used to refine the abstraction.
Since building 3-valued models is no more expensive than classical [11], and neither
is 3-valued model-checking [4] nor 3-valued counterexample generation [15,22], this

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 65–80, 2005.
c© IFIP International Federation for Information Processing 2005
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Goal: Check ACTL formula ϕ on a model Kc

1. repeat until resources are exhausted
2. Build an abstract model Kα.
3. Model-check ϕ on Kα.
4. if YES, return “ϕ holds on Kc”
5. else
6. Check if the counterexample is feasible
7. if YES, return “ϕ fails on Kc”
8. else use the counterexample for refinement.

Goal: Check CTL formula ϕ on a model Kc

1. repeat until resources are exhausted
2. Build a 3-val abstract model Kα.
3. Model-check ϕ on Kα.
4. if YES, return “ϕ holds on Kc”
5. if NO, return “ϕ fails on Kc”
6. else use the counterexample for refinement.

(a) (b)

Fig. 1. Counterexample-guided abstraction refinement frameworks: (a) classical; (b) 3-valued

(a) (b)
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Fig. 2. (a) A concrete model K; (b) An abstraction K′ of K

framework is not more expensive than classical, while allowing to reason about a larger
class of temporal logic properties.

Both of these frameworks sometimes force a refinement step even though a conclu-
sive result can be obtained from the existing model Kα. For example, consider checking
a property ϕ = A[(¬p∧q) U p], where the original model K and its abstraction K ′ are
shown in Figure 2. In K ′, states ŝ0 and ŝ2 correspond to s0 and s3 of K , respectively,
whereas ŝ1 is a merge of s1 and s2, indicated by dashed lines in Figure 2(a). In classi-
cal abstraction, we typically treat literals of the concrete models as atomic propositions
of the abstract, thus both p and ¬p are false in state ŝ1 of K ′. Our property ϕ fails
in K ′, and a counterexample is produced. Clearly, this counterexample is not feasible,
so refinement is necessary. On a closer inspection, we note that this counterexample is
spurious not only in K but in every model that refines K ′. There are two concretizations
of this counterexample, and ϕ is true in both of them. Thus, it would be highly desirable
to be able to conclude that the property holds, avoiding unnecessary refinement steps.

Godefroid and Jagadeesan [12] suggested that one can use an additional, thorough,
check when the result of model-checking is inconclusive. This changes both algorithms
in Figure 1 after step 5 as follows:

5a. Apply the thorough check of ϕ on Kα.
5b. if conclusive, tell user and stop.
6. else use the counterexample for refinement.

which we refer to as classical thorough and 3-valued thorough, respectively. Even
though the thorough check is exponentially more expensive than model-checking [12],
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this modification can potentially reduce the number of refinements. Since each refine-
ment adds atomic propositions, and each additional atomic proposition doubles the size
of the abstraction, the extra cost seems justified. Unfortunately, if the thorough check
is still inconclusive, it does not help the refinement, but levies a heavy performance
penalty. Without empirical evidence, it is not clear how useful this framework is in
practice. We are thus interested to find out answers to the following questions:

1. Are there classes of problems where the thorough check is not necessary, i.e., it
does not give a more precise result than model-checking?

2. In cases where the thorough check is required, can it be performed efficiently?

In this paper, we show that the thorough check of universal properties on models built
using predicate abstraction [14] does not give an additional precision and thus can be
skipped. For arbitrary abstraction, we give an algorithm for deciding ACTL formulas,
where the thorough check can be performed efficiently. This approach combines the
model-checking and the thorough step, resulting in an algorithm which is as precise as
the thorough check, while being only marginally more expensive than model-checking.
This algorithm also produces counterexamples which can be used for refinement.

The rest of this paper is organized as follows. We start by giving the necessary back-
ground in Section 2. In Section 3, we extend results of Godefroid and Jagadeesan [13]
to show that 3-valued models in which each atomic proposition is either boolean (i.e.,
true or false), or maybe in each state, are as expressive as arbitrary 3-valued Kripke
structures. This is used in Section 4 to show that 3-valued model-checking (referred to
as compositional) and thorough checking correspond to different semantics of quanti-
fied temporal logic (QTL). We answer the questions posed above in Section 5, using
previously established results for QTL. We compare our approach with related work in
Section 6 and conclude the paper in Section 7.

2 Background

In this section, we provide the necessary background on model-checking, 3-valued rea-
soning, and quantified temporal logic.

3-Valued Kleene Logic. A 3-valued Kleene logic [18] is an extension of a classical
two-valued logic of true and false, with an additional value maybe, representing un-
certainty. Logical operators in the logic are defined via the truth ordering �, where
false � maybe � true. Intuitively, a � b indicates that a is less true than b. Conjunc-
tion and disjunction are given by meet (minimum) and join (maximum) operators of the
truth ordering, respectively. Negation is defined as: ¬true = false, ¬false = true, and
¬maybe = maybe. Kleene logic preserves most of the laws of classical logic, such as
De Morgan laws (¬(a ∧ b) = ¬a ∨ ¬b), and an involution of negation (¬¬a = a), but
not the laws of excluded middle (a∨¬a = true) and non-contradiction (¬a∧a = false).
The values of Kleene logic can also be ordered according to the information pre-order
�, where maybe � true and maybe � false. That is, maybe contains the least amount
of information, whereas true and false are incomparable. We denote the set of boolean
values true and false by 2, and the set of values of Kleene logic by 3.
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||�||K(s) � � ||p||K(s) � I(s, p)
||ϕ ∧ ψ||K(s) � ||ϕ||K (s) ∧ ||ψ||K(s) ||ϕ ∨ ψ||K(s) � ||ϕ||K(s) ∨ ||ψ||K(s)

||¬ϕ||K (s) � ¬||ϕ||K (s) ||EXϕ||K(s) �
∨

t∈S(R(s, t) ∧ ||ϕ||K(t))
||EGϕ||K(s) � ||νZ · ϕ ∧ EXZ||K(s) ||E[ϕUψ]||K(s) � ||μZ · ψ ∨ ϕ ∧ EXZ||K(s)

Fig. 3. Semantics of CTL

Models. A model is a 3-valued Kripke structure K = (S, R,S0,AP, I), where S is a
finite set of states, R : S ×S → 3 is a total transition relation, S0 ⊆ S is a set of initial
states, AP is a set of atomic propositions, and I : S × AP → 3 is an interpretation
function, assigning a value to each atomic proposition a ∈ AP in each state. A classical
(two-valued) Kripke structure is a 3-valued Kripke structure that does not use the value
maybe, i.e. the range of R and I is {true, false}.

Temporal Logic. Computation Tree Logic (CTL) [7] is a branching temporal logic,
whose syntax is defined with respect to set AP of atomic propositions, as follows:

ϕ = � | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | EXϕ | AXϕ | EFϕ | AFϕ
| EGϕ | AGϕ | E[ϕ U ϕ] | A[ϕ U ϕ],

where p ∈ AP is an atomic proposition and � ∈ 2 is a constant. Informally, the meaning
of the temporal operators is: given a state and all paths emanating from it, ϕ holds in
one (EX) or all (AX) next states; ϕ holds in some future state along one (EF ) or all
(AF ) paths; ϕ holds globally along one (EG) or all (AG) paths, and ϕ holds until a
point where ψ holds along one (EU ) or all (AU ) paths.

The value of ϕ in state s of K is denoted by ||ϕ||K(s); the value of ϕ in K is defined
with respect to all initial states of K: ||ϕ||K =

∧
s0∈S0

||ϕ||K(s0). Temporal operators
EX , EG, and EU together with the propositional connectives form an adequate set [6].
The formal semantics of CTL is given in Figure 3. The only difference between the 2-
and the 3-valued semantics is the change in the domain of �. To disambiguate from
an alternative semantics presented below, we refer to this semantics as compositional.
Compositional semantics of CTL is interpreted over 3-valued Kripke structures with
respect to Kleene logic.

We write ϕ[x] to indicate that the formula ϕ may contain an atomic proposition x.
An occurrence of x is positive (or of positive polarity) if it occurs under the scope of
an even number of negations, and negative otherwise. An atomic proposition x is pure
in ϕ if all of its occurrences have the same polarity, and is mixed otherwise. We write
ϕ[x ← y] for a formula obtained from ϕ by simultaneously substituting all occurrences
of x by y. A formula ϕ is universal (or in ACTL) if all of its temporal operators are
universal, and is existential (or in ECTL) if they are existential. In both cases, negation
is only allowed at the level of atomic propositions.

Relationships Between Models. We revisit definitions of simulation and bisimulation
for classical Kripke structures, and refinement for 3-valued Kripke structures.

Definition 1. [20] Let K and K ′ be classical Kripke structures with identical sets of
atomic propositions AP . A relation ρ ⊆ S × S′ is a simulation iff ρ(s, s′) implies that
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1. ∀p ∈ AP · I ′(s′, p) ⇔ I(s, p), and
2. ∀t′ ∈ S′ · R′(s′, t′) ⇒ ∃t ∈ S · R(s, t) ∧ ρ(t, t′).

A state s simulates a state s′ if (s, s′) ∈ ρ. A Kripke structure K simulates K ′ iff every
initial state of K ′ is simulated by an initial state of K . Simulation between K and K ′

preserves ACTL: for any ϕ ∈ ACTL, ||ϕ||K ⇒ ||ϕ||K′
. K and K ′ are bisimilar iff

exists a simulation ρ between K and K ′ such that ρ−1 is a simulation between K ′ and
K . The set of all structures bisimilar to K is denoted by B(K). Bisimulation preserves
CTL: ∀ϕ ∈ CTL · ∀K ′ ∈ B(K) · ||ϕ||K ⇔ ||ϕ||K′

.
For a given a set of atomic propositions X , let K−X denote the result of removing

all atomic propositions in X from K , i.e., AP−X = AP \ X . Let K and K ′ be Kripke
structures such that AP ′ = AP ∪X . Then, K ′ is X-bisimilar to K iff K ′

−X is bisimilar
to K . The set of all X-bisimilar structures to K is denoted by BX(K).

Definition 2. [2] A relation ρ ⊆ S × S′ is a refinement between 3-valued Kripke
structures K and K ′ iff ρ(s, s′) implies

1. ∀p ∈ AP · I(s, p) � I ′(s′, p);
2. ∀t ∈ S · (R(s, t) � true) ⇒ ∃t′ ∈ S′ · (R′(s′, t′) � true) ∧ ρ(t, t′);
3. ∀t′ ∈ S′ · (R′(s′, t′) � maybe) ⇒ ∃t ∈ S · (R(s, t) � maybe) ∧ ρ(t, t′).

A state s is refined by s′ (s � s′) if there exists a refinement ρ containing (s, s′). A
Kripke structure K is refined by K ′ (K � K ′) if there exists a refinement ρ relating
their initial states: ∀s ∈ S0 · ∃s′ ∈ S′

0 · ρ(s, s′) and ∀s′ ∈ S′
0 · ∃s ∈ S0 · ρ(s, s′).

Bisimulation and refinement coincide on classical structures, and refinement preserves
3-valued CTL:

Theorem 1. [2] For 3-valued Kripke structures K and K ′ and a CTL formula ϕ, K �
K ′ implies ||ϕ||K � ||ϕ||K′

.

Refinement can relate 3-valued and classical models as well. For a 3-valued Kripke
structure K , let C(K) denote the set of completions [3] of K – the set of all classical
Kripke structures that refine K . For any K ′ ∈ C(K), the structure K can be seen as less
precise than K ′ in the sense that any CTL formula ϕ that evaluates to a definite value
(either true or false) in K , evaluates to the same value in K ′, i.e., (||ϕ||K = true) ⇒
(||ϕ||K′

= true) and (||ϕ||K = false) ⇒ (||ϕ||K′
= false).

Thorough Semantics. Compositional semantics of CTL is inherently imprecise: if ϕ
is maybe in K , it may or may not be true in every completion. To address this, Bruns
and Godefroid [3] proposed an alternative semantics, calling it thorough. A formula
ϕ is true in K under thorough semantics, written ||ϕ||Kt = true, iff it is true in all
completions of K; it is false in K if it is false in all completions; and maybe otherwise.

The additional precision comes at a cost of complexity. Model-checking ϕ under
compositional semantics is linear in the size of the model and linear in the size of the
formula, but model-checking ϕ under thorough semantics is EXPTIME-complete, with
the best known algorithm quadratic in the size of the model and exponential in |ϕ| [3].

Quantified CTL. Quantified CTL (QCTL) [19] is an extension of CTL with quantifi-
cation over atomic propositions. Thus, QCTL formulas consist of all CTL formulas and
formulas of the form ∀x · ϕ and ∃x · ϕ. In this paper, we only use a fragment of QCTL
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in which all quantifiers precede all other operators. Thus, we consider formulas like
∀x ·∃y ·AG(x ⇒ AFy), but not like AX(∃x ·x ⇒ AFy), or (∀x ·EXx)∧(∃y ·AXy)

The syntax of QCTL does not restrict the domain of quantifiers. Thus, there are
several different definitions of the semantics of QCTL with respect to a classical Kripke
structure; we consider two of these in this paper: structure [19] and amorphous [10].

Structure Semantics. Under this semantics, each free variable x is interpreted as a
boolean function over the statespace, i.e., x ∈ [S → 2]. For example, ∀x · ϕ is true
in K under structure semantics if replacing x by an arbitrary boolean function results
in a formula that is true in K . Formally, the values of ∀x · ϕ and ∃x · ϕ over a Kripke
structure K are defined as follows:

||ϕ||Ks � ||ϕ||K , if ϕ ∈ CTL (structure semantics)

||∀x · ϕ||Ks � ∀y ∈ [S → 2] · ||ϕ[x ← y]||Ks
||∃x · ϕ||Ks � ∃y ∈ [S → 2] · ||ϕ[x ← y]||Ks

where [S → 2] denotes the set of all boolean functions over S.
Alternatively, structure semantics can be understood as follows. For Kripke struc-

tures K and K ′, we say that K ′ is an X-variant of K if there exists a set of atomic
propositions X such that K and K ′

−X are isomorphic. A formula ∀x · ϕ is satisfied
by K under structure semantics iff ϕ holds in all {x}-variants of K . Note that if x
is positive in ϕ, then ∀x · ϕ is equivalent to ϕ[x ← false], and if x is negative – to
ϕ[x ← true].

Amorphous Semantics. Amorphous semantics of QCTL is defined as follows:

||ϕ||Ka � ||ϕ||K , if ϕ ∈ CTL (amorphous semantics)

||∀x · ϕ[x]||Ka � ∀K ′ ∈ Bx(K) · ||ϕ[x]||K′
a

||∃x · ϕ[x]||Ka � ∃K ′ ∈ Bx(K) · ||ϕ[x]||K′
a

That is, a formula ∀x · ϕ is satisfied by K under amorphous semantics iff ϕ is satisfied
by every {x}-bisimulation of K .

For formulas without existential (∃) quantifiers, amorphous semantics implies struc-
ture semantics; further, the implication is strict [10].

3 Expressiveness of 3-Valued Models

In this section, we extend the results of Godefroid and Jagadeesan [13] on expressive-
ness of 3-valued models. In particular, we describe a transformation of 3-valued Kripke
structures to Partial Kripke Structures (PKSs) – Kripke structures with boolean transi-
tion relation – and from there to Partial Classical Kripke Structures (PCKSs), where each
atomic proposition is either always true or false, or is always maybe. This transformation
enables us to use PCKSs as the theoretical model for developing our technical results.
When compared to the original 3-valued Kripke structure, the transformation increases
the number of atomic propositions. However, the transformation is used for theoretical
purposes only – we never propose to apply this transformation during analysis. Further-
more, while increasing the number of atomic propositions, the transformation to PCKSs
does not affect the number of bits required to encode the original Kripke structure.
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T1(p) = p T1(¬ϕ) = ¬T1(ϕ)
T1(ϕ ∧ ψ) = T1(ϕ) ∧ T1(ψ) T1(ϕ ∨ ψ) = T1(ϕ) ∨ T1(ψ)
T1(EXϕ) = EX(tval ∧ T1(ϕ)) T1(EGϕ) = ϕ ∧ EXEG(tval ∧ T1(ϕ))

T1(E[ϕUψ]) = T1(ψ) ∨ T1(ϕ) ∧ EXE[tval ∧ T1(ϕ) U tval ∧ T1(ψ)]

Fig. 4. Transformation of a temporal logic formula

From 3-valued models to PKSs. A 3-valued Kripke structure that has a boolean tran-
sition relation (R : S × S → 2) is called a Partial Kripke Structure (PKS) [2]. An
example of a PKS is shown in Figure 5(a).

PKSs are as expressive as 3-valued Kripke structures [13]. The transformation T1
from 3-valued to Partial Kripke structures is very similar to a transformation from La-
beled Transition Systems to Kripke structures (e.g., see [21]). Intuitively, we treat tran-
sition values as actions, and the transformation “pushes” them into states.

Given a 3-valued Kripke structure K , we construct a PKS T1(K) = (AP ∪{tval},
S × {0, 1},S0 × {0, 1}, T1(R), T1(I)), where T1(R) and T1(I) are as follows:

1. T1(R)(〈s, i〉, 〈t, 1〉) ⇔ (R(s, t) = true) and
T1(R)(〈s, i〉, 〈t, 0〉) ⇔ (R(s, t) = maybe),

2. for every p ∈ AP , T1(I)(〈s, i〉, p) = I(s, p), and
3. the value of tval is determined by the second component of the state:

T1(I)(〈s, i〉, tval) is true if i = 1, and maybe otherwise.

Intuitively, tval represents the value of the transition relation. For example, since the
value of tval in a state 〈t, 1〉 is true, a transition between 〈s, i〉 and 〈t, 1〉 indicates that
the transition between s and t in K is true.

The transformation T1 is also extended to CTL formulas as shown in Figure 4.
Intuitively, T1 replaces every occurrence of EXp with EX(tval ∧ p) in the fixpoint
representation of the semantics of CTL (see Figure 3).

Theorem 2. [13] Partial Kripke Structures are as expressive as 3-valued Kripke struc-
tures. For any 3-valued Kripke structure K and a formula ϕ, ||ϕ||K = ||T1(ϕ)||T1(K).

From PKSs to PCKSs. A PKS in which every atomic proposition is either boolean
(i.e., true or false in every state) or maybe (i.e. maybe in every state) is called a Partial
Classical Kripke Structure (PCKS), an example of a PCKS is shown in Figure 5(b).
Intuitively, a PCKS K is a classical Kripke structure extended with additional atomic
propositions such that nothing except their name is known about them. We show that,
for compositional semantics, PCKSs containing a single maybe atomic proposition are
as expressive as PKSs.

A value of a propositional formula in a 3-valued Kripke structure is given by a 3-
valued function S → 3 over the statespace. Consider a PKS K shown in Figure 5(a).
The value of p in K is given by a function that maps s0 to true, s1 to maybe, and s3 to
false. Next, consider the PCKS K ′ shown in Figure 5(b): it is the same structure, but
with different atomic propositions. All atomic propositions of K ′ are boolean, except
for m which is maybe in every state. Note that K ′ has two boolean atomic propositions
pt and pm such that pt is true in a state iff p is true in the same state of K , and pm is true
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(a) (b)

pt = t
pm = t
m = m

pt = f
pm = t
m = m

pt = f
pm = f
m = m

s0 s1 s2

p = t p = m p = f

s0 s1 s2

Fig. 5. (a) A PKS K. (b) A PCKS K′.

iff p is not false. The formula pt ∨ (pm ∧m) in K ′ is semantically equivalent to p in K:
for any state, both are true in s1, maybe in s2, and false in s3. Thus, any propositional
formula in K can be reduced to a semantically equivalent one in K ′. Furthermore, tem-
poral operators of CTL can be seen as predicate transformers operating on the semantic
meaning of their arguments. Thus, the value of EXp in K is equivalent to the value of
EX(pt ∨ (pm ∧ m)) in K ′.

Formally, we define a transformation T2 from a PKS K to a PCKS T2(K) =
(T2(AP ), S,S0, R, T2(I)) as follows: (a) for each atomic proposition p of K , T2(AP )
contains a pair of boolean atomic propositions pt and pm, (b) T2(I)(s, pt) is true iff
I(s, p) is true, and T2(I)(s, pm) is true iff I(s, p) is not false, and (c) T2(AP ) contains
an atomic proposition m whose value is maybe in every state of T2(K).

For an atomic proposition p, T2(p) is defined as pt ∨ (pm ∧ m), and for a CTL
formula ϕ, T2(ϕ) is obtained by replacing each atomic proposition p of ϕ with T2(p).
For example, T2(AG(p ⇒ EFq)) = AG(T2(p) ⇒ EFT2(q)).

Theorem 3. Let K be a PKS, and ϕ be a CTL formula. Then, ||ϕ||K = ||T2(ϕ)||T2(K).

Combining this result with Theorem 2, we obtain that PCKSs are as expressive (for
compositional semantics) as 3-valued Kripke structures.

The transformation T2 does not work in the case of thorough semantics: the value
of ϕ in K is not necessarily equivalent to the value of T2(ϕ) in T2(K). For example,
under thorough semantics, the value of p∨¬q is maybe in a state where both p and q are
maybe. However, since p = maybe implies pt = false and pm = true, the transformed
formula T2(p ∨ ¬q) = (pt ∨ (pm ∧ m)) ∨ ¬(qt ∨ (qm ∧ m)) is logically equivalent to
m ∨ ¬m, which, in turn, is equivalent to true under thorough semantics. The problem
is that in each state of T2(K), the atomic proposition m controls how all of the atomic
propositions in this state are refined (i.e., either they are all set to true, or they are all set
to false). This is easily avoided by introducing a different atomic proposition for each
atomic proposition of K .

We define another transformation T3 from a PKS K to a PCKS T3(K) as follows:
(a) we first apply the transformation T2, i.e., T3(K) = T2(K), and (b) for each p ∈ AP
we add a new atomic proposition mp to T3(AP ), setting it to maybe in every state. For
an atomic proposition p, T3(p) is defined as pt ∨ (pm ∧mp), and for a CTL formula ϕ,
T3(ϕ) is obtained by replacing each atomic proposition p of ϕ with T3(p).

Theorem 4. Let K be a PKS, and ϕ be a CTL formula. Then, ||ϕ||Kt = ||T3(ϕ)||T3(K)
t .

Combining this result with Theorems 2 and 3, we obtain that PCKSs are as expressive
as 3-valued Kripke structures, for compositional and thorough semantics.
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The distinction between transformations T2 and T3 highlights the key difference be-
tween compositional and thorough semantics. The former can be seen as a conservative
approximation of laws of excluded middle and non-contradiction, i.e., if p is unknown,
then so is ¬p, and thus ||p ∨ ¬p|| = maybe ∨ maybe = maybe. On the other hand,
thorough semantics can be seen as applying these laws symbolically. Thus, even if the
value of p is unknown, ||p ∨ ¬p||t is still true.

4 Quantified Temporal Logic and 3-Valued Model-Checking

In this section, we use the equivalence between 3-valued Kripke structures and PCKSs
established in Section 3 to relate 3-valued model-checking and model-checking for
QCTL.

The definition of 3-valued refinement, when restricted to PCKSs, is virtually iden-
tical to the definition of X-bisimulation. If K is a PCKS and X is the set of all of
its maybe atomic propositions, then K ′ is a completion of K iff K ′

−X is bisimilar to
K−X , i.e., K ′ is X-bisimilar to K−X . Thus, deciding whether a formulaϕ is either true
or false in a PCKS reduces to amorphous model-checking of a universally quantified
formula, as stated in the theorem below.

Theorem 5. Let K be a PCKS, X ⊆ AP be the set of all of its maybe atomic proposi-
tions, and ϕ be an arbitrary CTL formula. Then, the value of ϕ in K under thorough se-
mantics is: (||ϕ||Kt = true) ⇔ ||∀X ·ϕ||K−X

a and (||ϕ||Kt = false) ⇔ ||∀X · ¬ϕ||K−X
a .

Similarly, compositional semantics is related to structure semantics for QCTL; how-
ever, the connection is somewhat more subtle. Let K be a PCKS, m be the only maybe
atomic proposition of K , and ϕ be a CTL formula containing m. Furthermore, assume
that all occurrences of m are positive. Then, ||ϕ||K is true iff ||ϕ[m ← false]||K−m is
true [16]. Next, consider the formula ∀m ·ϕ: since m is positive in ϕ, ||∀m ·ϕ||K−m

s is
true iff ||ϕ[m ← false]||K−m is true [17]. Thus, in this case, deciding whether ϕ is true
under compositional semantics reduces to checking ∀m · ϕ under structure semantics.
Moreover, the result easily extends to the case where m occurs negatively.

The above does not hold when m is not of pure polarity in ϕ. For example, the
value of ||m ∨ ¬m||K is maybe, but ||∀m · (m ∨ ¬m)||Ks is true. The problem is that
compositional semantics treats positive and negative occurrences of the same atomic
proposition independently. Thus, we can obtain the desired result by quantifying pos-
itive and negative occurrences of m separately. That is, we let m+ and m− denote
positive and negative occurrences of m in ϕ[m], respectively; then, ||ϕ[m]||K is true
iff ||∀x, y · ϕ[m+ ← x, m− ← y]||Ks is true, and similarly ||ϕ[m]||K is false iff
||∀x, y · ¬ϕ[m+ ← x, m− ← y]||Ks is true. The following theorem formalizes this
result for an arbitrary number of maybe atomic propositions.

Theorem 6. Let K be a PCKS, and let M = {m1, . . . , mn} be the set of all maybe
atomic propositions of K . For a CTL formula ϕ, let m+

i and m−
i denote the positive

and negative occurrences of mi, respectively. Then,

(||ϕ||K = true) ⇔ ||∀x1, . . . , xn · ∀y1, . . . , yn · ϕ′||Ks and
(||ϕ||K = false) ⇔ ||∀x1, . . . , xn · ∀y1, . . . , yn · ¬ϕ′||Ks

where ϕ′ = ϕ[m+
1 ← x1, . . . , m

+
n ← xn, m−

1 ← y1, . . . , m
−
n ← yn].
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A corollary of Theorem 6 is that if every maybe atomic proposition of K occurs
with pure polarity in ϕ, then both thorough and compositional semantics reduce to
deciding the same universally quantified formula, under amorphous and structure se-
mantics, respectively. Furthermore, for universally quantified formulas, amorphous se-
mantics imply structure (||∀X · ϕ||a ⇒ ||∀X · ϕ||s). Note that in general, for 3-valued
semantics the implication is reversed, i.e., compositional semantics implies thorough
((||ϕ||K = true) ⇒ (||ϕ||Kt = true). So, when every maybe atomic proposition is pure
in ϕ, thorough and compositional semantics for ϕ coincide:

Theorem 7. Let K be a PCKS and ϕ be a CTL formula such that all occurrences of
maybe atomic propositions of K are of pure polarity in ϕ. Then, ||ϕ||Kt = ||ϕ||K .

Since every atomic proposition is either boolean or maybe in PCKSs, deciding
whether all occurrences of maybe propositions in a formula ϕ are of pure polarity is
trivial for these models. However, to determine this for arbitrary 3-valued Kripke struc-
tures, we first have to reduce them to PCKSs, which is not an option in practice since
model-checking typically occurs on-the-fly during the construction of the model. In the
next section, we use properties of particular abstractions to determine polarity of maybe
propositions of ϕ and thus to decide when a thorough check is necessary.

5 Thorough Semantics and Abstraction

In this section, we exhibit practical cases where a thorough check does not give addi-
tional precision and thus can be eliminated, and cases where a thorough check can be
performed efficiently.

5.1 Abstraction and 3-Valued Model Checking

Abstraction is a mapping between a concrete system and a smaller, abstracted, system.
Here, we consider abstractions that map sets of concrete states into a single abstract
state. Let K be a Kripke structure with statespace S and transition relation R. An ab-
stract domain is a pair (Sα, γ), where Sα is a set of abstract states, and γ : Sα → 2S is
a total concretization function that associates each abstract state with its interpretation
as a set of concrete states.

Like Godefroid et al. [11], we use 3-valued Kripke structures to represent abstract
models over an abstract domain (Sα, γ). A 3-valued Kripke structure Kα with a state-
space Sα is an abstraction of a Kripke structure K if its transition relation Rα satisfies
the following conditions:

(Rα(ŝ, t̂) � true) ⇒ ∀s ∈ γ(ŝ) · ∃t ∈ γ(t̂) · R(s, t)
(Rα(ŝ, t̂) � maybe) ⇐ ∃s ∈ γ(ŝ) · ∃t ∈ γ(t̂) · R(s, t)

Note that these conditions do not guarantee the precision of the abstract model. In par-
ticular, a 3-valued Kripke structure over Sα with a maybe transition between every pair
of states satisfies the above conditions, and is a trivial abstraction of every classical
Kripke structure over S.
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Each atomic proposition of Kα corresponds to a predicate over the statespace of
K . In an abstract state ŝ, an atomic proposition p̂ is true iff the corresponding predicate
p is true in every state of γ(ŝ), false if p is false in γ(ŝ), and maybe otherwise. Note
that any predicate over the concrete statespace can be replaced by an atomic proposition.
Thus, without loss of generality, we assume that every atomic proposition of the abstract
system corresponds to an atomic proposition of the concrete.

As a 3-valued Kripke structure, an abstraction Kα of K is refined by K , i.e.,
Kα � K , which guarantees that Kα preserves arbitrary CTL formulas. Moreover, an
arbitrary 3-valued Kripke structure is an abstraction of any model that refines it, where
the concretization γ is induced by the refinement [11].

Predicate (or boolean) abstraction [14,1,11] is a popular technique for building ab-
stractions, and has been successfully applied in practice [14,5]. Given a concrete system
K and a set of n predicates P = {p1, . . . , pn}, the abstract statespace of predicate ab-
straction consists of (at most) 2n states, where each state assigns a boolean value to
each of the predicates. The concretization γ is defined as follows:

γ(ŝ) = {s | ∀p ∈ P · ||p||(ŝ) = ||p||(s)}

That is, an abstract state ŝ corresponds to the set of all concrete states that agree with ŝ
on the values of all of the predicates in P . Thus, if Kα is a result of predicate abstraction,
then its transition relation is 3-valued, but atomic propositions are boolean.

Cartesian abstraction [1,11] is an extension of predicate abstraction, where the state-
space consists of 3n states, and each state assigns one of true, false, or maybe to each
of the predicates. The concretization γ is defined as follows:

γ(ŝ) = {s | ∀p ∈ P · ||p||(ŝ) � ||p||(s)}

That is, an abstract state ŝ corresponds to the set of all concrete states that agree with
ŝ on the values of all of the predicates in P that have a definite value (i.e. true or false)
in ŝ. Thus, if Kα is a result of a Cartesian abstraction, then both its atomic propositions
and the transition relation are 3-valued.

Model-checking a property ϕ in the abstract system Kα is done with respect to
compositional semantics. Thus, a maybe result from the model-checker does not nec-
essarily indicate that the abstraction is at fault and must be refined. In these cases, it
seems natural [12] that an additional check of ϕ under thorough semantics will yield
more precise results. In what follows, we show that in many practical applications, thor-
ough semantics does not offer an advantage over compositional.

5.2 Thorough Semantics and Predicate Abstraction

Let Kα be an abstract system constructed by predicate abstraction, and K ′
α = T1(Kα)

be a PKS corresponding to it. Note that all of the atomic propositions of K ′
α are boolean,

except for tval, which was added as part of T1.
Assume that we want to check a CTL formula ϕ in Kα. By Theorem 2, there exists

a CTL formula ϕ′ = T1(ϕ) such that ||ϕ||Kα = ||ϕ′||K′
α . Although ϕ does not mention

tval explicitly, each temporal operator of ϕ results in at least one occurrence of tval in
ϕ′. The polarity of these occurrences is positive for existential operators and negative
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for the universal ones. For example, EXp is transformed by T1 into EX(tval ∧ p),
while AXp is transformed into T1(AXp) = T1(¬EX¬p) = AX(tval ⇒ p).

Thus, if all temporal operators of ϕ are universal or all are existential, i.e., ϕ ∈
ECTL or ϕ ∈ ACTL, then ϕ′ contains at most one non-boolean atomic proposition
tval, and tval is pure in ϕ′. Combining this with Theorem 7, we establish that in this
case thorough and compositional semantics for ϕ in Kα coincide:

Theorem 8. Let Kα be a 3-valued Kripke structure constructed by predicate abstrac-
tion. Then, ∀ϕ ∈ ECTL ∪ ACTL · ||ϕ||Kα = ||ϕ||Kα

t .

In particular, this theorem implies that for predicate abstraction and for universal prop-
erties, the original abstraction-refinement framework of Clarke et al. [5] is as precise as
the extension proposed by Godefroid and Jagadeesan [12].

In the case of Cartesian abstraction, Kα may contain 3-valued atomic propositions,
and Theorem 8 is no longer applicable. One way to ensure that thorough and composi-
tional semantics coincide in this case, is to require that all atomic propositions, not just
tval, be of pure polarity. This gives rise to the following theorem:

Theorem 9. Let Kα be a 3-valued Kripke structure. Then, for any ACTL or ECTL
formula ϕ in which every atomic proposition occurs with pure polarity, compositional
and thorough semantics are equivalent.

For example, according to the above theorem, compositional and thorough semantics
of AG(¬p ∧ q) are equivalent, since each atomic proposition occurs once, and polarity
of p is negative, and polarity of q is positive. Of course, many interesting properties do
contain atomic propositions of mixed polarity. For example, a property “in every state,
only one of p and q holds” is expressed in CTL as AG((¬p ∧ q) ∨ (p ∧ ¬q)), and both
of its atomic propositions are of mixed polarity. In this case, thorough semantics can
offer additional precision. On the other hand, consider checking the property AG(¬q ∧
AF (p ∧ q)) on the model in Figure 2(b). In this property, q occurs with mixed polarity,
but it does not have value maybe in any reachable state of the model. For this and other
properties where the proposition of mixed polarity does not have value maybe in the
model, compositional semantics coincides with thorough, and the additional check is
not required.

5.3 Thorough Model Checking for ACTL

In this section, we show that in the case of ACTL formulas, which are sufficient for ex-
pressing arbitrary safety properties, deciding whether a formula is true under thorough
semantics can be done efficiently. Furthermore, in this case, the compositional check
used in the abstraction-refinement framework of Clarke et al. [5] can be completely
replaced by an efficient algorithm for implementing the thorough one.

We start by showing that for a classical Kripke structure and an ACTL formula ϕ,
model-checking ∀x · ϕ[x] under amorphous semantics is reducible to model-checking
ϕ[x] (I). Using Theorem 5, we extend this result to an efficient algorithm for deciding
whether an ACTL formula is true under thorough semantics on a PKS (II), and, finally,
doing the same on an arbitrary 3-valued Kripke structure (III).



How Thorough Is Thorough Enough? 77

(I). Let K be a classical Kripke structure, x be an atomic proposition that does not
appear in K , and ϕ be an ACTL formula containing x. Recall that ||∀x · ϕ||Ka is true
iff ϕ is true in every K ′ that is {x}-bisimilar to K . Let T4(K) = (T4(AP ), T4(S),
T4(S0), T4(R), T4(I)) be a Kripke structure obtained from K by adding a new atomic
proposition x that changes non-deterministically. The transformation T4 is defined as
follows:

T4(AP ) = AP ∪ {x}
T4(S) = S × {0, 1}

T4(S0) = S0 × {0, 1}
T4(R)(〈s, i〉, 〈t, j〉) ⇔ R(s, t)

T4(I)(〈s, i〉, p) = I(s, p)
T4(I)(〈s, i〉, x) = true if i = 1 and

false otherwise

Note that the value of each atomic proposition p ∈ AP is determined by the first
component of the state, and the value of x depends on the second component.

Clearly, T4(K) is {x}-bisimilar to K . Moreover, any Kripke structure that is {x}-
bisimilar to K is simulated by T4(K) [17]. Since simulation preserves ACTL, ||∀x ·
ϕ||Ka is equivalent to ||ϕ||T4(K). The result easily extends to an arbitrary number of
universally-quantified atomic propositions of ϕ. Note that if x is of pure polarity in
ϕ, the transformation T4 is unnecessary, since ||∀x · ϕ[x]||Ka is equivalent to either
||ϕ[x ← true]||K or ||ϕ[x ← false]||K , depending on the polarity of x.

(II). Combining (I) with Theorem 5, we conclude that deciding whether an ACTL
formula ϕ is true in a PKS K under thorough semantics is reducible to classical model-
checking. In particular, for an ACTL formula ϕ, ||ϕ||Kt = true iff ||ϕ||K′

= true,
where K ′ is a classical Kripke structure obtained from K via a process very similar
to T4, treating maybe atomic propositions non-deterministically. However, rather than
splitting all states, we only split those where an atomic proposition has a value maybe.
That is, if p is an atomic proposition and s is a state such that the value of p in s is
maybe, then s is replaced by two states s′ and s′′ such that

(a) s′ and s′′ have the same successors as s,
(b) for every atomic proposition q different from p, s′ and s′′ assign the same

interpretation as s (I(s, q) = I(s′, q) = I(s′′, q)),
(c) the value of p is true in s′ and false in s′′, and
(d) every transition from a state t to s is replaced by a pair of transitions

from t to s′ and s′′.

This process is repeated until there are no more reachable states that assign maybe to an
atomic proposition. Since each atomic proposition that is treated non-deterministically
doubles the statespace, the statespace of K ′ is in the worst case exponential in the
number of atomic propositions of K .

(III). From amorphous semantics, we know that ∀x ·ϕ is equivalent to ϕ[x ← false]
if x is positive in ϕ, and to ϕ[x ← true] if x is negative. Therefore, our translation can
treat atomic propositions that are of pure polarity in ϕ as either true or false, depending
on the polarity, whereas others must be treated non-deterministically. Thus, for a 3-
valued Kripke structure K and an ACTL formula ϕ, deciding whether ||ϕ||Kt = true is
reducible to model-checking ϕ in K ′, obtained from K as follows:
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(a) for every positive atomic proposition of ϕ, change its maybe occurrences in K
to false,

(b) change maybe occurrences of negative ones to true,
(c) treat mixed ones as non-deterministic, and
(d) change all maybe transitions to true.

Note that transitions can be embedded into states using an atomic proposition tval (see
Section 3), which has negative polarity for ACTL. In the worst case, the size of K ′

is exponential only in the number of mixed atomic propositions of ϕ, which gives our
algorithm the following complexity:

Theorem 10. Let K be a 3-valued Kripke structure, and ϕ be an ACTL formula. Then,
the complexity of deciding whether ϕ is true in K under thorough semantics is O(2n ×
|K| × |ϕ|), where n is the number of atomic propositions of mixed polarity in ϕ.

Since we reduced the thorough check to classical model-checking, our algorithm ei-
ther produces a definite result or generates a counterexample. Thus, it can completely
replace step 3 in the abstraction refinement framework of Clarke et al. [5], shown in
Figure 1(a). The resulting framework is as precise as the classical thorough framework
(see Section 1 for definition), and requires the same number of iterations. Yet it is only
marginally more expensive than the original framework. Moreover, in the case where
all atomic propositions of ϕ are pure, the modified framework is the same as the orig-
inal: same results, same running time. Finally, the algorithm can be applied on-the-fly,
i.e., during the construction of the abstract model.

6 Discussion and Related Work

Dams et at. [9] developed a general framework for constructing abstractions based on
the Abstract Interpretation [8] methodology. These abstractions are sound for full CTL
(and richer logics such as CTL∗ and μ-calculus). Instead of 3-valued Kripke structures,
their modeling formalism is Mixed Transition Systems (MTSs) – transition systems
containing two kinds of transitions, where existential path quantifiers are interpreted
over one kind and universal over the other. 3-valued Kripke structure can be seen as
MTSs where truth of existential path quantifiers depends only on true transitions, while
the truth of universal quantifiers depends on both true and maybe transitions [16].

The work of Dams et al. [9], as well as most other research on combining abstraction
and model-checking (e.g., see [5,22,14]), handles explicit occurrences of negation in a
formula by restricting negation to the level of atomic propositions and treating each
literal of the concrete model as an atomic proposition of the abstract. For example,
literals p and ¬p are represented by two distinct atomic propositions, say, a and b. This
looses information but ensures that all of the atomic propositions of a formula checked
on an abstract model are pure, and thus a thorough check does not provide an additional
advantage.

Thorough semantics was introduced by Bruns and Godefroid [3] via generalized
model-checking, which is the problem of deciding whether there exists a completion of
a 3-valued Kripke structure in which a given formula holds. This can be seen as a gener-
alization of both satisfiability and model-checking: ϕ is true in the coarsest abstraction
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iff ϕ is satisfiable, and true in a classical Kripke structure K iff K is a model for ϕ. In
this paper, we show that generalized model-checking can be also seen as an extension
of amorphous semantics for existentially quantified temporal formulas from PCKSs to
arbitrary 3-valued Kripke structures. In a sense, it combines amorphous quantification
with the reduction to PCKSs.

The expressive power of various 3-valued models have been studied by Godefroid
and Jagadeesan [13]. Our work completes the picture by showing that allowing for
maybe atomic propositions is as expressive as allowing unrestricted occurrences of the
value maybe in a model. The question whether or not 3-valued Kripke structures with
boolean atomic propositions and a 3-valued transition relation are as expressive remains
open. However, our results suggest that even if such a reduction exists, it is not trivial. In
particular, this reduction would allow us to transform model-checking of ACTL under
thorough semantics, which is EXPTIME-complete, into model-checking under compo-
sitional semantics, which is linear in the size of the model and the formula.

7 Conclusion

In this paper, we study the difference between compositional and thorough semantics
for 3-valued model-checking. We show that the relationship between the two becomes
more clear by casting 3-valued model-checking as model-checking for quantified tem-
poral logic.

Our main motivation is a seemingly apparent advantage of thorough semantics over
compositional in the abstraction refinement framework. However, we show that in many
practically interesting cases, i.e., when properties are universal, thorough semantics is
either no more precise than compositional, or can be efficiently combined with clas-
sical model-checking approaches. Although we used CTL as our temporal logic, our
results depend only on its invariance to bisimulation, and thus naturally extend to other
universal logics, such as LTL.
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Abstract. The notion of dynamic abstraction was recently introduced
as a means of abstracting a model during the process of model check-
ing. In this paper we show, theoretically and practically, how dynamic
abstraction can be used with different algorithms for invariant checking,
namely forward, backward and interleaved state-space traversal. Fur-
ther, we formalize the correctness guarantees that can be made under
different invariant checking algorithms operating on a dynamically ab-
stracted model. We report experimental results on industrial strength
benchmarks to further demonstrate the power and versatility of this ab-
straction mechanism in conjuction with interleaved state-space traversal.

1 Introduction

The application of formal verification techniques, such as model checking, to real-
life industrial designs, has traditionally been hampered by what is commonly
known as the state explosion problem. Dramatic increases in the size of digital
systems and the corresponding exponential increases in the size of their state
space have kept industrial designs well beyond the capacity of current model
checkers. Abstraction refinement has recently emerged as a promising technology
that has the potential to bridge this verification gap.

The basic idea behind abstraction refinement [13] is to verify the property
at hand on a simplified version of the given design. This simplified version, or
abstraction, is generated by removing elements from the original design that are
not relevant to the proof of the given property. If the property passes on the ab-
stract model, it is guaranteed to be true on the original design as well. However,
if the property fails, counter-examples produced on the abstract model must be
checked to see that they are true counter-examples on the original design. If how-
ever they are false counter-examples, the model checking process is iterated with
another abstract model which approximates the original model more closely. The
new abstract model can be obtained either by refinement, which embellishes the
current abstraction with more details from the original design [5,22,23] or by
re-generating a more detailed abstract model from the original design [11,17].
Usually the challenge in abstraction refinement is to construct as small an ab-
stract model as possible so that the model checker can handle it easily. At the
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same time, the abstract model should retain sufficient details so that the model
checker can prove the property. Thus, the ideal technique for abstraction re-
finement is one which achieves a good balance between the size of the abstract
model and its accuracy, with respect to being able to prove the given property.

Most previous work on abstraction refinement-based model checking has used
statically abstracted models in that the abstract model produced by the abstrac-
tion step is never modified by the downstream model checker. The notion of
dynamic abstraction was introduced in [26] whereby the initial abstract model of
the design-under-verification is further abstracted during successive image com-
putation steps of the model checking phase. Thus, dynamic abstraction provides
for a more aggressive yet potentially more accurate abstraction methodology, ef-
fectively allowing the core model checking algorithm to work on smaller abstract
models. The idea of dynamic abstraction is premised on the key observation that
there may be state elements in the concrete model that are partially abstractable,
i.e., while a state element is necessary in the proof of the property, it may ac-
tually be required only in certain time-frames in the proof. For example, some
latches in the design are solely present for initialization purposes and may ef-
fectively become redundant after a few initial time-frames, with respect to the
given property.

The treatment in [26] implemented dynamic abstraction within an invariant
checking algorithm using BDD-based forward state space traversal. However, as
observed in several previous works such as [3,18], for many problem instances
a backward state space traversal or a combination of forward and backward
traversals (called interleaved traversal) may be significantly faster than a simple
forward traversal. Such interleaved traversals can provide a more stable and bal-
anced method of state space exploration and can be especially beneficial for fail-
ing instances where the failing trace may be constructed in part through forward
and backward traversals respectively [18]. These facts are especially significant
in the case of an iterative abstraction refinement framework, since a) abstraction
can dramatically alter the state space of the model under verification, and b) all
but the last iterations in iterative abstraction refinement produce failing models.

In the light of these arguments the main contributions of this paper are:

– We develop algorithms to implement dynamic abstraction within different
state traversal techniques namely forward, backward and interleaved traver-
sal, for invariant checking, in an abstraction refinement framework.

– We formalize the correctness guarantees that can be made under different
invariant checking algorithms operating on a dynamically abstracted model.

– We present several optimizations to improve the performance of the basic
techniques.

This paper is organized as follows. Section 2 surveys related work on abstrac-
tion refinement and state space traversal algorithms, followed by some back-
ground material in Section 3. In Section 4 we review the notion of dynamic
abstraction as proposed in [26] and extend it to integrate different algorithms
for state space traversal. We also present several simple but powerful optimiza-
tions to improve the performance of the basic algorithms. In Section 5 we present
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experimental results for the proposed algorithms and conclude the paper with
directions for future work in Section 6.

2 Related Work

Abstraction Refinement: Abstraction refinement was first introduced by
Kurshan [13] for verifying linear time properties. The last few years have seen a
lot of research activities on this topic. Abstraction refinement methods can be
broadly classified into two categories: 1) counter-example driven and 2) counter-
example independent. Counter-example driven methods for abstraction refine-
ment [2,5,7,15,23] typically work by iteratively refining the current abstraction so
as to block a particular (false) counter-example encountered in model checking
the previous abstract model. The refinement algorithm could use a combination
of structural heuristics or functional analysis based on SAT or BDDs or some
combination of these. A recent paper [8] enlarges the scope of the refinement by
using multiple counter-examples from the previous abstract model. This notion
is further generalized by Wang et al. in [22]. The Grab tool described there
uses a BDD representation for the entire set of shortest counter-examples in the
previous abstract model, called synchronous onion rings (SORs). Each iteration
(referred to as a generation) performs a series of micro-refinements to eliminate
all counter-examples represented in the SORs.

Counter-example independent abstraction refinement was introduced in [17]
by Amla and McMillan and was also independently discovered by Gupta et
al. [11]. The basic idea is to perform a SAT-based BMC [6] for the property,
upto some depth k, on the original design and then generate the abstract model
based on an analysis of the proof of unsatisfiability [9,25] of the BMC problem.
Essentially, the abstraction excludes latches and/or gates that are not included
in the proof of unsatisfiability of the BMC problem and thereby guarantees
that the abstract model also does not have any counter-examples upto depth k.
Successive abstract models are similarly generated by solving BMC problems of
increasing depth. The main contribution of [11], compared to [17], lies in the use
of BMC on successively smaller abstract models within an iterative framework so
that the unbounded verification methods can have better chance to complete. As
comparison, our proposed dynamic abstraction can be applied on top of [11,17]
to further reduce the size of the abstract model. Recently, a hybrid scheme [1] has
also been proposed to combine the strength of counter-example independent and
counter-example driven abstraction refinement. Our current implementation uses
counter-example independent abstraction refinement, although our ideas could
help in counter-example driven frameworks as well.

Recent papers have also proposed improvements to other aspects of abstraction
refinement-based model checking, most notably the concretization test and the
granularityofabstraction.TheuseofBMCtoconcretizeabstractcounter-examples
wasfirstproposed in [23] andmostof thecurrentabstractionrefinement frameworks
use some variant of SAT or ATPG-based BMC for this task. Bjesse and Kukula [2]
proposed an enhancement in that the concrete error trace need not have the same



84 L. Zhang, M.R. Prasad, and M.S. Hsiao

length as the abstract counter-example. Information from the abstract counter-
example is used as a guide for the concretization algorithm.Other works [8,21] have
generalized the granularity of the abstraction. Cut-points are inserted at selected
points in the fanin cones of latches, and are used as abstraction points in addition
to latch outputs. Li et al. [14] proposed a new search strategy for the SAT solver so
that the proof of unsatisfiability will generate smaller abstract models.

State Space Traversal Algorithms: The second body of work that this paper
draws upon, is the combination of forward and backward state space traversals
to perform symbolic invariant checking. Several works such as [3,4,10,12] use a
combination of forward and backward traversal whereby one sweep of traversal
is used to approximate or prune the search space and subsequently the other
sweep is used to perform the actual verification. This process may potentially
be iterated. However, the work closest to the approach of this paper is that of
[18] where forward and backward traversal are used simultaneously in one single
pass. The motivation here is that the state space of some problems maybe best
suited to backward traversal while others may have a propensity towards forward
traversal. The algorithm tries to dynamically make this decision, with minimum
overhead, and in the case of a buggy design it may construct the error trace
partly through a forward traversal and partly through backward traversal.

Recently, the idea of dynamic abstraction was introduced in [26]. Previous
work on abstraction refinement differs from dynamic abstraction in two key
aspects. In previous work, 1) the abstraction step is algorithmically distinct
from the model checking phase, i.e., the abstraction is performed outside the
model checker, and 2) the abstraction is purely structural in nature and has no
temporal component. For example, the same static abstraction is used for each
image computation step in BDD-based model checking. In contrast, dynamic
abstraction first analyzes the temporal behavior of various latches. Then, based
on the analysis it dynamically and progressively abstracts away a set of latches
during different steps of model checking. For example, in the case of a BDD-
based model checker, progressively more abstracted versions of the transition
relation are used for successive image computation steps.

This paper further develops the theory and implementation of dynamic ab-
straction based invariant checking. In [26] dynamic abstraction was introduced
in the context of a basic forward state traversal algorithm. In this work we de-
velop algorithms to implement dynamic abstraction within different state traver-
sal techniques namely forward, backward and interleaved traversal and formalize
the correctness guarantees that can be made under different traversal techniques,
operating on a dynamically abstracted model. Further, we present several opti-
mizations to improve the performance of the basic techniques. As demonstrated
by the experimental results in Section 5, on several industrial benchmarks the
integration of dynamic abstraction and interleaved traversal is necessary to com-
plete the verification. In other instances the combination and the proposed op-
timizations provide a significant performance improvement.
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3 Background

For the purpose of this paper we will only consider model checking of invariants
i.e., CTL properties of the form AGp where p is a Boolean expression on the vari-
ables of the given circuit model. The circuit under verification can be modeled as
a sequential circuit M with primary inputs W = {w1, w2, . . . , wn}, present state
variables X = {x1, x2, . . . , xm} and the corresponding next state variables Y =
{y1, y2, . . . , ym}. Thus, M can be represented as M = 〈T (X,Y,W ), I(X)〉, where
T (X,Y,W ) is the transition relation (TR) and I(X) is the set of initial states
(more precisely the characteristic function of the set of initial states). M has a
set of latches (state elements) L = {l1, l2, . . . , lm}. Thus, xi and yi would be the
present state and next state variables corresponding to latch li. The transition
relation T is a conjunction of the transition-relations of the individual latches.
Thus,

T (X,Y,W ) =
∧

i∈{1...m}
Ti(X, yi,W )

Here, Ti(X, yi,W ) = yi ↔ Δi(X,W ) is the transition relation of latch li and
Δi(X,W ) is its transition function in terms of primary inputs and present state
variables.

Given a subset of latches Labs = {l1, l2, . . . , lq}, Labs ⊆ L, that we would
like to abstract away from the design, the abstract model can be constructed by
cutting open the feedback loop of latches Labs at their present-state variables
Xabs, i.e. making the variables Xabs primary inputs and removing the logic cones
of the transition functions of latches Labs from the circuit model. Functionally,
the abstracted transition relation T̂ can be defined as

T̂ (X̂, Ŷ , Ŵ ) =
∧

i:li∈L̂

T̂i(X̂, yi, Ŵ ) (1)

where Ŵ = W ∪Xabs, X̂ = X −Xabs, Ŷ = {yi : xi ∈ X̂}, and for all i such that
yi ∈ Ŷ , T̂i(X̂, yi, Ŵ ) = T (X, yi,W ).

A concept that will be frequently used in the sequel is that of the proof of
unsatisfiability (POU) of a CNF SAT formula. As reported in [9,14,25], modern
SAT solvers such as zchaff [24] can be modified to produce a proof of unsat-
isfiability when the CNF formula being solved is found to be unsatisfiable. The
proof of unsatisfiability (denoted by P in the sequel) of an unsatisfiable SAT
CNF formula is a sequence of resolution steps which derives the empty clause
from the original clauses of the formula. It can be represented as a directed
acyclic graph, the nodes of which are clauses and each node (other than the
leaves) has precisely two children. The root of this graph is the empty clause
and the leaves are clauses from the original CNF. All other nodes (including the
root) such that they can be derived through a resolution operation on their two
child clauses.

The basic framework for abstraction refinement in our current implementa-
tion is similar to the one developed in [17] and [11]. A simplified version of the
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algorithm used in [17] is shown in Algorithm 3.1. The basic algorithm used in
[11] is similar to this except that the abstraction (line 5 and 6) is performed
multiple times in an inner loop.

1: k = InitValue
2: if Sat-Bmc(M, p, k) is SAT then
3: return “found error trace”
4: else
5: Extract proof of unsatisfiability, P of SAT-BMC
6: M ′ = Abstract(M, P)
7: end if
8: if Model Check(M ′, p) returns PASS then
9: return “passing property”

10: else
11: Increase bound k
12: goto Step 2
13: end if

Algorithm 3.1. Abstraction Refinement Using SAT-BMC [17]

Let v be a variable in the representation of the transition relation T . A k-
step BMC problem is generated by unrolling and replicating T , k times. Let
v1, v2, . . . , vk denote the k instantiations of v in the unrolled BMC problem.
The idea of the abstraction is to solve a k-step SAT-BMC [6] problem formulated
on the original design and to analyze the POU returned by the SAT solver to
generate the abstraction. The POU is analyzed to identify a set of latches Labs

such that for each l ∈ Labs the variables l1, l2, . . . , lk do not appear in any of the
clauses of the POU. These latches can then be abstracted away using Equation 1
(in the Abstract operation in Step 6 of Algorithm 3.1). The rationale is that
since these latches provably do not contribute to the property check in the first
k time-frames, they might be irrelevant from the point of view of deciding this
property for unbounded behaviors as well.

The model checking algorithm employed in Algorithm 3.1 (Step 8) may use
a variety of methods. For the purpose of this paper we will assume a symbolic
model checker using BDDs [16]. However, the ideas can easily be applied to other
model checking methods such as SAT-based state-space traversal or even SAT-
BMC. Algorithm 3.2 shows the pseudo-code for a generalized symbolic invariant
checking algorithm that could use BDDs. The algorithm implements a combi-
nation of forward and backward state space traversal, henceforth referred to as
interleaved traversal (after [18]). The traversal can be made a purely forward
traversal, a purely backward one, or any interleaved combination of the two by
an appropriate implementation of the Choose Direction function (line 7 of Algo-
rithm 3.2). Here B denotes the “bad states” i.e., states that violate p and Sf

N and
Sb

N denote the set of states currently reached through the forward and backward
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traversals respectively. Basically, the algorithm iteratively furthers the traversal
in a direction governed by Choose Direction till either the two traversals inter-
sect (line 4) or either of the sets Sf

N or Sb
N reaches a fixpoint (line 3). A possible

greedy heuristic for Choose Direction would be to select the easier direction for
image computation, which may be gauged by the final and/or peak BDD size of
current image step, and other factors. The core steps implementing the traversal
are the image (Img) and pre-image (PreImg) operations, defined in Equations 2
and 3 respectively. The Img operation on a set of states S, computes the states
reachable from the states in S, in one step of computation, via the transition
relation T . The PreImg operation simply performs the inverse computation.

Img(S) ≡ ∃X,W. S(X) ∧ T (X,Y,W ) (2)
PreImg(S) ≡ ∃Y,W. S(Y ) ∧ T (X,Y,W ) (3)

InvariantCheck(M〈T, I〉, B)
1: Sf

N = I ; Sb
N = B; Sf

C = ∅; Sb
C = ∅;

2: kfwd = kbwd = 0; j = 0;
3: while Sf

C �= Sf
N and Sb

C �= Sb
N do

4: if Sf
N ∩ Sb

N �= ∅ then
5: return “found error trace”;
6: end if
7: if Choose Direction() = “forward ′′ then
8: Sf

C = Sf
N ;

9: Sf
N = Sf

C ∪ Img(Sf
C);

10: kfwd++;
11: else {Backward direction chosen}
12: Sb

C = Sb
N ;

13: Sb
N = Sb

C ∪ PreImg(Sb
C);

14: kbwd++;
15: end if
16: j++;
17: end while
18: return “no bad state reachable”;

Algorithm 3.2. Interleaved Symbolic Invariant Checking

4 Dynamic Abstraction

In order to make the paper self-contained, we begin by reviewing the notion of
dynamic abstraction as developed in [26]. Given the original circuit M and the
property P = AGp let us assume that a SAT-BMC problem on M of depth
k has been solved and there is no counter-example. Further, suppose that the
SAT solver generates a proof of unsatisfiability P for this problem as described
in [9,25]. Figure 1, taken from [26], is a graphical representation of the POU
from a 40-step SAT-BMC problem on a real circuit example. For each latch
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Fig. 1. Latch-based Unsatisfiability Analysis

(plotted for 40 representative latches on the y-axis) the plot shows the time-
frames for which the corresponding instantiation of the latch variable appears in
the POU of the SAT-BMC problem. The latches have been sorted on the y-axis
for better readability of the data. Given a latch variable l ∈ L, we can define the
redundancy index, ρ(l) of l, with respect to the proof P , as follows:

Definition 1 (Redundancy Index (RI)). The redundancy index ρ(l) of latch
l with respect to the proof of unsatisfiability P is the smallest time-frame index
such that for all time-frames j, ρ(l) ≤ j ≤ k, there does not exist a clause with
variable lj in P.

For example, in Figure 1 the points marked A and B show that latch number
15 has a redundancy index of 15 and latch 32 has a redundancy index of 28.
Simply put, the redundancy index is the earliest time-frame at which the given
latch stops participating in the POU of the current BMC problem. The situation
depicted in Figure 1 is quite typical of a large variety of benchmarks we have
experimented with. Most latches are not used in all time-frames of the POU.
Moreover, there are several latches that are only used in the first few time-frames.

Note that the redundancy index analysis is typically done with respect to
a particular SAT-BMC problem with a certain depth of unrolling. However, we
conjecture that, by and large, the redundancy index calculated from a single
SAT-BMC run can be a fairly good predictor of the unbounded behavior of a
latch with respect to the given property. This intuition is supported by the data
shown in Figure 2. The graph plots the redundancy indices for 4 randomly chosen
latches from one of our benchmarks, generated from different BMC problems
with varying depth k. Apart from minor fluctuations, the RI values of each latch
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are remarkably consistent, despite having been derived from independent BMC
runs of different depth.

In the next section we develop an algorithm which uses the information about
the redundancy indices of various latches to implement dynamic abstraction
within state space traversal.

4.1 Interleaved Traversal with Dynamic Abstraction

At each step of image computation (measured by the iteration count variable j in
Algorithm 3.2) we can define a candidate set of latches available to be abstracted
through dynamic abstraction.

Definition 2 (Candidate set). The candidate set of latches for iteration j of
image computation in Algorithm 3.2 is denoted Cj and is defined as Cj = {li :
li ∈ L, ρ(li) ≤ kfwd}.

For example, consider the instance in Figure 1 , and suppose kfwd = 15, i.e.,
the Choose Direction heuristic chooses forward traversal for the first 15 steps,
then for time-frame j = 15, the candidate set consists of the first 16 latches, i.e.,
C15 = {l1, l2, . . . , l16}, since the RIs of these latches are no greater than 15. A
modified version of Algorithm 3.2, incorporating dynamic abstraction, is shown
in Algorithm 4.1.

As in Algorithm 3.2, the state space traversal in Algorithm 4.1 can be im-
plemented as purely forward, purely backward or any interleaved combination of
these by an appropriate definition of the Choose Direction function (line 11 of
Algorithm 4.1). For example, if Choose Direction() always returns “backward”
the result will be a purely backward state space traversal. We maintain that an
abstraction refinement algorithm employing dynamic abstraction in combination
with an interleaved state-space traversal can yield a very powerful framework for
invariant checking and this is the focal point of this paper. There are several rea-
sons for this belief. First, as demonstrated in [26] the notion of dynamic abstrac-
tion provides a convenient mechanism to abstract away latches that become
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Interleaved Invariant Check DynamicAbstract (M〈T, I〉, B)

1: Sf
N = I ; Sb

N = B; Sf
C = ∅; Sb

C = ∅;
2: kfwd = kbwd = 0; j = 0;
3: while Sf

C �= Sf
N and Sb

C �= Sb
N do

4: Labs = Choose Abstraction Latches(L);
5: T = Abstract Tr(Labs, T );
6: Sf

N = ∃Xabs . Sf
N ;

7: Sb
N = ∃Xabs . Sb

N ;
8: if Sf

N ∩ Sb
N �= ∅ then

9: return “found error trace”;
10: end if
11: if Choose Direction() = “forward ′′ then
12: Sf

C = Sf
N ;

13: Sf
N = Sf

C ∪ Img(Sf
C);

14: kfwd++;
15: else {Backward direction chosen}
16: Sb

C = Sb
N ;

17: Sb
N = Sb

C ∪ PreImg(Sb
C);

18: kbwd++;
19: end if
20: j++;
21: end while
22: return “no bad state reachable”;

Algorithm 4.1. Interleaved Symb. Invar. Checking with Dynamic Abstraction

“redundant” after a few steps of forward state space traversal, thereby focusing
the invariant check on a smaller, but not necessarily less accurate, abstract model.
On the other hand, [18] and several other works have noted that for certain state
spaces, backward state traversal may be far more efficient than forward traver-
sal. Further, in some failing instances, the optimum means of constructing an
error trace may partly though a forward traversal and partly through a back-
ward one. These two optimization mechanisms appear to be fairly complemen-
tary, especially since dynamic abstraction can simplify the transition relations
for both forward and backward traversals. Thus, a combination of dynamic ab-
straction and interleaved traversal appears to be a reasonable means of harness-
ing the power of both. Second, as noted in [18] and also confirmed by our own
experiments, interleaved traversal can work especially well in the case of failing
properties since the forward and backward traversals can co-operate in the task
of discovering the error trace. Given the fact that all but the last model produced
during iterative abstraction refinement are failing instances, it seems to be an
ideal candidate to benefit from the use of interleaved traversal. Our specific im-
plementation of the interleaved traversal is discussed below, after a discussion of
the Choose Abstraction Latches() function (line 11 in Algorithm 4.1).

As discussed in [26] a key determinant of the performance of dynamic ab-
straction is the latch selection heuristic Choose Abstraction Latches, that



Interleaved Invariant Checking with Dynamic Abstraction 91

decides which latches, out of the current candidate set, should be abstracted at
a given image computation step. The following definition of the latch selection
heuristic allows us to place some correctness guarantees (Theorem 1 below) on
the dynamically abstracted model.

Definition 3 (Choose Abstraction Latches()). This heuristic chooses a
subset of latches in Cj that have not already been abstracted away in previous
iterations, for abstraction in the current iteration j of image computation in
Algorithm 4.1.

Our interleaving heuristic i.e., the Choose Direction function in Algorithm 4.1
maintains a cost for each direction of traversal (i.e., forward and backward) based
on peak BDD size and the increment of BDD size in the last image computation
in that direction. In each iteration, the direction with the lower previous cost is
chosen for traversal, with the exception that the the first few steps of traversal are
always in the forward direction. This is because as per Definition 2 the candidate
set open for abstraction, for both forward and backward traversal grows mono-
tonically with the number of forward image computations performed. Thus, after
a few initial forward images, the transition relation is usually reduced through
dynamic abstraction and this same reduced transition relation (i.e., its inverse)
is used for potential backward traversal, thereby enhancing its efficiency.

Theorem 1. Algorithm 4.1 will not find any counter-example to the given prop-
erty in the first k steps of image computation, where k = kfwd + kbwd.

Proof outline: 1 The proof of this result is along the lines of the main result in [17].
It is based on the observation that the above dynamic abstraction scheme can
be equivalently formulated as a SAT-BMC by unrolling T for k time-frames and
then cutting open the the unrolled latches in the corresponding time-frames at
which these latches were abstracted away by the dynamic abstraction algorithm.
It can be shown that the original POU P is still fully contained in this abstracted
SAT-BMC problem, provided the latches dynamically abstracted during invari-
ant checking conform to Definition 3. Thus, the dynamic abstracted model will
not have any counter-example to the given property in the first k steps. Note
that the above holds for any sequence of forward or backward choices made by
the Choose Direction heuristic in Algorithm 4.1. In that sense Theorem 1 is a
strict generalization of the main result of [26].

4.2 Optimizations

In the following we describe some inexpensive optimizations that can be used to
further improve the performance of a model checking algorithm that performs
dynamic abstraction as described above.

Bypassing the Error Check: A simple corollary of Theorem 1 is the following.

1 The complete proof is omitted for lack of space.
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Corollary 1. The error state check Sf
N ∩ Sb

N �= ∅ (line 8) in Algorithm 4.1 will
always yield false in the first k iterations of the algorithm, k = kfwd + kbwd.

This simple result obviates the need to perform the error state intersection check
(line 8 of Algorithm 4.1) in the first k iterations of image computation. This
check can be fairly expensive at deeper image computation steps and/or when
the target states are not simply the negation of the property but an enlarged
target computed through a few pre-image computation steps. For example, in
case of benchmark D7 in Table 1 the error-state check at depth 11 costs more
than 1600 secs. Note that this result is equally applicable to frameworks that
only use static abstraction.

Early Quantification Re-scheduling: Typically the transition relation (TR)
is maintained in an implicitly conjoined and partitioned form, along with an early
quantification scheduling. During dynamic abstraction some state variables may
be quantified out from the TR. As a result, the original early quantification
scheduling may become sub-optimal to the modified TR. Our implementation
solves this problem by modifying the early quantification scheduling when the
TR changes.

Cone of Influence Reduction: As proposed in [17], an abstraction of some
latches may create opportunities for further abstraction by applying the standard
cone of influence (COI) reduction on the abstracted model. While the optimiza-
tion was proposed in the context of the static abstraction procedure, the same
can be done after each abstraction step in our dynamic abstraction algorithm.
The key point is that any subsequent abstraction due to the COI reduction does
not increase the space of allowable behaviors of the design. Thus, the quality of
the abstraction is not diminished in any way, but the design becomes smaller
and more tractable for the model checking.

5 Experimental Results

Experimental Set-Up: We have implemented the proposed algorithms for
dynamic abstraction and state traversal within the VIS framework [19]. The
static abstraction algorithms of [11,17] have also been implemented in the same
framework, for comparison. We use the CUDD package for BDD computations,
and zChaff [24] as the SAT solver for BMC. The POU extraction in zChaff has
been modified to perform the analysis necessary for dynamic abstraction.

The following specific heuristic for Choose Abstraction Latches() (line
4 of Algorithm 4.1), proposed in [26] has been used for the purpose of these
experiments. More involved and potentially better options are of course possible
and could further enhance the proposed algorithms.

Heuristic: Dynamically abstract just once at �δ · k time-steps, (0 < δ < 1),
and abstract all latches in the candidate set at this point.

The philosophy behind this heuristic is to minimize the overhead of abstrac-
tion by doing it only once and being aggressive by choosing all candidates for
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Table 1. Results: Static Abstraction and Proposed Dynamic Abstraction

Pass/ Concrete Model Static Abstraction Dynamic Abstraction
Problem cex # PIs # FFs # Gates # FFs Time # FFs Fwd Intrlvd

leng. (secs.) (diff.) (secs.) (secs.)
D1 Pass 85 161 1385 101 472 73(-28) 128 13
D2 Pass 118 375 1562 161 >24h(30) 129(-32) 952 288
D3 36 289 654 4826 170 >24h(28) 160(-10) 1069 1400
D4 29 289 654 4823 201 52333 168(-33) 10098 617
D5 60 308 746 3837 123 272 81(-42) 261 216
D6 Pass 330 1158 5155 264 67 204(-60) 41 58
D7 27 356 1644 7408 257 >24h(11) 244(-13) >24h(13) 456
D8 Pass 1015 2971 10044 286 236 216(-70) 100 144
D9 Pass 1950 5564 19161 224 811 187(-37) 114 323

blackjack 5 Pass 7 109 1061 95 460 94(-1) 18104 7143
vsa16a 7 Pass 34 205 1939 108 24 105(-3) 32 8
s38584 2 73 13 615 2575 93 >24h(20) 66(-27) >24h(39) 10506

abstraction. δ is kept fairly low to increase the likelihood of the latches being
redundant for future image computations. We used δ = 0.2 in our experiments.

Since the tools of [11,17] are not publicly available, a direct comparison
against those approaches is neither fair nor intended. However, we have at-
tempted to incorporate the essence of these works and used them to derive
the initial static model on which dynamic abstraction based invariant checking
is applied.

We have tested our tool for safety properties on different modules from four
real-life industrial designs. In addition we have also experimented with circuits
from the VIS Verilog suite [20] and some of the larger ISCAS89 sequential cir-
cuits. In the case of the ISCAS’89 circuits the property is the justification of a
randomly generated state.

All experiments were run on a 3.0 GHz Pentium 4 Linux machine with 1G
RAM, and a 24 hour time-out limit for each problem. Table 1 shows results
for a subset of our benchmarks, representative of most of the interesting sce-
narios we encountered. D1 - D9 are problem instances from in-house industrial
designs, blackjack 5 and vsa16a 7 are benchmarks from the VIS Verilog suite
while s38584 2 is an instance from the ISCAS’89 circuits. The second column
shows if the property is a passing property or the length of the shortest counter-
example if it is a failing property. Column 6 shows the number of latches in the
statically abstracted model, while column 8 reports the number of latches in the
final dynamically abstracted model. Column 7 is the cumulative CPU time for
iterative static abstraction refinement and invariant checking. Columns 9 and 10
report similar times but for dynamic abstraction with forward and interleaved
model checking respectively. Both these times include the time for static ab-
straction as well, since the static abstraction is the starting point for dynamic
abstraction based invariant checking. Note that Column 9 represents the results
of [26], albeit enhanced with the optimizations of Section 4.2. In cases where
the model checking timed out after 24 hours, the number of image computation
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steps successfully completed, in the last iteration of abstraction refinement, is
noted in parenthesis.
Analysis of Results: As shown in Table 1, the proposed method of combin-
ing dynamic abstraction with interleaved state space traversal, during invariant
checking, shows significant improvements over plain static abstraction refine-
ment (column 7) as well as over dynamic abstraction with plain forward invari-
ant checking (column 9), for both passing and failing properties. In some cases,
such as D7, the improvement can be quite dramatic. In a few cases such as D3,
D6, D8 and D9, the interleaved method is moderately slower than dynamic for-
ward invariant checking. These are passing properties, where the forward direc-
tion turns out to be the optimum direction of traversal and any mis-predicted
backward traversal performed by the interleaved method merely serves as an
overhead. In the very rare case, such as blackjack 5, where the both dynamic
abstraction methods are slower than plain static abstraction, the dynamic in-
terleaved method actually improves upon the dynamic forward method, thereby
offsetting some of the losses incurred in using dynamic abstraction. In that sense
the combination of interleaved traversal and dynamic abstraction is a more sta-
ble algorithmic configuration. Overall, our conclusions are that the combination
of interleaved state space traversal with dynamic abstraction, in a framework
for abstraction refinement, can provide significant performance gains over ei-
ther plain static abstraction or even dynamic abstraction with pure forward
traversal. In several cases, this combination can successfully complete the veri-
fication where the other methods time-out. The slow-down due to the overhead
of mis-predicted interleaved traversals is usually moderate and, in our opinion,
an acceptable trade-off considering the stability and significant performance im-
provements offered by the method.

6 Conclusions and Future Work

The notion of dynamic abstraction was recently introduced [26] as a means of
abstracting a model during the process of model checking. In this paper we
have extended the theory and implementation of this idea in several ways. We
have presented algorithms to implement dynamic abstraction within different
state traversal techniques namely forward, backward and interleaved traversal
and formalized the correctness guarantees that can be made under different
traversal algorithms operating on a dynamically abstracted model. We have also
presented several optimizations to enhance the performance of the proposed
algorithms. Our experiments on several large benchmarks from industrial designs
as well as the public domain demonstrate that in several instances the integration
of dynamic abstraction and interleaved traversal is necessary to complete the
invariant check. In other cases the use of interleaved traversal either provide a
significant performance improvement or a modest overhead.

There are several avenues for enhancing the proposed algorithms. One of
the possibilities would be to reduce the overhead that the interleaved traversal
incurs. This could be done by refining the heuristic for choosing the direction
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of traversal or by use of the “2-DD manager” idea proposed in [18]. Another
direction would be to integrate the proposed algorithms into a hybrid framework
combining counter-example guided and proof based abstraction such as the one
proposed in [1].
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Automatic Formal Verification of Liveness for Pipelined 
Processors with Multicycle Functional Units

1 Introduction
Previous work on microprocessor formal verification has almost exclusively addressed
the proof of safety—that if a processor does something during a step, it will do it cor-
rectly—as also observed in [2], while ignoring the proof of liveness—that a processor
will complete a new instruction after a finite number of steps. Several authors used the-
orem proving to check liveness [15][16][17][19][23][28][32][34], but invested exten-
sive manual work. This paper is the first to prove liveness for pipelined processors
with multicycle functional units in an automatic way.

Functional units in recent state-of-the-art processors usually have latencies of up to
20 – 30 cycles, and rarely up to 200 cycles, but it is expected that the memory latencies
in next generation high-performance designs will reach 1,000 cycles [13]. Thus, the
need to develop automatic techniques to prove the liveness of pipelined processors
where the functional units can have latencies of up to thousands of cycles.

In the current paper, the implementation and specification are described in the high-
level hardware description language HDL [46], based on the logic of Equality with
Uninterpreted Functions and Memories (EUFM) [7]. In EUFM, word-level values are
abstracted with terms (see Sect. 4) whose only relevant property is that of equality with
other terms. Restrictions on the style for describing high-level processors [35][36]
reduced the number of terms that appear in both positive and negated equality compar-
isons—and are so called g-terms (for general terms)—and increased the number of

http://www.ece.cmu.edu/~mvelev
mvelev@ece.cmu.edu

Abstract. Presented is a highly automatic approach for proving bounded liveness of 
pipelined processors with multicycle functional units, without the need for the user 
to set up an inductive argument. Multicycle functional units are abstracted with a 
placeholder that is suitable for proving both safety and liveness. Abstracting the 
branch targets and directions with arbitrary terms and formulas, respectively, that are 
associated with each instruction, made the branch targets and directions independent 
of the data operands. The observation that the term variables abstracting branch 
targets of newly fetched instructions can be considered to be in the same equivalence 
class, allowed the use of a dedicated fresh term variable for all such branch targets 
and the abstraction of the Instruction Memory with a generator of arbitrary values. 
To further improve the scaling, the multicycle ALU was abstracted with a 
placeholder without feedback loops. Also, the equality comparison between the 
terms written to the PC and the dedicated fresh term variable for branch targets of 
new instructions was implemented as part of the circuit, thus avoiding the need to 
apply the abstraction function along the specification side of the commutative 
diagram for liveness. This approach resulted in 4 orders of magnitude speedup for a 
5-stage pipelined DLX processor with a 32-cycle ALU, compared to a previous 
method for indirect proof of  bounded liveness, and scaled for a 5-stage pipelined 
DLX with a 2048-cycle ALU.
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ferent p-terms as not equal when evaluating the validity of an EUFM formula, thus
achieving significant simplifications and orders of magnitude speedup. (See [5] for a
correctness proof.)

The formal verification is done with an automatic tool flow, consisting of: 1) the
term-level symbolic simulator TLSim [46], used to symbolically simulate the imple-
mentation and specification, and produce an EUFM correctness formula; 2) the deci-
sion procedure EVC [46] that exploits Positive Equality and other optimizations to
translate the EUFM correctness formula to an equivalent Boolean formula, which has
to be a tautology in order for the implementation to be correct; and 3) an efficient SAT-
solver. This tool flow was used at Motorola [18] to formally verify a model of the
M•CORE processor, and detected bugs.

The rest of the paper is organized as follows. Sect. 2 defines safety and liveness.
Sect. 3 discusses related work. Sect. 4 summarizes the logic of EUFM, the property of
Positive Equality, and efficient translations from EUFM to CNF. Sect. 5 presents a pre-
vious indirect method for proving liveness of pipelined processors by exploiting Posi-
tive Equality. Sect. 6 explains the application of that indirect method to proving the
liveness of pipelined DLX processors having ALUs with latencies of up to 2048
cycles. Sect. 7 describes an abstraction for multicycle ALUs that is applicable to prov-
ing both safety and liveness of pipelined processors. The next three sections present
optimizations that speed up the automatic formal proof of liveness for pipelined pro-
cessors with multicycle functional units: Sect. 8 describes techniques for abstracting
the branch targets and directions of instructions; Sect. 9 makes the observation that the
branch targets of newly fetched instructions can be considered to be in the same equiv-
alence class, and so can be replaced with the same fresh term variable; and Sect. 10
shows an approach to avoid the abstraction function along the specification side of the
commutative correctness diagram for liveness. Sect. 11 presents experimental results,
and Sect. 12 concludes the paper.

2 Definition of Safety and Liveness
The formal verification is done by correspondence checking—comparison of a pipe-
lined implementation against a non-pipelined specification. The abstraction function,
Abs, maps an implementation state to an equivalent specification state, and is com-
puted by flushing [7]—feeding the implementation pipeline with bubbles (combina-
tions of control signals that do not modify architectural state) until all partially
executed instructions are completed. The safety property (see Fig. 1) is expressed as a
formula in the logic of EUFM, and checks that one step of the implementation corre-
sponds to between 0 and k steps of the specification, where k is the issue width of the
implementation. FImpl is the transition function of the implementation, and FSpec is the
transition function of the specification. We will refer to the sequence of first applying
Abs and then FSpec as the specification side of the diagram in Fig. 1, and to the
sequence of first applying FImpl and then Abs as the implementation side.

The safety property is the inductive step of a proof by induction, since the initial
implementation state, QImpl, is arbitrary. If the implementation is correct for all transi-

terms that appear only in positive polarity—and are so called p-terms (for positive
terms). The property of Positive Equality [35][36] allowed us to treat syntactically dif-
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tions that can be made for one step from an arbitrary initial state, then the implementa-
tion will be correct for one step from the next implementation state, Q′Impl, since that
state will be a special case of an arbitrary state as used for the initial state, and so on for
any number of steps. For some processors, e.g., where the control logic is optimized by
using unreachable states as don’t-care conditions, we may have to impose invariant
constraints for the initial state in order to exclude unreachable states. Then, we need to
prove that those constraints are satisfied in the implementation state after one step,
Q′Impl, so that the correctness will hold by induction for that state, and so on for all
subsequent states. (See [1][2] for a discussion of correctness criteria.)

To illustrate the safety property in Fig. 1, let the implementation and specification
have three architectural state elements—Program Counter (PC), Register File, and
Data Memory. Let PCi

Spec, RegFilei
Spec, and DMemi

Spec be the state of the PC, Regis-
ter File, and Data Memory, respectively, in specification state Qi

Spec (i = 0, ..., k) along
the specification side of the diagram. Let PC*

Spec, RegFile*
Spec, and DMem*

Spec be
the state of the PC, Register File, and Data Memory in specification state Q*

Spec,
reached after the implementation side of the diagram. Then, each disjunct equalityi (i =
0, ..., k) is defined as: 

equalityi ← pci ∧ rfi ∧ dmi,

where 

pci ←  (PCi
Spec = PC*

Spec), 
rfi ←  (RegFilei

Spec = RegFile*
Spec),

dmi ←  (DMemi
Spec = DMem*

Spec).

FImpl

FSpec

Abs

QImpl

Abs

Q′Impl

Q∗
Spec

equalityk

Q0
Spec

equality1

=

equality0 ∨  equality1 ∨  . . . ∨  equalityk   =   true
Safety property:

FSpec FSpec

equality2

.  .  .

k steps

1 step

equality0

=

= =

Q1
Spec Q2

Spec Qk
Spec

.  .  .

Fig. 1. The safety correctness property for an implementation processor with issue width k: one 
step of the implementation should correspond to between 0 and k steps of the specification, 
when the implementation starts from an arbitrary initial state QImpl that is possibly restricted by a 
set of invariant constraints.  
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number of instructions. In processors with more architectural state elements, an equal-
ity comparison is conjuncted for each additional state element. Hence, for this imple-
mentation processor, the safety property is:

pc0 ∧ rf0 ∧ dm0 ∨  pc1 ∧ rf1 ∧ dm1 ∨ ... ∨  pck ∧ rfk ∧ dmk  =  true.

We can prove liveness by a modified version of the safety correctness criterion—by
symbolically simulating the implementation for a finite number of steps, n, and prov-
ing that:

equality1 ∨  equality2 ∨  . . . ∨  equalityn × k   =   true (1)

where k is the issue width of the implementation. The formula proves that n steps of
the implementation match between 1 and n × k steps of the specification, when the
implementation starts from an arbitrary initial state that may be restricted by invariant
constraints. Note that (1) guarantees that the implementation has made at least one
step, while the safety correctness criterion allows the implementation to stay in its ini-
tial state when formula equality0 (checking whether the implementation matches the
initial state of the specification) is true. The correctness formula is generated automat-
ically in the same way as the formula for safety, except that the implementation and the
specification are symbolically simulated for many steps, and formula equality0 is not
included. As in the formula for safety, every formula equalityi is the conjunction of
equations, each comparing corresponding states of the same architectural state ele-
ment. That is, formula (1) consists of top-level positive equations that are conjuncted
and disjuncted but not negated, allowing us to exploit Positive Equality when proving
liveness. The minimum number of steps, n, to symbolically simulate the implementa-
tion, can be determined experimentally, by trial and error, or identified by the user after
analyzing the processor (see Sect. 6).

The contribution of this paper is a highly automatic method to prove bounded live-
ness of pipelined processors with multicycle functional units. The proposed method
enables the liveness check for a 5-stage pipelined DLX processor [13] with a 2048-
cycle ALU, while producing 4 orders of magnitude speedup for a pipelined DLX with
a 32-cycle ALU compared to a previous method for indirect proof of bounded liveness
[42] (see Sect. 5).

3 Related Work

Safety and liveness were first defined by Lamport [20]. Most of the previous research
on formal verification of processors has addressed only safety, as also observed in [2].
The most popular theorem-proving approach for proving microprocessor liveness is to
prove that for each pipeline stage that can get stalled, if the stalling condition is true
then the instruction initially in that stage will stay there, and if the stalling condition is
false then the instruction will advance to the next stage. It is additionally proved that if
the stalling condition is true, then it will eventually become false, given the implemen-
tation of the control logic and fairness assumptions about arbiters. Liveness was
proved in this way by Srivas and Miller [34], Hosabettu et al. [15], Jacobi and Kröning

That is, equalityi is the conjunction of pair-wise equality comparisons for all architec-
tural state elements, thus ensuring that they are updated in synchrony by the same
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flushed. However, note that a buggy processor, where the architectural state elements
are always disabled, may pass the check that stall signals will eventually become false,
and that the pipeline will eventually get flushed, as well as satisfy the safety correct-
ness criterion (where formula equality0 will be true), but will fail the liveness check
done here. Using a different theorem-proving approach, Manolios [23] also accounted
for liveness by proving that a given state can be reached from a flushed state after an
appropriate number of steps. McMillan [27] used circular compositional reasoning to
check the liveness of a reduced model of an out-of-order processor with ALU and
move instructions. His method requires the manual definition of lemmas and case-
splitting expressions; the manual reduction of the proof to one that involves two reser-
vation stations and one register; and the manual introduction of fairness assumptions
for the abstracted arbiter. The approaches in the above nine papers will require signifi-
cant manual work to apply to the models that are automatically checked for both safety
and liveness in the current paper. Aagaard et al. [1] formulated a liveness condition,
but did not present results.

Henzinger et al. [14] also enriched the specification, using a different method than
ours, but had to do that even to prove safety of a 3-stage pipeline with ALU and move
instructions. Biere et al. [3][4] enriched a model with a witnessing mechanism that
records whether a property has been satisfied, thus allowing them to model check live-
ness of a communication protocol as safety. Pnueli et al. [29] proved the liveness of
mutual-exclusion algorithms by deriving an abstraction, and enriching it with condi-
tions that allowed the efficient liveness check in a way that implies the liveness of the
original model. A method for indirect proof of liveness for pipelined processors was
presented in [42]—see Sect. 5. Another approach suitable for proving both safety and
liveness of pipelined processors was proposed in [24], but was not applied to designs
with multicycle functional units.

4 EUFM, Positive Equality, and Efficient Translation to CNF

The syntax of EUFM [7] includes terms and formulas. Terms are used to abstract
word-level values of data, register identifiers, memory addresses, as well as the entire
states of memory arrays. A term can be an Uninterpreted Function (UF) applied to a
list of argument terms, a term variable, or an ITE operator selecting between two argu-
ment terms based on a controlling formula, such that ITE(formula, term1, term2) will
evaluate to term1 if formula = true, and to term2 if formula = false. The syntax for
terms can be extended to model memories by means of the functions read and write
[7][39]. Formulas are used to model the control path of a microprocessor, and to
express the correctness condition. A formula can be an Uninterpreted Predicate (UP)
applied to a list of argument terms, a Boolean variable, an ITE operator selecting
between two argument formulas based on a controlling formula, or an equation (equal-
ity comparison) of two terms. Formulas can be negated and combined by Boolean con-
nectives. We will refer to both terms and formulas as expressions. UFs and UPs are
used to abstract the implementation details of functional units by replacing them with

[16], Müller and Paul [28], Kröning and Paul [17], and Lahiri et al. [19]. Sawada [32]
similarly proved that if an implementation is fed with bubbles, it will eventually get
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The efficiency from exploiting Positive Equality is due to the observation that the
truth of an EUFM formula under a maximally diverse interpretation of the p-terms
implies the truth of the formula under any interpretation. A maximally diverse inter-
pretation is one where the equality comparison of a term variable with itself evaluates
to true; that of a p-term variable with a syntactically distinct term variable (a p-equa-
tion) evaluates to false; and that of a g-term variable with a syntactically distinct g-
term variable (a g-equation) could evaluate to either true or false, and can be encoded
with Boolean variables [10][30][41].

In the formal verification tool flow, we can apply an optimization [44] that produces
Boolean formulas with many ITE-trees. An ITE-tree can be translated to CNF with a
unified set of clauses [44], without intermediate variables for outputs of ITEs inside
the tree. ITE-trees can be further merged with one or more levels of their AND/OR
leaves that have fanout count of 1. We can also merge other gate groups [43][44].
Merging of ITE-trees and other gate groups results in fewer variables and clauses, i.e.,
reduced solution space, and so less Boolean Constraint Propagation (BCP) and fewer
cache misses.

5 Indirect Proof of Liveness
This section summarizes one of the results from [42]. To avoid the validity checking of
the monolithic liveness correctness formula (1), which becomes complex for designs
with long pipelines and many features, we can prove liveness indirectly:

THEOREM 1. If after n implementation steps, equality0 = false under a maximally
diverse interpretation of the p-terms, and the safety property is valid, then the liveness
property is valid under any interpretation.

Note that under an interpretation that is not a maximally diverse interpretation of the
p-terms, the condition equality0 may become true, e.g., in the presence of software
loops, or if multiple instructions raise the same exception and so update the PC with
the same exception-handler address. However, the liveness condition (1) will be still
valid, since it can only get disjuncted with other formulas that result from equations
between syntactically distinct p-terms that become equal under an interpretation that is
not a maximally diverse interpretation of the p-terms.

Since equality0 is the conjunction of the pair-wise equality comparisons for all
architectural state elements, it suffices to prove that one of those equality comparisons
is false under a maximally diverse interpretation of the p-terms. In particular, we can
prove that pc0 = false, where pc0 is the equality comparison between the PC state after
the implementation side of the diagram (see Fig. 1), and the PC that is part of the initial
specification state. Note that choosing the Register File or the Data Memory instead
would not work, since they are not updated by each instruction, and so there can be
infinitely long instruction sequences that do not modify these state elements. Note that
proving forward progress—that the PC is updated at least once after n implementation
steps, i.e., proving pc0 = false under a maximally diverse interpretation of the p-

“black boxes” that satisfy no particular properties other than that of functional consis-
tency—that equal values of the inputs to the UF (UP) produce equal output values.
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6 Processor Benchmarks and Their Liveness

Experiments will be conducted with variants of a 5-stage pipelined DLX processor
[13] that can execute ALU, branch, load, and store instructions. The 5 pipeline stages
are: Fetch, Decode, Execute, Memory, and Write-Back. The Execute stage contains an
ALU that can take either a single cycle or up to m cycles to compute the result of an
ALU instruction. The actual latency may depend on the instruction opcode, the values
of the data operands, etc., and so the choice between 1 and m cycles is made non-deter-
ministically [37] in order to account for any actual implementation of the ALU. The
processor benchmarks are named DLX-ALU4, DLX-ALU8, ..., and DLX-ALU2048,
for values of m equal to 4, 8, ..., and 2048, respectively. The branch instructions have
both their target address and their direction (indicating whether the branch is taken or
not taken) computed in the Execute stage in a single cycle. ALU results, data memory
addresses, branch targets, and branch directions depend on the instruction opcode, and
two data operands read from the Register File (in the Decode stage) at locations speci-
fied by source register identifiers. ALU and load instructions also have a destination
register identifier, indicating the Register File location where the result will be stored.
Data hazards are avoided by forwarding logic in the Execute stage. While the ALU is
computing the result of a multicycle operation, the instructions in previous stages are
stalled, and bubbles are inserted in the Memory stage.

To illustrate the choice of number of steps, n, for the liveness proof of one of the
above benchmarks where the ALU has a maximum latency of m cycles, note that the
longest delay before such a processor fetches a new instruction that is guaranteed to be
completed is m + 3 cycles. This will happen if the Decode stage contains a branch that
will be taken, but the Execute stage contains an ALU instruction that will take m
cycles. Then, the branch will be stalled for m – 1 cycles, followed by one cycle to go
through Decode, another cycle to go through Execute (where the branch target and
direction will be computed), a third cycle to go through Memory (where the PC will be
updated with the branch target, and all subsequent instructions that are in previous
pipeline stages will be cancelled), and a fourth cycle to fetch a new instruction that is
guaranteed to be completed since the pipeline will be empty by then. Thus, a correct
version of these processors has to be simulated symbolically for m + 3 steps in order to
fetch a new instruction that is guaranteed to be completed.

7 Placeholder for Abstracting Multicycle Functional Units for 
Proving Safety and Liveness

Multicycle functional units are abstracted with a placeholder that is suitable for prov-
ing both safety and liveness (see Fig. 2), a modified version of a placeholder suitable
for proving only safety [37]. Uninterpreted function ALU abstracts the functionality of
the replaced multicycle functional unit.

terms—is done without the specification. However, the specification is used to prove
safety, thus inductively the correctness for any number of steps.
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computation of the abstraction function by flushing, then the chain of m – 1 latches
will be cleared on the next clock cycle; signal Complete will become true for 1 clock
cycle as long as the placeholder contains a valid instruction in flight, thus completing
that instruction; and signal Stall will be false, thus allowing the instructions in the pre-
vious pipeline stages to advance. Hence, this placeholder of a multicycle functional
unit can be used for proving both safety (by setting Flush to false for one cycle of reg-
ular symbolic simulation, and then setting Flush to true in order to quickly complete
partially executed instructions during flushing) and liveness (by setting Flush to false
for as many cycles as required, and then setting Flush to true in order to quickly com-
plete partially executed instructions during flushing). Multicycle memories are
abstracted similarly, by using a memory model instead of the uninterpreted function ALU.

An alternative implementation of the placeholder is without the feedback loop of
signal CancelLaterMCInstructions that clears the m – 1 latches when a multicycle oper-
ation completes. Instead, constraints are imposed that at most one of the m – 1 latches
contains a valid instruction. These constraints have to be checked for invariance after 1
cycle of regular symbolic simulation.

8 Abstracting the Branch Targets and Directions

The indirect proof of liveness (see Sect. 5) checks that the PC is modified by at least
one new instruction after n implementation steps. However, for this proof it does not
matter what the actual values of the branch targets and branch directions are when the

1

0

Forwarding
Logic

ALUOpcode

Data1

Result

RegWrite. . .IsMCInstr

RegWrite ...

Stall

chain of m  –  1 latches

CancelLaterMCInstructions

Flush

Stall

Complete
Take_m

Take_1

In Fig. 2, when signal Flush is false (during regular symbolic simulation) and a mul-
ticycle instruction is in the pipeline stage of the abstracted functional unit, as indicated
by signal Take_m being true in that stage, then the chain of m – 1 latches will be used
to delay the multicycle computation for m cycles before the result of that computation
is allowed to continue to the next stage. When signal Flush becomes true during the

Fig. 2. Abstracting a multicycle ALU with a placeholder suitable for proving both safety and 
liveness of the pipelined processor. The latency is 1 cycle when signal Take_1 is true (i.e., 
RegWrite is true and IsMCInstr is false) or m cycles when signal Take_m is true (i.e., RegWrite is 
true and IsMCInstr is true). The chain of m –1 latches delays signal IsMCInstr for m cycles in the 
stage of the functional unit. The previous pipeline stages are stalled by signal Stall when the 
functional unit takes more than 1 cycle for an operation. Signal CancelLaterMCInstructions avoids 
the need to impose and check an invariant that at most one latch in the chain has value true.
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uninterpreted predicate, respectively, that depend on the PC of the instruction.
The oracles for the branch target and direction are propagated along the processor

pipeline in the same way as the instruction’s opcode. These oracles are used in the
Execute stage only when proving liveness, by being connected (e.g., by means of a
multiplexor controlled by a signal indicating whether the proof is for liveness) to the
signals for the branch target and branch direction, respectively, which are otherwise
computed by an uninterpreted function and an uninterpreted predicate, respectively,
when proving safety. The introduction of auxiliary state in a processor can be viewed
as design for formal verification. Note that the oracle branch target and branch direc-
tion can be used as abstractions for the final actually chosen branch target and branch
direction, respectively, in a design where several branch targets and branch directions
are prioritized for each instruction. This abstraction technique, using oracles to abstract
result terms and formulas, is general and applicable to other functional units, once it is
proven that their operands are provided correctly for each instruction.

Since the above abstractions make the branch targets and directions independent of
the data operands, we can perform automatically a cone-of-influence reduction to sim-
plify the processor for its liveness proof by removing any circuitry that does not affect
the PC—the only architectural state element in the EUFM formula for the indirect
proof of liveness. That allows us to remove the uninterpreted function and uninter-
preted predicate abstracting the functionality of, respectively, the functional unit com-
puting the branch target and that computing the branch direction in the Execute stage;
the forwarding logic for those functional units; the uninterpreted function abstracting
the functionality of the multicycle ALU in the Execute stage, since the produced result
no longer affects the updating of the PC; the forwarding logic for the multicycle ALU;
the Register File and the Data Memory, since the data operands that they produce no
longer affect the updating of the PC; and all connections for transferring of data oper-
ands. What is left after an automatic cone-of-influence reduction is a timing abstrac-
tion of the pipelined processor with multicycle functional units. The timing abstraction
does not depend on the data operands in the original implementation, but only on sig-
nals that affect the stalling and squashing of the oracle branch targets and oracle
branch directions in the reduced pipelined design.

LEMMA 1. If the timing abstraction of a pipelined processor model satisfies the condi-
tion pc0 = false under a maximally diverse interpretation of the p-terms after n steps,
then that condition is also satisfied by the pipelined processor model itself.

Sketch of the proof: Because of the way that the oracles are generated and then propa-
gated along the processor pipeline together with the instruction opcode, there is a 1-to-
1 correspondence between each instruction and its oracles. Also, since the oracles are
not constrained in any way—i.e., the oracles for the branch targets and branch direc-
tions are arbitrary terms and formulas, respectively—then each such oracle can be

PC is updated. The safety proof already guarantees that those values will be correct.
Thus, we can abstract each instruction’s branch target and direction with an oracle
term and an oracle formula, respectively, such that there is a 1-to-1 relation between
the instruction and its oracles. This can be done by either extending the Instruction
Memory to produce the oracles, or introducing a new uninterpreted function and a new
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pipelined processors with branch prediction, where the actual branch targets are com-
pared for equality with predicted branch targets in order to correct a branch mispredic-
tion, we can use special abstractions that turn the actual and predicted branch targets
into p-terms [42].) Hence, a liveness proof based on arbitrary terms for the branch tar-
gets and arbitrary formulas for the branch directions will account for any outcome of
the branches, and will ensure that the PC will be updated by at least one new instruc-
tion after any sequence of instructions executed during n implementation steps. Then,
there will be no execution scenario of stalling or cancelling of instructions over n
implementation steps, resulting in violation of the indirect liveness condition, pc0 =
false, under a maximally diverse interpretation of the p-terms.

