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Abstract. We propose a novel formulation of the firing squad synchro-
nization problem. In this formulation we may use more than one general
state and the general state to be used is determined by the boundary
condition of the general. We show that the usual formulation and the new
formulation yield different minimum firing times for some variations of
the problem. Our results suggest that the new formulation is more suited
for the general theory of the firing squad synchronization problem.

1 Introduction

The firing squad synchronization problem, or FSSP for short, is the following
problem raised by J. Myhill in 1957 ([14]). Consider a finite automata A that
has two input terminals, one from the left and the other from the right, and
two output terminals, one to the left and the other to the right. The value of
each output terminal at time t is the state of A at that time t. The state of
A at a time t + 1 is completely determined by the state and the values of the
input terminals of A at time t. The set of the states of A includes at least three
different states G, Q, F, called the general state, the quiescent state, and the
firing state, respectively. For a number n (≥ 1) let Nn be the one-dimensional
array of n nodes p1, p2, . . . , pn. Each node pi is a copy of the automaton A,
and the input terminals and the output terminals of adjacent nodes pi, pi+1

are connected mutually (1 ≤ i < n). See Figure 1. The values of the input
terminal from the left of the leftmost node p1 and the input terminal from the
right of the rightmost node pn are the special symbol # that indicates that the
input terminal is open. The transition function of A must satisfy the following
condition: if the state of A is Q and the value of each of the input terminals is
either Q or # at a time t, then the state of A at the next time t + 1 must be Q.
We call the leftmost node p1 the root of Nn. At time 0, the state of a node pi

is the general state G if the node is the root (i = 1) and the quiescent state Q
otherwise (i ≥ 2). Then, for each t (≥ 0) and i (1 ≤ i ≤ n), the state of the node
pi at time t is uniquely determined. The problem is to design a finite automaton
A, a solution of FSSP, such that, for any n, all the nodes of Nn enter the firing
state F simultaneously for the first time.
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Fig. 1. The original FSSP

We can easily construct a solution having the firing time 3n for Nn. Moreover,
we can easily show that the firing time of any solution for Nn cannot be smaller
than 2n−2. Hence, if a solution has the firing time 2n−2 for all Nn, we may call
it a minimal-time solution. Existence of minimal-time solutions was first shown
by Goto ([7]), and later by Waksman ([20]).

After this original FSSP was introduced, many variations of FSSP have been
proposed and studied ([13]). Suppose that a variation V of FSSP has a solution.
For each problem instance N of V , by the minimum firing time of N of the
variation V we mean the minimum of the firing times of solutions A of V for N ,
where A ranges over all solutions of V . If the firing time of a solution Ã of V for
N is the minimum firing time of N of V for all problem instances N of V , we
call Ã a minimal-time solution of the variation V .

In this paper we propose a modification of the formulation of FSSP and study
how the modification influences the minimum firing times of various variations
of FSSP. The modification is as follows. First, instead of having one unique
general state G, we allow a finite automaton to have more that one general
state G1, G2, . . . , Gs. The general state to be used is uniquely determined by
the boundary condition of the root. Here, by the boundary condition of a node
of a problem instance, we mean the information of which input terminals and
output terminals of the node are open. Second, instead of having one unique
firing state F, we specify a set F of states as the set of firing states. For a finite
automaton to be a solution, all nodes of the network must enter some firing
state simultaneously for the first time. Different nodes may enter different firing
states. A general state Gi may be also a firing state.

This modification implies the following for designing solutions of FSSP. First,
the root can send its boundary condition to adjacent nodes at time 0. Hence a
node adjacent to the root can use the boundary condition of the root in deter-
mining its state at time 1. Second, the general state that should be used when
the boundary condition of the root is “all terminals are open” may be a firing
state. Hence, if the problem instance has only one node, the root can fire at time
0 and hence the firing time can be be 0.

We call the usual formulation and the new formulation of FSSP the tra-
ditional model and the boundary sensitive model, respectively. There are two
motivations for using the boundary sensitive model.

The main motivation is that the boundary sensitive model simplifies the anal-
ysis of minimum firing time and allows us to understand the essential structures
of minimal-time solutions. We explain why the boundary sensitive model is more
suitable through examples.

