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Nataša Jonoska and Gregory L. McColm

Department of Mathematics, University of South Florida Tampa, FL 33620
{jonoska, mccolm}@math.usf.edu

Abstract. We present a theoretical model for self-assembling tiles with
flexible branches motivated by DNA branched junction molecules. We en-
code an instance of a “problem” as a pot of such tiles, and a “solution”
as an assembled complete complex without any free sticky ends (called
ports), whose number of tiles is within predefined bounds. We develop an
algebraic representation of this self-assembly process and use it to prove
that this model of self-assembly precisely captures NP-computability
when the number of tiles in the minimal complete complexes is bounded
by a polynomial.

1 Introduction

Many researchers use weak chemical bonds to design and “grow” self-assembled
nanostructures. Under thermodynamic equilibrium, molecules assemble using
several types of non-covalent intermolecular interactions (e.g., hydrogen or ionic
bonds), evolving into relatively stable structures [23,24]. This paper is motivated
mainly by DNA self-assembly, employing Watson-Crick complementarity and
hydrogen bonding, as a case study for molecular self-organization due to weak
bonding. The interest comes from several major experimental developments that
use DNA for constructing nanostructures, for information processing, and as a
material for nanodevices.

Nanostructures. An essential part of the chemical engineering of self-assemb-
ling structures is the design of the molecular building blocks that will bind
into larger, and more complex structures. Although naturally-occurring DNA
is a linear molecule (considering its helix axis as a segment of a curve), DNA
molecules can be constructed as stable branch points [31,35] and ultimately as
more complex structures with lateral fusion of DNA helices such as double DX
and triple crossover TX molecules [11,22,32]. DNA and other molecules have been
used for self-assembly of two dimensional arrays [36,37], three-dimensional graph-
like structures [15,30] and regular polyhedra [6,40], including the octahedron (by
DX and PX molecules) [33].

Algorithmic self-assembly. Beginning with the initial successful experiment by
Adleman [1] and more recently one from the same group solving an instance
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of SAT with 20 variables [5], computations by biomolecular protocols include,
among others, binary addition (simulation of XOR) using triple cross-over
molecules (tiles) [25], a 9-bit instance of the “knight problem” using RNA [10],
and a small instance of the maximal clique problem using plasmids [13]. Re-
cently, Winfree [29] used algorithmic self-assembly to obtain cellular automata
like two-dimensional arrays of the Sierpinski triangle.

Nanodevices. Based on a B-Z transition of the DNA helix, a nano-mechanical
device was introduced in [26]. Soon after, “DNA fuel” strands based on Watson-
Crick hydrogen bonding were used to produce devices whose activity were con-
trolled by DNA strands [38], [39]. The device introduced in [38] has two distinct
positions, each obtained by adding a pair of DNA strands that hybridize with
the device so that the molecule is either in the first or in the second position.

Theoretical observations. Despite notable advances in experimental molecular
self-assembly, the theoretical understanding of this process is lacking. Algorith-
mically, it has been observed that DNA tiles can simulate Wang tiles and as
such, are capable of simulating the transitions of a Universal Turing machine
[36]. However, there is a real need for understanding the limitations, boundaries,
and complexity of the process of self-assembly. Only a few theoretical results have
been obtained, primarily for DNA assemblies using rigid tiles. The complexity,
measured as the number of tiles needed for a unique assembly of n× n squares,
is considered in [28], where it was observed that only O(log n) molecules are
needed for this task. Comparison of such “shape” complexity with Kolmogorov
complexity is investigated in [34]. The same model was used to theoretically
observe a possible two-dimensional tile self-assembly of a cube [21]. In [2], com-
puting the minimal number of tiles needed for unique self-assembly in a given
shape proved to be NP-hard, and O(log n)-approximation of the concentration
of the tiles needed for fast assembly in the desired structure is computed. The
question of whether a given set of tiles arrange in an infinite ribbon-like shape
was proved to be undecidable [3]. In [16] and [17], the tiles are “flexible” in
that they have extended bendable branches, the branches being labeled so that
the assembly process is guided by complementary Watson-Crick labels; the al-
gorithmic view is that the input is encoded as a collection of tiles to use, and
an output (if any) is a sufficiently small complete complex, i.e., a complex of
tiles with no free ports. This flexible tile model has been investigated in [18],
which presented a heuristic model to predict the distribution of products of the
self-assembly. In [27], a step-wise assembly of junction molecules is investigated
and the computational complexity of the problem, whether a complete complex
is produced by a given pot of a certain form is considered.