9 Abstracting the Branch Targets of New Instructions with a 
Dedicated Term Variable

Recall that we want to prove that formula pc0 is false under a maximally diverse inter-
pretation of the p-terms, which implies that equality0 = false, and thus from Theorem 1
that the liveness condition holds (see Sect. 5). That is, we want to prove that the repre-
sentation of pc0 as (PC0

Spec = PC*
Spec) is false under a maximally diverse interpreta-

tion of the p-terms, where PC0
Spec is the PC term after flushing the implementation

along the specification side of the diagram in Fig. 1, and PC*
Spec is the PC term after n

regular implementation steps followed by flushing along the implementation side of
the diagram.

After abstracting the branch targets with arbitrary terms, the term for PC0
Spec will

be a nested-ITE expression that has as leaves the term variables for branch targets of
instructions that are initially in the pipeline. The term for PC*

Spec will too be a nested-
ITE expression that also has as leaves all of those term variables, as well as the terms
for the branch targets of new instructions fetched during the n regular implementation
steps. Because of modeling restrictions [35][36], all branch targets will appear as p-
terms. Thus, in formula pc0 the branch target p-terms of new instructions will be com-
pared for equality with only branch target p-terms of instructions that are initially in
the pipeline. Since the branch target p-terms of new instructions are syntactically dis-
tinct from the branch target p-terms that are initially in the pipeline, then such low-
level equations will simplify to false when evaluating pc0 under a maximally diverse
interpretation of the p-terms. The only low-level equations in pc0 that will evaluate to
true are those where both arguments are the same p-term variable that is initially in the
pipeline. Hence, the value of pc0 under a maximally diverse interpretation of the p-
terms will be preserved if all branch target p-terms of new instructions are considered
to be in the same equivalence class, representing branch target p-terms that are syntac-
tically distinct from those that are initially in the pipeline. This observation allows us
to abstract the branch targets of newly fetched instructions with the same dedicated

viewed as a “placeholder” for the actual value of a branch target or a branch direction,
respectively. The safety proof already guarantees that any actual branch target and
branch direction will be computed correctly. Furthermore, since no control decisions
are made based on the values of the oracles for the branch targets, then those oracle
terms will be classified as p-terms, allowing us to exploit Theorem 1. (In the case of
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term to a term for the sequential instruction address. Hence, applications of that unin-
terpreted function will also appear as leaves of term PC*

Spec. Applying the above rea-
soning, we can replace all applications of that uninterpreted function with the
dedicated fresh term variable used to abstract the branch targets of newly fetched
instructions, since the PC is not updated with its sequential values during flushing
along the specification side of the diagram. However, this will result in updating the
PC with the dedicated fresh term variable on many clock cycles, and then in fetching
the same symbolic instruction from the Instruction Memory on the next cycles. In
order to prove liveness for an arbitrary instruction sequence executed over n imple-
mentation steps, we can abstract the Instruction Memory with a generator of arbitrary
values [37], thus producing a completely arbitrary symbolic instruction and associated
oracles on every clock cycle. As before, we will prove that there is no execution sce-
nario that will prevent the fetching and completion of at least one new instruction.

10 Avoiding the Abstraction Function Along the Specification Side 
of the Diagram

Instead of checking that (PC0
Spec = PC*

Spec) is false under a maximally diverse inter-
pretation of the p-terms, we can check that (new_PC_var = PC*

Spec) is true under a
maximally diverse interpretation of the p-terms, thus proving that the PC is overwrit-
ten with the dedicated fresh term variable new_PC_var after all execution sequences
of length n. If that holds, then PC*

Spec evaluates to new_PC_var under a maximally
diverse interpretation of the p-terms, so that (PC0

Spec = PC*
Spec) is equivalent to

(PC0
Spec = new_PC_var), which will be false under a maximally diverse interpretation

of the p-terms, since new_PC_var is not a leaf of PC0
Spec because by the definition of

flushing new_PC_var is not written to the PC along the specification side of the dia-
gram for liveness. Thus, we avoid the specification side of the diagram, since PC0

Spec
is no longer needed.

Additionally, we can automatically introduce an auxiliary circuit that when simu-
lated symbolically will construct a formula that is equivalent to the formula
(new_PC_var = PC*

Spec) but is much simpler to evaluate. Intuitively, we can push the
equation (new_PC_var = PC*

Spec) to the leaves of PC*
Spec, where PC*

Spec is a nested-
ITE expression with leaves that are term variables representing branch targets, and
ITE-controlling formulas that are the enabling conditions for the updates of the PC
along the implementation side of the diagram for liveness. Then, we can introduce an
auxiliary circuit where a new latch is used to track whether each new update of the PC
has value that is equal to new_PC_var, such that the latch is initialized with false, since
the initial PC value is syntactically different from new_PC_var. This latch is updated
under the same conditions that control the PC updates, but with the formula
(new_PC_var = new_PC_term), where new_PC_term is the new term that is written to

fresh term variable. By reducing the number of distinct p-term variables that are leaves
of the nested-ITE arguments of equation pc0, we will improve the efficiency of evalu-
ating pc0 under a maximally diverse interpretation of the p-terms.

Note that along the implementation side of the diagram, the PC is also updated with
SequentialPC terms produced by an uninterpreted function that maps the current PC
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that pipeline latch is syntactically equal to new_PC_var. This transformation replaces
the term-level signal for branch targets with a bit-level signal, having initial values
false in all pipeline latches (since the term variables representing the initial state of
branch targets in pipeline latches are syntactically distinct from new_PC_var), while
the value of this signal in the first pipeline stage is true (since the original term-level
signal there is exactly new_PC_var that is fed both to the PC instead of the Sequen-
tialPC and to the first pipeline latch). This transformation is applied entirely automati-
cally. Thus, we obtain a modified circuit, where a new latch records whether the PC
has been updated with new_PC_var, such that the new latch is controlled by the enable
signal for the original PC (that is no longer needed), but is updated with formulas. The
formula built in the new latch represents directly the result from evaluating
(new_PC_var = PC*

Spec) under a maximally diverse interpretation of the p-terms, and
thus avoids the increase in memory and CPU time necessary for an EUFM decision
procedure to evaluate (new_PC_var = PC*

Spec). Damm et al. [9] also reduced the
domain to {0, 1} when formally verifying pipelines with a certain structure.

11 Results

The processor benchmarks from Sect. 6 were first checked for safety—each bench-
mark required less than 0.2 seconds—and then for liveness—see Tables 1 – 5. The
term-level symbolic simulator TLSim [46] was used to symbolically simulate all mod-
els. The resulting EUFM correctness formulas were translated to equivalent proposi-
tional formulas by the decision procedure EVC [46] that then applied efficient
translations to CNF [43][44][45]. Equations between g-term variables were encoded
with the eij encoding [10]. The SAT-solvers siege_v4 [31] and BerkMin621 [11][12]
—two of the top performers in the SAT’03 competition [21]—were used for all exper-
iments; siege_v4 was faster on all of the resulting CNF formulas, but could not process
a formula with more than 219 CNF variables (see Table 2)—that formula was solved
with BerkMin621. The computer was a Dell OptiPlex GX260 with a 3.06-GHz Intel
Pentium 4, having a 512-KB on-chip L2-cache, 2 GB of memory, and running Red Hat
Linux 9.0.

From Table 1, the previous method for indirect proof of liveness [42] (see Sect. 5)
scaled up to the model with a 32-cycle ALU, DLX-ALU32, for which the proof took
2,483 seconds.

Table 2 shows the results after abstracting the branch targets and branch directions
with oracles, thus making the branch targets and directions independent from the data
operands, and then performing automatically a cone-of-influence reduction to elimi-
nate all logic associated with the computation, transfer, and storage of operands (see
Sect. 8). The time for the automatic cone-of-influence reduction was less than 0.1 sec-
ond for each benchmark and is included in the time for symbolic simulation with

the PC in that clock cycle. Furthermore, we can apply automatically a retiming trans-
formation [25][26], and move the equation (new_PC_var = new_PC_term) across
pipeline latches that provide versions of new_PC_term in different clock cycles. The
effect is to replace the term-level signal for a version of new_PC_term in each pipeline
latch with a bit-level signal, indicating whether the initial version of new_PC_term in

108 M.N. Velev 



Processor
CNF Formal Verification Time [sec]

Variables Clauses Literals TLSim EVC SAT Total

DLX-ALU4 3,249 32,239 142,749 0.02 0.49 0.05 0.56

DLX-ALU8 7,905 102,699 555,272 0.03 5.72 0.22 5.97

DLX-ALU16 18,597 381,414 2,937,085 0.03 42.53 1.36 44

DLX-ALU32 63,285 2,137,614 26,113,861 0.06 2,462.94 20.20 2,483

Processor
CNF Formal Verification Time [sec]

Variables Clauses Literals TLSim EVC SAT Total

DLX-ALU32 23,735 171,974 551,002 0.04 1.24 0.32 1.60

DLX-ALU64 165,159 1,195,077 3,841,960 0.08 12.31 37.59 50

DLX-ALU128 784,587 6,198,558 20,833,828 0.19 100.68 157.13a

a. BerkMin621 was used, since siege_v4 cannot process CNFs with more than 219 variables.

258

DLX-ALU256 —— —— —— 0.39 > mem. —— ——

Processor
CNF Formal Verification Time [sec]

Variables Clauses Literals TLSim EVC SAT Total

DLX-ALU32 1,827 34,979 105,580 0.04 0.29 0.09 0.42

DLX-ALU64 5,635 220,243 663,052 0.08 1.79 0.88 2.75

DLX-ALU128 19,395 1,566,643 4,708,684 0.18 18.26 11.11 30

DLX-ALU256 71,491 11,832,947 35,532,748 0.46 234.36 158.13 393

Processor
CNF Formal Verification Time [sec]

Variables Clauses Literals TLSim EVC SAT Total

DLX-ALU32 1,991 23,857 72,519 0.05 0.26 0.11 0.42

DLX-ALU64 5,959 130,369 392,887 0.11 1.08 0.61 1.80

DLX-ALU128 20,039 854,369 2,566,551 0.33 8.60 2.60 12

DLX-ALU256 72,775 6,181,281 18,550,615 1.78 92.30 36.24 130

TLSim. This approach produced 3 orders of magnitude speedup for DLX-ALU32,
reducing the total time for the liveness check from 2,483 seconds to 1.6 second
(1,552× speedup). For this benchmark, the CNF variables were reduced almost 3×, the
clauses more than 10×, and the literals almost 50×. The approach enabled scaling up to
the model with a 128-cycle ALU, for which the proof took 258 seconds.

Table 1. Results from the previous method for indirect proof of liveness by proving pc
0
 = false

under a maximally diverse interpretation of the p-terms [42]  

Table 2. Results from indirect proof of liveness after also abstracting the branch targets and 
branch directions with oracles, and performing a cone-of-influence reduction 

Table 3. Results from indirect proof of liveness after also using a dedicated fresh term variable 
for all branch targets of newly fetched instructions, and abstracting the Instruction Memory 
with a generator of arbitrary values  

Table 4. Results from indirect proof of liveness after also abstracting the multicycle ALU with 
a placeholder without feedback loops  
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Table 4 presents the results after abstracting the multicycle ALU with a placeholder
without feedback loops, and using a constraint to restrict the initial state of that place-
holder so that it contains at most one valid instruction in the chain of m – 1 latches.
Checking the invariance of this constraint took less than 1 second for each of the
benchmarks. This approach resulted in 3× speedup of the liveness check for the model
with a 256-cycle ALU, DLX-ALU256, reducing the total time from 393 seconds to
130 seconds. Furthermore, while the CNF variables increased only slightly, the CNF
clauses and literals were almost halved for DLX-ALU128 and DLX-ALU256.

Table 5 presents the results after implementing the equation with the dedicated fresh
term variable for the new PC values as an auxiliary circuit and avoiding the specifica-
tion side of the diagram (see Sect. 10). The auxiliary circuit was introduced automati-
cally—that required less than 0.2 seconds for each benchmark and the exact time is
included in the time for symbolic simulation with TLSim. This approach resulted in a
6.5× speedup for the model with a 256-cycle ALU, DLX-ALU256, reducing the total
time from 130 seconds to 19 seconds, while the CNF variables, clauses and literals
were reduced by an order of magnitude. Most importantly, this approach enabled the
scaling for the model with a 2048-cycle ALU, DLX-ALU2048, for which the liveness
check took 6,058 seconds. Note that the speedup for DLX-ALU32 is 4 orders of magni-
tude relative to the previous method for indirect proof of liveness (see Table 1).

12 Conclusions
Presented was an approach for proving liveness of pipelined processors with multicy-
cle functional units, without the need for the user to set up an inductive argument. The

Processor
CNF Formal Verification Time [sec]

Variables Clauses Literals TLSim EVC SAT Total

DLX-ALU32 837 6,562 20,768 0.05 0.09 0.08 0.22

DLX-ALU64 1,783 21,278 63,129 0.11 0.22 0.35 0.68

DLX-ALU128 3,422 71,234 226,927 0.32 0.78 0.89 1.99

DLX-ALU256 6,995 259,793 914,040 1.77 3.46 13.95 19

DLX-ALU512 13,907 978,001 3,465,464 8.24 19.79 43.22 71

DLX-ALU1024 27,731 3,790,673 13,483,512 71 252 210 533

DLX-ALU2048 51,276 16,992,534 55,198,573 899 4,117 1,042 6,058

Table 5. Results from indirect proof of liveness after also implementing the equation with the 
dedicated fresh term variable for the new PC values as an auxiliary circuit and avoiding the 
specification side of the diagram 

of the liveness check for the model with a 64-cycle ALU, DLX-ALU64, reducing the
total time from 50 seconds to 2.75 seconds. The speedup was more than 8× for the
model with a 128-cycle ALU, DLX-ALU128, for which the total time was reduced
from 258 seconds to 30 seconds. Most importantly, this approach enabled scaling up to
the model with a 256-cycle ALU, for which the proof took 393 seconds.

generator of arbitrary values. This approach produced an order of magnitude speedup

Table 3 presents the results after using a dedicated fresh term variable for all branch
targets of newly fetched instructions, and abstracting the Instruction Memory with a
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Abstract. Most computer-aided design frameworks rely upon building BDD
representations from netlist descriptions. In this paper, we present efficient algo-
rithms for building BDDs from netlists. First, we introduce a dynamic scheduling
algorithm for building BDDs for gates of the netlist, using an efficient hybrid of
depth- and breadth-first traversal, and constant propagation. Second, we introduce
a dynamic algorithm for optimally leveraging constraints and invariants as don’t-
cares during the building of BDDs for intermediate gates. Third, we present an
automated and complete case splitting approach which is triggered by resource
bounds. Unlike prior work in case splitting which focused upon variable cofac-
toring, our approach leverages the full power of our don’t-caring solution and
intelligently selects arbitrary functions to apply as constraints to maximally re-
duce peak BDD size while minimizing the number of cases to be explored. While
these techniques may be applied to enhance the building of BDDs for arbitrary
applications, we focus on their application within cycle-based symbolic simu-
lation. Experiments confirm the effectiveness of these synergistic approaches in
enabling optimal BDD building with minimal resources.

1 Introduction

Many applications in computer-aided design rely to some degree upon building BDD
representations from netlist descriptions, such as combinational and sequential equiva-
lence checking, bounded, unbounded, and inductive property checking, and design op-
timization and abstraction algorithms. Even modern satisfiability solvers, increasingly
finding applications in domains for which BDD-based techniques were long consid-
ered the only alternative (such as unbounded verification), are likely to use a hybrid-
algorithm scheme integrating BDDs for optimality [16,15].

In this paper, we present an efficient set of synergistic algorithms for building BDDs
from a netlist. First, we present a new scheduling algorithm for optimal BDD building.
Our proposed resource-constrained interleaved depth-first and (modified) breadth-first
schedule heuristically converges upon an optimal schedule for building BDDs. The
scheme dynamically alternates between a depth-first and breadth-first schedule with
progressively increasing resources until all BDDs for the netlist nodes have been built.
Such a scheme combines the advantages of building BDDs with either of the two sched-
ules, and augments it further by doing so in a resource-constrained manner resulting in
a robust summation of their strengths. Furthermore the resource-constrained scheme
handles constant propagation very efficiently which is particularly effective in property
checking and equivalence checking frameworks.

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 114–128, 2005.
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Second, we present a novel method to take advantage of constraints and invari-
ants to optimize intermediate BDDs. Constraints arise as user-specified restrictions of
the environment, and also as a means to perform manual case splitting for computa-
tional efficiency. Essentially, constraints and invariants are applied as don’t-cares when
building BDDs in an attempt to optimize their size by heuristically factoring in the con-
straints early. This is closely intertwined with the scheduling algorithm described above
such as to realize its benefits at each step of the BDD building process. Additionally,
this is controlled by BDD size thresholds resulting in a tight and robust algorithm that
dynamically trades-off resources invested with the desired reduction in BDD sizes.

Third, we describe an automatic and complete case splitting strategy that decom-
poses the problem into smaller problems, thus enabling building BDDs of the netlist
without exceeding resources. In addition to case splitting on inputs, we present tech-
niques for case splitting on internal signals by constraining them to constant values,
and propagating these constraints to other BDDs. This is equivalent to restricting the
inputs in the support of the chosen internal signal to values that cause it to assume the
selected constant value. Note that this nicely interacts with the resource-constrained
BDD building and its efficient constant propagation, and with the don’t-care optimiza-
tion of intermediate node BDDs. We additionally present new heuristics to choose sig-
nals to case split upon. Completeness is ensured by applying all possible values to the
case split inputs and signals. The method gracefully degrades into underapproximate
analysis once global resources are exceeded by not exploring all case split branches.

In this paper we present the described algorithms in the context of a cycle-based
symbolic simulation (CBSS) [5] engine. A CBSS performs a cycle-by-cycle symbolic
simulation of the design under test, and thus extends the cycle simulation methodology
to symbolic values. The simulator essentially performs forward bounded symbolic sim-
ulation starting from the initial states. Symbolic values (represented as BDD variables)
are assigned to the inputs in every cycle and propagated through the circuit to the out-
puts and state variables. This technique enables simulating large input spaces in parallel
due to the inputs assuming symbolic values at each time-step. The bottleneck of the ap-
proach lies in the possible explosion of the BDD representations of the netlist nodes
and state variables; this is alleviated by our proposed BDD-building scheme, don’t-care
optimization, and case splitting strategy.

We briefly describe synergies of this engine with other transformation and verifi-
cation algorithms in a Transformation-Based Verification (TBV) [18] framework. By
utilizing a sequence of transformation engines we may achieve significant reductions
in the size of the design in a manner that benefits simulating it symbolically using the
described algorithm. Additionally, the simulator may be leveraged as a falsification and
proof algorithm in a number of settings.

Related Work. Other researchers [20,21,23] have studied various scheduling tech-
niques (e.g., DFS, BFS, hybrid) for BDD operations inside a BDD package, eg. in which
order to traverse the BDD sub-graphs when ANDing two BDDs. The order of process-
ing in BDD operations themselves is a different (and independent) question from the
order in which BDDs for gates in a netlist are built. The latter question pertains to our
work, and has also been studied by Aloul et al. [2]. They propose the use of partitioning
and placement information to obtain a min-cut based scheduling for the gates, i.e. gates
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which are close together in the circuit are scheduled close together as well. A drawback
of their method is that they spend a considerable amount of time obtaining a schedule.
Our method is more robust and dynamically adapts itself to different circuit topologies.

Rather then looking at a schedule for the whole netlist, Murgai et al. [19] delve into
finding an optimal schedule for combining BDDs at the inputs of a multi-input AND
gate when attempting to build the BDD for the gate output. They select which two BDDs
to combine next based on a size- and support-based analysis of the candidate BDDs.
Their approach is complementary to our approach and may easily be integrated into our
overall netlist schedule. DFS and BFS are commonly used schedules for building BDDs
for netlists. We extend these by proposing a hybrid DFS-BFS schedule for this task and
further optimize by building BDDs in a resource-constrained manner and propagating
constants efficiently.

Algorithms for optimizing BDDs with respect to don’t-care sets has been studied
in [10,11]. We utilize and extend these algorithms by dynamically choosing the BDD-
minimization algorithm based on size thresholds. We additionally propose the novel
application of constraints as don’t-cares during intermediate BDD building which often
substantially reduces peak BDD size.

Wilson et al. [22] use ternary symbolic simulation (X-values) to abstract internal
nodes to deal with the computational complexity. They also briefly mention case split-
ting on input variables, but do not detail their algorithms for selecting case split nodes,
or the management of case splits. Our method extends their work by also being able
to split upon internal nodes and using different heuristics to select nodes to case split
upon. Completeness in our approach is ensured by symbolically simulating all possible
values of the case split inputs and signals, and is handled automatically unlike the man-
ual case splitting technique presented in [1]. In contrast to the approximating approach
presented by Bertacco et al. [5,6] our approach is complete in that it checks the design
exhaustively.

A recent body of work addresses the generally exponential relation between the
number of variables in the support of a BDD and its size by reparameterizing the rep-
resentation onto a smaller set of variables, e.g. [4]. This technique has been extended to
cycle-based symbolic simulation by reparameterizing unfolded input variables [5,6,8].
Such approaches are complementary to the techniques presented in this paper. Our tech-
niques may be used to more efficiently compute the desired BDDs for the functions to
be reparameterized. After reparameterization, our approach may again be used to con-
tinue the computations, seeded by the results of the reparameterization.

Organization. The rest of the paper is organized as follows. The next section (Sec-
tion 2) introduces some notation used throughout the paper to aid in describing our
approach. Section 3 gives a high-level overview of the CBSS algorithm. In Section 4
we present an optimal scheduling technique for building BDDs for gates in a netlist
representation of a design. Next we describe a method to optimally utilize constraints
and invariants in Section 5. Section 6 describes efficient techniques to perform case
splitting to deal with the complexity of symbolic analysis, and Section 7 delves into
synergies of symbolic simulation with other algorithms in a Transformation-Based Ver-
ification framework. Lastly we present experimental results in Section 8, followed by
concluding the paper.
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2 Netlists: Syntax and Semantics

A netlist is a tuple N = 〈〈V,E〉,G,Z〉 comprising a directed graph with nodes V and
edges E ⊆ V ×V . FunctionG : V �→ types represents a semantic mapping from nodes
to gate types, including constants, primary inputs (i.e., nondeterministic bits), registers
(denoted as the set R ⊂ V ), and combinational gates with various functions. Function
Z : R �→ V is the initial value mapping Z(v) of each register v, where Z(v) may not
contain registers in its transitive fanin cone. The semantics of a netlist N are defined in
terms of traces: {0, 1} valuations to netlist nodes over time which are consistent with
G. We denote the value of gate v at time i in trace p by p(v, i).

Our verification problem is represented entirely as a netlist, and consists of a set of
targets T ⊆ V correlating to a set of properties AG(¬t), ∀t ∈ T . We thus assume that
the netlist is a composition of the design under test, its environment (encoding input
assumptions), and its property automata. The goal of the verification process is to find
a way to drive a ‘1’ to a target node, or to prove that no such assertion of the target is
possible. If the former, a counterexample trace showing the sequence of assignments to
the inputs in every cycle leading up to the fail is generated.

A set of constraints C ⊆ V may be used to filter the stimulus that can be applied
to the design. In the presence of constraints, a target t ∈ T is defined to be hit in trace
p ∈ P at cycle i if p(t, i) = 1 and p(c, i′) = 1 for all c ∈ C, i′ ≤ i. A target is
unreachable if it cannot be hit along any path. Algorithmically, when searching for a
way to drive a ‘1’ to a target, the verification process must prune its search along paths
which violate constraints.

A set of invariants I ⊆ V specify properties inherent in the design itself. I.e. in-
variants will always evaluate to ‘1’ in every time-step along every trace, at least until a
constraint is violated. Invariants encode “truths” about a design that may be utilized as
constraints to tighten overapproximate techniques (such as induction) to enhance proof
capability. Invariants may be generated using a variety of mechanisms, e.g. the negation
of targets previously proven unreachable.

We map all designs into a netlist representation containing only primary inputs,
one “constant zero” node, 2-input AND gates, inverters, and registers, using straight-
forward logic synthesis techniques to eliminate more complex gate types [16]. Inverters
are represented implicitly as edge attributes in the representation.

3 Background

A Cycle-based Symbolic Simulator (CBSS) [5] performs a cycle-by-cycle symbolic
simulation of the design under test, typically using BDDs. It applies symbolic values at
the inputs in every cycle, and propagates those to the state-variables and targets. Hence,
state-variables and targets are always expressed in terms of symbolic input values, i.e.,
as Boolean functions of the symbolic inputs applied in the current and all prior cycles. If
a target is hit, counterexample traces are generated by simply assigning concrete values
to the symbolic input values in the cycles leading up to the fail.

Figure 1 gives an outline of the algorithm. The algorithm applies symbolic in-
puts in the form of new BDD variables at the inputs in every cycle, in func-
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Algorithm cycle_sym(num cycles) {
for (cycle num = 0; cycle num ≤ num cycles; cycle num++) {

create_variables(inputs); // Create new BDD variables for inputs in the current cycle
if (cycle num == 0) {

build_node_bdds(initial state fns); // Build BDDs for the initial states
update_state_variables(initial state fns); // Initialize the design

}
build_node_bdds(constraints); // Build BDDs for the constraints
build_node_bdds(targets); // Build BDDs for the targets
constrain_node_bdds(targets,constraints); // Constrain target BDDs
check_targets(targets); // Check targets for being hit
if (all_targets_solved(targets)) return;
build_node_bdds(next state fns); // Build BDDs for the next-functions
update_state_variables(next state fns); // Update state-vars

}
}

Fig. 1. Generic cycle-based symbolic simulation algorithm

tion create_variables. At the outset, BDDs for the initial-states of the state-
variables are computed and stored at the respective state-variables via function
update_state_variables. Next, BDDs for the constraints and targets are obtained by
evaluating the combinational logic of the netlist starting with the new BDD variables
at the inputs and the current BDDs at the state-variables. The computation of the con-
straints ANDs the constraint valuations (BDDs) from the previous cycles to the BDDs
obtained for the constraint nodes in the current cycle. These “accumulated” constraint
BDDs are then ANDed with the target BDDs (function constrain_node_bdds) before
the targets are checked for being hit in function check_targets to ensure that the target
valuations are consistent with the care set defined by the constraints. Thereafter, the
combinational next-state logic of the state-variables is evaluated (again starting at the
current BDD variables of the primary inputs and current state-variable BDDs), followed
by updating the state-variables with the valuations obtained at the respective next-state
functions. The process is iterated until all targets are solved (i.e. hit) or the design has
been simulated symbolically for the specified maximum number of cycles.

4 Dynamic BDD Scheduling Algorithm

The bulk of the time during symbolic simulation is spent building BDDs for nodes in
a netlist graph (function build_node_bdds in Fig. 1). A set of nodes whose BDDs
are required to be built at each step, called “sinks,” are identified. Sinks correspond to
targets, constraints, invariants, initial-state and next-state functions of state variables.
BDDs of some netlist nodes are available at the beginning of each cycle, namely those
of the current content of state-variables, and new BDD variables created for the primary
inputs (function create_variables in Fig. 1). The BDD building task is to compute
BDDs for the sink nodes, starting at nodes for which BDDs exist, according to the
semantics of the gates in the underlying combinational network.

It is known that different schedules for building BDDs for nodes of a netlist lead
to significantly different peak numbers of BDD nodes [19,2]. It is of utmost impor-
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tance that this peak number be kept as low as possible. A large number of BDD nodes
results in bad memory and cache performance, and severely degrades performance of
expensive optimization algorithms such as Dynamic Variable Reordering (DVO) and
Garbage Collection. Optimal DVO has an impractically high computational complexity
in the worst case (the problem is known to be NP-Hard [7]). Practical DVO approaches
look for local minima based on time or memory limitations. They are likely to find
better variable orderings when they are called on smaller number of active BDD nodes.

The BDDs for the sink nodes are built topologically starting at the inputs and state-
variables, nodes for which BDDs exist at the beginning of a cycle. Two standard and
commonly used schedules for building BDDs are depth-first (DFS) traversal of the
netlist starting at the sink nodes, and breadth-first (BFS) traversal starting at the inputs
and state-variables. Each of the two schedules have certain advantages and drawbacks
depending on the structure of the netlist. Intuitively, when a netlist has many “indepen-
dent components” which do not fan out to other parts of the netlist, DFS is often more
efficient. This is because it builds BDDs for the components successively, hence only
has the intermediate BDDs of a single component “alive” at any time. The algorithm is
able to free BDDs for nodes in the component as soon as BDDs of their fanouts have
been built. In contrast, the levelized nature of BFS builds BDDs of all components si-
multaneously causing many intermediate BDDs to be “alive” at the same time. But if a
netlist node n has many fanouts, each processed by DFS along separate branches, the
levelized BFS schedule is likely to perform better. The BDD for n can be freed as soon
as all fanout gates of n are built, which often happens sooner with BFS particularly
when the fanouts of n are level-wise close to n. This reduces the average “lifetime” of
BDDs thus reducing the peak number of alive nodes. The experimental results in Sec-
tion 8 demonstrate that each method outperforms the other method on some examples.

We extend the standard DFS- and BFS-based BDD building algorithms by applying
them in a resource-constrained manner, using the algorithm of Figure 2. The algorithm
builds BDDs for netlist nodes per the chosen schedule, but builds BDDs for gates in the
netlist only up to a certain BDD size limit, i.e. it gives up building the BDD for a node
if it exceeds an imposed size limit. After all node BDDs within this limit have been
built, the limit is increased and the algorithm is applied again. We extend this further
by alternating between DFS- and BFS-based schedules. Once all node BDDs within the
current size limit have been built, the algorithm increases the size limit and switches to
the other BDD building schedule. Such an interleaved hybrid DFS-BFS scheme brings
together both a DFS and a BFS scheme in a tight and robust integration combining the
advantages of both, and alleviating some of their drawbacks. The new scheme works in
a “push-pull” manner by going back and forth between the two schedules. The DFS or
the “pull” scheme uncovers any paths building BDDs along which may suffice to build
the BDD for a sink node. The “push” or the levelized BFS traversal causes BDDs to
be propagated quickly from the inputs toward the outputs with a tight control on the
consumed resources.The resource limits further ensure that the overall algorithm does
not get stuck in any one computation that does not contribute to the final result.

Building BDDs iteratively in a resource-constrained manner has several advantages
over conventional approaches. First, since we restrict the BDD sizes at each iteration,
DVO algorithms are able to converge on a good variable order when BDDs are small,
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causing larger BDDs that are computed later to be more compact and smaller. Second, the
resource-constrained scheme ensures that nodes that have small BDDs can be computed
and gotten out of the way early (and subsequently freed), to “make way” for larger BDDs
later. Third, the resource-constrained algorithm can uncover and propagate constants very
effectively. Note that if an input to an AND gate evaluates to a constant ‘0’ there is no need
to evaluate its other input function. Traditional BDD building approaches may spend a
large amount of time and memory computing the BDD of that other fanin node function.
Our resource-bounded scheme will effectively iterate between evaluating the function of
both the fanin nodes under increasing size limits. If BDD size limits along either branch
are exceeded, the scheme gives up building the BDD for this branch and moves on to
the next node in the schedule, heuristically discovering the constant without the need
to evaluate the more complex branch. This situation arises frequently in real designs,
e.g. at multiplexers where some multiplexer data input functions may have significantly
higher BDD complexity than the others and the selector signal is a constant, thus enabling
the multiplexer to be evaluated by sampling the simpler data input. Once we discover a
constant at a node we recursively propagate it along all the fanouts of this node.

We generalize this further to efficiently derive constants at partially evaluated multi-
input AND (and OR) gates. It is frequently the case that the BDD for such a gate cannot
be computed due to exceeding BDD size limits on some of the inputs, but the available
BDDs together already imply a constant for the gate output, for example due to compli-
mentary inputs along two branches. We recognize and exploit this situation by building
a “partial” BDD for the multi-input AND structure by successively combining BDDs
of the available fanin nodes within the current BDD size limit. If this evaluates to a
constant at any point, we don’t need to build the BDDs for the remaining fanin nodes,
and instead we trigger constant propagation as described above.

5 Dynamic Don’t Caring Under Constraints and Invariants

Constraints are often used in verification to prune the possible input stimulus of the
design. Semantically, the verification tool must discard any states for which a constraint
evaluates to a ‘0’. In that sense, constraints impose “hard restrictions” on the evaluations
performed by the verification tool, splitting the input space into two parts - the “valid”
or the “care” set, and the “invalid” or the “don’t-care” set. In the CBSS algorithm this
is achieved by ANDing the accumulated constraints of the current and past cycles to
the targets before they are checked for being hit. Recall that, during overapproximate
search, our framework treats invariants as constraints.

We have found that constraints may be efficiently exploited as don’t-cares to opti-
mize intermediate BDDs during the course of the overall computation. This is achieved
by modifying the intermediate BDDs in a manner such that they evaluate to the same
Boolean values within the care set, but they are free to assume values in the don’t-care
set towards the goal of minimizing the size of the BDD [10,11]. In some applications of
constraints, like manual case splitting [13], or automatic case splitting (cf. Sect. 6), this
minimization is key to the successful completion of the symbolic simulation without
memory explosion.

We present a technique to exploit constraints and invariants optimally in a symbolic
simulation setting. At each time-step of the symbolic simulation process BDDs for the
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Algorithm build_node_bdds(sink nodes) {
// Compute DFS and BFS schedules for nodes in the cone-of-influence
dfs schedule = compute_dfs_schedule(sink nodes);
bfs schedule = compute_bfs_schedule(sink nodes);
bdd size limit = INITIAL BDD SIZE LIMIT;
while (1) {

// Attempt building BDDs within the current bdd-size-limit using a DFS schedule
build_node_bdds_aux(dfs schedule, bdd size limit);
if (all_sink_node_bdds_built(sink nodes))

return SUCCESS;
if (bdd size limit ≥ MAX BDD SIZE LIMIT))

return INCOMPLETE;
bdd size limit = bdd size limit + DELTA BDD SIZE LIMIT;
// Attempt building BDDs within the current bdd-size-limit using a BFS schedule
build_node_bdds_aux(bfs schedule, bdd size limit);
if (all_sink_node_bdds_built(sink nodes)

return SUCCESS;
if (bdd size limit ≥ MAX BDD SIZE LIMIT)

return INCOMPLETE;
bdd size limit = bdd size limit + DELTA BDD SIZE LIMIT;

}
}

Fig. 2. Interleaved DFS-BFS resource-constrained BDD building algorithm

constraints and invariants are computed and subsequently applied as don’t-cares when
building BDDs for the netlist nodes. This is done in a manner that ensures BDD sizes
do not increase as a result of the don’t-caring. The don’t-caring is done by using one
of the BDD constrain [10], restrict [10] and compact [11] operations. These algorithms
ensure that the BDD valuations within the care set are unchanged, but for all values
outside the care set they freely choose a ‘0’ or a ‘1’ value to minimize the BDD size.

Intuitively, don’t-caring heuristically factors in the constraints early, and doing so
helps to reduce the BDD representation of the intermediate nodes. The behaviors added
by the intermediate application of the don’t-cares will ultimately be eliminated before
targets are checked for being hit (function constrain_node_bdds in Fig. 1). In a sense,
our scheme rules out and/or adds behaviors precluded by the constraints early on by
application of the constraints when building intermediate BDDs, as opposed to doing
this only at the end once all the exact BDDs have been built.

Exact minimization is known to be NP-hard [11]; the constrain, restrict, and com-
pact operators are therefore heuristic minimization algorithms. In the listed order, they
are increasingly powerful in minimizing BDD sizes, at the cost of (often dramatically)
increased runtime. Therefore, in our symbolic simulation algorithm we apply the cheap-
est, or the least computationally expensive, operation constrain first, and depending on
size thresholds automatically switch to more expensive algorithms. This ensures a dy-
namic compromise between time and memory requirements. Also, this threshold-based
scheme applies the cheap and fast minimization operation to the many small BDDs, and
applies the more expensive operations to the only (hopefully) few large BDDs.
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Algorithm dont_care_node_bdd(node bdd, constraint bdds) {
if (bdd_size(node bdd) < BDD SIZE THRESHOLD CONSTRAIN)

return node bdd; // return if too small
foreach (constraint bdd in constraint bdds) {

if (supports_intersect(node bdd, constraint bdd)) {
res bdd = bdd_constrain_threshold(node bdd, constraint bdd); // constrain
if (bdd_size(res bdd) ≥ BDD SIZE THRESHOLD RESTRICT)

res bdd = bdd_restrict_threshold(node bdd, constraint bdd); // restrict
if (bdd_size(res bdd) ≥ BDD SIZE THRESHOLD COMPACT)

res bdd = bdd_compact(node bdd, constraint bdd); // compact
node bdd = res bdd;

}
}
return node bdd;

}
Fig. 3. Algorithm for optimizing node BDDs using don’t-cares

Note that some verification problems use constraints only for restricting the input
stimulus, and have only minimal BDD reduction potential. Applying the expensive min-
imization algorithms to such designs will only marginally decrease the BDD size, but
may have a severe impact on runtime. For such problems it is best to set the thresholds
of the expensive operations very high. The constrain operator is so fast that it usually is
worthwhile even on such examples.

Figure 3 gives an outline of the algorithm. Whenever a BDD for a netlist node has
been built, the BDD is optimized by applying all the constraint BDDs as don’t-cares,
in function dont_care_node_bdd.1 If the BDD size is below the threshold for the ap-
plication of the constrain operator, the function immediately returns. Otherwise, any
don’t-caring first checks for the intersection of the cone-of-influence of the BDDs of
the constraints with that of the node (function supports_intersect), and applies only
those constraints that have some overlap. Functions bdd_constrain_threshold and
bdd_restrict_threshold apply the constrain and restrict operators respectively, but ad-
ditionally ensure that the size of the resultant BDD is no greater than the argument BDD
by returning the argument BDD if the application of these operators causes the BDD
size to increase (which is possible [10]).

It may be noted that the BDD for a constraint in any time-step is a conjunction of the
BDD obtained for it in the current and all previous time-steps. If at any point the BDD
for the constraint becomes a zero BDD, it implies that the design does not have a legal
state-space beyond this time-step and any unsolved targets are trivially unreachable.

6 Automated Case Splitting

In this section we describe automated case splitting strategies to ameliorate the BDD
explosion which may occur during symbolic simulation. The described method ensures
that the total number of BDD nodes does not exceed a specified limit, ultimately en-
abling symbolic simulation to complete computations which otherwise would be prone

1 Note that we cannot use don’t-care minimization when building BDDs for the constraint nodes
themselves; if we did, we could alter their care set.
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to memory-out conditions. In our proposed method we address the memory blow-up
when computing intermediate BDDs as follows:

– If the total number of BDD nodes exceed a certain threshold, we select a netlist
node to case split on, and a constant value to be applied to the selected node.

– Upon case splitting the BDD sizes drop significantly and we continue with the
symbolic analysis. Note that we may case split on any number of netlist nodes at
different steps and stages of the symbolic simulation.

– Once the symbolic analysis completes, i.e. the design has been symbolically sim-
ulated for the required number of time-steps, we “backtrack” to the last case split
(and the time-step in which it was applied) and set the selected netlist node to the
other constant, and complete the symbolic analysis on this branch. This is continued
until all case splits are covered, ensuring completeness.

All case splits are entered onto a stack that snapshots BDDs for the non-chosen
value of the case split node (and discards the current BDDs at the node) to enable back-
tracking to this case split. The case splitting decomposes the problem into significantly
smaller subproblems each of which is then individually discharged. Expensive BDD op-
erations such as DVO benefit greatly from such a decomposition due to the subproblems
being much smaller, and the fact that they can be solved independently of the others;
in particular, DVO can apply different variable orderings along different branches of
the case splits. A parallel may be drawn between case splitting and satisfiability (SAT)
approaches with the case split nodes representing decision variables - the BDDs encode
all possible solutions of the netlist nodes for the particular value of the case split node
as opposed to SAT systematically exploring the solutions one-by-one.

We propose two techniques to select the netlist node or nodes to case split upon. We
have found these to be very effective in managing space complexity of BDD operations.
We describe these in the context of selecting a single node to case split upon, but they
can be easily extended to case split on multiple nodes in one step:

– Case split on the “fattest” variable(s). The fattest variable, at a given point in time,
is defined as a variable that has the largest number of BDD nodes in all the live
BDDs. Hence, setting this variable to a constant causes the largest reduction in the
number of BDD nodes.

– Case split on an internal node via constraining. Here we select a netlist node other
than inputs to case split upon based on algorithmic analysis. The analysis may in-
clude the reduction potential by examining the netlist graph and BDDs available
for internal nodes. Next, the BDD for the selected case split node or its inverse is
treated as a constraint, which is then added to the list of constraints as a derived
constraint. The new constraint is subsequently used for minimizing all other BDDs
by means of don’t-caring as described in the previous section. The derived con-
straint is later removed from the list of constraints when the algorithm backtracks.
For the other branch of the split, the inverse of the case split BDD is applied as a
constraint. As an example, we may try don’t-caring all live BDDs with the BDD for
each node, and select the one that gives maximal reduction. Note that a constraint is
effectively a restriction on the variables in its support and divides the input space ac-
cording to the constraint BDD. Essentially, case splitting on an internal netlist node
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in a certain cycle of the symbolic simulation is equivalent to removing the logic in
the cone-of-influence of this node up to the current time-step in an unfolded ver-
sion of the netlist - and then using the Boolean consequences of this reduction for
minimizing other BDDs.

If the global resources are exhausted this case splitting gracefully degrades into
underapproximate analysis by not exploring all branches. In underapproximate analysis,
at every case split the algorithm heuristically chooses the branch to explore next, which
enables semi-formal analysis. For example, the case split algorithm can be configured to
always select the simpler branch first (i.e. the smaller one after case splitting) in order to
reach very deep into the state space. Using underapproximate symbolic simulation thus
balances the benefits of standard binary simulation (reaching very deep) with the power
of symbolic simulation, effectively simulating a large number of input combinations in
parallel, hence visiting a large number of states.

7 Transformation Synergies

Here we briefly sketch scenarios and interactions of this engine with other algorithms
that we have found to be useful. We have deployed the symbolic simulator as an engine
in the IBM internal TBV [18] system SixthSense. Such a system is capable of maximally
exploiting the synergy of the transformation and verification algorithms encapsulated in
the system as engines against the verification problem under consideration.

Approaches that build BDDs from netlist representations tend to benefit dramati-
cally from prior simplifying transformations applied to the netlist. For example, redun-
dancy removal and logic rewriting algorithms [16] that reduce the number of gates in
the netlist reduce the number of distinct BDDs that need to be built, and may even re-
duce the cutwidth of the netlist implying a need for fewer live BDD nodes. In a CBSS
approach, reductions to the sequential netlist are particularly useful, as they reduce the
complexity of every subsequent time-frame of the symbolic evaluation. In particular, we
have found the input reductions enabled by structurally abstracting the netlist through
reparameterization [4] to be very beneficial to symbolic simulation, often times improv-
ing performance by orders of magnitude. Note that this is complementary to traditional
approaches that reparameterize state sets during symbolic simulation [1,5,6,8]. In fact,
both these can be combined into a powerful two-step process that reparameterizes the
structural sequential netlist, followed by reparameterizing the next-state BDDs at every
time-step of the symbolic simulation.

In a semi-formal setting when performing a directed search of the state-space of the
design, symbolic simulation performs a broad simulation of the design within speci-
fied resources. The engine thus uncovers large portions of the state space, and allows
for probabilistically uncommon scenarios to be exposed that cause the fail events to
be hit. When performing an exhaustive k-step bounded model check of the design, the
symbolic simulator often outperforms SAT-based bounded model checking [16], partic-
ularly when the number of inputs is not too large or for small values of k. Additionally,
we have found this engine to be very useful when attempting proofs via k-step BDD-
based induction. Furthermore, the engine may be used to obtain proofs in conjunction
with an engine that computes a diameter estimate of the design [3].
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Table 1. Details of examples used in the experiments

Design Size
S.No. Design #Inputs #Registers #Gates #Targets #Constraints #Cycles

1 FPU ADD 440 5025 79105 84 5 26
2 FPU FMA 452 5785 72272 82 4 18
3 IBM 03 25 119 2460 1 2 33
4 IBM 06 37 140 3157 1 2 32
5 SLB 57 692 3754 1 0 8
6 CHI 112 92 732 1 0 9
7 SCU 71 187 810 1 0 23

Table 2. BDD node count and runtimes for the different schedules without DVO

DFS Res. DFS BFS Res. BFS DFS-BFS
S.No. T(s) N(106) T(s) N(106) T(s) N(106) T(s) N(106) T(s) N(106)

1 inf inf 40.06 0.17 inf inf 45.46 0.24 40.22 0.17
2 inf inf 14580 101.14 inf inf inf inf 10399 96.78
3 57.2 3.12 54.7 3.14 59.1 3.75 58.1 3.68 52.1 3.14
4 7392 96.56 7916 111.39 8991 129.79 8150 118.23 7897 106.60
5 1901 329.44 2094 291.84 1982 304.73 1976 291.84 1832 291.83
6 1000 91.26 907 83.85 1019 89.27 1021 88.57 910 85.94
7 112 6.58 91 6.18 120 74.31 113 74.08 84 6.28

Localization [17] augmented with counterexample-guided abstraction refine-
ment [9] has been shown to be an effective technique for obtaining proofs. Such
paradigms rely upon exhaustive bounded search to provide counterexamples from which
to refine the abstracted design. A symbolic simulation engine is apt for performing such
bounded analysis of the localized design. Additionally, the exhaustive representation
using BDDs may be inherently exploited to derive minimally sized refinements.

8 Experimental Results and Conclusions

In order to gauge the effectiveness of various aspects of our symbolic simulation algo-
rithm we chose a diverse set of industrial designs to conduct our experiments on (see
Table 1). All experiments were run on an IBM pSeries computer with POWER4 proces-
sors running at 1.4GHz using the IBM internal verification tool SixthSense. All designs
were put through reductions using a BDD-based combinational redundancy removal en-
gine [16] before the symbolic simulator was applied. FPU ADD and FPU FMA are the
verification problems of the dataflow for a floating-point “add” and “fused-multiply-
add” instruction respectively [13]. IBM 03 and IBM 06 are examples from the IBM
Formal Verification Benchmarks [12]. These were randomly chosen from among those
with constraints. SLB is a Segment Lookaside Buffer, CHI is a Channel Interface and
SCU is a Storage Control Unit. SLB, CHI, and SCU are optimized control intensive
circuits that have been put through a number of design transformations.

We ran experiments to measure the resources (time/memory) required to symboli-
cally simulate the above designs with all three scheduling schemes, namely BFS, DFS
and DFS-BFS, in different settings. In order to show the benefits of resource constrain-
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Table 3. BDD node count and runtimes for the different schedules with DVO

DFS Res. DFS BFS Res. BFS DFS-BFS
S.No. T(s) N(106) T(s) N(106) T(s) N(106) T(s) N(106) T(s) N(106)

3 236 2.54 239 2.65 168 2.98 172 2.97 215 2.64
4 24507 94.13 25135 100.19 26979 100.91 26103 101.47 24369 100.01
5 648 7.7 577 6.80 1122 14.78 1127 7.68 631 6.81
6 2643 61.39 1346 53.43 3042 16.86 2270 25.66 2000 30.69
7 382 59.66 398 55.57 582 69.35 524 67.48 311 56.40

Table 4. BDD node count and runtimes with and without don’t-caring using constraints

Without don’t-caring With don’t-caring
S.No. Time(s) Nodes(106) Time(s) Nodes(106)

1 inf inf 40.22 0.17
2 inf inf 10399 96.78
3 48.44 3.50 52.11 3.14
4 7990 109.40 7897 106.60

ing, we ran the DFS and BFS schemes with and without resource constraints. The results
are given in Table 2. A value of “inf” indicates that the particular run exploded (> 500
million) in the number of BDD nodes. The “#Nodes” in the tables is the peak number
of BDD nodes reported by the BDD package [14]. In the first set of experiments we
turned Dynamic Variable Reordering (DVO) off to get a true comparison since DVO
can skew results due to its heuristic nature. The table also compares and contrasts the
three scheduling techniques. The benefits of resource constraining are amply clear from
the results. It is indispensable for the FPU designs where we see the runs explode with-
out any resource constraining, and go through easily with resource constraining. This
is likely due to the propagation of a large number of constants which resource con-
straining specializes in taking advantage of, in particular when many such constants
are created due to constraints [13]. The effects are somewhat less pronounced in some
other examples due to the fact that they have symbolic initial values or are highly opti-
mized, causing less constants to propagate. Note that resource constraining is inherent
in the hybrid DFS-BFS interleaved scheme as it enables switching between the two
underlying schemes. It is clear that each of DFS and BFS outperforms the other on
different examples. The hybrid DFS-BFS scheme clearly stands out as the most robust,
and nicely combines the individual benefits of DFS and BFS schedules. By and large it
has a peak number of BDD nodes that is close to or less than the lower of the peaks of
the two underlying schemes, and runtime that is close to or better than the faster one.

We repeated the above experiment this time with DVO enabled (Table 3). We ob-
served a somewhat similar pattern, though things varied a bit more. We attribute this to
the heuristic nature of DVO, and the fact that we used low effort DVO. The heuristic
nature of DVO is clearly demonstrated by the FPU examples that explode now in both
non-resource-constrained as well as in the resource-constrained case. The hybrid DFS-
BFS scheme again comes across as the best overall and shows consistent performance
in different scenarios re-enforcing our claim. It provides the benefits of both resource
constraining as well as a summation of the strengths of DFS and BFS schedules result-
ing in a powerful and robust approach that works for all cases.
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Table 5. BDD node count and runtimes with and without case splitting using constraints

No case splitting Case split on fattest variables
Design Target Status T(s) N(106) T(s) N(106) #Cases Evaluation

2 Reachable 57.11 3.48 40.07 1.06 4(0) Underapprox
4 Reachable 7897 106.6 16097 11.70 5(4) Underapprox
5 Unreachable 631 6.81 570 6.24 3 Complete
6 Unreachable 910 85.94 806 36.44 4 Complete

Next we measured the impact of handling constraints as don’t-cares during inter-
mediate BDD building. The hybrid DFS-BFS scheme was used for the purposes of
this experiment. The results are summarized in Table 4. Only designs containing con-
straints were used for this experiment. The intermediate don’t-caring using constraints
(cf. Section 5) is absolutely essential to get the FPU examples through - the runs simply
explode otherwise. The impact of factoring in constraints early can have a significant
impact on reducing intermediate BDD sizes, or it may not depending on the nature of
the constraints and the design. If a constraint prunes a fair amount of the input stimulus
it may be very effective in reducing BDD sizes, but on the other hand if the BDDs of the
internal nodes are already optimized then it may not do much. Hence, in our scheme
we use threshold based don’t-caring that is cheap for the most part, and apply more
aggressive but computationally complex don’t-caring only for very large BDDs. Such
an approach was essential to automatic verification of FPUs as described in [13].

Lastly, we ran those designs with a large number of nodes with case splitting enabled
(Table 5). The results are a mix of underapproximate evaluation (with some backtracks)
for designs in which the targets were hittable, and others for which complete case split-
ting was done to prove that the targets are not hittable boundedly. The benefits of case
splitting in both cases is clear. It helps to hit the reachable targets much sooner while
visiting a large number of states of the design and within resources bounds, and enables
completing exhaustive bounded checks on designs with unreachable targets without ex-
ploding in memory. Essentially, it trades-off complexity in memory with time, but is a
compromise that is worth it to complete analysis on a design which otherwise may not
- though for example #6 the overall performance is much better possibly due to a re-
duced number of BDD nodes to deal with. The numbers in parenthesis in the “#Cases”
column indicates the number of case splits for which the other branch was evaluated as
well. Hence, in the case of example #4, 4 of the 5 case splits were fully evaluated. Case
splitting on internal nodes was necessary to verify FPU designs using formal methods
in a fully-automated manner, as detailed in [13].

Conclusion. We presented a robust set of algorithms for building BDDs efficiently for
netlists. We presented a scheduling scheme that dynamically converges upon a heuris-
tically optimal schedule for computing BDDs using an efficient hybrid of depth- and
breadth-first search called out in an interleaved manner under resource constraints. We
introduced a dynamic algorithm, tightly integrated with the scheduling scheme, to opti-
mally leverage constraints and invariants as don’t-cares when building BDDs for inter-
mediate gates in the netlist. Additionally, we described an automatic and complete case
splitting approach that is triggered and controlled by resource bounds to decompose the
overall problem into simpler parts which are then solved individually. The presented
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approach takes advantage of the full power of our don’t-caring solution and smartly
selects arbitrary functions to apply as constraints to maximally reduce peak BDD size
while minimizing the number of cases to be explored.
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Abstract. This paper presents a novel BDD-based distributed algorithm for
reachability analysis which is completely asynchronous. Previous BDD-based
distributed schemes are synchronous: they consist of interleaved rounds of com-
putation and communication, in which the fastest machine (or one which is lightly
loaded) must wait for the slowest one at the end of each round.

We make two major contributions. First, the algorithm performs image com-
putation and message transfer concurrently, employing non-blocking protocols
in several layers of the communication and the computation infrastructures. As
a result, regardless of the scale and type of the underlying platform, the maxi-
mal amount of resources can be utilized efficiently. Second, the algorithm incor-
porates an adaptive mechanism which splits the workload, taking into account
the availability of free computational power. In this way, the computation can
progress more quickly because, when more CPUs are available to join the com-
putation, less work is assigned to each of them. Less load implies additional im-
portant benefits, such as better locality of reference, less overhead in compaction
activities (such as reorder), and faster and better workload splitting.

We implemented the new approach by extending a symbolic model checker
from Intel. The effectiveness of the resulting scheme is demonstrated on a number
of large industrial designs as well as public benchmark circuits, all known to be
hard for reachability analysis. Our results show that the asynchronous algorithm
enables efficient utilization of higher levels of parallelism. High speedups are
reported, up to an order of magnitude, for computing reachability for models
with higher memory requirements than was previously possible.

1 Introduction

This work presents a novel BDD-based asynchronous distributed algorithm for reach-
ability analysis. Our research focuses on obtaining high speedups while computing
reachability for models with high memory requirements. We achieve this goal by de-
signing an asynchronous algorithm which incorporates mechanisms to increase process
utilization. The effectiveness of the algorithm is demonstrated on a number of large
circuits, which show significant performance improvement.
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Reachability analysis is a main component of model checking [10]. Most temporal
safety properties can easily be checked by reachability analysis [2]. Furthermore, live-
ness property checking can be efficiently translated into safety property checking [3].

Despite recent improvements in model checking techniques, the so-called state ex-
plosion problem remains their main obstacle. In the case of industrial-scale models,
time becomes a crucial issue as well. Existing BDD-based algorithms are typically lim-
ited by memory resources, while SAT-based algorithms are limited by time resources.
Despite recent attempts to use SAT-based algorithms for full verification (pure SAT in
[23,8,21,16] and SAT with BDDs in [19,17,18]), it is still widely acknowledged that
the strength of SAT-based algorithms lies primarily in falsification, while BDD-based
model checking continues to be the de facto standard for verifying properties (see sur-
veys in [28] and [4]). The goal of this work is verification of large systems. Therefore,
we based our techniques on BDDs.

The use of distributed processing to increase the speedup and capacity of model
checking has recently begun to generate interest [5,29,22,1,27,20,15,30,24]. Distributed
techniques that achieve these goals do so by exploiting the cumulative computa-
tional power and memory of a cluster of computers. In general, distributed model
checking algorithms can be classified into two categories: explicit state representation
based [29,22,1,27] and symbolic (BDD-based) state representation based [20,15]. Ex-
plicit algorithms use the fact that each state is manipulated separately in an attempt to
divide the work evenly among processes; given a state, a hash-function identifies the
process to which the state was assigned. The use of hash-functions is not applicable in
symbolic algorithms which manipulate sets of states, represented as BDDs. In contrast
to sets of explicit states, there is no direct correlation between the size of a BDD and
the number of states it represents. Instead, the workload can be balanced by partition-
ing a BDD into two smaller BDDs (each representing a subset of the states) which are
subsequently given to two different processes.

The symbolic work-efficient distributed synchronous algorithm presented in [15]
is the algorithm that is closest to ours. In [15], as well as in our algorithm, processes
(called workers) join and leave the computation dynamically. Each worker owns a part
of the state space and is responsible for finding the reachable states in it. A worker
splits its workload when its memory overflows, in which case it passes some of its
owned states to a free worker.

Unlike the algorithm proposed in this work, the one in [15] works in synchronized
iterations. At any iteration, each of the workers applies image computation and then
waits for the others to complete the current iteration. Only then do all workers send the
non-owned states discovered by them to their corresponding owners.

The method in [15] has several drawbacks. First, the synchronized iterations re-
sult in unnecessary and sometimes lengthy idle time for “fast” processes. Second, the
synchronization phase is time-consuming, especially when the number of processes is
high. Consequently, processes split as infrequently as possible in an attempt to reduce
the overhead caused by synchronization. This leads to the third drawback: processes
underutilize the given computational power, since available free processes are not used
until there is absolutely no other choice but to join them in. These drawbacks make the
algorithm insufficiently adaptive to the checked system and the underlying parallel en-
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vironment. Furthermore, the combined effect of these drawbacks worsens with two fac-
tors: the size of the parallel environment and the presence of heterogeneous resources in
it (as are commonly found today in non-dedicated grid and large-scale systems). These
drawbacks limit the scalability of the algorithm and make it slow down substantially.

In order to exploit the full power of the parallel machinery and achieve scalability,
it was necessary to design a new algorithm which is asynchronous in nature. We had to
change the overall scheme to allow concurrency of computation and communication, to
provide non-blocking protocols in several layers of the communication and the compu-
tation infrastructures, and to develop an asynchronous distributed termination detection
scheme for a dynamic system in which processes join and leave the computation. In
contrast to the approach presented in [15], the new algorithm does not synchronize the
iterations among processes. Each process carries on the image computations at its own
pace. The sending and receiving of states is carried out “in the background,” with no co-
ordination whatsoever. In this way, image computation and non-owned state exchange
become concurrent operations.

Our algorithm is aimed at obtaining high speedup while fully utilizing the available
computational power. To this end, when the number of free processes is relatively high
the splitting rate is increased. This mechanism imposes adaptive early splitting to split
a process even if its memory does not overflow. This approach ensures that free compu-
tational power will be utilized in full. In addition to using more processes, splitting the
workload before memory overflows means that processes will handle smaller BDDs.
This turned out to be a critical contribution to the speedup achieved by the new ap-
proach because a smaller BDD is easier to manipulate (improved locality of reference,
faster image computation, faster and less frequent reorders, faster slicing, etc.).

In the asynchronous approach, when a process completes an iteration it carries on
to the next one without waiting for the others. Consequently, splitting the workload
with new processes is an efficient method for speeding up the computation since the
overhead in adding more workers is negligible. However, this approach poses a huge
challenge from the viewpoint of parallel software engineering. Given that the state space
partition varies dynamically and that the communication is asynchronous, messages
containing states may reach the wrong processes. By the time a message containing
states is sent and received, the designated process may cease to own some or all of
these states due to change of ownerships. Our algorithm overcomes this problem by
incorporating a distributed forwarding mechanism that avoids synchronization but still
assures that these states will eventually reach their owners. In addition, we developed
a new method for opening messages containing packed BDDs which saves local buffer
space and avoids redundant work: the mechanism ensures that only the relevant part of
the BDD in the message is opened at every process visited by the message.

Distributed termination detection presents another challenge: although a certain pro-
cess may reach a fixpoint, there may be states owned by this process that were discov-
ered (or, are yet to be discovered) by others and are on their way to this process (in the
form of BDDs packed in messages). The two-phase Dijkstra [11,12] termination detec-
tion algorithm is an efficient solution in such cases. However, we had to face yet another
algorithmic complication that was not addressed by Dijkstra: the number of processes in
the computation can vary dynamically and cannot be estimated or bounded in advance.
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We found no solution to this problem in the distributed computing literature. Thus, we
had to develop the solution ourselves as an extension of the Dijkstra algorithm.

Related Work. Other papers suggest reducing the space requirements for sequential
symbolic reachability analysis by partitioning the work into several tasks [25,7,13].
However, these schemes use a single machine to sequentially handle one task at a time,
while the other tasks are kept in external memory. These algorithms, as well as the
distributed symbolic algorithms [20,15], are based on strict phases of computation and
synchronization, which are carried out until a global fixpoint is reached. As a result,
these schemes cannot scale well, and cannot take advantage of contemporary large-
scale distributed platforms, such as huge clusters, grid batch systems and peer-to-peer
networks, which are commonly non dedicated and highly heterogeneous.

The rest of the paper is organized as follows. In Section 2 we discuss the distributed
approach. Section 3 describes sending and forwarding of BDD messages. In Section 4
we detail the algorithm performed by processes. Section 5 describes the asynchronous
termination detection algorithm. Section 6 describes the operation of the coordinators.
Experimental results are given in Section 7. Finally, we conclude in Section 8 with a
summary and directions for future research.

2 The Distributed Asynchronous Approach

We begin by describing the sequential symbolic (BDD-based) reachability algorithm.
The pseudo-code is given in Figure 1. The set of reachable states is computed sequen-
tially by applying Breadth-First Search(BFS) starting from the set of initial states S0.
The search is preformed by means of image computation which, given a set of states,
computes a set containing their successors. In general, two sets of states have to be
maintained during reachability analysis:

1) The set of reachable states discovered so far, called R. This set becomes the set
of reachable states when the exploration ends.

2) The set of reached but not yet developed states, called N . These states are
developed in each iteration by applying image computation on N .

The distributed reachability algorithm relies on the notion of Boolean function slic-
ing [26]. The state space is partitioned into slices, where each slice is owned by one
process. A set, w1 . . . wk, of Boolean functions called window functions defines for
each process the slice it owns. The set of window functions is complete and disjoint,
that is, ∨k

i=1wi = 1 and ∀i �= j : wi ∧ wj = 0, respectively. States that do not belong
to the slice owned by a process are called non-owned states for this process.

Reachability(S0)
1) R = N = S0
2) while (N �= φ)
3) N = Image(N)
4) N = N \ R
5) R = R ∪ N
6) return R

Fig. 1. Sequential Reachability Analysis
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As noted earlier, reachability analysis is usually carried out by means of a BFS ex-
ploration of the state space. Both the sequential algorithm (Figure 1) and the distributed
synchronous algorithm (see [20,15]) use this technique: in iteration i, image computa-
tion is applied to the set of states, N , which are reachable in i steps (and no fewer than
i steps) from the set of initial states. Thus, when iteration i is finished, all the states
which are reachable in at most i + 1 steps have already been discovered. While in a
sequential search the states in N are developed by a single process, in a distributed
search the states in N are developed by a number of processes, according to the state
space partition. In the latter, the processes synchronize on a barrier at the end of each
iteration, i.e., wait until all processes complete the current iteration. Only then do the
processes exchange their recently discovered non-owned states and continue to the next
iteration.

However, reachability analysis need not be performed in such a manner. Note that
reachability analysis would be correct even if, in iteration i, not all the states which are
reachable in i steps are developed, as long as they will be developed in a future iteration.
Thus, when a process completes iteration i, it does not have to wait until the other
processes complete it. It can continue in the image computation on the newly discovered
states and receive owned states discovered by other processes at a later time. This is
one of the key ideas behind the asynchronous approach employed in the computational
level.

Like [20,15], our algorithm uses two types of processes: workers and coordinators.
The distributed platform consists of a non-dedicated pool of workers. Workers can join
and leave the computation dynamically. Workers participating in the computation are
called active. Otherwise, they are called free. Each active worker owns a slice of the
state space and is responsible for discovering the reachable states within its slice. The
algorithm is initialized with one active worker that runs a symbolic reachability algo-
rithm, starting from the set of initial states. During its run, workers are allocated and
freed. Each worker works iteratively. At each iteration, the worker computes an image
and exchanges non-owned states, until a global fixpoint is reached and termination is
detected. During image computation, the worker computes the new set of states that
can be reached in one step from its owned part of N . The new computed set contains
owned as well as non-owned states. During the exchange operation, the worker asyn-
chronously sends the non-owned states to their corresponding owners. The novelty of
our algorithm is that the iterations are not synchronized among workers. In addition,
image computation and state exchange become concurrent.

Image computation and the receiving of owned states from other workers are criti-
cal points in which memory overflow may occur. In both cases, the computation stops
and the worker splits its ownership into two slices. One slice is left with the over-
flowed worker and one given to a free worker. While distributed synchronous algo-
rithms use splitting only when memory overflows, our approach also uses splitting to
attain speedups. The adaptive early splitting mechanism splits a worker according to
progress of its computation and availability of free workers in the pool. Besides utilizing
free workers, this mechanism aims at increasing the asynchrony of the computation by
splitting workers whose progress in the computation is not fast enough. An additional
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mechanism merges ownerships of several workers with low memory requirements to
one worker, where the others return to the pool of free workers.

The concurrency between image computation and state exchange is made possible
by the asynchronous sending and receiving of states. Non-owned states are transformed
into BDD messages. BDD messages are sent “in the background,” by the operating sys-
tem. Note that asynchronous communication is usually implemented in a manner which
allows minimum CPU intervention. As a result, a worker that sends a BDD message to
a colleague is not blocked until the BDD message is actually sent or received. Simi-
larly, a worker need not immediately process a BDD message that it receives. Received
BDD messages are accumulated in a buffer called InBuff. The worker can retrieve them
whenever it chooses. The worker retrieves BDD messages from InBuff during image
computation, transforms them to BDDs, and stores them in a set called OpenBuff until
the current image operation is completed. To summarize, a worker has to maintain three
sets of states, N,R, and OpenBuff, as well as one buffer, InBuff, during the distributed
asynchronous reachability analysis.

In addition, our algorithm uses three coordinators: the exch coord, which holds
the current set of owned windows and is notified on every split or merge. The
exch coord is also responsible for termination detection; the pool mgr, which
keeps track of free workers; and the small coord, which merges the work of un-
derutilized workers. Following is an explanation of how we handle BDD messages.
The algorithm itself will be explained in detail in Sections 4, 5 and 6.

3 Forwarding and Sending of BDD Messages

Workers often exchange non-owned states during reachability analysis. BDDs are trans-
lated into and from messages as described in [15]. A BDD message represents the con-
tent and pointers of each BDD node as an element in an array. This method reduces the
original BDD by 50%. Thus, BDD messages are transferred across the net efficiently.
Moreover, recall that there is no exchange phase in which the processes send BDD
messages all at once; messages are sent and received asynchronously during the com-
putation. In addition, received BDD messages are opened during image computation
and pending messages do not accumulate. As a result, the communication overhead
is negligible and the memory required to store BDD messages that are waiting to be
sent or opened is relatively small. These observations held in all the experiments we
conducted.

As noted earlier, messages of non-owned states may reach the wrong worker (some
or all of the states in the BDD message do not belong to the worker). Our algorithm thus
incorporates a distributed forwarding mechanism that avoids synchronization but still
ensures that these states will eventually reach their owners. In addition, the mechanism
enables forwarding BDD messages without transforming them to a BDD form (which
may be a time consuming operation). To this end, we attach a window to each BDD
message. We refer to a BDD message as a pair 〈T,w〉, where T is the BDD in an array
form and w is the attached window. Before worker Pi sends worker Pj a BDD message,
it receives from the exch coord the window w′

j which Pj owned when it last updated
the exch coord . This is the window Pi assumes Pj owns. As illustrated in Figure
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w’    jT  

(a)

w’    w’j k∧T  

(b)

Fig. 2. (a)Pi sends Pj a BDD message with an assumed window w′
j (b) Pj forwards a BDD

message to Pk with an assumed window w′
k

2(a), when Pi sends a message to Pj it attaches the window w′
j it assumes Pj owns. If

Pj is required to forward this message to worker Pk with an assumed window w′
k, it

will change the window to w′
j ∧ w′

k before doing so (see Figure 2(b)).
The Open Buffer procedure, described in Figure 3, retrieves BDD messages from

InBuff. Recall that those messages are received asynchronously into InBuff by the op-
erating system. When a worker retrieves BDD messages from InBuff, it requests and
receives from the exch coord the list of window functions owned by the workers.
Next, it asynchronously forwards each BDD message to each worker whose window’s
intersection with the message window is non-empty. Then it opens the BDD message.

In this work we developed a new method for opening BDD messages which saves
local buffer space and avoids redundant work: only the relevant part of the BDD in the
message is opened at every process visited by the message. The new method, called
selective opening, extracts from a BDD message only those states that are under a given
window (the window of the message intersected with the window of the worker), with-
out transforming the entire message to BDD form. The worker holds the owned states
extracted from the BDD message in OpenBuff.

Though the selective opening method only extracts the required states, the operation
may fail due to memory overflow. In this case, the worker splits its ownership and
thereby reduces its workload. Note that, despite the split, the BDD messages pending in
InBuff do not require special handling; the next time the worker calls the Open Buffer
procedure and retrieves a pending BDD message, it forwards it according to the updated
state partition given by the exch coord and extracts the owned states according to its
new window.

4 The Worker Algorithm

A high level description of the algorithm performed by a worker with ID my id is
shown in Figure 3. We will first describe each procedure in general and then in detail.

During the Bounded Image procedure, a worker computes the set of states that can
be reached in one step from N , and stores the result in N . During the computation, the
worker also calls the Open Buffer procedure and extracts owned states into OpenBuff.
N and R will be updated with those states only in the Exchange procedure. If memory
overflows during image computation or during the opening of a buffer, the worker splits
its window w and updates N,R and OpenBuff according to the new window. The same
holds true if early splitting occurs.

During the Exchange procedure the worker sends out the non-owned states (N \w)
to their assumed owners and updates N,R with new states accumulated in OpenBuff
(new states are states that do not appear in R).
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If only a small amount of work remains, i.e., N and R are very small, the worker
applies the Collect Small procedure. The Collect Small procedure merges the work of
several workers into one task by merging their windows. As a result, one worker is
assigned the unified ownership (merges as owner) and the rest become ”free” (w = ",
merge as non-owners) and return to the pool of free workers.

procedure Open Buffer(w, OpenBuff ) procedureBounded Image(R, w, N, OpenBuff )
{〈T, w′〉} ← BDD messages from InBuff Completed = FALSE
{〈Pj , wj〉} ← receive windows from exch coor while Completed = FALSE
foreach (〈T, w′〉) Bounded Image Step(R, w, N, Max, Failed, Completed)

foreach ((j �= my id) ∧ (w′ ∩ wj �= )) if ((Failed = TRUE)∨(Early Split() = TRUE))
send 〈T, w′ ∩ wj〉 to Pj Split(R, w, N, OpenBuff)

Res=Selective Opening(T, w′ ∩ w, Failed) Open Buffer(w, OpenBuff)
if Failed = TRUE

return BDD message to InBuff
Split(R, w, N, OpenBuff)

else OpenBuff = OpenBuff ∪ Res function Terminate()
if (N =  ∧ InBuff = ∧ ‘all async’ sends are complete’)

procedure Reach Task (R, w, N, OpenBuff) if (TerminationStatus = ‘no term′)
loop forever TerminationStatus = ‘want term′

Bounded Image(R, w, N, OpenBuff) send exch coord 〈TerminationStatus, my id〉
Exchange(OpenBuff ) return FALSE
if (Terminate() = TRUE) else if (TerminationStatus = ‘want term′)

return R TerminationStatus = ‘regret term′

Collect Small(R, w, N) 〈action〉 ← receive from exch coord if any
if (w = ) if (action = ‘regret termination query′)

send 〈‘to pool′, my id〉 to pool mgr send 〈‘regret status′, TeminationStatus, my id〉
return to pool (keep forwarding BDD messages) if (action = ‘reset term′)

TerminationStatus = ‘no term′

procedure Exchange(OpenBuff ) if (action = ‘terminate′)
{〈Pj , wj〉} ← receive windows from exch coor TerminationStatus = ‘terminate′

foreach (j �= my id) return TRUE
send 〈N ∩ wj , wj〉 to Pj return FALSE
N = N \ wj

N = N ∪ OpenBuff
N = N \ R ; R = R ∪ N
OpenBuff = 

Fig. 3. Pseudo-code for a worker in the asynchronous distributed reachability computation

After performing Collect Small, the worker checks whether its window is empty
and it needs to join the pool of free workers. The window of a worker can be empty if
it merged as non-owner in the Collect Small procedure, or if it joined the computation
with an empty window (this will be discussed later).

A worker is called freed if it participated in the computation once and then joined
the pool of free workers. Freed workers may still receive misrouted BDD messages
and thus need to forward them. For example, before worker Pi is freed, another worker
may send it a message containing states that were owned by Pi. Should this message
reach Pi after it was freed, Pi must then forward the message to the current owner(s)
of these states. Methods for avoiding this situation will be discussed later. Note that
if freed workers are required to forward BDD messages, they must participate in the
termination algorithm. Following is a detailed description of each procedure.

The Bounded Image Procedure is described in Figure 3. The image is computed
by means of Bounded Image Step operations, which are repeated until the computation
is complete. This algorithm uses a partitioned transition relation. Each partition defines
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the transition for one variable. The conjunction of all partitions gives the transition of
all variables. Each Bounded Image Step applies one more partition and adds it to the
intermediate result. The Bounded Image Step procedure receives as an argument the
maximal amount of memory that it may use. If it exceeds this limit, the procedure stops
and Failed becomes true.

The technique for computing an image using a partitioned transition relation was
suggested by Burch et al.[6] and used for the synchronous distributed algorithm in [15].
Using bounded steps to compute the image allows memory consumption to be moni-
tored and the computation stopped if there is memory overflow. Also explained in [15]
is how the partitioned transition relation helps to avoid repeating an overflowed com-
putation from the beginning: each worker resumes the computation of its part of the
image from the point at which it stopped and does not repeat the bounded steps that
were completed in the overflowed worker.

Our asynchronous algorithm exploits the partitioned computation even further. Dur-
ing image computation, between each bounded step, we retrieve pending BDD mes-
sages from InBuff, forward them if necessary, and extract owned states into OpenBuff.
By doing so, we free the system buffer which contained the messages and produce
asynchronous send operations, if forwarding is needed. Note that R and N are updated
with OpenBuff only after the current image computation is completed. In addition, dur-
ing image computation, the worker can perform early split according to the progress
of its computation and availability of free workers in the pool. We chose to implement
the Early Split function by checking whether the amount of free workers in the pool is
above a certain threshold and whether the worker has not split for a while.

The Exchange Procedure is described in Figure 3. First, the worker requests and
receives from the exch coord the list of window functions owned by the other work-
ers. Then it uses this list to asynchronously send recently discovered non-owned states
to the other workers. Afterwards, it updates N,R with states accumulated in OpenBuff
and recalculates N,R.

Collect Small Procedure.1 An underutilized worker, i.e., one with small N and R,
informs the small coord of their size. The small coord gives the worker one of
the following commands: exit the procedure (in case it has no other worker to merge
with or it is not small enough), merge as owner, or merge as non-owner. In case the
worker’s ownership changed, it informs the exch coord of its new window. Note
that workers with large R sets can not be merged since the memory required to store
the united R set may not fit in the memory of a single machine.

A worker which merges as non-owner is freed. As mentioned before, freed workers
keep forwarding BDD messages. However, this can be avoided. A freed worker can
stop forwarding BDD messages if all the other workers have already requested and
received a set of windows that does not include this freed worker. This ensures that no
new messages will be sent to it. In addition, to ensure that all the already sent BDD
messages have arrived, we can either bound the arrival time of a BDD message or run a
termination-like algorithm. The termination algorithm will be discussed later.

1 The pseudo-code for the Collect Small procedure is not given in this paper due to space limi-
tations.
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Split Procedure.2 This procedure starts by asking the pool mgr for a free worker. We
use a Slice procedure, which when given a BDD, computes a set of two windows that
partition the BDD into two parts. This slicing algorithm was suggested in [20].

Two pairs of window functions are computed using the Slice procedure, one for
N and one for R and OpenBuff. The two pairs are computed in an attempt to balance
both the current image computation (by slicing N ) and the memory requirements (by
slicing R and OpenBuff ). Note that the new windows the workers will own are the ones
obtained by slicing R and OpenBuff. If R and OpenBuff are relatively small, only N
is sliced. Thus, the overflowing worker’s ownership remains unchanged and the new
worker will have an empty window. Such a worker is called a helper. A helper simply
assists the overflowed worker with a single image computation. Once the computation
is complete, the helper sends the states it produced to their owners and joins the pool
of free workers in the Reach Task procedure. In our experiments, we observed that
the creation of helpers is a common occurrence. After computing the partitions, the
splitting worker sends the other worker its new window and its part of R,OpenBuff and
N . It also updates the exch coord with the new windows.

5 Asynchronous Termination Detection

Our termination detection algorithm is an extension of the two-phase Dijkstra [11,12]
termination detection algorithm. Dijkstra’s algorithm assumes a fixed number of pro-
cesses and synchronous communication. In our extension, the communication is asyn-
chronous and processes may join and leave the computation.

The presented termination detection algorithm has two phases: the first phase dur-
ing which the exch coord receives want term requests from all the active and freed
workers, and the second phase, during which the exch coord queries all the workers
that participated in the previous phase as to whether they regret the termination. After
receiving all responses, it decides whether to terminate or reset termination and notifies
the workers of its decision. The part of the exch coord in the termination detection
is discussed in Section 6.

Each worker detects termination locally and notifies the exch coord when it
wants to terminate. Upon receiving a regret query, the worker answers as to whether
it regrets its request. The next message the worker will receive from the exch coord
will command it to terminate or reset termination. Note that the communication de-
scribed above is asynchronous and thus does not block the workers.

The pseudo-code for the Terminate function performed by a worker is given in
Figure 3. The termination status of a worker can be one of the following: no term, if it
does not want to terminate; want term, if it wants to terminate; regret term, if its status
was want term when it discovered that it still has work to do; terminate, if it should
terminate. The initial termination status is no term.

Upon entering the Terminate function the worker checks whether all of the follow-
ing three conditions hold: It does not have any new states to develop (N = "); it does
not have any pending BDD messages in InBuff ; all its asynchronous send operations
have been completed. We will clarify the last condition. If a worker receives a BDD

2 The pseudo-code for the Split procedure is not given in this paper due to space limitations.
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function Exch Coord() function TerminationDetection(cmd)
Ws[0] = one Initialization:
ActiveWL = {0}; FreedWL =  CancelTerm = FALSE
Loop-forever RegretQueryL = 
〈cmd〉 = receive from any worker TPhase = ‘no term′

if cmd = 〈‘collect small′, Pid, wid, Pi〉 if cmd = 〈‘want term′, Pi〉
Ws[Pid] = wid if TPhase = ‘no term′

ActiveWL = ActiveWL \ Pi WantTermL = ActiveWL ∪ FreedWL
FreedWL = FreedWL ∪ Pi TPhase = ‘want term′

send 〈‘release′〉 to Pi and to Pid if TPhase = ‘regret term′ (Pi is a split colleague)
if cmd = 〈‘split′, Pid, NewWs = {(pi, wi)}〉 send 〈‘regret termination query′〉 to Pi

foreach (pi, wi) ∈ NewWs RegretQueryL = RegretQueryL ∪ {Pi}
Ws[pi] = wi MoveToRegretPhaseIfNeeded(Pi)
ActiveWL = ActiveWL ∪ Pi if cmd = 〈‘regret status′, stat, Pi〉
FreedWL = FreedWL \ Pi CancelTerm = CancelTerm ∨ (stat = regret)

send 〈‘release′〉 to Pid ResetOrTermL = ResetOrTermL ∪ {Pi}
TerminationDetection(cmd) ResetOrTerminateIfNeeded(Pi)

if (cmd = 〈‘split′, Pid, {(Pi, wi)}〉 ∧
procedure MoveToRegretPhaseIfNeeded(Pi) TPhase �= ‘no term′)

WantTermL = WantTermL \ {Pi} CancelTerm = TRUE
if (WantTermL =  ∧ TPhase = ‘want term′) if TPhase = ‘want term′

TPhase = ‘regret phase′ WantTermL = WantTermL ∪ {Pi|Pi ∈ {(Pi, wi)}}
∀Pj ∈ RegretQueryL : if (cmd = 〈‘collect small′, Pid, wid, Pi〉 ∧

send 〈‘regret termination query′〉 to Pj TPhase �= ‘no term′)
CancelTerm = TRUE

procedure ResetOrTerminateIfNeeded(Pi)
RegretTermL = RegretTermL \ {Pi}
if (RegretTermL =  ∧ CancelTerm = FALSE)
∀Pj ∈ ResetOrTermL : send 〈‘terminate′〉 to Pj

if (RegretTermL =  ∧ CancelTerm = TRUE)
∀Pj ∈ ResetOrTermL : send 〈‘reset term′〉 to Pj

ResetOrTermL = ; CancelTerm = FALSE
TPhase = ‘no term′

Fig. 4. The pseudo-code for the exch coord

message, the sender will not consider the send operation complete until it receives an
acknowledgement from this worker. Without acknowledgement, there could be a BDD
message that was sent but not yet received, and no worker would know of its existence.
Note that the acknowledgement is sent and received asynchronously.

If the termination status is no term and all conditions hold, the termination status
is changed to want term. The worker will notify the exch coord that it wants to
terminate and exit the function (with return value false). If the termination status is
want term and one of the conditions does not hold, it may have more work to do. Thus,
the termination status is changed to regret term. If the worker has a pending command
from the exch coord, it acts accordingly. It can be prompted to send its termination
status, or else to set it to either no term or terminate.

6 The Coordinators

The exch coord. Figure 4 describes the pseudo-code for the algorithm performed by
the exch coord. The exch coord maintains a set of window functions Ws, where
Ws[Pi] holds the window owned byPi. Theexch coord also maintains two lists: a list
of active workers, ActiveWL, and a list of freed workers, FreedWL. The exch coord
receives notifications from workers and acts accordingly; when workers split or perform
Collect Small, it updates Ws, as well as the ActiveWL and FreedWL lists.
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The exch coord detects termination according to the TerminationDetection pro-
cedure. The TPhase variable indicates the termination phase and can have one of the fol-
lowing values: no term, which means that no termination request has yet been received;
want term, where the exch coord collects termination requests; regret term, where
the exch coord collects regret termination responses.The initial value of TPhase is
no term. In addition, the exch coord holds the following three lists: the WantTermL
list, which is used in the want term phase and contains all the active and freed work-
ers that have not sent a termination request; the RegretQueryL list, which is used in
the regret term phase and contains all the workers that have not sent a regret response;
and the ResetOrTermL list, which contains all the workers that will be notified of the
termination decision when the regret term ends.

The phase changes are triggered by commands received from the workers. The
exch coord can receive one of four commands and proceed accordingly. The
want term phase begins upon receiving a want term request. Then the WantTermL is
assigned the value of all active and freed workers. During this phase, the exch coord
receives want term requests from all the workers in this list. Each worker that sends a
request is removed from the WantTermL list and added to the RegretQueryL. When the
WantTermL list becomes empty, the regret term phase begins. All the workers in the
RegretQueryL are sent a regret query. During this phase, those workers send a response
to the query (their regret status). Each worker that sends a response is removed from the
list and added to the ResetOrTermL. Only when the RegretQueryL becomes empty are
the workers in the ResetOrTermL sent the decision as to whether or not to terminate.
The exch coord decides not to terminate if one of the workers regretted the termina-
tion or if split or merge occurred. In the latter case, the exch coord also updates the
appropriate lists.

The small coord. The small coord collects as many underutilized workers as possible.
It receives merge requests from small (underutilized) workers. The small coord stops
a small worker for a predefined time; if timeout occurs and no other small worker has
arrived in the meantime, it releases the worker. If a small worker arrives while another
is waiting, it matches the two for merging.

The pool mgr. The pool mgr keeps track of free workers. During initialization it marks
all workers as free, except for one. When a worker becomes free, it returns to the
pool. When a worker splits, it sends the pool mgr a request for a free worker. The
pool mgr sends in reply the ID of a free worker, which is then removed from the
pool. If the pool mgr is asked for a worker and there is no free worker in the pool, it
stops the execution globally and announces ”workers overflow.”

7 Experimental Results

We implemented our algorithm on top of Division [14], a generic platform for the study
of distributed symbolic model checking which requires an external model checker. We
used FORECAST [13] for this purpose. FORECAST is an industrial strength high-
performance implementation of a BDD-based model checker developed at Intel, Haifa.
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Speedup 

(AD Vs. D)

s1269 55 9 9 45 50 12 15 6 3.3

s330 172 8 8 141 85 6 52 14 1.64

D_1 178 36 36 91 100 8 70 10 1.43

D_5 310 68 68 1112 897 5 150 18 5.98

D_6 328 94 94 81 101 5 76 3 1.3

Head_1_1 300 98 ovf(44) - 9180 10 900 15 10.2

Head_2_0 276 85 ovf(44) - 2784 4 390 55 7.14

Head_2_1 274 85 ovf(55) - 1500 8 460 50 3.26

I1 138 139 ovf(102) - 7178 18 2760 36 2.6

Circuit 
Name

# Vars # Steps
 Time(m)

           Forecast               Forecast-D  Forecast-AD

 # Workers Max. Step  Time(m)  # Workers  Time(m)

Fig. 5. A comparison between FORECAST, FORECAST-D and FORECAST-AD. If FORE-
CAST was unable to complete an image step, we reported the overflowing step in parentheses.
FORECAST-D and FORECAST-AD reached a fixpoint on all circuits. Column 10 shows the
speedup when comparing FORECAST-AD and FORECAST-D run times.

This section describes our experimental results on certain large benchmarks that are
known to be hard for reachability analysis. Most publicly available circuits are small
or medium sized and can be computed sequentially. Therefore, we focused mostly on
industrial-scale examples. We conducted experiments on two of the largest ISCAS89
benchmarks (s1269, s3330). Additional large-size examples are industrial designs taken
from Intel. Our parallel testbed included a maximum of 56 PC machines, 2.4GHz
Xeon processor with 4GB memory. The communication between the nodes was via
LAM MPI over fast Ethernet. We used daemon-based communication, which allows
true asynchronous message passing (i.e., the sending of messages progresses while the
user’s program is executing).

Our results are compared to FORECAST and to the work-efficient distributed syn-
chronous implementation in [15]. The work-efficient implementation originally used
NuSMV [9] as an external BDD-based model checker. For comparability, we re-
placed it with FORECAST. The work-efficient implementation which uses FORECAST
will be referred to as FORECAST-D (Distributed FORECAST), and our prototype as
FORECAST-AD (Asynchronous FORECAST-D).

Figure 5 clearly shows a significant speedup on all examples, up to an order of mag-
nitude. When comparing FORECAST-D to FORECAST-AD, we were able to obtain a
speedup even when the number of workers decreased. For instance, in the s1269 circuit,
we obtained a speedup of 3.3 even though the number of workers decreased by a factor
of 2. It can also be seen that the early splitting mechanism in FORECAST-AD enables
using more workers than in FORECAST-D. Using more workers clearly increases ef-
ficiency: for example in the Head 1 1 circuit, FORECAST-AD uses 1.5 times more
workers, but the speedup is of an order of magnitude.

We analyzed worker utilization when using the early splitting mechanism. Figure 6
provides utilization graphs for the Head 2 0 circuit, with this mechanism enabled and
disabled. The Head 2 0 is a large circuit, difficult for reachability analysis. As can be
seen in Figure 5, FORECAST is unable to reach a fixpoint on this circuit and overflows
at step 44, while FORECAST-D requires over 46 hours to reach a fixpoint. Figure 6(a)
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(b) With Early Splitting

Fig. 6. FORECAST AD worker utilization with and without the early splitting mechanism in the
Head 2 0 circuit. In each graph, the Y axis represents the worker’s ID. The X axis represents the
time(in minutes) from the beginning of the distributed computation. For each worker, each point
indicates that it computed an image at that time; a sequence of points represents a time segment
in which a worker computed an image; a sequence in which points do not appear represents a
time segment in which a worker is idle (it does not have any new states to develop). An asterisk
on the time line of a worker represents the point when it split. The XY curve connects times at
which workers join the computation. This curve separates the working from the non-working
area. Note that the scales of the two graphs (both X axis and Y axis) are different.

clearly shows that when the early splitting mechanism is disabled, the workers are idle
for much of the time. For instance, between 850 and 1100 minutes, only P7 is working.
This situation occurs when workers do not have any new states to develop and wait to
receive new owned states. In this case, only when P7 finds non-owned states and sends
them to their corresponding owners are those workers utilized again. It is evident in
Figure 6(b) that early splitting can significantly reduce such a phenomenon. As can be
seen, the phenomenon still exists, but on a much smaller scale, for instance between
360 and 380 minutes. In addition, when using early splitting, we are able to use more
machines more quickly. In Figure 6(a) it takes 1600 minutes for 10 machines to come
into use, whereas in Figure 6(b) this takes 70 minutes.

Circuit # Vars

Name Speedup 

 Time(m)  # Workers  Time(m)  # Workers (A Vs. B)

s330 172 120 8 52 14 2.3

D_5 310 617 14 150 18 4.1

Head_1_1 300 1140 4 900 15 1.3

Head_2_0 276 1793 11 390 55 4.6

Head_2_1 274 1200 5 460 50 2.6

 Forecast-AD

No Early Splitting (A) Early Splitting  (B)

Fig. 7. The early splitting effect in FORECAST-AD. The ”Speedup” column reports the speedup
obtained when using the early splitting mechanism.
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Fig. 8. The speedup obtained when increasing the number of workers on the Head 2 0 circuit
(in FORECAST-AD). The X axis represents the time required to reach a fixpoint. The Y axis
represents the maximal number of workers that participated in the computation. An asterisk on
the (x, y) coordinate indicates that when the threshold of free workers is set to x, the reachability
analysis ended after y minutes.

Figure 6 also illustrates that when the number of workers increases, the relative size
of the non-working area (the area above the XY curve) increases significantly. In the
working area (the area below the XY curve), workers are dedicated to the distributed
computation, whereas in the non-working area, workers are in the pool and can be
used for other computations. Thus the effectiveness of the mechanism, i.e, the relation
between the speedup and the increase in the number of workers, should actually be
measured with respect to the relative size of the working area. Figure 7 presents the
speedup obtained on several circuits, when using the early splitting mechanism.

As can be seen in Figure 8, there is an almost linear correlation between the increase
in computational power and the reduction in runtime on the Head 2 0 circuit. As the
number of workers increases, the effectiveness decreases slightly. This can be explained
by the fact that the relative size of the non-working area becomes larger as the number
of workers increases (since we are not able to utilize free workers fast enough).

8 Conclusions and Future Work

This paper presents a novel algorithm for distributed symbolic reachability analysis
which is asynchronous in nature. We employed non-blocking protocols in several lay-
ers of the communication and the computation infrastructures: asynchronous sending
and receiving of BDD messages (concurrency between image computation and state ex-
change), opening of messages between bounded image steps, a non-blocking distributed
forwarding mechanism, non-synchronized iterations, and an asynchronous termination
detection algorithm for a dynamic number of processes. Our dynamic approach tries
to utilize contemporary non-dedicated large-scale computing platforms, such as Intel’s
Netbatch high-performance grid system, which controls all (tens of thousands) Intel
servers around the world.

The experimental results show that our algorithm is able to compute reachability for
models with high memory requirements while obtaining high speedups and utilizing the
available computational power to its full extent.

Additional research should be conducted on better adaption of the reorder mecha-
nism to a distributed environment. One of the benefits of the distributed approach which



144 O. Grumberg et al.

we exploit is that each worker can perform reorder independently of other workers and
thus find the best order for the BDD it holds. We did not elaborate on this matter since
it is not the focus of the paper. Our adaptive early splitting approach not only better
utilizes free workers but also results in processes handling smaller-sized BDDs, which
are easier to manipulate. In particular, the reorders in small BDDs are faster and less
frequent. Nevertheless, the BDD package still spent a considerable time on reordering.
We intend to explore the use of splitting as an alternative method for reordering.
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Abstract. We propose a new saturation-based symbolic state-space
generation algorithm for finite discrete-state systems. Based on the struc-
ture of the high-level model specification, we first disjunctively partition
the transition relation of the system, then conjunctively partition each
disjunct. Our new encoding recognizes identity transformations of state
variables and exploits event locality, enabling us to apply a recursive
fixed-point image computation strategy completely different from the
standard breadth-first approach employing a global fix-point image com-
putation. Compared to breadth-first symbolic methods, saturation has
already been empirically shown to be several orders more efficient in
terms of runtime and peak memory requirements for asynchronous con-
current systems. With the new partitioning, the saturation algorithm
can now be applied to completely general asynchronous systems, while
requiring similar or better run-times and peak memory than previous
saturation algorithms.

1 Introduction

Formal verification techniques have received much attention in the past decade.
In particular, BDD-based [4] symbolic model checking [10,17] has been success-
fully applied in industrial settings. However, even if BDDs can result in great
efficiency, symbolic techniques remain a memory and time-intensive task.

We focus on symbolic state-space generation, a fundamental capability in
symbolic model checking, and target asynchronous concurrent systems, including
asynchronous circuits, distributed software systems, and globally-asynchronous
locally-synchronous systems (GALSs), which are increasingly being used in com-
plex hardware and embedded systems, such as System-on-Chip designs.

The standard approach to state-space generation uses a breadth-first strat-
egy, where each iteration is an image computation. This corresponds to finding
a “global” fixed-point of the transition relation. The saturation algorithm we
introduced in [6] uses instead a completely different iteration strategy, which
has been shown to excel when applied to asynchronous concurrent systems.

� Work supported in part by the NSF under grants CNS-0501747 and CNS-0501748.

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 146–161, 2005.
c© IFIP International Federation for Information Processing 2005
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Saturation recognizes and exploits the presence of event locality and recur-
sively applies multiple “local” fixed-point iterations, resulting in peak mem-
ory requirements, and consequently runtimes, often several orders of magnitude
smaller than for traditional approaches. As introduced, however, saturation re-
quires a Kronecker-consistent decomposition of the high-level model into com-
ponent models. While this is not a restriction for some formalisms (e.g., ordi-
nary Petri nets, even if extended with inhibitor and reset arcs), it does impose
constraints on the decomposition granularity in others (e.g., Petri nets with
arbitrary marking-dependent arc cardinalities or transition guards). For some
models, these constraints may prevent us from generating the state space be-
cause each component model is too large. A particularly important example is
the analysis of software.

In [20], Miner proposed a saturation algorithm applicable to models not satis-
fying Kronecker consistency, but its cost approaches that of an explicit generation
in models where an event affects many state variables. In this paper, after giving
an overview of state-space and transition relation encodings, we formalize pre-
vious saturation algorithms in a unifying framework (Sect. 2). Then, we present
a new transition relation encoding based on a disjunctive-conjunctive partition
and identity-reduced decision diagrams (Sect. 3). This allows us to define a new
saturation algorithm that does not require Kronecker consistency, like [20], nor
a priori knowledge of the state variable bounds, like [7], and is exponentially
more efficient in certain models (Sect. 4). We present preliminary memory and
runtime results for our approach and compare it to NuSMV [9] and SPIN [14]
(Sect. 5). Finally, we report related work and our conclusions (Sect. 6).

2 Preliminaries

We consider a discrete-state model represented by a Kripke structure M =
(Ŝ,Sinit ,R, L), where Ŝ is a finite set of states, Sinit ⊆ Ŝ is a set of initial
states, and R ⊆ Ŝ × Ŝ is a transition relation. We assume the (global) model
state to be a sequence of K local state variables, (xK , ..., x1), where, for K≥ l≥1,
xl ∈ {0, 1, ..., nl−1} = Sl, for some nl ∈ N. Thus, Ŝ = SK × · · · × S1 and we
write R(iK , ..., i1, i

′
K , ..., i′1), or R(i, i′), if the model can transition from the

current state i to a next state i′ in one step (unprimed symbols denote current
states, primed symbols denote next states). We let x(l,k) denote the (sub)state
(xl, ..., xk), for K ≥ l ≥ k ≥ 1. Given a function f on the domain Ŝ, Supp(f)
denotes the set of variables in its support. Formally, xl ∈ Supp(f) if there are
states i, j ∈ Ŝ, differing only in component l, such that f(i) �= f(j).

2.1 Symbolic Encoding of State Space and Transition Relation

State space generation consists of building the smallest set of states S ⊆ Ŝ
satisfying (1) S ⊇ Sinit and (2) S ⊇ Img(S), where the image computation
function gives the set of successor states: Img(X ) = {x′ : ∃x ∈ X , (x,x′) ∈ R}.
The most common symbolic approach to store the state space uses �nl boolean
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variables to encode each state variable xl, thus it encodes a set of states Z
through its characteristic function fZ , using a BDD with

∑
K≥l≥1�nl levels.

Instead of BDDs, we prefer ordered multi-way decision diagrams (MDDs) [18]
to encode sets of states, where each variable xl is directly encoded in a single
level, using a node with nl outgoing edges. Not only this results in a simpler
discussion of our technique, but it also allows us to more clearly pinpoint an
important property we exploit, event locality.

Definition 1. An MDD over Ŝ is an acyclic edge-labeled multi-graph where:

– Each node p belongs to a level in {K, ..., 1, 0}, denoted p.lvl.
– There is a single root node.
– Level 0 contains the only two terminal nodes, Zero and One.
– A node p at level l > 0 has nl outgoing edges, labeled from 0 to nl − 1. The

edge labeled by il points to node q, with p.lvl > q.lvl; we write p[il] = q.

Finally, one of two reductions ensures canonicity. Both forbid duplicate nodes:

– Given nodes p and q at level l, if p[il] = q[il] for all il ∈ Sl, then p = q.

Then, the fully-reduced version [4] forbids redundant nodes:

– No node p at level l can exist such that, p[il] = q for all il ∈ Sl.

