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Preface

The Fourth International Conference on Unconventional Computation,
UC 2005, organized under the auspices of EATCS by the Centre for Discrete
Mathematics and Theoretical Computer Science and the Department of Com-
puter Science and Artificial Intelligence of the University of Seville, was held in
Seville, October 3–7, 2005.

Seville, one of the most beautiful cities in Spain, is at its best in October.
An explosion of colour and contrast: flamenco, bullfighting, and a lively atmo-
sphere in the streets due to the open and friendly nature of its people. The river
Guadalquivir, the Cathedral and the Golden Tower are all places full of magic
where the visitor can feel the spirit of a city which is eternally romantic.

The series of International Conferences Unconventional Computation
(UC), https://www.cs.auckland.ac.nz/CDMTCS/conferences/uc/ is devoted
to all aspects of unconventional computation, theory as well as experiments and
applications. Typical, but not exclusive, topics are: natural computing including
quantum, cellular, molecular, neural and evolutionary computing; chaos and dy-
namical systems based computing; and various proposals for computations that
go beyond the Turing model.

The first venue of the Unconventional Computation Conference (formerly
called Unconventional Models of Computation) was Auckland, New Zealand in
1998; subsequent sites of the conference were Brussels, Belgium in 2000 and
Kobe, Japan in 2002.

The titles of the proceedings volumes from past UC Conferences are as
follows:

1. C.S. Calude, J. Casti, M.J. Dinneen (eds.). Unconventional Models of Com-
putation, Springer-Verlag, Singapore, 1998, viii + 426 pp. ISBN: 981-3083-
69-7.

2. I. Antoniou, C.S. Calude, M.J. Dinneen (eds.). Unconventional Models of
Computation, UMC’2K, Springer-Verlag, London, December 2000, xi + 301
pp. ISBN 1-85233-417-0.

3. C.S. Calude, M.J. Dinneen, F. Peper (eds.). Third International Conference,
UMC 2002, Lecture Notes in Computer Science, Vol. 2509, Springer-Verlag,
Heidelberg, 2002, vii + 331 pp. ISBN: 3-540-44311-8.

The Steering Committee of the series of International Conferences Uncon-
ventional Computation includes T. Bäck (Leiden, The Netherlands),
C.S. Calude (Auckland, NZ, co-chair), L.K. Grover (Murray Hill, NJ, USA),
J. van Leeuwen (Utrecht, The Netherlands), S. Lloyd (Cambridge, MA, USA),
Gh. Păun (Seville, Spain and Bucharest, Romania), T. Toffoli (Boston, MA,



VI Preface

USA), C. Torras (Barcelona, Spain), G. Rozenberg (Leiden, The Netherlands
and Boulder, Colorado, USA, co-chair), A. Salomaa (Turku, Finland).

The five invited speakers of the conference were:

T. Bäck (Leiden, The Netherlands): Using genetic algorithms to evolve behaviour
in cellular automata
L. Grover (Murray Hill, USA): Quantum searching amidst uncertainty
S. Istrail (Providence, USA): Logic functions of the genomic cis-regulatory code
N. Seeman (New York, USA): Structural DNA nanotechnology: Molecular con-
structions and computations
C. Torras (Barcelona, Spain): Natural inspiration for artificial adaptivity: Some
neurocomputing experiences in robotics

UC 2005 included the following three tutorials:

S. Istrail (Providence, USA): Logic of networks
I. Petre (Turku, Finland) and G. Rozenberg (Leiden, The Netherland): Comput-
ing with living cells
Gh. Păun (Seville, Spain): Elementary aspects of membrane computing

The Programme Committee thanks the much appreciated work done by the
paper reviewers for the conference. These experts were:

S. Basu
H.-G. Beyer
M. Burgin
C. S. Calude
G. Csardi
M. J. Dinneen
P. Érdi
A. Ekert
M. P. Frank

D. Karig
T. D. Kieu
S. Kobayashi
O. H. Ibarra
V. V. Ivanov
N. Jonoska
N. Krasnogor
J. van Leeuwen
N. Lucas

M. Margenstern
G. Mauri
K. Morita
M. Mozer
B. Ömer
Gh. Păun
M. J. Pérez-Jiménez
I. Petre
U. Speidel

M. A. Stay
K. Svozil
H. Umeo
H. T. Wareham
R. Weiss
T. Yokomori

TheProgrammeCommittee consisting ofL.Accardi (Rome, Italy),H.-G.Beyer
(Dornbirn, Austria), M. Burgin (Los Angeles, USA) C. S. Calude (chair;
Auckland, NZ), M. J. Dinneen (secretary; Auckland, NZ), P. Érdi (Kalamazoo,
USA), A. Ekert (Cambridge, UK), M. P. Frank (Tallahassee, USA), V. V. Ivanov
(Dubna, Russia), N. Jonoska (Tampa, USA), N. Krasnogor (Nottingham, UK),
J. van Leeuwen (Utrecht, The Netherlands), K. Morita (Hiroshima, Japan),
M. Mozer (Boulder, USA), Gh. Păun (Seville, Spain), I. Petre, (Turku, Finland),
H. Umeo (Osaka, Japan), R. Weiss (Princeton, USA), T. Yokomori (Tokyo,
Japan), selected 18 papers (out of 29) to be presented as regular contributions.

We extend our thanks to all members of the Conference Committee, particu-
larly to M. Cavaliere, C. Graciani Dı́az, M. A. Gutiérrez Naranjo,
A. Nepomuceno Fernández, Gh. Păun, M. J. Pérez Jiménez (chair), F. J. Romero
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Campero, A. Riscos Núñez, A. Romero Jiménez, F. Sancho Caparrini, D. Sburlan,
and U. Speidel (registration), for their invaluable organizational work.

We thank the University of Seville and the Centre for Discrete Mathemat-
ics of the University of Auckland for their technical support. The hospitality
of our hosts, the Department of Computer Science and Artificial Intelligence
of the University of Seville, is much appreciated. The conference was partially
supported by the project TIN2004-23021-E of the Ministerio de Educación y
Ciencia of Spain, by the II Plan Propio of the University of Seville, and by the
Acción Coordinada IMUS 2003 of the Junta de Andalućıa: we extend to all our
gratitude.

It is a great pleasure to acknowledge the fine co-operation with the Lecture
Notes in Computer Science team of Springer for producing this volume in time
for the conference.

July 2005 C. S. Calude
M. J. Dinneen

Gh. Păun
M. J. Pérez Jiménez

G. Rozenberg
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Thomas Bäck, Ron Breukelaar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Quantum Searching Amidst Uncertainty
Lov K. Grover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Logic Functions of the Genomic Cis-regulatory Code
Eric Davidson, Sorin Istrail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Structural DNA Nanotechnology: Molecular Construction and
Computation

Ruojie Sha, Xiaoping Zhang, Shiping Liao, Pamela E. Constantinou,
Baoquan Ding, Tong Wang, Alejandra V. Garibotti, Hong Zhong,
Lisa B. Israel, Xing Wang, Gang Wu, Banani Chakraborty,
Junghuei Chen, Yuwen Zhang, Hao Yan, Zhiyong Shen,
Wanqiu Shen, Phiset Sa-Ardyen, Jens Kopatsch, Jiwen Zheng,
Philip S. Lukeman, William B. Sherman, Chengde Mao,
Natasha Jonoska, Nadrian C. Seeman . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Natural Inspiration for Artificial Adaptivity: Some Neurocomputing
Experiences in Robotics

Carme Torras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Regular Papers

On Self-assembly in Population P Systems
Francesco Bernardini, Marian Gheorghe, Natalio Krasnogor,
Jean-Louis Giavitto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A Web-Based P Systems Simulator and Its Parallelization
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Using Genetic Algorithms to Evolve Behavior

in Cellular Automata

Thomas Bäck1,2 and Ron Breukelaar1,�

1 Universiteit Leiden, LIACS, P.O. Box 9512, 2300 RA Leiden, The Netherlands
{baeck, rbreukel}@liacs.nl

2 NuTech Solutions GmbH, Martin Schmeißer Weg 15, 44227 Dortmund, Germany
{baeck}@nutechsolutions.de

Abstract. It is an unconventional computation approach to evolve so-
lutions instead of calculating them. Although using evolutionary compu-
tation in computer science dates back to the 1960s, using an evolutionary
approach to program other algorithms is not that well known. In this pa-
per a genetic algorithm is used to evolve behavior in cellular automata.
It shows how this approach works for different topologies and neigh-
borhood shapes. Some different one dimensional neighborhood shapes
are investigated with the genetic algorithm and yield surprisingly good
results.

1 Introduction

Evolutionary Algorithms is the name for the algorithms in the field of Evo-
lutionary Computation which is a subfield of Natural Computing and already
exists more than 40 years. It was born from the idea to use principles of nat-
ural evolution as a paradigm for solving search and optimization problem in
high-dimensional combinatorial or continuous search spaces. The most widely
known instances are genetic algorithms [9,10,11], genetic programming [12,13],
evolution strategies [16,17,18,19], and evolutionary programming [7,6]. A de-
tailed introduction to all these algorithms can be found e.g. in the Handbook of
Evolutionary Computation [1].

Today the Evolutionary Computation field is very active. It involves funda-
mental research as well as a variety of applications in areas ranging from data
analysis and machine learning to business processes, logistics and scheduling,
technical engineering, and others. Across all these fields, evolutionary algorithms
have convinced practitioners by the results obtained on hard problems that they
are very powerful algorithms for such applications. The general working princi-
ple of all instances of evolutionary algorithms is based on a program loop that
involves simplified implementations of the operators mutation, recombination,
selection, and fitness evaluation on a set of candidate solutions (often called a

� Part of the research was funded by the Foundation for Fundamental Research on
Matter (FOM), Utrecht, The Netherlands, project: “An evolutionary approach to
many-parameter physics”.

C.S. Calude et al. (Eds.): UC 2005, LNCS 3699, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 T. Bäck and R. Breukelaar

population of individuals) for a given problem. In this general setting, mutation
corresponds to a modification of a single candidate solution, typically with a pref-
erence for small variations over large variations. Recombination corresponds to
an exchange of components between two or more candidate solutions. Selection
drives the evolutionary process towards populations of increasing average fitness
by preferring better candidate solutions to proliferate with higher probability
to the next generation than worse candidate solutions. By fitness evaluation,
the calculation of a measure of goodness associated with candidate solutions
is meant, i.e., the fitness function corresponds to the objective function of the
optimization problem at hand.

No attempt will be made to give a complete introduction or overview of
evolutionary algorithms, as there are many good introductory books on the topic
available, e.g. [1], instead an example of how to use evolutionary algorithms to
parameterize other algorithms will be given.

Evolving parameters for complex algorithms could also be viewed as an in-
verse design problem, i.e. a problem where the target design (behavior of the
algorithm to be parameterized) is known, but the way to achieve this is un-
known. The inverse design of cellular automata (CA) is such a problem. Cellular
automata are used in many fields to generate a global behavior with local rules.
Finding the rules that display a desired behavior can be a hard task especially
when it comes to real world problems. This paper uses a genetic algorithm to
generate the transition rules for cellular automata, thus evolving global behavior
with local rules using a genetic base.

2 Cellular Automata

According to [20] cellular automata (CA) are mathematical idealizations of phys-
ical systems in which space and time are discrete, and physical quantities take
on a finite set of discrete values. The simplest CA is one dimensional and can be
viewed as an array of ones and zeros of width N , where the first position of the
array is linked to the last position. In other words, defining a row of positions
C = {a1, a2, ..., aN} where C is a CA of width N and aN is adjacent to a1.

The neighborhood sn of an is defined as the local set of positions with a
distance to an along the connected chain which is no more than a certain radius
(r). This for instance means that s2 = {a148, a149, a1, a2, a3, a4, a5} for r = 3
and N = 149. Note that for one dimensional CA the size of the neighborhood is
always equal to 2r + 1.

The values in a CA can be altered all at the same time (synchronous) or
at different times (asynchronous). Only synchronous CA are considered in this
paper. In the synchronous approach at every time step (t) every cell state in the
CA is recalculated according to the states of the neighborhood using a certain
transition rule Θ : {0, 1}2r+1 → {0, 1}, si → Θ(si). This rule basically is a one-to-
one mapping that defines an output value for every possible set of input values,
the input values being the ‘state’ of a neighborhood. The state of an at time t
is written as at

n, the state of sn at time t as st
n and the state of the entire CA C
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at time t as Ct so that C0 is the initial state and ∀n = 1, . . . , N at+1
n = Θ(st

n).
Given Ct = {at

1, ..., a
t
N}, Ct+1 can be defined as {Θ(st

1), ..., Θ(st
N )}.

Because an ∈ {0, 1} the number of possible states of sn equals 22r+1. Because
all possible binary representations of m where 0 ≤ m < 22r+1 can be mapped to
a unique state of the neighborhood, Θ can be written as a row of ones and zeros
R = {b1, b2, ..., b22r+1} where bm is the output value of the rule for the input
state that maps to the binary representation of m − 1. A rule therefore has a
length that equals 22r+1 and so there are 222r+1

possible rules for a binary one
dimensional CA. This is a huge number of possible rules (if r = 3 this sums up
to about 3, 4 × 1028) each with a different behavior.

One of the interesting things about these and other CA is that certain rules
tend to exhibit organizational behavior, independently of the initial state of
the CA. This behavior also demonstrates there is some form of communication
going on in the CA over longer distances than the neighborhood allows directly.
In [14] the authors examine if these simple CA are able to perform tasks that
need positions in a CA to work together and use some form of communication.
One problem where such a communication seems required in order to give a good
answer is the Majority Problem (as described in section 3). A genetic algorithm
is used to evolve rules for one dimensional CA that do a good job of solving the
Majority Problem [14] and it is shown how these rules seem to send “particles”
and communicate by using these particles [15]. These results imply that even
very simple cells in one dimensional cellular automata can communicate and
work together to form more complex and powerful behavior.

Previous work [4] suggested that using multi dimensional CA works a lot
better than using one dimensional CA. This paper will try to shed light on what
effect a different topology or neighborhood shape can have, and a measure will
be given to classify these different CA.

3 Majority Problem

One of the best known global problems that is (partly) solvable with local rules
if the Majority Problem. The Majority Problem can be defined as follows:

Given a set A = {a1, ..., an} with n odd and am ∈ {0, 1} for all 1 ≤ m ≤ n,
answer the question: ‘Are there more ones than zeros in A?’.

The Majority Problem first does not seem to be a very difficult problem to
solve. It seems only a matter of counting the ones in the set and then comparing
them to the number of zeros. Yet when this problem has to be solved within the
framework of a CA it becomes a lot more difficult. This is because the rule in a
CA does not let a position look past its neighborhood and that is why the cells
all have to work together and use some form of communication.

Given that the relative number of ones in C0 is written as λ, in a simple
binary CA the Majority Problem can be defined as:

Find a transition rule that, given an initial state of a CA with N odd and a
finite number of iterations to run (I), will result in an ‘all zero’ state if λ < 0.5
and an ‘all one’ state otherwise. The ‘all zero’ state being the state in which
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Fig. 1. These are examples of majority problem classification by the rule found by

David, Forrest and Koza. [5]. Both are correct classifications (a) with 74 ones in the

initial state, (b) with 75.

every cell in the CA is zero and the ‘all one’ state being a the state in which
every cell is one.

Evaluating a transition rule for this problem is done by iterating M randomly
generated initial states and calculating the relative number of correct classifica-
tion. The fitness of a transition rule is denoted with FN,M where N is the width
of the CA. The fitness can be calculated with different distributions over the
number of ones in the initial state, but the default is a binomial distribution
(denoted with FB

N,M ) where every cell in the CA has a 50% chance of being
initiated with a one for every initial state.

The first intuitive rule to come up with is the ‘majority rule’. This being
the rule where the output value is 1, if the number of ones in the neighborhood
is more than the number of zeros, and a zero otherwise. Surprising as it may
seem this does not at all solve the problem. The majority rule gets stuck on the
problem that on the boundary thick line in the time plot the cell can’t “agree”
on the global answer. The cell just left of such a thick line is zero and because all
other cells left of it in the neighborhood are also zero, it “decides” to stay that
way. Yet its neighboring cell to the right is one and sees only ones on its right
and therefore decides to stay one. This way the information fails to propagate
through the CA and classification fails.

Researchers in the field of cellular automata have published many different
rules to solve this problem, one such rule is the GKL rule after Gacs, Kurdyumov
and Levin [8]. This rule is pretty good at classifying the majority problem and
does it for 81.6% of the test cases with a width of 149 cells. For 17 years this
was the best rule and then L. Davis found a better one in 1995 which did 81.8%.
In the same year R. Das found a rule that did 82.178%. Then in 1996 David,
Forrest and Koza found a rule by cleverly using genetic programming that was
able to classify 82.326% correctly [5].
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Fig. 2. This figure shows a correct classification of the Majority Problem by a two

dimensional CA with both width and height equal to 13 and λ = 84/169. The transition

rule was one of the best tested in the experiment and scored F169,103 = 0.715.

(a) (b)

Fig. 3. This figure shows two iteration runs of transition rules for two dimensional CA

that were evolved using a GA. (a) shows how a CA can behave like an AND-port and

(b) shows how it can behave like an XOR-port.

Although these rules are very impressive it is believed that there is no definite
solution for the problem as long as the neighborhood is smaller than the size of
the CA. It is already a big accomplishment for a CA to get 70 percent of all
random initial states correct, for this shows there is some kind of communication
going on; some kind of emerging behavior.

4 Inverse Design

Nature has some remarkable examples of local rules that exhibit global behavior.
Ant colonies are a good example. An individual ant does not seem to be very
intelligent and does not seem to know what is doing and why, but a colony of
ants seem very organized and purposeful. This did not happen over night, but
evolved over millions of generations.

The global behavior of a CA can also be evolved in a similar way by evolving
the local behavior. This “inverse design” of the behavior is done by using a
genetic algorithm to evolve the transition rule that described the behavior. The
fitness function of the genetic algorithm then defines the desired behavior.

M. Mitchell, J. P. Crutchfield and P. T. Hraber have shown [14,15] that using
a simple GA to evolve transition rules for the majority problem (explained in
Section 3) can already give surprisingly good results. About half of the rules that
were found performed better than the most trivial rule and about 7 rules out of
300 rules were found that seemed to use some primitive form of communication
that worked for more than 70% of the classifications. This is not better than
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rules that are made by hand, but it does show how a GA can evolve global
behavior based on local rules.

In [3] this idea was extended to two dimensional CA and it was shown that
two dimensional CA can match the performance of the one dimensional rules
even though the neighborhood was two cells smaller. It was also shown that
different kinds of problems can be solved using this approach (AND-, XOR-
problem and pattern generation) if it is extended to two dimensions. Figure 3
shows how a two dimensional CA can be evolved to behave like an AND or
XOR port.

A generalization was defined in [2,4] so that the approach could work for
n-dimensional CA and different sizes of neighborhoods. The GA was altered to
make it more robust and some experiments were done to compare results for dif-
ferent dimensionality’s on identical problems. The way the transition rules were
tested was also altered to more accurately describe the desired behavior. The
results in [4] suggested that it is a lot easier to find rules for a three dimensional
CA than it is for a one dimensional CA. Even though the number of cells in the
neighborhoods are identical.

This article will more strongly support the claim that the topology of the
CA and its neighborhood is very important for the performance of that CA.
Four different neighborhood shapes are chosen to show this relation and to
give indication in what shape of neighborhood might have the best performance
and why.

5 Distance Measure

A normal one dimensional CA (as described in Section 2) has a very simple
defined neighborhood, being “all the cells within a certain radius r of the center
cell”. Although this seems to be the most logical neighborhood CA can have
many different shapes.

Every iteration step in a synchronous CA the state of every cell is updated
using the information in the cells of the neighborhood of that cell. That means
the way the information moves (“travels”) through the CA is defined by the
shape of the neighborhood. Note that because the standard one dimensional
neighborhood is symmetrical, if information travels from cell ai to cell aj it will
also travel from cell aj to cell ai. The number of iterations it takes for information
to travel from cell ai to cell aj can be called the “distance between ai and aj”.
If the shape of the neighborhood is different, the distance between cells in the
CA will be changed too. Not only will this change the behavior of the CA, but
it might also change the possible behaviors of the CA. That means that two
neighborhood shapes might performance different on the same problem.

Intuitively, to solve a global problem with local rules information from every
cell in the CA has to travel to every other cell in the neighborhood to be com-
bined in a way that suits the problem. Because combining information results in
new information and the space in a CA is fixed, there will be information loss.
Therefore combining the information as fast as possible seems to be good way
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to counter this information loss and solve the problem in the best possible way.
This then would mean that the distance between two cells in the CA need to be
minimized so that the information can be combined faster.

To measure the rate at which information is combined in a CA two metrics are
defined. The “maximum distance between two cells” and the “average distance
between two cells” in a CA. Because every cell has the same neighborhood shape
every cell has the same maximum distance to a cell and the same average distance
to all the cells in the CA. Note that these metrics are very dependent on the
shape of the neighborhood and the size and topology of the CA.

If it is true that minimizing the distance in a CA will improve the perfor-
mance of the CA then this might explain why multi dimensional CA seem to
be more powerful than the one dimensional CA [3,2]. The topology of multi
dimensional CA supports information travel in multiple directions and this de-
creases the distance between cells in the CA. An experiment was conducted to
compare different neighborhood shapes in combination with the well known Ma-
jority Problem (see Section 3) and measure what the impact of the different
distance measures is on the performance. In order to test the performance of
a neighborhood shape a GA was used to search for a good transition rule that
solves the Majority Problem like was done in [2,3,4,14,15].

6 The Genetic Algorithm

The GA in this paper is the same as used in [4]. This GA evolves a pool of 100
transition rules to find the one with the best performance. It uses tournament
selection as defined in [1] to select which individuals to keep alive. This involves
running ‘tournaments’ on the population in order to determine the next gener-
ation. Every tournament q individuals are selected at random from generation
t and the one with the highest fitness is then copied to generation t + 1. This
is repeated until generation t + 1 has the same number of individuals as gene-
ration t. In this experiment q = 20.

After selection recombination is applied to generation t + 1. Recombination
is done by using single-point crossover on a subset of the population and mu-
tating the resulting individuals using probabilistic bit flip. The relative number
of individuals that are used in the crossover is denoted by the crossover-rate c.
Mutation is done by flipping every bit in the individual with a probability m. In
this experiment c = 0.9 and m = 2/l = 1/64 = 0.15625.

All the individuals in the pool are initialized at random with a normal dis-
tribution over the number of ones in an individuals bit string. This means that
the number of individuals with a certain number of ones will be roughly equal
to the number of individuals with any other number of ones. This prevents the
algorithm from specializing in a particular area of the search space at the be-
ginning of the algorithm. The evolution ends after D generations and the best
individual of the last generation is considered to be the best answer. Note that
this does not need to be the case if the fitness function used in the algorithm is
probabilistic. In this experiment D = 100.
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Table 1. This table shows the physical layout of the four different neighborhoods used

in this experiment. The maximum and average distance (as described in Section 5) are

calculated on a CA with 149 cells.

Name Physical distance Max. distance Avg. distance

Normal -3 -2 -1 0 1 2 3 25 12.79
Exponents of 2 -4 -2 -1 0 1 2 3 19 9.97
Exponents of 3 -9 -3 -1 0 1 3 9 10 5.48
Exponents of 5 -25 -5 -1 0 1 5 25 6 3.84

For the fitness evaluation a one dimensional cellular automata is used with a
width of 149 cells. Every cell has 7 cells in the neighborhood, but the shape of this
neighborhood will be different for every test. The transition rule will therefore
consist of 27 = 128 bits and there will be 2128 ≈ 3.4 ·1038 different rule each with
a different behavior. Every generation 100 initial states will be generated that
are used to calculate the fitness. The percentage that a rule classifies correctly
of these 100 initial states is the fitness of that rule. A state is correctly classified
if the iteration of the CA stops changing before 320 steps in an “all ones state”
or an “all zeros state” corresponding to λ > 0.5 and λ < 0.5 (see Section 3).

7 Experimental Results

In this experiment four different neighborhoods will be tested. The first one will
be the standard one dimensional neighborhood including cells 1, 2 and 3 on
both sides of the center cell. The other three are chosen to minimize the dis-
tance between cells in the neighborhood and include the cells with a physical
distance of an integer to the power of 0, 1 and 2. The three integers chosen
for this are 2, 3 and 5. Table 1 gives an overview of the layout of the four
neighborhoods.

For every neighborhood 100 runs are calculated with the GA as described in
Section 6. Unsurprisingly the results of the normal neighborhood matched that of
results in [4] and are only a little bit better than the results in [14,15]. The rest of
the results are a lot less trivial though. The neighborhood with “exponent of 2”
is performing slightly better than the normal neighborhood, whereas “exponents
of 3” performs a lot better with more then half of the rule topping 0.7 and about
10% over 0.75. And “exponents of 5” is even better than all the rest with all the
rules found being above 0.7 and some even topping 0.8 with the best at 0.813
coming very close to the best rule found on Majority Problem. Furthermore the
average number of iterations that a rule needs to classify an initial state gets
smaller the higher you make the exponent. Figure 4 shows the best rule from all
the runs.

These results support the claim that the shape of the neighborhood is very
important for the performance of the CA and that decreasing the distance be-
tween cells in the CA increases the performance and decreases the duration.
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Fig. 4. This figure shows all the rules found with the four different neighborhoods.

Note how the fitness goes up and the duration goes down if the neighborhood is wider.

The fitness is calculated using F149,103 .

Further research seems needed to determine whether this is the reason that
multi dimensional CA have a better performance and a smaller duration [4], but
the results suggest that changing the neighborhood or topology of the CA can
change the behavior in a very drastic way. Taking this into account it does not
seem very surprising that multi dimensional CA have a very different perfor-
mance than one dimensional CA. It seems intuitive that the way information
travels through a CA is an important factor in this and that therefore the met-
rics of distance (as described in Section 5) seem a very nice way to determine
what neighborhood will have a high fitness and a low duration.

8 Conclusions

This article gives an example of how a genetic algorithm can be used to program
an algorithm (in this case the cellular automata) and improve the results. Al-
though there are probably better rules than the ones found in this experiment,
the search space of transition rules for these cellular automata is so big that
improving results is already a big achievement.

It also shows how using a GA it can be concluded that the shape of the
neighborhood of a CA can have a big effect on the performance. Although the
distance between the cells in a neighborhood is not proven to be the biggest
factor in this, it does seem to be an indicator that can be used to devise the
right shape of neighborhood.
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Quantum Searching Amidst Uncertainty
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Abstract. Consider a database most of whose entries are marked but
the precise fraction of marked entries is not known. What is known is
that the fraction of marked entries is 1− ε, where ε is a random variable
that is uniformly distributed in the range (0, ε0) .The problem is to try to
select a marked item from the database in a single query. If the algorithm
selects a marked item, it succeeds, else if it selects an unmarked item, it
makes an error.

How low can we make the probability of error? The best possible
classical algorithm can lower the probability of error to O

(
ε20
)
. The best

known quantum algorithms for this problem could also only lower the
probability of error to O

(
ε20
)
. Using a recently invented quantum search

technique, this paper gives an algorithm that reduces the probability of
error to O

(
ε30
)
. The algorithm is asymptotically optimal.

1 Introduction

Classical search algorithms are robust. If we reduce the problem size, the al-
gorithm has fewer items to search and the performance of the algorithm will
almost always improve. Quantum search algorithms depend on delicate interfer-
ence effects, any change in parameters leads to significantly different results. For
example, if we reduce the number of states in the database by a factor of four,
a quantum search algorithm that would have previously succeeded, will now fail
with certainty. Quantum algorithms usually exhibit oscillatory behavior in their
performance characteristics. As a result of this, if there is some quantity that we
want to maximize, e.g. the probability of the system being in marked states, we
will need very precise knowledge of the problem parameters. Given such knowl-
edge, it is easy to fine-tune the algorithm so that it achieves a probability of
success of unity. What happens if we do not have this knowledge? This can be
a serious handicap for a quantum search algorithm. This paper describes a way
around this problem.

The original quantum search algorithm [1] considered the problem of find-
ing a marked item in a large unsorted database with minimum queries to the
database. For this type of problem it is usually enough to be able to obtain the
correct answer with a constant probability since the procedure can be repeated a
logarithmic number of times to drive the probability exponentially close to unity.
1 Research was partly supported by NSA & ARO under contract DAAG55-98-C-0040.

C.S. Calude et al. (Eds.): UC 2005, LNCS 3699, pp. 11–18, 2005.
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In that problem a logarithmic factor was not significant since the quantum search
algorithm gave a square-root asymptotic improvement. However there are other
important problems where the additional queries create a significant overhead
and need to be minimized, e.g. when we are limited to a single query and have
to find the answer with a probability approaching unity. One field in which this
type of problem occurs is in pattern recognition and image analysis where each
query requires a lot of signal processing and the consequences of making an error
are catastrophic.

2 The Problem

Consider the situation where a large fraction of the items in a database are
marked, but the precise fraction of marked items is not known. The goal is to
find a single marked item with as high a probability as possible in a single query
to the database. For concreteness, say some unknown fraction (1 − ε) of the
items are marked, with ε uniformly distributed in the range (0, ε0) with equal
probability. The search algorithm returns an item, if it is a marked item the
algorithm is said to succeed, else if it is unmarked, the algorithm is said to fail.

Classically the smallest error that can be obtained is O
(
ε20
)
. To achieve this,

uniformly guess an input and evaluate the function. If the function outputs 1,
you’re done, otherwise guess again and cross your fingers (because you have no
more evaluations left). One cannot do better than O

(
ε20
)

classically. In this paper
we show that the probability of failure for the new scheme is O

(
ε30
)
, whereas

that of the best (possible) classical scheme and that of the best known quantum
schemes are both O

(
ε20
)
.

Before considering the specific problem mentioned above, let us describe a
general framework. Consider the following transformation

URsU
†RtU |s〉 (1)

Rs = I − (1 − exp
(
i
π

3

)
) |s〉 〈s| , Rt = I − (1 − exp

(
i
π

3

)
) |t〉 〈t|

U is an arbitrary unitary transformation, Rt & Rs denote selective phase shifts
of the respective state(s) by π

3 . Note that if we were to change these phase shifts
from π

3 to π, we would get one iteration of the amplitude amplification algorithm
[2], [3].

The next section shows that if U drives the state vector from a source (s)
to a target (t) state with a probability of (1 − ε), i.e. ‖Uts‖2 = (1 − ε), then the
transformation (1) drives the state vector from the source to the same target
state with a probability of

(
1 − ε3

)
. The deviation from the t state has hence

fallen from ε to ε3. Note that this is different from the amplitude amplification
framework where the amplitudes were getting amplified; over here it is more
convenient to present the results in terms of the probabilities.

The striking aspect of this result is that it holds for any kind of deviation from
the t state. Unlike the standard search (or amplitude amplification) algorithm
which would greatly overshoot the target state when ε is small (Figure 1); the
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new algorithm will always move towards the target. As shown in Section 5, this
feature of the framework can be used to develop algorithms that are more robust
to variations in the problem parameters.

|0>

|t> W|0>

WI0WItW|0>

|0>

|t> W|0>

WR0WRtW|0>

Original quantum search π/3 phase shift search

Fig. 1. The original quantum search algorithm is very sensitive to the fraction of

marked states. For example, when the fraction is about 3/4, the algorithm fails, the

algorithm of this paper will always produce an improvement.

3 Analysis

We analyze the effect of the transformation URsU
†RtU when it is applied to the

|s〉 state. As mentioned in the previous section, Rt & Rs denote selective phase
shifts of the respective state(s) by π

3 (t for target, s for source). We show that if
‖Uts‖2 = (1 − ε) , then ∥∥〈t|URsU

†RtU |s〉∥∥2 =
(
1 − ε3

)
. (2)

In the rest of this section, the greek alphabet θ will be used to denote π
3 . Start

with |s〉 and apply the operations U,Rs, U
†, Rt & U. If we analyze the effect of

the operations, one by one, just as in the original quantum search algorithm [1],
we find that it leads to the following superposition (this calculation is carried
out in the appendix):

U |s〉
(
eiθ + ‖Uts‖2 (

eiθ − 1
)2)

+ |t〉Uts

(
eiθ − 1

)
.

To calculate the deviation of this superposition from |t〉, consider the ampli-
tude of the above superposition in non-target states. The probability is given by
the absolute square of the corresponding amplitude:(

1 − ‖Uts‖2
)∥∥∥(eiθ + ‖Uts‖2 (

eiθ − 1
)2)∥∥∥2 .

Substituting ‖Uts‖2 = (1 − ε) , the above quantity becomes:

ε
∥∥∥(eiθ + (1 − ε)

(
eiθ − 1

)2)∥∥∥2
= ε
∥∥∥(−eiθ + e2iθ + 1

)− ε
(
eiθ − 1

)2∥∥∥2
= ε3.
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F(x)
oracle

x x

b
(six-state ancilla) (b + F(x)) mod 6

Fig. 2. By setting the six-state ancilla, b, to the superposition
1√
6

(|0〉 + |1〉ω + |2〉ω2 + |3〉ω3 + |4〉ω4 + |5〉ω5
)

where ω = exp
(− iπ

3

)
, we get

a π
3

phase-shift of the states for which F (x) = 1 relative to those for which F (x) = 0.

[10] gives a technique for implementing this with qubits.

4 Existing Algorithms

4.1 Classical Algorithm

The best classical algorithm is to select a random state and see if it is a t state
(one query). If yes, return this state; if not, pick another random state and return
that without any querying. Note that this algorithm requires a single query, not
two. The probability of failure is equal to that of not getting a single t state in
two random picks since if either of the two states is a marked state, the algorithm
will succeed. This probability is equal to ε2. Since ε is uniformly distributed in
the range (0, ε0). The overall failure probability becomes

∫ ε0
0 ε2dε∫ ε0
0 dε

= 1
3ε

2
0.

4.2 Quantum Searching

Boyer, Brassard, Høyer and Tapp [4] first described in detail an algorithm that
succeeds with probability approaching 1, regardless of the number of solutions
(it’s a classical algorithm that uses quantum searching as a subroutine; of course,
it can be made fully quantum.) The first quantum algorithm to be able to search
in a single query with a success probability approaching 1 was given by Mosca [5].

Mosca observed that the quantum counting algorithm of [4] (based on the
original searching algorithm) produces a solution with probability converging
to 1/2. One easily converts this to an algorithm with probability of success
converging to 1/4. Thus by using this algorithm as a sub-routine in another
quantum search, we get success probability converging to 1. (This appears to be
based on the observation in [4] that an algorithm that succeeds with probability
exactly 1/4 can be amplified to one with success probability exactly 1 using
only one quantum search iterate). In other words, the technique Mosca uses is
to take a search algorithm that succeeds with probability 1/4 − X and then
use one quantum search iteration to map it to an algorithm that succeeds with
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probability
(
1 − 12X2 − 16X3

)
. Using this scheme, if the fraction of marked

states of the database is 1 − ε, one can easily obtain a marked state with a
probability of error of 1 − 3

4ε
2 − 1

4ε
3 by means of a single quantum query. The

overall failure probability in this case becomes
∫ ε0
0 ( 3

4 ε2+ 1
4 ε3)dε∫ ε0

0 dε
= 1

4ε
2
0 + 1

16ε
3
0.

A recent quantum search based algorithm for this problem is by Younes
et al [6] (actually it is somewhat unfair to compare it to the other algorithms
since this was specifically designed to perform well when the success probabil-
ity was close to 1

2 , not close to 1). This finds a solution with a probability of

(1 − cos θ)
(

sin2(q+1)θ
sin2 θ

+ sin2 qθ
sin2 θ

)
, where q = number of queries and θ = arccos ε

((59) from [6]). When q = 1, the success probability becomes: (1 − ε)
(
1 + 4ε2

)
,

hence the probability of error becomes ε−4ε2+4ε3. The overall failure probability

becomes
∫ ε0
0 (ε−4ε2+4ε3)dε∫ ε0

0 dε
=
(

1
2ε0 − 4

3ε
2
0 + ε30

)
.

5 New Algorithm

As in the quantum search algorithm, encode the N items in the database in
terms of log2 N qubits. The algorithm consists of applying the transformation
WR0WRtW to

∣∣0〉. W is the Walsh-Hadamard Transformation and 0 is the state
with all qubits in the 0 state. After this an observation is made which makes the
system collapse into a basis state.

In order to analyze the performance of this algorithm, note that the algorithm
is merely the phase shift transformation URsU

†RtU applied to |s〉 which has
already been analyzed in section 3. U is the W-H transform (W ) and the state s

is the 0 state (state with all qubits in the 0 state), then ‖Uts‖2 = 1−ε,where ε lies
in the range (0, ε0) . Therefore after applying the transformation WR0WRtW to∣∣0〉 , the probability of being in a non-t state becomes ε3, i.e. the overall failure

probability becomes
∫ ε0
0 ε3dε∫ ε0
0 dε

= 1
4ε

3
0.

The performance of the algorithm is graphically illustrated in Figure 3.

6 Extensions

6.1 Multi-query Searching
In practice, a database search would use multiple queries. The technique dis-
cussed above extends neatly to the multi-query situation. As described in [7],
the multi-query algorithm based on the π

3 phase-shift transformation is able to

reduce the probability of error to ε2q+1
0

2q+2 after q queries to the database. A classi-

cal algorithm reduces the probability of error to εq+1
0

q+2 . Note that q = 1 gives the
same results as in section 5.

6.2 Optimality

Both the single query, as well as the multi-query algorithms are asymptotically
optimal in the limit of small ε0. This is separately proved in [9].
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Younes et al

Classical Mosca

π/3 phase shift algorithm

Fig. 3. Comparison of the failure probability of the π/3 phase shift algorithm with a

classical algorithm, [6], and [5], when the fraction of unmarked states ε, varies between

0 & 0.2

6.3 Quantum Control and Error Correction

Connections to control and error correction might be evident. Let us say that we
are trying to drive a system from an s to a t state/subspace. The transformation
that we have available for this is U which drives it from s to t with a probability
‖Uts‖2 of (1 − ε) , i.e. the probability of error in this transformation is ε. Then
the composite transformation URsU

†RtU will reduce the error to ε3.
This technique is applicable whenever the transformations U, U †, Rs & Rt

can be implemented. This will be the case when errors are systematic errors or
slowly varying errors, e.g. due to environmental degradation of some component.
This would not apply to errors that come about as a result of sudden disturbances
from the environment. It is further assumed that the transformation U can be
inverted with exactly the same error. Traditionally quantum error correction is
carried out at the single qubit level where individual errors are corrected, each
error being corrected in a separate way. With the machinery of this paper, errors
can be corrected without ever needing to identify the error syndrome. This is
discussed in [7] and [8].
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Appendix

We analyze the effect of the transformation (3) of section 3 when it is applied to
the |s〉 state. As in section 3, θ will denote π

3 . We show that if ‖Uts‖2 = (1 − ε) ,
then ∥∥∥∥〈t|URsU

†
RtU |s〉

∥∥∥∥2 =
(
1 − ε3

)
(3)

starting state |s〉
after RtU

RtU |s〉 = Uts

(
eiθ − 1

) |t〉 + U |s〉
after U

†
:

U
†
RtU |s〉 = |s〉 + Uts

(
eiθ − 1

)
U

†
|t〉

after Rs :

RsU
†
RtU |s〉 =

(
|s〉 + Uts

(
eiθ − 1

)
U

†
|t〉
)

+
(
eiθ − 1

)(|s〉 + Uts

(
eiθ − 1

) |s〉 〈s|U †
|t〉
)

= |s〉
(
eiθ + ‖Uts‖2 (

eiθ − 1
)2)

+ Uts

(
eiθ − 1

)
U

†
|t〉

after the final U :

URsU
†
RtU |s〉 = U |s〉

(
eiθ + ‖Uts‖2 (

eiθ − 1
)2)

+ Uts

(
eiθ − 1

) |t〉
Calculating the error. To estimate the error, consider the amplitude of the

above superposition in non-target states (this is due to the portion

U |s〉
(
eiθ + ‖Uts‖2 (

eiθ − 1
)2)

,

the other portion Uts

(
eiθ − 1

) |t〉 is clearly in the target state). The mag-
nitude of the error probability is given by the absolute square of this error
amplitude: (

1 − ‖Uts‖2
) ∥∥∥(eiθ + ‖Uts‖2 (

eiθ − 1
)2)∥∥∥2
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Assume ‖Uts‖2 to be (1 − ε) , the above quantity becomes:

ε
∥∥∥(eiθ + (1 − ε)

(
eiθ − 1

)2)∥∥∥2
= ε
∥∥∥(−eiθ + e2iθ + 1

)− ε
(
eiθ − 1

)2∥∥∥2
= ε3
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Abstract. Structural DNA nanotechnology entails the construction of objects, 
lattices and devices from branched DNA molecules.  Branched DNA molecules 
open the way for the construction of a variety of N-connected motifs.  These 
motifs can be joined by cohesive interactions to produce larger constructs in a 
bottom-up approach to nanoconstruction.  The first objects produced by this 
approach were stick polyhedra and topological targets, such as knots and 
Borromean rings. These were followed by periodic arrays with programmable 
patterns. It is possible to exploit DNA structural transitions and sequence-
specific binding to produce a variety of DNA nanomechanical devices, which 
include a bipedal walker and a machine that emulates the translational 
capabilities of the ribosome.  Much of the promise of this methodology involves 
the use of DNA to scaffold other materials, such as biological macromolecules, 
nanoelectronic components, and polymers.  These systems are designed to lead 
to improvements in crystallography, computation and the production of diverse 
and exotic materials.  Branched DNA can be used to emulate Wang tiles, and it 
can be used to construct arbitrary irregular graphs and to address their 
colorability. 

Keywords: Unusual DNA Motifs, Bottom-Up Nanoscale Construction, DNA 
Sequence Design, Nanoscale DNA Objects, Nanorobotics, Nanoscale Pattern 
Design. 

1   Introduction 

The double helical structure of DNA is well-known. It is the repository of genetic 
information for all organisms. It is able to function in this role because of the 
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complementarity nature of the pairing between the bases: Adenine (A) pairs 
specifically with thymine (T) and guanine (G) pairs specifically with cytosine (C). 
The biological consequence of complementarity is that the cellular machinery can 
replicate the information contained in each strand via a semi-conservative mechanism, 
leading to the production of daughter cells containing the same genetic complement. 
Pairing between short intermolecular overhangs, called 'sticky ends' has been used by 
genetic engineers for over 30 years to organize DNA fragments [1]. This is a unique 
intermolecular interaction in chemistry, not only because it is programmable (the base 
sequences of sticky ends can be changed to a wide variety of different complementary 
pairs), but because the local product structure is known to be similar to the classic  
B-DNA structure that is seen everywhere as a cultural icon throughout the world [2]. 

Of course, from the perspective of nanotechnology, genetic engineering does not 
provide the structural consequences that one would want from a bottom-up approach 
to the control of the structure of matter. Although sticky-ended cohesion can be used 
to order a series of DNA fragments, say on a plasmid, the end product is simply a 
double helical molecule that flanks a linear helix axis, although that helix may be 
cyclic, knotted or catenated.  The missing element to make DNA an interesting 
nanotechnological building block is a branch point.  Branches enable the construction 
of N-connected objects and lattices. They are also inherent to most applications of 
DNA to nanomechanical devices. Sticky ends and their application to forming  
N-connected DNA objects are illustrated in Figure 1. 

In this article, we describe how to design branched DNA motifs and how to select 
sequences for those motifs. We then describe some of the key steps taken by the field 
of structural DNA nanotechnology to reach the point where today it is a discipline 
practiced by a significant number of investigators. We describe the construction of the 
earliest N-connected objects, and of periodic arrays with programmable patterns. We 
introduce the way in which structural DNA nanotechnology interfaces with 
computation.  We also describe some of the most exciting developments in the area of 
nanomechanical devices, leading to the development of DNA-based nanorobotics. 

 

Fig. 1. Basics of Structural DNA Nanotechnology. (a) Sticky-ended cohesion. (b) Self-assembly 
of branched DNA molecules with complementary sticky end pairs. 

2   Motif and Sequence Design 

The essential difference between conventional linear DNA and the motifs useful in 
structural DNA nanotechnology is the presence of branching.  This notion is thought 
of most easily as a crossover or strand exchange between two adjacent double helices. 
Reciprocal exchange is the protocol that can be used to produce branched motifs. 
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Fig. 2. Reciprocal Exchange leads to branched structures. (a) A single exchange leads to a 
Holliday junction. (b) Two exchanges lead to the DX molecule. (c) Exchange at every possible 
position generates the PX molecule. Note that the exchanges in (b) are between strands of the 
opposite polarity, but those in (c) are between strands of the same polarity. The exchange in (a) 
is shown to be between strands of opposite polarity, but the polarity of the strands does not 
matter in this case. 

 

Fig. 3. Branched DNA Motifs. On the left is a TX molecule generated by adding a helical 
domain to a DX by two reciprocal exchanges between opposite polarity stands. The JX2 
molecule on the right can be compared readily to its topoisomer, the PX molecule. It contains 
the same arrangement of strands, but it lacks two crossovers, leading to a molecule in which the 
top end is twisted relative to the bottom by a half-turn less than in the PX. This feature is 
highlighted by the alphabetic labels on the ends of the double helices. 

Figure 2 illustrates how this method is used to produce a singly-branched Holliday 
junction (an intermediate in genetic recombination), a stiff double crossover (DX) 
molecule and a paranemic crossover (PX) molecule. A number of other useful motifs 
generated in this way are illustrated in Figure 3. 

These include the TX molecule and the JX2 molecule, a topoisomer of the PX 
molecule whose relationships are illustrated by the letters flanking their helices. All of 
these motifs have found application in structural DNA nanotechnology. As noted in 
Figure 2, it is clear that forming each motif  entails fusing DNA double helices. The 
two strands of the conventional double helical DNA molecule run in opposite 
directions. Thus, fusion between double helices can occur between strands of the 
same polarity or of opposite polarity. For the Holliday junction, with a single 
crossover, this difference has no topological consequences. However, DX molecules 
can be made with either polarity in its linkages, and the TX molecule can be made 
with mixed polarities. The DX and TX molecules shown in Figures 2 and 3 have 
opposite polarities. The PX molecule, and its topoisomer, JX2, have crossovers 
between strands of the same polarity[3]. 
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The assignment of sequences to these motifs seeks to maximize the probability that 
the target structure will form at equilibrium as a consequence of mixing the strands 
and cooling them. This is done by using the assumption that Watson-Crick base 
pairing is the preferred form of interaction between strands of DNA. Designing a 
crossover into the structure introduces a fault into this structure, corresponding to an 
excited state. The key point is to make sure that the excited state that results is the one 
sought, rather than one that is easier for the system to accommodate.  To ensure that 
the target is what results, sequence symmetry is minimized throughout the structure 
[4]. An example of how this is done is shown in Figure 4a, which shows a single-
crossover Holliday junction-like molecule in a crossroads representation.  The strands 
of the target molecule shown contain sixteen nucleotides. Each strand has been 
broken up into a series of thirteen overlapping tetramers, such as the CGCA or GCAA 
that are boxed at the top of strand 1.  Sequence symmetry is minimized by insisting 
that each tetramer be unique.  Thus, competition with the target octamers in each arm 
can come only from trimers, such as the ATG sequences boxed on strands 2 and 3; in 
principle, they could go to the wrong places, but both the thermodynamics of pairing 
and the cooperativity of double helix formation work against this eventuality. In 
addition, an element of negative control is introduced by forbidding the complement 
of any tetramer that flanks a branch point, such as the CTGA that is boxed at the 
corner of strand 1; the absence of a TCAG anywhere in the sequence means that the 
sequence designed to go around the corner does not have the opportunity to form 
double helical DNA. 

 

Fig. 4. Design of Sequences for Branched Junctions and Polyhedral Catenanes. (a) Design of a 
branched junction.  (b) DNA cube and (c) a DNA truncated octahedron. 

3   Structural and Topological Constructions 

Given our understanding of branched motif generation and sequence assignment, it is 
easy to see how DNA can be used to prepare topological and structural targets.  
Following the notion summarized in Figure 1b, it has been possible to construct DNA 
polyhedra, molecules whose edges consist of double helical DNA and whose vertices 
correspond to the branch points of DNA branched junctions.  We have reported a 
cube [5] and a truncated octahedron [6] built from DNA.  Schematic versions of these 
constructs are shown in Figures 4b and 4c.  One can think of these polyhedra simply 
as 3-connected graphs; we have also reported the construction of an irregular graph 
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containing both 3-connected and 4-connected vertices (see below).  The connectivity 
of targets is limited by the number of double helical arms that flank the junctions in 
the structure.  We have reported junctions flanked by up to six arms [7], and actually 
have made junctions with as many as twelve arms (XW and NCS, in preparation).  
There are few interesting individual targets with large connectivities, but lattices built 
from Platonic and Archimedean solids can have connectivities this high. For example, 
the stick version of cubic close packing is 12-connected.  It is also noteworthy that the 
plectonemic nature of the DNA double helix makes it an extremely convenient 
synthon for topological targets; this is true because a half-turn of DNA corresponds to 
a unit-tangle in a knotted or catenated structure [8].  In this context, the cube is a 
hexacatenane, and the truncated octahedron is a 14-catenane.  In addition, an elusive 
topo-synthetic target, known as Borromean Rings, was synthesized first from DNA by 
using this same principle. 

The construction of periodic matter is one of the key goals of structural DNA 
nanotechnology. Periodic matter requires stiff components:  The relationship between 
periodicity and cyclization so prominent in the Fourier analysis of crystals also 
applies to DNA nanoconstruction; components that can combine to form periodic 
matter can also form cyclic matter, thereby poisoning the assembly.  The best defense 
against this problem is to use stiff components. Simple branched junctions are 
somewhat floppy, so they did not seem to be the best molecules to use to construct 
periodic matter.  We found that DX molecules and their relatives, such as TX 
molecules are very good for this purpose.  We have constructed arrays with patterns 
that can be both programmed and modified from DX molecules [9,10].  We have also 
built 2D arrays from parallelograms [11], and from triangular arrangements of DX 
molecules [12].  An example of the latter is shown in Figure 5.  

 

Fig. 5. Formation of a Trigonal DNA Array.  (a) The robust DX triangle motif. (b) An AFM 
image of a trigonal array built from two different molecules of this motif. 

4   Applications of Structural DNA Nanotechnology in Molecular 
Computation 

Experimental DNA-based computation was founded by Leonard Adleman in 1994 
[13]. Adleman combined the information in DNA molecules themselves, using 
standard biotechnological operations (ligation, PCR, gel electrophoresis and 
sequence-specific binding) to solve a Hamiltonian path problem. The idea is that there 
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exist computational problems for which the parallelism of molecular assembly 
overcomes the slow speed of the required macroscopic manipulations. Many varieties 
of DNA-based computation have been proposed, and a number of them have been 
executed experimentally for relatively small cases. Space does not permit discussion 
of all of them. 

However, there are two approaches to DNA-based computation that are relevant to 
our discussion of structural DNA nanotechnology.  The first was a method suggested 
by Winfree, who noticed that the system described above, branched junctions with 
sticky ends, could be a way to implement computation by 'Wang tiles' on the 
molecular scale [14]. This is a system of tiles whose edges may contain one or more 
different markings; the tiles self-assemble into a mosaic according to the local rule 
that all edges in the mosaic are flanked by the same marking.  Such a form of 
assembly can be shown to emulate the operation of a Turing machine, a general-
purpose computer.  The relationship between the sticky ends of a branched junction 
and the markings on a Wang tile is shown in Figure 6a. 

This form of DNA-based computation has been prototyped successfully in a 4-bit 
cumulative XOR calculation [15].  The XOR calculation yields a 1 if the two inputs 
are different, and a 0 if they are the same. Figure 6b shows the components of this 
calculation. Each component is a TX molecule, schematized as three rectangles with 
geometrical shapes on their ends to represent complementarity. The input bits are 'x' 
tiles (upper left), and the output bits are 'y' tiles (bottom), and there are two initiator 
tiles, C1 and C2, as well (upper right).  The upper left corner of Figure 6c shows the 
strand structure of the TX tiles; each strand contains a 'reporter strand' (drawn with a 
thicker line); the value of x and y tiles is set to 0 or 1 depending whether it contains a 
Pvu II or EcoR V restriction site, respectively. The yi tiles perform the gating 
function; there are four of them, corresponding to the four possible combinations of 0 
and 1 inputs. The input involves the bottom domain (Figure 6b). The assembly of 
periodic arrays discussed above entails competition between correct and incorrect 
tiles for particular positions; by contrast, the competition here is between correct and 
partially correct tiles. For example, the yi-1 = 0 sticky end on the leftmost tile is the 
same as the yi-1 sticky end on the rightmost tile. In the cumulative XOR calculation, yi 
= XOR (xi,yi-1). The implementation of this formula is shown in Figure 6c. The xi 
tiles and the initiators are given longer sticky ends than the yi tiles, so they assemble a 
template first when the tiles are cooled. This creates a double site where the y1 tile can 
bind.  This binding creates the double site where the y2 tile can bind, and so on. When 
the assembly is complete, the reporter strands are ligated together, creating a long 
strand that connects the input to the output through the initiator tiles. Partial 
restriction analysis of the resulting strand reveals that the correct answer is obtained 
almost exclusively. 

The second approach is due to Jonoska and colleagues [16], and applies to the 
problem of coloring graphs.  If a graph is 3-colorable, one can color its nodes with 
three colors, so that in no cases is one edge flanked by the same color.  This problem 
can be converted to terms of structural DNA nanotechnology, if one represents the 
edges with double helices and the vertices with branched junctions as shown in  
Figure 7. Each edge has six different representations, corresponding to six different 
combinations of different colors that can flank it.  The colors are coded by sticky  
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Fig. 6. A Cumulative XOR Computation. (a) The Relationship between Wang Tiles and 
Branched Junctions.  The shadings are the same in both the tile and the sticky ends of the 
junction, indicating that the sticky ends on a branched junction can emulate a Wang tile. (b) 
The Components of a Cumulative XOR Calculation. TX tiles are shown as rectangles ending in 
sticky ends represented geometrically. The input x tiles are shown at the upper left; and the 
value of the tile is shown in the central domain. Initiator tiles C1 and C2 are shown in the upper 
right and the four possible y tiles are shown in the bottom row. The inputs of the y tiles is 
shown on their bottom domains. (c) The Self-Assembled Tiles. The strand structure of the TX 
tiles is illustrated on the upper left, with the reporter strand drawn with a thicker line. The 
assembly of tiles in a prototype calculation is shown, using the components illustrated in (b). 
The input 1, 1, 1, 0 produces an output of 1, 0, 1, 1 by successive binding of y tiles into the 
double sites created as the array assembles. 

ends. Similarly, three different copies of each vertex are present in solution, except 
for an initiating pair.  If a solution to the problem exists, it should be possible to ligate 
the components to form a closed cyclic DNA molecule.  Such a molecule can be 
detected either by its mobility on a 2D polyacrylamide gel, or by its resistance to 
exonucleases. 

If one is to perform such a calculation, it is necessary to make sure that it is 
possible to build the graph out of real molecules. The edge of a graph has no 
thickness, but the edges of a DNA representation of a graph are 2 nm thick. The 
length of an edge in a graph can be arbitrary, but specific lengths must be assigned to 
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a DNA graph, and the lengths and placements of the edges must be compatible with 
the twisting and bending stiffness of the DNA double helical components. Thus, we 
have prototyped a three-colorability calculation in a 'monochromatic' experiment [17].  
In addition to the issue of the feasibility of building the molecules with DNA 
components, this type of assembly also needs to be done all at once in solution. The 
regular graphs previously built from DNA, the cube [5] and the truncated octahedron 
[6], we built in specific steps, so that the chemistry was much simpler. Thus, two 
issues were at stake in this self-assembly. Following the simultaneous ligation of all 
components, the products were run on a 2D gel, and bands indicating complete 
formation of a cyclic molecule were found.  Restriction analysis demonstrated that all 
components were present, and were in the right order.  About 2% of the products 
indicated errors. 

 

Fig. 7. An Irregular Graph. The graph shown has explicit edges (E1-E8) as well as  vertices 
(V1-V5).  The sites of the sticky ends are indicated by patches of gray.  Restriction sites are 
indicated by the names of the restriction enzymes, biotin groups are labeled as 'B' and 
radioactive labeling sites are shown by asterisks. Arrows indicate strand polarities.  Note that 
this is a knot, not a catenane. 

5   Nanomechanical Devices 

In addition to being an outstanding medium for the construction of objects and arrays, 
DNA is also convenient for the construction of nanomechanical devices.  The first 
robust device constructed from DNA was based on the B-Z structural transition [18]. 
Conventional DNA, known as B-DNA, is a right-handed double helical molecule 
whose repeat unit is the nucleotide pair.  However, appropriate sequences, typically 
(CG)n can adopt the Z-DNA conformation which is a left-handed double helix whose 
repeat unit is a dinucleotide pair.  In the absence of Z-DNA-promoting conditions,  
Z-forming sequences remain in the B-DNA conformation.  The device (Figure 8a) 
consists of two DX molecules connected by a shaft that contains a Z-forming 
sequence.  In the absence of the Z-promoting reagent Co(NH3)6

3+, both DX molecules 
have their extra domain on the same side of the shaft; adding Co(NH3)6

3+ converts the 
Z-forming sequence to the Z conformation, placing one of the extra domains on the 
other side of the shaft. 
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Fig. 8. DNA Nanomechanical Devices. (a) A device based on the B-Z transition of DNA. 
Addition of Co(NH3)6Cl3 converts a short segment from B-DNA to Z-DNA. (b) The machine 
cycle of a PX-JX2 device. Removal of PX set strands (I) leaves a naked frame to which JX2 set 
strands (II) can be added to change state. The PX state can be restored by the same procedures 
(III) and (IV). 

Figure 8b illustrates a robust sequence-dependent device that is capable of using 
the sequence specificity of DNA, so that a variety of devices can coexist in the same 
environment, yet be addressed individually [19]. The device can adopt two different 
states, termed PX and JX2, that differ from each other by a half-turn. The states are set 
by DNA strands that are termed 'set strands'. One can make a number of different 
devices by changing the sequences to which the set strands bind. In the drawing, the 
set strands for the PX conformation are drawn with thick lines, and the set strands for 
the JX2 conformation are drawn with thin lines. The set strands contain single-
stranded extensions that are not paired with any other strands. Yurke and his 
colleagues [20] have shown that when the complete complement to a set strand 
[termed an 'unset strand'] is added to solution, it will remove the set strand, leaving a 
naked device frame. Thus, the machine cycle shown in Figure 8b starts on the left 
with the PX state, moves clockwise through the addition of unset strands to leave a 
naked frame.  Continuing onwards, the set strands for the JX2 state are then added, 
and that state is formed.  Adding the unset strands for the JX2 state again produces the 
naked frame, and the addition of the set strands for the PX state completes the cycle. 

Two of these devices have been used to produce a nanomachine capable of 
translation [21]. The devices are used to couple DNA constructs in this machine, 
shown in Figure 8a.  From left to right, the machine contains a DNA diamond, a  
PX-JX2 device, a DNA double diamond, a distinct PX-JX2 device, and a second DNA 
double diamond.  The numbers represent sticky ends.  The gap above the first PX-JX2 
device is flanked by 1 and 2, and the gap above the second PX-JX2 device is flanked 
by 4 and 6. If the state of the left PX-JX2 device is changed from PX to JX2, and the 
other PX-JX2 device left untouched, the first gap will be flanked by 1 and 3, and the 
second gap will be flanked by 5 and 7.  There are four different states to the machine, 
and each of them places different sticky end pairs on the two ends of the gaps. The 
solution contains six DX molecules whose bottom domain is complementary to one of 
these pairs. Once DX molecules are in place above the gaps, they are ligated to each  
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Fig. 9. Advanced Devices Built from DNA.  (a) A translation device. The diamond on the left 
and the double diamonds in the center and on the right are separated by two PX-JX2 devices. 
The Arabic numerals indicated sticky ends. The sticky ends at the top will bind a DX molecule 
complementary to the numbers. As shown, a DX with sticky ends complementary to 1 and 2 
and another with sticky ends complementary to 4 and 6 will bind. If the device on the right is 
switched to the JX2 state, a DX complementary to 4 and 7 will bind. This arrangement allows 
for positional ligation of the DX molecules bound there. The set strands correspond to an 
mRNA codon, and the bottom sticky ends (i and j) of the DX are the equivalent of the 
anticodon. The top strand of the DX is equivalent to the amino acid of an aminoacyl tRNA. (b) 
A bipedal walker. The parts of a walk are shown. The unset strand removes the set strand of the 
right foot, and then another set strand fastens it to a new position on the sidewalk. The unset 
strand of the left foot then frees it and it is fastened by a new set strand to the position where 
the right foot was bound. 

other and to an initiator DX that binds to site 0. The product is determined by the state 
of the machine, and there is no transcriptional relationship between the set strands and 
the produce. The analogy to the components of protein synthesis is indicated in Figure 
9a: The DX molecules are analogous to aminoacyl tRNA molecules, their bottom 
domain to the anticodon, and their top strand to the amino acid. The set strands are 
analogous to codons. 

Another sequence-dependent device is illustrated in Figure 9b. This is a bipedal 
walker that walks on a sidewalk [22]. It consists of two double helical domains 
attached to each other by a flexible linker. The bottom end of each domain is a single-
stranded segment.  Similarly, the top end of each part of the sidewalk (a TX molecule) 
is single-stranded. The walker is positioned onto the sidewalk by set strands, similar 
to those in the PX-JX2 device. Removal of a set strand by adding an unset strand frees 
a double helical domain of the walker; addition of a set strand for a different position 
of the sidewalk locks it down to the new position. The drawing shows how the right 
leg of the walker is freed from the sidewalk, and then it is tied down to a new 
position. The left leg is then freed from the sidewalk, and is tied down to the position 
originally occupied by the right leg. Thus, a step has occurred.  The device can walk 
in both directions. By itself this one-dimensional example is only a prototype. 
However, the same device or a triped can walk in two directions on a two-
dimensional lattice. Thus it is programmable in an interesting fashion by the input 
strands; similarly, it also could be programmed by the output of logical processes, and 
could be used to keep track of the state to which a system had arrived. 
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6   Conclusions, Applications and Challenges 

We have demonstrated the facility and versatility of DNA as a bottom-up construction 
medium on the nanoscale. Objects, arrays and devices are all readily within the scope 
of this technology. Where can this approach be utilized? The system was originally 
devised to facilitate the crystallization of biological macromolecules.  The idea is to 
use the DNA lattice as a macromolecular-scale host for macromolecular guests; if all 
components are well ordered, crystallographic analysis can be performed on both the 
host and the guest. An example is shown in Figure 10a. However, if one can conceive 
of organizing biological systems, one also can imagine that nanoelectronic 
components can be organized [23]. Thus, by using the superb architectural properties 
of DNA described above, we may be able to organize molecular electronics in an 
efficient self-assembled fashion. This notion is shown in Figure 10b. We expect that 
the various devices noted above will be of use in producing materials that previously 
were inaccessible. 

Many technical challenges remain to be overcome before all of the potential of this 
approach can be realized.  We must extend our 2D capabilities to 3D, with high order. 
We must be able to incorporate both devices and hetero-species into these lattices. 
Both hierarchical and functional lattices remain to be developed, and sophistication of 
the chemistry must be achieved to make this a biomimetic, rather than a biokleptic 
system. Nevertheless, we are at the very beginning of structural DNA nanotech- 
nology, and the future appears to be boundless! 

 

Fig. 10. Applications of Structural DNA Nanotechnology. (a) A crystallographic application. A 
DNA box is shown with sticky ends in each direction. The sticky ends can associate to make a 
host lattice. Macromolecular guests are shown ordered within the host lattice, enabling their 
structure determination. (b) Ordering nanoelectronic components. Two branched junctions are 
shown, and their cohesion organizes molecular wires that are pendent from them. 
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Abstract. The biological world offers a full range of adaptive mecha-
nisms, from which technology researchers try to get inspiration. Among
the several disciplines attempting to reproduce these mechanisms ar-
tificially, this paper concentrates on the field of Neural Networks and
its contributions to attain sensorimotor adaptivity in robots. Essentially
this type of adaptivity requires tuning nonlinear mappings on the ba-
sis of input-output information. Several experimental robotic systems
are described, which rely on inverse kinematics and visuomotor map-
pings. Finally, the main trends in the evolution of neural computing are
highlighted, followed by some remarks drawn from the surveyed robotic
applications.

1 Introduction

Why the use of robots is not as widespread as some envisaged they would be by
now? At the risk of oversimplification, I would say that it is due to their lack of
adaptivity, at all levels. This capability is dispensable in well-engineered envi-
ronments, and thus we have very performant robots in manufacturing lines, but
it is a sine qua non when tasks are to be carried out in non-predefined worlds.

In this sense, the biological world – where adaptivity is crucial for survival –
constitutes a very good source of inspiration for robotics researchers, since it pro-
vides existence proofs of many adaptive mechanisms that do function. However,
caution must be taken, because the best natural solution may not be the best
artificial one [40]. Wheels, wings and calculators have often been mentioned as
examples of artificial solutions considerably different from their natural counter-
parts, and more performant according to certain criteria. The resources available
to engineering design depart a lot from those in nature, and not just when it
comes to materials, but also in the number of instances and spendable time.

With this note of caution in mind, i.e., accepting that biological plausibility
in itself adds no special value from an engineering viewpoint, it is safe to look
into natural adaptivity to get seed ideas that can be instantiated in a different
way by artificial means.
� A more detailed version of this review, although less up to date, can be found in

[48].
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2 Natural and Artificial Adaptivity

We refer to adaptivity as the capability of self-modification that some agents
have, which allows them to maintain a level of performance when facing envi-
ronmental changes, or to improve performance when confronted repeatedly with
the same situation. The term ‘agent’ above stands for a single cell, an organ,
an individual or even a whole society, because, in the biological world, adaptiv-
ity occurs at several levels, each having a possible counterpart in the design of
autonomous robots [42,14,53].

At the cell level, several chemical and electrical mechanisms of plasticity
have been discovered, some of which have been modelled and analysed within
the Neural Modelling field, and later applied to adjust the parameters of robot
sensors and actuators. See the chapters on ‘neural plasticity’ in [3].