Another reason concerns the recent change of the motivation for studying
FSSP. Recently, the FSSP for directed networks has been utilized as one of
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the basic protocols for designing network algorithms (for example, [6]). In such
applications, a node is a circuit or a computer in a network, and connections
between nodes are network connections. In this case, the time for a node to
check its boundary condition is negligibly smaller than the time for information
exchange between nodes. Hence it is natural to assume that the root (the initiator
of the protocol) can send its boundary condition at time 0. The “firing” of the
network generally means that the network simultaneously takes some action. If
the network has only one node the root can know this at time 0 and start the
action promptly. Hence it is natural to assume that if the network has only one
node the firing time is 0.

For a variation V of FSSP and a problem instance N of V , let mftV,tr(N) and
mftV,bs(N) denote the minimum firing times of V for N of the traditional model
and the boundary sensitive model, respectively. We are interested in the relation
between mftV,tr(N) and mftV,bs(N). We always have mftV,tr(N) > mftV,bs(N)
for the problem instance N that has only one node because the first value is
at least 1 and the second value is 0. Hence, in the remainder of the paper we
consider only problem instances that have at least two nodes.

The main technical results of the paper are twofold. First we show that for
many variations the two models give the same minimum firing time. Second we
show that for some variations the two models give different minimum firing times
and in the traditional model the determination of the minimum firing time is
unnecessarily complicated due to unnaturalness of the model.

We should mention that the formulation of FSSP that uses more than one
firing state has been used by Imai and Morita ([8]) to study FSSP by reversible
cellular automata.

2 FSSP That Have Known Minimal-Time Solutions

In this section we consider variations of FSSP for which we know minimal-time
solutions. The following lists some of these variations:

• The original FSSP of the one-dimensional line of length n (Fig. 1): The
minimum firing time is 2n − 2 ([7], [20], [1]);

• The one-dimensional line of length n such that the root may be at any
position: The minimum firing time is 2n− 2− min{p− 1, n− p}, where p is
the position of the root (1 ≤ p ≤ n) ([15]);

• The one-dimensional line of length n with k roots such that the roots may
be at any positions: The minimum firing time is 2n − 2 − min{maxi(pi −
1), maxi(n − pi)}, where pi is the position of the ith root (1 ≤ pi ≤ n,
1 ≤ i ≤ k) ([18]);

• The square of size n × n: The minimum firing time is 2n − 2 ([19]);
• The rectangle of size m×n: The minimum firing time is m+n+max{m, n}−3

([19]);
• The cube of size n × n × n: The minimum firing time is 3n − 3 ([19]);
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• The ring of size n: The minimum firing time is n ([3], [2]);
• The ring of size n with one-way information flow: The minimum firing time

is 2n − 1 ([10], [12]).

For all of these variations V we can show mftV,tr(N) = mftV,bs(N) for any
N . The proofs are essentially the same. As an example, suppose that V is the
original FSSP. For this V there exists a solution for the traditional model that
shows mftV,tr(Nn) ≤ 2n− 2. Moreover, we can prove that the firing time of any
solution A of V for Nn cannot be smaller than 2n−2 by formalizing the intuitive
reasoning that it takes at least 2n− 2 time for the root to know the position of
the rightmost node. But this proof is also true for the boundary sensitive model.
Hence we have 2n − 2 ≤ mftV,bs(Nn) ≤ mftV,tr(Nn) ≤ 2n − 2.

3 FSSP of General Networks

Next we consider variations of FSSP for general networks. Of these variations
two are the most basic. One is the FSSP of directed networks and the other is
the FSSP of bilateral networks. We abbreviate these two variations to DN and
BN respectively.

In DN, an automaton A has a input terminals and b output terminals, where
a, b (≥ 1) are implicit parameters. A problem instance N of DN is a network
that is obtained from copies of A by connecting some of the outputs to some
of the inputs. Each output of a node is either open or is connected to a single
input of another node, and hence the “fan-out” is at most one. Each automaton
A knows whether its jth output is open or not for each j (1 ≤ j ≤ b). One node
is specified as the root. Moreover, the network N must be strongly connected,
that is, there must be a directed path of connections from v to v′ for each pair
(v, v′) of nodes.

A network N of DN is a bilateral network if a = b and the following condition
is satisfied: if the ith output of a node v is connected to the jth input of a node
v′ then the jth output of v′ is connected to the ith input of v. BN is the the
variation such that the problem instances are all bilateral networks. Note that
all the variations mentioned in Section 2 are subproblems of BN except the last
one, the FSSP of rings with one-way information flow.

For both DN and BN we do not know minimal-time solutions. The best
known solution of BN is by Nishitani and Honda ([16]) and its firing time is
3r − 1, where r is the radius of the network. A solution of DN was first found
by Kobayashi ([9]). Its firing time was an exponential function of the number
n of nodes. The firing time has been improved to O(n2) by Even, Litman and
Winkler ([4]) and then to O(nd) by Ostrovsky and Wilkerson ([17]), where d is
the diameter of the network.