While the quasi-reduced version [19] forbids arcs from spanning multiple levels:

– The root is at level K.
– Given a node p at level l, p[il].lvl = l − 1 for all il ∈ Sl. �

Definition 2. The set encoded by MDD node p at level k w.r.t. level l ≥ k is

B(l, p) =
{Sl × B(l − 1, p) if l > 0 ∧ l > k⋃

il∈Sl
{il} × B(l − 1, p[il]) if l > 0 ∧ l = k

,

with the convention that X × B(0,Zero) = ∅ and X × B(0,One) = X . �

Most symbolic model checkers, e.g., NuSMV [9], generate the state space
with breadth-first iterations, each consisting of an image computation. At the
dth iteration, Z contains all the states at distance exactly d, or at distance
up to d (either approach can be the most efficient, depending on the model).
When using MDDs, we encode Z(x) as a K-level MDD and R(x,x′) as a 2K-
level MDD whose unprimed and primed variables are normally interleaved for
efficiency. Furthermore, the transition relation can be conjunctively partitioned
into a set of conjuncts, R(x,x′) =

∧
α Cα(x,x′), or disjunctively partitioned into

a set of disjuncts, R(x,x′) =
∨

α Dα(x,x′) [16], stored as a set of MDDs, instead
of a single monolithic MDD. Heuristically, such partitioned relations have been
shown effective for synchronous and asynchronous systems, respectively.
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2.2 A General Partitioning Methodology for the Transition
Relation

In general discrete-state systems, both asynchronous and synchronous behavior
can be present. Thus, given a model expressed in a high-level formalism, we first
exploit the asynchronous aspects, by first disjunctively partitioning the transi-
tion relation R into a set of disjuncts, where each disjunct Dα corresponds to a
different event α in the set E of system events, i.e., R(x,x′) ≡ ∨

α∈E Dα(x,x′).
Then, each event can synchronously update several state variables. We as-

sume that, for each disjunct Dα, the high-level model description specifies both:

– A set of enabling conjuncts specifying when event α can occur, or fire. The
support of conjunct Enableα,m is a subset of {xK , ..., x1}.

– A set of updating conjuncts describing how the state variables are up-
dated when α fires. The support of conjunct Updα,n is a subset of
{xK , x′

K , ..., x1, x
′
1}.

Thus, the partitioned transition relation can be represented as:

R(x,x′) ≡
∨
α∈E

Dα(x,x′) ≡
∨
α∈E

(∧
m

Enableα,m(x) ∧
∧
n

Updα,n(x,x′)

)
.

We assume a particularly important class of models, where each updating
conjunct only updates one primed variables, so that we can write:

R(x,x′)≡
∨
α∈E

Dα(x,x′)≡
∨
α∈E

⎛⎝∧
m

Enableα,m(x) ∧
∧

K≥l≥1

Updα,l(x, x′
l)

⎞⎠. (1)

As a running example, we consider an event α corresponding to the following
pseudocode statement in a larger program:

if x5 > 2 and x6 ≤ 1 then 〈x3, x6〉 ← 〈x4, (x7 + x6) mod 6〉;
where the state variables are x7, ..., x1 ∈ [0..5] and the “〈 〉” pairs enclose v
(two, in our case) distinct variables to be simultaneously assigned, and the cor-
responding v expressions, which are evaluated before performing any assign-
ment. The disjunct Dα has then two enabling conjuncts, Enableα,1 ≡ [x5 > 2]
and Enableα,2 ≡ [x6 ≤ 1], and seven updating conjuncts, one for each variable
xk, k ∈ [7, ..., 1], Updα,3 ≡ [x′

3 = x4], Updα,6 ≡ [x′
6 = (x7 + x6) mod 6], and

Updα,k ≡ [x′
k = xk], for k ∈ {7, 5, 4, 2, 1}.

2.3 Event Locality

We now examine the ways an event α can be “independent” of a state variable
and show how the standard concept of support for a function is inadequate when
applied to the disjuncts of the transition relation. Recalling that Dα is just a
function of the form Ŝ × Ŝ → B, we can consider the following cases:
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– If xl �∈ Supp(Dα), the value of xl affects neither the enabling of event α nor
the value of any x′

k, for K ≥ k ≥ 1, including k = l, when α fires. In our
running example, this is the case for x3.

– If x′
l �∈ Supp(Dα), the value of x′

l is independent of that of xk, for K ≥ k≥
1, including k = l, when α fires. This corresponds to nondeterministically
setting x′

l to any value in Sl. Of course, given the expression of Eq. 1, we
already know that x′

l affects neither the enabling of α nor the values of x′
k,

for k �= l.

When encoding Dα with a fully-reduced 2K-level MDD, the above two cases are
reflected in the absence of node at level l, or l′, respectively. Indeed, it is even
possible that both xl �∈ Supp(Dα) and x′

l �∈ Supp(Dα) hold, thus neither l nor l′

would contain any node. However, these two cases are neither as important nor
as common as the following type of “independence”:

– If xl �∈ Supp(
∧

m Enableα,m∧∧k �=l Updα,k) and Updα,l ≡ [x′
l = xl], the value

of xl affects neither the enabling of event α nor the value of any x′
k, for k �= l,

while the firing of α does not change the value of xl.

This common situation is not exploited by ordinary MDD reductions; rather, it
results in the presence of (possibly many) identity patterns: a node p at level l
such that, foreach il ∈ Sl, p[il] = qil

, and qil
[jl] = Zero for all jl ∈ Sl, except for

qil
[il] = r, where node r �= Zero does not depend on il (the gray pattern in Fig.

1). It is instead exploited by Kronecker encodings of transition matrices [6,8].
We define V indep

α to be the set containing any such (unprimed) variable, and
Vdep

α = {xK , ..., x1} \ V indep
α , and say that event locality is present in a system

when Vdep
α is a strict subset of {xK , ..., x1}. We further split Vdep

α into Vupd
α =

{xl : Updα,l �≡ [x′
l = xl]}, the set of unprimed variables whose corresponding

primed variable can be updated by the firing of α, and Vunchanged
α = Vdep

α \Vupd
α ,

the set of unprimed variables that affect the enabling of α or the value of some
primed variable, but whose corresponding primed variable is not updated by the
firing of α. For our running example, Vupd

α = {x6, x3}, Vunchanged
α = {x7, x5, x4}

and V indep
α = {x2, x1}. By definition, Vupd

α ∪ Vunchanged
α ∪ V indep

α = {xK , ..., x1}
and, based on these sets, we can partition the transition relation as:

R(x,x′) ≡
∨
α∈E

⎛⎝∧
m

Enableα,m(x) ∧
∧

xk∈Vupd
α

Updα,k(x, x′
k) ∧

∧
xk /∈Vupd

α

[x′
k = xk]

⎞⎠.

Definition 3. Let Top(α) and Bot(α) be the highest and lowest variable indices
in Vdep

α : Top(α) = max{k : xk ∈Vdep
α }, Bot(α) = min{k : xk ∈Vdep

α }. �

We can then group the disjuncts Dα according to the value of Top(α):

R(x,x′) ≡
∨

K≥k≥1

Rk(x,x′) ≡
∨

K≥k≥1

⎛⎝ ∨
α:Top(α)=k

Dα(x,x′)

⎞⎠ . (2)
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2.4 Kronecker Encoding of the Transition Relation to Exploit
Locality

The performance evaluation community working on Markov chains has long
recognized that Kronecker techniques can be used to encode large (real) transi-
tion matrices while naturally exploiting the presence of identity transformations
for state variables [25]. However, such an encoding requires a Kronecker consis-
tent model. In our setting, this means that the following two properties must
hold:

– The support of each enabling conjunct contains only one unprimed variable.
Thus, Enableα,l(xl) simply lists the set of values Sα,l ⊆ Sl for xl in which the
event may be enabled: Enableα,l(xl) ≡ [xl ∈ Sα,l]. Of course, when Sα,l = Sl,
the conjunct does not enforce any restriction on the enabling of event α.

– The support of the updating conjunct for x′
l contains only xl, in addition to

x′
l: Updα,l(xl, x

′
l) ≡ [x′

l ∈ Nα,l(xl)], where Nα,l(xl) ⊆ Sl.

Such a model is called Kronecker consistent because, letting Rα,l(xl, x
′
l) ≡

[xl ∈ Sα,l∧x′
l ∈ Nα,l(xl)], and storing it as an nl×nl boolean matrix Rα,l, we can

write R(x,x′) ≡ ∨
α∈E

∧
K≥l≥1 Rα,l(xl, x

′
l) and the matrix R corresponding to

the overall transition relation R can be expressed as R =
∑

α∈E
⊗

K≥l≥1 Rα,l,
where “

∑
” indicates boolean sum and “⊗” Kronecker product of matrices. Our

notion of locality becomes apparent: for xl ∈ V indep
α , Rα,l(xl, x

′
l) ≡ [x′

l = xl],
thus Rα,l is an identity matrix, which of course is not explicitly stored.

A model can be made Kronecker consistency in two ways. We can merge
state variables into new “larger” variables, so that each new variable can depend
only on the original state variables that were merged into it; in our running
example, we could merge variables x4 and x3 into a new variable, and variables
x7 and x6 into another new variable. Or we can split a disjunct Dα based on
a Shannon expansion, so that each new “smaller” disjunct satisfies Kronecker
consistency; in our example, we can split along variables x7 and x4 and write
Dα =

∨
i7∈{0,...,5},i4∈{0,...,5}Dα,x7=i7,x4=i4 , where each Dα,x7=i7,x4=i4 satisfies

Kronecker consistency. However, neither approach is satisfactory for models with
intricate dependencies; excessive merging results in few or even just a single state
variable, i.e., an explicit approach, while excessive splitting causes an exponential
growth in the number of events, i.e., the storage for the Rα,l matrices.

2.5 Previously Proposed Variants of the Saturation Algorithm

The saturation algorithm exploits event locality through lightweight recursive
fixed point image computations where the disjunctive partitioning of the tran-
sition relation is organized according to the value of Top(α), for each α ∈ E :

R(x,x′) ≡
∨

K≥l≥1

∨
α:Top(α)=l

Dα(x,x′) ≡
∨

K≥l≥1

Rl(x(l,1),x′
(l,1)) ∧ [x′

(K,l+1) = x(K,l+1)].

A node p at level l is saturated if the set of states it encodes cannot be en-
larged by applying events α such that Top(α) ≤ l, i.e., B(l, p) ⊇ Img≤l(B(l, p)),
where Img≤l is the image computation restricted to Rk, for l ≥ k ≥ 1:
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Img≤l(X ) = {x′
(l,1) : ∃x(l,1) ∈ X , ∃k ≤ l,Rk(x(k,1),x′

(k,1)) ∧ x(l,k+1) = x′
(l,k+1)}.

Thus, if, before saturating it, p encoded the set B(l, p) = X0, at the end of
its saturation, p encodes the least fixed point B(l, p) = μX .(X0 ∪ Img≤l(X )).
To encode this fixed point, p is modified in place, i.e., the pointers p[il] are
changed, so that they point to nodes that encode increasingly larger sets, while
the pointers to p from nodes above it are unchanged.

Starting from the MDD encoding the initial state(s), the nodes of this MDD
are saturated in bottom-up order. In other words, whenever the application of
Rl causes the creation of a node at a level k < l, this new node must be imme-
diately saturated, by applying Rk to it. Thus, during the bottom-up process of
saturating all nodes, only Rl must be applied to a node p at level l, since all Rk,
for k < l, have been already applied to saturate its children.

In the original saturation algorithm for Kronecker-consistent models [6], we
store each Dα as the set of matrices Rα,l, for Top(α) ≥ l ≥ Bot(α); of course,
for Top(α) > l > Bot(α), we might have xl ∈ V indep

α , in which case Rα,l is the
identity and is not stored. For state-space generation of GALS, we showed how
the peak memory and runtime requirements of saturation can be several orders
of magnitude better than a traditional breadth-first iteration.

In [7], we extended the algorithm to models where the state variables have
unknown bounds, which must then be discovered “on-the-fly”. During the gen-
eration process, each matrix Rα,l contains rows and columns corresponding to
the confirmed values for xl, i.e., values il that appear as the lth component in at
least one global state i known to be reachable, but also columns corresponding
to unconfirmed values for xl, i.e., values jl such that Rα,l(il, jl) is a possible
transition in isolation from a confirmed state il, but we don’t yet know whether
α is enabled in a global state i whose lth component is il. Thus, the algorithm
interleaves the building of rows of Rα,l, obtained through an explicit (local)
state-space exploration of the model restricted to variable xl, with the (global)
symbolic exploration of the state space.

In [20], Miner showed how to deal with models that do not satisfy the
Kronecker-consistency requirement. The transition relation is encoded using K-
level matrix diagrams (MxDs), which we introduced in [8]. Essentially, these are
2K-level MDDs where the nodes of levels xl and x′

l are merged into “matrix”
nodes having nl×nl edges, but, unlike ordinary decision diagrams, the reduction
rule requires to remove a node p if it describes an identity, i.e., if p[il, jl] = Zero
for il �= jl and p[il, il] = q for all il ∈ Sl. Thus, MxDs combine the generality of
decision diagrams (they can represent any relation over Ŝ) with the advantages
of a Kronecker representation (they can reveal and exploit event locality).

A single MxD can encode Rl, but [20] requires Rl(x,x′) to be expressed as

Rl(x(l,1),x′
(l,1)) ≡

∨
α:Top(α)=l

⎛⎝∧
g

Groupα,g(x(l,1),x′
(l,1)) ∧

∧
xk∈V indep

α ,k<l

[x′
k = xk]

⎞⎠,

where Supp(Groupα,g) is a set of “unprimed-primed” variable pairs, and groups
have disjoint supports: g �= h implies Supp(Groupα,g) ∧ Supp(Groupα,h) = ∅.
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Thus, each “coarse-grain” Groupα,g corresponds to the intersection of all the
enabling and updating conjuncts that depend on its support, including the up-
dating conjuncts of the form [x′

k = xk], for xk ∈ Vunchanged
α ∩ Supp(Groupα,g).

Then, [20] maintains an MxD for each Groupα,g, and updates it every time
a new local state ik ∈ Sk is confirmed, if xk ∈ Supp(Groupα,g). In turn, this
triggers the rebuilding of the MxD for Rl, by performing the appropriate MxD
intersection and union operations. Just like in [7], these updates following the
confirmation of a local state require one step of explicit state space exploration
in a portion of the model. However, instead of considering a single variable xk,
we must now consider all the unprimed variables in Supp(Groupα,g) whenever
the set of possible values for any of these variables is extended. For example, if
Supp(Groupα,g) = {x7, x

′
7, x5, x

′
5, x2, x

′
2} and i5 ∈ S5 is confirmed, [20] explicitly

explores the possible transitions from each state in S7 × {i5} × S2.

3 Fine-Grain Partitioning with MDD-Based Encodings

The cost of building the coarse-grain disjoint partitioned groups Groupα,g of [20]
can be large, since each group Groupα,g is built explicitly, at an exploration cost
O(
∏

xk∈Supp(Groupα,g) |Sk|). The disjoint partitioning requirement may result in
too coarse a conjunctive-partitioning for event α or even, in the worst case, in a
single group, as in the shift register example of Sect. 5.

We propose a fine-grain partitioned approach, using the more familiar 2K-
level MDDs to encode the transition relation. We express Rl(x(l,1),x′

(l,1)) as:

Rl(x(l,1),x
′
(l,1)) =

∨
α:Top(α)=l

⎛⎝DPart
α

(
x(l,1),x

′
(l,1)

)
∧

∧
xk /∈Vupd

α ,k≤l

[x′
k = xk]

⎞⎠, (3)

where the “partial” relation DPart
α

(
x(l,1),x′

(l,1)

)
is defined as:

DPart
α

(
x(l,1),x′

(l,1)

)
=
∧
m

Enableα,m

(
x(l,1)

) ∧ ∧
xk∈Vupd

α

Updα,k

(
x(l,1), x

′
k

)
.

We use a fully-reduced MDD for each enabling conjunct Enableα,m and each
updating conjunct Updα,k of each event α with Top(α) = l, where xk ∈ Vupd

α .
The variables of each such MDD are only those in the support of the encoded
conjunct; because of our new encoding technique, we do not store the updating
conjuncts of the form [x′

k = xk], for xk �∈ Vupd
α , k ≤ l, even if xk �∈ V indep

α .
The fully-reduced MDD encoding DPart

α is then obtained as the intersection
(boolean conjunction) of the MDDs of all its Enableα,m and Updα,k conjuncts,
thus Supp(DPart

α ) is the union of the supports of these conjuncts.

3.1 Fully-Identity Reduced 2K-Level MDD Encoding of the
Disjuncts

To efficiently build Rl from Eq. 3 and exploit event locality in the MDD, we
introduce a new canonicity-preserving identity reduction rule. In our particular
application, we use a fully-identity reduced 2K-level MDD to encode each Rl:
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– Each unprimed level, l (for variable xl) K ≥ l ≥ 1, is fully-reduced, i.e.,
no node at level l can be redundant, and is immediately followed by the
corresponding primed level l′ (for variable x′

l).
– Each level l′ is identity-reduced w.r.t. to level l: (1) if node p is at level l and

p[il] reaches q at level l′, then q is not a singular-il node, i.e., it is not a node
with q[il] �= Zero and q[jl] = Zero for all jl ∈ Sl \{il}; (2) a singular-il node
at level l′, for any il ∈ Sl, must be pointed by a node at level l.

Fig. 1 shows three examples of MDDs that are either fully-fully (left) or
fully-identity (right) reduced for the unprimed and primed levels, respectively.
In the first example, the entire identity pattern clearly visible in the fully-fully
case is absent in the fully-identity case, because nodes q0 and q1 are eliminated
first (due to the identity-reduced rule for level l′) and the remaining node p is
now redundant and eliminated (due to the fully-reduced rule for level l). In the
second example, singular-0 node q0 is eliminated, but redundant node q is added
while, in the third example, singular-1 node q1 requires the introduction of node
p, which is not redundant in the fully-identity reduction case.
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Fig. 1. Comparing fully-fully (FF) and fully-identity (FI) reductions for MDDs

Build(Rl)
1 foreach α s.t. Top(α) = l do
2 DPart

α ← ∧
m Enableα,m∧∧

xk∈Vupd
α

Updα,k; •intersection of fully-fully MDDs
3 Dα ← FullyIdentity(DPart

α ); •change fully-fully MDD into fully-identity MDD
4 Rl ← ∨

α:Top(α)=l Dα; •union of fully-identity MDDs

Fig. 2. Algorithm to build Rl from the disjuncts and conjuncts

From the fully-fully reduced MDD for DPart
α , the fully-identity reduced 2K-

level MDD for Dα is built using a recursive procedure. Then, the 2K-level fully-
identity reduced MDD encoding of Rl is built using a recursive union for fully-
identity reduced MDD on the disjuncts Dα for which Top(α) = l (Fig. 2).

Our fully-identity reduced 2K-level MDDs, while strongly related to MxDs
used in [20] to encode disjuncts, can be even more compact. Only matrix nodes
corresponding to levels l ∈ V indep

α can be eliminated in MxDs, while, in addition
to eliminating these entire identity patterns, our fully-identity reduced MDDs
also eliminate nodes at primed levels k ∈ Vunchanged

α .
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4 A New Saturation Algorithm for State-Space
Generation

Based on the new encoding technique for partitioned transition relations, we
propose new saturation algorithms for models with known or unknown variable
bounds, respectively (Fig. 3 and 4). As in previous saturation algorithms, the
state space is encoded in a quasi-reduced K-level MDD, since Rl must be applied
also to redundant nodes at level l; if fully-reduced MDDs were used, these nodes
would have to be re-inserted to saturate them during bottom-up saturation. For
simplicity, the pseudocode of Fig. 3 4 assumes that either both or neither levels
k and k′ are skipped in the MDD of the disjuncts Rl, for K ≥ l ≥ 1; our actual
implementation also manages the case when only one of them is skipped.

Saturate(MDD p)
1 l ← p.lvl;
2 repeat
3 B(l, p) ← B(l, p) ∪⋃

il∈Sl,i
′
l
∈Sl

{i′l} × ImgSat (p[il], Rl[il][i′l])
4 until B(l, p) is not changed

ImgSat(MDD q, MDD2 f)
1 if q = Zero or f = Zero then return ∅;
2 k ← q.lvl; m ← f.lvl; s ← a new MDD node s at level k;
3 if k > m then
4 B(k, s) =

⋃
ik∈Sk

{ik} × ImgSat (q[ik], f);
5 else •k is equal to m
6 B(k, s) =

⋃
ik∈Sk,i′

k
∈Sk

{i′k} × ImgSat (q[i′k], f [ik][i′k]);
7 Saturate(s);
8 return B(k, s).

Fig. 3. A saturation algorithm for models with known variable bounds

4.1 Saturation When State Variables Have Known Bounds

For models where state variables have known bounds, e.g., circuits and other
hardware models, each conjunct can be built separately a priori, considering
all the possible transitions when the conjunct is considered in isolation. Then,
the MDD encodings of the disjunctive partition RK , ...,R1, can be built by the
Build(Rl) procedure of Fig. 2, prior to state-space generation. The saturation
algorithm for the case when RK , ...,R1 are built this way is shown in Fig. 3.

Saturate(p) recursively compute a fixed-point on node p at level l. It iter-
atively selects a child p[il]; for each i′l ∈ Sl, it calls ImgSat(p[il],Rl[il][i′l]) to
compute the (possibly new) reachable states in Sl−1 × ... × S1; finally, it adds
the states {i′l} × ImgSat(p[il],Rl[il, i′l]), a subset of Sl × ...× S1, to B(l, p).

The ImgSat(q, f) procedure takes a K-level MDD node q at level k and a
2K-level MDD node f at level m as inputs, where m ≤ k, since the K-level MDD
for the state space is quasi-reduced. If either node q or node f is Zero, the empty
set is returned, since no transitions are possible in this case. If node f is at a
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level m below k, our fully-identity reduction implies the identity-transformation
of variable xk. If node f is instead at level k, for each possible transition of
variable xk from ik to i′k, a recursive call on the children nodes is made. These
(possibly) new states are encoded in a MDD node s at level k, which is Saturated
prior to returning it to the calling procedure.

The state-space generation starts with an MDD encoding for the initial
state(s), then follows with a bottom-up saturation of these initial MDD nodes,
until all of them are saturated. The final result is the encoding of the state space.

4.2 Saturation When State Variables Have Unknown Bounds

For systems with unknown variable bounds, the partitioned transition relations
cannot be built prior to state-space generation. We must instead interleave build-
ing partitioned transition relation i.e., calls to the Confirm procedure, with sym-
bolic state-space generation (Fig. 4).

We define the confirmed set Sc
l ⊆ Sl for variable xl as the values of variable

xl that appear in a global state currently encoded by the MDD. Sl\Sc
l contains

instead the unconfirmed states that appear only in the l′ level of the transition
relation; these are “locally” but not necessarily “globally” reachable. For any
node p at level l, p[il] = Zero for any such unconfirmed local state il.

Saturate is then modified so that, at each iteration, any new values for xl

that are now known to be reachable (appears in a path leading to One in the
MDD encoding the state-space) are confirmed by calling Confirm(xl, i

′
l), and Rl

is rebuilt if needed, i.e., if any of its conjuncts has changed. The selection of
(il, i′l) in statement 5 of course avoids repeating a pair unless p[il] or Rl[il][i′l]
have changed; this check is omitted for clarity.

Saturate(MDD p)
1 l ← p.lvl;
2 repeat
3 Confirm(xl, il) for any state il ∈ Sl \ Sc

l s.t. p[il] �= Zero;
4 Build(Rl);
5 pick il ∈ Sc

l , i′l ∈ Sl s.t. Rl[il][i′l] �= Zero;
6 B(l, p) ← B(l, p) ∪ {i′l} × ImgSat (p[il], Rl[il][i′l])
7 until B(l, p) is not changed

Confirm(xl, il)
1 Sc

l ← Sc
l ∪ {il};

2 foreach enabling conjunct Enableα,m, s.t. xl ∈ Supp(Enableα,m) do
3 foreach isub ∈ {il} ××xk∈Supp(Enableα,m)\{xl}Sc

k do
4 if ModelEnableα,m(isub) then Enableα,m ← Enableα,m ∪ {isub};
5 foreach updating conjunct Updα,n, s.t. xl ∈ Supp(Updα,n) do

6 foreach isub ∈ {il} ××xk∈{xK ,...,x1}∩Supp(Updα,n)\{xl}Sc
k do

7 I′
n ← ModelUpdα,n(isub); •states reachable from isub in one step

8 Updα,n ← Updα,n ∪ {isub} × I′
n;

9 Sn ← Sn ∪ I′
n;

Fig. 4. A saturation algorithm for models with unknown variable bounds
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Procedure Confirm takes a new value il for variable xl and updates each
conjunct with xl in its support. This requires to explicitly query the high-level
model for each (sub)state isub that can be formed using the new value il and any
of the values in the confirmed set Sc

k of any unprimed variable xk in the support
of such a conjunct. Functions ModelEnableα,m and ModelUpdα,n are analogous
to Enableα,m and Updα,n, but they are assumed to be “black-boxes” that can
be queried only explicitly; they return, respectively, whether α is enabled in isub ,
and what is the set of possible values for x′

n when α fires in isub in isolation,
i.e., considering only the restriction of the model to the particular conjunct.
Thus, our cost is still of the form O(

∏
xk∈Supp(f) |Sk|), as in [20], but f is now

Enableα,m or Updα,n, which can have a much smaller support than Groupα,g.
We stress that, while our presentation assumes that the support of each

updating conjunct contains a single primed variable, this is is not required by
our approach. Thus, a situation where an event α “nondeterministically either
increments both x5 and x4 or decrements both x5 and x4” is captured with
an updating conjunct of the form Updα,{4,5} having both x′

5 and x′
4 in its sup-

port. Indeed, our implementation heuristically merges enabling or updating con-
juncts for efficiency reasons: if Supp(Enableα,m) ⊂ Supp(Updα,l), we can merge
the effect of Enableα,m in the definition of Updα,l; if Supp(Updα,l) \ {x′

l} ⊆
Supp(Updα,k) \ {x′

k}, we can merge the two updating conjuncts, into a conjunct
Updα,{l,k} having the union of the supports. As long as no new unprimed vari-
able is added to the support of a conjunct, the enumeration cost of explicitly
building the conjunct is not affected, but the number of conjuncts is reduced.

5 Experimental Results

We now show some experimental results for our new technique, run on a 3 Ghz
Pentium IV workstation with 1GB memory, on a set of models whose state-space
size can be controlled by a parameter N . We compare the new proposed satu-
ration algorithm for the unknown bound case (for ease of model specification)
with the saturation algorithm in [20], the symbolic model checker NuSMV [9],
and the explicit model checker SPIN [14], which targets asynchronous software
verification and applies partial-order reduction and other optimizations such as
minimized automaton storage for reachable states and hash compaction.

Table 1 reports the parameter N , the size |S| of the original and the reduced
(by partial-order reduction) state space, and the runtimes and peak memory re-
quirements for the four approaches, SPIN, SMV (NuSMV), QEST (the approach
in [20]), and NEW (our new encoding technique). Both QEST and NEW are
implemented in our tool SmArT [5]. We studied the following models:

– A Slotted-ring network protocol [24] where N processors can access the
medium only during the slot allocated to them.

– The classical Queen problem where the N queens must be placed on an
N × N chessboard, in sequential order from row 1 to N without attacking
each other.
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– A Fault-tolerant multiprocessor system described in [11]. While [11] requires
1200 seconds for N = 5, we require 0.07 seconds for N = 5 and we can
generate the state space for N = 100 in 485 seconds. [20] reports similar
improvements, but uses over twice as much memory.

– A Leader election protocol among N processes, a simplified version of [12],
where the broadcasting of the winner identity is omitted. Messages are sent
asynchronously via FIFO message queues.

– A Bubble-sort algorithm where an array of N numbers initialized to N, ..., 1
need to be sorted into the result 1, ..., N .

– A Swapper program [1] where a boolean array of size 2N is initialized with
0’s in the first half and 1’s in the second half, and the two halves are swapped
through neighbor-only exchanges. While the best tool considered in [1] re-
quires 90 seconds for N = 40, we require 0.03 seconds for N = 40 and can
generate the state space for N = 2, 000 in 50 seconds.

– A Round-robin mutex protocol [13] where N processes require exclusive ac-
cess to a resource.

– A Bit-shifter where, at each step, a new random bit b0 is generated, and bit
bk is set to bit bk−1, for N ≥k≥1.

– An analogous Int-shifter, which shifts values in the range {1, ..., N}.

Defining equivalent models (with the same number of states) was a challenge.
For Leader, from the SPIN distribution, we were able to define equivalent models
for NuSMV and SmArT. For all other models, initially defined in SmArT, we
defined equivalent NuSMV and SPIN models, except that, for SPIN, our Queen
model has approximately 1/3 more states, and we have no Fault-tolerant model.

From Table 1, we can observe that, compared with QEST, NEW has better
runtime and memory consumptions for essentially all models and parameter com-
binations. In the only two cases where QEST is (negligibly) faster than NEW,
Bubble-sort and Fault-tolerant, NEW’s memory consumption is much better.
Especially for Bit-shifter and Int-shifter, NEW has enormously better perfor-
mance. This is because QEST requires conjuncts (groups) with non-intersecting
supports; for these two models, the resulting groups are very large and prevent
QEST from analyzing a 256-bit shifter or an 8-int shifter.

Compared with SMV, both QEST and NEW achieve much better runtime and
memory consumptions for all models except Bit-shifter and Int-shifter, where
QEST reports much worse results than SMV, while NEW still greatly outperforms
SMV in both time and memory.

Considering now SPIN, clearly, all symbolic approaches greatly outperform
SPIN unless its partial-order reduction techniques are applicable. One case where
this happen is Leader, for which only 10N states are explored in the reduced
state space, while the actual state space S grows exponentially. Nevertheless, for
Leader, NEW can generate the state space for N = 30, greatly outperforming
SMV and QEST in time and memory; indeed NEW’s peak number of MDD nodes
for S is 22N −23, just one more than the final number. For all other models,
instead, SPIN fails to reduce any states, thus its explicit exploration is limited
to small parameter values.
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Table 1. Experimental results

N Original Reduced CPU time (sec) Peak memory (KB)
|S| |S| SPIN SMV QEST NEW SPIN SMV QEST NEW

Slotted-ring: K = N , |Sk| = 15 for all k
6 575,296 575,296 8.2 0.13 0.03 0.03 401,130.5 5,660.6 33.3 36.8

15 1.5 × 1015 — — 1285.1 0.17 0.15 — 21,564.2 262.7 155.8
200 8.4 × 10211 — — — 204.8 153.6 — — 362,175.8 176,934.1
Queen: K = N , |Sk| = N + 1 for all k
11 166,926 228,004 0.7 14.0 3.9 1.8 21,308.4 17,018.4 14,078.6 5,302.2
12 856,189 1.2 × 106 3.8 105.9 19.5 8.9 103,307.3 53,218.3 63,828.6 23,276.7

Fault-tolerant: K = 10N + 1, |Sk| ≤ 4 for all k except |S1| = N + 1
5 2.4 × 1013 n/a n/a 152.0 0.14 0.07 n/a 18,576.8 171.4 120.2

100 1.0 × 10262 n/a n/a — 480.2 485.0 n/a — 52,438.7 23,406.1
Leader : K = 2N , |Sk| ≤ 19 for all k

7 1.5 × 106 70 0.013 491.7 1.6 0.7 7,521.3 91,270.2 607.2 42.1
20 3.3 × 1017 200 0.024 — 93.4 28.2 7,521.3 — 7,281.3 86.6
30 1.8 × 1026 300 0.047 — 568.9 145.6 9,618.4 — 20,271.7 114.3
Bubble-sort: |S| = N !, K = N , |Sk| = N for all k

11 4.0 × 107 4.0 × 107 1,042.8 125.3 1.7 1.7 848,498.7 19,704.4 7,217.6 2,505.7
12 4.8 × 108 — — 859.9 5.3 5.5 — 43,948.3 21,680.7 7,438.5

Swapper : |S| = N !/((N/2)!)2, K = N , |Sk| = 2 for all k
20 184,756 184,756 0.9 0.2 0.01 0.01 37,006.3 6,831.6 30.8 23.5
40 1.4 × 1011 — — 241.6 0.06 0.03 — 14,795.2 100.4 34.3

2,000 2.0 × 10600 — — — 742.3 49.8 — — 187,266.0 58,970.9
Round-robin: K = N + 1, |Sk| = 10 for all k except |SK | = N + 1
16 2.3 × 106 2.3 × 106 43.0 0.34 0.11 0.07 1,046,004.7 7,060.3 290.0 125.5
50 1.3 × 1017 — — 11.7 2.1 1.2 — 61,239.0 6,041.3 1,299.2

200 7.2 × 1062 — — — 336.3 77.0 — — 351,625.7 47,833.1
Bit-shifter : |S| = 2N+2, K = N + 3, |Sk| = 2 for all k except |SN+3| = |SN+2| = 3
16 262,144 262,144 1.2 0.03 12.7 0.01 306,798.6 4,449.4 8,326.6 44.2

256 4.6 × 1077 — — 447.7 — 2.63 — 16,723.4 — 4,988.2
1,000 4.3 × 10301 — — — — 64.52 — — — 97,060.2

Int-shifter : |S| = 2NN+1, K = N + 3, |Sk| = N for all k except |SN+3| = |SN+2| = 3
7 1.2 × 107 1.2 × 107 137.6 0.05 281.4 0.04 680,857.6 4,767.9 157,344.0 120.1

24 6.4 × 1034 — — 29.2 — 2.87 — 14,827.8 — 8,096.1
32 9.4 × 1049 — — — — 11.3 — — — 24,221.1

6 Related Work and Conclusions

For traditional breadth-first state space generation, the efficiency of image com-
putation has been extensively studied. A conjunctive partition of the transi-
tion relation is the dominant approach for synchronous systems; the conjunctive
scheduling problem [21] consider efficient clustering of the conjuncts and ordering
of the clusters to minimize the size of the intermediate results during image com-
putation. Traditionally, coarse-grain conjunctive partitioning is used to build the
transition relation, and conjuncts are split only as necessary. A fine-grain con-
junctive partition is instead used in [15], where bit-level conjuncts are conjoined
into clusters. A disjunctive partition of the transition relation is instead natu-
rally applied to asynchronous systems, but also to synchronous systems based
on a Shannon’s expansion [23]. [22] proposes an approach combining conjunc-
tive partition with disjunctive recursive splitting; this differs from our approach
which performs a conjunction on the results of the disjunction by events.

The presence of identities in disjunctive partitions of asynchronous circuits
is suggested in [10], by limiting the image computation using disjuncts to the
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dependent variables. For software models, [2] shows how to translate conjuncts
into disjuncts and vice versa. Their disjuncts modify only one state variable
and the program counter, while we allow disjuncts to concurrently modify any
number of state variables. Thus, [2] uses conjuncts not to “decompose” the
disjuncts but to perform a pre-model-checking reduction. Furthermore, the image
computation uses partial disjuncts, as in [10], but there is no merging of the
partial-disjuncts while still exploiting the identity transformations, as allowed
by our fully-identity reduced 2K-MDDs.

Finally, regarding iteration orders other than breadth-first, only [20] uses
a saturation-based approach; [3] uses a guided search in symbolic CTL model
checking, in the hope to obtain a witness or counterexample without exploring
the entire state space; and [26] uses a mixed breadth-first/depth-first approach in
state-space generation based on the idea of chaining, a precursor to saturation.

To summarize our contribution, we introduced a new encoding for the tran-
sition relation of a discrete-state model, based on a new disjunctive-conjunctive
partition and a new fully-identity reduction rule for MDDs. With this encoding,
we perform symbolic state-space generation using the efficient saturation algo-
rithm without having to satisfy the Kronecker consistency requirement. This
new algorithm retains the efficiency of the original version, but has general ap-
plicability. In particular, it can be used to study models of software, for which
the consistency requirement hindered the use of previous versions of saturation.

Remarkably, for saturation, encoding the transition relation with (at most)
one MDD for each state variable turns out to be more efficient than the finer
encoding with one MDD for each event. This suggests that a disjunctive par-
tition improves efficiency as long as it enables the recognition of event
locality, but exploiting identity transformations is what truly matters.
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Real-Time Model Checking Is

Really Simple

Leslie Lamport

Microsoft Research

Abstract. It is easy to write and verify real-time specifications with
existing languages and methods; one just represents time as an ordi-
nary variable and expresses timing requirements with special timer vari-
ables. The resulting specifications can be verified with an ordinary model
checker. This basic idea and some less obvious details are explained, and
results are presented for two examples.

1 Introduction

Numerous special languages and logics have been proposed for specifying and
verifying real-time algorithms. There is an alternative that I call the explicit-time
approach, in which the current time is represented as the value of a variable now
and the passage of time is modeled by a Tick action that increments now . Timing
constraints are expressed with timer variables.

Hardly anything has been written about the explicit-time approach, perhaps
because it is so simple and obvious. As a result, most people seem to believe
that they must use special real-time languages and logics. It has already been
shown that an explicit-time approach works fine for specifying and proving prop-
erties of real-time algorithms [1]. Here, I consider model checking explicit-time
specifications.

The major advantage of the explicit-time approach is that it can be used with
any language and logic for describing concurrent algorithms. This is especially
important for complex algorithms that can be quite difficult to represent in the
lower-level, inexpressive languages typical of real-time model checkers. For ex-
ample, distributed message-passing algorithms have queues or sets of messages
in transit, each with a bound on its delivery time. Such algorithms are difficult
or impossible to handle with most real-time model checkers. Section 2 briefly
explains the explicit-time approach with a simple distributed algorithm. A com-
plete specification of the algorithm in TLA+ [8], a high-level mathematics-based
language, appears in [9].

Explicit-time descriptions can use either continuous or discrete time. Sec-
tion 3 shows that when discrete time is used, these descriptions can be checked
with ordinary model checkers. This simple fact has been known for quite a while
and is implicit in several published results [5]. However, a direct statement of it
does not seem to have appeared before in print. Moreover, there are some aspects

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 162–175, 2005.
c© IFIP International Federation for Information Processing 2005
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of model checking explicit-time specifications that may not be obvious, includ-
ing the use of view symmetry and a method for checking that a specification is
nonZeno [1].

Section 4 describes the result of checking the algorithm described in Section 2
with TLC, a model checker for TLA+ specifications, and with Uppaal [10], the
only real-time model checker I know of that can handle this example. It also
compares TLC, Spin [6], and SMV [11] with Uppaal on the Fischer mutual
exclusion algorithm [13]. More details appear in [9].

2 Writing Explicit-Time Specifications

In an explicit-time specification, time is represented with a variable now that is
incremented by a Tick action. For a continuous-time specification, Tick might
increment now by any real number; for a discrete-time specification, it incre-
ments now by 1. Timing bounds on actions are specified with one of three kinds
of timer variables: a countdown timer is decremented by the Tick action, a count-
up timer is incremented by Tick , and an expiration timer is left unchanged by
Tick .1 A countdown or count-up timer expires when its value reaches some value;
an expiration timer expires when its value minus now reaches some value. An
upper-bound timing constraint on when an action A must occur is expressed
by an enabling condition on the Tick action that prevents an increase in time
from violating the constraint; a lower-bound constraint on when A may occur is
expressed by an enabling condition on A that prevents it from being executed
earlier than it should be.

I illustrate how one writes explicit-time specifications using the example of a
simple version of a classic distributed algorithm of Radia Perlman [12]. The orig-
inal algorithm constructs a spanning tree rooted at the lowest-numbered node,
called the leader. The tree is maintained by having the leader periodically propa-
gate an I’m Leader message down it that informs each node of its distance to the
leader. A new tree is constructed if a failure causes some node to time out before
receiving the I’m Leader message. I have simplified it by eliminating failures, so
correctness means simply that every node learns the leader within some fixed
length of time. A complete TLA+ specification of the algorithm appears in [9].
Here, I describe only the TLA+ specification of the Tick action.

The algorithm has three timing parameters, Period , MsgDelay, and
TODelay. Each node n has a countdown timer timer [n]. Setting timer [n] to
τ causes a timeout to occur between τ and τ + TODelay seconds later. By
letting τ be the minimum timeout interval, this models both delay in react-
ing to a timeout and variation in the running rate of physical timers. When
its timeout occurs, node n sends an I’m Leader message and sets timer [n] to
Period . If n receives an I’m Leader message from a lower-numbered node, it
resets timer [n] to a suitable value. A message is assumed to be received at
most MsgDelay seconds after it is sent, a constraint enforced with a rcvTimer
1 Dutertre and Sorea [3] use a different kind of timer variable that predicts the time

at which an action will occur.
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Tick
Δ= ∃ d ∈ {r ∈ Real : r > 0} :

∧ ∀ n ∈ Node : timer [n] + TODelay ≥ d
∧ ∀ ms ∈ BagToSet(msgs) : ms.rcvTimer ≥ d
∧ now ′ = now + d
∧ timer ′ = [n ∈ Node �→ timer [n] − d ]
∧ msgs ′ = let Updated(ms) Δ=

[ms except !.rcvTimer = ms.rcvTimer − d ]
in BagOfAll(Updated , msgs)

∧ unchanged 〈ldr , dist〉

Fig. 1. The Tick action’s definition for the leader algorithm

countdown timer field in the message. The algorithm achieves stability if, upon
receiving a message from its leader, a node n sets timer [n] to a value no smaller
than Period +TODelay + dist [n] ∗MsgDelay, where dist [n] is the distance from
n to the leader.

Figure 1 contains the definition of the Tick action from the TLA+ specifi-
cation. It can’t be completely understood without seeing the rest of the speci-
fication and having some knowledge of TLA+ (including the definitions of the
operators BagToSet and BagOfAll from the standard Bags module). However,
it will indicate how timing constraints are specified and also give an idea of the
high-level nature of TLA+. This version is for a continuous-time specification,
in which now is incremented by some real value d . We obtain a discrete-time
specification by replacing “∃d ∈ {r ∈ Real : r > 0} : ” with “ let d Δ= 1 in ”.

The action’s first two conjuncts enforce the upper-bound constraints. The
first prevents timer [n] from becoming less than −TODelay, for each node n.
The second prevents the timer ms .rcvTimer from becoming negative, for all
messages ms in the bag (multiset) msg of messages in transit.

The action’s remaining conjuncts assert how the variables are changed. The
third conjunct asserts that now is incremented by d . The fourth and fifth con-
juncts assert that all the timers are decremented by d , the fourth for each
timer [n] and the fifth for the timer component ms .rcvTimer of each message
ms . The final conjunct asserts that the specification’s other variables are un-
changed.

The complete specification asserts the additional timing constraint that a
timeout action of node n cannot occur before timer [n] has counted down past 0.
This constraint is expressed by the conjunct timer [n] < 0 in that action’s defi-
nition.

3 Model Checking Explicit-Time Specifications

Most real-time system specifications are symmetric under time translation,
meaning that system actions depend only on the passage of time, not on abso-
lute time values. This section explains what symmetry and model checking under
symmetry mean and describes a simple method of model checking explicit-time
specifications that are symmetric under time translation.
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3.1 Specifications and Temporal Properties

Let a state of a specification be an assignment of values to all the specification’s
variables, and let its state space be the set of all such states. A state predicate is
a predicate (Boolean function) on states, and an action is a predicate on pairs
of states. The formula s A−→ t asserts that action A is true on the pair s , t of
states. A behavior is a sequence of states. A temporal property is a predicate on
behaviors. Temporal properties are represented syntactically as temporal formu-
las.

Assume a specification S that consists of an initial predicate Init , a next-state
action Next , and a liveness assumption L that is a temporal property, possibly
equal to true. The initial predicate and next-state action form the safety part
S of specification S. A behavior s1, s2, . . . satisfies S iff s1 satisfies Init and
s i

Next−→ s i+1 for all i ; it satisfies S iff it satisfies both S and L.

3.2 Symmetry

A symmetry is an equivalence relation on states. A state predicate P is symmetric
with respect to a symmetry ∼ iff, for any states s and t with s ∼ t , predicate P
is true in state s iff it is true in state t . An action A is symmetric with respect
to ∼ iff, for any states s1, s2, and t1,

s1
A−→ t1 s1

A−→ t1
& implies there exists t2 such that & &
s2 s2

A−→ t2

In other words, for any states s1 and s2 with s1 ∼ s2 and any state t1, if s1
A−→ t1

then there exists a state t2 with t1 ∼ t2 such that s2
A−→ t2.

A symmetry ∼ is extended to an equivalence relation on behaviors in the
obvious way by letting two behaviors be equivalent iff they have the same length
and their corresponding states are equivalent. A temporal property is symmetric
(with respect to ∼) iff, for every pair of behaviors σ and τ with σ ∼ τ , the
property is true of σ iff it is true of τ .

A temporal formula is constructed from state predicates and actions by apply-
ing temporal operators, logical connectives, and ordinary (non-temporal) quan-
tification. The formula is symmetric if each of its component state predicates
and actions is symmetric.

3.3 Model Checking

An explicit-state model checker works by computing the directed graph G of a
specification S’s reachable states. The nodes of G are states, and G is the smallest
graph satisfying the following two conditions: (i) G contains all states satisfying
Init , and (ii) if state s is a node of G and s Next−→ t , then G contains the node t and
an edge from s to t . Paths through G (which may traverse the same node many
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times) starting from an initial state correspond to behaviors satisfying S. Those
behaviors that also satisfy its liveness assumption are the ones that satisfy S.

The model checker constructs G by the following algorithm, using a set U of
unexamined reachable states. Initially, G and U are both empty. The checker first
sequentially enumerates the states satisfying Init , adding each state not already
in G to both G and U . It does the following, while U is nonempty. It chooses
some state s in U and enumerates all states t satisfying s Next−→ t . For each such
t : (i) if t is not in G then it adds t to G and to U ; (ii) if there is no edge from s
to t in G, then it adds one.

Model checking under a constraint P is performed by constructing a subgraph
of G containing only states that satisfy the state predicate P . To compute the
subgraph, this procedure is modified to add a state to G and U only if the state
satisfies P .

Model checking under a symmetry ∼ consists of constructing a smaller graph
E by adding a state to E and U only if E does not already contain an equivalent
state. The graph E constructed in this way satisfies the following properties:
(i) s �∼ t for every distinct pair of nodes s , t of E ; (ii) for every state s satisfying
Init , there is a node t in E such that t satisfies Init and s ∼ t ; (iii) for every
node s of E and every state t such that s Next−→ t , the graph E contains a node t ′

with t ∼ t ′ and an edge from s to t ′. The specification is then checked as if E
were the reachable-state graph.

Here, I ignore practical concerns and assume a theoretical model checker
that can perform this algorithm even if the state graph is infinite. All the results
apply a fortiori if the state graph is finite.

For model checking with symmetry to be equivalent to ordinary model check-
ing, the following condition must hold:

SS. A behavior satisfies S iff it is equivalent (under ∼) to a behavior described
by a path through E starting from an initial state.

This condition does not imply that the behaviors described by paths through E
satisfy S, just that they are equivalent to ones that satisfy S. Condition SS is
true if the specification satisfies the following two properties:

S1. (a) Init is symmetric, or
(b) No two states satisfying Init are equivalent.

S2. Next is symmetric.

The specification is defined to be safety symmetric iff it satisfies S1 and S2.
An explicit-state model checker checks that a correctness property F holds by

checking that L ⇒ F holds for every behavior described by a path through the
reachable-state graph starting from an initial state, where L is the specification’s
liveness assumption. A symmetric property is true of a behavior iff it is true of
any equivalent behavior. Condition SS therefore implies that model checking
with symmetry is equivalent to ordinary model checking for verifying that a
safety symmetric specification with a symmetric liveness assumption satisfies a
symmetric property.
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The simplest kind of temporal property is a state predicate P , which as a tem-
poral formula asserts that P is true initially. If the specification satisfies S1(b),
then model checking with symmetry is equivalent to ordinary model checking
for verifying that P is satisfied, even if P is not symmetric.

3.4 View Symmetry

A view symmetry is defined by an arbitrary function on states called a view. Two
states are equivalent under a view V iff the value of V is the same in the two
states. Many explicit-state model checkers test if a state s is in the state graph
G constructed so far by keeping the set of fingerprints of nodes in G and testing
if G contains a node with the same fingerprint as s . Such a checker is easily
modified to implement checking under view symmetry by keeping fingerprints
of the views of states rather than of the states themselves. TLC supports view
symmetry as well as symmetry under permutations of a constant set.

View symmetry is equivalent to abstraction [2,4] for a symmetric specification
S. Abstraction consists of checking S by model checking a different specification
A called an abstraction of S. The view corresponds to the abstraction mapping
from states of S to states of A.

3.5 Symmetry Under Time Translation

Time-translation symmetry is a special kind of symmetry in which two states
are equivalent iff they are the same except for absolute time. I now define what
this means, using the notation that s .v is the value of variable v in state s .

A time translation is a family of mappings T d on the state space of the
specification S that satisfies the following properties, for all states s and all real
numbers d and e: (i) T d (s).now = s .now+d , (ii) T 0(s) = s , and (iii) T d+e(s) =
T d (T e(s)). Specification S is defined to be invariant under this time translation
iff it satisfies the following two conditions, for all real numbers d .

T1. (a) A state s satisfies Init iff T d (s) does, or
(b) s .now = t .now for any states s and t satisfying Init .

T2. s Next−→ t iff T d (s) Next−→ T d (t), for any states s and t .

Given a time translation, we define the time-translation symmetry ∼ by s ∼ t
iff s = T d (t) for some d . T1 and T2 imply S1 and S2 for this symmetry. Hence,
a specification that is invariant under a time translation is symmetric under the
corresponding time-translation symmetry. Invariance under time translation is
stronger than time-translation symmetry because, in addition to implying SS, it
implies the following property.

TT. Let s1, . . . , sk and t1, t2, . . . be two behaviors satisfying S (the second
behavior may be finite or infinite). If sk = T d (t j ), then the behavior
s1, . . . , sk , T d (t j+1),T d (t j+2), . . . also satisfies S.

To define a time translation, we must define T d (s).v for every real number d ,
state s , and variable v . Explicit-time specifications have three kinds of variables:
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now , timer variables, and “ordinary” variables that are left unchanged by the
Tick action. We know that T d (s).now equals s .now+d . Time translation should
not change the value of an ordinary variable v , so we should have T d (s).v = s .v
for such a variable. For a timer variable t , we should define T d (s).t so that the
number of seconds in which t will time out is the same in s and T d (s). The
value of a countdown or count-up timer directly indicates the number of seconds
until it times out, so T d (s).ct should equal s .ct for such a timer ct . Whether
or not an expiration timer et has timed out depends on the value of et − now .
The time translation T d preserves the number of seconds until et times out iff
T d (s).et −T d(s).now equals s .et − s .now , which is true iff T d (s).et = s .et + d .

With this definition of the T d , any explicit-time specification is invariant
under time translation, and hence safety symmetric under time-translation sym-
metry, if it expresses real-time requirements only through timer variables. Let
v1, . . . , vm be the specification’s ordinary variables and countdown and count-
up timer variables, and let et1, . . . , etn be its expiration timer variables. Then
symmetry under time translation is the same as view symmetry with the view
〈v1, . . . , vm , et1 − now , . . . , etn − now 〉.

3.6 Periodicity and Zeno Behaviors

Let NZ be the temporal property asserting that time increases without bound.
A specification S is nonZeno iff every finite behavior satisfying S can be ex-
tended to an infinite one satisfying S and NZ [1]. Property NZ is not symmetric
under time translation; by replacing states of a behavior with ones translated
back to the behavior’s starting time, we can construct an equivalent behavior in
which now never changes. Thus, model checking with time-translation symme-
try cannot be used to check that a specification is nonZeno. However, we can
take advantage of time-translation invariance as follows to use ordinary model
checking to show that a specification is nonZeno.

Let S be a specification that is invariant under time translation. For sim-
plicity, we assume that the initial condition of S asserts that now equals 0, so
s .now ≥ 0 for all reachable states s . For any reachable state s , let LeastTime(s)
be the greatest lower bound of the values t .now for all states t equivalent to s
(under time-translation symmetry). The period of S is defined to be the least up-
per bound of the values LeastTime(s) for all reachable states s of S. Intuitively,
if a system’s specification has a finite period λ, then all its possible behaviors
are revealed within λ seconds. More precisely, any λ-second segment of a system
behavior is the time translation of a segment from the first λ seconds of some
(possibly different) behavior.

Define the condition NZλ as follows, where λ is a positive real number.

NZλ. Every finite behavior satisfying S that ends in a state s with s .now ≤ λ
can be extended to a behavior satisfying S that ends in a state t with
t .now ≥ λ + 1.

It can be shown that if a specification S is time-translation invariant, has a
period less than or equal to the real number λ, and satisfies NZλ, then it is
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nonZeno. Therefore, we can check that S is nonZeno by verifying that S has a
period of at most λ and that it satisfies NZλ.

Here is how we can use model checking under time-translation symmetry to
find an upper bound on the period of S. Let E be the state graph constructed by
model checking under this symmetry. Because every reachable state is equivalent
to a node in E , the period of S is less than or equal to the least upper bound
of the values s .now for all nodes s of E . (Since all initial states have now = 0,
the period of most specifications will equal this least upper bound for a model
checker that, like TLC, uses a breadth-first construction of the state graph.)
Debugging features allow the TLC user to insert in the specification expressions
that always equal true, but whose evaluation causes TLC to perform certain
operations. Using these features, it is easy to have TLC examine each state s
that it finds and print the value of s .now iff s .now > t .now for every state t
it has already found.2 This makes computing an upper bound on the period of
S easy. An explicit-state model checker that lacks the ability to compute the
upper bound can verify that λ is an upper bound on the period by verifying the
invariance of now ≤ λ, using time-translation symmetry.

To check that S satisfies NZλ, we must show that from every reachable state
with now ≤ λ, it is possible to reach a state with now ≥ λ + 1. We can do this
by model checking with the constraint now ≤ λ+ 1, in which the model checker
ignores any state it finds with now > λ + 1. It is easy to verify NZλ under this
constraint with a model checker that can check possibility properties. With one
like TLC that checks only linear-time temporal properties, we must show that S
together with fairness assumptions on subactions of its next-state action imply
that the value of now must eventually reach λ+ 1 [1,7]. That is, we add fairness
assumptions on certain actions and check that eventually now ≥ λ + 1 holds,
using the constraint now ≤ λ + 1.

All of this, including the definition of period, has been under the assumption
that now = 0 for all initial states. Extending the definition of period to the
general case is not hard, but there is no need to do it. Invariance under time
translation requires that either (a) the set of initial states is invariant under
time translation, or (b) the value of now is the same in all initial states. In case
(b), that value will probably either be 0 or else a parameter of the specification
that we can set equal to 0. In case (a), we conjoin the requirement now = 0
to the initial predicate. Invariance under time translation implies that, in either
case, modifying the specification in this way does not affect whether or not it is
nonZeno.

4 Comparison with Uppaal

4.1 The Leader Algorithm

I have checked the TLA+ specification of the leader algorithm with the TLC
model checker. Although the specification is time-translation invariant, the cor-
rectness property is not. It asserts (now > c(n)) ⇒ P(n) for each node n,
2 One of the features needed was added to TLC after publication of [8].
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where c(n) is a constant expression and P(n) does not contain now . We could
add a timer variable and restate the property in terms of it. (This is what is
done in the Uppaal model.) However, I instead had TLC check the property
under a symmetry ∼ defined as follows. Let Σ be the maximum of c(n) for
all nodes n. Then s ∼ t iff s .now and t .now are both equal or both greater
than Σ. Both the specification and the correctness property are symmetric un-
der ∼. This symmetry is view symmetry under the view consisting of the tu-
ple 〈v1, . . . , vk , if now > Σ then Σ + 1 else now 〉, where the v i are all the
variables except now .

Real-time model checkers use much lower-level modeling languages than
TLA+. Uppaal [10] is the only one I know of whose language is expressive enough
to model this algorithm. Arne Skou, with the assistance of Gerd Behrmann and
Kim Larsen, translated the TLA+ specification to an Uppaal model. Since Up-
paal’s modeling language is not as expressive as TLA+, this required some encod-
ing. In particular, Uppaal cannot represent the potentially unbounded multiset
of messages in the TLA+ specification, so the Uppaal model uses a fixed-length
array instead. To ensure that the model faithfully represents the algorithm, Up-
paal checks that this array does not overflow.

TLC and Uppaal were run on different but roughly comparable machines.
As indicated, some Uppaal executions were run on a 30-machine network. More
detailed results are presented in [9].

The parameters of the specification are the number N of nodes, a constant
operator that describes the graph, and the timing constants Period , TODelay,
and MsgDelay. The latter two are upper-bound constraints, which implies that
the number of reachable states is an increasing function of their values. Figure 2
shows the results of checking the correctness property on two different graphs,
with 3 and 4 nodes, for some haphazardly chosen values of the timing bounds.
Uppaal timings are given for a single machine and for the 30-machine network;
fail means that Uppaal ran out of memory.

We expect that increasing a timing bound will increase the number of reach-
able states, and hence TLC’s execution time, since it increases the number of
possible values of the timer variables. The time required by Uppaal’s algorithm
depends only on the ratios of the timing bounds, not on their absolute value.
The results show that Uppaal’s execution time is strongly dependent on the ratio
MsgDelay/Period . For ratios significantly less than .6, Uppaal’s execution time
depends almost entirely on the graph and not on the other parameters. TLC’s
execution time depends on the magnitude of the parameters as well as on this
ratio. Hence, if Uppaal succeeds, it is usually faster than TLC for small values
of the parameters and much faster for larger values. Using 30 processors extends
the range of parameters for which Uppaal succeeds. TLC can be run on multiple
computers using Java’s RMI mechanism. Tests have shown that execution speed
typically increases by a factor of about .7 times the number of computers. This
suggests that, run on a network of processors, TLC’s execution speed is com-
parable to Uppaal’s for the range of instances tested. However, since increasing
the timing-constraint parameters increases the number of reachable states, TLC
will be slower than Uppaal for large enough values of these parameters.



Real-Time Model Checking Is Really Simple 171

N = 3 N = 4

1
�
�

2

3
1 2 3 4

MsgDelay 30-proc
N Period MsgDelay TODelay Period TLC Uppaal Uppaal

3 10 3 5 .3 255 9.4 2.9
3 1 1 .33 4 9.4 13.4
5 2 5 .5 70 11.2 2.9
5 3 1 .6 13 30.8 3.0
5 3 5 .6 265 fail 20.9
3 2 1 .67 7 10.2 3.0
3 2 2 .67 20 fail 16.6
5 4 1 .8 27 32.5 9.2
5 4 5 .8 980 fail fail
2 2 1 1 11 fail fail
1 2 1 2 270 fail fail
1 2 2 2 1280 fail fail

4 10 3 5 .3 1385 42.2 2.5
3 1 1 .33 6 43.9 2.7
5 2 2 .4 42 48.3 4.2
5 2 5 .4 390 93.0 4.3
2 1 1 .5 6 48.2 3.7
5 3 1 .6 28 72.8 3.8
5 3 5 .6 1770 fail 84.6
3 2 1 .67 12 73.1 9.8
3 2 2 .67 44 fail 73.1
5 4 5 .8 6760 fail fail
2 2 1 1 13 fail fail
1 2 1 2 390 fail fail
1 2 2 2 1650 fail fail

Fig. 2. Comparison of Uppaal and TLC execution times in seconds for the indicated
graphs with 3 and 4 nodes

The overall result is that Uppaal can check models with larger timing-con-
straint parameters, and hence with a finer-grained choice of ratios between the
parameters. However, TLC can check a wider range of ratios among the param-
eters. For finding bugs, the ability to check parameter ratios of both 1:2 and 2:1
is likely to be more useful than the ability to check ratios of both 1:2 and 11:20.3

3 The Uppaal model was subsequently rewritten to improve its performance. Because
the TLA+ specification was written to be as simple as possible, with no consideration
of model-checking efficiency, the fairest comparison seems to be with the first Uppaal
model. Uppaal can check the new model on a single computer an average of 4.5
times faster for the N = 3 instances of Figure 2 and 50 times faster for the N = 4
instances, but it still fails when MsgDelay/Period is greater than about 1. The new
model therefore does not alter the basic result that Uppaal is faster than TLC for
the range of parameter ratios it can handle, but it cannot handle as wide a range.
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MsgDelay reachable msgs in transit
Period MsgDelay TODelay Period states max mean

2 2 1 1 6579 6 3.46
1 2 1 2 240931 12 6.57
3 2 2 .67 20572 6 3.69
10 3 5 .33 247580 6 3.85

Fig. 3. The number of messages in transit

The dependence on the MsgDelay/Period ratio can be explained as follows.
Since Period is a lower bound on the time between the sending of messages
and MsgDelay is an upper bound on how long it takes to deliver the message,
the maximum number of messages that can be in transit at any time should
be roughly proportional to this ratio. The table of Figure 3 gives some idea of
what’s going on, where the results are for the 3-node graph. The first two rows
show the dramatic effect of changing Period and leaving the other parameters
the same. The second two rows show that the MsgDelay/Period ratio is just one
of the factors determining the number of messages in transit and the number of
reachable states.

It is possible that these results reflect some special property of this example.
However, the sensitivity to the MsgDelay/Period ratio suggests that it is the
messages in transit that pose a problem for Uppaal. Each message carries a
timer, and the performance of real-time model checkers tends to depend on
the number of concurrently running timers. Perhaps the most common use of
real time in systems is for constraints on message transit time—constraints that
are modeled by attaching timers to messages. This suggests that Uppaal might
have difficulty checking such systems if there can be many messages in transit.
However, more examples must be tried before we can draw any such conclusion.

TLC was also used to check that some of the instances in Figure 2 were
nonZeno. For N = 3, this took about twice as long as checking the correctness
property; for N = 4 the two times were about the same.

4.2 Fischer’s Algorithm

I also compared the explicit-state approach to the use of Uppaal on a version
of Fischer’s mutual exclusion algorithm [13] that is distributed with Uppaal.
Because TLA+ is a very high-level language, TLC must “execute” a specifica-
tion interpretively. It is therefore significantly slower than conventional model
checkers for verifying simple systems. I also obtained data for two other popular
model checkers whose models are written in lower-level languages: the explicit-
state model checker Spin [6] and the symbolic checker SMV [11] that uses binary
decision diagrams. The Spin model was written and checked by Gerard Holz-
mann, and the SMV model was written and checked by Ken McMillan. Checked
were the safety properties of mutual exclusion and deadlock freedom (except for
SMV) and a simple liveness property.
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Safety Liveness
K states TLCs TLC Spin SMV TLC Spin SMV
2 155976 9 29 .7 1.3 128 3.7 2.5
3 450407 10 78 2.4 3.8 385 13 6.3
4 1101072 16 194 6.9 6.5 1040 49 10
5 2388291 26 399 19 10 3456 171 16
6 4731824 47 784 51 14 5566 468 22
7 8730831 78 1468 142 25 13654 1317 40
8 15208872 132 2546 378 35 3593 54
9 25263947 244 4404 977 46 5237 73
10 40323576 446 7258 2145 62 95

Uppaal 135

Fig. 4. Execution times in seconds for a simple version of Fischer’s algorithm with 6
threads, where TLCs is TLC with symmetry under thread permutations

This version of Fischer’s algorithm uses a parameter K that is both an upper-
and lower-bound timing constraint. All the models were tested for 6 threads,
which is the smallest number for which Uppaal takes a significant amount of
time. The results for different values of K are shown in Figure 4. Uppaal’s
execution time is independent of K . For checking safety, TLC was run both with
and without symmetry under permutations of threads. (The liveness property
is not symmetric.) The speedups obtained by the 6-fold symmetry should not
be taken very seriously; in real examples one at best obtains only 2- or 3-fold
symmetry.

Since Uppaal’s execution time is independent of K , we know that for large
enough values of K it will be faster than a model checker whose running time
depends on K . All of the model checkers could check the specification for large
enough values of K to provide reasonable confidence of its correctness, though
the numbers do not bode well for the ability of TLC and Spin to check liveness
for more complicated examples. We do not expect TLC’s performance on live-
ness checking to be good enough for large applications. But because Fischer’s
algorithm is so simple, it is dangerous to infer from these numbers that the
performance of Uppaal and SMV would be good enough.

5 Conclusion

Experts in the field will not be surprised that one can write and check explicit-
time specifications using ordinary model checkers. But this is apparently not
widely appreciated because it has not been stated clearly in the literature. More-
over, the use of view symmetry and the method described here for checking that
a specification is nonZeno may be new even to experts.

I know of no previous comparisons of the explicit-state approach with the use
of a real-time model checker. The results reported here do not tell us how the two
methods will compare on other examples. But they do indicate that verifying
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explicit-time specifications with an ordinary model checker is not very much
worse than using a real-time model checker. Indeed, the results for the leader
algorithm suggest that the explicit-time approach is competitive with Uppaal for
distributed algorithms. The results of using TLC to check two more complicated
versions of Fischer’s algorithm are reported in [9]. They too suggest that TLC
can be used in practice to check explicit-time specifications.

The main advantage of an explicit-time approach is the ability to use lan-
guages and tools not specially designed for real-time model checking. There are
practical reasons for using a higher-level language like TLA+ instead of one
designed expressly for model checking. As one industrial user remarked, “The
prototyping and debug phase through TLA+/TLC is so much more efficient than
in a lower-level language.”
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Abstract. Timing diagrams are useful for capturing temporal specifications in
which all mentioned events are required to occur. We first show that translating
timing diagrams with both partial orders on events and don’t-care regions to LTL
potentially yields exponentially larger formulas containing several non-localized
terms corresponding to the same event. This raises a more fundamental question:
which modalities allow a textual temporal logic to capture such diagrams using
a single term for each event? We define the shapes of partial orders that are cap-
tured concisely by a hierarchy of textual linear temporal logics containing future
and past time operators, as well Laroussinie et al’s forgettable past operator and
our own unforeseen future operator. Our results give insight into the temporal ab-
stractions that underlie timing diagrams and suggest that the abstractions in LTL
are significantly weaker than those captured by timing diagrams.

1 Introduction

Timing diagrams are a commonly used visual notation for temporal specifications. Al-
though designers instinctively know when information can conveniently be expressed
as a timing diagram, few researchers have explored the formal connections between
timing diagrams and textual temporal logics. Understanding these formal connections
would be useful for understanding what makes specifications designer-friendly, as well
as for developing tools to visualize temporal logic specifications. Ideally, we would like
to have constructive decision procedures for determining when a specification, given in
a temporal logic or a specification language (such as LTL or PSL), can be rendered as a
timing diagram. These could aid in both understanding and debugging specifications.

Identifying diagrammable LTL specifications appears to be very hard. Its complex-
ity stems partly from the fact that a timing diagram contains several different visual
elements (events, orderings and timings between events, event synchronization) which
must be located within the more uniform syntax of a temporal logic formula. In ad-
dition, LTL formulas that capture timing diagrams appear to be at least one order of
magnitude (and sometimes two) larger than the diagrams and use multiple logical terms
for the same event. Before we can write an algorithm to recognize timing diagrams in
temporal logic formulas, we need to understand how the patterns over visual elements
that underlie timing diagrams would appear textually.

This paper explores this question by trying to identify textual temporal logic oper-
ators that capture timing diagrams concisely; the rendering problem would then reduce
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to recognizing uses of these operators in LTL. The core of a timing diagram is the partial
order it imposes on events. We view a formula as capturing a partial order concisely if
the formula characterizes instances of the partial order using exactly one term for each
event in the partial order. We study a progression of linear temporal logics including
LTL, PLTL, PLTL with forgettable past [10] and PLTL with forgettable past and un-
foreseeable future (which we have defined for this work). We identify the set of partial
orders that each logic can capture concisely and show that some partial orders defy con-
cise representation in even the richest of these logics. We do not address the rendering
question in this paper, as our results indicate that additional theoretical work is required
before pursuing that question.

Our results cover timing diagrams with both partial orders and don’t-care regions
(Section 2). To illustrate the subtleties in representing timing diagrams in LTL, Sec-
tion 3 presents a translation from diagrams to LTL and argues that a small translation
seems impossible. We provide a counterexample that shows that introducing don’t-care
regions explodes the size of the formula by forcing it to separately handle all possible
total-order instances of the partial order. Section 4 presents our algorithm for efficient
translation of a particular class of diagrams to formulas in LTL with the past-time and
forgettable-past-and-future modalities; this section also identifies a class of diagrams
that this logic cannot capture. Related work is mentioned throughout the paper.

2 Timing Diagrams

Timing diagrams depict changes in values on signals (events) over time. Figure 1 shows
an example. Waveforms capture each signal (lower horizontal lines represent false and
higher ones true), arrows order events, arrow annotations constrain the time within
which the tail event must follow the head event, vertical lines synchronize behavior
across signals, and bold lines indicate care regions in which the signal must hold the
depicted value. Non-care regions between events are called don’t-care regions; they al-
low the signal value to vary before the event at the end of the region occurs. The diagram
in Figure 1 has signals a, b, and c. The rising transition on b must occur 2 to 4 cycles
after the rising transition on a. The falling transition on a and the rising transitions on b
and c may occur in any order (since no arrows order them). Once c rises, it must remain
true until the second rising transition on a (due to the care region on c and the vertical
lines that synchronize the transition on a and the value on c into a single event). The
value of b may vary after its rise, since a don’t-care region follows the rise.

The timing diagrams literature contains many variations on this core notation: di-
agrams may support events that contain no transitions, busses, bi-directional arrows,
assumption events (to represent input from the environment) [3], or combinations of
timing diagrams using regular expression operators [2]. This paper considers timing
diagrams with don’t-care regions and partial orders between events.

Definition 1. The syntax of timing diagrams is captured as follows:

– A signal is a proposition; p and ¬p denote true and false values on signal p.
– A transition is a proposition annotated with a directional change: p↓ and p↑ denote

falling and rising transitions, respectively.
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a

c

b

[2,4]
a 0 1 0 0 0 0 1 1 1 1
b 0 0 0 0 1 1 0 0 1 0
c 0 0 1 1 1 1 0 0 0 1

0 1 2 3 4 5 6 7 8 9

Fig. 1. A timing diagram with a word that satisfies its semantics

– An event is a conjunction of values and at least one transition on signals.
– A timing diagram is a tuple 〈E, C,M〉 where E is a set of events, C (the care

regions) is a set of tuples 〈e1, e2, p, v〉 where e1 and e2 are (uniquely identified1)
events in E, p is a signal name and v is a boolean value, and M (the timing con-
straints) is a set of tuples 〈e1, e2, l, u〉 where e1 and e2 are events in E, l is a positive
integer, and u is either an integer at least as large as l or the symbol ∞. For each
signal, any region that is not within a care region is called a don’t-care region.

The semantics of timing diagrams is defined in terms of languages over finite or
infinite words in which characters are assignments of boolean values to signals. A
word models a timing diagram if the earliest occurrence of each event that respects
the partial order in the timing constraints respects the care regions and durations of
timing constraints. The earliest occurrence requirement keeps the language unambigu-
ous. Formally, we define what it means for an index into a word to satisfy an event,
map events to indices in the word, and check that those mappings respect the
diagram.

Definition 2. Let E be an event v1∧. . .∧vk where each vi is a proposition, its negation,
or a rising or falling transition on a proposition. Let W be a word and i an index into
W . Let Wi(q) denote the value of proposition q at index i of W . Index i satisfies E if
for every vi, Wi(p) = 0 if vi = ¬p, Wi(p) = 1 if vi = p, Wi(p) = 0 and Wi+1(p) = 1
if vi = p ↑, and Wi(p) = 1 and Wi+1(p) = 0 if vi = p ↓.

Definition 3. Let 〈E, C,M〉 be a timing diagram, W be a word, and I a function from
E to indices into W (I is called an index assignment). I is valid iff

– For every event e ∈ E, I(e) satisfies e,
– For every care region 〈e1, e2, p, v〉, Wi(p) = v for all I(e1) < i ≤ I(e2), and
– For every timing constraint 〈e1, e2, l, u〉 ∈ M , l ≤ I(e2) − I(e1) ≤ u.

I is minimal iff for each event e ∈ E, I(e) is the smallest index into W that satisfies e
and occurs after all indices assigned to events that must precede E (by the partial order
induced by M ).

Definition 4. Let D be a timing diagram and let W be a word. W |= D if there exists
a minimal and valid index assignment I for D and W . The set of all such words forms
the language of D (denoted L(D)).

1 A numbering scheme could distinguish syntactically similar events.



Temporal Modalities for Concisely Capturing Timing Diagrams 179

The semantics captures one occurrence of a timing diagram, rather than the multiple
occurrences needed to treat a timing diagram as an invariant. The one-occurrence se-
mantics provides a foundation for defining different multiple-occurrence semantics [5]
and enables efficient complementation of timing diagrams [6].

3 Translating Timing Diagrams to LTL

Formulas of linear temporal logics describe computations on infinite paths where each
state is labeled with a subset of atomic propositions AP that are true in that state. For
a computation π = w0, w1, . . . and i ≥ 0, let πi be the computation π starting at the
state wi. In particular, π0 = π. We use π, i |= ϕ to indicate that a formula ϕ holds in a
computation π with wi taken as a start position. The relation |= is inductively defined
for each of the logics we define in this paper.

LTL. Given a set AP of atomic propositions, the LTL formulas over AP are:

– true, false, p, or ¬p, for p ∈ AP ,
– ¬ψ or ψ ∨ ϕ, where ψ and ϕ are LTL formulas, or
– Gψ, Xψ, or ψUϕ, where ψ and ϕ are LTL formulas.

The temporal operators G (“always”), X (“next”) and U (“until”) describe time-
dependent events. F (“eventually”) abbreviates trueU .

For LTL, π, i |= ϕ is equivalent to πi, 0 |= ϕ, since formulas in LTL are not con-
cerned with past events. We use π |= ϕ as a shorthand for π, 0 |= ϕ.

– For all paths π, π |= true and π �|= false.
– For an atomic proposition p ∈ AP , π |= p iff p ∈ L(w0).
– π |= ¬ψ iff π �|= ψ.
– π |= ψ ∨ ϕ iff π |= ψ or π |= ϕ.
– π |= ψ ∧ ϕ iff π |= ψ and π |= ϕ.
– π |= Gψ iff for all i ≥ 0, πi |= ψ.
– π |= Xψ iff π1 |= ϕ.
– π |= ψUϕ iff there exists i ≥ 0 such that πi |= ϕ and for all j < i, πj |= ψ.

The rest of this section presents a translation from timing diagrams with partial
orders on events and don’t-care regions into LTL. Previous work [6] translated timing
diagrams with don’t-care regions and total orders on events to LTL. We could reuse the
prior algorithm by enumerating all the total orders corresponding to the partial order
and logically disjoining the result of converting each totally-ordered diagram to LTL.
This approach has the obvious drawback of potentially requiring exponentially many
disjuncts in the translated formula. We therefore wish to consider alternate approaches.

Amla et al. translate timing diagrams with partial orders but no don’t-care regions to
universal finite automata (∀FA) [1]. ∀FA differ from standard NFAs in accepting those
words on which all possible runs (rather than some run) through the automaton end in a
final state. Amla et al’s automata spawn one run for each event in the diagram, as well
as one run for each waveform in the diagram.
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a

b

Fig. 2. Timing diagram motivating the need for an end marker

Since proper handling of partial orders is new for translations to LTL, we first focus
on this issue, returning afterwards to include don’t cares. For partial orders, we use a
similar idea to Amla et al’s: we construct a formula for each event and timing constraint
in the diagram, and then conjoin these formulas into one LTL formula. The translation to
LTL, however, is more difficult because LTL is inherently defined on infinite words. To
see why this is a problem, consider the diagram in Figure 2 (the arrow from the rising
to falling transition on a is dashed to indicate that it is implicit from the waveform).
Clearly, the formula must locate the rise and fall of a and the rise of b and capture the
ordering constraint (that the fall of a follows the rise of b).

We want a formula that is polynomial in the size of the diagram. Writing formulas
to capture the individual waveform shapes is easy but capturing the ordering constraint
is not. We cannot capture the waveforms together with the ordering constraint in one
pass through the diagram due to the unspecified order between the fall of a and the rise
of b. Writing one formula to capture that the fall of a follows the rise of a and another
formula to capture that the rise of b follows the rise of a also doesn’t work because both
formulas must locate the same fall of a. Separate constraints would accept the word
w = (ab) · (ab) · (ab) · (ab) · (ab) · (ab)ω which does not satisfy the diagram (where
p stands for ¬p). To align the searches for events, we will use LTL augmented with
existential quantification over atomic propositions to introduce a special symbol called
end into the word to mark the end of the diagram.2 This problem does not exist in ∀FA,
since all copies of the automaton must finish in an accepting state at the same time.
Thus, in some sense, the end marker is implicitly present in ∀FA.

Returning to capturing timing constraints, assume we want to define an LTL formula
ϕ(a, i) that is true at the ith transition on a, which happens to be a rise. Assume that na

is the number of transitions on a, f inish(a) is the literal for the final value of a in the
diagram, and that we have a proposition end identifying the end of the diagram. Then

ϕ(a, i) = ¬a ∧ X(aU(¬aU(. . .U(f inish(a)Uend) . . .))),

where the number of Uoperators is n − i − 1. Intuitively, the formula first describes
whether the transition is a rise or a fall (a fall would begin with a ∧ X¬a U...), then
captures the rest of the waveform as the second argument to the first U .

Using such formulas, the formula for a whole timing constraint 〈ai, bj, l, u〉, where
a is the ith transition on a and bj is the jth transition on b, and the transition on b
happens within the [l, u]-interval after the one on a, is captured by ξ(ai, bj, l, u), where

2 In general, adding quantification over atomic propositions increases the expressive power of
temporal logics [12,13,14]. The restricted version that we use here does not add expressiveness,
however, as all formulas that are created from timing diagrams can be translated to equivalent
formulas in LTL with both past and future modalities using Gabbay et al’s work [7,8].
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ξ(ai, bj , l, u) = F (ϕ(a, i) ∧ (aUϕ(b, j)))

if a rises at i, and

ξ(ai, bj, l, u) = F (ϕ(a, i) ∧ (¬aUϕ(b, j)))

if a falls at i. If the timing constraint has time bounds (say [l, u]), then we replace
aUϕ(b, j) with

∨u
k=l ψ∧Xψ∧ . . .∧Xk−2ψ∧Xk−1ϕ, where Xm stands for m nested

X operators, and l and u are natural numbers. Let Ξ(D) be the set of all formulas
ξ(ai, bj, l, u), for all timing constraints in D.

For synchronization lines, the formulas that capture the fact that the ith transition
on a happens simultaneously with the jth transition on b are

γ(ai, bj) = F (ϕ(a, i) ∧ ϕ(b, j)).

Let Γ (D) be the set of all formulas γ(ai, bj) for all synchronization events.
Timing diagrams contain implicit ordering arrows between each pair of consecutive

events on a single waveform. Rather than encode these through ξ, we create a single
formula that precisely captures the shape of its waveform. For a signal a, let start(a)
be the literal for the initial value of a in the diagram (either a or ¬a), and let f inish(a)
be the literal that corresponds to the final value of a in the diagram. The formula ψa

that describes the waveform of a is

ψ(a) = start(a)U(¬start(a)U(start(a)U . . .U(f inish(a)Uend) . . .) (1)

where the number of Uoperators equals the number of transitions on a in the diagram.
Finally, we combine all these formulas into a formula θ(D) that describes the lan-

guage of the timing diagram D. The formula states that a word w belongs to the lan-
guage of D iff there exists a position r in w such that when w[r] is labeled with end,
the word can be mapped to D. The formula θ(D) is as follows.

θ(D) = ∃!end :
∧

a∈AP

ψa ∧
∧

Ξ(D) ∧
∧

Γ (D)), (2)

where ∃!end means that exactly one position is labeled with end.

Example 1. As an illustration, consider a diagram D and its waveform formulas:

a

c

b
[2,5]

[3,9] ψ(a) = ¬aU(aU(¬aUend))
ψ(b) = ¬bU(bU(¬bUend))
ψ(c) = ¬cU(cUend)

The arrows connect the rise of a with the rise of c, the rise of c with the fall of a, and
the fall of a with the fall of b. The rise of a is characterized by the formula ϕ(a, 1) =
¬a ∧ X(aU(¬aUend)), and similarly for other transitions. The timing constraints are

ξ(a1, c1, 2, 5) = ϕ(a, 1)U[2,5]ϕ(c, 1)
ξ(c1, a2, 1,∞) = ϕ(c, 1)Uϕ(a, 2)
ξ(a2, b2, 3, 9) = ϕ(a, 2)U[3,9]ϕ(b, 2)
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Finally, the formula θ(D) is

∃!end : ψ(a) ∧ ψ(b) ∧ ψ(c) ∧ ξ(a1, c1, 2, 5) ∧ ξ(c1, a2, 1,∞) ∧ ξ(a2, b2, 3, 9)).

Observation 1 (Complexity of θ(D)). The formula θ(D) is polynomial in the size of
the diagram D. Let D be a timing diagram of size n. The number of waveform formulas
ψ(a) is equal to the number of signals in D. The size of a waveform formula ψ(a) is
linear in the number of transitions, thus is O(n). Since ϕ(a) is a subformula of ψ(a),
we have that |ϕ(a)| = O(n). The number of events in D is bounded by n. Therefore,
the total size of θ(D) is bounded by O(n2).

Observation 2 (Adding Don’t Cares). The ξ and γ formulas capture the diagram’s
constraints under the assumption that the ith transition as identified from the end of the
diagram is the ith transition from the beginning of the diagram. This assumption may
be false in the presence of don’t-care regions; the end marker does not help because it
isn’t clear which occurrences of events should count. Handling both partial orders and
don’t cares seems to require enumerating the total orders for the partial order, which
yields a formula of a (possibly) exponential complexity in the size of the diagram.

4 Cleanly Capturing Diagrams Through Textual Logics

The previous section shows the complex structure of an LTL formula that captures a
timing diagram with partial orders and don’t cares. Some of this complexity arises from
using separate subformulas for waveforms and timing constraints, which is needed to
capture partial orders on events. The diagram in Figure 2 illustrates a core incompat-
ibility between timing diagrams and LTL: LTL cannot cleanly capture separate paths
converging on a future event while timing diagrams express this naturally.

This problem suggests that timing diagrams rely on a different set of temporal ab-
stractions than those provided by the LTL operators. This raises an interesting question:
how fundamental are these differences? Visually, timing diagrams define (potentially
overlapping) windows that are bounded by events and contain other events and win-
dows. In LTL, [φUψ] defines a window bounded on the left by the current position in a
word and bounded on the right by positions satisfying ψ. Since the occurrence of φ can
extend beyond that of ψ (if ψ were Fp, for example), LTL also supports some degree of
overlapping windows. The future-time nature of LTL biases window locations towards
future positions in a word, however, and leads to blowup when windows align on the
right boundaries. Past-time temporal operators, however, could capture windows that
align on right boundaries. Our question is whether operators that fix window bound-
aries on one end of the word are rich enough to capture the window structure in timing
diagrams while using only one term for each event in the diagram.

The restriction to one term per event is important because it is a distinguishing
feature of timing diagrams. We are trying to understand the differences between textual
temporal logics and timing diagrams from a logical perspective. In this work, we hold
formulas to the one-term requirement and study the restrictions that this in turn places
on the semantics of the operators. For the rest of this paper, we consider timing diagrams
with ordering between events but no timing constraints on those orders. Such diagrams
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d

e

Fig. 3. Timing diagrams with various shapes of partial order

still blow up when translated to LTL but allow us to focus on the fundamental question
of how well LTL-like logics capture the partial orders allowed in timing diagrams. We
begin with several examples of timing diagrams with different shapes of partial orders
and discuss which textual temporal logic operators capture them cleanly.

Tree-Shaped Partial Orders. Two observations arise from the diagram in Figure 2.
First, we could cleanly capture the diagram in LTL if the common event lay at the begin-
ning of the partial order (i.e., if the orderings on events were reversed): we would locate
the first event, then independently locate the remaining two events. Second (though re-
lated), this diagram appears easier to capture if we use past-time operators: we could
locate the falling transition on a that is common to both chains of events, then look
backwards to find the (now independent) rising transitions on a and b. These obser-
vations give rise to our first two claims about partial orders and clean temporal logic
formulas: partial orders that form trees (or forests) can be cleanly translated into LTL,
while those that form trees with their edges reversed can be cleanly translated into Past-
LTL. Note that Past-LTL here means LTL with only past-time temporal operators. We
will use PLTL to mean the temporal logic with both future time and past-time operators.

Partial Orders with Multiple Minimal Events. The leftmost diagram in Figure 3 has
multiple minimal events. A formula capturing this diagram cannot start simultaneous
(i.e. conjoined) searches from the rising transitions on a and b because those searches
converge on the falling transition on a. Using both past and future-time operators, how-
ever, a formula could search for the first rising transition on a followed by the falling
transition on a; at that point, the search could split into two independent searches: one
forward for the second rise on a, and another backward for the transitions on b followed
by a forward search for the transition on c. All of the edges in the partial order are
edges in the tree specifying this search, but some of those edges are reversed in the tree.
Intuitively, this criterion characterizes when a search can be captured in PLTL.

Diamond-Shaped DAGs. The events in the middle diagram in Figure 3 form a dia-
mond (between the rising transition on a and the falling transition on b). If a formula
searches for the rising transition on a first, it cannot then spawn independent searches
for the rising transitions on b and c (the “bulge” of the diamond) because they must
meet up again at the falling transition on b. Searching first for the falling transition in b
causes similar problems. We could conduct this search cleanly if we had a way to “re-
member” the location of the rising transition on a, then search forwards for the falling
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transition on b, then backwards for the rising transitions on b and c, but with these last
two searches bounded by the remembered position of the search on a.

Laroussinie, Mackey, and Schoebelen’s linear temporal logic with forgettable past
(NLTL) does exactly this. It adds an operator N to PLTL that restricts the path to the
suffix starting from the position at which the N is encountered. Using N , we could
capture the diamond pattern roughly as FN(a↑ ∧ F (b↑ ∧ F (b↓ ∧ P (c↑)))). The N
prevents the backwards search for c↑ from going beyond the location of a↑.

The rightmost diagram in Figure 3 contains one diamond pattern nested inside an-
other. This diagram is hard to capture cleanly using just NLTL because both prefixes
and suffixes must be truncated during the search. We therefore introduce an analogous
operator to N , called Ñ , that limits the scope of a search to a prefix of the path.

The following subsections formalize our observations about the temporal operators
needed to cleanly capture various shapes of partial orders. We define the logics PLTL
and NÑLTL and present an algorithm for translating a subset of partial orders into
formulas in NÑLTL. We prove that the translation is correct and show a richer partial
order that NÑLTL cannot capture. Characterizations of the partial orders captured by
LTL, PLTL, and Past-LTL follow from the correctness of the translation algorithm.

4.1 The Logics

PLTL. The logic PLTL (LTL+Past) is the logic LTL extended with past time modal-
ities: Y (“yesterday”) is the opposite of X , that is, it denotes an event that happened
in the previous step; P (“past”) is the opposite of F , that is, it denotes an event that
happened somewhere in the past; and S (“since”) is the opposite of U . We refer to Y ,
P , and S as past modalities, and to X , U , F , and G as future modalities. The semantics
for the past modalities is as follows.

– π, i |= Y ψ iff i > 0 and π, i − 1 |= ψ.
– π, i |= ψSϕ iff π, j |= ϕ for some 0 ≤ j ≤ i such that π, k |= ψ for all j < k ≤ i.

We use P as a shortcut for trueS.

The N and Ñ Modalities. The logic NLTL (LTL with forgettable past) is defined
by extending the logic PLTL with the unary modality N [10]. The semantics of N is
defined as follows: Nϕ is satisfied in the ith position of a path π iff ϕ is satisfied in
the path ρ = πi. In other words, N ignores everything that happened in π prior to the
position i. Formally, π, i |= Nϕ iff πi, o |= ϕ.

NÑLTL includes N and a similar modality for the unforeseeable future. The unfore-
seeable future modality (“up to now”) is denoted by Ñ . Semantically, Ñϕ is satisfied
in the ith position of a path π iff ϕ is satisfied in the last position of the finite path ρ
obtained from π by cutting off its suffix πi+1. That is, ρ = π[0..i].

Gabbay [7,8] proved that any linear-time temporal property expressed using past-
time modalities can be translated into an equivalent (when evaluated at the beginning
of the path) pure future formula. In other words, PLTL is not more expressive than
LTL. Gabbay’s proof can be extended to NLTL as well [10]. Since the modality Ñ
is symmetrical to N ; the same proof applies to NÑLTL. Gabbay’s translation yields a
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Gen-Formula(P)
if P contains multiple connected components P1, . . . Pk return

Vi=k

i=1 Gen-Formula(Pi)
elseif P has a valid schedule tree T and no dividing events return Gen-Tree(P, T, root(T))
else let e1, . . . , en be a sequence of dividing events for P

return ϕe1 ∧ Ñ(Gen-Formula(R0))
∧XNF (ϕe2 ∧ Ñ (Gen-Formula(R1))

∧XNF (ϕe3 ∧ . . . ∧ XNF (ϕen
∧Ñ (Gen-Formula(Rn−1))
∧XNF (Gen-Formula(Rn)) . . .)

Gen-Tree(P,T,e)
if e has no successors return ϕe

else let en1, . . . , enk be successors of e in T in same direction as in P

let ep1, . . . , epj be successors of e in T in opposite direction as in P

return ϕe ∧
Vk

i=1(XF Gen-Tree(P, T, en)) ∧
Vj

i=1(P Gen-Tree(P, T, ep))

Fig. 4. The formula generation algorithm. ϕe denotes the formula that captures an event e: ¬a ∧
X(a) captures a↑ and a ∧ X(¬a) captures a↓.

formula whose size is assumed to be non-elementary in the size of the initial formula.
It was recently proved that PLTL is at least exponentially more succinct than LTL, and
that NLTL is at least exponentially more succinct than PLTL [9]. It is easy to see that
the proof of exponential gap in succinctness can be used almost without change for Ñ .
That is, introducing either N or Ñ is enough for the exponential gap. Observe that in
general, chopping off the prefix is not equivalent to chopping off the suffix, since the
former leaves us with an infinite path, while the latter preserves only a finite portion
of the path. However, Laroussinie et al.’s proof uses only propositional formulas. The
same proof therefore works if we reverse the direction of the input, switch past and
future modalities in formulas and use Ñ instead of N . While using both N and Ñ
modalities proves to be helpful in translating timing diagrams, it seems that having
both of them does not introduce an additional gap in succinctness as opposed to having
only one. That is, the logic NÑLTL seems to be no more succinct than NLTL.

4.2 Compiling Partial Orders to NÑLTL

The diagrams in Figure 3 illustrate how the events in timing diagrams bound windows
in which other events must occur. Our discussion illustrates how the N and Ñ operators
are useful for enforcing these boundaries in temporal logic. Our translation strategy is
to use N and Ñ to (recursively) scope the window boundaries at the outermost levels
and to use PLTL to capture the events that fall within these windows. This approach
works when the contents of windows form forests (or can be further decomposed into
subwindows). We limit the algorithm to these cases, then show a richer structure that
NÑLTL is not capable of capturing.

The algorithm appears in Figure 4. It finds window boundaries by locating dividing
events in the partial order.

Definition 5. An event e of a diagram D is a dividing event iff there exists a partition
of the events of D minus e into sets E1 and E2 such that e ) e1 for all e1 ∈ E1 and
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e ≺ e2 for all e2 ∈ E2. Given a sequence of dividing events, e1 ≺ e2 ≺ . . . ≺ en,
the region Ri is the set of events e such that ei ≺ e ≺ ei+1 (with R0 containing those
events that precede e1 and Rn containing those events that follow en).

By definition, the dividing events are totally ordered and thus can be captured by a
sequence of nested LTL F operators. All remaining events fall into regions encapsulated
by the dividing events. Our translation algorithm bounds these regions in the formula
by inserting N and Ñ at the beginning and the end of regions.

If a partial order contains no dividing events, then each connected component within
the partial order is compiled to a formula in PLTL. This translation relies on a schedule
tree that specifies the order in which to search for each event in the component.

Definition 6. Given a partial order P , a schedule tree T of P is a tree with directed
edges such that the set of nodes in T is the set of nodes in P . We call a schedule tree
valid if for each edge e1 → e2 in T , P contains either an edge from e1 to e2, or an edge
from e2 to e1. In other words, all edges in T must be justified by edges in P , but the
edges in T may occur in the reversed direction from those in P .

Note that a single partial order could have several schedule trees. As a simple example,
the partial order a ≺ b, b ≺ c, and a ≺ c could schedule b or c in either order.

Definition 7. Given a partial order P , a schedule forest F of P is a set of trees with
directed edges such that the set of nodes in F is the set of nodes in P and each tree in
F is a schedule tree for its subset of nodes.

The following theorem establishes that the result of Gen-Formula(P ) is a formula
that recognizes all valid instances of P .

Theorem 3. Let D be a diagram with partial order P . Let R be the set of regions (sub-
orders) between each pair of subsequent dividing events of P . Then, if the partial order
for each region R ∈ R can be translated to a schedule forest, Gen-Formula(P) is of
size O(|P |) and defines the same language as D.

Proof. We argue the size and correctness claims from the theorem separately, starting
with size. Formulas describing individual events are constant in size. Each dividing
event is included in the formula one time (in the final return of Gen-Formula). The
formula returned from Gen-Tree has linear size in the number of events in the tree
by construction. Each non-dividing event appears in at most one schedule tree, so the
formula resulting from Gen-Formula(P) has linear size in the number of events in P .

For the correctness claim, we will prove that Gen-Formula(P) requires exactly those
event orderings contained in P . Let ϕ be the result of Gen-Formula(P). We first show
that the formula enforces every ordering edge in P . Let e → e′ be an edge in P . One of
the following cases must hold:

– e is a dividing event in some portion of P . Then ϕ contains the subformula ϕe ∧
φ∧XNψ where the term for e′ occurs in ψ. The use of N ensures that e occurs no
later than e′ and the use of X ensures that e occurs strictly later than e′.
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– e′ is a dividing event in some portion of P . Then e must lie in the region preceding
e′ (unless e was a dividing event, which the previous case covered). ϕ contains the
subformula ϕe′ ∧ Ñ(R), where R is the region containing e. The Ñ ensures that
e occurs before e′ (no X is needed here because Ñ cuts off the future between the
two halves of e′ while two positions are needed to capture both halves of e).

– Neither e nor e′ is a dividing event, which means the subformula containing their
terms was generated by a call to Gen-Tree on some schedule tree T over a portion
of P . By the definition of valid schedule trees, T must contain an edge between e
and e′ (in one direction or the other). If e → e′ was an edge in T , then the XF in
the output of Gen-Tree ensures that e occurs before e′. If e′ → e was an edge in T ,
then the P in the output of Gen-Tree ensures that e occurs before e′.

We now argue that ϕ does not require any event orders beyond those in P . Let e1
and e2 be unordered events (directly or transitively) in P . Since e1 and e2 are unordered,
no dividing event can occur between them, so they must lie in the same region R of the
diagram. There are two possible cases:

– e1 and e2 are in different connected components of R. Gen-Formula connects sepa-
rate components only through∧, which induces no temporal ordering, so ϕ respects
the lack of order between e1 and e2.

– e1 and e2 are in the same connected component of R. In this case, both events
will be in the schedule tree T for their enclosing component. If e1 and e2 are in
different branches within T , ϕ relates them only by ∧ and thus respects their lack
of ordering. Assume that e1 and e2 are on a common branch, and assume without
loss of generality that e1 is closer to the root of T than is e2. The path from e1 to e2
must contain at least one edge that occurs in the same direction as in P and one that
occurs in the opposite direction as in P (otherwise, P would order e1 and e2). This
means that both an F and a P operator will separate e1 and e2 in ϕ. This allows e2
to occur on either side of e1 (no N or Ñ operator can intervene because those are
dropped only at dividing events), so the theorem holds. �

Lemma 1. If the directed graph induced by partial order P forms a tree, then there
exists a formula in LTL that recognizes P .

Proof. In this case, P is a valid schedule tree of itself. Gen-Tree uses only future time
operators when the edges in the schedule tree match the edge direction in P .

Lemma 2. If the directed graph constructed by reversing every edge in a partial order
P forms a tree, then there exists a formula in Past-LTL that recognizes P .

Proof. Follows by similar argument as for Lemma 1. The expressions for events that
use the X operator can be rewritten to use Y .

Lemma 3. If the graph induced by partial order P is a tree with multiple minimal
events, then there exists a formula in PLTL that captures P .

Proof. True by the definition of Gen-Tree since such a P has a valid schedule tree.

Note that don’t cares are handled implicitly by not being present as events in P .
The care regions are present in P as separate events for each care position, and the
complexity in this case would also depend on the unary representation of the length of
the care region.
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4.3 Limitations of NÑLTL

The Gen-Formula algorithm uses the F and P operators only to search for events.
These uses all take the form F/P (e ∧ ψ), where e is an event and ψ is an NÑLTL
formula. We call these forms of F and P search operators. NÑLTL restricted to search
operators cannot capture all timing diagrams using only one term per event. Consider
the following diagram Dbad, which has no dividing events and as many arrows as it
does events (which precludes a schedule tree). The partial order over events in this di-
agram appears on the right. The rise and subsequent fall of a correspond to the events
e1 and e2, and the rise and subsequent fall of b correspond to the events e4 and e3,
respectively.

a

b e3

e2
e4e1

Dbad is expressible in NÑLTL as F (F (e2) ∧ F (e3) ∧ P (e1) ∧ P (e4)). The outer-
most F locates an index lying within the windows on a and b from which to start the
search; it effectively performs existential quantification on the starting position. This
is a rather different use of F from the search operators. The following lemma argues
that Dbad’s partial order cannot be expressed concisely in NÑLTL using only search
operators.

Lemma 4. No NÑLTL formula restricted to search operators captures Dbad with ex-
actly one term per event.

Proof (sketch). Any NÑLTL formula that captures Dbad using only search operators
must search for the events in some tree-shaped order (corresponding to the order in
the formula’s parse tree). The restriction that each event appear once in the formula
allows the proof to exhaustively consider each order of the four events. Intuitively, N
and Ñ cannot be used since there is no common minimal or maximal event: dropping
an N marker at e1 or e4 before the other has been located would induce an unwanted
ordering between these events; a similar problem with Ñ governs e2 and e3. There-
fore, no event can serve as a valid starting point for the search embodied in the parse
tree. None of the remaining operators help encode constraints in which one node is
incident on two others. Any attempt to construct a formula that captures all order-
ings therefore either omits an arrow or imposes an order that does not exist in the
diagram. �

Dbad has the simplest partial order with n events and n non-transitive
edges forming an undirected cycle. Larger orders of this form cannot
be expressed in NÑLTL even by using F to search for a starting po-
sition. The analogous formula for the order on the right, for example,
would induce unwanted constraints on unrelated events (such as e2
and e4).3 We defer the proof to a full paper.

e1 e4

e6

e5

e3

e2

3 Thanks to Shriram Krishnamurthi for suggesting this example.
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Note that while the partial order in Dbad is diamond shaped, the direction of the
arrows is different from the expressible diamond shape in the middle diagram from
Figure 3. The diamond in the Figure 3 diagram has one minimal and one maximal event,
while Dbad has two minimal and two maximal events. Multiple extremal events (and
their common incident events) are at the heart of the argument for Lemma 4 because
they preclude dividing events that decompose the search.

