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Abstract. We study the computational efficiency of recognizer P sys-
tems with active membranes without polarizations and without disso-
lution. The main result of the paper is the following: the polynomial
computational complexity class associated with the class of recognizer P
systems is equal to the standard complexity class P.

1 Introduction

The theory of computation deals with the mechanical solvability of problems, that
is, searching solutions that can be described by a finite sequence of elementary
processes or instructions. The first goal of this theory is general problem solving;
that is, develop principles and methods that are able to solve any problem from
a certain class of questions.

A computational model tries to capture those aspects of mechanical solutions
of problems that are relevant to these solutions, including their inherent limita-
tions. In some sense, we can think that computational models design machines
according to certain necessity.

If we have a mechanically solvable problem and we have a specific algorithm
solving it that can be implemented in a real machine, then it is very important
to know how much computational resources (time or memory) are required for
a given instance, in order to recognize the limitations of the real device.

Thus, one of the main goals of the theory of computational complexity is
the study of the efficiency of algorithms and their data structures through the
analysis of the resources required for solving problems (that is, according to
their intrinsic computational difficulty). This theory provides a classification of
the abstract problems that allows us to detect their inherent complexity from the
computational solutions point of view.

Many interesting problems of the real world are presumably intractable and
hence it is not possible to execute algorithmic solutions in an electronic computer
when we deal with instances of those problems whose size is large. The theoretical
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limitations of the Turing machines in terms of computational power are also
practical limitations to the digital computers.

Natural Computing is a new computing area inspired by nature, using con-
cepts, principles and mechanisms underlying natural systems. Evolutionary Com-
putation uses computational models of evolutionary processes as key elements in
the design and implementation of computer–based problem solving systems [18].
Neural Networks are inspired in the structures of the brain and nervous system.
DNA Computing is based on the computational potential of DNA molecules
and on the capacity to handle them. Membrane Computing is inspired by the
structure and functioning of living cells, and it is a cross-disciplinary field with
contributions by computer scientists, biologists, formal linguists and complexity
theoreticians, enriching each others with results, open problems and promising
new research lines.

This emergent branch of Natural Computing was introduced by Gh. Păun in
[8]. Since then it has received important attention from the scientific community.
In fact, Membrane Computing has been selected by the Institute for Scientific
Information, USA, as a fast Emerging Research Front in Computer Science, and
[6] was mentioned in [19] as a highly cited paper in October 2003.

This new non-deterministic model of computation starts from the assumption
that the processes taking place in the compartmental structure of a living cell can
be interpreted as computations. The devices of this model are called P systems.

Roughly speaking, a P system consists of a cell-like membrane structure, in
the compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner1.

Inspired in living cells, P systems abstract the way of obtaining new mem-
branes. These processes are basically two: mitosis (membrane division) and au-
topoiesis (membrane creation). Both ways of generating new membranes have
given rise to different variants of P systems: P systems with active membranes,
where the new workspace is generated by membrane division, and P systems
with membrane creation, where the new membranes are created from objects.

Both models are universal from a computational point of view, but tech-
nically, they are pretty different. In fact, nowadays there does not exist any
theoretical result which proves that these models can simulate each other in
polynomial time.

P systems with active membranes have been successfully used to design so-
lutions to well-known NP-complete problems, as SAT [16], Subset Sum [13],
Knapsack [14], Bin Packing [15] and Partition [3], but as Gh. Păun pointed in
[10] “membrane division was much more carefully investigated than membrane
creation as a way to obtain tractable solutions to hard problems”. Recently, the
first results related to the power and design of algorithms to solve NP problems
in these model have arisen (see [4,5]).

P systems with active membranes were introduced in [7] with the membranes
having polarizations, one of the “electrical charges” 0,−, +, and several times
the problem was formulated whether or not these polarizations are necessary in

1 A layman-oriented introduction can be found in [9] and further bibliography at [20].



P Systems with Active Membranes 107

order to obtain polynomial solutions to NP–complete problems. The last current
result is that from [1], where one proves that two polarizations suffice.

The present paper is both a contribution to this problem, and a contribution
to another interesting problem in membrane computing, namely, of character-
izing classic complexity classes, such as P and NP, by means of membrane
computing complexity classes.

Specifically, we prove that P is equal to the family of problems which can
be solved in a polynomial time by P systems with membrane division, without
polarizations and without dissolution. At this moment, we do not know whether
this last condition can be avoided, but either result would be of a great interest:
if our result would remain true also when using membrane dissolution, then we
would have the possitive answer to the problem of removing polarization; the
other possibility would indicate a surprising role of the –apparently “innocent”–
operation of membrane dissolution, as it will make the difference between effi-
ciency and non–efficiency for P systems with membrane division and without
polarization.