In this paper, we take a somewhat reverse course from [27], and ask what
are the problems solvable by flexible tile assembly; we find that these are pre-
cisely the NP-complete problems. Specifically, we find that all flexible tile DNA
computations within a polynomial bound are reducible to the NP-computable
integer programming problem of [4] and [20], and conversely, that any NPTIME
computation can be simulated by a flexible tile computation. This note is an
extended abstract of results appearing in [19].
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2 The Theoretical Model

The main building blocks used in our assembly model are motivated by branched
junction DNA molecules with junctions ending with single stranded portions
(sticky ends) that can bind to their Watson-Crick complementary sequence. It is
also assumed that the structure of the junctions (and possibly the branches) is
such that the branches are rather flexible and various connections are possible.
A schematic view of this process is presented in Figure 1. It has been shown
theoretically that several NP-complete problems such as 3SAT and 3-vertex-
colorability can be solved by self-assembly of DNA graphs [15,16,17]. The coding
of the problems is such that a solution is obtained if and only if the graph can be
assembled. Also, experimental confirmation of DNA graph self-assembly has been
obtained by flexible tiles in [15,30]. In what follows we develop the theoretical
model and prove these initial observations in a general setting.

Let H ⊂ Σ∗ be a finite set of words over alphabet Σ that we call port
(bonding) types and let θ: H → H be an involution. We call θ(h) ∈ H the
complementary string to h such that ports of types h and θ(h) bond. For each
h ∈ H we assume that θ(h) �= h = θ(θ(h)).

Fix H and θ for the rest of this paper. To ease notation we write ĥ for θ(h).

Definition 1. A tile type over (H, θ) is a function t: H → N.

A tile of type t will have t(h) ports of type h. If |H | = k, then a tile
type can be written as a k-dimensional vector with non-negative integer entries;
alternatively, a tile type can be regarded as a multiset of port bonding types.
We call d = d(t) =

∑
h t(h) the degree of tile type t. In order to get the tiles

themselves, we first get a collection of “prototiles.” A prototile corresponding to
tile type t is a star-like graph with one central vertex of degree d(t) indicating
the center of the prototile and d(t) vertices of degree one labeled with ports
indicating the branches seeking to bond with complementary ports. A tile is
thus a copy of a prototile, so we say that a tile t that is a copy of a prototile of
type t is thus itself of type t, and we write: for each h ∈ H , t(h) = t(h) means

Fig. 1. Watson-Crick bonding of two DNA junction molecules. The double helix struc-

ture is not depicted for simplicity. The arrowhead indicates the 3′ end also ending with

a single stranded sticky end sequence.
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Fig. 2. Complexes. (a) Three tiles, with the central vertex indicated as a black circle,

and the one-degree vertices with ports schematically presented with different colors and

shapes. The complementary ports have compatible shapes, and same colors. (b) Two

different (incomplete) complexes obtained by gluing the three tiles. They are of the

same complex type despite their different structures, as they have the same multiset

of free port types.

that t has exactly t(h) ports of type h. Figure 2 (a) shows examples of three
tiles with degrees 3, 5 and 3 respectively. The central vertex is represented with
a black circle and ports are indicated with different colors and shapes.

We put tiles together to construct complexes. But first, we need to classify
the pots that the complexes are assembled in.

Definition 2. A pot type over (H, θ) is a set P of prototiles corresponding to
tile types over (H, θ) such that for any h ∈ H and t ∈ P, if t(h) > 0 then there
exists t′ ∈ P such that t′(ĥ) > 0.