5 Conclusions and Future Work

LTL is often viewed as the canonical linear temporal logic for formal specification.
Although newer logics such as PSL and OVA challenge this view in practical settings,
LTL is still a benchmark logic for theoretical verification research. Timing diagrams
are often viewed as just a pretty interface for LTL. This paper questions that view by
illustrating the distance between the LTL operators and the temporal abstractions that
timing diagrams express so naturally. Our translation from timing diagrams to LTL—
the first to handle both partial event orders and don’t-care regions—illustrates the gap,
while our results on concisely capturing various shapes of partial orders in temporal
logics put the mismatch in a formal context.

Perspective. Our results relating partial orders to temporal logics serve two purposes.
First, they suggest temporal abstractions that we would need to be able to recognize
in textual formulas (in any logic) in order to render specifications as timing diagrams.
Translating textual specifications to diagrams is attractive as an aid for understanding
and debugging complex specifications. One interpretation of our work is that we have
partly reduced the problem of recognizing that a formula can be drawn as a diagram
to one of recognizing when an LTL formula captures a (more compact) NÑLTL for-
mula. Our work suggests that recognizing diagrams in formulas might not make sense
for LTL, as we do not expect designers would ever write LTL formulas as complicated
as our translations of timing diagrams. Rendering diagrams that approximate tempo-
ral specifications may be a more realistic approach that would still benefit from our
observations.

Second, our results suggest than a good textual analog to timing diagrams needs a
different semantic philosophy than LTL. LTL and its extensions break paths into win-
dows in which subformulas are satisfied, but these windows are strictly bounded at one
end. This characteristic captures nested windows and windows that are ordered on one
side, but not windows that overlap one another with constraints on both ends. Timing
diagrams capture these richer spatial operators between windows. The inexpressible di-
agram in Section 4.3 provides an example of complex constraints between windows
that do not fit within the styles of operators traditional in LTL extensions.

Future Work. Characterizing the class of diagrams for which there are no equiva-
lent NÑLTL formulas of the same size remains an open problem. Section 4.3 presents
initial steps in this direction. Given such a characterization, we must confirm that our
algorithm handles all expressible partial orders other than Dbad. We have not yet con-
sidered the impact of timing constraints on our conciseness results. Logics such as
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PSL in which windows in words are an explicit part of the semantics may provide a
better textual analog for timing diagrams. We intend to perform a similar analysis to
the one in this paper for PSL. This exercise should give a different perspective on the
temporal operators that are fundamental to timing diagrams yet natural to capture tex-
tually. If existing windows-based logics also prove insufficient for cleanly capturing
timing-diagram-like specifications, developing native verification techniques for timing
diagrams may well prove beneficial. Similar comparisons to interval-based temporal
logics would also be instructive [4,11]. Finally, it would be useful to understand the
shapes of partial orders that designers frequently express in timing diagrams in prac-
tice. While we have seen examples that require rich partial orders, we lack more detailed
data about the frequency of each of these shapes in practice.

Acknowledgments. Research funded by NSF grants CCR-0132659 and CCR-
0305834.
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Abstract. The application of model-checking tools to complex systems involves
a nontrivial step of modelling the system by a finite-state model and a translation
of the desired properties into a formal specification. While a positive answer of
the model checker guarantees that the model satisfies the specification, correct-
ness of the modelling is not checked. Vacuity detection is a successful approach
for finding modelling errors that cause the satisfaction of the specification to be
trivial. For example, the specification “every request is eventually followed by a
grant” is satisfied vacuously in models in which requests are never sent. In gen-
eral, a specification ϕ is satisfied vacuously in a model M if ϕ has a subformula
ψ that does not affect the satisfaction of ϕ in M , where “does not affect” means
we can replace ψ by a universally quantified proposition. Previous works focus
on temporal logics such as LTL, CTL, and CTL∗, and reduce vacuity detection to
standard model checking.

A major feature of recent industrial property-specification languages is their
regular layer, which includes regular expressions and formulas constructed from
regular expressions. Our goal in this work is to extend vacuity detection to such
a regular layer of linear-temporal logics. We focus here on RELTL, which is
the extension of LTL with a regular layer. We define when a regular expression
does not affect the satisfaction of an RELTL formula by means of universally
quantified intervals. Thus, the transition to regular vacuity takes us from monadic
quantification to dyadic quantification. We argue for the generality of our defin-
ition and show that regular-vacuity detection is decidable, but involves an expo-
nential blow-up (in addition to the standard exponential blow-up for LTL model
checking). This suggests that, in practice, one may need to work with weaker
definitions of vacuity or restrict attention to specifications in which the usage of
regular events is constrained. We discuss such weaker definitions, and show that
their detection is not harder than standard model checking. We also show that,
under certain polarity constraints, even general regular-vacuity detection can be
reduced to standard model checking.

1 Introduction

Model-checking tools are successfully used for checking whether systems have desired
properties [9]. The application of model-checking tools to complex systems involves
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a nontrivial step of modelling the system by a finite-state mathematical model, and
translation of the desired properties into a formal specification. When the model does
not satisfy the specification, model-checking tools accompany a negative answer with a
counterexample, which may point to a real error in the system [8]. It is often the case,
however, that there is an error in the modelling of the system and/or in the formal spec-
ification. Such errors may not be detected when the answer of the model-checking tool
is positive: while a positive answer does guarantee that the model satisfies the speci-
fication, the answer to the real question, namely, whether the system has the desired
properties, may be different.

The realization of this unfortunate situation has led to the development of several
sanity checks for formal verification. The goal of these checks is to detect errors in the
modelling of the system and the properties. Sanity checks in industrial tools are typi-
cally simple, often ad hoc, tests, such as checking for enabling conditions that are never
enabled [20]. A more systematic approach is based on vacuity detection. Intuitively, a
specification is satisfied vacuously in a model if it is satisfied in some non-interesting
way. For example, the LTL specification θ = globally (req → eventually grant)
(“every request is eventually followed by a grant”) is satisfied vacuously in a model
with no requests. While vacuity checking cannot ensure that whenever a model satis-
fies a formula, the model is correct, it does capture inconsistencies between the model
and the verified property. Being automatic, vacuity checking avoids hidden false as-
sumptions made by the verifier, and thus it is more likely to capture modelling and
specification errors.

Several years of experience in practical formal verification have convinced the veri-
fication group in IBM Haifa Research Laboratory that vacuity is a serious problem [5].
To quote from [5]: “Our experience has shown that typically 20% of specifications pass
vacuously during the first formal-verification runs of a new hardware design, and that
vacuous passes always point to a real problem in either the design or its specification
or environment.” The first formal treatment of vacuity is described in [5]. Consider a
model M satisfying a specification ϕ. A subformula ψ of ϕ does not affect (the sat-
isfaction of) ϕ in M if M also satisfies all formulas obtained by modifying ψ. In the
example above, the subformula grant does not affect θ in a model with no requests.
Now, M satisfies ϕ vacuously if ϕ has a subformula that does not affect ϕ in M . A
general method for vacuity detection was presented in [19], who showed that when all
the occurrences of ψ in ϕ are of a pure polarity (that is, they are either all under an
even number of negations (positive polarity), or all under an odd number of negations
(negative polarity)), then ψ does not affect ϕ iff M satisfies the formula obtained from
ϕ by the single extreme modification of ψ (to true in case ψ has a negative polarity,
and to false otherwise). This observation reduces vacuity detection to model checking.
The usefulness of vacuity analysis is also demonstrated via several case studies in [22].
For more recent work on vacuity checking, see [16,15].

As shown in [19], the method described there can be used when subformulas of
ϕ are of a mixed polarity. In practice, however, one often needs to cope with mixed
polarity. For example, the subformula ψ has a mixed polarity in formulas of the (com-
monly seen) form globally (ψ → θ) ∧ eventually ψ. In fact, industrial-strength
property-specification languages such as Sugar [4], ForSpec [3], and the recent stan-
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dards PSL 1.01 and SVA 3.1a [1] contain operators in which even a single occurrence
of ψ may not have a pure polarity (e.g., ψ XOR θ or ψ ↔ θ).

Once we allow subformulas of a mixed polarity, there is a need to re-examine the
definition of when ψ does not affect ϕ in M . Indeed, it is only in the pure-polarity case
that the various modifications of ψ may be restricted to the single extreme modifica-
tion. Such a re-examination was done in [2], who considered vacuity detection for LTL
specifications. While the modifications to ψ in [5] are syntactic; i.e., M has to satisfy
all formulas ϕ[ψ ← ψ′], namely formulas obtained from ϕ by substituting ψ by an LTL
formula ψ′, Armoni et al. argued that a right definition is one in which the modifica-
tions to ψ are semantic; i.e., M has to satisfy the formula (∀x)ϕ[ψ ← x], obtained by
substituting ψ by a universally quantified proposition 1. Gurfinkel et al further extend
this definition to CTL∗ in [15] arguing that it is more robust than other definitions. .
It is shown in [2] that, under such a semantic interpretation, vacuity detection of LTL
formulas can still be reduced to LTL model checking. A tool used at Intel for vacuity
detection is also described in [2].

As mentioned earlier, the work in [2] was motivated by the need to extend vacuity de-
tection torecent industrialproperty-specificationlanguages,whicharesignificantly richer
syntactically and semantically than LTL. A major feature of these languages, which does
not exist in LTL, is a regular layer, which includes regular expressions and formulas con-
structed from regular expressions. The regular layer does not only add to the expressive
power of the specification language s.t. it can express the whole ω-regular spectrum,
but it also seemed to be more intuitive to hardware engineers. For some languages like
SVA 3.1a, the only way to express temporal properties is using regular expressions.

As an example of the use of the regular layer, consider the ForSpec formula e seq θ,
where e is a regular expression and θ is a formula, asserts that some e sequence is fol-
lowed by θ, and the ForSpec formula e triggers θ, asserts that all e sequences are fol-
lowed by θ. Our goal in this paper is to extend vacuity detection to such a regular layer
of linear-temporal logics. Rather than treat the full complexity of industrial languages,
we focus here on RELTL, which is the extension of LTL with a regular layer. Thus,
we need to define, and then check, the notion of ”does not affect,” not only for subfor-
mulas but also for regular expressions. We refer to the latter as regular vacuity. As an
example, consider the property ϕ = globally ((req · (¬ack )∗ · ack) triggers grant),
which says that a grant is given exactly one cycle after the cycle in which a request is
acknowledged. Note that if (¬ack )∗ · ack does not affect the satisfaction of ϕ in M
(that is, replacing (¬ack )∗ · ack by any other sequence of events does not cause M to
violate ϕ), we can learn that acknowledgments are actually ignored: grants are given,
and stay on forever, immediately after a request. Such a behavior is not referred to in
the specification, but can be detected by regular vacuity. Note that if the same regular
expression appears in the left-hand side of both seq and triggers formulas or on both
sides of a triggers formula, then this expression has mixed polarity.

In order to understand our definition for regular vacuity, consider a formula ϕ over
a set AP of atomic propositions. Let Σ be the set of Boolean functions over AP , and

1 A model M satisfies a formula (∀x)ϕ(x) if ϕ is satisfied in all computations π that differ from
a computation of M only in the label of the proposition x. Note that different occurrences of a
state in π may have different x labels.
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let e be a regular expression over Σ appearing in ϕ. The regular expression e induces a
language – a set of finite words over Σ. For a word w ∈ Σω, the regular expression e
induces a set of intervals [3]: these intervals define subwords of w that are members in
the language of e. By saying that e does not affect ϕ in M , we want to capture the fact
that we could modify e, replace it with any other regular expression, and still M satis-
fies ϕ. As has been the case with propositional vacuity, there is no known algorithmic
approach to handle such syntactic modifications in the presence of regular expressions
of mixed polarity. Accordingly, as in [2], we follow a semantic approach to modifi-
cations of e, where “does not affect” is captured by means of universal quantification.
Thus, in RELTL vacuity there are two types of elements we need to universally quantify
to check vacuity. First, as in LTL, in order to check whether an RELTL subformula ψ,
which is not a regular expression, affects the satisfaction of ϕ, we quantify universally
over a proposition that replaces ψ. In addition, checking whether a regular expression
e that appears in ϕ affects its satisfaction, we need to quantify universally over inter-
vals. Thus, while LTL vacuity involved only monadic quantification (over the sets of
points in which a subformula may hold), regular vacuity involves dyadic quantification
(over intervals – sets of pairs of points, in which a regular expression may hold). In
Section 3, we discuss two weaker alternative definitions: a restriction of the universally
quantified intervals to intervals of the same duration as e, and an approximation of the
dyadic quantification over intervals by monadic quantification over the Boolean events
referred to in the regular expressions. As discussed there, the definition in terms of
dyadic quantification is the most general one.

The transition from monadic to dyadic quantification is very challenging. Indeed,
while monadic second-order logics are often decidable [7,23], this is not the case for
dyadic second-order logics. For example, while monadic second-order theory of one
successor is decidable [7], this is not the case for the dyadic theory [6]. The main result
of this work is that regular vacuity is decidable. We show that the automata-theoretic
approach to LTL [27] can be extended to handle dyadic universal quantification. Unlike
monadic universal quantification, which can be handled with no increase in computa-
tional complexity [2], the extension to dyadic quantification involves an exponential
blow-up (in addition to the standard exponential blow-up of handling LTL [25]), result-
ing in an EXPSPACE upper bound, which should be contrasted with a PSPACE upper
bound for RELTL model checking. Our NEXPTIME-hardness lower bound, while leav-
ing a small gap with respect to the upper bound, shows that an exponential overhead on
top of the complexity of RELTL model checking seems inevitable. The above results
suggest that, in practice, one may need to restrict attention to specifications in which
regular expressions are of pure polarity. We show that under this assumption, the tech-
niques of [19] can be extended to regular vacuity, which can then be reduced to standard
model checking. In addition, for specifications of mixed polarity, the two weaker defi-
nitions we suggest for regular vacuity can also be checked in PSPACE – like standard
RELTL model checking.

2 RELTL

The linear temporal logic RELTL extends LTL with a regular layer. We consider LTL
in a positive normal form, where formulas are constructed from atomic propositions
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and their negations by means of Boolean (∧ and ∨) and temporal (next, until, and
its dual release) connectives. For details, see [21]. Let AP be a finite set of atomic
propositions, and let B denote the set of all Boolean functions b : 2AP → {false, true}
(in practice, members of B are expressed by Boolean expressions over AP ). Consider
an infinite word π = π0,π1, . . . ∈ (2AP )ω . For integers j ≥ i ≥ 0, and a language L ⊆
B∗, we say that πi, . . . ,πj−1 tightly satisfies L, denoted π, i, j|≡ L, if there is a word
b0 · b1 · · · bj−1−i ∈ L such that for all 0 ≤ k < j − i, we have that bk(πi+k) = true.
Note that when i = j, the interval πi, . . . ,πj−1 is empty, in which case π, i, j|≡ L iff
ε ∈ L.

The logic RELTL contains two regular modalities: (e seq ϕ) and (e triggers ϕ),
where e is a regular expression over the alphabet B, and ϕ is an RELTL formula. In-
tuitively, (e seq ϕ) asserts that some interval satisfying e is followed by a suffix sat-
isfying ϕ, whereas (e triggers ϕ) asserts that all intervals satisfying e are followed by
a suffix satisfying ϕ. Note that the seq and triggers connectives are essentially the
“diamond” and “box” modalities of PDL [11]. Formally, let π be an infinite word over
2AP then,2

– π, i |= (e seq ϕ) if for some j ≥ i, we have π, i, j|≡ L(e) and π, j |= ϕ.
– π, i |= (e triggers ϕ) if for all j ≥ i such that π, i, j|≡ L(e), we have π, j |= ϕ.

In the automata-theoretic approach to model checking, we translate temporal logic
formulas to automata [27]. A nondeterministic generalized Büchi word automaton
(NGBW, for short) is a tuple A = 〈Σ,S, δ,S0,F〉, where Σ is a finite alphabet, S
is a finite set of states, δ : S × Σ → 2S is a transition function, S0 ⊆ S is a set of
initial states, and F ⊆ 2S is a set of sets of accepting states. A run ρ of A is an infinite
sequence of states in S that starts in a state in S0 and obeys δ. Let inf(ρ) ⊆ S denote
the set of states that are visited infinitely often in ρ. Since the run is infinite and S is
finite, it must be that inf(ρ) is not empty. An NGBW A accepts an infinite word π if
it has an infinite run ρ over π such that for every F ∈ F , we have inf(ρ) ∩ F �= ∅.
The full definition of NGBW is given in the full version. We now describe a translation
of RELTL formulas to NGBW. The translation can be viewed as a special case of the
translation of ETL to NGBW [27] (see also [17]), but we need it as a preparation for
our handling of regular vacuity.

Theorem 1. Given an RELTL formulaϕ overAP , we can construct an NGBW Aϕ over
the alphabet 2AP such that L(Aϕ) = {π|π, 0 |= ϕ} and the size of Aϕ is exponential
in ϕ.

Proof: The translation of ϕ goes via an intermediate formula ψ in the temporal logic
ALTL. The syntax of ALTL is identical to the one of RELTL, only that regular expres-
sions over B are replaced by nondeterministic finite word automata (NFW, for short)
over 2AP . The adjustment of the semantics is as expected: let π = π0,π1, . . . be an
infinite path over 2AP . For integers i and j with 0 ≤ i ≤ j, and an NFW Z with al-
phabet 2AP , we say that πi, . . . ,πj−1 tightly satisfies L(Z), denoted π, i, j, |≡ L(Z), if

2 In industrial specification languages such as ForSpec and PSL the semantics is slightly dif-
ferent. There, it is required that the last letter of the interval satisfying L(e) overlaps the first
letter of the suffix satisfying ψ. In the full version we describe a linear translation between
these two semantics.
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πi, . . . ,πj−1 ∈ L(Z). Then, the semantics of the seq and triggers modalities are as
in RELTL, with L(Z) replacing L(e).

A regular expression e over the alphabet B can be linearly translated to an equiv-
alent NFW Ze with a single initial state [18]. To complete the translation to ALTL,
we need to adjust the constructed NFW to the alphabet 2AP . Given the NFW Ze =
〈B, Q,Δ, q0, W 〉, let Z ′

e = 〈2AP , Q,Δ′, q0, W 〉, where for every q, q′ ∈ Q, and
a ∈ 2AP , we have that q′ ∈ Δ′(q, a) iff there exists b ∈ B such that q′ ∈ Δ(q, b)
and b(a) = true. It is easy to see that for all π, i, and j, we have that π, i, j|≡ L(e) iff
π, i, j|≡ L(Z ′

e). Let ψ be the ALTL formula obtained from ϕ by replacing every regular
expression e in ϕ by the NFW Z ′

e. It follows that for every infinite word π and i ≥ 0,
we have that π, i |= ϕ iff π, i |= ψ.

It is left to show that ALTL formulas can be translated to NGBW. Let ψ be an ALTL
formula. For a state q ∈ Q of an NFW Z , we use Zq to denote Z with initial state q.
Using this notation, ALTL formulas of the form (Z ′

e seq ϕ) and (Z ′
e triggers ϕ) now

become (Z ′
e
q0 seq ϕ) and (Z ′

e
q0 triggers ϕ). The closure of ψ, denoted cl(ψ), is the

set {ξ|ξ is a subformula of ψ} ∪ {(Zq′
seq ξ)|(Zq seq ξ) is a subformula of ψ and q′

is a state of Zq} ∪ {(Zq′
triggers ξ)|(Zq triggers ξ) is a subformula of ψ and q′ is a

state of Zq}. Let seq(ψ) denote the set of seq formulas in cl(ψ). A subset C ⊆ cl(ψ)
is consistent if the following hold: (1) if p ∈ C, then ¬p �∈ C, (2) if ϕ1 ∧ ϕ2 ∈ C, then
ϕ1 ∈ C and ϕ2 ∈ C, and (3) if ϕ1 ∨ ϕ2 ∈ C, then ϕ1 ∈ C or ϕ2 ∈ C.

Given ψ, we define the NGBW Aψ = 〈2AP ,S, δ,S0,F〉, where S ⊆ 2cl(ψ) ×
2seq(ψ) is the set of all pairs (Ls, Ps) such that Ls is consistent, and Ps ⊆ Ls ∩ seq(ψ).
Intuitively, when Aψ reads the point i of π and is in state (Ls, Ps), it guesses that the
suffix πi,πi+1, . . . of π satisfies all the formulas in Ls. In addition, as explained below,
the set Ps keeps track of the seq formulas in Ls whose eventuality needs to be fulfilled.
Accordingly, S0 = {(Ls, ∅) ∈ S : ψ ∈ Ls}.

Before we describe the transition function δ, let us explain how subformulas of the
form (Zq seq ψ) and (Zq triggers ψ) are handled. In both subformulas, something
should happen after an interval that tightly satisfies Zq is read. In order to “know”
when an interval πi,πi+1, . . . πj−1 tightly satisfies Zq, the NGBW Aψ simulates a run
of Zq on it. The seq operator requires a single interval that tightly satisfies Zq and
is followed by a suffix satisfying ψ. Accordingly, Aψ simulates a single run, which it
chooses nondeterministically. For the triggers operator, the requirement is for every
interval that tightly satisfies Zq. Accordingly, here Aψ simulates all possible runs of
Zq. Formally, δ : (S × 2AP ) → 2S is defined as follows: (Lt, Pt) ∈ δ((Ls, Ps), a) iff
the following conditions are satisfied:

– For all p ∈ AP , if p ∈ Ls then p ∈ a, and if ¬p ∈ Ls then p �∈ a.
– If ( next ϕ1) ∈ Ls, then ϕ1 ∈ Lt.
– If (ϕ1 until ϕ2) ∈ Ls, then either ϕ2 ∈ Ls, or ϕ1 ∈ Ls and (ϕ1 until ϕ2) ∈ Lt.
– If (ϕ1 release ϕ2) ∈ Ls, then ϕ2 ∈ Ls and either ϕ1 ∈ Ls, or (ϕ1 release ϕ2) ∈

Lt.
Let Z = 〈2AP , Q,Δ, q0, W 〉 be an NFW.

– If (Zq seq ψ) ∈ Ls, then (a) q ∈ W and ψ ∈ Ls, or (b) (Zq′
seq ψ) ∈ Lt for

some q′ ∈ Δ(q, a).
– If (Zq triggers ψ) ∈ Ls, then (a) if q ∈ W , then ψ ∈ Ls, and (b)

(Zq′
triggers ψ) ∈ Lt for all q′ ∈ Δ(q, a).
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– If Ps = ∅, then Pt = Lt∩seq(ϕ). Otherwise, for every (Zq seq ψ) ∈ Ps, we have
that (a) q ∈ W and ψ ∈ Ls, or (b) (Z(q′) seq ψ) ∈ Pt ∩Lt for some q′ ∈ Δ(q, a).

Finally, the generalized Büchi acceptance condition is used to impose the fulfillment
of until and seq eventualities. Thus, F = {Φ1, . . . ,Φm,Φseq}, where for every
(ϕi until ψi) ∈ cl(ϕ), we have a set Φi = {(Ls, Ps) ∈ S|ψi ∈ Ls or (ϕi until ψi) �∈
Ls}, and in addition we have the set Φseq = {(Ls, Ps) ∈ S|Ps = ∅}. As in [27], we
count on the fact that as long as a seq formula has not reached its eventuality, then some
of its derivations appear in the successor state. In addition, whenever Ps is empty, we
fill it with new seq formulas that need to be fulfilled. Therefore, the membership of Φseq

in F guarantees that the eventualities of all seq formulas are fulfilled. The correctness
of the construction is proved in the full version.

The exponential translation of RELTL formulas to NGBW implies a PSPACE model-
checking procedure for it [27]. A matching lower bound is immediate from LTL being
a fragment of RELTL [25]. Hence the following theorem.

Theorem 2. The model-checking problem for RELTL is PSPACE-complete.

3 Regular Vacuity

As discussed in Section 1, we follow the semantic approach to vacuity [2]. According
to this approach, a subformula ψ of an RELTL formula ϕ does not affect ϕ in a model
M if M satisfies (∀x)ϕ[ψ ← x], where ϕ[ψ ← x] is the result of replacing in ϕ
all the occurrences of the subformula ψ with the variable x. Thus, ψ is replaced by a
universally quantified propositional variable. Unlike a subformula ψ, which defines a
set of points in a path π (those that satisfy ψ), a regular expression e defines a set of
intervals (that is, pairs of points) in π (those that tightly satisfy e). Accordingly, we
are going to define “does not affect” for regular expressions by means of universally
quantified interval variables. For that, we first define QRELTL, which is a technical
extension of RELTL; it extends RELTL by universal quantification over a single interval
variable.

Recall that the regular expressions of RELTL formulas are defined with respect
to the alphabet B of Boolean expressions over AP . Let y be the interval variable,
and let ϕ be an RELTL formula whose regular expressions are defined with respect
to the alphabet B ∪ {y}. Then (∀y)ϕ and (∃y)ϕ are QRELTL formulas. For exam-
ple, (∀y) globally [(y seq ψ)∧(ab∗ triggers ¬ψ)] is a well-formed QRELTL formula,
while ψ ∨ [(∃y)(y seq ψ)] is not.

We now define QRELTL semantics. Let I = {(i, j)| i, j ∈ IN, j ≥ i} be a set of all
(natural) intervals. An interval set is a set β ⊆ I . The interval variable y ranges over
interval sets and is associated with β. Thus, (i, j) ∈ β means that y is satisfied over
an interval of length j − i that starts at i. For a universally (existentially) quantified
formula, satisfaction is checked with respect to every (some) interval set β. We first
define when a word π̂ = πi . . . πj−1 over 2AP tightly satisfies, with respect to β, a
language L over B ∪ {y}. Intuitively, it means we can partition π̂ to sub-intervals that
together correspond to a word w in L. Note that since some of the letters in w may be
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y, the sub-intervals may be of arbitrary (possibly 0) length, corresponding to intervals
in β. Formally, we have the following.

Definition 1. Consider a language L ⊆ (B∪{y})∗, an infinite path π over 2AP , indices
i and j with i ≤ j, and an interval set β ⊆ I . We say that πi, . . . ,πj−1 and β tightly
satisfy L, denoted π, i, j,β|≡ L iff there is w ∈ L such that either w = ε and i = j, or
w = w0, w1, . . . , wn and there is a sequence of integers i = l0 ≤ l1 ≤ · · · ≤ ln+1 = j
such that for every 0 ≤ k ≤ n, the following conditions hold:

– If wk ∈ B, then wk(πlk) = true and lk+1 = lk + 1.
– If wk = y, then (lk, lk+1) ∈ β.

For example, if AP = {p}, β = {(3, 3), (3, 4)}, and π = {{p}, ∅}ω, then π, 2, 4,β|≡
{p · y} since p({p}) = true and (3, 4) ∈ β. Also, π, 2, 4,β|≡ {p · y · ¬p}, since
p({p}) = true, (3, 3) ∈ β, and ¬p(∅) = true. Note that when the required w does
not contain y, the definition is independent of β and coincides with tight satisfaction for
languages over B.

The semantics of the RELTL subformulas of a QRELTL formula is defined induc-
tively as in RELTL, only with respect to an interval set β. In particular, for the seq and
triggers modalities, we have

– π, i,β |= (e seq ϕ) iff for some j ≥ i, we have π, i, j,β|≡ L(e) and π, j,β |= ϕ.
– π, i,β |= (e triggers ϕ) iff for all j ≥ i s.t. π, i, j,β|≡ L(e) we have π, j,β |= ϕ.

In addition, for QRELTL formulas, we have

– π, i |= (∀y)ϕ iff for every interval set β ⊆ I , we have π, i,β |= ϕ.
– π, i |= (∃y)ϕ iff there exists an interval set β ⊆ I , such that π, i,β |= ϕ.

An infinite word π over 2AP satisfies a QRELTL formula ϕ, denoted π |= ϕ, if π, 0 |=
ϕ. A model M satisfies ϕ, denoted M |= ϕ, if all traces of M satisfy ϕ.

Definition 2. Consider a model M . Let ϕ be an RELTL formula that is satisfied in M
and let e be a regular expression appearing in ϕ. We say that e does not affect ϕ in M
iff M |= (∀y)ϕ[e ← y]. Otherwise, e affects ϕ in M . Finally, ϕ is regularly vacuous in
M if there exists a regular expression e that does not affect ϕ.

As an example for regular vacuity, consider the property

ϕ = globally ((req · true · true) triggers ack)

which states that an ack is asserted exactly three cycles after a req. When ϕ is satisfied
in a modelM , one might conclude that all requests are acknowledged, and with accurate
timing. However, the property is also satisfied in a model M that keeps ack high at all
times. Regular vacuity of ϕ with respect to (req · true · true) will be detected by
showing that the QRELTL formula (∀y)ϕ[(req · true · true) ← y] is also satisfied in
M . This can direct us to the erroneous behavior.

In the previous example we considered regular vacuity with respect to the entire
regular expression. Sometimes, a vacuous pass can only be detected by checking regular
vacuity with respect to a subexpression. Consider the property

ϕ = globally ((req · (¬ack)∗ · ack) triggers grant)
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which states that when an ack is asserted sometime after req, then grant is asserted
one cycle later. Regular vacuity on the subexpression ((¬ack)∗ · ack) can detect that
ack is actually ignored, and that grant is asserted immediately after req and remains
high. On the other hand, regular vacuity would not be detected on the regular expression
e = (req · (¬ack)∗ · ack), as it does affect ϕ. This is because ϕ does not hold if e is
replaced by an interval (0, j), in which req does not hold in model M .

We now describe two alternative definitions for “does not affect” and hence also for
regular vacuity. We argue that the definitions are weaker, in the sense that a formula
that is satisfied vacuously with respect to Definition 2, is satisfied vacuously also with
respect to the alternative definitions, but not vice versa (i.e., it may declare vacuity when
the general definition does not.) On the other hand, as we discuss in Section 5, vacuous
satisfaction with respect to the alternative definitions is computationally easier to detect.

Regular Vacuity Modulo Duration. Consider a regular expression e over B. We say that
e is of duration d, for d ≥ 0, if all the words in L(e) are of length d. For example,
a · b · c is of duration 3. We say that e is of a fixed duration if it is of duration d for
some d ≥ 0. Let e = a · b · c and let ϕ = e triggers ψ. The property ϕ states that if
the computation starts with the Boolean events a, b, and c, then ψ should hold at time
3. Suppose now that in a model M , the formula ψ does not hold at times 0,1, and 2,
and holds at later times. In this case, ϕ holds due to the duration of e, regardless of
the Boolean events in e. According to Definition 2, e affects ϕ (e.g., if β = {(0, 1)}).
On the other hand, e does not affect ϕ if we restrict the interval variable y to intervals
of length 3. Thus, e does not affect the truth of ϕ in M modulo its duration iff ϕ is
still true when e is replaced by an arbitrary interval of the same duration (provided e
is of a fixed duration). Formally, for a duration d, let Id = {(i, i + d) : i ∈ IN} be
the set of all natural intervals of duration d. The logic duration-QRELTL is a variant of
QRELTL in which the quantification of y is parametrized by a duration d, and y ranges
over intervals of duration d. Thus, π, i |= (∀dy)ϕ iff for every interval set β ⊆ Id, we
have π, i,β |= ϕ, and dually for (∃dy)ϕ.

Definition 3. Consider a model M . Let ϕ be an RELTL formula that is satisfied in M
and let e be a regular expression of duration d appearing in ϕ. We say that e does not
affect ϕ in M modulo duration iff M |= (∀dy)ϕ[e ← y]. Finally, ϕ is regularly vacuous
in M modulo duration if there exists a regular expression e of a fixed duration that does
not affect ϕ modulo duration.

We note that instead of requiring e to have a fixed duration, one can restrict attention
to regular expressions of a finite set of durations (in which case e is replaced by intervals
of the possible durations); in particular, regular expressions of a bounded duration (in
which case e is replaced by intervals shorter than the bound). As we show in Section 5,
vacuity detection for all those alternative definitions is similar.

Regular Vacuity Modulo Expression Structure. Consider again the formula ϕ =
e triggers ψ, for e = a · b · c. The formula ϕ is equivalent to the LTL formula
ϕ′ = a → X(b → X(c → Xψ)). If we check the vacuity of the satisfaction of ϕ′

in a system M , we check, for each of the subformulas a, b, and c whether they affect
the satisfaction of ϕ′. For that, [2] uses universal monadic quantification. In regular
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vacuity modulo expression structure we do something similar – instead of replacing the
whole regular expression with a universally quantified dyadic variable, we replace each
of the Boolean functions in B that appear in the expression by a universally quantified
monadic variable (or, equivalently, by a dyadic variable ranging over intervals of dura-
tion 1). Thus, in our example, ϕ passes vacuously in the system M described above, as
neither a, b, nor c affect its satisfaction. Formally, we have the following3.

Definition 4. Consider a model M . Let ϕ be an RELTL formula that is satisfied in
M and let e be a regular expression appearing in ϕ. We say that e does not affect
ϕ in M modulo expression structure iff for all b ∈ B that appear in e, we have that
M |= (∀1y)ϕ[b ← y]. Finally, ϕ is regularly vacuous in M modulo expression structure
if there exists a regular expression e that does not affect ϕ modulo expression structure.

4 Algorithmic Aspects of Vacuity Detection

In this section we study the complexity of the regular-vacuity problem. As discussed in
Section 3, vacuity detection can be reduced to model checking of a QRELTL formula
of the form (∀y)ϕ. We describe an automata-based EXPSPACE solution to the latter
problem, and conclude that regular vacuity is in EXPSPACE. Recall that we saw in
Section 2 that RELTL model checking is in PSPACE. As shown in [2], vacuity detection
for LTL is not harder than LTL model checking, and can be solved in PSPACE. In the
full version we show that regular vacuity is NEXPTIME-hard. Thus, while the precise
complexity of regular vacuity is open, the lower bound indicates that an exponential
overhead on top of the complexity of RELTL model checking seems inevitable.

We describe a model-checking algorithm for QRELTL formulas of the form (∀y)ϕ.
Recall that in the automata-theoretic approach to LTL model checking, one constructs,
given an LTL formula ϕ, an automaton A¬ϕ that accepts exactly all paths that do not
satisfy ϕ. Model checking is then reduced to the emptiness of the product of A¬ϕ with
the model M [27]. For a QRELTL formula (∀y)ϕ, we need to construct an automaton
A(∃y)¬ϕ, which accepts all paths that do not satisfy (∀y)ϕ. Since we considered RELTL
formulas in a positive normal form, the construction of ¬ϕ has to propagate the negation
inward to ϕ’s atomic propositions, using De-Morgan laws and dualities. In particular,
¬(e seq ϕ) = (e triggers ¬ϕ) and ¬(e triggers ϕ) = (e seq ¬ϕ). It is easy to see
that the length of ¬ϕ in positive normal form is linear in the length of ϕ.

Theorem 3. Given an existential QRELTL formula (∃y)ϕ over AP , we can construct
an NGBW Aϕ over the alphabet 2AP such that L(Aϕ) = {π|π, 0 |= (∃y)ϕ}, and the
size of Aϕ is doubly exponential in ϕ.

Proof: The translation of (∃y)ϕ goes via an intermediate formula (∃y)ψ in the tem-
poral logic QALTL. The syntax of QALTL is identical to the one of QRELTL, only that
regular expressions over B ∪ {y} are replaced by NFW over 2AP ∪ {y}. The closure of
QALTL formulas is defined similarly to the closure of ALTL formulas. The adjustment

3 Note that Definition 4 follows the semantic approach of [2]. A syntactic approach, as the one
taken in [5,19], would result in a different definition, where Boolean functions are replaced by
different Boolean functions.
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of the semantics is similar to the adjustment of RELTL to ALTL described in Section 2.
In particular, the adjustment of Definition 1 to languages over the alphabet 2AP ∪ {y}
replaces the condition “if wk ∈ B then wk(πlk) = true and lk+1 = lk + 1” there by
the condition “if wk ∈ 2AP , then wk = πlk and lk+1 = lk + 1” here.

Given a QRELTL formula (∃y)ϕ, its equivalent QALTL formula (∃y)ψ is obtained
by replacing every regular expression e in (∃y)ϕ by Z ′

e, where Z ′
e is as defined in

Section 2. Note that the alphabet of Z ′
e is 2AP ∪ {y}. It is easy to see that for all π, i, j,

and β, we have that π, i, j,β|≡ L(e) iff π, i, j,β|≡ L(Z ′
e). Thus, for every word π and

i ≥ 0, we have that π, i |= (∃y)ϕ iff π, i |= (∃y)ψ.
The construction of the NGBW Aϕ from (∃y)ψ is based on the construction pre-

sented in Section 2. As there, when Aϕ reads πi and is in state (Ls, Ps), it guesses that
the suffix πi,πi+1 . . . satisfies all the subformulas in Ls. Since, however, here Aϕ needs
to simulate NFWs with transitions labelled by the interval variable y, the construction
here is more complicated. While a transition labelled by a letter in 2AP corresponds
to reading the current letter πi, a transitions labelled by y corresponds to reading an
interval πi, . . . ,πj−1 in β. Recall that the semantics of QALTL is such that (∃y)ψ is
satisfied in π if there is an interval set β ⊆ I for which π,β satisfies ψ. Note that
triggers formulas are trivially satisfied for an empty β, whereas seq formulas require β
to contain some intervals. Assume that Aϕ is in point i of π, it simulates a transition
labelled y in an NFW that corresponds to a seq formula in Ls, and it guesses that β
contains some interval (i, j). Then, Aϕ has to make sure that all the NFWs that corre-
spond to triggers formulas in Ls and that have a transition labelled y, would complete
this transition when point j is reached. For that, Ls has to be associated with a set of
triggers formulas.

Formally, for a set Ls ⊆ cl(ψ), we define wait(Ls) =
{(Zq′

triggers ξ)|(Zq triggers ξ) ∈ Ls and q′ ∈ Δ(q, y)}. Intuitively, wait(Ls)
is the set of triggers formulas that are waiting for an interval in β to end. Once the
interval ends, as would be enforced by a seq formula, the members of wait(Ls)
should hold. Let seq(ψ) and trig(ψ) be the sets of seq and triggers formulas in cl(ψ),
respectively. An obligation for ψ is a pair o ∈ seq(ψ) × 2trig(ψ). Let obl(ψ) be the set
of all the obligations for ψ. Now, to formalize the intuition above, assume that Aϕ is in
point i and it simulates a transition labelled y in the NFW Z for some (Zq seq ξ) ∈ Ls.
Then, Aϕ creates the obligation o = ((Zq seq ξ),wait(Ls)) and propagates it until
the end of the interval.

The NGBW Aϕ = 〈2AP ,S, δ,S0,F〉, where the set of states S is the set of all
pairs (Ls, Ps) such that Ls is a consistent set of formulas and obligations, and Ps ⊆
Ls ∩ (seq(ψ)∪obl (ψ)). Note that the size of Aϕ is doubly exponential in ϕ. The set of
initial states is S0 = {(Ls, Ps)|ψ ∈ Ls, Ps = ∅}. The acceptance condition is used to
impose the fulfillment of until and seq eventualities, and is similar to the construction
in Section 2; thus F = {Φ1, . . . ,Φm,Φseq}, where Φi = {s ∈ S|(ϕi until ξi), ξi ∈ Ls

or (ϕi until ξi) �∈ Ls}, and Φseq = {s ∈ S|Ps = ∅}. We define the transition relation δ
as the set of all triples ((Ls, Ps), a, (Lt, Pt)) that satisfy the following conditions:

1. For all p ∈ AP , if p ∈ Ls then p ∈ a.
2. For all p ∈ AP , if ¬p ∈ Ls then p �∈ a.
3. If ( next ϕ1) ∈ Ls, then ϕ1 ∈ Lt.
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4. If (ϕ1 until ϕ2) ∈ Ls, then either ϕ2 ∈ Ls, or ϕ1 ∈ Ls and (ϕ1 until ϕ2) ∈ Lt.
5. If (ϕ1 release ϕ2) ∈ Ls, then ϕ2 ∈ Ls and either ϕ1 ∈ Ls, or (ϕ1 release ϕ2) ∈

Lt.
6. If (Zq seq ξ) ∈ Ls, then at least one of the following holds:

(a) q ∈ W and ξ ∈ Ls.
(b) (Zq′

seq ξ) ∈ Lt for some q′ ∈ Δ(q, a).
(c) Δ(q, y) �= ∅ and o = ((Zq seq ξ),wait(Ls)) ∈ Ls. In this case we say that

there is a y-transition from (Zq seq ξ) to o in Ls.
If conditions a or b hold, we say that (Zq seq ξ) is strong in Ls w.r.t.
((Ls, Ps), a, (Lt, Pt)).

7. If (Zq triggers ξ) ∈ Ls, then the following holds:
(a) If q ∈ W , then ξ ∈ Ls.
(b) (Zq′

triggers ξ) ∈ Lt for all q′ ∈ Δ(q, a).
8. For every (Zq seq ξ) ∈ Ps, at least one of the following holds:

(a) q ∈ W and ξ ∈ Ls.
(b) (Zq′

seq ξ) ∈ Pt ∩ Lt for some q′ ∈ Δ(q, a).
(c) Δ(q, y) �= ∅ and o = ((Zq seq ξ),wait(Ls)) ∈ Ps. In this case we say that

there is a y-transition from (Zq seq ξ) to o in Ps.
If conditions a or b hold, we say that (Zq seq ξ) is strong in Ps w.r.t.
((Ls, Ps), a, (Lt, Pt)).

9. If o = ((Zq seq ξ),Υ ) ∈ Ls then at least one of the following holds:
(a) For some q′ ∈ Δ(q, y), we have that (Zq′

seq ξ) ∈ Ls and Υ ⊆ Ls. In this
case we say that there is a y-transition from o to (Zq′

seq ξ) in Ls.
(b) o ∈ Lt.
If condition b holds, we say that o is strong in Ls w.r.t. ((Ls, Ps), a, (Lt, Pt)).

10. If o = ((Zq seq ξ),Υ ) ∈ Ps then at least one of the following holds:
(a) For some q′ ∈ Δ(q, y), we have that (Zq′

seq ξ) ∈ Ps and Υ ⊆ Ls. In this
case we say that there is a y-transition from o to (Zq′

seq ξ) in Ps.
(b) o ∈ Pt.
If condition b holds, we say that o is strong in Ps w.r.t. ((Ls, Ps), a, (Lt, Pt)).

11. If Ps = ∅, then Pt = Lt ∩ (seq(ϕ) ∪ obl(ϕ)).
12. If wait(Ls) ⊆ Ls, then for every element in Ls ∩ (seq(ϕ) ∪ obl(ϕ)) there

exists a path (possibly of length 0) of y transitions to a strong element w.r.t.
((Ls, Ps), a, (Lt, Pt)). Note that the y-transitions are local in Ls and defined in
rules 6, 8, 9, 10.

13. If wait(Ls) ⊆ Ls, then for every element in Ps ∩ (seq(ϕ) ∪ obl(ϕ)) there
exists a path (possibly of length 0) of y transitions to a strong element w.r.t.
((Ls, Ps), a, (Lt, Pt)).

We now explain the role of conditions 12 and 13 of δ. As explained above, for every
formula (Zq seq ξ) that should hold at point i, the NGBW Aϕ simulates a run of Zq

that should eventually accept an interval of π. Since Zq has transitions labelled by y, it
is possible for Zq to loop forever in (Li, Pi) (when (i, i) ∈ β). Conditions 12 and 13
force the run of Zq to eventually reach an accepting state, and prevent such an infinite
loop. The correctness of the construction is proved in the full version.



Regular Vacuity 203

In the automata-theoretic approach to linear model checking, we translate a formula
ψ to an automaton that accepts exactly all the computations that satisfy ψ. While tra-
ditional translations use nondeterministic automata (cf., [13]), recent translations go
through alternating automata (cf., [12,26]). Then, the state space of the automaton con-
sists of subformulas of ψ, the construction is considerably simpler, and the intermediate
automata are exponentially more succinct. In particular, the translation of RELTL for-
mulas to NGBW described in Theorem 1 can be replaced by a simpler translation, to
alternating automata. For vacuity detection, however, we have to use nondeterministic
automata. To see why, note that reasoning about the QRELTL formula (∃y)ϕ involves a
guess as to where intervals associated with y end. Therefore, a translation of the formula
to an alternating automaton results in an automaton in which the different copies need to
coordinate in order to synchronize at the position when y ends. Such a synchronization
is impossible for alternating automata.

Given a model M and the NGBW Aϕ for (∃y)ϕ, the emptiness of their intersection
can be tested in time polynomial or in space polylogarithmic in the sizes of M and Aϕ

(note that M and Aϕ can be generated on the fly) [27]. A path in the intersection of M
and Aϕ is a witness that e affects ϕ. It follows that the problem of deciding whether a
regular expression e affects ϕ in M can be solved in EXPSPACE. Since the number of
regular expressions appearing in ϕ is linear in the length of ϕ, we can conclude with the
following upper bound to the regular-vacuity problem. As detailed in the full version,
the lower bound follows from a reduction of the exponential bounded-tiling problem to
regular vacuity.

Theorem 4. The regular-vacuity problem for RELTL can be solved in EXPSPACE and
is NEXPTIME-hard.

In Section 5, we analyze the complexity of regular vacuity more carefully and show
that the computational bottle-neck is the length of regular expressions appearing in
triggers formulas in ϕ. We also describe a fragment of RELTL for which regular vacuity
can be solved in PSPACE.

5 Regular Vacuity in Practice

The results in Section 4 suggest that, in practice, because of the computational com-
plexity of general vacuity checking, one may need to work with weaker definitions of
vacuity or restrict attention to specifications in which the usage of regular expressions
is constrained. In this section we show that under certain polarity constraints, regu-
lar vacuity can be reduced to standard model checking. In addition we show that even
without polarity constraints, detection of the weaker definitions of vacuity, presented in
Section 3, is also not harder than standard model checking.

Specifications of Pure Polarity. Examining industrial examples shows that in many
cases the number of trigger formulas that share a regular expression with a seq
formula is quite small. One of the few examples that use both describes a clock
tick pattern and is expressed by the formula tick pattern = (e seq true) ∧
globally (e triggers (e seq true)), where e defines the clock ratio, e.g. e =
clock low · clock low · clock high · clock high.
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As shown in the previous section, the general case of regular vacuity adds an expo-
nential blow-up on top of the complexity of RELTL model checking. A careful analysis
of the state space of Aϕ shows that with every set Ls of formulas, we associate oblig-
ations that are relevant to Ls. Thus, if Ls contains no seq formula with an NFW that
reads a transition labelled y, then its obligation is empty. Otherwise, wait(Ls) contains
only trigger formulas that appear in Ls and whose NFWs read a transition labelled y.
In particular, in the special case where seq and trigger subformulas do not share regu-
lar expressions, we have|obl(ϕ)| = 0. For this type of specifications, where all regular
expressions have a pure polarity, regular vacuity is much easier. Rather than analyz-
ing the structure of Aϕ in this special case, we describe here a direct algorithm for its
regular-vacuity problem.

We first define pure polarity for regular expression. As formulas in RELTL are in
positive normal form, polarity of a regular expression e is not defined by number of
negations, but rather by the operator applied to e. Formally, an occurrence of a regular
expression e is of positive polarity in ϕ if it is on the left hand side of a seq modality,
and of negative polarity if it is on the left hand side of a triggers modality. The polarity
of a regular expression is defined by the polarity of its occurrences as follows. A regular
expression e is of positive polarity if all occurrences of e in ϕ are of positive polarity,
of negative polarity if all occurrences of e in ϕ are of negative polarity, of pure polarity
if it is either of positive or negative polarity, and of mixed polarity if some occurrences
of e in ϕ are of positive polarity and some are of negative polarity.

Definition 5. Given a formula ϕ and a regular expression of pure polarity e, we denote
by ϕ[e ← ⊥] the formula obtained from ϕ by replacing e by true∗, if e is of negative
polarity, and by false if e is of positive polarity.

We now show that for e with pure polarity in ϕ, checking whether e effects ϕ, can be
reduced to RELTL model checking:

Theorem 5. Consider a model M , RELTL formula ϕ, and regular expression e of pure
polarity. Then, M |= (∀y)ϕ[e ← y] iff M |= ϕ[e ← ⊥].

Since the model-checking problem for RELTL can be solved in PSPACE, it follows that
the regular-vacuity problem for the fragment of RELTL in which all regular expressions
are of pure polarity is PSPACE-complete.

Weaker Definitions of Regular Vacuity. In Section 3, we suggested two alternative de-
finitions for regular vacuity. We now show that vacuity detection according to these
definitions is in PSPACE – not harder than RELTL model checking.

We first show that the dyadic quantification in duration-QRELTL can be reduced
to a monadic one. Intuitively, since the quantification in duration-QRELTL ranges over
intervals of a fixed and known duration, it can be replaced by a quantification over the
points where intervals start. Formally, we have the following:

Lemma 1. Consider a system M , an RELTL formula ϕ, a regular expression e appear-
ing in ϕ, and d > 0. Then, M |= (∀dy)ϕ[e ← y] iff M |= (∀x)ϕ[e ← (x · trued−1)],
where x is a monadic variable.
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Universal quantification of monadic variables does not make model checking
harder: checking whether M |= (∀x)ϕ can be reduced to checking whether there is
a computation of M that satisfies (∃x)¬ϕ. Thus, as detailed in [2], when we construct
the intersection of M with the NGBW for ¬ϕ, the values for x can be guessed, and
the algorithm coincides with the one for RELTL model checking. Since detection of
vacuity modulo duration and modulo expression structure are both reduced to duration-
QRELTL model checking, Theorem 2 implies the following.

Theorem 6. The problem of detecting regular vacuity modulo duration or modulo ex-
pression structure is PSPACE-complete.

We note that when the formula is of a pure polarity, no quantification is needed, and
e may be replaced, in the case of vacuity modulo duration, by false or trued according
its polarity. Likewise, in the case of vacuity modulo expression structure, the Boolean
formulas in e may be replaced by false or true.

6 Concluding Remarks

We extended in this work vacuity detection to a regular layer of linear-temporal log-
ics. We focused here on RELTL, which is the extension of LTL with a regular layer.
We defined the notion of “does not affect,” for regular expressions in terms of univer-
sal dyadic quantification. We showed that regular vacuity is decidable, but involves an
exponential blow-up (in addition to the standard exponential blow-up for LTL model
checking). We showed that under certain polarity constraints on regular expressions,
regular vacuity can be reduced to standard model checking. Our decidability result for
dyadic second-order quantification is of independent interest. It suggests that the bound-
ary between decidability and undecidability can be charted at a finer detail than the cur-
rent monadic/dyadic boundary. A related phenomenon was observed in the context of
descriptive complexity theory, see [10,14].

We suggested two alternative definitions for regular vacuity and showed that with
respect to these definitions, even for formulas that do not satisfy the polarity constraints,
vacuity detection can be reduced to standard model checking, which makes them of
practical interest. The two definitions are weaker than our general definition, in the
sense that a vacuous pass according to them may not be considered vacuous accord-
ing to the general definition. It may seem that working with a more sensitive defini-
tion would be an advantage, but experience with vacuity detection in industrial settings
shows that flooding users with too many reports of vacuous passes may be counterpro-
ductive. Thus, it is difficult to make at this point definitive statements about the overall
usability of the weaker definitions, as more industrial experience with them is needed.
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Abstract. Recent work in avoiding the state explosion problem in hardware ver-
ification during breath-first symbolic traversal (BFST) based on Binary Decision
Diagrams (BDDs) applies hints to constrain the transition relation of the circuit
being verified [14]. Hints are expressed as constraints on the primary inputs and
states of a circuit modeled as a finite transition system and can often be found
with the help of simple heuristics by someone who understands the circuit well
enough to devise simulation stimuli or verification properties for it. However,
finding good hints requires one to constrain the transition system so that small
intermediate BDDs arise during image computations that produce large numbers
of reachable states. Thus, the ease of finding good hints is limited by the user’s
ability to predict their usefulness. In this paper we present a method to statically
and automatically determine good hints. Working on the control flow graph(s) of
a behavioral model of the circuit being analyzed, our algorithm extracts sets of
related execution paths. Each set has a corresponding enabling predicate which
is a candidate hint. Program slicing is employed to identify execution paths. Ab-
stract interpretation and model checking are used to ascertain properties along
these paths. Hints generated automatically using our technique result in orders-
of-magnitude reductions in time and space requirements during state space explo-
ration compared to BFST and are usually as good as those produced by someone
who understands the circuit.

1 Introduction

Reachability analysis plays a central role in formal verification of sequential circuits.
One of the state-of-the-art approaches for reachability analysis and formal verification
of circuits modeled as finite transition systems exploits symbolic computations based on
Binary Decision Diagrams (BDDs). However, the known state explosion problem may
cause large intermediate BDDs during the exploration of the state space of a system. The
conventional breadth-first search (BFS) strategy, used in most implicit model checking
algorithms, is the main culprit. Researchers have approached this problem by devising
techniques [5, 11, 1, 12, 14] that simplify the system model employed during BFS.

In [14] a method is proposed to use hints to guide the exploration of the state space.
Hints are expressed as constraints on the primary inputs and states of a circuit mod-
eled as a finite transition system. In [14], hints are classified into those that depend on
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the invariants being checked and those that capture knowledge of the design. Hints are
applied by constraining the transition relation of the system; the constrained traversal
of the state space proceeds much faster than that of the unconstrained system (origi-
nal transition relation). This method obtained orders-of-magnitude reductions in time
and space requirements. Hints can often be found by someone who understands the de-
sign well enough to devise simulation stimuli or verification properties for it. However,
identifying good hints can be a labor-intensive process requiring many attempts, and in
many cases does not avoid the state space explosion problem. One reason it is hard to
identify good hints immediately is due to the user’s inability to predict, in most cases,
the impact the hint will have on the intermediate BDDs during the image computations.
Acceptance of this method by designers and verification engineers will certainly ben-
efit from an efficient technique to devise good hints from a system being verified. Our
purpose in this paper is to demonstrate how such hints can be automatically determined
statically using program analysis techniques.

One effective way to attack the state explosion problem is to construct small transi-
tion systems to make automatic checking tractable, yet large enough to capture the in-
formation relevant to the property being checked—reachability in our case. Our method
exploits these observations and can be summarized as follows: First, we translate the
behavioral model into its control flow graph(s) and augment control and data depen-
dency edges. We then partition the control flow graph(s) into subgraphs consisting of
sets of valid execution paths. (Execution paths are paths that begins with the start node
and end with the exit node whose enabling predicates are satisfiable.) The enabling
predicates of these subgraphs are the candidates hints; pruning criteria are applied to
discard inferior candidates. Finally, the surviving candidates are sorted to produce the
final list of hints.

One feature of our approach is to borrow techniques from program analysis and
apply them to hardware verification. The same ideas could be used to generate hints
for software verification, but that is outside the scope of this paper. We regard the be-
havioral model in this paper as a program. The program analysis techniques employed
to accomplish our objective are program slicing [15] to extract the subgraph(s) from
the original control flow graph(s); abstract interpretation [5] to obtain relevant prop-
erties for each subgraph—e.g., checking whether program variables can be influenced
by the primary inputs; and model checking of abstract models to identify false data
dependencies, and estimate the impact of candidate hints on reachability analysis. The
program dependence graph (PDG) [6, 13] is chosen for its efficient representation of
control and data dependencies of program operations and its rich set of supporting
algorithms.

Analysis of models using our technique is mostly achieved at a high level of abstrac-
tion (program dependency graph). Therefore, it remains feasible when the BDD-based
analysis (BFS) of the original model is not. We validated our technique using a subset
of the Verilog hardware description language (behavioral Verilog); however, we argue
that it can be easily extended to any simple imperative language.

This paper is organized as follows: Section 2 reviews the background material. Sec-
tion 3 discusses the procedure to extract valid execution paths (subgraphs) from the
original control flow graph. Section 4 presents our experimental results, and Sect. 5
summarizes, outlines future work, and concludes.
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2 Preliminaries

2.1 Guided Search for Least Fixpoints

Hints are used to speed up symbolic reachability analysis of transition systems with set
of states Q and inputs W defined by a transition relation T ⊆ Q × W × Q and initial
state set I ⊆ Q. A triple (q1, w, q2) is in T if and only if the transition system can
proceed from q1 to q2 when the input is w; in this case q2 is a successor of q1. State q is
reachable from state q′ if there exists a sequence of states q1, . . . , qn such that q = q1,
q′ = qn, and for 1 < i ≤ n, qi+1 is a successor of qi. The reachability analysis problem
consists of finding all states that are reachable from some state in I . For S ⊆ Q, let
EY S denote all states that are successors of some state in S. Then reachability can be
computed as a fixpoint: μZ . I ∪ EYZ .

This fixpoint computation corresponds to breadth-first search (BFS) of the transi-
tion system starting from the initial states. In symbolic model checking, transition re-
lations and sets of states are represented by their characteristic functions, which can be
manipulated in various forms. In this paper we assume that (reduced, ordered) Binary
Decision Diagrams (BDDs [3]) are used for this purpose. Success with symbolic com-
putations depends on the algorithm’s ability to keep the BDDs small. Several factors
affect the size of BDDs, including the variable orders. Guided search, however, focuses
on the facts that BFS may require the representation of sets of states that are intrinsi-
cally unsuitable for concise representation by BDDs, and that the BDDs that represent
the full transition relation may be unwieldy while restrictions to subsets of transitions
may dramatically shrink the BDDs.

Given a set of hints, τ1, τ2, . . . , τk (where each τi is a transition relation obtained
by constraining the inputs or state variables of the model) the computation of the reach-
able states can be decomposed into the computation of a sequence of fixpoints—one
for each hint. If hints are chosen properly, the computation of least fixpoints can be
substantially sped up [14]. If simple transition systems result for each τi, reachability
analysis may proceed further compared to computing the model fixpoint directly, and
in some cases go to completion by avoiding the memory explosion problem. There are
several strategies to use hints. The one of [14] is based on the following result.

Theorem 1 ([14]). Given a sequence of monotonic functionals τ1, τ2, . . . , τk such that
τi ≤ τk for 0 < i < k, the sequence ρ0, ρ1, . . . , ρk of fixpoints defined by ρ0 = 0 and

ρi = μX . ρi−1 ∨ τi(X), 0 < i ≤ k

monotonically converges to ρ = μX.τk(X); that is, ρ0 ≤ ρ1 ≤ · · · ≤ ρk = ρ.

The traditional BFS reachability analysis algorithm can be modified to take advan-
tage of hints: first, each hint, in order, is used to constrain the original transition relation,
the algorithm is allowed to run normally until all reachable states are reached. The start-
ing point for each run is either the initial states, for the first hint, or the reached states
from the previous run; finally, the original transition relation is restored and runs to
completion or is terminated early due to time-space exhaustion. Its starting point is the
set of reachable states produced by the last hint.
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2.2 Control Flow Graph (CFG)

Many program analysis techniques work on graphs derived from the program text.
Among these, the CFG is a directed graph that represents the flow of control of a pro-
gram (hardware or behavioral model). Each node represents an assignment or branching
statement Si in a program P . Each directed arc represents flow of control from one node
to another. A CFG can be extracted in a single pass traversal over P . (See the left part
of Fig. 3.) In our implementation we create one CFG for each Verilog always block.

Definition 1 (Control Flow Graph (CFG)). A control flow graph CFG is a directed
graph G = (V,E), where: (1) V is a finite set of nodes including two distinguished
nodes of type entry and exit. All other nodes are of one of five types: assignment, input,
decision, no-op, and join. (2) E ⊂ V × V is a control flow relation, whose elements
are directed edges.

We assume that the flow relation obeys restrictions. Specifically, we assume that the
arcs can be partitioned into forward arcs and back arcs so that the forward arcs form a
DAG in which all nodes are reachable from the entry node. We also assume that the exit
node is reachable from all nodes in the CFG. Furthermore, each back edge goes from a
node to another that dominates it. These assumptions imply reducibility of the CFG.

Intuitively, the different types of nodes map to the basic types of statements, and in
fact we shall call the CFG nodes statements. The edges in E represent the transfer of
control between statements. A path from the entry node to the exit node represent one
clock cycle of a Verilog always block.

2.3 Control Dependence Analysis and Program Slicing

Control dependence represents the effect of conditional branches on the behavior of
programs. Given two statements S1 and S2 in P , statement S2 is control-dependent on
S1 if S1 is a conditional branch statement and the control structure (enabling predicate)
of P potentially allows S1 to decide whether S2 will be executed. Control dependence
can be defined in terms of the CFG. Let S1 and S2 be two nodes of a CFG.

Definition 2 (Postdominance and Control Dependence). S1 is postdominated by S2
in a CFG if all paths from S1 to the exit node include S2. S2 is control dependent on S1
if and only if:

1. There exists a path p from S1 to S2 such that S2 postdominates every node of p;
2. S1 is not postdominated by S2.

If S2 is control dependent on S1 in a CFG, then S1 must have two outgoing edges.
Following one of the edges always leads to S2, while there is a path that uses the other
edge and bypasses S2. A control dependence edge can be added to the CFG to show the
dependence relation. We refer to the set of control dependence edges as Ecd.

Control dependence is used to extract a static program slice. During the determina-
tion of hints, our goal is to retrieve pertinent information (valid paths, over-approximate
reachable states, . . . ) from the original model by analyzing the smallest subset of the
original model that preserves the correct result. Program slicing allows us to efficiently
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and effectively achieve this goal. Program slicing statically identifies all statements that
might affect the value of a given variable occurrence [15]. The statements selected con-
stitute a subprogram with respect to the variable occurrence. For a statement Si in a
CFG, the static program slice with respect to Si is the set of statements S1,S2,S3, . . .
in the CFG augmented with control dependence information that can reach Si via a path
of flow or control dependence edges [8]. The program slice for a set of statements S is
simply the union of the program slice of each statement Si.

2.4 Data Dependence Analysis and the Program Dependence Graph (PDG)

Given any two statements S1 and S2 (containing variable x) of a CFG, a data depen-
dence relation may hold between them if one statement is an assignment to variable x
and the other is a read access (use) of the same variable x. Let OUT(Si) be the left-hand
side variable of Si and IN(Si) be the set of right-hand side variables of Si. For any two
statements S1 and S2 in a CFG, data dependence is defined as follows:

Definition 3 (Data Dependence). S2 is data dependent on S1 if and only if: (1) ∃x ∈
IN(S2) .x = OUT (S1); and (2) there exists a path in the CFG from S1 to S2 such
that no intervening statement is an assignment to x.

We refer to the set of data dependence edges as Edd. In practice, it is easy to check
for the first condition of the definition, but not for the second. Hence, we add one
data dependency arc to Gdd whenever the first condition is met, and then try to iden-
tify as many false dependencies as computationally feasible. False data dependencies
do not affect the correctness of our procedure only the quality of the result. Hence, a
small number of false dependencies is tolerable. We use data dependence information
to cluster paths of the CFG into candidate hints and to determine the relative order of
hints.

The PDG represent the control and data dependencies of a program. It can be de-
fined in terms of the CFG; PDG = (V,E ∪ Ecd ∪ Edd). The PDG derived from the
model text is a lossless transformation of the original program. We can go back and
forth from one to the other. We employ the program dependence graph (PDG) [6, 13]
as our intermediate representation.

2.5 Abstract Interpretation

Our goal is to statically (and cheaply) determine pertinent information of a program
that would otherwise be ascertained during run-time. More specifically, we would like
to calculate the run-time behavior of a program without having to run it on all input data,
and while guaranteeing termination of the analysis. Abstract interpretation [5] provides
the necessary framework to accomplish our goal. In our hint generation procedure we
use abstract interpretation to determine if a decision node depends on primary inputs or
not. (See Sect. 3.2.) This use effectively corresponds to a reaching definition analysis
[7]. Our abstraction will therefore need to capture information about whether input in-
formation can reach the definition of a variable. We replace the set of possible values for
each variable with the set of values NID and ID (“not input dependent” and “may be
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input dependent” respectively). Initially, each variable is assigned the value NID , un-
less it is an input variable. Arguments and values of functions (e.g., integer operators,
boolean operators) are now from the set {NID, ID}. The encoding of the semantics
of the functions is simple—any argument with a value of ID causes the function to
return ID , otherwise the function returns NID . At the completion of the analysis we
can safely conclude that a variable with a value of NID is not influenced by the in-
puts. Such a variable is labeled an internal decision variable. Using this technique on
our running example in Fig. 2 results in state being identified as an internal decision
variable.

3 Hint Generation Algorithm

The hints generated to help symbolic traversal of a model graph should select subsets
of transitions that allow reachability analysis to visit sets of states with many elements
and compact representations. Since these representations are usually Binary Decision
Diagrams [3], we shall simply say that the objective is to have many states with small
BDDs. When a model has several major modes of operation—as when it can execute
a set of instructions—enabling one mode at the time is often effective in keeping the
BDD sizes under control. Our approach to producing hints automatically is based on
identifying the different modes of operation from the Control-Flow Graph (CFG) of
the model, and merging and prioritizing them according to their dependencies and their
promise to reduce time and memory requirements. The process can be divided in three
major phases corresponding to the dashed boxes in Fig. 1.

Parse

Analyze data and
control dependencies

Remove false
data dependencies

enumerate candidates

prune ineffective
candidates

sort hints

list of candidates

PDG

CFG

reduced PDG

program text

sorted list of hints

unsorted hints

Fig. 1. Automatic hints generator methodology
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– From the program text a CFG is extracted and from it a reduced program depen-
dency graph (PDG) is created.

– From the CFG a list of candidate hints is compiled; ineffective hints are pruned.
– Using the reduced PDG, hints are sorted according to their dependencies and use-

fulness.

It is possible in principle for the list of hints produced by this process to be empty.
This may result from exhaustion of computational resources, or because the procedure
deems all candidates unworthy. However, we have not yet observed this outcome in
practice, except for trivial models that contain no control flow statements. We now
describe the three phases in more detail. Figures 2 and 3 show an example that is used
throughout the rest of the paper to illustrate the algorithm.

module example(clock,reset,chg,load_data,indat);
input clock,reset,chg,indat;
input[4:0] load_data;

reg state,data;
reg[4:0] a,b,c;

initial begin
S1: state=0;a=0; b=0; c=0; data=indat;

end

always @ (posedge clock) begin
P1: if (state == 0) begin
P2: if (reset) begin
S2: a=0; b=0; data=indat;

end
else begin

P3: if (data) begin
S3: a = load_data;

end
else begin

S4: a = b + 1;
end

end
end
else begin

P4: if (!data) begin
P5: if (chg && !reset) begin
S5: b = a + 1;

end
end

end
S6: state = ˜state;

end

always @ (posedge clock) begin
P6: if (reset) begin
S7: c = 0;

end
else begin

S8: c = a;
end

end
endmodule

S2

P4

S3 S4

S5

S6

P6

S7

exit

S8

P1

P2

T

P3

F

T F

F

P5

T

T

F

T F

entry

Fig. 2. Example Verilog model (left) and serialized CFG (right)
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On the left of Fig. 2 we show a Verilog model. The statements of the model are
annotated with labels so that they can be traced through the transformations. The model
contains a false data dependency (between S3 and S5) as well as cyclic data dependen-
cies and therefore allows us to illustrate various aspects of the hint generation process.
The PDG for this model with the control and data dependencies extracted is given in
Fig. 3. To save space, the join nodes, where the two branches emanating from a deci-
sion node meet, have been merged into their successors. Moreover, to avoid clutter, the
data dependency arcs are shown separately on the right, while control flow and con-
trol dependencies are jointly presented in one graph, by using thick lines for those arcs
that represent both control flow and control dependency. Finally, the right part of Fig. 2
shows the serialized polar graph, which is introduced in Sect. 3.2.

S1

Always Always

S2

S6

S3 S4S5

S7S8

P1 exit P6

P2

T

P4

F

T

P3

F

F

P5

T

T FT

F

TF

entry

S2

S4

S5S8

S3

S6

Fig. 3. Control flow and control dependency graph (left) and data dependency graph (right) for
the model of Fig. 2

3.1 Removing False Data Dependencies

The program that defines the model to be analyzed is translated into a CFG, which
is augmented with data dependency information to produce a PDG. (See Sect. 2.4.)
Since the analysis is conservative, some data dependency arcs in the PDG are false.
Since more data dependency arcs result in fewer degrees of freedom in the merging
and prioritization of modes of operation, it is desirable to remove as many false arcs as
possible, without incurring excessive costs. This is accomplished as follows. Each data
dependency arc is tested in turn to determine whether the variable definition at the tail
of the arc can actually reach the usage at its head by augmenting the program with token
variables. The program slice corresponding to the token variable of the usage variable
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is extracted from the PDG. The check whether the definition can reach the usage is thus
translated into the check for an invariant on the token variable of the usage variable.

Specifically, suppose that the dependency on the definition S1 : x := v1 of x by its
use S2 : y := x is investigated. Two token variables, t1 and t2, are added to the program
by making the following changes.

– Token variables t1 and t2 are added to the program defines.
– Assignments t1 := 0 and t2 := 0 are added to the beginning of the program.
– S1 is changed to x := v1; t1 := 1.
– Every other assignment Si : x := v is changed to Si : x := v; t1 := 0.
– S2 is changed to y := x; t2 := t1.

If in the program slice for t2 no state is reachable in which t2 = 1, then the data
dependency arc from S1 to S2 is removed. We employ model checking to check the
invariant t2 = 0 in the augmented model. We are only interested in direct dependencies:
Consider S1 : x := 2, S2 : y := x, and S3 : x := x + 1. If S3 is always executed
between S1 and S2, the dependency arc between S2 and S1 is removed. However, the
dependencies of S3 on S1, and of S2 on S3 imply, by transitivity, the one of S2 on S1.

Though program slicing may greatly reduce the cost of checking the t2 = 0 invari-
ant, this is not always the case; hence, each model checking run is allotted a short time
to complete. If it does not finish, a less accurate, but less expensive test is applied. The
augmented program slice is analyzed with abstract interpretation. If abstract interpreta-
tion fails to prove the invariant, the arc is (conservatively) retained.

Referring to Fig. 3, it is not hard to see that the data dependency between S3 and
S5 is false. In fact, S3 requires data to be true for its execution, while S5 is only
executed if data is false. The edge in the data dependency graph is correspondingly
shown as a dashed line. The algorithm based on the token variables identifies the false
data dependency. As a result the dashed arc is removed from the PDG.

3.2 Generating Candidate Hints

The modified PDG with (some) false data dependencies removed is one of the two
inputs to the final step of our procedure that outputs a list of hints. The other input is a
list of subgraphs of the CFG, each corresponding to a mode of operation. The subgraphs
are identified by a procedure based on the enumeration of the paths from the entry node
to the exit node of the CFG.

Depth-first search (DFS) of a graph classifies the arcs of a directed graph into for-
ward, backward, and cross arcs [4]. The classification depends in general on the order
in which nodes are visited. In a reducible CFG, however, the result is unique: The back
arcs are precisely the return arcs of the looping constructs. Therefore, in the following
we refer to the back arcs without reference to a specific DFS.

The graph obtained from the CFG by removing the back arcs is polar, that is, all
nodes are reachable from the entry node and have a path to the exit node. Our procedure
produces a list of candidate hints by partitioning the set of paths connecting the two
poles of the graph obtained by removing the back arcs from the CFG. Each subset in
the partition is a candidate for producing a hint (the enabling predicate obtained by
conjoining the predicates along the path from the entry node to the exit node).



216 D. Ward and F. Somenzi

The partitioning algorithm is based on the notion of internal decision. A variable
is an internal decision variable if it does not depend directly on the external inputs.
Abstract interpretation is used to identify internal decision variables. A decision node
of a CFG is an internal decision node if any variables appearing in the predicate attached
to the node are internal decision variables. A hint should not constrain internal decision
variables, lest it may contribute very few states to reachability analysis. Consider, for
instance, an internal decision variable that is incremented modulo n at each iteration
through the CFG. A hint that specifies the value for this variable will allow only one
iteration of reachability analysis before reaching a fixpoint: As soon as the variable gets
incremented, all transitions are disabled (remember that one clock cycle corresponds to
executing one path from the entry node to the exit node). Internal decision variables are
therefore treated specially in two ways:

1. Paths that diverge at an internal decision node are kept together in the partitioning.
2. Internal decision variables are existentially quantified from the predicates attached

to decision nodes before they are used to form a hint.

To account for internal decision nodes in the partitioning of the paths, the polar
graph is serialized. Let v be an internal decision node with children v0 and v1, and u be
the corresponding join node with parents u0 and u1. Assume that u0 is a descendant of
v0 and u1 is a descendant of v1. Then serialization of v replaces its predicate node with a
no-op node; makes v0 the only child of v; makes v1 the successor of u0, and u1 the only
parent of u. Which of the two children of v is regarded as v0 is immaterial. The effect
of serialization is to merge paths that should be kept in the same block of the partition
into a single path. We call the result of serialization the serialized polar graph. DFS
from the start node of this graph enumerates the paths connecting the two poles. The
search procedure maintains the conjunction of the predicates of all the decision nodes
currently on the stack. This conjunction is kept as a BDD; if it ever becomes false, then
the search backtracks to skip the infeasible execution path. Serialization is applied to
each always block individually. Finally, the resulting polar graphs are concatenated to
form one polar graph for the whole model.

On the right in Fig. 2 one can see the serialized polar graph for our running example.
There is one internal decision variable in this case: state, which causes P1 to be an
internal decision node. The two children of P1, P2 and P4, are serialized. P1 becomes
a no-op node (shown by the shaded background). In addition, the two serialized polar
graphs from the two always blocks get concatenated.

Two additional techniques are used to reduce the number of blocks in which the
paths of the serialized polar graphs are partitioned. When blocks are merged by these
techniques, their predicates are disjoint. The two techniques are:

1. Distinct paths of the serialized polar graph may be merged if there are data depen-
dencies among them. The merging takes place after the paths have been extracted
from the graph. For each path, merging with another path is considered if there is
some data dependency between the two. The merged path is evaluated by reacha-
bility analysis. If it does not require more time than the individual paths, and if it
does not time out, it replaces the two candidates that were merged.

2. Array variables are treated specially. Addressing into an array can be regarded as
conditional access to a set of scalar variables. For instance, a[i] := 0 corresponds to
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a[0] := 0 if i = 0, a[1] := 0 if i = 1, and so on. This interpretation of array accesses
is required in cases in which hints prescribe the order in which array elements
should be enabled. (Such hints are sometimes effective in the presence of symmetry,
since they help in reducing the sizes of BDDs that otherwise would encode all
permutations of certain set of states.) However, in case of large arrays, expanding
their accesses may greatly increase the number of paths. Therefore, the expansion
is not initially performed. This leads to ignoring the address variable in the hints.
If the resulting subgraphs time out during their evaluation by reachability analysis,
the array assignments are gradually refined until a set threshold is reached.

The partitioning of the paths in the serialized polar graph is maintained as a list of
predicates, each annotated with a list of CFG nodes, which carry the data dependency
information.

The CFG of a complex model may have many candidates that would not contribute
enough states to pay for themselves. Therefore, the set of candidates produced by the
enumeration procedure is pared down. The selection of the best candidates is heuristic.
We currently employ two criteria. The first favors subgraphs with more states reached
during abstract interpretation or model checking. Very often, subgraphs in which vari-
ables can be controlled via primary inputs produce the best results. To see why, consider
an assignment x := y + z, where y depends on other variables, whereas z is read from
an external input. During reachability analysis, for any value of x and any value of
y there is a value of z such that x = y + z. (Assuming signed integers.) Hence, the
dependency on y, while present, is voided by the dependency on z.

The second selection criterion favors those subgraphs that result in smaller BDDs
for the transition relations of the corresponding models. Ideally, we would have a cri-
terion that accounts for both the number of states and the BDD sizes. However, it is
difficult to accurately estimate both without going all the way to guided search. The
pruning eliminates all candidates that prove inferior according to at least one heuristic.

The serialized polar graph of Fig. 2 has a total of 18 paths from entry to exit. Of
these, only six are viable (their predicates are not false). For each of these paths we list
the predicate and the list of assignment nodes appearing in them.

1. reset∧ ¬data ∧ chg (S2, S6–7)
2. reset∧ ¬data ∧ ¬chg (S2, S6–7)
3. reset∧ data (S2, S6–7)

4. ¬reset ∧ data (S3, S6, S8)
5. ¬reset ∧ ¬data ∧ chg (S4–6, S8)
6. ¬reset∧¬data∧¬chg (S4, S6, S8).

The first three paths do not generate new states; therefore, they are pruned. The
last two candidates have mutual data dependencies through S4 and S5; hence, they are
merged into ¬reset∧¬data, (S4–6, S8). The result of the merger and the fourth path
are forwarded to the final phase of the algorithm.

As another example consider the model CRC used in the experiments of Sect. 4. It
is challenging for reachability analysis because of its complex transition relation. This
model has four main modes of operation. One in which it resets its register; another in
which it holds the current value; a third mode in which it loads data from the outside;
and a fourth mode in which it computes the cyclic redundancy code. Four candidates
are produced by the analysis of the CFG, one for each of these modes. The first two
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candidates are discarded because they yield no new states. The fourth candidate is dis-
carded both because the corresponding transition relation is too large and because its
reachability analysis times out. In fact, it is this mode of operation that makes BFS
reachability analysis hard. The surviving candidate enables the load operation, which is
exactly what a knowledgeable designer writing a hint would do. The load mode allows
every state to be reached. Hence, guided search terminates using only the constrained
transition system without having to restore the full transition relation.

3.3 Sorting the Hints

The final step of the procedure sorts the list of candidates using the information on data
dependencies provided by the PDG. The order in which hints are applied may greatly
influence their effectiveness. This is particularly the case when there are data depen-
dencies between the variables occurring in different subgraphs. Suppose subgraphs P1
and P2 are such that variable x is assigned in P1 by an input statement, while in P2
it is assigned a constant value v. Suppose also that x is used in an assignment y := x
in P2, and that that is the only assignment to y. Then, if the hint extracted from P2 is
applied before the hint derived from P1, all the states reached after the two hints have
been applied have y = v, whereas, if the order of application is reversed, there will be
reachable states for each possible value of y.

In general, there will be cyclic dependencies among subgraphs. Hence, we proceed
as follows. We form a Subgraph Dependency Graph (SDG) with one node for each
subgraph. Each node of the SDG is the set of nodes in the PDG that make up the
corresponding subgraph. An arc connects nodes u and v of the SDG iff there exists
a data dependency arc (a, b) in the PDG such that a ∈ u, b ∈ v, and a �= b. The
ordering of the candidate subgraphs is obtained from the SDG. In particular the strongly
connected components (SCCs) [4] of the SDG define a preorder on the subgraphs: We
say that u � v if there is a path from u to v in the SDG. The final order ≤ is always
a refinement of this preorder in the following sense: if u � v and v �� u, then u ≤ v.
However, an arbitrary total order that refines the preorder may not work well, if there
are just a few large SCCs.

We decompose the problem of deriving a total order from the preorder defined by
the SDG into two subproblems. The first is the one of linearizing the partial order de-
fined by the SCC quotient graph of the SDG. The second is to find total orders for
the nodes of each SCC. The total order of the subgraphs results from combining the
solutions of these two subproblems in the obvious way.

Any topological sort of the nodes of the SCC quotient graph would satisfy the defi-
nition of order refinement. However, different orders result in BDDs of different sizes.
It is normally advantageous to keep subgraphs adjacent in the order if they operate on
common variables. Therefore, to sort the SCCs of the SDG we perform a depth-first
search from the source nodes of the SCC quotient graph.

Sorting the nodes of an individual SCC is based on identifying a starting node, and
then enumerating the elementary circuits of the SCC [10]. As we enumerate elementary
circuits from the designated start node, we add nodes to the total order as they appear
in some elementary circuit. We rely on the fact that the enumeration algorithm outputs
short circuits first. We equate short circuits to tight interaction, and therefore put those
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nodes that have tighter interaction with the start node earlier in the order. The start node
is the entry point to the SCC in the DFS that computed the quotient graph.

The SDG for the example of Fig .2 consists of two disconnected nodes. In this case
the order of the two hints is chosen arbitrarily.

4 Experimental Results

We extended VIS 2.0 [2] as outlined in Sect. 3 to automatically produce hints. Ex-
periments were conducted on a 1.8GHz Pentium IV machine with 512MB of RAM
running Linux. We report the results of our experiments in Tables 1 and 2. We used
ten circuits in our experiments. CRC computes a 32-bit cyclic redundancy code. BPB
is a branch prediction buffer. S1269 is an 8-bit ALU. Rotator and Spinner are barrel
shifters sandwiched between registers. B04 is a Verilog translation of the original b04
circuit from the ITC99 benchmark set [9]. It computes the minimum and maximum
of a set of numbers. Vsa is a simple non-pipelined microprocessor that executes 12-
bit instructions—ALU operations, loads, stores, conditional branches—in five stages:
fetch, decode, execute, memory access, and write-back. Am2901 is a bit-sliced ALU
and contains sixteen 4-bit registers organized into a register file, along with a 4-bit shift
register. Am2910 is a microprogram sequencer.

Table 1. Experimental results for reachability analysis

Circuits FFs Reachable Times in seconds
States BFS Manual Auto

Hints Hints
CRC 32 4.295e+09 Mem. out 0.48 0.48
BPB 36 6.872e+10 124.22 0.55 0.22
s1269 37 1.31e+09 22.91 0.65 0.65
DAIO 56 2.95e+11 21.02 7.94 22.05
Rotator 64 1.845e+19 Mem. out 0.15 0.15
Spinner 65 3.689e+19 Mem. out 0.15 0.15
B04 66 5.650e+15 5883.28 1892.76 1892.76
Vsa 66 1.625e+14 4859.33 153.38 224.22
am2901 68 2.951e+20 Mem. out 1.79 1.87
am2910 99 1.610e+26 Mem. out 60.08 Mem. out

Table 1 compares reachability analysis with automatically generated hints against
BFS runs and manual hints supplied by an expert user. Columns 1, 2, and 3 give the
name of the circuit, number of flip-flops (state variables) and number of reachable states
of the circuit. Columns 4, 5, and 6 compare run times for reachability analysis for
BFS, manual hints, and automatic hints, respectively. The circuits in this table are mid-
sized, but three of these circuits—CRC, Rotator, and Spinner—run out of memory for
BFS. The automatic and manual hints were able to provide dramatic improvements
to the traversal of these circuits, enabling completion times of a few seconds. Circuit
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Table 2. Auto hint generation

Circuits Total number Final number time to Statistics
of hint of hints produce timeouts Reachability

candidates hint(s) completed
CRC 5 1 25 1 1
BPB 165 4 806 2 0
s1269 32 1 381 0 0
DAIO 576 1 422 0 0
Rotator 32 1 4 0 32
Spinner 32 1 4 0 32
B04 6 1 96 0 0
Vsa 23 7 61 3 0
am2901 82 3 123 0 0
am2910 48 1 76 0 0

B04 completes in about one third of the time taken by BFS when using hints. The
automatically generated hint is in this case exactly the same as the manual hint. Three
remaining circuits in Table 1, BPB, s1269, Vsa, and am2901, demonstrate 1–2 orders
of magnitude improvements over BFS. Finally, circuit DAIO and am2910 does not
show any improvement over BFS. It is remarkable that the quality of the automatically
generated hints is, with one exception, quite comparable to that of the manual hints.
(In a few cases, the hints are indeed the same.) The times to generate the hints are
non-negligible for some examples, but quite acceptable especially considering that it is
incurred only once. The hints, on the other hand, may be used many times.

Table 2 shows information collected during the experiments. Column 2 shows the
total number of hints generated during the analysis of the example’s CFG (the total num-
ber of acyclic paths in the serialized polar graph). The sizable number of hint candidates
produced for BPB is attributed to the need to expand the array elements to compensate
for the lack of robustness of our parser. However, this was not a limiting factor in that
we were able to generate competitive hints after pruning and sorting. By contrast, the
number of candidates for Vsa is small because expansion was not necessary.

The total number of hints after pruning and sorting is shown in Column 3. We
were able to forego the pruning and sorting steps for CRC and Rotate after a completed
reachability analysis of the candidate hint was realized (within a 15 CPU seconds). This
reachability analysis showed that all states were reached with a hint, thereby eliminating
the need to continue the generation process.

5 Conclusion

In this paper we have shown that state traversal guided by automatically generated hints
can substantially speed up reachability analysis relative to BFS and produces hints com-
parable to manual hints. We have presented a procedure that analyzes the control flow
graph derived from the program text (e.g., behavioral Verilog description) and parti-
tions the execution paths into subgraphs corresponding to hint candidates. The candi-
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dates are ranked and ordered to produce a final list. Though our implementation is still
a prototype, it has produced very encouraging results because the quality of the hints
it generates rivals that of hints written by expert users. The times required to automat-
ically generate hints sometimes exceed the guided search time, but remain acceptable,
and should be reduced as our implementation matures.

Considerable work remains to be done in the area of automatic generation of hints.
We need to strengthen our parser so that we can confirm the initial encouraging results
on a larger selection of examples. We also need to address model checking of more gen-
eral properties than just invariants and study the generation of property-specific hints.
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Abstract. Automatic formal verification techniques generally require exponen-
tial resources with respect to the number of primary inputs of a netlist. In this
paper, we present several fully-automated techniques to enable maximal input
reductions of sequential netlists. First, we present a novel min-cut based local-
ization refinement scheme for yielding a safely overapproximated netlist with
minimal input count. Second, we present a novel form of reparameterization: as
a trace-equivalence preserving structural abstraction, which provably renders a
netlist with input count at most a constant factor of register count. In contrast to
prior research in reparameterization to offset input growth during symbolic sim-
ulation, we are the first to explore this technique as a structural transformation
for sequential netlists, enabling its benefits to general verification flows. In par-
ticular, we detail the synergy between these input-reducing abstractions, and with
other transformations such as retiming which – as with traditional localization ap-
proaches – risks substantially increasing input count as a byproduct of its register
reductions. Experiments confirm that the complementary reduction strategy en-
abled by our techniques is necessary for iteratively reducing large problems while
keeping both proof-fatal design size metrics – register count and input count –
within reasonable limits, ultimately enabling an efficient automated solution.

1 Introduction

Automatic formal verification techniques generally require exponential resources with
respect to the number of primary inputs of a netlist. For example, the size of a transi-
tion relation may grow exponentially with respect to the number of inputs, in addition
to state elements. The initial state encoding of a netlist may also grow exponentially
complex with respect to the number of inputs used to encode that relation. Symbolic
simulation – used for bounded model checking and induction – may require exponen-
tial resources with respect to the number of inputs multiplied by the unfolding depth. A
large input count may thus render proof as well as falsification efforts inconclusive, and
may arise through being inherent in the design under verification, or as the byproduct
of a particular verification strategy – e.g., as the result of a register-reducing transfor-
mation such as localization or retiming, which are often critical to ensure that a large
register count is not the fatal verification bottleneck on larger industrial designs.

Several techniques have been proposed to reduce the number of primary inputs of
a netlist for specific verification algorithms. For example, the approach of enhancing

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 222–237, 2005.
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symbolic simulation through altering the parametric representation of subsets of the in-
put space via manual case splitting strategies was proposed in [1,2]. The approach of
automatically reparameterizing unfolded variables during symbolic simulation to off-
set their increase over unfolding depth has also been explored, e.g., in [3,4,5]. Vari-
ous approaches for reducing variable count in symbolic reachability analysis have been
proposed, e.g., through early quantification of inputs from the transition relation [6],
enhanced by partitioning [7] or overapproximation [8]. In this paper, we propose a
novel set of fully-automated techniques to enable maximal input reductions of sequen-
tial netlists for arbitrary verification frameworks.

First, we present a novel form of reparameterization: as a sound and complete struc-
tural abstraction. Unlike prior research in reparameterization which focused upon its
enhancement to symbolic simulation [3–5], we are the first to explore the use of this
technique as a structural transformation for sequential netlists, enabling it to benefit
general verification flows. We prove that this technique renders a netlist with input count
at most a constant factor of register count, and discuss how it heuristically reduces reg-
ister count and correlation. These reductions may thereby enhance the application of a
variety of verification and falsification algorithms, including semi-formal search, reach-
ability analysis, and emulation. Algorithm-specific reparameterization techniques may
be complementarily applied to the resulting abstracted netlist, and are likely to benefit
from its reduction. For example, in our experience, it is almost always worth performing
aggressive reductions on the sequential netlist prior to unfolding to achieve a simplify
once, unfold many optimization to bounded analysis, in this case reducing the amount
of costly reparameterization needed over unfolding depth. More significantly, our struc-
tural reparameterization enables synergistic application with various other transforma-
tions such as retiming [9] and localization [10], which overall are capable of yielding
dramatic iterative netlist reductions.

Second, we present a novel min-cut based localization refinement scheme tuned
for yielding an overapproximated netlist with minimal input count. Unlike traditional
localization approaches which refine entire next-state functions or individual gates,
ours augments gate-based refinement by adding gates within a min-cut over the com-
binational logic driving the localized cone to minimize localized input count. A re-
lated approach was proposed in [10,11], where register-based localization is followed
by the insertion of cut-points to a combinational min-cut between the localized in-
puts and sequentially-driven logic. Our approach improves upon this work as fol-
lows. (1) Whereas their approach eliminates gates from the logic deemed necessary
by the refinement process, hence is prone to introducing spurious counterexamples to
the already-overapproximated netlist, ours adds gates to the chosen refinement hence
avoids this secondary overapproximation risk. (2) Their approach resolves spurious
counterexamples caused by the secondary cut-point insertion by adding registers to
the localized logic, whereas ours performs refinement at the level of individual gates,
avoiding the addition of unnecessary registers while preserving minimal input count.
(3) The ability of our technique to safely inject cut-points to sequentially-driven lo-
calized logic theoretically and practically improves upon the input reductions possible
with their localization approach. Additionally, our approach is the first to address the
use of localization to simplify initial value cones. Complex initial value cones arise in
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a variety of applications such as retiming, and may otherwise be fatal to proof analy-
sis. Localization refinement algorithms may be used to reduce the input count of these
cones, effectively attempting to overapproximate the initial states of the design in a
property-preserving manner.

Third, we detail the synergy that these reparameterization and localization transfor-
mations have with each other, and also with other transformations such as retiming and
redundancy removal [12–14]. For example, the former approaches break interconnec-
tions in the design and reduce correlation among its registers, enabling greater regis-
ter reductions through subsequent retiming and localization. Retiming and localization
eliminate registers which constitute bottlenecks to the reduction potential of repara-
meterization, enabling greater input reductions through subsequent reparameterization.
Retiming and localization are powerful techniques for reducing register count, which
is indeed a critical step in enabling automated proofs on larger netlists. However, these
techniques often entail a dramatic proof-fatal increase in input count as a byproduct of
their register reductions, which has been our primary motivation for the development of
the techniques presented in this paper. We have often found in practice that the iterative
application of such register-reducing and input-reducing transformations constitutes a
necessary strategy to enable automated proofs on complex industrial designs.

The rest of this paper is organized as follows. In Section 2, we introduce various
formalisms used throughout the paper; the reader well-versed in such notation may
wish to skip this section. In Section 3, we discuss our structural parametric abstraction.
In Section 4, we present our min-cut based localization refinement scheme. In Section 5,
we detail synergies between these two transformations and various others. In Section 6,
we present experimental results to illustrate the power and synergy of these techniques
in reducing netlist size. In Section 7, we conclude this work.

2 Formalisms

Definition 1. A netlist is a tuple N = 〈〈V,E〉,G, T,Z〉 comprising a finite directed
graph with vertices V and edges E ⊆ V ×V , a semantic mapping from vertices to gate
types G : V �→ types, and a set of targets T ⊆ V correlating to a set of properties
AG(¬t), ∀t ∈ T . The function Z : V �→ V is the initial value mapping.

Our verification problem is represented entirely as a netlist, comprising the design
under verification, its environment, and its property automata. Our gate types define a
set of primary inputs, registers (our only sequential gate type), and combinational gates
with various functions, including constants. The type of a gate may place constraints
upon its incoming edge count – e.g., each register has an indegree of one (whose source
gate is referred to as its next-state function); primary inputs and constants have an inde-
gree of zero. We denote the set of inputs as I ⊆ V , and the set of registers as R ⊂ V .

Definition 2. The combinational fanin of gate set U is defined as
⋃

u∈U cfi(u), where
cfi(u) is defined as u if u ∈ R, else u ∪ combinational fanin

({v : (v, u)∈E}).
Definition 3. The semantics of a netlist N are defined in terms of semantic traces. We
denote the set of all legal traces associated with a netlist by P ⊆ [V × N �→ {0, 1}],
defining P as the subset of functions from V × N to {0, 1} which are consistent with
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the following rule. Term uj denotes the source vertex of the j-th incoming edge to v,
implying that (uj , v) ∈ E. The value of gate v at time i in trace p is denoted by p(v, i).

p(v, i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
si

vp
: v is a primary input with sampled value si

vp

Gv

(
p(u1, i), ..., p(un, i)

)
: v is a combinational gate with function Gv

p(u1, i − 1) : v is a register and i > 0
p
(
Z(v), 0

)
: v is a register and i = 0

The initial values of a netlist represent the values that registers can take at time 0. We
disallow registers from appearing in the combinational fanin of any initial value cones.
We additionally disallow combinational cycles, which makes Definition 3 well-formed.

Definition 4. Gate sets A⊆V and A′⊆V ′ of netlists N and N ′, respectively, are said
to be trace equivalent iff there exists a bijective mapping ψ : A �→ A′ such that:

– ∀p ∈ P.∃p′ ∈ P ′.∀i ∈ N.∀a ∈ A. p(a, i) = p′
(
ψ(a), i

)
– ∀p′ ∈ P ′.∃p ∈ P.∀i ∈ N.∀a ∈ A. p(a, i) = p′

(
ψ(a), i

)
Definition 5. A cut of a netlist is a partition of V into two sets: C and C = V \ C. A cut
induces two sets of cut gates VC = {u∈C :∃v∈C.(((u, v)∈E)∨(v∈R∧u=Z(v))

)},
and VC = {u∈C :∃v ∈ C.(((u, v)∈E) ∨ (v∈R ∧ u=Z(v))

)}.

One may visualize a cut of netlist N as the composition [15] of netlists NC ‖ NC ,
with VC denoting inputs to NC which are closed under the composition, and with VC
denoting inputs to NC which are closed under the composition.

Definition 6. An s-t cut is a cut seeded with vertex sets s ⊆ C and t ⊆ C. An s-t min-cut
refers to an s-t cut where VC is of minimal cardinality.

Algorithmically, when computing an s-t min-cut, sets s and t will be selected ac-
cording to some application-specific criteria, and provided as constraints to the min-cut
solver. The structural reparameterization technique that we will introduce in Section 3
and the min-cut based localization technique that we will introduce in Section 4 both
utilize an s-t min-cut algorithm for optimality. However, they use the result for different
purposes, hence have different criteria for selecting s and t as will be discussed in the
respective sections. Numerous algorithms have been proposed for the efficient compu-
tation of s-t min-cuts, for example, the augmenting path algorithm [16]. It is noteworthy
that the optimality of our techniques is independent of the chosen algorithm, and of the
chosen min-cut if multiple cuts of minimal cardinality exist.

3 Structural Parametric Abstraction
In this section we discuss our structural reparameterization technique. We prove the
correctness and optimality of this fully-automated abstraction, and discuss the algo-
rithms used for performing the abstraction as well as for lifting abstract traces to ones
consistent with the original netlist.

Definition 7. Consider a cut NC ‖ NC of netlist N where NC comprises inputs and
combinational logic but no registers or target gates. A structural reparameterization of
N is a netlist N ′ = N ′

C ‖NC such that VC of N is trace-equivalent to V ′
C of N ′ under

the bijective mapping implied by the composition onto NC .
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1. Compute a cut NC ‖NC of N using an s-t min-cut algorithm, specifying the inputs as s,
and the initial value gates, next-state function gates, registers, and target gates as t.

2. Compute the range of the cut as the set of minterms producible at VC as a function of the
registers in its combinational fanin.

3. Synthesize the range via the algorithm of Figure 2. The resulting netlist N ′
C is combina-

tional, and includes V ′
C which is trace-equivalent to VC under composition with NC .

4. Replace each v ∈ VC by its correspondent in V ′
C , yielding abstract netlist N ′ = N ′

C ‖NC .

Fig. 1. Structural parametric abstraction algorithm

Theorem 1. Let NC ‖ NC be a cut of netlist N , and N ′ = N ′
C ‖ NC be a structural

reparameterization of N . The gates of NC in composition NC ‖NC are trace-equivalent
to those in N ′

C ‖NC under the reflexive bijective mapping.

Proof. By Definition 5, any gate u ∈ NC which sources an edge whose sink is in NC , or
is the initial value of a register in NC , is an element of VC . Definition 3 thus implies that
we may evaluate NC of N from valuations to VC independently of valuations to gates
in NC \ VC ; similarly for N ′ and V ′

C . Since we compose each gate of VC onto a trace-
equivalent gate of V ′

C , this implies that NC of N is trace-equivalent to NC of N ′. ��
Theorem 1 is related to the result that simulation precedence is preserved under

Moore composition [15]. This theorem establishes the soundness and completeness of
our structural parametric abstraction: we wish to replace NC by a simpler netlist which
preserves trace-equivalence, while ensuring that every target is in C and thereby pre-
serving property checking. Numerous aggressive state-minimization techniques have
been proposed for such purposes such as bisimulation minimization; however, such ap-
proaches tend to outweigh the cost of invariant checking [17]. Structural reparameteri-
zation is a more restrictive type of abstraction, though one which requires only lower-
cost combinational analysis and is nonetheless capable of offering dramatic enhance-
ments to the overall verification process.

We use the algorithm depicted in Figure 1 to perform the parametric abstraction. In
Step 1, we compute an s-t min-cut of N . In Step 2, we compute the range of the cut using
well-known algorithms as follows. For each ci ∈ VC , we introduce a distinct parametric
variable pci , and we denote the function of ci – over registers and primary inputs in
its combinational fanin – as f(ci). The range of the cut is ∃I.∧|VC|

i=1

(
pci ≡ f(ci)

)
.