2 Preliminaries

2.1 The Reachability Problem

The Reachability Problem is the following: given a (directed or undirected) graph,
G, and two nodes a, b, determine whether or not the node b is reachable from a,
that is, whether or not there exists a path in the graph from a to b.

This problem belongs to the complexity class P. Indeed, it is very easy to
design an algorithm running in polynomial time solving it. For example, given
a (directed or undirected) graph, G, and two nodes a, b, we consider a depth–
first–search with source a, and we check if b is in the tree of the computation
forest whose root is a. The total running time of this algorithm is O(|V |+ |E|),
that is, in the worst case is quadratic in the number of nodes. Morover, this
algorithm needs to store a linear number of items (it can be proved that there
exists another polynomial time algorithm which uses O(log2(|V |)) space).

2.2 Recognizer P Systems

In the structure and functioning of a cell, biological membranes play an essential
role. The cell is separated from its environment by means of a skin membrane,
and it is internally compartmentalized by means of internal membranes.

The main syntatic ingredients of a cell–like membrane system (P system) are
the membrane structure, the multisets, and the evolution rules.

– A membrane structure consists of several membranes arranged hierarchically
inside a main membrane (the skin), and delimiting regions (the space in–
between a membrane and the immediately inner membranes, if any). Each
membrane identifies a region inside the system. A membrane structure can
be considered as a rooted tree.
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– Regions defined by a membrane structure contain objects corresponding to
chemical substances present in the compartments of a cell. The objects can
be described by symbols or by strings of symbols, in such a way that multiset
of objects are placed in the regions of the membrane structure.

– The objects can evolve according to given evolution rules, associated with
the regions (hence, with the membranes).

The semantics of the cell–like membrane systems is defined through a non–
deterministic and synchronous model (a global clock is assumed) as follows:

– A configuration of a cell–like membrane system consists of a membrane struc-
ture and a family of multisets of objects associated with each region of the
structure. At the beginning, there is a configuration called the initial config-
uration of the system.

– In each time unit we can transform a given configuration in another con-
figuration by applying the evolution rules to the objects placed inside the
regions of the configurations, in a non–deterministic, and maximally parallel
manner (the rules are chosen in a non–deterministic way, and in each region
all objects that can evolve must do it). In this way, we get transitions from
one configuration of the system to the next one.

– A computation of the system is a (finite or infinite) sequence of configurations
such that each configuration –except the initial one– is obtained from the
previous one by a transition.

– A computation which reaches a configuration where no more rules can be
applied to the existing objects, is called a halting computation.

– The result of a halting computation is usually defined through the multiset
associated with a specific output membrane (or the environment) in the final
configuration.

That is, a computation in a P system is structured as follows: it starts with the
initial configuration of the system, then the computation proceeds, and when it
stops the result is to be found in the output membrane.

In this paper we use membrane computing as a framework to attack the
resolution of decision problems. In order to solve this kind of problems and having
in mind the relationship between the solvability of a problem and the recognition
of the language associated with it, we consider P systems as recognizer language
devices.

Definition 1. A P system with input is a tuple (Π, Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisetsM1, . . . ,Mp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ and the initial multisets are over Γ − Σ; (c) iΠ is the
label of a distinguished (input) membrane.

The computations of a P system with input in the form of a multiset over Σ
are defined in a natural way, but the initial configuration of (Π, Σ, iΠ) must be
the initial configuration of the system Π to which we add the input multiset.
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Definition 2. Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working
alphabet of Π, µ the membrane structure, and M1, . . . ,Mp the initial multisets
of Π. Let m be a multiset over Σ. The initial configuration of (Π, Σ, iΠ) with
input m is (µ,M1, . . . ,MiΠ ∪m, . . . ,Mp).

Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working alphabet of
Π , µ the membrane structure andM1, . . . ,Mp the initial multisets of Π . Let m
be a multiset over Σ. Then we denote M∗

j = {(a, j) : a ∈ Mj}, for 1 ≤ j ≤ p,
and m∗ = {(a, iΠ) : a ∈ m}.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a
language over a finite alphabet (whose elements are called instances) and θX is
a predicate (a total boolean function) over IX .