When referring to individuals, adaptation is usually called learning and it
takes two rather different forms depending on whether it occurs at the senso-
rimotor or cognitive levels. Sensorimotor adaptation consists in building rele-
vant associations between stimuli and responses, while cognitive learning entails
constructing symbolic representations to guide decision-making. Two disciplines
have tried to mimick these two capacities. Neural Networks, closer to Biology,
has proven adequate to handle the massively-parallel tasks of perception and
control of action, while Artificial Intelligence, steeming from Computer Science
and Cognitive Psychology, has developed the necessary data structures and pro-
cedures to tackle symbolic learning [46,47]. Results in both disciplines have been
applied to Robotics, the former to attain adaptive robot sensorimotor mappings
[24], while the latter have led to so called learning robots [49,9,22,23].

Finally, at the species level, adaptation is attained through evolution. Ge-
netic algorithms [11,17] and evolutionary computation [4,5] are starting to be
used to tailor robot genotypes to given tasks and environments [15].

Table 1 summarizes the different adaptation levels and the involved disci-
plines.

In this paper we concentrate on adaptivity at the individual sensorimotor
level, i.e. both the robot morphology and its components are assumed to be
fixed and what may change with experience is the functional relationship between
sensors and actuators.

Table 1. Levels of adaptation and related disciplines

ADAPTATION TYPE OF “ARTIFICIAL”
LEVEL ADAPTIVITY DISCIPLINE

Cell Plasticity Neural Modelling

Sensorimotor Associative learning Neural Networks

Cognitive Symbolic learning Artificial Intelligence

Species Evolution Evolutionary Algorithms
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3 Natural Inspiration for Artificial Neural Adaptivity

Neural networks are essentially procedures for approximating nonlinear map-
pings given a set of inputs and some information on the corresponding outputs.
The approximation is attained by iteratively tuning the weights of the connec-
tions between neurons. This iterative process is referred to as neural adaptivity,
leading to the desired input-output behaviour of the network.

The approaches to adaptivity pursued within the Neural Networks field have
their roots in the learning paradigms developed in the domain of Behavioural
Psychology (refer to Figure 1). This is the reason why the rules to attain neural
adaptivity are usually called learning rules. The role of the animal in the be-
havioural learning experiments is played here by the neuron. It is worth noting
that, although inspiration comes from the biological world, the artificial tech-
niques are here applied not only to a different physical substrate, but also at a
different level (neuron instead of animal).

INSTRUMENTAL

CONDITIONING

CONDITIONING

CLASSICAL

INPUT-OUTPUT

TEACHING

TYPE OF LEARNING

Supervised

Reference-model

control

Closed-loop

KEYWORDS NEURAL RULES

CORRELATIONAL

REINFORCEMENT

ERROR-

MINIMIZATION

Pavlov

Unsupervised

Open-loop

Trial-and-error

Optimal control

Skinner

none

qualitative

quantitative

DEGREE OF FEEDBACK

Teacher

+

-

US

CS

R

DIAGRAM 

Environment

CS

Fig. 1. Learning paradigms inspiring neural adaptivity. In the diagrams, US stands for
unconditioned stimulus, CS for conditioned stimulus and R for response.

The most basic learning paradigm is classical conditioning, as introduced
by Pavlov [26], which consists of repeatedly presenting to an animal (e.g. a dog)
an initially meaningless stimulus (e.g. the sound of a bell) together with an un-
conditioned stimulus (e.g. food) that triggers a reflex response (e.g. salivation).
As a result of such paired presentations, the animal builds up an association
so that, when presented with the conditioned stimulus (e.g. the sound of a bell)
alone, it produces the same response as before (e.g. salivation). This type of learn-
ing is completely open-loop, in the sense that it entails no feedback. The neural
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learning rules mimicking this type of conditioning come from the classical Heb-
bian rule [13], in which a connection weight is adjusted according to the correla-
tion between the activation of the two neurons connected, this being the reason
why they are called correlational rules. Neural models incorporating these type
of rules are Self-Organizing feature Maps (SOM) [16], the Cerebellar Model Ar-
ticulation Controller (CMAC) [1], and Adaptive Resonance Theory (ART) [12].

Instrumental conditioning was introduced by Skinner [41] and requires
that the animal under experimentation performs an arbitrary action (e.g. press-
ing a lever, walking around) in the presence of an initially meaningless stimulus
(e.g. a flickering light). If the action is “appropriate” to the given stimular sit-
uation, the animal receives a reward (e.g. food). Otherwise, it receives nothing
or punishment, depending on the particular experimental design being applied.
Thus, this learning paradigm strongly relies on providing the animal with a rein-
forcement signal dependent on the action performed. This can be conceptualized
as a qualitative feedback. The neural learning rules implementing this type of
conditioning at the neuron level are known as reinforcement-based rules [43].

Note that the natural progression in the degree of feedback supplied suggests
the use of a quantitative error signal to guide learning. This is represented in the
third row of Figure 1 under the name of input-output teaching. Here, after
presenting an input to the system and observing the emitted response, a teacher
supplies the desired output whose difference with the emitted one provides the er-
ror signal which is fed back to the system. This is an entirely closed-loop learning
process that requires perfect knowledge of the input-output pairs to be associ-
ated. The most widely used neural learning rules follow this scheme and we call
them error-minimisation rules. They are mostly variants of the well-known back-
propagation procedure [19,39] aimed at palliating its main drawbacks, namely
catastrophic forgetting, overfitting, and a slow convergence rate.

Several techniques to prevent catastrophic forgetting [30] by explicitly min-
imising degradation of the previously learned patterns while encoding a new one
[25,28] and by introducing noise [2,35] have been devised. Overfitting, i.e., the
problem of learning a function too tailored to the samples and thus yielding a
high generalisation error, is usually addressed by using methods for model com-
plexity control [6,7] and, in particular, regularisation. An interesting observation
is that many such methods lead to functional invariance [31,32,36], i.e., they con-
verge to the same function irrespective of network size for fixed regularisation
parameters.

4 Robot Sensorimotor Mappings

Motion control, both in biological and technological systems, relies strongly on
sensorimotor mappings. These mappings vary considerably [45], depending not
only on the nature of the involved sensors and actuators, but also on the goal
pursued.

Tasks to be carried out by robots are usually specified in world coordinates
(or, alternatively, in terms of sensor readings), while robot moves are governed
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by their actuator’s variables. For instance, a sealing task may be specified as
a given curve in 3D space or as following a prespecified visual pattern, but it
has ultimately to be translated into currents sent to the motors governing the
different joints. Therefore, robot control critically depends on the availability of
accurate mappings from physical space or sensor space to joint space or motor
space. The discussion in what follows is centered on mappings required for robot
arms to work, but similar arguments apply to the case of mobile robots [20,21].

For a gripper to reach a desired position and orientation in space, the robot
controller must access a mapping relating workspace coordinates to joint coor-
dinates. This is called inverse kinematics mapping, because the natural (direct)
map is that relating the values of the joint coordinates defining an arm config-
uration to the position and orientation of its end-effector (hand, gripper,...) in
the workspace.

If a desired end-effector trajectory is specified instead, then the controller
should resort to an inverse dynamics mapping relating such trajectory to the
forces and torques that need to be exerted at the different joints to realize it.
Note that this mapping, which is again called inverse for the same reason above,
cannot be characterized uniquely in terms of inputs and outputs, it being instead
dependent on state variables (or the short-term history of inputs) as it is usually
the case with dynamic systems.

For tasks entailing the achievement of a goal using sensory feedback, pro-
gramming even in terms of the coordinates of the workspace can be very com-
plex. An example of this is the visual inspection of large objects that cannot be
precisely placed (e.g., aircraft wings), since devising a detailed vision-based con-
trol strategy that moves the camera to the same relative position with respect
to the object in all possible situations, and subject to real-world conditions of
uncertainty and noise, is extremely difficult. What is needed to accomplish this
type of tasks is an appropriate sensorimotor mapping relating sensory patterns
to motor commands.

The diversity of the aforementioned mappings sometimes hides what they
have in common: an underlying highly nonlinear relation between a continuous
(often hard to interpret) input domain and a continuous motor domain; a relation
that is very difficult (when not impossible) to derive analytically. Furthermore,
because of environmental changes or robot tear-and-wear, the mappings may
vary in time and then one would like the controller to adapt to these variations,
without any human intervention if possible. Therefore, a way of learning (or tun-
ing) these mappings automatically while robots move is highly desirable. Since,
as we have mentioned, neural networks are essentially procedures for approxi-
mating nonlinear mappings, they constitute a good tool to attain the desired
adaptivity.

In what follows we will describe some experiences related to the learning of
two of the mappings mentioned above, namely inverse kinematics and visuomotor
mappings.
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5 Adaptive Inverse Kinematics

Making robots adaptive to changes in their own geometry (e.g., link bending,
encoder shifting and other wear-and-tear deformations occasioned by regular
functioning) would certainly widen their range of application. Since these geo-
metric changes affect the robot inverse kinematics, the interest of using neural
networks to approximate such mapping has been widely recognized. Especially
when the operation conditions of the robot (in space, underwater, etc.) make it
very hard to recalibrate it.

Along this line DASA (Daimler-Benz Aerospace S.A.), in the framework of
the Advanced Servicing Robot project targeted at unmanned space stations,
proposed an application of maintenance of electronic equipment that required
the automatic recalibration of a 6-dof robot in-situ, since recalibration through
teleoperation from earth is a very time-consuming task due to communication
delays. After reviewing previous approaches to the learning of inverse kinematics,
we will present the solution implemented in the REIS robot included in the space-
station mock-up located at DASA’s R&D laboratory, in Bremen, Germany (see
Figure 2).

The conclusion reached after extensive experimentation with feedforward net-
works using backpropagation [18,46] is that a coarse mapping can be obtained
quickly, but an accurate representation of the true mapping is often not feasi-
ble or extremely difficult. The reason for this seems to be the global character

Fig. 2. Space station mock-up at Daimler-Benz Aerospace, Bremen



38 C. Torras

of the approximation obtained with this type of networks using sigmoid units:
every connection weight has a global effect on the final approximation that is
obtained [18].

An obvious way to avoid this global effect is of course using local representa-
tions, so that every part of the network is responsible for a small subspace of the
total input space. Thus, Ritter et al. [27] have used a self-organizing map (SOM)
together with an error-minimisation rule to learn the visuomotor mapping of a
robot arm with three degrees of freedom (dof) in 3D space. The target position
of the end-effector is defined as a spot registered by two cameras looking at the
workspace from two different vantage points. Neurons are arranged in a 3D lat-
tice to match the dimensionality of physical space. It is expected that learning
will make this lattice converge to a discrete representation of the workspace.

Extensive experimentation by Ritter et al. [27] and other groups has shown
that the network self-organizes into a reasonable representation of the workspace
in about 30.000 learning cycles. This should be taken as an experimental demon-
stration of the powerful learning capabilities of this approach, because the con-
ditions in which it is made to operate are the worst possible ones: no a priori
knowledge of the robot model, random weight initialization, and random sam-
pling of the workspace during training.

This basic model has been extended in three directions to cope with higher-
dof robots. First, a hierarchical version, consisting of a 3D SOM whose nodes
have associated a 2D SOM each, was applied to a 5-dof robot. The 3D net
encodes the workspace as before, while each 2D subnet approximates the end-
effector orientation space at the corresponding position [27].

Ruiz de Angulo and Torras [29] adapted this hierarchical model to suit a
practical setting. Thus, instead of learning the kinematics from scratch, only
the deviations from the nominal kinematics embedded in the original robot con-
troller are learnt. This, together with informed initialization and sampling, as
well as several modifications in the learning algorithm aimed at improving the
cooperation between neurons, led to a speed-up of two orders of magnitude with
respect to the original model.

The resulting algorithm constitutes the core of the recalibration system that
was installed in the REIS robot included in the space-station mock-up located
at DASA, as mentioned above. Figure 2 is a photograph of such a set-up, where
the different racks containing the electronic cards that the robot should maintain
are shown. The robot must reach the handles of the racks with enough precision
to be able to pull them out and, afterwards, extract a faulty card in order to
replace it by another one. Although testing in this set-up has been constrained
by the need to preserve robot integrity, the system has proven able to correct
large miscalibrations of the robot: 95% of the decalibration was corrected with
the first 25 movements, this percentage raising to 98% after 100 movements [29].
Moreover, other desirable features in stand-alone applications, such as parameter
stability, are guaranteed.

The third extension of the basic model relies on the generalisation of SOMs
to parameterized SOMs (called PSOMs). The idea is to turn the discrete repre-
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sentation into a continuous one by associating a basis function to each neuron, so
that a parameterized mapping manifold is obtained. Moreover, PSOMs make no
distinction between inputs and outputs, thus encoding bidirectional mappings.
The PSOM reduces considerably the number of training samples required to
attain a given precision as compared to the SOM [50], allowing the learning of
the full inverse kinematics of a 6-dof robot with less than 800 movements.

The main drawback of using neural networks to approximate the inverse
kinematics of robot arms is precisely the high number of training samples (i.e.,
robot movements) required to attain an acceptable precision. A trick has been
proposed [33,37], valid for most industrial robots, that greatly reduces the num-
ber of movements needed to learn or relearn the mapping to a given accuracy.
This trick consists in expressing inverse kinematics as a composition of learnable
functions, each having half the dimensionality of the original mapping. A training
scheme to learn these component functions has also been proposed. Experimen-
tal results obtained by using PSOMs, with and without the decomposition, show
that the time savings granted by the proposed scheme grow polynomically with
the precision required.

The aforementioned trick assumes that the last three robot joints cross at
a point, a condition satisfied by some classic robot architectures, but not by
other more innovative ones. Therefore, a more general decomposition technique
applicable to any serial robot has recently been developed [38], which still retains
the main advantage of the trick above: The input dimensionality of each of the
tasks resulting from the decomposition is half that of the original one. Thus,
for a given desired accuracy, if the number of training samples required to learn
inverse kinematics directly is O(nd), through the decomposition it reduces to
O(nd/2). This yields an enormous reduction in the number of samples required
for high-precision applications.

The development of humanoid robots has recently raised the interest in learn-
ing inverse kinematics. Due to the many dof’s involved, the aim is no longer
learning the mapping for the whole workspace, but focussed on a specific tra-
jectory. Following the trend of using localized representations, D’Souza et al. [8]
have applied a supervised algorithm –locally weighted projection regression– in
this context, with promising results.

6 Adaptive Visuomotor Mappings

Depending on the task to be performed and the camera-robot arrangement, vi-
suomotor mappings take different forms. Thus, in eye-hand coordination, where
cameras external to the robot are used to monitor the pose (position and orien-
tation) of its end-effector, a mapping from the camera coordinates of a desired
end-effector pose to the joint angles that permit attaining that pose is sought.
This mapping is closely related to the inverse kinematics one, especially if the
camera coordinates of selected points in the end-effector uniquely characterize
its pose. Therefore, the same models used to learn inverse kinematics have been
applied to the learning of the visuomotor mapping underlying eye-hand cooor-
dination [27].
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a)  Robot and camera

h) Final image

b)  Reference image

c) Initial image

e) After 1 movement

d) Initial contours

f) After 5 movements

g) After 7 movements

Fig. 3. Visual positioning system developed in collaboration with Thomson Broadcast
Systems
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A camera mounted on a robot arm is used in tasks such as visual positioning
and object tracking. The goal of these tasks is to move the camera so that the
image captured matches a given reference pattern. The target is thus no longer
a position of the robot in space but a desired image pattern, and the desired
visuomotor mapping needs to relate offsets w.r.t. that pattern with appropriate
movements to cancel them. In visual positioning, the scene is assumed to be static
and the main issue is to attain high precision. Applications include inspection and
grasping of parts that cannot be precisely placed (e.g., in underwater or space
settings). The aim of object tracking is to maintain a moving object within the
field of view, speed being here the critical parameter instead of precision.

The classical way of tackling these tasks consists of defining a set of image
features (corners, holes, etc.) and then deriving an interaction matrix relating
2D shifts of these features in the image to 3D movements of the camera [10].
The advantages of applying neural networks to this task are the direct learning
of the interaction matrix, as well as avoiding the costly matching of features in
the current and reference images.

The latter approach has been used in an application developed for Thomson
Broadcast Systems [52] for the inspection of large objects (e.g., ship hulls, air-
plane wings, etc.). Since these objects are difficult to move, it is the camera that
has to travel to attain a pre-specified position and orientation with respect to
the object. The developed camera control system consists of a feedforward net-
work trained with backpropagation. The training procedure consists of moving
the camera from the reference position to random positions and then using the
displacement in image features together with the motion performed as input-
output pairs. In operation, the robot is commanded to execute the inverse of the
motion that the network has associated to the given input.

The key option in this work is the use of global image descriptors, which per-
mits avoiding the costly matching of local geometric features in the current and
reference images. By using a statistical measure of variable interdependence (the
mutual information criterion), sets of global descriptors as variant as possible
with each robot dof are selected from a battery of features, including geometric
moments, eigenvectors, pose-image covariance vectors and local feature analysis
vectors [51]. The results obtained with a 6-dof show that, after 10.000 learning
cycles, translation and rotation errors are lower than 2mm and 0.1 degrees, re-
spectively. Figure 3 shows the robot-mounted camera and the reference image
of an object to be inspected (a water valve), together with several snapshots
along the visual positioning process. In this case, the silhouette of the object
could be readily extracted and 32 Fourier descriptors coding it were used as
image features. It can be observed that, after 7 movements, the captured image
is practically registered with the reference one.

7 Conclusions

This paper has reviewed the ways in which neural computing may help to in-
crease sensorimotor adaptivity in robots. The mechanisms of neural adaptivity
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have been inspired in the learning paradigms of Behavioural Psychology (classical
and instrumental conditioning), and fall into three classes that require progres-
sively more feedback: correlational, reinforcement and error-minimisation rules.

Some trends in the development of these learning rules deserve notice, since
they have parallels in other disciplines dealing with adaptivity at diferent scales,
such as Evolutionary Computation and Artificial Intelligence. The first trend is
that of progressing from binary variables to continuous ones. This entails moving
from discrete search spaces and classification tasks to manifold representations
and function approximation. Then, issues such as model complexity control [7]
and functional invariance [36] become very important.

A second trend is that of progressively replacing local feedback for more
global one, this globalisation taking place both spatially and temporally. The first
learning rules proposed required feedback to be supplied to each single neuron.
Backpropagation made a big step forward in allowing feedback to be supplied
at the overall network level (spatial globalisation). Reinforcement learning has
greatly contributed to dealing with deferred feedback (temporal globalisation).

The dichotomy between locality and globality appears also in the state space
representation. Correlational rules are often incorporated into network models
that build localised representations (such as SOM, ART and CMAC), while the
strength of most models based on error-minimisation and reinforcement rules
lies precisely in the distributed (global) way in which information is represented
across all the network weights. In the localised representations, appropriately
tuning the neighbourhood size is a key issue.

Moving from off-line to on-line learning is another trend observed in neu-
ral computing. Initial learning procedures were designed to work in a batch
mode (with all training samples supplied at the same time), while a later chal-
lenge was to incorporate new samples into an already trained network. Sequen-
tial learning addresses this challenge by explicitly seeking to avoid catastrophic
forgetting [34].

Finally, let us mention the important role that randomness plays in learning.
This has been widely acknowledged in many contexts, but specifically in neural
computing noisy inputs and weights have proven useful for regularisation (a
complexity control method), and randomness is of course a key ingredient of
reinforcement learning.

After the overview of neural adaptivity, the paper has focused on its applica-
tion to robot control. This basically entails the learning of nonlinear mappings
relating stimuli to responses. Several robotics applications have been surveyed,
classified according to the underlying mapping that needs to be approximated:
inverse kinematics and visuomotor mappings.

The learning of inverse kinematics makes robot arms adaptive to changes in
their own geometry (e.g., link bendings, encoder shiftings, etc.), while learning
of visuomotor mappings allows robots to cope with changing environments (e.g.,
different loads, moving objects, etc.).

A first remark stemming from the survey of robotic applications is that in
the case of mappings that can be easily sampled, it seems sufficient to apply a
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plain error-minimisation procedure. Some simple inverse kinematics mappings
and visuomotor mappings used for visual positioning have been learned in this
way. If the input space is complex, then many researchers have resorted to a
combination of correlational rules for the efficient coding of that space, with
error-minimisation rules to build the appropriate association with the outputs.
The use of SOMs to encode the robot workspace or the sensor space falls into
this category. Then, an error-minimisation rule is used to build the appropriate
input-output mapping: inverse kinematics in this case. Finally, when the task
is specified as a goal to be reached using sensory feedback, without making
explicit the movements necessary to reach it, then the only possibility is to
resort to reinforcement learning schemes, which depend just on the availability
of a measure of success rather than an error measure.

The number of learning cycles required ranges widely in the applications de-
scribed, depending on the complexity of the mapping to be learned as well as on
the accuracy required. Note that learning time is directly related to the number
of training samples, each of which entails at least one robot movement. And
robots are slow as compared to computers. Therefore, minimising the number
of training samples is of paramount importance in the application of neural net-
works to robotics, and many efforts are currently oriented in this direction (e.g.,
adaptive sampling, function decomposition) [37,38].
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P, Arbib MA, Cervantes-Pérez F and Romo R (eds.) Neuroscience: From Neural
Networks to Artificial Intelligence, Research Notes in Neural Computing 4: 509-523,
Springer-Verlag: Berlin Heidelberg New-York

47. Torras C (ed) (2001) Special issue on ‘Neural Networks at IJCAI’01’. Intl. Journal
of Computational Intelligence and Applications 1(4)

48. Torras C (2002) Neural computing increases robot adaptivity. Natural Computing
1(4): 391-425

49. van de Velde W (ed) (1993) Special issue on ‘Towards Learning Robots’. Robotics
and Autonomous Systems 8(1-2)

50. Walter J and Ritter H (1996) Rapid learning with parametrized self-organizing
maps. Neurocomputing 12: 131-153

51. Wells G and Torras C (2001) Assessing image features for vision-based robot po-
sitioning. Journal of Intelligent and Robotic Systems 30(1): 95-118

52. Wells G, Venaille Ch and Torras C (1996) Vision-based robot positioning using
neural networks. Image and Vision Computing 14: 715-732

53. Ziemke T and Sharkey N (eds) (1998) Special issue on ‘Biorobotics’. Connection
Science 10(3-4)



On Self-assembly in Population P Systems

Francesco Bernardini1, Marian Gheorghe1, Natalio Krasnogor2,
and Jean-Louis Giavitto3

1 Department of Computer Science, The University of Sheffield,
Regent Court, Portobello Street, Sheffield S1 4DP, UK

{F.Bernardini, M.Gheorghe}@dcs.shef.ac.uk
2 Automated Scheduling, Optimisation and Planning Research Group,

School of Computer Science and Information Technology,
University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK

Natalio.Krasnogor@nottingham.ac.uk
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Abstract. We introduce a model of self-assembly P systems as devices
that use some of the features of population P systems to progressively
grow a graph structure by forming new bonds between the existing cells
and some new cells which are brought into the system step by step. The
new cells are then able to self-assemble locally either at the level of cells
or at the level of neighbourhoods of cells by using bond-making rules ac-
cording to a specific self-assembly model. We describe two self-assembly
models, called respectively parallel single-point self-assembly and par-
allel multi-point self-assembly. Then, we precisely state the problem of
programmable self-assembly for P systems as the problem of uniquely
generating a given graph by means of self-assembly P systems. In this
respect, we show how to define a self-assembly P systems that uniquely
generates a complete binary tree by using a “minimal” set of resources.

1 Introduction

Self-assembly is the ubiquitous process by which simple individual components
autonomously assemble into intricate complexes, which is now being studied in
many different research areas of molecular biology, nanotechnology, robotics,
and natural computing. In this respect, a number of (abstract) models for
self-assembly have been proposed and the problem of having programmable
self-assembly models has been identified as a key issue in self-assembly re-
lated research. Programmable self-assembly means defining a formalism that
can help the systematic (or, even better, automatic) design of an appropri-
ate set of components and the associated interactions which will make these
components autonomously, robustly and efficiently assemble to form a desired
shape or pattern [5]. In the existing literature, two main approaches to the
study of programmable self-assembly models have been considered: an incre-
mental/generative approach (e.g, tiles [8], amorphous computing [1]) where a
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shape is generated in an incremental way by progressively adding to the existing
structure a certain number of components in correspondence to some specific
”growing points”; a distributed approach where the desired shape results from
the spatial re-organization of some already existing components [4]. In this paper,
we propose an incremental/generative approach for the self-assembly of a graph
that is based on P systems, a fairly new computational model which abstracts
from the structure and functioning of living cells [6]. In particular, we focus on
the population P system variant introduced in [2], which provides a formalism
for modelling abstract systems consisting of a population of individual compo-
nents, called cells, which are linked together to form a graph structure; cells
interact each other by means of the existing set of links, which is continuously
updated by means of some bond-making rules specifying how to add/remove
links between the cells in the system. Here, bond-making rules are used in a self-
assembly process to progressively enlarge an existing graph structure by forming
new bonds between the existing cells and some new cells which are brought into
the system step by step; bond-making rules must be used according to a specific
self-assembly model. In this respect, we present two self-assembly models where
bond-making rules are restricted to be used “locally” either at the level of cells
or at the level of neighbourhood of cells. Then, we precisely state the problem of
programmable self-assembly, the problem of defining a self-assembly P system
that uniquely generates a given target graph. Finally we show how a complete
binary tree can be uniquely generated by a self-assembly P system by using a
“minimal” set of resources.

2 Preliminaries

We recall here some basic notions and notations commonly used in membrane
computing as well as some formal language concepts we need in the rest of the
paper. We refer to [6], [7] for further details.

An alphabet is a finite non-empty set of abstract symbols. Given an alpha-
bet O, we denote by O∗ the set of all possible strings over O, including the empty
string λ. The length of a string x ∈ O∗ is denoted by |x| and, for each a ∈ O,
|x|a denotes the number of occurrences of the symbol a in x. A multiset over O
is a mapping M : O −→ N such that, M(a) defines the multiplicity of a in the
multiset (N denotes the set of natural numbers). Such a multiset can be rep-
resented by a string a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ O∗ and by all its permutations

with aj ∈ O, M(aj) 
= 0, 1 ≤ j ≤ n. In other words, we can say that each string
x ∈ O∗ identifies a finite multiset over O defined by Mx = { (a, |x|a) | a ∈ O }.
Moreover, given two strings x, y ∈ O∗, we denote by xy their concatenation,
which corresponds to the union of the multisets represented by the string x, y.

A finite undirected graph is a pair G = (V,E) where V ⊆ N if a finite set of
nodes, and E ⊆ V ×V is a finite set of unordered pairs called edges; the edges in
the graph G are denoted by using the notation {i, j}, with i, j ∈ V . We restrict
our discussion to finite undirected graphs and therefore we will simply use the
term graph. A graph G = (V,E) is said to be cyclic if and only if E contains
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at least a subset of edges of the form {i, i1}, {i1, i2}, . . . , {in−1, in}, {in, i}, with
n ≥ 1; a graph G = (V,E) is said to be connected if and only if, for each
i 
= j ∈ V , either {i, j} ∈ E or there exist i1 
= i2 
= . . . 
= in−1 
= in ∈ V ,
with n ≥ 1, such that, {i, i1} ∈ E, {it, it+1} ∈ E, for each 1 ≤ t ≤ n − 1, and
{in, j} ∈ E. A tree is a connected acyclic graph where all the nodes are thought
as being descendants of an unique node called root; the depth d of a tree is
the length of the longest path from the root to another node different from the
root. The nodes placed at depth d are called leaves whereas, the nodes placed
at depth p, with 1 ≤ p ≤ d− 1, are called intermediate nodes. A complete n-ary
(binary if n = 2) tree of depth d ≥ 0, with n ≥ 1, is a tree where, for each
0 ≤ p ≤ d, the number of nodes placed at level p is exactly np. Finally, given
two graphs G1 = (V1, E1), G2 = (V2, E2), we say G1 is isomorphic to G2, and
we write G1 ≈ G2 if and only if, there exists a bijective mapping h : V1 −→ V2

such that, for each i, j ∈ V1, {i, j} ∈ E1 iff {h(i), h(j)} ∈ E2.

3 Self-assembly P Systems

We call self-assembly P systems a family of P systems describing a population
of cells that self-assemble together to form a graph structure. Cells are the basic
functional units of the system and they correspond to nodes in a graph which,
at any moment, defines the structure of the system. The edges in such a graph
represent links which tightly bond the cells to each other. Such a configuration
consisting in a population of cells linked to form a graph structure is called
an assembly of cells. Each cell in a given assembly contains a finite multiset of
objects which is continuously updated by means of a finite set of transformation
rules and communication rules. Transformation rules are used inside the cells
to consume some objects in order to produce some new ones; communication
rules are instead used to move objects from one cell to the other by using the
edges in the graph as if they were communication channels. As well as this,
cells in a given assembly can form bonds with some new cells that, step by
step, are brought into the system in order to enlarge the current population of
cells and form a new graph structure. These bonds are created by some bond-
making rules which specify how to connect two cells in the system depending on
their respective contents. More precisely, in each step of a self-assembly process,
by starting from a given assembly of cells, we first update the content of each
cell by using their respective sets of transformation and communication rules;
then we introduce into the system some new cells which self-assemble by using
bond-making rules to connect themselves to the existing structure according to
a chosen self-assembly model.

The definition of self-assembly P systems proposed here is developed along-
side the population P system model introduced in [2] where bond-making rules
were used for the first time in order to define P systems with a dynamic graph
structure.

Definition 1. A self-assembly P system is a construct

P = (O,L, Γ, σ,R,B)
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where:

– O is a finite alphabet of symbols called objects;
– L is a finite alphabet of symbols called labels;
– Γ is a finite set containing t distinct cell templates of the form Ci = (xi, li, mi)

with 1 ≤ i ≤ t, xi ∈ O∗, l ∈ L, and mi ≥ 1 the number of bonds that can be formed
by that cell;

– σ = (w, q, b), is the seed cell with w ∈ O∗, q ∈ L, b ≥ 1 the number of bonds that
can be formed by the seed cell;

– R is a finite set of rules of the forms:
1. [ x → y ]l, with x ∈ O+, y ∈ O∗, l ∈ L (transformation rules),
2. [x; y, in]l, with x, y ∈ O∗, l ∈ L (communication rules);

– B is a finite set of bond-making rules of the form (l, x; y, l′), with l, l′ ∈ L, x, y ∈ O∗

and, for some 1 ≤ i ≤ t and z ∈ O∗, Ci = (xi, li, mi) ∈ Γ , xi = yz, li = l′.

The symbols in O are used for the objects that can be contained inside the cells
whereas, the symbols in L are instead used for labelling the cells and they are
necessary to retrieve the subset of rules from R to be used inside a specific cell.

The set Γ contains a finite number of distinct cell templates C1, C2, . . . , Ct,
with t ≥ 1; the templates in Γ can be instantiated by cloning an arbitrary number
of copies, which can then be added to a given assembly of cells as to enlarge the
current structure of the assembly. At the beginning, the initial assembly of cells
is given by the seed cell σ and the graph containing only the node associated
with this cell and no edges.

Each cell in a self-assembly P system, as well as each cell template, is char-
acterised by a finite multiset of objects defining its content, by a label from L
identifying the rules which can be used inside that cell and by a positive integer
providing a bound for the total number of bonds which can be formed by that
cell. The value of this bound is decreased by one every time a cell form a new
bond and this makes sure that, at any moment, the current value of such a bound
corresponds to the number of bonds which can still be formed by that cell. A
cell can form a new bond if and only if its value of the bound on the number of
bonds is greater or equal to 0. A clone of a cell template is a cell that inherits
from a template in Γ the initial information about its content, its label, and its
bound on the number of bonds.

A transformation rule [x → y ]l in R is an usual multiset rewriting rule
specifying that, inside a cell with label l, an occurrence of a multiset x can be
replaced by an occurrence of a multiset y. A communication rule [x; y, in]l in R
instead specifies that, in presence of a multiset x, a cell with label l can receive an
occurrence of the multiset y from one of its neighbouring cells; communication
rules are executed non-deterministically; a neighbouring cell is a cell that is
directly linked to the cell where the communication rule is applied.

Finally, we have a finite set of bond-making rules in B containing rules of the
form (l, x; y, l′), with x, y ∈ O∗, l, l′ ∈ L. A bond making rule (l, x; y, l′) must
be read from left to right and it specifies that a cell with label l′, containing an
occurrence of the multiset x and already present in the current assembly of cells,
can form a bond with a new cell which is being added to the current assembly in
order to enlarge the existing graph structure if and only if, this cell is a clone of
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cell template in Γ containing an occurrence of the multiset y and having label
l′. Objects are not consumed by bond-making rules but they are rather used as
“resources” to be allocated to the bond-making rules in order to determine the
number of bonds that can be effectively formed between each cell in the current
assembly and the new cells that are being added in order to enlarge the existing
graph structure. In particular, the same occurrence of a given multiset of objects
can be used only by one bond making rule at a time.

Next, we formally introduce the notion of an assembly of cells in a self-
assembly P system P and clarify the notion of a derivation in such a system.

Definition 2. Let P = (O,L, Γ, σ,R,B) be a self-assembly P system as specified
in Definition 1. An assembly of cells in P is a tuple A = (σ1, σ2, . . . , σn, γ) where:

– σi = (wi, qi, bi), for each 1 ≤ i ≤ n, is a cell with wi ∈ O∗ and qi ∈ L, and
bi ≥ 0 the number of bonds that can be formed by that cell;

– γ = ({1, 2, . . . , n}, E), with E ⊆ {{i, j} | 1 ≤ i 
= j ≤ n }, is a connected
graph defining the structure of the assembly.

We also say that the assembly S = (σ1, ({1}, ∅)), with σ1 = σ, is the seed
assembly of P.

Now, given a self-assembly P system P , a step of derivation is performed in two
separate stages: a stage of evolution-communication and a stage of self-assembly.

1. Evolution-communication: we apply the rules in R inside each cell in the
current assembly in a non-deterministical maximal parallel manner. This
stage of evolution-communication can be considered as being the same as in
[2] where an analogous evolution-communication stage is defined that deals
with the same type of rules.

2. Self-assembly: a certain number of clones of the cell templates in Γ are added
to the current assembly of cells by connecting them to the existing structure
by using the bond-making rules in B according to a specific self-assembly
model.

This latter stage of self-assembly corresponds to the stage of bond-making
considered in [2] for defining the notion of a computation in a population P
system. Here the difference with respect to [2] is that we do not destroy any
existing bond but we rather increase the structure by adding new bonds and
new cells. Specifically, in our model, a bond, as well as a cell, once introduced in
an assembly of cells, can never be removed from in any further step of derivation.

In the next two subsections, we will present two different self-assembly models
which are defined by imposing particular restrictions on the use of the bond-
making rules.

3.1 Parallel Single-Point Self-assembly

We consider here a self-assembly model where, at each stage of self-assembly
process, each cell in the current assembly serves as an acretion point where new
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cells cloned from the template set can attach. This process occurs simultaneously
for each of the cells already assembled and hence the name ”parallel single-
point” self-assembly. More specifically, for each already assembled cell we non-
deterministically select a maximal set of new clones to be connected to that
cell forming a bond between the later and each clone in the selected set; this
set of new cells must be maximal with respect to both the particular choice of
bond-making rules, the current distribution of objects inside the cell, and the
number of bonds that can be effectively formed by that cell which, by definition,
is bounded by a fixed constant. The main restriction in this self-assembly model
is that, after the application of the bond-making rules, each new cell ends-up
connected to the graph defining the structure of the assembly only by means of
a single bond that is created between this new cell and a specific pre-existing
cell. Note that bond cannot be formed between two new cells introduced during
the same stage of self-assembly. Moreover, as we want the resulting graph to be
connected, we also impose the constraint that a new cell is added if and only if
a new bond can be effectively formed.

More formally, let P = (O,L, Γ, σ,R,B) be a self-assembly P system as
specified in Definition 1 and let A = (σ1, σ2, . . . , σn, γ), for some n ≥ 1, be an
assembly of cells in P as specified in Definition 2. We write A

sa=⇒P A′, and we
say A′ is derived from A by single-point self-assembly, if and only if A′ is an
assembly of cells in P which is obtained from A in the following way.

1. For each cell σi = (wi, qi, bi) in A, with wi ∈ O∗, qi ∈ L, bi > 0, 1 ≤ i ≤ n,
we select a maximal set of bond-making rules from B to be used to link this
cell with a maximal number of clones of the cell templates in Γ . This is set
of bond-making rules is constructed by assigning in a non-deterministical
way the objects in wi to the rules B as far as it is possible (i.e., all the
objects that can be assigned to some bond-making rules must be assigned to
some bond-making rule). However, the total number of bond-making rules
to be applied must not be greater than bi. Then, for each bond-making
rule (qi, x; y, l′) in B selected to be applied during this self-assembly stage,
and for each occurrence of the multiset x in wi assigned to that rule, we
introduce into the new assembly A′ a new cell σ′

h = (w′
h, q

′
h, b

′
h − 1) such

that: h > n is a new index which has not yet been used for any other cell
in A′, w′

h = yz = xj , q′h = lj, b′h = mj , for some Cj = (xj , lj,mj) ∈ Γ and
y, z ∈ O∗. At the same time a node h and an edge {i, h} are added to the
graph γ′ in A′. The cell σi, is instead replaced in A′ by a cell σ′

i where the
value bi is decreased by the number of bonds formed by this cell in this stage
of self-assembly.

2. For each cell σi in A, with 1 ≤ i ≤ n, which no new cells can be linked to,
we add to the assembly A′ a cell σ′′

i = σi and a node i in the graph γ′.
3. For each edge {i, j} in the graph γ from the assembly A, with 1 ≤ i 
= j ≤ n,

we add the same edge {i, j} to the graph γ′.
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4. Finally, we renumber the cells, the nodes, and the edges in A′ in an one-
to-one manner with values from {1, 2, . . . , n′}, with n′ ≥ n ≥ 1 the current
number of cells in A′, in such a way to preserve the correspondence between
cells, nodes and edges.

Parallel single-point self-assembly has a limited capacity of forming complex
graph structures as it works under the assumption that, during a self-assembly
stage, a new cell can form only one single bond with a specific cell in the current
assembly. Moreover, from that moment on, this new structure will never be
altered apart for the introduction of more new cells. Specifically, if we denote
by ⇒P a derivation step in a P system P which uses single-point self-assembly,
and by ⇒+

P its transitive closure, then it is easy to see that the following lemma
holds.

Lemma 1. Let P = (O,L, Γ, σ,R,B) be a self-assembly P system as specified
in Definition 1. Let S = (σ1, ({1}, ∅)), with σ1 = σ, be the initial assembly of
cells in P. For each assembly of cell A such that S ⇒+ A, the graph γ defining
the structure of the assembly A is a tree.

This result is a consequence of the fact that the number of nodes and the number
of edges added to the current graph, during a stage of self-assembly, is always
equal to the number of edges added at the same time. Moreover, each new node
introduced in such a stage results connected to the pre-existing graph by means of
at least one edge. This means that, during the self-assembly stage, no new cycles
can be created inside the graph defining the structure of the new assembly of
cells. Therefore, if we start with an acyclic graph, this property of not containing
cycle will be preserved during each step of derivation of a P system that uses
parallel single-point self assembly. Thus, in the case of the seed assembly, what
we obtain is always a tree which can be thought as being rooted in the seed cell.

3.2 Parallel Multi-point Self-assembly

We pass now to consider a self-assembly model where ”growing points” for the
current graph structure are represented by ”neighbourhood” of cells in the cur-
rent assembly. This means a new cell, which is added to the current assembly
during a self-assembly stage, can form more than one bond with many differ-
ent pre-existing cells but all these cells must be neighbouring cells of a certain
cell being itself connected to the same new cell; that is, a new cell can only
be connected to cells which are all reachable in one step from a given starting
point. In particular, each new cell is now going to form as many bond as pos-
sible with respect to a particular choice of bond making rules, the distribution
of objects inside the cells from the chosen neighbourhood, and the number of
bonds that can be effectively formed with these cells. Moreover, new cell must
result connected to the pre-existing graph by means of at least one edge and
bonds cannot be formed between new cells added during the same self-assembly
stage. This self-assembly model is called parallel multi-point self-assembly as, in
each self-assembly stage, many new cells can be added in parallel at the same
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by forming many new bonds with many different cells already present in the
current assembly.

More formally, let P = (O,L, Γ, σ,R,B) be a self-assembly P system as
specified in Definition 1 and let A = (σ1, σ2, . . . , σn, γ), for some n ≥ 1, be an
assembly of cells in P as specified in Definition 2. We write A

sa=⇒P A′, and we
say A′ is derived from A by parallel multi-point self-assembly, if and only if A′

is an assembly of cells in P which is obtained from A in the following way:

1. Given a clone σ′ of a cell template in Γ , we non-deterministically select
a neighbourhood of cells ηi, for some 1 ≤ i ≤ n, such that ηi contains
cells that are directly linked to cell σi and all of them including cell σi can
form a bond with the clone σ′; this set must be maximal with respect to a
particular assignment of the objects contained in all these cells to the bond-
making rules in B in the sense that no other cell directly linked with σi can
form a bond with the clone σ′. The clone σ′ is then added to the assembly
σ′ together with a corresponding node and an edge between this new node
and each pre-existing node corresponding to a cell in ηi. At the same time,
for each cell involved in this bond making process, we update the bound on
the number of bonds that can be formed by that cell so to keep track of the
bonds that have been just formed.

2. The previous operation of adding a clone is performed in a non-deterministic
maximal parallel manner by inserting into the new assembly A′ as many
clones as possible according to the current distribution of objects inside the
cells and to a particular assignments of these objects to the bond-making
rules in B. In particular the following conditions must be satisfied: the total
number of bonds formed by a cell during this self-assembly stage is less or
equal to the current number of bonds that can be formed by that cell, if
two cells compete for the same occurrence of the same multiset placed inside
the same cell then, only the cell forming the greater number of bonds is
effectively inserted in A′.

3. For each cell σi in A, with 1 ≤ i ≤ n, which no new cells can be linked to,
we add to the assembly A′ a cell σ′′

i = σi and a node i in the graph γ′.
4. For each edge {i, j} in the graph γ from the assembly A, with 1 ≤ i 
= j ≤ n,

we add the same edge {i, j} to the graph γ′.

Now it is easy to see that multi-point self-assembly is less restrictive than single-
point self-assembly and it can lead to the formation of cyclic graph. Specifically,
if we denote by ⇒P a derivation step in a P system P which uses multi-point
self-assembly, and its transitive closure by ⇒+

P , then the following lemma holds.

Lemma 2. Let P = (O,L, Γ, σ,R,B) be a self-assembly P system as specified
in Definition 1. Let S = (σ1, ({1}, ∅)), with σ1 = σ, be the initial assembly of
cells in P. For each assembly of cell A such that S ⇒+ A, the graph γ defining
the structure of the assembly A may contain some cycles.
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Proof. Consider the self-assembly P system P = ({a, b}, {$,#}, Γ, σ, ∅, B) with:
Γ ={(a, $, 3), (b, $, 3), (ab,#, 3)}, σ = (a, $, 2), and B = {($, a; b, $), ($, a; b,#)}∪
∪{($, b; a,#), (#, b; b, $), (#, a; a, $)}.

The seed assembly of P is the assembly S = ((a, $, 2)1, ({1}, ∅)). In the
first step of derivation, we can add to cell 1 either a cell (b, $, 3) by using the
bond-making rule ($, a; b, $), or a cell (ab,#, 3) by using the bond-making rule
($, a; b,#). Let us suppose the first bond-making rule is used in the first step of
derivation so to obtain a new assembly of cells A1 such that:

A1 = ((a, $, 1)1, (b, $, 2)2, ({1, 2}, {{1, 2}})).

Now, given the assembly A1, we can add to cell 1 either a cell (b, $, 3) by using
the bond-making rule ($, a; b, $), or a cell (ab,#, 3) by using the bond-making
rule ($, a; b,#); we can add to cell 2 a cell (ab,#, 3) by using the bond-making
rule ($, b; a,#). Moreover, as we are considering multi-point self-assembly, each
clone of the cell (ab,#, 3) can potentially form two bonds at the same time by
using the rule ($, a; b,#) in parallel with the ($, b; a,#). Specifically, a copy of
this cell is the unique cell which is added in the next step of derivation, as this is
the cell that can form the greatest number of bonds by preventing any other cells
from forming any other bond. In this way we immediately obtain an assembly of
cells where the corresponding graph contains the cycle {1, 2}, {2, 3}, {3, 1}. ��

4 Uniquely Self-assembly a Graph

In this section we deal with the problem of defining a self-assembly P system
which is able to produce as result of its derivations a given target graph; this
graph is supposed to be connected and with no loop edges (i.e., edges linking a
node with itself). In particular, we want this graph to be uniquely generated by
the defined P system, that is, all the possible derivations must always produce,
after a finite number of steps, a similar assembly of cells where the corresponding
graph is isomorphic to the given target graph. As well as this, all these derivations
must ”halt” immediately after having produced this particular assembly of cells;
halting, in this context, means the self-assembly P system produces an assembly
of cells where no more transformation or communication rules can be applied to
the objects placed inside the cells and no more bond-making rules can be applied
to the current graph structure.

More precisely, let ⇒P be the notion of derivation step in a self-assembly P
system P as specified in the previous section and let ⇒+

P be its transitive closure.
Moreover, given an assembly of cell A, we denote by A.γ the graph defining the
structure of the assembly A. Then, we say P uniquely generates a graph G if
and only if:

– there exists an assembly of cells A such that S ⇒+
P A and A.γ ≈ G;

– for all assembly of cells A with A.γ 
≈ G, if S ⇒+
P A then, there exists A′

with A′.γ ≈ G such that A ⇒+
P A′;
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– for all assembly of cells A with A.γ ≈ G, if S ⇒+
P A then, there does not

exist A′ such that A ⇒+
P A′.

This means all the derivations in the self-assembly P system P halt by always
producing a graph structure isomorphic to the graph G; if that is the case then
we write P �u G.

Now, we can precisely state the two main problems related to the unique
self-assembly of a graph by means of self-assembly P systems.

Problem 1. For every connected graph G = ({1, 2 . . . , n}, E), with E being in-
cluded in the set {{i, j} | 1 ≤ i 
= j ≤ n }, does exist a self-assembly P system
such that P �u G?

It is obvious that the answer and the solution to this problem highly depend on
the particular self-assembly model chosen. Specifically, in the case of single-point
self-assembly, Lemma 1 provides a negative answer to Problem 1 whereas, in the
case of multi-point self-assembly, Problem 1 still remains open.

Let G = ({1, 2 . . . , n}, E), with E ⊆ {{i, j} | 1 ≤ i 
= j ≤ n }, be a connected
graph. If a self-assembly P system with at most o objects, at most l labels, at
most c cell templates, at most b bond making rules and at most r transformation
and communication rules per each cell label, exists such that P �u G then, it is
denoted by Po,l,c,b,r. We say Po,l,c,b,r is optimal if there does not exist P ′

o′,l′,c′,b′,r′

uniquely generating G with at least one of these primed parameters being less
than the corresponding one in the first self-assembly P systems and the others
having the same values.

Problem 2. Given a connected graph G = ({1, 2 . . . , n}, E), with E being in-
cluded in the set {{i, j} | 1 ≤ i 
= j ≤ n }. If a self-assembly P system Po,l,c,b,r

exists such that Po,l,c,b,r �u G then, is Po,l,c,b,r optimal?

The following lemma states that a complete binary tree with depth d ≥ 0
can be uniquely generated by a P system P2d+2,2,2,2(d−1),d+1. We do not know
whether this is optimal or not but we claim it is not.

Lemma 3. Let T be a complete binary tree with depth d ≥ 0. We can always
construct a self-assembly P systems that uniquely generate T by using: 2d + 2
different objects, 2 different labels, 2 different cell templates, 2(d − 1) different
bond-making rules, and at most d + 1 transformation and communication rules
per cell.

Proof. Let T be a complete binary tree with depth d ≥ 0. We construct a self-
assembly P system P that uses parallel single-point self-assembly and such that:

P = (O,L, Γ, σ,R,B),

with:

– O = { a, b } ∪ { $p, $′p | 0 ≤ p ≤ d };
– K = {c1, c2};
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– Γ = {(a, c1, 3), (a, c2, 3)};
– σ = (b, c1, 2);
– R = {[ $p → $′p+1$′p+1 ]c1 | 0 ≤ p ≤ d− 1}

∪{[ $′p → $p+1$p+1 ]c2 | 0 ≤ p ≤ d− 1}
∪{ [a; $p$p, in]c1 | 0 ≤ p ≤ d− 1} ∪ { [a; $′p$′p, in]c1 | 0 ≤ p ≤ d− 1}
∪{ [ b → $0$0 ]c1 };

– B = { (c1, $p; a, c2) | 0 ≤ p ≤ d− 1}
∪{ (c2, $′p; a, c1) | 0 ≤ p ≤ d− 1}.

The seed assembly of P is the assembly S = ((b, c1, 2)1, ({1}, ∅)). In the first stage
of evolution-communication, we apply inside the seed cell the rule [ b → $0$0 ]c1

in order to produce inside this cell two copies of the object $0. Then, in the self-
assembly stage, we connect the seed cell with two new cells σ2 = (a, c2, 3), σ3 =
(a, c2, 3) by using the bond-making rule (c1, $0; a, c2) twice. Next, inside the seed
cell, we apply the rule [ $0 → $′1$

′
1 ]c1 in order to produce four copies of the object

$′1. Both cell σ3 and σ2, in the next step of evolution-communication, receive two
copies of this object by using, inside both of them, a rule [a; $′p$

′
p, in]c1; these

objects are then used both cell σ3 and σ2 to attract two new cells labeled by
c1 by using the bond making rule (c2, $1; a, c2) four times. This process can be
then iterated for each level p ≤ d− 1 by adding to the current structure, during
each step, exactly 2p cells; the process halts immediately after having produced
inside the new cells objects of the form $d, which no rules can be applied to
these cells. This mean the tree is correctly generated in d steps by starting from
the root and adding the leaves in the last step of derivation. ��

Notice that the same construction can be applied to any complete n-ary tree
of depth d ≥ 0 by just augmenting the number of objects $p that are produced
inside the cells placed at level 0 ≤ p ≤ d− 1.

5 Conclusions

Self-assembly P systems are devices that use some of the features of population
P systems [2] to progressively increase a graph structure by forming new bonds
between the existing cells and some new cells which are brought into the system
step by step. Specifically, with respect to [2], bond-making rules can be used only
to increase the number of links in the graph defining the structure of the system
and they can never be used to alter the structure of an already formed assembly
of cells. As well as this, bond-making rules are restricted to be applied locally in
correspondence of a certain neighbourhood of cells where self-assembly can take
place between cells that are supposed to be “attracted” in that particular vicin-
ity. Moreover, self-assembly P systems use transformation and communication
rules to continuously update the internal configuration of the cells and vary the
distribution of objects between various cells in the system. The problem of defin-
ing in a self-assembly P systems that, for a given self-assembly model, are able
to generate any graph of any form remains an open. In fact, here we have only
been able to show how to generate a complete binary tree in an “efficient” way
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by means of a P system that uses a “limited” number of resources. In particular,
this is achieved by exploiting the features of transformation and communication
rules which allow cells to update this internal configuration and exchange objects
with its neighbouring cells. In general, many other features of P systems may be
introduced in self-assembly P systems so to have systems consisting in a finite
number of cells which are able to re-organise themselves by means of local and
limited interactions in order to produce a desired shape or pattern.

Considering the high sensitivity of the final shape of the graph with respect
to the rules, the study of self-assembly P systems would certainly benefit from
a simulation tool. This kind of tool can be used to ”play” several variations
and to check the result on some cases. We consider the use of the MGS [3]
programming language to develop such simulator. As a matter of fact, MGS
provides both multiset rewriting and graph rewriting as well as the ability to
create and transform, by rewriting rules, a graph of multisets.
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6. Păun, Gh.: Membrane Computing. An Introduction. Springer-Verlag, Berlin Heidel-
berg New York (2002)

7. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Vol. 1-3
Springer-Verlag, Berlin Heidelberg New York (1997)

8. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD Thesis, California Institute of
Technology (1998).



A Web-Based P Systems Simulator

and Its Parallelization
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Abstract. In this paper we present WebPS, an open-source web-enabled
simulator for P systems, and a P accelerator for parallelization of the ex-
isting sequential simulators. The simulator is based on CLIPS, and it
is already available as a web application. The P accelerator is used to
parallelize the existing sequential simulators of the P systems. We ex-
emplify this tool by using a simple CLIPS simulator. The speedup and
the efficiency of the resulting parallel implementation are surprisingly
close to the ideal ones. Combining these two ingredients, we get a com-
plex and ready-to-use parallel simulator for P systems; no installation
are required, no previous knowledge of operating systems, parallel pro-
gramming or specific software.

1 Introduction

Transition P systems and deterministic P systems with active membranes (see
[7]) are simulated in various programming languages, and some of them are
used to solve NP-complete problems as SAT, Subset Sum, Knapsack, and parti-
tion problems. P systems with active membranes, input membrane and external
output are simulated in CLIPS, and used to solve NP-complete problems (see
[8]). New variants of these simulators provide symport-antiport rules, and cat-
alysts. A previous simulator written in Visual C++ for P systems with active
membranes and catalytic P systems is presented in [2]. It provides a graphical
simulator, interactive definition, visualization of a defined membrane system, a
scalable graphical representation of the computation, and step-by-step observa-
tions of the membrane system behaviour. A parallel and cluster implementation
for transition P systems in C++ and MPI is presented in [2]. The rules are im-
plemented as threads. At the initialization phase, one thread is created for each
rule. Since each rule is modelled as a separate thread, it should have the ability
to decide its own applicability in a particular round. In order to detect if the P
system halts, each membrane must inform the other membranes about its inac-
tivity. It can do so by sending messages to others, and by using a termination
detection algorithm.

We present here a new simulator, and its main feature is given by the avail-
ability as a Web application. This aspect is actually emphasized by its name:
WebPS. As any Web application, WebPS does not require an installation. It can
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be used from any machine anywhere in the world, without any previous prepa-
ration. A simple and easy to use interface allows the user to supply an XML
input both as text and a file. A friendly way of describing P systems is given by
an interactive JavaScript-based P system designer. The interface provides a high
degree of (re)usability during the development and simulation of the P systems.
The initial screen offers an example, and the user may find useful documentation
about the XML schema, the rules, and the query language. The query language
helps the user to select the output of the simulation.

This simulator is based on CLIPS. The previous CLIPS implementations
represent P systems rules by CLIPS facts; we get a significantly faster execu-
tion by using CLIPS rules to implement P systems rules. In [8], the P system
data are inserted directly into code, and so they cannot be easily modified, as
opposed to our implementation where a P system is an input data, providing
a lot of flexibility. P systems as input data are described by XML documents;
this fact provides a standard method to access information, making it easier
to use, modify, transmit and display. XML is readable and understandable, it
expresses metadata easily in a portable format, just because many applications
can process XML on many existent platforms. Moreover, by using XML, it be-
comes easy to define new features and properties of P systems. XML allows
an automated document validation, restricting wrong input data, and warning
the user before execution with respect to the possible errors in their P systems
description. From a user point of view, all these features facilitate an efficient
description and reconfiguration of the P systems.

The simulator is open-source, actually free software, as it is being offered at
http://psystems.ieat.ro under the GNU General Public License. This allows
anyone to contribute with enhancements and error corrections to the code, and
possibly develop new interfaces for the C and CLIPS level APIs. These interfaces
can be local (graphical or command-line), or yet other Web-based ones.

Section 2 presents the WebPS structure, and argue what are its advantages
over the previous P simulators. Several new and interesting examples imple-
mented in the WebPS system are described in Section 3. In Section 4 we discuss
on the parallelization of sequential simulators, and present Jess as a starting tool
in building a wrapper for parallel systems. Then we describe our P accelerator as
a parallel version of Jess, able to work on homogeneous clusters of workstations.
We provide some implementation details, and measure the efficiency of our P
accelerator by applying it to a simple CLIPS simulator solving a difficult prob-
lem. We present the results of our experiments showing a significant reduction
of the running time. Conclusion, further work and references end the paper.

2 WebPS Software Architecture

The software structure of the simulator has three distinct levels. The inner level
is the CLIPS level. This level integrates part of the knowledge about the theo-
retical description of P systems, the result being a library of CLIPS functions,
meta-rules and templates. Since CLIPS is easily embeddable in C (as its name ”C
Language Integrated Production System” suggests), we can control the CLIPS
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level from a C program, and we include some example to illustrate how this is
done. The C level is strengthened by introducing a C library for modelling and
simulating P systems based on the CLIPS library. The Web application level of-
fers a user-friendly interface to the simulator, and can become, after the addition
of debugging and visualization features a powerful P system development tool.

2.1 CLIPS Level

This is the core level of the simulator. We address here some crucial issues,
namely how we implement in a sequential context the maximally parallel and
nondeterministic execution of P systems.

Maximally Parallel Execution. The maximally parallel execution require-
ment relies on constraining our simulation cycle to the following distinct steps:

1. React step: where the activated reaction rules are sequentially executed.
2. Spawn step: where the new objects created by rules inside their membranes

are asserted as object facts; they become visible for a future React step.
3. Communication step: where the objects injected or ejected by communi-

cation rules in different membranes are asserted as objects facts.
4. Divide step: it handles possible divisions processes of membranes.
5. Dissolve step: it handles dissolving processes of membranes.

By constantly recording the state of the P system after each React, Spawn and
Communication steps, we can get a trace of an execution.

Nondeterministic Execution. CLIPS uses RETE algorithm to process rules;
RETE is a very efficient mechanism for solving many-to-many matching prob-
lem [5]. The nondeterministic execution requirement is fulfilled by the CLIPS
random mechanism. We have looked closely at the random strategy, and we
found it makes the same choice for the same configurations in different execu-
tions. By calling the random function of CLIPS, the random mechanism uses
the random number generator. The failure is related to the improper seeding of
the random number generator. We have corrected this error, and properly seed
the random number generator by using /dev/urandom, the entropy gathering
device on GNU/Linux systems. This aspect can be also useful for other CLIPS
implementations possibly affected by the same failure.

Data Representation. An important choice regarding an implementation is
given by data representation. We decide to represent P system objects and mem-
brane structure as CLIPS facts (with set-fact-duplication option of CLIPS set to
on), and the P systems reaction rules as CLIPS rules. This contrasts the previ-
ous implementations which have represented reaction rules as CLIPS facts; while
their choice might allow general meta-rules for execution, we get a flexible and
efficient framework by representing reaction rules as CLIPS rules. The efficiency
is gained by making direct use of the CLIPS pattern-matching mechanism, and
rule activation capabilities. This choice is also confirmed by the efficiency of the
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dissolve and divide operations which imply a lot of moving and copying. Ini-
tially we think to represent membranes as modules, but later we see that this
representation decreases the efficiency and flexibility of the whole system.

It is useful to note that the simulator supports divide, promoters/inhibitors,
and symport/antiport rules for membranes. For example, the P system transition
rule a+b→c+d(2)+e(0) with priority 11 from membrane 1 is converted into the
following CLIPS rule:

(defrule MAIN::1_a+b->c+d[2]+e[0]

(declare (salience 11))

(do (what react))

(or (parent-child (parent 1) (child 2))

(parent-child (parent 2) (child 1)))

(or (parent-child (parent 1) (child 0))

(parent-child (parent 0) (child 1)))

?a-0 <- (obj (name a) (membrane 1))

?b-1 <- (obj (name b) (membrane 1))

=>

(assert (newobj (name c) (membrane 1)))

(assert (inject (name d) (membrane 2)))

(assert (inject (name e) (membrane 0)))

(retract ?a-0) (retract ?b-1))

The membrane structure is reflected by the parent-child facts. An object a of
membrane 1 is represented as a CLIPS fact on line 8: (obj (name a) (membrane
1)). While the reactants a and b are consumed, the new objects c, d , and e are
created during the Spawn and Communication steps, respectively. The rule
priorities are mapped directly to CLIPS rules salience values, and therefore are
restricted to integer values in the interval [-10000, 10000].

2.2 C Level

In the C level we use CLIPS API, although we plan to develop a complete library
that encapsulates the C-CLIPS interface, namely a C library which wraps nicely
around the CLIPS one.

We represent a P system using XML, and we define an XML schema for
this kind of document. A special library is developed to handle XML parsing
of the input for the CLIPS part of the simulator. In the following example we
describe a P system using our XML schema. This example system presents a P
system for multiplication of the number of a objects in membrane 1 with the
number of b objects in membrane 0 , the result being the number of d objects
in membrane 0 .

<?xml version="1.0"?>

<psystem>

<membrane name="0">

<object name="b" count="3" />

<rule body="b+v->e+v+d" priority="1" />

<rule body="e+u->b+u+d" priority="1" />

<rule body="v->u(1)" />
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<rule body="u->v(1)" />

<membrane name="1">

<object name="a" count="4" />

<object name="v" count="1" />

<rule body="a+v->v(0)" />

<rule body="a+u->u(0)" />

</membrane>

</membrane>

<query text="count of (objects from 0 where (objects d))" />

</psystem>

2.3 Web Level

The Web level of the simulator allows to choose between a user-friendly P system
designer written in JavaScript and a traditional HTML input form transmitting
an XML description by uploading a file or by editing. Aside from the XML P
system description editing, the user can specify a number of executions of the P
system. Our JavaScript P system Designer aims to facilitate the description of
the P system without requiring the user to write XML, but generating it based
on the user’s interaction with a dynamic interface.

PHP script

CGI program(C)

CLIPS library LibCGI PS−XML C library

JavaScript
P system Designer

HTML input form
for XML

After the user introduces a XML description, it is transmitted to a PHP
script which does some further processing, and sent then to a CGI program
written in C. The C program uses a specific P system XML library called PS-
XML, as well as LibCGI and CLIPS library in order to simulate the evolution
of the P system. Finally it returns the results to the user. It is possible to select
various information provided as results, and in order to help the user to select
the desired information we define a query language called PsQL.

PsQL (P systems Query Language). We define PsQL as an SQL-like lan-
guage for querying the state of a P system. We developed a CLIPS library for
parsing and interpreting this language. At the Web level, the queries can be in-
cluded in the XML input; these queries are activated after the execution of the
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specified P system. If it does not exist any query, the P system is simulated, but
no output is generated. At the CLIPS level it is possible to specify queries for
the P system in a dynamic manner, not just before starting the simulation. At
the syntactic level, PsQL is a Lisp-like language, and it is supported by a small
CLIPS library of list-handling functions.

The Backus-Naur description of PsQL is presented in the following lines:

<query> ::= <expression> |

<count-query> |

<membranes-query> |

<objects-query>

<count-query> ::= "(" count-of <objects-query> |

<membranes-query> ")"

<objects-query> ::= "(" objects-from <membranes-spec>

[ where <where-spec> ] ")"

<membranes-query> ::= "(" membranes-from <membranes-spec>

[ where <where-spec> ] ")"

The full description is available at http://twiki.ieat.ro/twiki/bin/
view/Institut/PSystemsQueryLanguage. We plan to extend PsQL with trace
facilities; having queries on the possible traces during an execution represents a
step towards an automated verification of the P systems.

3 Examples

The first example is a P system that computes the multiplication of two natural
numbers. The following figure describes graphically the P system.

b
m

b+v e+v+d > v u(1)
e+u b+u+d > u v(1)

an

a+v v(0)
a+u u(0)

 v

0

1

As inputs we consider the number of a objects in membrane 1 , and the
number of b objects in membrane 0 . The result is given by the number of d
objects in membrane 0 .

This P system differs from other similar ones by that it does not have expo-
nential space complexity, and does not require active membranes. As a particular
case, it would be quite easy to compute n2 by just placing the same number n
of a and b objects in its membranes.

Another interesting feature is that it may continue computing the multipli-
cation after reaching a certain result. Thus if initially there are m b objects and
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n a objects, the system evolves and reaches a state with n ·m d objects in mem-
brane 0 . If the user wish to continue in order to compute (n+k) ·m, it is enough
to inject k a objects in membrane 1 at the current state, and the computation
can go on. Therefore this example emphasizes a certain degree of re-usability.

Recursive Sum: The P system described in the next picture computes the
recursive sum

∑n
i=1 ki.

a a(0) a a(0) a a(0)

k
2

k
1

k
n

1 2

aa
...

0

n

a

The numbers of a objects in the membranes 1...n are the addition arguments,
and the result of the computation is the number of a objects in membrane 0.
The PsQL query to determine this result is: (count of (objects from 0)).

While this example is rather trivial, it illustrates the expressiveness of the
query language (PsQL). Using PsQL queries, it is not necessary to apply the
rules and execute the specified P system. Given the initial multiset, the same
recursive sum is obtained by using the following query: (count of (objects
from (membranes from 0))).

Dot Product of Two Vectors: Combining the previous two examples, we can
compute the dot (scalar) product x · y of two vectors x, y ∈ Nm, where m ∈ N.
Let us denote the components of the vectors by xi and yi, respectively; these
components are given by the number of b and a in the membranes labelled by 2i
and 2i+1, respectively. Then x·y is given by the number of d objects obtained in
membrane 0 after the P system halts. This P system is described graphically as:
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where k = 0,m− 1. The PsQL query for retrieving the result is: (count of
(objects from 0)).
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4 On Parallelization of Sequential Simulators

There will always be a need for exploiting parallelism in computing, such that
many difficult problems can be executed on parallel architectures. There is also a
need to free the programmers from thinking about the parallelization of existing
sequential programs. Automatic parallelization of code has been an active re-
search topic in scientific computing for some decades. For a long period of time,
the kind of attempts achieve little of the potential benefit of parallel computing.
Recent contributions improve the performance, and efficient parallel codes have
been created automatically to solve problems in various fields.