In Step 3, we compute the replacement logic for NC from the range. The replacement
gate rci for ci may be computed using the algorithm of Figure 2, assuming that the
range is represented as a BDD.1 Note that the approach of [18] may also be used for
this synthesis; the algorithm of Figure 2 is merely an alternative included herein for
completeness, implemented using common algorithms and applicable to BDDs with
inverted edges. When completed, each produced gate rci is trace-equivalent to ci.

Figure 3a illustrates an example netlist, where we wish to reparameterize a cut at
gates g1 and g2. Gate g1 has function i1 �≡r1, and g2 has function i2 ∨ (i3 ∧ r2), where

1 In [5], it is proposed to perform the range computation for symbolic simulation using SAT;
their technique is also applicable in our framework for structural reparameterization.
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for (i = 1, . . . , |VC|) { // Process i in rank order of variables pci in BDD range
bi = ∃pci+1 , . . . , pcn .range ;
forced 0i = ¬bi|pci

=1; forced 1i = ¬bi|pci
=0;

// SYNTH creates logic gates from BDDs. It creates a distinct primary input to synthesize
// each pci . It processes “forced” terms using a standard multiplexor-based synthesis,
// using rc1 , . . . , rci−1 as selectors for nodes over pc1 , . . . , pci−1 variables,
// and using registers as selectors for nodes over their corresponding variables.
// OR, AND, NOT create the corresponding gate types.
rci = OR

(
SYNTH(forced 1i), AND(SYNTH(pci)), NOT(SYNTH(forced 0i)))

)
; }

Fig. 2. Range synthesis algorithm

i1, i2, i3∈I and r1, r2∈R. The range of this cut is ∃i1, i2, i3.
(
(pg1 ≡(i1 �≡r1))∧(pg2 ≡

(i2 ∨ (i3 ∧ r2)))
)

which simplifies to -. Replacement gates rg1 and rg2 are thus para-
metric inputs pg1 and pg2 , respectively, and r1 and r2 are eliminated from the support
of V ′

C as illustrated in Figure 3b. While this abstraction is primarily intended for input
elimination, this example illustrates its heuristic ability to reduce correlation between
registers, here breaking any correlation through N1 between the next-state functions of
r1 and r2 and their respective present-state values. Additionally, note that if N2 does not
depend upon either of these registers (say r2), that register will be eliminated from the
abstracted netlist by reparameterization alone, illustrating the heuristic register elimi-
nation capability of this technique. This correlation reduction synergistically enables
greater structural reductions through other transformation techniques such as retiming,
as will be discussed in Section 5.

Theorem 2. The maximum number of primary inputs of the abstracted netlist N ′ gen-
erated by the algorithm of Figure 1 is |T | + 2×|R|.

i1

i3

i2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
N1

g1

g2

r1

r2

N1

(a) Original netlist N . Cut gates are g1 and g2.

r1

r2

N1

(b) Reparameterized netlist N ′.

N2N2

N2

(c) Reparameterized and retimed netlist N ′′.

rg2

rg1

rg2

rg1

Fig. 3. Reparameterization example
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Proof. An s-t min-cut algorithm may be guaranteed to return a netlist cut with |VC | ≤
min(|s|, |t|), as follows from the following analysis. The bound of |s| follows from
the existence of a cut where C = s. Noting that the min-cut is seeded with s = I , this
guarantees that our algorithm cannot increase input count. The bound of |t| follows by
automatically preprocessing the netlist to ensure that each element of t has indegree of
one,2 and selecting C = t. The seeded set t comprises the target gates, as well as the
registers’ initial value and next-state function gates – a set of cardinality |T | + 2 × |R|.
The resulting cut VC may thus be upper-bounded in cardinality by min(|I|, |T | + 2 ×
|R|). At most one input is required per element of V ′

C in N ′, used in the synthesis of the
parametric variable for that cut gate. The structural reparameterization thus replaces the
|I| inputs of NC with the |V ′

C | inputs of N ′
C.

Though we also add R to t, this does not alter the above bound because the only
gates sourcing an edge into the registers – their next-state functions – are seeded into C.
This inclusion serves only to facilitate compositional reasoning, in that registers in the
support of the synthesized range will appear in N ′ – whereas NC and N ′

C are disjoint.
Let U represent the set of gates which contain an input in their combinational fanin.

Straight-forward analysis will demonstrate that N ′ will have at most (|T ∩ U | + |{r ∈
R :Z(r)∈U}| + |{r∈R :∃u1 ∈ U.(u1, r)∈E}|) primary inputs, which often yields a
significantly tighter bound in practice. ��
There are several noteworthy points relating to Theorem 2. First, note that at most one
parametric input may be required per register for abstract initial values. This illustrates
the duality between structural initial values and reachable state data, which is often rep-
resented with one variable per register. Certain techniques have been proposed which
lock reachability data into structural initial values. For example, retiming [9] uses sym-
bolic simulation to compute retimed initial values. If an input is retimed by k time-steps,
there may be k unfolded copies of that input in the retimed initial values. Our paramet-
ric abstraction offsets this input amplification within the initial value data, similarly to
how reparameterizing symbolic simulators operate [4,5]. As another example, one may
underapproximate the reachable states (e.g., via symbolic simulation), then form a new
netlist by altering the initial values of the original netlist to reflect the resulting state
set [19,5]. Second, aside from initial values, note that at most one parametric input per
register is necessary for abstract next-state functions. This bound has significant po-
tential for enhancing a variety of verification paradigms, especially when coupled with
synergistic register-reduction techniques (e.g., localization and retiming).

Because our abstraction preserves trace-equivalence of all targets in NC , demon-
strating that a target cannot be asserted within a bounded or unbounded time-frame on
the abstracted netlist implies the same result on the original netlist. However, if a trace
is obtained asserting a target in the abstracted netlist, that trace must be lifted to indicate
an assertion of the corresponding target in the original netlist. Our algorithm for trace
lifting is provided in Figure 4. In Step 1, we simulate the abstracted trace to ensure that

2 This preprocessing entails “splitting” a gate v into gates v1 and v2. Gate v1 has input con-
nectivity and type identical to that of v, and fans out exclusively a new buffer gate v2, which
in turn inherits all fanout references of v (including fanout edges, as well as target and initial
value references). A similar approach is used to ensure that s∩t = ∅ in Step 1 of the algorithm
of Figure 1, e.g., in case a next-state function is also an input.
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1. Given partial trace p′ of N ′, fully populate that trace up to the necessary length to assert
the abstracted target, using binary simulation as per Definition 3 and injecting arbitrary
values to any don’t cares (unassigned values) of any primary inputs.

2. Cast a satisfiability check over VC to obtain the same sequence of valuations as witnessed
to V ′

C in the populated trace p′. This check must be satisfiable since V ′
C is trace-equivalent

to VC under composition with NC , and yields trace p′′.
3. Return trace p produced by composing values to NC from p′ with values to NC from p′′.

Fig. 4. Parametric abstraction trace lifting algorithm

we have adequate deterministic valuations to V ′
C and R′ to enable the lifting. This is

necessary because many verification algorithms produce partial traces, where certain
valuations may be omitted for certain gates at certain time-steps. For example, in Fig-
ure 3b, parametric input rg1 replaced gate g1 of function i1 �≡ r1, eliminating r1 from
the support of V ′

C . The abstracted trace p′ is thus less likely to include valuations to r1.
In order to lift p′, and thereby provide the proper sequence of valuations to i1 to yield
an identical sequence of valuations to VC , the trace-lifting process must be aware of the
valuations to r1. After simulation populates the necessary valuations to p′, a bounded
satisfiability check in Step 2 will yield a trace p′′ over NC which provides the identical
sequence of valuations to VC . This check tends to require only modest resources regard-
less of netlist size, since register valuations in p′ effectively break the k-step bounded
analysis into k one-step satisfiability checks, each injecting the netlist into the state re-
flected in the corresponding time-step of the trace. Step 3 splices p′ and p′′ together,
producing a consistent trace over the original netlist asserting the original target. This
algorithm is similar to those for lifting traces over localized netlists (e.g., [20]); its pri-
mary difference is the binary simulation step, which reduces satisfiability resources and
is enabled due to the soundness and completeness of our abstraction as per Theorem 1.

Related Work. The approach of automatically reparameterizing unfolded variables
during symbolic simulation to offset their increase over unfolding depth has been ex-
plored in prior work, e.g., in [3,4,5]. Overall, our technique is complementary to this
prior work: by transforming the sequential netlist prior to unfolding, we enable a sim-
plify once, unfold many optimization to bounded analysis reducing the amount of costly
reparameterization needed over unfolding depth. Nonetheless, input growth over un-
folding depth is inevitable; while our technique reduces this growth, a reparameter-
izing symbolic simulator may nonetheless be beneficial for analysis of the abstracted
netlist.

Our approach is most similar to that of [4], which computes a cut of a logic cone,
then parametrically replaces that cut by a simpler representation which preserves trace-
equivalence. Unlike [4], which seeks to improve the efficiency of BDD-based combi-
national analysis hence retains all computations as BDDs, ours converts the reparame-
terized representation to gates. We are the first to propose the use of reparameterization
as a structural reduction for sequential netlists, enabling its benefits to arbitrary verifi-
cation and falsification algorithms, in addition to enabling dramatic iterative reductions
with synergistic transformations as will be discussed in Section 5. Our approach also
enables an efficient trace lifting procedure, unlike the approach of [4].
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1. Begin with an initial abstraction A of N such that T ⊆ C.
2. Attempt to prove or falsify each target in A.
3. If the target is proven unreachable, this result is valid for N ; return this result.
4. If a trace is obtained asserting the target in A, search for a corresponding trace in N . If

one is found, return this result.
5. Otherwise, the trace over A is spurious. Identify a refinement of A – i.e., a set of gates

to move from C to C – to eliminate the spurious trace. Repeat Step 2 with the refinement.

Fig. 5. Localization refinement algorithm

Optimality. Note that the algorithm of Figure 2 uses a single parametric input per cut
gate. One may instead attempt a more aggressive synthesis of the range, using �log2 m 
variables to directly select among the m possible minterms on a per-state basis (for max-
imal m), similarly to the approach proposed in [1]. While this may yield heuristically
lesser input count, we have found this approach to be inferior in practice since �log2 m 
is often nearly equivalent to the cut-width due to the density of the range, and since the
resulting encoding tends to be of significantly greater combinational complexity result-
ing in an increase in the analysis resources needed by virtually all algorithms, including
simulation, satisfiability, and BDD-based algorithms (the latter was also noted in [2]).

We may readily eliminate the |T | contribution of the bound proven in Theorem 2 by
using the structural target enlargement technique of [21]. In particular, we may replace
each target ti ∈ T by the synthesis of the characteristics function of the set of states for
which there exists an input valuation which asserts that target, i.e., by ∃I.f(ti).

We utilize an s-t min-cut algorithm to ensure maximal input reductions as per Theo-
rem 2. However, the range computation of the resulting cut may in cases be prohibitively
expensive. It therefore may be desired to choose a cut with larger cardinality, weakening
reduction potential in favor of computational efficiency – though iterative abstractions
may be performed to ultimately converge upon the min-cut with lesser resources. In [4]
it is proposed to reparameterize a group U of a candidate cut VC to eliminate inputs
IU which are in the combinational fanin of U but not VC \ U . This reduction may be
accomplished in our framework by selecting a cut of VC = U ∪(I \IU ), noting that any
inputs in VC will merely be replaced by other inputs, hence may effectively be treated as
non-quantifiable variables when computing the range (similarly to registers in NC). We
have found that an efficient way to select suboptimal cuts for incremental abstraction
is to compute min-cuts over increasing subsets of the desired cut, enabling the earlier
abstractions to simplify later abstractions by iteratively decreasing |I|.

4 Min-cut Based Localization

Definition 8. A localization A of N is a netlist obtained by computing a cut of N such
that T ⊆ C, and by replacing VC by a set of primary inputs V ′

C of netlist N ′
C , resulting

in A = N ′
C ‖NC . This replacement is referred to as injecting cut-points to VC .

Localization differs from the parametric abstraction of Section 3 since it renders an
overapproximated netlist which can simulate the original, though the converse may not
be true. Because the overapproximation may result in a spurious assertion of a target,
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refinement is often used to tighten the overapproximation by increasing the size of C,
e.g., using the algorithm of Figure 5. For larger netlists, the localization may contain
many thousands of inputs when using traditional approaches of selecting VC to comprise
only registers and inputs (e.g., [10,22]), or of refining individual gates. This large input
count tends to render the BDD-based reachability analysis which is commonly used for
the proof analysis in Step 2 infeasible. In [10,11], this problem is addressed by further
overapproximating the localization by computing an s-t min-cut between its inputs and
sequentially-driven gates (i.e., gates which have a register in their combinational fanin),
and injecting cut-points to the resulting cut gates to significantly reduce localized input
count. When a trace is obtained on the post-processed localization, an attempt is made to
map that trace to the original localization. If the mapping fails, in [11] various heuristics
are proposed to select registers to add for the next localization refinement phase, instead
of directly addressing the causal post-process cut-point injection.

The min-cut based localization refinement scheme we have developed to minimize
input growth is depicted in Figure 6. In Step 1, a new localization A′ is created from A
by adding a set of refinement gates, which may be selected using any of the numerous
proposed refinement schemes (e.g., [11,20]). For optimality, however, we have found
that the refinement should be at the granularity of individual gates vs. entire next-state
functions to avoid locking unnecessary complex logic into the localization. In Step 2,
an s-t min-cut 〈C1, C1〉 is computed over N . In Step 3, the gates of C1 are added to A′

to ensure that A′ has as few inputs as possible while containing the original refinement
of Step 1. Note that the newly-added gates are all combinational because all registers
not already in A′ are seeded into s, hence cannot be in C1 which is the set added to A′.

Unlike the approach of [10,11], which eliminates gates from the logic deemed nec-
essary by the refinement process hence is prone to introducing spurious counterexam-
ples, our min-cut based localization adds combinational logic to the refinement to avoid
this risk while ensuring minimal input count. While the overapproximate nature of lo-
calization may nonetheless result in spurious counterexamples, our approach avoids the
secondary overapproximation of theirs which is done without refinement analysis to
heuristically justify its validity. Our more general approach also avoids adding unnec-
essary registers during refinement, since it has the flexibility to select which combina-
tional logic to include. In our experience, many refinements may be addressed solely
by altering the placement of the cut within the combinational logic. Additionally, our
approach is often able to yield a localization with lesser input count due to its ability
to safely inject cut-points at gates which are sequentially-driven by registers included
in the localization, which their register-based localization does not support and their
combinational cut-point insertion disallows to minimize its introduction of spurious
counterexamples. Finally, our approach enables localization to simplify complex ini-
tial value cones, as the inclusion of register r does not imply the inclusion of its initial
value cone. Only the subset of that cone deemed necessary to prevent spurious coun-
terexamples will be added during refinement. This initial-value refinement capability
has not been addressed by prior research, despite its utility – e.g., when coupled with
techniques which lock reachability data into initial values such as retiming [9].

In a transformation-based verification framework [9,23], one could attempt to re-
duce the input count of an arbitrarily-localized netlist by using the parametric abstrac-
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1. Select a set of gates to add to the refinement A′ of A using an arbitrary algorithm. Let
〈C′, C′〉 be the cut of N corresponding to A′.

2. Compute an s-t min-cut 〈C1, C1〉 over N , with all gates in C′
as t, and I ∪ (R ∩ C′) as s.

3. Add C1 to the refinement A′.

Fig. 6. Min-cut based abstraction refinement algorithm

tion of Section 3 instead of using a min-cut based localization refinement scheme, or of
overapproximately injecting cut-points to a combinational min-cut thereof as proposed
in [10]. As per Theorem 2, this synergistic strategy is theoretically able to reduce input
count to within a factor of two of register count. This bound is only possible due to
the ability of reparameterization to abstract sequentially-driven logic. In contrast, the
min-cut approach of [10] is taken with t being the set of all sequentially-driven gates,
which is often much larger than the set of registers – hence input count may remain
arbitrarily larger than register count with their approach. Reparameterization is thus a
superior input-elimination strategy compared to the cut-point insertion of [10], and has
the additional benefit of retaining soundness and completeness. Nevertheless, the dra-
matic input growth which may occur during traditional localization approaches often
entails exorbitant resources for reparameterization to overcome on large netlists. We
have therefore found that an input-minimizing localization scheme such as ours is nec-
essary to safely minimize input growth during localization, to in turn enable the optimal
input elimination of reparameterization with minimal resources.

5 Transformation Synergies

In a transformation-based verification (TBV) framework [9], various algorithms are en-
capsulated as engines which each receive a netlist, perform some processing on that
netlist, then transmit a new, simpler netlist to a child engine. If a verification result
(e.g., a proof or counterexample) is obtained by a given engine from a child engine,
that engine must map that result to one consistent with the netlist it received before
propagating that result to its parent – or suppress it if no such mapping is possible. Syn-
ergistic transformation sequences often yield dramatic iterative reductions – possibly
several orders of magnitude compared to a single application of the individual tech-
niques [23]. In this section we detail some of the synergies enabled and exploited by
our techniques.

Theorem 2 illustrates that all register-reducing transformations (e.g., retiming [9],
localization [10], redundancy removal [12,13,14], and structural target enlarge-
ment [21]) synergistically enable greater input reductions through structural repara-
meterization. For example, retiming finds a minimal-cardinality register placement to
eliminate reparameterization bottlenecks caused by their arbitrary initial placement. Lo-
calization injects cut-points to the netlist, which when reparameterized enable reduc-
tions even at deep gates which previously had no inputs in their combinational fanin.
Redundancy removal may enable s-t min-cut algorithms to identify smaller-cardinality
netlist cuts.
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In addition to its input reductions, structural reparameterization reduces register cor-
relation as per Figure 3b. As with redundancy removal, this often enables subsequent
localization to yield greater reductions, since the heuristic abstraction algorithms are
less likely to identify unnecessary registers as being required to prevent spurious coun-
terexamples. We have found iterative localization and reparameterization strategies to
be critical to yield adequate simplifications to enable a proof or a counterexample re-
sult on many complex industrial verification problems. The concept of iterative local-
ization strategies was also proposed in [22], leveraging the heuristics inherent in the
SAT algorithms used for the abstraction to identify different subsets of the netlist as
being necessary across the nested localizations, in turn enabling iterative reductions.
Our TBV approach enables significantly greater reduction potential, since it not only
allows the use of differing abstraction heuristics across nested localizations, but also
allows arbitrary transformations to iteratively simplify the netlist between localizations
to algorithmically – not merely heuristically – enable greater localization reductions.
In cases, the result enabled through our iterative reductions was a spurious localization
counterexample which could be effectively used by the causal prior localization engine
for refinement. This illustrates the utility of our synergistic transformation framework
for the generation of complex counterexamples for abstraction refinement, enabling a
more general refinement paradigm than that of prior work, e.g., [10,11,22].

Retiming is limited in its reduction potential due to its inability to alter the register
count of any directed cycle in the netlist graph, and its inability to remove all registers
along critical paths of differing register count between pairs of gates [24]. Both repa-
rameterization and localization are capable of eliminating such paths, enabling greater
register reductions through retiming. This is illustrated in Figure 3b, where reparame-
terization eliminates the directed cycles comprising r1 and r2, enabling a subsequent
retiming to eliminate those registers in Figure 3c. Retiming has the drawback of in-
creasing input count due to the symbolic simulation used to calculate retimed initial
values [9]. Both reparameterization and our min-cut based localization are capable of
offsetting this input growth, enabling retiming to be more aggressively applied without
risking a proof-fatal input growth, as we have otherwise witnessed in practice.

6 Experimental Results

In this section we provide experimental results illustrating the reduction potential of
the techniques presented in this paper. All experiments were run on a 2GHz Pentium 4,
using the IBM internal transformation-based verification tool SixthSense. The engines
used in the experiments are as follows; each performs a cone-of-influence reduction.

– COM: a BDD- and SAT-based combinational redundancy removal engine [13].
– RET: a min-area retiming engine [9].
– CUT: a structural reparameterization engine as per Section 3.
– LOC: a min-cut based localization engine as per Section 4.

We present several sets of experiments in Table 1 to illustrate the power of and syn-
ergy between these engines. The first column indicates the name of the benchmark and
the size metric being tracked in the corresponding row. The second reflects the size of
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Table 1. Synergistic transformation experiments

S4863 [12] Initial COM RET COM CUT Initial COM CUT RET Resources
Registers 101 101 37 37 21 101 101 34 0 1 sec
Inputs 49 49 190 190 37 49 49 21 21 34 MB

S6669 [12] Initial COM RET COM CUT Initial COM CUT RET
Registers 303 186 49 49 0 303 186 138 0 1 sec
Inputs 80 61 106 81 40 80 61 40 40 35 MB

SMM Initial COM LOC CUT LOC CUT LOC CUT
Registers 36359 33044 760 758 464 167 130 129 229 sec
Inputs 261 71 2054 666 366 109 135 60 291 MB

MMU Initial COM LOC CUT LOC CUT RET COM CUT
Registers 124297 67117 698 661 499 499 133 131 125 1038 sec
Inputs 1377 162 1883 809 472 337 1004 287 54 386 MB

RING Initial COM LOC CUT RET COM CUT LOC CUT LOC CUT LOC CUT
Registers 20692 19557 266 262 106 106 106 65 65 49 48 47 35 745 sec
Inputs 2507 2507 568 280 726 587 480 452 376 330 263 259 64 240 MB

BYPASS Initial COM LOC CUT LOC CUT LOC CUT LOC CUT LOC CUT LOC CUT
Registers 11621 11587 311 306 265 265 216 212 164 154 127 124 101 95 240 sec
Inputs 432 410 501 350 333 254 248 216 203 156 154 123 110 79 175 MB

the original netlist; phase abstraction [25] was used to preprocess the industrial exam-
ples. The successive columns indicate the size of the problem after the corresponding
transformation engine (indicated in the row labeled with the benchmark name) was run.

The first two examples in Table 1 are sequential equivalence checking proof oblig-
ations of SIS-optimized ISCAS89 benchmarks from [12]. The first presented flow
demonstrates how CUT offsets the increase in input count caused by RET, and also the
register reduction potential of CUT itself. The second flow additionally illustrates how
reparameterization enhances the register-reduction ability of RET, enabling retiming
to eliminate all registers from both benchmarks. CUT was able to eliminate significant
register correlation – and thereby critical paths – in these benchmarks due to logic of
the form (i1 �≡ r1) and i2 ∨ (i3 ∧ r2) as illustrated in Figure 3.

The remaining four examples are difficult industrial invariant checking problems.
SMM and MMU are two different memory management units. RING validates the pri-
oritization scheme of a network interface unit. BYPASS is an instruction decoding and
dispatch unit. These results illustrate the synergistic power of iterative reparameteriza-
tion and localization strategies, coupled with retiming, to yield dramatic incremental
netlist reductions. The resulting abstracted netlists were easily discharged with reacha-
bility analysis, though otherwise were too complex to solve with reachability or induc-
tion. In SMM, the first LOC reduces register count by a factor of 43, though increases
input count by a factor of 29 to 2054. Without our min-cut based localization, this input
growth is even more pronounced. Refining entire next-state functions as per [10] yields
29221 inputs; their combinational cut-point injection may only eliminate 54 of these, as
most of the logic is sequentially driven. CUT could eliminate 28514 of these, modulo
resource limitations. If refining individual gates, we obtain 2755 inputs. In practice, we
often witness an even more pronounced input growth through gate-based refinement
(e.g., 3109 vs. 1883 inputs for MMU). In MMU, LOC and CUT enable a powerful
RET reduction with input growth which is readily contained by a subsequent CUT.
RING is a difficult example which LOC and CUT alone were unable to adequately
reduce to enable reachability. RET brought register count down to an adequate level,
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Table 2. Input counts with and without structural reparameterization prior to unfolding

Benchmark |R| |I| |I′| |R| ≤ |I| |R′| ≤ |I′| |I| Unfold |I′| Unfold |I| Unfold |I′| Unfold
Orig. Reparam. Unfold Depth Unfold Depth Depth 25 Depth 25 Depth 100 Depth 100

LMQ 345 189 135 (29%) 6 8 3884 2735 (30%) 17309 12111 (30%)
DA FPU 6348 534 240 (57%) 24 39 7038 3120 (56%) 47088 21120 (55%)
SQMW 13583 1271 421 (67%) 23 47 16356 4538 (72%) 111681 36113 (68%)

though increased input count substantially due to complex retimed initial values. A sin-
gle CUT was unable to contain that input growth with reasonable resources, though
the ability to safely overapproximate the initial value cones with LOC iteratively and
synergistically enabled CUT to eliminate all but a single input per initial value cone.

Table 2 illustrates the utility of structural reparameterization prior to unfolding.
Column 2 and 3 illustrate the register and input count of the corresponding redundancy-
removed [13] netlists. Column 4 provides the input count of the reparameterized netlist;
the numbers in parentheses illustrate percent reductions. Columns 5 and 6 illustrate the
unfolding depth at which input count exceeds register count with and without repara-
meterization. This is the unfolding depth at which one may wish to use reparameteriza-
tion within the symbolic simulator to guarantee a reduction in variable count [5]. Note
that this depth is significantly greater for the abstracted than the original netlist. Prac-
tically, a bug may be exposed by the symbolic simulator between these depths, hence
our approach may preclude the need for reparameterization on the unfolded instance.
More generally, the simplify once, unfold many optimization enabled by our abstrac-
tion reduces the amount of costly reparameterization necessary over greater unfolding
depths, and enables shallower depths to be reached more efficiently due to lesser vari-
able count. Another noteworthy point is that register count is significantly greater than
input count in these netlists (as is common with industrial designs). Reparameteriza-
tion within symbolic simulators operates on parametric variables for the registers, and
on the unfolded inputs which become comparable in cardinality to the registers. In con-
trast, our structural reparameterization operates solely upon parametric variables for the
cut gates (bounded in cardinality by the abstracted input count, in turn bounded by the
original input count as per the proof of Theorem 2), and on the original inputs: a set of
significantly lesser cardinality, implying significantly lesser resource requirements.

Note also that we did not perform more aggressive transformations such as local-
ization and retiming on the examples of Table 2. As illustrated by Table 1, doing such
is clearly a beneficial strategy in our synergistic transformation framework. However,
the purpose of this table is to demonstrate how our structural reparameterization alone
benefits symbolic simulation. The final columns of this table indicate input count with
and without reparameterization for unfolding depths of 25 and 100.

7 Conclusion

We have presented several fully-automated techniques for maximal input reduction of
sequential netlists for arbitrary verification flows. (1) We introduced a structural repa-
rameterization technique, which provably reduces input count to a constant factor of
register count. This technique also heuristically reduces register count and correlation.
(2) We introduced a min-cut based localization refinement scheme for safely overap-
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proximating a netlist through minimal cut-point insertion. We also detailed the synergy
between these two abstractions, along with other transformations such as retiming.

Overall, the transformation synergy enabled by our techniques comprise their great-
est benefit, capable of yielding dramatic iterative reductions unachievable by any stand-
alone approach. For example, a single reparameterization application is able to reduce
our RING benchmark from 2507 to 2109 inputs. A single application of our min-cut-
based localization is able to reduce RING to 568 inputs (and prior localization ap-
proaches substantially increase its input count). Our iterative transformations, however,
bring RING down to 64 inputs, ultimately enabling efficient reachability analysis. Such
a profound reduction is obviously capable of yielding dramatic improvements to vir-
tually all search algorithms, including reparameterizing symbolic simulators. We have
made extensive use of these reduction strategies in a variety of complex industrial ver-
ification tasks, both for proofs and falsification, in many cases obtaining a conclusive
result that was otherwise unattainable. For example, with many larger netlists, we have
found that traditional localization and retiming strategies alone may ultimately reduce
register count to a reasonable level, though result in an abstracted netlist with far too
many inputs for an automated proof. The techniques presented in this paper were largely
motivated by such complications, and have to a large extent solved these problems.

Acknowledgments. The authors wish to thank Geert Janssen, Viresh Paruthi, Robert
Kanzelman, Jessie Xu, and Mark Williams for their contributions to the TBV system
used in our experiments, and Koen van Eijk for providing the benchmarks of [12].
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Abstract. We present a new SAT-based algorithm for Symbolic Trajectory Eval-
uation (STE), and compare it to more established SAT-based techniques for STE.

1 Introduction

Symbolic Trajectory Evaluation (STE) [7] is a high-performance simulation-based mo-
del checking technique. It combines three-valued simulation (using the standard values
0 and 1 together with the extra value X, ”don’t know”) with symbolic simulation (using
symbolic expressions to drive inputs). STE has been extremely successful in verifying
properties of circuits containing large data paths (such as memories, fifos, floating point
units) that are beyond the reach of traditional symbolic model checking [1,6,5].

STE specifications are written in a restricted temporal language, where assertions
are of the form A =⇒ C; the antecedent A drives the simulation, and the consequent
C expresses the conditions that should result. In the assertion variables are taken from
a set of Boolean symbolic variables V .

In STE, two abstractions are used: (1) the value X can be used to abstract from a
specific Boolean value of a circuit node, (2) information is only propagated forwards
through the circuit and through time. A trajectory is a sequence of node assignments
over time that meets the constraints of the circuit taking these abstractions into account.
An STE-assertion A =⇒ C holds if each trajectory that satisfies A also satisfies C.

STE Model Checking. All current implementations of STE use symbolic simulation to
compute a representation of the so-called weakest trajectory that satisfies the antecedent
A. While computing this representation, it is checked if the trajectory also satisfies the
consequent C. Such a weakest trajectory can be represented by means of BDDs and a
dual-rail encoding. A pleasant property of STE is that the number of variables occurring
in these BDDs only depends on the number of variables in the STE assertion, not on
the size of the circuit.

An alternative way of implementing STE is to use SAT. Bjesse et al. [3] and Singer-
man et al. [9] independently implemented SAT-based STE by using a simulator that
works on non-canonical Boolean expressions instead of BDDs. The STE symbolic sim-
ulator calculates a symbolic expression for the weakest trajectory satisfying the an-
tecedent. After simulation, the propositional formula expressing that weakest trajectory
satisfies the consequent is fed to a SAT-solver.

Bjesse et al. used SAT-based STE for bug finding for a design of an Alpha micro-
processor. The authors report that SAT-based STE enabled them to find bugs as deep as

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 238–253, 2005.
c© IFIP International Federation for Information Processing 2005
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with Bounded Model Checking, but with negligible run-times. Singerman et al. showed
how SAT-based STE can be used for bug finding in Generalized Symbolic Trajectory
Evaluation (GSTE). This bug finding method is called satGSTE. GSTE [10] is a gener-
alization of STE that can verify properties over infinite time intervals. The core of the
satGSTE algorithm is a SAT-based algorithm for (non-generalized) STE, as described
above. At Intel, satGSTE is used for debugging and refining GSTE assertion graphs,
thereby improving user productivity.

Contributions. We have developed an alternative, more efficient, method of verifying
STE properties using SAT. The idea is that, instead of simulating the circuit and creating
a symbolic expression for the weakest trajectory satisfying the antecedent but not the
consequent, our algorithm generates a constraint problem that represents all trajectories
satisfying the antecedent and not the consequent. We argue that this approach is much
better suited for use with a SAT-solver.

& &
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  in   set

    p   q

    reg’

    reg

0

Fig. 1. Gate-level model of a
memory cell circuit

p = set AND in
q = ¬set AND reg
reg′ = p OR q

Fig. 2. Netlist of the circuit

A second contribution is an alternative STE se-
mantics, that is closely related to our algorithm, and
more faithfully describes the behaviour of existing
STE algorithms.

In the following, we present our STE seman-
tics, and show how to convert the semantic defini-
tions directly into primitive abstract constraints. We
then show how to implement these primitive abstract
constraints using a SAT-solver, and compare running
times on some benchmarks with other SAT-based ap-
proaches.

2 Preliminaries

Circuits. A circuit is modeled by a set of node
names N connected by logical gates and delay ele-
ments. S ⊆ N is the set of state holding nodes, used
to model delay elements. It is assumed that for every
node n in S, there is a node n′ in N that models the
value of that node in the next state.

It is common to describe a circuit in the form of
a netlist. Here, a netlist is an acyclic list of defini-
tions describing the relations between the values of
the nodes. Consider for example the gate-level model of a memory cell circuit in Fig. 1.
The netlist of this circuit is given in Fig. 1. Inverters are not modeled explicitly in our
netlists, instead they occur implicitly for each mention of the negation operator ¬ on
the inputs of the gates. Delay elements are not mentioned explicitly in the netlist either.
Instead, for a register with output node n in the circuit, the input of the delay element is
node n′ which is mentioned in the netlist. So, from the netlist in Fig. 1 it can be derived
that the node reg is the output of a delay element with input reg′. The netlists used here
do not contain the initial values of delay elements. They are not needed as the STE ab-
straction assumes that the initial states of delay elements are unknown. For simplicity,
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we only allow AND-gates and OR-gates in netlists. It is, however, straightforward to
extend this notion of netlists to include more operations.

Values. In STE, we can abstract away from specific Boolean values of a node taken
from the set B = {0, 1}, by using the value X, which stands for unknown. The set
of signal values is denoted V = {0, 1, X}. On this set an information-ordering ≤ is
introduced. The unknown value X contains the least information, so X ≤ 0 and X ≤ 1,
while 0 and 1 are incomparable. If v ≤ w it is said that v is weaker than w.

A circuit state, written s : State, is a function from N to V, assigning a value from
V to each node in the circuit. A sequence σ : N → State is a function from a point
in time to a circuit state, describing the behaviour of a circuit over time. The set of all
sequences σ is written Seq.

Trajectory Evaluation Logic. STE assertions have the form A =⇒ C. Here A and C
are formulas in Trajectory Evaluation Logic (TEL). The only variables in the logic are
time-independent Boolean variables taken from the set V of symbolic variables. The
language is given by the following grammar:

f ::= n is 0 | n is 1 | f1 and f2 | P → f | Nf

where n ∈ N and P is a Boolean propositional formula over the set of symbolic vari-
ables V . The operator is is used to make a statement about the Boolean value of a
particular node in the circuit, and is conjunction, → is used to make conditional
statements, and N is the next time operator. Note that symbolic variables only occur
in the Boolean propositional expressions on the left-hand side of an implication. The
notation n is P , where P is a Boolean symbolic expression over the set of symbolic
variables V , is used to abbreviate the formula: (¬P → n is 0) and (P → n is 1).

The meaning of a TEL formula is defined by a satisfaction relation that relates val-
uations of the symbolic variables and sequences to TEL formulas. Here, the following
notation is used: The time shifting operator σ1 is defined by σ1(t)(n) = σ(t + 1)(n).
Standard propositional satisfiability is denoted by |=Prop. Satisfaction of a trajectory
evaluation logic formula f , by a sequence σ ∈ Seq, and a valuation φ : V → B

(written φ,σ |= f ) is defined by

φ,σ |= n is b ≡ σ(0)(n) = b , b ∈ {0, 1}
φ,σ |= f1 and f2 ≡ φ,σ |= f1 and φ,σ |= f2
φ,σ |= P → f ≡ φ |=Prop P implies φ,σ |= f
φ,σ |= Nf ≡ φ,σ1 |= f

3 Stability Semantics

n s1(n)
in 1
set 1
p 1
q 0
reg′ 1
reg X

n s2(n)
p 0
other X

Fig. 3. Example
states

In STE model-checking two abstractions are used: (1) the value X
can be used to abstract from a specific Boolean value of a circuit
node, (2) information is only propagated forwards through the cir-
cuit (i.e. from inputs to outputs of gates) and through time (i.e. from
time t to time t + 1). Given a circuit c, a trajectory is a sequence
that meets the constraints of the circuit c, taking these abstractions



A New SAT-Based Algorithm for Symbolic Trajectory Evaluation 241

into account. An STE-assertion A =⇒ C holds if each trajectory that satisfies A also
satisfies C.

For instance, for the memory cell given in Fig. 1, consider the assertion: p is 1 =⇒
reg′ is 1. The antecedent specifies the value 1 for node p, so each trajectory satisfying
the antecedent should give node p value 1. As node reg′ is the output of an OR-gate
with input node p, the node reg′ is, by forwards propagation, required to have value 1
in each such trajectory. Therefore the assertion is true in STE.

The assertion p is 1 =⇒ set is 1 is, however, not true. Node set is the input to an
AND-gate with output node p. But, as there is no backwards propagation of information
in STE, a trajectory for the memory cell is allowed to give node p value 1 while giving
node set value X at the same time point.

Also the assertion (in is 1) and (reg is 1) =⇒ (reg′ is 1) is not true in STE. Al-
though for each Boolean value of node set, node reg′ is, by forwards propagation, re-
quired to have value 1, the sequence giving both node set and reg′ value X is a trajectory
that satisfies the antecedent but not the consequent.

Semantics. Below we define a new semantics for STE. The reason we give a new se-
mantics here is that the ”classic” semantics of STE [7] cannot deal with combinatorial
assertions. That is, it cannot deal with assertions that express a relation between cir-
cuit nodes at the same time-point. Because our algorithm (just as existing algorithms
like the STE algorithm in Intel’s in-house verification toolkit Forte [4]) can prove such
properties, we needed a new semantics to prove our algorithm sound and complete.

Stable State Sets. To model this behaviour of STE, we propose to use stable state sets,
written F : P(State) as circuit-models. The idea is that a (three-valued) state s is in
the stable state set Fc of a circuit c if no more information about the circuit state at the
same point in time can be derived by propagating the information in a forwards fashion.
Later, we define trajectories in terms of stables state sets.

Example 1. In this example (and following examples), a state s : {p, q, r} → V is
written as a vector s(p)s(q)s(r). Consider the circuit consisting of a single AND-gate
with inputs p and q, and output r. The stable state set of this circuit is

Fc ={ s | if s(p) = s(q) = 1 then s(r) = 1, if s(p) = 0 or s(q) = 0 then s(r) = 0 }
={000, 010, 0X0, 100, 111, 1X0, 1X1, 1XX, X00, X10, X11, X1X, XX0, XX1, XXX}

The state 0X0 is in the stable state set, because if p = 0 then r = 0, but no new
information about q can be derived. Also, XX1 is in the stable state set; the reason is
that from r = 1, we cannot derive information about p or q by means of forwards
propagation. The state 11X is not in the stable state set of the circuit; when p = 1 and
q = 1, forwards propagation requires that also the output has value 1. �

Given the netlist of a circuit, the circuit’s stable state set is constructed by taking the
intersection of all stable state sets belonging to each of the gates. The stable state sets
of AND- and OR-gates with inputs p and q and output r are written FAND(p, q, r) and
FOR(p, q, r), respectively. The definition of FAND(p, q, r) is given in Example 1. The
set FOR(p, q, r) is defined similarly. Here, note that the stable state set of a gate is a set
of states of the whole circuit and not a set of states of only the in- and outputs of the
gate.
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Example 2. The stable state set for the memory cell from Fig. 1 is given by:

Fc = FAND(set, in, p) ∩ FAND(¬set, reg, q) ∩ FOR(p, q, reg′)

Consider the states s1, s2 given in Fig. 3. State s1 is in the stable state set Fc as all
node assignments are consistent and no new information can be derived. State s2 given
in Fig. 3 is also in the stable state set of the memory cell as from the node-assignment
p = 0 no information can be derived by forwards propagation of information. �

Trajectories. A trajectory is a sequence in which no more information can be derived
by forwards propagation of information. Recall that for every delay element with output
n the input to the delay element is called n′. Therefore, in a trajectory, the value of node
n′ at time t should be propagated to node n at time t + 1.

So, a sequence σ is a trajectory if for each time point t ∈ N: (1) the state σ(t) is a
stable state, and (2) for each state holding node n ∈ S, the value of node n at time t+1
contains at least the same information as the value of node n′ at time t. More formally,
the set of trajectories of a circuit c, written F→

c : Seq, is defined by:

F→
c = { σ | ∀t ∈ N . σ(t) ∈ Fc, ∀t ∈ N . ∀n ∈ S . σ(t)(n′) ≤ σ(t + 1)(n) }

Stable Semantics of STE. Using the definition of trajectories of a circuit, we can
now define the semantics of an STE assertion. A circuit c satisfies a trajectory assertion
A =⇒ C, written c |=→ A =⇒ C iff for every valuation φ ∈ V → B of the symbolic
variables, and for every trajectory τ of c, it holds that:

φ, τ |= A ⇒ φ, τ |= C.

Counter Examples. A valuation φ together with a trajectory τ that satisfies A but not
C form a counter example of the STE assertion. Because any given STE assertion only
refers to a finite number of points in time, only a finite part of the trajectory τ contains
interesting information about the counter example. We call the depth d of an assertion
the maximum number of nested occurrences of the next time operator N. In order to
construct a counter example for an assertion of depth d, it is enough to only consider
the first d time points of the trajectory. We will use this fact in the next section.

4 A Constraint-Based Algorithm for STE

In this section, we describe how an STE assertion can be checked using a constraint
solver that can solve sets of constraints built-up from a small set of primitive abstract
constraints with a well-defined meaning. In the next section, we show how to concretely
represent each of these primitive abstract constraints as a set of clauses in a SAT solver.

Constraints. Aconstraint S ∈ Constraint(D) on a domain D is a syntactical object
that restricts the elements of D to the set of solutions of the constraint. The semantics of
constraints is given by the function sol : Constraint(D) → P(D), yielding all solutions
of a given constraint. Constraints can be combined by the conjunction operator &. The
solutions of a conjunction of two constraints is the intersection of their sets of solutions,
that is: sol(S1 & S2) = sol(S1) ∩ sol(S2).
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In the following, we present a constraint-based algorithm for STE. The idea is to
translate a circuit c and an STE assertion A =⇒ C into a constraint S, such that the
STE assertion holds for the circuit if and only if the constraint S has no solutions. Each
solution to S represents a counter example, a valuation φ and a trajectory τ that together
satisfy A but not C.

Domain. The solution domain D of our constraints consists of pairs (φ,σ) of valua-
tions and sequences. For an STE assertion of depth d, we need only to consider the first
d points in time. Therefore, the sequence part of a solution (φ,σ) is a function from
time points {0, . . . , d} to states.

Given a circuit c and an assertion A =⇒ C, the final constraint for the STE problem,
written CEX(c |= A =⇒ C), consists of 3 parts: (1) constraints that restrict the first
d time points of the sequences considered to be the first d time points of trajectories
of the circuit c, (2) constraints that restrict the sequences and valuations considered to
satisfy the antecedent A, and (3) constraints that restrict the sequences and valuations
considered to not satisfy the consequent C. Thus, if we find a solution that satisfies all
three parts, we have found a counter example to the STE assertion. If we show that no
such solution exists, we have shown that the STE assertion holds.

Trajectory Constraint. Given a circuit c with stable state set Fc, we denote the con-
straint that restricts the first d time steps of the solutions to be trajectories of c by
TRAJ(Fc, d). It consists of stable state constraints, denoted STABLE(Fc, t), that re-
strict each point in time t to be a stable state w.r.t. Fc, and of transition constraints,
denoted TRANS(t, t + 1), that connect the state holding nodes for each point in time t
to the next point in time t + 1:

TRAJ(Fc, d) = STABLE(Fc, 0) & . . . & STABLE(Fc, d)
& TRANS(0, 1) & . . . & TRANS(d− 1, d)

For a given STE assertion of depth d, only the first d points in time of a trajectory are
interesting, and thus we only create constraints for the first d steps of the constraint.

The definition of the constraint STABLE(Fc, t) makes use of the primitive abstract
constraints for the AND- and OR-gates, denoted AND(pt, qt, rt) and OR(pt, qt, rt).
Here the notation nt refers to the value of node n at time point t. We show how to
concretely implement these constraints in the next section. For now, it is only important
to know that the solutions to the constraints are exactly the ones allowed by their stable
state sets. For example, for the AND-gate constraint it holds:

sol(AND(pt, qt, rt)) = {(φ,σ)| σ(t) ∈ FAND(p, q, r) }

To build the constraint STABLE(Fc, t) for the stable state of the circuit, we simply
follow the structure of the netlist and conjoin the constraints for each gate together.

Example 3. The stable state constraint for the memory cell is given by:

AND(sett, int, pt) & AND(¬sett, regt, qt) & OR(pt, qt, reg′t) ��

For a given point in time t, and a circuit c, the transition constraint TRANS(t, t + 1) is
built up from primitive abstract constraints of the form LT(nt1 ≤ mt2). The constraint
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LT(nt1 ≤ mt2) demands that the value of node n at time t1 is weaker than the value of
node m at time t2. Here, we require:

sol(LT(nt1 ≤ mt2)) = { (φ,σ) | σ(t1)(n) ≤ σ(t2)(m) }

The definition of the constraint TRANS(t, t + 1) then becomes:

TRANS(t, t + 1) = &n∈S LT(n′
t ≤ nt+1)

Example 4. For the memory cell, TRAJ(Fc, 2) is given by:

AND(set0, in0, p0) & AND(¬set0, reg0, q0) & OR(p0, q0, reg′0)
& AND(set1, in1, p1) & AND(¬set1, reg1, q1) & OR(p1, q1, reg′1)
& LT(reg′0 ≤ reg1) ��

Proposition 1. For any circuit c, it holds that:

sol(TRAJ(Fc, d)) = {(φ, τ � {0, 1, .., d}) | τ ∈ F→
c }.

Antecedent Constraint. In order to build the constraint for the antecedent, we need
to define the concept of defining formula. Given an antecedent A, a node name n, a
boolean value b ∈ B, and a time point t, we can construct a propositional formula that
is true exactly when A requires the node n to have value b at time point t. This formula
is called the defining formula, and is denoted by 〈A〉(t)(n = b).

Example 5. If the antecedent A is defined as (a ∧ b) → in is 0, then 〈A〉(0)(in = 0)
is the formula a ∧ b, since only when a ∧ b holds, does A require the node in to be
0. However, 〈A〉(0)(in = 1) is the false formula 0, since A never requires the node in
to be 1. �

The defining formula is defined recursively as follows:

〈m is b′〉(t)(n = b) =
{

1, if m = n, b′ = b and t = 0
0, otherwise

〈f1 and f2〉(t)(n = b) = 〈f1〉(t)(n = b) ∨ 〈f2〉(t)(n = b)

〈P → f〉(t)(n = b) = P ∧ 〈f〉(t)(n = b)

〈Nf〉(t)(n = b) =
{ 〈f〉(t − 1)(n = b), if t > 0

0, otherwise

Note that for an antecedent of the form f1 and f2 to require that a node has a value, it
is enough that one of the formulas f1 or f2 requires this.

The third primitive abstract constraint is called an implication constraint, and given
a propositional formula P , a node n, time point t, and a boolean value b, is written
IMPLIES( P → (nt = b) ). The meaning of this constraint is required to be:

sol(IMPLIES( P → (nt = b) )) = {(φ,σ) | if φ |= P then σ(t)(n) = b }
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Lastly, the constraint for the antecedent, written SAT(A), is defined by:

SAT(A) = &0≤t≤d. &n∈N . &b∈B.IMPLIES( 〈A〉(t)(n = b) → (nt = b) )

In other words, we take the conjunction of all requirements that the antecedent A might
have on any node n at any time t with any value b.

Example 6. For the TEL formula A = (in is a):

SAT(A) = IMPLIES( ¬a → (in0 = 0) ) & IMPLIES( a → (in0 = 1) )

Proposition 2. For every TEL-formula A of depth d:

sol(SAT(A)) = {(φ,σ � {0, 1, .., d}) | φ,σ |= A}.

Consequent Constraint. For the consequent, we should add a constraint that negates
the requirements of the consequent on the values of the circuit nodes. In order to do
so, we introduce a fresh symbolic variable kn

t for each node1 n ∈ N and time point
t ∈ {0, . . . , d}. We force the variable kn

t to have value 0 if node n at time t satisfies
the requirements of the consequent C. There are three cases when this happens: (1) C
requires node n at time t to have value 1 and it has indeed value 1. (2) C requires node
n at time t to have value 0 and it has indeed value 0. (3) C has no requirements on node
n at time t. Finally, a constraint is introduced that requires that at least one of the kn

t

has value 1. This constrains the set of solutions to contain only solutions where at least
one of the requirements of C is not fulfilled.

For the definition of negation of the consequent, two more primitive abstract impli-
cation constraints are introduced:

IMPLIES( (P and (nt = b)) → kn
t = 0 )

IMPLIES( P → kn
t = 0 )

The meaning of these constraints is given by:

sol(IMPLIES( (P and (nt = b)) → kn
t = 0 ))

= {(φ,σ) | if φ |= P and σ(t)(n) = b then φ(kn
t ) = 0}

sol(IMPLIES( P → kn
t = 0 )) = {(φ,σ) | if φ |= P then φ(kn

t ) = 0}

Furthermore, a primitive abstract constraint that demands that at least one of the kn
t has

value 1, written EXISTS(kn
t = 1) is needed. The meaning of this constraint is given by:

sol(EXISTS(kn
t = 1)) =

{(φ,σ) | there exists an n ∈ N and a 0 ≤ t ≤ d such that φ(kn
t ) = 1}.

1 As an optimization, in our implementation, variables are only introduced for those node and
time point combinations that are actually referred to in the consequent.
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Finally, the constraint for the negation of the consequent C, written NSAT(C), is de-
fined below. Here, the first three constraints match the three cases given above.

NSAT(C) =
&n∈N &0≤t≤d ( IMPLIES( 〈C〉(t)(n = 0) and nt = 0 → kn

t = 0 ) &
IMPLIES( 〈C〉(t)(n = 1) and nt = 1 → kn

t = 0 ) &
IMPLIES( ¬〈C〉(t)(n = 0) ∧ ¬〈C〉(t)(n = 1) → kn

t = 0 ) )
& EXISTS(kn

t = 1)

Example 7. For C = (a → (reg is 0)) and (b → (reg is 1)), NSAT(C) is given by:

IMPLIES( a and reg0 = 0 → kreg
0 = 0 )

& IMPLIES( b and reg0 = 1 → kreg
0 = 0 )

& IMPLIES( ¬a ∧ ¬b → kreg
0 ) & EXISTS(kn

t = 1) ��
Proposition 3. For every TEL-formula C:

sol(NSAT(C)) = {(φ,σ � {0, 1, .., d}) | φ,σ �|= C}

The Constraint for an STE Assertion. is written CEX(c |= A =⇒ C) and is defined
by combining the trajectory constraint, the constraint for antecedent, and the constraint
for the negation of the consequent.

CEX(c |= A =⇒ C) = TRAJ(Fc, d) & SAT(A) & NSAT(C)

The correctness of the constraint formulation follows from Propositions 1,2 and 3.

Proposition 4. For each circuit c and STE-assertion A =⇒ C:

c |=→ A =⇒ C ⇔ sol(CEX(c |= A =⇒ C)) = ∅

5 Reducing Constraints to SAT-Problems

In this section, we show how we can instantiate the abstract constraints of the previous
section to concrete SAT problems using a dual-rail encoding. First, we briefly restate
the concept of a SAT-problem.

SAT Problems. A SAT-problem consists of set of variables W and a set of clauses.
A literal is either a variable v or a negated variable v̄. An assignment is a mapping
a : W → {0, 1}. For a negated variable v̄, we define a(v̄) = ¬a(v). A clause, written
c = v1 ∨ v2 ∨ ... ∨ vn, is said to be satisfied by an assignment a, if there exists an i
such that 1 ≤ i ≤ n and a(vi) = 1. A SAT-problem S is satisfied by an assignment a,
written a |= S, if a satisfies every clause of S. The set of all satisfying assignments of
a SAT-problem S is denoted sa(S).

SAT Problem for an STE Assertion. Given an STE assertion A =⇒ C for a circuit
c the SAT problem for the assertion is denoted CEXSAT(c |= A =⇒ C). This concrete



A New SAT-Based Algorithm for Symbolic Trajectory Evaluation 247

SAT-problem is build up from concrete primitive constraints in the same way as the
abstract constraint CEX(c |= A =⇒ C) is built up from primitive abstract constraints
in the previous section. So, in this section we only need to show how the primitive
abstract constraints can be instantiated to concrete SAT problems.

The SAT-problem generated for an STE-assertion of depth d contains a
SAT-variable v for each variable v in the set of symbolic variables V . Furthermore,
for each node n in the set of nodes N of the circuit c, and for each time point 0 ≤ t ≤ d
two SAT-variables are introduced, written n0

t and n1
t .

The two variables n0
t and n1

t encode the ternary value of node n at time t using a
dual-rail encoding. If both variables are false, the value of node nt is X. If n0

t is true,
and n1

t is false, the node has value 0, if n0
t is false, and n1

t is true, the node has value 1.
We exclude the possibility that both n0 and n1 are true by adding a clause n0

t ∨n1
t to the

SAT-problem for each n and t. The function mapping a dual-rail encoded ternary value
to the ternary value itself, written tern, is defined by: tern(0, 0) = X, tern(1, 0) = 0,
and tern(0, 1) = 1.

Solutions. A satisfying assignment a of such a SAT-problem is mapped to a solution
(a tuple of an assignment of the symbolic variables and a sequence) by mapping the
satisfying assignment a to the assignment of symbolic variables φa defined by φa(v) =
a(v) and to a sequence σa defined by: σa(t)(n) = tern(a(n0

t ), a(n1
t )). So, the set of

solutions for a SAT-problem is defined by: sol(S) = {(φa,σa) | a ∈ sa(S)}
Concrete SAT-Problems for the Gates. The SAT-problem for the AND-gate with
inputs pt and qt and output rt should have as solutions the sequences in which all
forwards propagation has taken place. That is: (1) if pt = qt = 1 then rt = 1, (2) if
pt = 0 then rt = 0, and (3) if qt = 0 then rt = 0.

Recall that for each node n and time point t the clause n0
t ∨ n1

t is in the SAT-
problem. This clause excludes the possibility that both n0

t and n1
t are true at the same

time. Because of this, there first requirement can be captured in clauses by:

p1
t ∨ q1 ∨ r1

t

Now, the SAT-problem for the AND-gate, written ANDSAT(pt, qt, rt) is defined below.
The problem consists of three clauses, corresponding to the three requirements above.

ANDSAT(pt, qt, rt) = {p1
t ∨ q1

t ∨ r1
t , p0

t ∨ r0
t , q0

t ∨ r0
t }

Note that these clauses do not yield backwards propagation of information. The assign-
ment r1

t = 1, r0
t = 0 and p0

t = p1
t = q0

t = q1
t = 0 is a satisfying assignment of the

clause set. So, the sequence that gives value 1 to the output of an AND-gate, but value
X to its two inputs is a solution of the SAT-problem.

The following property states that the concrete SAT-problem for the AND-gate has
the same solutions as the corresponding abstract constraint.

Proposition 5. For all nodes p, q, and r, and time-point t:

sol(ANDSAT(pt, qt, rt)) = {(φ,σ)| σ(t) ∈ FAND(p, q, r) } = sol(AND(pt, qt, rt).)
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Concrete SAT-Problems for Comparing Node Values. The SAT-problem for the
constraint LT(nt1 ≤ mt2) is defined below. The first clause makes sure that if node n
has value 0 at time t, node m at time t2 has that value as well. The next clause states
the same requirement for value 1.

LTSAT(nt1 ≤ mt2) = { n0
t1 ∨ m0

t2 , n1
t1 ∨ m1

t2 }

Proposition 6. For all t1, t2 ∈ N and n, m ∈ N :

sol(LTSAT(nt1 ≤ mt2)) = { (φ,σ) | σ(t1)(n) ≤ σ(t2)(m) } = sol(LT(nt1 ≤ mt2)).

Concrete SAT-Problems for Implications. Methods to convert an arbitrary Boolean
propositional formula to clauses are well-known. Typically, these methods introduce a
fresh SAT-variable for each subexpression of the formula. Here, we abstract away from
the details of such a method, and assume the existence of functions, cnf and lit that
convert a Boolean propositional formula P on a set the set of variables V to a set of
clauses cnf(P ) on the set of variables V ′ ⊇ V and a corresponding literal lit(p) such
that (1) for all assignments a : V → {0, 1} there exists an assignment a′ : V ′ → {0, 1}
extending a such that a′ |= cnf(P ), and (2) for all assignments a : V ′ → {0, 1} holds:
a |= cnf(P ) ⇔ a(lit(P )) = a(P ). Here a(P ) stands for the valuation of the expression
P w.r.t. the assignment a.

Using these functions, the concrete SAT-problems for the implication constraints are
defined. Given a Boolean propositional expression P , node n ∈ N , time point t ∈ N,
the SAT problems for implications are defined as:

IMPLIESSAT( P → nt = 0 ) = cnf(P ) ∪ {lit(P ) ∨ n0
t}

IMPLIESSAT( P → nt = 1 ) = cnf(P ) ∪ {lit(P ) ∨ n1
t}

IMPLIESSAT( P → kn
t = 0 ) = cnf(P ) ∪ {lit(P ) ∨ kn

t }
IMPLIESSAT( (P and (nt = 0)) → kn

t = 0 ) = cnf(P ) ∪ {lit(P ) ∨ n0
t ∨ kn

t }
IMPLIESSAT( (P and (nt = 1)) → kn

t = 0 ) = cnf(P ) ∪ {lit(P ) ∨ n1
t ∨ kn

t }
Proposition 7. For each Boolean propositional expression P , node n ∈ N , time point
t ∈ N and b ∈ {0, 1}, the following holds:

sol(IMPLIESSAT( P → nt = b )) = sol(IMPLIES( P → nt = b ))
sol(IMPLIESSAT( P → kn

t = 0 )) = sol(IMPLIES( P → kn
t = 0 ))

sol(IMPLIESSAT( (P and nt = b) → kn
t = 0 )) =
sol(IMPLIES( (P and nt = b) → kn

t = 0 ))

Finally, the concrete SAT-problem for the abstract constraint EXISTS(kn
t = 1) is

needed. The constraint is constructed as a disjunction of all kn
t where n ranges over

the set of nodes of the circuit, and t over the time points 0 to d.

EXISTSSAT(kn
t = 1) = ∨n∈N . ∨0≤t≤d kn

t

Proposition 8. sol(EXISTSSAT(kn
t = 1)) = sol(EXISTS(kn

t = 1))
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6 Constraint vs. Simulation Based SAT-STE

The main difference between simulation-based SAT-STE and constraint-based SAT-
STE is that the first generates a SAT problem representing the set of weakest trajecto-
ries satisfying the antecedent but not the consequent, while the latter generates a SAT-
problem that represents all such trajectories. For this reason, simulation based SAT-STE
generates much larger SAT-problems.

The difference in generated SAT-problems can be illustrated by considering a single
AND-gate with input nodes p and q and output r. This AND-gate is assumed to be part
of a larger circuit, but here we consider only the clauses generated for the AND-gate.
In constraint based SAT-STE, clauses are generated that make sure that the solutions
represent all trajectories. In simulation-based SAT-STE however, the set of solutions to
the SAT-problem represents only the set of weakest trajectories. Therefore, the clauses
for the AND-gate do not only contain the clauses mentioned in Sect. 5, but also require
the following: if forward propagation cannot derive a Boolean value for the output,
then the output has value X. The following extra requirements are thus generated: if
p = q = X then r = X, if p = X and q = 1 then r = X, and if p = 1 and q = X then
r = X. So, for an AND-gate, simulation-based SAT-STE requires twice as many clauses
as constraint-based STE. A similar result holds for other gates. Therefore, simulation-
based SAT-STE generates much larger SAT-problems than constraint-based STE.

Optimization. An advantage of STE is that when model checking a small part of a
large circuit (for instance an adder within a complete microprocessor) we can set the
inputs to the irrelevant parts of the circuit to X. Then, during simulation, all node values
of the irrelevant parts receive value X, and only the values of the nodes in the part of
interest are represented in the resulting symbolic expressions for the weakest trajectory.

In our algorithm, we represent all trajectories. Therefore, in the pure form of the
algorithm, constraints are generated for all gates, even for the gates for which the out-
put node would directly receive value X in a simulation based algorithm. Therefore, we
apply a simple and light-weight optimization to our algorithm: if symbolic simulation
yields a scalar value (0, 1 or X) for a node, the node receives this value in our algo-
rithm and no constraints are generated for the gates driving the node. For all other gates
constraints are generated as described in Sect. 5.

7 Results

We have implemented two algorithms: CON-SAT STE, performing constraint-based
SAT-STE, and SIM-SAT STE, performing simulation-based SAT-STE. We compare
the CON-SAT algorithm and SIM-SAT algorithms with each other.

As a reference point, we also compare with Bounded Model Checking (BMC) [2].
BMC can be used to verify STE assertions by interpreting the assertion as an LTL
formula; the completeness threshold [2] is simply the depth of the assertion. Note that
BMC solves a different problem, as it does not use STE’s three-valued abstraction.

To make the comparison between the algorithms fair, the same SAT-solver (the latest
version of MiniSAT [8]) is used for all methods. The benchmarks were run on a cluster
of PCs with AMD Barton XP2800+ processors and each with one gigabyte of memory.
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Verification Time(s) Bug Finding Time(s) #variables (×103) #clauses (×103)
#nodes
(×103) BMC CON SIM BMC CON SIM BMC CON SIM BMC CON SIM

shifter-64 5 8.4 2.4 17 0.0 0.0 0.0 5 9 9 19 24 41
shifter-128 19 175 36 364 0.0 0.0 0.1 18 35 35 72 89 158
shifter-256 71 3443 500 8127 1.6 0.3 1.1 69 137 137 275 343 613
shifter-512 275 time out 5621 time out 3.8 0.7 1.6 271 537 537 1101 1344 2451

mem-10-4 27 13 12 21 9.4 8.1 17 18 27 27 47 51 84
mem-11-4 55 78 47 83 24 44 82 37 53 53 94 102 168
mem-12-4 115 367 222 435 371 157 197 74 107 107 188 205 336
mem-13-4 238 2215 876 1449 1947 564 1087 147 213 213 377 410 672
mem-14-4 492 8066 3612 5524 9626 1970 3194 295 426 426 754 819 1343

treemem-10-4 14 2.6 0.6 3.7 0.0 0.4 3.7 14 18 18 39 39 63
treemem-11-4 29 5.0 3.9 15 0.1 4.4 7.3 29 37 37 78 78 127
treemem-12-4 57 22 21 62 22 21 17 57 74 74 156 156 254
treemem-13-4 115 106 107 281 98 102 160 115 147 147 311 311 508
treemem-14-4 229 476 452 1153 434 427 1059 229 295 295 623 623 1016

con-6-10-4 15 0.9 0.9 4.3 0.7 0.6 1.1 15 20 20 41 41 67
con-6-11-4 30 3.9 5.1 16 1.7 2.0 13 30 39 39 82 82 135
con-6-12-4 61 22 25 70 12 17 40 60 78 78 164 165 270
con-7-13-4 118 116 123 298 97 49 70 118 153 153 320 321 525
con-7-14-4 237 431 512 1170 204 257 665 236 305 305 641 643 1051

Fig. 4. Benchmarks on instances of generically-sized circuits

First, we performed benchmarks on instances of generically-sized circuits, designed
by ourselves. The properties we consider for these circuits are: (1) shifter-w; for a vari-
able shifter of width w, full correctness using symbolic indexing [5], (2) (tree-)mem-a-d;
for a (tree shaped) memory with address width a and data width w, the property that
reading an address after writing a value to it yields the same value, and (3) con-c-a-d;
for a memory controller with a cache of address width c, a memory of address width
a and data width d, the property that reading an address after writing yields the same
value, both for the cache and the memory. The times needed to solve the problems and
the numbers of variables and clauses in each SAT-problem are given in Fig. 4.

The results show, as expected, that the number of SAT variables for CON-SAT-STE
and SIM-SAT-STE are about equal — two variables are introduced for each relevant
node and time point. Also as expected, the number of clauses is much larger for SIM-
SAT-STE, as explained in Sect. 6. Furthermore, CON-SAT-STE solves the the STE
problems much faster than SIM-SAT-STE, something we believe is caused by the re-
duction in problem size.

For the shifter-n and mem-a-d benchmarks, CON-SAT STE performs better than
BMC. For the tree-mem-a-d and con-c-a-d benchmarks the two methods perform com-
parably. So, in some cases the abstractions used in STE can be beneficial when using
SAT-based methods. The reader should, however, realize that the point of this paper is
not to advocate the usage of SAT-based STE over BMC or BDD-based STE. Bjesse et
al. and Singerman et al. have already shown that SAT-based STE is a useful complement
to BDD-based STE and BMC in industrial settings [3,9]. The point of this paper is to
present an algorithm that improves upon the algorithms used by Bjesse and Singerman.

The second set of circuits have been supplied to us by Intel Strategic CAD Labs.
The circuits are part of a tutorial for GSTE. In Fig. 5 we compare the performance
of BMC, BDD-based STE, SIM-SAT-STE and CON-SAT-STE for the verification of
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Verification Time(s) #variables (×103) #clauses (×103)
#nodes
(×103) BDD BMC CON SIM BMC CON SIM BMC CON SIM

cam (full enc.) 5 time out 1.6 1.6 1.6 4 4 4 8 8 8
cam (plain enc.) 5 time out 1.8 0.9 11 4 5 6 10 11 16
cam (cam enc.) 5 0.1 2.6 2.4 4.2 4 5 6 8 10 16

mem 25 0.3 11 13 23 41 43 60 109 101 175

Fig. 5. Benchmarks on circuits from Intel’s GSTE tutorial

several properties of the Content Addressable Memory (CAM) and the memory circuit
from this tutorial. Forte [4] was used to perform BDD-based STE. For the CAM, we
verify the associative read property using three symbolic indexing schemes from Pandey
et al [5]. The CAM contains 16 entries, has a data-width of 64 bits and a tag-width of
8 bits. For the memory, the property that reading address D after writing value V to
address D yields value V is verified. Standard symbolic indexing is used. The memory
has an address-width of 6 bits, and a data-width of 128 bits.

Pandey et al. show in [5] that verifying the associative read property of CAMs using
BDD-based STE is highly non-trivial. The problem is that the straight-forward specifi-
cation (which they call the full encoding) of the property leads to a BDD blowup. They
present an improved specification, called the plain encoding, that results in smaller
BDDs, but that still causes a BDD blow up. Only the most efficient (and complex)
specification they introduce, called the cam encoding, yields small enough BDDs to
make verification of the property go through.

Also for these benchmarks, CON-SAT-STE produces smaller and easier to solve
SAT-problems then SIM-SAT-STE. Moreover, the experiments confirm the results of
Pandey et al: BDD-based STE cannot be used to verify CAMs using the full or plain
encoding. In these experiments, the performance of SAT-based STE is more robust. No
matter which encoding is used for verifying the associative read property of the CAM,
the SAT-based methods manage to verify the property. This can be explained as follows.
The efficiency of a BDD-based STE verification run is highly dependent on the number
of variables in the BDDs involved. BDD-based verification methods are usually not
able to handle problems with more than several hundred variables. Therefore, symbolic
indexing methods minimizing the number of symbolic variables in an STE-assertion
are crucial to the efficiency of BDD-based STE. SAT-solvers, on the other hand, have
proved to be much less dependent on the number of variables. Therefore, symbolic
indexing techniques, minimizing the number of variables, are much less relevant for
SAT-based STE.

Reflection. Constraint-based SAT-STE generates smaller problems that are easier to
solve than simulation-based SAT-STE, on all our benchmarks. We realize that the prob-
lem set we used is quite limited, but we believe it nevertheless indicates the usefulness
of our approach.

Plain BMC sometimes outperforms SAT-based STE. Although this is an interesting
observation, BMC cannot replace SAT-based STE because it implements a different
semantics. For instance, at Intel, the satGSTE tool is used to help develop specifications
in GSTE model checking [9]. Here, SAT-based STE is used to get quick feedback when
debugging or refining a GSTE assertion graph. In this setting, it is essential to have a
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model checking method that implements the same semantics as BDD-based STE, but
is not as sensitive to BDD-blow up . This is where SAT-based STE comes in.

8 Conclusions and Future Work

Bjesse et al. and Singerman et al. have shown that SAT-based STE is a useful com-
plement to BDD-based STE and BMC in industrial settings [3,9]. Their algorithms are
based on simulation, and generate a SAT-problem that represents the set of weakest
trajectories satisfying the antecedent but not the consequent of an STE assertion.

We have presented a new constraint-based SAT-algorithm for STE. Instead of gen-
erating a SAT-problem that represents the set of weakest trajectories satisfying the an-
tecedent but not the consequent, our algorithm generates a SAT problem whose solu-
tions represent all trajectories satisfying the antecedent but not the consequent. The
advantage of representing the set of all such trajectories in the SAT problem (instead of
just the weakest trajectories) is that smaller SAT-problems are generated.

Benchmarks, both on circuits designed by ourselves and on circuits taken from In-
tel’s GSTE tutorial, show that our constraint based SAT algorithm for STE performs
significantly better than current simulation based algorithms.

Future Work. Intel’s satGSTE tool [9] is a bug finding method for GSTE, it imple-
ments a bounded version of GSTE: only a finite subset of all finite paths in a GSTE
assertion graph is considered. Currently the core of the satGSTE tool is a simulation-
based SAT-STE algorithm. We conjecture that replacing the tool with a constraint-based
SAT-STE algorithm might significantly improve the performance of the tool.

Furthermore, we would like to investigate whether we can use SAT for doing full
(unbounded) GSTE model checking. Finally, in (G)STE finding the right specification
can be very time consuming. Therefore, we would like to investigate whether SAT can
be used to implement a form of automatic specification refinement for (G)STE.

Acknowledgment. We are grateful for an equipment grant from Intel Corporation.
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An Analysis of SAT-Based Model Checking

Techniques in an Industrial Environment

Nina Amla, Xiaoqun Du, Andreas Kuehlmann, Robert P. Kurshan,
and Kenneth L. McMillan

Cadence Design Systems

Abstract. Model checking is a formal technique for automatically ver-
ifying that a finite-state model satisfies a temporal property. In model
checking, generally Binary Decision Diagrams (BDDs) are used to effi-
ciently encode the transition relation of the finite-state model. Recently
model checking algorithms based on Boolean satisfiability (SAT) proce-
dures have been developed to complement the traditional BDD-based
model checking. These algorithms can be broadly classified into three
categories: (1) bounded model checking which is useful for finding failures
(2) hybrid algorithms that combine SAT and BDD based methods for
unbounded model checking, and (3) purely SAT-based unbounded model
checking algorithms. The goal of this paper is to provide a uniform and
comprehensive basis for evaluating these algorithms. The paper describes
eight bounded and unbounded techniques, and analyzes the performance
of these algorithms on a large and diverse set of hardware benchmarks.

1 Introduction

A common method used in formal verification is model checking [7,26]. Generally,
Binary Decision Diagrams (BDDs) [4] are used to symbolically represent the
set of states. This approach, known as symbolic model checking [5], has been
successfully applied in practice. Unfortunately, BDDs are very sensitive to the
type and size of the system. For instance common designs like multipliers can not
be represented efficiently with BDDs. Due to recent advances in tools [19,23,11]
that solve the Boolean satisfiability problem (SAT), formal reasoning based on
SAT is proving to be an viable alternative to BDDs.

Bounded Model Checking (BMC) [3] is a SAT-based technique where a sys-
tem is unfolded k times and encoded as a SAT problem to be solved by a
CNF-based SAT solver. A satisfying assignment returned by the SAT solver
corresponds to a counterexample of length k. If the problem is determined to
be unsatisfiable, the SAT solver produces a proof of the fact that there are no
counterexamples of length k. A different approach, called circuit-based BMC [15],
uses the circuit structure to make BMC more efficient. The circuit is unfolded
incrementally and at each step equivalent nodes are identified and merged to
simplify the circuit. BMC, while successful in finding errors, is incomplete: there
is no efficient way to decide that the property is true. Recently several complete
model checking algorithms have been developed that use SAT-based quantifier
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elimination [20,10], ATPG methods [12], and combinations of SAT-based BMC
with techniques like BDD-based model checking [6,22], induction [27] and inter-
polation [21].

Since users have limited resources for the verification of systems, it is impor-
tant to know which of these new SAT-based algorithms is most effective. This
paper presents an experimental analysis of these bounded and unbounded algo-
rithms in an attempt to address this issue. Unlike previous efforts that compared
SAT-based BMC to BDD-based and explicit state methods (cf. [8,1]), this paper
focuses only on SAT-based techniques. In Section 2 we give an overview of the
eight algorithms we evaluated. A more comprehensive survey of SAT-based tech-
niques can be found in [25]. We describe our experimental framework in Section
3. We compare the various algorithms on a set of over 1000 examples drawn
from actual hardware designs. Section 4 presents our results and analysis. We
conclude and discuss future work in Section 5.

2 Overview of the Algorithms

2.1 Preliminaries

A model M = (S, I, T, L) has a set of states S, a set of initial states I ⊆ S, a
transition relation T ⊆ S × S, and a labeling function L : S → 2A where A is a
set of atomic propositions. For the purposes of this paper, we shall consider only
invariant properties specified in the logic LTL. The construction given in [16]
can be used to reduce model checking of safety properties to checking invariant
properties. The syntax and semantics of LTL and other temporal logics is not
given here but can be found in [9].

Given a finite state model M and a safety property p, the model checking
algorithm checks that M satisfies p, written M |= p. The forward reachability
algorithm starts at the initial states and computes the image, which is the set
of states reachable in one step. This procedure is continued until either the
property is falsified in some state or no new states are encountered (a fixed
point). The backward reachability algorithm works similarly but starts from the
states where the property is false and computes the preimage, which is the set
of states that can reach the current states in one step. The representation and
manipulation of the sets of states can be done explicitly or with Binary Decision
Diagrams (BDDs). In the sequel, we shall refer to BDD-based model checking
as MC.

2.2 DPLL-Style SAT Solvers

The Boolean satisfiability problem (SAT) is to determine if a given Boolean
formula has a satisfying assignment. This is generally done by converting the
formula into Conjunctive Normal Form (CNF), which can be efficiently solved
by a SAT solver. A key operation used in SAT solvers is resolution, where two
clauses (a∨ b) and (¬a∨ c) can be resolved to give a new clause (b∨ c). Modern
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DPLL-style SAT solvers [19,23,11] make assignments to variables, called deci-
sions, and generate an implication graph which records the decisions and the
effects of Boolean constraint propagation. When all the variables are assigned,
the SAT solver terminates with the satisfying assignment. But if there is a con-
flict, which is a clause where the negation of every literal already appears in the
implication graph, a conflict clause is generated through resolution. This conflict
clause is added to the formula to avoid making those assignments again. The
SAT solver then backtracks to undo some of the conflicting assignments. The
SAT solver terminates with an unsatisfiable answer when it rules out all possible
assignments. The resolution steps used in generating the conflict clauses can now
be used to produce a proof of unsatisfiability.

2.3 SAT-Based Bounded Model Checking

Bounded Model Checking (BMC) [3] is a restricted form of model checking,
where one searches for a counterexample (CEX) in executions bounded by some
length k. In this approach the model is unfolded k times, conjuncted with the
negation of the property, and then encoded as a propositional satisfiability for-
mula. Given a model M and an invariant property p, the BMC problem is
encoded as follows:

BMC (M , p, k) = I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧
k∨

i=0

¬p(si)

The formula can be converted into CNF and solved by a SAT solver. If the
formula is satisfiable, then the property is false, and the SAT solver has found
a satisfying assignment that corresponds to a counterexample of length k. In
the unsatisfiable case, there is no counterexample of length k and a proof of
unsatisfiability can be obtained from the SAT solver.

2.4 Circuit-Based Bounded Model Checking

In circuit-based BMC the circuit structure is exploited to enhance efficiency.
Rather than translating the problem into a CNF formula directly, circuit-based
BMC uses an intermediate representation, called And-Inverter Graphs (AIGs)
[15], that keeps the circuit structure. The use of AIGs allows the application of
the SAT-sweeping technique [14], where one identifies equivalent nodes using a
SAT solver and merges these equivalent nodes to simplify the circuit represented
by the AIG. Random simulation is used to pick candidate pairs of nodes that
have identical simulation results, and a SAT solver is used to check whether the
XOR of the two candidate nodes can ever be satisfied. If not, the nodes are
equivalent and can be merged to simplify the AIG. If the XOR of the nodes
is satisfiable, the SAT solver will give a witness that shows how the nodes can
obtain different values. This witness can be used to show the in-equivalence of
other nodes to reduce the number of candidate pairs for equivalence-finding.
After the completion of SAT-sweeping, the simplified AIG is translated into a
CNF formula for BMC.
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2.5 CEX-Based Abstraction Refinement

Counterexample-based abstraction-refinement [17] is an iterative technique that
starts with BDD-based MC on an initial conservative abstraction of the model.
If MC proves the property on the abstraction then the property is true on the
full model. However, if a counterexample A is found, it could either be an actual
error or it may be spurious, in which case one needs to refine the abstraction to
rule out this counterexample. The process is then repeated until the property is
found to be true, or until a real counterexample is produced.

The counterexample-based method in [6] used BMC to concretize the coun-
terexample by solving the following:

BMC (M , p, k ,A) = I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧
k∨

i=0

¬p(si) ∧
k∧

i=0

Ai

where Ai is a constraint that represents the assignments in the abstract coun-
terexample A in time frame i. If this formula is determined to be satisfiable then
the satisfying assignment represents a counterexample on the concrete model.
In the unsatisfiable case, the method [6] analyzes the proof of unsatisfiability
generated by the SAT solver to find a set of constraints whose addition to the
abstraction will rule out this spurious counterexample. Since the BMC problem
includes the constraints in the abstract counterexample A, one can guarantee
that A is eliminated by adding all variables that occur in the proof to the existing
abstraction. The pseudocode is shown in Figure 1.

procedure cex-based (M ,p)
1. generate initial abstraction M ′

2. while true do
3. if MC(M ′, p) holds then return verified
4. let k = length of abstract counterexample A
5. if BMC(M,p,k,A) is SAT then return counterexample
6. else use proof of UNSAT P to refine M ′

7. end while
end

Fig. 1. SAT-based counterexample procedure

2.6 Proof-Based Abstraction Refinement

The proof-based algorithm in [22] also iterates through SAT-based BMC and
BDD-based MC. It starts with a short BMC run, and if the problem is sat-
isfiable, an error has been found. If the problem is unsatisfiable, the proof of
unsatisfiability is used to guide the formation of a new conservative abstrac-
tion on which BDD-based MC is run. In the case that the BDD-based model
checker proves the property then the algorithm terminates; otherwise the length
k′ of the counterexample generated by the model checker is used as the next
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procedure proof-based (M ,p)
1. initialize k
2. while true do
3. if BMC(M,p,k) is SAT then return counterexample
4. else
5. derive new abstraction M ′ from proof P
6. if MC(M ′, p) holds then return verified
7. else set k to length of counterexample k′

8. end while
end

Fig. 2. Proof-based procedure

BMC length. Notice that only the length of the counterexample generated by
the BDD-based MC is used. This method creates a new abstraction in each
iteration, in contrast to the counterexample method which refines the exist-
ing abstraction. Since this abstraction includes all the variables in the proof of
unsatisfiability for a BMC run up to depth k, we know that any counterexam-
ple obtained from model checking this abstract model will be of length greater
than k. Therefore, unlike the counterexample method, this algorithm eliminates
all counterexamples of length k in a single unsatisfiable BMC run. This proce-
dure, shown in Figure 2, is continued until either a failure is found in the BMC
phase or the property is proved in the BDD-based MC phase. The termina-
tion of the algorithm hinges on the fact that the value of k′ increases in every
iteration.

2.7 Induction-Based Model Checking

The induction-based method in [27] uses a SAT solver as the decision procedure
for a special kind of induction called k-induction. In this type of induction, one
attempts to prove that a property holds in the current state, assuming that it
holds in the previous k consecutive states. In addition, for completeness, one has
to add an additional constraint that specifies that the states along a path must
be unique. This is formalized as follows:

Base(M , p, k) = I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧
k∨

i=0

¬p(si)

Step(M , p, k) =
∧

0≤i<j≤k

si �= sj ∧
k∧

i=0

T (si, si+1) ∧
k∧

i=0

p(si) ∧ ¬p(sk+1)

A counterexample has been found if the base condition is satisfiable; other-
wise the value of k is increased until both conditions are unsatisfiable, which
means the property holds. The pseudocode is shown in Figure 3.
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procedure k-induction (M ,p)
1. initialize k = 0
2. while true do
3. if Base(M,p, k) is SAT then return counterexample
4. else if Step(M,p, k) is UNSAT then return verified
5. k = k + 1
6. end while
end

Fig. 3. The k-induction procedure

2.8 Interpolation-Based Model Checking

An interpolant I for an unsatisfiable formula A ∧ B is a formula such that: (1)
A ⇒ I (2) I∧B is unsatisfiable and (3) I refers only to the common variables of
A and B. Intuitively, I is the set of facts that the SAT solver considers relevant
in proving the unsatisfiability of A ∧ B.

The interpolation-based algorithm [21] uses interpolants to derive an over-
approximation of the reachable states with respect to the property. This is done
as follows (Figure 4). The BMC problem BMC (M , p, k) is solved for an ini-
tial depth k. If the problem is satisfiable, a counterexample is returned, and
the algorithm terminates. If BMC (M , p, k) is unsatisfiable, the formula rep-
resenting the problem is partitioned into Pref (M , p, k) ∧ Suff (M , p, k), where
Pref (M , p, k) is the conjunction of the initial condition and the first transition,
and Suff (M , p, k) is the conjunction of the rest of the transitions and the final
condition. The interpolant I of Pref (M , p, k) and Suff (M , p, k) is computed.
Since Pref (M , p, k) ⇒ I, it follows that I is true in all states reachable from
I(s0) in one step. This means that I is an over-approximation of the set of states
reachable from I(s0) in one step. Also, since I ∧Suff (M , p, k) is unsatisfiable, it
also follows that no state satisfying I can reach an error in k− 1 steps. If I con-
tains no new states, that is, I ⇒ I(s0), then a fixed point of the reachable set of
states has been reached, thus the property holds. If I has new states then R′ rep-
resents an over-approximation of the states reached so far. The algorithm then
uses R′ to replace the initial set I, and iterates the process of solving the BMC
problem at depth k and generating the interpolant as the over-approximation
of the set of states reachable in the next step. The property is determined to
be true when the BMC problem with R′ as the initial condition is unsatisfiable,
and its interpolant leads to a fixed point of reachable states. However, if the
BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

2.9 Quantification-Based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
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procedure interpolation (M, p)
1. initialize k
2. while true do
3. if BMC(M, p, k) is SAT then return counterexample
4. R = I
5. while true do
6. M ′ = (S, R, T, L)
7. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
8. if C is SAT then break (goto line 15)
9. /* C is UNSAT */
10. compute interpolant I of Pref (M ′, p, k) ∧ Suff (M ′, p, k)
11. R′ = I is an over-approximation of states reachable from R in one step.
12. if R ⇒ R′ then return verified
13. R = R ∨ R′

14. end while
15. increase k
16. end while
end

Fig. 4. Interpolation procedure

The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in
[20]. We implemented the basic cofactoring-based quantification approach in our
framework. Our implementation did not include the heuristics provided in [10]
to select values for unassigned inputs in the satisfying cube; we just use the com-
plete input assignment provided by the SAT solver in that enumeration step. We
also did not use functional hashing in the simplification process but we did use
structural hashing.

2.10 ATPG-Based Model Checking

Automatic Test Pattern Generation (ATPG) is an approach that adapts DPLL-
style SAT techniques to a structural representation of a circuit. The ATPG-based
algorithm in [12] combines the structure guided search strategy of ATPG with
the faster implication procedures and conflict-based learning in SAT solvers.
They use a circuit representation, a CNF clause database and a mapping between
both representations. The method conducts a backward search, using an ATPG-
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based back-tracing traversal method, from the states where the property is false.
The search strategy, which is a mixture of DFS and BFS, is based on a cost
function that measures the number of states traversed. A counterexample is
generated if an initial state is reached during the search; otherwise the property
is proved to be true if the entire backward reachable set of states does not
intersect with the initial state set. This procedure is complete because the search
is efficiently bounded by using additional Boolean constraints to mark visited
states as already reached and hence never to be visited again.

3 Experimental Framework

In order to measure the relative performance of the algorithms described in
the previous section, we implemented all the methods except the ATPG-based
method SATORI, which was developed at University of Santa Barbara [12].
We developed a flexible experimental framework that allows external tools, like
SATORI, to be integrated with little effort. We use a simple intermediate repre-
sentation that can be translated easily and efficiently into the input language of
various tools. This interface also enables us to plug and play with different SAT
solvers and BDD packages.

3.1 Benchmarks

In the context of commercial software development, a good benchmark suite must
be large, diverse, and representative of real customer designs. The data collection
must be fully automated, and must complete within a reasonable amount of time
so that the benchmark suite can be used as a regression suite for tracking the
performance of the software over time.

Our benchmark suite included approximately 85 hardware designs, accumu-
lated through many years of customer interaction. The sizes of these designs
ranged from a few hundred to more than 100,000 lines of HDL code. Each de-
sign in our benchmark suite contained from one up to a few hundred properties
to check. Some of the properties were duplicates because they were instanti-
ated from the same property declaration in similar parts of a design. To make
our benchmark suite as diverse as possible, we removed all duplicate proper-
ties, where two properties were considered duplicates if the model had the same
number of state and combinational variables, and that the running times were
within 10% of each other.

There were properties that none of the algorithms could finish within a rea-
sonable amount of time. We removed most of these properties from our bench-
mark suite because they were not useful for comparing the relative performance
of the algorithms. We did keep some of these properties to track performance
improvements of the algorithms over time. This resulted in a total of 1182 prop-
erties for the 85 designs in our benchmark suite. Out of these 1182 properties,
803 of them are passes, 364 of them are failures, and the remaining 15 properties
have unknown results.
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3.2 Data Collection

Each 〈property, algorithm〉 pair corresponds to one run for data collection. This
meant we needed 1182 runs for each technique, hence it was important that we
set up our test environment so that the experiments finished within a reasonable
amount of time. To do this, we set a time limit of 3600 seconds for each property.
We found in our experiments that a majority of the runs finished within this
time limit.

We used a computer server farm for data collection. In our experiments, we
use 10 identical Redhat Enterprise Linux machines, each with an AMD Opteron
CPU at 2GHZ and 4GB of available memory. We partitioned our entire set of
runs into multiple jobs, each job consisting of a small set of runs. These jobs are
submitted to the server farm and launched whenever a CPU is free. To ensure
the accurate collection of data, no other jobs are permitted on a CPU when it
is running one of our data collection jobs; also, a data collection job cannot be
started unless a machine has at least 4GB of free memory.

4 Results and Analysis

In our experiments, except for SATORI, we used the same SAT solver and BDD-
based model checker for all the techniques. The SAT solver is incremental [29],
in the sense that it is possible to add/delete clauses and restart the solver, while
maintaining all previously inferred conflict clauses that were not derived from
deleted clauses. An important point to note is that all methods were run with
default settings and there was no tuning done with respect to specific examples.

Table 1. Summary Table for the Bounded Technique

Depth # Props SAT-BMC CIR-BMC
# Fin Avg Time # Fin Avg Time

10 1182 1179 10.9 1178 15.0
25 1182 1175 28.8 1177 23.8
50 1182 1168 73.3 1170 53.3
100 1182 1153 174.0 1158 117.0

For the bounded model checking techniques, we set a time limit of 3600 sec-
onds and did four runs with depth limits of 10, 25, 50 and 100. We measured the
number of problems that were resolved within the time limit and the average
time taken per property (over all the properties regardless of whether an algo-
rithm finished or not) by both methods. Table 1 presents these results. We can
see that, after depth 25, the circuit-based approach takes less time on average.
We plot the run time at depth 100 for both algorithms in Figure 5, a point
below the diagonal line indicates that circuit BMC was faster on that example.
In all the tables and plots, the time for any unresolved property is taken to be
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3600 seconds even if the method ran out of memory in far less time. The data
shows that the savings due to SAT sweeping in circuit-based BMC outweighs
the overhead at the larger depths.
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Fig. 5. Plot of time in seconds. Left: X-axis is SAT BMC and Y-axis is Circuit BMC
at depth 100. Right: X-axis is Interpolation and Y-axis is K-induction.

For the unbounded techniques, we set a time limit of 3600 seconds for ver-
ification, and measure the number of problems that were resolved within this
time limit. Table 2 reports the number of resolved problems and average time
taken per property. As a baseline, we include the results for a forward traversal
BDD-based MC method in Table 2. It is interesting to note that all the SAT-
based algorithms, except the k-induction method, do better than BDD-based
model checking with respect to the number of problems resolved and average
time taken. However, we shall not include BDD-based MC in any further discus-
sions since it is not in the scope of this paper. We also see that the interpolation
method resolved more problems and had a lower average running time than the
other techniques. Since the interpolation method is the most robust, in the sense
that it resolves the largest number of problems, we plotted the run time of the
other five unbounded algorithms versus the interpolation algorithm. These are
shown in Figures 5 to 7. The plots indicate that in general the interpolation
method is faster and more robust than the other methods, however there are
still many cases where the other techniques do better.

Tables 3 and 4 present the number of problems resolved, average time, aver-
age final depth and average number of state variables (size), for only the resolved
failing and passing problems respectively. The depth information was not avail-
able for the ATPG-based method and is therefore excluded from both tables. We
also report the number of “wins” with respect to time, where a win is attributed
to a particular algorithm if it does better than all others with respect to running
time. In the case of a tie, which we defined to be two runs where the difference
was less than 5% of the run time, we award a win for both methods.

The failing properties in our benchmark suite can be roughly characterized
with respect to depth as follows: 91% failed at a depth of 25 or less with 24% of
the failures at a depth of 2, 7% failed between a depth of 26 till 100 and 2% failed
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Table 2. Summary Table for the Unbounded Techniques

Algorithm # Props # Resolved Total time Avg. Time
BDD 1182 876 1171716 991.3
proof-based 1182 1121 269377 227.9
cex-based 1182 1054 520570 439.3
cofactor 1182 874 1154459 976.7
atpg-based 1182 992 756480 640.0
kinduction 1182 513 2417662 2045.4
interpolation 1182 1157 118791 100.5
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Fig. 6. Plot of time in seconds. Left: X-axis is Interpolation and Y-axis is CEX-based.
Right: X-axis is Interpolation and Y-axis is Proof-based.

at a depth greater than 100. The data in Table 3 for the bounded techniques
is cumulative, in the sense that we report the total running time at depths 10,
25 and 50 for an error found at depth 45. Since the maximum depth checked
was 100, the bounded techniques were not able to find failures that occurred at
depths greater than 100 and this is reflected in the number of failures. Table
3 shows some interesting trends for the failing properties. Not surprisingly we
see that, with respect to average run time, both bounded techniques do better
than all others on the failing properties. However, since the bounded techniques
were employed at fixed depths, this made finding the shallow errors, like the
failures at depth 2, more expensive than necessary. The interpolation and proof-
based techniques are competitive with the bounded techniques in number of wins
but the proof-based technique is clearly the faster of the two. The k-induction
method is effective in finding the shallow failures, as is evident in the low run
time when it does resolve a problem. The correspondingly low depth numbers
in Table 3 are due to the fact that the k-induction method ran out of memory
fairly early in 662 cases. The mixed DFS/BFS search strategy of the ATPG-
based method could cause the technique to miss errors if it chooses to do DFS
early and may explain why it does poorly on failures. This is consistent with
the results reported in [24] which show that a purely BFS search is more robust
than a purely DFS search on failing properties. Another possibility is that, on
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Table 3. Summary Table for the Failing Properties

Algorithm Failures
# Props # Wins Avg Time Avg Size Avg Depth

sat-bmc 351 230 9.6 106 15
circuit-bmc 350 219 14.1 106 15
proof-based 359 216 22.1 111 19
cex-based 341 119 58.6 88 17
cofactor 268 157 71.8 60 18
atpg-based 295 144 119.6 54 -
kinduction 340 171 17.6 97 7
interpolation 362 224 31.6 112 16

Table 4. Summary Table for the Passing Properties

Algorithm Passes
# Props # Wins Avg Time Avg Size Avg Depth

proof-based 762 380 54.9 115 30
cex-based 713 237 51.7 101 23
cofactor 606 457 48.0 109 7
atpg-based 697 427 53.4 111 -
kinduction 173 107 19.1 14 14
interpolation 795 701 21.9 130 22

these examples, the set of states grows faster with backward exploration than
with forward exploration. This could in part explain why the cofactoring method
does poorly as well. Both the ATPG and cofactoring methods have a much lower
average size which suggests that these methods are unable to resolve the larger
examples.

For the passing properties, the interpolation technique is the fastest and
solves more properties than the other methods. The proof-based technique is
the closest in terms of the number of properties resolved but is significantly
slower on average. We see that the proof-based method does better than the
counterexample-based method, despite the fact that the counterexample-based
method proves properties at lower depths on average. This is largely due to the
number of iterations done by the counterexample-based method, most of them
done refuting counterexamples at the same depth (see [2] for a detailed analysis).
The data in Table 4 indicates that the interpolation method is able to prove the
properties at a lower depth than the proof-based method. This suggests that the
approximate image computation is more effective on these examples than the cor-
responding BDD-based MC phase in the proof-based method. The k-induction
method does rather poorly since checking the k-induction step is expensive as
the value of k gets larger. As mentioned earlier, the size of the BMC problem for
the step case is often too large causing the SAT-solver to run out of memory. As
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reported in [18], removing the simple path constraints and trading completeness
for efficiency may improve the performance of this method. The ATPG-based
and cofactoring methods have a high number of wins and are comparable to the
proof-based method in running time. Both methods do backward reachability
and cube enlargement but, while their performance signatures are similar, the
ATPG method appears to be more robust. The cofactoring method has a low
average depth which seems to suggest that a large and rapidly growing back-
ward reachable state space could be contributing to the difference. The search
strategy of ATPG-based method permits on-the-fly pruning of the search space,
which could be beneficial in such situations. However, we do not have enough
data on the ATPG method to validate this conjecture. Furthermore, as observed
in [10], using the heuristics to enlarge the satisfying state set in the cofactoring
technique has a significant impact on performance.
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Fig. 7. Plot of time in seconds. Left: X-axis is Interpolation and Y-axis is ATPG-based.
Right: X-axis is Interpolation and Y-axis is Cofactoring-based.

5 Conclusions and Future Work

This paper compares eight bounded and unbounded SAT-based algorithms on
a large set of industrial benchmarks. Our experiments show that although the
interpolation technique is the most efficient and robust overall, there were still
many examples where the other techniques did better. This is evident in the
number of wins in Tables 3 and 4. Therefore, it would be useful to find ways
to apply the best algorithm for each task. One way to do this is to run the
algorithms in parallel and terminate the slower ones as soon as the first finishes.
Another approach would be to combine the various algorithms in a way that
exploits their strengths, like the hybrid method in [2] that combines the proof-
based and counterexample-based methods.

For future work, we plan to integrate the VIS model checker into our exper-
imental framework. We believe that methods implemented in VIS would pro-
vide some interesting comparisons. The conjecture that the simple path restric-
tion in k-induction hinders performance could be evaluated by using the more
sophisticated technique described in [18]. Furthermore, we could compare the
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counterexample-based technique in [28] that uses a generalized counterexample
that is derived from the sequence of reachable states approximations computed
by the model checker. Finally it would be useful to evaluate the circuit-based
BMC solver described in [13] which uses BDDs to help in the solution of SAT
instances given in CNF.

Acknowledgments. The authors thank Kwang-Ting Cheng, Feng Lu, Ganap-
athy Parthasarthy and Madhu Iyer for help in integrating SATORI.
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Abstract. The modeling of design environments using constraints has gained
widespread industrial application, and most verification languages include con-
structs for specifying constraints. It is therefore critical for verification tools to in-
telligently leverage constraints to enhance the overall verification process. How-
ever, little prior research has addressed the applicability of transformation algo-
rithms to designs with constraints. Even when addressed, prior work lacks opti-
mality and in cases violates constraint semantics. In this paper, we introduce the
theory and practice of transformation-based verification in the presence of con-
straints. We discuss how various existing transformations, such as redundancy
removal and retiming, may be optimally applied while preserving constraint se-
mantics, including dead-end states. We additionally introduce novel constraint
elimination, introduction, and simplification techniques that preserve property
checking. We have implemented all of the techniques proposed in this paper, and
have found their synergistic application to be critical to the automated solution of
many complex verification problems with constraints.

1 Introduction

Constraints are pervasively used across a variety of verification frameworks. For exam-
ple, the compositional verification framework advocates verifying a system by checking
properties of its components using assume-guarantee reasoning. The assumptions that
a component’s environment needs to satisfy are often modeled using constraints. The
modeling of verification environments using constraints has gained widespread indus-
trial acceptance [1], and most industrial verification languages include constructs to
specify constraints – for example, PSL [2], CBV [3], and e [4]. Constraints are also
used to implement case-splitting strategies to enhance complex verification tasks, for
example, arithmetic and datapath correctness [5,6].

Given their pervasiveness, it is important for verification algorithms to leverage con-
straints to enhance the overall verification process. However, it is even more critical to
preserve constraint semantics during this process. The concept of transformation-based
verification (TBV) has been proposed to synergistically apply various automated trans-
formation algorithms to simplify and decompose complex problems into simpler prob-
lems which may be solved with exponentially lesser resources [7,8]. However, little
prior research has addressed the applicability of various transformation algorithms in
the presence of constraints. Additionally, in some cases prior research lacks optimality,
and does not even guarantee the preservation of constraint semantics. For example, an
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Fig. 1. Combinational constraint example

approach for simplifying a combinational netlist in the presence of constraints is pro-
posed in [9] as part of a Boolean-reasoning framework, which suffers these weaknesses.

Constraint-preserving testcase generation for simulation has been widely resear-
ched, e.g., in [10,11]. These solutions, however, do not address preservation of dead-
end constraints which entail states for which there is no legal input stimulus. Dead-end
constraints tend to reduce the efficiency of explicit-state analysis, as well as semi-formal
search; when a dead-end state is reached, the only recourse is to backtrack to an ear-
lier state. Though dead-end constraints are considered user errors in certain method-
ologies [10], they are specifiable in a variety of languages, and in cases are powerful
constructs for modeling verification tasks and case-splitting strategies [5].