Thus no pot admits tiles with unattachable ports. A pot P is a set of tiles
from P.

Definition 3. A complex over a pot type P is a pair C = 〈T, J〉 where T is a set
of tiles with tile types in P and J is a set of unordered pairs e = {(t,h), (t′,h′)}
satisfying the following two properties:

– For each e = {(t,h), (t′,h′)} ∈ J , t, t′ ∈ T , t(h), t′(h′) > 0, h′ = ĥ (e
indicates the connection between two complementary ports), and

– the cardinality |{e | (t,h) ∈ e}| ≤ t(h) (this prevents the tile from making more
connections than it has ports).

The type of a complex C = 〈T, J〉 is the function type(C): H → N defined by

type(C)(h) =
∑

t∈T

t(h) − |{e | (t,h) ∈ e}|
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Thus the type of C indicates the types of its ports, free (i.e., those not ap-
pearing in J). Similarly, as with tile types, the complex type can be viewed as a
k-dimensional vector with non-negative integer entries. Note that each tile can
be considered as a complex where the set J is empty and the set T is a single-
ton. Then the type of tile t is equal to the type of the complex it represents. We
would like to distinguish tiles from complexes merely to indicate the fact that
complexes are assembled from tiles.

We assume that assembly occurs in an extremely dilute solution, so that
when two complexes meet, all of their complementary free sticky ends join up
so that there are no complementary free ports. (This is where the flexibility of
the tiles is so critical.) Thus:

Definition 4. A complex C over (H, θ) is stable if, for each h ∈ H, either
type(C)(h) = 0 or type(C)(ĥ) = 0.

In this paper, we assume that all complexes are stable unless otherwise
indicated.

As an example, consider Figure 2 (b), in which the ports of three tiles are
(maximally) connected to produce either of the two non-isomorphic complexes
of the same type. The ports are shown with different colors and shapes.

More generally, we may join complexes to obtain bigger complexes: if C1 =
〈T1, J1〉 and C2 = 〈T2, J2〉 are two complexes, then we can glue them together
by connecting up their complementary ports to get a complex C = 〈T, J〉. There
may be several non-equivalent ways to do this. Let ∆J be a set of unordered
pairs {(t1,h1), (t2,h2)} such that a free port of type h1 from tile t1 ∈ T1 connects
to a free port of type h2 = ĥ1 from tile t2 ∈ T2. We have the following definition:

Definition 5. We say that C = 〈T, J〉 is obtained by gluing complexes C1 =
〈T1, J1〉 and C2 = 〈T2, J2〉 if

T = T1 ∪ T2 and J = J1 ∪ J2 ∪ ∆J,

with the restriction that for each h ∈ H, as many ports of type h as possible are
joined, i.e., for each h, type(C)(h) = |type(C1)(h) − type(C2)(ĥ)|.

A complex is called complete if it has no free ports, i.e., if for all bonding
port types h, type(C)(h) = 0. For a pot P we denote with C(P ) the set of all
complete complexes that can be obtained by tiles from P , and for a pot type P,
let C(P) =

⋃
P∈P C(P ). Note that if P is finite, so is C(P ). The case when C is

finite is discussed in [19].

3 Example: The 3SAT Problem

The satisfiability problem (SAT) asks whether for a given boolean formula ϕ,
there is an assignment of {TRUE, FALSE} (or {T, F}) to the variables in ϕ
that would assign to ϕ the value TRUE. (This is the archetypic NP-complete
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problem [7].) Writing “+” for “or” and concatenation for “and,” a formula ϕ is
in conjunctive normal form (CNF) if it can be expressed as ϕ = c1c2 · · · cr where
each ci is a clause of the form (a1 + · · ·+ ak), and each ai is a literal, i.e., either
a variable v or a negation of a variable v̄. It is in k-conjunctive normal form
(k-CNF) if each conjunctive clause contains at most k literals. The satisfiability
problem for 3-CNF formulas is known as 3SAT [7]. Consider for example:

ϕ = (x̄ + y + z̄)(x + ȳ + z)(x̄ + ȳ + z). (1)

This Formula 1 has value T for the assignments (x, y, z) ∈ {(F, F, F ), (T, T, T ),
(T, F, F ), (F, T, T ), (F, F, T )}, and F for any other assignment.