Claim 1. For both of BN and DN the two formulations have the same minimum
firing time.

Proof. Let N = (V, E) be a directed network or a bilateral network, where V is
the set of nodes and E is the set of connections. For v, v′ ∈ V and e ∈ E, let
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d(v, v′) and de(v, v′) respectively denote the length of a shortest path from v to
v′ (or between v and v′ if N is bilateral) and the length of a shortest path from
v to v′ (or between v and v′ if N is bilateral) that passes through e, respectively.
Moreover let f(N) denote the value maxe∈E,v∈V de(vg, v), where vg denotes the
root. Then we have

mftDN,tr(N) = mftDN,bs(N) = f(N),
mftBN,tr(N) = mftBN,bs(N) = f(N).

We will very briefly explain the idea for proving these characterizations of min-
imum firing time only for DN.

First we show mftDN,bs ≥ f(N) using the network N shown in Fig. 2 as
an example. For this network N we have f(N) = 6 and the e, v that realize
this maximum value 6 is e = (p3, 1, 1, p4), v = p3, where the symbol (v, i, j, v′)
denotes the connection from the ith output of v to the jth input of v′. Let N ′ be
the network shown in Fig. 2 and let t̃ be any time such that t̃ ≤ 5. Then, at time
t̃, the states of p3 in N and p3 in N ′ are the same and the the state of p9 in N ′

is the quiescent state Q. Hence, if a solution A of DN of the boundary sensitive
model fires at t̃ on N , at that time the states of nodes in N ′ contain both of a
firing state and Q. This contradicts our assumption that A is a solution of DN.
Hence the firing time of A cannot be t̃. This proves mftDN,bs(N) ≥ 6 = f(N).

p9

p8

p7

p6

p5p5

p4p4

p3p3

p2p2

p1 p1root root

N N'

Fig. 2. FSSP of directed networks

Next we show mftDN,bs(N) ≤ f(N). We select one directed network N and
fix it. We show how to construct a solution Abs of DN of the boundary sensitive
model whose firing time for N is at most f(N). The structure of Abs essentially
depends on the fixed network N .

Abs simulates two finite automata A1,bs, A2,bs of the boundary sensitive
model and fires when at least one of them fires. A1,bs may be any solution of
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DN. A2,bs is a finite automaton such that all the nodes collaborate to check that
the given network is N . If the given network is N then all the nodes know it
before or at f(N), and fire at f(N). Otherwise each node never fires. Hence Abs

is a solution.
The details of the behavior of A2,bs are as follows. For each node v ∈ V

we fix one shortest path from vg to v and use that path to uniquely spec-
ify v. For example, if we select the path (p1, 1, 1, p2), (p2, 2, 2, p3) for p3 in
the network N shown in Fig. 2, all the nodes refer to p3 of N as “the node
that is arrived at when we proceed from vg along connections (p1, 1, 1, p2),
(p2, 2, 2, p3).”

For each pair (v′, v) of nodes of N , A2,bs uses a signal to teach v that v′

really exists in the network, and also the boundary condition of v′. The time
needed for this is d(vg, v

′) + d(v′, v) because we are using the boundary sensi-
tive model. Moreover, for each pair (e, v) of e ∈ E and v ∈ V , A2,bs uses a
signal to teach v that e really exists in the network. The time needed for this is
d(vg, v

′) + 1 + d(v′′, v) = de(vg, v), where v′, v′′ are nodes such that e is from v′

to v′′.
Hence, if the given network is N , using these signals all the nodes know this

before or at time

max{ max
v′,v∈V

(d(vg, v
′) + d(v′, v)), max

e∈E,v∈V
de(vg, v)} = max

e∈E,v∈V
de(vg, v) = f(N)

and A2,bs at any node can fire at time f(N). If the network is not N , A2,bs at
any node never fires. Hence, the firing time of the solution Abs for N is at most
f(N), and hence mftDN,bs(N) ≤ f(N).

The above idea cannot be used directly for the traditional model because in
the model the time for v to know the boundary condition of v′ is not d(vg, v

′) +
d(v′, v) for v′ = vg. This complicates the analysis of mftDN,tr(N). However, if we
note that maxv∈V d(vg, v)+ 1 ≤ f(N), we can construct a solution Atr of DN of
the traditional model whose firing time for N is at most f(N).