Constraint Challenges to TBV. Constraints specify conditions that must hold in any
state explored by a verification algorithm. To illustrate the impact of constraints, con-
sider the combinational netlist illustrated in Figure 1. In the original netlist N1, gate
a2 could evaluate to 1 (e.g., if i1 = 1 and i2 = i3 = 0) or 0 (e.g., if i1 = i2 = i3 = 0).
However, labeling gate a1 as a constraint would force at least two of i1, i2, i3 to evalu-
ate to 1, in turn forcing gate a3 to evaluate to 1 and a2 to evaluate to 0. For optimality,
it is desirable to leverage the constraint to simplify the netlist accordingly. In [9], a
structural conjunctive decomposition of the constraint is proposed, traversing each con-
straint gate fanin-wise through AND gates and stopping at inversion points and other
gate types, merging each of these terminal gates to constant ONE. Applying this algo-
rithm to netlist N1, gate a1 will be merged to constant ONE. However, this merging
fails to preserve constraint semantics as gate a2 in the resulting netlist N2 could eval-
uate to 1 (if i1 = i2 = i3 = 0). This demonstrates that redundancy removal applications
must take precautions when leveraging constraints to increase their reduction potential.
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Fig. 2. Sequential constraint example

In a sequential netlist, constraints pose additional challenges as illustrated by the
example depicted in Figure 2. Constraint c disallows precisely the input sequences that
can evaluate t to 1. If j > i, then t can evaluate to 1 as the constraint precludes such
paths only at a later time-step. If on the other hand j ≤ i, constraint c prevents t from
ever evaluating to 1. This demonstrates that temporal abstractions like retiming [7],
which may effectively alter the values of i and j, must take precautions to ensure that
constraint semantics are preserved through their transformations.

Contributions. In this paper we make several fundamental contributions to improving
the efficiency of constraint-based verification frameworks [1].

1. We are the first to discuss how various existing automated transformation algo-
rithms may be optimally applied in a property-preserving manner to designs with
constraints. Table 1 enumerates these transformations, along with an overview of
the corresponding challenges and solutions. Overapproximation refers to the risk of
the transformation yielding spurious counterexamples. Underapproximation refers
to the risk of the transformation yielding an incorrect proof of correctness.

2. We introduce fully-automated techniques for eliminating, introducing, and simpli-
fying constraints in a property-preserving manner, enumerated in Table 2.

We have implemented all of these techniques in a verification toolset. We have found
each of these techniques to be useful in the verification of designs with constraints. Fur-

Table 1. Contributions to enable transformations in the presence of constraints

Section Technique Challenge Solution

3 Redundancy
Removal

Merging within constraint cones may lead to
overapproximation.

Disallow merging within a constraint cone, if
redundancy proof requires that constraint.

4
Retiming Varying lags of targets and constraints may lead

to overapproximation as well as underapproxima-
tion.

Force identical lags across all target and con-
straint gates in retiming graph. Re-apply un-
folded constraints to recurrence structure.

5
Target
Enlargement

Transition-function based methods may lose cor-
relation between constraint and target cones, lead-
ing to overapproximation.

Force application of constraints to each func-
tional preimage prior to input quantification.

6
Reparameter-
ization

Dead-end states may be lost through the transfor-
mation, leading to overapproximation.

Re-apply dead-end states as a simplified con-
straint.

7 Phase
Abstraction

State folding may cause underapproximation if
targets and constraints are of different phase.

Methodologically require all targets and con-
straints to be of the same phase.

8 C-Slow
Abstraction

State folding may cause underapproximation if
targets and constraints are of different colors.

Methodologically require all targets and con-
straints to be of the same color.

8 C-Slow
Abstraction

Abstraction loses correlation across differing
mod-c time-frames, causing overapproximation.

Methodologically disallow constraints that
are not amenable to mod-c reasoning.
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Table 2. Constraint transformation contributions

Section Technique Description

10 Constraint Elimination Replace the constraint with an accumulator circuit to remember whether the
constraint signal has been previously violated; conjunct to the target.

11
Constraint Introduction Attempt to derive conditions after which targets are never hittable; add as

constraints.

12 Constraint Simplification Attempt to replace a constraint with its preimage, to reduce the size of its
cone and enable its elimination through reparameterization.

thermore, we have found that the synergistic application of these techniques is capable
of yielding dramatic improvements to the verification of such designs, enabling conclu-
sive results to problems that we have otherwise found unsolvable. Though we focus on
the application of these techniques to formal verification, their structural nature enables
their benefits to arbitrary frameworks, including testcase generation and synthesis.

2 Formalisms

In this section, we provide formalisms used throughout the paper. A reader well-versed
in hardware verification may wish to skip this section, using it as a reference.

Definition 1. A netlist is a tuple N = 〈〈V,E〉,G, T, C,Z〉 comprising a finite directed
graph with vertices V and edges E ⊆ V × V , a semantic mapping from vertices to
gate types G : V �→ types, a set of targets T ⊆ V correlating to a set of properties
AG(¬t), ∀t ∈ T , and a set of constraints C ⊆ V . The function Z : V �→ V is the
symbolic initial value mapping.

Our verification problem is represented entirely as a netlist, comprising the design
under verification, its environment, and its property automata. Our gate types define a
set of primary inputs, registers (our only sequential gate type), and combinational gates
with various functions, including constants. The type of a gate may place constraints
upon its incoming edge count – e.g., each register has an indegree of one (whose source
gate is referred to as its next-state function); primary inputs and constants have an inde-
gree of zero. We denote the set of inputs as I ⊆ V , and the set of registers as R ⊂ V .
The initial values of a netlist represent the values that registers can take at time 0. We
disallow registers from appearing in any initial value functions. Furthermore, we do not
allow combinational cycles in a legal netlist.

Definition 2. The semantics of a netlist N are defined in terms of semantic traces. We
denote the set of all legal traces associated with a netlist by P ⊆ [V × N �→ {0, 1}],
defining P as the subset of functions from V × N to {0, 1} which are consistent with
the following rule. The value of gate v at time i in trace p is denoted by p(v, i). Term
uj denotes the source vertex of the j-th incoming edge to v, implying that (uj , v) ∈ E.

p(v, i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
si

vp
: v is a primary input with sampled value si

vp

Gv

(
p(u1, i), ..., p(un, i)

)
: v is a combinational gate with function Gv

p(u1, i− 1) : v is a register and i > 0
p
(
Z(v), 0

)
: v is a register and i = 0
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1. Guess the redundancy candidates – i.e., suspected-equivalent gate sets.
2. Attempt to prove that each pair of candidates is truly equivalent.
3. If any of the candidate pairs cannot be proven equivalent, refine them and goto Step 2.
4. The redundancy candidates are accurate; the corresponding gates may be merged.

Fig. 3. Generic redundancy removal algorithm

The length of a trace p is defined as length(p) = min{i : ∃c ∈ C. p(c, i) = 0}. A
target t is said to be hit in a trace t at time i iff

(
p(t, i) = 1

) ∧ (i < length(p)
)
. We

define hit(p, t) as the minimum i at which t is hit in trace p, or −1 if no such i exists.

Definition 3. Netlists N and N ′ are said to be property-preserving trace equivalent
with respect to target sets T and T ′ respectively, iff there exists a bijective mapping
ψ : T �→ T ′ such that:

– ∀p ∈ P.∃p′ ∈ P ′.∀t ∈ T.
(
hit(p, t) = hit(p′, ψ(t))

)
– ∀p′ ∈ P ′.∃p ∈ P.∀t ∈ T.

(
hit(p, t) = hit(p′, ψ(t))

)
3 Redundancy Removal

Redundancy removal (e.g., [9,12]) is the process of demonstrating that two gates in a
netlist always evaluate to the same value. Once a pair of redundant gates are identi-
fied, the netlist may be simplified by merging one of the gates onto the other; i.e., by
replacing each fanout reference to one gate by a reference to the other. For property
checking, it is sufficient to reason about the prefix length of a trace as per Definition 2.
Constraints therefore generally cause more gates to appear redundant (within this pre-
fix) than otherwise. For optimality, redundancy removal algorithms should thus leverage
the constraints to increase their reduction potential. For example, when using the frame-
work of Figure 3, the algorithms which identify redundancy candidates in Step 1 and
the algorithms which prove each of the candidates redundant in Step 2 must leverage
the constraints to avoid a loss of reduction potential. However, as per Figure 1b, once
redundant gates have been identified, proper care must be taken while merging them to
avoid violating constraint semantics.

Theorem 1. Consider gate u which is not in the cone of constraint set U ⊆C. Gate u
may be merged onto any other gate v while preserving property checking provided that
the proof of u ≡ v does not require the trace-prefixing effect of constraints C\U .

Proof. (Sketch) Since u ≡ v within all valid trace prefixes, the only risk of violating
property checking due to this merge is that the constraining power of a constraint gate
is diminished as per Figures 1a-1b. By Definition 2, the merge of u onto v only alters
the evaluation of gates in the fanout of u. However, since the trace-prefixing effect of
no constraint in the fanout of u was leveraged to enable the merge, this merge cannot
diminish the constraining power of the resulting netlist. ��

Theorem 1 illustrates that gates outside of the cone of the constraints may be merged
without violating constraint semantics, though care must be taken when merging gates
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within the cones of the constraints to ensure that their constraining power is not di-
minished. Netlist N4 of Figure 1d illustrates the result of optimal property-preserving
redundancy removal of netlist N1. In Section 6, we will address the property-preserving
elimination of gates within the cones of constraints whose trace-prefixing may be used
to enable that elimination via the technique of structural reparameterization.

4 Retiming

Retiming is a synthesis optimization technique capable of reducing the number of reg-
isters of a netlist by relocating them across combinational gates [13].

Definition 4. A retiming of netlist N is a gate labeling r : V �→ Z, where r(v) is the
lag of gate v, denoting the number of registers that are moved backward through v. A
normalized retiming r′ may be obtained from an arbitrary retiming r, and is defined as
r′ = r − maxv∈V r(v).

In [7], normalized retiming is proposed for enhanced invariant checking. The re-
timed netlist Ñ has two components: (1) a sequential recurrence structure Ñ ′ which
has a unique representative for each combinational gate in the original netlist N , and
whose registers are placed according to Definition 4, and (2) a combinational retiming
stump Ñ ′′ obtained through unfolding, representing retimed initial values as well as the
functions of combinational gates for prefix time-steps that were effectively discarded
from the recurrence structure. It is demonstrated in [7] that each gate ũ′ within Ñ ′ is
trace-equivalent to the corresponding u within N , modulo a temporal skew of −r(u)
time-steps. Furthermore, there will be −r(u) correspondents to this u within Ñ ′′, each
being trace-equivalent to u for one time-step during this temporal skew. Property check-
ing of target t is thus performed in two stages: a bounded check of the time-frames of
t occurring within the unfolded retiming stump, and a fixed-point check of t̃′ in the re-
currence structure. If a trace is obtained over Ñ ′, it may be mapped to a corresponding
trace in N by reversing the 〈gate, time〉 relation inherent in the retiming.

Theorem 2. Consider a normalized retiming where every target and constraint gate is
lagged by the same value −i. Property checking will be preserved provided that:

1. the i-step bounded analysis of the retiming stump enforces all constraints across all
time-frames, and

2. every retimed constraint gate, as well as every unfolded time-frame of a constraint
referenced in a retimed initial value in Ñ ′, is treated as a constraint when verifying
the recurrence structure.

Proof. (Sketch) Correctness of (1) follows by construction of the bounded analysis.
Correctness of (2) follows from the observation that: (a) every gate lagged by −i time-
steps (including all targets and constraints) is trace-equivalent to the corresponding orig-
inal gate modulo a skew of i time-steps, and (b) the trace pruning caused by constraint
violations within the retiming stump is propagated into the recurrence structure by re-
application of the unfolded constraint gates referenced in the retimed initial values. ��
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Compute f(t) as the function of the target t to be enlarged;
Compute f(ci) as the function of each constraint ci;
B0 = ∃I .

(
f(t) ∧∧ci∈C f(ci)

)
;

for (k = 1; ¬done ; k++) { // Enlarge up to arbitrary termination criteria done
If t may be hit at time k−1 while adhering to constraints, return the corresponding trace;
Bk = ∃I .

(
preimage(Bk−1) ∧∧ci∈C f(ci)

)
;

Simplify Bk by applying B0, . . . , Bk−1 as don’t cares;
}
Synthesize Bk using a standard multiplexor-based synthesis as the enlarged target t′;
If t′ is proven unreachable, report t as unreachable;
If trace p′ is obtained hitting t′ at time j {

Cast a k-step constraint-satisfying unfolding from the state in p′ at time j to hit t;
Concatenate the resulting trace p′′ onto p′ to form trace p hitting t at time k + j; return p; }

Fig. 4. Target enlargement algorithm

The min-area retiming problem may be cast as a minimum-cost flow problem [13]. One
may efficiently model the restriction of Theorem 2 by renaming the target and constraint
gates to a single vertex in the retiming graph, which inherits all fanin and fanout edges
of the original gates. This modeling forces the retiming algorithm to yield an optimal
solution under the equivalent-lag restriction. While this restriction may clearly impact
the optimality of the solution, it is generally necessary for property preservation.

5 Structural Target Enlargement

Target enlargement [14] is a technique to render a target t′ which may be hit at a shal-
lower depth from the initial states of a netlist, and with a higher probability, than the
original target t. Target enlargement uses preimage computation to calculate the set of
states which may hit target t within k time-steps. A transition-function vs. a transition-
relation based preimage approach may be used for greater scalability. Inductive sim-
plification may be performed upon the k-th preimage to eliminate states which hit t in
fewer than k time-steps. The resulting set of states may be synthesized as the enlarged
target t′. If t′ is unreachable, then t must also be unreachable. If t′ is hit in trace p′,
a corresponding trace p hitting t may be obtained by casting a k-step bounded search
from the state hitting t′ in p′ which is satisfiable by construction, and concatenating the
result onto p′ to form p. The modification of traditional target enlargement necessary in
the presence of constraints is depicted in Figure 4.

Theorem 3. The target enlargement algorithm of Figure 4 preserves property checking.

Proof. (Sketch) The constraint-preserving bounded analysis used during the target en-
largement process will generate a valid trace, or guarantee that the target cannot be hit
at times 0, . . . , k − 1, by construction. To ensure that the set of enlarged target states
may reach the original target along a trace which does not violate constraints, the con-
straint functions are conjuncted onto each preimage prior to input quantification. The
correctness of target unreachable results, as well as the trace lifting process, relies upon
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the fact that there exists an k-step extension of any trace hitting t′ which hits t as estab-
lished in [14], here extended to support constraints. ��

There is a noteworthy relation between retiming a target t by −k and performing
a k-step target enlargement of t; namely, both approaches yield an abstracted target
which may be hit k time-steps shallower than the corresponding original target. Recall
that with retiming, we retimed the constraints in lock-step with the targets. With target
enlargement, however, we retain the constraints intact. There is one fundamental rea-
son for this distinction: target enlargement yields sets of states which only preserve the
hittability of targets, whereas retiming more tightly preserves trace equivalence modulo
a time skew. This relative weakness of property preservation with target enlargement is
due to its input quantification and preimage accumulation via the don’t cares. If preim-
ages were performed to enlarge the constraints, there is a general risk that a trace hitting
the enlarged target while preserving the enlarged constraints may not be extendable to
a trace hitting the original target, due to possible conflicts among the input valuations
between the constraint and target cones in the original netlist. For example, a constraint
could evaluate to 0 whenever an input i1 evaluates to 1, and a target could be hittable
only several time-steps after i1 evaluates to 1. If we enlarged the constraint and target
by one time-step, we would lose the unreachability of the target under the constraint
because we would quantify away the effect of i1 upon the constraint.

6 Structural Reparameterization

Definition 5. A cut of a netlist is a partition of V into two sets: C and C = V \ C. A cut
induces a set of cut gates VC = {u ⊆ C : ∃v ∈ C.(((u, v) ∈ E)∨(v ∈ R∧u = Z(v))

)}.

Reparameterization techniques, e.g., [15], operate by identifying a cut of a netlist
graph VC , enumerating the valuations sensitizable to that cut (its range), then synthesiz-
ing the range relation and replacing the fanin-side of the cut by this new logic. In order
to guarantee soundness and completeness for property checking, one must generally
guarantee that target and constraint gates lie on the cut or its fanout. Given parametric
variables pi for each cut gate V i

C , the range is computable as ∃I.
∧|VC|

i=1

(
pi ≡ f(V i

C )
)
.

If any cut gate is a constraint, its parametric variable may be forced to evaluate to 1 in
the range to ensure that the synthesized replacement logic inherently reflects the con-
strained input behavior. This cut gate will then become a constant ONE in the abstracted
netlist, effectively being discarded.

While adequate for combinationally-driven constraints and a subset of sequentially-
driven constraints, this straight-forward approach does not address the preservation
of dead-end states. A postprocessing approach is thus necessary to identify those ab-
stracted constraints which have dead-end states, and to re-apply the dead-end states as
constraints in the abstracted netlist. This check consists of computing ∃I.f(ci) for every
constraint gate ci used to constrain the range. If not a tautology, the result represents
dead-end states for which no input valuations are possible, hence a straight-forward
multiplexor-based synthesis of the result may be used to create a logic cone to be tagged
as a constraint in the abstracted netlist.
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Theorem 4. Structural reparameterization preserves property checking, provided that
any constraints used to restrict the computed range are re-applied as simplified dead-end
constraints in the abstracted netlist.

Proof. (Sketch) The correctness of reparameterization without dead-end constraints fol-
lows from prior work, e.g., [15]. Note that reparameterization may replace any con-
straints by constant ONE in the abstracted netlist. Without the re-application of the
dead-end states as a constraint, the abstracted netlist will thus be prone to allowing
target hits beyond the dead-end states. The re-application of the dead-end states as a
constraint closes this semantic gap, preserving falsification as well as proofs. ��

To illustrate the importance of re-applying dead-end constraints during reparame-
terization, consider a constraint of the form i1 ∧ r1 for input i1 and register r1. If this
constraint is used to restrict the range of a cut, its replacement gate will become a con-
stant ONE hence the constraint will be effectively discarded in the abstracted netlist.
The desired byproduct of this restriction is that i1 will be forced to evaluate to 1 in the
function of all cut gates. However, the undesired byproduct is that the abstracted netlist
will no longer disallow r1 from evaluating to 0 without the reapplication of the dead-end
constraint ∃i1.(i1 ∧ r1) or simply r1. Because this re-application will ensure accurate
trace-prefixing in the abstracted netlist, the range may be simplified by applying the
dead-end state set as don’t cares prior to its synthesis as noted in [11].

7 Phase Abstraction

Phase abstraction [16] is a technique for transforming a latch-based netlist to a register-
based one. A latch is a gate with two inputs (data and clock), which acts as a buffer
when its clock is active and holds its last-sampled data value (or initial value) other-
wise. Topologically, a k-phase netlist may be k-colored such that latches of color i may
only combinationally fan out to latches of color

(
(i+ 1) mod k

)
; a combinational gate

acquires the color of the latches in its combinational fanin. A modulo-k counter is used
to clock the latches of color (j mod k) at time j. As such, the initial values of only
the (k−1) colored latches propagate into other latches. Phase abstraction converts one
color of latches into registers, and the others into buffers, thereby reducing state element
count and temporally folding traces modulo-k, which otherwise stutter.

Phase abstraction may not preserve property checking for netlists with constraints
as illustrated by the following example. Assume that we have a 2-phase netlist with a
target gate of color 1, and a constraint gate of color 0 which is unconditionally violated
one time-step after the target evaluates to 1. Without phase abstraction, the target may
be hittable since the constraint prefixes the trace only on the time-step after the target
evaluates to 1. However, if we eliminate the color-0 latches via phase abstraction, the
constraint becomes violated concurrently with the target’s evaluation to 1, hence the
target becomes unhittable. Nonetheless, there are certain conditions under which phase
abstraction preserves property checking as per the following theorem.

Theorem 5. If each constraint and target gate is of the same color, phase abstraction
preserves property checking.
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Proof. (Sketch) The correctness of phase abstraction without constraints has been es-
tablished in prior work, e.g., [16]. Because every constraint and target gate are of the
same color i, they update concurrently at times j for which

(
(j mod k) = i

)
. Phase

abstraction will merely eliminate the stuttering at intermediate time-steps, but not tem-
porally skew the updating of the constraints relative to the targets. Therefore, the trace
prefixing of the constraints remains property-preserving under phase abstraction. ��

Automatic approaches of attempting to establish the criteria of Theorem 5, e.g.,
via padding pipelined latch stages to the constraints to align them with the color of
the targets, are not guaranteed to preserve property checking. The problem is that such
approaches unconditionally delay the trace prefixing of the constraints, hence even a
contradictory constraint which can never be satisfied at time zero – which thus renders
all targets unhittable – may become contradictory only at some future time-step in the
range 1, . . . , (k−2). After phase abstraction, this delay will be either zero or one time-
step; in the latter case, we have opened a hole during which phase abstracted targets
may be hit, even if they are truly unhittable in the original netlist. Nonetheless, in most
practical cases, one may methodologically specify their desired verification problem in
a way that adheres to the criteria of Theorem 5.

8 C-Slow Abstraction

C-slow abstraction [17] is a state folding technique which is related to phase abstrac-
tion, though is directly applicable to register-based netlists. A c-slow netlist [13] has
registers which may be c-colored such that registers of color i may only combination-
ally fan out to registers of color

(
(i + 1) mod c

)
; a combinational gate acquires the

color of the registers in its combinational fanin. Unlike k-phase netlists, the registers
in a c-slow netlist update every time-step hence generally never stutter. Additionally,
the initial value of every register may propagate to other registers. C-slow abstraction
operates by transforming all but a single color of registers into buffers, thereby reducing
register count and temporally folding traces modulo-c. To account for the initial values
which would otherwise be lost by this transformation, an unfolding approach is used to
inject the retained registers into all states reachable in time-frames 0, . . . , (c−1).

As with phase abstraction, if the target and constraint gates are of differing colors,
this abstraction risks converting some hittable targets to unhittable due to its temporal
collapsing of register stages. Additionally, even the criteria of requiring all target and
constraint gates to be of the same color as with Theorem 5 is not guaranteed to pre-
serve property checking with c-slow abstraction. The problem is due to the fact that
c-slow netlists do not stutter mod c. Instead, each time-step of the abstracted netlist
correlates to c time-steps of the original netlist, with time-steps i, c + i, 2 ·c + i, . . .
being evaluated for each i < c in parallel due to the initial value accumulation. Rea-
soning across mod c time-frames is intrinsically impossible with c-slow abstraction;
thus, in the abstracted netlist, there is generally no way to detect if a constraint was
effectively violated at time a ·c + i in the original netlist when evaluating a target at
time (a + 1)·c + j for i �= j. Even with an equivalent-color restriction, c-slow abstrac-
tion thus risks becoming overapproximate in the presence of constraints. Nonetheless,
methodologically, constraints which are not amenable to this state-folding process are
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of little practical utility in c-slow netlists. Therefore, in most cases one may readily map
an abstracted counterexample trace to one consistent with the original netlist, e.g., using
satisfiability analysis to ensure constraint preservation during intermediate timesteps.

9 Approximating Transformations

Overapproximating Transformations. Various techniques have been developed for
attempting to reduce the size of a netlist by overapproximating its behavior. Any tar-
get proven unreachable after overapproximation is guaranteed to be unreachable be-
fore overapproximation. However, if a target is hit in the overapproximated netlist, this
may not imply that the corresponding target is hittable in the original netlist. Localiza-
tion [18,19] is a common overapproximation technique which replaces a set of cut gates
of the netlist by primary inputs. The abstracted cut can obviously simulate the behavior
of the original cut, though the converse may not be possible.

Overapproximating transformations are directly applicable in the presence of con-
straints. Overapproximating a constraint cone only weakens its constraining power. For
example, while the cone of target t and constraint c may overlap, after localizing the
constraint cone it may only comprise localized inputs which do not appear within the
target cone, thereby losing all of its constraining power on the target. Such constraint
weakening is merely a form of overapproximation, which must already be addressed by
the overall overapproximate framework. Both counterexample-based [18] and proof-
based [19] localization schemes are applicable to netlists with constraints, as they will
both attempt to yield a minimally-sized localized netlist such that the retained portion
of the constraint and target cones will guarantee unreachability of the targets.

Underapproximating Transformations. Various techniques have been developed to
reduce the size of a netlist while underapproximating its behavior. For example, unfold-
ing only preserves a time-bounded slice of the netlist’s behavior; case splitting (e.g., by
merging inputs to constants) may restrict the set of traces of a netlist. Underapproxi-
mating transformations may safely be applied to a netlist with constraints, as underap-
proximating a constraint cone only strengthens its power. For example, if a constraint
is of the form i1 ∨ i2, underapproximating by merging i1 to constant ZERO will force
i2 to constant ONE in the underapproximated netlist even though a target may be hit in
the original netlist only while assigning i2 to a 0. However, this restriction – which may
cause unreachable results for targets which were hittable without the underapproxima-
tion – must already be addressed by the overall underapproximate framework. Target
hits on the underapproximated netlist still imply valid hits on the original netlist even
in the presence of constraints. Extensions to underapproximate frameworks to enable
completeness – e.g., diameter bounding approaches for complete unfolding, and com-
plete case splitting strategies – are directly applicable in the presence of constraints.

10 Constraint Elimination

Given the challenges that they pose to various algorithms, one may wish to eliminate
constraints in a property-preserving manner. In Figure 5c, we introduce a general con-
straint elimination algorithm.



280 H. Mony, J. Baumgartner, and A. Aziz

1

AA

t

c c

t

c′

t′

a) Netlist N ; gate c is a
constraint, gate t is a target
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r = create register;
Z(r) = 1;
c′ = c ∧ r;
next state(r) = c′;
foreach t ∈ T

c = 1 ∧∧vi∈C vi;

replace each t ∈ T by corresponding t′;
remove all constraints: C = ∅;

t′ = t ∧ c′;

gate t′ is a target
b) Netlist N ′ with no constraints;

c) Constraint elimination algorithm

r

Fig. 5. Property-preserving constraint elimination

Theorem 6. The constraint elimination algorithm of Figure 5c is a property-preserving
transformation.

Proof. Consider any trace p that hits target t in netlist N at time i. Note that netlist N ′

has the same set of gates as N in addition to gates c′, r, and t′. Consider the trace p′ of
N ′ where all common gates have the same valuations over time as in p, and gates c′, r
and t′ are evaluated as per Definition 2. Because t is hit at time i, ∀j ≤ i.

(
p(c, j) = 1

)
,

and thus by construction of c′, ∀j ≤ i.
(
p′(c′, j) = 1

)
. Because t′ = t∧c′, we also have

∀j ≤ i.
(
p(t, j) = p′(t′, j)

)
. It may similarly be proven that for any trace p′ that hits

target t′ at time i, there exists an equivalent trace p that hits target t at time i. ��

Performing the constraint elimination transformation in Figure 5 enables arbitrary
verification and transformation algorithms to be applied to the resulting netlist without
risking the violation of constraint semantics. However, this approach could result in
significant performance degradation for both types of algorithms:

– Transformation algorithms (particularly redundancy removal) lose their ability to
leverage the constraints for optimal simplification of the netlist.

– Falsification algorithms may waste resources analyzing uninteresting states, i.e.,
from which no target may subsequently be hit due to c′ evaluating to 0.

– The tactical utility of the constraints for case-splitting strategies is lost.

11 Constraint Introduction

It follows from the discussion of redundancy removal in Section 3 that reduction poten-
tial may be increased by constraints. It may therefore be desirable to derive constraints
that may be introduced into the netlist while preserving property checking, at least tem-
porarily to enhance a particular algorithm.

Theorem 7. Consider netlist N with gate g. If no target in T may be hit along any
trace after gate g evaluates to 0, then g may be labeled as a constraint while preserving
property checking.



Exploiting Constraints in Transformation-Based Verification 281

Proof. If gate g is labeled as a constraint, by Definition 2, we will only reason about the
prefix length of traces wherein gate g always evaluates to 1. Since no target in T may be
hit along any trace after gate g evaluates to 0, by Definition 3, netlist N ′ formed from
N by labeling gate g as a constraint is property-preserving trace equivalent to N . ��
Taking the example netlist of Figure 5b, any of the gates c, c′, and r may be labeled as
a constraint provided that we may establish the corresponding condition of Theorem 7,
effectively reversing the transformation of Figure 5c. While this proof may in cases be
as difficult as property checking itself, we propose an efficient heuristic algorithm for
deriving such constraint candidate gates as follows. Similar to the approach of [20],
we may localize each of the targets, and use a preimage fixed-point computation to
underapproximate the number of time-steps needed to hit that target from a given set
of states. Any state not reached during this fixed-point may never reach that target. The
intersection of such state sets across all targets represents the conditions from which no
target may subsequently be hit. While the approach of [20] proposes only to use this
set to steer semi-formal analysis away from useless states, we propose to synthesize the
resulting conditions as a constraint in the netlist to enhance reduction potential.

Note that these constraints are in a sense redundant because no target hits may
occur after they evaluate to 0 anyway. Therefore, instead of forcing all algorithms to
adhere to these constraints which may have an associated overhead, we may treat these
as verification don’t cares so that algorithms may choose to either use these constraints
to restrict evaluation of the netlist, or to ignore them. Note that certain verification
algorithms, e.g., SAT-based search, may inherently learn such conditions and direct
their resources accordingly. Ours is a more general paradigm which enables leveraging
this information for arbitrary algorithms, particularly to enhance reduction potential.

12 Constraint Simplification

In this section, we discuss a general approach to simplify constraints. We also discuss
an efficient implementation of this paradigm which attempts to replace a constraint with
its preimage, heuristically trying to reduce the size of the constraint cone and enable the
elimination of that constraint through reparameterization.

We define prop p(t, c) as the target gate resulting from applying the constraint elim-
ination algorithm of Figure 5c specifically to target t and gate c.

Theorem 8. Consider a netlist N with constraint c1 and gate c2. If ∀t∈T.
(
prop p(t, c1)

≡ prop p(t, c2)
)

without the trace-prefixing of constraint c1, then convertingN into N ′

by labeling c2 as a constraint instead of c1 is a property-preserving transformation.

Proof. Since ∀t ∈ T.
(
prop p(t, c1) ≡ prop p(t, c2)

)
without the trace-prefixing en-

tailed by constraint c1, this proof follows directly from Definition 3 and Theorem 6. ��
Theorem 8 illustrates that in certain cases, we may modify the constraint gates in a

netlist while preserving property checking. Practically, we wish to exploit this theorem
to shrink the size of the constraint cones and thereby effectively strengthen their reduc-
tion potential. Note that the structural reparameterization algorithm in Section 6 is able
to eliminate constraints which have no dead-end states. This is in a sense an optimal
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while (¬done) // Iterate until arbitrary termination criteria done
Apply structural reparameterization to simplify constraint c;
If constraint c has been eliminated by reparameterization, break;
// Else, note that c has been simplified to its dead-end states
If
(
prop p(t, c)≡prop p(t, struct pre(c))

)
c = struct pre(c);

else break; // constraint c cannot be safely replaced by its preimage

Fig. 6. Heuristic constraint simplification algorithm

transformation, as the constraining power of the constraints are thereafter reflected in
the netlist structure itself and effectively filters the input stimulus applied to the netlist.
Given these motivations, we present a heuristic constraint simplification algorithm.

Definition 6. The structural preimage of a gate u which has no inputs in its combi-
national fanin, struct pre(u), is a logic cone obtained by replacing each register gate
v∈R in the combinational fanin of gate u with its corresponding next-state function.

The algorithm of Figure 6 attempts to iteratively simplify, and ultimately eliminate,
the constraints in a property-preserving manner. At each iteration, reparameterization is
used to replace the current constraint by its dead-end states. Note that this step will elim-
inate the constraint if it entails no dead-end states. Otherwise, we attempt to simplify
the resulting sequential constraint by replacing it with its structural preimage, using
Theorem 8 to validate that this replacement preserves property checking. If this check
fails (either through refutation or excessive resource requirements), then the algorithm
terminates. Otherwise, the algorithm iterates with the resulting simplified constraint.

To illustrate how this algorithm works in practice, consider its application on con-
straint c in the netlist of Figure 2. If j ≤ i, constraint c can be iteratively replaced
by its preimage until it becomes combinational, at which point reparameterization will
outright eliminate it. If j > i, constraint c can be simplified by shrinking j to i + 1, at
which point the check based upon Theorem 8 fails causing the iterations to terminate.

Practically, the equality check of Figure 6 tends to be computationally expensive.
However, this check can be simplified as per the following theorem.

Definition 7. The structural initialization of a gate u which has no inputs in its combi-
national fanin, struct init(u), is a logic cone obtained by replacing each register gate
v∈R in the combinational fanin of gate u with its corresponding initial value function.
The initial value constraint of u is defined as init cons(u) = init r ∨ struct init(u),
where init r is a register whose initial value is ZERO and next-state function is ONE.

Theorem 9. Consider a netlist N with constraint c1. If ∀t ∈ T.
(
prop p(t, c1) =⇒

prop p(t, struct pre(c1))
)

in N with the trace-prefixing entailed by constraint c1, then
converting N into N ′ by labeling struct pre(c1) and init cons(c1) as constraints in-
stead of c1 is a property-preserving transformation.

Proof. (1) The implication proof in N means that within the prefix of any trace, ei-
ther the two gates evaluate to the same value, or prop p(t, c1) evaluates to 0 and
prop p

(
t, struct pre(c1)

)
to 1. The latter condition cannot happen since within any
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prefix, constraint c1 must evaluate to 1, which implies that t cannot evaluate to 1 and
prop p(t, c1) to 0 concurrently. The implication proof thus ensures that if t is asserted
within any prefix at time i, then struct pre(c1) must evaluate to 1 at times 0 to i.

(2) Since N and N ′ have the same set of gates, they also have the same set of
traces; only the constraint sets differ. The trace prefixing of N ′ is stricter than that of N
as follows. (a) All traces prefixed at time 0 because of constraint c1 in netlist N are also
prefixed at time 0 because of constraint init cons(c1) in N ′. (b) All traces prefixed
at time i + 1 because of constraint c1 in netlist N are prefixed at time i because of
constraint struct pre(c1) in N ′.

(3) For property-preservation, we must only ensure that target t cannot be asserted
during time-steps that were prefixed in N ′ but not N . During such time-steps, c1 evalu-
ates to 1, and struct pre(c1) to 0, hence prop p

(
t, struct pre(c1)

)
must evaluate to 0.

The proof of this implication check thus requires prop p(t, c1) to evaluate to 0 at such
time-steps, ensuring that t evaluates to 0. ��

Practically, we have found that the trace-prefixing of c1 substantially reduces the
complexity of the proof obligation of Theorem 9 vs. Theorem 8, e.g., by enabling low
cost inductive proofs. This check tends to be significantly easier than the property check
itself, as it merely attempts to validate that the modified constraint does not alter the
hittability of the target along any trace, independently of whether the target is hittable
or not. Additionally note that init r can readily be eliminated using retiming.

13 Conclusion

We have discussed how various automated netlist transformations may be optimally ap-
plied while preserving constraint semantics, including dead-end states. We have addi-
tionally introduced fully-automated techniques for constraint elimination, introduction,
and simplification. We have implemented each of these techniques in the IBM internal
transformation-based verification tool SixthSense. The synergistic application of these
techniques has been critical to the automated solution of many complex industrial veri-
fication problems with constraints, which we otherwise were unable to solve.

Due to the relative lack of availability of complex sequential netlists with con-
straints, we do not provide detailed experimental results. The only relevant benchmarks
we are aware of are a subset of the IBM FV Benchmarks [21]. These constraints are
purely sequential, thus preventing their optimal elimination through reparameteriza-
tion alone. However, we were able to leverage transformations such as retiming and
constraint simplification to enable reparameterization to optimally eliminate 2 of 2 con-
straints from IBM 03 and IBM 06; 3 of 4 from IBM 10; 5 of 8 from IBM 11; and 11
of 14 from IBM 24.
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Abstract. Symmetry reduction is an effective approach for dealing with the state
explosion problem: when applicable, it enables exponential statespace reduction.
Thus, it is appealing to extend the power of symmetry reduction to systems which
are “not quite symmetric”. Emerson et al. identified a class of these, called vir-
tually symmetric [9]. In this paper, we study symmetry from the point of view
of abstraction, which allows us to present an efficient procedure for identifying
full virtual symmetry. We also explore techniques for combining virtual symme-
try with symbolic model-checking and report on experiments that illustrate the
feasibility of our approach.

1 Introduction

Symmetry reduction (e.g., [7,10]) is a technique for combating the state explosion prob-
lem in model-checking. Symmetry is naturally exhibited in systems or protocols that
consist of synchronization and coordination of several identical processes. Such sym-
metry can be seen as a form of redundancy, and model checking can then be performed
on the symmetry-reduced quotient structure which is bisimilar to, and often substan-
tially smaller than, the original system structure. Unfortunately, many protocols are not
symmetric: even in cases where process descriptions exhibit a high degree of similar-
ity, a slight difference among them results in an asymmetric global behavior. To extend
symmetry reduction to such systems, Emerson et al. [9] defined virtual symmetry as
the most general condition under which the structure of a system is bisimilar to its
symmetry-reduced quotient structure, and thus symmetry reduction can be applied.

Although virtual symmetry increases a potential domain of problems that can be
symmetry reduced, its practical application depends on successful solutions to the fol-
lowing questions: (1) How does one identify virtual symmetry without building the
entire system (which is typically infeasible)? (2) How does one apply the knowledge
that a system is virtually symmetric to effectively solve the resulting symbolic model-
checking problem?

In this paper, we answer these questions for fully virtually symmetric systems, i.e.,
systems which are virtually symmetric up to exchanging the roles of processes. This
form of symmetry typically arises in systems composed of processes which are similar
but not identical due to different priorities for accessing a shared resource. An example
of such a system is Readers-and-Writers (R&W): a variant of a well-known mutual
exclusion protocol (MUTEX), where writer processes are given a higher priority than
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reader processes for entering the critical section [9]. Like full symmetry, full virtual
symmetry may lead to an exponential reduction on the statespace of the system.

We start by formalizing the connection between symmetry reduction and abstraction
in Section 3, and use it to derive an alternative (and simpler) characterization of virtual
symmetry. The remainder of the work reported here is based on this characterization.

We then address the problem of effectively identifying full virtual symmetry. In
practice, full symmetry of a system is ensured by restricting its description using a
special syntax [11,12]. In Section 4, we show that lack of regularity in asymmetric
systems makes it difficult to capture the restrictions that ensure full virtual symmetry
syntactically. However, based on our characterization of virtual symmetry, we show that
identification of full virtual symmetry can be reduced to satisfiability of a quantifier-free
Presburger (QFP) formula built directly from the syntactic description of the system.

Afterwards, we turn to the problem of combining symbolic model-checking with
symmetry reduction. The naive construction of a symmetry-reduced quotient structure
requires building an orbit relation, which defines the orbit equivalence between states.
Clarke et al. [7] proved that BDD-based symbolic representation of the orbit relation is
often exponential. Thus, it was assumed that symmetry and symbolic model-checking
do not mix well. However, Emerson et al. [11,12] have shown that the quotient of a
fully symmetric system can be constructed without the orbit relation via a generic rep-
resentatives (or counter abstraction) technique. In Section 5, we extend this technique
to handle fully virtually symmetric systems.

In Section 6, we report on experiments of identifying full virtual symmetry and ap-
plying counter abstraction-based symbolic model-checking on two families of systems.
Section 7 concludes the paper and compares our result with related work.

2 Background

We assume that the reader is familiar with symmetry reduction. Below, we recall some
specific concepts and fix the notation.

Structures and Simulations. A structure M is a pair (S, R) where S is a finite set
of states and R ⊆ S × S is the transition relation. The domain of R is denoted by
Dom(R) � {s ∈ S | ∃t ∈ S · (s, t) ∈ R}. We use s → t and (s, t) interchangeably to
denote a transition in R.

Let M1 = (S1, R1) and M2 = (S2, R2) be two structures. Then, M2 simulates
M1 with respect to a relation ρ ⊆ S1 × S2, denoted by M1 �ρ M2, if and only if for
(s1, s2) ∈ ρ, the following condition holds:

∀t1 ∈ S1 · (s1, t1) ∈ R1 ⇒ ∃t2 ∈ S2 · (s2, t2) ∈ R2 ∧ (t1, t2) ∈ ρ

Furthermore, M2 is bisimilar to M1 with respect to ρ, denoted by M1 ≡ρ M2, if both
M1 �ρ M2 and M2 �ρ−1 M1.

Symmetry Reduction. Let M = (S, R) be a structure and G be a permutation group on
S. The group G induces an equivalence partition on S. The equivalence class of a state
s is called the orbit of s under G, defined by θG(s) � {s′ ∈ S | ∃σ ∈ G · σ(s) = s′}.
We use θ(s) to denote the orbit of s when G is clear from the context. The extension of
θ to a set of states Q ⊆ S is defined by θ(Q) �

⋃
s∈Q θ(s).
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The quotient structure of M induced by G is MG = (SG, RG) where SG �
{θ(s) | s ∈ S}, and ∀s, t ∈ S ·(θ(s), θ(t)) ∈ RG ⇔ ∃s′ ∈ θ(s)·∃t′ ∈ θ(t)·(s′, t′) ∈ R.
A permutation group G is an automorphism group for M if it preserves the transition
relation R, i.e., ∀s, t ∈ S · (s, t) ∈ R ⇒ ∀σ ∈ G · (σ(s),σ(t)) ∈ R. A structure M is
called symmetric with respect to a permutation group G, if G is an automorphism group
for it. In this case, M is bisimilar to its symmetry-reduced quotient structure.

Theorem 1. [7,10] Let M = (S, R) be a structure, G be a permutation group acting
on S, and ρG � {(s, θ(s))|s ∈ S}. Then, M ≡ρG MG if G is an automorphism group
for M .

Note that temporal logics such as CTL∗ and modal μ-calculus are invariant under bisim-
ulation [5]. Therefore, model checking a temporal logic formulaϕ on M can be reduced
to model checking ϕ on MG, provided that the atomic propositions of ϕ are preserved
by ρG.

Compositional Structures. Symmetry reduction is often applied to a parallel com-
position of similar processes. Such a composition is modeled by a structure whose
statespace is assignments of local states to each process.

Let I = [1..n] be the index set of n processes which have the same set of local
states L. The composition of the processes is modeled by a compositional structure
M = (S, R), where S = Ln. Then a global state s in S is an n-tuple (l1, . . . , ln) ∈ Ln.
For each i ∈ I , we use s(i) to denote the value of li, i.e., the current local state of the
ith process, Pi, at s. Let K ⊆ I be a set of processes. The group counter of a local state
L with respect to K is a function #L[K] : Ln → [0..n] such that for any global state
s, #L[K](s) = |{i ∈ K | s(i) = L}|. That is, #L[K](s) is the number of processes
in K whose current state at s is L. In particular, if K = I , we use #L to denote #L[I],
and call #L the total counter of L.

The full symmetry group of I , i.e., the group of all permutations acting on I , is
denoted by Sym(I). A permutation σ ∈ Sym(I) is extended to act on a state s of
a compositional structure M as follows: ∀i, j ∈ I · σ(s)(i) = s(j) ⇔ σ(i) = j. In
the rest of the paper, we do not distinguish between a permutation group on S or I . A
structure M is called fully symmetric if M is symmetric with respect to Sym(I).

3 Abstraction and Virtual Symmetry

In this section, we formalize the connection between symmetry reduction and abstrac-
tion. We then show how this connection can be used to establish a necessary and suf-
ficient condition for the application of symmetry reduction. This condition, referred to
by Emerson et al. as virtual symmetry [9], generalizes the notion of automorphism-
based symmetry [7,10] (see Theorem 1) and increases the applicability of symmetry
reduction.

Given a structure M = (S, R) and a set of abstract states Sα, an abstraction α :
S → Sα is a total function that maps each state s ∈ S to a state a ∈ Sα. S and Sα

are the concrete and the abstract statespaces, respectively. We define γ : Sα → 2S to
be a concretization function that maps each abstract state sα to a set of concrete states
corresponding to it, i.e., γ(a) � {s ∈ S | α(s) = a}. Following [8], we extend α to the
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Table 1. A mapping between abstraction and symmetry reduction

Abstraction Symmetry Reduction

abstract statespace : Sα orbits induced by G: SG

abstraction function : α orbit function θG: αG(s) � θG(s)
concretization function : γ identity function: γG(θG(s)) � θG(s)

existential abstraction of R : R∃∃
α quotient of R with respect to G: RG

abstract equivalence: orbit equivalence:
α(s) = α(t) θ(s) = θ(t) ⇔ ∃σ ∈ G · s = σ(t)

transition relation as follows. A relation R∃∃
α ⊆ Sα × Sα is an existential abstraction

of R where (a, b) ∈ R∃∃
α if and only if R has a transition between some concretizations

of a and b; R∀∃
α is a universal abstraction where (a, b) ∈ R∀∃

α if and only if R has a
transition from every concretization of a to some concretization of b:

R∃∃
α � {(a, b) | ∃s ∈ γ(a) · ∃t ∈ γ(b) · R(s, t)} (existential abstraction)

R∀∃
α � {(a, b) | ∀s ∈ γ(a) · ∃t ∈ γ(b) · R(s, t)} (universal abstraction)

Accordingly, we define M∃∃
α = (Sα, R∃∃

α ) and M∀∃
α = (Sα, R∀∃

α ) to be the existential
and the universal abstractions of M , respectively.

Theorem 2. Let ρ ⊆ S × Sα be a relation defined as ρ � {(s, a) | α(s) = a}. Then
M is ρ-bisimilar to M∃∃

α if and only if M∃∃
α is isomorphic to M∀∃

α : M∃∃
α ≡ρ M ⇔

M∃∃
α = M∀∃

α .

Symmetry reduction of a structure M = (S, R) with respect to a permutation group
G can be seen as a form of abstraction. Formally, let SG, the set of orbits of S, be the
abstract statespace, and let an abstraction αG : S → SG map each state to its orbit,
i.e., αG(s) � θ(s). Under this interpretation, the quotient MG of M is equivalent to
the existential abstraction of M . A mapping between key concepts in abstraction and
symmetry reduction is summarized in Table 1.

Using this connection between symmetry and abstraction, we reinterpret Theorem 2
as a necessary and sufficient condition for bisimilarity between M and its quotient MG.
Note that

R∃∃
α = R∀∃

α if and only if (s, t) ∈ R ⇒ ∀s′ ∈ γ(α(s)) · ∃t′ ∈ γ(α(t)) · (s′, t′) ∈ R

In the context of symmetry reduction, γ(α(s)), the abstract equivalence class of s, is
simply its orbit θ(s). Furthermore, s and s′ share an orbit, i.e., s′ ∈ θ(s) if and only if
there exists a permutation σ ∈ G such that s′ = σ(s). Combining the above, we obtain
the following theorem.

Theorem 3. Let M = (S, R) be a structure, G be a permutation group acting on S,
and ρG � {(s, θ(s)) | s ∈ S}. Then, M ≡ρG MG if and only if

∀s, t ∈ S · (s, t) ∈ R ⇒ ∀σ ∈ G · ∃σ′ ∈ G · (σ(s),σ′(t)) ∈ R (1)

Note that Theorem 3 is a generalization of Theorem 1 since G is no longer required
to be an automorphism group for M , and thus M is not necessarily symmetric with
respect to G.
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Definition 1. A structure M is virtually symmetric with respect to a permutation group
G if and only if M ≡ρG MG.

The problem of establishing a necessary and sufficient condition for a quotient MG

to be bisimilar to M has also been addressed by Emerson et al. [9]. Unlike us, they do
not use abstraction, but proceed directly to show that M is virtually symmetric with
respect to G if and only if it can be “completed” to a structure M ′ such that M ′ is
both symmetric with respect to G and bisimilar to M . Thus, Theorem 3 provides an
alternative (and, in our opinion, much simpler) characterization of virtual symmetry.
In the rest of the paper, we show how this new characterization leads to an efficient
symbolic model-checking algorithm for a large class of asymmetric systems.

4 Full Virtual Symmetry Identification using Constraints

In this section, we address the problem of identifying full virtual symmetry. Notice that
we cannot simply use Condition (1) of Theorem 3 since it requires building the transi-
tion relation of the structure, which may not be feasible. We begin by reviewing existing
modeling languages for specifying fully symmetric systems in Section 4.1 and then ex-
tend them to asymmetric systems in Section 4.2. In Section 4.3, we discuss conditions
that ensure that the specified system is fully virtually symmetric, and show how to de-
cide these conditions using constraints derived directly from the system description in
Section 4.4.

4.1 Modeling Symmetric Systems

Consider an asynchronous composition of n processes {P1, . . . , Pn} executing a com-
mon concurrent program. Each process is specified using a finite directed graph, called
a synchronization skeleton [6]. Nodes in the graph represent states of the process, and
edges, labeled with boolean expressions called guards, represent guarded transitions.
For example, a synchronization skeleton of a process participating in MUTEX is shown
in Figure 1(a). A MUTEX process has 3 states: Non-critical (N ), Trying (T ), and Crit-
ical (C); it can enter states N and T freely, but can only enter the state C if no other
process is currently in state C.

When all processes have identical synchronization skeletons, their asynchronous
composition can be specified using a single skeleton P . This skeleton can be seen as a
template from which skeletons of each individual process are instantiated. Thus, Fig-
ure 1(a) is also a synchronization skeleton template for MUTEX.

A synchronization skeleton template P defines a compositional structure M(P ) in
which a (global) transition results from a local transition of some process. For example,
in the three-process MUTEX, M(P ) has a transition from (N, N, T ) to (N, N, C)
because the third process, P3, can move from T to C.

Note that when each transition guard in P is invariant under any permutation of
process indices, the structure M(P ) is unchanged by any permutation of process in-
dices; that is, it is fully symmetric [11]. For example, the three-process MUTEX is
fully symmetric since if the guard (#C = 0) is true in a state s, it is also true in a state
σ(s) for any permutation σ ∈ Sym([1, 2, 3]). Symmetry reduction of a fully symmetric
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(a) (b)

N T C

I = [1, 2, 3]
gI : true

Ir = [1] Iw = [2, 3]
gIr

: (#C = 0) ∧ (#T [Iw] = 0)
gIw

: #C = 0

I = [1, 2, 3]
gI : true

N T C
true #C = 0

true

Fig. 1. (a) Synchronization Skeleton for MUTEX. (b) GSST for three-process R&W.

Table 2. Basic guard elements for ensuring full symmetry

Basic Elements Predicates on Total Counters

∀i · li = L, ∀i · li �= L #L = n, #L = 0
∃i · li = L, ∃i · li �= L #L ≥ 1, #L ≤ n − 1

∃i �= j · li = L ∧ lj = L #L ≥ 2

system can often yield an exponential reduction in the number of states. In practice, full
symmetry of a synchronization skeleton is ensured by restricting basic elements of the
guards to the ones shown in the left column of Table 2, where li = L is true in a state s
if the ith process is in a state L, i.e., s(i) = L. The basic elements can be equivalently
expressed using total counters, as shown in the right column of Table 2 [11].

4.2 Modeling Asymmetric Systems

In this paper, we are interested in applying symmetry reduction to asymmetric systems
composed of many similar, but not identical processes, such as R&W mentioned in
Section 1. In this case, since the condition for entering the critical section is different
between the two groups of processes (writers have a higher priority than readers), the
system cannot be modeled by a single synchronization skeleton. Thus, for such asym-
metric systems, we need both a more general modeling formalism, and an approach to
identify whether the system is fully virtually symmetric. To address the first problem,
we define a generalized synchronization skeleton template.

Definition 2. A generalized synchronization skeleton template (GSST) for an asynchro-
nous system with n processes is a tuple P = (L,R, I, τ), where L is a finite set of
(local) states, R ⊆ L × L is a (local) transition relation, I = [1..n] is the index set,
and τ : R → [I → G] is a labeling function that labels each transition with a guard
for each process. Here, G : Ln → {true, false} is a set of transition guards.

We assume that for any local transition u → v ∈ R, u �= v, i.e., no self-loops are
allowed in a GSST.

Definition 3. A GSST P = (L,R, I, τ) defines an asynchronous structure M(P ) =
(S, R), where S = L|I| is the global statespace, and R ⊆ S×S is the global transition
relation defined as follows:

(a) for any local transition u → v ∈ R,
Ru→v(s, t) � ∃i ∈ I ·(s(i) = u∧t(i) = v∧s |= τ (u → v)(i)∧∀j �= i·s(j) = t(j))

(b) R �
⋃

r∈R Rr.
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Intuitively, Ru→v is the set of all global transitions resulting from some process chang-
ing its state from u to v. We say that s → t ∈ R is a result of firing a local transition
u → v if s → t is in Ru→v .

For a local transition r ∈ R, the labeling function τ : R → [I → G] can be seen
as: (a) a partition Πr = {I1, . . . , Id} of processes into process groups, (b) an index
mapping function π : I → Πr, and (c) a function η : Πr → G assigning a guard to
each process group, i.e., for any i ∈ I , τ(r)(i) = η(π(i)). For example, in the GSST for
the three-process R&W shown in Figure 1(b), the guards for the local transition T → C
are described by partitioning the processes into two groups: Ir = {P1} (readers) and
Iw = {P2, P3} (writers). Readers have the guard gIr : (#C = 0) ∧ (#T [Iw] = 0),
and writers gIw : #C = 0. Note that this allows us to model not only the static process
partitioning, i.e., ∀r, r′ ∈ R · Πr = Πr′ , but a dynamic one as well, that is, processes
can be divided into different groups at different local transitions.

Motivated by R&W, we restrict our attention to a counter-based syntax of guards.
Formally, a guard for a transition u → v is a boolean combination of group counter
constraints on the local state u, i.e., #u[Ik] � b, or total counter constraints on any
local states, i.e., (

∑
i #Li) � b, where b is a positive integer, and � is one of {≤,≥, =

}. For example, in Figure 1(b), #C = 0 means no process is currently in the local state
C, whereas #T [Iw] = 0 means that no writer process is currently in T .

4.3 Full Virtual Symmetry in Asynchronous Structures

In this section, we show how to identify whether a system specified by a GSST is fully
virtually symmetric.

Let P be a GSST and r be a transition in P . If all processes at r belong to the
same group, i.e., |Πr| = 1, then the transition guard is defined on total counters and
is independent of any permutation of process indices. Furthermore, if this is the case
for all transitions in P , then P is just a synchronization skeleton, and the underlying
structure M(P ) is fully symmetric (see Section 4.1). In general, when P contains a
transition r with |Πr| > 1, even restricting guards to just total counter constraints is not
sufficient to ensure that M(P ) is fully virtually symmetric. For example, consider the
GSST shown in Figure 1(b) and assume that we change the guard gIr of the transition
T → C to (#C = 0)∧(#T = 2). In this case, M(P ) contains a global transition from
s = (N, N, T ) to t = (N, N, C) corresponding to the process P3 entering state C. Let
σ ∈ Sym(I) be a permutation that switches process indices 1 and 3. Then, the only
two states reachable from σ(s) = (T, N, N) are t1 = (T, T, N) and t2 = (T, N, T ).
Since neither t1 nor t2 can be obtained by applying a permutation σ′ ∈ Sym(I) to t,
transitions in the form σ(s) → σ′(t) are not in M(P ) for any permutation σ′; hence,
M(P ) is not fully virtually symmetric.

As illustrated by the example above, it is difficult to capture the restrictions that
ensure full virtual symmetry syntactically. The difficulty comes from lack of regularity
in asymmetric systems. Therefore, we seek an algorithmic way to identify symmetry.
As mentioned before, we cannot simply use Condition (1) of Theorem 3 since it requires
building the transition relation of M(P ).

Notice that in our example, full virtual symmetry is broken at a global transition
resulting from firing a local transition where the processes are partitioned into several
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groups. We generalize from this example and show that virtual symmetry of a structure
is equivalent to virtual symmetry of each transition relation subset defined by a local
transition. This allows us to decompose the problem of identifying virtual symmetry of
a system along local transitions. Formally, we establish the following theorem.

Theorem 4. Given a GSST P = (L,R, I, τ) and a permutation group G ⊆ Sym(I),
the structure M(P ) = (S, R) is virtually symmetric with respect to G if and only
if each transition relation subset Rr is virtually symmetric with respect to G, where
R �

⋃
r∈R Rr.

The “if” direction of Theorem 4 is trivial: a union of virtually symmetric transition
relations is virtually symmetric. For the “only if” direction, by Theorem 2, we know
that R is virtually symmetric with respect to G if and only if R∃∃

αG
= R∀∃

αG
. With the aid

of Theorem 5 given below and obtained from the perspective of abstraction, we show
that (Rr)∃∃αG

= (Rr)∀∃αG
for each Rr, i.e., Rr is virtually symmetric with respect to G.

Let M ′ = (S′, R′) be a structure, and α : S′ → Sα be an abstraction function. We
define a restriction of R′ to a pair of abstract states (a, b) as

R′
|(a,b) � {(s, t) ∈ R′ | s ∈ γ(a) ∧ t ∈ γ(b)}

Note that R′ =
⋃

a,b∈Sα
R′

|(a,b), and the universal and the existential abstractions of R′

coincide if and only if they coincide for each R′
|(a,b). The following theorem generalizes

this observation.

Theorem 5. Let M ′ = (S′, R′) be a structure,α : S′ → Sα be an abstraction function,
and R′ =

⋃
i∈[1..k] R

′
i such that ∀i ∈ [1..k] ·∃D ⊆ S′×S′ ·R′

i =
⋃

(s,t)∈D R′
|(α(s),α(t).

Then, (R′)∀∃α = (R′)∃∃α ⇔ ∀i ∈ [1..k] · (R′
i)

∀∃
α = (R′

i)
∃∃
α .

Recall that in the context of symmetry reduction, αG(s) is equivalent to θ(s) (see
Table 1). We claim that each Rr satisfies the precondition of Theorem 5 by showing
that Rr =

⋃
(s,t)∈Rr

R|(θ(s),θ(t)). That is, we need to show that if a transition s → t is
a result of firing a local transition r, then for any permutations σ,σ′ ∈ G, a transition
σ(s) → σ′(t) is a result of firing r as well. This holds from the following observations:
(a) two states s1 and s2 share an orbit only if they agree on total counters, and (b) a
global transition s → t is a result of firing a local transition u → v if and only if #u at
s is one more than that at t, #v at s is one less than that at t, and the total counters of
other local states at s and t are the same. For example, consider two global transitions
s → t and s′ → t′ such that s′ ∈ θ(s), and t′ ∈ θ(t). Since s and t agree with s′ and
t′, respectively, on total counters, then if s → t is in Rr, s′ → t′ must be in Rr as well.
Therefore, virtual symmetry of R implies virtual symmetry of each Rr. This concludes
the proof of Theorem 4.

When G is the full symmetry group Sym(I), Theorem 4 can be simplified further
since here two states share an orbit if and only if they agree on total counters. Note that
if Rr is fully virtually symmetric, i.e., (Rr)∀∃αG

= (Rr)∃∃αG
, then Dom(Rr) contains

its orbit θ(Dom(Rr)), which follows from the definitions of existential and universal
abstractions. On the other hand, if Dom(Rr) contains θ(Dom(Rr)), then for any pair
of states s and s′ in the same orbit, if s → t is in Rr for some state t, then there exists
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a state t′ such that s′ → t′ is in Rr. Furthermore, t and t′ agree on total counters, and
thus belong to the same orbit. Hence, by Theorem 3, Rr is fully virtually symmetric.
Since θ(Dom(Rr)) always contains Dom(Rr), we obtain the following theorem.

Theorem 6. Given a GSST P = (L,R, I, τ), the structure M(P ) = (S, R) is fully
virtually symmetric if and only if ∀r ∈ R · θ(Dom(Rr)) = Dom(Rr).

Thus, we have reduced the problem of checking virtual symmetry of R, a global
property of the entire system, to a local property of each transition subset Rr.

4.4 Constraint-Based Identification of Full Virtual Symmetry

In this section, we present a technique for identifying full virtual symmetry based on
Theorem 6. Specifically, we construct Presburger formulas representing sets of states
directly from the description of the GSST.

By Theorem 4, checking whether a structure M(P ) is fully virtually symmetric is
equivalent to checking whether Rr is fully virtually symmetric for each local transition
r of the GSST P . Note that if all processes belong to the same group at a local transition
r, i.e., |Πr| = 1, then Rr is fully symmetric and no check is required. Otherwise, when
|Πr| > 1, by Theorem 6, we need to check whether the domain of Rr, Dom(Rr),
is equal to its orbit, θ(Dom(Rr)). In this section, we show that both Dom(Rr) and
θ(Dom(Rr)) can be represented by Presburger formulas and their equivalence can be
reduced to checking satisfiability of a Quantifier Free Presburger (QFP) formula.

We illustrate the procedure on the T → C transition of the R&W whose GSST
is shown in Figure 1(b). The counter-based syntax of the guards provides a compact
representation of a set of states in the structure M(P ) using Presburger formulas on
group counters. The formulaϕT→C representing Dom(RT→C) is constructed based on
the transition guards in the GSST as follows. According to the interleaving semantics,
a state s is in Dom(RT→C) if and only if either a reader or a writer process can move
from T to C at s. In the first case, s must satisfy the guard gIr , and since the current local
state of the reader process is T , s satisfies gIr ∧ #T [Ir] ≥ 1; similarly, in the second
case, s satisfies gIw ∧#T [Iw] ≥ 1. Therefore, Dom(RT→C) can be represented by the
formula ϕT→C = ϕT→C,Ir ∨ ϕT→C,Iw , where

ϕT→C,Ir � gIr ∧ #T [Ir] ≥ 1 ∧ invT→C ϕT→C,Iw � gIw ∧ #T [Iw] ≥ 1 ∧ invT→C

and the invariant invT→C , defined as the conjunction of the constraints in the left col-
umn of Table 3, represents the statespace of the system. Note that ϕT→C is still defined
only on group counters since #C is equivalent to #C[Ir ] + #C[Iw ]. In general, for a
local transition r, the formula ϕr representing Dom(Rr) is a disjunction of formulas
representing subsets of Dom(Rr) with respect to each process group.

We now show how to derive a formula ϕ̃r representing θ(Dom(Rr)) from ϕr. For
simplicity, assume that P contains only two local states, X and Y , and the processes are
partitioned into two groups. Let Dom(Rr) and the invariant of the statespace be repre-
sented by ϕr(X1, X2, Y1, Y2) and invr(X1, X2, Y1, Y2), respectively. Then ϕ̃r repre-
senting θ(Dom(RT→C )) is defined as

ϕ̃r(X1, X2, Y1, Y2) � ∃X ′
1, X

′
2, Y

′
1 , Y ′

2 · (invr(X1, X2, Y1, Y2) ∧ ϕr(X ′
1, X

′
2, Y

′
1 , Y ′

2)
∧ X1 + X2 = X ′

1 + X ′
2 ∧ Y1 + Y2 = Y ′

1 + Y ′
2)
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Table 3. Invariant for the three-process R&W

Constraints Meaning

0 ≤ #N [Ir] 0 ≤ #T [Ir] 0 ≤ #C[Ir]
0 ≤ #N [Iw] 0 ≤ #T [Iw] 0 ≤ #C[Iw]

each group counter
is a positive integer

#N [Ir] + #T [Ir] + #C[Ir] = 1
#N [Iw] + #T [Iw] + #C[Iw] = 2

there is one reader process
and two writer processes

That is, a state s satisfies ϕ̃r if and only if there exists a state s′ satisfying ϕr (s′ ∈
Dom(Rr)) and s and s′ agree on total counters, i.e., they are in the same orbit. Since
Dom(Rr) is a subset of θ(Dom(Rr)), Dom(Rr) = θ(Dom(Rr)) if and only if the
sentence ψ = ∃X1, X2, Y1, Y2 · (ϕ̃r ∧ ¬ϕr) is unsatisfiable. Since ψ contains only
existential quantifiers, this is equivalent to unsatisfiability of a QFP formula obtained
from ψ by removing all quantifiers, which can be checked using any existing decision
procedure for QFP [3,16,17].

Note that while the satisfiability problem of a Presburger formula has a worst-case
super-exponential complexity, satisfiability of a QFP formula is NP-complete [14]. Fur-
thermore, the number of local transitions in a GSST that need to be checked is expected
to be small, since we are interested in asynchronous systems in which processes are
relatively similar to one another. Indeed, if the processes differ significantly, it does not
seem appropriate to consider full virtual symmetry at all. In practice, the structure of
the guards often leads to further optimizations of the decision procedure. As illustrated
by experiments in Section 6, full virtual symmetry can be identified efficiently when
the guards are defined on a small number of local states.

5 Counter Abstraction for Full Virtual Symmetry

The naive way of constructing a symmetry-reduced quotient structure requires a repre-
sentative function for choosing a state as the unique representative from each orbit [7,5].
The abstract transition relation is then defined on the set of representatives. For sym-
bolic model-checking, computation of the representative function requires building an
orbit relation which, for many groups, including the full symmetry group, has a BDD
representation that is exponential in the minimum of the number of processes and the
number of local states in each process [7], decreasing the effectiveness of symbolic
model-checking.

An alternative is to use generic representatives (or a counter abstraction) technique
proposed by Emerson at el. [11,12], which avoids building the orbit relation. As we
have seen before, under the full symmetry group, states in the same orbit agree on all
total counters. Thus, each orbit can be uniquely represented by values of these counters.
For example, in the three-process MUTEX, the orbit {(N, T, T ), (T, N, T ), (T, T, N)}
is represented by a tuple (1, 2, 0) which corresponds to the counters of states N , T and
C. In this section, we extend the counter-based abstraction technique to handle fully
virtually symmetric structure specified by a GSST. The key idea is that instead of using
the orbit relation, a structure isomorphic to the quotient structure is constructed on the
statespace of total counters directly from the GSST.
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For the rest of this section, let P = (L,R, I, τ) be a GSST of a fully virtually
symmetric system with local states L = {L1, . . . , Lm} and process indices I = [1..n].
A counter abstraction α : S → Sα on the structure M(P ) = (S, R) is constructed
using a set of assignments to a vector x = (x1, . . . , xm) of m counter variables ranging
over [0..n]. Each variable xi corresponds to a total counter #Li of a local state Li.
Since there are n processes, the sum of the values of x must always equal n. Therefore,

Sα � {(c1, . . . , cm) ∈ [0..n]m |
m∑

i=1

ci = n}

The abstraction function α : S → Sα maps a state s ∈ S to an abstract state a ∈ Sα if
and only if for each i ∈ I , a(i) equals #Li(s). The concretization function γ : Sα →
2S maps an abstract state a to an orbit θ where states in θ agree with a on total counters.
In what follows, let Rα denote the existential abstraction of R with respect to α.

Theorem 7. Given a GSST P and a counter abstraction α, the abstract structure
M(P )α = (Sα , Rα) is isomorphic to the quotient structure M(P )Sym(I) = (SSym(I),
RSym(I)) via a bijection h : Sα → SSym(I), where ∀s ∈ S · h(α(s)) � θ(s).

The above definition of M(P )α guarantees that the abstract transition relation Rα can
be constructed directly from P for a fully virtually symmetric system. Since existential
abstraction distributes over union, and R =

⋃
r∈R Rr by Definition 3, it follows that

Rα =
⋃

r∈R(Rr)α. Therefore, we only need to show how to construct (Rr)α for a
local transition r.

We start by illustrating the construction in the case of an unguarded local transition
r. If r is of the form Li → Lj , then r can be fired from a global state s if and only if
s contains a process whose current state is Li; in other words, Dom(Rr) is #Li ≥ 1.
Furthermore, if s → t is in Rr, then the counters #Li and #Lj at t are one less and
one more than those at s, respectively. From the definition of existential abstraction, for
any abstract states a and b, a transition a → b is in (Rr)α if and only if s → t ∈ Rr for
some s ∈ γ(a) and t ∈ γ(b). Therefore,

(Rr)α ≡ xi ≥ 1 ∧ (xi := xi − 1; xj := xj + 1)

which is a formula over counter variables. Generalizing from this example, we obtain
that for every local transition r of the form Li → Lj ,

(Rr)α ≡ gr ∧ (xi := xi − 1; xj := xj + 1)

where gr is a formula defined over counter variables x representing the “existential”
abstraction of Dom(Rr). Specifically,

a |= gr ⇔ ∃s ∈ γ(a) · s ∈ Dom(Rr)

Since M(P )α is isomorphic to the quotient structure, the above construction allows
us to combine symmetry reduction and symbolic model-checking without building the
orbit relation. The only remaining problem is the construction of the formula gr for an
arbitrary local transition r, and in the rest of this section, we show how to do this for
cases where r is guarded by (a) a single guard on total counters, (b) multiple guards on
total counters, and (c) multiple guards on group counters of the source state of r and
arbitrary total counters.
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Case (a). Let r be a local transition Li → Lj . Suppose r is guarded by a single guard
g, i.e., |Πr| = 1. Then Dom(Rr) can be represented by ψr = (#Li ≥ 1 ∧ g), i.e.,
s ∈ Dom(Rr) if there is at least one process at s in local state Li and s satisfies g.
Let sub(ψr) denote a formula obtained from ψr by replacing each occurrence of a to-
tal counter with its corresponding counter variable. For example, sub(#Li ≥ 0) =
(xi ≥ 0) and sub(#Li ≥ 1 ∧ #Lj ≤ 3) = (xi ≥ 1 ∧ xj ≤ 3). Since g contains
only total counter constraints, we define gr � sub(#Li ≥ 1 ∧ g). Note that this pro-
cedure constructs a counter abstraction for a fully symmetric synchronization skeleton,
and is effectively equivalent to the generic representatives approach of Emerson and
Trefler [11].

Case (b). Suppose that r is guarded by multiple guards, i.e., |Πr| = d > 1, but each
guard is expressed using only total counters. In this case, Dom(Rr) is represented by
ψr =

∨
k∈[1..d](#Li[Ik] ≥ 1 ∧ gIk

), where gIk
is the guard for the process group

Ik. Since ψr depends on group counters, we cannot simply define gr to be sub(ψr).
However, Rr is fully virtually symmetric, so Dom(Rr) = θ(Dom(Rr)) by Theorem 6,
and θ(Dom(Rr)) is representable by ψ̃r = (#Li ≥ 1 ∧ (

∨
k∈[1..d] gIk

)). Thus, we

define gr � sub(ψ̃r).

Case (c). Finally, we look at the case where the guards of r depend on group counters.
In this case, ψ̃r defined above still contains group counters. However, this problem can
be solved for cases where group counters in guards for a transition r : Li → Lj are
defined only over Li.

First, let Q ⊆ S be some non-empty set of states given by some formula ψ defined
only on group counters of Li. That is,

ψ =
∧

k∈[1..d](mink ≤ #Li[Ik] ≤ maxk)

where {mink} and {maxk} are positive integers. Then the orbit θ(Q) under Sym(I)
is given by the formula

ψ̃ = (min ≤ #Li ≤ max)

where
min �

∑
k∈[1..d] mink max �

∑
k∈[1..d] maxk

For example, suppose there are only two local states, L1 and L2, d = 2, and Q is given
by ψ = (1 ≤ #L1[I1] ≤ 4) ∧ (1 ≤ #L1[I2] ≤ 4). Then θ(Q) is ψ̃ = (2 ≤ #L1 ≤ 8)
since for any state s in S satisfying ψ̃ there exists a state s′ in S satisfying ψ such that s
and s′ agree on total counters of L1 and L2, i.e., they are in the same orbit. Furthermore,
if Q is encoded by a conjunction ψt ∧ ψg , where ψt and ψg are defined only on total
and group counters, respectively, then the orbit of Q is given by ψt ∧ ψ̃g .

Second, suppose a guard gIk
contains group counter constraints. Let Dom(Rr)Ik

denote the subset of Dom(Rr) containing states in which the local transition r of some
process in the group Ik can be fired. If the formula ψr,Ik

representing Dom(Rr)Ik
can

be decomposed as ψr,Ik
= ψt

r,Ik
∧ ψg

r,Ik
, then a total counter formula representing

θ(Dom(Rr)Ik
) is computed as described above. Otherwise, ψr,Ik

can be converted to
a DNF, and formulas corresponding to the orbit of each clause are computed as above.
Since Dom(Rr) =

⋃
k∈[1..d] Dom(Rr)Ik

, and θ distributes over union, i.e., θ(Q1∪Q2)
= θ(Q1) ∪ θ(Q2), we can define ψ̃r representing θ(Dom(Rr)) as a disjunction of the
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clause formulas. Finally, ψ̃r depends only on total counters; thus, we define gr to be
sub(ψ̃r).

For example, the domain of the transition T → C of the R&W shown in Figure 1(b),
is the union of the domain for the readers and that of the writers. For readers,

Dom(RT→C)Ir ≡ #T [Ir] >= 1 ∧ #T [Iw] = 0 ∧ #C = 0
≡ #T [Ir] = 1 ∧ #T [Iw] = 0 ∧ #C = 0

since there is only one reader. Using only total counters, the orbit θ(Dom(RT→C)Ir )
is represented by ψ̃r = (#T = 1 ∧ #C = 0). Similarly, for the writers,

Dom(RT→C)Iw ≡ #T [Iw] ≥ 1 ∧ #C = 0

and the orbit θ(Dom(RT→C)Iw ) is represented by ψ̃w = (#T ≥ 1 ∧ #C = 0).
Finally, gT→C is defined by sub(ψ̃r ∨ ψ̃w) = (#T ≥ 1 ∧ #C = 0).

6 Experiments

In this section, we report on experiments of identifying full virtual symmetry and per-
forming counter abstraction-based symbolic model-checking on two examples: gener-
alized R&W (GR&W) and asymmetric sharing of resources (ASR) [9]. We used the
Omega library [16] to check for full virtual symmetry as described in Section 4, and
used NuSMV [4] as the model-checker for both the direct and the counter abstraction-
based analysis : for each example, we constructed NuSMV programs to represent the
original and the counter abstracted systems and then run NuSMV to check properties.

In GR&W, we assumed that each process has m local states {L1, . . . , Lm}, where
Lm represents the critical section. Each process can move from Li to Li+1 (i ∈ [1..m-
2]) and return from Lm to L1 freely. The processes are partitioned into d groups,
each of size q, based on their priorities: a process cannot access the critical section
if another process with higher priority is waiting for it. The property we verified was
AG(#Lm ≤ 1). The second example, ASR, is motivated by the drinking philosophers
problem [9]. It exhibits full virtual symmetry induced by the asymmetric sharing of re-
sources, where n processes have different permissions to access r critical resources, and
the number of processes that can be waiting for each resource and using it is bounded.
We checked whether it is possible for all critical resources to be used at the same time,
i.e., EF

(∧
i∈[1..r](#Ci > 0)

)
. The experiments were performed on a Sun Fire V440

server (4@1.3GHz, USPARC3i, 16384M). The results of the direct (NuSMV) and the
counter abstraction-based (Symmetry Reduction with Counter Abstraction) analysis are
summarized in Table 4, where dashes indicate that verification did not complete due to
either memory or time limits. Where appropriate, we separate the checking time into
identifying symmetry (CkSym) and checking the resulting reduced model (ModelCk).
For ASR, we also reported the results of computing the set of reachable states first,
before evaluating the property (the -f option of NuSMV).

The experiments show that counter abstraction provides a significant reduction in
both memory and CPU usage. Memory usage grows slowly with the number of pro-
cesses, which indicates that the method is applicable for systems comprised of a large
number of processes.
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In these examples, the time it took to identify full virtual symmetry was relatively
small. One reason is that the guards depend only on a small number of process groups
and local states. Otherwise, more specialized solvers may be useful. For example, iden-

Table 4. Experimental results for generalized R&W and asymmetric sharing of resources

NuSMV Symmetry Reduction with Counter Abstraction
Parameter BDD Nodes Mem. Time BDD Nodes Mem. Time (sec.)

Allocated (MB) (sec.) Allocated (MB) CkSym ModelCk Total

G
en

er
al

iz
ed

R
&

W

d (q=20, m=10)
5 51,778,281 931 241 25,146 7 0.07 0.27 0.34
10 - - - 31,772 8 0.83 0.53 1.36
15 - - - 38,927 8 5.09 1.26 6.35

m (d=5, q=20)
10 51,778,281 931 241 25,146 7 0.07 0.27 0.34
20 121,392,365 2,041 837 130,891 10 0.07 0.59 0.66
30 - - - 379,336 14 0.07 1.35 1.42

q (d=10, m=20)
10 121,408,515 2,040 742 131,010 10 0.80 0.58 1.38
30 - - - 187,469 12 0.81 24.14 24.95
50 - - - 195,653 13 0.75 67.21 67.96

A
sy

m
m

et
ri

c
Sh

ar
in

g
of

R
es

ou
rc

es

n (r=2)
20 597,911 18 2.11 77,885 8 0.10 0.78 0.88
30 2,443,114 51 8.19 179,389 10 0.10 1.74 1.84
40 8,151,508 151 30.74 427,075 14 0.10 4.35 4.45
80 57,163,279 1,001 2928.81 289,566 18 0.10 36.83 36.93

n (r=3)
20 1,896,771 43 10.39 182,799 10 0.15 1.55 1.70
30 11,503,014 216 78.46 403,628 14 0.15 3.64 3.79
40 44,877,253 782 43108.92 390,715 17 0.15 9.68 9.83
80 - - - 420,347 20 0.15 80.61 80.76

n (r=5)
40 - - - 67,060 19 0.30 28.31 28.61
80 - - - 342,060 39 0.30 279.89 280.19

n (r=10)
40 - - - 484,260 48 3.00 251.87 254.87
80 - - - 671,318 153 3.00 1409.53 1412.53

A
sy

m
.S

ha
ri

ng
of

R
es

ou
rc

es
(r

ea
ch

ab
le

st
at

es
) n (r=2)

20 635,791 19 2.24 5,575 6.9 0.10 0.13 0.23
30 2,557,272 53 8.91 6,589 6.9 0.10 0.14 0.24
40 8,543,329 159 34.47 10,165 7 0.10 0.15 0.25
80 57,375,594 1,006 528.25 18,611 7.2 0.10 0.25 0.35

n (r=3)
20 1,927,302 43 8.07 11,634 7 0.15 0.15 0.30
30 11,591,335 220 61.14 14,616 7.1 0.15 0.18 0.33
40 42,633,638 805 1614.32 21,647 7.3 0.15 0.21 0.36
80 - - - 38,913 7.7 0.15 0.39 0.54

n (r=5)
40 - - - 71,925 8.2 0.30 0.49 0.79
80 - - - 133,034 9.5 0.30 1.03 1.33

n (r=10)
40 - - - 394,722 14 3.00 2.55 5.55
80 - - - 404,477 18 3.00 6.13 9.13
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tifying symmetry of GR&W with d = 100 and q = 20 took us many hours with the
Omega library and only 17 seconds with the pseudo-Boolean solver (PBS) [1].

7 Conclusion and Related Work

The problem of exploiting symmetry reduction in model checking has been studied by
many researchers, e.g., [2,7,10,13]. To extend symmetry reduction to asymmetric sys-
tems, Emerson and his colleagues first proposed “looser” notions of near symmetry
and rough symmetry [11], and finally virtual symmetry [9] which subsumes the previ-
ous two. In this paper, we give an alternative (and simpler) characterization of virtual
symmetry from the perspective of abstraction.

The problem of identifying full symmetry has been avoided by imposing restrictions
on the specification language [11,12,13]. However, lack of regularity in asymmetric
systems makes it difficult to capture the restrictions that ensure full virtual symmetry
syntactically. Emerson et al. proposed a combinatorial condition for checking virtual
symmetry based on counting the missing transitions [9], which seems to require the
construction of the transition relation. With our characterization of virtual symmetry,
we avoid this problem by checking satisfiability of a QFP formula built from the system
description.

To combine full symmetry reduction and symbolic model-checking, Emerson et
al. [11] proposed a generic representatives technique, also known as a counter abstrac-
tion [15]. In this paper, we have extended this technique to fully virtually symmetric
systems. The generic representatives technique was later applied to fully symmetric
systems on processes communicating via shared variables [12], and the experiments
show that it is superior to other methods, such as multiple representatives [7]. We plan
to do the same for fully virtually symmetric systems in the future.

We believe that our techniques have a potential to significantly increase the scope
of systems to which symmetry reduction can be effectively applied. Note that our work
assumed that group counters occurring in a guard are defined only on the source state
(see Section 5). While this did not pose a problem for examples we have tried, we do
not know what the consequences of this restriction are, and would like to explore these
further.

Acknowledgments. We would like to thank Thomas Wahl and anonymous referees for
their useful comments on the paper. This work has been financially supported by the
Ontario Graduate Scholarship, IBM Fellowship and NSERC.
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Abstract. We report on the design and formal verification of a complex proces-
sor supporting address translation by means of a memory management unit
(MMU). We give a paper and pencil proof that such a processor together with
an appropriate page fault handler simulates virtual machines modeling user com-
putation. These results are crucial steps towards the seamless verification of entire
computer systems.

1 Introduction

1.1 The Challenge of Verifying Entire Systems

In the spirit of the famous CLI stack [1] the research of this paper aims at the formal
verification of entire computer systems consisting of hardware, compiler, operating sys-
tem, communication system, and applications. Working with the Boyer-Moore theorem
prover [2] the researchers of the CLI stack project succeeded as early as 1989 to prove
formally the correctness of a system which provided the following components: a non
pipelined processor [3], an assembler [4], a compiler for a simple imperative language
[5], a rudimentary operating system kernel [6] written in machine language. This ker-
nel provided scheduling for a fixed number of processes; each process had the right to
access a fixed interval of addresses in the processor’s physical memory. An attempt to
access memory outside these bounds lead to an interrupt. Interprocess communication
and system calls apparently were not provided.

From 1989 to 2002 to the best of our knowledge no project aiming at the formal ver-
ification of entire computer systems was started anywhere. In [7] J S. Moore, principal
researcher of the CLI stack project, declares the formal verification of a system ‘from
transistor to software level’ a grand challenge problem. A main goal of the Verisoft
project [8] funded by the German Federal Government is to solve this challenge.

This paper makes two necessary steps towards the verification of entire complex
systems. (i) We report about the formal verification of a processor with memory man-
agement units (MMUs). MMUs provide hardware support for address translation; ad-
dress translation is needed to implement address spaces provided by modern operating

� Work partially funded by the German Federal Ministry of Education and Research (BMBF) in
the framework of the Verisoft project under grant 01 IS C38. Work of the second author was
also partially funded by IBM Entwicklung GmbH Böblingen.

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 301–316, 2005.
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systems. (ii) We present a paper and pencil correctness proof for a virtual memory emu-
lation based on a very simple page fault handler. As the formal treatment of I/O devices
is an open problem [7] we state the correctness of a swap memory driver as an axiom.

In companion papers we address the verification of I/O devices, of a compiler for a
C-like language with in-line assembler code, and of an operating system kernel [9–11].

1.2 Overview of This Paper

In Sect. 2 we briefly review the standard formal definition of the DLX instruction set
architecture (ISA) for virtual machines. We emphasize interrupt handling. In Sect. 3 on
physical machines we enrich the ISA by the standard mechanisms for operating system
support: (i) user and system mode; (ii) address translation in user mode. In Sect. 4
we present a construction of a simple MMU and prove its correctness under nontrivial
operating conditions. In pipelined processors separate MMUs are used for instruction
fetch and load / store. In Sect. 5 we show how the operating conditions for both MMUs
can be guaranteed by hardware and software implementation. Sect. 6 gives the main
new arguments of the processor correctness proof under these software conventions. In
Sect. 7 we present a simple page fault handler. We show that a physical machine with
this handler emulates a virtual machine. In Sect. 8 we conclude and sketch further work.

1.3 Related Work

The processor verification presented here extends work on the VAMP presented in
[12,13]. The treatment of external interrupts is in the spirit of [14,15]. Formal proofs
are in PVS [16] and—except for limited use of its model checker—interactive. All for-
mal specifications and proofs are on our website.1 We stress that some central lemmas
in [12,14] (e.g. on Tomasulo schedulers) have similar counterparts that can be proven
using the rich set of automatic methods for hardware verification. How to profit from
these methods in correctness proofs of entire processors continues to be an amazingly
difficult topic of research. Some recent progress is reported in [17].

As for the new results of this paper: we are not aware of previous work on the verifi-
cation of MMUs. We are also not aware of previous theoretical work on the correctness
of virtual machine simulations.

2 Virtual Machines

2.1 Notation

We denote the concatenation of bit strings a ∈ {0, 1}n and b ∈ {0, 1}m by a ◦ b. For
bits x ∈ {0, 1} and positive natural numbers n ∈ N

+ we define inductively x1 = x and
xn = xn−1 ◦ x. Thus, for instance 05 = 00000 and 12 = 11.

Overloading symbols like + , · , and < we will allow arithmetic on bit strings
a ∈ {0, 1}n. In these cases arithmetic is binary modulo 2n (with nonnegative repre-
sentatives). We will consider n = 32 for addresses or registers and n = 20 for page
indices.

1 http://www-wjp.cs.uni-sb.de/forschung/projekte/VAMP/
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Table 1. Special purpose registers. Indices 01100 to 01111 are not assigned.

Address Name Meaning

00000 SR Status register
00001 ESR Exception status reg.
00010 ECA Exception cause reg.
00011 EPC Exception PC
00100 EDPC Exception DPC
00101 Edata Exception data
00110 RM Rounding mode

Address Name Meaning

00111 IEEEf IEEE flags
01000 FCC Floating point (FP)

condition code
01001 pto Page table origin
01010 ptl Page table length
01011 Emode Exception mode
10000 mode Mode

We model memories m as mappings from addresses a to byte values m(a). For
natural numbers d we denote by md(a) the content of d consecutive memory cells
starting at address a, so md(a) = m(a+d−1)◦ · · · ◦m(a). For d = 4K = 212 and a a
multiple of 4K, we call md(a) a page and 4K the page size. We split virtual addresses
va = va[31 : 0] into page index va.px = va[31 : 12] and byte index va.bx = va[11 :
0]. Thus, va = va.px ◦ va.bx . For page indices px and memories m we abbreviate
page(m, px ) = m4K(px ◦ 012).

2.2 Specifying the Instruction Set Architecture

Virtual machines are the hardware model visible for user processes. Its parameters are:

– The number V of pages of accessible virtual memory. This defines the set of acces-
sible virtual addresses VA = {a | 0 ≤ a < V · 4K}.

– The number e ∈ N of external interrupt signals.
– The set VSA ⊆ {0, 1}5 of addresses of user visible special purpose registers. Ta-

ble 1 shows the entire set of special purpose registers that will be visible for a phys-
ical machine. For the virtual machine only the registers RM , IEEEf , and FCC
will be visible. Hence VSA = {00110, 00111, 01000}.

– The status register SR ∈ {0, 1}32. This is the vector of mask bits for the interrupts.

Formally, the configuration of a virtual machine is a 7-tuple cV = (cV.PC , cV.DPC ,
cV.GPR, cV.FPR, cV.SPR, cV.vm , cV.p) with the following components:

– The normal program counter cV.PC ∈ {0, 1}32 and the delayed program counter
cV.DPC ∈ {0, 1}32, used to implement the delayed branch mechanism (cf. [15]).

– The general purpose register file cV.GPR : {0, 1}5 → {0, 1}32, the floating point
register file cV.FPR : {0, 1}5 → {0, 1}32, and the special purpose register file
cV.SPR : VSA → {0, 1}32.

– The byte addressable virtual memory cV.vm : VA → {0, 1}8.
– The write protection function cV.p : {va.px | va ∈ VA} → {0, 1}. Virtual ad-

dresses in the same page have the same protection bit.

Let CV be the set of virtual machine configurations. An instruction set architecture
(ISA) is formally specified as a transition function δV : CV × {0, 1}e → CV mapping
configurations cV ∈ CV and a vector of external event signals eev ∈ {0, 1}e to the next
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configuration c′V = δV(cV, eev). For the DLX instruction set we outline the formal
definition of this function emphasizing interrupt handling.

The instruction I(cV) = cV.vm4(cV.DPC ) to be executed in configuration cV is
found in the four bytes in virtual memory starting at the address of the delayed PC.
The opcode opc(cV) = I(cV)[31 :26] consists of the leading six bits of the instruction.
Many instructions can be decoded just from the opcode, e.g. a load word instruction is
recognized by lw(cV) = (opc(cV) = 100011). The type of an instruction determines
how the bits outside the opcode are interpreted. For instance, if the opcode consists of
all zeros we have an R-type instruction, R-type(cV) = (opc(cV) = 06). Other instruc-
tion types are defined in a similar way. Depending on the instruction type the register
destination address RD(cV) is found at different positions in the instruction, namely
RD(cV) = I(cV)[15 : 11] if R-type(cV) and RD(cV) = I(cV)[20 : 16] otherwise.
Similarly, one can define register source addresses RS1 (cV) and RS2(cV), the sign
extended immediate constant simm(cV), etc. The effective address of a load / store in-
struction is computed as the sum of the general purpose register addressed by RS1 (cV)
and the sign extended immediate constant, ea(cV) = cV.GPR(RS1 (cV))+simm(cV).
A load word instruction reads four bytes of virtual memory starting at address ea(cV)
into the general purpose register addressed by RD(cV). This can be expressed by equa-
tions like lw (cV) =⇒ (c′V.GPR(RD(cV)) = cV.vm4(ea(cV))).

Components of the configuration that are not listed on the right-hand side of the
implication are meant to be unchanged. This definition, however, ignores both internal
and external interrupts; therefore even for virtual machines it is an oversimplification.

2.3 Interrupts

We define a predicate JISR(cV, eev) (jump to interrupt service routine) depending on
both the current configuration cV and the current values eev ∈ {0, 1}e of the external
interrupt event signals. Only if this signal stays inactive does the above equation hold,
so (¬JISR(cV, eev) ∧ lw(cV)) =⇒ (c′V.GPR(RS1 (cV)) = cV.vm4(ea(cV))).

For physical machines an activation of the JISR signal has a well defined effect on
the program counters and the special purpose registers. The effect on virtual machine
computations however is that control is handed over to the operating system kernel.
This effect can only be defined in a model that includes the operating system kernel.2

For the definition of signal JISR(cV, eev) for physical machines, we consider the
32 interrupts from Table 2 with indices j ∈ IP = {0, . . . , 31}. For virtual machines
we ignore page fault interrupts, thus we only consider j ∈ IV = IP \ {3, 4}. The
activation of signal JISR(cV, eev ) can be caused by the activation of external interrupt
lines eev [j] or internal interrupt event signals iev (cV)[j]. We define the cause vector by
ca(cV, eev)[j] = eev [0] for j = 0, by ca(cV, eev)[j] = eev [j−12] for j > 0 external,
and by ca(cV, eev)[j] = iev(cV)[j] otherwise.

Formally, external interrupts are input signals for the next state computation while
internal interrupts are functions of the current configuration. E.g. a definition of the
misalignment signal is

mal(cV) = iev(cV)[2] = ¬(4 | cV.DPC ) ∨ (ls(cV) ∧ ¬(d(cV) | ea(cV)))
2 We do not treat this further; see the (german) lecture notes [18] or [9] for details.
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Table 2. Interrupts

j Name Meaning Mask. Ext.

0 reset Reset No Yes
1 ill Illegal instruction No No
2 mal Misaligned access No No
3 pff Page fault on fetch No No
4 pfls Page fault on load / store No No
5 trap Trap No No
6 xovf Fixed point overflow Yes No

j Name Meaning Mask. Ext.

7 fovf FP overflow Yes No
8 funf FP underflow Yes No
9 finx FP inexact result Yes No
10 fdbz FP division by zero Yes No
11 finv FP invalid operation Yes No
12 ufop Unimpl. FP operation No No
>12 io[j] Device interrupt j−12 Yes Yes

with u | v indicating divisibility, ls(cV) indicating the presence of a load / store instruc-
tion, and d(cV) ∈ {1, 2, 4, 8} indicating its memory access width in bytes.

For virtual machines, but not for physical machines, reading or writing special pur-
pose registers other than RM , IEEEf , and FCC is illegal. Reading or writing these
registers is achieved with commands movi2s or movs2i; the register address is given
by the instruction field SA(cV) = I(cV)[10 : 6]. Thus the illegal instruction signal
ill(cV) = iev (cV)[1] has an implicant (movi2s(cV)∨movs2i(cV))∧(SA(cV) /∈VSA).

The interrupt cause for a maskable interrupt j is ignored if the associated status
register bit SR[j] is zero. So, we define the masked vector mca by mca(cV, eev )[j] =
ca(cV, eev) ∧ cV.SR[j] for j maskable and mca(cV, eev)[j] = ca(cV, eev) otherwise.
An interrupt occurs if at least one masked cause bit is on; so, JISR(cV, eev) = 1 iff
there exists j ∈ IV with mca(cV, eev)[j] = 1.

3 Physical Machines

Physical machines are the sequential programming model of the hardware as seen by
the programmer of an operating system kernel. Compared with virtual machines, more
details are visible in configurations cP ∈ CP of physical machines.

– All special purpose registers are visible. Formally cP.SPR : PSA → {0, 1}32

with PSA ⊆ {0, 1}5 consisting of the addresses in Table 1. We abbreviate cP.x =
cP.SPR(x) where x is the name of a special purpose register.
The mode register cP.mode distinguishes between system mode (cP.mode = 0)
and user mode. In system mode accessing special purpose registers is legal.

– Page faults are visible; in the definition of JISR the full set of indices IP is used.
– For physical machines the next state δP(cP, eev) is defined also for an active signal

JISR(cP, eev), starting execution of the interrupt service routine (ISR) in system
mode. See [15] for details. In system mode physical machines can legally execute
an rfe (return from exception) instruction.

– Instead of a uniform virtual memory the (system) programmer now sees two mem-
ories: physical memory cP.pm and swap memory cP.sm .

– In user mode accesses to physical memory are translated.

In the remainder of this section we specify a single-level translation mechanism and
model I/O operations with the swap memory.
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ppx[19 : 0] pv · · ·

Fig. 1. Page Table Entry

3.1 Address Translation

In user mode, i.e. if cP.mode = 1, memory accesses to virtual addresses va = cP.DPC
and va = ea(cP) are subject to address translation: they either cause a page fault or are
redirected to the translated physical memory address pma(cP, va).

Let us define pma(cP, va) first. The page table entry address for virtual address
va is defined as ptea(cP, va) = cP.pto · 4K + 4 · va.px and its page table entry
is defined as pte(cP, va) = cP.pm4(ptea(cP, va)). As shown in Fig. 1, the page ta-
ble entry is composed of three components, the physical page index ppx (cP, va) =
pte(cP, va)[31 : 12], the valid bit v(cP, va) = pte(cP, va)[11], and the protection bit
p(cP, va) = pte(cP, va)[10]. We define the physical memory address by concatenating
the physical page index and the va’s byte index pma(cP, va) = ppx (cP, va) ◦ va.bx .

For the definition of page faults, let the flag w ∈ {0, 1} be active for write op-
erations. The page fault flag pf (cP, va, w) is set if (i) the virtual page index va.px
is greater or equal the number of accessible pages V = cP.ptl + 1, (ii) the valid bit
v(cP, va) is false, or (iii) the write flag w and the protection bit p(cP, va) are active,
indicating a write attempt to a protected page. So, overall pf (cP, va, w) = (va.px ≥
V )∨¬v(cP, va)∨w ∧ p(cP, va). Thus, all entries pte(cP, va) with pf (cP, va, w) = 0
are located in the page table PT (cP) = cP.pm4·V (cP.pto ◦ 012).

A page fault on fetch occurs if pff (cP) = cP.mode ∧ pf (cP, cP.DPC , 0). In the
absence of such a fault, we define the instruction word by I(cP) = cP.pm4(iaddr (cP))
where iaddr (cP) = pma(cP, cP.DPC ) in user mode and iaddr (cP) = cP.DPC oth-
erwise. Let ls(cP) and s(cP) indicate the presence of a load / store resp. a store in-
struction. In the absence of a page fault on fetch, a page fault on load / store occurs if
pfls(cP) = cP.mode ∧ ls(cP) ∧ pf (cP, ea(cP), s(cP)).

Multi-level address translation can be formally specified similarly, see e.g. [19].

3.2 Modeling an I/O Device

In order to handle page faults, one has to be able to transfer pages between the physical
memory cP.pm and the swap memory cP.sm, implemented with an I/O device. For a
detailed (minimal) treatment of this process four things are necessary:

1. Define I/O ports as a portion of memory shared between the CPU and the device.
2. Specify the detailed protocol of the I/O devices.
3. Construct a driver program, say, with three parameters passed on (distinct) fixed

addresses in physical memory: a physical page index ppxp(cP), a swap memory
page index spxp(cP), and a physical-to-swap flag p2s(cP) indicating whether the
page transfer is from physical to swap memory (p2s(cP) = 1) or vice versa.

4. Show: if the driver is started in configuration cP and never interrupted, it eventually
reaches a configuration c′P with
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CD.dout[63 : 0]

CD.din[63 : 0]

CD.addr[28 : 0]

CI.dout[63 : 0]

CI.addr[28 : 0]

MICPU

Fig. 2. Memory Interface Fig. 3. Timing Diagrams for Read Accesses

page(c′P.sm , spxp(cP)) = page(cP.pm, ppxp(cP)) if p2s(cP) = 1 ;

page(c′P.pm, ppxp(cP)) = page(cP.sm, spxp(cP)) if p2s(cP) = 0 .

5. Furthermore show: (i) program control returns to the location of the call of the
driver, (ii) except for certain book keeping information no other parts of the config-
uration change, and (iii) the driver never leaves its own code region.

Here, we assume the existence of a correct driver as an axiom; in [11] we deal with this
problem on a fundamental level.

4 Construction and Local Correctness of MMUs

We refer to the hardware configuration by h. Its components are registers h.R, often
shortly written as R. For cycles t and hardware signals or registers x we denote by xt

the value of x during cycle t.

4.1 Memory Interface

We construct MMUs for processors with two first level caches, an instruction cache CI
for fetches and a data cache CD for load / store instructions. Thus the CPU commu-
nicates with the memory system via two sets of busses: one connecting the CPU with
the instruction cache and the other one with the data cache (data bus width is 64 bits,
cf. Fig. 2). We use the same protocol for both busses. Examples of the protocol are
shown in Fig. 3 for a read access with and without a cache hit. The properties of the bus
protocol are:

1. Accesses last from the activation of a request signal (in the example mr ) until the
busy signal is turned off. Optimally, this happens in the same cycle.

2. Read and write requests may not be given simultaneously: ¬(mr ∧ mw)
3. During an access, CPU inputs to the memory system must be kept stable.
4. Liveness: if Conditions 2 and 3 are fulfilled, every access eventually ends.