For each 3-CNF formula ϕ we associate a pot type P with the following tiles.
The alphabet from which the port types are taken is

H = {T, F, T̂ , F̂} ∪ {x, x̄, x̂, ˆ̄x |x is a variable } ∪ {c, ĉ | c is a clause }.
The symbols with ˆindicate the θ complements. The set of port types consists
of three letter words which we write as ordered triples for easier reading.

H =
{
(ι, c, a), θ(ι, c, a) | ι ∈ {T, F}, c a clause, a a literal

}

∪ {
(x, x̄, ι), θ(x, x̄, ι) |x is a variable, ι ∈ {T, F}}.

The tiles differ in the assignment of the free ports. For each clause ci there are
seven tiles with three free ports of types (ι, c, a), a being a literal of c and ι being
a truth assignment. Each tile corresponds to a truth assignment to the variables
making the clause it belongs to true: its ports will be of types (ι, c, a), for a
having truth assignment ι. (The truth assignment making the clause false gets
no tile.) For example, the tile type corresponding to the clause c1 = (x̄+y+z̄) for
Formula 1 with assignment (x → F, y → T, z → T ) has ports of types (T, c1, x̄),
(T, c1, y), and (F, c1, z̄) indicating (x̄ → T, y → T, z̄ → F ). This is depicted in
Figure 3 (a).

For each variable x, if x appears in s clauses, we associate x with two tiles,
each with s + 1 ports. Each such tile corresponds to one of the two possible
truth values of the variable, T or F . Each of s ports is complementary to the

(T,c  ,x)1

(T, c  , y)1

(F, c  ,z)1

C1

(F, c  ,x)Θ 2 (x,x,F)
x

(x,x,F)Θ
x Θ(T,c  ,x)1

(T,c  ,x)Θ 3

(b)(a)

Fig. 3. (a) Tile for clause c1 for Formula 1 with assignment (F, T, T ). (b) Tiles corre-

sponding to variable x and x̄ (with value F for x) in 1.
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Fig. 4. A complete complex for Formula 1. Connections between complemenary ports

are treated as edges in the graph.

corresponding port in one of the corresponding clause tiles (encoding θ(truth
value, clause, variable)). The additional (s + 1)st port is connected to the tile of
the negation of the variable. Similarly, such tiles are encoded for the complements
of the variables. The tiles corresponding to x and x̄ in Formula 1 assigning value
F to x are depicted in Figure 3 (b).

Any complete complex has to have at least one tile for each clause, and one
for each variable (two if the variable and its negation both appear). A complete
complex with exactly one tile for each clause represents a truth assignment sat-
isfying the given 3-CNF formula (for details see [15]). Such a complete complex
for the formula (1) is depicted in Figure 4.

On the other hand, if there is no satisfying truth assignment, complete com-
plexes may still assemble. However the condition that for each clause and each
variable there is precisely one corresponding tile in the complex will not be sat-
isfied. Moreover, all such complexes contain larger (integer multiple) number of
tiles than the number of clauses and variables. See [16] for an explanation of
multiple covers.

Hence, a way to tell if the inputted 3-CNF formula is satisfiable is to de-
termine if there are sufficiently small complete complexes in the pot. In the
following we specify what “sufficiently small” means; we start with a system of
indexes for guiding the construction of complexes.

Definition 6. Fix a graph G = 〈V, E〉. A pot type P is properly indexed by G
if there is a complete complex C that consists of tiles of distinct types, labeled by
vertices g ∈ V , such that the map t 	→ label(t) is an isomorphism of C onto G.

Thus a complete complex of a properly indexed pot type (indexed by a graph
G) is isomorphic to G, or of the form of several copies of G, all tangled together.