We refer to the sequential simulators of the P systems, particularly to those
implemented in CLIPS [8]. These sequential simulators have both didactic and
scientific values. However the P systems are inherently parallel and, in many
variants, they also exhibit an intrinsic non-determinism, hard to be captured by
sequential computers. By simulating parallelism and nondeterminism on a se-
quential machine, one can lose the real power of parallelism and attractiveness of
P system computing. Therefore the simulations on multiple processors represent
a particularly interesting subject. Currently the only known parallel and cluster
implementation for P systems is presented in [2], using C++ and MPI.
4.1 Jess: Java Expert System Shell
Jess is the abbreviation for Java Expert System Shell; it is a rule-based program-
ming environment for Java platforms; it is available at http://herzberg.ca.
sandia.gov/jess/. More information about Jess can be found in [6]. Jess uses
the RETE algorithm [5] for rules, an efficient mechanism for solving the difficult
many-to-many matching problem. Our strategy is to build a parallel production
systems with a high degree of flexibility, namely to construct a wrapper for the
parallel system which allows cooperation between its instances. From this point
of view, Jess has been considered mainly due to its flexibility (communication via
sockets, ability to create Java objects, and call Java methods) and its compatibil-
ity with the C Language Interface Production System CLIPS; CLIPS is available
at http://www.ghg.net/clips/CLIPS.html, where it is presented as a tool for
building expert systems. Jess is also selected because of its active development
and support, tight interaction with Java programs, and expressiveness.

The Jess rule language includes elements not present in many other produc-
tion systems, such as arbitrary combinations of Boolean conjunctions and dis-
junctions. Its scripting language is powerful enough to generate full applications
entirely within the Jess system. Jess is also a powerful Java scripting environ-
ment, from which one can create Java objects, and call Java methods without
compiling any Java code. The core Jess language is fully compatible with CLIPS
(Jess scripts are valid CLIPS scripts, and vice-versa). Jess adds many features to
CLIPS, including backwards chaining, working memory queries, and the ability
to manipulate and directly reason about Java objects.

We think to consider existing implementations, and improve them by using
multiple computing units, leading to faster P system simulators than the cur-
rent available ones. The proposed architecture for a such system is based on an
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accelerator, actually a wrapper allowing the cooperation between several in-
stances of a program running on different computers, in order to speedup the
current P system simulators.

We intend to apply our P accelerators to WebPS. As a first step, we consider
a simpler CLIPS simulator [8]. The set of rules and the configurations in each
step of the evolution are expressed as facts in a knowledge base. We first show
that a splitting technique of the membranes in several Java threads running
embedded Jess can lead to a faster simulation. Then we use the P accelerator to
further speedup the simulation.

4.2 P Accelerators

Having in mind the parallel evolutions of its membranes based on different rules,
we build a parallel distributed memory version of a production system based on
task parallelism. The target architecture is a homogeneous cluster of worksta-
tions. Building a Jess application based on socket communication facilities is
considered to be difficult and can distract the user from its main aim. Therefore
a middleware is needed. We adopt a modular scheme composed by Jess instances,
Connectors, and Messengers.

A first component of the P accelerator is called Connector, and consists of a
Java code. Each Jess instance has one corresponding Connector. A Jess instance
(acting as a client) contacts its Connector (acting as a server) via a socket. As
soon as such a connection is established, the Connector interprets the Jess special
incoming requests for communications, and controls other Jess instances (namely
send or receive information, launch or kill other instances). An information in
transit is a string containing a command written in Jess language.

Another component of the P accelerator is represented by the Messengers.
Each Messenger is associated with one Connector and its purpose is to exe-
cute the commands received by Connector, and to communicate with various
Messengers associated with the other Jess instances. We add new commands to
Jess, assuring a valid message passing interface. More details about the set of
commands, and some other aspects related to P accelerators can be found in [4].

4.3 Implementation Details

A Connector uses the standard Java ServerSockets methods. The current Mes-
senger is written in Java and JPVM, a Java implementation of Parallel Virtual
Machine selected due to its ability to dynamically create and destroy tasks, a
useful ability when simulating the division and dissolution of membranes. JPVM
is available at http://www.cs.virginia.edu/∼ajf2j/jpvm.html. Adopting a
PVM variant, the user is absolved of the duties to nominate the hosts were the
Jess instances are running, as well as to treat sequentially the incoming messages
(as in the case of a socket connection), or to check the status of the machines
on which the Jess instances are running.

Regarding CLIPS, we should mention that a production system consists in
a working memory, a set of rules and an inference engine. The working memory
is a global database of data representing the system state. A rule is a condition-
action pair. The inference engine is based on a three-phase cyclic execution model
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of condition evaluations (matching), conflict-resolution and action firing. Firing
can add, delete or modify elements in the working memory. An instantiation
is a rule with a set of working memory elements. In a sequential environment,
conflict-resolution selects for firing a certain instantiation from the set of all in-
stantiations. In a parallel environment, multiple instantiations can be selected
for firing simultaneously. Considering a high degree of parallelism, the time per-
formance can be improved.
4.4 Experiments

The computational power of a P system can be used not for solving small prob-
lems for which we have already faster algorithms, but for large and difficult
problems. The main goal of our experiments is to measure the efficiency of P
accelerator in a cluster environment when it is applied to a particular problem.
Our experiments use the P system with active membrane described in [8] to
solve the validity problem: given a Boolean formula in conjunctive normal form,
to determine whether or not it is a tautology. If we consider the problem input
in the form ∧m

i=1 ∨ki

j=1 xij where xij ∈ {X1, . . . , Xn, X1, . . . , Xn} the P system
solves the NP-complete problem of validity in 5n + 2m + 4 steps. The number
of membranes increases by division from only three initial membranes to 2n + 2
membranes at the end of computation. This example is also of interest for parallel
simulation using dynamic task creation. Different membranes can be distributed
on different machines of a cluster. They can evolve independently accordingly to
the evolution rules. Send-in and Send-out rules request message exchanges.

Based on the fact that CLIPS code is fully compatible with Jess, we have
repeated the experiments reported in [8]. We concentrate our attention to the
most consuming part of the simulation, namely after the final division when we
have already 2n + 2 membranes. The number of rules to be fired is similar to
those from the classical production systems benchmarks. The following table
specifies the number of rules to be fired in the case of checking the validity of a
Boolean expression with m = n.

m× n Membranes Rules fired Time for Reaching Total time of
after the last firing those the final simulation
division rules configuration

2 × 2 6 335 1 s 1 s 2 s
3 × 3 10 779 13 s 3 s 16 s
4 × 4 18 1835 428 s 6 s 434 s
5 × 5 34 ? ? 49 s ?

The evaluation of time is measured on one PC of a cluster used in our tests.
The cluster is composed of four PCs at 1.5GHz and 256Mb RAM, connected via
a Myrinet switch ensuring communication at 2Gb/s.

We describe now how the P accelerator is working in order to assure the
distribution of the membranes and the communication between rules. The P
accelerator can be activated by a user in a simple way. Each Jess instances
reads the simulator rules, the facts (the membrane rules to be applied), the
membrane structure, and their contents. Each membrane is owned by a Jess
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instance. An instance can own none, one or several membranes. Rules are fired
by an instance only if they are associated to an owned membrane. Each instance
has copies of the other instance membranes. A change in the content of the
father membrane can lead to a change in the children membrane. The sources
and destinations used in the send and receive commands are related to their
membrane owners. The send and receive rules are activated only if the involved
sources and destinations have different owners.

4.5 Running Time

It is easy to note a significant reduction of the running time, even when we
use the P accelerator running on one machine of the cluster (i.e., Jess instances
are running on the same machine). In the following table, the shorter time is
underlined for each number of Jess instances working concurrently. The lowest
time depends on the dimension of the problem. It seems that for a m × m
problem, the lowest time is given by m Jess instances.

Membranes 1 instance 2 instances 3 instances 4 instances
6 1 s 1 s 3 s 3 s
10 13 s 5 s 5 s 10 s
18 428 s 45 s 25 s 33 s
34 Mem.out 1054 s 325 s 200 s

Further reduction of the simulation time is expected when our P accelerator is
running on several machines. These expectations are confirmed by our tests. The
speedup Sp and the efficiency Ep of the parallel implementation are registered
in the following table, the values being close to the ideal ones. It is easy to
remark a normal increasing of the speedup with the number of rules to be fired.
It is expected to obtain even better results for larger dimension of the validity
problem.

Membranes
Instances Machines 6 10 18 34
1 1 1 s 13 s 428 s Memory out
2 1 1 s 5 s 45 s 1054 s

2 1 s 3 s 23 s 528 s
S2 1 1.7 1.9 2
E2 0.51% 0.65% 0.95% 0.99%

3 1 3 s 5 s 25 s 325 s
3 3 s 2 s 10 s 126 s
S3 1 2.5 2.5 2.6
E3 0.33% 0.83% 0.83% 0.87%

4 1 3 s 10 s 33 s 200 s
4 2 s 3 s 9 s 52 s
S4 1.5 3.3 3.7 3.8
E4 0.37% 0.82% 0.91% 0.96%



A Web-Based P Systems Simulator and Its Parallelization 69

5 Conclusion and Further Work

We present a new simulator of the P systems. It is efficient, flexible, and does not
require any previous knowledge or expertise in computers. Since the simulator
has some novel and interesting features related to efficiency, ease of use and
generality, it can become a useful tool for the community, both theoretically and
practically. Being GPL licensed, we expect it is eligible to become a simulator
benchmark reference. The simulator is available at http://psystems.ieat.ro.

We intend to make the simulator available as a web service. Moreover, con-
tinuing the commitment to standards compliance, we will strive for SBML com-
patibility for our specification language. Further improvements are related to
better debugging and visualization capabilities (including a flexible, fine and
coarse-grained tracer), developing a library of macros and methodologies using
the principles of modularity, extensibility and structured design from software
engineering, introducing rules for the development of macros for P systems.

In this paper we also present an automatic parallelization tool of the existing
sequential simulators of the P systems. We use a splitting technique of mem-
branes in several Java threads, and then we develop a P accelerator enabling the
cooperation of many Jess instances running in a cluster environment to speedup
a P simulator. The P accelerator will be further developed to include facilities for
membrane dissolution and division. Further extensions are under investigation.
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M.A.Gutierrez-Naranjo, Gh.Păun, M.J.Perez-Jimenez (Eds.): Cellular Computing;
complexity aspects, ESF PESC Exploratory Workshop, Fenix Editora, Sevilla, 177-
186, 2005.

5. C.L. Forgy, “RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem”, Artificial Intelligence vol.19, 17–37, 1982.

6. E. Friedman-Hill, Jess in Action: Rule-Based Systems in Java, Manning Publica-
tions, 2003.

7. Gh. Paun, Membrane Computing. An Introduction, Springer, 2002.
8. M.J. Perez-Jimenez, F.J. Romero-Campero, “A CLIPS Simulator for Recognizer P

Systems with Active Membranes”, Proceedings 2nd Brainstorming Week on Mem-
brane Computing, University of Sevilla Tech. Rep 01/2004, 387-413, 2004.



Communication Complexity as a Principle of

Quantum Mechanics

Adán Cabello

Departamento de F́ısica Aplicada II, Universidad de Sevilla, 41012 Sevilla, Spain
adan@us.es

Abstract. We introduce a two-party communication complexity prob-
lem in which the probability of success by using a particular strategy
allows the parties to detect with certainty whether or not some forbidden
communication has taken place. We show that the probability of success
is bounded by nature; any conceivable method which gives a probability
of success outside these bounds is impossible. Moreover, any conceivable
method to solve the problem which gives a probability success within
these bounds is possible in nature. This example suggests that a suit-
ably chosen set of communication complexity problems could be the basis
of an information-theoretic axiomatization of quantum mechanics.

1 Introduction

Quantum mechanics (QM), in contrast to relativity theory, lacks a basic principle
from which the theory develops in a compelling manner. We still do not know the
“physical reasons” responsible for the Hilbert-space structure of QM. Therefore,
deriving QM from a reduced set of primitives or axioms with a clear physical
content remains an open problem for the foundations of physics.

In recent years, it has been suggested that a set of information-theoretic ax-
ioms would be sufficient to derive QM [1,2,3,4]. This information-based program
has a clear precedent in Wheeler’s project of deducing the nature of the quantum
world from the idea that information plays a significant role at the foundations
of physics [5,6,7].

One attempt to construct QM around information is Zeilinger’s “foundational
principle” for QM [8]. Knowledge in physics is acquired by means of experimental
results. Any experiment can be decomposed into a set of yes-no tests. Therefore,
it is reasonable to assume that any “elementary” physical system only gives a
definite yes-no answer for one specific yes-no test. That is, the most elementary
system would carry just one bit of information, and extracting this information
would require knowing how the system was prepared.

Although Zeilinger’s principle provides a framework for understanding some
fundamental traits of QM, like essential randomness and entanglement, it is
still insufficient to derive the details of QM, since the set of theories which are
consistent with it is too large.

A different approach is due to Fuchs [9,10,11] and Brassard [12], who sug-
gested that QM can be derived from two cryptographic principles: the pos-
sibility of secure key distribution [13,14] (i.e., the possibility that a common

C.S. Calude et al. (Eds.): UC 2005, LNCS 3699, pp. 70–81, 2005.
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secret sequence of random bits can be distributed to two authorized parties,
Alice and Bob, whilst any unauthorized party cannot acquire any information
about the sequence) and the impossibility of unconditionally secure bit commit-
ment [15,16,17] (i.e., the impossibility of a protocol in which Bob receives some
evidence from Alice that she has a bit value b in mind, such that this evidence
forces Alice to not change b, but does not allow Bob to obtain any information
about b until Alice chooses to reveal it by supplying further information). These
two principles capture two of the fundamental features of QM: quantum key
distribution is built on the idea that information gathering causes a necessary
disturbance to quantum systems [13], while the theorem on the impossibility
of unconditionally secure bit commitment is based on an entanglement-based
attack [16,17].

Fuchs and Brassard’s program has been further developed by Clifton, Bub,
and Halvorson (CBH), who proposed to deduce QM from three information-
theoretic constraints: the impossibility of superluminal information transfer,
the impossibility of perfectly broadcasting the information contained in an un-
known physical state, and the impossibility of unconditionally secure bit com-
mitment [18]. This proposal has stirred some controversy. By presenting a toy
model which is a counterexample, Smolin has showed that the CBH axioms by
themselves do not necessarily lead to QM [19]. A similar toy model satisfying the
CBH axioms (as well as key distribution) has been proposed by Spekkens [20].
In response, Halvorson and Bub have argued that Smolin’s model violates the
independence condition for space-like separated systems [21].

Here we shall propose a different approach for finding information-theoretic
axioms for QM. This proposal is based on the following observations:

(i) Bell’s theorem [22] is not about what QM is, but about what it is not
—QM is not reproducible by local hidden-variable theories (LHVTs)—. Bell’s
inequalities are necessary conditions for LHVTs, not for QM: there are many
predictions of QM which are in agreement with all of Bell’s inequalities, and
there are also many conceivable violations of Bell’s inequalities that cannot be
achieved within QM. However, although Bell’s theorem is not a solid ground
on which to build QM, a set of suitably chosen Bell’s inequalities turns out
to provide —at least for the simplest Bell-like scenario (two particles and two
alternative experiments per particle)— the necessary and sufficient conditions
for the corresponding correlations to be achievable by LHVTs and, therefore,
provides an starting point for an axiomatization of such theories.

(ii) On the other hand, every proof of Bell’s theorem —with or without
inequalities— can be translated into a communication complexity problem
(CCP), in which the probability of success is bounded between certain lim-
its if the parties are restricted to sharing strings of bits, bounds which can
be surpassed by allowing the parties to share quantum states. This observa-
tion places Bell’s theorem in an information-theoretic scenario more suitable
to our purposes.



72 A. Cabello

(iii) It is known that the necessary and sufficient conditions for four numbers
to represent correlations achievable by QM in the simplest Bell-like scenario can
be expressed as a set of suitably chosen nonlinear inequalities.

(iv) These necessary and sufficient conditions for quantum correlations can
be translated into a communication complexity scenario. The result of this trans-
lation could provide a basis for an information-theoretic axiomatization of QM.

The structure of this paper is dictated by these four points. In sections 2, 3,
4, and 5 we develop in more detail points (i), (ii), (iii), and (iv), respectively.
Sections 3 and 5 are particularly important. In section 3 we review a two-party
CCP in which the parties can increase their probability of success if they share
prior quantum entangled states rather than classically correlated data. In sec-
tion 5, we modify the problem and show that the corresponding probability of
success allows the parties to detect with certainty whether or not some forbid-
den communication has taken place. At the same time, we show that there is
no mechanism in nature which allows the parties to succeed (or fail) beyond a
certain probability. Moreover, we show that any conceivable method which gives
a probability between these bounds is implementable in nature.

2 Bell’s Theorem and the Necessary and Sufficient
Conditions for Local Hidden-Variable Correlations

2.1 The EPR-Bell Scenario

The Einstein-Podolsky-Rosen-Bell scenario [23,24,22,25] consists of two alterna-
tive dichotomic experiments (i.e., having only two possible outcomes, which we
can assume to be ±1), A0 or A1, on a particle A, and other two alternative di-
chotomic experiments, B0 or B1, on a distant particle B; “distant” means that
the experiments Ai and Bj are space-like separated.

If we assume no-signaling (i.e., that two distant observers cannot signal to
one another via their choice of local experiment), the statistics of a Bell-type
set of experiments are described by 8 numbers; for instance, 8 suitably chosen
joint probabilities P (Ai = ak, Bj = bl) for the various possible outcomes, or
the four expectation values for the local observables 〈Ai〉 and 〈Bj〉, plus the
four correlations 〈AiBj〉. The set of correlations is a 4-dimensional projection of
the 8-dimensional set of joint probabilities. The connection between both sets is
given by 〈AiBj〉 =

∑
k,l∈{−1,1} klP (Ai = k,Bj = l).

The EPR-Bell scenario is the simplest scenario where the differences between
classical and quantum correlations arise. Moreover, if we assume that the choice
of local experiment plays some role, the EPR-Bell scenario is the most basic
building block of all other symmetric information-theoretic scenarios, since it
is contained in any scenario involving more particles (or, equivalently, parties),
more experiments per particle, and more possible outcomes per experiment.
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2.2 Necessary and Sufficient Conditions for Local Hidden-Variable
Correlations

Froissart [26] and Fine [27,28] proved that, for the EPR-Bell scenario, the set of
all joint probabilities attainable by any LHVT forms an 8-dimensional polytope
with 16 vertices and 24 faces. The 4-dimensional projection corresponding to the
set of all correlation functions that can be attained by a LHVT is defined by
8 Bell’s inequalities. In a LHVT, four numbers −1 ≤ 〈AiBj〉 ≤ 1 (i, j = 0, 1) can
represent the four correlations appearing in the EPR-Bell scenario if and only if
they satisfy the following 8 inequalities:

− 2 ≤ 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 ≤ 2, (1)
−2 ≤ 〈A0B0〉 + 〈A0B1〉 − 〈A1B0〉 + 〈A1B1〉 ≤ 2, (2)
−2 ≤ 〈A0B0〉 − 〈A0B1〉 + 〈A1B0〉 + 〈A1B1〉 ≤ 2, (3)

−2 ≤ −〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 + 〈A1B1〉 ≤ 2. (4)

Moreover, assuming no-signaling, these 8 inequalities provide a necessary and
sufficient condition not only for the 4-dimensional projection corresponding to
the correlations, but for the whole 8-dimensional set of joint probabilities (i.e.,
the restrictions on the other four numbers are due only to statistical constraints).

There are many predictions of QM in agreement with all of Bell’s inequalities,
and there are also many conceivable violations of Bell’s inequalities that cannot
be achieved within QM [29]. Therefore, Bell’s theorem is not a solid ground onto
which to build QM. However, the set of Bell’s inequalities (1)-(4) provides —at
least in the simplest Bell-like scenario— the necessary and sufficient conditions
for the corresponding correlations achievable by LHVTs, and therefore provides
a starting point for an axiomatization of such theories.

3 Bell’s Theorem and Communication Complexity
Problems

One of the most impressive applications of quantum resources for information
processing is the reduction of the communication complexity required for cer-
tain computations [30,31,32,33,34,35,36,37,38,39]. This branch of quantum in-
formation receives —at least— three different names: entanglement-enhanced
communication [30], quantum communication complexity [32,33,37], and —for
those CCPs in which no bits are transmitted between the parties— quantum
“pseudo-telepathy” [36,38,39,40].

A typical example of how QM plays a significant role in a communication
complexity scenario is the following. Suppose that two or more separated parties
need to compute a function of a number of inputs distributed among them.
Using the best classical strategy this would require a certain minimum amount
of bits to be transmitted between them. However, if the parties initially share
some entangled states, then the amount of bits required is smaller than if no
entanglement were present. The quantum advantage can be shown in a slightly
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different, but equivalent, way: if the number of transmitted bits is fixed, then
QM allows the parties to develop entanglement-based protocols such that the
probability for both parties to achieve the correct value for the function —the
probability of success— is higher than it would be when using any protocol
without entanglement.

Most of the described CCPs in which QM provides an advantage derive from
proofs of Bell’s theorem with or without inequalities. For instance, the quantum
advantage in the CCP involving three parties proposed in [30] derives directly
from Mermin’s three-party version [41,42,43] of Greenberger-Horne-Zeilinger’s
proof [44,45] of Bell’s theorem without inequalities. Similarly, the two-party CCP
presented in [35] derives from the Clauser-Horne-Shimony-Holt (CHSH) [25]
Bell-like inequality. More recently, the two-party CCP with perfect quantum
efficiency described in [38] is based on a two-party proof of Bell’s theorem with-
out inequalities [46,47,48,49]. As Vaidman noted, every proof of Bell’s theorem
without inequalities can be cast into a game in which the probability of success is
higher if some specific entangled states are allowed [50]. Convert this game into
the evaluation of a function whose inputs has been distributed among distant
parties, and then you will have a CCP with a quantum advantage. Indeed, it has
been shown that for a wide class of Bell’s inequalities there is always a CCP for
which the protocol assisted by quantum states which violate the corresponding
inequality is more efficient than any classical protocol [51].

Let us review the two-party CCP proposed in [35], which is based on the
EPR-Bell scenario and makes use of the CHSH inequalities:

Rules. Suppose two separated parties: Alice and Bob. They are assumed to be
isolated from each other except for those communications explicitly mentioned
below.

Alice receives two bits: xA ∈ {0, 1} and yA ∈ {−1, 1}. Analogously, Bob
receives two bits: xB ∈ {0, 1} and yB ∈ {−1, 1}. Both know that these four bits
are produced so that the 16 possible variations occur with the same frequency.

Then, Alice sends Bob a bit, and Bob sends Alice another. Possessing only
this information, their common goal is to compute the value of the function

f(xA, yA, xB, yB) = yAyB(−1)xAxB , (5)

with the highest possible probability of success. They win if and only if the value
announced by Alice and the value announced by Bob are both correct.

A Simple Optimal Classical Protocol. Either whether Alice receives xA = 0
or xA = 1, she sends Bob the value sA = yA. Analogously, either whether Bob
receives xB = 0 or xB = 1, he sends Alice the value sB = yB. Both put sAsB as
the value of f .

It can be checked that:

– In the 1/4 of the cases in which xA = 0 and xB = 0, they give the correct
value.

– In the 1/4 of the cases in which xA = 0 and xB = 1, they give the correct
value.



Communication Complexity as a Principle of Quantum Mechanics 75

– In the 1/4 of the cases in which xA = 1 and xB = 0, they give the correct
value.

– In the 1/4 of the cases in which xA = 1 and xB = 1, they give the incorrect
value.

Therefore, the probability of success by using this protocol is Pf = 3/4 = 0.75.

An Optimal Quantum Protocol. Initially, Alice and Bob share two qubits
prepared in the singlet state

|ψ−〉 =
1√
2

(|01〉 − |10〉) . (6)

If Alice receives xA = 0, she measures A0 = σx on her qubit. If she receives
xA = 1, she measures A1 = σy . The value obtained in this measurement is
rA ∈ {−1, 1}. If Bob receives xB = 0, he measures B0 = −(σx + σy)/

√
2 on

his qubit. If he receives xB = 1, he measures B1 = (σy − σx)/
√

2. The value
obtained in this measurement is rB .

Alice sends Bob the value sA = yArA. Bob sends Alice the value sB = yBrB .
Both put sAsB as the value of f .

It can be checked that:

– In the 1/4 of the cases in which xA = 0 and xB = 0, they give the correct
value if rA = rB, and give the incorrect value if rA = −rB .

– In the 1/4 of the cases in which xA = 0 and xB = 1, they give the correct
value if rA = rB, and give the incorrect value if rA = −rB .

– In the 1/4 of the cases in which xA = 1 and xB = 0, they give the correct
value if rA = rB, and give the incorrect value if rA = −rB .

– In the 1/4 of the cases in which xA = 1 and xB = 1, they give the correct
value if rA = −rB, and give the incorrect value if rA = rB .

Therefore, the probability of success by using this protocol is

Pf =
1
4

[P (A0B0 = 1) + P (A0B1 = 1) + P (A1B0 = 1) + P (A1B1 = −1)] (7)

=
1
4

[
1
2

(
1 +

1√
2

)
+

1
2

(
1 +

1√
2

)
+

1
2

(
1 +

1√
2

)
+

1
2

(
1 +

1√
2

)]
(8)

=
1
2

(
1 +

1√
2

)
(9)

≈ 0.853. (10)

Connection with Bell’s Inequalities. Taking into account that 〈AiBj〉 =
P (AiBj = 1) − P (AiBj = −1) and P (AiBj = 1) + P (AiBj = −1) = 1, we can
write Eq. (7) as

Pf =
1
2

+
1
8

(〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉) , (11)
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which contains the term in the middle in (1), so Pf is classically bounded,

1
4
≤ Pf ≤ 3

4
. (12)

The classical protocol introduced before is optimal because it gives the highest
possible classical probability of success.

4 The Necessary and Sufficient Conditions for Quantum
Correlations

There are two equivalent expressions of the necessary and sufficient conditions
for four numbers to represent correlations attainable by QM in the EPR-Bell sce-
nario. The first was provided by Tsirelson, and takes the form of an inequality
containing a polynomial of degree 6 in the correlations [52]. The second char-
acterization of the quantum correlations is due to Landau [53], and involves an
inequality with square roots and products of two correlations. Both can be writ-
ten in a way analogous to (1)-(4), by means of 8 inequalities [54]. In QM, four
numbers, −1 ≤ 〈AiBj〉 ≤ 1 (i, j = 0, 1) can represent the four correlations of
the EPR-Bell scenario if and only if they satisfy the following 8 inequalities:

− 2 ≤ 2
π

arcsin 〈A0B0〉 +
2
π

arcsin 〈A0B1〉 +
2
π

arcsin 〈A1B0〉

− 2
π

arcsin 〈A1B1〉 ≤ 2, (13)

−2 ≤ 2
π

arcsin 〈A0B0〉 +
2
π

arcsin 〈A0B1〉 − 2
π

arcsin 〈A1B0〉

+
2
π

arcsin 〈A1B1〉 ≤ 2, (14)

−2 ≤ 2
π

arcsin 〈A0B0〉 − 2
π

arcsin 〈A0B1〉 +
2
π

arcsin 〈A1B0〉

+
2
π

arcsin 〈A1B1〉 ≤ 2, (15)

−2 ≤ − 2
π

arcsin 〈A0B0〉 +
2
π

arcsin 〈A0B1〉 +
2
π

arcsin 〈A1B0〉

+
2
π

arcsin 〈A1B1〉 ≤ 2. (16)

Note that these inequalities provide a necessary and sufficient condition for
quantum correlations, while the much more famous Tsirelson’s inequalities
[58,59,60,61] only give a necessary condition.

5 Quantum Correlations and Communication Complexity
Problems

From a non-expert’s perspective, the advantage of the quantum entangled states
used to improve the probability of success in the CCP described in section 3
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could have come out of two magic boxes, each with a switch with two possible
settings (the two alternative local experiments) and a button such that, when
pressed, causes a light to flash red or green (the two possible outcomes) [56]. The
interesting thing is that the light flashings for the four possible combinations of
settings are mysteriously correlated. A naive, but reasonable, question is then
why “better” pairs of magic boxes cannot be designed? The answer is simply
that they are not allowed by nature. Then, the obvious question is which pairs
of boxes are allowed by nature and which are forbidden. We know the answer
(see section 4). Then why not choose this answer as an axiom of QM? This is
an attractive possibility, since we can dress it up in more physical terms, and
present it in an information-theoretic language by designing a CCP in which
Alice and Bob are provided by a pair of boxes and their purpose is to find out
with certainty, and just by looking at their final probability of success P , whether
or not their boxes are allowed by nature.

In more practical terms, this CCP and its corresponding P would allow Alice
and Bob to detect whether or not some forbidden communication between their
boxes has taken place. Equivalently, it would also allow them to detect whether
or not their boxes are “non-local machines” [57].

The following CCP is a modification of the one described in section 3, with
the remarkable feature that the probability of success using a particular strategy
allows Alice and Bob to detect whether or not some forbidden communication
between their boxes has taken place.

The rules of the new CCP are the same as those of the CCP in section 3,
except that the function Alice and Bob should compute is not (5), but a new
function g calculated by a classical computer with a memory and a simple pro-
gram, which implements, in the limit of infinite runs, a set of conditions described
below. Hereafter, we will refer to such a classical computer as “the oracle”.

The function g is such that, if Alice and Bob apply the protocol described
in section 3, but replacing the alternative measurements on two qubits prepared
in the singlet state by two boxes, one for Alice and the other for Bob, like those
described above, then:

– In the 1/4 of the cases in which xA = 0 and xB = 0, they give the correct
value with probability 1

2 + 1
π arcsin (2P (rA = rB) − 1).

– In the 1/4 of the cases in which xA = 0 and xB = 1, they give the correct
value with probability 1

2 + 1
π arcsin (2P (rA = rB) − 1).

– In the 1/4 of the cases in which xA = 1 and xB = 0, they give the correct
value with probability 1

2 + 1
π arcsin (2P (rA = rB) − 1).

– In the 1/4 of the cases in which xA = 1 and xB = 0, they give the correct
value with probability 1

2 + 1
π arcsin (2P (rA = −rB) − 1).

It is easy to write a computer program implementing these conditions. The
probability of success of getting the correct answer for g by using a protocol
similar to the one described in section 3 is

P11 =
1
2

+
1
4π

(arcsin [2P (A0B0 = 1) − 1] + arcsin [2P (A0B1 = 1) − 1]

+ arcsin [2P (A1B0 = 1) − 1] + arcsin [2P (A1B1 = −1) − 1]) . (17)
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Now suppose that Alice and Bob are provided with a pair of boxes and they
want to know with certainty wether or not the light flashings for the four possible
combinations of settings of these boxes are allowed by nature (or, equivalently,
they want to know whether or not any forbidden communication has taken place
between the boxes during their usage). The following protocol will give them the
answer with certainty. If the answer is that no forbidden communication has
taken place, this would mean that, if any forbidden communication has taken
place, then such a communication would be trivial in the sense that it could be
simulated without communication, just by using physical systems isolated inside
the boxes.

The protocol is as follows. Alice and Bob randomly use one of the following
strategies:

(a) In some of the runs, when Alice receives xA = 0 (xA = 1), she selects her
box’s A0 (A1) setting, and when Bob receives xB = 0 (xB = 1), he selects his
box’s B0 (B1) setting, as in the protocol described in section 3.

(b) In some of the runs, when Alice receives xA = 0 (xA = 1), she selects her
box’s A0 (A1) setting, and when Bob receives xB = 0 (xB = 1), he selects his
box’s B1 (B0) setting.

(c) In some of the runs, when Alice receives xA = 0 (xA = 1), she selects her
box’s A1 (A0) setting, and when Bob receives xB = 0 (xB = 1), he selects his
box’s B0 (B1) setting.

(d) In the remaining runs, when Alice receives xA = 0 (xA = 1), she randomly
selects her box’s A1 (A0) setting, and when Bob receives xB = 0 (xB = 1), he
randomly selects his box’s B1 (B0) setting.

The oracle —which knows which have been xA and xB , and has kept track
of the settings chosen by Alice and Bob for each run— keeps record of Alice
and Bob’s frequency of success in computing g after many runs using strate-
gies (a), (b), (c) and (d). The frequency of success using strategy (a) should
be approximately P11, given by (17). Similarly, we will call P10, P01, and P00,
those frequencies of success in computing g by using strategies (b), (c), and (d),
respectively.

Check that P00, P01, and P10 are approximately

P00 =
1
2

+
1
4π

(arcsin [2P (A0B0 = −1) − 1] + arcsin [2P (A0B1 = 1) − 1]

+ arcsin [2P (A1B0 = 1) − 1] + arcsin [2P (A1B1 = 1) − 1]) , (18)

P01 =
1
2

+
1
4π

(arcsin [2P (A0B0 = 1) − 1] + arcsin [2P (A0B1 = −1) − 1]

+ arcsin [2P (A1B0 = 1) − 1] + arcsin [2P (A1B1 = 1) − 1]) , (19)

P10 =
1
2

+
1
4π

(arcsin [2P (A0B0 = 1) − 1] + arcsin [2P (A0B1 = 1) − 1]

+ arcsin [2P (A1B0 = −1) − 1] + arcsin [2P (A1B1 = 1) − 1]) . (20)
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At the end, the oracle gives Alice and Bob the four Pij . If all of them satisfy

1
4
≤ Pij ≤ 3

4
, ∀i, j ∈ {0, 1}, (21)

then, the light flashings of Alice and Bob’s boxes are correlated in a way allowed
by nature, and thus Alice and Bob conclude that there has been no communica-
tion between their boxes. Otherwise, Alice and Bob’s conclusion would be that
the light flashings of their boxes are correlated in a way not allowed by nature,
and thus that some forbidden communication has taken place between them.

It is a simple exercise to check that condition (21) is equivalent to (14)-(16),
and therefore contains the necessary and sufficient condition for four correlations
to be obtainable within QM. Then, an information-theoretic axiomatization of
QM could contain the following principle: “Nature can only solve this CCP with
a probability of success 1

4 ≤ Pij ≤ 3
4 : any conceivable solution between these

limits is possible (i.e., there exists at least one probability distribution giving the
required four correlations), and any conceivable solution outside these limits is
impossible.”

6 Conclusion

Our main aim in this paper has been to draw attention to the fact that, in
QM, CCPs are interesting beyond the fact that they show how entangled states
can be used to solve some of them more efficiently than classically correlated
data. We have suggested that CCPs can be the basis of an information-theoretic
axiomatization of QM. An open question is whether or not the specific principle
proposed in this paper contains enough information about the structure of QM
such as to permit to derive QM from it.
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Abstract. Membrane computing is a branch of molecular computing that aims
to develop models and paradigms that are biologically motivated. It identifies an
unconventional computing model, namely a P system, from natural phenomena
of cell evolutions and chemical reactions. Because of the nature of maximal par-
allelism inherent in the model, P systems have a great potential for implementing
massively concurrent systems in an efficient way that would allow us to solve
currently intractable problems. In this paper, we look at various models of P sys-
tems and investigate their model-checking problems. We identify what is decid-
able (or undecidable) about model-checking these systems under extended logic
formalisms of CTL. We also report on some experiments on whether existing
conservative (symbolic) model-checking techniques can be practically applied to
handle P systems with a reasonable size.

1 Introduction

There has been a flurry of research activities in the area of membrane computing (a
branch of molecular computing) initiated five years ago by Gheorghe Paun [9]. Mem-
brane computing identifies an unconventional computing model, namely a P system,
from natural phenomena of cell evolutions and chemical reactions. It abstracts from
the way living cells process chemical compounds in their compartmental structures.
Thus, regions defined by a membrane structure contain objects that evolve according
to given rules. The objects can be described by symbols or by strings of symbols, in
such a way that multisets of objects are placed in regions of the membrane structure.
The membranes themselves are organized as a Venn diagram or a tree structure where
one membrane may contain other membranes. By using the rules in a nondeterminis-
tic, maximally parallel manner, transitions between the system configurations can be
obtained. A sequence of transitions shows how the system is evolving. Various ways
of controlling the transfer of objects from a region to another and applying the rules,
as well as possibilities to dissolve, divide or create membranes have been studied [10].
Due to the maximal parallelism inherent in the model, P systems have a great poten-
tial for implementing massively concurrent systems in an efficient way that would allow
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us to solve currently intractable problems (in much the same way as the promise of
quantum and DNA computing) once future bio-technology gives way to a practical bio-
realization.

Designing a P system to achieve a pre-defined computational goal is difficult and
extremely error-prone. This is because, unlike traditional programming languages, the
inherent maximal parallelism in the model makes the P system highly nondeterministic,
concurrent, and, more importantly, lack of control-flow structure (e.g., without “control
states”). The difficulties naturally call for algorithmic (i.e., decidable) solutions to the
verification problem: whether a designed P system does have the desired behavioral
property. The solutions will also be important in the future when people implement a P
system in vivo. This is because an erroneous P system will be deemed a failure in an
expensive lab realization. It is highly desirable to validate the P system in advance in
vitro, e.g., through digital computers. Another important application of results concern-
ing decidable properties of P systems is in biology, where such systems are now being
proposed for the modeling and simulation of cells. While previous work on modeling
and simulation use continuous mathematics such as differential equations, P systems
will allow us to use discrete mathematics and algorithms. As a P system models the
computation that occurs in a living cell, an important problem is to develop tools for
determining reachability between configurations, i.e., how the system evolves over time.
Specifically, given a P system and a configuration U (a configuration is the number and
distribution of the different types of objects in the various membranes in the system)
and some constraints f (e.g., a linear constraint over the numbers of different types of
objects), is there a configuration V satisfying f that is reachable from U? This is es-
sentially a model-checking [4] problem: whether a transition system meets a desired
temporal property.

Unfortunately, to our best knowledge, model-checking theories for P systems have
never been studied so far. In our opinion, this is, probably, due to the short history of
membrane computing and also due to the theoretical difficulty of handling the maxi-
mal parallelism, which is quite different from the conventional infinite state transition
systems currently being studied in model-checking.

In this paper, we try to identify what is decidable about model-checking of P sys-
tems. Clearly, since a P system is Turing complete in general, we have to focus on
restricted P systems in order to make the model-checking decidable. The first restric-
tion is to focus on P systems with only one membrane. Essentially, this is more like a
technical convenience than a real restriction. Since the P system model studied in this
paper does not have priority rules and membrane dissolving rules, multi-membranes can
be equivalently collapsed into one membrane through properly renaming symbols in a
membrane. The second restriction is to focus on bounded P systems (BPS) where rules
are only in the form of u → v, where u and v are multisets of objects with |u| ≥ |v|
(the size |u| denotes the number of objects in u). Notice that, since we do not require
that a BPS starts with a multiset whose size is bounded by a fixed constant, the BPS
is essentially an infinite state system (or more precisely, a system with an unbounded
number of states). An execution of a BPS can be understood as a sequence of multi-
sets (configurations). The formalism that we choose to specify the desired behavioral
property is CTLREG and CTLLIN, which allow us to reason upon the executions. In
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short,CTLREG and CTLLIN are simply CTL [3] augmented with atomic predicates in
REG and in LIN, respectively. More precisely, in REG, one can compare the multi-
plicity of a symbol against an integer constant, while in LIN, one can compare a linear
combination of the multiplicities of all the symbols against an integer constant. No-
tice that basic properties like halting are expressible in CTLREG. The corresponding
CTLREG (as well as CTLLIN) model-checking problem is to argue whether a given
temporal formula is interpreted as an empty multiset of configurations.

We first look at a non-cooperative BPS M where each rule is in the form of a → b,
where a and b are symbols, in Section 3. Surprisingly, for such systems, the CTLREG

model-checking problem is undecidable, even for a simple form of ∃U (exist-until)
properties. When we further require that, in M , a symbol can evolve into at most one
kind of symbol, we show that the CTLREG becomes decidable. On the other hand,
when CTLLIN

− (roughly, dropping ∃U from CTLLIN) is considered, its model-checking
problem becomes decidable for non-cooperative BPS. Lastly, when some form of de-
terminism is used to restrict a BPS, the CTLLIN is decidable. We then turn to study the
model-checking problems for BPS (which is not necessarily non-cooperative, i.e., |u|
can be greater than 1), in Section 4. We first give an exact automata-theoretic character-
ization of (non)deterministic BPSs reachable and halting configurations. That is, BPS
is equivalent to each of the following three classes of automata: linear-bounded mul-
ticounter machines, log n space-bounded Turing machines, two-way multihead finite
automata. From this result, one can easily conclude that even CTLREG

− is undecidable
for (non)deterministic BPS. In the section, we also study some notions of determinism
that make BPS decidable for various model-checking problems.

Given the undecidability results in model-checking P systems, finally, in Section 5,
we conduct some experiments to see whether existing conservative (symbolic) model-
checking techniques such as Omega (which handles infinite state space) and SPIN
(which handles finite state space) for concurrent linear arithmetic programs can be
practically applied to handle P systems (which are not necessarily BPS, and also with
multi-membranes, and even with priority among rules) with a reasonable size. Previ-
ous experiments [1] used a model-checker of rewriting systems where, like our SPIN
experiments, object multiplicities have to be restricted to a finite domain. One of the
purposes of our experiments is to let us know if the maximally parallelism and “lack
of control-flow structure” in P systems would cause existing symbolic encodings for
concurrent systems to fail terribly. Our preliminary experiments show that additional
effort is needed in studying more efficient encodings and, in particular, new techniques
to extract the implicit control-flow from P system rules.

2 P Systems and Their CTL Model-Checking Problems

Let N be the set of nonnegative integers and Σ = {a1, . . ., ak} be an alphabet, for some
k, and u be a (finite) multiset over the alphabet. In this paper, we do not distinguish
between several representations of u. That is, u can be treated as a vector in Nk (the
components are the multiplicities of the symbols in Σ); u can be treated as a word
where we only care about the counts of symbols (i.e., its Parikh map). We now introduce
formulas to define some sets of multisets. An atomic regular predicate is in the form of
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#(a) ∼ n, where a ∈ Σ, n ∈ N and ∼∈ {>,<,=,≥,≤}. The predicate is interpreted
as the subset of multisets u over Σ such that the multiplicity #(a) of symbol a satisfies
the predicate. A regular formula is a Boolean combination of atomic regular predicates.
We use REG to denote the set of regular formulas. An atomic linear predicate is in
the form of

∑
1≤i≤k ni · #(ai) ∼ n, where the ni’s and n are integers (positive, 0,

negative), and ∼∈ {>,<,=,≥,≤,≡m} with 0 
= m ∈ N. The predicate is interpreted
as a subset of multisets over Σ accordingly. A linear formula is a Boolean combination
of atomic linear predicates. We use LIN to denote the set of linear formulas. A set
S ⊆ Nk is a linear set if there exist vectors v0, v1, . . . , vt in Nk such that S = {v |
v = v0 + a1v1 + . . . + atvt, ai ∈ N}. A set S ⊆ Nk is semilinear if it is a finite
union of linear sets. A Presburger formula is constructed from atomic linear predicates
using quantification and Boolean operators. It is known that the following items are
equivalent: (1) a set of multisets (treated as vectors) is semilinear, (2) the set is definable
by a linear formula, (3) the set is definable by a Presburger formula.

In this paper, we only focus on P systems without priority rules and membrane
dissolving rules. In this case, as we mentioned earlier, it suffices for us to consider P
systems with one membrane since multiple membranes can be equivalently collapsed
into one by properly renaming symbols within a membrane.

A (1-membrane) P system M is specified by a finite set of rules. Each rule is in
the form of u → v where u and v are multisets over alphabet Σ. A configuration in
M is a multiset. As with the standard semantics of P systems [9,10,11], each evolution
step, called a maximally parallel move, is a result of applying all the rules in G in a
maximally parallel manner. More precisely, let ui → vi, 1 ≤ i ≤ m, be all the rules
in M . We use R = (r1, . . ., rm) ∈ Nm to denote a multiset of rules, where there are
ri instances of rule ui → vi, for each 1 ≤ i ≤ m. Let U and V be two configurations
(multisets) over Σ. The rule multiset R is enabled under configuration U if U contains∑

1≤i≤m ri · ui (i.e., U contains the multiset union of ri copies of multiset ui, for all
1 ≤ i ≤ m). The result of applying R over U is to replace, in parallel, each of the ri

copies of ui in U with vi. The rule multiset R is maximally enabled under configuration
U if it is enabled under U and, for any other rule multiset R′ that strictly contains R, R′
is not enabled under configuration U . Notice that, for the same U , a maximally enabled
rule multiset may not be unique (i.e., M is in general nondeterministic). U can reach V
through a maximally parallel move, written U →M V , if there is a maximally enabled
rule multiset R such that V is the result of applying R over U . Formally, U →M V
iff ∃r1, . . ., rm ∈ N. MaxEnable(r1, . . ., rm, U) ∧ Apply(r1, . . ., rm, U, V ), where
MaxEnable(r1, . . ., rm, U), indicating that (r1, . . ., rm) is maximally enabled under
configuration U , is the following formula:

U ≥
∑

1≤i≤m

ri ·ui ∧∀r′1 ≥ r1, . . ., r
′
m ≥ rm.(U ≥

∑
1≤i≤m

r′i ·ui ⇒ r′1 = r1∧ . . .∧r′m = rm),

and Apply(r1, . . ., rm, U, V ), indicating that V is the result of applying (r1, . . ., rm)
over U , is the following formula: V = U −∑1≤i≤m ri · ui +

∑
1≤i≤m ri · vi. No-

tice that, in above, we treat the multisets (i.e., U , V , the u’s, and the v’s) as vectors
in Nk. Clearly, a maximally parallel move in M is always definable by a Presburger
formula. Starting from some initial configuration, an execution of M goes through a
sequence of configurations, where each configuration is derived from the directly pre-
ceding configuration in one maximally parallel move. Formally, we use U �M V to
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denote the fact that V is reachable from V ; i.e., for some n and U0, . . ., Un, we have
U = U0 →M . . . →M Un = V .

From above, a P system M can be treated as a transition system between multisets
or vectors in Nk. There has been an established theory, called model-checking, in al-
gorithmically answering verification queries over a transition system’s behavior. For a
finite state transition system, the queries can be specified in a temporal logic like the
computation tree logic (CTL) [3] and various model-checking algorithms are known
[4]. For infinite state transition systems, the logic can also be interpreted in many cases
(e.g., [2]). In below, we formulate the CTL formalism that we will use to specify our
verification queries for P systems.

Let A be a given class of atomic predicates. The CTLA formulas f are exactly
defined with the following grammar: f ::= A | f ∧ f | f ∨ f | ¬f | ∃ ◦ f | ∀ ◦
f | f ∃U f | f ∀U f, where A ∈ A is an atomic formula (predicate), and ◦ stands
for “next” and U stands for “until”. As usual, the eventuality operator ∃ � f is the
shorthand of true ∃U f , and, its dual ∀� f is simply ¬ ∃ � ¬f . We use CTLA

−
to denote the fragment of CTLA where the formulas f are exactly defined with the
following grammar: f ::= A | f ∧ f | f1 ∨ f2 | ¬f | ∃ ◦ f | ∀ ◦ f | ∃ � f | ∀� f, where
A ∈ A is an atomic formula (predicate).

Let M be a P system. We interpret each CTLA formula as a subset of configurations
of M . That is, the interpretation, written [f ]M , is a subset of multisets of objects in M .
Formally, the interpretation is recursively defined as follows [2]:

– [A]M is a given subset of multisets of objects in M , where A ∈ A;

– [f1 ∧ f2]M is [f1]M ∩ [f2]M ; [f1 ∨ f2]M is [f1]M ∪ [f2]M ;

– [¬f1]M is the complement of [f1]M ; (the universe is the set of all multisets of
objects in M )

– [∃ ◦ f1]M (resp. [∀ ◦ f1]M ) is the set of configurationsU1 such that, for some (resp.
any) execution U1 →M U2 →M . . ., we have U2 ∈ [f1]M ;

– [f1 ∃U f2]M (resp. [f1 ∀U f2]M ) is the set of configurationsU1 such that, for some
(resp. any) execution U1 →M U2 →M . . ., we have U1, . . ., Un ∈ [f1]M and
Un+1 ∈ [f2]M , for some n.

The CTLA model-checking problem is to decide whether, given a P system M and a
CTLA formula f , the set [f ]M is empty. Notice that, in our definition of the CTLA

model-checking problem shown above, we did not mention the initial configurations of
M . In fact, a verification question like whether a given initial configuration Uinit satis-
fies f can also be formulated in our definition as follows: is [Ainit ∧ f ]M empty? where
Ainit is an atomic regular predicate where Uinit is the only satisfying configuration.

In this paper, we focus on model-checking problems of CTLREG and CTLLIN.
Unfortunately, the maximal parallelism in P systems is too powerful to make P systems
model-checkable; even in simple cases, P systems are able to be Turing complete. This
leads us to study restricted forms of P systems where model-checking problems could
be decidable. To this end, we focus on bounded P systems (BPS), in which each rule is
in the form of u → v with |u| ≥ |v| (|u| denotes the number of objects in u).
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3 CTL Model-Checking of Non-cooperative Bounded P Systems

Let M be a non-cooperative BPS. That is, M is a 1-membrane P system whose rules
are in the form of a → b or in the form of a → Λ (i.e., one object evolves into at
most one object), where a, b ∈ Σ. We first show that the CTLREG model-checking
problem is undecidable for M . Clearly, as we have mentioned earlier, when M has
multi-membranes, it can be collapsed into one with 1-membrane. Hence, all the results
in this section can be easily generalized to non-cooperative BPSs with multiple mem-
branes.

Theorem 1. The CTLREG model-checking problem for non-cooperative BPSs is un-
decidable. In fact, the undecidability remains even for CTLREG formulas in the form
of INIT ∧ (A∃UH), where INIT, A and H are regular formulas in REG.

We should point out that in the proof of Theorem 1 we did not use rules in the form
of a → Λ. Hence, Theorem 1 still holds when only rules in the form a → b are used.
Because of the theorem, we will study a restricted form of M that makes CTLREG

model-checking decidable. A non-cooperative BPS M is special when, for any a, if
a → b and a → c with b, c 
= Λ are rules in M , then b = c (i.e., a could be disappear
with a → Λ but it can not evolve into two kinds of symbols).

Theorem 2. The CTLREG model-checking problem for special and non-cooperative
BPSs is decidable.

Because of the undecidability result in Theorem 1, we would like to investigate a frag-
ment of a CTL logic that makes the model-checking problem for non-cooperative BPSs
decidable. Before we proceed further, we need an intermediate result. Let M be a non-
cooperative BPS, whose alphabet is Σ = {a1, . . ., ak}. Recall that we use u �M v
to denote the fact that multiset u can reach multiset v in M through some number of
maximally parallel moves. We first show a characterization on the reachability relation
�M⊆ Nk × Nk, which leads to Theorem 4 later.

Theorem 3. The reachability relation �M⊆ Nk ×Nk for a non-cooperative BPS M
is definable by a linear formula in LIN.

Theorem 4. The CTLLIN
− model-checking problem for non-cooperative BPSs is decid-

able.

4 Reachability in Bounded P Systems

We now consider a bounded P system (BPS) M that is not necessarily noncooperative.
That is, rules in M are in the form of u → v with |v| ≤ |u|. Clearly, from Theorem 1,
the CTLREG model-checking problem remains undecidable for M . However, encour-
aged by the decidability results in Theorem 4 for non-cooperative bounded P systems,
we would like to know whether the CTLREG

− model-checking problem for (not neces-
sarily non-cooperative) BPSs would still be decidable. In this section, we will prove that
this is not true, even in very simple cases. We say that, when started with some given
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configuration, a BPS M has a halting computation if M has an execution that leads to
a halting configuration (i.e., none of the rules is enabled).

We first consider the following problem: Given a bounded P system M with rules
of the form u → v, where |u| = |v| = 1 or 2 and a fixed multiset w and a distinct
symbol o not in w, is there an n such that when M is started with multiset won (the
multiset union of w and n copies of o), it eventually halts? We shall refer to this as the
emptiness problem for bounded P systems. We will show that this problem is undecid-
able. In fact, this result holds even when the system is deterministic in the sense that
the maximally parallel multiset of rules applicable at each step in the computation is
unique. We only sketch the proof in this paper. The idea is to relate the computation
of M to a restricted type of multicounter machine, called linear-bounded multicounter
machine, whose emptiness is known undecidable.

Consider a deterministic (nondeterministic) multicounter machine Z that is linear-
bounded in the sense that when given an input n in one of the counters (called the
input counter) and zeros in the other counters, computes in such a way that the sum
of the values of the counters at any time during the computation is at most n. One can
normalize the computation so that every increment is preceded by a decrement (i.e., if Z
wants to increment a counter C, it first decrements some counterD and then increments
C) and every decrement is followed by an increment. We do not require that the contents
of the counters are zero when the machine halts.

We will show that we can construct a deterministic (nondeterministic) bounded P
system M which uses a fixed multiset w such that, when M is started with multiset
won, it simulates Z and has a halting computation if and only if Z halts on input n.
(Again, we do not assume that the halting configuration of M to be in any special
form.) Moreover, the rules of M are of the form u → v, where |u| = |v| = 1 or 2.
Clearly, it follows that the computation of M is linear-bounded in the sense that any
reachable configuration has length exactly |w| + n (i.e., the size of the computation
space is always the same).

It is convenient to use an intermediate P system, which we shall call RCPS, a re-
stricted version of the CPS (communicating P system) introduced in [13]. A CPS has
multiple membranes labeled 1, 2, ..., where 1 is the skin membrane. The rules in any
membrane are of the forms: (1). a → ax, (2). ab → axby, (3). ab → axbyccome, where
a, b, c are objects, x, y (which indicate the directions of movements of a and b) can be
here, out, or inj . The designation here means that the object remains in the membrane
containing it, out means that the object is transported to the membrane directly enclos-
ing the membrane that contains the object (or to the environment if the object is in the
skin membrane). The designation inj means that the object is moved into the mem-
brane, labeled j, that is directly enclosed by the membrane that contains the object. A
rule of the form (3) can only appear in the skin membrane. When such a rule is applied,
c is imported through the skin membrane from the environment (i.e., outer space) and
will become an element in the skin membrane. In one step, all rules are applied in a
maximally parallel manner. For notational convenience, when the target designation is
not specified, we assume that the symbol remains in the membrane containing the rule.

Let V be the set of all objects (i.e., symbols) that can appear in the system, and o be
a distinguished object (called the input symbol). A CPS M has m membranes, with a



On Model-Checking of P Systems 89

distinguished input membrane. We assume that only the symbol o can enter and exit the
skin membrane (thus, all other symbols remain in the system during the computation).
We say that M accepts on if M , when started with on in the input membrane initially
(with no o’s in the other membranes), eventually halts. Note that objects in V − {o}
have fixed numbers and their distributions in the different membranes are fixed initially.
Moreover, their multiplicities remain the same during the computation, although their
distributions among the membranes may change at each step. The language accepted
by M is L(M) = {on | on is accepted by M}.

It is known that a languageL ⊆ o∗ is accepted by a deterministic (nondeterministic)
CPS if and only if it is accepted by a deterministic (nondeterministic) multicounter
machine. (Again, define the language accepted by a multicounter machine Z to be L =
{on |Z when given n has a halting computation }). The “if” part was shown in [13]. The
‘only if” part is easily verified. Hence, every unary recursively enumerable language can
be accepted by a deterministic CPS (hence, also by a nondeterministic CPS).

In a recent paper [8], it was shown that L ⊆ o∗ is accepted by a deterministic
(nondeterministic) linear-bounded multicounter machine if and only if it is accepted by
a deterministic (nondeterministic) CPS which is restricted in that the environment does
not contain any object initially. The system can expel objects into the environment but
only expelled objects can be retrieved from the environment. The restricted system is
called deterministic (nondeterministic) RCPS.

We can now modify the construction in [8] by introducing a new membrane in the
skin membrane which would simulate the environment. This is possible since, in an
RCPS, the environment does not contain any object initially and only o can be expelled
into the environment and can be retrieved from the environment. It follows that the
modified RCPS need only use rules of the form (1) and (2). But the modified RCPS,
call it M , has multiple membranes. We will convert this to a 1-membrane system M ′.
Suppose that M has membranes 1, ...,m. For each object a in V , M ′ will have sym-
bols a1, ..., am. In particular, for the distinguished input symbol o in V , M ′ will have
o1, ..., om. Hence the distinguished input symbol in M ′ is oi0 , where i0 is the index of
the input membrane in M . We can convert M to the system M ′ as follows:

1. If a → ax is a rule in membrane i of M , then ai → aj is a rule in M , where j is
the index of the membrane into which a is transported to, as specified by x.

2. If ab → axay is a rule in membrane i of M , then aibi → ajbk is a rule in M , where
i and j are the index numbers of the membranes into which a and b are transported
to, as specified by x and y.

Thus, corresponding to the initial configuration won of M , where on is in the input
membrane i0 and w represents the configuration denoting all the other symbols (differ-
ent from w) in the other membranes, M ′ will have initial configurationw′on

i0
, where w′

are symbols in w renamed to identify their locations in M .
Clearly, M ′ accepts on

i0
if and only if M accepts on, and M ′ is a deterministic (non-

deterministic) bounded P system. Now it is easy to show that the emptiness problem for
deterministic linear-bounded multicounter machines (i.e., given Z , is there an input n
such that Z halts?) is undecidable. Hence, we have:
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Theorem 5. It is undecidable to determine, given a deterministic (nondeterministic)
BPS M and a fixed multiset w, whether there is an n such that M starting with multiset
won has a halting computation.

For the next result, we need the fact that linear-bounded multicounter machines, log n
space-bounded TMs, and two-way multihead FAs are all equivalent (for both the de-
terministic and nondeterministic versions). As a corollary to Theorem 5, we can show
that Theorem 4 does not hold for deterministic (nondeterministic) bounded P systems,
even in very simple cases. Recall that Halt is a regular formula in REG that defines
all the halting configurations. For a fixed multiset w, the set of all won is clearly defin-
able by a regular formula Iw in REG. Theorem 5 essentially says that the emptiness of
[Iw ∧ ∃ �Halt]M is undecidable. Hence, in contrast to Theorem 4, we have,

Corollary 1. The CTLREG
− model-checking problem for (nondeterministic) bounded P

systems is undecidable. The undecidability remains even for CTLREG
− formulas in the

form of INIT ∧ ∃ �H where INIT and H are regular formulas in REG.

We have seen that the emptiness problem for deterministic bounded P systems is unde-
cidable. We now look at a special case when the cardinality of the maximally parallel
multiset of rules applicable at each step is at most 1. Thus the computation of the system
would be sequential. More generally, consider a (nondeterministic) bounded P system
whose computation is restricted in that at every step, only one nondeterministically se-
lected rule is applied. Call such a system a sequential bounded P system. In contrast
to Theorem 5, We show that the emptiness problem for sequential bounded P system is
decidable. In fact, this result is true even if the system is not bounded, i.e., in the rules of
the form u → v, we no longer require that |v| ≤ |u|. We can show that such a sequential
P system is equivalent to a partially blind multicounter machine (PBCM). Note that a
PBCM [6] can increment/decrement any counter by 1 or leave it unchanged; however,
it can not test a counter for zero. When there is an attempt to decrement a zero counter,
the machine gets stuck and the computation is aborted. The machine starts with the in-
put counter set to a value n with all other counters set to zero. We say that the machine
accepts if it eventually halts in an accepting state with all the counters zero.

It can be shown that a language L ⊆ o∗ is accepted by a sequential P system if and
only if it is accepted by a PBCM. Since the emptiness problem for PBCMs is decidable
(as this problem is reducible to the reachability problem for vector addition systems
(i.e., Petri nets)) [6], we have:

Theorem 6. The emptiness problem for sequential P systems (and, hence, also for se-
quential bounded P systems) is decidable.

A BPS M is separated if for any two distinct rules ui → vi and uj → vj in M ,
the multiset union of ui and vi is disjoint with the multiset union of uj and vj . For
instance, the system with rules ab → ae and cd → d is separated. But the system with
rules ab → ae and cd → e is not. In contrast to Corollary 1, we have the following
result. Currently, we do not know whether the result still holds when we modify the
above “separated” definition into the following: for any two distinct rules ui → vi and
uj → vj in M , multisets ui and uj are disjoint.
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Theorem 7. For separated bounded P systems, the model-checking problem for formu-
las in the form of INIT ∧ ∃ �H , where INIT and H are regular formulas in REG, is
decidable.

Notice that separated systems can demonstrate nonlinear reachability relations. For in-
stance, consider such a system M with rules ea → a and ccb → cbd. Define INIT to be
#(b) = 1∧#(a) = 1∧#(d) = 0 and H to be #(e) > 0∧#(c) ≥ 2. Then, the set of all
V ∈ [H ]M that is reachable from some U ∈ [INIT]M (i.e., U �M V ) is exactly the set
of V satisfying the following nonlinear relation: #(e) > 0∧#(c) ≥ 2∧#(a) = 2#(d).
We believe that Theorem 7 can be generalized to the entire CTLREG, further investiga-
tion of which will be left for the full version of the paper.

We now investigate the case when a BPS M is bounded maximally parallel; i.e.,
there is a constantK such that on every execution of M , every maximally parallel move
only fires at most K instances of rules. Examples of such M include purely catalytic
systems [13,14,5], and following the same ideas of the proof of Theorem 5 but using
constructions in [13,14,5], one can show that simple reachability queries like formulas
INIT ∧ ∃ � H in CTLREG are undecidable for these M ’s. To make the query decid-
able, we add one more restriction. A maximally parallel move from u = (t1, . . ., tk)
(the vector representation of the multiset u) to v = (s1, . . ., sk) is 1-non-monotonic
if t2 ≤ s2, . . ., tk ≤ sk. M is 1-non-monotonic if its executions consist of 1-non-
monotonic maximally parallel moves only. With this restriction, we can show that linear
reachability queries are decidable:

Theorem 8. For bounded maximally parallel and 1-non-monotonic BPSs, the model-
checking problem for formulas in the form of INIT ∧ ∃ � H , where INIT and H are
linear formulas in LIN, is decidable.

Let N be a constant. A configuration u = (t1, . . ., tk) is 1-unbounded if each of
t2, . . ., tk is bounded by N (i.e., only the first t1 is possibly larger than N ). M is 1-
unbounded if its executions consist of 1-unbounded configurations only. In this case,
we can generalize Theorem 8 to the full CTLLIN.

Theorem 9. The CTLLIN model-checking problem for bounded maximally parallel
and 1-unbounded BPSs is decidable.

5 Experiments

From the results presented so far, even simple reachability queries like formulas INIT∧
∃�H in CTLREG are undecidable for a bounded P system M in general. In this section,
we investigate conservative behavior approximations that can be applied over M such
that every execution of the approximated system is also an execution of the original M .
Hence, such a conservative behavior approximation at least provides a way to help us
analyze the original system, partially. This resembles similar approximation techniques
in traditional model-checking of (in)finite state transition systems.

One such approximation is to let M to execute for at most B maximally parallel
steps for a given constant B. Clearly, since B is a fixed, the reachability relation of M
now is expressible as a Presburger formula, which can be calculated with a Presburger
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manipulator like Omega [12]. Another approximation is to force M to crash whenever
M reaches a multiset with more than S objects for a given constant B. Under this ap-
proximation, M can be simulated by a finite-state transition system and, accordingly,
tools like the LTL model-checker SPIN [7] can be used to analyze it. In fact, these two
approximations are applicable to a general P system (which is not necessarily a BPS)
with multi-membranes, priority rules and dissolving membranes. Below, we briefly re-
port our experiences in using Omega and SPIN to conservatively analyze a general P
system, which is taken from literature [11]. Since Omega (resp. SPIN) has been proved
effective in handling even fairly large infinite (resp. finite) real-world applications [2,7],
the primary purpose of our experiments is to identify whether these tools are also ef-
fective for a general P system with a reasonable size, where the inherent maximal par-
allelism makes the model highly nondeterministic, concurrent, and, more importantly,
lack of control-flow structure.

The example P system M is shown in the figure below. It has three membranes
where, in particular, membrane 2 (resp. membrane 3) are dissolved (i.e., objects in the
membrane are immediately become objects in the outside membrane and the membrane
along with the membrane’s rules is all gone) whenever the rule in membrane 2 (resp.
membrane 3) that contains δ fires. In membrane 2, the relation ff → f > f → δ says
that, roughly, in a maximally parallel move, the former rule is given higher priority to
fire than the latter rule. The P system is to compute a quadratic relation between cer-
tain objects; see [11] for details. Using Omega, we encode a maximally parallel move
→M in a Presburger relation which contains 34 variables (i.e., N17×N17). Notice that a
symbol may need up to three variables to represent, in order to specify its multiplicity in
one of the three membranes. Additionally, a number of quantified variables are needed
to encode the maximal parallelism, the priority rules and the dissolving membranes.
Due to space limitation, we omit the detail of the Omega encoding. We used Omega
to compute the reachability relation of M within B maximally parallel moves. Unfor-
tunately, the tool crashed when computing with B = 6 (memory usage was 1.6GB
including virtual memory), though it was successfully completed with B = 5 (in 489
CPU seconds).

To use SPIN, we encode M in Promela, the front-
af

a → ab

a → bδ

f → ff

b → d

d → de

e → eout

(ff → f) > (f → δ)

3
2

1

end specification language in SPIN. A Promela process
is defined for each membrane, where the process ex-
its when its corresponding membrane dissolves. Object-
transfers across a membrane are simulated through ren-
dezvous communications among processes, and the pri-
ority relation between evolution rules is implemented
by carefully designed guards of the related selections.
Again, we omit the detail of the Promela encoding. Using SPIN’s default option, we
checked the system for deadlock states. Unfortunately, SPIN could not finish any run
within one hour as we varied the variable types from byte to short and long, respec-
tively. Then, we checked a liveness property: eventually, the evolution of this P system
will come to an end, i.e., only the skin membrane is left and no evolution rules in the
skin can be applied; this is equivalent to checking that eventually all the three processes
shall reach the ends of their bodies. Surprisingly, SPIN handled this property easily —
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the total time consumed, as we varied the variable types from byte to short and long,
increased merely from less than 0.1 second to several seconds and several minutes. The
results of these checkings are all “false” since the inner membranes may not necessar-
ily dissolve. Another property we checked about this P system is that: whenever the
evolution of this P system comes to an end, the number of e objects outside the skin
membrane is the square of the number of d objects inside the skin membrane. Again,
SPIN gave the correct answer (“true”) fairly fast (in less than 1 second) for each of the
three cases (byte, short, long).