The memory system satisfies shared memory semantics: for cycles t, for 0 ≤ b < 8,
and addresses a we define lastb(a, t) as the last cycle t′ before t, when a write access to
byte b of address a ended (necessarily via the data cache). Now assume a read access to
cache X with address a ends in cycle t. Then the result on bus X.dout is X.dout t[8 ·
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Fig. 4. MMU Datapaths and Control Automaton.

Fig. 5. Processor and MMUs

b + 7 : 8 · b] = CD .din lastb(a,t)[8 · b + 7 : 8 · b]. This definition permits to define the
state of the two port memory system m(h) at time t by m(ht)(a · 8 + b) = CD .dinu

where u = lastb(a, t). For a formal and complete version of this definition (including
initialization), the construction of a split cache system, and a transcript of a formal
correctness proof, see [13–Pages 1–110]. Guaranteeing that the CPU keeps inputs stable
(Condition 3) during all accesses (even when an interrupt is detected deeper down in
the pipeline) requires the construction of stabilizer circuits for both ports of the memory
system. For details see [13–Section 4.4].

4.2 MMU Construction and Operating Conditions

Figure 4 shows datapaths and control automaton of a simple non-optimized MMU im-
plementation. Two copies of this MMU are placed between the CPU and the caches as
shown in Fig. 5. In user mode this MMU will only perform address translation under
non trivial operating conditions. Consider an access of the CPU to the MMU lasting
from a start cycle ts to an end cycle te ≥ ts . We have to require that no signal or
register x from the groups below changes during the access, so xt = xts holds for
ts ≤ t ≤ te.

G1. Inputs from the CPU to the MMU; these are p.dout , p.addr , p.mr , and p.mw .
G2. The CPU registers h.mode , h.pto, and h.ptl relevant for translation.
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G3. In case of a translated access the page table entry used for translation, the shared
memory content m(h)4(ptea) with ptea = h.pto · 4K + 4 · p.addr .px .

G4. For reads with physical address pa , the shared memory content m(h)8(pa).

Analogous to Sect. 3.1 one can define for hardware configurations h and virtual ad-
dresses va a page table entry address ptea(h, va), a page table entry pte(h, va), and
a physical memory address pma(h, va). Note that under the operating conditions the
virtual address va , the translation pma(h, va), and, for reads, the data read from the
memory stay the same during the whole access.

Assuming these operating conditions, the MMU’s correctness proof is relatively
straightforward. Guaranteeing them will be a considerably tougher issue.

4.3 Local MMU Correctness

There is an obvious case split on the kind and result of the access: (i) read / write,
(ii) translated / untranslated, (iii) with / without exception. For each of the cases two
lemmas about the control and the datapath of the MMU have to be proven. The proofs
of these lemmas are easy and not given here. For example, the next two lemmas state
the correctness for a translated read without exception. In this case, the page table entry
and the memory operand are read in states readpte and read resp. By s+ we denote the
fact that the control stays in state s until the busy signal is taken away by the cache.

Lemma 1. For a translated read without exception the path through the control au-
tomaton is idle → add → readpte+ → comppa → read+ → idle .

Lemma 2. The result p.din te of a translated read without exception from a virtual
address va = p.addr ts ◦ 03 is p.dout te = m(hts)8(pma(hts , va)).

5 Guaranteeing the Operating Conditions

Stable inputs from the CPU to the MMUs (Condition G1) can be guaranteed by us-
ing stabilizer circuits similar to those mentioned in Sect. 4.1. Condition G4 for loads
can be guaranteed if stores are performed in-order by the memory unit. Guaranteeing
the remaining operating conditions (Conditions G2, G3, and G4 for fetch) requires a
software convention and a hardware construction.

5.1 Software Synchronization Convention

Consider sequential computations of the physical machine (c0
P, c1

P, . . .). Formally, for
all steps i we have ci+1

P = δP(ci
P, eev i). Recall that for such machines the instruction

address iaddr (cP) depends on cP.mode (cf. Sect. 3.1) and the instruction I(cP) fetched
in configuration cP is defined as I(cP) = cP.pm4(iaddr (cP)).

We define an instruction as synchronizing if the pipeline of the processor is drained
before the (translation of the) fetch of the next instruction starts. The VAMP processor
already has such an instruction, namely a movs2i instruction with IEEEf as source.3

3 This instruction reads the floating point interrupts accumulated so far.
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We now also define the rfe instruction as synchronizing and let the predicate sync(cP)
indicate that instruction I(cP) is synchronizing.

Synchronizing instructions must be used to resolve RAW hazards for instruction
fetch to prevent modification of an instruction in a pipelined machine after it has al-
ready been (pre-) fetched. Formally, let u < w be two instruction indices. We require
the existence of an index v with u < v < w and sync(cv

P) under the following two
conditions: 1. If I(cu

P) writes to iaddr (cw
P). 2. If I(cu

P) writes to the page table entry at
address ptea(cw

P .DPC) that is read for user mode instruction fetch. The first condition
is already needed in pipelined machines without address translation [12,14].

Clearly, Condition 1 addresses operating condition G4 in case of a fetch, whereas
Condition 2 addresses G3. In hardware one has to address operating condition G2 and
to implement pipeline drain once a synchronizing instruction is decoded.

5.2 Hardware Mechanisms for Synchronization

The VAMP processor has a two stage pipeline for instruction fetch and instruction de-
code, followed by a Tomasulo scheduler. For details see [12,13,20]. Thus, there are
many register stages S, e.g. IF for instruction fetch and ID for instruction decode.

The clocking and stalling of individual stages is achieved by a stall engine. For an
introduction to stall engines see [15]; for improvements see [13,20]. Three crucial data
structures / signals are associated with each stage S in the stall engine:

1. The full bit fullS is on if stage S has meaningful data. Clearing it flushes the stage.
2. The local busy signal busyS is on if the circuits with inputs from register stage S

do not produce meaningful data at the end of a cycle.
3. The update enable signals ueS is like a clock enable signal. If ueS is active in a

cycle, the stage S receives new data in the next cycle.

Let busy ′
IF be the busy signal of the instruction fetch stage of the VAMP without

MMUs. We define a new busy signal by busyIF (h) = busy ′
IF (h) ∨ ¬fetch(h) where

the signal fetch(h) is almost the read signal for the instruction MMU (as noted before,
the read signal of the instruction MMU is stabilized to satisfy G1).

Signal fetch is turned on if (i) no instruction changing registers pto, ptl and mode
is in progress and (ii) no synchronizing instruction is in decode. Instructions in progress
can be in the instruction decode stage, i.e. in its instruction register I , or they are issued
but not completed, thus they are in the Tomasulo scheduler and its data structures. In
a Tomasulo scheduler an instruction in progress which changes a register r from a
register file is easily recognized by an inactive valid bit r.v. Thus we define fetch(h) =
h.pto.v ∧ h.ptl .v ∧ h.mode.v ∧ fetch ′(h) where function fetch ′(h) has to take care of
instructions in the decode stage. Using predicates like rfe() which are already defined
for configurations also for the contents of the instruction register, we define

fetch ′(h) = ¬(h.full ID ∧ (sync(I ) ∨ movi2s(I ) ∨ rfe(I ))) .

In the VAMP processor synchronizing instructions stay in the instruction decode
stage until they can immediately proceed to the write-back stage.
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6 Processor Correctness

6.1 Correctness Criteria

We are using correctness criteria based on scheduling functions from [13,14,15,20].
Register stages S of the hardware configuration h come in three flavours:

– Visible stages (with respect to the physical machine from Section 3): these stages
are (i) PCs with the program counters h.PC , h.DPC , (ii) RF with the register
files h.GPR, h.SPR, and h.FPR, (iii) stage mem ′ with the specified memory. This
memory is not represented directly by hardware registers; instead it is simulated by
the memory system with caches with the function m(h) (cf. Sect. 4.1).

– Invisible stages: the registers of these stages store intermediate results used in the
definition of the sequential physical machine. Stage ID with the instruction register
h.IR stores values I(cP), stage mem with the address input register h.PD .addr for
the data MMU stores ea(cP), etc.

– Stages from the data structures of the Tomasulo scheduler.

We map hardware stages S and hardware cycles t to instruction numbers i via the
scheduling function sI . Assume sI (S, t) = i. The intention is to relate the contents of
the registers in stage S in hardware configuration ht to the physical machine configura-
tion ci

P (and its derived components). We distinguish the following cases.
For visible registers R from stages S �= mem ′ we require ht.R = ci

P.R. Thus the
specified value of visible hardware register R in cycle t is the same as the value of R in
the specification machine before execution of the i-th instruction. Similarly, we require
for the stage S = mem ′ that m(ht) = ci

P.pm and for invisible registers R in stage S
that ht.R = R(ci

P). Specific correctness criteria are used for the data structures of the
Tomasulo scheduler. For details see [20].

The three main definitions for scheduling functions that make this work are: (i) In-
order fetch: The fetch scheduling function is incremented if the instruction decode stage
receives a new instruction, sI (fetch , t + 1) = sI (fetch , t) + 1 for uet

ID = 1, and stays
unchanged otherwise. (ii) The scheduling of a stage S′ that is not updated does not
change. Hence, uet

S′ = 0 implies sI (S′, t + 1) = sI(S′, t). (iii) If data is clocked
in cycle t from stage S to S′ we set sI (S′, t + 1) = sI (S, t) + 1 if S′ is visible and
otherwise sI (S′, t + 1) = sI (S, t).

Thus intuitively an instruction number i = sI (S, t) accompanies the data through
the pipeline; upon reaching a register in a visible stage S′ however, the register receives
the value after the i-th instruction, i.e. before instruction (i + 1).

6.2 Correctness Proof with External Interrupt Signals

In general pipelined processors do not finish execution of one instruction per cycle. As
there are more cycles t than instructions i there are necessarily more external interrupt
events signals eev t

h at the hardware level than event signals eev i seen by the sequential
physical machine. For the computation of the latter, given as ci+1

P = δP(ci
P, eev i), one
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has to define the interrupt signals eev i seen by the physical machine from the signals
eev t

h seen by the hardware machine. This has already been observed in [14,15].
The VAMP processor, as most processors with Tomasulo schedulers, samples ex-

ternal interrupt signals in the write-back stage. Each instruction i is in this stage only
for a single cycle. Call this cycle t = WB(i). The correctness proof then works with
eev i = eev t

h. It is a matter of protocol between processor and devices that no harm
comes from that, i.e. no interrupts are lost [11].

6.3 Correctness Proof

We give the new part of the VAMP correctness proof for a translated instruction fetch
without exceptions. The other new cases are handled similarly. Thus consider a trans-
lated read access on the instruction port of the CPU lasting from cycle ts to cycle te.
Let i = sI (fetch, ts) and let t ∈ {ts, . . . , te} be any cycle of the access. Let us abbre-
viate the address of the double word containing instruction I(ci

P) by va := ci
P.DPC

[31 : 3] ◦ 03. From program counter correctness we conclude that in cycle t the address
bus of the instruction MMU holds the (upper 29 bits) of va, so PI .addr (ht) = va
[31 :3].

Let i1 = sI (RF , t) ≤ i be the instruction in the register file stage in cycle t. By
the construction of the fetch signal all instructions x < i that update a special purpose
register R ∈ {pto, ptl ,mode} have already left the pipe at cycle ts (also no instruction
x > i can enter the pipe while instruction I(ci

P) is being fetched). By additionally using
the correctness criterion for R, we may conclude for t as above that ci

P.R = ci1
P .R =

ht.R and hence pa1 := ptea(ci
P, va) = ptea(ht, va).

Let i2 = sI (mem ′, t). By Condition 2 of the software sync-convention all instruc-
tions x < i that write to the address pa1 have left the pipe already at cycle ts. Using
correctness of the memory stage we get ci

P.pm4(pa1) = ci2
P .pm4(pa1) = m(ht)4(pa1)

and therefore pa2 := pma(ci
P, va) = pma(ht, va). By Condition 1 of the software

sync-convention all instructions that write to the physical memory address pa2 have
left the pipe at cycle ts . As above we get ci

P.pm8(pa2) = ci2
P .pm8(pa2) = m(ht)8

(pa2).
Hence the operating conditions for the MMU are fulfilled and at time te it returns

the double word PI .dout(hte) = m(hts)8(pa2) = ci
P.pm8(pa2). By selecting the

appropriate half of this double word via bit 2 of the delayed program counter, at the end
of cycle te we clock I(ci

P) into the instruction register I . Since sI (ID , te + 1) = i, we
have shown hardware correctness for the considered case:

Lemma 3. hte+1.I = I(ci
P) = I(csI (ID,te+1)

P )

7 Virtual Machine Simulation

In this section we outline an informal proof that a physical machine with a page fault
handler can simulate virtual machines (here: only a single one). Making these argu-
ments precise is not trivial; we give some details in Sect. 8.

We extend the definitions of physical page index ppx (cP, va) and valid bit v(cP, va)
to page indices by ppx (cP, px ) = ppx (cP, px ◦ 012) and v(cP, px ) = v(cP, px ◦ 012).
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cP .pm
abase + aabase

Fig. 6. Memory Map. Addresses are given as page indices.

7.1 Memory Map of the Physical Machine

We partition the physical memory cP.pm into user memory and system memory, cf.
Fig. 6. Addresses below abase · 4K are used by the page fault handler and the swap
memory driver. Starting at address abase · 4K we allocate a > 1 pages of user mem-
ory with indices UP = {a′ ∈ {0, 1}20 | abase ≤ a′ < abase + a}. Likewise, we
have a swap page index sbase and use sma(va) = sbase · 4K + va to store va on
swap.

We list below the data structures used by the handler and some invariants:

– A process control block PCB to save the registers of the virtual processor.
– The page table PT as defined by the address translation mechanism (Sect. 3.1).
– The physical page index MRL of the most recently loaded page.
– A variable b ∈ {−1, . . . , a − 1} and an array D of size a holding virtual page in-

dices. User page indices 0 ≤ u ≤ b we call full; we require for them v(cP, D[u])∧
ppx (cP, D[u]) = abase+u and D[u] < V where V = cP.ptl +1 denotes the num-
ber of accessible virtual pages. Otherwise, for b < u < a we require ¬v(cP, D[u]).
Hence, valid translations map to the user memory, which is of crucial importance.

– Parameters ppxp, spxp, and p2s of the swap memory driver (cf. Sect. 3.2).

7.2 Simulation Relation

For virtual machine configurations cV and physical machine configurations cP we de-
fine a simulation relation B(cV, cP) stating that cP encodes cV. We require that the
invariants of the previous subsection hold for the physical machine and that the phys-
ical machine is in user mode (cP.mode = 1). Furthermore: (i) The write protection
function is encoded in the protection bits of the page tables. Formally, for all vir-
tual addresses va we require cV.p(va) = p(cP, va). (ii) The user memory acts as
a (write-back) cache for the swap memory. For virtual page indices px we require
page(cV.vm , px ) = page(cP.pm , ppx (cP, px )) if v(cP, px ) and page(cV.vm , px ) =
page(cP.sm, sbase + px ) otherwise.

Lemma 4 (Step lemma). Let cV and cP be as above, assume no page fault in configu-
ration cP. Then, without external interrupts B(cV, cP) =⇒ B(δV(cV, 0e), δP(cP, 0e)).

7.3 Page Fault Handler and Software Conditions

We describe a very simple handler that is never interrupted itself. Thus the handler
needs only to save the general purpose registers of the physical processor into the PCB.
Via the exception cause ECA we determine, if a page fault occurred. For page fault on
fetch, ECA[3 : 0] = 103; for page fault on load / store, ECA[4 : 0] = 104. The virtual
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address xva causing the page fault is xva = EDPC in the former case, xva = EDATA
else. It is easy to deal with page table length or protection exceptions: we stop the sim-
ulation. Thus assume a page fault occurred in a configuration cP because the exception
virtual page was invalid. Moreover assume B(cV, cP) for a virtual machine config-
uration cV. From this we get page(cP.sm, sbase + xv) = page(cV.vm, xv) where
xv = xva.px .

If b < a, not all user pages are full. We increment b and let e = abase + b denote
the physical page index where we later swap in the exception virtual page.

Otherwise, a victim physical page index vp must be selected from the user pages.
The most recently loaded page is never chosen to avoid deadlock, so vp ∈ UP\{MRL}.
Let vp = abase + u. Using the table D we determine the matching victim virtual page
index vv = D[u] of the virtual page stored at physical page vp. Because B(cV, cP)
holds and ppx (cP, vv) = abase + u = vp we have

page(cV.vm, vv) = page(cP.pm, ppx (cP, vv)) = page(cP.pm , vp) .

We copy the victim page to swap memory by running the driver with parameters (ppxp,
spxp, p2s) = (vp, sbase+vv , 1). Then we clear the valid bit of page vv , reaching a con-
figuration c′P with v(c′P, vv) = 0 and page(c′P.sm, sbase + vv ) = page(cP.pm, vp) =
page(cV.vm , vv). Thus, the simulation relation B(cV, c′P) still holds. We set e = vp.

Now we swap in the exception virtual page to the physical page with index e
by running the driver with parameters (ppxp, spxp, p2s) = (e, sbase + xv , 0). We
end up in a configuration c′′P with page(c′′P.pm , e) = page(cP.sm , sbase + xv) =
page(cV.vm , xv). Then we update the page table entry of xv and the data structures by
v(c′′′P , xv) = 1, by ppx (c′′′P , xv) = e, by D[e−abase] = xv , and by MRL = e in a later
configuration c′′′P . Thus, B(cV, c′′′P ) and the invariants hold for c′′′P . Finally, the handler
restores the user registers from the PCB and executes an rfe instruction. By inspection
of the handler we see that the software sync-convention holds.

7.4 Simulation Theorem

Theorem 1. For all computations (c0
V, c1

V, . . .) of the virtual machine there is a compu-
tation (c0

P, c1
P, . . .) of the physical machine and there are step numbers (s(0), s(1), . . .)

such that for all i and S = s(i) we have B(ci
V, cS

P).

Proof. We prove the claim by induction on i. We assume that the initialization code
establishes after a certain number of steps S = s(0) that b = −1, all virtual pages are
invalid and stored in swap memory, and the simulation relation B(c0

V, cS
P) holds.

Concluding from i to i + 1, we examine the configuration after the next non-page-
faulting user step. We set s(i + 1) = min{s′ ≥ s(i) | cs′

P .mode ∧ ¬pfls(cs′
P ) ∧

¬pff (cs′
P )} + 1. The minimum always exists since the victim page of a page fault

is not the page swapped in for the previous page fault. Thus, there are zero to two
page faults from steps s(i) to s(i + 1) − 1; for s(i + 1) = s(i) + 1 one step of
the virtual machine is simulated in one step of the physical machine. The theorem’s
claim is implied by page fault handler correctness and the step lemma (Sects. 7.2
and 7.3).
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8 Summary and Further Work

We have presented two main results. First, we have reported on the formal verifica-
tion of the VAMP with (simple) MMUs (Sects. 4 to 6). The correctness proof for
an MMU alone is simple, but depends on nontrivial operating conditions. Guarantee-
ing these requires a variety of arguments, from intricate arguments about the hard-
ware (e.g. Sect. 5.2) to the format of page fault handlers (Sect. 7.3). Second, argu-
ing on low level software we have shown that physical machines with suitable page
fault handlers simulate virtual machines. Since operating systems support multitasking
and virtual memory, these results are crucial steps towards verifying entire computer
systems.

Presently we see three directions for further work. (i) The formal verification of
processors with memory-mapped I/O devices, pipelined MMUs, multi level translation
and translation look aside buffers. A mathematical model of a hard disk can be found
in [11]. (ii) The formal proof of our virtual memory simulation theorem. This is part of
an ongoing effort to verify an entire operating system kernel in the Verisoft project [8].
Mathematical proofs can be found in [18]. (iii) The verification of memory manage-
ment mechanisms for shared memory multiprocessors. The thesis [19] contains such
results.

References

1. Boyer, R.S., ed.: Special issue on system verification. (JAR) 5 (1989)
2. Boyer, R.S., Moore, J S.: A Computational Logic Handbook. Academic Press (1988)
3. Hunt, W.A.: Microprocessor design verification. In JAR [1] 429–460
4. Moore, J S.: A mechanically verified language implementation. In JAR [1] 461–492
5. Young, W.D.: A mechanically verified code generator. In JAR [1] 493–518
6. Bevier, W.R.: Kit and the short stack. In JAR [1] 519–530
7. Moore, J S.: A grand challenge proposal for formal methods: A verified stack. In Aichernig,

B.K., Maibaum, T.S.E., eds.: 10th Colloquium of UNU/IIST ’02, Springer (2003) 161–172
8. The Verisoft Consortium: The Verisoft Project. http://www.verisoft.de/ (2003)
9. Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of operating

system kernels. In Hurd, J., Melham, T., eds.: TPHOLs ’05. LNCS, Springer (2005)
10. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0 compiler: Code

generation and implementation correctness. In Aichernig, B., Beckert, B., eds.: SEFM ’05,
IEEE Computer Society (2005)

11. Hillebrand, M., In der Rieden, T., Paul, W.: Dealing with I/O devices in the context of
pervasive system verification. In: ICCD ’05, IEEE Computer Society (2005) To appear.
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Abstract. We propose a heuristic-based method for discovering induc-
tive invariants in the parameterized verification of safety properties. The
promise of the method stems from powerful heuristics we have identi-
fied for verifying the cache coherence of directory based protocols. The
heuristics are based on syntactic analysis of counterexamples generated
during verification, combined with simple static analysis of the predicates
involved in the counterexamples to construct and refine inductive invari-
ants. The heuristics were effective in filtering irrelevant predicates as well
as keeping the sizes of the generated inductive invariants small. Contribu-
tions are: (i) the method is an efficient strategy for discovering inductive
invariants for practical verification; (ii) the heuristics scaled smoothly
from two small to one large cache coherence protocol (of complexity simi-
lar to commercial cache coherence protocols); (iii) the heuristics generate
relevant auxiliary invariants which are easily verifiable in few seconds;
and (iv) the method does not depend on special verification frameworks
and so can be adapted for other verification tools. The case studies in-
clude German, FLASH, and a new protocol called German-Ring. The
properties verified include mutual exclusion and data consistency.

1 Introduction

Parameterized verification methods—which verify systems comprised of multi-
ple identical components for an arbitrary number of these components—are of
growing importance in formal verification. Most parameterized verification tech-
niques for safety properties (such as cache coherence) are based on discovering
inductive invariants. Despite the large amount of research conducted in this area,
there is no general-purpose inductive invariant discovery method that has been
shown to be uniformly good across a spectrum of examples. High-level descrip-
tions of large systems contain enough state variables that even after applying
common reduction strategies, such as symmetry reduction, abstraction, and effi-
cient fixpoint computation algorithms, the system is far too large for automated
verification methods—let alone parameterized methods. Practical verification
therefore demands some kind of symbiotic interaction between the user and the
automated verification machinery to construct invariants that imply the safety
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property. Such a verification method should not only help solve the verification
problem but also help open a dialog between verification engineers and system
designers who may exchange their knowledge about important system invariants.

In this paper, we discuss heuristics that have allowed us to generate invari-
ants that are just strong enough to verify safety properties of cache coherence
protocols. We build our heuristics in the context of a decision procedure for the
equality fragment of first order logic with uninterpreted functions (EUF) [1].
The goal of these heuristics is to (i) cut down the number of invariants that are
needed for verifying the proof goal, and (ii) filter out irrelevant facts (predicates)
in the formation of inductive invariants. Our starting point is a concrete model
of the system and a safety property to be verified. We start the system from an
unconstrained state and symbolically simulate it for a single step. We then use
an EUF decision procedure to check that the next state obtained from symbolic
simulation satisfies the safety property, assuming the hypothesis that the start
state satisfies it. Naturally, we are bound to get a failure case as we started from
an unconstrained start state. We then construct invariants based on syntactic
analysis of such failure cases obtained during the verification process. The syn-
tactic analysis of the counterexamples is conceptually simple and can be easily
automated. We deploy efficient filtering heuristics to minimize the predicates
that make up the invariants. These heuristics, although context-dependent, are
a kind of static analysis and may be done (only once) before the verification
process starts. The heuristics are intuitive from a designer’s point of view and
can be automated for any cache coherence protocol. The idea behind the gener-
ated invariants is to constrain the start state to be within the set of reachable
states such that the safety property holds. The process stops when the safety
property and all the invariants are proved. Note that our method is primarily
intended for verifying the safety property with respect to a model that has been
thoroughly debugged through simulation as well as perhaps even formally veri-
fied for small non-parametric instances of, say, 3-4 nodes. This fact justifies why
a user would react to a counterexample by strengthening the invariant—and not
suspecting that the model is incoherent. This mindset as well as division of labor
in achieving parametric verification is nothing new.

On simple but realistic examples, our heuristics worked without any adapta-
tions; in other cases, the method still offered a structured approach to invariant
discovery that had to be adapted only to a mild degree in an example-specific
manner. In all three of our case studies1—namely the original German proto-
col [2], the FLASH protocol, and the high-level version of a completely new in-
dustrial protocol (which we call German-Ring) used in the IBM z990 multibook
microprocessor complex [3]—our approach resulted in modestly sized inductive
invariants.

We used the UCLID tool [4] for our experiments. UCLID provides a reasonably
efficient collection of decision procedures for the logic of Equality with Uninter-

1 The proof scripts, UCLID reference models, and the first author’s MS thesis are avail-
able at http://www.cs.utah.edu/formal verification/charme05 pandav. Please
contact the first author for details.
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preted Functions (EUF). On our examples, UCLID’s runtime was under a few
seconds. Our method relies on UCLID’s ability to generate concrete counterex-
amples. These counterexamples are analyzed in order to come up with invariant
strengthenings. Our key contributions are in terms of the manner in which we
analyze counterexamples and discover invariant strengthenings. We believe our
methods can be based on other counterexample-generating decision procedures
for sufficiently expressive fragments of first-order logic.

1.1 Related Work

Since the work of German [5], if not before, there has been a significant amount
of research on automating the discovery of invariants, see [6,7,8,9] for a (non-
exhaustive) list of efforts. In spite of the sophistication of these techniques, the
process of finding invariants is still mostly manual. Also these methods tend to
discover far too many invariants (equivalent to one large invariant with many
conjuncts), and there is currently no good way of deciding which ones are useful.

Predicate abstraction based methods [10,11] to construct inductive invari-
ants automatically require complex quantified predicates. Das used predicate
abstraction for verifying mutual exclusion for FLASH [12], albeit on a simpler
model. Automated predicate discovery [10] tends to discover large predicates,
and so cannot be applied for verifying large protocols like FLASH. Lahiri [13]
developed a theory of automatically discovering indexed predicates to be used
to construct inductive invariants; predicates are iteratively discovered by com-
puting weakest preconditions, which can generate many superfluous predicates
at each stage. It requires manual filtering to get rid of useless predicates (which
needs human expertise); also, for large protocols like FLASH, the iteration may
fail to converge to a fixpoint. The method of invisible invariants [14] is a col-
lection of automated heuristics to construct auxiliary invariants. The heuristics
compute the reachable set of states for a finite instance of the system and then
generalize to construct an assertion, which is checked for inductiveness. How-
ever, the method is only known to work on a restricted class of systems, to
which protocols like FLASH do not belong.

For the FLASH protocol, there have been few previous attempts at discov-
ering inductive invariants for the data consistency property; namely, Park [15]
in the setting of the PVS theorem prover and Chou et.al. [16] in the setting of
Murphi. Park also proved sequential consistency property for FLASH (delayed
mode). Efficient abstraction-based techniques for parameterized verification have
been proposed in [16]. These techniques are suggested by a theory based on
simulation proofs, by which one can justifiably use “non-interference lemmas”,
generated from counter examples, to refine the abstract model and prove the
safety property. The lemmas are generated from counter example analysis, but
the analysis is not syntax-driven, as in our approach. McMillan used compo-
sitional model checking for the safety and liveness property verification of the
FLASH protocol [17]. The Cadence SMV tool has various built-in abstractions
and symmetry reductions to reduce an infinite state system to finite state, which
is then model checked. The user has to provide auxiliary lemmas, though few,
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and has to decompose the proof to be discharged by symbolic model checking.
This requires significant human skill and knowledge for proving conjectures and
driving the tool. In our method, we do not need such human intervention in
using the tool. Rather, expertise is needed in picking relevant predicates for
our filtering heuristics. Fortunately, such intervention occurs at the higher level
of protocol design, which can help designers in not only understanding their
protocols better, but also in communicating insights at that level to designers.
In contrast to proofs done in the context of specialized tools such as Cadence
SMV, our method can be employed in the context of more general-purpose tools
such as UCLID or CVC-Lite that have EUF decision procedures which generate
concrete counterexamples. Emerson and Kahlon [18] verified the German pro-
tocol by reducing it to a snoopy protocol and then invoking their proposition
to automatically verify the reduced snoopy protocol. The reduction is manually
performed and requires expertise. It is not clear whether such a method can be
applied to FLASH. Recently, Bingham and Hu [19] proposed a new finite-state
symbolic model checking algorithm for safety property verification on a broad
class of infinite-state transition systems. They presented a method to reduce a
conjunctively guarded protocol to a broadcast protocol on which their algorithm
can be applied. They automatically verified German’s protocol for data consis-
tency within a minute. It is not clear, however, whether such a method can be
scaled to work on large protocols like FLASH.

2 Overview of the Invariant Discovery Process

We model a protocol with a set of state variables V . The values assigned to
state variables characterize the state of the system. We also use a set of input
variables I, which can be set to arbitrary values on each step of operation. The
value assigned to each input variable is nondeterministically chosen from the
domain, thus modeling the concurrent nature of the protocol.

A protocol is formalized by M = 〈V , θ,Δ〉, a rule-based state machine, where

• V is a set of state variables. A state of the system M provides a type-
consistent interpretation of the system variables V . Let Σ denote the set of
states over V .

• θ is an boolean EUF formula describing the set of initial states I ⊆ Σ.
• Δ is a set of nondeterministic rules describing the transition relation R ⊆ Σ2.

Syntactically, each rule δ ∈ Δ can be expressed as: g → a, where g is a
predicate on state variables and input variables and a is a next state function
(action) expression. If g holds, a is executed: this assigns next state values
to a subset W of state variables; any other state variables are unchanged
when the transition is taken. If the guards of multiple rules hold at the same
time, just one of the rules is picked up nondeterministically for execution.

2.1 Syntax Based Heuristics

For all cache coherence protocols that we are aware of—at least a dozen, includ-
ing industrial ones—cache coherence can be stated as the safety property



Counterexample Guided Invariant Discovery 321

∀ i, j. ((i �= j) ∧ cache(i) = exclusive) ⇒ cache(j) �= exclusive

The data consistency property of coherence protocols and the invariants we
generate also enjoy a syntactically similar shape. Thus our method focuses on
properties of the form

P : ∀X .A(X ) ⇒ C(X ) (2.1)

where X is the set of index variables and A and C are the antecedent and
consequent of the formula, expressed using boolean connectives.

Let P = SP ∧ ∧
i Qi be the conjunction of the safety property SP and the

invariants Qi we generate. We can also treat P as a set of candidate invariants.
Initially P = SP , as we start with empty set of auxiliary invariants. Let D be
the decision procedure for the logic of EUF. Our method of inductive invariant
checking works as follows:

1. Pick a property P from the set P for verification 2. Use the decision procedure
D to verify that P holds for the initial state of the system.

2. Perform a one-step symbolic simulation of the system, moving from a general
symbolic state s to a successor state t according to the transition relation.
Use the decision procedure D to verify that the property P holds in the
successor state t, assuming the conjunction of invariants P holds in start
state s. We verify a formula of the form P(s) ⇒ P (t). If the result is true,
we are done with the verification of property P . Otherwise, there are three
possible failure cases, determined by the way in which the property can hold
in the first state s and not hold in the second state t. The failure case is
selected arbitrarily by the decision procedure.

3. Synthesize new formula Q from syntactic analysis and heuristics for the
corresponding failure case. Add it to the system i.e., P ′ = P ∧ Q; go to
(2). The intuition behind the new formula is to introduce a constraint that
would not only get rid of the absurd failure (typically a scenario from an
unreachable state space), but also trim the search space just enough to prove
the property.

We iterate till all the properties in P are proved to be inductive.
A failure (or a counterexample) is a tuple 〈σs, δ′,σt〉 where σs,σt gives the

start and next state interpretation for the system variables in the start and the
next states respectively, and δ′ is the (instantiated) transition rule. We say an
interpretation σ satisfies a boolean formula F (denoted as σ |= F ) if F is true
under the interpretation σ. The syntactic evaluation of a formula F under an
interpretation σ is denoted by 〈F 〉σ . Before we discuss the analysis of each failure
case, a few definitions that we will need in the discussion:

Given an interpretation σ and a boolean formula F , the satisfying core of
F under interpretation σ (SC(F,σ)) returns a maximal subformula, F ′, of F
such that 〈F ′〉σ ∧ (F ′ ⇒ F ). The maximal subformula can be easily computed
by traversing the syntax tree of F in a top-down manner. For example, if F =
2 We start with the safety property SP. Then select the property in the order in which

it is generated to be a potential invariant.
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a1∨a2 . . .∨an then SC(F,σ) =
∨

i{ai|〈ai〉σ = true}. The intuition is to capture
as much information from the formula F provided by the interpretation σ that
satisfies F .

Similarly, we define the violating core of a formula F under interpretation σ
to be a maximal subformula, F ′ such that ¬〈F ′〉σ ∧ (¬F ′ ⇒ ¬F ).

The action core of a variable v for the transition rule δ : g → a under the
interpretation σ is the conjunction of the cores of the guard and the conditions
in the nested ITE expression that assigns the next state value in the action
a. Before we formally define the action core, we first define the set of boolean
conditions in the nested ITE expression that leads to the next state assignment
of v. Let

C(a(v)) =
{{c} ∪ C(t) ∪ C(e) if a(v) = ITE(c, t, e)

{} otherwise

We divide the above set into two, one set contains conditions that are satis-
fied in the ITE expression (”then conditions”) and other that are not (”else
conditions”). Let

I(a(v)) = {c ∈ C(a(v))|〈c〉σ = true}
J(a(v)) = {c ∈ C(a(v))|〈c〉σ = false}

Finally, the action core of a variable v for the rule δ : g → a under the interpre-
tation σ is given by:

AC(v, δ,σ) = SC(g,σ)
∧ ∧c∈I(a(v)) SC(c,σ)
∧ ∧c∈J(a(v)) ¬VC (c,σ)

The action core helps determine the predicates that were responsible for the next
state assignment to state variable v by executing the transition rule δ under the
interpretation σ. Since the guard g of the rule δ executed has to be satisfied, the
satisfying core SC(g,σ) is always included in the action core computation. Then,
if the assignment expression for state variable v is a nested ITE we also conjunct
the satisfying or the violating core of the boolean conditions in the nested ITE
that were satisfied or violated respectively for reaching the assignment.

Now we discuss each failure case analysis:

Failure case I (σs |= A ∧ σs |= C), (σt |= A ∧ σt �|= C)
For this case, it is clear that the state transition rule δ′ in question has
assigned some of the variables in the consequent C leading to the failure.
Let SC be the set of such state variables. For each state variable v ∈ SC , we
compute the action core, AC(v, δ′,σs). Conjoin these action cores to obtain
a formula G′ =

∧
v∈SC AC(v, δ′,σs). Let A′ = SC(A,σs) be the satisfying

core of the antecedent. The idea behind the various cores is to minimize
the predicates that make up our assertions. At the end of this process, we
generate the following assertion

A′ ⇒ ¬G′ (2.2)
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The idea behind this formula is to disallow the conditions that lead to the
violation of the consequent, if an over-approximation of the antecedent holds.

Failure case II (σs �|= A ∧ σs �|= C), (σt |= A ∧ σt �|= C)
In this case, the transition rule has assigned some variable in A, since the
truth value of A went from false to true when going from σs to σt. However,
the failed consequent is just propagated from one state to other. Thus, we
seek to suppress those conditions in the guard and action expressions of
the rule δ′ that led to the next state assignment satisfying the antecedent.
We first determine the violating subformula of C, C′ = V C(C,σs) (note
that σs �|= C′, means σs |= ¬C′). Let SA be the set of variables in the
antecedent that got assigned. Again as in failure-case I, for each variable
v ∈ SA we compute the action core AC(v, δ′,σs). We then compute the
precondition G′ =

∧
v∈SA AC(v, δ′,σs). This was the condition that fired the

counterexample rule δ′ and led to the next state assignment violating the
property of interest. We therefore generate the following assertion to deal
with failure case II:

¬C′ ⇒ ¬G′ (2.3)

The basic idea is to not allow a rule propagate the failed consequent to the
next state.

Failure case III (σs �|= A ∧ σs |= C), (σt |= A ∧ σt �|= C)
This case is the rarest, the main reason being that it arises for protocols
that are buggy.3 The transition rule δ′ has assigned values to state variables
present in both the antecedent and consequent, leading to violation. Under
no circumstances, should any transition rule assign values conflicting with
the invariance property. This failure case helped us identify modeling errors
in our experimental studies.

2.2 Filtering Heuristics

In contrast to the failure analysis above, the heuristics we now discuss are
context-dependent and can be applied only on cache coherence protocols. The
motivation for them is that the major component of G′ in the assertions 2.2,
2.3, consists of predicates from the guard g′. Large cache coherence protocols
like FLASH have guards with many predicates: retaining all predicates from the
guard g′ in the assertion would be impractical. To remedy this, we filter irrele-
vant predicates from a guard. We came up with the filtering heuristics based on
the empirical observations we made from our case studies.

Rules in cache coherence protocols can be categorized into two classes: P-
rules, which are initiated by the requesting processor (home or remote); and
N-rules, which are initiated by a message from the network. Messages in the
network can be classified, as either requests or grants. A request message typi-
cally is from a caching node to the home node (such as Get and GetX in FLASH

3 Parameterized verification is an expensive process and typically should be attempted
only after finite-state model-checking has extensively ferreted out bugs.
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Table 1. Filtering Heuristics: The numbers in the last column refers to the order
in which the predicates must be picked. For example, if the counterexample has a N-
rule of request msg type being processed by the home, then we construct assertion by
picking predicates on directory variables first. If we are not able to prove this assertion
inductive, then we add the predicates on environment variables to the assertion and
check for inductiveness.

Rule (R) Msg Type (m) Client Type (c) Filter: pick predicates on
P-rule request home local variables

remote directory variables

N-rule request home (1) directory variables, (2) environment
variables

remote channel variables describing the (1) type (2)
sender of the msg

grant — channel variables describing the msg type

or req shared and req exclusive in German). A grant message is a message typi-
cally sent by home node to a remote node (such as Put and PutX in FLASH or
grant shared and grant exclusive in German). All non-request messages, which
are part of a pending transaction, such as invalidations, invalidation acknowl-
edgments, etc. can be regarded as grants.

We also classify the state variables of cache coherence protocols in four types:
local variables — describing the state of a caching agent such as cache_state,
cache_data, . . . ; directory variables — such as dir dirty, excl granted,...;
channel variables — describing the shared communication channels, such as ch2,
unet_src, . . . ; and environment variables — explaining the state of the trans-
action or global state. For example, the variable current command in the Ger-
man protocol explains the command that is currently being processed, and the
variable some others left in FLASH which determines whether there are any
shared copies.

Our filtering heuristics are based on the above classifications, and are sum-
marized in Table 1. The predicates filtered by the heuristics are characterized by
the type of the state variables on which they are expressed. We tabulate these
context-dependent filtering heuristics based on our empirical observations. We
found them to be very efficient in constructing invariants. Let us look at an
instance how we apply the filtering heuristics. In German, rule5 treats what
happens when the home nodes receives a inv_ack message from a remote node.
The guard of the rule is:

(home current command �= empty) ∧ (ch2(i) = invalidate ack)

This rule is a N-rule with message type grant. According to Table 1 one must
pick predicates on channel variables describing the message type. Thus the rel-
evant predicate from this guard is (ch2(i) = invalidate ack) and we need not
consider the predicate (home current command �= empty).

As can be seen, the filtering heuristics are a kind of static analysis. The
tabular form of filtering heuristics (see Table 1) has resemblance to the tables
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that designers use for design cache coherence protocols. Those tables explain the
action taken by a processing node for different protocol scenarios. We just order
the state variables involved and choose predicates on them from the guard of the
counterexample rule. So, these heuristics can be easily developed upon even by
the designer which can not only aid the verification process but also encourage
co-ordination between a verification expert and a designer in industrial setting.

Other Heuristics. Apart from the above heuristics for filtering predicates from
the guard, other simple techniques can be useful:

Specialization: In cache coherence protocols, the home node has a distinguished
status; therefore, if the counterexample deals with the home node, then the new
invariant should not be generalized for all nodes and is applicable only for the
home node.

Consistency Requirement: Sometimes, the right hand side of an assignment to
a state variable is another variable. Imagine the property to be verified has a
predicate p = r in the consequent, where p, r are term variables. This is common
in data consistency properties. Suppose also that a(p) = q where a is the action
function for the counterexample rule δ and q is a variable. In such cases, we
cannot rely solely on boolean conditions in the guard and ITEs of the action
to construct invariants, as the problem lies in the requirement that the state
variable q has to be consistent too. The invariant should include a predicate on
the consistency of this value. For example, if p and q are term variables and
the consequent of the property has the predicate p = i, then we construct the
invariant of the form g′ ⇒ (q = i).

3 A Detailed Illustration on the German Protocol

The ‘German’ directory based protocol was proposed as a verification benchmark
by Steven German [2], and it provides a good illustration of our method. Our
UCLID model of the protocol extends that developed by Lahiri [20] with a data-
path description obtained from the Murphi model in [16]; the model is available
from our website. For lack of space, and since the German protocol has been a
popular example [16,14,13,18,11], we do not seek to explain the protocol here.

Coherence Property Verification. To start, let the coherence property

P : ∀ i, j. ((i �= j) ∧ cache(i) = exclusive) ⇒ cache(j) = invalid

be symbolically simulated for one step as described in the previous section.

Counterexample 1: The decision procedure returns a counterexample in which
the start state satisfies coherence (node i is invalid while j is exclusive). The
client id cid chosen for execution is the node i, which receives a grant_exclusive
message from the home node (“home” hereafter). The rule chosen for execution
is rule8, which changes the cache state of cid to exclusive upon receiving this
message. This violates coherence after rule8 is executed.
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Analysis: The start state doesn’t satisfy both the antecedent of P (since
cache(i) = invalid ) and the consequent (since cache(j) = exclusive): thus P
is vacuously satisfied. The rule assigns next state value to cache(cid) such
that the antecedent holds in the next state and the violated consequent just
propagates itself from start state to next state. Thus this is a class II counterex-
ample as defined in Section 2.1. The boolean guard of the rule (obtained after
beta-reduction) is ch2(cid) = grant ex. We now let the syntax guide us in con-
structing a new assertion. First, we compute the violated core of the consequent,
which in this case is the consequent itself. So C′ = (cache(j) = exclusive). Then
we compute the action core for the state variable, cache, which is the only state
variable in the antecedent updated in the action of the counterexample rule.
Thus G′ = (ch2(cid) = grant ex ). We now need to eliminate the input variable
cid from G′. Since the counterexample gives the same interpretation to both i
and cid, cid may be replaced by i. Thus the constructed auxiliary assertion is,
according to Formula 2.3:

I1 : ∀ i, j. cache(j) �= invalid ⇒ ch2(i) �= grant ex

Filtering heuristics do not apply since G′ has just a single predicate. With I1 in
the system to prune the search space, we again check P for correctness.

Counterexample 2: We now obtain a new counterexample: node i is in ex-
clusive state in the start state (thus satisfying the antecedent of P ), while node
j is in invalid state (thus satisfying the consequent of P ). Thus P holds in the
start state. We also have node j receiving a grant sh message from home. The
client id cid chosen for execution is the node j, and the rule is rule7. This rule
changes the cache state of the client to shared, if the client has received a shared
grant from home. Thus we have node j in shared state while node i has exclusive
rights in the next state, which violates P .

Analysis: This counterexample is of type I. The state variable cache appears in
the consequent and gets updated by the action. We compute the action core for
cache, which is the guard ch2(cid) = grant sh. The assertion is built according
to the formula 2.2; replacing the input variable cid by its corresponding index
variable i. The constructed auxiliary assertion is

I2 : ∀ i, j. cache(i) = exclusive ⇒ ch2(j) �= grant sh

With the auxiliary assertions I1 and I2 in the system, the property P is success-
fully proved. Note that both invariants I1 and I2 were constructed by following
the recipe suggested in the analysis. We did not need any protocol dependent
heuristics or filterings, as the involved guards were of small sizes. Of course, the
auxiliary assertions remain to be proved.

Filtering Heuristics. Now we discuss an application of the filtering heuristics.
While following our approach in verifying assertion I2, we obtained a counterex-
ample in an application of rule9. The start state has node i in exclusive state
and node j is the current_client, satisfying the guard of the transition rule. In



Counterexample Guided Invariant Discovery 327

the next state the client j has been granted grant_shared message by the home
node, as mandated by rule9, but node i is still in exclusive state, thus violating
assertion I2. This counterexample is of type I. The rule describes home granting
shared access to a client, if the client has requested shared access, home has not
granted exclusive access to any other node, and the response message channel is
empty. The calculated precondition G′

current command = req sh ∧ ¬exclusive granted ∧ ch2(current client) = empty

has three boolean predicates. Having all of them in the refined assertion would
perhaps be more than needed to construct an inductive version of I2. Therefore,
we use our filtering heuristics to prune G′. The counterexample rule, rule9, is
an N-rule of request type being processed by the home node. According to
the heuristics suggested for N-rule request (see Table 1), therefore, the pred-
icate on the directory variable, exclusive granted is chosen, as it is the most
crucial one in decision making. The predicate current_command=req_sh, which
explains the request message, is irrelevant since the concurrent nature of a cache
coherence protocol should allow request messages any time while the system
is running. Also, the predicate checking the emptiness of the shared channel,
ch2(current_client)=empty, doesn’t yield a global constraint. Therefore,the
strengthened assertion I2 is:

I2.1 : ∀ i, j.cache(i) = exclusive ⇒ ch2(j) �= grant sh ∧ exclusive granted

After a few further steps, we arrive at the final version of I2.1 (call it I2.n):

I2.n : ∀ i, j. ((i �= j) ∧ cache(i) = exclusive) ⇒(
ch2(j) �= grant sh ∧ exclusive granted ∧

ch3(j) �= inv ack ∧ ch2(j) �= inv ∧ ¬inv list(j) ∧ ¬sh list(j)
)

The structure of the formula to be synthesized into an inductive invariant can
be easily mechanized based on the case analysis of counterexamples. We blindly
followed the above counterexample based analysis and the filtering heuristics to
construct all the auxiliary invariants for verifying the coherence property.
Data Consistency Verification. The datapath property is

∀i. ((¬exclusive granted ⇒ (memdata = auxdata)) ∧ (3.1)
((cache(i) �= invalid) ⇒ (cache data(i) = auxdata)))

To verify data consistency, we needed just two additional invariants beyond those
discovered to verify the coherence property. Both the invariants were generated
from the counterexamples that violated the consistency requirement. We will
examine one such invariant. When we ran UCLID to check 3.1, we obtained a
counterexample where the start state has node i receiving grant ex message from
home, but the data variable of the channel ch2 carrying the message had a value
different from auxdata. The transition rule was rule8. The action of the rule
assigns cache data for node i the value possessed by ch2 data, which is not
auxdata, thus violating data consistency. So, following the consistency require-
ment heuristic (see Section 2.2), we invent the following auxiliary invariant:

D1 := ∀ i. (ch2(i) = grant ex) ⇒ (ch2 data(i) = auxdata) .



328 S. Pandav, K. Slind, and G. Gopalakrishnan

4 Summary of Verifications

Besides the German protocol, we have also applied our method to the data-
path and controlpath verification of FLASH and the controlpath verification of
German-Ring. We now briefly summarize how our method performed on all the
verifications.

German. We needed a total of 9 invariants to completely verify the coherence
property of German. It took us a day to come up with the invariants. The total
time taken by UCLID to prove the properties was 2.16s.

The earlier manual proof by Lahiri needed 29 invariants and took 8 hours
for UCLID to finish the verification. Lahiri also applied an indexed predicate
discovery method [13] to construct inductive invariants for the German proto-
col. He derived a single indexed invariant, which required a manually provided
predicate on the auxiliary variable last_granted. Note that auxiliary variables
do not participate in decision making and so such predicates cannot be discov-
ered, unless they are part of the property to be proven. For that reason, our
invariants do not depend on auxiliary variables. Lahiri also generated a dual
indexed inductive invariant automatically. However, this invariant had 28 predi-
cates, against just 13 needed for constructing our invariants (most of them dual
indexed), and took 2813 seconds of UCLID time, as against 2.16 seconds needed
for ours.

We also verified data consistency for German; it required two additional
invariants. It took couple of hours to modify the model to include datapath
variables and finish the verification.

FLASH. The FLASH model was translated from the SMV model of McMil-
lan [17]. We first verified coherence: no two nodes can be in the exclusive state.
Surprisingly, no predicates on the directory were needed to prove the safety
property except dir_dirty; this contrasts with the German coherence property
verification which pulled out almost the entire logic of the protocol. This clearly
points out that it is a waste of time and effort to generate invariants irrelevant
to the proof of the safety property. We also verified data consistency for FLASH.
New data variables for the cache, history variables, and auxiliary variables were
introduced. These variables do not appear in the guards of rules; however, the
data consistency property had predicates on these variables, so our method was
effective. Certain counterexamples showed scenarios that seem hard to humanly
imagine. For example, FLASH allows parallel operations like replacement to
occur while another critical transaction is pending. These operations affect im-
portant directory variables, and so invariants involving these directory variables
had to be strengthened. The filtering heuristics were very highly used in con-
structing the invariants. Many of the counterexamples had rules of N -rule grant
type processed by a remote node, especially involving the scenario where inval-
idation acknowledgements are pending. Invariants involving directory variables
such as shlist (keeps track of the nodes having a shared copy of cacheline) and
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real (keeps track of number of invalidations sent in the system) were difficult
to construct as they needed to be precisely strengthened.

It took just 7 invariants [21] to prove the mutex property for FLASH, con-
taining just 9 predicates and UCLID took 4.71s to complete the verification.
Surprisingly, none of these invariants needed predicates on directory variables
other than dir_dirty, thus explaining the fact that we use only the information
that would be just enough to imply the safety property. An additional 15 invari-
ants were required to prove the consistency property and UCLID took 18.68s to
automatically verify them. This shows the difference in efforts and time needed
to verify different safety properties, and how our method efficiently adapts to
such verifications by saving tool processing time and human effort. These invari-
ants had predicates on almost all directory variables. Overall, it took us 3 days
to discover all the invariants needed to imply the data consistency property from
the counterexample guided discovery process.

German-Ring. We applied our method to verify a high-level description of the
protocol used in the IBM z990 superscalar multiprocessor [3], provided to us by
Steven German. This is an unconventional protocol, where caches communicate
by sending messages on a bidirectional ring. The destination node for a message
in the ring is computed by arithmetic calculations using mod,× and ÷.

The invariants were constructed using just the counterexample analysis ex-
plained in subsection 2.1, without the need of filtering heuristics. Since the
UCLID language doesn’t support arithmetic operators like mod,×,÷ where the
arguments are variables, we could not model the ring topology of the proto-
col. Instead, we modeled an approximation in which nodes can send messages
arbitrarily to any node in the system. However, the rules behind message pass-
ing/processing and all state changes were completely modeled as in the high-level
specification of the German-Ring protocol. We were able to prove the coherency
property, no matter how the caches are arranged.

In the verification, our heuristics generated two invariants sufficient to verify
the safety property. It took us two days to complete the entire verification process
including modeling of the protocol and generating the invariants.

5 Automation

We now briefly explain how the syntactic analysis of counterexample and the
heuristics can be automated.

Automation. Given an interpretation, the computation of satisfiability, vio-
lating and action cores can be easily automated. When a property fails, the
counterexample returned by a decision procedure is an assignment to variables
that are used in the system and property description. This assignment is the
interpretation that is used to decide to which failure case the counterexample
belongs. The corresponding transition rule is determined and the satisfiability
core of the guard is computed for the interpretation. Then we use our filter-
ing heuristics (this can be a manual process too) to filter the predicates from
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the satisfying core formula of the guard. We would use this filtered formula to
construct the invariant. Depending on the failure case, the corresponding core
for the antecedent and consequent of the property is also computed. The action
core computation for the variables in the property that are assigned in the action
of the rule is also computed. Finally, the appropriate invariant is generated by
applying the formulas 2.2,2.3. All the steps in the computation, except perhaps
filtering heuristics, can be easily automated as they perform basic extraction
and manipulation of boolean formulas. Providing a system that automates these
steps and also provides a good interface for applying heuristics and backtracking
is useful future work.

How to Detect Over-strengthening? A crucial issue is how do we detect
whether we are over-strengthening the invariant or not. At present, we do not
have a concrete solution to this problem. We detect this in a very crude way
when we learn that we are picking the same predicates from the guard of the
transition rule involved in the counterexample that has already been used in
the invariant constructed so far. This signals that we are moving in circles and
should backtrack to the point where we can pick some other predicate suggested
by the priority ordering in filtering heuristics.

6 Conclusions

We have discussed new invariant generation techniques for the safety property
verification of cache coherence protocols, using a simple counterexample based
analysis. Our heuristics have been successfully applied to verify the mutual ex-
clusion and data consistency properties of the German and FLASH cache coher-
ence protocols. We were also pleasantly surprised at how effective they were on
the new German-Ring protocol. The invariants that our method generates are
sufficient but lean: just sufficient to prove the desired properties. Such invari-
ants typically offer sharper insights into the behavior of a system compared to
“flooding” the scene with too many invariants.

Industry level cache coherence protocols are too complicated for any current
formal verification system to handle automatically. Our heuristics can help tackle
this important problem by guiding manual deductive verification of such proto-
cols, and by being able to generate simple auxiliary invariants easily from the
counter example analysis. Our method is more general than previous approaches
that were often pursued in the context of special verification frameworks. In con-
trast, our method can be applied in the context of any decision procedure for
EUF logics that generate concrete counterexamples.

We have focused on constructing auxiliary invariants for safety property ver-
ification. We do not know whether such counterexample based analysis can be
adapted for liveness property verification. Some of the issues that could be ex-
plored in future work are: (1) almost all the steps in the counterexample analysis
and the heuristics can be automated; (2) it would be interesting to adapt our
methods to k-step inductive invariant checking of safety properties for cache
coherence protocols.
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Abstract. Partial order (PO) reduction methods are widely employed
to combat state explosion during model-checking. We develop a partial
order reduction algorithm for rule-based languages such as Murphi [4]
based on the observation that for finite-state systems, independence con-
ditions used for PO reduction can be encoded as boolean propositions
and checked using SAT methods. Comparisons against static-analysis
based PO reduction algorithms have yielded encouraging results.

1 Introduction

Partial order (PO) reduction helps combat state explosion by avoiding redundant
interleavings [3] among independent transitions [12,6,10], generating a represen-
tative subset of all interleavings. Traditional PO reduction algorithms rely on
syntactic methods (e.g. based on occurences of shared variables) to compute the
independence relation. Unfortunately, in the presence of complex data structures
like records and arrays, such as is common with cache coherence protocols en-
coded in languages such as Murphi [4] and TLC [9], these algorithms do not
work well — even if concurrent accesses to these aggregate structures occur at
disjoint sites. By conducting a deeper semantic analysis based on Boolean SAT
methods, one can overlook such ‘false sharings’ and achieve PO reduction. This
short paper sketches our explicit enumeration model checking algorithms for PO
reduction that benefit from a SAT-based analysis for independence.

There has been extensive research on partial order reduction methods [3]. Few
previous works address reduction for formalisms without processes. Partial order
reduction algorithms have also been proposed for symbolic state exploration
methods [1]. The algorithm there is based on a modified breadth first search,
since symbolic state exploration is essentially breadth first. The in-stack check of
the traditional partial order algorithm is replaced by a check against the set of
visited states. An alternative to the traditional runtime ample set computation
algorithm is discussed in [8].

� Supported in part by NSF Award ITR-0219805 and SRC Contract 1031.001.
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2 Partial Order Reduction

Two transitions are independent if, whenever they are enabled together at a
state, (i) firing either one does not disable the other (enabledness), and (ii) firing
them in either order leads to the same state (commutativity). A transition is
invisible with respect to a property if it does not change the truth values of
any of the atomic propositions occurring in the property. The ample-set method
proceeds by performing a modified depth-first search where, at each state, a
subset of all the enabled transitions is chosen, called the ample set. Transitions
from the ample set are then the only ones pursued from that state. This leads
to a subset of the entire state space being explored. It is important to ensure
that for each path in the full graph, there is a representative path in the reduced
graph. The following conditions, adapted from [3], guarantee the existence of
such representative paths: C0 : An ample set is empty if and only if there are no
enabled transitions. C1: Along every path in the full state graph that starts at
a state s, the following must hold - if there is an enabled transition that depends
on a transition in the ample set, it is not taken before some transition from the
ample set is taken. C2 : If a state is not fully expanded, then every transition in
the ample set is invisible. C31: There is at least one transition in every ample
set that leads to a state not on the current dfs stack, which ensures that at least
one transition in the ample set does not create a cycle.

3 Implementing PO Reductions for Murphi

We compute the independence relation by encoding the enabledness and com-
mutativity relations as boolean propositions, and using a SAT solver to con-
servatively check them. First, we take the code fragments defining the guards
and actions, and transform them into equivalent Lisp S-expressions. These are
then combined to form S-expressions representing the enabledness and commutes
relations for each pair of transitions, which are symbolically evaluated to pro-
duce formulas over finite data types. We do this over the entire syntax of Mur-
phi, handling loops (by unrolling), procedures, and functions in the process. To
check commutativity, for example, the SAT solver is given a formula of the form
g1(S)∧ g2(S) ⇒ t1(t2(S)) �= t2(t1(S)) for an arbitrary S (perhaps unreachable
— this being the source of conservativeness). If satisfiable, t1 and t2 are poten-
tially non-commuting; otherwise, they are commuting. The invisibility checks
can similarly be encoded as boolean formulas and symbolically evaluated.

Constructing the Ample Set: Our algorithm for constructing the ample set
is shown in Figure 1. Line 2 picks an enabled, invisible transition (called the seed
transition) at each state, and tries to form an ample set using this transition.
Once a seed transition has been chosen, lines 5-7 compute the transitive closure
of the ample set with respect to the dependence relation. Lines 11-15 check for a
violation of the C1 condition. If there is no violation, lines 16-19 check whether
at least one of the transitions in the ample set leads to a state not on the current

1 For a proof of the sufficiency of this form of the condition see [7].
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1 proc ample(s) {

2 ample := { pick_new_invisible(enabled(s)) };

3 if (empty(ample))

4 return enabled(s);

5 while (exists_dependent(enabled(s),ample)) {

6 ample := ample + all_dependent(enabled(s),ample);

7 }

8 non_ample := all_transitions \ ample;

9 if ((ample = enabled(s)) or exists_visible(ample))

10 return enabled(s);

11 for (t_d in disabled(s))

12 if (dependent(t_d, ample))

13 for (t_o in non_ample)

14 if (t_o != t_d and !leavesdisabled(t_o,t_d))

15 return enabled(s);

16 for (t_a in ample) {

17 if (!(t_a(s) in onstack(s)))

18 return ample;

19 }

20 return enabled(s);

21 }

Fig. 1. Ample set construction algorithm for Murphi

stack. If this is the case, we return this ample set. Otherwise, we return the set
of all enabled transitions.

4 Results and Conclusions

Our algorithms have been implemented in the POeM tool [2], which extends
Murphi. We have run POeM on examples of varying sizes, and the results are
shown in Table 1. Significant reduction is achieved in a number of the examples,
the most dramatic being the dining philosophers benchmark labeled DP in the
table, where, for 10 philosophers, there is over 99% reduction. The symbolic
PO algorithm always does better than the static algorithm in our examples, in
terms of the number of states generated. GermanN refers to German’s cache
protocol for N nodes. It currently yields insignificant reductions because of the
existence of transitions dependent only in unreachable states. We are working
on strengthening the guards with local invariants, to restrict the independence
checks to reachable states.

Instead of SAT, better results might be obtained through higher level deci-
sion procedures for quantifier free formulas with equality, finite arithmetic and
arrays [11,5], especially given the possibility of initially representing Murphi pro-
cedures and functions using uninterpreted functions.
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Table 1. Performance of partial order reduction algorithm

Example Unreduced Static PO Symbolic PO
States Time States Time States Time

Bakery 33 0.14 33 0.14 21 0.14
Burns 82010 2.65 82010 5.02 81542 8.76
Dekker 100 0.17 100 0.17 90 0.17
Dijkstra4 864 0.29 864 0.29 628 0.31
Dijkstra6 11664 0.62 11664 0.88 6369 0.98
Dijkstra8 139968 6.65 139968 13.15 57939 35.32
DP4 112 0.22 112 0.22 26 0.22
DP6 1152 0.27 1152 0.27 83 0.25
DP10 125952 13.85 125952 17.27 812 0.34
DP14 >20000 >60 >20000 >60 7380 1.4
Peterson2 26 0.15 26 0.15 24 0.15
Peterson4 22281 0.3 22281 0.53 14721 0.58
German3 28593 0.43 28593 0.78 28332 1.31
German4 566649 31.15 566649 39.9 562542 72.43
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Abstract. Many tasks in safety-critical embedded systems have hard
real-time characteristics. AbsInt’s worst-case execution time analyzer
aiT can estimate precise and safe upper bounds for the WCETs of pro-
gram tasks, thus providing the basic input for verifying the real-time
behavior of embedded applications.

1 Introduction

Failure of a safety-critical embedded system may result in the loss of life or in
large damages. Utmost carefulness and state-of-the-art machinery have to be
applied to make sure that such a system is working properly. To do so lies in
the responsibility of the designer(s). The proper working of an embedded system
includes faultless working of the underlying hardware and software ensuring the
production of correct output at appropriate times. Failure to meet deadlines may
be as unacceptable as producing wrong output. A tool such as AbsInt’s aiT can
efficiently determine upper bounds for the Worst-Case Execution Time (WCET)
of code snippets given as routines in executables. The predicted WCETs can be
used to determine an appropriate scheduling scheme for the tasks and to perform
an overall schedulability analysis in order to guarantee that all timing constraints
will be met [1].

The determination of the WCET of a task is a difficult problem because
of the characteristics of modern software and hardware. Caches, branch target
buffers, and pipelines are used in virtually all performance-oriented processors.
Consequently the timing of the instructions depends on the execution history.
Hence, the widely used classical methods of predicting execution times are not
generally applicable. Software monitoring and dual-loop benchmark change the
code, what in turn changes the cache behavior. Hardware simulation, emulation,
or direct measurement with logic analyzers can only determine the execution
time for some fixed inputs.

In contrast, abstract interpretation can be used to efficiently compute a safe
approximation for all possible cache and pipeline states that can occur at a
program point in any program run with any input. These results can be combined
with ILP (Integer Linear Programming) techniques to safely predict the worst-
case execution time and a corresponding worst-case execution path.

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 336–339, 2005.
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2 Worst-Case Execution Time Prediction by aiT

AbsInt’s aiT WCET analyzer tools get as input an executable, user annota-
tions, a description of the (external) memories and buses (i.e. a list of memory
areas with minimal and maximal access times), and a task (identified by a start
address). A task denotes a sequentially executed piece of code (no threads, no
parallelism, and no waiting for external events). This should not be confused
with a task in an operating system that might include code for synchronization
or communication. Effects of interrupts, IO and timer (co-)processors are not
reflected in the predicted runtime and have to be considered separately (e.g., by
a quantitative analysis).

aiT operates in several phases. First a decoder reads the executable, identifies
the instructions and their operands, and reconstructs the control flow [2]. The
reconstructed control flow is annotated with the information needed by sub-
sequent analyses and then translated into CRL (Control-Flow Representation
Language). The annotated control-flow graph serves as the input for all further
analyses.

The decoder can find the target addresses of absolute and pc-relative calls
and branches, but may have difficulties with target addresses computed from
register contents. Thus, aiT uses specialized decoders that are adapted to cer-
tain code generators and/or compilers. They usually can recognize branches to a
previously stored return address, and know the typical compiler-generated pat-
terns of branches via switch tables. Yet non-trivial applications may still contain
some computed calls and branches (in handwritten assembly code) that cannot
be resolved by the decoder and require user annotations. Such annotations may
list the possible targets of computed calls and branches, or tell the decoder about
the address and format of an array of function pointers or a switch table used
in the computed call or branch.

Value analysis tries to determine the values in the processor registers for
every program point and execution context. Often it cannot determine these
values exactly, but only finds safe lower and upper bounds, i.e. intervals that are
guaranteed to contain the exact values. The results of value analysis are used to
determine possible addresses of indirect memory accesses—important for cache
analysis—and in loop bound analysis.

WCET analysis requires that upper bounds for the iteration numbers of
all loops be known. aiT tries to determine the number of loop iterations by
loop bound analysis, but succeeds in doing so for simple loops only. Bounds for
the iteration numbers of the remaining loops must be provided as user annota-
tions. Loop bound analysis relies on a combination of value analysis and pattern
matching, which looks for typical loop patterns. In general, these loop patterns
depend on the code generator and/or compiler used to generate the code that
is being analyzed. There are special aiT versions adapted to various generators
and compilers.

Cache analysis classifies the accesses to main memory. The analysis in our
tool is based upon [3], which handles analysis of caches with LRU (Least Recently
Used) replacement strategy. However, it had to be modified to reflect the non-
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LRU replacement strategies of common microprocessors: the pseudo-round-robin
replacement policy of the ColdFire MCF 5307, and the PLRU (Pseudo-LRU)
strategy of the PowerPC MPC 750 and 755. The modified algorithms distinguish
between sure cache hits and unclassified accesses. The deviation from perfect
LRU is the reason for the reduced predictability of the cache contents in case of
ColdFire 5307 and PowerPC 750/755 compared to processors with perfect LRU
caches [4].

Pipeline analysis models the pipeline behavior to determine execution times
for a sequential flow (basic block) of instructions. It takes into account the current
pipeline state(s), in particular resource occupancies, contents of prefetch queues,
grouping of instructions, and classification of memory references as cache hits or
misses. The result is an execution time for each instruction in each distinguished
execution context.

Using the results of the micro-architecture analyses, path analysis determines
a safe estimate of the WCET. While the analyses described so far are based on
abstract interpretation, integer linear programming is used for path analysis.
The program’s control flow is modeled by an integer linear program [5] so that
the solution to the objective function is the predicted worst-case execution time
for the input program.

Detailed information about the WCET, the WCET path, and the possi-
ble cache and pipeline states at any program point are visualized in the aiSee
tool [6].

3 Dependence on Target Architectures

There are aiT versions for PowerPC MPC 555, 565, and 755, ColdFire 5307,
ARM7 TDMI, HCS12/STAR12, TMS320C33, C166/ST10, Renesas M32C/85
(prototype), and Tricore 1.3 (under construction).

Decoders are automatically generated from processor specifications defining
instruction formats and operand meaning. The CRL format used for describing
control-flow graphs is machine-independent. Value Analysis must interpret the
operations of the target processor. Hence, there is a separate value analyzer for
each target, but features shared by many processors (e.g., branches based on
condition bits) allowed for considerable code sharing among the various value
analyzers.

There is only one cache analyzer with a fixed interface to pipeline analysis. It
is parameterized on cache size, line size, associativity, and replacement strategy.
Each replacement strategy supported by aiT is implemented by a table for line
age updates that is interpreted by the cache analyzer.

The pipeline analyzers are the most diverse part of aiT. The supported target
architectures are grouped according to the complexity of the processor pipeline.
For each group a common conceptual and coding framework for pipeline analysis
has been established, in which the actual target-dependent analysis must be filled
in by manual coding.
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4 Precision of aiT

Since the real WCET is not known for typical real-life applications, statements
about the precision of aiT are hard to obtain. For an automotive application run-
ning on MPC 555, one of AbsInt’s customers has observed an overestimation of
5–10% when comparing aiT’s results and the highest execution times observed
in a series of measurements (which may have missed the real WCET). For an
avionics application running on MPC 755, Airbus has noted that aiT’s WCET
for a task typically is about 25% higher than some measured execution times for
the same task, the real but non-calculable WCET being in between. Measure-
ments at AbsInt have indicated overestimations ranging from 0% (cycle-exact
prediction) till 10% for a set of small programs running on M32C, TMS320C33,
and C166/ST10.

5 Conclusion

aiT is a WCET tool for industrial usage. Information required for WCET esti-
mation such as computed branch targets and loop bounds is determined by static
analysis. For situations where aiT’s analysis methods do not succeed, a conve-
nient specification and annotation language was developed in close cooperation
with AbsInt’s customers. Annotations for library functions (RT, communica-
tion) and RTOS functions can be provided in separate files by the respective
developers (on source level or separately).

aiT enables development of complex hard real-time systems on state-of-
the-art hardware, increases safety, and saves development time. Precise tim-
ing predictions enable the most cost-efficient hardware to be chosen. As recent
trends, e.g., in automotive industries (X-by-wire, time-triggered protocols) re-
quire knowledge on the WCETs of tasks, a tool like aiT is of high importance.
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Abstract. A behavior-RTL equivalence checking method based on bottom-up 
reasoning is presented. Behavior and RTL descriptions are converted into 
dependence graphs from which virtual controllers/datapaths are generated. 
Actual equivalence checking is based on isomorphism analysis on dependence 
graphs and also virtual controllers/datapaths. First equivalence classes on partial 
computations are extracted by using Boolean reasoning on virtual 
controllers/datapaths. Then these equivalence classes are used to prove the 
equivalence of the entire descriptions in a bottom-up way.  

1   The Proposed Verification Method 

In this paper, we propose a way to verify equivalence by establishing mappings 
between behavior and RTL descriptions. We first extract “classes of equivalent partial 
computations”. Using these accumulated correspondences, the equivalence checking 
problem can be solved by establishing mappings on the entire design descriptions 
followed by reasoning about them in a bottom-up fashion. This is a similar technique to 
combinational equivalence checking methods based on internal equivalent points, such 
as the one in [1]. We map given behavior and RTL descriptions into virtual controllers 
and datapaths [2] and then reason about those design descriptions. The virtual 
controllers and datapths can make it possible to separately reason about “timing” and 
“data computations” and can establish correspondence among partial computations in a 
bottom-up way. Our verification methods have four steps as follows: 

(Step 1) Generate system dependence graph (SDG), which represents dependencies 
among statements in design descriptions, and virtual controllers/datapaths from 
both behavior and RTL descriptions 

(Step 2) Gather information on equivalence classes on partial computations on SDG. 
In this step, if necessary equivalence classes are computed by analyzing virtual 
controllers/datapaths as well as SDG. When analyzing virtual 
controllers/datapaths, apply reachability computation on virtual controllers to 
decide equivalence of partial computations. 

(Step 3) Perform graph matching between the SDGs for behavior and RTL 
descriptions by using equivalence classes computed in (Step 2).  

(Step 4) If the result of (Step 3) gives matching on SDGs, we conclude that the 
behavior and RTL descriptions are equivalent. Otherwise go back to (Step 2), and 
try to get more equivalence classes. If no more equivalence classes are available, 
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we generate a computation path which differentiates computations in the two 
SDGs as a counter example. 

Please note that the counter example generated in (Step 4) may not be a real 
computer example, since in (Step 2) we may not be able to gather all equivalence 
classes. That is, there are cases where our results are false-negative. 

The system dependence graph that we are using in the proposed equivalence 
checking method is generated by program slicers. Program slicing [3] is a technique by 
which related portions of the programs are extracted based on user-specified criteria. In 
the program slicing tools, internally control flow graphs and also so called system 
dependence graphs (SDG) are generated. SDG represents all static dependencies 
among statements in terms of control, data, and interference. In our method, we are 
using control flow graphs and SDGs generated by program slicers when generating 
virtual controllers and virtual datapaths. Our program slicer [4] is targeting SpecC 
language [5] and also C/C++ descriptions, and so combined descriptions in those 
languages can also be processed. The slicing program generates the corresponding 
control flow graphs (CFGs) and system dependence graphs (SDGs) as a unified 
graph.Then they are further processed to generate virtual controllers/datapaths. 

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

Input In;
Output A, B;
Clock CL;
Variable X, Y
Waitfor(CL);
X = Get(In);
Waitfor(CL);
Y = Get(In); 
Waitfor(CL);
A = 0;
B = X;
Waitfor(CL)
While(b>=y){
B = B – Y;
A = A + 1;
Waitfor(CL);

}

: waitfor(CL)

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

Input In;
Output A, B;
Clock CL;
Variable X, Y
Waitfor(CL);
X = Get(In);
Waitfor(CL);
Y = Get(In); 
Waitfor(CL);
A = 0;
B = X;
Waitfor(CL)
While(b>=y){
B = B – Y;
A = A + 1;
Waitfor(CL);

}

: waitfor(CL)

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

Input In;
Output A, B;
Clock CL;
Variable X, Y
Waitfor(CL);
X = Get(In);
Waitfor(CL);
Y = Get(In); 
Waitfor(CL);
A = 0;
B = X;
Waitfor(CL)
While(b>=y){
B = B – Y;
A = A + 1;
Waitfor(CL);

}

: waitfor(CL)

X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}X=get(In)

Y=get(In)

A=0

B=X

While(B>=Y)

B=B-Y

A=A-1

end

begin

/* Sequential descriptions */
Input In;
Output A, B;
Variable X, Y
X = Get(In);
Y = Get(In);
A = 0;
B = X;
While(B >= Y){
B = B – Y;
A = A + 1;

}

 
 

Fig. 1. Behavior and RTL descriptions and their System Dependence Graph (SDG) 

Now we illustrate the above verification method with examples. An example 
behavior description and a corresponding RTL one that is supposed to implement the 
behavior description are shown in the boxes of Figure 1. They are computing divisions, 
and the first input from the input port, In, is divided by the second input form the input 
port, and the output, A, is the quotient and the output B is the remainder at the end of the 
computation. The division is very straightforwardly computed by counting up how 
many times the value of the divider can be extracted. The semantics of the descriptions 
are obvious from the descriptions, and we do not explain them here except for 
“waitfor(CL)” statement. It is the statement that determines the clock boundary in RTL 
descriptions to fix the scheduling of the RTL descriptions. All statements surrounded 
by neighboring two waitfor(CL) statements must be executed within the same clock 
cycle. Since waitfor(CL) statements are the only difference,  these two descriptions 
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should be recognized to be equivalent. However, the values of output signals, A and B, 
may not be equal for every clock cycle, since behavior description has no fixed 
scheduling in the terms of clock timing. So in this case we assume that with an 
appropriate use of attribute statements [2] what should be compared is defined as to 
check the values of the outputs at the end of computation only. The SDGs for the two 
descriptions are also shown in Figure 1. The difference is just the existence of several 
“waitfor(CL)” statements in RTL, and so the two SDGs are easily recognized as 
“matching”, that is, they are isomorphic other than nodes for “waitfor(CL)”. We 
basically use graph isomorphism check for identifying equivalence of computations, 
and equivalence classes are used to make matching on sub-graphs.. 
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end
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Fig. 2. Identification of equivalences of subgraphs in SDG I a bottom-up way 
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Fig. 3. Bottom-up reasoning by identifying sub-graphs for “division” circuit/computation 
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For more complicated cases, first of all equivalence class are first computed as 
explained in (Step 2) in the previous section. For example, the equivalence checking on 
the two descriptions shown in Figure 2 is processed as follows. Here we are comparing 
the two descriptions inside the boxes. The only difference between the two is the order 
of executions of the two underlined statements. Since they are independent with each 
other, these statements compute exactly the same. This can be easily checked by 
traversing the SDGs and make sure they are independent. Then we can have an 
equivalence class for these statements and use it for the comparison of the two SDGs 
generated from the descriptions as shown in Figure 2. After identifying the equivalence 
class, the two SDGs are isomorphic and so the descriptions are equivalent. Figure 3 
shows a more complicated case. In this example, the portion of the original description 
for division computation is replaced by a divider circuit as shown in the left-top part of 
the figure. First of all, we try to prove with loop-invariants that the while-loop part in 
the original description is computing division. With appropriate loop invariants, we can 
decompose the verification problem for the while-loop into the ones for non-loops. The 
decomposed verification can be processed as Boolean reasoning problems with virtual 
controllers/datapaths. Once that is finished, the equivalence for the entire SDGs can be 
again by checking their isomorphism. 

Figure 4 shows another example between sequential and parallel descriptions. In 
such cases, we first extract sequential behaviors from parallel ones by identifying 
synchronization statements, such as “notify” and “wait” and using them to generate 
sequential orders of executions. The extracted behaviors are then compared with the 
original sequential ones in terms of graph isomorphism utilizing equivalence classes. 

Func1() {
while (Cont) {
notify(Cont):
B = B – Y;
Cont = (B>=Y)

}
}

Func2() {
while (1) {
wait(Cont):
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}
}
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A = 0;
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}

(a) Sequential version
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Fig. 4. Sequential and parallel description comparison by first extracting sequential behaviors 
from parallel ones 

2   Experimental Results 

We have tried several SpecC descriptions, such as the SpecC examples shown in SpecC 
manuals, e.g., elevator system, parity checker, and so on. Also, we have verified two 
versions of internet PPP protocol descriptions. These examples are ranging from one 
hundred to a couple of thousands lines of SpecC codes. Also, in the case of designs 
generated by SoC Environment, a system level design/synthesis tool developed by UC 
Irvine [5], the difference between two successive synthesis steps in the tool is very 
limited, and the analysis on partial computation equivalence classes becomes very 
simple but very useful. Several tens of thousands lines of SpecC descriptions can be 
verified with the proposed methods for such cases, including description on MPEG4 
encoders.  
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Abstract. The ÆTHEREAL protocol enables both guaranteed and best effort
communication in an on-chip packet switching network. We discuss a formal
specification of ÆTHEREAL and its underlying network in terms of the PVS
specification language. Using PVS we prove absence of deadlock for an abstract
version of our model.

1 Introduction

The ÆTHEREAL protocol [2,4] has been proposed by Philips to enable both guaranteed
and best-effort communication in an on-chip packet switching network. The design
of such a protocol, which has to meet all the functional and correctness requirements
for best-effort and guaranteed traffic, is a difficult task. Typically, the designers play
around with thousands of design alternatives before they commit to one. It is difficult
to keep track of all design alternatives in a systematic way, and to make sure that the
choices that have been made are consistent. Our contribution is that: (1) for one of
the numerous design alternatives we produced a detailed, precise and highly modular
formal model in PVS [1], and (2) within this model we were able to establish a key
correctness criterion for the absence of deadlock. We believe that our work illustrates
that formal specification languages, such as the typed higher-order logic supported by
PVS, can be most useful to document complex designs, to help designers to clarify
design choices and to resolve problematic inconsistencies in an early stage of the design
process.

An extended version of our paper is available as technical report [3]. We refer to [3]
for a much more detailed explanation of the ÆTHEREAL protocol, in particular of the
routing algorithm that prevents deadlock. The report also describes in great detail how
we formally modeled1 the protocol in PVS and how we proved absence of deadlock for
an abstracted version of the model. Finally, it evaluates our experiences in modeling the
ÆTHEREAL protocol, discusses related work and points at interesting topics for future
work.
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2 The ÆTHEREAL Protocol

A network on chip, like any other network, is composed of nodes and edges between
them. The nodes are classified into two groups depending on their position in the net-
work, namely network interfaces and routers. Network interfaces are the service access
points of the network. An interface that initiates a communication request is called
an active network interface port (ANIP), and an interface that responds to a commu-
nication request is called a passive network interface port (PNIP). Routers provide
the connectivity of the network. They do not initiate or respond to communication
but just route packets from one interface to another. Each node in the network has
a number of (bounded) buffers to store packets that have arrived and are waiting to
leave.

Within a packet switching network it is relatively easy to offer a best-effort (BE)
communication service, in which packets can be delayed to an arbitrary amount of time,
and it is not possible to give a worst-case estimation. The main goal of the ÆTHEREAL

protocol [4] is to also provide a guaranteed-throughput (GT) service within a network
on chip. This is done by first reserving the resources (links) needed for the GT service
for the entire duration of the service. The challenging part is to set up a new GT service
using the BE services, which do not give any timing guarantee. Due to the limited buffer
size (which are also shared by already running GT services) a deadlock scenario can
easily occur, and the ÆTHEREAL protocol has to avoid such circumstance at all times.
Once a GT connection is established, data may flow through this connection without
difficulty. An important instrument for the establishment of a GT connection is the slot
tables. Each routers is equipped with such a table, in order to book-keep which outgoing
link is reserved for a given incoming link at a given slot time.

Establishing a GT connection starts when a source ANIP sends a BE SETUP packet
to a destination PNIP. This SETUP packet will try to reserve all the links in the path that
lead to the destination. The intention is that the GT service will follow the same path
for its entire duration. The destination PNIP may not be connected to the ANIP directly,
therefore theSETUP packet may have to pass through a number of routers, or the buffers
of the routers as shown in Fig. 1. Each router has a separate unit (or buffer) called
reconfiguration unit (rcu), where the management of the slot table take place. During
reservation request, an outgoing link is reserved if the link is free during the requested
slot time, otherwise the request is denied. If the reservation is accepted, the SETUP
packet is passed over to the next router, and the process goes on. If every reservation
request is successful in all the nodes in the path (including the destination), then the
destination PNIP sends a BE positive acknowledgment packet (ACK) to the source (the
arrow with ∗∗ in Fig. 1). We say that the GT-connection has been established when the
source receives the ACK packet. Subsequently, the GT service can start as scheduled.
However if at some point in the path a node rejects the reservation request, the node will
send a BE negative acknowledgment packet (NACK) to the source (the arrow with ∗ in
Fig. 1). When the source ANIP receives NACK, it means (1) the GT-connection can not
start, and (2) it has to unreserve the reservations it made. Note that the nodes between
the source up to the node where the SETUP packet was rejected, do not know that the
setup process has failed. For this purpose the ANIP sends a BE tear-down (TDOWN)
packet to unreserve what has been reserved earlier. This TDOWN packet follows the
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Fig. 1. Dependency graph between buffers

same path as the preceding SETUP packet. Like SETUP packets, TDOWN packets visit
every router on the path and update the slot tables accordingly.

One thing that may possibly go wrong during GT connection set-up is buffer over-
flow. This is handled by controlling the flow of packets locally (between adjacent nodes)
and globally. As shown in Fig 1 local flow control is between adjacent nodes (or more
specifically, adjacent buffers), and the global (or end to end) flow control is handled
within ANIPs. For local control, the sender node maintains a local credit counter for
every adjacent buffer. This counter records how much space is left in the receiver’s
buffer, and a packet is sent to this buffer only if it is not full. End-to-end flow control
is introduced to prevent ANIPs from flooding the network. An end to end flow control
counter is maintained locally by every ANIP in the network. Each time an ANIP sends
a SETUP packet, its credit is decremented by one, and each time the ANIP receives an
ACK or NACK its credit is incremented by one. Initially an ANIP has a credit which is
equivalent to the size of the buffer in which acknowledgment packets are received in
the ANIP (anip ack buffer). Thus, ANIPs may only send SETUP packets if they
can accommodate the resulting acknowledgment packets.

A key idea to prevent deadlock in ÆTHEREAL is to have separate classes of buffers
for system (SETUP, TDOWN) and acknowledgment (ACK, NACK) packets, and to ensure
that there are no routing cycles within a buffer class. This separation is illustrated in
Fig. 1 as a buffer dependency graph. The buffer dependency graph of a network on chip
is defined to be a directed graph whose vertices are buffers and whose edges correspond
to possible routings from one buffer to another. A key property that we proved for our
PVS model of ÆTHEREAL is that there is no routing from an acknowledgment buffer
to a system buffer, with the exception that in an ANIP a NACK packet may be routed
to a system buffer as a TDOWN packet. Thus, if a path involves ANIP buffers then it
may contain a cycle. But, as we will argue in the following section, even in this case no
deadlock will occur.

3 Deadlock Involving an ANIP

Communication in a network on chip takes place via synchronous transmission of pack-
ets from one buffer to another buffer. Each transmission is signaled by the advancement
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of a time slot [4]. The behavior of a complete network can be modeled conveniently by
a state machine in which the states are the configurations of the network at a given time
slot and the transitions correspond to the synchronous transmission of packets from one
buffer to another.

A state is identified by the values of the following variables: (a) the content of the
buffers, (b) local and end to end credits, (c) the slot tables, and (d) the time slot. Initially,
all buffers and slot tables are empty. The local credit is equal to the buffer capacity it
refers to, and the end to end credit is equal to capacity of the acknowledgment buffer of
the ANIP. The time slot is zero.

The control transitions of the network can be structured as three sequential steps
called read, execute and write. These three phases together constitute a single control
transition in the state machine. We say that there is a transition (or step(s1,s2)),
from a state s1 to another state s2, if s2 can be reached from s1 by executing the three
sequential steps. The set of reachable states is the set of all states that can be computed
by recursive application of step(s1,s2), starting from the initial state. We say that
a reachable state s has a deadlock if there are a list of buffers lb, which are full in s
and which form a cycle in the dependency graph.

In order to prove that there is no reachable state with a deadlock, we proceed by as-
suming the converse. Suppose that there is a state with a deadlock. This means that there
is a list of full buffers containing ANIP buffers and this list forms a cycle. Moreover,
this means that the system and acknowledgment buffers of the ANIP are full and yet
there is an incoming packet from the network to this ANIP. But as explained above, the
end-to-end flow control forbids such scenarios, because the ANIP could not have sent
more packets than the capacity of its acknowledgment buffer. Formally, using PVS, we
established (for an abstract version of our model) a number of system invariants which
in combination imply that such a scenario will never arise.
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Abstract. Formal property checking is used to check whether a circuit
satisfies a temporal property or not. An important goal during the devel-
opment of properties is the formulation of general proofs. Since assump-
tions of properties define the situations under which the commitments
are checked, in order to obtain general proofs assumptions should be
made as general as possible. In practice this is accomplished iteratively
by generalizing the assumptions step by step. Thus, the verification en-
gineer may start with strong assumptions and weakens them gradually.

In this paper we propose a new approach to speed up SAT-based
iterative property checking. This process can be exploited by reusing
conflict clauses in the corresponding SAT instances of consecutive prop-
erty checking problems. By this the search space is pruned, since re-
computations of identical conflicts are avoided.

1 Introduction

Nowadays, for successful circuit designs Property Checking (PC) is very impor-
tant. Typically such a property consists of two parts: an assume part which
should imply the proof part. In the last years tools based on Satisfiability (SAT)
performed better than classical BDD-based approaches since SAT procedures do
not suffer from the potential “size explosion” of BDDs. In SAT-based PC the
initial SAT instance is generated from the circuit description together with the
property to be proven. Usually, the largest part will result from the unrolled
circuit description. In comparison, the parts for the commitments, assumptions,
and the extra logic are much smaller. From a practical perspective, during PC as
long as no design bug is found the circuit design remains unchanged, but the ver-
ification engineer modifies and adds new properties. Thus, the PC tool is used
interactively. For the verification engineer on the one hand, proving becomes
more easy if the assumptions of a property are very strong, i.e. the property is
very restrictive and argues only over a small part of the design space. On the
other hand, such proofs are not very general. Hence in practice, the formulation
of a property is an iterative process. E.g., the engineer starts writing a prop-
erty with strong assumptions. Then, the engineer stepwise weakens some of the
assumptions to obtain a more general proof.

The basic idea is to exploit the iterative process of PC. As can be seen only
a very small part of the verification problem changes in consecutive PC runs
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if the assumptions are weakened. Re-computations can be avoided if learned
information is reused for consecutive SAT problems. Bounded Model Checking
(BMC) as introduced in [1] reduces the verification problem to a SAT problem
and then searches for counter-examples in executions whose length is bounded
by k time steps. For BMC, it has been suggested to reuse constraints on the
search space deduced in instance k for solving the consecutive instance k + 1
faster [4]. However, in [4] this concept is only used during the proof of a single
or more fixed properties.

In this paper we use BMC as described in [5], thus, a property only argues
over a finite time interval and during the proof there is no restriction to reach-
able states. In contrast to [4], here two SAT instances for slightly different PC
problems are considered and information from the two properties with respect
to the underlying circuit is utilized. This enables to reuse learned conflict clauses
in the SAT instance of the consecutive PC problem.

2 Acceleration of Iterative Property Checking

In this section the approach for reusing conflict clauses during iterative PC is
presented. Before the details are given, the work flow is illustrated in Figure 1.

At first the design and the property are compiled into an internal repre-
sentation. In this step information to allow for a syntactic comparison between
properties is stored in the data base (A). Then the internal representation is
converted into a BMC problem expressed as a CNF formula. While solving this
SAT instance the references to the clauses that lead to a new conflict clause
are stored in a data structure. After termination of the SAT solver this conflict
clause information can be related to the single assumptions and commitments
of the checked property. Finally this information is minimized and added to the
data base (B). Now assume that PC is repeated but the property has been weak-
ened. Then, this is detected (X) and before the BMC problem is given to the
SAT solver conflict clauses are read from the data base, analyzed and reused
(Y), if possible.

Let M be the set of clauses resulting from the translation of the design
D, let P be the set of clauses resulting from the property p. Then P can be
partitioned into P = A ∪ C ∪ R, where A are the clauses from the assumptions,

Design

Frontend

Property

DB
BMC Problem

SAT Solver:
Satisfiable? yesno

Property holds Counter-example

A

X

Y

B

Fig. 1. Property Checking Flow
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C from the commitments and R the clauses to “glue” the assumptions and the
commitments of the property together. Now consider two consecutive runs of the
property checker for the unchanged design D and for two properties pF (first) and
pS(second). Assume that the property pS has been derived from the property
pF by weakening some of the assumptions. Let PF = AF ∪ CF ∪ RF be the
resulting clauses of the property of the first run and PS = AS ∪ CS ∪ RS the
clauses for the second run, respectively. Further assume that the variables in PS

are renamed with a variable mapping function which maps a variable from the
second set of variables VS to the according variables of the variable set VF from
the first run. Then the following holds:

1. CS = CF , since the commitments of properties pS and pF are equal.
2. RS = RF since the variables to combine the assumptions and commitments

can be identified.
3. AS ⊂ AF because the assumptions of pS are weaker than the assumptions

of pF .

Since the clauses M of the design do not change only the clauses resulting
from the two properties pF and pS have to be compared. Under the assumptions
and conclusions from above the following holds:

PF − PS = (AF ∪ CF ∪ RF ) − (AS ∪ CS ∪ RS) = AF −AS

With this result it can be concluded that all conflict clauses can be reused which
are not a result of an implication caused by a clause of AF −AS . In other words
we have to identify the conflict clauses which have been deduced exclusively from
the intersection of the two consecutive PC problems. This intersection is given
by (M ∪PF )∩ (M ∪PS) = M ∪AS ∪CF ∪RF . Thus, for each conflict clause of
the first run the sequence of clauses which produced that conflict clause have to
be determined, since with this information we can exactly identify the source of
the conflict in terms of the two properties pF and pS . This becomes possible, if
we further know which clauses have been produced by the design, the individual
expressions in the assume part and the individual expressions of the proof part
of both properties. Finally for a conflict clause cl the minimal source information
is stored which allows to check if cl was produced by a clause of the design or by
an assume expression or a proof expression. Altogether it can be decided which
conflict clauses of the first run can be reused to speed up the current proof.

3 Experimental Results

To allow for access of necessary information during PC we have implemented
a SAT-based property checker on top of zChaff [3]. All experiments have been
carried out in the same system environment on an Athlon XP 2800 with 1 GByte
main memory. The following experiments always consist of two steps. First, for
a circuit a property with “overly” strong assumptions is proved. This is done
with and without our approach to measure the time overhead. Next, we prove
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Table 1. Overhead for arbiter

Cells Property Clauses Literals Result Time (sec)
std reuse

100 mutualexclusion 240,776 541,742 holds 9.15 9.57
100 lowestWins 50 161,399 363,193 holds 14.15 14.49
200 mutualexclusion 961,576 2,163,542 holds 176.65 177.78
200 lowestWins 50 642,799 1,446,393 holds 588.30 590.45

Table 2. Acceleration for arbiter

Cells Property Clauses Literals Result Time (sec) Reused Speed-up
std reuse Cl. (%)

100 mutualexclusion 161,076 362,442 holds 13.26 13.01 20.23 1.0
100 lowestWins 50 161,247 362,839 holds 8.71 4.54 100.00 1.9
200 mutualexclusion 642,176 1,444,942 holds 1078.80 343.77 6.23 3.1
200 lowestWins 50 642,347 1,445,339 holds 656.35 22.70 100.00 28.9

the same property but in a more general version, i.e. some of the assumptions
of the property have been weakened. In this case we measure the speed-up that
can be achieved by reusing conflict clauses.

In a first series of experiments we considered a scalable bus arbiter that
has been studied frequently in formal hardware verification (see e.g. [2]). The
considered properties for the arbiter circuit are mutual exclusion of the outputs
of the arbiter and lowestWins. The second property states that if exactly one
token is set and no cell is waiting and exactly the request i is high then the
corresponding acknowledgement i will be set in the same clock cycle. In Table
1 the overhead for our approach is given for different arbiter instances (column
Cells). In the second column the name of the considered property is shown. The
next two columns provide information on the corresponding SAT instance. In
column Result it is shown whether the property holds or not. Next, the run time
needed without and with our approach is given in column std and column reuse,
respectively. The difference between the two given run times is the time needed
to store learned information into the data base. As can be seen the overhead is
negligible, i.e. less than 1% of the run time for the larger examples.

The achieved improvement of the proposed approach for the arbiter is shown
in Table 2. E.g. in the weakened variant of the property mutualexclusion the
assumption that no arbiter cell is waiting is no longer assumed. The first seven
columns give similar information as in Table 1. Because the considered proper-
ties have been weakened the resulting number of clauses and literals decreases.
However, since for each property learned information can be found in the data
base, conflict clauses can be reused. Thus, column Reused Cl. gives the percent-
age of reused clauses. In the last column the achieved speed-up is shown. As
can be seen for the 100 cell arbiter in case of the property mutualexclusion no
speed-up results. But for the three remaining examples a significant speed-up
was obtained, i.e. up to nearly a factor of 30.
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Table 3. Overhead for FIFO

Size Property Clauses Literals Result Time (sec)
std reuse

64 nochange 68,077 156,723 holds 14.82 14.92
128 nochange 156,595 361,173 holds 101.83 102.03

Table 4. Acceleration for FIFO

Size Property Clauses Literals Result Time (sec) Reused Speed-up
std reuse Cl. (%)

64 nochange 68,072 156,712 holds 14.80 2.16 100.00 6.9
128 nochange 156,590 361,162 holds 101.72 6.42 100.00 15.8

In a second series of experiments we studied FIFOs of different depth. As
a property we prove that the content of a FIFO does not change under the
assumption that no write operation is performed. In the initial version of this
property it has also been assumed that no read operation is performed. Similar
information as for the arbiter examples is provided in Tables 3 and 4, respectively.
Also in this case for larger examples a speed-up of more than a factor of 10 can
be observed.
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Abstract. In this paper, we explore a parallelization of BMC based on
state space partitioning. The parallelization is accomplished by execut-
ing multiple instances of BMC independently from different seed states.
These seed states are deep states, selected from the reachable states in
different partitions. In this scheme, all processors work independently of
each other, thus it is suitable for scaling verification to a grid-like net-
work. Our experimental results demonstrate improvement over existing
approaches, and show that the method can scale to a large network.

1 Introduction

Satisfiability based Bounded Model Checking (SAT-BMC) [2] approaches are the
preferred method for detecting error states that are not very deep. However, these
techniques can become quite expensive when many time-frames are required to
be analyzed. BDD based approaches are better choices for those “deep cases”
where the image BDDs remain moderately small as constructing large BDDs for
many image steps can be very expensive. Thus the class of problems which may
require many steps of image analysis to detect the error, but where BDD sizes
grow large, remain an attractive research target.

Our approach is to create a method that can find various candidate deep
states which can be seeds from which SAT-BMC can be run in parallel to explore
the adjacent state space. Starting from such potential deep seed states, multiple
BMC runs may be able to reach further deep states, and locate errors, which
may be out of reach for existing methods.

Generating Seed States: For a few initial steps of reachability, rapid progress
can be made using BDDs. To control the size of BDDs using state space analysis
we use state-space partitioning [5]. Deep states provided from such local BFS
traversals can be used to provide initial seed states to subsequent BMC runs.
Since the BDD runtime is directly proportional to the size of the graphs, we
further limit the size of partitions using an under-approximation based method
on top of partitioned BDDs.

Using Seed States: We augment our ideas of combining Partitioning and BMC
by generating multiple instances of BMC and run each such case in parallel on
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a grid of computers. This idea looks even more attractive when we consider
that large computing grids are slowly becoming available in many computing
environments [1].

For a detailed description of background, survey of related work, and expla-
nation of terminology, the reader may refer to the full version of this paper. [4]

2 Algorithm

We believe there are two key ideas for deep exploration. The first is to go
deep using BDDs at the expense of completeness, by ensuring that BDD sizes
remain tractable. This is accomplished by the use of partitioning and under-
approximation. The second idea is starting multiple BMC runs, one from each
seed. To keep the runtime practical we make these runs in parallel by using the
computing power of a grid. This is a non-conventional way of parallelizing BMC.
For the circuits where the BDD based exploration is able to build the transi-
tion relation cheaply our method appears to overcome the main shortcoming of
classical SAT-BMC which is its inability to perform deep state exploration.

To summarize, our algorithm has following two stages:

1. Generate deep seed-states using partitioning and approximation techniques
2. Distribute seeds on the grid focussing on minimizing unnecessary runs.

Generate Deep Seeds: We perform a full traversal of the state space by parti-
tioning the transition relation, as well as the computed sets of states so that both
the graphs and associated calculations remain tractable. When the BDD calcu-
lations are no longer manageable, we perform successive under-approximations.
At each step of image computation, we use a subset of the actual set of states.
Such massive under-approximation may result in successive traversal not always
leading to a deeper state. However, probabilistically speaking, if the number of
states in any computed image set is more than the sum in the previous steps, as
is often the case, then there is a high probability that with successive application
of “smaller” image function obtained from a partition of the transition relations,
most nodes in our path of deep-traversal will indeed be deep.