Thus in the case of 3SAT the pot type is properly indexed by the graph
corresponding to the formula if and only if the formula has a solution. Moreover,
the graph that properly indexes the pot is unique up to an isomorphism. The
proof of the following proposition follows from basic topological properties of
graphs, and we omit the proof.
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Proposition 1. Let P be a pot type and assume that there is precisely one graph
G = 〈V, E〉 such that P is properly indexed by G. Suppose that G is connected.
Then any complete complex in C(P) has n|V | tiles, for some integer n.

We can design properly indexed pots so that a complete complex witnessing,
say, the solution of a problem has |V | tiles, while a spurious complete complex
has at least 2|V | tiles. For example, a 3-CNF formula generates a pot, which
provides a solution (i.e., a satisfying truth assignment) in a proper complex; if
there is no satisfying truth assignments, there is no proper complex. Thus a
formula of k clauses and m variables is satisfied by some truth assignment iff
the corresponding pot admits a complete complex of k + 2m tiles; any larger
complexes will have at least 2k + 4m tiles.

Definition 7. A pot type P is weakly satisfiable within bound b if it admits a
complete complex of at most b tiles.

4 Computing NP Problems by Flexible-Tile Assembly

This section shows how NPTIME computations can be accomplished by (flexible
tile) assembly within given bounds. First we fix the nomenclature. Consider a
finite alphabet Σ, with a symbol # �∈ Σ for “blank.” We consider problems of
recognizing a formal language L over alphabet Σ, i.e., for an alphabet Σ and a
language L ⊆ Σ∗, given input x ∈ Σ∗, is x ∈ L?

Definition 8. A Deterministic Turing Machine is a tuple (Q, Σ, δ, q0, #), such
that:

– The set Q is the set of states of the machine; q0 is the initial state and qF

is the terminal state.
– The finite set Σ is the alphabet, which does not contain the “blank” character

#.
– The transition function δ is a partial function (Q× (Σ ∪ {#})) → (Q×Σ ×

{L, 0, R}). If δ(q, σ) = (q′, σ′, ξ), and if the tapehead is reading σ ∈ Σ ∪ {#}
while the machine is in state q, it replaces σ with σ′ and moves Left if ξ = L
or Right if ξ = R (or for ξ = 0, does not move), and changes its state to
q′. Each such transition is a step denoted (q, σ) → (q′, σ′, ξ). The machine
halts in state q, reading symbol σ, if δ(q, σ) is undefined.

– The machine starts in the initial state q0, with the tapehead at the leftmost
square of the input string x ∈ Σ∗. If it halts, the input string is accepted.

The machine is a Non-Deterministic Turing Machine (NTM) if, for each state
q and character σ, δ(q, σ) is a nonempty subset of Q × Σ × {L, 0, R} such that
a transition is a step (q, σ) → (q′, σ′, ξ) if (q′, σ′, ξ) ∈ δ(q, σ).

In the case of an NTM we assume that the machine proceeds by choosing
successive actions out of the available options.

A language L ⊆ Σ∗ is PTIME computable if there exists a DTM M and a
polynomial p such that for any input x ∈ Σ∗, M halts within p(|x|) steps if
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and only if x ∈ L. Call a language L ⊆ Σ∗ NPTIME computable if there exists
an NTM M and a polynomial p such that for any input x ∈ Σ∗, M can make
choices in its computation to eventually halt in accepting state within p(|x|) steps
if and only if x ∈ L. These machines are called PTIME acceptors or NPTIME
acceptors, respectively, as they “accept” their respective languages. Incidentally,
a PTIME program or algorithm for converting one type of problem into another
is a DTM M (with associated polynomial p) such that for any input x, within
p(|x|) steps the content of the tape will be a representation of the desired output.

Definition 9. The Flexible Tile Assembly Polynomial time (or FTAP) class of
languages is the class of languages L ⊆ Σ∗ such that there is a polynomial p and
a PTIME algorithm converting any x ∈ Σ∗ into a pair (Px, b) where:

– the pot type Px is weakly satisfiable within bound b if and only if x ∈ L, and
– the bound b satisfies b ≤ p(|x|).

We use tile assembly to construct a complex representing an entire NTM
computation.