Through these preliminary experiments, we prefer SPIN over Omega to serve as the
back-end solver in a future P system model-checker. On the other hand, Omega has its
own strength in handling infinite state systems. Still, more research is needed for both
approximation methods to create a more efficient encoding. All our experiments were
run on a PC server with two 1GHz PIII processors running Linux with 1GB physical
memory. The encodings can be found in the long version of the paper, which is available
at www.eecs.wsu.edu/∼zdang.
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Abstract. Earlier solutions to decision problems by means of P systems
used many counter objects to control the synchronization of different
stages in a computation (usually as many counters as the stage must
last in the worst case). In this paper we propose a way to replace those
counters with some spacial objects for each stage. Furthermore, following
the ideas presented in [1], in order to have a common scheme to attack
numerical problems, all instances of a problem with the same size are
solved by the same P system (which depends on the size) given an input
which describes the corresponding instance of the problem. We illustrate
these ideas with a cellular solution to the Subset-Sum problem.

1 Preliminaries

Since the introduction of P systems [3] a great amount of contributions in that
field has been reported. In particular, many papers are devoted to solving deci-
sion or numerical NP–complete problems in polynomial time. In order to deal
with such kind of problems, an exponential size workspace is generated (in the
number of objects and the number of membranes). In this paper we deal with
decision problems in the framework of P systems.

We recall that a decision problem, X, is a pair (IX , θX) such that IX is a
language over a finite alphabet whose elements are called instances and θX is
a boolean function over IX . For an instance u of the problem X, if θX(u) = 1
(resp. θX(u) = 0) the answer of the problem for that instance is Yes (resp. No).

In the general definition, P systems are non-deterministic. Therefore they
do not seem to be a suitable tool to solve a decision problem. For that reason
a condition that restricts, in a certain way, the non-determinism is demanded.
More specifically, we will work with confluent systems (all computations with
the same initial configuration produce the same answer).

When working with P systems with external output, the user can ignore the
inner processes and take only into account the objects that the system expels to
the environment. To know when a computation halts, it is demanded that some
halting indicator is sent to the environment exactly in the last step.

These restrictions make more difficult the design of such systems. Earlier
approaches in this area used counter objects to control the synchronization of
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different stages in a computation. This kind of solutions need, therefore, extra
objects and steps that are not necessary to obtain an answer but to control the
procedure of obtaining it.

In this paper we want to show how this control can be obtained with only a
few objects.

Furthermore, earlier solutions to NP-complete problems in polynomial time
used to design one P system that solves one instance of the problem; therefore
the system could not be used to solve any other instance of the problem, even if
it was of the same size (see [8,2]). The introduction of P systems with input [6]
gave rise to the design of families of systems, each of them able to solve all the
instances of the problem of a given size.

Another goal of this paper is to present a solution of Subset-Sum problem
with schemes of rules more uniform that depend only in the cardinality of the set.

The present work is a continuation of [4] and [1]. For this reason we have
chosen the same problem and P system model: Subset-Sum problem and recog-
nizer P systems with active membranes, respectively. The solution to Subset-Sum
problem will illustrate also how the given schemes can be adapted for the new
approach.

1.1 P Systems with Active Membranes

For a detailed description of a P system, Π = (Γ , H, μΠ , M1, . . . , Mp, R), with
active membranes, we refer the reader to [2] and [7]. In what follows we briefly
describe the rules of the model that will be used in next sections.

(a) [ l a → v ]αl (evolution rules), where a ∈ Γ , v ∈ Γ ∗, α ∈ {+,−, 0}, l ∈ H.
Substitutes an object a by a multiset of objects v in a membrane with label
l and charge α.

(b) [ l a ]αl → b [ l ]βl (communication rules), where a, b ∈ Γ , α, β ∈ {+,−, 0}
and l ∈ H. Sends out (to its father) an object a from a membrane with label
l and charge α transformed into the object b. In addition, the charge of the
membrane changes to β.

(c) a [ l ]αl → [ l b ]βl (communication rules), where a, b ∈ Γ , α, β ∈ {+,−, 0}
and l ∈ H. An object a enters in a membrane with label l and charge α
(from its father) transformed into the object b. In addition, the charge of
the membrane changes to β.

(d) [ l a ]αl → [ l b ]βl [ l c ]γl (division rules), where a, b, c ∈ Γ , α, β, γ ∈ {+,−, 0}
and l ∈ H. An object a divides a membrane with label l and charge α into
two membranes with the same label and charges β and γ. In each of the new
membranes the object a changes into objects b and c, respectively. This rule
can only be applied to elementary membranes and never to the skin.

Rules of type (a) are applied as usual in the framework of P systems, that is,
in a maximally parallel way. However, only one rule among the remaining types
(b)–(d) can be applied to a membrane. The application of the rules is supposed
to occur simultaneously (if division must take place in a membrane consider that
the objects present in that membrane evolve previously). For a precise definition
we refer the reader to [2] and [7].
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1.2 P Systems with Input

A variant of P systems arises when considering the possibility of admitting ex-
ternal information before a computation starts.

A P system of degree p with input is a tuple (Π, Σ, iΠ) where:

– Π is a P system of degree p.
– Σ is an input alphabet strictly contained in the work alphabet, Γ .
– All the initial multisets are over the alphabet Γ −Σ.
– iΠ is a label that distinguishes the input membrane.

In a P system of degree p, with initial multisets M1, . . . , Mp, given a multiset
of objects m over the input alphabet, the initial configuration with input m is
the tuple (μΠ , M1, . . . , MiΠ ∪ m, . . . , Mp). Let us denote by IΠ the set of all
the possible input multisets.

1.3 P Systems with External Output

In this variant the environment collects the output of the computations, instead
of an inner membrane.

There will be some special objects called halting indicators. A P system
with external output is valid if no computation sends any halting indicator
to the environment except in the last step. And that must only occurs if the
computation is a halting one.

1.4 Language Recognizer P Systems

A language recognizer P system is a P system with input and external output
such that the working alphabet contains two halting indicators yes and no. A
language recognizer P system is valid and all its computations halt. If the object
is yes (resp. no) we say that the computation is an accepting (resp. rejecting)
one.

We say that {Πn}n∈N is a family of language recognizer P systems that
solves, in polynomial time, a decision problem (IX , θX) if it verifies the following
properties:

– All the P systems in the family are language recognizers.
– There exists a deterministic Turing machine that constructs each member

of the family, Πn, from n in polynomial time.
– There exists a polynomial encoding for the set of instances, IX , into the fam-

ily of P systems, Π (that is, a pair of polynomial time computable functions
(cod, s) where cod: IX → ⋃

n∈N
IΠn

and s: IX → N verifying cod(u) ∈ IΠs(u)

for all u ∈ IX) such that:

• A polynomial function, p, exists so that for each u ∈ IX all the com-
putations of the system Πs(u) with input cod(u) halt at most in p(|u|)
steps.
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• For each u ∈ IX , if there exists an accepting computation in the system
Πs(u) with input cod(u), then θX(u) = 1. It is said then that the family
is sound.

• For each u ∈ IX , if θX(u) = 1, then every computation in the system
Πs(u) with input cod(u) is an accepting one. It is said then that the
family is complete.

The resolution of an instance u ∈ IX by a family of P systems Π consist of two
stages: during the first one (usually called pre-computation stage) we calculate
s(u), cod(u) and Πs(u); during the second stage the P system Πs(u) with input
cod(u) carries out its computation.

2 A Solution to the Subset-Sum Problem

We illustrate the previous discussion with a solution to Subset-Sum problem
that can be stated as follows:

Given a finite set A = {a1, . . . , an}, a weight function ω: A → N such that
ω(ai) = ωi for i = 1, . . . , n, and a constant k ∈ N, determine whether
or not there exists a subset D ⊆ A such that ω(D) = k.

The proposed solution is based on the one given at [4], and is divided into
several stages:

– Generation stage: Elementary membrane divisions are carried out until ob-
taining a membrane associated with each subset of A.

– Calculating stage: In each membrane the weight of the associated subset is
calculated. This stage will take place in parallel with the previous one.

– Checking stage: In each membrane it is verified if the weight of the associated
subset is equal to the constant k. This stage begins in each membrane after
the previous ones are over.

– Output stage: When the previous stage has been completed in all mem-
branes, the system sends the corresponding answer to the environment and
the computation halts.

For each n ∈ N (the cardinality of set A = {a1, . . . , an}) a P system with
active membranes, input and external output is defined as follows: (Πn, Σn, iΠn

)
where Πn = (Γn, H, μΠ , Ms, Me,n, Mr, Rn), P system of degree.

– Working alphabet: Γn = {xi | 0 ≤ i ≤ n} ∪ {#, yes, no, no, q, q0, q1, q2,
q3, c, g, g, d , f0, f, f+, b, b, x0, b0, b0, z, z0, z+, z, h0, h1, h1, p, t}.

– Set of labels: H = {s, e, r}.
– Membrane structure: μΠ = [ s [ e ]e [ r ]r ]s.
– Initial multisets: Ms = no, Me,n = g f0 dn z0 and Mr = h1.
– Set of rules: Rn that consists of the following rules:

(a) [ e f0 ]0e → [ e q ]−e [ e f ]+e [ e z0 → z ]0e [ e z+ → z0 ]0e
[ e f+ ]0e → [ e f0 ]0e [ e f ]+e [ e z0 → ]+e [ e z+ ]+e → z [ e ]+e
[ e f → f+ ]+e [ e d ]+e → # [ e ]0e [ e z → z+ ]+e
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The goal of these rules is the generation of one membrane for each subset of
A. When an object f0 is present in a neutrally charged membrane we pick
a new element from A for its associated subset (summing its weight to the
previous ones) and then divide the membrane. In the membranes where q
appears no further objects will be added, and the charge of the membrane
changes in order to activate the checking stage. The multiplicity of object d
controls the number of divisions that must take place. The object z evolves
in order to remain only in the last generated membrane, collaborating to
control the beginning of the output stage.

(b) [ e xi → xi−1 ]+e 1 ≤ i ≤ n
[ e x0 → x0 ]0e [ e x0 → b0 ]0e [ e x0 → ]+e
In the beginning, objects xi, 1 ≤ i ≤ n, are introduced encoding the weights
of the corresponding elements of A. When the generation stage ends, the
multiplicity of object b0 will encode the weight of the subset associated with
the membrane.

(c) [ e q → q0 ]−e [ e b0 → b0 ]−e [ e b → b ]−e
These rules mark the beginning of the checking stage in a membrane. Now,
the multiplicity of object b0 encode the weight of the corresponding subset
of A and the multiplicity of object b encode the value of the constant k.
[ e g ]−e → g [ e ]−e
Object g will be used to mark the beginning of the output stage.

(d) [ e b0 ]−e → # [ e ]+e [ e b ]+e → # [ e ]−e
We compare the number of occurrences of objects b0 and b sending them
out alternatively.
[ e q0 → q1 ]−e [ e q1 → q0 ]+e [ e q1 → q2 c ]−e
[ e c ]−e → # [ e ]+e [ e q2 → q3 ]+e
Objects qi and c control if both objects have been actually sent out or not
(if there is an excess or lack of any of them).
[ e q3 ]+e → yes [ e ]0e [ e q3 ]−e → # [ e ]0e [ e q0 ]+e → # [ e ]0e
These rules deal with the different checking results.

(e) [ s z → z z ]0s z [ r ]0r → [ r z ]0r [ r z → p ]0r
Object z controls the beginning of a process in membrane r that will trigger
the output stage. When z appears in membrane s 2n objects g are present
in it.
[ s z ]0s → # [ s ]+s [ s g → g ]+s g [ e ]0e → [ e g ]+e
When a membrane ends its checking stage it admits one object g.

(f) g [ r ]+r → [ r g ]−r [ r h1 → h0 ]+r [ r h0 → h1 ]−r
[ r p ]−r → p [ r ]0r [ r g ]0r → g [ r ]−r p [ r ]−r → [ r p ]+r
[ r h0 ]+r → t [ r ]+r [ r h1 → h1 ]+r
We will use membrane r to detect when all objects g have been admitted in
a membrane e. That will mean that the checking stage has finished in all
membranes and then, the output stage is triggered.

(g) [ s t ]+s → # [ s ]−s [ s yes ]−s → yes [ s ]0s
[ s no → no ]−s [ s no ]−s → no [ s ]0s
The presence of object t in membrane s activates the answering process. If
there is any object yes then it must be sent out. Otherwise, an object no
goes out.
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(h) Also, some cleaning can be done during the process.
[ e xi → ]−e 1 ≤ i ≤ n [ e z → ]−e [ e d → ]−e
[ e b → ]0e [ e b0 → ]0e

– Input alphabet: Σn = {b} ∪ {xi | 1 ≤ i ≤ n}.
– Input membrane: iΠ = e.

So we have defined a family of P systems {Πn}n∈N. Each of the members of
the family, Πn, solves all the instances of the Subset-Sum problem for a finite
set A with cardinality n. Each instance will be determined by the values of the
weight function, ωi for i = 1, . . . , n, and the value of the constant k. The set
of possible input multisets is IΠn

= {bk xω1
1 . . . xωn

n | k, ω1, . . . , ωn ∈ N}. As we
can see, all the members of the family can be constructed by a Turing machine
in polynomial time from n.

Let us consider IX = {(n, (ω1, . . . , ωn), k) | n, ω1, . . . , ωn, k ∈ N} (all the
instances of the Subset-Sum problem). The pair of functions (cod, s) defined by
cod(n, (ω1, . . . , ωn), k) = bk xω1

1 . . . xωn
n and s(n, (ω1, . . . , ωn), k) = n is a

polynomial encoding of IX into {Πn}n∈N.
The following data gives us an idea of Πn complexity:

– Size of the working alphabet: n + 31 ∈ O(n).
– Number of membranes: 3 ∈ O(1).
– |Ms| + |Me,n| + |Mr| = n + 5 ∈ O(n).
– Input size: k + ω(A)
– Number of rules: 2n + 48
– Number of computation steps needed in the worst case: 3n + 2 min(k, ω(A))

+ 19

In what follows we will prove that the systems of the family are recognizer
P systems that solve the Subset-Sum problem in linear time; that is, that the
family is sound, complete, and polynomially bounded.

3 Formal Verification

Proposition 1. Consider k, n ∈ N and a weight function ω:A → N such that
ω(ai) = ωi for i = 1, . . . , n. For any l ∈ N and i, 1 ≤ i ≤ n, if l is the weight of
a subset D ⊆ {a1, . . . , ai−1}, then from a membrane of the following form [ e bk

g f+ dn−i bl
0 xωi

0 · · · xωn
n−i ]0e we obtain the set of membranes

{[ e bk q0 bl′
0 ]−e | where l′ is the weight of D ∪ D’ for ∅ 
= D’ ⊆ {ai, . . . , an}}

They will be called relevant membranes.
The last membrane of this set will be generated after 3(n−i+1) steps. During

the process 2n−i+1 − 1 objects g will appear in membrane s.
Moreover, we also obtain the following set of membranes:

{[ e bk g f+ bl′
0 ]+e | l′ = ω(D ∪ D’) for D’ ⊆ {ai, . . . , an}}

These membranes will be called irrelevant and the last one will be generated after
3(n− i + 1) steps.

If an abject z+ is present in the considered membrane, then it will only re-
main, as an object z, in the last generated irrelevant membrane.
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Proof: By decreasing induction on i, starting from i = n.
Figure 1 shows the evolution of a membrane [ e bk g f+ bl

0 xωn
0 ]0e where l

is the weight of D ⊆ {a1, . . . , an−1}. The branching represents new generated
membranes obtained by division.

Fig. 1. Case i = n

In node (1) we can see that the relevant membrane [ e bk q0 bl+ωn
0 ]−e (where

l + ωn = ω(D ∪ {an})) is obtained after 3 = 3(n− n + 1) steps. Besides, in the
last step 1 = 2n−n+1 − 1 object g has been sent to membrane s.

In (2) the irrelevant membrane [ e bk g f+ bl+ωn
0 ]+e (where l+ωn is the weight

of D ∪ {an}) is obtained after 3 = 3(n− n + 1) steps.
In (3) we have obtained the irrelevant membrane [ e bk g f+ bl

0 ]+e , after 2
steps (l is the weight of D = D ∪ ∅).

Moreover, Figure 1 shows (underlined) the evolution of an object z+ when
it is present in the initial membrane and we can see that it only remains, as an
object z, in the last obtained irrelevant membrane.

Thus, the proposition holds for i = n.
Induction step: i + 1 → i
The evolution of [ e bk g f+ dn−i bl

0 xωi
0 · · · xωn

n−i ]0e where l is the weight of a
subset D ⊆ {a1, . . . , ai−1} is shown in Figure 2.

In (1) the relevant membrane [ e bk q0 bl+ωi
0 ]−e is obtained. In it l+ωi is the

weight of D ∪ {ai}. In the last step one object g appears in membrane s.
In (2), a membrane [ e bk g f+ dn−(i+1) bl+ωi

0 x
ωi+1
0 · · · xωn

n−(i+1) ]0e , in which l

is the weight of D ∪ {ai} ⊆ {a1, . . . , ai}, is obtained.
By induction hypothesis, from this membrane we obtain the set of membranes

{[ e bk q0 bl′
0 ]−e | l′ = ω((D ∪ {ai}) ∪ D’) for ∅ 
= D’ ⊆ {ai+1, . . . , an}}. The

last member of this set will be generated after 3(n− i) + 3 = 3(n− i+ 1) steps.
During this process 2n−i − 1 objects g will appear in membrane s.

In addition, the set of irrelevant membranes {[ e bk g f+ bl′
0 ]+e | l′ is the weight

of (D ∪ {ai}) ∪ D’ for D’ ⊆ {ai+1, . . . , an}} is obtained. The last member of
this set will be generated after 3(n− i) + 3 = 3(n− i + 1) steps.

In (3), a membrane [ e bk g f+ dn−(i+1) bl
0 x

ωi+1
0 · · · xωn

n−(i+1) ]0e in which l is
the weight of D is obtained.

By induction hypothesis, from this membrane the set of relevant membranes
{[ e bk q0 bl′

0 ]−e | l′ = ω(D ∪ D’) for ∅ 
= D’ ⊆ {ai+1, . . . , an}} is generated. The
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Fig. 2. Induction step i + 1 → i

last member of this set will be generated after 3(n − i) + 2 = 3(n − i + 1) − 1
steps and during the process 2n−i−1 objects g will appear in membrane s. From
(3), it is also generated the set of irrelevant membranes {[ e bk g f+ bl′

0 ]+e | l′ is
the weight of D ∪ D’ for D’ ⊆ {ai+1, . . . , an}}. The last member of this set will
be generated after 3(n− i) + 3 = 3(n− i + 1) steps.

Thus, from a membrane [ e bk g f+ dn−i bl
0 xωi

0 · · · xωn
n−i ]0e we will obtain the

set of relevant membranes {[ e bk q0 bl′
0 ]−e | l′ is the weight of D ∪ D’ for a subset

∅ 
= D’ ⊆ {ai, . . . , an}} (the last member after 3(n − i + 1) steps). During the
process 2(2n−i − 1) + 1 = 2n−i+1 − 1 objects g appear in membrane s.

Besides, we obtain the set of irrelevant membranes {[ e bk g f+ bl′
0 ]+e | l′ is

the weight of D ∪ D’ for D’ ⊆ {ai, . . . , an}} (the last member after 3(n− i+ 1)
steps).

Finally, if an object z+ is present in the initial membrane (underlined in
Figure 2) it only appears in (2), then by induction hypothesis it will only remain,
as an object z, in the last generated irrelevant membrane. �

Theorem 2. Given k, n ∈ N and a weight function ω:A → N, ω(ai) = ωi for
i = 1, . . . , n from a membrane of the form [ e bk g f0 dn xω1

1 · · · xωn
n z0 ]0e the set

of relevant membranes {[ e bk q0 bl
0 ]−e | l = ω(D) for D ⊆ A} is obtained (last

one after 3n + 2 steps). During the process 2n objects g appear in membrane s.
The set of irrelevant membranes {[ e bk g f+ bl

0 ]+e | l = ω(D) for D ⊆ A} is
also obtained (the last of them after 3n + 2 steps). The object z0 will evolve to
an object z that will only remain in the last generated irrelevant membrane.

Proof:
Figure 3 shows the evolution of [ e bk g f0 dn xω1

1 · · · xωn
n z0 ]0e .

In (1) the relevant membrane [ e bk q0 ]−e is obtained and during the process
an object g appears in membrane s.
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Fig. 3. Evolution scheme

In (2) we have [ e bk g f+ dn−1 xω1
0 · · · xωn

n−1 ]0e , case i = 1 and l = 0 of
proposition 1, and from it we will obtain the set {[ e bk q0 bl

0 ]−e | l = ω(D) for
∅ 
= D ⊆ A} of relevant membranes (the last one after 3(n− 1 + 1) + 2 = 3n+ 2
steps) and 2n−1+1 − 1 = 2n − 1 objects g in membrane s.

Moreover, from (2) (by Proposition 1) we will also obtain the set of irrelevant
membranes {[ e bk g f+ bl

0 ]+e | l = ω(D) for D ⊆ A} (the last one after 3(n− 1+
1) + 2 = 3n + 2 steps.

Finally, as an object z+ appears in (2), from the evolution of z0 (again by
Proposition 1) it will only remain as an object z in the last generated irrelevant
membrane. �

Let us see now, given 0 ≤m ≤ min(k, l), the evolution of a relevant membrane
of the form: [ e q0 bk−m bl−m

0 ]−e

(a) Case: m = k, m = l
[ e q0 ]−e ⇒ [ e q1 ]−e ⇒ [ e q2 c ]−e ⇒ # [ e q2 ]+e ⇒ [ e q3 ]+e ⇒ yes [ e ]0e

(b) Case: m < k, m = l
[ e q0 bk−m ]−e ⇒ [ e q1 bk−m ]−e ⇒ [ e q2 c bk−m ]−e ⇒ # [ e q2 bk−m ]+e ⇒
[ e q3 bk−(m+1) ]−e ⇒ # [ e bk−(m+1) ]0e (objects b will be consumed in the
following step).

(c) Case: m = k, m < l

[ e q0 bl−m
0 ]−e ⇒ # [ e q1 b

l−(m+1)
0 ]+e ⇒ [ e q0 b

l−(m+1)
0 ]+e ⇒

# [ e b
l−(m+1)
0 ]0e (objects b0 will be consumed in the following step).

(d) Case: m < k, m < l

[ e q0 bk−m bl−m
0 ]−e ⇒ # [ e q1 bk−m b

l−(m+1)
0 ]+e ⇒

# [ e q0 bk−(m+1) b
l−(m+1)
0 ]−e (that will continue evolving as shown)

Beginning with m = 0, pairs of objects b0 and b are sent out (case (d)) until
both of them are finished (case (a)) or a lack of any of them is detected (cases
(b) and (c)).

At the end, the membrane will be neutrally charged and ready to admit one
object g, after that it will remain inactive.

The only irrelevant membrane that continues evolving is the one with an
object z+ that will be sent out (so this object will appear in membrane s after
the last object g has also appeared).
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Object z in membrane s will activate the evolution of membrane r:
z [ r h1 ]0r ⇒ z z [ r h1 ]0r ⇒ [ r h1 z ]+r (also an object z is sent out membrane

s changing its charge to positive) ⇒ [ r h1 p ]+r (in membrane s each object g
evolves to an object g).

In membrane r begins now a process to detect if there is any object g in
membrane s (remember that 2n relevant membranes are at the checking stage
and that when they finish they will admit one object g). Figure 4 shows a scheme
of the process.

When this process finishes an object t has appeared in membrane s and two
cases can take place: there is an object yes in membrane s or there is not.

(a) [ s t yes no ]+s ⇒ [ s yes no ]−s ⇒ yes [ s no ]0s
(b) [ s t no ]+s ⇒ [ s no ]−s ⇒ [ s no ]−s ⇒ no [ s ]0s
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Fig. 4. Checking the existence of objects g in the skin

4 Conclusions

In this paper we have presented a family of recognizer P systems solving the
Subset-Sum problem. Given a “size”, n, member Πn of the family solves all the
instances of the SubsetSum problem for a finite set A with cardinal n. Each
instance is determined by the value of k and the values of the weight function,
ωi for i = 1, . . . , n.

This solution is more uniform than the one presented in [4], as the con-
struction of the family only depends on n, the cardinality of A, and not on the
parameter k.

On the other hand, we remark that the rules that control the generation,
checking, and output stages depend neither on n nor on k. Only the number
of rules that handle objects xi (corresponding to the different elements of A) is
determined by n.

Another interesting point is that the number of computation steps, in the
cases where ω(A) < k, is smaller than in the solution given in [4].

This solution has also been adapted to other numerical NP-complete pro-
blems as the Knapsack or the Partition problems. Moreover, different approaches
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and skeleton designs to solve those problems have been studied. For example, in
order to obtain 2n membranes (each of them representing a subset of A) there
is another solution that only generates those membranes (in the solution given
in this paper, another 2n irrelevant membranes are also generated).

Those results allow us to be optimistic about describing a “language” for the
design of P systems to solve relevant numerical problems and, why not, other
kinds of problems.

Another issue related to the present paper is the computer simulation of P
systems. An implementation in silico (in CLIPS) for P systems with active mem-
branes has been developed by the Research Group on Natural Computing from
the University of Seville [5]. This simulation has helped us to debug some errors
in the formal design and verification of P systems, and a feedback process also
exists, as running simulations of already verified P systems can detect possible
bugs in the implementation.

The CLIPS code of the simulator, some instructions of use and some examples
(including the problem presented in this paper) are available on the Web at
http://www.gcn.us.es.
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Abstract. We study the computational efficiency of recognizer P sys-
tems with active membranes without polarizations and without disso-
lution. The main result of the paper is the following: the polynomial
computational complexity class associated with the class of recognizer P
systems is equal to the standard complexity class P.

1 Introduction

The theory of computation deals with the mechanical solvability of problems, that
is, searching solutions that can be described by a finite sequence of elementary
processes or instructions. The first goal of this theory is general problem solving;
that is, develop principles and methods that are able to solve any problem from
a certain class of questions.

A computational model tries to capture those aspects of mechanical solutions
of problems that are relevant to these solutions, including their inherent limita-
tions. In some sense, we can think that computational models design machines
according to certain necessity.

If we have a mechanically solvable problem and we have a specific algorithm
solving it that can be implemented in a real machine, then it is very important
to know how much computational resources (time or memory) are required for
a given instance, in order to recognize the limitations of the real device.

Thus, one of the main goals of the theory of computational complexity is
the study of the efficiency of algorithms and their data structures through the
analysis of the resources required for solving problems (that is, according to
their intrinsic computational difficulty). This theory provides a classification of
the abstract problems that allows us to detect their inherent complexity from the
computational solutions point of view.

Many interesting problems of the real world are presumably intractable and
hence it is not possible to execute algorithmic solutions in an electronic computer
when we deal with instances of those problems whose size is large. The theoretical
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limitations of the Turing machines in terms of computational power are also
practical limitations to the digital computers.

Natural Computing is a new computing area inspired by nature, using con-
cepts, principles and mechanisms underlying natural systems. Evolutionary Com-
putation uses computational models of evolutionary processes as key elements in
the design and implementation of computer–based problem solving systems [18].
Neural Networks are inspired in the structures of the brain and nervous system.
DNA Computing is based on the computational potential of DNA molecules
and on the capacity to handle them. Membrane Computing is inspired by the
structure and functioning of living cells, and it is a cross-disciplinary field with
contributions by computer scientists, biologists, formal linguists and complexity
theoreticians, enriching each others with results, open problems and promising
new research lines.

This emergent branch of Natural Computing was introduced by Gh. Păun in
[8]. Since then it has received important attention from the scientific community.
In fact, Membrane Computing has been selected by the Institute for Scientific
Information, USA, as a fast Emerging Research Front in Computer Science, and
[6] was mentioned in [19] as a highly cited paper in October 2003.

This new non-deterministic model of computation starts from the assumption
that the processes taking place in the compartmental structure of a living cell can
be interpreted as computations. The devices of this model are called P systems.

Roughly speaking, a P system consists of a cell-like membrane structure, in
the compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner1.

Inspired in living cells, P systems abstract the way of obtaining new mem-
branes. These processes are basically two: mitosis (membrane division) and au-
topoiesis (membrane creation). Both ways of generating new membranes have
given rise to different variants of P systems: P systems with active membranes,
where the new workspace is generated by membrane division, and P systems
with membrane creation, where the new membranes are created from objects.

Both models are universal from a computational point of view, but tech-
nically, they are pretty different. In fact, nowadays there does not exist any
theoretical result which proves that these models can simulate each other in
polynomial time.

P systems with active membranes have been successfully used to design so-
lutions to well-known NP-complete problems, as SAT [16], Subset Sum [13],
Knapsack [14], Bin Packing [15] and Partition [3], but as Gh. Păun pointed in
[10] “membrane division was much more carefully investigated than membrane
creation as a way to obtain tractable solutions to hard problems”. Recently, the
first results related to the power and design of algorithms to solve NP problems
in these model have arisen (see [4,5]).

P systems with active membranes were introduced in [7] with the membranes
having polarizations, one of the “electrical charges” 0,−,+, and several times
the problem was formulated whether or not these polarizations are necessary in

1 A layman-oriented introduction can be found in [9] and further bibliography at [20].
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order to obtain polynomial solutions to NP–complete problems. The last current
result is that from [1], where one proves that two polarizations suffice.

The present paper is both a contribution to this problem, and a contribution
to another interesting problem in membrane computing, namely, of character-
izing classic complexity classes, such as P and NP, by means of membrane
computing complexity classes.

Specifically, we prove that P is equal to the family of problems which can
be solved in a polynomial time by P systems with membrane division, without
polarizations and without dissolution. At this moment, we do not know whether
this last condition can be avoided, but either result would be of a great interest:
if our result would remain true also when using membrane dissolution, then we
would have the possitive answer to the problem of removing polarization; the
other possibility would indicate a surprising role of the –apparently “innocent”–
operation of membrane dissolution, as it will make the difference between effi-
ciency and non–efficiency for P systems with membrane division and without
polarization.

2 Preliminaries

2.1 The Reachability Problem

The Reachability Problem is the following: given a (directed or undirected) graph,
G, and two nodes a, b, determine whether or not the node b is reachable from a,
that is, whether or not there exists a path in the graph from a to b.

This problem belongs to the complexity class P. Indeed, it is very easy to
design an algorithm running in polynomial time solving it. For example, given
a (directed or undirected) graph, G, and two nodes a, b, we consider a depth–
first–search with source a, and we check if b is in the tree of the computation
forest whose root is a. The total running time of this algorithm is O(|V |+ |E|),
that is, in the worst case is quadratic in the number of nodes. Morover, this
algorithm needs to store a linear number of items (it can be proved that there
exists another polynomial time algorithm which uses O(log2(|V |)) space).

2.2 Recognizer P Systems

In the structure and functioning of a cell, biological membranes play an essential
role. The cell is separated from its environment by means of a skin membrane,
and it is internally compartmentalized by means of internal membranes.

The main syntatic ingredients of a cell–like membrane system (P system) are
the membrane structure, the multisets, and the evolution rules.

– A membrane structure consists of several membranes arranged hierarchically
inside a main membrane (the skin), and delimiting regions (the space in–
between a membrane and the immediately inner membranes, if any). Each
membrane identifies a region inside the system. A membrane structure can
be considered as a rooted tree.
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– Regions defined by a membrane structure contain objects corresponding to
chemical substances present in the compartments of a cell. The objects can
be described by symbols or by strings of symbols, in such a way that multiset
of objects are placed in the regions of the membrane structure.

– The objects can evolve according to given evolution rules, associated with
the regions (hence, with the membranes).

The semantics of the cell–like membrane systems is defined through a non–
deterministic and synchronous model (a global clock is assumed) as follows:

– A configuration of a cell–like membrane system consists of a membrane struc-
ture and a family of multisets of objects associated with each region of the
structure. At the beginning, there is a configuration called the initial config-
uration of the system.

– In each time unit we can transform a given configuration in another con-
figuration by applying the evolution rules to the objects placed inside the
regions of the configurations, in a non–deterministic, and maximally parallel
manner (the rules are chosen in a non–deterministic way, and in each region
all objects that can evolve must do it). In this way, we get transitions from
one configuration of the system to the next one.

– A computation of the system is a (finite or infinite) sequence of configurations
such that each configuration –except the initial one– is obtained from the
previous one by a transition.

– A computation which reaches a configuration where no more rules can be
applied to the existing objects, is called a halting computation.

– The result of a halting computation is usually defined through the multiset
associated with a specific output membrane (or the environment) in the final
configuration.

That is, a computation in a P system is structured as follows: it starts with the
initial configuration of the system, then the computation proceeds, and when it
stops the result is to be found in the output membrane.

In this paper we use membrane computing as a framework to attack the
resolution of decision problems. In order to solve this kind of problems and having
in mind the relationship between the solvability of a problem and the recognition
of the language associated with it, we consider P systems as recognizer language
devices.

Definition 1. A P system with input is a tuple (Π,Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets M1, . . . ,Mp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ and the initial multisets are over Γ − Σ; (c) iΠ is the
label of a distinguished (input) membrane.

The computations of a P system with input in the form of a multiset over Σ
are defined in a natural way, but the initial configuration of (Π,Σ, iΠ) must be
the initial configuration of the system Π to which we add the input multiset.
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Definition 2. Let (Π,Σ, iΠ) be a P system with input. Let Γ be the working
alphabet of Π, μ the membrane structure, and M1, . . . ,Mp the initial multisets
of Π. Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with
input m is (μ,M1, . . . ,MiΠ ∪m, . . . ,Mp).

Let (Π,Σ, iΠ) be a P system with input. Let Γ be the working alphabet of
Π , μ the membrane structure and M1, . . . ,Mp the initial multisets of Π . Let m
be a multiset over Σ. Then we denote M∗

j = {(a, j) : a ∈ Mj}, for 1 ≤ j ≤ p,
and m∗ = {(a, iΠ) : a ∈ m}.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a
language over a finite alphabet (whose elements are called instances) and θX is
a predicate (a total boolean function) over IX .

Definition 3. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N

be a family of recognizer P systems with input. A polynomial encoding from X
to Π is a pair (cod, s) of polynomial time computable functions over IX such
that for each instance w ∈ IX , s(w) is a natural number and cod(w) is an input
multiset for the system Π(s(w)).

It is easy to prove that polynomial encodings are stable under polynomial
time reductions.

Proposition 1. Let X1, X2 be decision problems. Let r be a polynomial time
reduction from X1 to X2. Let (cod, s) be a polynomial encoding from X2 to Π.
Then (cod ◦ r, s ◦ r) is a polynomial encoding from X1 to Π.

Definition 4. A recognizer P system is a P system with input and external
output such that:

1. The working alphabet contains two distinguished elements yes and no.
2. All computations halt.
3. If C is a computation of the system, then either object yes or object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

In recognizer P systems, we say that a computation C is an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively, no)
appears in the environment associated with the corresponding halting configura-
tion of C. Hence, these devices send to the environment an accepting or rejecting
answer, in the end of their computations.

2.3 A Polynomial Complexity Class in Recognizer P Systems

Definition 5. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer P systems with input. Let (cod, s) be a polynomial encoding
from X to Π.
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– We say that the family Π is sound with regard to (X, cod, s) if the following
is true: for each instance of the problem w ∈ IX , if there exists an accepting
computation of Π(s(w)) with input cod(w), then θX(w) = 1.

– We say that the family Π is complete with regard to (X, cod, s) if the following
is true: for each instance of the problem u ∈ IX , if θX(u) = 1 then every
computation of Π(s(u)) with input cod(u) is an accepting computation.

Next, we propose to solve a decision problem through a family of P systems
constructed in polynomial time by a Turing machine, and verifying that each
element of the family processes, in a specified sense, all the instances of equivalent
size. We say that these solutions are uniform solutions.

Definition 6. Let R be a class of recognizer P systems with input membrane.
A decision problem X = (IX , θX) is solvable in polynomial time by a family
Π = (Π(n))n∈N, of P systems from R, and we denote this by X ∈ PMCR, if
the following is true:

– The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(w) from the instance w ∈ IX .

– There exists a polynomial encoding (cod, s) from IX to Π such that
• The family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps.

• The family Π is sound and complete with regard to (X, cod, s).

It is easy to see that the class PMCR is closed under polynomial–time
reduction and complement (see [11] for details).

3 Recognizer P Systems with Active Membranes
Without Polarizations and Without Dissolution

A particularly interesting class of cell–like membrane systems are the systems
with active membranes, where the membrane division can be used in order to
solve computationally hard problems, e.g., NP-complete problems, in polyno-
mial or even linear time, by a space–time trade-off.

In this paper we work with a variant of P systems with active membranes
that does not use electrical charges or dissolution rules.

Definition 7. A recognizer P system with active membranes without polariza-
tions and without dissolution is a recognizer P system (Π,Γ, iΠ), where the rules
of the associated P system are of the following forms:

(a) [ a → u ]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗: This is an object evolution rule,
associated with a membrane labelled with h: an object a ∈ Γ belonging to
that membrane evolves to a string u ∈ Γ ∗.



P Systems with Active Membranes 111

(b) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ : An object from the region immediately
outside a membrane labelled with h is introduced in this membrane, possibly
transformed into another object.

(c) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ : An object is sent out from membrane
labelled with h to the region immediately outside, possibly transformed into
another object.

(d) [ a ]h → [ b ]h [ c ]h for h ∈ H, a, b, c ∈ Γ : An elementary membrane can be
divided into two membranes with the same label, possibly transforming some
objects.

These rules are applied according to the following principles:

– All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non–
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

– If at the same time a membrane labelled by h is divided by a rule of type
(d) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are
used, and then the division is produced. Of course, this process takes only
one step.

– The rules associated with membranes labelled by h are used for all copies
of this membrane. At one step, a membrane can be the subject of only one
rule of types (b), (c), (d).

In this framework we work without cooperation, without priorities, with cell
division rules for elementary membranes, and without changing the labels of
membranes.

We denote by AM0
−d the class of all recognizer P systems with active mem-

branes without polarizations and without dissolution.

4 Dependency Graph of a Recognizer P System with
Active Membranes

Let Π be a recognizer P systems with active membranes without polarizations
and without dissolution. Let R be the set of rules associated with Π .

Each rule can be considered, in a certain sense, as a dependency between the
object triggering the rule and the object or objects produced by its application.

We can consider a general format of all kinds of rules of such systems as
follows: (a, h) → (a1, h

′)(a2, h
′) . . . (as, h

′), according to the following criterion:

– The rules of type (a) correspond to the case h = h′ and s ≥ 1.
– The rules of type (b) correspond to the case h = f(h′) and s = 1.
– The rules of type (c) correspond to the case h′ = f(h) and s = 1.
– The rules of type (d) correspond to the case h = h′ and s = 2.
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If h is the label of a membrane, then f(h) (respectively, ch(h)) denotes the
label of the father (resp. a child) of the membrane labelled by h. We adopt the
convention that the father of the skin membrane is the environment.

For example, let us consider a general rule (a, h) → (a1, h
′)(a2, h

′) . . . (as, h
′).

Then we can interpret that from the object a in membrane labelled by h we can
reach the objects a1, . . . , as in membrane labelled by h′.

Next, we formalize these ideas in the following definition.

Definition 8. Let Π be a recognizer P systems with active membranes without
polarizations and without dissolution. Let R be the set of rules associated with Π.
The dependency graph associated with Π is the directed graph GΠ = (VΠ , EΠ)
defined as follows:

VΠ = V LΠ ∪ V RΠ ,

V LΠ = {(a, h) ∈ Γ ×H : ∃u ∈ Γ ∗ ([a → u]h ∈ R)∨

∃b ∈ Γ ([a]h → [ ]hb ∈ R) ∨

∃b ∈ Γ ∃h′ = ch(h) (a[ ]h′ → [b]h′ ∈ R) ∨

∃b, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

V RΠ = {(b, h) ∈ Γ ×H : ∃a ∈ Γ ∃u ∈ Γ ∗ ([a → u]h ∈ R ∧ b ∈ alph(u)) ∨

∃a ∈ Γ ∃h′ = ch(h) ([a]h′ → [ ]h′b ∈ R) ∨

∃a ∈ Γ (a[ ]h → [b]h ∈ R) ∨

∃a, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

EΠ = {((a, h), (b, h′)) : ∃u ∈ Γ ∗ ([a → u]h ∈ R ∧ b ∈ alph(u) ∧ h = h′) ∨

([a]h → [ ]hb ∈ R ∧ h′ = f(h)) ∨

(a[ ]h′ → [b]h′ ∈ R ∧ h = f(h′)) ∨

∃c ∈ Γ ([a]h → [b]h[c]h ∈ R ∧ h = h′)}.

Proposition 2. Let Π be a recognizer P systems with active membranes without
polarizations and without dissolution. There exists a Turing machine that con-
structs the dependency graph, GΠ , associated with Π, in polynomial time (that
is, in a time bounded by a polynomial function depending on the total number of
rules and the maximum length of the rules).

Proof. A deterministic algorithm that, given a P system Π with the set R of
rules, constructs the corresponding dependency graph, is the following:
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Input: (Π,R)
VΠ ← ∅; EΠ ← ∅
for each rule r ∈ R of Π do

if r = [a → u]h ∧ alph(u) = {a1, . . . , as} then

VΠ ← VΠ ∪
s⋃

j=1

{(a, h), (aj , h)}; EΠ ← EΠ ∪
s⋃

j=1

{((a, h), (aj , h))}

if r = [a]h → [ ]hb then
VΠ ← VΠ ∪ {(a, h), (b, f(h))};
EΠ ← EΠ ∪ {((a, h), (b, f(h)))}

if r = a[ ]h → [b]h then

VΠ ← VΠ ∪ {(a, f(h)), (b, h)};
EΠ ← EΠ ∪ {((a, f(h)), (b, h))}

if r = [a]h → [b]h[c]h then

VΠ ← VΠ ∪ {(a, h)), (b, h), (c, h)};
EΠ ← EΠ ∪ {((a, h)), (b, h)), ((a, h), (c, h))}

The running time of this algorithm is bounded by O(|R| ·q), where q is the value
max{length(r) : r ∈ R}. �

Proposition 3. Let Π = (Γ,Σ,H,M1, . . . ,Mp, R1, . . . , Rp, iΠ) be a recognizer
P systems with active membranes without polarizations and without dissolution.
Let ΔΠ be defined as follows:

ΔΠ = {(a, h) ∈ Γ ×H : there exists a path (within the dependency graph)
from (a, h) to (yes, environment)}

Then, there exists a Turing machine that constructs the set ΔΠ in polynomial
time (that is, through a polynomial function depending on the total number of
rules and the maximum length of the rules).

Proof. We can construct the set ΔΠ from Π as follows:

– We construct the dependency graph GΠ associated with Π .
– Then we consider the following algorithm:

Input: GΠ = (VΠ , EΠ)
ΔΠ ← ∅
for each (a, h) ∈ VΠ do

if reachability (GΠ , (a, h), (yes, environment)) = yes then

ΔΠ ← ΔΠ ∪ {(a, h)}

The running time of this algorithm is of the order O(|VΠ | · |VΠ |2), hence it is of
the order O(|Γ |3 · |H |3). �
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Proposition 4. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N

be a family of recognizer P systems with input membrane solving X, according
to Definition 6. Let (cod, s) be the polynomial encoding associated with that so-
lution. Then, for each instance w of the problem X the following assertions are
equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ΔΠ(s(w)) ∩ ((cod(w))∗ ∪
p⋃

j=1

M∗
j ) 
= ∅, where M1, . . . ,Mp are the initial mul-

tisets of the system Π(s(w)).

Proof. Let w ∈ IX . Then w ∈ LX if and only if there exists an accepting com-
putation of the system Π(s(w)) with input multiset cod(w). But this condition
is equivalent to the following: in the initial configuration of Π(s(w)) with input
multiset cod(w) there exists an object a ∈ Γ in a membrane labelled by h such
that in the dependency graph the node (yes, environment) is reachable from
(a, h).

Hence, θX(w) = 1 if and only if ΔΠ(s(w)) ∩ M∗
1 
= ∅, or . . . , or ΔΠ(s(w)) ∩

M∗
p 
= ∅, or ΔΠ(s(w)) ∩ (cod(w))∗ 
= ∅. �

Theorem 1. PMCAM0
−d

= P.

Proof. We have P ⊆ PMCAM0
−d

because the class PMCAM0
−d

is closed under
polynomial time reduction. Next, we show that PMCAM0

−d
⊆ P. For that,

let X ∈ PMCAM0
−d

. Let Π = (Π(n))n∈N a family of recognizer P systems
with input membrane solving X , according to Definition 6. Let (cod, s) be the
polynomial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instance w of X

- Construct the system Π(s(w)) with input multiset cod(w).
- Construct the dependency graph GΠ(s(w)) associated with Π(s(w)).

- Construct the set ΔΠ(s(w)) according to Proposition 3

answer ← No; j ← 1

while j ≤ p ∧ answer = No do

if Δ ∩ M∗
j �= ∅ then

answer ← yes

j ← j + 1

endwhile

if Δ ∩ (cod(w))∗ �= ∅ then

answer ← yes

On one hand, the answer of this algorithm is yes if and only if there exists
a pair (a, h) belonging to ΔΠ(s(w)) such that in the membrane labelled by h in
the initial configuration (with input the multiset cod(w)) appears the symbol a.
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On the other hand, a pair (a, h) belongs to ΔΠ(s(w)) if and only if there exists
a path from (a, h) to (yes, environment); that this, if and only if we can obtain
an accepting computation of Π(s(w)) with input cod(w). Hence, the algorithm
above described solves the problem X .

The cost to determine whether or not Δ ∩M∗
j 
= ∅ (or Δ∩ (cod(w))∗ 
= ∅) is

of the order O(|Γ |2 · |H |2).
Hence, the running in time of this algorithm can be bounded as f(|w|) +

O(|R| ·q)+O(p · |Γ |2 · |H |2), where f is the (total) cost of a polynomial encoding
from X to Π, R the set of rules of Π , and q = max {length(r) : r ∈ R}. But
from Definition 6 we have that all involved parameters are polynomials in |w|.
That is, the algorithm is polynomial in the size |w| of the input. �

5 Conclusions

Dependency graphs associated with a variant of recognizer P systems with active
membranes are introduced. This concept allows us to characterize the accepting
computations of these systems through the reachability of a distinguished node
of the graph from other nodes associated with the initial configuration.

In this paper, we have showed that in the framework of P systems with active
membranes if we remove electrical charges and dissolution, then it is possible to
solve in polynomial time only problems which are tractable in the standard sense.

But what happens if in this framework we consider dissolution rules? Will be
possible to solve NP–complete problems? If the answer is yes, then this result
will provide a negative answer to the P–conjecture (P = PMCAM0 , where
AM0 is the class of all recognizer P systems with active membranes, without
polarization, using dissolution rules and cell division rules only for elementary
membranes).
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Continuous Space-Time:
A Theoretical Model for Amorphous Computing
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Abstract. This paper deals with a kind of hybrid system that is ob-
tained by making cellular automata infinitely small. Each point on a
continuous space is defined as a state transition system with a finite
number of discrete states that changes its state according to its previous
state and the states of its neighbors. Time is also defined as continuous,
so that state transitions may propagate through the space continuously
over time. Discrete state transitions can be made instantaneously, as in
the case of ordinary hybrid systems. It turned out that even defining
the global behaviors that satisfy local transition rules is not trivial. The
framework that we propose here can be regarded as a framework for
amorphous computing.

1 Introduction

A hybrid system has a set of continuous parameters that may change continu-
ously over time and affect its discrete state transitions [1]. This paper deals with
another kind of hybrid system, one that is obtained by making cellular automata
infinitely small. Each point on a continuous space, such as two-dimensional Eu-
clidean space, is defined as a state transition system with a finite number of
discrete states. It changes its state according to its previous state and the states
of its neighbors. Time is also defined as continuous, so that state transitions may
propagate through the space continuously over time.

Using the method called ultradiscretization, some cellular automata can be
obtained from partial differential equations [6]. In ultradiscretization, space and
time in a partial differential equation are first discretized. Then, the functional
value is discretized to yield the corresponding cellular automata. Since the dis-
cretization of the functional value is possible only after space and time are dis-
cretized, it appears difficult to capture the kind of hybrid system mentioned
above using ultradiscretization.

Berec classifies individual-based models for population dynamics according
to whether population size, space, and time are discrete or continuous [3]. He
also gives a model in which population size is discrete, while space and time are
continuous. However, individuals are countable and scattered over space. In this
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paper, all points in the space are considered automata. Therefore, individuals
are densely distributed over space in contrast to Berec’s classification.

In this paper, we try to define hybrid systems of the above kind in the style of
ordinary state transition systems, i.e., by giving transition rules for each point.
As in the case of ordinary hybrid systems, discrete state transitions can be made
instantaneously. Due to this kind of transition and the form of transition rules,
it transpires that even defining the global behaviors that satisfy local transition
rules is not trivial.

The framework that we propose here can be regarded as a framework for
amorphous computing [2]. In amorphous computing, computational particles are
scattered over a continuous space in an amorphous fashion, and communicate
with each other locally through message passing.

A neural network of densely distributed spiking neurons, such as in [4], is
also an example of a state transition system of this kind, because each neuron
makes discrete state transitions, while space and time are continuous.

The rest of this paper is organized as follows. The next section presents
the basic definitions, including that of transition rules, with some examples. In
Section 3, we introduce two conditions, i.e., realizability and earliness, in order to
define correct executions. Section 4 then gives a sufficient condition for satisfying
the two conditions. A condition that ensures the uniqueness of an execution is
also given.

2 Basic Definitions

Let T denote the time line. In this paper, we assume that T is simply the set of
all non-negative real numbers. Let X be a metric space. Again, we assume that
X is the n-dimensional Euclidean space Rn.

Let Q be a finite set of states. At each point on the metric space X , we
allocate a finite or infinite sequence of state transitions. Let σ denote a function
from X to (Q× T )+ ∪ (Q× T )ω, i.e., for each point x ∈ X , σ(x) is a nonempty
finite or infinite sequence of pairs from Q × T . Moreover, σ should satisfy the
following conditions for any x ∈ X .

– σ(x) = (q0, t0), (q1, t1), · · ·
– t0 = 0
– t0 ≤ t1 ≤ · · ·
– If σ(x) is infinite, then limi→∞ ti = ∞.

If σ satisfies these conditions, we call σ a trajectory. The set of all trajectories
is denoted by Tr(T,X,Q).

Note that adjacent state transitions may occur instantaneously, i.e., ti may
equal ti+1. Since the last condition forbids the Zeno behavior, such instantaneous
transitions are not repeated infinitely.

If σ(x) is finite and σ(x) = (q0, t0), (q1, t1), · · · , (qn, tn), we define tn+1 = ∞
for brevity of later definitions and discussions.
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A transition rule has the form

q → q′ if A,

where q, q′ ∈ Q and A is a formula as defined below. The rule q → q′ if A
means that the state of a point is allowed to change from q to q′ if the condition
expressed by formula A is satisfied at that point. (We later impose a condition
that a point should change its state if it can do so.)

Formulas are defined as follows:

A :: = q | A ∧A | A ∨A | �vA | ¬A
A state q ∈ Q is an atomic formula. A formula of the form �vA means that in
the neighborhood specified by v, there exists a point that satisfies A, where v is
a non-negative real number denoting the propagation speed of state transitions.
More precisely, in order for �vA to hold at a pair (x, t), there should exist a
pair (x′, t′) such that d(x′, x) ≤ v(t− t′) and A holds at (x′, t′). Moreover, such
t′ should be arbitrarily close to (x, t). Formally, for any ε > 0, there should exist
(x′, t′) such that t− ε < t′ < t and d(x′, x) ≤ v(t− t′). This interpretation of the
formula �vA is the starting point of the following formalism.

The interpretation [[A]] of formula A is defined as a function from X × T to
{�,⊥}. Note that it depends on the trajectory σ under consideration.

– [[q]](x, t) = � if and only if there exists i such that qi = q, and either t = ti or
ti < t < ti+1, where σ(x) = (q0, t0), (q1, t1), · · ·. Note that if σ(x) is finite and
(qi, ti) is the last transition of σ(x), the condition ti < t < ti+1 is equivalent
to ti < t since we have defined ti+1 = ∞. Note also that the disjunction
“t = ti or ti < t < ti+1” is not equivalent to ti ≤ t < ti+1 since the latter
requires ti < ti+1.

– [[A1 ∧A2]](x, t) = � if and only if [[A1]](x, t) = � and [[A2]](x, t) = �.
– [[A1 ∨A2]](x, t) = � if and only if [[A1]](x, t) = � or [[A2]](x, t) = �.
– [[�vA]](x, t) = � if and only if for any ε > 0, there exist t′ ∈ T and x′ ∈ X

such that t − ε < t′ < t, d(x′, x) ≤ v(t − t′), and [[A]](x′, t′) = �, where
d(·, ·) denotes the metric of the metric space X . Note that this condition is
not equivalent to the following: for any t′ < t, there exists x′ ∈ X such that
d(x′, x) ≤ v(t− t′) and [[A]](x′, t′) = �.

– [[¬A]](x, t) = � if and only if [[A]](x, t) = ⊥.

When [[A]](x, t) = �, we write (x, t) |= A.
The following condition (soundness) is a natural requirement for a trajec-

tory σ.

(soundness) Let x ∈ X and assume σ(x) = (q0, t0), (q1, t1), · · ·. For
each i > 0, there exists a transition rule of the form qi−1 → qi if A such
that (x, ti) |= A holds.

As an initial condition, we give the first state of each point, i.e., a function
f0 from X to Q. A trajectory σ satisfies f0, if for any x ∈ X , q0 = f0(x) holds.
Henceforth, we assume that a trajectory satisfies a given initial condition.
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x

t

0

Fig. 1. A trajectory for Example 1

Example 1: Consider the following transition rule.

white → blue if �1 blue

The suffix 1 in �1blue denotes the speed of propagation. By this rule, blue
points propagate with speed 1.

Let X be the one-dimensional Euclidean space, i.e., X = R. With the initial
condition f0, where

f0(x) = blue if x = 0, and
f0(x) = white otherwise,

we obtain the following trajectory σ (Figure 1).

σ(0) = (blue, 0)
σ(x) = (white, 0), (blue, |x|) (x 
= 0)

It is obvious that for each state transition (blue, |x|) in σ(x), the judgment
(x, |x|) |= �1blue holds.

Example 2: Consider the following set of transition rules.

white → red if �1 red ∧ ¬�1 green
white → green if �1 green ∧ ¬�1 red
white → yellow if �1 red ∧ �1 green
red → yellow if �1 yellow
green → yellow if �1 yellow

In this example, a white point becomes red if a neighboring red point ex-
ists and no green point exists in its neighborhood. Similarly, green points also
propagate. If a white point is adjacent to both red and green points, it becomes
yellow. Yellow points then propagate into red and green regions.

The upper panel of Figure 2 shows one red point at 0 and one green point at
1 propagating in one-dimensional space. The lower panel of Figure 2 also shows
one red point and one green point, propagating in two-dimensional space (see
Section 5).

Example 3: Consider the following set of transition rules

white → red if �1 red ∧ ¬�1 green
white → green if �1 green ∧ ¬�1 red
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white → yellow if �1 red ∧ �1 green
red → yellow if �3 yellow
green → yellow if �3 yellow

In this example, yellow points propagate three times faster than red and
green points, as specified by �3 yellow. As a result, a thin membrane made of

x1

t

0

red yellow green

Fig. 2. Example 2

x1

t

0

red

yellow

green

Fig. 3. Example 3
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red and green points, enclosing yellow points, expands as in the two-dimensional
case in the lower panel of Figure 3. The upper panel of Figure 3 shows the
corresponding one-dimensional case, the trajectory σ of which is as follows.

σ(x) = (white, 0), (red,−x),(yellow,−x) (x ≤ −1)
σ(x) = (white, 0), (red, |x|),(yellow, 2/3− x/3) (−1 < x < 1/2, x 
= 0)
σ(0) = (red, 0), (yellow, 2/3)
σ(1/2) = (white, 0), (yellow, 1/2)
σ(x) = (white, 0), (green, |1−x|),(yellow, 1/3+x/3) (1/2 < x < 2, x 
= 1)
σ(1) = (green, 0), (yellow, 2/3)
σ(x) = (white, 0), (green, x− 1),(yellow, x− 1) (2 ≤ x)

3 Realizability and Earliness

In Example 1 in the previous section, we had the following trajectory (Figure 1).

σ(0) = (blue, 0)
σ(x) = (white, 0), (blue, |x|) (x 
= 0)

This simple example shows that the requirement (soundness) given in the
previous section is insufficient to characterize a trajectory that satisfies the given
transition rules.

Consider the following trajectory (Figure 4) for the transition rule in
Example 1.

σ(0) = (blue, 0)
σ(x) = (white, 0), (blue,min(|x|, |x − 1|)) (x 
= 0 ∧ x 
= 1)
σ(1) = (white, 0)

In this trajectory, point 1 is a source of blue points, although it is not blue
initially. For example, consider the pair (1 + t, t) for t > 0. We have (1 + t, t) |=
�1blue, because for any ε > 0, there exists t′ such that t − ε < t′ < t and
(1 + t′, t′) |= blue.

For the same example, consider the following trajectory for k > 1.

σ(0) = (blue, 0)
σ(x) = (white, 0), (blue, k|x|) (x 
= 0)

t

x10

Fig. 4. Another trajectory for Example 1
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In this trajectory, those points that could make a state transition did not do
so. As an extreme case, even the following trajectory satisfies the initial condition
and transition rule.

σ(0) = (blue, 0)
σ(x) = (white, 0)

There are two kinds of problem. The first one is the inverse of the Zeno
problem. State transitions may occur without any source in the initial condition.
As we noted above, we have (1+ t, t) |= �1blue, because (1+ t′, t′) |= blue holds
for some t′ < t. However, in order for this to hold, the state transition from
white to blue should occur at (1 + t′, t′) and (1 + t′, t′) |= �1blue should hold.
Therefore, there should exist t′′ < t′ such that (1+t′′, t′′) |= blue. In this way, we
obtain an infinite sequence of state transitions without any source in the initial
condition.

The second one is the opposite. Even if a point can make a state transition,
there is no requirement to force it to do so.

To solve the first problem, we introduce the notion of realizability. For the
second, we enforce the earliness condition as defined below.

A trajectory σ ∈ Tr(T,X,Q) is called realizable if σ satisfies the following
condition.

(realizability) For each x ∈ X such that σ(x) = (q0, t0), (q1, t1), · · ·
and for each i > 0, there exists a transition rule of the form qi−1 → qi if A
such that for any ε > 0, the judgment (x, ti) �ε A is derivable using the
inference rules introduced in Figure 5.

σ(x) = (q0, t0), (q1, t1), · · · i ≥ 0 t = ti ∨ ti < t < ti+1

q0 → q1 if A0 (x, t1) �ε A0

· · ·
qi−1 → qi if Ai−1 (x, ti) �ε Ai−1

(x, t) �ε qi

(x, t) �ε A1 (x, t) �ε A2

(x, t) �ε A1 ∧ A2

(x, t) �ε A1 (x, t) |= ¬A2

(x, t) �ε A1 ∧ ¬A2

(x, t) �ε Ai

(x, t) �ε A1 ∨ A2

t − ε < t′ < t d(x′, x) ≤ v(t − t′) (x′, t′) �ε A (x′, t′) |= A

(x, t) �ε �vA

Fig. 5. Inference rules for realizability
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This condition roughly means that each transition can be traced back to the
initial condition in a finite number of steps, uniformly with respect to ε > 0.
This finiteness is guaranteed by the finiteness of the derivation of (x, ti) �ε A.
Note that the condition implies (soundness).

The inference rules in Figure 5 assume that the formula A in a transition
rule q → q′ if A satisfies the following restriction:

A :: = q | A ∧A | A ∧ ¬A0 | A ∨A | �vA,

where A0 may be an arbitrary formula. This notion of realizability restricts
occurrences of negative information (i.e., ¬A0), and only requires the finiteness
on the positive side.

In the first rule in Figure 5, the parameter i may be equal to 0. This is the
base case, i.e., there is no premise of the form (x, ti) � Ai−1 if i = 0.

We then define an order between trajectories. This order represents the ear-
liness condition, i.e., for σ, σ′ ∈ Tr(T,X,Q), the order σ ≤ σ′ means that σ
makes a state transition earlier than σ′. The order σ ≤ σ′ holds if the following
condition is met.

(earliness) For any x ∈ X , either σ(x) = σ′(x) or there exists n such
that
– for any i < n, ti = t′i and qi = q′i, and
– tn < t′n, or (q′n−1, t

′
n−1) is the last transition of σ′(x) while σ(x) has

the transition (qn, tn),

where σ(x) = (q0, t0), (q1, t1), · · · and sσ′(x) = (q′0, t
′
0), (q

′
1, t

′
1), · · ·.

A trajectory σ ∈ Tr(T,X,Q) is said to be a solution, if σ is minimal with
respect to ≤ among realizable trajectories.

4 A Sufficient Condition for Solutions

In this section, we give a sufficient condition for a trajectory to be a solution.
First, we explain the notions needed to define the condition, using Example 1.

In order to show that the trajectory in Figure 1 is a solution, it suffices to check
that the pair (x, t) does not allow any state transition if |x| > t, because its
realizability can be easily shown. We call such (x, t) inactive. In the following,
we introduce the notion strong inactiveness, which is a sufficient condition for
(x, t) to be inactive. This notion is defined as the non-existence of a certain path
from (x, t) to some pair (xn, tn).

In this example, we consider a path (x0, t0), (x1, t1), · · · , (xn, tn) satisfying
the following conditions:

– (x0, t0) = (x, t),
– ti > 0 for 0 ≤ i < n,
– for 0 ≤ i < n, ti ≥ ti+1,
– for 0 ≤ i < n, if xi+1 
= xi then 0 < ti − ti+1 < ε and d(xi+1, xi) ≤ ti − ti+1,
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– for 0 ≤ i < n, (xi, 0) |= white,
– (xn, tn) |= blue, and
– if tn > 0, then there is no transition at any (xn, t

′) such that 0 < t′ ≤ tn.

These conditions depend on ε > 0. We call a path satisfying these conditions a
({white}, 1, blue, ε)-path.

For (x, t) to make a transition, there should exist a ({white}, 1, blue, ε)-path
for each ε > 0. Therefore, if there exists no such path for some ε > 0, then (x, t)
should be strongly inactive. In this example, the following stronger statement
holds: there exists no such path for any ε > 0 if |x| > t. Consequently, (x, t) is
strongly inactive if |x| > t. This implies that the trajectory in Figure 1 is indeed
a solution.

In general, we make the following definitions. First, we fix an infinite sequence
{τk}k≥0 of time points, where τk ∈ T , such that

– τ0 = 0
– τk < τk+1 for any k ≥ 0, and
– limk→∞ τi = ∞.

This sequence can be chosen in accordance with the trajectory under consider-
ation. For simple cases, any sequence applies.

For formula A, the predicate maybe(A) denotes a necessary condition for A
to hold. It is derived as follows.

(x, t) � path(∅, 0, A)
(x, t) � maybe(A)

The predicate path(I, v, A) is derived using the inference rules in Figure 6.
In path(I, v, A), I is a set of states and v is a non-negative real number, de-
noting the maximum speed of propagation. When A is a state q, the predicate
path(I, v, q) holds at (x, t), if there exists an (I, v, q, ε)-path from (x, t) for any
ε > 0.

An (I, v, q, ε)-path from (x, t) is a sequence {(xi, ti)}0≤i≤n of pairs such that

– (x0, t0) = (x, t),
– if t = 0, then n = 0 and t0 = tn = t = 0,
– if τk < t ≤ τk+1, then ti > τk for 0 ≤ i < n, and tn > τk − ε,
– for 0 ≤ i < n, ti ≥ ti+1,
– for 0 ≤ i < n, if xi+1 
= xi then 0 < ti−ti+1 < ε and d(xi+1, xi) ≤ v(ti−ti+1),
– for 0 ≤ i < n, (xi, τk) |= q′ for some q′ ∈ I,
– (xn, tn) |= q, and
– if tn > τk, then there is no transition at any (xn, t

′) such that τk < t′ ≤ tn.

The above definition appears quite complicated, but in concrete examples, it
usually reduces to a simple form. For Example 1, let τ0 = 0 and consider (x, t)
such that τ0 < t ≤ τ1 and |x| > t. The conditions on a ({white}, 1, blue, ε)-path
{(xi, ti)}0≤i≤n from (x, t) are reduced to those mentioned at the beginning of
this section.
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for any ε > 0, there exists an (I, v, q, ε)-path from (x, t)

(x, t) � path(I, v, q)
(∗)

i ≥ 0
q0 → q1 if A0 (x, t) � path(I ∪ {q0}, v, A0)

· · ·
qi → qi+1 if Ai (x, t) � path(I ∪ {q0}, v, Ai)

(x, t) � path(I, v, qi+1)

(x, t) � path(I, v, A1) (x, t) � path(I, v, A2)

(x, t) � path(I, v, A1 ∧ A2)

(x, t) � path(I, v, A1)

(x, t) � path(I, v, A1 ∧ ¬A2)

(x, t) � path(I, v, Ai)

(x, t) � path(I, v, A1 ∨ A2)

(x, t) � path(I,max(v, v′), A)

(x, t) � path(I, v, �v′A)

Fig. 6. Inference rules for paths

In the second rule of path, we enumerate the possibility of successive tran-
sitions q0, q1, · · · , qi, qi+1 at some point in X . We can assume that there is no
duplicate rule among q0 → q1 if A0, · · ·, qi → qi+1 if Ai, without affecting the
derivability.

Using the predicate maybe, we define the strong inactiveness as follows. For
a trajectory σ ∈ Tr(T,X,Q) and a point x ∈ X , let σ(x) = (q0, t0), (q1, t1), · · ·.
In the case ti < t < ti+1, the pair (x, t) is said to be strongly inactive, if (x, t) �
maybe(A) is not derivable for any transition rule of the form qi → q if A. In
the case t = ti, the pair (x, ti) is said to be strongly inactive if the following
conditions are satisfied:

– The state transition (qi, ti) is the last one of σ(x) or ti < ti+1.
– For any transition rule of the form qi → q if A, (x, ti) � maybe(A) is not

derivable.

If each pair (x, t) ∈ X × T is strongly inactive, then σ is said to be strongly
inactive.