Atr is obtained from Abs by modifying its components A1,bs and A2,bs to
automata A1,tr and A2,tr of the traditional model as follows. A1,tr may be any
solution of DN of the traditional model. There are 2a+b boundary conditions.
A2,tr simulates the behaviors of A2,bs for all of these boundary conditions simul-
taneously. At the same time, at time 1 the root broadcasts the correct boundary
condition to all nodes. A node fires when it has received the correct boundary
condition and the simulated A2,bs for that boundary condition fires. The condi-
tion maxv∈V d(vg, v) + 1 ≤ f(N) guarantees that each node knows the correct
boundary condition before or at f(N). Hence A2,tr fires at f(N) if the given
network is N .

Hence the firing time of Atr for N is at most f(N), and hence mftDN,tr(N) ≤
f(N). This, together with f(N) ≤ mftDN,bs(N) ≤ mftDN,tr(N), shows
mftDN,tr(N) = f(N).

The proof of mftBN,tr(N) = mftBN,bs(N) = f(N) is similar. �
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4 FSSP of Paths and Regions in Z
2 and Z

3

The final variations we consider are paths and regions in the two-dimensional
grid space Z

2 and the three-dimensional grid space Z
3. First we explain the

variations for Z
2.

We say that two points p = (x, y), p′ = (x′, y′) in Z
2 are adjacent if either

x = x′ and |y − y′| = 1 or |x − x′| = 1 and y = y′. By a path in Z
2, or simply a

path, we mean a sequence p1p2 . . . pn of points in Z
2 (n ≥ 1) such that pi and pj

are adjacent if and only if |i − j| = 1 (1 ≤ i ≤ n, 1 ≤ j ≤ n).
The FSSP of paths in Z

2, or 2PATH for short, is the FSSP such that problem
instances are paths p1p2 . . . pn in Z

2 and p1 is the root of each path p1p2 . . . pn.
Another variation, the FSSP of generalized paths in Z

2, or g-2PATH for short,
is the FSSP such that problem instances are paths p1p2 . . . pn in Z

2 and the root
may be at any position. Finally, the FSSP of regions in Z

2, or 2REG for short,
is the FSSP such that problem instances are nonempty finite subsets X of Z

2

such that any two points p, p′ in X are connected with a path in X , and the
root may be any point in X .

We can define similar variations 3PATH, g-3PATH, 3REG for Z
3. In

Fig. 3 (a) and (b) we show examples of problem instances of 2PATH and 2REG,
respectively.

root

root
(a) (b)

Fig. 3. Examples of 2PATH and 2REG

For each of these three variations, a finite automata A that is used to con-
struct a solution has four inputs and four outputs, each corresponding to the
direction of one of the four adjacent positions. Two copies of A at adjacent points
p, p′ are mutually connected with the corresponding input and output. Hence,
all of these variations are subproblems of BN.

At present we know no minimal-time solutions for these six variations. How-
ever, in [5] we showed that if P �= NP then 3PATH, g-3PATH and 3REG have no
minimal-time solutions. Hence these three variations are highly unlikely to have
minimal-time solutions. (In [5] we showed the result only for 3PATH. However
the proof also applies to g-3PATH and 3REG with slight modifications.)

It is evident that mft2PATH,tr(N) = mft2PATH,bs(N) and mft3PATH,tr(N) =
mft3PATH,bs(N) for any path N = p1p2 . . . pn in Z

2 and Z
3. Hence we are inter-

ested in how mftV,tr(N) and mftV,bs(N) are related for V = g-2PATH, 2REG,
g-3PATH, 3REG. We consider the problem only for g-2PATH. All the results
hold true for g-3PATH without any modification and for 2REG and 3REG with
slight modifications.
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In [11], a characterization of mft2PATH,tr(p1p2 . . . pn) was obtained. We elab-
orate on this result in detail below.

For 1 ≤ i < n, let e(p1p2 . . . pn, i) denote the length m of a longest extension
of p1p2 . . . pi of the form p1p2 . . . pipi+1q2 . . . qm. The value e(p1p2 . . . pn, i) may
be ∞. For i = n, we define e(p1p2 . . . pn, n) to be 0. Let i0 be the value defined
by i0 = min{i|1 ≤ i ≤ n, i ≥ e(p1p2 . . . pn, i)}. Let f(p1p2 . . . pn) be 2i0 − 1 if
i0 = e(p1p2 . . . pn, i0) and 2i0 − 2 if i0 > e(p1p2 . . . pn, i0).