Definition 3. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N

be a family of recognizer P systems with input. A polynomial encoding from X
to Π is a pair (cod, s) of polynomial time computable functions over IX such
that for each instance w ∈ IX , s(w) is a natural number and cod(w) is an input
multiset for the system Π(s(w)).

It is easy to prove that polynomial encodings are stable under polynomial
time reductions.

Proposition 1. Let X1, X2 be decision problems. Let r be a polynomial time
reduction from X1 to X2. Let (cod, s) be a polynomial encoding from X2 to Π.
Then (cod ◦ r, s ◦ r) is a polynomial encoding from X1 to Π.

Definition 4. A recognizer P system is a P system with input and external
output such that:

1. The working alphabet contains two distinguished elements yes and no.
2. All computations halt.
3. If C is a computation of the system, then either object yes or object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

In recognizer P systems, we say that a computation C is an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively, no)
appears in the environment associated with the corresponding halting configura-
tion of C. Hence, these devices send to the environment an accepting or rejecting
answer, in the end of their computations.

2.3 A Polynomial Complexity Class in Recognizer P Systems

Definition 5. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer P systems with input. Let (cod, s) be a polynomial encoding
from X to Π.
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– We say that the family Π is sound with regard to (X, cod, s) if the following
is true: for each instance of the problem w ∈ IX , if there exists an accepting
computation of Π(s(w)) with input cod(w), then θX(w) = 1.

– We say that the family Π is complete with regard to (X, cod, s) if the following
is true: for each instance of the problem u ∈ IX , if θX(u) = 1 then every
computation of Π(s(u)) with input cod(u) is an accepting computation.

Next, we propose to solve a decision problem through a family of P systems
constructed in polynomial time by a Turing machine, and verifying that each
element of the family processes, in a specified sense, all the instances of equivalent
size. We say that these solutions are uniform solutions.

Definition 6. Let R be a class of recognizer P systems with input membrane.
A decision problem X = (IX , θX) is solvable in polynomial time by a family
Π = (Π(n))n∈N, of P systems from R, and we denote this by X ∈ PMCR, if
the following is true:

– The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(w) from the instance w ∈ IX .

– There exists a polynomial encoding (cod, s) from IX to Π such that
• The family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps.
• The family Π is sound and complete with regard to (X, cod, s).

It is easy to see that the class PMCR is closed under polynomial–time
reduction and complement (see [11] for details).

3 Recognizer P Systems with Active Membranes
Without Polarizations and Without Dissolution

A particularly interesting class of cell–like membrane systems are the systems
with active membranes, where the membrane division can be used in order to
solve computationally hard problems, e.g., NP-complete problems, in polyno-
mial or even linear time, by a space–time trade-off.

In this paper we work with a variant of P systems with active membranes
that does not use electrical charges or dissolution rules.

Definition 7. A recognizer P system with active membranes without polariza-
tions and without dissolution is a recognizer P system (Π, Γ, iΠ), where the rules
of the associated P system are of the following forms:

(a) [ a → u ]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗: This is an object evolution rule,
associated with a membrane labelled with h: an object a ∈ Γ belonging to
that membrane evolves to a string u ∈ Γ ∗.
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(b) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ : An object from the region immediately
outside a membrane labelled with h is introduced in this membrane, possibly
transformed into another object.

(c) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ : An object is sent out from membrane
labelled with h to the region immediately outside, possibly transformed into
another object.

(d) [ a ]h → [ b ]h [ c ]h for h ∈ H, a, b, c ∈ Γ : An elementary membrane can be
divided into two membranes with the same label, possibly transforming some
objects.

These rules are applied according to the following principles:

– All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non–
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

– If at the same time a membrane labelled by h is divided by a rule of type
(d) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are
used, and then the division is produced. Of course, this process takes only
one step.

– The rules associated with membranes labelled by h are used for all copies
of this membrane. At one step, a membrane can be the subject of only one
rule of types (b), (c), (d).

In this framework we work without cooperation, without priorities, with cell
division rules for elementary membranes, and without changing the labels of
membranes.

We denote by AM0
−d the class of all recognizer P systems with active mem-

branes without polarizations and without dissolution.

4 Dependency Graph of a Recognizer P System with
Active Membranes

Let Π be a recognizer P systems with active membranes without polarizations
and without dissolution. Let R be the set of rules associated with Π .

Each rule can be considered, in a certain sense, as a dependency between the
object triggering the rule and the object or objects produced by its application.