For Example 1, if |x| > t > 0, then we can show that the pair (x, t) is strongly
inactive. We check if (x, t) � maybe(�1blue) is not derivable. This condition
first reduces to path(∅, 1, blue). Since there is only one rule, i.e., white → blue if
�1blue, path(∅, 1, blue) can be derived only by path({white}, 1, blue). We have
already shown that there exists no ({white}, 1, blue, ε)-path from (x, t).
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Theorem 1. If σ ∈ Tr(T,X,Q) is realizable and strongly inactive, then σ is a
solution.

Proof sketch. If there exists a realizable trajectory σ′ such that σ′ < σ, there
should exist a pair (x, t) at which σ′ makes a state transition, but σ does not
do so. Let the transition rule used by σ′ at (x, t) be q → q′ if A. We show by
induction on k, there exists no such (x, t) that satisfies t ≤ τk. The case k = 0 is
easy because t = 0. In the following, we assume τk < t ≤ τk+1.

Let maybe′ and path′ be the predicates defined similarly to maybe′ and
path′, except that the rule marked (∗) is replaced with the following one.

there exists an (I, v, q,mε)-path from (x, t)
path′(I, v, q)

(∗∗)

In this rule, ε is fixed to some predetermined value, and m is the maximum
depth of transition rules. The depth of a transition rule q → q′ if A is defined
as the maximum number of nestings of �v in A.

For each ε > 0, from the derivation of (x, t) �ε A for σ′, we can extract an
(I, v, q,mε)-path from (x, t) to (x′, t′), where (x′, t′) �ε q. We can then construct
a derivation of (x, t) � maybe′(A) for σ together with an (I, v, q,mε)-path for
the premise of path′(I, v, q) at each leaf of the derivation.

The derivation of maybe′(A) can be shrunken if path′(I, v, q) appears at a
leaf or at an intermediate node of the derivation. Note that there are a finite
number of such shrunken derivations. Therefore, there exists some derivation
that is constructed for infinitely many values of ε that approach zero. For such
a derivation, the rule (∗∗) can be replaced with the rule (∗), so the derivation of
(x, t) � maybe(A) can be obtained. �

Unfortunately, the theorem is not enough in the case of Example 3. The
method we have proposed above shows the inactiveness of a trajectory for each
interval between τi and τi+1. However, in cases like Example 3, it is necessary
to show the inactiveness of some regions within an interval. As for Example 3,
the white triangular region surrounded by the red and green ones should be first
shown to be strongly inactive. Then it becomes possible to show the red and
green regions strongly inactive. We should therefore modify the definition of an
(I, v, q, ε)-path. We require that an (I, v, q, ε)-path (x0, t0), (x1, t1), · · · stop at
(xi, ti) if (xi, ti) has already been shown strongly inactive.

Demonstrating the uniqueness of a solution is even more complicated [5]. A
simple sufficient condition for uniqueness is obtained by modifying the strong
inactiveness. As before, for a trajectory σ ∈ Tr(T,X,Q) and a point x ∈ X ,
let σ(x) = (t0, q0), (t1, q1), · · ·. The state transition (qi, ti) (i > 0) is said to be
strongly deterministic, if the following condition holds.

– For a transition rule of the form qi−1 → q if A, if (x, ti) � maybe(A) is
derivable, then q = qi.

If all the transitions are strongly deterministic, σ is said to be strongly deter-
ministic.
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Theorem 2. If σ ∈ Tr(T,X,Q) is realizable, strongly inactive, and strongly
deterministic, then σ is a unique solution.

Unfortunately, since the predicate path throws away negative information, Ex-
amples 2 and 3 cannot be directly handled by this theorem. More concretely, the
uniqueness of the transition at (1/2, 1/2) should be shown using the definitions.

5 Amorphous Simulation

We have implemented a simple simulator of the framework. The two-dimensional
Euclidean space is first divided into squares of the size 1/n × 1/n. Inside each
square, a point is chosen randomly. At each time step, the condition of each
transition rule is evaluated at each point and if the condition is true, the state
of the point is changed according to the rule. A formula of the form �vA is eval-
uated straightforwardly. The formula A is evaluated for each neighbor within a
distance v/m, and if A is true at some neighbor, then the formula A is evalu-
ated as true. Note that this simple method works only if each point is chosen
randomly on its square. As a result, the points are scattered over the space in
an amorphous fashion. Figures 2 and 3 are obtained for n = 2 and m = 1. An
actual implementation of amorphous simulation can be found at the following
URL: http://hagi.is.s.u-tokyo.ac.jp/members/hagiya/amorphous/.

6 Related Work and Concluding Remarks

Recently, based on the author’s suggestion, Takeuti formalized a similar kind of
state transition system using well-established notions from general topology [5].
He enforced the minimum speed of propagation and proved the uniqueness of
a solution. Our work is based on more naive notions, such as realizability and
earliness, but uniqueness as well as the existence of a solution should be shown
using specific properties of each transition system. Another difference is that his
model cannot cope with instantaneous transitions, so Example 3 is not realizable.
Furthermore, the simulation of cellular automata, which Takeuti shows in his
model, can also be implemented in our model.

Although the speed of propagation is restricted to a constant speed here, the
restriction may be relaxed so that the speed may depend on time and space. In
this case, more complex spatiotemporal patterns can be generated.

There are, of course, cases for which no solution exists. For example, the
following variant of Example 3 does not have a solution, because after red and
green points encounter, their states cannot be determined.

white → red if �1 red ∧ ¬�1 green
white → green if �1 green ∧ ¬�1 red
white → yellow if �1 red ∧ �1 green
red → green if �3 green
green → red if �3 red

How to cope with such cases is left for future work.
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As mentioned in the Introduction, a densely distributed neural network is
an example of the transition system discussed here. To realize such a neural
network, it is necessary to introduce more operators for describing conditions
on state transitions. In this paper, we introduced only the �v operator, which
simply checks the existence of a certain point in the neighborhood. For a neural
network, we need to introduce operators, such as one that integrates the time
after the last transition (firing) in the neighborhood.
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Abstract. Discrete quantum cellular automata are cellular automata
with reversible transition. This paper deals with 1d cellular automata
with finite cell array and triplet local transition rules. We present the
necessary condition of local transition rules for cellular automata to be
reversible, and prove the reversibility of some cellular automata.

1 Introduction

Since Feynman proposed the notion of “quantum computation”, a lot of mod-
els of quantum computation have been investigated. Watrous [8] introduces the
notion of quantum cellular automata(QCA, for short) of a kind of quantum
computer and showed that any quantum Turing machines can be simulated by a
partitioned QCA(PQCA) with constant slowdown. Moreover he presented nec-
essary and sufficient conditions for the well-formedness of 1d PQCA. Watrous’
QCA have infinite cell arrays. Inokuchi and Mizoguchi [4] introduced a notion
of cyclic QCA with finite cell array, which generalises PQCA, and formulated
sufficient condition for local transition functions to form QCA. Quantum compu-
tations are performed by means of applying unitary transformations for quantum
states. So classical cellular automata(CA) with reversible transition functions are
considered as a special type of QCA.

On the other hand CA have also been studied as models of universal compu-
tation and complex systems [2,3,6,10]. Reversible CA and the reversibility of CA
were discussed by many researchers. Wolfram [10] investigated the reversibility
of several models of CA and showed that only six CA, whose transition functions
are identity function, right-shift function, left-shift function and these comple-
ment functions, of the 256 elementary CA with infinite cell array are reversible.
Dow [1] investigated the injectivity(reversibility) of additive CA with finite cyclic
cell array and infinite cell array, and showed the relation between injectivities
of these additive CA. Morita and Harao [7] showed that for any reversible Tur-
ing machine there is a reversible CA that simulates it. Kobuchi and Nishio
[5] investigated 1d CA with finite cell array. And they showed that the set of
Garden-of-Eden configurations is regular set and it is decidable whether 1d CA
with finite cell array is reversible or not.

C.S. Calude et al. (Eds.): UC 2005, LNCS 3699, pp. 130–141, 2005.
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This paper treats with 1d CA, denoted by CA−R(n), with finite cell array,
triplet local rule of rule number R and two states, and investigate the reversibility
of CA − R(n). We can easily observe dynamical behaviors of CA − R(n) by
computer simulations, and consequently get the following table which shows
whether 1d cellular automata CA − R(n) with finite and infinite cell array are
reversible or not, according to five types of boundary conditions a-b, a-∗, ∗-b,
∗-∗ and ∗, which will be defined in the next section.

Rule numbers a-b a-∗ ∗-b ∗-∗ ∗ ∞
51, 204 © © © © © ©

15, 85, 170, 240 © ©
90, 165 "1 © ©
60,195 © ©
102,153 © ©
150,105 "2 "3 "4 "4 "5

166,180,154,210,89,75,101,45 "5

Although for 1d CA with infinite cell array there exist only six trivial re-
versible CA, we will prove that there exist several non trivial reversible 1d CA
with finite cell array.

2 Cellular Automata CA−R

Cellular automata treated in the paper have linearly ordered and finite number
cells bearing with states 0 or 1. The next state of any cell depends upon the
states of left cell, the cell itself and the right cell. In this section we will formally
define cellular automata CA−R(n) with rule number R of triplet local rule and
n cell array.

Let Q be a state set {0, 1} and n a positive integer. The complement of a
state a ∈ Q will be denoted by a−, that is, a− = 1 − a. The state set Q forms
an additive group by the addition + (modulo 2) (the exclusive logical sum),
that is, 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1. Remark that a− = 1 + a
for all states a ∈ Q. The n-th cartesian product of Q is denoted by Qn, in
other words, Qn is the set of all n-tuples consisting of 0 and 1. For example,
Q3 = {000, 001, 010, 011, 100, 101, 110, 111}. An n-tuple x = x1x2 · · ·xn ∈ Qn

may be called a word of length n over Q, or a configuration in a context of cellu-
lar automata. It is obvious that the n-th cartesian product Qn also forms an ad-
ditive group by the component-wise addition, that is, x1x2 · · ·xn + y1y2 · · · yn =
(x1 + y1)(x2 + y2) · · · (xn + yn) for all n-tuples x1x2 · · ·xn, y1y2 · · · yn ∈ Qn.

A triplet local (transition) rule is a function f : Q3 → Q and the rule number
|f | of f is defined by

|f | =
∑

a,b,c∈Q 24a+2b+cf(abc).

1 n = 0 (mod 2), 2 n �= 2 (mod 3), 3 n �= 1 (mod 3), 4 n �= 0 (mod 3), 5 n = 1
(mod 2)
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Note that the rule number |f | is a natural number with 0 ≤ |f | ≤ 255. A triplet
local rule with rule number R will be denoted by fR, namely |fR| = R.

Let f : Q3 → Q be a triplet local rule. The symmetric rule f � : Q3 → Q of f
is defined by

f �(abc) = f(cba)

for all triples abc ∈ Q3. It is trivial that f �� = f and

|f �| = |f | + 56(r3 − r6) + 14(r1 − r4)

where r4a+2b+c = f(abc) for all triples abc ∈ Q3. The complementary rule f− :
Q3 → Q of f is defined by

f−(abc) = [f(abc)]−

for all triples abc ∈ Q3. Note that f−− = f and f− � = f �− and

|f−| = 255 − |f |.
The reverse rule f◦ : Q3 → Q of f is defined by

f◦(abc) = [f(a−b−c−)]−

for all triples abc ∈ Q3. It is trivial that f◦◦ = f , f �◦ = f◦� and

|f◦| = 255 − (128r0 + 64r1 + 32r2 + 16r3 + 8r4 + 4r5 + 2r6 + r7).

A dynamical system is a pair (X, δ) of a set X and a transition function
δ : X → X .

Let f : Q3 → Q be a triplet local rule, n a positive integer and a, b ∈ Q.
By setting different boundary conditions we can define five transition functions
f(n),a−b : Qn → Qn, f(n),∗ : Qn → Qn, f(n),∗−∗ : Qn → Qn, f(n),a−∗ : Qn → Qn

and f(n),∗−b : Qn → Qn as follows.

f(n),a−b(x1x2 · · ·xn−1xn) = f(a x1x2)f(x1x2x3) · · · f(xn−2xn−1xn)f(xn−1xnb),

f(n),∗(x1x2 · · ·xn−1xn) = f(xnx1x2)f(x1x2x3) · · · f(xn−2xn−1xn)f(xn−1xnx1),

f(n),∗−∗(x1x2· · ·xn−1xn)=f(x1x1x2)f(x1x2x3)· · ·f(xn−2xn−1xn)f(xn−1xnxn),

f(n),a−∗(x1x2 · · ·xn−1xn)=f(a x1x2)f(x1x2x3)· · ·f(xn−2xn−1xn)f(xn−1xnxn),

f(n),∗−b(x1x2 · · ·xn−1xn) = f(x1x1x2)f(x1x2x3) · · · f(xn−2xn−1xn)f(xn−1xnb)

for all n-tuples x1x2 · · ·xn−1xn ∈ Qn and all states a, b ∈ Q.
Set rule number R = |f | (0 ≤ R ≤ 255). Cellular automata CA−Ra−b(n)

with fixed boundary a−b, CA−R∗(n) with cyclic boundary, CA−R∗−∗(n) with
free boundary, CA−Ra−∗(n) with right free boundary a−∗ and CA−R∗−b(n)
with left free boundary ∗−b are dynamical systems (Qn, f(n),a−b), (Qn, f(n),∗),
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(Qn, f(n),∗−∗), (Qn, f(n),a−∗) and (Qn, f(n),∗−b), respectively. This is denoted by
the followings for short;

CA−|f |{a−b,a−∗,∗−b,∗−∗,∗}(n) = (Qn, f(n),{a−b,a−∗,∗−b,∗−∗,∗}).

Transition functions δ : Qn → Qn are not always bijections, but when it is the
case we can regard them as discrete quantum automata.

Definition 1. 1. A triplet local rule f : Q3 → Q is additive if f(abc+a′b′c′) =
f(abc) + f(a′b′c′) for all triples abc, a′b′c′ ∈ Q3.

2. A transition function δ : Qn → Qn is additive if δ(x + x′) = δ(x) + δ(x′) for
all configurations x, x′ ∈ Qn.

We now recall the basic fact on the reversibility of dynamical systems over Qn.

Lemma 1. 1. A transition function δ : Qn → Qn is bijective iff it is injective
iff it is surjective.

2. If a triplet local rule f : Q3 → Q is additive, then so is the transition function
f(n),{0−0,0−∗,∗−0,∗−∗.∗} : Qn → Qn for all positive integers n.

3. An additive transition function δ : Qn → Qn is bijective iff δ(x) = 0n implies
x = 0n for all configurations x ∈ Qn.

Proof. (1) It is trivial since the set Qn is finite. Also (2) and (3) are clear.

3 Basic Results

In this section we show some general properties of cellular automata CA−R(n).
Let (X, δ) and (Y, γ) be two dynamical systems. An isomorphism t : (X, δ) →
(Y, γ) is a bijection t : X → Y rendering the following square commutative:

X
t ��

δ

��

Y

γ

��
X

t
�� Y.

We call (X, δ) and (Y, γ) isomorphic, denoted by (X, δ) ∼= (Y, γ), if there
exists an isomorphism between (X, δ) and (Y, γ). It is trivial that isomorphic
dynamical systems are essentially the same ones.

Lemma 2. The followings holds;

1. CA−|f �|{a−b,a−∗,∗−b,∗−∗,∗}(n) ∼= CA−|f |{b−a,∗−a,b−∗,∗−∗,∗}(n).
2. CA−|f◦|{a−b,a−∗,∗−b,∗−∗,∗}(n) ∼= CA−|f |{a−−b−,a−−∗,∗−b−,∗−∗,∗}(n).

Remark 1. The equation 1 of above lemma asserts the following five statements:

1. CA−|f �|a−b(n) ∼= CA−|f |b−a(n),
2. CA−|f �|a−∗(n) ∼= CA−|f |∗−a(n),
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3. CA−|f �|∗−b(n) ∼= CA−|f |b−∗(n),
4. CA−|f �|∗−∗(n) ∼= CA−|f |∗−∗(n),
5. CA−|f �|∗(n) ∼= CA−|f |∗(n).

The proof of the above lemma is omitted, but we can easily prove it.
Corollary 1.

CA−|f |{a−b,a−∗,∗−b,∗−∗,∗}(n) ∼= CA−|f �|{b−a,∗−a,b−∗,∗−∗,∗}(n)
∼= CA−|f◦|{a−−b−,a−−∗,∗−b−,∗−∗,∗}(n)
∼= CA−|f � ◦|{b−−a−,∗−a−,b−−∗,∗−∗,∗}(n).

Thus a quartet [|f |, |f �|, |f◦|, |f �◦|] of rule numbers |f |, |f �|, |f◦| and |f � ◦|
is an equivalence class of rule numbers which represent isomorphic triplet local
rules. For example, [102, 60, 153, 195] and [89, 75, 101, 45].

Lemma 3. Let k and n be positive integers.

1. CA−|f−|{a−b,a−∗,∗−b,∗−∗,∗}(n) is reversible iff CA−|f |{a−b,a−∗,∗−b,∗−∗,∗}(n)
is.

2. If CA−|f |∗−∗((2k + 1)n) is reversible, then so is CA−|f |∗−∗(n).
3. If CA−|f |∗(kn) is reversible, then so is CA−|f |∗(n).

Proof. It is trivial.

For a local transition rule f : Q3 → Q and an integer k ≥ 1 we define a
natural number

ck(f) =
∑

x1x2···xk+2∈Qk+2

f(x1x2x3) × f(x2x3x4) × · · · × f(xkxk+1xk+2).

The following lemma is helpful for the proof of irreversibility.

Lemma 4. Let n be an integer ≥ 3. If the transition function δ : Qn → Qn

determined by a local transition rule f : Q3 → Q is reversible, then

ck(f) = 4

for each integer k with 1 ≤ k ≤ n.

Proof. Set x = x1x2 · · ·xn ∈ Qn and y = y1y2 · · · yn = δ(x) ∈ Qn. Assume that
δ : Qn → Qn is reversible. Then we have∑

y∈Qn

y2 × y3 × · · · × yk+1 = 2n−k

and also∑
y∈Qn

y2 × y3 × · · · × yk+1

=
∑

x∈Qn

f(x1x2x3) × f(x2x3x4) × · · · × f(xkxk+1xk+2)

= 2n−k−2
∑

x1x2···xk+2∈Qk+2

f(x1x2x3) × f(x2x3x4) × · · · × f(xkxk+1xk+2).



On Reversible Cellular Automata with Finite Cell Array 135

As a result of calculation ck for 256 local transition rules, 70 and 34 local
rules satisfy c1(f) = 4 and c1(f) = c2(f) = 4, respectively. And there are 30
local rules such that c1(f) = c2(f) = c3(f)=4. Their rule numbers are 30, 86,
106, 120, 135, 149, 169, 225 and those which will be treated in the following
sections. Because of f30(abc) = 1− f225(abc) for any abc ∈ Q3, the reversibilities
of 8 rules [30, 86, 135, 149] and [106, 120, 169, 225] are equivalent. CA − 30 with
finite cell array are not reversible under all the 5 boundary conditions adopted in
the paper since we can get Garden-of-Eden configurations. Wolfram [9] discussed
1d CA with rule 30 as a random sequence generator. CA− 30 with finite cyclic
cell array have limit cycles of longer period length than those of CA treated in
the following sections.

4 CA−{204, 51}(n)

Triplet local rules f{204,51} : Q3 → Q are given, defined by f204(abc) = b

and f51(abc) = b− for all triples abc ∈ Q3. So it holds that f−
204 = f51,

[204, 204, 204, 204] and [51, 51, 51, 51]. Hence equalities

f204(n),{a−b,a−∗,∗−b,∗−∗,∗} = idQn and f51(n),{a−b,a−∗,∗−b,∗−∗,∗} = cn

hold. Thus all configurations in CA−204(n) are fixed points, i.e. CA−204(n) ∼=
2n〈1〉, and all configurations in CA − 51(n) lie on limit cycles of period 2, i.e.
CA− 51(n) ∼= 2n−1〈2〉 where 〈n〉 denotes a limit cycle of period n.

Corollary 2. CA−{204, 51}{a−b,a−∗,∗−b,∗−∗,∗}(n) are reversible for all positive
integers n.

5 CA−{240, 170, 15, 85}(n)

Since f240(abc) = a, f170(abc) = c, f15(abc) = a− and f85(abc) = c− for all triples
abc ∈ Q3, we have f−

240 = f15, [240, 170, 240, 170] and [15, 85, 15, 85]. Thus it is
trivial that f{240,170,15,85}(n),∗ are bijective for all positive integers n.

Corollary 3. CA − {240, 170, 15, 85}∗(n) are reversible for all positive
integers n.

Lemma 5. 1. f15(n),{a−b,a−∗,∗−b,∗−∗,∗} = f240(n),{a−−b,a−−∗,∗−b,∗−∗,∗} ◦ cn,
2. f85(n),{a−b,a−∗,∗−b,∗−∗,∗} = f170(n),{a−b−,a−∗,∗−b−,∗−∗,∗} ◦ cn.

Proof. We will show only f15(n),a−b = f240(n),a−−b ◦ cn.

f15(n),a−b(x1x2 · · ·xn) = f15(ax1x2)f15(x1x2x3) · · · f15(xn−1xnb)
= a−x−1 x

−
2 · · ·x−n−1

= f240(a−x−1 x
−
2 )f240(x−1 x

−
2 x

−
3 ) · · · f240(x−n−1x

−
n b)

= f240(n),a−−b(x
−
1 x

−
2 · · ·x−n )

= (f240(n),a−−b ◦ cn)(x1x2 · · ·xn).
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Remark. (f240(n),∗)n = (f170(n),∗)n = idQn and (f15(n),∗)n = (f85(n),∗)n = (cn)n.

Lemma 6. CA−{240, 170, 15, 85}{a−b,a−∗,∗−b,∗−∗}(n) are not reversible for all
positive integers n.

Proof. It simply follows from

f240(n),{a−b,a−∗,∗−b,∗−∗}(an) = f240(n),{a−b,a−∗,∗−b,∗−∗}(an−1a−) = an.

6 CA−{90, 165}(n)

It is obvious that f90(abc) = a + c and f165(abc) = (a + c)− for all triples
abc ∈ Q3, and [90, 90, 165, 165]. Hence by Corollary 1 we have

CA−165{a−b,a−∗,∗−b,∗−∗,∗}(n) ∼= CA−90{a−−b−,a−−∗,∗−b−,∗−∗,∗}(n)

and so we will inspect only CA−90(n).

Lemma 7. Let x = x1x2 · · ·xn ∈ Qn. If f90(n),{a−b,a−∗,∗−b,∗−∗,∗}(x) = 0n, then
xi = xi+2 for all i = 1, 2, · · · , n− 2.

Proof. Set f = f90. The condition f90(n),{a−b,a−∗,∗−b,∗−∗,∗}(x) = 0n means

f(∗ x1x2)f(x1x2x3) · · · f(xn−2xn−1xn)f(xn−1xn ∗) = 0n.

Hence we have xi + xi+2 = f(xixi+1xi+2) = 0 for all i = 1, 2, · · · , n− 2.

Lemma 8. 1. CA−90a−b(n) is reversible iff so is CA−900−0(n).
2. CA−900−0(n) is reversible iff n = 0 (mod 2).

Proof. 1. It is immediate from a fact that f90(n),a−b(x) = f90(n),0−0(x)+a0n−2b
for all x ∈ Qn.

2. First we will show that f90(n),0−0 is injective for n = 0 (mod 2), since
f90(n),0−0 is additive. (Cf. Lemma 1.)
(i) Set f = f90. It holds that f(2),0−0(x1x2) = f(0x1x2)f(x1x20) = x2x1.
Hence CA−900−0(2) is reversible.
(ii) Assume that CA−900−0(n) is reversible for n ≥ 2, i.e. f(n),0−0 is injec-
tive. We will see that f(n+2),0−0 is also injective.
Assume f(n+2),0−0(x1x2 · · ·xnxn+1xn+2) = 0n+2. Then we have

f(n),0−0(x1x2 · · ·xn) = f(0x1x2)f(x1x2x3) · · · f(xn−1xn0)
= 0n−1f(xn+1xn+20)
= 0n,

since xn−1 = xn+1 and xn = xn+2 by Lemma 7. Hence by the induction
hypothesis we have x1x2 · · ·xn = 0n and consequently xn+1 = xn+2 = 0.
Therefore CA−900−0(n + 2) is reversible. Finally we see that if n = 1
( mod 2) then f90(n),0−0 is not injective. This follows at once from a fact that

f90(2k−1),0−0((10)k−11) = 02k−1

holds for all positive integers k.
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Corollary 4. CA−90a−b(n) is reversible iff n = 0 (mod 2).

In the same discussion as Lemma 8 the following lemma can be shown.

Lemma 9. 1. CA−90a−∗(n) is reversible iff so is CA−900−∗(n).
2. CA−900−∗(n) is reversible for all positive integers n.

Corollary 5. CA−90{a−∗,∗−b}(n) are reversible for all positive integers n.

Lemma 10. CA−90{∗−∗,∗}(n) are not reversible for all positive integers n.

Proof. It directly follows from f90(n),{∗−∗,∗}(1n) = f90(n),{∗−∗,∗}(0n) = 0n.

7 CA−{102, 60, 153, 195}(n)

It is obvious that f102(abc) = b + c, f60(abc) = a + b, f153(abc) = (b + c)−,
f195(abc) = (a + b)− for all triples abc ∈ Q3, and [102, 60, 153, 195]. Hence by
Corollary 1 cellular automata CA−{60, 153, 195}(n) are isomorphic to
CA−102(n) and so we will inspect only CA−102(n).

Lemma 11. Let x = x1x2 · · ·xn ∈ Qn. If f102(n),{a−b,a−∗,∗−b,∗−∗,∗}(x) = 0n,
then x1 = x2 = · · · = xn−1 = xn.

Proof. Set f = f102. The condition f(n),{a−b,a−∗,∗−b,∗−∗,∗}(x) = 0n means that

f(∗ x1x2)f(x1x2x3) · · · f(xn−2xn−1xn)f(xn−1xn ∗) = 0n.

Hence we have xi + xi+1 = f(xi−1xixi+1) = 0 for all i = 1, 2, · · · , n− 1.

Lemma 12. 1. CA−102{a−b,∗−b}(n)is reversible iff so is CA−102{0−0,∗−0}(n).
2. CA−102{0−0,∗−0}(n) are reversible for all positive integers n.

Proof. 1. It follows from a fact that f102(n),{a−b,∗−b}(x) = f102(n),{0−0,∗−0}(x)+
0n−1b holds.

2. Set f = f102. Since f(n),{0−0,∗−0} : Qn → Qn is additive (modulo 2), we will
show that f(n),{0−0,∗−0}(x) = 0n implies x = 0n in CA−102{0−0,∗−0}(n) for
all positive integers n.
(i) It holds that f(1),{0−0,∗−0}(x1) = f(∗x10) = x1 and f(2),{0−0,∗−0}(x1x2) =
f(∗x1x2)f(x1x20) = (x1 +x2)x2. HenceCA−102{0−0,∗−0}(n) is reversible for
n = 1, 2.
(ii) Assume that CA−102{0−0,∗−0}(n) for n ≥ 2 is reversible, i.e.
f(n),{0−0,∗−0}(x1 · · ·xn) = 0n implies x1 · · ·xn = 0n. We now see that

f(n+1),{0−0,∗−0}(x1 · · ·xnxn+1) = 0n+1 implies x1 · · ·xnxn+1 = 0n+1.

Assume f(n+1),{0−0,∗−0}(x1 · · ·xnxn+1) = 0n+1. Then we have

f(n),{0−0,∗−0}(x1 · · ·xn) = f(∗x1x2)f(x1x2x3) · · · f(xn−1xn0)
= 0n−1f(xnxn+10)
= 0n,

since xn−1xn = xnxn+1 by Lemma 11. Hence by the induction hypothesis
we have x1 · · ·xn = 0n. Therefore CA−102{0−0,∗−0}(n + 1) is reversible.
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Corollary 6. CA−102{a−b,∗−b}(n) are reversible for all positive integers n.

Lemma 13. CA−102{a−∗,∗−∗,∗}(n) are not reversible for all integers n.

Proof. It is direct from f102(n),{a−∗,∗−∗,∗}(1n) = f102(n),{a−∗,∗−∗,∗}(0n) = 0n.

8 CA−{150, 105}(n)

It is obvious that f150(abc) = a+b+c, f105(abc) = (a+b+c)− for all triples abc ∈
Q3, f−

150 = f105, [150, 150, 150, 150] and [105, 105, 105, 105]. Hence by Lemma 3
the reversibility of CA−105(n) and CA−150(n) are equivalent and so we will
inspect only CA−150(n).

Lemma 14. Let x = x1x2 · · ·xn ∈ Qn. If f150(n),{a−b,a−∗,∗−b,∗−∗,∗}(x) = 0n,
then xi = xi+3 for all i = 1, 2, · · · , n− 3.

Proof. Set f = f150. The condition f(n),{a−b,a−∗,∗−b,∗−∗,∗}(x) = 0n means

f(∗ x1x2)f(x1x2x3) · · · f(xn−2xn−1xn)f(xn−1xn ∗) = 0n.

Hence we have

xi + xi+3 = f(xixi+1xi+2) + f(xi+1xi+2xi+3) = 0 + 0 = 0

for all i = 1, 2, · · · , n− 3.

Corollary 7. CA−150{∗−∗,∗}(n) are reversible iff n 
= 0 (mod 3).

Proof. Set f = f150. First we will show that f(n),{∗−∗,∗}(x) = 0n implies x = 0n

in CA−150∗(n) for n 
= 0 (mod 3).
(i) It holds that f(1),{∗−∗,∗}(x1) = x1, f(2),∗−∗(x1x2) = x2x1, f(2),∗(x1x2) =
x1x2, f(4),∗−∗(x1x2x3x4)=x2(x1+x2+x3)(x2+x3+x4)x3 and (f(4),∗)2(x1x2x3x4)
= x1x2x3x4. Hence CA−150{∗−∗,∗}(n) is reversible for n = 1, 2, 4.
(ii) Assume that CA−150{∗−∗,∗}(n) is reversible for n ≥ 2, i.e. f(n),{∗−∗,∗} is
injective. We will see that f(n+3),{∗−∗,∗} is injective.
Assume f(n+3),{∗−∗,∗}(x1x2 · · ·xnxn+1xn+2xn+3) = 0n+3. Then we have

f(n),{∗−∗,∗}(x1x2 · · ·xn) = f({x1, xn} x1x2)f(x1x2x3) · · · f(xn−1xn {xn, x1})
= f({x1, xn+3} x1x2)0n−2f(xn+2xn+3 {xn+3, x1})
= 0n,

since xn = xn+3 and xn−1 = xn+2 by Lemma 14. Hence by the induction hy-
pothesis we have x1x2 · · ·xn = 0n and so xn+1 = xn+2 = xn+3 = 0. Finally we
see that if n = 0 (mod 3) then f150(n),{∗−∗,∗} is not injective. It follows at once
from a fact that f150(3k),{∗−∗,∗}((101)k) = 03k holds for all positive integers k.

Lemma 15. 1. CA−150a−b(n) is reversible iff so is CA−1500−0(n).
2. CA−150a−∗(n) is reversible iff so is CA−1500−∗(n).
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3. CA−1500−0(n) is reversible iff n 
= 2 (mod 3).
4. CA−1500−∗(n) is reversible iff n 
= 1 (mod 3).

Proof. (1,2) The result comes direct from f150(n),a−b(x) = f150(n),0−0(x)+a0n−2b
and f150(n),a−∗(x) = f150(n),0−∗(x)+a0n−1. (3,4) This can be shown in the same
way as the proof of Corollary 7.

Corollary 8. 1. CA−150a−b(n) is reversible iff n 
= 2 (mod3).
2. CA−150a−∗(n) is reversible iff n 
= 1 (mod3).

9 CA−{166, 180, 154, 210, 89, 75, 101, 45}(n)

It is obvious that f166(abc) = (a+1)b+c, f180(abc) = a+b(c+1), f154(abc) = a(b+
1)+c, f210(abc) = a+(b+1)c, f89(abc) = (a+1)b+c+1, f75(abc) = a+b(c+1)+1,
f101(abc) = a(b+1)+c+1, f45(abc) = a+(b+1)c+1 for all triples abc ∈ Q3, f−

166 =
f89, [166, 180, 154, 210] and [89, 75, 101, 45]. Hence by Corollary 1 and Lemma 3
the reversibilities of cellular automata CA−{166, 180, 154, 210, 89, 75, 101, 45}(n)
are equivalent and so we will inspect only CA−166(n).
We now use the following notation:

x
(1)
1 x

(1)
2 · · ·x(1)

n = f166(n),∗(x1x2 · · ·xn),

x
(k+1)
1 x

(k+1)
2 · · ·x(k+1)

n = f166(n),∗(x
(k)
1 x

(k)
2 · · ·x(k)

n )

for each configuration x1x2 · · ·xn ∈ Qn. In other words,

x
(k)
1 x

(k)
2 · · ·x(k)

n = (f166(n),∗)k(x1x2 · · ·xn),

where (f166(n),∗)k is k-th composition of f166(n),∗. Also a configuration x1x2 · · ·xn

in CA−166∗(n) is extended to an infinite configuration (xm)m∈Z such that xm =
xm′ if m = m′ (mod n).

Lemma 16. In CA−166∗(n) an identity

x(2k)
m = (xm−2k + 1)Π2k

j=1xm−2k+2j−1 + xm+2k

holds for all natural numbers m and k.

Proof. (i) In the case of k = 0 an identity

x(1)
m = (xm−1 + 1)xm + xm+1

holds, since f166(abc) = (a + 1)b + c.
(ii) Set δ = f166(n),∗. Assume that the identity holds for a natural number k.
Note that

δ2k+1
(x) = (δ2k

δ2k

)(x) = δ2k

(x(2k)
1 x

(2k)
2 · · ·x(2k)

n ).
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Hence by using the induction hypothesis twice we have

x
(2k+1)
m = (x(2k)

m−2k + 1)Π2k

j=1x
(2k)

m−2k+2j−1
+ x

(2k)

m+2k

= {(xm−2k+1 + 1)Π2k

j=1xm−2k+1+2j−1 + xm + 1}
Π2k

j=1{(xm−2k+1+2j−1 + 1)Π2k

i=1xm−2k+1+2j+2i−2 + xm+2j−1}
+(xm + 1)Π2k

j=1xm+2j−1 + xm+2k+1

{ m− 2k+1 + 2j + 2i− 2 = m for i = 2k − j + 1 }

= {(xm−2k+1 + 1)Π2k

j=1xm−2k+1+2j−1 + xm + 1}Π2k

j=1xm+2j−1

+(xm + 1)Π2k

j=1xm+2j−1 + xm+2k+1

= (xm−2k+1 + 1)Π2k+1

j=1 xm−2k+1+2j−1 + xm+2k+1 ,

which completes the proof.

Corollary 9. CA−166∗(n) is reversible iff n = 1 (mod 2)

Proof. It is trivial that f166(1),∗(x1) = x1 and so f166(1),∗ is bijective. Next
we will see that every transition function f166(2n−1),∗ : Q2n−1 → Q2n−1 of
CA−166∗(2n − 1) is bijective for all integers n ≥ 2. Take a unique integer k
such that 2k < 2n−1 < 2k+1. By the virtue of the last lemma 16 the m-th state
of (f166(2n−1),∗)2

k

(x) is given by

x(2k)
m = (xm−2k + 1)Π2k

j=1xm−2k+2j−1 + xm+2k

Set j = n. (Remark 2 ≤ n ≤ 2k.) Then m− 2k + 2j − 1 = m− 2k (mod2n− 1)
and so (xm−2k + 1)xm−2k+2j−1 = (xm−2k + 1)xm−2k = 0. Hence we have

x(2k)
m = xm+2k ,

which proves the bijectivity of f166(2n−1),∗. Finally we see that every transition
function f166(2n),∗ is not injective. It follows at once from

f166(2n),∗((01)n) = f166(2n),∗((10)n) = 02n.

This completes the proof.

Lemma 17. 1. CA−166{1−b,0−∗,∗−b}(n) are not reversible for all positive in-
tegers n.

2. CA−166{0−b,1−∗,∗−∗}(n) are not reversible for any positive integers n ≥ 2.

Proof. It is direct from the following equations;

– f166(n),0−b(110n−2) = f166(n),0−b(0n) for n ≥ 2
– f166(1),0−∗(x1) = 0
– f166(2),0−∗(10) = f166(2),0−∗(01)
– f166(n),0−∗(110n−2) = f166(n),0−∗(0n) for n ≥ 3
– f166(1),1−b(x1) = b
– f166(n),{1−b,1−∗}(10n−1) = f166(n),{1−b,1−∗}(0n) for n ≥ 2
– f166(n),∗−b(10n−1) = f166(n),∗−b(0n)
– f166(n),∗−∗(10n−1) = f166(n),∗−∗(0n) for n ≥ 2
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10 Conclusion

We have proved that several 1d CA with finite cell array, including cyclic CA
simulated in [4], are reversible. Wolfram showed that for 1d CA with infinite cell
array there exist the only six reversible CA with trivial triplet local rules. How-
ever this paper presented some nontrivial 1d reversible CA with finite cell array.
Because QCA has universal computability as same as quantum Turing machines
[8], the study of QCA is useful for research of quantum Turing machines. The
reversible CA dealt with in this paper are special type of QCA. It is difficult
to create a unitary transition matrix of QCA generally. But we can get easily a
unitary transition matrix of product of a rotation matrix and transition matrix
of reversible CA [4]. So the result of this paper is valuable for the research of
not only QCA, but also quantum Turing machines. Our future work is to inves-
tigate how these reversible CA − R(n) can be extended to generalised PQCA
introduced by [4].
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Abstract. We present a theoretical model for self-assembling tiles with
flexible branches motivated by DNA branched junction molecules. We en-
code an instance of a “problem” as a pot of such tiles, and a “solution”
as an assembled complete complex without any free sticky ends (called
ports), whose number of tiles is within predefined bounds. We develop an
algebraic representation of this self-assembly process and use it to prove
that this model of self-assembly precisely captures NP-computability
when the number of tiles in the minimal complete complexes is bounded
by a polynomial.

1 Introduction

Many researchers use weak chemical bonds to design and “grow” self-assembled
nanostructures. Under thermodynamic equilibrium, molecules assemble using
several types of non-covalent intermolecular interactions (e.g., hydrogen or ionic
bonds), evolving into relatively stable structures [23,24]. This paper is motivated
mainly by DNA self-assembly, employing Watson-Crick complementarity and
hydrogen bonding, as a case study for molecular self-organization due to weak
bonding. The interest comes from several major experimental developments that
use DNA for constructing nanostructures, for information processing, and as a
material for nanodevices.

Nanostructures. An essential part of the chemical engineering of self-assemb-
ling structures is the design of the molecular building blocks that will bind
into larger, and more complex structures. Although naturally-occurring DNA
is a linear molecule (considering its helix axis as a segment of a curve), DNA
molecules can be constructed as stable branch points [31,35] and ultimately as
more complex structures with lateral fusion of DNA helices such as double DX
and triple crossover TX molecules [11,22,32]. DNA and other molecules have been
used for self-assembly of two dimensional arrays [36,37], three-dimensional graph-
like structures [15,30] and regular polyhedra [6,40], including the octahedron (by
DX and PX molecules) [33].

Algorithmic self-assembly. Beginning with the initial successful experiment by
Adleman [1] and more recently one from the same group solving an instance

C.S. Calude et al. (Eds.): UC 2005, LNCS 3699, pp. 142–156, 2005.
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of SAT with 20 variables [5], computations by biomolecular protocols include,
among others, binary addition (simulation of XOR) using triple cross-over
molecules (tiles) [25], a 9-bit instance of the “knight problem” using RNA [10],
and a small instance of the maximal clique problem using plasmids [13]. Re-
cently, Winfree [29] used algorithmic self-assembly to obtain cellular automata
like two-dimensional arrays of the Sierpinski triangle.

Nanodevices. Based on a B-Z transition of the DNA helix, a nano-mechanical
device was introduced in [26]. Soon after, “DNA fuel” strands based on Watson-
Crick hydrogen bonding were used to produce devices whose activity were con-
trolled by DNA strands [38], [39]. The device introduced in [38] has two distinct
positions, each obtained by adding a pair of DNA strands that hybridize with
the device so that the molecule is either in the first or in the second position.

Theoretical observations. Despite notable advances in experimental molecular
self-assembly, the theoretical understanding of this process is lacking. Algorith-
mically, it has been observed that DNA tiles can simulate Wang tiles and as
such, are capable of simulating the transitions of a Universal Turing machine
[36]. However, there is a real need for understanding the limitations, boundaries,
and complexity of the process of self-assembly. Only a few theoretical results have
been obtained, primarily for DNA assemblies using rigid tiles. The complexity,
measured as the number of tiles needed for a unique assembly of n× n squares,
is considered in [28], where it was observed that only O(log n) molecules are
needed for this task. Comparison of such “shape” complexity with Kolmogorov
complexity is investigated in [34]. The same model was used to theoretically
observe a possible two-dimensional tile self-assembly of a cube [21]. In [2], com-
puting the minimal number of tiles needed for unique self-assembly in a given
shape proved to be NP-hard, and O(log n)-approximation of the concentration
of the tiles needed for fast assembly in the desired structure is computed. The
question of whether a given set of tiles arrange in an infinite ribbon-like shape
was proved to be undecidable [3]. In [16] and [17], the tiles are “flexible” in
that they have extended bendable branches, the branches being labeled so that
the assembly process is guided by complementary Watson-Crick labels; the al-
gorithmic view is that the input is encoded as a collection of tiles to use, and
an output (if any) is a sufficiently small complete complex, i.e., a complex of
tiles with no free ports. This flexible tile model has been investigated in [18],
which presented a heuristic model to predict the distribution of products of the
self-assembly. In [27], a step-wise assembly of junction molecules is investigated
and the computational complexity of the problem, whether a complete complex
is produced by a given pot of a certain form is considered.

In this paper, we take a somewhat reverse course from [27], and ask what
are the problems solvable by flexible tile assembly; we find that these are pre-
cisely the NP-complete problems. Specifically, we find that all flexible tile DNA
computations within a polynomial bound are reducible to the NP-computable
integer programming problem of [4] and [20], and conversely, that any NPTIME
computation can be simulated by a flexible tile computation. This note is an
extended abstract of results appearing in [19].
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2 The Theoretical Model

The main building blocks used in our assembly model are motivated by branched
junction DNA molecules with junctions ending with single stranded portions
(sticky ends) that can bind to their Watson-Crick complementary sequence. It is
also assumed that the structure of the junctions (and possibly the branches) is
such that the branches are rather flexible and various connections are possible.
A schematic view of this process is presented in Figure 1. It has been shown
theoretically that several NP-complete problems such as 3SAT and 3-vertex-
colorability can be solved by self-assembly of DNA graphs [15,16,17]. The coding
of the problems is such that a solution is obtained if and only if the graph can be
assembled. Also, experimental confirmation of DNA graph self-assembly has been
obtained by flexible tiles in [15,30]. In what follows we develop the theoretical
model and prove these initial observations in a general setting.

Let H ⊂ Σ∗ be a finite set of words over alphabet Σ that we call port
(bonding) types and let θ: H → H be an involution. We call θ(h) ∈ H the
complementary string to h such that ports of types h and θ(h) bond. For each
h ∈ H we assume that θ(h) 
= h = θ(θ(h)).

Fix H and θ for the rest of this paper. To ease notation we write ĥ for θ(h).

Definition 1. A tile type over (H, θ) is a function t: H → N.

A tile of type t will have t(h) ports of type h. If |H | = k, then a tile
type can be written as a k-dimensional vector with non-negative integer entries;
alternatively, a tile type can be regarded as a multiset of port bonding types.
We call d = d(t) =

∑
h t(h) the degree of tile type t. In order to get the tiles

themselves, we first get a collection of “prototiles.” A prototile corresponding to
tile type t is a star-like graph with one central vertex of degree d(t) indicating
the center of the prototile and d(t) vertices of degree one labeled with ports
indicating the branches seeking to bond with complementary ports. A tile is
thus a copy of a prototile, so we say that a tile t that is a copy of a prototile of
type t is thus itself of type t, and we write: for each h ∈ H , t(h) = t(h) means

Fig. 1. Watson-Crick bonding of two DNA junction molecules. The double helix struc-

ture is not depicted for simplicity. The arrowhead indicates the 3′ end also ending with

a single stranded sticky end sequence.
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Fig. 2. Complexes. (a) Three tiles, with the central vertex indicated as a black circle,

and the one-degree vertices with ports schematically presented with different colors and

shapes. The complementary ports have compatible shapes, and same colors. (b) Two

different (incomplete) complexes obtained by gluing the three tiles. They are of the

same complex type despite their different structures, as they have the same multiset

of free port types.

that t has exactly t(h) ports of type h. Figure 2 (a) shows examples of three
tiles with degrees 3, 5 and 3 respectively. The central vertex is represented with
a black circle and ports are indicated with different colors and shapes.

We put tiles together to construct complexes. But first, we need to classify
the pots that the complexes are assembled in.

Definition 2. A pot type over (H, θ) is a set P of prototiles corresponding to
tile types over (H, θ) such that for any h ∈ H and t ∈ P, if t(h) > 0 then there
exists t′ ∈ P such that t′(ĥ) > 0.

Thus no pot admits tiles with unattachable ports. A pot P is a set of tiles
from P.

Definition 3. A complex over a pot type P is a pair C = 〈T, J〉 where T is a set
of tiles with tile types in P and J is a set of unordered pairs e = {(t,h), (t′,h′)}
satisfying the following two properties:

– For each e = {(t,h), (t′,h′)} ∈ J , t, t′ ∈ T , t(h), t′(h′) > 0, h′ = ĥ (e
indicates the connection between two complementary ports), and

– the cardinality |{e | (t,h) ∈ e}| ≤ t(h) (this prevents the tile from making more
connections than it has ports).

The type of a complex C = 〈T, J〉 is the function type(C): H → N defined by

type(C)(h) =
∑
t∈T

t(h) − |{e | (t,h) ∈ e}|
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Thus the type of C indicates the types of its ports, free (i.e., those not ap-
pearing in J). Similarly, as with tile types, the complex type can be viewed as a
k-dimensional vector with non-negative integer entries. Note that each tile can
be considered as a complex where the set J is empty and the set T is a single-
ton. Then the type of tile t is equal to the type of the complex it represents. We
would like to distinguish tiles from complexes merely to indicate the fact that
complexes are assembled from tiles.

We assume that assembly occurs in an extremely dilute solution, so that
when two complexes meet, all of their complementary free sticky ends join up
so that there are no complementary free ports. (This is where the flexibility of
the tiles is so critical.) Thus:

Definition 4. A complex C over (H, θ) is stable if, for each h ∈ H, either
type(C)(h) = 0 or type(C)(ĥ) = 0.

In this paper, we assume that all complexes are stable unless otherwise
indicated.

As an example, consider Figure 2 (b), in which the ports of three tiles are
(maximally) connected to produce either of the two non-isomorphic complexes
of the same type. The ports are shown with different colors and shapes.

More generally, we may join complexes to obtain bigger complexes: if C1 =
〈T1, J1〉 and C2 = 〈T2, J2〉 are two complexes, then we can glue them together
by connecting up their complementary ports to get a complex C = 〈T, J〉. There
may be several non-equivalent ways to do this. Let ΔJ be a set of unordered
pairs {(t1,h1), (t2,h2)} such that a free port of type h1 from tile t1 ∈ T1 connects
to a free port of type h2 = ĥ1 from tile t2 ∈ T2. We have the following definition:

Definition 5. We say that C = 〈T, J〉 is obtained by gluing complexes C1 =
〈T1, J1〉 and C2 = 〈T2, J2〉 if

T = T1 ∪ T2 and J = J1 ∪ J2 ∪ΔJ,

with the restriction that for each h ∈ H, as many ports of type h as possible are
joined, i.e., for each h, type(C)(h) = |type(C1)(h) − type(C2)(ĥ)|.

A complex is called complete if it has no free ports, i.e., if for all bonding
port types h, type(C)(h) = 0. For a pot P we denote with C(P ) the set of all
complete complexes that can be obtained by tiles from P , and for a pot type P,
let C(P) =

⋃
P∈P C(P ). Note that if P is finite, so is C(P ). The case when C is

finite is discussed in [19].

3 Example: The 3SAT Problem

The satisfiability problem (SAT) asks whether for a given boolean formula ϕ,
there is an assignment of {TRUE, FALSE} (or {T, F}) to the variables in ϕ
that would assign to ϕ the value TRUE. (This is the archetypic NP-complete
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problem [7].) Writing “+” for “or” and concatenation for “and,” a formula ϕ is
in conjunctive normal form (CNF) if it can be expressed as ϕ = c1c2 · · · cr where
each ci is a clause of the form (a1 + · · ·+ ak), and each ai is a literal, i.e., either
a variable v or a negation of a variable v̄. It is in k-conjunctive normal form
(k-CNF) if each conjunctive clause contains at most k literals. The satisfiability
problem for 3-CNF formulas is known as 3SAT [7]. Consider for example:

ϕ = (x̄ + y + z̄)(x + ȳ + z)(x̄ + ȳ + z). (1)

This Formula 1 has value T for the assignments (x, y, z) ∈ {(F, F, F ), (T, T, T ),
(T, F, F ), (F, T, T ), (F, F, T )}, and F for any other assignment.

For each 3-CNF formula ϕ we associate a pot type P with the following tiles.
The alphabet from which the port types are taken is

H = {T, F, T̂ , F̂} ∪ {x, x̄, x̂, ˆ̄x |x is a variable } ∪ {c, ĉ | c is a clause }.
The symbols with ˆindicate the θ complements. The set of port types consists
of three letter words which we write as ordered triples for easier reading.

H =
{
(ι, c, a), θ(ι, c, a) | ι ∈ {T, F}, c a clause, a a literal

}
∪ {(x, x̄, ι), θ(x, x̄, ι) |x is a variable, ι ∈ {T, F}}.

The tiles differ in the assignment of the free ports. For each clause ci there are
seven tiles with three free ports of types (ι, c, a), a being a literal of c and ι being
a truth assignment. Each tile corresponds to a truth assignment to the variables
making the clause it belongs to true: its ports will be of types (ι, c, a), for a
having truth assignment ι. (The truth assignment making the clause false gets
no tile.) For example, the tile type corresponding to the clause c1 = (x̄+y+z̄) for
Formula 1 with assignment (x → F, y → T, z → T ) has ports of types (T, c1, x̄),
(T, c1, y), and (F, c1, z̄) indicating (x̄ → T, y → T, z̄ → F ). This is depicted in
Figure 3 (a).

For each variable x, if x appears in s clauses, we associate x with two tiles,
each with s + 1 ports. Each such tile corresponds to one of the two possible
truth values of the variable, T or F . Each of s ports is complementary to the

(T,c  ,x)1

(T, c  , y)1

(F, c  ,z)1

C1

(F, c  ,x)Θ 2 (x,x,F)
x

(x,x,F)Θ
x Θ(T,c  ,x)1

(T,c  ,x)Θ 3

(b)(a)

Fig. 3. (a) Tile for clause c1 for Formula 1 with assignment (F, T, T ). (b) Tiles corre-

sponding to variable x and x̄ (with value F for x) in 1.
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Fig. 4. A complete complex for Formula 1. Connections between complemenary ports

are treated as edges in the graph.

corresponding port in one of the corresponding clause tiles (encoding θ(truth
value, clause, variable)). The additional (s+ 1)st port is connected to the tile of
the negation of the variable. Similarly, such tiles are encoded for the complements
of the variables. The tiles corresponding to x and x̄ in Formula 1 assigning value
F to x are depicted in Figure 3 (b).

Any complete complex has to have at least one tile for each clause, and one
for each variable (two if the variable and its negation both appear). A complete
complex with exactly one tile for each clause represents a truth assignment sat-
isfying the given 3-CNF formula (for details see [15]). Such a complete complex
for the formula (1) is depicted in Figure 4.

On the other hand, if there is no satisfying truth assignment, complete com-
plexes may still assemble. However the condition that for each clause and each
variable there is precisely one corresponding tile in the complex will not be sat-
isfied. Moreover, all such complexes contain larger (integer multiple) number of
tiles than the number of clauses and variables. See [16] for an explanation of
multiple covers.

Hence, a way to tell if the inputted 3-CNF formula is satisfiable is to de-
termine if there are sufficiently small complete complexes in the pot. In the
following we specify what “sufficiently small” means; we start with a system of
indexes for guiding the construction of complexes.

Definition 6. Fix a graph G = 〈V,E〉. A pot type P is properly indexed by G
if there is a complete complex C that consists of tiles of distinct types, labeled by
vertices g ∈ V , such that the map t $→ label(t) is an isomorphism of C onto G.

Thus a complete complex of a properly indexed pot type (indexed by a graph
G) is isomorphic to G, or of the form of several copies of G, all tangled together.

Thus in the case of 3SAT the pot type is properly indexed by the graph
corresponding to the formula if and only if the formula has a solution. Moreover,
the graph that properly indexes the pot is unique up to an isomorphism. The
proof of the following proposition follows from basic topological properties of
graphs, and we omit the proof.
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Proposition 1. Let P be a pot type and assume that there is precisely one graph
G = 〈V,E〉 such that P is properly indexed by G. Suppose that G is connected.
Then any complete complex in C(P) has n|V | tiles, for some integer n.

We can design properly indexed pots so that a complete complex witnessing,
say, the solution of a problem has |V | tiles, while a spurious complete complex
has at least 2|V | tiles. For example, a 3-CNF formula generates a pot, which
provides a solution (i.e., a satisfying truth assignment) in a proper complex; if
there is no satisfying truth assignments, there is no proper complex. Thus a
formula of k clauses and m variables is satisfied by some truth assignment iff
the corresponding pot admits a complete complex of k + 2m tiles; any larger
complexes will have at least 2k + 4m tiles.

Definition 7. A pot type P is weakly satisfiable within bound b if it admits a
complete complex of at most b tiles.

4 Computing NP Problems by Flexible-Tile Assembly

This section shows how NPTIME computations can be accomplished by (flexible
tile) assembly within given bounds. First we fix the nomenclature. Consider a
finite alphabet Σ, with a symbol # 
∈ Σ for “blank.” We consider problems of
recognizing a formal language L over alphabet Σ, i.e., for an alphabet Σ and a
language L ⊆ Σ∗, given input x ∈ Σ∗, is x ∈ L?

Definition 8. A Deterministic Turing Machine is a tuple (Q,Σ, δ, q0,#), such
that:

– The set Q is the set of states of the machine; q0 is the initial state and qF

is the terminal state.
– The finite set Σ is the alphabet, which does not contain the “blank” character

#.
– The transition function δ is a partial function (Q× (Σ ∪ {#})) → (Q×Σ×

{L, 0, R}). If δ(q, σ) = (q′, σ′, ξ), and if the tapehead is reading σ ∈ Σ ∪ {#}
while the machine is in state q, it replaces σ with σ′ and moves Left if ξ = L
or Right if ξ = R (or for ξ = 0, does not move), and changes its state to
q′. Each such transition is a step denoted (q, σ) → (q′, σ′, ξ). The machine
halts in state q, reading symbol σ, if δ(q, σ) is undefined.

– The machine starts in the initial state q0, with the tapehead at the leftmost
square of the input string x ∈ Σ∗. If it halts, the input string is accepted.

The machine is a Non-Deterministic Turing Machine (NTM) if, for each state
q and character σ, δ(q, σ) is a nonempty subset of Q×Σ × {L, 0, R} such that
a transition is a step (q, σ) → (q′, σ′, ξ) if (q′, σ′, ξ) ∈ δ(q, σ).

In the case of an NTM we assume that the machine proceeds by choosing
successive actions out of the available options.

A language L ⊆ Σ∗ is PTIME computable if there exists a DTM M and a
polynomial p such that for any input x ∈ Σ∗, M halts within p(|x|) steps if
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and only if x ∈ L. Call a language L ⊆ Σ∗ NPTIME computable if there exists
an NTM M and a polynomial p such that for any input x ∈ Σ∗, M can make
choices in its computation to eventually halt in accepting state within p(|x|) steps
if and only if x ∈ L. These machines are called PTIME acceptors or NPTIME
acceptors, respectively, as they “accept” their respective languages. Incidentally,
a PTIME program or algorithm for converting one type of problem into another
is a DTM M (with associated polynomial p) such that for any input x, within
p(|x|) steps the content of the tape will be a representation of the desired output.

Definition 9. The Flexible Tile Assembly Polynomial time (or FTAP) class of
languages is the class of languages L ⊆ Σ∗ such that there is a polynomial p and
a PTIME algorithm converting any x ∈ Σ∗ into a pair (Px, b) where:

– the pot type Px is weakly satisfiable within bound b if and only if x ∈ L, and
– the bound b satisfies b ≤ p(|x|).

We use tile assembly to construct a complex representing an entire NTM
computation.

A configuration of a TM is a tuple (q,m, s), where q is the state of the
machine, m is the position of the tapehead, and s is the string currently on the
tape. Thus a computation of a Turing Machine is a sequence of configuration
C0, C1, . . ., where C0 is an initial configuration, and for each i, Ci+1 is obtained
from Ci by a transition step. The computation terminates if and only if machine
halts.

Here is the first half of the main theorem.

Theorem 1. If a language L ⊆ Σ∗ is NPTIME computable, then it is in FTAP.

Sketch of proof. Fix a polynomial p, and let L be accepted by the NTM M ,
which accepts strings of length n within p(n) steps – or not at all. We construct
a pot type such that each prototile in the pot type represents one tape square
at a position m at a time t. For each input string x, if M accepts x it must do
so within p(|x|) steps. Set tx = p(|x|). Then the number of squares on the tape
of the machine that is visited by the head is bounded by n = 2tx + 1. Denote
Ntime = {0, 1, . . . , tx} and Ntape = {−tx,−tx + 1, . . . , 0, 1, . . . , tx}.

The set of prototiles is a subset of (Σ∪{#})×Ntape×Ntime×X3×(Q∪{0})2
where X = {−1, 0, 1}. Note that the number of prototiles is bounded by a
polynomial in |x|. Intuitively, at time t and position m, there is a symbol σ in the
square. The prototile corresponding to this square is (σ,m, t, (ξ−, ξ0, ξ+), (q, q′)).
We define ξ0 = 1 if the tapehead is at this square at time t, and ξ0 = 0 otherwise.
If ξ0 = 1, we define ξ− and ξ+ to represent the previous and next moves of the
tapehead, otherwise they remain 0. The head had moved from the left (ξ− = 1)
or the right (ξ− = −1), and the head will move either to the left (ξ+ = −1) or
the right (ξ+ = 1). And if the machine entered square m while in a state q at
time t, then it will change to a state q′ at time t+1. Finally, if the computation
halted at time t, q′ = q and ξ+ = 0. If the tapehead is not positioned at the
square m at time t, then (ξ−, ξ0, ξ+) = (0, 0, 0) and (q, q′) = (0, 0).
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Given a prototile α = (σ,m, t, (ξ−, ξ0, ξ+), (q, q′)) and a Turing Machine M
having transition function δ, we say that α is consistent with M if:

– ξ0 = 0, implies ξ− = ξ+ = 0 and q = q′ = 0,
– ξ0 = 1 if δ(q, σ) = (q′, σ′, ξ) for ξ ∈ {R, 0, L} and some σ′ ∈ Σ.

Our pot type P = PM consists of the maximal set of prototiles consistent
with M such that their second and third entries satisfy m ∈ Ntape and t ∈
Ntime.

There are eight codes for ports available, of which any particular tile may
have degree from two to six. The degree of a tile α = (σ,m, t, (ξ−, ξ0, ξ+), (q, q′))
is determined by

d(α) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if m ∈ {0, n} and t ∈ {0, tx} if a corner tile;
3 if m ∈ {0, n} xor t ∈ {0, tx} if a side tile;
4 if ξ0 = 0 if a central tile with no tapehead;
5 if q′ = qF if the computation halts;
6 if ξ0 = 1 and q′ 
= qF if the tapehead is present, not halting.

We note that there are other kinds of tiles that encode specific boundary
conditions, such as the head reaching a corner during the computation, but we
do not include these details. Recall that a tile represents a particular mth square
of the Turing machine at a particular time t. The idea is that successive rows
of tiles represent successive configurations of the Turing Machine, starting with
the initial (northernmost) row, and heading south. Several typical tiles in the
computation assembly are depicted in Figure 5. Comparing to the simulation of a
TM by rigid tiles (see for ex. [36,34]) one has to be careful to “force” the assembly
into a rectangular grid using port codes. Each code indicates the current position
of a given tile at the computation process of the Turing Machine (i.e. position
m and time step t) as well as when necessary additional information such as
the symbol, state and movement of the machine at a particular instance. This
is depicted in Figure 5. The complementary ports are indicated by θ. Note that
when the complex assembles, the “top” row represents the initial configuration
with tiles encoding x on squares 0, . . . , |x| − 1. The rest of the tiles in the “top”
row carry the blank character #, the head is on square 0 in state q0.

The tiles assemble into a rectangular grid, with each horizontal row of tiles
giving a configuration of the machine, with successive rows southward represent-
ing successive configurations, and each vertical column representing a particular
square. The diagonal connections represent motions of the head. The tiles are
designed so that there are no north, south, east, or west ports off the end of the
complex, so the complex will be complete if and only if there are no diagonal
ports sticking out the bottom, i.e., if and only if the computation has halted
within tx steps.

So suppose L is NPTIME computable, i.e., there is a polynomial p such that
for any x, x ∈ L if and only if the NTM accepting L halts in a terminal state
within p(|x|) steps. If x ∈ L, tx = p(|x|) gives us a complete complex of at most
b = (tx +1)(2tx +1) = 2p(|x|)2 +3p(|x|)+1 tiles, a polynomial bound. If x 
∈ L,
there is no complete complex at all. �
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Fig. 5. Portions of assembly of tiles from PM consistent with the Turing Machine M
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5 Flexible-Tile Assembly Is Within NPTIME

We now go the other direction, proving that all weakly satisfiable problems
within bounds are NPTIME-computable. We will use the Integer Programming
Problem, called MP1 in [12], that was proved to be NP-computable by Borosh
& Treybig [4] and NP-hard by Karp [20].

Definition 10. This is the Integer Programming Problem (MP1).

– INPUT:
I1. A set finite X ⊆ Zm × Z of (m + 1)-tuples (x, b) of integers.
I2. An m-tuple c ∈ Zm.
I3. An integer B.

– QUESTION: Does there exist an m-tuple y ∈ Zm such that the following is
true?

Q1. For each (x, b) ∈ X , x · y ≤ b, where “·” is vector dot or inner product.
Q2. And c · y ≥ B.

Theorem 2. All FTAP computable problems are NPTIME-computable.

Idea of Proof. We prove that there is a PTIME reduction of pot types to
MP1 problems that are solvable if and only if the original pot type was weakly
satisfiable within bounds.

Given a pot type P over (H, θ), we will reduce the problem to whether there
is a set of nonnegative integers (tile multiplicities) {yt ∈ N: t ∈ P}, not all zero,
giving us the number of each kind of tile in a complete complex. Considering
each tile type as a vector with non-negative integer entries, we treat the pot P
as a set of vectors of integers.

We need an input as in Definition 10 that is solvable iff there exists a system
of integers yt such that:

(i) Each yt has yt ≥ 0, i.e., a number of tiles of a particular type.
(ii) For each h,

∑
t∈P yt · t(h) =

∑
t∈P yt · t(ĥ), i.e., P can generate a complete

complex.
(iii)

∑
t∈P yt > 0, i.e., the complete complex that is generated is non-trivial,

contains at least one tile.
(iv)

∑
t∈P yt ≤ b, i.e., the complete complex that is generated contains at most

b tiles.

We rearrange the above inequalities to fit those that appear as input in
Definition 10. �

6 Final Remarks

This paper suggests at least two collections of problems that are yet to be
considered.
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First, while this model provides a method for computing NP problems in
theory, it is not entirely clear how well it will work in practice. So far, labora-
tory experiments have determined that flexible tile computations would perform
correctly for a 3-DNF propositional calculus formula of perhaps five clauses; it
is not clear how well it would determine if a 5,000-clause formula is satisfiable
(and a problem of this size is, in general, beyond our current computational
capacities). The actual behavior of this model should be investigated further.

Second, this model suggests a set of logics describing computational com-
plexity classes. The main theorem of this paper is a “representation theorem”
similar to the main theorem of [9] (see [14] or [8], which presented a represen-
tation of NPTIME somewhat similar the one presented here. The combinatorial
properties of this model, and related models, may provide additional tools for
investigating some of the more obstinate classes in computational complexity
theory.
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Abstract. We propose a novel formulation of the firing squad synchro-
nization problem. In this formulation we may use more than one general
state and the general state to be used is determined by the boundary
condition of the general. We show that the usual formulation and the new
formulation yield different minimum firing times for some variations of
the problem. Our results suggest that the new formulation is more suited
for the general theory of the firing squad synchronization problem.

1 Introduction

The firing squad synchronization problem, or FSSP for short, is the following
problem raised by J. Myhill in 1957 ([14]). Consider a finite automata A that
has two input terminals, one from the left and the other from the right, and
two output terminals, one to the left and the other to the right. The value of
each output terminal at time t is the state of A at that time t. The state of
A at a time t + 1 is completely determined by the state and the values of the
input terminals of A at time t. The set of the states of A includes at least three
different states G, Q, F, called the general state, the quiescent state, and the
firing state, respectively. For a number n (≥ 1) let Nn be the one-dimensional
array of n nodes p1, p2, . . . , pn. Each node pi is a copy of the automaton A,
and the input terminals and the output terminals of adjacent nodes pi, pi+1

are connected mutually (1 ≤ i < n). See Figure 1. The values of the input
terminal from the left of the leftmost node p1 and the input terminal from the
right of the rightmost node pn are the special symbol # that indicates that the
input terminal is open. The transition function of A must satisfy the following
condition: if the state of A is Q and the value of each of the input terminals is
either Q or # at a time t, then the state of A at the next time t+ 1 must be Q.
We call the leftmost node p1 the root of Nn. At time 0, the state of a node pi

is the general state G if the node is the root (i = 1) and the quiescent state Q
otherwise (i ≥ 2). Then, for each t (≥ 0) and i (1 ≤ i ≤ n), the state of the node
pi at time t is uniquely determined. The problem is to design a finite automaton
A, a solution of FSSP, such that, for any n, all the nodes of Nn enter the firing
state F simultaneously for the first time.