Lemma 1 ([11]).

mft2PATH,tr(p1p2 . . . pn) = mft2PATH,bs(p1p2 . . . pn) = f(p1p2 . . . pn).

Proof. Only an outline of the proof is given. As we have already mentioned,
we can easily show mft2PATH,tr(p1p2 . . . pn) = mft2PATH,bs(p1p2 . . . pn). Hence
we only show mft2PATH,bs(p1p2 . . . pn) = f(p1p2 . . . pn). We assume that i0 < n.
The proof for the case i0 = n is simpler.

First we show that the firing time of any solution A for α = p1p2 . . . pn cannot
be smaller than f(p1p2 . . . pn). Let t̃ be a time such that t̃ < f(p1p2 . . . pn).

Suppose that i0 = e(p1p2 . . . pn, i0). Then t̃ < f(p1p2 . . . pn) = 2i0 − 1. There
is a path of the form α′ = p1p2 . . . pi0pi0+1q2 . . . qi0 . At time t̃, the state of p1 in
α and the state of p1 in α′ are the same and the state of qi0 in α′ is Q. Hence A
cannot fire on α at time t̃.

Suppose that i0 > e(p1p2 . . . pn, i0). Then 0 ≤ t̃ < f(p1p2 . . . pn) = 2i0 − 2
and hence 2 ≤ i0. We have i0 ≤ e(p1p2 . . . pn, i0 − 1). Hence there is a path of
the form α′ = p1p2 . . . pi0−1pi0q2 . . . qi0 . At time t̃, the state of p1 in α and the
state of p1 in α′ are the same and the state of qi0 in α′ is Q. Hence A cannot
fire on α at time t̃.

Next we construct a solution A whose firing time for p1p2 . . . pn is at most
f(p1p2 . . . pn). A simulates two finite automata A1, A2. The structure of A2

essentially depends on the path p1p2 . . . pn. A fires when at least one of A1,
A2 fires. A1 may be any solution of 2PATH. A2 checks that the given path
starts with p1p2 . . . pi0pi0+1. If the check succeeds, A2 at any node fires at time
f(p1p2 . . . pn). If the check fails, A2 at any node never fires. Hence A is a solution.

The details of the behavior of A2 is as follows. At time 0, A2 sends a check
signal from the root to the node pi0 along the path p1p2 . . . pi0 . If check succeeds,
the check signal knows it at pi0 at time i0−1 and then the check signal broadcasts
the order “fire at time f(p1p2 . . . pn)” to all the nodes. If i0 = e(p1p2 . . . pn, i0)
all the nodes receive the order before or at time (i0 − 1) + max{i0 − 1, i0} =
2i0 − 1 = f(p1p2 . . . pn). If i0 > e(p1p2 . . . pn, i0) all the nodes receive the order
before or at time (i0 −1)+max{i0−1, i0−1} = 2i0−2 = f(p1p2 . . . pn). Hence,
in any case, if the check succeeds all the nodes receive the order “fire at time
f(p1p2 . . . pn)” before or at time f(p1p2 . . . pn) and hence can fire at that time.

Hence the firing time of A for p1p2 . . . pn is at most f(p1p2 . . . pn). �

In Fig. 4 we show an example of a path. For this path p1p2 . . . p22 we
have e(p1p2 . . . p22, 18) = ∞, e(p1p2 . . . p22, 19) = 4, and hence i0 = 19, 19 >
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p
19

p
22

root p
1

Fig. 4. An example of paths

e(p1p2 . . . p22, 19), f(p1p2 . . . p22) = 2·19−2 = 36. Hence mft2PATH,tr(p1p2 . . . p22)
= mft2PATH,bs(p1p2 . . . p22) = 36.

A path p1p2 . . . pn such that p1 is the root is also a problem instance of
g-2PATH. For this problem instance we have the following results.

Theorem 1. mftg−2PATH,bs(p1p2 . . . pn) = f(p1p2 . . . pn).

Proof. In the proof of Lemma 1 the check signal of A2 checked that the given path
starts with p1p2 . . . pi0pi0+1. As a solution of g-2PATH, in addition to this the
check signal should also check that the root is at the end. However, if we use the
boundary sensitive model the check signal can check it without any additional
time. Hence we can construct a solution A of g-2PATH of the boundary sensitive
model whose firing time for p1p2 . . . pn is at most f(p1p2 . . . pn). �

Theorem 2. If i0 = e(p1p2 . . . pn, i0) and there is a path of the form

r2i0+1 . . . r3r2p1p2 . . . pi0pi0+1q2 . . . qi0 ,

then
mftg−2PATH,tr(p1p2 . . . pn) = f(p1p2 . . . pn) + 1.