Parallel Seed SAT: In order to determine the initial seed states for SAT, we use
the following two approaches: Firstly, a small number of BDD based partitions
are explored fully and CNF clauses are written out at regular intervals, say every
5 steps. Alternatively, a large number of partitions are explored very rapidly
with under-approximation, and the resulting deep states are used to seed SAT.
By making multiple BMC runs, starting from various points along the state
traversal, we can ensure that at least a subset of the BMC executions start from
a deep state. Since all BMC runs can be made in parallel so this leads to a
non-traditional method of parallelizing BMC.

The Proposed Algorithm:

1. Partition reach: Use state partitioning in reachability to get different and
divergent paths exploring state space.
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Fig. 1. Seeding multiple SAT-BMC runs from POBDD reachability

2. Approx Partition reach: Do reachability analysis with under-
approximation – during each image computation, pick a subset of the
newly found reachable states and add it to reachable set in order to avoid
BDD blowup problems.

3. Generate seed: At regular intervals, whenever a threshold is crossed, store
the seeds and pass it to a new instance of the SAT solver.

4. Start Seeded SAT : From each of these seeds, run an instance of SAT-based
BMC up to a small enough depth.

5. Run in Parallel: Run one SAT instance on each machine of the grid.
6. T ermination condition: Allow BDD exploration and all SAT explorations

to continue in parallel until bug is seen or timeout is reached.

3 Results

In this section, we present our experimental results on some industrial circuits.
Several of these properties are deep and pose some difficulty for SAT-BMC
as well as simulation based methods. The experiments are run on a grid of
computers that include up to 100 independent Xeon CPUs (1.5 to 2.3 GHz)
running linux. We use an in-house grid middle-ware, CyberGrip [1], developed
at Fujitsu Labs Limited, Japan, for managing jobs executed on the grid. Our
program is implemented on top of VIS-2.0 and uses CUDD BDD package and
zchaff SAT-solver. The POBDD algorithm is run on a single processor but the
CNF files generated are transfered to different nodes on the grid where a BMC
run is fired in parallel.

Details of Experiments: Random simulation, using VIS-2.0 upto 100,000 steps
is unable to find a bug in any of the circuits in the benchmark. We perform
simulation to find deep states and seed BMC from there. This is similar to the
approach of [3], except that we use a different random seed for each simulation
depth. For each circuit, we run simulation, in steps of 1,000 from 2,000 to 10,000.
When the depth is reached, we pick the state reached at the end of the simulation
and seed SAT from there.
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Table 1. Comparison of the time taken in seconds by various approaches

Existing Proposed
Num. Error Total Time (sec) Time (sec) Num.

Ckt latches Depth BDD POBDD BMC Sim Sim/BMC Seed BMC Total CPU

b1 125 59 7 3.2 T/O NB 167 3.2 N/A 3.2 1
b2 70 85 3.4 2 T/O NB 115 2 N/A 2 1
b3 66 23 1.9 1.3 T/O NB 268 1.3 N/A 1.3 1
b4 66 59 1.9 1.3 T/O NB 3097 1.3 N/A 1.3 1
b5 170 36 T/O T/O T/O NB 2758 27 36 63 9
b6 201 29 3148 2857 T/O NB 1407 156 20 176 3
b7 123 60 258 976 T/O NB T/O 35 429 464 14
b8 169 23 T/O T/O T/O NB T/O 198 55 253 28
b9 148 27 T/O T/O T/O NB T/O 280 1580 1860 70

“T/O” is a timeout of 2 hrs, “NB” means no bug found.

Table 1 shows the time taken by different methods: Existing approaches are
invariant checking using BDDs and POBDDs; SAT-BMC; simulation to 5,000
steps and an application of SAT solver after 5,000 steps. The last four columns of
Table 1 shows the details of time spent by the proposed method: the time taken
for (a) POBDD based reachability to discover the seed state, (b) the SAT-solver
to find the bug from there, (c) the total time and (d) the number of CPUs of
the grid that are actually used. We allow each method to run for 2 hours. The
results for all the methods are shown in table 1. Note that the proposed method
is the only one that is able to find the error in benchmarks b8 and b9.

4 Conclusions

Based upon our analysis of the experimental results, we believe that the proposed
hybrid method has various benefits. It is computationally inexpensive in terms
of overhead and an alternate way of parallelizing SAT-based BMC – each of
many processors can execute a BMC from a different set of initial states. The
only data that is passed over the network is at the very beginning, after that
no synchronization is required, until termination. Such parallelization has no
interdependence at all, and can therefore very effectively utilize a number of
processors in a large grid, without creating communication overhead between
the processors. This method also effectively exploits the advantage of symbolic
BDD based search as well as SAT. If there are a large number of partitions or if
certain partitions are difficult, performing cross-over images between them can
be difficult, and this may be the bottleneck in getting to the error. This can be
overcome by SAT based BMC, which is “locally complete” from its originating
point and does not compute sets of states.

Although a very large grid was available, in typical experiments only a
small number of CPUs were used. This suggests significant scope to improve
the quality of results and possibility to tackle larger problems with further re-
search.
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Abstract. Large Systems on Chips (SoC) comprise multiple clock domains, and 
inter-domain data transfers require synchronization. Synchronizers may fail due 
to metastability, but when using proper synchronization circuits the probability 
of such failures can be made negligible. Failures due to unexpected order of 
events (caused by interfacing multiple unrelated clocks) are more common. 
Correct synchronization is independent of event order, and can be verified by 
model checking. Given a synchronizer, a correct protocol is guessed, 
verification rules are generated out of the protocol specification, and the model 
checker applies these rules to the given synchronizer. An alternative method 
verifies correct data transfer and seeks potential data missing or duplication. 
Both approaches require specific modeling of multiple clocks, allowing for non-
determinism in their relative ordering. These methods have been applied 
successfully to several synchronizers. 

1   Introduction 

Large systems of chip are typically partitioned into multiple clock domains. Clock 
frequencies of the various domains and their relative phases may be unknown a-priori, 
and may also change dynamically [1]. Data transfers between different clock domains 
require synchronization [2]. When data enters a domain and happens to change 
exactly when the receiving register is sampling its input may cause that register to 
become metastable and fail [3]. This problem is mitigated by properly employing 
synchronizers. This paper describes methods for formal verification of synchronizers 
using model-checking [4]. 

Synchronizers are designed to allow certain time for metastability resolution. The 
amount of resolution time is determined according to the desired level of probability 
of failures. In this paper we assume that sufficient time has been allowed and no 
failures are expected. However, following metastability the synchronizer may resolve 
non-deterministically to either 0 or 1, and consequently proper synchronization is still 
not guaranteed. To mitigate that non-determinism, synchronizers are encapsulated in a 
bidirectional handshake protocol. The goal of formal verification is to guarantee 
correct execution of that protocol.  

There are too many known synchronizer types and synchronization protocols, and 
it may be infeasible to define a single specification that could be used to verify all of 
them. Instead, we employ structural analysis to recognize synchronizers and to sort 
them into several a-priori known types. For each type, a set of properties has been 
defined, which, when proven to hold, guarantee correctness. 
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The paper describes how to generate formal verification executions of RuleBase (a 
model checker [5] using PSL [6]) for given synchronizers. We start with modeling of 
multiple clocks in Section 0. Next, in Section 0, we describe control verification 
method, based on converting the specification into PSL assertions. Data verification, 
which is not specification-dependent, is presented in Section 0. A more detailed 
description is given in [7]. 

2   Modeling Multiple Clocks 

The model checker (MC) [5] performs its algorithms in a sequence of atomic ticks. 
Each synchronous component of the system being verified (the design system) is 
assumed to operate in atomic clock cycles. Common model checking assumes a single 
clock, but synchronizers must be verified while observing multiple clocks. Thus, we 
need to add special modeling of multiple clocks to our specification. 

Clock modeling depends on how the clocks of the two domains are inter-related. If 
the two clocks are unrelated, they are modeled as two free variables. When the 
frequencies of the two clocks are assumed related by a rational number m/n (WLOG 
m>n) [8], then we specify to the MC that between any two edges of CLK2 there 

should be N active edges of CLK1, where m/n N m/n  (see [7]).  A wide range 
of m/n ratios may be covered in a single execution of the MC if m/n is specified as a 
non-deterministic variable. 

3   Control Verification 

As stated above, data transferred between two mutually asynchronous clock domains 
are wrapped by a handshake protocol, implemented with control signals between the 
domains. We consider verification of the protocol by examining the control signals. 
The desired synchronizer handshake protocols are specified by means of STG (Signal 
Transition Graphs) that define the order of events (logic level transitions) in the 
synchronizer [9]. In this section we discuss how to convert the synchronizer STG 
directly into PSL assertions.  

We first generate assertions to prove that if a signal transition event is enabled, it 
eventually happens. Each event has its own condition that enables its execution. In 
STG, the condition is fulfilled by a marking (a mapping of tokens to arcs) where all 
arcs incoming into the event carry tokens, enabling firing of the event. The condition 
is converted into a rule that verifies that the enabled transition actually takes place 
before the enabling state is changed [7]: 

AG ( EnablingState(E) -> Transition(E) before !EnablingState(E) ) 

Next, we generate assertions that verify that events take place only when enabled: 

AG (Transition(E) -> SetOfEnablingStates) 

To verify that the given synchronizer complies with the specification STG, we 
prove the correctness of the constituent events with the above rules. The correct 
ordering of events is then implied by the ordering allowed by the STG. 
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4   Data Verification 

Verifying the synchronizer control, presented in the previous section, is subject to two 
limitations: First, it is protocol specific--the rules depend on the specific STG and 
cannot in general be applied to other synchronizers. Second, the STG may need to be 
modified (e.g. to satisfy complete state coding [10]), in order to enable rule derivation 
[7]. In this section we present data verification of the actual data transfer, irrespective 
of the control handshake protocol. If the controller has an error, it will be discovered 
through data verification. The goal of data transfer verification is to prove that any 
data item sent by the sender is eventually sampled exactly once by the receiver.  

The data transfer part of a synchronizer is shown in Fig. 1. The verifier interprets 
the loading of data DIN into the leftmost register as an attempt by the sender to send 
it. A sampling into the rightmost register is interpreted as an attempt by the receiver to 
receive data. The verifier must prove that no data item is either missed or sampled 
more than once by the receiver. 

R_BUFS_BUFDIN

L E

CLK1 CLK2

R_BUFS_BUFDIN

L E

CLK1 CLK2

 

Fig. 1. Cross-domain data transfer structure 

The first verification rule checks data integrity: 

AG ( CLK1 & L & DIN(0)=1 ->  
     next_event( CLK2 & E )( S_BUF(0)=1 )) 

A similar rule can be written for the value 0. Integrity is checked only for a single 
data bit because all the other bits will behave in the same way, as guaranteed by 
structural verification. In addition to data integrity, we should verify that: 

• Data is not duplicated—the receiver does not sample the data if the sender did not 
send any: 

AG ( CLK2 & E -> AX ( (CLK1 & L) before (CLK2 & E) )) 

• Data is not missed—the receiver eventually receives data that was sent by the 
sender: 

AG ( CLK1 & L -> AX ( (CLK2 & E) before! (CLK1 & L) )) 

In words, between any two send events there must be one reception, and vice versa. 
The second assertion uses the strong before! operator (with !) to verify that the event 
(CLK2 & E) eventually takes place even if the subsequent event (CLK1 & L) does not 
happen at all. 
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5   Conclusions 

We have demonstrated two methods for synchronizer verification using model 
checking. For control verification, a specification (in terms of STG) is employed to 
derive PSL assertions that are subsequently applied to the design. For data 
verification we seek correct data transfers (each sent data item is received exactly 
once) while ignoring the control operation. Both methods require specific modeling of 
multiple clocks, allowing for non-determinism in their relative ordering. 

These methods have been applied successfully to a number of synchronizers, such 
as the two-flip-flop synchronizer, a dual clock FIFO, and an Adaptive Predictive 
Synchronizer [8]. 
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Abstract. We present a parameterized suite of benchmark problems arising
from our work on pipelined machine verification, in the hopes that they can be
used to speed up decision procedures. While the existence of a large number
of CNF benchmarks has spurred the development of efficient SAT solvers, the
benchmarks available for more expressive logics are quite limited. Our work on
pipelined machine verification has yielded many problems that not only have
complex models, but also have complex correctness statements, involving invari-
ants and symbolic simulations of the models for dozens of steps. Many of these
proofs take hundreds of thousands of seconds to check using the UCLID decision
procedure and SAT solvers such as Zchaff and Siege. More complex problems
can be generated by using PiMaG, a Web application that we developed. PiMaG
generates problems in UCLID, SVC, and CNF formats based on user-provided
parameters specifying features of the pipelined machines and their correctness
statements.

1 Introduction

Fueled in part by advances in SAT solving, there is currently wide interest in obtaining
efficient decision procedures for richer logics [1, 4]. As is the case with SAT solv-
ing technology [10, 11], efficiency does not mean better worst-case behavior; rather, it
means better behavior on problems “arising in practice.” In contrast to the situation for
SAT, where hard CNF problems arising in practice are readily available, the supply of
hard benchmark problems for more expressive logics is quite limited. We believe that by
providing such problems we can help spur the growth of efficient decision procedures;
to this end, we provide a parameterized suite of benchmarks in UCLID [2], SVC, and
CNF formats that can be used to evaluate decision procedures and SAT solvers.

The core benchmark suite comprises of 210 benchmarks generated from our work
on refinement based pipelined machine verification [7, 8]. We also developed PiMaG
(Pipelined Machine Generator), a Web application that can be used to automatically
generate complex benchmarks based on user provided parameters [9]. The benchmarks
include not only the models, but also the properties to be proved, which include invari-
ants, symbolic simulation steps, and arithmetic.
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The paper is organized as follows. In Section 2, we briefly describe the refinement-
based correctness theorems. In Section 3, we describe the pipelined machine models
being verified, and in Section 4, we describe the benchmark suite, the tool, and give
an overview of the running times we obtained in checking these benchmarks using the
UCLID decision procedure [2] and the Siege SAT solver [11]. We conclude in Section 5.

2 Correctness Theorems

The benchmarks arise from our work on refinement-based pipelined machine verifica-
tion. We use the notion of Well-Founded Equivalence Bisimulation (WEB) refinement
to show pipelined machines and their instruction set architecture (ISA) have the same
safety and liveness properties up to stuttering [5, 6]. Refinement proofs are relative to
refinement maps, functions from pipelined machine states to ISA states, that show us
how to view a pipelined machine state as an ISA state. For example, refinement maps
have to hide the pipeline components that do not appear in the ISA. In [7], it is shown
how to automate the proof of WEB-refinement in the context of pipelined machine ver-
ification. Our benchmark problems use three different refinement maps; two of them
are based on commitment [5, 6] and one is based on flushing [3].

The idea with commitment is that partially completed instructions are invalidated
and the programmer visible components are rolled back to correspond with the last
committed instruction. Flushing is a kind of dual of commitment, where partially com-
pleted instructions are made to complete without fetching any new instructions. Using
refinement maps based on commitment requires the use of invariants, but they can be
automatically generated [7]. We use two different types of invariants that lead to two
types of commitment proofs, one of which tends to lead to significantly faster verifica-
tion times [8].

3 Pipelined Machine Models

The pipelined machine models are obtained by starting from a base model and ex-
tending it with various features to obtain more complex models. The most complex
model in the core benchmark suite is shown in Figure 1. The base processor model
is a 6 stage pipelined machine with fetch, decode, execute, memory1, memory2, and
write back stages. The pipeline stages memory1 and memory2 provide for a two-cycle
memory access. Instruction types such as ALU instructions with register-register and
register-immediate addressing modes, branch, loads, and stores are implemented. The
base processor model is extended with features such as a pipelined fetch stage, branch
prediction, an instruction queue, an instruction cache, a data cache, and a write buffer.

The pipelined machine models are described using the UCLID specification lan-
guage at the term-level. The data path is abstracted away using terms (integers) and
much of the combinational circuit blocks that are common between the pipelined ma-
chine and its instruction set architecture (ISA) are abstracted using uninterpreted func-
tions. The register file and the memory are modeled using lambda expressions.

We use the following naming convention for the pipelined machine models. The
model name starts with a number followed optionally by the characters “i”, “d”, “w”,
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Fig. 1. High-level organization of the most complex processor model with 10 pipeline stages,
instruction queue of length 3, instruction and data cache, and write buffer

“b”, and “n”, which indicate the presence of an instruction cache, a data cache, a
write buffer, branch prediction abstraction scheme 1, and branch prediction abstrac-
tion scheme 2, respectively. The number indicates the number of pipeline stages. If no
branch prediction is used, the model predicts not taken.

4 Benchmarks

We have generated a core suite of 210 benchmarks that are available in UCLID, SVC,
and CNF formats. The benchmarks are obtained from the pipelined machine models
described in Section 3 using flushing and the two commitment refinement maps. Even
more complex benchmarks can be generated by our tool PiMaG. The benchmarks and
tool are available on the Web [9].

The benchmark naming conventions are as follows: the first letter is either “f”, “c”,
or “g” and indicates the use of flushing, commitment approach 1, or commitment ap-
proach 2, respectively. Then the name of the pipelined machine model, as described in
Section 3, follows. For machines based on commitment approach 1 only, there is an
optional suffix which can either be “-i” or “-r”, indicating that only the invariant proof,
or only the refinement proof should be generated, respectively.

We checked many of the benchmarks using the UCLID decision procedure (Version
1.0), and the Siege SAT solver (variant 4). The UCLID decision procedure compiles
UCLID specifications to SAT problems or to SVC formulas. All the benchmarks are
unsatisfiable and the verification times vary from a few seconds for the simpler models
to hundreds of thousands of seconds to being too complex for Siege to handle (e.g.,
f9idw and f10id, f10idw, f9bidw, f10bid, f10bidw, f9nidw, f10nid, and f10nidw).

To obtain even more complex problems, PiMaG can be used to automatically gener-
ate pipelined machine models, their ISA specifications, and their refinement theorems.
PiMaG takes seven parameters, the first specifies if the base model has 6 or 7 stages, the
second selects the refinement map used, the third provides the length of the instruction
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queue, the fourth specifies what combination of the following three optional features to
include: instruction cache, data cache, and write buffer, the fifth provides the length of
the write buffer, the sixth specifies the type of branch prediction abstraction scheme, and
the final parameter specifies what set of formats to generate benchmarks for. Some com-
binations of parameters can be too large for the tools to handle, and therefore PiMaG
enforces restrictions on the size of the instruction queue and write buffer.

5 Conclusions

We presented a parameterized suite of benchmarks in various formats arising from
pipelined machine verification and developed PiMaG, a Web application that can gen-
erate arbitrarily complex models and their correctness statements. Some of the bench-
marks are quite complex and their verification takes hundreds of thousands of seconds;
other benchmarks cannot be handled using state-of-the art tools such as UCLID and
the Siege SAT solver. Our goal in making these benchmarks readily available is to help
evaluate and stimulate further research in efficient decision procedures and SAT solvers.
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Abstract. The evolution of SAT technology over the last decade has
motivated its application in model checking, initially through the uti-
lization of SAT in bounded model checking (BMC) and, more recently,
in unbounded model checking (UMC). This paper addresses the utiliza-
tion of interpolants in UMC and proposes two techniques for improving
the original interpolant-based UMC algorithm. These techniques include
improvements to the computation of interpolants, and redefining the
organization of the unbounded model checking algorithm given the in-
formation extracted from interpolant computation.

1 Introduction

The utilization of Boolean Satisfiability (SAT) in Model Checking has been
the subject of intensive research in recent years. The main result of this effort
has been a number of very competitive incomplete and complete algorithms for
checking safety properties (see [3] for a comprehensive list of references and an
extended version of this paper). Moreover, SAT-based model checking has also
been rapidly adopted by industry, and a number of vendors have included SAT-
based Model Checking in their tools. This paper describes preliminary work on
optimizing the utilization of interpolants in SAT-based model checking [4]. Two
techniques are proposed and evaluated. First, we propose the computation of in-
terpolants directly from the proof trace and skip the generation of the resolution
proof, and study the implementation of techniques for eliminating redundancy
from the computed interpolants. Second, we propose to utilize information from
the fixed-point checks of the UMC algorithm for redefining the organization of
the UMC algorithm.

2 Interpolant-Based Unbounded Model Checking

The generic propositional formula associated with SAT-based bounded model
checking is the following [2]:

ψj,k
BMC = ψI(Y/Y0) ∧

k−1∧
i=0

ψT (Y/Yi, Y
′/Yi+1) ∧ (

k∨
i=j

¬ψi
S) (1)

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 367–370, 2005.
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This formula represents the unfolding of the state machine for k computation
steps, where ψI(Y/Y0) represents the initial state, ψT (Y/Yi, Y

′/Yi+1) represents
the transition relation between states Xi and Xi+1, and ψi

S represents the target
property in computation step i. Given the BMC propositional formula ψj,k

BMC,
it is straightforward to generate a CNF formula ϕj,k

BMC. The resulting formula
can then be evaluated by a SAT solver. Recent work on SAT-based UMC has
addressed the utilization of interpolants [4], with quite promising experimen-
tal results. McMillan’s [4] interpolant-based UMC algorithm can be organized
into two main phases: a BMC step, where the circuit is unfolded, and the ex-
istence of a counterexample is checked, and a UMC step, where the existence
of a fixed-point is tested. Whereas the first phase corresponds essentially to the
standard BMC algorithm, the second phase requires the iterative computation
of interpolants until a fixed-point is reached or a (possibly) false counterexample
is identified. See [3] for a detailed description of McMillan’s UMC algorithm.

3 Optimizations to the Basic UMC Algorithm

This section addresses two optimizations to the basic interpolant-based UMC
algorithm proposed by McMillan [4]. First, we address the construction and
simplification of interpolants. Afterwards, we show how to exploit the informa-
tion from the interpolant iteration phase for rescheduling either the UMC or the
BMC loops. As noted by McMillan [4], interpolants obtained from unsatisfiabil-
ity proofs are highly redundant Boolean expressions. In [4] the author proposes
the utilization of BDDs, but no details are provided. For complex problem in-
stances, that yield hard instances of SAT, with large unsatisfiability proofs, the
interpolants before simplification can reach extremely large sizes. Our experience
has been that interpolants before simplification can be more than two orders of
magnitude larger than the resulting interpolants after simplification. Moreover,
although modern SAT solvers can easily be instructed to generate proof traces,
the generation of the actual unsatisfiability proof must be performed after the
SAT solver terminates and the proof trace is concluded. A key observation is that
one can avoid generating the unsatisfiability proof, and construct the interpolant
directly from the proof trace.

Next we outline two algorithms for creating interpolants directly from proof
traces. We should note that the organization of the two algorithms allows fairly
different results in terms of the worst-case memory requirements, as illustrated
in Section 4 for real-world model checking problem instances. Moreover, both
algorithms utilize Reduced Boolean Circuits [1] for representing Boolean expres-
sions, thus ensuring that constants and duplicate nodes are eliminated.

The first algorithm consists of a breadth-first traversal of the proof trace,
that at each node creates a Boolean expression as indicated by the definition
of interpolant (see [4]). We refer to this approach as the BFS algorithm. A key
drawback of the BFS algorithm is that a large number of Boolean expressions
need to be created, most of which are eventually deleted by applying the sim-
plification techniques described above. Hence, the BFS algorithm often spends
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a large amount of time creating Boolean expressions that are eventually elim-
inated. The second algorithm consists of a depth-first traversal of the proof
trace, applying the simplification techniques described above wherever possible,
and eliminating depth-first visits whenever the (constant) value of a Boolean
expression is known. We refer to this second approach as the DFS algorithm.

Next, we address techniques for exploiting the information provided by the
UMC step of the UMC algorithm. Suppose the current unfolding size consists of
K time frames. Moreover, assume the interpolant iteration procedure is executed
I times, until a (possibly) false counterexample is identified. According to the
definition of computed interpolants, this means that the target property cannot
be satisfied within K + I − 1 time frames. As a result, the property cannot be
satisfied for any unfolding with size no greater than K + I − 1 time frames.
Hence, instead of a fixed policy of incrementing the size of the unfolding by
INC time frames, we can safely consider the size of the next unfolding to be
K + I time frames. Observe that the information from interpolant computation
can be used for other purposes. For example, instead of rescheduling the BMC
loop to K + I time steps, we can simply utilize a SAT solver more effective at
proving unsatisfiability, and check the fixed-point earlier than K + I time steps.
Moreover, and since the information from the interpolant iteration procedure
allows rescheduling the BMC loop, we can also reschedule the next unfolding for
which to iterate interpolants and check the existence of a fixed-point, i.e. the
UMC step. In general, this can be done for every unfolding at which the BMC
step is evaluated.

The potential gains introduced with rescheduling can be significant. Assume
a state machine and safety property such that a counterexample can be identi-
fied with an unfolding of T time frames. Moreover, assume that the BMC loop
increases the unfolding by 1 time frame each time, that the initial unfolding size
is 1, and that the interpolant iteration procedure runs for T −K iterations for an
unfolding size of K time frames (observe that if a counterexample exists, then
we cannot iterate the computation of interpolants more than T − K times). In
this case, rescheduling guarantees that the UMC step is invoked only once, and
so the number of times the SAT solver is invoked is 2 + 2 × (T − 1) = O(T ). In
contrast, without rescheduling, the number of times the SAT solver is invoked
is T + 2 ×∑T−1

i=1 (T − i) = O(T 2).

4 Results

In order to evaluate the effectiveness of the proposed techniques we implemented
the algorithm described in [4], and integrated the optimizations described in
the previous section. Moreover, a state of the art SAT solver was used. The
experiments have been run under Linux RH 9, on a Pentium 2.8 GHz machine,
with 1 GByte of RAM. Two classes of instances are considered. First, we consider
a set of standard counters, for which a counterexample exists. For these instances
the property requires not all state bits to be simultaneously assigned value 1.
Second, we consider a set of instances (I11, I12, I21, I31, I32 and I33) obtained
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Table 1. Experimental results

Instance BFS & No-reschedule DFS & Reschedule BMC
4bit-counter 0.31 0.09
5bit-counter 3.86 0.84
6bit-counter 21.36 10.41
7bit-counter 1780.68 175.69
I12 255.77 272.47
I11 75.28 81.89
I31 83.51 90.08
I32 19.66 14.89
I33 17.44 13.09
I21 24.93 26.48
Total Time 2282.8 685.9

from real-world examples. For these instances, I11, I12, I21 and I31 do not have
a counterexample, whereas I32 and I33 have counterexamples.

Some preliminary results are shown in Table 1. Two configurations are con-
sidered: the BFS algorithm with no rescheduling, and the DFS algorithm with
rescheduling. In both cases interpolants are computed directly from the proof
trace. The results indicate that the proposed techniques are promising, allowing
an average speedup of 3.3 over our base implementation of the UMC algorithm.

5 Conclusions

This paper proposes techniques for improving the utilization of interpolants in
SAT-based unbounded model checking. As the results illustrate, improvements
can be obtained from a careful implementation of the interpolant computation
algorithm, and from exploiting the information provided by the procedure for
iterating the computation of interpolants. For specific classes of instances, both
artificially generated and obtained from industrial designs, the improvements
can exceed several orders of magnitude. The utilization of interpolants in SAT-
based model checking shows promise for future improvements, mostly related
with exploiting the information represented by computed interpolants. More-
over, additional effective techniques for reducing the final or intermediate size
of interpolants may play a crucial role in the utilization of interpolants in SAT-
based model checking.
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Abstract. The paper presents high-level modelling and formal analy-
sis and verification on an FPGA-based multigigabit network monitoring
system called Scampi. Uppaal was applied in this work to establish some
correctness and throughput results on a model intentionally built using
patterns reusable in other similar projects. Some initial experiments with
parametric analysis using TReX were performed too.

1 Introduction

Implementation of network components in hardware is a trend in advanced high-
speed network technologies which applies also for the network monitor and
analyser Scampi developed within the Liberouter project [4] that we consider
here. The Scampi analyser is implemented in FPGA on a special add-on card.
FPGA-based hardware provides a similar functionality of a system as software
implemented on general microprocessors. However, in comparison to a software
solution, programmable hardware is very fast—it allows Scampi to communicate
in multiples of gigabits per second.

In the paper (and its full version [3]), we discuss our experience from high-
level modelling and formal analysis and verification of certain important correct-
ness and throughput properties of Scampi. Our analysis of the system started
with a preliminary manual analysis, which we do not discuss here, and then con-
tinued by an application of automated formal analysis and verification methods.
We divide the model of Scampi we used for automated formal analysis and verifi-
cation into three kinds of components: a model of the environment (generators),
a model of buffers (queues, channels), and a model of executive units. We show
how the different model components may be constructed and especially in the
case of generators and buffers, we obtain general templates that may be reused
in different models of systems of the considered kind. Next, we discuss the prop-
erties we handled by automated formal analysis and verification using Uppaal
[5] and—in some initial attempts for a parametric analysis—TReX [1].

2 The Design of Scampi

Scampi is a network adapter working at the speed of 10 Gbps. The system
consists of several components—input buffers, preprocessing units (a header field
extractor—HFE), and searching units (a lookup processor—LUP and processing
units—PU). The Scampi adapter reads data from one input port and distributes
them into four independent paths working in parallel. An IP packet is processed
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by an HFE unit at first where the IP header is translated into a unified header
containing adjusted data like the source/destination IP address, MAC address,
port number, VLAN tag, etc. Then, the unified header is processed by a lookup
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Fig. 1. The structure of the Lookup Processor

processor, see Fig. 1, where
it is classified according
to some pre-defined rules.
Searching of the LUP
consists of packet match-
ing (parallel searching)
encoded into a TCAM
memory (Content Address
Memory) and of addi-
tional sequential searching
in an SSRAM memory
performed by PU.

The results give us in-
formation what to do with
the packet—e.g., to incre-
ment the number of dan-
gerous packets found, to
forward the packet to the

software layer over Scampi, to broadcast the packet, or to simply release the
packet from the Scampi system.

3 Modelling Scampi

We now sketch models of several components of Scampi important for its cor-
rectness and throughput analysis—their detailed description can be found in [3].
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Fig. 2. A model of a delayed queue

In our approach, we recognise three basic
types of components that occur in some form
in many complex systems: (i) waiting FIFO
queues (buffers, channels)—deterministic,
stochastic, or non-deterministic; lossy
queues, delayed queues, etc., (ii) executive
components—multiplexers, processing units
(lookup processors, preprocessing units),
etc., and (iii) environment—generators of
incoming requests (packets) or output units
consuming the results.

Modelling Waiting Queues. A FIFO
queue is a typical abstract data structure
that contains a sequence of stored data. Here,
we abstract away the content of the queue
items and we concentrate only on the num-
ber of items in the queue. FIFO queues are
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used to represent transmitting channels, intermediate buffers between a process-
ing unit and a memory, etc. We can have lossy queues where some data may be
lost. There are delayed queues where data are delayed. We can model bounded
or unbounded queues, or we can also deal with queues where a symbolic con-
stant value—a parameter—defines the maximum length of the queue. We try to
model all these queues without expecting any highly specialised features of the
modelling language.

In Figure 2 there is a model of a delayed FIFO queue where every request
is guaranteed to be delayed at least delay time units before it is released, but
at maximum max delay time units. The delayed queue is modelled using timed
automata. Transitions that release an element of the queue are augmented with
time constraints allowing to release an item only if the y ≥ delay guard is
satisfied ensuring the lower bound on the delay. The upper bound is ensured by
the y ≤ max delay invariants of the appropriate states. This pattern of a waiting
queue was applied to model four UHFIFO queues and four RFIFO queues of the
Scampi system working in parallel.

Modelling Executive Components. While creating a model, one often has
to reflect the goal of the verification. In our case, we are interested in timing
of the components. If executive components have an accurate timing plan, we
distinguish two kinds of states in the model. The first is an urgent state that we
use for observers. The second type is a state that models delays of the system.
The latter kind of a state has an incoming transition resetting a clock (t :=
0), an invariant that defines a time constraint over the clock (t ≤ delay), and
an outgoing transition constrained by a condition on the clock (t = delay).
Using these principles, we modelled the TCAM memory, PU, and multiplexer
components of the LUP.

We are interested in the minimum guaranteed throughput of the system
which can be calculated from the size S of an incoming packet in bits—we take

slow

start

out ? cnt++

cnt < max

cnt = max &&
  t>delay/ts

t := 0
cnt := 0

cnt = max &&
 t<=delay/tst := 0

cnt := 0

t := 0
cnt := 0

Fig. 3. A timed automaton MX for
throughput checking

the minimum possible size which is the worst
case in the given setting, the average delay D
of the rule matching process in time slots for
the worst possible scenario, and the size T of a
time slot in seconds: throughput = S/(D∗T ).
We approximate the average delay for the
worst case from the worst delay possible for
transmitting x results (a user chosen, reason-
ably large value). To compute the worst delay
for x results, we can use a counter of outgoing
results and a clock. When the counter reaches
x, the system fires a transition to an observer
state (the slow state in Fig. 3) provided the
clock value is greater than the allowed delay.
The analysis of the throughput is then based

on manually finding the minimum value of the delay (by running model checking
several times) such that the system does not reach slow.
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4 Verified Properties

Verification by Uppaal. Let us now mention a few examples of properties
(written in CTL) that we verified over the above presented models—more can
be found in [3]: (i) A � ¬ deadlock—no deadlock is possible in the system. (ii)
A � ¬(RFIFO0.full ∨ RFIFO1.full ∨ RFIFO2.full ∨ RFIFO3.full)—
this property holds even if the RFIFO size is 2. It means that RFIFO can be
replaced by a one-place buffer. We can use a similar property on other queues
and see whether some data is thrown away. (iii) A � ¬ MX.slow—this prop-
erty expresses the throughput checking mentioned above. The property is sat-
isfied when the delay for 1000 counted results is set at least to 16000 time
slots (the average delay for the worst case is 16 time slots). Now, we can calcu-
late the minimum system throughput (from the smallest supported packets—64
bytes) caused by the Lookup Processor: (64 ∗ 8 bits)/(16 ∗ 20 ∗ 10−9 seconds) =
1.6 Gbps.

Parametric Verification by TReX. Parametric verification is a technique
that can help one to discover values of the parameters of the system that satisfy
certain pre-defined constraints and cause the system to behave in a certain way.
Here, we are interested in the length of buffers preventing a buffer overflow and
in an optimal timing of the system maximizing the throughput of the system.
At first, we used a similar model as for Uppaal for which the analysis did not
finish. So, we started to go from the simple building blocks of the system.

We created a simple parametric model of the FIFO queue with three parame-
ters: the maximal length of the queue FIFOsize, the rate of incoming request
uh time, and the rate of reading data from the queue read time. At first, we
asked what values the buffer UHFIFO overflows for. We get the following re-
sults: If uh time ≥ read time, the queue never overflows, and the length of the
buffer is not important. If uh time < read time, the analysis does not finish.
After setting the initial size of the queue FIFOsize = 3, we found that the
buffer overflows if 4 ∗ read time = uh time. Then, we asked how many packets
are accepted until the first one is dropped.

In the future, we plan to apply TReX to more specific parts of the Scampi
system abstracted in a suitable way and we also intend to experiment with al-
ternative (perhaps newly developed or improved) symbolic representations in
TReX (e.g., based on parameterized intervals).
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1 Introduction

The polyhedral model mixes recurrence equations over polyhedral domains and affine
dependency functions. This model provides a unified framework for reasoning about
regular systems composed of both hardware and software parts. Systems are described
in a generic manner through the use of symbolic parameters, and structuring mecha-
nisms allow for hierarchical specifications. The ALPHA language [3] and the MMAL-
PHA environment [4] provide a syntax and a programming environment to define and
manipulate polyhedral equation systems. High-level system specifications are refined
through a user-guided series of automatic transformations, down to an implementable
description, from which may be derived C code or a VHDL architecture. For hardware
components and interfaces, control signals are generated to validate computations or
data transfers. The use of systematic and semi-automatic rewritings together with the
clean semantic basis provided by the polyhedral model should ensure the correctness
of the final implementation. However, interface and control signal generators are not
certified, and hand-made optimisations are still performed to tune the final result. As
a consequence, the correctness of control signals has to be checked at the lower level
of description, in the presence of symbolic parameters. A formal verification tool that
benefits from the intrinsic regularity of the model has been developed to (partially) cer-
tify low-level system descriptions [2], based on polyhedra manipulation. The present
work develops new strategies to prove a wider class of formulae. The basic idea is to
detect particular patterns in the definition of signals, that characterise the propagation
of known values along spatial or temporal dependencies, and to define a widening op-
erator that allows for the automatic determination of how this propagation can be useful
in the proof process.

2 The Polyhedral Model

An Example of a Modelled System. We introduce the model on the example of a sys-
tem designed to compute a sequence of matrix-vector products. It consists of a linear
array of N cells, N being a symbolic parameter carrying any integer value. The vector
coefficients and the N column of the matrix are input sequentially, and each cell com-
putes one coefficient of the output vector. Input vector coefficients and output values
are propagated from left to right in the array, through register A. The behaviour of each
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Fig. 1. Structure of an array computing a matrix-vector product

cell depends on its position in the array and on the time elapsed since the beginning of
the computation. Three boolean control signals are thus added to precisely control the
behaviour of operators and registers: when Init is set to true, it initialises register C,
Accum accumulates the product a × b in C and Empty outputs the value of register C
in register A.

Describing This System in the Polyhedral Model. Each signal is represented by a func-
tion called a polyhedral variable. The vector of all cells registers A is a mapping from
N× [0, N ] to the boolean set. This mapping is defined by an affine recurrence equation
composed of three branches:

A =

{t, i | t = 0; 0 ≤ i ≤ N} : 0 (1)

{t, i | i = 0} : a.(t, i → t) (2)

{t, i | t > 0; 0 < i ≤ N} : if Empty.(t, i → t, i) then C.(t, i → t − 1, i)

else A.(t, i → t − 1, i − 1) (3)

Let us focus on the third branch: {t, i | t > 0; 0 < i ≤ N} denotes a polyhedral
domain, i.e., a subset of Z

n bounded by a finite number of hyperplanes. The dimen-
sion of this domain (2 in this example) is also the dimension of variable A. Terms like
(t, i → t − 1, i − 1) denote dependency functions, i.e., affine mappings between poly-
hedral domains. We concentrate on uniform dependencies, i.e. translations by a vector:
dependency (t, i → t − 1, i − 1) is the translation by vector (−1,−1). The “.” notation
denotes the composition of functions: C.(t, i → t − 1, i) thus represents the mapping
(t, i) �→ C(t−1, i). Note that we have a self-dependency on A in (3). A polyhedral sys-
tem is a set of such affine recurrence equations. Polyhedral systems are parameterised
with symbolic parameters that are in turn defined on polyhedral domains, and can be
seen as additional dimensions on all variables. We only consider systems for which an
order in which computations should take place, has been determined, and assume that a
particular index (say, the first one, denoted t) is considered as the temporal index. Such
a system is called a scheduled system.

The combination of recurrence equations with polyhedral domains provide a rich
mathematical and computational basis for program transformations. RTL descriptions
can thus be obtained by derivation from a high-level algorithmic description.
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3 Proofs for Polyhedral Systems

To formally establish properties of systems described in the polyhedral model, such as
validity of a given control signal on a given set of time and space indices, we have de-
veloped a proof method and a proof tool[1]. Properties of the system are described in
a so-called polyhedral logic: a formula is of the form D : e ↓ v, where D is a polyhe-
dral domain, e a polyhedral multidimensional expression, and v a boolean scalar value.
Proofs for such formulae are constructed by means of a set of inference rules, that are of
two kinds: (i) “classical” propositional rules, and (ii) rules specific to the model, based
on heuristics using rewritings and polyhedral computations (e.g. intersection of poly-
hedra). The proof tool uses these rules to automatically construct a proof tree, whose
root is the initial formula we want to prove. This tool is able to establish simple induc-
tive properties in connection with propagation of boolean values in multidimensional
arrays. If formula D : e ↓ v is proved, the soundness of the set of rules ensures that the
value of e on D is v. If the proof construction fails on a given node, this node is called
a pending leaf .

4 Pseudo-Pipelines and Widenings

Since the proof rules described in Section 3 are not complete, we have developed new
heuristics to increase the effectiveness of our tool, based on the notion of pseudo-
pipelines. In a hardware system, pipelined variables are used to transmit values from
cell to cell without modifying them. We extend this notion to a less specific one by
allowing a more general form of dependencies.

Definition 1 (Pseudo-Pipeline). A pseudo-pipeline is a polyhedral variable X such
that one of its branch is defined by an expression e such that:(a) e is in disjunctive (resp.
conjunctive) normal form, (b) e contains at least one occurrence of X , (c) each conjunct
(resp. disjunct) of e is either a single occurrence of X composed with a dependency d,
or a polyhedral expression without any occurrence of X .

A general form for a pseudo-pipeline is X =
{

D1:X.d∧e
D2:f where e and f are polyhedral

expressions. Like pipelines, pseudo-pipelines frequently appear in low-level description
of systems, since they are used to compute reduction of boolean operators over a given
set of signals, either in a temporal or spatial dimension.

The notion of pseudo-pipeline is a syntactic one. A pseudo-pipeline is characterised
by a propagation direction d, which corresponds to the self-dependency occurring in its
defining expression. The fundamental property of pseudo-pipelines is informally stated
as follows: If a pseudo-pipeline X of propagation direction d is true (resp. false) on
a given point z0, then there exists a domain Dd,z0 on which X is true (resp. false).
Dd,z0 is an extension (potentially infinite) of {z0}, either in the direction of d, or in the
opposite one, depending on the boolean operators and truth values involved.

This property illustrates the propagation of a value for one instance in a domain. It
can be generalised to a whole domain by iteratively computing the image (or preimage)
of the domain by the dependency: we widen the domain in the dependency direction.
Since the domain Dd,z0 is not strictly a polyhedral domain, we have to extend it by
taking its convex hull. The formal definition of our widening operator is:
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Definition 2 (Widening Along a Dependency). Let D be a domain of dimension n
and d a dependency from Z

n to Z
n. The widening of domain D by dependency d is

the set:
D ∼

∇ d = convex .hull({z | ∃z0 ∈ D, ∃i ∈ N, z = di(z0)})
The alternative representation of polyhedra, as linear combinations of lines, rays and
vertices, allow for a simple computation of convex hulls.

Use of Widenings in the Proof Construction. We now show how widenings are used to
generate new lemmas. Let f = D : e ↓ v be a formula labelling a pending leaf in the
proof tree. For all variables occurring in e, a procedure is used to detect if it is a pseudo-
pipeline. Let X be such a variable, and d the dependency associated to X in e. In the
definition of X , we look for a subdomain D0 where X is defined by a boolean constant
v′, and we determine the direction d′ of propagation. This direction is given by either

d or d−1, depending on the value of v′. The domain D0
∼
∇ d′ is then computed and

intersected with d(D), the domain on which the dependency d is valid. Let D′ be the
resulting domain. All occurrences of X.d defined on D′ may now be substituted by v′.
Formula f is thus simplified by this substitution and we get formula f ′ = D : e′ ↓ v′.
Formulae f and f ′ are semantically equivalent. The proof construction then resumes
with formula f ′ with these new domains and equations.

5 Conclusion

In this paper, we have presented heuristic strategies to generate new lemmas in order to
improve the efficiency of proofs for systems described in the polyhedral model. Spec-
ifications of the system are described in a polyhedral logic close to the model, and the
general proof mechanism relies on proof rules that exploit the expressivity and the com-
putational power of the model. The proposed strategies consist in detecting particular
value propagation schemes in the equations defining the variables, and to widen the
index domains on which the proof has to be made. The proof rules are implemented
within MMALPHAusing the PolyLib [5] . The heuristics greatly improve the effectivity
of our verification tool. The proof tool is intended to work at a relatively low descrip-
tion level in the synthesis flow. At this level of detail, there are many signals defined
by means of pipelines or pseudo-pipelines. As an example, our heuristics were able to
establish the correctness of a hardware arbiter for mutual exclusion.
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Abstract. Quartz is a new declarative hardware description language
with polymorphism, overloading, higher-order combinators and a rela-
tional approach to data flow, supporting formal reasoning for design
verification in the same style as the Ruby language. The combination
of parametric polymorphism and overloading within the language in-
volves the implementation of a system of constrained types. This paper
describes how Quartz overloading is resolved using satisfiability matrix
predicates. Our algorithm is a new approach to overloading designed
specifically for the requirements of describing hardware in Quartz.

1 Introduction

The term overloading, or ad-hoc polymorphism, describes the use of a single
identifier to produce different implementations depending on context, the stan-
dard example being the use of “+” to represent addition of both integers and
floating point numbers in most programming languages. Parametric polymor-
phism covers the case when a function is defined over a range of types but acts
in the same way for each type, a typical example is the length function for lists.
The functional language Haskell uses type classes [1] to combine overloading
with parametric polymorphism using the Hindley/Milner type system [2].

Quartz is a new declarative hardware description language, intended to com-
bine features found in the Pebble [3] and Ruby [4] languages. The language in-
cludes polymorphism with type inference and support for overloading, however
previous approaches to combining type inference and overloading in software
languages are not ideal for Quartz. This paper describes how Quartz overload-
ing is resolved using a system of satisfiability matrix predicates which extend the
Hindley/Milner type system to support overloading without using type classes.

Matrix predicates provide a generalisation of the basic type system that
maintains full inference of types without any explicit definitions, in contrast to
type classes which require explicit class and instance declarations.

2 Motivation

A Quartz description is composed of a series of blocks which are defined by their
name, interface type, local definitions and body statements. A block’s interface
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is divided, in a relational style, into a domain and a range. Primitive blocks
represent hardware or simulation primitives and control the function of the cir-
cuit, while composite blocks contain statements which control the structure and
inter-connections of the primitives.

Quartz has a simple but strong type system with three basic signal types
for wires, integers and booleans. Quartz also supports both tuples and vectors
of signals. The signal assignment operation “=” is overloaded to allow the as-
signment of static values to wires. Quartz blocks can be overloaded by defining
multiple blocks with the same name, a mechanism that has a number of uses:

– Primitive blocks can be overloaded when multiple hardware primitives are
available which essentially carry out the same operation e.g. a two-input
adder and a constant-coefficient adder.

– Higher-order combinators can be overloaded when multiple blocks have the
same basic function but slightly different parameterisations. It is sometimes
useful to supply “hint” parameters to combinators to aid in the generation
of parameterised output.

– Composite blocks can be overloaded with primitive ones as “wrappers”
around the primitives e.g. if only a two-input adder primitive is available
it may still be desirable to define an overloaded (composite block) constant-
coefficient adder which instantiates the adder primitive appropriately.

In order to achieve this our general requirements, which differ substantially from
typical software languages, are:

1. We have no interest in run-time polymorphism. We wish to eliminate poly-
morphism and overloading during elaboration.

2. We wish to minimise extensions to the syntax. Where possible overloading
should be inferred, reducing designers’ concerns so that they can work at a
higher level of abstraction.

3. It is necessary to be able to express complex constraints between types in
order to allow the overloading of blocks without a common type pattern.

4. It is necessary to support overloading of blocks with different numbers of
parameters.

5. We can assume a closed world environment and have no need to support
separate compilation since all libraries are expected to be available as source.

Evaluated against these requirements, type classes do not seem an appro-
priate mechanism for providing overloading in Quartz: although they support
run-time polymorphism, this is not useful; the language must be extended with
extensive class and instance declarations; single-parameter type classes (as in the
Haskell specification) can not express complex constraints between types and
while multi-parameter type classes can type inference is then undecidable; they
do not easily support overloading blocks with different numbers of parameters;
and inferred types are sometimes ambiguous due to the open world assumption.

To meet these requirements, we use a system based around a language of
satisfiability matrix predicates – matrices that represent possible values of a
type and relationships between type variables. This system minimises ambiguity
and can express n-ary constraints between type variables clearly and easily.
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(a) Instances of R

R1 : bool int ∼ int

R2 : σ wire ∼ σ

R3 : int int ∼ wire

(b) Matrix πR⎛⎝bool int int
σ wire σ

int int wire

⎞⎠
(c) Statements

a b ; R ; c.

c d ; R ; e.

(d) Instantiations

R Ra

b d

c e

Fig. 1. Multiple instance types can be represented as a satisfiability matrix

(a)⎛⎝ − − −
int wire int
int int wire

⎞⎠
(b)⎛⎝int wire int wire int

int wire int int wire
int int wire wire wire

⎞⎠
(c)⎛⎝int wire int wire int

− − − − −
int int wire wire wire

⎞⎠
Fig. 2. Evolution of a predicate matrix during type checking

3 Satisfiability Matrix Predicates

Our system is implemented as a conservative extension to Robinson’s unification
algorithm [5] to support satisfiability matrices. We will introduce our system with
an example. Suppose there are multiple, overloaded instances of a block R with
types as in Fig. 1(a) (where σ is a polymorphic type variable). The types of
these three instances can be represented as a predicate matrix πR as shown in
Fig. 1(b) where each row of the matrix contains the type for an instance and
there is a column for each argument position.

Suppose then it is desired to type check the two Quartz statements in
Fig. 1(c), which instantiate two R blocks as shown in Fig. 1(d), where a is
known to have type int, b has unknown type β, c has unknown type γ and d and
e have type wire.

Because there are two instantiations of the R block which could have different
types, two matrices πR and πR′

will be used during type checking. The inference
process attempts to unify each argument type with the appropriate column in
the matrix. Type checking the first statement involves three unification oper-
ations: unify(int,πR

0 ), unify(β,πR
1 ) and unify(γ,πR

2 ) (where subscripts indicate
the column number).

Unifying a type with a matrix column involves unifying that type with every
element in the column. If this operation generates a substitution within the
matrix, this substitution is applied along that row of the matrix. If a column
element does not unify then that row is removed from the matrix. The result of
the three unification operations above is shown in Fig. 2(a), note that the first
row did not match and has been removed while int has been substituted for the
unknown type σ. The operations have bound the type variables β and γ into the
matrix: {β �→ πR

1 , γ �→ πR
2 }.

When type checking the second statement the type of c (γ) must be unified
with πR′

0 however it is already bound into the first matrix so matrices πR and πR′

must be merged. This produces a single matrix, shown in Fig. 2(b), with one row
for each valid possible combination of types from the two source matrices where



Resolving Quartz Overloading 383

the two columns bound to type γ could be unified. Type checking continues by
unifying the type of d (int) across the appropriate matrix column, which was πR′

1
but is now πR

3 in the new matrix. The type int does not match with all elements
in the column and so one row is eliminated as shown in Fig. 2(c).

Finally the type of signal e (wire) is unified with πR
4 which matches a single

matrix row. The overloading is resolved with the type mapping {β �→ int, γ �→
wire}. The first R block is selected as R3 with type int int ∼ wire and the
second R block is selected as R2 with type wire wire ∼ wire.

The case when a type constructor with unknown type variables within it,
such as the tuple (φ, ψ), is unified with a matrix column needs to be handled
separately. The full type is unified across the original column while new columns
are generated in the matrix for the unknown type variables to be bound to.
The operation unify

(
(φ, ψ),πR

0
)

applied to the original πR would return the
substitution {φ �→ πR

3 , ψ �→ πR
4 } and the matrix would be left with a single row

of
(
(φ′, ψ′) wire (φ′, ψ′) φ′ ψ′) where the tuple has been substituted for σ.
Satisfiability matrices can also support blocks with different numbers of pa-

rameters by extending the Quartz type system with an empty/void type Ω,
which can be used to “pad” matrices and block types so that they are all the
same length. Ω only unifies with itself so blocks with the wrong number of pa-
rameters are eliminated from the matrix when unification fails.

During type checking predicate matrices grow (due to mergers) and shrink
(due to non-matching rows being eliminated) before reaching a point where
overloading can be resolved. It is often possible to substantially optimise matrices
to reduce their size, for example by merging identical columns.

4 Conclusion

Satisfiability matrices permit the expression of complex n-ary constraints be-
tween types and the overloading of Quartz blocks without extending the lan-
guage syntax. We believe our system is superior to type classes for overloading in
Quartz and other similar hardware description languages. Future work includes
investigating the theoretical properties of satisfiability matrices and developing
optimisation strategies to minimise the amount of matrix data stored.
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Abstract. We present an FPGA-based accelerator for 3-SAT clause evaluation 
and conflict diagnosis and propose an approach to incorporate it in solving the 
Combinational Equivalence Checking problem. SAT binary clauses are mapped 
onto an implication graph and the ternary clauses are kept in an indexed clause 
database and mapped into the clause evaluator and conflict analyzer on FPGA. 

1   Introduction 

Algorithms to solve SAT involve many compute-intensive, logic bit-level, and highly 
parallelizable operations that make reconfigurable computing appealing [1]. Various 
approaches have been proposed to accelerate SAT solving using reconfigurable com-
puting [2]. An important module of any SAT solver is a clause evaluator that checks 
the consistency of variables assignment. Conflict diagnosis [3] helps pruning search 
space. We present an FPGA-based 3-SAT clause evaluator and conflict analyzer. 

Combinational Equivalence Checking (CEC) is a widely used formal verification 
methodology for digital systems. Due to its hardness, current checkers mostly com-
bine multiple checking engines, like BDD [4], SAT [5], and SAT/BDD [6]. We pro-
pose an approach to incorporate our clause evaluator to accelerate SAT-based CEC. 

2   FPGA Based 3-SAT Clause Evaluator and Conflict Analyzer 

The architecture of our clause evaluator (Fig. 1) consists of a 3-input LUT acting as 3-
input OR gate for each ternary clause, and an active low priority encoder that detects 
conflict when a clause is unsatisfiable and returns to the host the clause index. The 
value of each variable is encoded in two bits corresponding to its positive and nega-
tive literals. If the value of the variable is "0" or "1", the encoding is "01" or "10", re-
spectively. The encoding "11" indicates that the variable is free. 

Since same architecture is used for different SAT instances, except for the literal 
configurations, direct modification can be done on the bitstream reducing the synthe-
sis and place-and-route overhead. Run-time reconfiguration can be used for dynamic 
clause addition. It also allows configurations larger than the available FPGA capabil-
ity [1]. For large number of variables, virtual wires time multiplexing can be used [7]. 
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Fig. 1. The clause evaluator, n is the number of variables, m is the number of ternary clauses, 
and (C0 C1 ….. C [log2m-1]) represents the binary equivalent of the first clause that evaluates to 0 

Table 1. Number of 4-input LUTs occupied by the encoder component for DIMACS instances 

Instance # Clauses # 4-input LUTs 

aim-50-1_6-z-j1 80 178 
aim-50-6_0-z-j 300 692 
aim-100-2_0-z-j 200 453 
aim-100-3_4-z-j 340 811 
dubois21 168 390 
dubois30 240 545 
pret60-xx2 160 370 
pret150-xx 400 1007 

Table 1 shows the number of 4-input LUTs needed for the encoder part of the ar-
chitecture for some cases from DIMACS benchmark suite. AIM, DUBOIS, and PRET 
families consist of ternary clauses, so they map directly into our architecture. 

3   SAT-Based CEC Accelerator 

Since SAT is an NP complete problem, using it in CEC transforms a problem that in 
worst case takes exponential time in the number of the circuit inputs into another 
problem that takes exponential time in the number of variables. Interestingly, most of 
the clauses of CNF formula produced by combinational circuits are binary that can be 
easily mapped onto an implication graph [8]. Ternary or more clause information can 
guide the search. A conflict arises when one of these clauses is unsatisfiable. Conflict 
diagnosis determines the backtracking level which helps pruning the search space [3]. 

Fig. 2 illustrates our proposed software/reconfigurable hardware accelerator for 
SAT-based CEC. The software running on the host computer first converts the  
 

                                                           
1  zzzz is "no" or "yes1", the former denoting a no-instance and the latter a single-solution yes-

instance. j means simply the jth instance at that parameter. 
2  xx is the horn percentage, it can take values 25,40,60 or 75. 
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Fig. 2. The general view of our software/ reconfigurable hardware SAT based CEC accelerator 

Table 2. ISCAS’85 benchmark circuits clauses specification 

Unrestricted SAT formula 3-SAT formula 
Miter Cir-
cuit # Binary 

clauses 
# Ternary or more 
clauses 

# Binary 
clauses 

# Ternary 
clauses 

C432 678 373 850 487 
C499 504 1077 614 1187 
C1908 3234 978 3728 1352 
C6288 9662 4862 9692 4892 
C7552 12716 4299 13882 5409 

The accelerator software algorithm 

While(True){ 
  if(dir==forward){ 
     if(!Decide()) { Formula=SAT;  break; } 
     process_implication(); 
     clause_evaluator(var); 
     if(conflict=read_conflict()){ 
        conflict_clause_index=read-index(); 
        dir=backward;   //backtrack 
     } 
     else  =  +1; 
  } 
  if(dir==backward){ 
     B=Backtrack_level(); 
     if(B==NULL) { Formula=unSAT;  break; } 
     undo(  ,B);  
     =B; 
     if(!Tried_both_ways()){    
        complement_value(); 
        clause_evaluator(var); 
        if(conflict=read_conflict()) 
            conflict_clause_index=read-index(); 
        else{  =  +1;  dir=forward; } 
     }  
  } 
} 
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structural description of the miter circuit into 3-SAT formula. The binary clauses are 
mapped into an implication graph. The ternary clauses are kept in an indexed clause 
database on the host computer and mapped into the clause evaluator on the FPGA. 

Initially all variables are free except for the miter output which is restricted to the 
value "1". Selecting a free variable and assigning a value to it is done by the software 
running on the host computer. A decision level is associated with each selected as-
signment. The implication engine derives the direct and transitive implications of this 
assignment by operating on the implication graph generated from the binary clauses. 
The consistency of the variables binding with the ternary clauses is checked at each 
decision level via the clause evaluator. In case of conflict, the backtracking engine, 
aided by the conflicting clause index, determines the predecessor set of variables that 
are responsible for the conflict and hence performs nonchronological backtracking, 
which helps pruning the search space. The algorithm is shown on the next page. 
clause_evaluator( ) sends variables assignment to the FPGA. The FPGA sends back a 
conflict indication and the index of the unsatisfied clause, if any. 

Our architecture 3-SAT restriction is imposed on the structural description of the 
circuit by having gates of a maximum fan-in of 2, which adds new variables and in-
creases the number of binary and ternary clauses (see Table 2). 

4   Conclusions 

We presented FPGA-based clause evaluator and conflict detector and proposed a new 
approach for the combinational equivalence-checking problem. In our approach, the 
SAT binary clauses are treated on the software side where they are mapped onto an 
implication graph. The ternary clauses are kept in an indexed clause database and 
mapped onto the clause evaluator and conflict detector on FPGA. The need for accel-
erating the ternary clause evaluation is proved using the ISCAS'85 benchmark. 
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Abstract. BDD based reachability methods suffer from lack of robust-
ness in performance, whereby it is difficult to estimate which one should
be adopted for a given problem. We present a novel approach that ex-
amines a few short samples of the computation leading to an automatic,
robust and modular way of reconciling the various methods for reacha-
bility. Our approach is able to intelligently integrate diverse reachability
techniques such that each method can possibly get enhanced in efficiency.
The method is in many cases orders of magnitude more efficient and it
finishes all the invariant checking properties in VIS-Verilog benchmarks.

1 Introduction

BDD based reachability methods suffer from wild inconsistency in performance,
whereby it is difficult to estimate which method should be adopted for a given
problem. We analyze four different ways of doing reachability analysis, forward
or backward reachability using partitioned [4] or unpartitioned BDDs [1, 2] for
state set representation. It is often the case that though one method can compute
reachability easily, the others find it very difficult. In this paper, we present
a completely automatic strategy to determine the more effective method by
running a few short samples of the above methods. These samples provide a
short initial sampling of the performance of the various methods by observing
the initial computations until a predefined cutoff in BDD size is reached. This
approach determines the best direction for reachability analysis as well as the
effectiveness of performing state space partitioning. Note that each method has
its own domain of applicability. We have designed our approach so that it can
benefit from the strengths of each method.

Importantly, at the end of the independently run samples, we allow all their
computation to be shared. This can significantly enhance the performance of
each technique. In many cases the reduction in reachability time for standard
OBDD methods can be dramatic when its reached state set is augmented using
information from POBDD samples.

2 Prediction Using Short Samples

We use a sample-based algorithm to predict the effective method. A sample for
an algorithm is a short initial computation using that algorithm.

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 388–392, 2005.
c© IFIP International Federation for Information Processing 2005
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The algorithm runs one sample each of the backward and forward parti-
tioned reachability followed by forward and backward symbolic monolithic (non-
partitioned) reachability. This order is chosen because we find backward reach-
ability and partitioned reachability more suitable for finding bugs. Therefore, if
there is a ”easy” bug, then it can be found during the sampling process. The
samples are run until a predefined size cutoff is exceeded. This cutoff is small
enough to allow efficient performance of symbolic operations and is set at a fixed
multiple of the representation size of the state transition relation.

If the samples themselves do not finish the computation, they are used to
predict the most effective approach for the rest of the computation. Firstly, the
appropriate direction is determined from the samples of symbolic forward and
backward reachability. We use the number of images completed as measure for
deciding the most effective method.

After selecting the direction, the algorithm tries to predict whether partitioned
reachability is more effective than the monolithic approach, where state sets are
represented as single BDDs. This is done by considering the number of states
reached by samples run using both approaches in the selected direction. If the total
number of reachable states explored by either method is significantly better than
that of the other method, then we have a winner. If this number is comparable for
both approaches, then a meaningful metric to break the tie seems to be the rate
of coverage defined as number of states covered vs. corresponding time.

In this manner, the samples are used to pick a method that is likely to be
the most effective method.

2.1 Augmenting the State Sets

To avoid the repeated overlapping computations, after deciding the effective
method the algorithm augments the initial states and the invariant by adding the
states reached by all samples. In the forward direction, the reachability analysis
starts from the union of the reached states using both forward samples. Likewise,
the error set, which is set of states that satisfy the negation of the invariant, is
replaced by the union of the sets states reached by the two backward samples. If
the direction of computation is backward, then the error states are the start set
and the augmented initial states are the target. This allows the computations
performed by the samples to be reused.

In the next section, we describe our experiments and analyze the results.

3 Experiments

We compare the methodology proposed in this paper with the forward and back-
ward reachability approaches of VIS and static partitioned reachability analysis.
We compute one sample each in forward and backward directions, using parti-
tioned as well as non-partitioned data structures for the state set in reachability.
Our current package is not optimized with respect to partitioned exploration of
state space. For example, it doesn’t implement all the efficient heuristics pre-
sented in [3, 5].
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Table 1. Invariant Checking on ALL Vis-Verilog benchmarks that take more than 10
minutes in at least one of the methods

Inv Time in sec.
ckt inv Res :

Pass /
Fail

Static
Pobdd
Fwd

Static
Pobdd
Bwd

Vis
Fwd

Vis
Bwd

Trace
Based

(a) Advantage due to intersection of Forward and Backward
vsa16a 7 F 2610 808 2146 458 77
vsaR 1 F M 124 24558 56 54
(b) Advantage due to POBDD State Space Representation
am2901 1 F T 67 T 431 68
ball 6 F 175 T T T 103
ball 7 F 22 T 3530 T 45
palu 1 F 1.0 684 714 4630 1.8
sp product 1 P 50 T 740 507 52
(c) Addition of Partitioned Traces Makes Subsequent

Unpartitioned Reachability Easier
FIFOs 1 P M M 2986 T 1973
blackjack 1 P 5750 T 2273 T 1234
blackjack 2 P 6268 T 20565 T 979
blackjack 4 P 5795 T 2259 T 1307
ns3 1 P 43569 T 16840 19166 5269
ns3 5 P T T 14696 T 6456
ns3 6 P 48721 M 28063 T 4938
ns3 7 P M T 22612 T 7220
(d) Robust Predictive Capability: Timeouts Avoided
am2910 1 F 660 5.3 T 2.0 5.8
b12 1 F 48 9528 48 2561 77
b12 2 F T T T 8019 25535
b12abs 2 F 2977 449 163 536 446
blackjack 3 F 1054 T 3371 T 1337
blackjack 5 P 62752 T 2614 T 13259
crc 1 F 20459 1.5 T 0.9 1.5
eight 1 P 4.5 1194 1.1 173 5.8
eight 2 P 4.6 2466 1.1 344 6.2
mm product 1 P 600 T 49 352 154
ns3 2 P M 8895 21602 16454 24903
ns3 3 P T 85851 T 2050 4751
ns3 4 P M 24477 24539 3770 6263
ns3 8 P 71494 T 6268 29196 50938
ns3 9 P 81048 3174 18247 479 9373
ns3 10 P 75011 2834 9518 604 12946
ns3 11 P 60490 10.9 51166 8.2 10.9
ns3 12 P 65219 27.3 49968 8.2 25.7
rotate32 1 F 53033 1.5 51078 0.7 1.5
s1269b 1 P 3351 1.3 12994 0.7 1.3
s1269b 5 P 3379 3.5 13677 0.6 3.5
soapLTL4 1 P 254 T 80.1 T 408
soap 1 P 176 T 45.6 T 181
soap 2 P 77.3 T 30.1 T 81.9
soap 3 P 47.8 T 46.4 T 80.9
spinner32 1 F 33356 8.3 43264 1.9 9.5
vsa16a 1 P M 43.0 T 18.4 42.6
vsa16a 2 P T 27.6 T 16.8 27.4
vsa16a 4 P T 41.5 T 19.2 41.3
vsa16a 5 P M 42.1 T 18.8 41.6
vsa16a 6 F 2499 60.5 1387 25.5 61.0
vsa16a 8 F 2498 61.7 1387 27.4 59.8

“T” is Timeout of 86,400 s; “M” is Memory out of 500 MB.

All experiments were run on identical dual processor Xeon machines. They
were allowed to run for a maximum time of one day, and the memory available
to each run was bounded by 500MB.
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Benchmarks
For experiments on reachability and invariant checking, we chose the public
domain circuits from the VIS-Verilog [7] benchmark suite. In the following, we
indicate property number i of circuit named ckt as ckt i. Table 1 shows the
runtime for checking the invariants of the VIS-verilog benchmark circuits for
five methods. The entry ”T” and ”M” in the table represents a timeout limit of
1 day and memory out limit of 500MB.

4 Conclusion

In this paper, we presented an automatic self-tuning sample-based approach to
address the inconsistency in performance of the BDD based reachability tech-
niques. Many of the circuits time-out on one or other direction of reachability
and some abort even when using partitioning. However, we find that the circuits
aborted by backward are finished by forward and vice-versa in many cases. Note,
the samples enable one to automatically select the appropriate method and the
performance of the sample-centric approach is very robust and always signifi-
cantly better than the worst. Such cases are shown in Table 1 (d). The table
shows that the completely automatic sample-based approach is able to pick the
right method from a set of different methods by using short samples of their
initial reachability computation.

In a few cases, the wrong method may be picked, but even so, the sample-
based approach is able to complete, due to the information available from the
other samples. A more detailed version of this paper can be obtained from
http://verify.stanford.edu/PAPERS/dsahoo-charme05-e.pdf [6].
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Abstract. Counterexample minimization tries to remove irrelevant
variables from counterexamples, such that they are easier to be under-
stood. For the first time, we proposes a novel approach to minimize loop-
like and path-like counterexamples of ACTL properties. For a counterex-
ample s0 . . . sk, our algorithm tries to extract a succinct cube sequence
c0 . . . ck, such that paths run through c0 . . . ck are all valid counterex-
amples. Experimental result shows that our algorithm can significantly
minimize ACTL counterexamples. 1

1 Preliminaries

BDD contain two terminal nodes and a set of variable nodes. Attribute value(u)
is associated with terminal nodes u. Every variable node has two outgoing edges:
llow(u) and high(u). A variable var(u) is associated with every node u.

Symbolic model checking with BDD is first proposed by K.McMillan [1],
which is implemented by procedure Check that takes a CTL formula and returns
BDD of those states that satisfy the formula.

Assume the state variable set of Kripke structure M = 〈S, I, T, L〉 is V =
{v0, . . . , vn}. A state s ∈ S can be seen as assignments to V , which is denoted
by s = {v0 ← b0, . . . , vn ← bn}, with bi ∈ {0, 1} are boolean constant. Assume
V ′ = {vi0 , . . . , vim} is a subset of V , then projection of s to V ′ is defined as

s|V ′ = {vi0 ← bi0 , . . . , vim ← bim} (1)

A state set S′ ⊆ S is a cube iff there exists V ′ = {vi0 , . . . , vim} ⊆ V and
{bi0 , . . . , bim}, such that S′ == {s| s|V ′ == {vi0 ← bi0 , . . . , vim ← bim}}

Assume state s is in state set S′, then c is a cube guided by s in S′ iff
s ∈ c ⊆ S′. We denote c by GuidedCube(S′, s), it can be computed as below.

Algorithm 1: Computing GuidedCube(S′, s)

1. Assume s = {v0 ← b0, . . . , vn ← bn}.
2. c = φ V ′ = φ are all empty set
3. cn=root node of BDD of S′

1 Supported by Chinese NSF under Grant No.90207019 and No.60403048; the Chinese
863 Program under Grant No. 2002AA1Z1480.
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4. while(cn isn’t a terminal node)
(a) assume var(cn) is vi

(b) if(bi == 0) then cn = low(cn) else cn = high(cn)
(c) c = c ∪ {vi ← bi} V ′ = V ′ ∪ {vi}

5. GuidedCube(S′, s) = {s′| s′|V ′ == c}

2 Minimizing Counterexample of ACTL Property

Existing approaches[2] can only deal with path-like counterexamples of invariant
AG f . For the first time, this paper proposes a novel approach to minimize loop-
like and path-like counterexamples of ACTL properties. Due to duality of ACTL
and ECTL, we will focus on minimizing witness of ECTL formula.

To make a witness s0 . . . sk more easy to be understood, some state variables
must be removed. So a minimized witness must be a cube sequence c0 . . . ck. We
define the criteria that it must satisfied.

Definition 1 (Criteria of Minimized Witness of ECTL Property). As-
sume s0 . . . sk is a witness of an ECTL property f . Cube sequence c0 . . . ck is the
minimized witness of s0 . . . sk iff

1. si ∈ ci(0 ≤ i ≤ k)
2. Every path s′0 . . . s

′
k that satisfy

∧
0≤i≤k s

′
i ∈ ci must be witness of f

We will discuss minimizing witness of EX , EU and EG below.

2.1 Minimizing Witness of EX and EU

Assume PreImage(S′) is a procedure that computes pre-image of S′. We can
minimize EXf witness s0s1 and E[fUg] witness s0 . . . sk−1 in the following way:

Algorithm 2: Minimizing Witness of EX f

1. c1 = GuidedCube(Check(f), s1)
2. c0 = GuidedCube(PreImage(c1), s0)

Algorithm 3: Minimizing Witness of E[f U g]

1. ck−1 = GuidedCube(Check(g), sk−1)
2. for i = k − 2 to 0
3. ci = GuidedCube(PreImage(ci+1) ∩ Check(f), si)

Correctness proof is omited due to space limitation.

2.2 Minimizing Witness of EG

A loop-like witness of EGf contains two segments: a stem s0 . . . sm and a loop
sm . . . sn. We will first prove the following theorem below.
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Theorem 1. Assume a loop-like witness of EGf contains two segments: a stem
s0 . . . sm and a loop sm . . . sn. Then a cube sequence c0 . . . cn is its minimized
witness if the following 4 equations hold true∧

0≤i≤n

si ∈ ci (2)

cn ⊆ PreImage(cm) ∧
∧

m≤i≤n−1

ci ⊆ PreImage(ci+1) (3)

∧
0≤i≤m−1

ci ⊆ PreImage(ci+1) (4)

∧
0≤i≤n

ci ⊆ Check(f) (5)

Proof. By equation (2), the 1st criteria of Definition 1 is satisfied.
Assume a path s′0 . . . s

′
n satisfy T (s′n, s

′
m) ∧∧0≤i≤n s′i ∈ ci. By equation (5),∧

0≤i≤n M, s′i |= f .
Thus this theorem is proven.

We compute an approximation of cm . . . cn with following algorithm.

Algorithm 4: M in(x)

1. cm = x
2. cn = GuidedCube(PreImage(cm) ∩ Check(f), sn)
3. For i = n− 1 to m
4. ci = GuidedCube(PreImage(ci+1) ∩ Check(f), si)
5. return cm

To compute cm . . . cn that satisfies equation (3), we first let

C = Check(EGf) (6)

And then run M in(C). Cube sequence cm . . . cn obtained in this way satisfies
almost all ⊆ relation in equation (3), except cn ⊆ PreImage(cm).

So we need to run Algorithm 4 iteratively, and obtain the following sequence:

M in(C),M in2(C), . . .M int(C), . . . (7)

We terminate above iteration only when M int−1(C) ⊆ M int(C), at which cn ⊆
PreImage(cm) and equation (3) can be satisfied. So we must prove that iteration
in equation (7) is terminable with following theorems.

Theorem 2. M in(x) is monotonic. (Proof is omited due to space limitation)

Theorem 3. C ⊇ M in(C)
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Table 1. Experimental Result

Cex name Cex length Original cex Minimized cex
Number of. Run Number of Run
Variables. time Variables time

P1 13 1027 0.12 244 0.12
P2 7 308 0.01 172 0.02
L1 64 975 0.991 791 1.45
L2 76 1140 1.26 942 1.96
L3 75 1125 2.83 929 4.09
L4 22 858 0.19 510 0.24
L5 22 858 0.28 467 0.33
L6 22 858 0.16 455 0.17
L7 22 858 0.12 408 0.17

Proof. By Algorithm 4, for every state s′m ∈ M in(C), there is a path
s′ms′m+1 . . . s

′
nsm”, such that sm” ∈ C. That is to say, there is an infinite path p

starting from sm”, and f holds true at all states along p.
By Algorithm 4, f holds true on all states of s′ms′m+1 . . . s

′
nsm”.

Thus, we can concatenate s′ms′m+1 . . . s
′
nsm” and p, to form a new path p′. f

hold true at all states along p′. Thus, p′ is witness of M , s′m |= EGf .
By equation (6), we can conclude that s′m ∈ C.
Thus, C ⊇ M in(C) is proven.

Theorem 4. The iteration in equation (7) is terminable.

Proof. By Theorem 2 and 3, it is obvious that : C ⊇ M in(C) . . . ⊇ M int(C) . . ..
So ∃t.M int−1(C) == M int(C) hold true. Thus, this theorem is proven.

Thus, we can construct minimized witness cm . . . cn in the following way:

Algorithm 5: Minimizing Witness of EG f

1. cm = M int(C)
2. cn = GuidedCube(PreImage(cm) ∩ Check(f), sn)
3. for i = n− 1 to 0
4. ci = GuidedCube(PreImage(ci+1) ∩ Check(f), si)

3 Experimental Result

We implement our algorithm in NuSMV, and perform experiments on NuSMV’s
benchmarks. All experiments run on a PC with 1GHz Pentium 3.

Table 1 presents experimental result. The 1st column lists the name of coun-
terexamples. P1 and P2 are path-like counterexamples. All others are loop-like
counterexamples. The 2nd column lists their length. The 3rd column lists the
number of variables in original counterexamples. The 4th column lists the time
taken by NuSMV to generate these counterexamples. The 5th column lists the
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number of variables in minimized counterexamples. The last column lists the
run time of our approach.

From the experimental result, it is obvious that our algorithm can signifi-
cantly minimize counterexamples.
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Abstract. Design derivation, a correct-by-construction system design
method, specifies behavior with abstract datatypes. Refining these ab-
stract datatypes is necessary for architectural decomposition. A new
transformation primitive enables data refinement by generalizing term
level injective homomorphisms to system equivalence.

Data refinement enables high levels of behavioral specification without sacrific-
ing meaningful architectural decompositions. When behavior is specified over
abstract datatypes the boundaries of a target architecture often cut across the
borders of its datatypes. Consider SECD (stack, environment, code, dump), an
abstract machine for LISP’s operational semantics, where each “register” holds
nested pairs of atoms. Typical implementations represent this recursive datatype
as reference(s) to a heap. The memory that holds the reference value (a register)
and the memory that holds the heap cells (a RAM) are architecturally distinct.
A target architecture which separates the register file from the RAM is exposed
only upon refinement of the specification data types.

The standard underlying model is that of mutually corecursive equations de-
fined over first-order terms with stream semantics. Below is a simple corecursive
system of equations and its solution set (streams over integers).

X = 1 ! (+* X 1*)
Y = (-* X)

X = ( 1, 2, 3, ...)
Y = ( -1, -2, -3, ...)

(1)

Definition of sequential signals is by destruction (expressed as arguments to the
constructor !), i.e. X is a stream of integers whose head is the integer 1, and whose
tail is (+* X 1*). The suffix * indicates the “lifting” of a term level function or
constant to the stream level: e.g. 1* is a stream of 1s and +* is componentwise
addition. The remaining signals are combinational, defined by lifted versions of
term combinators; e.g. Y is the componentwise negation of X.

For simple lifting as just described, term level identities generalize to stream
level identities, so local term replacement is one of the core transformations in
the derivation algebra [1]. First order algebraic terms, unlike streams and other
corecursive datatypes [3], are easily manipulated by standard theorem provers.
� This research is supported, in part, by the National Aeronautics and Space Associ-

ation under the Graduate Student Researchers Program, NGT-1-010009.
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Thus, local term replacement provides a hook for integration with other toolsets.
By commutativity of addition, the equations

X = 1 ! (+* X 1*) and X = 1 ! (+* 1* X) (2)

have the same solutions. Given this orthogonality, we usually eliminate the *
annotation unless the context demands its use.

The refinement approach uses term level algebraic identities to express in-
jective homomorphisms between types. The following diagram expresses the ho-
momorphism r between abstract stacks of integers S and their implementation
using references I to heaps expressed as a memory M of cells I × Z addressed
by I and a “next-unallocated-cell” pointer of type I.

S
(push s d)−−−−−−→ S

r

⏐⏐ ⏐⏐ r

I × M × I −−−−−−−−−−−−−−−−→
[i (wr m i [d v]) (inc i)]

I × M × I

S
pop(s)−−−−−−→ S

r

⏐⏐ ⏐⏐ r

I × M × I −−−−−−−−−−−−→
[(1st (rd m v)) m i]

I × M × I

S
top(s)−−−−−−→ Z

r

⏐⏐ ∥∥∥
I × M × I −−−−−−−−−→

(0th (rd m v))
Z

() denotes function application, [] denotes tuple construction, integer ordinals are
tuple accessors. The reference value, memory, and horizon pointer bindings are
defined by v=(0th (r s)), m=(1st (r s)), and i=(2nd (r s)), respectively.

(3)

Even with a complete term-level characterization, term replacement is in-
sufficient for local representation translation. Local translation allows different
representations of the same abstract type in the same system, enables multi-level
modeling, and promotes interaction. We can not change a sequential signal’s type
in the present system algebra. To this end, we introduce a new transformation
which adds a new sequential signal of the implementation type, and replaces the
target signal with an abstraction coercion from the implementation signal.

Theorem 1. Let A and R be two sorts with functions r : A → R and a : R → A
such that for all x ∈ R, (a (r x)) = x. Let X = x0 ! (T X) be an equation in
a system description. Replacing X’s equation with

X = (a X’)
X’ = (r x0) ! (r (T X))

(4)

preserves the solution for X and

(r X) = X’ (5)

is a valid stream-level identity.

This transformation combined with subsequent applications of the coercion iden-
tities over r (e.g. (3) and (5)), eliminates references to X’s in X’’s equation,
thereby completing the refinement.
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⇓

⇓

Fig. 1. The top table fully expand the refinement coercions, and splits the tupled signal
into its three components as in (7). The next step serializes the deeply nested term
guarded by alu-op. A column of integers in the decision table represent linear control
flow that is invisible to external observers. The last step is a factorization that separates
the memory from its referencing registers.
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The following expressions are behavioral descriptions of a simple stack cal-
culator. There are two input streams: an instruction token instr and an integer
a. The function inst-cat classifies instructions as psh-op, drp-op, and alu-op.

The behavior table [2,4] explicitly enumerates the case key and branches in
its decision table (left hand column), while indicating the signal updates in the
action table (right-hand columns). Column headings indicate whether the signal
is combinational or sequential. Current implementations omit display of initial
values for sequential signals.

(stack-calc instr a) = res
where
s = (push mt 0) !

(case (inst-cat instr)
(push s a)
(pop s)
(push
(pop (pop s))
(alu instr
(top s)
(top (pop s)))))

res = (top s)

(6)

The application of Theorem 1 to sequential signal s in (6) generates a new
signal s’ of the implementation type, where r coerces the case statement. Func-
tions commute with case branches; the first branch (the upper left cell of the
action table) is rewritten using the identities from (3), (5), and explicit binding
of components in s’=[s* mem ptr]:

(r (push s a))
= [(2nd (r s)) (wr (1st (r s)) (2nd (r s)) [a (0th (r s))]) (inc (2nd (r s)))]
= [(2nd s’) (wr (1st s’) (2nd s’) [a (0th s’)]) (inc (2nd s’))]
= [ptr (wr mem ptr [a s*]) (inc ptr)]

(7)

This reduction continues in each case branch, corresponding to the behavior
table rows for signal s. When complete, the tuple s’=[s* mem ptr] is split into
its three component signals. Remaining references to the abstract type s are
satisfied by the combinational application of the homomorphism’s inverse: s =
(stack<=llst s’) (Starfish’s coercion naming conventions are more verbose
than r and a). Figure 1 shows the full expansion of refinement identities in
(6), serialization of actions guarded by alu-op, and a factorization separating
memory from its reference registers.
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Introducing Abstractions via Rewriting�
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Abstract. Mechanically assisted proofs of properties of a complex sys-
tem require an accurate formal model of the system. If the model is too
detailed the proof becomes intractible. We outline techniques for auto-
matically “retrofitting” a detailed low-level model with abstractions that
facilitate reasoning about the properties of a model. The abstractions are
introduced through semantics-preserving rewrite rules. We have applied
this technique to the Rockwell-Collins AAMP7 processor model and been
able to improve significantly the analyzability of the model.

Mechanically assisted proofs of properties of a complex system require a formal
model of the system. However, if the model is too detailed the proof may become
intractible because of the overwhelming morass of low-level detail that must be
managed. This is especially true if portions of the model are machine generated.
This was the case with the Rockwell Collins AAMP7 processor model.[1,3] This
is a very low-level specification of the AAMP7 instruction-level semantics and
was partly generated by macro expansion from an imperative notation embedded
in the ACL2 formal logic. Because of the lack of abstraction, the model is hard
to understand and difficult to reason formally about.

Our goal was to prove properties of machine language programs for the
AAMP7 using the existing formal model as an operational semantics. How-
ever, the model proved too low-level for our purposes. Rather than reconstruct
it, we developed techniques for automatically “retrofitting” the detailed low-
level model with abstractions to facilitate reasoning about properties of the sys-
tem. The abstractions are introduced through semantics-preserving rewriting.
We have applied this technique to the AAMP7 model and been able to improve
significantly the analyzability of the model. We used the ACL2 system[2] to man-
age the process, the ACL2 rewriter to replace complex terms by more abstract
versions, and the theorem prover to assure that the process preserves semantic
equivalence.

In addition to providing a more intelligible and accessible formal characteri-
zation of the AAMP7 instruction-level semantics, there was a rather surprising

� This work was supported at the University of Texas at Austin by a contract from
Rockwell Collins, Project #450117702, Instruction-level Model of the AAMP7 in
ACL2.
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additional benefit. The addition of abstractions illuminated numerous inefficien-
cies; the abstracted model could actually be faster than the low-level model.

1 The AAMP7 Model

The AAMP7 model is a detailed instruction-level model of the Rockwell-Collins
AAMP7 microprocessor. Executable specifications for the AAMP7 processor
were written in the logic of ACL2[2] and formally analyzed to satisfy a vari-
ety of properties, including well-formedness of definitions, type restrictions on
the arguments to functions, and formal relationships among various functions in
the specification. All of these proofs were mechanically checked using the ACL2
theorem prover. The model comprises many megabytes of formal specification,
executable code, and supporting theory.

To make the specification more perspicuous, a macro was defined that allows
specifying the semantics of individual AAMP7 instructions in an imperative
style. For example, the op-addu function below describes the semantics of the
AAMP7 addu operation, which takes two 16-bit unsigned values from the top
of the stack, adds them using modular unsigned integer arithmetic, and pushes
the result back onto the stack.

(defun op-addu (st)
(aamp *state->state*

(pop ux) (pop uy) (push (uword16 (+ ux uy)))
st))

Here, aamp is a macro defined within ACL2 that interprets its arguments as
follows: The first argument specifies that this function is a state to state (as op-
posed to a value-returning) transformation. The effect on the state is equivalent
to executing the listed pseudo-instructions in sequence. Local variables such as
ux and uy are introduced where needed.

The aamp macro essentially embeds within ACL2 a readable and intuitive,
imperative language for specifying operation semantics. But because ACL2 is an
applicative language, expansion of the macro must emulate this imperative nota-
tion by translating it into an applicative form. The required translation is quite
complex. The list of instructions in the body of the aamp form is transformed
into a nested series of accesses and updates on a record of some 60 fields that
represents the processor state. The expansion contains conditional branches for
reset, trap and interrupt behaviors, user versus supervisor modes, and all of the
possible exceptions that could arise. Details of the modular arithmetic and bit
string manipulations involved in AAMP7 address computation and instruction
execution are revealed. When macro-expanded, the call (op-addu st) takes over
1200 lines (as formatted on my screen).

Because the semantics is defined using macros that are eliminated by ACL2
during preprocessing, there are essentially no intermediate abstractions between
the easily comprehensible definition of op-addu above and the “real story” that
confronts the user of ACL2 attempting to reason about a program involving the
addu operation.
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2 Introducing Abstractions

Our solution was to develop automated techniques to introduce conceptual ab-
stractions into the existing specification. The approach we took was to identify
recurring low-level forms within the AAMP7 specification, and mechanically
rewrite them into a more abstract and perspicuous form. This in turn may reveal
a second level of abstract notions, which can then be introduced mechanically,
and so on.

For example: in the expansion of (op-addu st), the following form appears
numerous times: (wfixn 8 16 k). This is a standard locution generated by the
aamp macro for coercing an arbitrary value k into an unsigned 16-bit integer.
This suggest introducing an abstraction for this concept, say (fix16 k). Using
the ACL2 macro facility, we defined a new syntax to add such abstractions.

(defabstractor fix16 (x) (wfixn 8 16 x))

This form defines a new function symbol fix16 of one argument and intro-
duces a rewrite rule to unconditionally replace occurrences of expressions of the
form (wfixn 8 16 x ) with the corresponding expression (fix16 x ). To pre-
vent looping the non-recursive function fix16 is also “disabled” to prevent it
from being automatically expanded by the prover. Whenever ACL2 subsequently
encounters an expression of the form (wfixn 8 16 x ), it will replace it with the
corresponding expression (fix16 x ).

This simple idea is surprisingly powerful. Using these abstractor functions,
we can construct a hierarchy of abstractions, and begin to build an “algebra”
of rewrites for our specification domain. For example, updates to different state
components can be commuted and multiple, redundant and offsetting updates
to the same state component can be collapsed into a single update.

As an example, within the macro-expansion of (op-addu st), the following
expression appears:

(ash (makeaddr (aamp.denvr st)
(gacc::wfixn 8 16 (logext 32 (+ -1 (gacc::wfixn 8 16

(+ 1 (gacc::wfixn 8 16 (+ 1 (aamp.tos st))))))))) 1)

Under the assumption that certain intermediate results are representable, this
entire expression reduces to: (stack-address 1 st). Because the same basic
forms are used throughout the AAMP7 specification, a relatively small collection
of well-chosen abstraction functions provide enormous conceptual clarity.

Using our abstraction approach, we generate for each AAMP7 instruction a
theorem that characterizes its operational semantics, assuming that we are exe-
cuting in the “expected” case. For example, for the addu instruction we assume:

1. the reset, trap, and interrupt flags are not asserted;
2. the top-of-stack and program counter computations are within bounds;
3. the PMU is configured to allow the accesses required.

Under these conditions, our semantic theorem says that the state resulting from
stepping the machine over an addu instruction is like the input state except that:



Introducing Abstractions via Rewriting 405

1. the sum of the top two stack elements replaces the second stack element;
2. the top-of-stack pointer is incremented;
3. the next instruction byte has been pre-fetched;
4. the pc is incremented;
5. two temporary locations contain specific values.

Subsequently, symbolically stepping the AAMP7 model on an addu instruc-
tion can be accomplished by applying this rewrite rule, which provides an al-
ternative semantics for the addu operation. This semantics is significantly easier
to deal with in a proof context than the definition, and allows conceptualizing
execution at the level of the abstraction functions, rather than having to deal
with the low-level details.

The introduction of abstractions had a rather surprising side benefit: the ab-
stracted versions are more computationally efficient. The macro-expansion in the
original emulates an imperative program in an applicative context. The result is
a set of nested updates to the state, many of which are redundant, cumulative,
or offsetting. The fog of detail in the macro-expanded version tends to hide these
inefficiencies. The abstracted version, on the other hand, reveals obvious simpli-
fications that can be implemented as rewrites. Our abstract semantic function
for addu, for example, replaced several dozen distinct state updates with six.
Moreover, since the abstracted, optimized version is proven semantically equiv-
alent to the original, we could replace the original simulator with one that runs
our more efficient versions.

We have demonstrated an approach to “retrofitting” an existing low-level
specification with abstractions. This is a potentially valuable tool for rendering
a complex low-level specification more intelligible and more amenable to formal
analysis. Moreover, even a specification that was designed for efficient execution
may have inefficiencies that are hidden by complexity. The abstraction process
may make such inefficiencies more readily apparent. This effort re-emphasizes
the value of abstraction to manage complexity and to facilitate proof. But it
also suggests that it is possible in some cases to introduce abstraction into an
existing specification.

References

1. David Greve, Matthew Wilding, and David Hardin. High-speed, analyzable simu-
lators. In M. Kaufmann, P. Manolios and J Moore, editors, Computer-Aided Rea-
soning: ACL2 Case Studies, Kluwer Academic Press: Boston, 2000.

2. M. Kaufmann, P. Manolios, and J Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Press, Boston, 2000.

3. Matthew Wilding, David Greve, and David Hardin. Efficient simulation of formal
processor models. Formal Methods in System Design, 18(3):233–248, May 2001.



A Case Study: Formal Verification of Processor

Critical Properties

Emmanuel Zarpas

IBM Haifa Research Laboratory
zarpas@il.ibm.com

1 Introduction

Over the past ten years, the Formal Methods group at the IBM Haifa Research
Lab has made steady progress developing tools and techniques that bring the
power of model checking to the community of hardware designers and verification
engineers, making it an integral part of the design cycle for many projects. Sev-
eral IBM and non-IBM design teams have successfully integrated RuleBase [2],
the IBM formal methods tool, into their design cycles. In this paper we present
a case study describing the formal verification of critical properties in a recent
processor. Because the details of the design and the specifications are highly pro-
prietary, this paper focuses on the process, techniques and experience involved
in the formal verification of the critical properties. We report here experiences
on two units, named here for confidentiality reasons unit A and B.

2 Design Under Formal Verification

Unit A. The original implementation of this unit had about 15,000 flip-flops and
220,000 gates, which is a challenge for complete formal methods. We checked
about 200 properties in order to verify the critical properties of the unit as
thoroughly as possible. We found 35 bugs. Three of these bugs were found after
the first tape out of the SoC. We were also able to highlight the remaining
weaknesses to the design team and the SoC architect (so they could fix them).

The design cannot reach one of the critical states in less than 600 cycles. This
was proved to be far too deep for Bounded Model Checking [3]. The Discovery
engine, the main BDD symbolic model checking engine used by RuleBase, proved
to be the only engine able to cope with the problem. Even so, as the design grew
larger and significantly more complex, we had to restrict the model. By the end of
the project, it became impossible to check properties without the use of severe
environment restrictions, see the first line of Table 1 for average data about
models and Discovery runs. SAT-based bounded model checking could still be
used for the design, but only for bounds lower than 200. We made a decision to
override internal design variables in order to allow the design to reach all critical
states within about twenty cycles and therefore achieve a reasonable level of
coverage.
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At the very end of the project, progress made in model checking technologies
allowed us to check properties without overriding any internal variables or any
restrictions of the behavior of control input variables. Using interpolation-based
techniques as in [4] allowed us to prove two thirds of our properties, including
some of the most sensitive properties. Our interpolation-based engine was able to
prove these properties in a surprisingly short amount of time. Indeed when this
engine was able to prove a property it was usually with an interpolant computed
with a low bound (e.g. 10 or 15). In general, the engine was either able to
prove a property quickly or unable to do it. For the remaining properties, we
used incremental bounded model checking [5]. Second line of table 1 summarizes
average data about models and runs. Of course, using bounded model checking,
we could prove properties only with a bound. Reachability depths computed
for the intermediate models made us think that the bounds (in the k=1000-
1500 range) we used were probably high enough to prove most of the properties
checked. However, this approach implied solving extremely big CNFs, indeed
our SAT solver had to fight with CNFs of more than 20 million variables and
60 million clauses. With such CNFs memory becomes an issue, we had to work
on a 8 GB 64-bit machine. Even though, each property often took more than 24
hours to be checked up to the relevant bound.

Unit B. The B unit we checked had two main phases. Phase 1 lasts for several
hundred thousand cycles. This makes model checking for these properties nearly
impossible as is. To circumvent this problem, we used a checkpoint generated by
simulation to give our model an initial state at the beginning of Phase 2 (main
unit B concerns are mainly for Phase 2). As initial states, we took a subset of
the reachable states in the first cycle of Phase 2. Consequently, we did not get
full coverage. A bug could be missed, for example, if the only path to this bug
is through a Phase 1 state that was outside the subset used. Nevertheless, using
this method, we obtained a level of verification far better than any that could
be obtained using simulation or semi-formal methods.

The original implementation of B unit had about 1200 flip-flops and 12500
gates. Because this not very large, we were able to check each rule in reasonable
amount of time (anywhere from a few minutes to less than an hour). The design
encompassed a 219 counter making reachability analysis, and therefore on-the-
fly model checking, impracticable. The Discovery engine allowed us to perform
to perform an over-approximation of the reachable states by disregarding the
counter variables. At this point we were able to use a classical backward fix-
point computation search. In general, this proved to be a good solution for this
design (see third line of Table 1). As a results a dozen bugs were found very
quickly in an already mature design.

3 Lessons

According to users survey [2], the three most difficult activities related to Rule-
Base use are writing environments to cope with size, understanding design de-
tails and modifying design for size. As we saw in previous section, technology
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progresses do make a difference in tackling big size designs, however in many
cases brute strength is not enough. The [2] discussion about dealing with the
size problem is still up to date, so we will focus here on processes considerations
usually disregarded in the literature, though critical for projects successes.

Designer Support is Critical. For verification engineers, their relationship with
designers is one of the main challenges in verification projects, especially when
the verification engineers act de facto as consultants. It is not surprising that
we found it far easier to collaborate with skilled designers. Even if designers
do not carry out any formal verification on their own, they need the time and
availability to support the verification efforts being done on their design. First,
the specifications are generally not detailed enough for formal verification work.
The designer therefore has to give further explanations to the formal verification
engineers and help them define properties and models. In addition, the designer
plays an essential role in reviewing traces (either false negatives or real bugs)
and giving feedback in a timely manner.

Have the “Classical” Verification Team Involved. The more formal verification
is embedded into the “classical” verification process, the better. Ultimately, the
use of formal verification should be a part of the entire verification strategy. Even
the system architecture should accommodate formal verification, for example by
taking into account that formal works better on small blocks than on big ones
(a very light case of design for verifiability). However, if the formal verification
engineers do not belong to the “classical” verification team, as it is often the
case, coordination should be established. The verification lead should closely
review the bugs found by formal methods on a regular basis, including properties
checked or not and model restrictions made. This is very important in order to
get a good cooperation with simulation teams and the maximum benefit and
return on investment for formal verification.

Write General Environments (Top Down Approach). In order to create a model,
the behavior of input signals of the designs need to be defined. We model input
signals behavior using the PSL [1] modeling layer. A safe approach involves start-
ing with an environment as general as possible. A non-existential property proved
with an abstract environment will still hold for the “real life” environment. If
false negatives appear, the environment can be refined during the verification
process. In addition, abstract environments tend to be simpler and easier to
write. As a result, it is usually better to start with a general environment and
refine it when needed. Indeed, starting with a very precise, very detailed environ-
ment will take a long time to write, debug and tune and therefore waste designer
time, a most precious resource. By refining a general environment, you very well
could never have to reach such a level of detail, and even so, it is likely to be at
a late stage of the verification project and after achieving some results. Bottom
up approach is more risky: it is very easy to lose considerable time in tuning in a
precise way complex behaviors for some inputs signals with no significant gains.
Very often some abstracted behavior would have done as well.
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Write Simple Properties. The RuleBase property language is PSL. PSL is simple
to learn, yet the way it is used to write properties can have a significant impact
on a formal verification project. The simpler the property the better. Simpler
properties are easier to write, easier to understand, and easier to maintain. Even
more important, the more complex a property is, the more difficult it will be to
tune it and the more designer time, a rare and precious resource, will be required.
It makes sense to start writing the simplest properties you can imagine for your
model. This will allow you to assess your model and determine if it represents
the design, its complexity, whether it is suitable for formal methods, or whether
it should be made smaller by some restrictions. Many very important properties
can be expressed in a relatively simple manner. We found that checking even
trivial properties uncovered bugs. For example we found two bugs in A unit by
checking that a signal was actually a pulse. When you want to write a complex
rule, there is often a simpler version, or a simpler rule (either stronger or weaker)
that will find the same bugs. It makes sense to first seek out the simpler rule.
You may not be able to avoid writing and checking complex properties, however
it is a safe policy to write them during a second iteration.

4 Conclusions

In this paper, we showed how skilled use of a state-of-art formal methods tool can
allow checking critical properties in very important designs, in spite of technical
difficulties. The author wishes to thank I. Holmes, J. Liberty and Kanna Shimizu
for their support on design verification.

Table 1. Average values for Unit A and B models and engines runs. Depth is the
number of cycles needed to complete reachability analysis.
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Smrčka, Aleš 371
Somenzi, Fabio 207
Srinivasan, Sudarshan K. 363
Staber, Stefan 35

Tsow, Alex 398

Vaandrager, Frits 345
Vardi, Moshe Y. 191
Velev, Miroslav N. 97
Vojnar, Tomáš 371
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