C.S. Calude et al. (Eds.): UC 2005, LNCS 3699, pp. 157–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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p1 p2 p3 pn-2 pn-1 pn

root

#
#

Fig. 1. The original FSSP

We can easily construct a solution having the firing time 3n for Nn. Moreover,
we can easily show that the firing time of any solution for Nn cannot be smaller
than 2n−2. Hence, if a solution has the firing time 2n−2 for all Nn, we may call
it a minimal-time solution. Existence of minimal-time solutions was first shown
by Goto ([7]), and later by Waksman ([20]).

After this original FSSP was introduced, many variations of FSSP have been
proposed and studied ([13]). Suppose that a variation V of FSSP has a solution.
For each problem instance N of V , by the minimum firing time of N of the
variation V we mean the minimum of the firing times of solutions A of V for N ,
where A ranges over all solutions of V . If the firing time of a solution Ã of V for
N is the minimum firing time of N of V for all problem instances N of V , we
call Ã a minimal-time solution of the variation V .

In this paper we propose a modification of the formulation of FSSP and study
how the modification influences the minimum firing times of various variations
of FSSP. The modification is as follows. First, instead of having one unique
general state G, we allow a finite automaton to have more that one general
state G1,G2, . . . ,Gs. The general state to be used is uniquely determined by
the boundary condition of the root. Here, by the boundary condition of a node
of a problem instance, we mean the information of which input terminals and
output terminals of the node are open. Second, instead of having one unique
firing state F, we specify a set F of states as the set of firing states. For a finite
automaton to be a solution, all nodes of the network must enter some firing
state simultaneously for the first time. Different nodes may enter different firing
states. A general state Gi may be also a firing state.

This modification implies the following for designing solutions of FSSP. First,
the root can send its boundary condition to adjacent nodes at time 0. Hence a
node adjacent to the root can use the boundary condition of the root in deter-
mining its state at time 1. Second, the general state that should be used when
the boundary condition of the root is “all terminals are open” may be a firing
state. Hence, if the problem instance has only one node, the root can fire at time
0 and hence the firing time can be be 0.

We call the usual formulation and the new formulation of FSSP the tra-
ditional model and the boundary sensitive model, respectively. There are two
motivations for using the boundary sensitive model.

The main motivation is that the boundary sensitive model simplifies the anal-
ysis of minimum firing time and allows us to understand the essential structures
of minimal-time solutions. We explain why the boundary sensitive model is more
suitable through examples.

Another reason concerns the recent change of the motivation for studying
FSSP. Recently, the FSSP for directed networks has been utilized as one of
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the basic protocols for designing network algorithms (for example, [6]). In such
applications, a node is a circuit or a computer in a network, and connections
between nodes are network connections. In this case, the time for a node to
check its boundary condition is negligibly smaller than the time for information
exchange between nodes. Hence it is natural to assume that the root (the initiator
of the protocol) can send its boundary condition at time 0. The “firing” of the
network generally means that the network simultaneously takes some action. If
the network has only one node the root can know this at time 0 and start the
action promptly. Hence it is natural to assume that if the network has only one
node the firing time is 0.

For a variation V of FSSP and a problem instance N of V , let mftV,tr(N) and
mftV,bs(N) denote the minimum firing times of V for N of the traditional model
and the boundary sensitive model, respectively. We are interested in the relation
between mftV,tr(N) and mftV,bs(N). We always have mftV,tr(N) > mftV,bs(N)
for the problem instance N that has only one node because the first value is
at least 1 and the second value is 0. Hence, in the remainder of the paper we
consider only problem instances that have at least two nodes.

The main technical results of the paper are twofold. First we show that for
many variations the two models give the same minimum firing time. Second we
show that for some variations the two models give different minimum firing times
and in the traditional model the determination of the minimum firing time is
unnecessarily complicated due to unnaturalness of the model.

We should mention that the formulation of FSSP that uses more than one
firing state has been used by Imai and Morita ([8]) to study FSSP by reversible
cellular automata.

2 FSSP That Have Known Minimal-Time Solutions

In this section we consider variations of FSSP for which we know minimal-time
solutions. The following lists some of these variations:

• The original FSSP of the one-dimensional line of length n (Fig. 1): The
minimum firing time is 2n− 2 ([7], [20], [1]);

• The one-dimensional line of length n such that the root may be at any
position: The minimum firing time is 2n− 2− min{p− 1, n− p}, where p is
the position of the root (1 ≤ p ≤ n) ([15]);

• The one-dimensional line of length n with k roots such that the roots may
be at any positions: The minimum firing time is 2n − 2 − min{maxi(pi −
1),maxi(n − pi)}, where pi is the position of the ith root (1 ≤ pi ≤ n,
1 ≤ i ≤ k) ([18]);

• The square of size n× n: The minimum firing time is 2n− 2 ([19]);
• The rectangle of size m×n: The minimum firing time is m+n+max{m,n}−3

([19]);
• The cube of size n× n× n: The minimum firing time is 3n− 3 ([19]);
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• The ring of size n: The minimum firing time is n ([3], [2]);
• The ring of size n with one-way information flow: The minimum firing time

is 2n− 1 ([10], [12]).

For all of these variations V we can show mftV,tr(N) = mftV,bs(N) for any
N . The proofs are essentially the same. As an example, suppose that V is the
original FSSP. For this V there exists a solution for the traditional model that
shows mftV,tr(Nn) ≤ 2n− 2. Moreover, we can prove that the firing time of any
solution A of V for Nn cannot be smaller than 2n−2 by formalizing the intuitive
reasoning that it takes at least 2n− 2 time for the root to know the position of
the rightmost node. But this proof is also true for the boundary sensitive model.
Hence we have 2n− 2 ≤ mftV,bs(Nn) ≤ mftV,tr(Nn) ≤ 2n− 2.

3 FSSP of General Networks

Next we consider variations of FSSP for general networks. Of these variations
two are the most basic. One is the FSSP of directed networks and the other is
the FSSP of bilateral networks. We abbreviate these two variations to DN and
BN respectively.

In DN, an automaton A has a input terminals and b output terminals, where
a, b (≥ 1) are implicit parameters. A problem instance N of DN is a network
that is obtained from copies of A by connecting some of the outputs to some
of the inputs. Each output of a node is either open or is connected to a single
input of another node, and hence the “fan-out” is at most one. Each automaton
A knows whether its jth output is open or not for each j (1 ≤ j ≤ b). One node
is specified as the root. Moreover, the network N must be strongly connected,
that is, there must be a directed path of connections from v to v′ for each pair
(v, v′) of nodes.

A network N of DN is a bilateral network if a = b and the following condition
is satisfied: if the ith output of a node v is connected to the jth input of a node
v′ then the jth output of v′ is connected to the ith input of v. BN is the the
variation such that the problem instances are all bilateral networks. Note that
all the variations mentioned in Section 2 are subproblems of BN except the last
one, the FSSP of rings with one-way information flow.

For both DN and BN we do not know minimal-time solutions. The best
known solution of BN is by Nishitani and Honda ([16]) and its firing time is
3r − 1, where r is the radius of the network. A solution of DN was first found
by Kobayashi ([9]). Its firing time was an exponential function of the number
n of nodes. The firing time has been improved to O(n2) by Even, Litman and
Winkler ([4]) and then to O(nd) by Ostrovsky and Wilkerson ([17]), where d is
the diameter of the network.

Claim 1. For both of BN and DN the two formulations have the same minimum
firing time.

Proof. Let N = (V,E) be a directed network or a bilateral network, where V is
the set of nodes and E is the set of connections. For v, v′ ∈ V and e ∈ E, let
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d(v, v′) and de(v, v′) respectively denote the length of a shortest path from v to
v′ (or between v and v′ if N is bilateral) and the length of a shortest path from
v to v′ (or between v and v′ if N is bilateral) that passes through e, respectively.
Moreover let f(N) denote the value maxe∈E,v∈V de(vg, v), where vg denotes the
root. Then we have

mftDN,tr(N) = mftDN,bs(N) = f(N),
mftBN,tr(N) = mftBN,bs(N) = f(N).

We will very briefly explain the idea for proving these characterizations of min-
imum firing time only for DN.

First we show mftDN,bs ≥ f(N) using the network N shown in Fig. 2 as
an example. For this network N we have f(N) = 6 and the e, v that realize
this maximum value 6 is e = (p3, 1, 1, p4), v = p3, where the symbol (v, i, j, v′)
denotes the connection from the ith output of v to the jth input of v′. Let N ′ be
the network shown in Fig. 2 and let t̃ be any time such that t̃ ≤ 5. Then, at time
t̃, the states of p3 in N and p3 in N ′ are the same and the the state of p9 in N ′

is the quiescent state Q. Hence, if a solution A of DN of the boundary sensitive
model fires at t̃ on N , at that time the states of nodes in N ′ contain both of a
firing state and Q. This contradicts our assumption that A is a solution of DN.
Hence the firing time of A cannot be t̃. This proves mftDN,bs(N) ≥ 6 = f(N).

p9

p8

p7

p6

p5p5

p4p4

p3p3

p2p2

p1 p1root root

N N'

Fig. 2. FSSP of directed networks

Next we show mftDN,bs(N) ≤ f(N). We select one directed network N and
fix it. We show how to construct a solution Abs of DN of the boundary sensitive
model whose firing time for N is at most f(N). The structure of Abs essentially
depends on the fixed network N .

Abs simulates two finite automata A1,bs, A2,bs of the boundary sensitive
model and fires when at least one of them fires. A1,bs may be any solution of
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DN. A2,bs is a finite automaton such that all the nodes collaborate to check that
the given network is N . If the given network is N then all the nodes know it
before or at f(N), and fire at f(N). Otherwise each node never fires. Hence Abs

is a solution.
The details of the behavior of A2,bs are as follows. For each node v ∈ V

we fix one shortest path from vg to v and use that path to uniquely spec-
ify v. For example, if we select the path (p1, 1, 1, p2), (p2, 2, 2, p3) for p3 in
the network N shown in Fig. 2, all the nodes refer to p3 of N as “the node
that is arrived at when we proceed from vg along connections (p1, 1, 1, p2),
(p2, 2, 2, p3).”

For each pair (v′, v) of nodes of N , A2,bs uses a signal to teach v that v′

really exists in the network, and also the boundary condition of v′. The time
needed for this is d(vg, v

′) + d(v′, v) because we are using the boundary sensi-
tive model. Moreover, for each pair (e, v) of e ∈ E and v ∈ V , A2,bs uses a
signal to teach v that e really exists in the network. The time needed for this is
d(vg, v

′) + 1 + d(v′′, v) = de(vg, v), where v′, v′′ are nodes such that e is from v′

to v′′.
Hence, if the given network is N , using these signals all the nodes know this

before or at time

max{ max
v′,v∈V

(d(vg, v
′) + d(v′, v)), max

e∈E,v∈V
de(vg, v)} = max

e∈E,v∈V
de(vg, v) = f(N)

and A2,bs at any node can fire at time f(N). If the network is not N , A2,bs at
any node never fires. Hence, the firing time of the solution Abs for N is at most
f(N), and hence mftDN,bs(N) ≤ f(N).

The above idea cannot be used directly for the traditional model because in
the model the time for v to know the boundary condition of v′ is not d(vg, v

′) +
d(v′, v) for v′ = vg. This complicates the analysis of mftDN,tr(N). However, if we
note that maxv∈V d(vg, v)+ 1 ≤ f(N), we can construct a solution Atr of DN of
the traditional model whose firing time for N is at most f(N).

Atr is obtained from Abs by modifying its components A1,bs and A2,bs to
automata A1,tr and A2,tr of the traditional model as follows. A1,tr may be any
solution of DN of the traditional model. There are 2a+b boundary conditions.
A2,tr simulates the behaviors of A2,bs for all of these boundary conditions simul-
taneously. At the same time, at time 1 the root broadcasts the correct boundary
condition to all nodes. A node fires when it has received the correct boundary
condition and the simulated A2,bs for that boundary condition fires. The condi-
tion maxv∈V d(vg, v) + 1 ≤ f(N) guarantees that each node knows the correct
boundary condition before or at f(N). Hence A2,tr fires at f(N) if the given
network is N .

Hence the firing time of Atr for N is at most f(N), and hence mftDN,tr(N) ≤
f(N). This, together with f(N) ≤ mftDN,bs(N) ≤ mftDN,tr(N), shows
mftDN,tr(N) = f(N).

The proof of mftBN,tr(N) = mftBN,bs(N) = f(N) is similar. �
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4 FSSP of Paths and Regions in Z2 and Z3

The final variations we consider are paths and regions in the two-dimensional
grid space Z2 and the three-dimensional grid space Z3. First we explain the
variations for Z2.

We say that two points p = (x, y), p′ = (x′, y′) in Z2 are adjacent if either
x = x′ and |y − y′| = 1 or |x− x′| = 1 and y = y′. By a path in Z2, or simply a
path, we mean a sequence p1p2 . . . pn of points in Z2 (n ≥ 1) such that pi and pj

are adjacent if and only if |i− j| = 1 (1 ≤ i ≤ n, 1 ≤ j ≤ n).
The FSSP of paths in Z2, or 2PATH for short, is the FSSP such that problem

instances are paths p1p2 . . . pn in Z2 and p1 is the root of each path p1p2 . . . pn.
Another variation, the FSSP of generalized paths in Z2, or g-2PATH for short,
is the FSSP such that problem instances are paths p1p2 . . . pn in Z2 and the root
may be at any position. Finally, the FSSP of regions in Z2, or 2REG for short,
is the FSSP such that problem instances are nonempty finite subsets X of Z2

such that any two points p, p′ in X are connected with a path in X , and the
root may be any point in X .

We can define similar variations 3PATH, g-3PATH, 3REG for Z3. In
Fig. 3 (a) and (b) we show examples of problem instances of 2PATH and 2REG,
respectively.

root

root
(a) (b)

Fig. 3. Examples of 2PATH and 2REG

For each of these three variations, a finite automata A that is used to con-
struct a solution has four inputs and four outputs, each corresponding to the
direction of one of the four adjacent positions. Two copies of A at adjacent points
p, p′ are mutually connected with the corresponding input and output. Hence,
all of these variations are subproblems of BN.

At present we know no minimal-time solutions for these six variations. How-
ever, in [5] we showed that if P 
= NP then 3PATH, g-3PATH and 3REG have no
minimal-time solutions. Hence these three variations are highly unlikely to have
minimal-time solutions. (In [5] we showed the result only for 3PATH. However
the proof also applies to g-3PATH and 3REG with slight modifications.)

It is evident that mft2PATH,tr(N) = mft2PATH,bs(N) and mft3PATH,tr(N) =
mft3PATH,bs(N) for any path N = p1p2 . . . pn in Z2 and Z3. Hence we are inter-
ested in how mftV,tr(N) and mftV,bs(N) are related for V = g-2PATH, 2REG,
g-3PATH, 3REG. We consider the problem only for g-2PATH. All the results
hold true for g-3PATH without any modification and for 2REG and 3REG with
slight modifications.
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In [11], a characterization of mft2PATH,tr(p1p2 . . . pn) was obtained. We elab-
orate on this result in detail below.

For 1 ≤ i < n, let e(p1p2 . . . pn, i) denote the length m of a longest extension
of p1p2 . . . pi of the form p1p2 . . . pipi+1q2 . . . qm. The value e(p1p2 . . . pn, i) may
be ∞. For i = n, we define e(p1p2 . . . pn, n) to be 0. Let i0 be the value defined
by i0 = min{i|1 ≤ i ≤ n, i ≥ e(p1p2 . . . pn, i)}. Let f(p1p2 . . . pn) be 2i0 − 1 if
i0 = e(p1p2 . . . pn, i0) and 2i0 − 2 if i0 > e(p1p2 . . . pn, i0).

Lemma 1 ([11]).

mft2PATH,tr(p1p2 . . . pn) = mft2PATH,bs(p1p2 . . . pn) = f(p1p2 . . . pn).

Proof. Only an outline of the proof is given. As we have already mentioned,
we can easily show mft2PATH,tr(p1p2 . . . pn) = mft2PATH,bs(p1p2 . . . pn). Hence
we only show mft2PATH,bs(p1p2 . . . pn) = f(p1p2 . . . pn). We assume that i0 < n.
The proof for the case i0 = n is simpler.

First we show that the firing time of any solution A for α = p1p2 . . . pn cannot
be smaller than f(p1p2 . . . pn). Let t̃ be a time such that t̃ < f(p1p2 . . . pn).

Suppose that i0 = e(p1p2 . . . pn, i0). Then t̃ < f(p1p2 . . . pn) = 2i0 − 1. There
is a path of the form α′ = p1p2 . . . pi0pi0+1q2 . . . qi0 . At time t̃, the state of p1 in
α and the state of p1 in α′ are the same and the state of qi0 in α′ is Q. Hence A
cannot fire on α at time t̃.

Suppose that i0 > e(p1p2 . . . pn, i0). Then 0 ≤ t̃ < f(p1p2 . . . pn) = 2i0 − 2
and hence 2 ≤ i0. We have i0 ≤ e(p1p2 . . . pn, i0 − 1). Hence there is a path of
the form α′ = p1p2 . . . pi0−1pi0q2 . . . qi0 . At time t̃, the state of p1 in α and the
state of p1 in α′ are the same and the state of qi0 in α′ is Q. Hence A cannot
fire on α at time t̃.

Next we construct a solution A whose firing time for p1p2 . . . pn is at most
f(p1p2 . . . pn). A simulates two finite automata A1, A2. The structure of A2

essentially depends on the path p1p2 . . . pn. A fires when at least one of A1,
A2 fires. A1 may be any solution of 2PATH. A2 checks that the given path
starts with p1p2 . . . pi0pi0+1. If the check succeeds, A2 at any node fires at time
f(p1p2 . . . pn). If the check fails, A2 at any node never fires. Hence A is a solution.

The details of the behavior of A2 is as follows. At time 0, A2 sends a check
signal from the root to the node pi0 along the path p1p2 . . . pi0 . If check succeeds,
the check signal knows it at pi0 at time i0−1 and then the check signal broadcasts
the order “fire at time f(p1p2 . . . pn)” to all the nodes. If i0 = e(p1p2 . . . pn, i0)
all the nodes receive the order before or at time (i0 − 1) + max{i0 − 1, i0} =
2i0 − 1 = f(p1p2 . . . pn). If i0 > e(p1p2 . . . pn, i0) all the nodes receive the order
before or at time (i0 −1)+max{i0−1, i0−1} = 2i0−2 = f(p1p2 . . . pn). Hence,
in any case, if the check succeeds all the nodes receive the order “fire at time
f(p1p2 . . . pn)” before or at time f(p1p2 . . . pn) and hence can fire at that time.

Hence the firing time of A for p1p2 . . . pn is at most f(p1p2 . . . pn). �

In Fig. 4 we show an example of a path. For this path p1p2 . . . p22 we
have e(p1p2 . . . p22, 18) = ∞, e(p1p2 . . . p22, 19) = 4, and hence i0 = 19, 19 >
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Fig. 4. An example of paths

e(p1p2 . . . p22, 19), f(p1p2 . . . p22) = 2·19−2 = 36. Hence mft2PATH,tr(p1p2 . . . p22)
= mft2PATH,bs(p1p2 . . . p22) = 36.

A path p1p2 . . . pn such that p1 is the root is also a problem instance of
g-2PATH. For this problem instance we have the following results.

Theorem 1. mftg−2PATH,bs(p1p2 . . . pn) = f(p1p2 . . . pn).

Proof. In the proof of Lemma 1 the check signal of A2 checked that the given path
starts with p1p2 . . . pi0pi0+1. As a solution of g-2PATH, in addition to this the
check signal should also check that the root is at the end. However, if we use the
boundary sensitive model the check signal can check it without any additional
time. Hence we can construct a solution A of g-2PATH of the boundary sensitive
model whose firing time for p1p2 . . . pn is at most f(p1p2 . . . pn). �

Theorem 2. If i0 = e(p1p2 . . . pn, i0) and there is a path of the form

r2i0+1 . . . r3r2p1p2 . . . pi0pi0+1q2 . . . qi0 ,

then
mftg−2PATH,tr(p1p2 . . . pn) = f(p1p2 . . . pn) + 1.

Proof. We have mftg−2PATH,tr(p1p2 . . . pn) ≤ mftg−2PATH,bs(p1p2 . . . pn) + 1 =
f(p1p2 . . . pn) + 1.

Suppose that there is a solution A of g-2PATH of the traditional model whose
firing time t̃ for p1p2 . . . pn is at most f(p1p2 . . . pn) = 2i0 − 1.

Suppose that we run A on the three paths α = p1p2 . . . pn, α′ = p1p2 . . . pi0

pi0+1q2 . . . qi0 , α′′ = r2i0+1 . . . r3r2p1p2 . . . pi0pi0+1q2 . . . qi0 . In all of these paths
p1 is the root. Consider the states of nodes in these three paths at time t̃. All
the nodes in α are F because A on α fires at t̃. The state of p1 in α and the state
of p1 in α′ are the same. Hence the state of p1 in α′ is F and hence the state of
qi0 in α′ is also F. But the state of qi0 in α′ and the state of qi0 in α′′ are the
same because A is a solution of the traditional model. Hence the state of qi0 is
also F. But the state of r2i0+1 in α′′ is Q. This is a contradiction. Hence we have
mftg−2PATH,tr(p1p2 . . . pn) ≥ f(p1p2 . . . pn) + 1. �

In Fig. 5 we show an example of paths α1 = p1p2 . . . p108 that satisfies the
condition of Theorem 2. For this path α1 we have e(α1, 106) = ∞, e(α1, 107) =
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107, i0 = 107, and hence f(α1) = 2i0 − 1 = 213. The equation e(α1, 107) = 107
was checked by the exhaustive search by computers. The path α2 shown in Fig. 5
is one of the path of the form α2 = p1p2 . . . p107p108q2 . . . q107 found by the search.
From this α2 we can easily construct a path of the form r215r214 . . . r3r2p1p2 . . .
p107p108q2 . . . q107. Hence, by Theorem 2 we have mftg−2PATH,tr(α1) = f(α1) +
1 = 214 while mftg−2PATH,bs(α1) = f(α1) = 213.

p
1

p
107 p

108

p
1

p
107

p
108

q
2

q
107

α1
α

2

Fig. 5. Two paths α1, α2

The proofs of the following two theorems are not difficult and we omit them.

Theorem 3. If i0 − 1 = e(p1p2 . . . pn, i0) and there is a path of the form

r2i0r2i0−1 . . . r3r2p1p2 . . . pi0pi0+1q2 . . . qi0−1,

then
mftg−2PATH,tr(p1p2 . . . pn) = f(p1p2 . . . pn) + 1.

Theorem 4. If i0 − 2 ≥ e(p1p2 . . . pn, i0) then

mftg−2PATH,tr(p1p2 . . . pn) = f(p1p2 . . . pn).

From Theorems 2, 3 we are tempted to conjecture that if i0−1 ≤ e(p1p2 . . . pn,
i0) then mftg−2PATH,tr(p1p2 . . . pn) = f(p1p2 . . . pn) + 1. However, this is not
true. Suppose that we construct a path α3 shown in Fig. 6 from the path α1

shown in Fig. 5 by bending its beginning. For α3, we have i0 = e(p1p2 . . . pn, i0)
and mftg−2PATH,tr(p1p2 . . . pn) = f(p1p2 . . . pn). In α3, the check signal of the
traditional model that starts at p1 at time 0 knows the boundary condition of
p1 as soon as it arrives at p12, and hence it needs no extra time to check the
boundary condition of p1.
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p1

p12

p107 p108

Fig. 6. A modified path α3

5 Conclusions

The two models give the same minimum firing time for the variations considered
in Sections 2, 3. However, they give different minimum firing time for g-2PATH
(and 2REG, g-3PATH, 3REG). For these FSSP, the minimum firing time of the
boundary sensitive model has a very simple characterization shown in Theorem
1 for paths with the roots at the end. However, Theorems 2, 3, 4 and the phe-
nomenon mentioned in Fig. 6 show that the analysis of the minimum firing time
of these FSSP of the traditional model is very complicated and moreover it is
due to the unnaturalness of the model.

Hence, if our goal is to construct a general theory of minimum firing time of
FSSP, our results suggest that the boundary sensitive model is “the” model to
be used.
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Abstract. The computation in low-dimensional system is related to
many long standing open problems. In this paper we show the univer-
sality of a one-dimensional iterative map defined by elementary func-
tions. The computation in iterative maps have a number of connections
with other unconventional models of computations. In particular, one-
dimensional iterative maps can be simulated by a planar pseudo-billiard
system. As a consequence of our main result we show that a planar
pseudo-billiard system is not only can demonstrate a chaotic behaviour,
but also has ability of universal computation.

1 Introduction

Most of the real dynamical systems, such as the model systems in physics, chem-
istry, biology, ecology, economics etc, are described by equations, where the sys-
tem evolves through a set of discrete time steps. The simplest models of these
equations are the iterative maps because the future value of some variable at
time n+1 depends only on its value at the present time n (here n is an integer).
An iterative map is of the form xn+1 = f(xn) where f(x) is called the mapping
function.

The significant property of iterative maps and real dynamical systems is that
the slightest uncertainty about initial state leads to very big uncertainty after
some time. Iterative maps have been extensively studied in dynamical systems
literature [9,10,7], and have exhibited very rich behaviour.

A lack of methods for the predictability of iterative maps leads to the ques-
tions about their computational complexity. It is interesting that even simple
piecewise affine maps in dimension two [15] or closed-form analytic maps in di-
mension one [14] can simulate a Turing machine. The current research in this
area is focused on analysing the complexity of iterative maps in low dimensions.
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Along this line we obtained a new result about universality of piecewise iterative
maps defined by a class of elementary functions.

Although we consider a class of function which is wider than a class of lin-
ear or affine functions studied in dimensions two and three [6,7,15] we show
that piecewise iterative maps defined by a very restricted basis of elementary
functions:

{x2, x3, 2
√
x, 3

√
x, x± 1, 10 · x}

can simulate a Minsky machine even in dimension one.
Another interesting aspect of this result is related to the fact that a one

dimensional iterative map can be simulated by a planar pseudo-billiard system
(PBS). Planar PBS is a system of plain curve borders and assigned to them
vector fields. The computation in such system is performed by placing a particle
on one of the borders that moves according to it vector field. The dynamics of
the particle in such environment is controlled by collisions with borders and it
changes instantaneously at the moment of a collision with the boundary to the
velocity defined by a given vector field on the boundary of the region.

On the one hand the computation in PBS is an abstraction that was defined
on the basis of models in manufacturing, called switching arrival and switched
server systems [5,8,11,12] that in one’s turn describe the blocks in logistics,
where one production units has to load/unload a number of subsequent/foregoing
production units. On another hand this phenomena can theoretically arises for
billiards in a strong magnetic or gravitational field, where only the angle with
the field matters [5].

It has been shown in [5] that pseudo-billiard systems can demonstrate chaotic
behaviour that indicates the potential presence of undecidability or even univer-
sality [2]. In this paper we support this idea by showing the universal computa-
tion ability of the planar PBS with a finite number of non-linear borders. The
question of the computation power of planar PBS with finite number of poly-
gon regions (i.e. with linear borders) is related to another open problem about
computation in low dimensional systems like predictability of one-dimensional
piecewise affine iterative maps [15].

2 Preliminaries

In what follows we use traditional denotations N, Z, Q and R for the sets of
naturals (non-negative integers), integers, rationals and real respectively.

Definition 1. A Piecewise (one-dimensional) elementary function 1 is a func-
tion that is defined on a sequence of disjoint intervals Ii = [li, ui] with li,ui ∈ Q,
i = 1..k and uses different elementary formulas for different parts of its domain
I = {I1 ∪ . . . ∪ Ik}.
1 Piecewise liner functions, piecewise affine functions or piecewise polynomial functions

are defined in the same obvious way.
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Definition 2. Let us consider the iterative map

xn+1 = f(xn)

where the function f(x) is used to compute the next x with xn as a starting
point. A piecewise elementary map (PEM) is an iterative map where f(x) is a
piecewise elementary function.

The computation in the above system can be understand as a generation of
sequence of points. One of the obvious problem that arises in such systems is a
reachability problem that can be formulated as follows:

Problem 1. Given two points x, y ∈ Q and a one-dimensional piecewise elemen-
tary map P . Decide whether y is reachable from x in P .

As a main result of this paper we show universality of a one-dimensional piece-
wise elementary map for a case where the set of elementary functions is restricted
by using x2, x3, 2

√
x, 3

√
x, x± 1, 10 · x and their composition. That gives us un-

decidability of the Problem 1 and universality of planar pseudo-billiard system
with a finite number of non-linear borders which we discuss later.

3 Main Result

Let us consider a piecewise elementary map P which is defined by composition
of x2, x3, 2

√
x, 3

√
x, x ± 1 and 10 · x for different parts of a piecewise function

domain.
In order to prove the universality of one-dimensional PEM we construct a

piecewise elementary map that can simulate the computation of any 2-counter
machine (Minsky machine). Actually we need to show how the states, transition
function and updates of counters can be simulated by a piecewise elementary
map P .

Let A be a 2-counter machine with a set of states S = {1, 2, . . . , n}. The
configuration of A is a triple [k, l, s] where k and l are values of two counters
and s is a current state of A. Let us define the mapping φ : N×N×N → Q that
is an isomorphism between a configuration [k, l, s] of A and a rational number
s.02k3l

1:
φ([k, l, s]) → s +

1
102k·3l+1

.

Instead of classical Minsky machine from now on we will consider a well-
known equivalent model of two counter machine where one of the counters is used
as a scratchpad. Another, counter holds an integer whose prime factorization is
2c · 3d. The exponents c, d can be thought of as two virtual counters that are
being simulated. If the real counter is set to zero then incremented once, that
is equivalent to setting all the virtual counters to zero. If the real counter is
doubled, that is equivalent to incrementing c, and if it is halved, that is equivalent
to decrementing c. By a similar procedure, it can be multiplied or divided by 3,
which is equivalent to incrementing or decrementing d.
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To check if a virtual counter such as c (d) is equal to zero, just divide the
real counter by 2 (3), see what the remainder is, then multiply by 2 (3) and add
back the remainder. That leaves the real counter unchanged. The remainder will
have been nonzero if and only if c (d) was zero.

Let A be in state s and its configuration is represented by a number s.0m1.
Let us show that we can perform the operations of multiplication and division
in a piecewise elementary map P .

First, we construct a system of intervals with elementary functions, associated
to them, that allow us to check divisibility of m by 2 and 3 or in other words to
perform a zero testing on counters of original Minsky machine. For each state s
of a counter machine we define the following intervals and functions:

If x ∈ (s, s + 1) then apply (x− s)2 + (x− s) + 2s
If x ∈ (2s, 2s+ 0.1) then apply 10(x− 2s) + 3s
If x ∈ (3s, 3s+ 0.1) then apply 10(x− 3s) + 4s
If x ∈ (4s, 4s+ 0.1) then apply 10(x− 4s) + 5s
If x ∈ (5s, 5s+ 0.1) then apply 10(x− 5s) + 6s
If x ∈ (6s, 6s+ 0.1) then apply 10(x− 6s) + 7s
If x ∈ (7s, 7s+ 0.1) then apply 10(x− 7s) + 2s

It is easy to see that in this system of intervals any point of the form s.0m1 will be
mapped to 2s+0.0m10m1 and then after m iterations to the point i ·s+0.10m1.
Note that (i− 1) is divided by 2 (3), if and only if m is divided by 2 (3).

(10(x−3s)−1)  +t
abab

(10(x−2s)−1)  +t (10(x−4s)−1)  +t
ab

2s+1s
2s+0.1

3s+1 4s+1
3s+0.1 4s+0.1

(x−s) +(x−s)+2s2

10(x−2s)+3s 10(x−3s)+4s 10(x−4s)+5s

Fig. 1. A part of universal one-dimensional piecewise elementary map

Now we extend our piecewise function to simulate state transitions and up-
date of counters by the following intervals and functions:

If x ∈ (i · s+ 0.1, i · s+ 1), i ∈ {2, 3, 4, 5, 6, 7} then apply (10(x− i · s)− 1)a·b + t

where a = 2 (a = 1
2 ) stands for increasing (decreasing) of the first counter by

1, and b = 3 (a = 1
3 ) stands for increasing (decreasing) of the second counter

by 1 (see Figure 1). Thus, this part of piecewise function express a transition
of machine A from state s to state t and counters updates assuming that their
values satisfy to divisibility by 2 and 3.

In order to finish the construction of 1-dimensional PEM that models machine
A we redefine a set of states S by changing it to a set S′ = {8 · s|s ∈ S}
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that gives us 7 · |S| disjoint intervals in piecewise elementary function. Since the
computation of a Minsky machine can be simulated by a specially designed PEM
the following theorem holds:

Theorem 1. One-dimensional piecewise elementary map is the universal model
of computations.

Corollary 1. The reachability problem (Problem 1) for 1-dimensional PEM is
undecidable.

4 Computation in Pseudo-Billiard System

In this section we consider the pseudo billiard model that already appear in a
different context and became an abstract framework for some practical problems.
By the pseudo billiard as we defined before we understand a number of curve
borders with assigned to them vector fields. The computation in this system
can be described by the dynamics of the particle, which initially moves with the
constant velocity (in a particular direction) inside a given region (not necessarily
a polyhedron) and changes it instantaneously at the moment of a collision with
the boundary to the velocity defined by a given vector field (not necessarily a
constant one) on the boundary of the region. According to [5] this phenomena
can arise for billiards in a strong magnetic or gravitational field, where only the
angle with the field matters.

In general we can define a variety of models by making some of the model
assumptions weaker or stronger. One of such submodel is the piecewise constant
derivative (PCD) system studied in [1]. PCD system is the planar pseudo-billiard
system with polyhedron regions such that in each region the particle can move in
only one fixed direction. It was shown in [3] that the computation in such system
is predictable and have effectively decidable reachability problem, but the model
becomes universal in three-dimensional case. The pseudo-billiard planar system
with predefined vectors assigned to the boarders of region is more complex then
planar PCD system.

So, formally speaking, the planar pseudo-billiard system is defined by a finite
set of borders b1, . . . , bh which are plane curves. Each border has assigned vector
fields defined by two differential equations of the form

ẋ = kx , ẏ = ky

where kx, ky are integer constants, i.e. kx, ky ∈ Z.
We show now that the pseudo-billiard planar system defined by non-linear

borders with constant derivatives is the universal model of computations. The
idea is based on simulation of one-dimensional piecewise elementary iterative
map constructed in Section 3 by a planar pseudo-billiard system.

Theorem 2. A planar pseudo-billiard system with a finite number of non-linear
borders has ability of universal computation.
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(−1,−1)
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Fig. 2. Planar pseudo-billiard system

Proof. Let us construct a set of PBS borders with assigned to them vectors that
can simulate a computation in a piecewise one-dimensional function. We assume
that the computation starts from an initial point on the curve b1 = {(x, y) ∈
R2|x > 0, y = 0} and the vector field assigned to b1 is defined by

ẋ = 0 , ẏ = 1.

Let f(x) = {f1, f2, . . . , fk} is a PEM that can simulate a Minsky Machine. The
next border b2 = {(x, y) ∈ R2|y = f(x)} of the planar PBS is exactly an image
of piecewise one-dimensional function f(x) on the plane, see Figure 2. For this
border we assign a vector defined by

ẋ = −1 , ẏ = 0.

The idea of construction of other three borders b3, b4 and b5 is to return the next
computed value of one-dimensional map f(x) to its initial domain on the border
b1. We define borders b3, b4 and b5 and their vectors as follows:

b3 = {(x, y) ∈ R2|x = 0, y > 0} ẋ = −1 , ẏ = −1,
b4 = {(x, y) ∈ R2|x < 0, y = 0} ẋ = 1 , ẏ = −1,
b5 = {(x, y) ∈ R2|x = 0, y < 0} ẋ = 1 , ẏ = 1.

In principle one can define a similar system where the particle will not go
through the walls. In order to do so we need to place each function fi on a
different level in such a way that each reachable point on the border b3 will be
associated to the reflection from the unique function fj ∈ {f1, f2, . . . , fk}. Then
we need to split b3 on several partitions and define such vectors that will gather
the particles at the same subpart of a border b4. The rest of construction should
be the same.

5 Conclusion

In this paper we have shown universality of one-dimensional piecewise iterative
maps defined by a subclass of elementary functions and planar pseudo-billiard
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system with a finite number of non-linear borders. It would be interesting to
check what could happened if we consider any other subclasses of piecewise
elementary maps. For example, the computational power of one-dimensional
piecewise elementary maps which are defined by polynomial functions is open.
Another interesting direction of this research would be analysis of planar pseudo-
billiard systems with linear borders which seems to be quite non-trivial problem.
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Abstract. The role played by parallelism in the theory of computation
depends on the particular paradigm or computational environment con-
sidered, but its importance has been confirmed with the emergence of
each novel computing technology. In this paper we study the implications
of parallelism in quantum information theory and show that a parallel ap-
proach can make the difference between success and failure when trying
to distinguish among (entangled) quantum states. A (perhaps surprising)
consequence of this fact is the impossibility of constructing a Universal
Computer, as defined herein.

1 Introduction

Parallel computing was originally motivated by the need to speed up compu-
tation, especially for those tasks whose sequential running time is prohibitively
long. This traditional view of the role played by parallelism in computation has
since evolved dramatically, with implications almost impossible to foresee when
the field originated.

We know today that there are tasks and computational paradigms for which
a parallel approach offers much more than just a faster solution [4]. A real-time
environment, constraining the input data provided and the output produced at
various moments in time, can have drastic effects on the quality of the solution
obtained for a certain problem, unless parallelism is employed [13,14,15,16]. A
general framework is developed in [2] to show how a superlinear (with respect
to the number of processors employed in the parallel approach) improvement in
the quality of the solution computed to a real-time problem can be obtained.

In other cases, a sequential machine fails to tackle a certain task altogether,
and parallelism is the only hope to see that task accomplished. Examples of this
kind include measuring the parameters of a dynamical system [1,7] or setting
them in such a way as to avoid pushing the system into a chaotic behavior [6].
Also, some geometric transformations can only be performed successfully if we
act simultaneously on a certain number of objects [3].

Progress in science and technology influences the way computations are car-
ried and the emergence of novel computational environments and paradigms
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continually broadens the applicability and importance of parallelism. In this pa-
per we exhibit an example of a problem from quantum information theory that
clearly emphasizes the role of parallelism in this relatively new field of computa-
tion governed by the principles of quantum mechanics. The example we present
also reinforces the argument developed in [5] demonstrating the infeasibility of
a Universal Computer obeying certain conditions.

The remainder of the paper is organized as follows. The next section is in-
tended to make the reader familiar with the fundamental notions of quantum
computation. Section 3 introduces the problem of distinguishing quantum states
and analyzes the instance defined by the four Bell states. A generalization to
an arbitrary number of qubits entangled together is developed in section 4.
Section 5 discusses the relevance of the problem investigated, in the context
of Universal Computation. The contributions of this paper, stressing the im-
portance of parallelism in general and for the concept of a Universal Computer
in particular, are summarized in the last section. We also mention a possible
continuation of this work, with interesting implications.

2 Fundamentals of Quantum Computation and Quantum
Information

This section introduces the basic elements of quantum computation and quan-
tum information to the extent needed for a clear exposition of the main ideas
presented in this paper.

Quantum information theory was developed much in analogy with classical
information theory, enlarging the scope of the latter. Thus, quantum information
theory deals with all the static resources and dynamical processes investigated
by classical information theory, as well as additional static and dynamic elements
that are specific to quantum mechanics.

2.1 The Qubit

Probably, the most fundamental quantum resource manipulated by quantum
information theory is the quantum analogue of the classical bit, called the qubit.

Though it may have various physical realizations, as a mathematical object
the qubit is a unit vector in a two-dimensional state space, for which a particular
orthonormal basis, denoted by {|0〉, |1〉} has been fixed. The two basis vectors |0〉
and |1〉 must be orthogonal (i.e. their inner product is zero) and normalized (i.e.
of unit length each), hence the orthonormality requirement. The basis vectors
correspond to the two possible values a classical bit can take. However, unlike
classical bits, a qubit can also take many other values. In general, an arbitrary
qubit |ψ〉 can be written as a linear combination of the computational basis
states:

|ψ〉 = α|0〉 + β|1〉, (1)
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where α and β are complex numbers such that |α|2 + |β|2 = 1 (the normal-
ization condition ensuring that |ψ〉 is a unit vector). In order to describe the
state of a qubit or ensemble of qubits in a compact way, we have adopted here
the well-established bra/ket notation introduced by Dirac [10]. According to his
conventional notation, kets like |x〉 are simply column vectors, typically used to
describe quantum states. Similarly, the matching bra 〈x| is a row vector denoting
the conjugate transpose of |x〉. Thus, the ket |ψ〉 in equation (1) is just a short
notation for the complex column vector[

α
β

]
,

while its corresponding bra 〈ψ| denotes the row vector [α∗ β∗], where α∗ and β∗

are the complex conjugates of the complex numbers α and β, respectively.
Equation (1) reflects the fundamental difference distinguishing quantum bits

from classical ones and is a direct application of the quantum principle of su-
perposition of states. The qubit |ψ〉 is in a superposition of |0〉 and |1〉, a state
in which it is not possible to say that the qubit is definitely in the state |0〉, or
definitely in the state |1〉.

For a single qubit, there is a very intuitive geometric representation of its
state as a point on a sphere. Taking α = eiγ cos(θ/2) and β = eiγeiϕ sin(θ/2) in
equation (1), we can rewrite the state of qubit |ψ〉 as

|ψ〉 = eiγ(cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉), (2)

where θ, ϕ and γ are real numbers. Note that this is always possible since
|α|2 + |β|2 = 1. Also, because a global phase factor like eiγ has no observable
effects (i.e. it does not influence the statistics of measurement predicted for qubit
|ψ〉), we can effectively ignore it. Consequently, the pair (θ, ϕ) uniquely identifies
a point (cosϕ sin θ, sinϕ sin θ, cos θ) on a unit three-dimensional sphere called the
Bloch sphere [19,17].

Figure 1 depicts four possible states of a qubit using the Bloch sphere rep-
resentation. Note that the states corresponding to the points on the equatorial
circle have all equal contributions of 0-ness and 1-ness. What distinguishes them
is the phase. For example, the two states displayed above, 1/

√
2(|0〉 + |1〉) and

1/
√

2(|0〉 − |1〉) are the same up to a relative phase shift of π, because the |0〉
amplitudes are identical and the |1〉 amplitudes differ only by a relative phase
factor of eiπ = −1.

2.2 Measurements

We now turn our attention to the amount of information that can be stored in
a qubit and, respectively, retrieved from a qubit. Since any point on the Bloch
sphere can be characterized by a pair of real-valued parameters taking continuous
values, it follows that, theoretically, a qubit could hold an infinite amount of
information. As it turns out, however, we cannot extract more information from
such a qubit than we are able to extract from a classical bit. The reason is
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|0>

|1>

(|0> |1>+(|0> - |1>) )
2
1

2
1

Fig. 1. The Bloch sphere representation of a qubit

that we have to measure the qubit in order to determine in which state it is. Yet,
according to a fundamental postulate of quantum mechanics (Postulate 3 in [17]),
the amount of information that can be gained about a quantum state through
measurement is restricted. Thus, when we measure a qubit |ψ〉 = α|0〉 + β|1〉
with respect to the standard basis for quantum computation {|0〉, |1〉}, we get
either the result 0 with probability |α|2, or the result 1 with probability |β|2.
The condition that the probabilities must sum to one corresponds geometrically
to the requirement that the qubit state be normalized to length 1, that is the
inner product

〈ψ|ψ〉 = [α∗ β∗] ·
[
α
β

]
= αα∗ + ββ∗

equals 1.
Furthermore, measurement alters the state of a qubit, collapsing it from its

superposition of |0〉 and |1〉 to the specific state consistent with the result of
the measurement. For example, if we observe |ψ〉 to be in state |0〉 through
measurement, then the post-measurement state of the qubit will be |0〉, and any
subsequent measurements (in the same basis) will yield 0 with probability 1.

Naturally, measurements in bases other than the computational basis are
always possible, but this will not help us in determining α and β from a single
measurement. In general, measurement of a state transforms the state into one
of the measuring device’s associated basis vectors. The probability that the state
is measured as basis vector |u〉 is the square of the norm of the amplitude of the
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component of the original state in the direction of the basis vector |u〉. Unless the
basis is explicitly stated, we will always assume that a measurement is performed
with respect to the standard basis for quantum computation.

2.3 Putting Qubits Together

Let us examine now more complex quantum systems, composed of multiple
qubits. In classical physics, individual two-dimensional state spaces of n particles
combine through the Cartesian product to form a vector space of 2n dimensions,
representing the state space of the ensemble of n particles. However, this is not
how a quantum system can be described in terms of its components. Quantum
states combine through the tensor product to give a resulting state space of 2n

dimensions, for a system of n qubits.
For a system of two qubits, each with basis {|0〉, |1〉}, the resulting state space

is the set of normalized vectors in the four dimensional space spanned by basis
vectors {|0〉⊗ |0〉, |0〉⊗ |1〉, |1〉⊗ |0〉, |1〉⊗ |1〉}, where |x〉⊗ |y〉 denotes the tensor
product between column vectors |x〉 and |y〉. For example,

|0〉 ⊗ |1〉 =
[
1
0

]
⊗
[

0
1

]
=

⎡⎢⎢⎣
1 × 0
1 × 1
0 × 0
0 × 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ .
It is customary to write the basis in the more compact notation {|00〉, |01〉, |10〉,
|11〉}. This generalizes in the obvious way to an n-qubit system with 2n basis
vectors.

2.4 Entanglement

Similar to single qubits, multiple-qubit systems can also be in a superposition
state. The vector

|Ψ〉 =
1
2
(|00〉 + |01〉 + |10〉 + |11〉) (3)

describes a superposition state of a two-qubit system in which all four compo-
nents (corresponding to the four basis vectors) have equal amplitudes. What
about the two qubits composing the system? Can we characterize their states
individually? If we rewrite equation (3) in order to express |Ψ〉 as the tensor
product

|Ψ〉 = (
1√
2
|0〉 +

1√
2
|1〉) ⊗ (

1√
2
|0〉 +

1√
2
|1〉) (4)

then we can legitimately assert that each of the component qubits is also in a su-
perposition state, perfectly balanced between |0〉 and |1〉. Now let us drop the two
middle terms in equation (3) and consider the superposition state described by

|Φ〉 =
1√
2
|00〉 +

1√
2
|11〉 (5)
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In this case it is no longer possible to find complex numbers α, β, γ and δ
such that

(α|0〉 + β|1〉) ⊗ (γ|0〉 + δ|1〉) =
= αγ|00〉+ αδ|01〉 + βγ|10〉+ βδ|11〉
=

1√
2
|00〉 +

1√
2
|11〉 (6)

The state of the system cannot be decomposed into a product of the states
of the constituents. Even though the state of the system is well defined (through
the state vector |Φ〉), neither of the two component qubits is in a well-defined
state. This is again in contrast to classical systems, whose states can always be
broken down into the individual states of their components. Furthermore, if we
try to measure the two qubits, the superposition will collapse into one of the
two basis vectors contributing to the superposition, and the outcomes of the
two measurements will always coincide. In other words, if one of the qubits is
found to be in state |0〉, then the second one will necessarily be in the same
state, while a state |1〉 observed through measurement will be shared by both
qubits. Therefore, we say that the two qubits are entangled1 and |Φ〉 describes
an entangled state of the system.

Entanglement defines the strong correlations exhibited by two or more parti-
cles when they are measured, and which cannot be explained by classical means.
This does not imply that entangled particles will always be observed in the same
state, as entangled states like

1√
2
|01〉 ± 1√

2
|10〉 (7)

prove it. In this last example, a measurement will always reveal the two qubits
to be in opposite states (when one is 0 the other is 1 and vice-versa). States like
these or the one in equation (5) are known as Bell states or EPR pairs after
some of the people [11,8] who pointed out their strange properties.

In some sense, we can say that superposition encompasses entanglement,
since entanglement can be viewed as a special case of superposition. It is also
interesting to make an analogy between entanglement and the concept of primal-
ity from number theory. Indeed, an entangled state of the system corresponds
to a prime number, since it cannot be factored or decomposed as a product of
subsystem states.

3 Quantum Distinguishability

We introduce the problem of distinguishing quantum states through a metaphor
involving two prototypical characters, named Alice and Bob. Suppose we have
a fixed set of quantum states described using the usual Dirac notation |Ψi〉 (1 ≤
i ≤ n) known to both Alice and Bob. Alice randomly chooses a state from the set
1 It was Schrödinger who actually named the phenomenon entanglement in 1935 [18].
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and prepares a qubit (or set of qubits) in that particular state. She then gives the
qubit(s) to Bob who is free to investigate them in any way he likes. To be more
specific, Bob can apply any kind of measurement on the qubit(s) and possibly
process and/or interpret the information acquired through measurement. In the
end, his task is to identify the index i of the state characterizing the qubit(s)
Alice has given him.

The only case in which a set of quantum states can be reliably (that is, 100%
of the time) distinguished from one another is if they are pairwise orthogonal. For
example, the four states |00〉, |01〉, |10〉 and |11〉 form an orthonormal basis (each
vector is a unit vector and distinct vectors have a zero inner product) for the state
space spanned by two qubits. Consequently, they can be reliably distinguished
by an appropriate measurement. In this case, we can simply measure each
qubit (sequentially) in the computational basis (defined by the basis vectors |0〉
and |1〉).

On the other hand, it is impossible to reliably distinguish |0〉 from 1√
2
|0〉 +

1√
2
|1〉. While the first state will consistently yield a 0 upon measurement, the

second state also has a 50% chance to be observed as a 0. It is this component
in the direction of the basis vector |0〉 which is present in both quantum states
that prevents us from distinguishing them reliably. If the vectors describing the
quantum states would be orthogonal, then a measurement basis would exist with
respect to which the quantum states share no common components.

Consider now the case in which we try to distinguish among the four Bell
states

1√
2
|00〉 + 1√

2
|11〉, 1√

2
|00〉 − 1√

2
|11〉, 1√

2
|01〉 + 1√

2
|10〉, 1√

2
|01〉 − 1√

2
|10〉.

No sequential approach (that is, measuring the qubits one after the other) will
be of any help here, regardless of the basis in which the measurements are per-
formed. By measuring the two qubits, in sequence, in the computational ba-
sis, Bob can distinguish the states 1√

2
(|00〉 ± |11〉) from 1√

2
(|01〉 ± |10〉). He

does this by checking if the outcomes of the two measurements are the same
or not. But this kind of measurement makes it impossible to differentiate be-
tween 1√

2
(|00〉 + |11〉) and 1√

2
(|00〉 − |11〉), or between 1√

2
(|01〉 + |10〉) and

1√
2
(|01〉 − |10〉).
Alternatively, Bob can decide to perform his measurements in a different

basis, like (|+〉, |−〉), where the basis vectors are

|+〉 =
1√
2
|0〉 +

1√
2
|1〉,

|−〉 =
1√
2
|0〉 − 1√

2
|1〉.
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Due to the fact that
|00〉 + |11〉√

2
=

| + +〉 + | − −〉√
2

and
|00〉 − |11〉√

2
=

| + −〉 + | − +〉√
2

,

Bob can now reliably distinguish the quantum state 1√
2
(|00〉+|11〉) from 1√

2
(|00〉−

|11〉). Indeed, if the two qubits yield identical outcomes when measured in this
new basis, then we can assert with certainty that the state was not 1√

2
(|00〉 −

|11〉). Similarly, if the measurement outcomes for the qubits are different, the
original state could not have been 1√

2
(|00〉 + |11〉). Unfortunately, in this new

setup, the quantum states 1√
2
(|00〉+ |11〉) and 1√

2
(|01〉+ |10〉) become indistin-

guishable and the same is true about 1√
2
(|00〉 − |11〉) and 1√

2
(|01〉 − |10〉).

The computational bases (|0〉, |1〉) and (|+〉, |−〉) are, respectively, the two
extremities of an (theoretically) infinite number of choices for the basis relative
to which the quantum measurements are to be performed. But even though
the separation line between the four Bell states will drift with the choice of
the basis vectors, the two extreme cases discussed above offer the best possible
distinguishability.

Intuitively, this is due to the entanglement exhibited between the two qubits
in all four states. As soon as the first qubit is measured (regardless of the basis),
the superposition describing the entangled state collapses to the specific state
consistent with the measurement result. In this process, some of the information
originally encapsulated in the entangled state is irremediably lost. Consequently,
measuring the second qubit cannot give a complete separation of the four EPR
states. But the Bell states do form an orthonormal basis, which means that
(at least theoretically) they can be distinguished by an appropriate quantum
measurement. However, this measurement must be a joint measurement of both
qubits simultaneously, in order to achieve the desired distinguishability. Not
surprisingly, this is very difficult to accomplish in practice.

The distinguishability of the four Bell (or EPR) states is the key feature in
achieving superdense coding [9]. However, in the experimental demonstration
of this protocol [12] two of the possibilities cannot be distinguished from one
another, precisely because of the difficulties associated with implementing a joint
measurement.

4 Generalization

A more compact representation of the Bell basis is through a square matrix
where each column is a vector describing one of the Bell states:

1√
2

⎛⎜⎜⎝
1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎞⎟⎟⎠



184 M. Nagy and S.G. Akl

The elements of each column are the amplitudes or proportions in which the
computational basis states |00〉, |01〉, |10〉 and |11〉 are present in the respective
EPR state.

This scenario can be extended to ensembles of more than two qubits. The
following matrix describes eight different entangled states that cannot be re-
liably distinguished unless a joint measurement of all three qubits involved is
performed:

1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In general, for a quantum system composed of n qubits, one can define the

following 2n entangled states of the system:

1√
2
(|000 · · · 0〉 ± |111 · · ·1〉)

1√
2
(|000 · · · 1〉 ± |111 · · ·0〉)

... (8)

1√
2
(|011 · · · 1〉 ± |100 · · ·0〉)

These vectors form an orthonormal basis for the state space corresponding to
the n-qubit system. The only chance to differentiate among these 2n states using
quantum measurement(s) is to observe the n qubits simultaneously, that is, per-
form a single joint measurement of the entire system. In the given context, joint
is really just a synonym for parallel. Indeed, the device in charge of performing
the joint measurement must posses the ability to “read” the information stored
in each qubit, in parallel, in a perfectly synchronized manner. In this sense, at an
abstract level, the measuring apparatus can be viewed as having n probes. With
all probes operating in parallel, each probe can “peek” inside the state of one
qubit, in a perfectly synchronous operation. The information gathered by the
n probes is seen by the measuring device as a single, indivisible chunk of data,
which is then interpreted to give one the 2n entangled states as the measurement
outcome.

From a mathematical (theoretical) point of view, such a measurement oper-
ator can be easily constructed by defining each of the 2n states that are to be
distinguished to be a projector associated with the measurement operation. We
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are well aware though, that a physical realization of this mathematical construc-
tion is extremely difficult, if not impossible to achieve in practice, with today’s
technology. The experimental demonstration of the superdense coding protocol
mentioned at the end of previous section clearly shows this difficulty (for just
two qubits!). Yet, if there is any hope to see a joint measurement performed in
the future, then only a device operating in a parallel synchronous fashion on all
n qubits (as explained above) would succeed.

It is perhaps worth emphasizing that if such a measurement cannot be applied
then the desired distinguishability can no longer be achieved regardless of how
many other measuring operations we are allowed to perform. In other words,
even an infinite sequence of measurements touching at most n− 1 qubits at the
same time cannot equal a single joint measurement involving all n qubits.

Furthermore, with respect to the particular distinguishability problem that
we have to solve, a single joint measurement capable of observing n − 1 qubits
simultaneously offers no advantage whatsoever over a sequence of n− 1 consec-
utive single qubit measurements. This is due to the fact that an entangled state
like

1√
2
(|000 · · · 0〉 + |111 · · ·1〉)

cannot be decomposed neither as a product of n − 1 individual states nor as
a product of two states (one describing a single qubit and the other describing
the subsystem composed of the remaining n−1 qubits). Any other intermediate
decomposition is also impossible.

Overall, our distinguishability problem can only be tackled successfully within
a parallel approach, where we can measure all qubits simultaneously. In this
sense, distinguishing among entangled quantum states can be viewed as a quan-
tum variant of the measure-compute-set problem formulated in [1], which also
admits only a parallel solution.

5 Universal Computation

Finally, we relate the example presented in this paper with the hypothetical no-
tion of a Universal Computer, introduced in [5]. Such a machine must be able
to follow (execute) the steps of any program made up of basic input, output
and internal processing operations. The Universal Computer is intended to be
the most general possible model of computation, encompassing all existing or
imagined computational paradigms. Specifically, its internal processing capabil-
ities include (but are not limited to) basic arithmetic and logical operations,
unitary quantum gates, operations specific to DNA and natural computing, etc.
It must also have a means of communicating with the outside world at any time
during a computation, either for receiving input or producing output (results).
The machine is endowed with the ability to acquire input data through mea-
surements on outside-world systems, performed by a set of probes (or sensors).
The program, the input data (either received or acquired), the output and all
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intermediate results are stored in (and can be retrieved from) a memory which
is generously allowed to be unlimited.

To make this Universal Computer a “realistic” model of computation, it is
subjected to the finiteness condition: In one step, requiring one time unit, the
Universal Computer can execute a finite and fixed number of basic operations
(including measurements). It is precisely this limitation (quite natural and rea-
sonable) that makes the Universal Computer a utopian concept. Specifically,
three classes of computable functions F are described in [5], which cannot be
computed by any machine obeying the finiteness condition.

One of these classes of problems involves measuring a set of interacting vari-
ables. Formally, suppose there are n variables x0, x1, · · ·, xn−1. Although these
variables may represent the parameters of a physical or biological system, the
following formalism is abstracted away from any particular realization and does
not necessarily describe the dynamics of a quantum system. The dependence of
each variable on all others induces the system to continually evolve until a state
of equilibrium may eventually be reached. In the absence of any external pertur-
bations, the system can remain in a stable state indefinitely. We can model the
interdependence between the n variables through a set of functions, as follows:

x0(t + 1) = f0(x0(t), x1(t), . . . , xn−1(t))

x1(t + 1) = f1(x0(t), x1(t), . . . , xn−1(t))
(9)

...

xn−1(t + 1) = fn−1(x0(t), x1(t), . . . , xn−1(t))

This system of equations describes the evolution of the system from state (x0(t),
x1(t), . . . , xn−1(t)) to state (x0(t + 1), x1(t + 1), . . . , xn−1(t + 1)), one time unit
later. In the case where the system has reached equilibrium, its parameters
will not change over time. It is important to emphasize that, in most cases,
the dynamics of the system are very complex, so the mathematical description
of functions f0, f1, . . . , fn−1 is either not known to us or we only have rough
approximations for them.

Assuming the system is in an equilibrium state, our task is to measure its
parameters in order to compute a function F , possibly a global property of
the system at equilibrium. In other words, we need the values of x0(τ), x1(τ),
. . . , xn−1(τ) at moment τ , when the system is in a stable state, in order to
compute

F(x0(τ), x1(τ), . . . , xn−1(τ)).

We can try to estimate the value of x0(τ), for instance2, by measuring the
respective parameter at time τ . Although, for some systems, we can acquire
2 The choice of x0 here is arbitrary. The argument remains the same regardless of

which of the n parameters we choose to measure first.
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the value of x0(τ) easily in this way, the consequences for the entire system can
be dramatic. Unfortunately, any measurement is an external perturbation for
the system, and in the process, the parameter subjected to measurement may
be affected unpredictably.

Thus, the measurement operation will change the state of the system from
(x0(τ), x1(τ), . . . , xn−1(τ)) to (x′0(τ), x1(τ), . . . , xn−1(τ)), where x′0(τ) denotes
the value of variable x0 after measurement. In those cases where the measure-
ment process has a non-deterministic effect upon the variable being measured,
we cannot estimate x′0(τ) in any way. But, regardless of the particular instance
of the model, the transition from (x0(τ), x1(τ), . . . , xn−1(τ)) (that is, the state
before measurement) to (x′0(τ), x1(τ), . . . , xn−1(τ)) (that is, the state after mea-
surement) does not correspond to the normal evolution of the system according
to its dynamics described by functions fi, 0 ≤ i < n.

However, because the equilibrium state was perturbed by the measurement
operation, the system will react with a series of state transformations, governed
by equations (9). Thus, at each time step after τ , the parameters of the system
will evolve either towards a new equilibrium state or maybe fall into a chaotic
behavior. In any case, at time τ + 1, all n variables have acquired new values,
according to the expressions of functions fi:

x0(τ + 1) = f0(x′0(τ), x1(τ), . . . , xn−1(τ))

x1(τ + 1) = f1(x′0(τ), x1(τ), . . . , xn−1(τ))
(10)

...

xn−1(τ + 1) = fn−1(x′0(τ), x1(τ), . . . , xn−1(τ))

Consequently, unless we are able to measure all n variables, in parallel, at
time τ , some of the values composing the equilibrium state

(x0(τ), x1(τ), . . . , xn−1(τ))

will be lost without any possibility of recovery.
The finiteness condition restricts in this case the number of variables that

can be measured in parallel. So, if the Universal Computer is able to measure n
variables in parallel (that is, during one step), where n can be arbitrarily large,
but finite, then the Universal Computer will fail to solve the same problem for a
system involving n+1 variables. In other words, the Universal Computer cannot
simulate a computation that is perfectly possible for another machine. However,
it is exactly the principle of simulation that lies at the heart of universality.

Choosing a machine endowed with n + 1 probes (and therefore capable of
measuring n+1 variables in parallel) as the Universal Computer is not a solution.
By an adversary argument, we can construct an instance of the above problem,
only this time involving n + 2 parameters to be measured, and the Universal
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Computer will fail once again to compute the required function F , although it
can be trivially computed by a machine with n + 2 probes. This argument is
valid for any given Universal Computer, having a fixed (and finite) number of
probes and therefore a limited degree of parallelism to tackle such inherently
parallel tasks. It is important to emphasize that the computational paradigm
to which the above setting belongs is not a conventional one. The input data
necessary to compute F is not available at the outset and have to be acquired
through measurement operations.

Coming back to the example presented in this paper, it is easy to see that
a device capable of measuring at most n qubits simultaneously (where n is a
fixed, finite number) will fail to solve the distinguishability problem for n + 1
qubits. Our example, taken from the quantum information area is similar in
nature with the interacting variables example formalized above and supports
the idea advanced in [5] about the impossibility of realizing the concept of a
Universal Computer. In the case that we have described, interdependence be-
tween variables takes the form of entanglement between qubits, the phenomenon
ultimately responsible for making a parallel approach imperative.

6 Conclusions

We have exhibited an example of a task which cannot be successfully completed
unless a parallel approach is employed. The task is to distinguish among the
elements of a set of quantum states, using any quantum measurements that
can be theoretically applied. There are no restrictions concerning the number of
measurements allowed or the time when the task has to be completed. We have
shown that there exists a set of entangled states, forming an orthonormal basis
in the state space spanned by n qubits, for which only a joint measurement (in
that respective basis) of all the qubits composing the system can achieve perfect
distinguishability. An important characteristic of the task is that if the degree of
parallelism necessary to successfully solve the problem is not available, then the
solution is no better than a purely sequential approach. Such inherently parallel
tasks have been shown to exist in a variety of environments, namely, real-time
systems [4], dynamical systems [1,7,6] and geometric problems [3].

In this paper, we have shown that parallelism is equally important for yet
another computational paradigm, essentially different from the classical theory
of computation, namely quantum computation and quantum information. It is
important to note that we refer here to the common understanding of the term
parallelism and not to quantum parallelism. The latter syntagm is used to de-
note the ability to perform a certain computation simultaneously on all terms
of a quantum superposition, regardless of the number of qubits composing the
quantum register whose state is described by that superposition. As opposed to
this interpretation, we refer to parallelism as the ability to act simultaneously on
a certain number of qubits. Thus, we can rightfully assert that parallelism tran-
scends the laws of physics and represents a fundamental aspect of computation,
regardless of the particular physical way chosen to embody information.
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The second contribution of the paper addresses the notion of a Universal
Computer obeying the finiteness condition [5]. Distinguishing among entangled
quantum states is, conceptually, a quantum example of measuring interdepen-
dent variables. This problem, arising in quantum information theory, strengthens
the conclusion that there is no finite3 computing device (conventional or uncon-
ventional) upon which the attribute universal can be bestowed.

This result holds as long as the candidate Universal Computer cannot apply
its (internal) set of basic processing operations (“gates”) onto systems from the
outside world. In other words, its processing capabilities can only be exercised on
data already stored in its (internal) memory. For the problem we have analyzed
in this paper, all the input data on which the machine can work must be acquired
through measurement(s).

An interesting research hypothesis is to allow the computing device to exe-
cute its program (set of operations) on systems belonging to the outside world.
Then, the machine could first apply a series of quantum gates that changes
the entangled basis (8) into the usual computational basis for n qubits, that is
{|i〉, 0 ≤ i ≤ 2n − 1}. Then, measuring each qubit in sequence is enough to
distinguish among the 2n states of the new basis. Such a scenario may reveal
an example of a problem that can only be solved by a quantum computer and
never by a classical one.
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Abstract. We study computational complexity of counting the fixed
point configurations (FPs) in certain classes of graph automata viewed as
discrete dynamical systems. We prove that both exact and approximate
counting of FPs in Sequential and Synchronous Dynamical Systems
(SDSs and SyDSs, respectively) are computationally intractable, even
when each node is required to update according to a symmetric Boolean
function. We also show that the problems of counting exactly the garden
of Eden configurations (GEs), as well as all transient configurations,
are in general intractable, as well. Moreover, exactly enumerating FPs
or GEs remains hard even in some severely restricted cases, such as when
the nodes of an SDS or SyDS use only two different symmetric Boolean
update rules, and every node has a neighborhood size bounded by a small
constant.