We can consider a general format of all kinds of rules of such systems as
follows: (a, h)→ (a1, h

′)(a2, h
′) . . . (as, h

′), according to the following criterion:

– The rules of type (a) correspond to the case h = h′ and s ≥ 1.
– The rules of type (b) correspond to the case h = f(h′) and s = 1.
– The rules of type (c) correspond to the case h′ = f(h) and s = 1.
– The rules of type (d) correspond to the case h = h′ and s = 2.
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If h is the label of a membrane, then f(h) (respectively, ch(h)) denotes the
label of the father (resp. a child) of the membrane labelled by h. We adopt the
convention that the father of the skin membrane is the environment.

For example, let us consider a general rule (a, h)→ (a1, h
′)(a2, h

′) . . . (as, h
′).

Then we can interpret that from the object a in membrane labelled by h we can
reach the objects a1, . . . , as in membrane labelled by h′.

Next, we formalize these ideas in the following definition.

Definition 8. Let Π be a recognizer P systems with active membranes without
polarizations and without dissolution. Let R be the set of rules associated with Π.
The dependency graph associated with Π is the directed graph GΠ = (VΠ , EΠ)
defined as follows:

VΠ = V LΠ ∪ V RΠ ,

V LΠ = {(a, h) ∈ Γ ×H : ∃u ∈ Γ ∗ ([a→ u]h ∈ R)∨

∃b ∈ Γ ([a]h → [ ]hb ∈ R) ∨

∃b ∈ Γ ∃h′ = ch(h) (a[ ]h′ → [b]h′ ∈ R) ∨

∃b, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

V RΠ = {(b, h) ∈ Γ ×H : ∃a ∈ Γ ∃u ∈ Γ ∗ ([a→ u]h ∈ R ∧ b ∈ alph(u)) ∨

∃a ∈ Γ ∃h′ = ch(h) ([a]h′ → [ ]h′b ∈ R) ∨

∃a ∈ Γ (a[ ]h → [b]h ∈ R) ∨

∃a, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

EΠ = {((a, h), (b, h′)) : ∃u ∈ Γ ∗ ([a→ u]h ∈ R ∧ b ∈ alph(u) ∧ h = h′) ∨

([a]h → [ ]hb ∈ R ∧ h′ = f(h)) ∨

(a[ ]h′ → [b]h′ ∈ R ∧ h = f(h′)) ∨

∃c ∈ Γ ([a]h → [b]h[c]h ∈ R ∧ h = h′)}.

Proposition 2. Let Π be a recognizer P systems with active membranes without
polarizations and without dissolution. There exists a Turing machine that con-
structs the dependency graph, GΠ , associated with Π, in polynomial time (that
is, in a time bounded by a polynomial function depending on the total number of
rules and the maximum length of the rules).

Proof. A deterministic algorithm that, given a P system Π with the set R of
rules, constructs the corresponding dependency graph, is the following:
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Input: (Π, R)
VΠ ← ∅; EΠ ← ∅
for each rule r ∈ R of Π do

if r = [a→ u]h ∧ alph(u) = {a1, . . . , as} then

VΠ ← VΠ ∪
s⋃

j=1

{(a, h), (aj , h)}; EΠ ← EΠ ∪
s⋃

j=1

{((a, h), (aj , h))}

if r = [a]h → [ ]hb then
VΠ ← VΠ ∪ {(a, h), (b, f(h))};
EΠ ← EΠ ∪ {((a, h), (b, f(h)))}

if r = a[ ]h → [b]h then

VΠ ← VΠ ∪ {(a, f(h)), (b, h)};
EΠ ← EΠ ∪ {((a, f(h)), (b, h))}

if r = [a]h → [b]h[c]h then

VΠ ← VΠ ∪ {(a, h)), (b, h), (c, h)};
EΠ ← EΠ ∪ {((a, h)), (b, h)), ((a, h), (c, h))}

The running time of this algorithm is bounded by O(|R| ·q), where q is the value
max{length(r) : r ∈ R}. �

Proposition 3. Let Π = (Γ, Σ, H,M1, . . . ,Mp, R1, . . . , Rp, iΠ) be a recognizer
P systems with active membranes without polarizations and without dissolution.
Let ∆Π be defined as follows:

∆Π = {(a, h) ∈ Γ ×H : there exists a path (within the dependency graph)
from (a, h) to (yes, environment)}

Then, there exists a Turing machine that constructs the set ∆Π in polynomial
time (that is, through a polynomial function depending on the total number of
rules and the maximum length of the rules).