A configuration of a TM is a tuple (q, m, s), where q is the state of the
machine, m is the position of the tapehead, and s is the string currently on the
tape. Thus a computation of a Turing Machine is a sequence of configuration
C0, C1, . . ., where C0 is an initial configuration, and for each i, Ci+1 is obtained
from Ci by a transition step. The computation terminates if and only if machine
halts.

Here is the first half of the main theorem.

Theorem 1. If a language L ⊆ Σ∗ is NPTIME computable, then it is in FTAP.

Sketch of proof. Fix a polynomial p, and let L be accepted by the NTM M ,
which accepts strings of length n within p(n) steps – or not at all. We construct
a pot type such that each prototile in the pot type represents one tape square
at a position m at a time t. For each input string x, if M accepts x it must do
so within p(|x|) steps. Set tx = p(|x|). Then the number of squares on the tape
of the machine that is visited by the head is bounded by n = 2tx + 1. Denote
Ntime = {0, 1, . . . , tx} and Ntape = {−tx,−tx + 1, . . . , 0, 1, . . . , tx}.

The set of prototiles is a subset of (Σ∪{#})×Ntape×Ntime×X3×(Q∪{0})2
where X = {−1, 0, 1}. Note that the number of prototiles is bounded by a
polynomial in |x|. Intuitively, at time t and position m, there is a symbol σ in the
square. The prototile corresponding to this square is (σ, m, t, (ξ−, ξ0, ξ+), (q, q′)).
We define ξ0 = 1 if the tapehead is at this square at time t, and ξ0 = 0 otherwise.
If ξ0 = 1, we define ξ− and ξ+ to represent the previous and next moves of the
tapehead, otherwise they remain 0. The head had moved from the left (ξ− = 1)
or the right (ξ− = −1), and the head will move either to the left (ξ+ = −1) or
the right (ξ+ = 1). And if the machine entered square m while in a state q at
time t, then it will change to a state q′ at time t +1. Finally, if the computation
halted at time t, q′ = q and ξ+ = 0. If the tapehead is not positioned at the
square m at time t, then (ξ−, ξ0, ξ+) = (0, 0, 0) and (q, q′) = (0, 0).
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Given a prototile α = (σ, m, t, (ξ−, ξ0, ξ+), (q, q′)) and a Turing Machine M
having transition function δ, we say that α is consistent with M if:

– ξ0 = 0, implies ξ− = ξ+ = 0 and q = q′ = 0,
– ξ0 = 1 if δ(q, σ) = (q′, σ′, ξ) for ξ ∈ {R, 0, L} and some σ′ ∈ Σ.

Our pot type P = PM consists of the maximal set of prototiles consistent
with M such that their second and third entries satisfy m ∈ Ntape and t ∈
Ntime.

There are eight codes for ports available, of which any particular tile may
have degree from two to six. The degree of a tile α = (σ, m, t, (ξ−, ξ0, ξ+), (q, q′))
is determined by

d(α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 if m ∈ {0, n} and t ∈ {0, tx} if a corner tile;
3 if m ∈ {0, n} xor t ∈ {0, tx} if a side tile;
4 if ξ0 = 0 if a central tile with no tapehead;
5 if q′ = qF if the computation halts;
6 if ξ0 = 1 and q′ �= qF if the tapehead is present, not halting.

We note that there are other kinds of tiles that encode specific boundary
conditions, such as the head reaching a corner during the computation, but we
do not include these details. Recall that a tile represents a particular mth square
of the Turing machine at a particular time t. The idea is that successive rows
of tiles represent successive configurations of the Turing Machine, starting with
the initial (northernmost) row, and heading south. Several typical tiles in the
computation assembly are depicted in Figure 5. Comparing to the simulation of a
TM by rigid tiles (see for ex. [36,34]) one has to be careful to “force” the assembly
into a rectangular grid using port codes. Each code indicates the current position
of a given tile at the computation process of the Turing Machine (i.e. position
m and time step t) as well as when necessary additional information such as
the symbol, state and movement of the machine at a particular instance. This
is depicted in Figure 5. The complementary ports are indicated by θ. Note that
when the complex assembles, the “top” row represents the initial configuration
with tiles encoding x on squares 0, . . . , |x| − 1. The rest of the tiles in the “top”
row carry the blank character #, the head is on square 0 in state q0.