Keywords: Cellular and graph automata, sequential and synchronous
dynamical systems, configuration space properties, computational com-
plexity, #P-completeness

1 Introduction and Motivation

We study certain classes of graph automata that can be used as an abstrac-
tion of the classical networked distributed systems, as well as of various multi-
agent systems and ad hoc networks, and as a theoretical model for the com-
puter simulation of a broad variety of computational, physical, social, and socio-
technical distributed infrastructures. In this and several related papers (see, e.g.,
[2,3,4,5,6,7,8,9,22,31,32]), the general approach has been to study mathematical
and computational configuration space properties of such graph automata: what
are the possible global behaviors of the entire system, given the simple local be-
haviors of its components, and the interaction pattern among these components.

We specifically focus in this paper on determining how many fixed point
configurations such graph automata have, and how hard is the computational
problem of counting (or enumerating) these configurations. In a nutshell, the
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contributions of this paper are as follows. We prove that both exact and ap-
proximate counting of the number of fixed point configurations in Sequential
and Synchronous Dynamical Systems is computationally intractable, even when
each node is required to update according to a symmetric Boolean function. We
also show that the exact counting of the “garden of Eden” configurations, as
well as of all transient configurations, is intractable, as well.

The rest of the paper is organized as follows. Section 2 is devoted to the neces-
sary preliminaries about the models studied in this paper, namely, the sequential
and synchronous dynamical systems. Section 3 summarizes our technical results,
and reviews some literature closely related to our work. The original results are
presented in Section 4. Finally, we conclude and outline some possible extensions
in Section 5.

2 Preliminaries

In this section, we define and briefly discuss the discrete dynamical system mod-
els studied in this paper, and their configuration space properties. Sequential
Dynamical Systems (henceforth referred to as SDSs) are proposed in [8,9,10] as
an abstract model for computer simulations. This model has been successfully
applied in the development of large-scale socio-economic simulation systems such
as the TRANSIMS project at the Los Alamos National Laboratory [11].

A Sequential Dynamical System (SDS) S is a triple (G,F,Π), whose
components are as follows:

1. G(V,E) is an undirected graph without multi-edges or self-loops. G is
referred to as the underlying graph of S. We often use n to denote |V | and
m to denote |E|. The nodes of G are enumerated 1, 2, . . ., n.

2. Each node is characterized by its state. The state of node i, denoted by
si, takes on a value from some finite domain, D. In this paper, we shall
restrict D to {0, 1}. We use di to denote the degree of node i. Each node
i is associated with a node update rule fi : Ddi+1 → D, for 1 ≤ i ≤ n. We
also refer to fi as the local transition function. The inputs to fi are the
state of node i itself and the states of the neighbors of i. We use FS to
denote the global map of S, obtained by appropriately composing together
all the local update rules fi, i = 1, ..., n.

3. Finally, Π is a permutation of V = {1, 2, . . . , n} specifying the sequential
ordering in which the nodes update their states using their local transition
functions. Alternatively, Π can be envisioned as a total order on the set of
nodes. In particular, FS = (fΠ−1(1), fΠ−1(2), . . . , fΠ−1(n)).

The nodes are processed in the sequential order specified by the permutation
Π . The processing associated with a node consists of computing the new value
of its state according to the node’s update function, and changing its state to
this new value.

Most of the early work on sequential dynamical systems has focused primar-
ily on the SDSs with symmetric Boolean functions as the node update rules
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[2,3,4,5,7,8,9]. By symmetric is meant that the future state of a node does
not depend on the order in which the input values of this node’s neighbors are
specified. Instead, the future state depends only on Σj∈N(i) xi (where N(i)
stands for the extended neighborhood of a given node, i, that includes the node
i itself), i.e., on how many of the node’s neighbors are currently in the state 1.

The assumption about symmetric Boolean functions can be easily relaxed to
yield more general SDSs. We give special attention to the symmetry condition
for two reasons. First, our computational complexity theoretic lower bounds
for such SDSs imply stronger lower bounds for determining the corresponding
configuration space properties1 of the more general classes of graph automata
and communicating finite state machines (CFSMs). Second, symmetry provides
one possible way to model the “mean field effects” used in statistical physics and
studies of other large-scale systems. A similar assumption is made in [12].

A Synchronous Dynamical System (SyDS) is an SDS without the node per-
mutation. In an SyDS, at each discrete time step, all the nodes perfectly syn-
chronously in parallel compute and update their state values. Thus, SyDSs are
similar to the finite classical cellular automata (CA), except that in an SyDS
the nodes may be interconnected in an arbitrary fashion, whereas in a classical
cellular automaton the nodes are interconnected in a regular fashion (such as,
e.g., a line, a rectangular grid, or a hypercube). Another difference is that, while
in the classical CA all nodes update according to the same rule, in an SyDS
different nodes, in general, use different local update rules.

2.1 SDS and SyDS Configuration Space Properties

A configuration of an SDS or SyDS S = (G,F,Π) is a vector (b1, b2, . . . , bn) ∈
Dn. A configuration C can also be thought of as a function C : V → D.

The function computed by an S(y)DS S, denoted by FS , specifies for each
configuration C the next configuration C′ reached by S after carrying out the
updates of the node states in the order given by Π . Thus, the function FS :
Dn → Dn is a total function on the set of global configurations. This function
therefore defines the dynamics of S. We say that S moves from a configuration
C to a configuration FS(C) in a single transition step. Alternatively, we say that
S(y)DS S moves from a configuration C at time t to a configuration FS (C)
at time t + 1. Assuming that each node update function fi is computable in
time polynomial in the size of the description of S, each transition step will
also take polynomial time in the size of the S(y)DS’s description.

The configuration space (also called phase space) PS of an SDS or SyDS
S is a directed graph defined as follows. There is a vertex in PS for each
global configuration of S. There is a directed edge from a vertex representing
configuration C to that representing configuration C′ if FS(C) = C′. Since an
SDS or SyDS is deterministic, each vertex in its phase space has the out-degree
of 1. Since the domain D of state values is assumed finite, and the number of
nodes in the S(y)DS is finite, the number of configurations in the phase space
1 Configuration spaces of sequential and synchronous dynamical systems will be de-

fined in subsection 2.1.
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is also finite. If the size of the domain (that is, the number of possible states of
each node) is |D|, then the number of global configurations in PS is |D|n.

Definition 1. Given two configurations C′ and C of an SDS or SyDS S,
configuration C′ is a predecessor of C if FS(C′) = C, that is, if S moves
from C′ to C in one global transition step. Similarly, C′ is an ancestor of
C if there is a positive integer t such that FS t(C′) = C, that is, if S evolves
from C′ to C in one or more transitions.

In particular, a predecessor of a given configuration is a special case of an
ancestor.

Definition 2. A configuration C of an S(y)DS S is a garden of Eden
(GE) configuration if C has no predecessor.

Definition 3. A configuration C of an S(y)DS S is a fixed point (FP)
configuration if FS(C) = C, that is, if the transition out of C is to C itself.

Definition 4. A configuration C of an S(y)DS is a cycle configuration
(CC) if there exists an integer t ≥ 2 such that

(i) FS t(C) = C; and
(ii) FS q(C) 
= C, for any integer q, 0 < q < t.

Integer t above is called the period or length of the temporal cycle.

Definition 5. A configuration C of an S(y)DS is a transient configuration
(TC) if C is neither a fixed point nor a cycle configuration.

As the name suggests, transient configurations, unlike fixed points or cycle
configurations, are never revisited. We note that a GE configuration is a special
case of a transient configuration; a GE configuration is not reachable from any
configuration including itself. We also remark that a node in the phase space
may have multiple predecessors. This means that the time evolution map F of
an SDS or SyDS is in general not invertible but is contractive. The existence of
configurations with multiple predecessors also implies that certain configurations
have no predecessors.

3 Summary of Results and Related Work

Given an SDS or SyDS S, let |S| denote the size of the representation of S. In
general, this includes the number of nodes and edges, and the description of the
local transition functions. When D = {0, 1} and the local transition functions
are given as the truth tables, |S| = O(m+|T |n), where |T | denotes the maximum
size of a table, n is the number of nodes and m is the number of edges in the
underlying graph. By the size of a truth table we shall throughout the paper
mean, for simplicity, just the number of rows in this table. Thus, for a node vi of
degree di, the size of a truth table specifying an arbitrary Boolean function is
O(2di), and actually, for any (sufficiently big) positive integer di, most Boolean
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functions on di +1 inputs cannot be encoded substantially more succinctly than
via a truth table of size Θ(2di). In contrast, the size of an optimally succinct
truth table fully specifying an arbitrary symmetric Boolean function is only
O(di).

Another, more common way of specifying the local transition functions is via
Boolean formulae. We shall assume that fi of non-symmetric SDSs and SyDSs
considered in the sequel are indeed given as (reasonably succinct2) Boolean for-
mulae of appropriately restricted kinds. It follows from the discussion above
that, for symmetric Boolean update rules, the exact way these update rules are
encoded in an S(y)DS is inconsequential, as long as this encoding is reasonably
succinct. We shall also assume throughout that evaluating any local transition
function fi, given its input values, can be done in polynomial time.

We study herewith the problem of counting the fixed point (FP) configura-
tions of Boolean SDSs and SyDSs. In particular, we prove the following results:

– counting FPs in the general Boolean (and, consequently, also any other finite
domain) SDSs and SyDSs is #P-complete;

– this hardness result still holds when the node update rules of these SDSs
and SyDSs are restricted to symmetric Boolean functions;

– moreover, the result remains valid even when only two different symmetric
update rules are used, and when the maximum degree of each node in the
underlying graph is a small constant.

3.1 Related Work

SDSs and SyDSs investigated in this paper are closely related to the graph au-
tomata (GA) models studied in [21,23] and the one-way cellular automata stud-
ied by Roka in [25]. In fact, the general finite-domain SyDSs exactly correspond
to the graph automata of Nichitiu and Remila as defined in [23].

Barrett, Mortveit and Reidys [8,9,22] and Laubenbacher and Pareigis [20] in-
vestigate the mathematical properties of sequential dynamical systems. Barrett
et al. study the computational complexity of several phase space questions for
SDSs. These include the Reachability, Predecessor existence and Per-
mutation existence problems [5,6]. Problems related to the existence of gar-
den of Eden and fixed point configurations are studied in [7]. In particular, the
basic NP-completeness results for the problems of FP, GE and non-unique
predecessor existence in various restricted classes of Boolean S(y)DSs are proven
in that paper. Algorithms for efficiently finding an FP in certain other restricted
classes of S(y)DSs can be also found in [7]. Our results in Section 4 of this paper
can be viewed as a natural partial extension of the work in [7]: instead of the
appropriate decision problems about the fixed points and gardens of Eden in
SDSs and SyDSs, we focus herein on studying the related counting problems.

Among various restricted classes of Boolean SDSs and SyDSs, those with the
local update rules restricted to symmetric functions have received particular
2 By reasonably succinct we mean, formulae whose sizes are not artificially blown up

by, e.g., repeating the same clause(s) over and over again.
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attention (e.g., [9,20,22]). Computational complexity of the reachability-related
problems in the context of, among other restricted types, symmetric Boolean
SDSs is investigated in [6]. We show in this paper that, in contrast to the com-
putational feasibility of the problem of their reachability [6], the problem of
counting stable configurations (FPs) in symmetric Boolean SDSs and SyDSs,
under the usual assumptions in computational complexity theory, is intractable.

4 Counting Fixed Points of Boolean SDSs and SyDSs

The results in this section constitute an extension of the work presented in [7]
and [6]. In [7], the computational complexity of decision problems related to
the fixed point and the garden of Eden configurations in SDSs and SyDSs is
studied. Once NP-completeness of these decision problems has been established
[7], a natural further course of inquiry about the fundamental SDS phase space
properties is to determine how hard it is to count how many FPs, GEs, and/or
other configurations of interest an SDS of a given type may have.

Intuitively, one would expect, for example, that counting the fixed points
of an arbitrary Boolean SDS or SyDS is no easier than counting the satisfy-
ing truth assignments of an arbitrary instance of the Satisfiability problem
[13,24]. The intuitive notion of computational hardness of counting problems is
formalized via the definition of the class #P (read: “sharp-P” or “number-P”).
A counting problem Ψ belongs to the class #P if there exists a nondeterministic
algorithm such that for each instance I of Ψ , the number of nondeterministic
guesses that this algorithm makes that lead to acceptance equals the number of
solutions of IΨ , and, in addition, it is required that the longest of these nonde-
terministic computations of the algorithm be polynomially bounded in the size
of the description of IΨ . For an alternative but equivalent definition of class
#P in terms of polynomially balanced relations, we refer the reader to [24].

The hardest problems in class #P are the #P-complete problems. A count-
ing problem Ψ is #P-complete if and only if (i) it is in class #P, and (ii)
every other problem in #P is efficiently reducible to Ψ . Thus, if we could solve
any particular #P-complete problem in deterministic polynomial time, then
all problems in class #P would be solvable in deterministic polynomial time.
For more on the class #P we refer the interested reader to Chapter 18 of [24],
and references therein.

In order to prove the intractability of counting FPs of Boolean SDSs and
SyDSs, not any polynomial time reduction from a known #P-complete problem
suffices. What is required is a kind of efficient reduction that preserves the number
of solutions. We define this special kind of efficient reductions next:

Definition 6. Given two decision problems Π and Π
′
, a parsimonious

reduction from Π to Π
′

is a polynomial-time transformation g that
preserves the number of solutions; that is, if an instance I of Π has nI

solutions, then the corresponding instance g(I) of Π
′

also has ng(I) = nI

solutions.
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In practice, one often resorts to reductions that are “almost parsimonious”,
in a sense that, while they do not exactly preserve the number of solutions, nI

in the previous definition can be efficiently recovered from ng(I) .

Definition 7. Given two decision problems Π and Π
′
, a weakly parsi-

monious reduction from Π to Π
′

is a polynomial-time transformation g
such that, if an instance I of Π has nI solutions, and the corresponding
instance g(I) of Π

′
has ng(I) solutions, then nI can be computed from

ng(I) in polynomial time.

Our fundamental result on the hardness of counting the fixed point con-
figurations of an arbitrary Boolean S(y)DS in the next subsection, as well as
similar hardness results about symmetric Boolean S(y)DSs in the subsequent
subsections, will follow from

Proposition 1. [24] Given two decision problems Π and Π
′
, if the corre-

sponding counting problem #Π is #P-hard and if there exists a weakly parsi-
monious reduction from Π to Π

′
, then the counting problem #Π

′
is #P-hard,

as well.

4.1 Counting Fixed Points of General Boolean SDSs and SyDSs

We shall use reductions from the known #P-complete problems, such as the
counting version of POSITIVE-EXACTLY-1-IN-3SAT (PE3SAT), to the prob-
lems of counting FPs in certain classes of the SDS and SyDS automata. These
reductions will formally establish the #P-completeness of those counting prob-
lems about SDSs and SyDSs. We now define the variants of Satisfiability [13,24]
that we shall use in the sequel:

Definition 8. Exactly-one-in-three-satisfiability (or E3SAT for short), is
a version of 3CNF-SAT [13] such that, first, each clause in a given 3CNF
formula contains exactly three literals, and, second, where a truth assignment is
considered to satisfy the given 3CNF formula if and only if exactly one of the
three literals is true in each clause. Positive-exactly-one-in-three-satisfiability
(PE3SAT) is further restricted: no clause in the 3CNF formula is allowed to
contain a negated literal.

Consider the following reduction from the counting problem #PE3SAT to
#FP-SDS, where #FP-SDS denotes the problem of counting the fixed point
configurations of an arbitrary Boolean SDS.

Let an arbitrary instance I of PE3SAT be given. We construct the corre-
sponding instance of an SDS S = S(I) as follows. We remark that S in this
subsection will be “nearly symmetric”; we will modify our construction to a fully
symmetric Boolean SDS and SyDS in the next subsection.

Assume that I has n variables and m clauses. The underlying graph of
S has a distinct node for each variable xi, 1 ≤ i ≤ n, and for each clause
Cj , 1 ≤ j ≤ m. The node labeled xi is connected to the node labeled Cj if and
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only if, in the Boolean formula I, variable xi appears in clause Cj . In addition,
our graph has one additional node, labeled y, that is adjacent to nodes Cj for
all indices j = 1, ...,m. Hence, each Cj has exactly four neighbors, and node y
has m neighbors.

The node update functions of our SDS S are as follows:
- Each node Cj evaluates the logical AND of the current value of node y,

the value evaluated by the PE3SAT function of the three variables {xj1 , xj2 , xj3}
that appear in the corresponding clause Cj of I, and the current value of itself;
that is, the node update function Cj evaluates to 1 if and only if:

(i) exactly one out of the three neighboring nodes xj1 , xj2 , xj3 currently
holds the value 1; and

(ii) the node y currently holds the value 1; and
(iii) the current value of Cj itself is 1.
- The “special” node y evaluates the AND of its own current value and the

entire set of current values held in the clause nodes Cj , 1 ≤ j ≤ m. This will
enable us to argue that the node y, in effect, evaluates the Boolean formula for
the specified truth assignment {x1, ..., xn}, provided that the initial value stored
in node y is yt=0 = 1, and, likewise, that Ct=0

j = 1, for all j, 1 ≤ j ≤ m.
- Each node xi evaluates the logical AND of itself and the current values

stored in the clause nodes Cj(i) such that, in the original formula I , variable
xi appears in clause Cj(i).

The order of the node updates is (C1, ..., Cm, y, x1, ..., xn).
Since S has n+m+1 nodes, the corresponding configuration space will have

2n+m+1 configurations.
We now claim that the reduction from #PE3SAT to #FP-SDS based on the

above SDS construction from an instance I of PE3SAT is weakly parsimonious;
it will then immediately follow that

Theorem 1. The problem of counting the fixed points of an arbitrary Boolean
SDS (and therefore also of any more general finite domain SDS), is #P-complete.

Remark: Similarly, by a straight-forward modification of the given SDS con-
struction, one can establish that the #FP-SyDS problem for the general
Boolean (and therefore any finite domain) SyDSs is #P-complete, as well.

Detailed proof that establishes that the given reduction from #PE3SAT to
#FP-SDS is, indeed, weakly parsimonious can be found in our electronic tech-
nical report [30].

4.2 Counting Fixed Points of Symmetric Boolean SDSs and SyDSs

The hardness results for symmetric Boolean SDSs and SyDSs will be based on
an appropriate reduction from the PE2-in-3SAT problem. We define PE2-in-
3SAT similarly to how we defined PE3SAT, only this time we require each
clause to have exactly two true variables (rather than exactly one as was the
case in PE3SAT). We observe that, since PE3SAT is NP-complete, so is PE2-
in-3SAT, and moreover the #P-completeness of the counting version of the
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former, denoted #PE3SAT, also implies the #P-completeness of the counting
version of the latter, #PE2-in-3SAT.

Let an instance I of PE2-in-3SAT be given. Assume that there are n
Boolean variables, denoted x1, ..., xn, and m clauses, C1, ..., Cm, in I . We recall
that each clause Cj contains exactly three unnegated variables, xj1 , xj2 , xj3 . An
instance I is a positive or satisfying instance of PE2-in-3SAT if and only if
there exists a truth assignment to x1, ..., xn such that exactly two variables in
each clause are true.

We now prove that counting FPs of a symmetric Boolean SyDS or SDS is
#P-complete. We recall that fixed points are invariant under the node update
ordering; that is, regardless of whether the nodes update synchronously in par-
allel, or sequentially according to an arbitrary ordering Π , the fixed points of
the underlying dynamical system as specified by its graph and the local node
update functions remain the same (see [22] for a proof).

Theorem 2. The problem of counting fixed points of a symmetric Boolean Syn-
chronous Dynamical System, abbreviated as #FP-Sym-SyDS, is #P-complete.

Proof sketch: To show #P-hardness, we reduce the problem of counting the
satisfying truth assignments of an instance of PE2-in-3SAT to counting the
fixed points of a symmetric Boolean SyDS. We construct an SyDS, S, from an
instance of PE2-in-3SAT as follows. We let the underlying graph of S have
m+n+1 vertices: one for each variable, one for each clause, and one additional
vertex, denoted by y. The edges of the underlying SyDS graph are as follows:
each vertex node xi is adjacent to those and only those clause nodes Cj(i) such
that the corresponding variable xi appears in the corresponding clause Cj(i) of
formula I . Let each clause node Cj be adjacent to all other clause nodes Ck

(for all k, 1 ≤ k ≤ m, k 
= j), to the special node y, and to the three nodes
xj1 , xj2 , xj3 corresponding to the Boolean variables that appear in the clause
Cj in the formula; and, finally, by symmetry, let the node y be adjacent to all
the clause nodes Ck.

We define the node update functions as follows:

xt+1
i = xt

i ∧ (∧j(i)C
t
j(i));

Ct+1
j = All-But-One {xt

j1
, xt

j2
, xt

j3
, Ct

1, ..., C
t
m, yt};

yt+1 = yt ∧ (∧m
j=1C

t
j),

where the Boolean function All-But-One (z1, ..., zq) = 1 if and only if exactly
one of its inputs zl (1 ≤ l ≤ q) is 0, and all the rest are 1s.

We now claim that the constructed synchronous dynamical system has |T |+2
fixed points if and only if the corresponding instance of PE2-in-3SAT has |T |
satisfying truth assignments. That is, the given reduction from #PE2-in-3SAT
to #FP-Sym-SyDS is, indeed, weakly parsimonious. We omit details due to
space constraints, and refer the interested reader to [30].

By the aforementioned invariance of fixed points with respect to the node
update ordering, the next result on the hardness of counting FPs in symmetric
Boolean SDSs is not at all surprising.
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Theorem 3. The problem of counting fixed point configurations of symmetric
Boolean SDSs (abbreviated as #FP-Sym-SDS) is #P-complete.

Proof sketch: In order to prove the theorem explicitly, as well as establish
several other complexity-theoretic counting results for symmetric Boolean SDSs,
we consider the following construction of an SDS S’ from the SyDS S used
in the proof of the previous theorem.

– The underlying graph and the local node updating functions are as in the
SyDS construction in the previous theorem.

– Let the node ordering be given by Π = (y, C1, ...., Cm, x1, ..., xn). Thus,
yt+1 = yt ∧ (∧m

j=1C
t
j),

Ct+1
j = All-But-One {yt+1, Ct+1

1 , ..., Ct+1
j−1, C

t
j , C

t
j+1, ..., C

t
m, xt

j1
, xt

j2
, xt

j3
},

and, for any i such that 1 ≤ i ≤ n,
xt+1

i = xt
i ∧ (∧j(i)C

t+1
j(i) ),

where, as before, Cj(i) denotes precisely those clause nodes that correspond
to the clauses in the original Boolean formula in which the variable xi ap-
pears.

Due to the space constraints, we will only summarize what the configura-
tion space of SDS S’ looks like. Since there are n + m + 1 nodes, there are
2n+m+1 global configurations in total. Among these, by virtue of Theorem 2
there are precisely |T |+ 2 fixed points, where |T | is the number of solutions of
the corresponding PE2-in-3SAT formula I. The number of these solutions
is in the range {0, 1, ..., 2n}. All of the |T | fixed points corresponding to the
solutions of I, as well as the fixed point (y = 0, C = 1m, x = 1n), are isolated
fixed points, in a sense that they do not have any in-coming transients. The
configuration 0n+m+1 is the sink for S’, since all transient chains eventually
converge to 0n+m+1. All the remaining configurations are transient states, and,
in particular, S’ does not have any temporal cycles. Furthermore, it can be
readily shown that all transient chains are very short, since every transient con-
figuration is either a garden of Eden, or its predecessor is a garden of Eden; this
is immediate from the fact that every convergence to the sink 0n+m+1 takes at
most two steps3.

In summary, enumerating the fixed points of Symmetric Boolean SDSs and
SyDSs exactly is #P-complete; moreover, it follows from the results in [26] that
approximating the number of FPs to within 2|V |1−ε

is NP-hard, for any ε > 0.
Similarly, it can be shown from the given construction of S’ that counting exactly
all TCs or all GEs of a Symmetric Boolean S(y)DS is #P-complete, as well.
The complexity of counting GEs and TCs in symmetric S(y)DSs approximately,
however, cannot be deduced from our constructions in this subsection and, to
the best of our knowledge, is still open.

3 For a much more detailed argument, and a rigorous justification of all other assertions
that we make in this proof sketch, we refer the reader to the online publication [30].
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4.3 Counting in Symmetric Boolean S(y)DSs with Bounded Node
Degrees

The constructions of symmetric Boolean SDSs and SyDSs in the previous sub-
section include a “central control” node, y, that has an unbounded degree. Also,
the clause nodes Cj in Theorems 2 and 3 are forming a clique, thus also being
of unbounded degrees. We now transform the SyDS and SDS constructions from
the previous subsection so that the node y is eliminated altogether, and so that
each clause node Cj has only O(1) neighbors. This reduction in the maximum
node degree allowed will be done at the expense of doubling the number of the
clause nodes, so that the resulting symmetric Boolean S(y)DS has n+2m nodes
in total, where, as before, n is the number of variables and m is the number of
clauses in the original 3CNF Boolean formula.

Indeed, let’s eliminate the node y in the constructions in Theorems 2 and
3, and, instead, for each clause node Cj , introduce its clone, Cc

j . Let’s now
connect each node Cj to its clone Cc

j and also to the clone of the successor
clause node, Cc

j+1 (mod m). We also delete all the edges among the original
clause nodes Cj . Thus, each original clause node Cj will now have exactly five
neighbors: the three variable nodes, xj1 , xj2 and xj3 , and the two “cloned”
clause nodes, Cc

j and Cc
j+1 (mod m).

We will also assume that the 3CNF SAT instance is from a restricted class of
monotone 3CNF formulae where each variable xi appears in at most five clauses.
This restriction does not affect the #P-completeness of the underlying counting
problem. In fact, counting satisfying truth assignments of the monotone 2CNF
formulae, abbreviated as Mon-2CNF-SAT, is #P-complete even when each
variable appears in at most five clauses [33]. Each of these MON-2CNF formu-
lae can be readily converted into a special case of the Majority-Mon-3CNF
formulae, in which a clause is satisfied if and only if at least two out of three
unnegated variables (that is, their majority) appearing in this clause are true.

Since this, restricted type of the counting problem #Majority-Mon-3CNF
is #P-complete, even when no variable occurs in more than five different clauses,
and since the general #Majority-Mon-3CNF is clearly in the class #P, we
conclude that the general problem of counting the satisfying assignments to a
monotone 3CNF formula according to the Majority rule is #P-complete even
when no variable appears in more than five different clauses, as well.

We now turn to the construction of a bounded-degree symmetric Boolean
SDS or SyDS from an instance of the Majority-Mon-3CNF formula.

Let the variable nodes in the S(y)DS constructed from such a 3CNF formula
with restricted number of appearances of each variable update according to the
Boolean AND rule on (at most) six inputs. Each variable node, as before, is
connected to those, and only those, clause nodes such that the corresponding
variable in the MAJORITY-MON-3CNF formula appears in the corresponding
clause. Hence, each of these variable nodes will have at most five neighbors.

Recall that each clause node Cj is connected to the two cloned clause nodes
Cc

j and Cc
j+1 (mod m). Since each of the original clause nodes has exactly five

neighbors in total, the local update rule at each such node needs to be a sym-
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metric Boolean function of six inputs. So, we let each node Cj update its state
according to the “at least five out of six” rule.

Furthermore, let’s also connect all the cloned clause nodes Cc
j into a ring, so

that the only neighbors of Cc
j (beside Cj and Cj−1 (mod m)) are Cc

j−1 (mod m)

and Cc
j+1 (mod m). Finally, let each of the cloned clause nodes Cc

j update
according to the Boolean AND function of its five inputs (the states of its four
neighbors plus the current state of itself).

If a single cloned node Cc
j�

at any time step updates to 0, this node will
eventually force all the remaining cloned clause nodes Cc

j , and consequently also
all the original clause nodes Cj , to become 0s, as well. Similarly, if any of the
original clause nodes Cj� ever evaluates to 0, this will first cause its clone, Cc

j�
,

to evaluate to 0 (and stay at 0 thereafter), and that will, in turn, subsequently
force all the other cloned clause nodes to become 0s. Since each of the original
clause nodes Cj will then have at least two neighbors stuck in the state 0, that
will also ensure that eventually Cj = 0 for all j = 1, ...,m. Therefore, if any
of the clauses in the original formula is not satisfied, the corresponding S(y)DS
will quickly converge to the sink fixed point 0n+2m.

In contrast, if initially all Cc
j = Cj = 1, and the original Boolean formula is

satisfied, then all the cloned clause nodes will remain at 1, and the corresponding
global S(y)DS configuration is a fixed point corresponding to a satisfying truth
assignment of the original Boolean formula.

To summarize, the following strengthening of the results in the previous
subsection holds:

Theorem 4. The problem of counting the fixed points of a Symmetric Boolean
SDS or SyDS is #P-complete, even when each node in the underlying graph of
such an S(y)DS is of a degree di ≤ 5, and the nodes of that S(y)DS use only
two different symmetric update rules.

In fact, the upper bound on the maximum degree of any node in a symmetric
Boolean S(y)DS can be further reduced: the problem of exactly counting FPs
in such SDSs and SyDSs remains #P-complete even when each node’s degree
is required not to exceed 4 (instead of 5 as in the theorem above). A weakly
parsimonious reduction directly from MON-2CNF SAT can be used to establish
that result. We leave out the details due to space constraints. Insofar as the
symmetric S(y)DSs with the maximum node degree not greater than 3 are con-
cerned, counting FPs in their configuration spaces remains an open problem; our
attempts to obtain the #P-completeness by an appropriate modification of the
constructions used in this paper have turned out to be futile. We still suspect
that this hardness nonetheless holds, but perhaps a different approach is needed.
We leave resolving this conjecture about the symmetric SDSs and SyDSs whose
underlying graphs have node degrees not exceeding 3 for the future work.

5 Conclusions and Future Directions

We study in this paper certain types of graph automata viewed as abstract
discrete-time, discrete-state dynamical systems. We specifically focus on the
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problem of counting how many “fixed point” configurations such dynamical sys-
tems have in their configuration spaces, when each of their nodes has only two
distinct states, and updates according to some simple Boolean function of the
states of its neighboring nodes. Concretely, we establish that counting these fixed
points in Sequential and Synchronous Dynamical Systems is #P-complete, even
when the following constraints on the structure of an SDS or SyDS simultane-
ously hold:

– each local update rule is required to be a symmetric Boolean function; and
– the underlying graph of this SDS or SyDS is sparse in a very strong sense:

all the node degrees are uniformly bounded by a small constant; and
– the nodes of this SDS or SyDS use only two different symmetric Boolean

update rules.

As for our ongoing and future work, there are several directions along which
we can strengthen the results presented in this paper, and extend them to similar
results about counting other types of configurations and other emerging struc-
tures in discrete dynamical systems such as SDSs, Hopfield Networks or classical
Cellular Automata. One concrete open problem is the complexity of counting
FPs in symmetric Boolean SDSs and SyDSs when no node degree exceeds 3. We
have been also studying the complexity of counting in various restricted types
of Boolean S(y)DSs when it comes to the backward dynamics problems, such
as those related to the number of predecessors or the number of all ancestors of
an arbitrary configuration. We will report new results in that context elsewhere.

In summary, the formal discrete dynamical systems concepts, paradigms and
methodology provide a rich arsenal with which to tackle, in an abstract yet
mathematically elegant setting, many fundamental problems about large-scale
distributed computational and communication infrastructures and multi-agent
systems. Our results in this paper are an example of how the paradigms from
nonlinear complex dynamics, coupled with the computational complexity tools,
can provide insights into which aspects of the large-scale distributed systems’
global behaviors can be reasonably expected to be feasible to predict in practice,
and which ones cannot. In particular, it then follows that, in case of the latter,
and under the usual assumptions in computational complexity theory, there is
no “short-cut” to a step-by-step computer simulation.

Acknowledgments. The first author expresses his sincere gratitude to Harry
Hunt (SUNY-Albany), Michael Loui (University of Illinois) and Madhav Marathe
(Los Alamos National Laboratory) for many useful discussions and suggestions
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Abstract. We describe a quantum complexity class which is contained
in AWPP. This class has a compact and simple mathematical definition,
involving only polynomial-time computable functions and a unitarity
condition. It contains both Deutsch-Jozsa’s and Shor’s algorithm, while
it’s relation to BQP is unknown. This shows that in the complexity class
hierarchy, BQP is not an extraordinary isolated island, but has ”siblings”
which as well can solve prime-factorization.

1 Introduction

Quantum computing used to be a very popular discipline ranging from pure the-
oretical questions, concerning the complexity of the quantum polynomial-time
class BQP, to practical concerns such as how to build a quantum computer.
Nowadays, it seems a little bit that scientists are loosing their interest. Is it be-
cause all ”easy” questions have been answered and what remains is too hard or
uninteresting? We can find many of unanswered questions in the family of com-
plexity classes. For example, we know that BPP⊆BQP⊆AWPP. But questions
whether is BQP equal to its ”father” AWPP or its ”son” BPP have not been
answered up to now. Here, we do not answer them either. Instead, we intro-
duce a nontrivial ”brother”, which we call MQ2. Surprisingly, this brother can
also factorize long integers in polynomial time. Moreover, it has a very compact
mathematical definition, which does not explicitly involve any physics.

The paper is organized as follows. In section 2, we introduce the necessary
notation and definitions. In section 3, we briefly review classical polynomial-time
classes definition. In the following section, we define the class MQ2 itself. Fifth
sections demonstrates two quantum algorithms, Shor’s and Deutsch-Jozsa’s, in
class MQ2.

2 Definitions and Notation

In this text, we frequently encounter matrices. All matrices here will have square
shape. We will denote the element of a matrix M in i−th row and j−th column
as 〈i|M |j〉, in accordance with the usual notation used in quantum computing,
because we think it makes the text more readable then writing Mi,j . The range
of the indices will be 0..n− 1 where n is the number of columns or rows.

C.S. Calude et al. (Eds.): UC 2005, LNCS 3699, pp. 206–213, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We will define our new complexity class with use of matrices. To make the
class uniform, we will want that all the matrices are constructed by the same
algorithm. We formalize this in the following definition.

Definition 1 (Poly-computable matrix family). A sequence of matrices
T1, T2, . . . is called a poly-computable matrix family if there exists a function
f : N × N × N → R computable in time polynomial in the length of all the
arguments such that

∀i, j, n : f(i, j, n) = 〈j|Tn|i〉.

Sometimes, we will drop the index n when it will be clear from the context.
To show how the classical polynomial-time classes definitions correspond to

our definition, we will start with a Turing machine and express its transition
function as a transition matrix. A transition matrix is in fact a linear operator
defined in a vector space spanned by configurations playing role of base vectors.

Definition 2 (Configuration of a Turing machine). A configuration of a
Turing machine is an ordered triple consisting of:

-the contents of the tape
-the current state
-the position of the head 1

We emphasize here that the configuration as defined above contains also the
content of the tape, which is not true for configurations as defined elsewhere.
Without loss of generality, we will further assume that configurations are indexed
and denoted by their indices. A special position among the configurations has
the family of initial configuration I(x)n, which we allow to be dependent on x,
but require to be computable in polynomial time. Again, we will drop the index
n when it will be clear which member of the family we mean. We will also need
to be able to recognize accepting configurations. For this purpose, we will have
a function a(x, c), computable in polynomial time, where the first argument will
be the input for the algorithm and c is a configuration. The function a(x, c) will
return 1 iff the configuration c is accepting (possibly depending on x) and 0
otherwise.

Now we are ready to jump to the notion of transition matrix. If a configura-
tion c1 leads to another configuration c2 in the next step with probability p, there
is p on the position 〈c2|T |c1〉, otherwise there is zero. Because the tapes are of
unbounded size, so is the matrix. However, if we know that the time complexity
of a Turing machine is T (n), we may for fixed n have a finite matrix cutting the
tapes at the distance T (n) from the initial position on both sides. The size of
the matrix for inputs of length n is then 2O(T (n)) × 2O(T (n)). For a probabilis-
tic Turing machine, the transition matrix is stochastic, e.g. every row sums up
to 1. Transition matrices naturally form a poly-computable matrix family, since
for each pair c1, c2, the probability of going from one to another can be read

1 We assume without loss of generality that the machine has only one tape.
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from the description of the underlying probabilistic Turing machine, which is a
finite object2.

3 Traditional Complexity Classes

We will now briefly review classical complexity classes definitions. The common
definitions of P, BPP, NP and PP involve a probabilistic Turing machine and
look at the accepting probability for each input3.

One step of a probabilistic Turing machine corresponds to multiplying the
transition matrix with a vector representing the current configuration. Thus,
instead of saying ”the probability of accepting on a configuration I(x) after S
steps is p”, we may equivalently say ”

∑
c:a(c,x)=1〈c|T S |I(x)〉 = p”. We will use

this observation in the following definitions.

Definition 3 (Polynomial time classes in matrix notation). A language L
is in class C if there exists a polynomial p(n) and a probabilistic Turing machine
M with transition matrix family Ti and functions I(x), a(x, c) computable in
polynomial time, such that for all n and for all x of length n:

complexity class C P NP PP BPP
For x ∈ L,

∑
c:a(c,x)=1〈c|T p(n)

n |I(x)〉 = 1 > 0 > 1
2 ≥ 2

3

For x /∈ L,
∑

c:a(c,x)=1〈c|T p(n)
n |I(x)〉 = 0 = 0 ≤ 1

2 ≤ 1
3

where exactly one of the columns applies.

s In the same manner, the quantum class BQP is commonly defined:

Definition 4 (BQP). A language L is in class BQP if there exists a polynomial
p(n) and a quantum Turing machine M with transition matrix family Ti of
unitary matrices and functions I(x), a(x, c) computable in polynomial time, such
that

For x ∈ L:
∣∣∣∑c:a(c,x)=1〈c|T p(n)|I(x)〉

∣∣∣2 ≥ 2
3

For x /∈ L:
∣∣∣∑c:a(c,x)=1〈c|T p(n)|I(x)〉

∣∣∣2 ≤ 1
3

We emphasize here that there are exactly two points in which Definition 4
and the Definition of BPP in Definition 3 differ: First, in Definition 3 we have
stochastic matrices while in Definition 4 we have unitary matrices. Second, in
2 It should be pointed out that for most poly-computable stochastic matrix families,

no corresponding probabilistic Turing machine exists. The reason is that each prob-
abilistic Turing machine has finite description of a bounded size, independent on the
length of input, while in our definition 1, we allowed function f to arbitrarily depend
on n.

3 Obviously, the class P can be viewed as a special case of a probabilistic class, with
probabilities either one or zero.
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Definition 3 we are looking at the value of
∑

c:a(c,x)=1〈c|T p(n)|I(x)〉, while in
Definition 4 we look at the square norm of this value. However, the latter can
be avoided, since we can equivalently use the square norm in the Definition 3 of
BPP. Thus, the only remaining difference between the two classes is the type of
matrices used.

Now we will define the class MQ2 itself.

4 The Sibling

Now we will somehow alter the Definition 4 of class BQP to get a new class MQ2.
In practice, there is often the situation that we do not know what particular
output we are looking for, but have some property in mind we would like the
outputs to have. For that purpose, we will use a function a(x, y) which decides
for a given x at the input, whether y is one of the accepting outputs we are
looking for or not.4

NP

PP

P

PSPACE

BQP
DJ ALG.

SHOR’S ALG.

MQ
2

DJ ALG.

SHOR’S ALG.

AWPP

BPP

Fig. 1. Hierarchy of classes including MQ2. For each pair connected by a line, the class

that stays upper contains the lower one.

4 In class BQP, it does not matter whether we have one or more accepting config-
uration [1]. Nevertheless here, in class MQ2 we can not use the same trick, since
generally we do not have a function computing the entries of the inverse of the
matrix used.
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Definition 5 (MQ2). A language L is in class MQ2 iff there exists a unitary,
poly-computable matrix family Ti, a poly-computable vector family I(x), and a
function a(x, c) computable in polynomial time such that

For x ∈ L,
∑

c:a(c,x)=1

∣∣∣〈c|T 2|I(x)〉
∣∣∣2 ≥ 2

3

For x /∈ L,
∑

c:a(c,x)=1

∣∣∣〈c|T 2|I(x)〉
∣∣∣2 ≤ 1

3

It was shown in [4] that MQ2 is contained in AWPP.
The resulting hierarchy is visualized in Figure 1.

5 Expressing Quantum Algorithms

In this section, we will suggest how can the class MQ2 couple with the Deutsch-
Jozsa’s and Shor’s algorithm. For complete proofs, see [4].

At first, we show that class MQ2 captures Deutsch-Jozsa’s problem. For this
problem, see [2]. In the Deutsch-Jozsa problem, a quantum oracle is used. That is
a diagonal quantum gate, or in other words a diagonal unitary matrix, realizing
the transformation x → (−1)f(x). Here, our matrix will be a product of a poly-
computable matrix and this oracle. The result if then poly-computable too.

Theorem 1. The class MQ2 solves the Deutsch-Jozsa problem.

Proof sketch. We will mimic the circuit from Deutsch-Jozsa’s algorithm (see Fig-
ure 2 a)) by two copies of a poly-computable matrix family T (see Figure 2 b)).
For a fixed n, the matrix T will be a product of the oracle and Hn. We may add
another matrix for the f function to the front, since it will only add the number
(−1)f(0) to the global phase and thus will not change the result. Formally, we
define a matrix T as

H
n

0

0

0

0

0

H
n H

n

0

0

0

0

0

0

a) b)

H
n

T T

0

(-1)
f

(-1)
f

(-1)
f

Fig. 2. The trick used to fit Deutsch-Jozsa’s algorithm into the MQ2 class. In a), there

is the original setup, in b) there is the one we use, which gives the same result up to a

global phase.
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〈y|T |x〉 ≡ (−1)f(x)〈y|Hn|x〉 =
1√
2n

(−1)f(x)(−1)
∑

i xiyi mod 2 (1)

which is obviously computable in poly-time and unitary. We define ci(x) = 0n

and cA(x) = 0n for x of length n. Then we have∣∣∣〈0n|T 2|0n〉
∣∣∣2 =

∣∣∣∑
k

〈0n|T |k〉〈k|T |0n〉
∣∣∣2 =

=
∣∣∣∑

k

(−1)f(k) 1√
2n

(−1)
∑

i ki0
n

i mod 2 1√
2n

(−1)f(0n)(−1)
∑

i 0n
iki mod 2

∣∣∣2 =

=
∣∣∣∑

k

1
2n

(−1)f(k)(−1)2
∑

i ki0
n

i mod 2
∣∣∣2 =

1
22n

∣∣∣∑
k

(−1)f(k)
∣∣∣2

If the function is constant, then the sum
∑

k(−1)f(k) equals ±2n and the
probability |〈0n|T 2|0n〉|2 equals 1. If the function is balanced, both the sum and
the probability is 0. �

Perhaps not surprisingly, to realize the famous Shor’s algorithm [3], we also
need only to square a matrix, however this time we need to have multiple ac-
cepting configurations.

Theorem 2. The class MQ2 solves the factoring problem. More precisely, there
exists a constant k such that given numbers x and N≥k as in the Shor’s algorithm,
the language

L = {〈N, i〉|xamodN has a period r whose i − th bit is 1 } (2)

is in MQ2.

Proof sketch. We will use the same notation as in the original paper by Shor [3].
N is the number to factorize and N = p1p2 where both p1 p2 are primes and are
different from each other. We then arbitrarily choose an x co-prime to N . The
pair (x,N) is the input of the algorithm. The goal is to find the smallest r 
= 0
such that xr mod N = 1. This r is called a period of x. We choose a number q
such that q is a power of 2 and q ≥ 22log2N�. This number will, together with
the length of x and N , determine the size of the matrix.

In the original setup, see Figure 3 a), we have three different transformations,
namely: Hadamard transformation, a transformation computing power modulo
N , and the DFT . One can notice that the effect on 0n of the DFT and of the
Hadamard transform is the same, so we suffice with only two different transfor-
mations. Furthermore, the matrices realizing them are poly-computable:

〈x′, N ′, a′, i′|DFT |x,N, a, i〉 ≡ 1√
q
δx,x′δN,N ′δi,i′e

2iπ
q aa′

(3)

〈x′, N ′, a′, i′|MOD|x,N, a, i〉 ≡ δx,x′δN,N ′δa,a′δi′+i,xa mod N (4)
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Fig. 3. The trick used to fit the Shor’s algorithm into the MQ2 class. In a), there is

the original setup, in b) there is the one we use, which gives the same result up to a

global phase.

One may also simply check that both the matrices are unitary. Their product
T ≡ DFT ·MOD is thus unitary too. Its elements read

〈x′, N ′, a′, i′|T |x,N, a, i〉 =
1√
q
δx,x′δN,N ′e

2iπ
q a′aδi+i′,xa mod N (5)

and are again clearly functions computable in poly-time. Applying two times the
matrix T , we apply an extra MOD transformation comparing to the original
setup. Nevertheless, on 0n, this transform acts as identity. Any classical post-
processing, as in the original algorithm, can be incorporated into the function
a(x, c). �

6 Conclusion

We saw a complexity class which has a compact purely mathematical defini-
tion. In order to describe an algorithm, we suffice with three functions taking
bit-strings as arguments: f(i, j, n), In(x), and a(x, c). Even quite a complex al-
gorithm, as the Shor’s certainly is, can be described on three lines. Further,
the class MQ2 shows that BQP is not the only possible class, lying in between
BPP and AWPP, and not being trivially equal to either of them, which can
do factorization and exponential speedup with oracles as in Deutsch-Jozsa’s
algorithm.

Acknowledgment

This material is partially based on the author’s master thesis [4], which was
supervised by Harry Buhrman. I would like to use this opportunity to thank
him for motivating discussions.



A New Sibling of BQP 213

References

1. E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Com-
puting 26(5):1411–1473, 1997, citeseer.nj.nec.com/bernstein97quantum.html.

2. D.Deutsch and R.Jozsa. Proceedings of the Royal Society of London Ser. A 439(553),
1992.

3. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and fac-
toring. IEEE Symposium on Foundations of Computer Science, pp. 124-134, 1994,
citeseer.nj.nec.com/14533.html.
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Abstract. The firing squad synchronization problem has been stud-
ied extensively for more than 40 years [1-18]. The present authors are
involved in research on firing squad synchronization algorithms on two-
dimensional (2-D) rectangular cellular arrays. Several synchronization
algorithms on 2-D arrays have been proposed, including Beyer [2], Gras-
selli [3], Kobayashi [4], Shinahr [10], Szwerinski [12] and Umeo et al. [13,
15]. To date, the smallest number of cell states for which an optimum-
time synchronization algorithm has been developed is 14 for rectangular
array, achieved by Umeo et al. [15]. In the present paper, we propose a
new optimum-time synchronization algorithm that can synchronize any
2-D m×n rectangular arrays in m+n+max(m,n)−3 steps. We progres-
sively reduce the number of internal states of each cellular automaton
on rectangular arrays, achieving twelve states. This is the smallest num-
ber of states reported to date for synchronizing rectangular arrays in
optimum-step.

1 Introduction

We study a synchronization problem which gives a finite-state protocol for syn-
chronizing a large scale of cellular automata. The synchronization in cellular
automata has been known as firing squad synchronization problem since its de-
velopment, in which it was originally proposed by J. Myhill to synchronize all
parts of self-reproducing cellular automata [7]. The firing squad synchronization
problem has been studied extensively for more than 40 years [1-18]. The present
authors are involved in research on firing squad synchronization algorithms on
two-dimensional (2-D) cellular arrays. Several synchronization algorithms on 2-
D arrays have been proposed, including Beyer [2], Grasselli [3], Kobayashi [4],
Shinahr [10], Szwerinski [12] and Umeo et al. [15]. To date, the smallest number
of cell states for which an optimum-time synchronization algorithm has been
developed is 14 for rectangular array, achieved by Umeo et al. [13, 15].

In this paper, we propose a new optimum-time algorithm that can synchro-
nize any 2-D m × n rectangular arrays in m + n + max(m, n) − 3 steps. The

C.S. Calude et al. (Eds.): UC 2005, LNCS 3699, pp. 214–223, 2005.
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algorithm is based on a new efficient mapping scheme for embedding a special
class of generalized one-dimensional optimum-time synchronization algorithms
onto 2-D rectangular arrays. We progressively reduce the number of internal
states of each cellular automaton on rectangular arrays, achieving twelve states.
This is the smallest number of states reported to date for synchronizing rectan-
gular arrays in optimum-step. Due to the limited space available, we omit the
detailed proofs of the theorems given below.

2 Firing Squad Synchronization Problem

Figure 1 shows a finite two-dimensional (2-D) cellular array consisting of m× n
cells. Each cell is an identical (except the border cells) finite-state automaton.
The array operates in lock-step mode in such a way that the next state of each
cell (except border cells) is determined by both its own present state and the
present states of its north, south, east and west neighbors. All cells (soldiers),
except the north-west corner cell (general), are initially in the quiescent state at
time t = 0 with the property that the next state of a quiescent cell with quiescent
neighbors is the quiescent state again. At time t = 0, the north-west corner cell
C1,1 is in the fire-when-ready state, which is the initiation signal for synchronizing
the array. The firing squad synchronization problem is to determine a description
(state set and next-state function) for cells that ensures all cells enter the fire
state at exactly the same time and for the first time. The set of states must be
independent of m and n. Several synchronization algorithms on 2-D arrays have
been proposed, including Beyer [2], Grasselli [3], Kobayashi [4], Shinahr [10],
Szwerinski [12] and Umeo et al. [13, 15]. Umeo, Maeda and Fujiwara [13] pre-
sented a 6-state non-optimum-time two-dimensional synchronization algorithm
that fires any m × n arrays in 2(m + n) − 4 steps. The algorithm is slightly
slower than the optimum ones, but the number of internal states is consider-
ably smaller. Shinahr [10] presented an optimum-time synchronization scheme
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Fig. 1. A two-dimensional cellular automaton
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in order to synchronize any m × n arrays in m + n + max(m, n) − 3 steps and
gave a 28-state implementation. Recently, Umeo, Hisaoka, Teraoka and Maeda
[15] proposed a 14-state implementation of 2-D optimum-time synchronization
algorithm. To date, the smallest number of cell states for which an optimum-
time synchronization algorithm has been developed is 14 for rectangular array,
achieved by Umeo et al. [15].

3 A State-Efficient Mapping Scheme for Embedding 1-D
Generalized Synchronization Algorithm onto 2-D
Arrays

The proposal is a simple and efficient mapping scheme that enables us to embed
a special class of one-dimensional generalized synchronization algorithm onto
two-dimensional arrays without introducing additional states. We consider a
2-D array of size m × n. At time t = 0 the general is located on C1,1. Without
loss of generality we assume that m ≤ n. We divide mn cells on the array of size
m×n into m + n− 1 groups gk, where −(m− 1) ≤ k ≤ n − 1, that is defined as
follows:

gk = {Ci,j |j − i = k, 1 ≤ i ≤ m, 1 ≤ j ≤ n}, −(m − 1) ≤ k ≤ n − 1 i.e.,

g0 = {C1,1,C2,2, ...,Cm,m},
g−1 = {C2,1,C3,2, ...,Cm,m−1},
g1 = {C1,2,C2,3, ...,Cm,m+1},
g−2 = {C3,1,C4,2, ...,Cm,m−2},
g2 = {C1,3,C2,4, ...,Cm,m+2},
.
.
g−(m−1) = {Cm,1},
.
.
gn−1 = {C1,n}.

Figure 2 shows the division of the 2-D array of size m × n into m + n − 1
groups. Let M = (Q, δ1, ∗) be any one-dimensional CA that fires � cells with a
general on k-th cell from the left end in T (k, �) steps, where Q is the finite state
set of M , δ1 : Q3 → Q is the local transition function, and ∗ ∈ Q is the state of
the right and left ends. We assume that M has � = m + n − 1 cells, denoted by
Ci, −(m − 1) ≤ i ≤ n − 1. For convenience, we assume that M has a left and
right end cells, denoted by C−m and Cn, respectively. Both end cells C−m and
Cn always take the end state ∗(∈ Q).

We consider a one-to-one correspondence, illustrated in Fig. 2, between the
i-th group gi and the i-th cell Ci on M such that gi ↔ Ci, −(m−1) ≤ i ≤ n−1.
We can construct a 2-D CA N = (Q, δ2, ∗) such that all cells in gi simulate the i-
th cell Ci in real-time and N can fire any m×n arrays at time t = T (m, m+n−1)
if and only if M fires 1-D arrays of length m + n− 1 with a general on the m-th
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Fig. 2. Correspondence between 1-D and 2-D cellular arrays

cell from the left end at time t = T (m, m + n − 1), where δ2 : Q5 → Q is the
state transition function of N , and ∗ ∈ Q is the border state of the array. Note
that the set of internal states of N is the same as M . A construction of the state
transition function δ2 will be given later.
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Fig. 3. Time-space diagram for generalized optimum-step firing squad synchronization
algorithm
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Figure 3 shows a time-space diagram for a generalized optimum-time firing
squad synchronization algorithm that fires 1-D n+k−1 cells in T (k, n+k−1) =
n + k − 3 + max(k, n) steps, where the general is on the k-th cell from the left
end. We consider a special class of transition rule set with a property A for the
generalized optimum-time firing squad synchronization algorithms.
Property A: Let st

i denote the state of Ci at step t. We say that a generalized firing
squad synchronization algorithm has a property A, where any state st

i appearing
in the zone A of the time-space diagram shown in Fig. 3 can be computed from
its left and right neighbor states st−1

i−1 and st−1
i+1 and it never depends on its own

previous state st−1
i .
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Fig. 4. An embedding of configurations of the 1-D CA performing generalized
optimum-time synchronization operations into 2-D arrays
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The one-dimensional generalized firing squad synchronization algorithm with
the property A can be easily embedded onto two-dimensional arrays without
introducing any additional states. It is seen that the construction of 2-D CA
N can generate the configuration of M in real-time. Specifically, for any i,
−(m − 1) ≤ i ≤ n − 1, the state of any cell in gi at any step is either the
quiescent state or the state of Ci at each corresponding step. Let st

i and st
k,� de-

note the state of Ci and Ck,� at step t, respectively, where −(m−1) ≤ i ≤ n−1,
1 ≤ k ≤ m, 1 ≤ � ≤ n.

Figure 4 shows an embedding of configurations on 1-D cellular array of length
m + n − 1 with the Property A onto 2-D array of size m × n, where m = 7,
n = 9 and 0 ≤ t ≤ T (7, 15) = 22. To save a space available, we will explain
straightforwardly how to simulate the states of M in real-time on N . At time
t = 1, C1,1, C1,2, and C2,1 can easily take a state s1

0, s1
1, and s1−1, respectively,

since each cell finds necessary states in its neighbors at step t = 0. Similarly,
at step t = 2, C1,1, C1,2, C1,3, C2,1, and C3,1 can take their states s2

0, s2
1, s2

2,
s2−1, and s2−2, respectively. But the computation of s2

0 on the cell C1,1 is difficult
to be done, since we assume that M has von Neumann neighborhood, thus at
step t = 1 the cell C2,2 cannot access C1,1 in sate s1

0 that is normally used
to compute s2

0. To make it possible, we assume the Property A. With help of
the property A, the cell C2,2 can take the state s2

0 at step t = 2. The similar
situations occur in the computation of states appearing only at the wave-front of
the valid configuration of N (shown in Fig. 4). To be precise, the computation of
shaded states in the area A shown in Fig. 4(a) is involved with the property A.

The state transition table of N consists of three parts, one is a rule set
(Type (A)) that is for the inner cells excluding the wave-front cells and the
other set (Type (B) and Type (C)) is for the computation of states of cells
in the wave-front area. Let δ1(a, b, c) = d be any transition rule of M , where
a, b, c, d ∈ {Q − {w}}. Then, N has nine Type (A) transition rules, as shown
in Fig. 5. The first rule (a-1) in Type (A) is used by an inner cell that does
not include border cells amongst its four neighbors. Rules (a-2)-(a-5) are used
by an inner cell that has a border cell as its upper, lower, left, right, lower left,
or upper right neighbor, respectively. Here the terms upper, right etc. on the
rectangular array are interpreted in a usual way, shown in Fig. 2, although the
array is rotated by 45◦ in the clockwise direction. Rules (a-6)-(a-9) are used by
an inner cell that has border cells as its right lower, left lower, right upper, and
left upper neighbors, respectively. As for the rules related with the computation
at the wave-front area, we have four rules (b-1)-(b-4) and seven rules (c-1)-(c-7),
which are used by the cells located at the wave-front of each configuration of
N.

We define the following set of cells. Let t be any integer such that 0 ≤ t ≤
T (m, m + n − 1) and S, St, St be set of cells such that:

S = {Ck,�|1 ≤ k ≤ m, 1 ≤ � ≤ n},
St = {Ck,�|2 ≤ k + � ≤ t + 2, 1 ≤ k ≤ m, 1 ≤ � ≤ n},
St = S − St.
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Let St
gi

denote a set of states of the cells in gi ∩ St at step t and S
t

gi
be a

set of states of the cells in gi ∩ St at step t, where 0 ≤ t ≤ T (m, m + n− 1) and
−(m− 1) ≤ i ≤ n− 1. We can establish the following lemmas for gi,−(m− 1) ≤
i ≤ n − m + 1. Throught those lemmas, we assume that m ≤ n and q is the
quiescent state of N .

Lemma 1. g0:

1. For any t such that 0 ≤ t ≤ 2m − 3, St
g0

= {st
0} and S

t

g0
= {q}.

2. For any t such that 2m− 2 ≤ t ≤ T (m, m + n − 1), St
g0

= {st
0}, S

t

g0
= φ.

Lemma 2. gi(1 ≤ i ≤ n − m):

1. For any integer t such that 0 ≤ t ≤ i − 1, St
gi

= φ, S
t

gi
= {q}.

2. For any t such that i ≤ t ≤ i + 2m− 3, St
gi

= {st
i} and S

t

gi
= {q}.

3. For any t such that i + 2m − 2 ≤ t ≤ T (m, m + n − 1), St
gi

= {st
i}, S

t

gi
= φ.

Q
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a

c

dQ

*

Q(b-2)

*
Q

a

c

dQ(b-3)

a

c

d*

*

Q(b-4)

Type (B)

a

cba

c

d(a-1)

a

cba

*

d(a-2)

a

cb*

c

d(a-4)

*

cba

c

d(a-3)

a

*ba

c

d(a-5)

*

*ba

c

d(a-6)

*

cb*

c

d(a-7)

a

*ba

*

d(a-8)

a

cb*

*

d(a-9)

Type (A) Type (C)

Q

ba

c

dQ(c-1)

a

c

dQ

*

b(c-2)

*

Q

a

c

db(c-3)

a
*

d*

Q

b(c-4)

(c-5)

(c-6)

(c-7)

c

dQ

*

b

c

dQ

Q

b

a d

*

Q

b

*

*

Q

For each rule such that

δ1(a, b, c) = d, 

a, b, c, d 2 {Q-{*}},

we have:
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the area A such that
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we have:

For each rule used in 

the area A such that
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we have:

Fig. 5. Construction of transition rules for 2-D optimum-time firing squad synchro-
nization algorithm



A Twelve-State Optimum-Time Synchronization Algorithm 221

Lemma 3. gi(n − m + 1 ≤ i ≤ n − 1):

1. For any integer t such that 0 ≤ t ≤ i − 1, St
gi

= φ, and S
t

gi
= {q}.

2. For any t such that i ≤ t ≤ 2n− i − 3, St
gi

= {st
i}, S

t

gi
= {q}.

3. For any t such that 2n− i − 2 ≤ t ≤ T (m, m + n − 1), St
gi

= {st
i}, S

t

gi
= φ.

Lemma 4. g−i(1 ≤ i ≤ m):

1. For any t such that 0 ≤ t ≤ i − 1, St
g−i

= φ, S
t

g−i
= {q}.

2. For any t such that i ≤ t ≤ 2m− i − 2, St
g−i

= {st
−i}, S

t

g−i
= {q}.

3. For any t such that 2m−i−1 ≤ t ≤ T (m, m+n−1), St
g−i

= {st
−i}, S

t

g−i
= φ.

Based on the observations above, we can get the following theorem.

Theorem 5. Let M be any s-state generalized synchronization algorithm with
the property A operating in T (k, �) steps on one-dimensional � cells with a general
on the k-th cell from the left end. Then, based on the transformation shown in

Step:0
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1 < Q Q Q Q Q Q Q Q

2 Q Q Q Q Q Q Q Q Q

3 Q Q Q Q Q Q Q Q Q

4 Q Q Q Q Q Q Q Q Q
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Step:1
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Fig. 6. Snapshots of the proposed 12-state optimum-time firing squad synchronization
algorithm on rectangular arrays
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Fig. 5, we can construct a two-dimensional s-state cellular automaton N that
can synchronize any m × n rectangular array in T (m, m + n − 1) steps.

Moore and Langdon [8], Szwerinski [12] and Varshavsky, Marakhovsky and
Peschansky [17] developed a generalized optimum-time firing algorithm with 17,
10 and 10 internal states, respectively, that fires 1-D � cells in �−2+max(k, �−
k +1) steps, where the general is located on Ck. Recently, Settle and Simon [11]
and Umeo et al. [14] have proposed a new 9-state generalized synchronization al-
gorithm operating in optimum-step. After revealing that none of those transition
rules given in [8, 12, 14, 17] have the property A, we newly develop a 12-state
transition rule set satisfying the condition. Due to the space available, we omit
the whole set of transition rules with the property A. In Fig. 3(b) we show some
snapshots for the synchronization. The next theorem is our 12-state implemen-
tation of the generalized optimum-time synchronization algorithm having the
property A.

Theorem 6. There exists a 12-state one-dimensional cellular automaton with
the property A that can synchronize � cells with a general on the k-th cell from
the left end in optimum �− 2 + max(k, �− k + 1) steps.

Based on [Theorems 5, 6] and by letting k = m, � = m + n − 1 in T (k, �) =
�−2+max(k, �−k+1), the time complexity of the 2-D synchronization algorithm
is m+n+max(m, n)−3. Thus, the algorithm is a time-optimum one. Now we can
get a 12-state optimum-time synchronization algorithm for rectangular arrays.

Theorem 7. There exists a 12-state firing squad synchronization algorithm that
can synchronize any m×n rectangular array in optimum m+n+max(m, n)−3
steps.

4 Conclusions

We have proposed a new optimum-time algorithm that can synchronize any
m× n two-dimensional rectangular arrays in m + n + max(m, n)− 3 steps. The
algorithm is based on a state-efficient mapping scheme for embedding a special
class of generalized one-dimensional optimum-time firing squad synchronization
algorithms with the property A onto 2-D rectangular arrays. In our construc-
tion an m × n array synchronization problem is reduced to one 1-D generalized
synchronization problem. We progressively reduce the number of internal states
of each cellular automaton operating in optimum-step on rectangular arrays,
achieving twelve states. This is the smallest number of states reported to date
for synchronizing rectangular arrays in optimum-step.
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Abstract. We introduce a new formal computational model designed
for studying the information transfer among the generations of offspring–
producing machines — so–called autopoietic automata. These can be
seen as finite state transducers whose “program” can become a subject of
their own processing. An autopoietic automaton can algorithmically gen-
erate an offspring controlled by a program which is a modification of its
parent’s program. We show that the computational power of lineages of
autopoietic automata is equal to that of an interactive nondeterministic
Turing machine. We also prove that there exists an autopoietic automa-
ton giving rise to an unlimited evolution, providing suitable inputs are
delivered to individual automata. However, the problem of a sustainable
evolution, asking for an arbitrary autopoietic automaton and arbitrary
inputs whether there is an infinite lineage of its offspring is undecidable.

1 Introduction

The notion of autopoiesis was coined by Chilean biologists Maturana and Varela
since the nineteen seventies. Literally, autopoiesis means self–production and de-
notes a process whereby a system (or an “organization”, as Maturana and Varela
call it) produces itself (for more details concerning computational autopoiesis, cf.
[2]). Autopoiesis, as its proponents understand it, is not a precisely, mathemat-
ically or otherwise formally defined notion and in fact we will use this notion in
its literal meaning to denote self–producing or self–creating units. The reason for
calling our model autopoietic automata has been the aspiration to distinguish
such automata by name from the notoriously known self–reproducing automata
which are a kind of cellular automata. The autopoietic automata are definitely
not meant to model autopoiesis in the sense of Maturana and Varela. These au-
tomata are not based on the formalism of cellular automata and in fact they build
upon the classical models of the finite state automata. The autopoietic automata
are designed as a mathematical model of self-evolving units capturing the com-
putational (or information processing) essence of self–production, i.e., the use of
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a “program” both to drive the (computational) behavior of a unit and to serve as
a “template” for the evolutionary process. The lastly mentioned idea originates,
of course, from von Neumann [5] whose stress in designing his self–reproducing
automata had been just on the design of mechanisms of self–reproduction alone.
In our modelling, however, we will not be concerned in these mechanisms: rather,
we take their existence as granted and we concentrate instead on algorithms con-
trolling the variations in the offspring–production process and (hence) the (“ge-
netic”) information transfer from the parental machine to its offspring. That is,
we will not be interested in producing exact copies of the parental machine: in
our modelling we will focus on the evolution in which offsprings possess qualities
different from their parents. Thus, instead of self–reproduction we should rather
speak more precisely about self–like, or offspring–production.

In von Neumann’s seminal paper on self–reproducing automata, the problem
of the variation of genetic information was not the main issue. Nevertheless,
a related question concerning the “evolutionary growth of complexity” of self–
reproducing automata has become the issue in the field of artificial life (for
an overview, see [1]). In the absence of suitable computational models neither
this question nor the related problem of the computational power of automata
exhibiting the evolutionary growth of their complexity could have been answered
convincingly.

In this paper we present a computational model answering the previous ques-
tions. Our model is inspired by contemporary cellular biology. In its design it
abstracts the information processing, reproducing and evolutional abilities of the
living cells. An autopoietic automaton is a specific kind of a nondeterministic fi-
nite state transducer which has access to the representation of its own transition
relation. Controlled by this transition relation and making use of the possibility
to read the representation of this relation, an autopoietic automaton computes
and outputs the transition relation of its offspring. In this way the changes in
the new transition relation are controlled by the parental machine. Our main
result shows that a series of lineal descents of a single autopoietic automaton
(a lineage of autopoietic automata) has a notable computational power — the
same as an interactive nondeterministic Turing machine. We also construct an
autopoietic automaton which generates a lineage containing all autopoietic au-
tomata, i.e., the members of this lineage exhibit unbounded growth of complexity
in the computational sense. Within our model, this result answers positively the
related question asked by McMullin and its predecessors in the field of artificial
life (cf. [1]). Finally, we define the problem of the so–called sustainable evolution
which asks after any autopoietic automaton and any infinite sequence of inputs
whether there is an infinite lineage generated by that automaton on that input.
We show that this is an undecidable problem.