Proof. We can construct the set ∆Π from Π as follows:

– We construct the dependency graph GΠ associated with Π .
– Then we consider the following algorithm:

Input: GΠ = (VΠ , EΠ)
∆Π ← ∅
for each (a, h) ∈ VΠ do

if reachability (GΠ , (a, h), (yes, environment)) = yes then

∆Π ← ∆Π ∪ {(a, h)}

The running time of this algorithm is of the order O(|VΠ | · |VΠ |2), hence it is of
the order O(|Γ |3 · |H |3). �
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Proposition 4. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N

be a family of recognizer P systems with input membrane solving X, according
to Definition 6. Let (cod, s) be the polynomial encoding associated with that so-
lution. Then, for each instance w of the problem X the following assertions are
equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ∆Π(s(w)) ∩ ((cod(w))∗ ∪
p⋃

j=1

M∗
j ) = ∅, whereM1, . . . ,Mp are the initial mul-

tisets of the system Π(s(w)).

Proof. Let w ∈ IX . Then w ∈ LX if and only if there exists an accepting com-
putation of the system Π(s(w)) with input multiset cod(w). But this condition
is equivalent to the following: in the initial configuration of Π(s(w)) with input
multiset cod(w) there exists an object a ∈ Γ in a membrane labelled by h such
that in the dependency graph the node (yes, environment) is reachable from
(a, h).

Hence, θX(w) = 1 if and only if ∆Π(s(w)) ∩M∗
1 = ∅, or . . . , or ∆Π(s(w)) ∩

M∗
p = ∅, or ∆Π(s(w)) ∩ (cod(w))∗ = ∅. �

Theorem 1. PMCAM0
−d

= P.

Proof. We have P ⊆ PMCAM0
−d

because the class PMCAM0
−d

is closed under
polynomial time reduction. Next, we show that PMCAM0

−d
⊆ P. For that,

let X ∈ PMCAM0
−d

. Let Π = (Π(n))n∈N a family of recognizer P systems
with input membrane solving X , according to Definition 6. Let (cod, s) be the
polynomial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instance w of X

- Construct the system Π(s(w)) with input multiset cod(w).
- Construct the dependency graph GΠ(s(w)) associated with Π(s(w)).

- Construct the set ∆Π(s(w)) according to Proposition 3

answer ← No; j ← 1

while j ≤ p ∧ answer = No do

if ∆ ∩M∗
j �= ∅ then

answer← yes

j ← j + 1

endwhile

if ∆ ∩ (cod(w))∗ �= ∅ then

answer← yes

On one hand, the answer of this algorithm is yes if and only if there exists
a pair (a, h) belonging to ∆Π(s(w)) such that in the membrane labelled by h in
the initial configuration (with input the multiset cod(w)) appears the symbol a.
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On the other hand, a pair (a, h) belongs to ∆Π(s(w)) if and only if there exists
a path from (a, h) to (yes, environment); that this, if and only if we can obtain
an accepting computation of Π(s(w)) with input cod(w). Hence, the algorithm
above described solves the problem X .

The cost to determine whether or not ∆ ∩M∗
j = ∅ (or ∆∩ (cod(w))∗ = ∅) is

of the order O(|Γ |2 · |H |2).
Hence, the running in time of this algorithm can be bounded as f(|w|) +

O(|R| ·q)+O(p · |Γ |2 · |H |2), where f is the (total) cost of a polynomial encoding
from X to Π, R the set of rules of Π , and q = max {length(r) : r ∈ R}. But
from Definition 6 we have that all involved parameters are polynomials in |w|.
That is, the algorithm is polynomial in the size |w| of the input. �

5 Conclusions

Dependency graphs associated with a variant of recognizer P systems with active
membranes are introduced. This concept allows us to characterize the accepting
computations of these systems through the reachability of a distinguished node
of the graph from other nodes associated with the initial configuration.

In this paper, we have showed that in the framework of P systems with active
membranes if we remove electrical charges and dissolution, then it is possible to
solve in polynomial time only problems which are tractable in the standard sense.

But what happens if in this framework we consider dissolution rules? Will be
possible to solve NP–complete problems? If the answer is yes, then this result
will provide a negative answer to the P–conjecture (P = PMCAM0 , where
AM0 is the class of all recognizer P systems with active membranes, without
polarization, using dissolution rules and cell division rules only for elementary
membranes).
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1. A. Alhazov, R. Freund, Gh. Păun: P systems with active membranes and two polar-
izations. Proceedings of the Second Brainstorming Week on Membrane Computing
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lution for QSAT with Membrane Creation. Submitted, 2005.
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