Proof. We have mftg−2PATH,tr(p1p2 . . . pn) ≤ mftg−2PATH,bs(p1p2 . . . pn) + 1 =
f(p1p2 . . . pn) + 1.

Suppose that there is a solution A of g-2PATH of the traditional model whose
firing time t̃ for p1p2 . . . pn is at most f(p1p2 . . . pn) = 2i0 − 1.

Suppose that we run A on the three paths α = p1p2 . . . pn, α′ = p1p2 . . . pi0

pi0+1q2 . . . qi0 , α′′ = r2i0+1 . . . r3r2p1p2 . . . pi0pi0+1q2 . . . qi0 . In all of these paths
p1 is the root. Consider the states of nodes in these three paths at time t̃. All
the nodes in α are F because A on α fires at t̃. The state of p1 in α and the state
of p1 in α′ are the same. Hence the state of p1 in α′ is F and hence the state of
qi0 in α′ is also F. But the state of qi0 in α′ and the state of qi0 in α′′ are the
same because A is a solution of the traditional model. Hence the state of qi0 is
also F. But the state of r2i0+1 in α′′ is Q. This is a contradiction. Hence we have
mftg−2PATH,tr(p1p2 . . . pn) ≥ f(p1p2 . . . pn) + 1. �

In Fig. 5 we show an example of paths α1 = p1p2 . . . p108 that satisfies the
condition of Theorem 2. For this path α1 we have e(α1, 106) = ∞, e(α1, 107) =
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107, i0 = 107, and hence f(α1) = 2i0 − 1 = 213. The equation e(α1, 107) = 107
was checked by the exhaustive search by computers. The path α2 shown in Fig. 5
is one of the path of the form α2 = p1p2 . . . p107p108q2 . . . q107 found by the search.
From this α2 we can easily construct a path of the form r215r214 . . . r3r2p1p2 . . .
p107p108q2 . . . q107. Hence, by Theorem 2 we have mftg−2PATH,tr(α1) = f(α1) +
1 = 214 while mftg−2PATH,bs(α1) = f(α1) = 213.

p
1

p
107 p

108

p
1

p
107

p
108

q
2

q
107

α1
α

2

Fig. 5. Two paths α1, α2

The proofs of the following two theorems are not difficult and we omit them.

Theorem 3. If i0 − 1 = e(p1p2 . . . pn, i0) and there is a path of the form

r2i0r2i0−1 . . . r3r2p1p2 . . . pi0pi0+1q2 . . . qi0−1,

then
mftg−2PATH,tr(p1p2 . . . pn) = f(p1p2 . . . pn) + 1.

Theorem 4. If i0 − 2 ≥ e(p1p2 . . . pn, i0) then

mftg−2PATH,tr(p1p2 . . . pn) = f(p1p2 . . . pn).

From Theorems 2, 3 we are tempted to conjecture that if i0−1 ≤ e(p1p2 . . . pn,
i0) then mftg−2PATH,tr(p1p2 . . . pn) = f(p1p2 . . . pn) + 1. However, this is not
true. Suppose that we construct a path α3 shown in Fig. 6 from the path α1

shown in Fig. 5 by bending its beginning. For α3, we have i0 = e(p1p2 . . . pn, i0)
and mftg−2PATH,tr(p1p2 . . . pn) = f(p1p2 . . . pn). In α3, the check signal of the
traditional model that starts at p1 at time 0 knows the boundary condition of
p1 as soon as it arrives at p12, and hence it needs no extra time to check the
boundary condition of p1.
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p1

p12

p107 p108

Fig. 6. A modified path α3

5 Conclusions

The two models give the same minimum firing time for the variations considered
in Sections 2, 3. However, they give different minimum firing time for g-2PATH
(and 2REG, g-3PATH, 3REG). For these FSSP, the minimum firing time of the
boundary sensitive model has a very simple characterization shown in Theorem
1 for paths with the roots at the end. However, Theorems 2, 3, 4 and the phe-
nomenon mentioned in Fig. 6 show that the analysis of the minimum firing time
of these FSSP of the traditional model is very complicated and moreover it is
due to the unnaturalness of the model.

Hence, if our goal is to construct a general theory of minimum firing time of
FSSP, our results suggest that the boundary sensitive model is “the” model to
be used.
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