The tiles assemble into a rectangular grid, with each horizontal row of tiles
giving a configuration of the machine, with successive rows southward represent-
ing successive configurations, and each vertical column representing a particular
square. The diagonal connections represent motions of the head. The tiles are
designed so that there are no north, south, east, or west ports off the end of the
complex, so the complex will be complete if and only if there are no diagonal
ports sticking out the bottom, i.e., if and only if the computation has halted
within tx steps.

So suppose L is NPTIME computable, i.e., there is a polynomial p such that
for any x, x ∈ L if and only if the NTM accepting L halts in a terminal state
within p(|x|) steps. If x ∈ L, tx = p(|x|) gives us a complete complex of at most
b = (tx +1)(2tx +1) = 2p(|x|)2 +3p(|x|)+1 tiles, a polynomial bound. If x �∈ L,
there is no complete complex at all. �
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5 Flexible-Tile Assembly Is Within NPTIME

We now go the other direction, proving that all weakly satisfiable problems
within bounds are NPTIME-computable. We will use the Integer Programming
Problem, called MP1 in [12], that was proved to be NP-computable by Borosh
& Treybig [4] and NP-hard by Karp [20].

Definition 10. This is the Integer Programming Problem (MP1).

– INPUT:
I1. A set finite X ⊆ Z

m × Z of (m + 1)-tuples (x, b) of integers.
I2. An m-tuple c ∈ Z

m.
I3. An integer B.

– QUESTION: Does there exist an m-tuple y ∈ Z
m such that the following is

true?
Q1. For each (x, b) ∈ X , x · y ≤ b, where “·” is vector dot or inner product.
Q2. And c · y ≥ B.

Theorem 2. All FTAP computable problems are NPTIME-computable.

Idea of Proof. We prove that there is a PTIME reduction of pot types to
MP1 problems that are solvable if and only if the original pot type was weakly
satisfiable within bounds.

Given a pot type P over (H, θ), we will reduce the problem to whether there
is a set of nonnegative integers (tile multiplicities) {yt ∈ N: t ∈ P}, not all zero,
giving us the number of each kind of tile in a complete complex. Considering
each tile type as a vector with non-negative integer entries, we treat the pot P
as a set of vectors of integers.

We need an input as in Definition 10 that is solvable iff there exists a system
of integers yt such that:

(i) Each yt has yt ≥ 0, i.e., a number of tiles of a particular type.
(ii) For each h,

∑
t∈P yt · t(h) =

∑
t∈P yt · t(ĥ), i.e., P can generate a complete

complex.
(iii)

∑
t∈P yt > 0, i.e., the complete complex that is generated is non-trivial,

contains at least one tile.
(iv)

∑
t∈P yt ≤ b, i.e., the complete complex that is generated contains at most

b tiles.

We rearrange the above inequalities to fit those that appear as input in
Definition 10. �

6 Final Remarks

This paper suggests at least two collections of problems that are yet to be
considered.
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First, while this model provides a method for computing NP problems in
theory, it is not entirely clear how well it will work in practice. So far, labora-
tory experiments have determined that flexible tile computations would perform
correctly for a 3-DNF propositional calculus formula of perhaps five clauses; it
is not clear how well it would determine if a 5,000-clause formula is satisfiable
(and a problem of this size is, in general, beyond our current computational
capacities). The actual behavior of this model should be investigated further.

Second, this model suggests a set of logics describing computational com-
plexity classes. The main theorem of this paper is a “representation theorem”
similar to the main theorem of [9] (see [14] or [8], which presented a represen-
tation of NPTIME somewhat similar the one presented here. The combinatorial
properties of this model, and related models, may provide additional tools for
investigating some of the more obstinate classes in computational complexity
theory.
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