The content of the paper is as follows. Section 2 contains the formal definition
of an autopoietic automaton and of its computations, too. In Section 3 the
computational power of lineage of autopoietic automata is characterized via
interactive nondeterministic Turing machines. The computational aspects of the
evolution of autopoietic automata, especially the unboundedness of evolutionary
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complexity growth and an evolution’s sustainability, are studied in Section 4.
Section 5 recapitulates the main contributions of the paper.

It is very tempting to interpret the previous results in the framework of orig-
inal scientific disciplines which served as inspiration for our modelling. As to
the extent to which our model captures the information processing and evolu-
tionary abilities of living cells, our results seem to be among the first formal
results shedding light on the computational nature and power of the respective
mechanisms.

2 Autopoietic Automata

Autopoietic automata are nondeterministic finite state machines capturing the
information processing, reproducing and evolving abilities of living cells. Tech-
nically, an autopoietic automaton is a nondeterministic transducer (a Mealy
automaton) computing and outputting the transition relation of its offspring.
The design of an autopoietic automaton supports working in two modes. The
first of them is a standard transducer mode controlled by a transition relation
and processing external input information read through an input port. In this
phase the results of a computation (if any) are sent to the output port. The
second mode is a reproducing mode which is controlled by the same transition
relation as before. This time, however, no external information is taken into ac-
count and, instead, the representation of the transition relation itself is used as
a kind of internal input. For this purpose the representation of the automaton’s
own transition relation is available to an autopoietic automaton on a special,
so–called program tape. It is a two–way read–only tape. The result of the repro-
ducing mode is written on a special one–way write–only output tape. Of course,
both tapes mentioned before are finite. After finishing the reproduction, the in-
formation written on this tape is interpreted as a transition relation of a new
autopoietic automaton and the tape itself becomes a new automaton’s program
tape. The new automaton starts its activity with the empty output tape. The
new automaton is seen as an offspring of the original automaton. Depending on
the transition relation of the parental automaton, the transition function of the
new automaton can differ from the original transition relation. Schematically,
the architecture of an autopoietic automaton is depicted in Fig. 1.

Now we are ready to proceed to a formal definition of an autopoietic automa-
ton. One of our final aims is to study the sequences of such automata with an

Fig. 1. The schema of an autopoietic automaton
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increasing number of internal states and working over alphabets of increasing
size. Therefore, in general we will consider an infinite set Q of states whose mem-
bers will be numbered, i.e., Q = {q1, q2, . . .} and similarly an infinite, so–called
external working alphabet Σ = {σ1, σ2, . . .}. An equivalent, so–called internal
representation of the members of these sets will be via sequences of zeros: the
i–th member will be encoded as a sequence of i zeros, abbreviated as 0i.

Definition 1. An autopoietic automaton is a six–tuple A = {Σ,Q,R, q1, q2, δ},
where

– Σ, with ε ∈ Σ, is the finite or infinite external alphabet whose symbols are
read on the input port or are written to the output port, one symbol at a
time; ε is the empty symbol;

– Q is the finite or infinite set of states;
– R ⊂ Q, R 
= ∅ is the distinguished set of reproducing states;
– q1 ∈ Q − R is the initial state in which the computation of A starts, with

either head at the left end on the respective tape;
– q2 ∈ R is the final reproducing state; entering it finishes the reproduction

mode of A and starts a computation of the A’s offspring which is an au-
topoietic automaton whose transition relation had been generated by A on its
output tape. Simultaneously, A empties its output tape and restarts its com-
putation from its initial state. Since this time on the computation of both A
and that of its offspring have been independent, each of them receiving its
own input;

– δ, the transition relation, comes in two forms depending on whether q ∈ Q−R
or q ∈ R :

• Transducer mode: if A is in state q ∈ Q−R, then we say that A is in a
transducer mode. Then δ is a finite subset of Σ×Q×Σ×Q×D, where
D = {d1, d2, d3, d4} is the alphabet of directions corresponding to the
moves of the program tape head (d1 denotes the left shift by one position,
d2 the right shift by one position, d3 means no shift, d4 means that the
shift direction is undefined, which is the case in the transducer mode).
The elements of δ are formed by five–tuples of form (σi, qj , σk, q�, dm) ∈
Σ×Q×Σ×Q×D from which a sequence (in arbitrary order) is formed
and encoded in binary on the program tape; the respective encoding for
the above mentioned tuple is 10i10j10k10�10m1; the encoding of all tuples
representing δ is also embraced by 1s (i.e., the entire encoding starts and
ends by two consecutive 1s). A tuple (σi, qj , σk, q�, d4) ∈ Σ×Q×Σ×Q×D
corresponds to one computational step (transition) of A in the following
way: if A is in state qj ∈ Q − R and σi ∈ Σ is a symbol at the input
port, A changes its state to q� and writes σk ∈ Σ to its output port; the
position of the head on the program and output tape remains unchanged.

• Reproducing mode: if A is in a state q ∈ R, then A is in a reproducing
mode. In such a case δ is a finite subset of {0, 1} ×Q× {0, 1}×Q×D.
A tuple (σi, qj , σk, q�, dm) ∈ {0, 1} × Q × {0, 1} × Q ×D is represented
on the A’s program tape similarly as any tuple of a transducer mode,
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with 0 representing the element 0 and 00 representing 1. Such a tuple
corresponds to one computational step of A in the following way: if A
is in state qj ∈ R, and σi ∈ {0, 1}, the symbol scanned by the read head
on the program tape, A changes its state to q� and writes σk ∈ {0, 1} to
its output tape; doing so the head on the program tape shifts in direction
dm(dm 
= d4) and the head on the output tape advances by one position
to the right.

Note please that we have admitted that both sets Σ and Q can be infinite
sets. However, the transition relation δ must always be finite (or more precisely:
a finite subset of Σ × Q × Σ × Q × D). This unusual arrangement allows an
autopoietic automaton to generate offsprings working over larger (or different)
sets of states or symbols than it was possible for the original automaton. In
Section 4 we will see that this is what enables a kind of evolutionary growth of
complexity of the underlying automata. Also note that in order to distinguish
the types of individual states also syntactically we made use of the last compo-
nent (corresponding to the program tape head move direction) in the five–tuple
representing a transition.

An autopoietic automaton A starts its computation in state q1, with the
head on either tape in the leftmost position. The automaton reads the symbol
appearing on its input port and realizes the respective transition as described
in the previous definition. In general, thanks to nondeterminism, the transition
relation allows several choices for the next step. As is customary with nondeter-
ministic computations we take the viewpoint that any choice that will eventually
lead the automaton to enter the final reproducing state q2 is a legal move.

In automaton’s further activities, the general rule is that while being in non–
reproducing states the automaton reads the symbols from the input port and
writes the symbols to the output port, possibly moving its head along the pro-
gram tape. No symbols are written to the output tape. When entering a repro-
ducing state, instead of the external symbols the automaton reads the symbols
scanned by its head on the program tape and writes the binary symbols to the
output tape. Entering the final reproducing state q2, A terminates its current
activities with (the binary representation of a) new transition relation δnew writ-
ten on its output tape, and reproduces by fission, so to say. It splits into two
automata (see Fig. 2): the first one is driven by the original transition relation δ
(denoted as Program 1 in Fig. 2) while the other one by relation δnew (denoted
as Program 2). The new automata start with the empty output tapes.

Thanks to the fact that on the same inputs the final reproducing state can be
achieved via several computational paths, a single nondeterministic autopoietic
automaton can produce several different offsprings, not just one. In our further
considerations we will assume that all such offsprings are produced, indeed. Due
to the nature of the fission mechanism one of the offsprings will be identical to its
parent. We can imagine that after the fission all automata continue processing
their own input symbols. In principle, we see that by iterating this scenario a
potentially infinite tree of offsprings can be generated from a single autopoietic
automaton. In this tree, each offspring is related to its parent. Now, if we con-
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Fig. 2. The fission of an autopoietic automaton

centrate on a single path starting in the root of such a tree, we get a so–called
lineage of autopoietic automata. In its entirety each lineage realizes a translation
of a potentially infinite stream of the input symbols into a similar stream of out-
put symbols. Note that along such a computational path the automata enter the
reproducing states infinitely often. In the sequel we will study the computational
power of lineages.

3 The Power of Lineages of Autopoietic Automata

The first question concerning any computational model is the one of its com-
putational power. The computational power of an autopoietic automaton is not
different from that of a finite state transducer: this is because it is driven by a fi-
nite state mechanism, and its ability to read its own “program” does not add any
power, since in principle the same information could be stored in the automa-
ton’s states. Nevertheless, when considering a lineage of autopoietic automata
things get more interesting. We show the equivalence of lineages of autopoietic
automata with so–called interactive Turing machines. This type of machines has
been introduced by van Leeuwen and Wiedermann (cf. [3], [4]) when studying
the so–called interactive evolutionary algorithms. Interactive Turing machines
are variants of standard Turing machines adapted for processing infinite input
streams. That is, instead of the input tape with a priori given input data these
machines read the input data through an input port much like the autopoietic
automata; the output symbols are also treated in a similar way. A nondetermin-
istic interactive Turing machine M is said to realize a translation from an infinite
input stream S1 to an infinite output stream S2 if there exists a computation
of M on S1 passing through an infinite number of accepting states of M and
producing S2 as its output (we assume that after entering an accepting state, M
can prolong its computations). Two translations are considered to be equivalent
if they are equivalent after deleting all empty symbols from them.

The equivalence between a lineage of autopoietic automata and an interac-
tive Turing machine will be shown by mutual simulations of these devices. We
start with a simpler case — namely simulating a lineage of autopoietic automata
by an interactive Turing machine. Prior to proceeding to the respective simula-
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tion we must solve one fine detail. This is the problem of the unbounded input
alphabet and that of translating the symbols of the external alphabet to their
internal representation being used on the program tape. While the offsprings
of autopoietic automata can, by their very definition, work with increasingly
complex symbols, for a Turing machine with a fixed transition relation this is
not possible: more complex symbols require a longer encoding. Therefore we
will assume that the elements of Σ which can be directly read by the members
of a lineage of autopoietic automata will be presented to a Turing machine in
their unary notation, as stated in Definition 1. That is, for a Turing machine
a symbol σi ∈ Σ will be presented as a string of form 0i and the strings in a
sequence will be separated by ones. Thus, a Turing machine needs O(i) steps to
read (or write down) σi. However, we are not interested in the exact complexity
of our simulations — we are merely concerned with the principal possibility of
such simulations and in this respect a less efficient coding does not make any
difference.

Having said so we are ready to present our first simulation theorem:

Theorem 1. Any lineage of autopoietic automata can be simulated by a nonde-
terministic interactive Turing machine.

Sketch of the proof. Let A = A1, A2, . . . be a lineage of the autopoietic au-
tomata. We design a nondeterministic interactive Turing machine M simulating
A and working as follows. M is a universal Turing machine which reads via its
input port the inputs encoded in the unary notation and is able to simulate any
Ai given by the description (encoding) of its transition relation δi. For such a
purpose, M maintains the representation of both tapes of Ai on its tapes: the
program tape, on which a representation of δi is written in the form as stated in
Definition 1, and the output tape on which the transition relation δi+1 of Ai+1

is generated, for i = 1, 2, . . .. Starting from i = 1, M simulates the actions of
Ai as dictated by δi written on the program tape until Ai reproduces and the
processing is taken over by Ai+1. In such a case, M enters its accepting state
and exchanges the roles of its two tapes: the output tape becomes the program
tape with δi+1 already being written on it, and the original program tape after
being “cleaned” becomes the new output tape. Clearly, in this way M realizes
the same translation as A does. �

The reverse simulation is more complicated and requires more preliminaries.
First of all, we have to specify, in more detail, the Turing machine to be simu-
lated. We will consider a nondeterministic interactive Turing machine M with
one input and one output port and with only one working tape unbounded to
the right. The input and output symbols will be from a finite alphabet ΣM ⊂ Σ,
with Σ being the external alphabet of the autopoietic automata at hand. The
working (or tape) alphabet of M will be Ω = {0, 1, �}, with � denoting the blank
symbol. The set of states of M will be QM = {q1, q2, . . . , qz} for some z > 1.
The transition relation of M will be δM ⊆ ΣM ×Ω×QM ×ΣM ×Ω×QM ×D,
where D = {d1, d2, d3, d4} is the alphabet of directions of the moves of M ’s head
on its tape and the meanings of di’s are the same as in Definition 1. An element
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of δM of form (σi, xj , qk, σ�, xm, qn, dp) is read as “machine M, reading σi at its
input port and scanning xj in state qk sends σ� to its output port, writes xm into
the scanned cell, enters state qn and moves its head in direction dp”.

For the purpose of simulation, we split the processing time of M into time
intervals during which the space complexity of M remains unchanged. Thanks
to our assumption on the left–boundedness of M ’s tape, the amount of the space
consumed by M ’s computation increases by 1 when the head of M reads �, going
past the rightmost rewritten cell on its tape. Within the intervals of unchanged
space complexity M can clearly be simulated by a finite transducer. Let Ci be
the finite transducer which is equivalent to M computing within space of size
i. The idea of the simulation is then to encode the (tape) configurations of M
into states of an autopoietic automaton Ai which, in its non–reproducing states,
behaves as Ci. When M is to increase its space complexity, Ai switches to a
reproduction mode and generates a new, “bigger” automaton Ai+1 which in its
non–reproducing states simulates Ci+1, etc. Thus, in fact Ai is a merger of two
automata: one corresponds to Ci while the other — let us call it R — takes care
of reproduction. The transition relations of both automata are written on Ai’s
program tape. In the reproduction mode, Ai reads the transition relation of Ci

and, being controlled by R, Ai generates the code for Ci+1 and appends to it
the code of R again. Thus, the code of R remains unchanged in all Ais.

We will assume that the tape configuration of M is of form $w1$q$w2$, where
w1, w2 ∈ Ω∗ ∪ {ε}, q ∈ QM and w1 is the contents of M ’s tape to the left of the
position of M ′s head on M ’s tape, and w2 is the contents of M ’s tape to the
right of w1. That is, M ’s head points to the first symbol of w2 (which might be
a blank symbol, � in the case when w2 = ε). The length of the tape configuration
$w1$q$w2$ is |w1| + |w2|, i.e., the sum of lengths of w1 and w2, respectively.

A tape configuration of M in state qj will be represented as a sequence
${0, 1}∗∪{ε}$0j${0, 1}∗∪{�}$, i.e., the states of M are represented in unary, the
tape contents in binary. As mentioned above the tape configurations of M in the
previous form will straightforwardly correspond to the states of an autopoietic
automaton. This idea requires a slight change in the definition of an autopoietic
automaton — so far the states of an autopoietic automaton have been expressed
in unary on automaton’s program tape. The newly proposed representation of
states calls for introduction of a further separator symbol ($) among the symbols
of the automaton’s tape alphabet. Also note that neither the symbol read from
the input port nor the one written to the output port by M is included in
the above defined notion of M ’s configuration — these two symbols will be
represented explicitly in Ai’s configuration.

Now we are ready to formulate and prove the next theorem.

Theorem 2. Any nondeterministic interactive Turing machine can be simulated
by a lineage of autopoietic automata.

Sketch of the proof. Let M be a given nondeterministic interactive Turing
machine. By induction on i we will construct a lineage {Ai} of autopoietic au-
tomata such that each Ai will simulate M with tape configurations of length i
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(or of space complexity i) and each Ai+1 will be an offspring of Ai, for i ≥ 2. As
mentioned above the “program” of each Ai will consist of two parts. The first
part describes the transition relation of Ci while the second one that of R. For
technical reasons — viz. the necessity to begin with an automaton which is able
to simulate both right and left moves of the M ’s head on a tape of length 2 we
start our induction with i = 2. This case is captured by C2 and corresponds to
the beginning of M ’s computation and to its subsequent computations until the
moment when the M ’s head is about to enter the 3-rd cell on its tape.

Consider a generic “instruction” of δM of form (σi, xj , qk, σ�, xm, qn, dp) per-
formed over a tape configuration t1 and resulting into tape configuration t2, with
both configurations corresponding to a tape of length 2 and the head positioned
either on cell 1 or 2. This is reflected in C2’s instructions of form (σi, t1, σ�, t2, dp).
All these instructions, i.e., the instructions for all σi, σ� ∈ ΣM , all t1 and t2, all
qk, qn ∈ QM and all dp ∈ D conformed with δM are written on the A2’s program
tape encoded as shown in Definition 1.

Any instruction of M attempting to move the M ’s head to the right of the
2-nd cell (or in general: increasing the current space complexity) will lead to the
reproduction of A2. Let (σi, xj , qk, σ�, xm, qn, d2) be the move of M performed
over a tape configuration t1 of length 2 and resulting in tape configuration t2 of
length 3, with the head in t1 positioned on the second cell and the head in t2
positioned on the 3-rd cell.

Then, when A2 reads σi in state t1, it recognizes that this is the case when
the head will move to the right. Under this circumstance A2 will write σ� to
its output port and will enter a reproducing phase in which the program tape
of A3 will be generated using the code for R. First, the program for C3 will
be constructed by reading the program for C2. Starting from the state which
corresponds to tape configuration t2, automaton C3 must be able to simulate
all moves of M in space of size 3. In order to do so C3 must have basically the
same instructions as C2 had. However, these instructions must be adopted for
the case of the longer Turing machine tape (which is now longer by 1 cell that
could contain �, 0 or 1). The “new” instructions are generated from the “old”
ones by making appropriate local changes to the latter. The new instructions are
generated to A2’s output tape. The respective changes must be made for all one–
symbol prolongments (i.e., for 0, 1, and �) of the (current) tape configurations of
M. To generate all new instructions, several (but a fixed finite number, depending
on δM ) scans over the simulation code of C2 are needed. No doubt that this is an
algorithmic procedure which can be carried by a finite automaton R thanks to
the fact that the “templates” for producing new instructions are available on the
program tape of A2. An extra provision is needed for capturing also transitions
which so far have not been represented in C2 since they could not come into
action due to the small size of the M ′ tape at that time. The details of an actual
design of R are left to the reader.

After the entire program for C3 is generated, the program for R is appended
to it. This finishes the generation of the entire output tape of A2 and therefore A2

undergoes a fission and finishes its activity. The output tape of A2 becomes the



Computing by Self-reproduction: Autopoietic Automata 233

program tape of A3 and the simulation of M is taken over by A3. As mentioned
before, A3 starts from the state corresponding to configuration t2.

Now, assuming that we have any Ai for i ≥ 3 simulating M on tape con-
figurations of size i it is a straightforward matter to see that upon entering its
reproducing phase Ai will produce Ai+1 simulating M on tape configurations
of size i + 1, for any i ≥ 3. In fact, the “induction step” itself is performed by
the automata themselves, by their very design as described at the beginning of
this proof. The size (measured in the number of states, or length of the pro-
gram tape) of our automata grows exponentially in i, i.e., in the length of the
tape configuration of M at the time interval in which M is simulated by the
automaton at hand.

Note that during their reproducing phases the automata in A are neither
reading nor producing any external symbols. Therefore it is clear that on any
inputs the lineage of Ais realizes the same translation as M does. �

Putting the claims of both previous theorems together we get the following
consequence:

Corollary 1. The computational power of lineages of autopoietic automata is
equal to the computational power of nondeterministic interactive Turing
machines.

4 The Evolution of Autopoietic Automata

At the close of Section 2 we have already mentioned that in principle a single
nondeterministic autopoietic automaton can produce an infinite tree (or at least
a lineage) of its descendants. In order that this can happen, it must hold that at
least one of the offsprings of a given parent must “survive”, i.e., it must reach
a reproducing state on a given input. Thus, in addition to the automaton’s
functionality the existence of infinite lineages depends on the “availability” of
the “right” inputs. A trivial solution would be supplying the same inputs as
before to all offsprings of an automaton which has just reproduced. Since among
its offsprings there is one identical to its parent, this strategy will lead to an
infinite lineage of identical automata. Obviously, this is not a very interesting
case since no evolution is involved.

Under the assumption that the “right” inputs are supplied to the respec-
tive automata at each level of the descendant tree we construct an autopoietic
automaton among whose descendants all possible autopoietic automata will ap-
pear. For the brevity we will call the mode of purposefully supplying inputs
which will cause the given automaton to reproduce (if such inputs exist at all)
the nondeterministic input mode. This mode assumes that the data read by the
automaton exist and are supplied to the input port in such an order that will
eventually lead to the fission of the automaton at hand (note that this does not
correspond to the case of darwinian evolution).
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Theorem 3. There exists an autopoietic automaton which, when working in a
nondeterministic input mode, generates a descendant tree containing all autopoi-
etic automata.

Sketch of the proof. The idea is to construct a single automaton which gener-
ates a descendant tree in which all autopoietic automata are enumerated. That
is, this automaton will generate offsprings (direct descendants) with syntacti-
cally correct transition relations of a bounded length which will increase with
the depth of the tree on which the offsprings are located. If a generated transition
relation happens to be a transition relation of an autopoietic automaton that
reproduces on some input, then the nondeterministic input mode will guarantee
that the automaton at hand will reproduce.

Let B be the automaton we are after. Its transition relation δ will consist of
k five–tuples, for some k > 0 (see Definition 1) and will be written on the B’s
program tape in form of a binary code. This code will read the B’s program tape
tuple by tuple and copy the tape either faithfully or with some modifications. Call
any sequence of zeros representing a state or a symbol of Σ in the representation
of the transition relation of B as written on the B’s program tape, a segment.
A segment from the program tape will be transformed via δ into a segment on
the output tape according to the following rules:

– when reading a symbol in a segment, B nondeterministically decides whether
to copy or skip it; in the former case, it writes 0 on the output tape and in
both cases it proceeds to the next symbol in the program tape;

– after reaching the end of a segment, B will nondeterministically decide
whether to prolong the segment by one additional zero;

– after processing the last segment, B will nondeterministically decide whether
to add one tuple more to the generated transition relation, and if so, B will
generate it nondeterministically, respecting the syntax of the encoding stated
in Definition 1;

– in any tuple, the direction d of the move of the head on the program tape is
also a subject to a nondeterministic choice.

A separator between the segments (i.e., symbol 1) will be copied without any
change.

Having done so, B enters the final reproducing state. In this way, a bounded
number of offsprings of B is generated, one on each branch of the respective
nondeterministic computation. Each offspring possesses a syntactically correct
(encoding of a) transition relation, differing in all but one offspring in certain
segments from δ and containing at most one tuple more. The number of offsprings
is related to the length of the program tape of B (it is exponential in k). Not all
offsprings are functionally different since any transition relation admits a number
of equivalent representations. On the other hand, among the offsprings there are
all automata with the transition relation consisting of k or k + 1 tuples.

Now, all these offsprings start to act on their own. Thanks to the nonde-
terministic input mode those automata that can in principle reach the final
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reproducing state will get such an input which will eventually lead to their re-
production, indeed. The automata which cannot reproduce on any input will
either stuck in some state or fall into endless loops. In any case, some automata
will reproduce and give birth to still larger automata. In the worst case this
will be automata functionally identical to their parents, having an equivalent
transition relation but larger by one tuple. These automata will reproduce on
the same input as their parents did. Eventually, a sufficiently large automaton
not appearing in the lineage of its predecessors will be generated having a func-
tionally different transition function and reproducing on different inputs than
its parent.

In such a way the evolutionary process will continue, generating among other
automata also different automata of increasing size, covering increasingly larger
part of the space of all autopoietic automata. �

In the previous theorem we answered positively the question whether there
is an autopoietic automaton which under suitable inputs (supplied in a nonde-
terministic mode) leads to an unbounded evolution producing automata with
increasingly complex computational behavior. Now we will pose in a sense a re-
verse question. Namely, we will ask whether we can decide, for any autopoietic
automaton and any infinite input sequence, whether there is an infinite lineage of
automata whose members are all descendants of a given automaton on a given
input. This is the problem of sustainable evolution. We will show a negative
answer:

Theorem 4. The problem of sustainable evolution is undecidable.

Sketch of the proof. Let A be an autopoietic automaton and let S be a poten-
tially infinite sequence of inputs. In accordance with the results from Section 3
for each lineage starting by A there is a nondeterministic interactive Turing
machine simulating that lineage on S. Now it is obvious that the sustainability
problem can be transformed to the halting problem which is undecidable. �

It is interesting to compare the two previous results. While the first one as-
sures that there is an autopoietic automaton which, when “fed” by proper inputs,
will give rise to an unbounded evolution, the second result points to the fact that
in general we cannot decide whether an autopoietic automaton will give birth
to an infinite lineage of offsprings, under the given input. Thus, sustainability
seems to require either adaptation of machines to their environment, or changes
in the environment enabling the machines to survive, or both.

5 Conclusions

We have presented a novel model of offspring–producing automata based on the
notion of finite state transducers. This model allows studies of the algorithmic
variability of information controlling the computational behavior and replica-
tion of automata. This is achieved by enhancing the functional abilities of a
standard transducer by allowing it to read its own transition relation and based
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on it, to generate a transition relation of its offsprings. The transition relation of
an autopoietic automaton contains programs both for automaton’s information
processing tasks and for controlling its own evolution (via its offsprings). This
idea allows a fresh look at the mechanisms of variability and inheritance of the
“genetic information” passed from the parent to its offspring. Namely, in our
model the driving force behind the evolution is an algorithmic procedure which
itself can become a subject of an evolution driven by itself, so to say. In con-
trast to many previous approaches and speculations the evolution in our model
is not based primarily on random mutations of randomly chosen parts of the
controlling code, but on mutations which are algorithmically directed to those
parts of the code which can bring only syntactically correct changes in programs
controlling both the computational and evolutionary activities of the automaton
at hand. The results showing the equivalency with the interactive nondetermin-
istic Turing machines (Corollary 1) point to the great computing power of the
lineages of autopoietic automata. There exist autopoietic automata which under
suitable input conditions could give rise to unbounded complexity growth along
the lineages of offsprings of such automata (Theorem 3). This offers a positive
answer to the related open problem in the domain of artificial life. On the other
hand, Theorem 4 shows the fragility of such phenomena — in general one can-
not decide whether a lineage will evolve infinitely under given input conditions.
The potential of our model in artificial life modelling is the subject of author’s
ongoing research.
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Abstract. We present lower bounds on the computational power of an
optical model of computation called the C2-CSM. We show that C2-CSM
time is at least as powerful as sequential space, thus giving one of the
two inclusions that are necessary to show that the model verifies the
parallel computation thesis. Furthermore we show that C2-CSMs that
simultaneously use polynomial space and polylogarithmic time decide at
least the class NC.

1 Introduction

The computational model we study is relatively new and is called the continuous
space machine (CSM) [6,7,8,14,15,16]. The CSM is inspired by classical Fourier
optical computing architectures and uses complex-valued images, arranged in a
grid structure, for data storage. The program also resides in images. The CSM
has the ability to perform Fourier transformation, complex conjugation, mul-
tiplication, addition, thresholding and resizing of images. It has simple control
flow operations and is deterministic. We analyse the model in terms of seven
complexity measures inspired by real-world resources.

A rather general variant of the model was previously shown [14,16] to de-
cide the membership problem for all recursively enumerable languages, and as
such is unreasonable in terms of implementation. Also, the growth in resource
usage was shown for each CSM operation, which in some cases was unreasonably
large [14,15]. These results motivated the definition of the C2-CSM, a restricted
CSM.

Recently [14] we have given upper and lower bounds on the computational
power of the C2-CSM by showing that it verifies the parallel computation thesis.
This thesis [2,3,4,5,9,12] states that parallel time corresponds, within a polyno-
mial, to sequential space for reasonable parallel models. Furthermore we have
characterised the class NC in terms of the C2-CSM [14].

Here we present one of the two inclusions that are necessary in order to
verify the parallel computation thesis; we show that the languages accepted
by nondeterministic Turing machines in S(n) space are accepted by C2-CSMs
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computing in time O(S(n) + log n)4.

NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S(n) + log n)4)

For example polynomial time C2-CSMs accept the PSPACE languages. Also we
show that C2-CSMs that simultaneously use polynomial space and polylogarith-
mic time accept the class NC.

NC ⊆ C2-CSM–SPACE, TIME(nO(1), logO(1) n)

These inclusions are established via C2-CSM simulation of index-vector machines.

2 The CSM

We begin by informally describing the model, this brief overview is not intended
to be complete: Detailed definitions and discussions are to be found in [14,16].

Definition 1 (Image). A complex-valued image, or simply an image, is a func-
tion f : [0, 1)× [0, 1) → C, where [0, 1) is the half-open real unit interval.

We let I denote the set of all complex-valued images. Let N+ = {1, 2, 3, . . .}
and N = N+∪{0}. An address is an element of N×N. For a given CSM M we let
N be a countable set of images that encode M ’s addresses. Also for a given M
there is an address encoding function E : N → N such that E is Turing machine
decidable, under some reasonable representation of images as words [14].

Definition 2 (CSM). A CSM is a quintuple M = (E, L, I, P, O), where

E : N → N is the address encoding function
L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a, and b,
I = ((ι1ξ

, ι1η ), . . . , (ιkξ
, ιkη )) are the addresses of the k input images,

P = {(ζ1, p1ξ
, p1η), . . . , (ζr, prξ

, prη)} are the r programming symbols and
their addresses where ζj ∈ ({h, v, ∗, ·, +, ρ, st, ld, br, hlt} ∪ N ) ⊂ I,

O = ((o1ξ
, o1η ), . . . , (olξ , olη )) are the addresses of the l output images.

Each address is an element from {0, 1, . . . ,Ξ − 1} × {0, 1, . . . , Y − 1} where
Ξ, Y ∈ N+. Addresses a and b are distinct.

Addresses whose contents are not specified by P in a CSM definition are
assumed to contain the constant image f(x, y) = 0. We interpret the above
definition to mean that M is (initially) defined on a grid of images bounded by
the constants Ξ and Y, in the horizontal and vertical directions respectively.

In our grid notation the first and second elements of an address tuple refer
to the horizontal and vertical axes of the grid respectively, and image (0, 0) is
at the lower left-hand corner of the grid. The images have the same orientation
as the grid. Configurations are defined in a straightforward way as a tuple 〈c, e〉
where c is an address called the control and e represents the grid contents.

In Definition 2 the tuple P specifies the grid locations of programming sym-
bols ζj that are from the (low-level) CSM programing language [14,16]. Here
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h(i1;i2) : replace image at i2 with horizontal 1D Fourier transform (FT) of i1.
v(i1;i2) : replace image at i2 with vertical 1D FT of image at i1.
∗(i1;i2) : replace image at i2 with the complex conjugate of image at i1.
··· (i1,i2;i3) : pointwise multiply the two images at i1 and i2. Store result at i3.
+(i1,i2;i3) : pointwise addition of the two images at i1 and i2. Store result at i3.
ρ(i1,zl,zu;i2) : filter the image at i1 by amplitude using zl and zu as lower and upper

amplitude threshold images, respectively. Place result at i2.
[ξ′1, ξ

′
2, η

′
1, η

′
2] ← [ξ1, ξ2, η1, η2]: copy the rectangle of images whose bottom left-hand

address is (ξ1, η1) and whose top right-hand address is (ξ2, η2) to the
rectangle of images whose bottom left-hand address is (ξ′1, η

′
1) and whose

top right-hand address is (ξ′2, η
′
2). See illustration in Figure 2(c).

Fig. 1. CSM high-level programming language instructions. In these instructions
i, zl, zu ∈ N × N and ξ, η ∈ N. Control flow instructions are described in the text.

we introduce a less cumbersome, high-level, language. Figure 1 gives the basic
instructions of this high-level language. There are also if/else and while control
flow instructions with conditions of the form (fψ == fφ) where fψ, fφ are binary
symbol images (see Figure 2(a)). Finally there are user defined functions. For
convenience we write function input addresses before a ‘;’ and function output
addresses after the ‘;’. In Section 4 the reader will find example programs written
in this programming language. See [14] for technical details and arguments to
show that the low-level and high-level languages are equivalent.

Next we define some CSM complexity measures. All resource bounding func-
tions map from N into N and have the usual properties [1].

Definition 3. The time complexity of a CSM M is the number of configura-
tions in the computation sequence of M , beginning with the initial configuration
and ending with the first final configuration.

Definition 4. The grid complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

For example suppose M accepts language L, then the grid complexity of M
is the minimum number of images accessible by M and arranged in a rectangular
grid, such that M accepts exactly L.

Let S : I × (N × N) → I, where S(f(x, y), (Φ, Ψ)) is an image, with ΦΨ
constant-valued pixels arranged in Φ columns and Ψ rows, that approximates f .
If we choose a reasonable and realistic S then the details of S are unimportant.

Definition 5. The spatialRes complexity of a CSM M is the minimum ΦΨ
such that if each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ, Ψ)) then M computes correctly on all inputs.

Definition 6. The dyRange complexity of a CSM M is the ceiling of the
maximum of all the amplitude values stored in all of M ’s images during M ’s
computation.
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In previous treatments we also defined the complexity measures amplRes,
phaseRes and freq [14,15,16]. amplRes and phaseRes are measures of the
cardinality of discrete amplitude and phase values respectively of the com-
plex numbers in the range of CSM images. In the present work amplRes and
phaseRes both have constant value of 2 (due to Definition 8) which means
that all images are of the form f : [0, 1)× [0, 1) → {0,± 1

2 ,±1,± 3
2 , . . .}. Further-

more we are studying a restricted CSM to which freq does not apply. Often
we wish to make analogies between space on some well-known model and CSM
‘space-like’ resources. For this purpose we define the following convenient term.

Definition 7. The space complexity of a CSM M is the product of all of M ’s
complexity measures except time.

We have defined the complexity of a computation (sequence of configurations)
for each measure. We extend this definition to the complexity of a (possibly
non-final) configuration in the obvious way. Also, we sometimes talk about the
complexity of an image, this is simply the complexity of the configuration that
the image is in. More details on the complexity measures are be found in [16].

In [14,15] we defined the C2-CSM, a restricted class of CSM.

Definition 8 (C2-CSM). A C2-CSM is a CSM whose computation time is de-
fined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:

– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t each of spatialRes, amplRes and dyRange is O(2t) and

space is redefined to be the product of all complexity measures except time
and freq.

– Operations h and v compute the discrete FT (DFT) in the horizontal and
vertical directions respectively.

– Given some reasonable binary word representation of the set of addresses N ,
the address encoding function E : N → N is decidable by a logspace Turing
machine.

3 Index-Vector Machines and Representations

Here we introduce vector machines, and the variant that we simulate called
index-vector machines. We then describe our image representation of vectors.

The vector machine model was originally described by Pratt, Rabin
and Stockmeyer [10], here we mostly use the conventions of Pratt and
Stockmeyer [11]. A vector V is a binary sequence that is infinite to the left
only and is ultimately constant (after a finite number of bits every bit to the left
is either always 0 or always 1). The length of V , denoted |V |, is the length of the
non-ultimately constant part of V . An ultimately 0 sequence represents a positive
number and an ultimately 1 sequence represents a negative number [11,1]. The
non-constant part represents a positive binary integer in the usual way, with the
rightmost vector bit representing the least significant integer bit. The negative
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integer −n is represented by the bitwise complement of the vector representing
n. A vector machine (program) is a list of instructions where each is of the form
given in the following definition.

Definition 9 (Vector machine instructions and their meanings [1]).
Vector instruction Meaning

Vi := x Load the positive constant binary number x into vector Vi.
Vk := ¬Vi Bitwise parallel negation of vector Vi.
Vk := Vi ∧ Vj Bitwise parallel ‘and’ of two vectors.
Vk := Vi ↑ Vj If Vj is ultimately 0 (resp. 1) then shift Vi to the left

(resp. right) by the distance given by the binary number vj

and store the result in Vk. If Vj = 0 then Vi is copied to Vk.
Vk := Vi ↓ Vj If Vj is ultimately 0 (resp. 1) then shift Vi to the right

(resp. left) by the distance given by the binary number vj

and store the result in Vk. If Vj = 0 then Vi is copied to Vk.
goto m if Vi = 0 If Vi = 0 then branch to the instruction labelled m.
goto m if Vi �= 0 If Vi �= 0 then branch to the instruction labelled m.

Instructions are labelled to facilitate the goto instruction. Configurations,
(accepting) computations and computation time are all defined in the obvious
way. Computation space is the maximum over all configurations, of the sum of
the lengths of the vectors in each configuration. A language accepting vector
machine on input w has an input vector of the form ...000w where w ∈ 1{0, 1}∗.
In this work we consider only deterministic vector machines. See [1] for details.

Definition 10 (Index-vector machines [11]). A vector machine is of class
VI (equivalently, an index-vector machine) if its registers are partitioned into two
disjoint sets, one set called index registers and the other called vector registers,
such that (i) each Boolean operation in the program involves either only index
registers or only vector registers; and (ii) each shift instruction is of the form

V1 := V2 ↑ I, V1 := V2 ↓ I, I := J ↑ 1, I := J ↓ 1

where V1 and V2 are vector registers, and I and J are index registers. For lan-
guage recognition the input register is a vector register.

It is straightforward to prove the following lemma by induction on t.

Lemma 1 ([11]). Given index-vector machine M ∈ VI with n as the maximum
input length, there is a constant c such that vector length in index (respectively
vector) registers is bounded above by c+t (respectively 2c+t+n) after t timesteps.

Pratt and Stockmeyer’s [11] main result is a characterisation of the power
of index-vector machines. The characterisation is described by two inclusions,
proved for time bounded index-vector machines and space bounded Turing
machines:

NSPACE(S(n)) ⊆ VI–TIME(O(S(n) + log n)2) (1)
VI–TIME(T (n)) ⊆ DSPACE(O(T (n)(T (n) + log n))) (2)
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(a) (b) (c)

ξ ξ + 3

η
i

Fig. 2. Representing data by images. To represent the value ψ, the black point has value
ψ. The white area denotes value zero. (a) Binary symbol image fψ where ψ ∈ {0, 1}, or
number image where ψ ∈ {0,± 1

2
,±1,± 3

2
, . . .}, (b) binary list image where ψ ∈ {0, 1}.

(c) Illustration of the instruction i ← [ξ, ξ + 3, η, η] that copies four images to a single
image that is denoted i.

In other words, index-vector machines verify the parallel computation the-
sis and are a member of the second machine class [12]. Modulo a polynomial,
deterministic and nondeterministic vector machines have equal power [10].

3.1 Image Representation of Vectors

Let vi ∈ {0, 1}∗ denote the non-‘ultimately constant’ part of vector Vi. If the
ultimately constant part of Vi is 0ω (respectively 1ω) then let sign(vi) = 0 (re-
spectively let sign(vi) = 1). In this work we use binary symbol images, number
images and binary list images. These represent binary symbols, numbers from
{0,± 1

2 ,±1,± 3
2 , . . .}, and binary words in a straight-forward way that is illus-

trated in Figure 2. Further details are to be found in [14,16].
The vector Vi is represented by three images: vi, |vi| and sign(vi). The image

vi is the binary list image representation of vi. Image |vi| is the natural number
image represention of |vi| (the length of vi). Accessing these images respectively
incurs spatialRes and dyRange costs that are linear in |vi|. Image sign(vi) is
f0 (the binary symbol image representing 0) if sign(vi) = 0 and f1 if sign(vi) = 1.
We use the same representation scheme for vector program constants. The simu-
lation uses natural number images as addresses, which are clearly reasonable in
the sense of the C2-CSM definition. Hence addressing incurs a (linear) dyRange
cost. The three images types are illustrated in Figures 2(a) and 2(b).

Another issue to consider is the layout of the grid of images; where to place
input, program constants (f0, f1, f−1, f 1

2
, f2), local variables, etc. There are only

a constant number of such images hence there a number of layouts that work,
a specific grid layout is given in [14]. Rows 0 and 1 are used to store temporary
images. The only images explicitly referred to by numerical addresses are in
these two rows (all other addresses have identifier names from the outset).

4 C2-CSM Simulation of Index-Vector Machines

In this section we prove that C2-CSMs are at least as powerful as index-vector
machines (up to a polynomial in time). More precisely

VI–TIME(T (n)) ⊆ C2-CSM–TIME(O(T 2(n))). (3)
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To prove this we simulate each index-vector machine instruction in
O(log |Vmax|) time where |Vmax| ∈ N is the maximum length of (the non-
ultimately constant part of) any of the vectors mentioned in the instruction.
Additionally we simulate the index-vector shifts in linear time. From Lemma 1
this time bound ensures that our overall simulation executes in quadratic time,
which is sufficient for the inclusion given by Equation (3). The space bound on
the simulation is O(|Vmax|3). Some of the simulations are merely sketched, full
proofs are to be found in [14].

We begin by giving a straightforward simulation of vector assignment.

Theorem 1 (Vi := x). The vector machine assignment instruction Vi := x
is simulated by a C2-CSM in O(1) time, O(1) grid, O(|x|) dyRange and
O(max(|x|, |vi|)) spatialRes.

Proof. The images representing x are simply copied to those representing Vi:

assignment(x, |x|, sign(x); vi, |vi|, sign(vi))
vi ← x
|vi| ← |x|
sign(vi) ← sign(x)

end // assignment
We require O(max(|x|, |vi|)) spatialRes to represent x and vi as binary list

images. dyRange of O(|x|) is needed to represent |x| as a natural number image.
No address goes beyond the initial grid limits hence we use constant grid. ��

A C2-CSM can quickly generate a list image g, where each list element is
identical. We state the following lemma for the specific case that each list ele-
ment is a binary symbol image fψ. By simply changing the value of one input,
the algorithm generalises to arbitrary repeated lists (with a suitable change in
resource use, dependent only on the complexity of the new input image element).

Lemma 2 (generate list(fψ, l; g)). A list image g that contains l list elements,
each of which is a copy of input binary image fψ, is generated in O(log l) time,
O(l) grid, spatialRes and dyRange.

Proof (Sketch). The algorithm horizontally juxtaposes two copies of fψ and
rescales them to a single image. This juxtaposing and rescaling is repeated on
the new image; the process is iterated a total of )log l* times to give a list of
length 2log l�, giving the stated time bound. In constant time, the list image
is then stretched to its full length across 2log l� images, l juxtaposed images are
then selected and rescaled to a single output image g. O(l) spatialRes is nec-
essary to store the list in a single image. O(l) grid is used to stretch the list out
to its full length. Recall that we are using natural number images for addresses,
hence O(l) dyRange is used to stretch the list across 2log l� images. ��
Theorem 2 (Vk := ¬Vi). The vector machine negation instruction Vk := ¬Vi

is simulated by a C2-CSM in O(log |vi|) time, O(|vi|) grid and dyRange, and
O(max(|vk|, |vi|)) spatialRes.
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¬(vi, |vi|, sign(vi); vk, |vk|, sign(vk))

generate list(f−1, |vi|; list neg ones) // generate list of −1s
··· (vi,list neg ones;−vi) // change each 1 in vi to −1
generate list(f1, |vi|; list ones) // generate list of 1s
+(−vi,list ones;vk) // change −1s to 0s, 0s to 1s, & place in vk

if ( sign(vi) == f1 ) then sign(vk) ← f0

else sign(vk) ← f1 end if

end // ¬

Program 4.1. Simulation of Vk := ¬Vi

Proof. Program 4.1 simulates Vk := ¬Vi. The program generates a list of −1s of
length |vi|. This list image is then multiplied by vi; changing each 1 in vi to −1
and leaving each 0 unchanged. Then we add 1 to each element in the resulting list.
A simple if statement negates sign(vi). Each call to the function generate list(·)
requires O(log |vi|) time, otherwise time is constant. The remaining resource
usages are for accessing vectors and rescaling them to their full length. ��

The proof of the following straightforward lemma gives a program that de-
cides which of two vectors is the longer in constant time. It also shows that we
can decide the max or min of two integer images in constant time.

Lemma 3 (max(·) and min(·)). The max (or min) length of the vectors Vi

and Vj is decided in O(1) time, O(1) grid, O(max(|vi|, |vj |)) spatialRes,
O(max(|vi|, |vj |)) dyRange.

Proof (Sketch). The function header for max(·) is formatted as follows:

max(vi, |vi|, sign(vi), vj , |vj |, sign(vj); longest, |longest|, sign(longest))

The encoding of −|vi| is created by the instruction ··· (|vi|,f−1;−|vi|), then the
max(·) algorithm thresholds the value |vj | − |vi| to the range [0, 1]. If the result
is the zero image f0 then Vi is the longer vector and its representation is copied
to the three output addresses, else the representation of Vj is output. In a simi-
lar way we decide the min length of two vector images, the function header for
min(·) has the format:

min(vi, |vi|, sign(vi), vj , |vj |, sign(vj); shortest, |shortest|, sign(shortest)) ��
Theorem 3 (Vk := Vi ∧ Vj). The vector machine instruction Vk := Vi ∧ Vj

is simulated by a C2-CSM in O(log max(|vi|, |vj |)) time, O(max(|vi|, |vj |, |vk|))
spatialRes, and O(max(|vi|, |vj |)) grid and dyRange.

Proof. Program 4.2 simulates ∧. It uses multiplication of vector images to sim-
ulate Vi ∧ Vj in parallel. However if |vi| 
= |vj |, we first pad the shorter vector
image with zeros so that both have equal length. To find the longer and shorter
of the two vectors we make use of the max(·) and min(·) routines given above.
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∧ (vi, |vi|, sign(vi), vj , |vj |, sign(vj); vk, |vk|, sign(vk) )

max(vi, |vi|, sign(vi), vj , |vj |, sign(vj); longest, |longest|, sign(longest))
min(vi, |vi|, sign(vi), vj , |vj |, sign(vj); shortest, |shortest|, sign(shortest))
if ( sign(longest) == f1 ) then
··· (f−1,|shortest|;−|shortest|)
+(longest,−|shortest|;difference)
generate list(f1, difference; pad)
[1,|shortest|,1,1] ← shortest
+(|shortest|,f1;|shortest|+1)
[|shortest|+1,|longest|,1,1] ← pad
padded shortest ← [1,|longest|,1,1]

else
[1,|longest|,1,1] ← f0

[1,|shortest|,1,1] ← shortest
padded shortest ← [1,|longest|,1,1]

end if
··· (longest,padded shortest;vk) // a single multiplication simulates vi ∧ vj

··· (sign(longest),sign(shortest);sign(vk))
|vk| ← |longest|

end // ∧

Program 4.2. Simulation of Vk := Vi ∧ Vj

The program requires O(log max(|vi|, |vj |)) time for the generate list(·) call
(the worst case is when exactly one of the vectors is of length 0). The remainder
of the program runs in O(1) time, including determining which vector is longer,
padding of the shorter vector and parallel multiplication of vectors. The remain-
ing resource usages on vector images in the theorem statement are for accessing
and storing to a single image, and stretching to full length. ��

Next we give algorithms to simulate vector left shift and right shift. The main
idea is to copy large numbers of images to simulate shifting.

Lemma 4 (left shift(n, vi, |vi|, sign(vi); vk, |vk|, sign(vk))). A left shift of dis-
tance n � 0 on a vector Vi, to create vector Vk, is simulated in O(1) time,
O(|vi + n|) grid and dyRange, and O(max(|vi + n|, |vk|)) spatialRes.

Proof (Sketch). The algorithm assumes that n is given as a natural number
image. We simulate the shift by stretching vi out to its full length, placing n
zero images to the right of the stretched vi, and then selecting all of vi along with
the n zeros and rescaling back to one image. After the shift (in accordance with
the definition of vector shift), 0s are to be placed in the rightmost positions. ��

An algorithm for right shift(·) would work similarly. However this time we
select the leftmost |vi| − n images of the stretched vi. If n � |vi| the output is
the representation of the zero vector.
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↑ (vi, |vi|, sign(vi), vj , |vj |, sign(vj); vk, |vk|, sign(vk) )

shift distance ← f0

current bit ← |vj |
current power 2 ← f1

[1,|vj |,0,0] ← vj

ρ(|vj |,f0,f1;flag)
while ( flag == f1 ) do

if ( sign(vj) == f0 ) then
if ( [current bit,current bit,0,0] == f1 ) then

+(shift distance,current power 2;shift distance)
end if

else
if ( [current bit,current bit,0,0] == f0 ) then

+(shift distance,current power 2;shift distance)
end if

end if
··· (current power 2,f2;current power 2)
+(current bit,f−1;current bit)
ρ(current bit,f0,f1;flag)

end while
if ( sign(vj) == f0 ) then

left shift(shift distance, vi, |vi|, sign(vi); vk, |vk|, sign(vk))
else right shift(shift distance, vi, |vi|, sign(vi); vk, |vk|, sign(vk)) end if

end // ↑

Program 4.3. Simulation of Vk := Vi ↑ Vj

Theorem 4 (Vk := Vi ↑ Vj). The vector machine instruction Vk := Vi ↑ Vj is
simulated by a C2-CSM in O(|vj |) time, O(|vi|+2|vj |) grid and dyRange, and
O(max(|vk|, |vi| + 2|vj |)) spatialRes.

Proof. Program 4.3 simulates the shift by stretching Vi out to its full length;
then selecting either part of Vi, or Vi and some extra zero images; and finally
rescaling back to one image. The simulator’s addresses are represented by natural
number images whereas vectors are represented by binary list images. In order
to perform the stretching the program converts the binary number defined by
Vj to a natural number image called shift distance.

The while loop efficiently generates a value of O(2|vj |) in O(|vj |) time. At
different stages of the algorithm each of vi and vj are rescaled to their full length,
across |vi| and |vj | images respectively. We get the value O(|vi|+ 2|vj |) for grid
since in the worst case Vi is left shifted by the value 2|vj|, and (when stretched)
the resulting vector spans O(|vi| + 2|vj|) images. This upper bound also covers
the right shift case (when Vj is negative). Analogously we get the same value for
spatialRes and dyRange (except |vk| is also in the spatialRes expression as
it could contain some values before the program executes). ��
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The converse shift instruction (Vk := Vi ↓ Vj) is simulated by Program 4.3
except that the calls to right shift(·) and left shift(·) are exchanged. The resource
usage remains the same.

The proof of the following lemma gives a log time algorithm to decide if a
list or vector image represents a word that consists only of zeros. It is possible
to give a constant time algorithm that makes use of the FT (to ‘sum’ the entire
list in constant time). Not using the FT enables us to state Corollary 6.

Lemma 5. A C2-CSM that does not use Fourier transformation decides whether
or not a list (equivalently vector) image vi represents the word 0|vi| in O(log |vi|)
time, O(|vi|) grid, spatialRes and dyRange.

Proof (Sketch). The binary list image vi is padded with zeros so that is of length
2log |vi|�. The algorithm splits vi into a left half and a right half, adds both halves
(in a one step parallel pointwise fashion), and repeats until the list is of length
1. A counter image keeps track of list length. The resulting image is thresholded
below by f0 and above by f1. If the result is the zero image then vi represents
a list of zeros, otherwise vi represents a list with at least one 1. ��
Theorem 5 (goto m if Vi = 0). The vector machine instruction goto m if
Vi = 0 (or goto m if Vi 
= 0) is simulated by a C2-CSM in O(log |vi|) time,
O(|vi|) grid, spatialRes, and dyRange.

Proof. Due to the vector machine number representation, there are exactly two
representations for 0; the constant sequences . . . 000 and . . . 111. Using our C2-
CSM representation of vectors, if |vi| = 0 then the vector Vi is constant, and
hence represents 0. We can test |vi| = 0 in constant time with an if statement.

However, it may be the case that |vi| = n > 0 and yet Vi represents 0. In
this case vi represents a list of 0s (respectively 1s) and sign(vi) represents 0
(respectively 1). A sequential search through vi will require exponential time
(worst case) and as such is too slow. Instead we use the log time technique
given by the previous lemma. In the case that Vi is ultimately 1 we make use
of the ¬(·) program defined in Theorem 2. For the goto part of the instruction
we merely note that gotos are simulated by ifs and whiles. Clearly the related
instruction ‘goto m if Vi 
= 0’ is simulated with the same resource usage. ��

Given a vector machine M there is a C2-CSM M ′ that simulates M . In
particular, if vector machine M decides a language L then we can easily modify
our simulation of vector machines so that M ′ decides L.

Theorem 6. Let M be an index-vector machine that decides L ∈ {0, 1}∗ in time
T (n) for input length n. Then L is decided by a C2-CSM M ′ in O(T 2(n)) time,
O(2T (n)) grid, spatialRes and dyRange.

Proof. By Lemma 1 M ’s index-vectors have length O(T (n)), while unrestricted
vectors have length O(2T (n)). From the above simulation theorems, any non-
shifting instruction is simulated in time that is log of the length of the vectors.
The remaining operations, right and left shift, are simulated in time that is
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linear in the length of their index-vector input. From these bounds it is straight-
forward to work out that M decides L in O(T 2(n)) time and that each of grid,
spatialRes and dyRange is O(2T (n)). ��

From the previous theorem M ′ uses O(23T (n)) space to decide L, hence our
simulation uses space that is cubic in the space of M .

Corollary 1. VI–TIME(T (n)) ⊆ C2-CSM–TIME(O(T 2(n)))

Let S(n) = Ω(log n). From the inclusion in Equation (1) we get:

Corollary 2. NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S(n) + log n)4)

Combining this result with the upper bound on time bounded C2-CSM
power [14]:

Corollary 3. NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S(n) + log n)4)
⊆ DSPACE(O(S(n) + log n)8))

To summarise, the C2-CSM satisfies the parallel computation thesis:

Corollary 4. NSPACE(SO(1)(n)) = C2-CSM–TIME(SO(1)(n))

This links space bounded sequential computation and time bounded C2-CSM
computation. For example C2-CSM–TIME(nO(1)) = PSPACE. We strengthen
this result by restricting the C2-CSM. Let a 1D-C2-CSM be a C2-CSM with
constant grid and spatialRes, in one of the vertical or the horizontal directions.

Corollary 5. The 1D-C2-CSM verifies the parallel computation thesis.

Proof. The index-vector machine simulation used only constant grid and spa-
tialRes in the vertical direction. Moreover we can rotate the grid layout and all
images by 90◦, to obtain a simulation where grid and spatialRes are constant
in the horizontal direction only. ��
Corollary 6. The C2-CSM without the DFT operations h and v verifies the
parallel computation thesis.

Proof. Our C2-CSM simulation of index-vector machines did not use h nor v. ��
The thesis relates parallel time to sequential space, however in our simulations

we explicitly gave all resource bounds. As a final result we show that the class of
C2-CSMs that simultaneously use polynomial space and polylogarithmic time
decide at least the languages in NC. Let C2-CSM–SPACE, TIME(S(n), T (n))
be the class of languages decided by C2-CSMs that use space S(n) and time

T (n). It is known [5] that VI–SPACE, TIME(nO(1), logO(1) n) = NC. From the
resource overheads in our simulations:

VI–SPACE, TIME(O(2T (n)), T (n))

⊆ C2-CSM–SPACE, TIME(2O(T (n)), T O(1)(n))

For the case of T (n) = logO(1) n we have our final result.

Corollary 7. NC ⊆ C2-CSM–SPACE, TIME(nO(1), logO(1) n)

In [14] it was shown that the converse inclusion also holds.
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5 Discussion

We have given lower bounds on C2-CSM power in terms of space and NC com-
plexity classes via simulation of index-vector machines. The quadratic time
bound for index-vector simulation is reasonably tight. In a certain sense this
is not surprising; both are SIMD models. Possibly the power in Corollary 2
could be reduced from 4 to 2 by direct Turing machine simulation.

The simulation uses the reasonable (we argue) natural number representa-
tion of images. This incurs a dyRange cost that is a constant times the longest
vector. Since the binary values in vectors are represented by images with con-
stant dyRange, it would be interesting if another addressing scheme could be
employed that works (say) on binary values (e.g. binary list image addresses).
We believe that dyRange could be reduced without a significant increase in the
other measures. Simultaneously, a constant grid simulation might be possible,
the main problem is to simulate vector shifts while using at most constant grid.
By using these trade-offs we conjecture that space can be reduced to be linear
in index-vector machine space, with only a polynomial increase in time.

In addition to fulfilling our needs of giving a lower bound on C2-CSM power,
the results in this paper are useful to the practitioner since we have given a
method to directly translate vector machine algorithms to optical algorithms.

Interestingly we did not make use of Fourier transformation in the simulation.
Optical computers are often celebrated for having a constant time FT operation.
Our results prove that the C2-CSM has remarkable power without explicitly using
the FT. However in a more fine grained analysis, say using the C2-CSM to design
algorithms for NC and AC problems, some advantages of Fourier transformation
would be observed.
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Abstract. In this paper we pursue two targets. First, showing that
counterfactual computation can be rigorously formalised as a quantum
computation. Second, presenting a new counterfactual protocol which
improve previous protocols. Counterfactual computation makes use of
quantum mechanics’ peculiarities to infer the outcome of a quantum
computation without running that computation. In this paper, we first
cast the definition of counterfactual protocol in the quantum program-
ming language qGCL, thereby showing that counterfactual computation
is an example of quantum computation. Next, we formalise in qGCL a
probabilistic extension of counterfactual protocol for decision problems
(whose result is either 0 or 1). If pr

G denotes for protocol G the probability
of obtaining result r “for free” (i.e. without running the quantum com-
puter), then we show that for any probabilistic protocol p0

G + p1
G ≤ 1 (as

for non-probabilistic protocols). Finally, we present a probabilistic pro-
tocol K which satisfies p0

K + p1
K = 1, thus being optimal. Furthermore,

the result is attained with a single insertion of the quantum computer,
while it has been shown that a non-probabilistic protocol would obtain
the result only in the limit (i.e. with an infinite number of insertions).

1 Introduction

Counterfactuality is the fact that the sole possibility for an event to occur allows
one to gain some information about that event, even though it did not actu-
ally occur. Counterfactual computation [4,5] uses peculiar features of quantum
mechanics to infer counterfactual statements about the result of a computation.
In particular, it is possible to devise methods for probabilistically inferring the
outcome of a computation without actually running the computation: the mere
fact that the quantum computer implementing that computation might have run
is sufficient.

One of the first examples of counterfactuality was given by Elitzur and Vaid-
man [1] with the so-called interaction-free measurements. That technique allows
determining the presence of an object by means of a test particle, possibly with
no “interaction” occurring between the object and the test particle. A potential
application of this technique is the acquisition of the image of an object without
any light or other radiation interacting with the object (see [8] for example). If

C.S. Calude et al. (Eds.): UC 2005, LNCS 3699, pp. 251–266, 2005.
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one replaces the object with a quantum computer implementing some computa-
tion C and the test particle with the computer’s “switch”, it is then possible to
know the outcome of computation C without the computer ever being turned
on. This application of quantum mechanics is known as counterfactual compu-
tation and it was firstly introduced by Jozsa [4] and then further formalised by
Mitchison and Jozsa [5].

The aim of this paper is two fold:

1. to show how a programming language, qGCL [7], can be used for rigorously
describing and reasoning about counterfactual computation, thereby embed-
ding it in a more general framework, which in particular includes classical,
probabilistic and quantum computation;

2. to present a new example of counterfactual computation, along with its proof
of correctness in qGCL. In particular, we consider a probabilistic extension
of counterfactual computation.

We assume the reader has some knowledge of the basics of quantum computing.

2 Quantum Programming

We give here a short presentation of the features of qGCL (a full introduction
can be found in [7]). qGCL has been used to describe and reason about all
known quantum algorithms and to derive the Deutsch-Jozsa algorithm from its
specification. The problem of compiling qGCL code has been studied in [9].

2.1 Quantum Types

We define the type =̂ {0, 1}, which we will treat as booleans or bits, depending
on convenience. A classical register of size n: is a vector of n booleans. The
type of all registers of size n is then defined to be the set of boolean-valued
functions on {0, 1, . . . , n − 1}:

n =̂ {0, 1, . . . , n − 1} −→ .

The quantum analogue of n is the set of complex-valued functions on n

whose squared modulus sum to 1:

q( n) =̂ {χ: n −→ |
∑
x: n

|χ(x)|2 = 1} .

An element of q( ) is called a qubit and that of q( n) a qureg. Classical state
is embedded in its quantum analogue by the Dirac delta function:

δ: n −→ q( n)
δx(y) =̂ (y = x) .

The range of δ, {δx | x: n}, forms a basis for quantum states, that is:

∀χ:q( n) • χ =
∑
x: n

χ(x)δx .
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The Hilbert space n −→ (with the structure making it isomorphic to
2n

) is called the enveloping space of q( n). The usual scalar product becomes
the application 〈·, ·〉:q( n) × q( n) → defined by:

〈ψ, φ〉 =̂
∑
x: n

ψ(x)∗φ(x)

where z∗ is the complex conjugate of z: . The norm of ψ is ‖ψ‖ =̂ 〈ψ, ψ〉 1
2 .

2.2 Quantum Language qGCL

qGCL is an extension of pGCL [6], which in turn extends Dijkstra’s guarded-
command language with a probabilistic choice constructor in order to address
probabilism. The BNF syntax for qGCL is as follows:

〈qprogram〉 ::= 〈qstatement〉{ � 〈qstatement〉}
〈qstatement〉 ::=χ := 〈unitary op〉(χ) |

Fin(〈identifier〉, 〈identifier〉, 〈identifier〉) |
In(〈identifier〉) |
skip |x := e | 〈loop〉 | 〈conditional〉 |
〈nondeterministic choice〉 |
〈probabilistic choice〉 | 〈local block〉

χ ::= 〈identifier〉
〈loop〉 ::=while 〈cond〉 do 〈qstatement〉 od
〈cond〉 ::= 〈boolean expression〉

〈conditional〉 ::= 〈qstatement〉� 〈cond〉 � 〈qstatement〉
executes the LHS if predicate 〈cond〉 holds

〈nondeterministic choice〉 ::= 〈qstatement〉 � 〈qstatement〉
〈probabilistic choice〉 ::= 〈qstatement〉 p⊕ 〈qstatement〉

executes LHS (RHS) with probability p (1 − p)
〈local block〉 ::=var • 〈qstatement〉 rav

where without loss of clarity we omitted the formal definitions of 〈identifier〉
and 〈boolean expression〉; 〈unitary op〉(χ) is just some mathematical expression
involving qureg χ - such expression should of course denote a unitary operator.

Probabilistic choice may be written using a prefix notation, in case the
branches are more than two. Let [ (pj , rj) | 0 � j < m ] be a finite indexed family
of (program, number) pairs with

∑
j rj = 1, then the probabilistic choice in which

pj is chosen with probability rj is written in prefix form: ⊕[ pj @ rj | 0 � j < m ].
Initialisation is a procedure which simply assigns to its qureg state the uni-

form square-convex combination of all standard states

∀χ:q( n) • In(χ) =̂

(
χ :=

1√
2n

∑
x: n

δx

)
.
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Quantum-mechanical systems evolve over time under the action of unitary
transformations. Evolution thus consists of iteration of unitary transformations
on quantum state. Evolution of qureg χ under unitary operator U is described
via the assignment χ := U(χ). The well-known no-cloning theorem forbids any
assignment χ := U(ψ) if (syntactically) χ 
= ψ.

The content of a qureg can be read (measured) through quantum procedure
Finalisation and suitable observables. An observable is defined from a family
of pairwise orthogonal subspaces which together span the enveloping space of
the qureg being read. Let O be an observable defined by the family of pairwise
orthogonal subspaces {Sj | 0 � j < m}. In our notation we write Fin(O, i,χ)
for the measurement of O on a quantum system described by state χ:q( n),
where i stores the result determining the subspace to which state χ is reduced.
Finalisation is entirely defined using the probabilistic combinator of pGCL (see
[7] for an unabridged treatment); in our notation we write:

Fin (O, i,χ) =̂ ⊕
[ (

i,χ := j,
PSj (χ)
‖PSj (χ)‖

)
@ 〈χ, PSj (χ)〉 | 0 � j < m

]
where PSj is the projector onto subspace Sj . We denote by Δ the observable
spanned by the computational basis, also known as diagonal measurement.

Semantics for pGCL (and in turn for qGCL) can be given either relation-
ally [3] or in terms of expectation transformers [6]. We shall use the latter, due
to its simplicity in calculations. Expectation-transformer semantics is a prob-
abilistic extension of the predicate-transformer one. In predicate-transformer
semantics a transformer maps post-conditions to their weakest pre-conditions.
Analogously, an expectation transformer represents a computation by mapping
post-expectations to their greatest pre-expectations. We shall retain the wp pre-
fix notation of predicate-transformer calculus for convenience and we denote the
greatest pre-expectation of post-expectation q on program P by wp.P.q. For a
standard predicate p we denote by [p] its embedding into expectation trans-
formers: the greatest pre-expectation wp.P.[p] is then the maximum guaranteed
probability that p holds after the execution of P .

In the Appendix we briefly review expectation-transformer semantics and
some associated programming laws used in this paper.

3 Counterfactual Computation

3.1 An Example

We begin by giving the simple example of counterfactual computation introduced
by Jozsa [4]. Suppose we are given a decision problem (i.e. a problem with
a binary solution, “yes” or “no”) and a quantum computer Q with an “on-
off” switch programmed to solve that problem when the switch is set to “on”.
Therefore we need a qubit to represent the switch and another qubit for the result
of the computation. The computer might need an extra qureg to use during its
functioning, but we assume that Q works reversibly, so that at the end of the
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computation the output will be placed in the output register as bit-wise XOR.
We map “off/on” and “no/yes” to δ0/δ1, so for example δ00 means switch at
“off” and result “no”. The functioning of the computer is thus:

Q(δij) =̂ δi(j⊕r)

where ⊕ is bit-wise XOR and r is the result of the problem. We suppose that
the computation takes at most a finite time T .

From Table 1 we see that for r = 0 the computer behaves as the identity
transform, i.e. “do nothing”, while for r = 1 it behaves as the well known
CNOT transform over the switch and output qubits. By assuming that switch
and output are encoded by qureg χ, we can readily model Q by program QC:

QC(χ) =̂ (QC0(χ) � QC1(χ))

QC0(χ) =̂ skip , QC1(χ) =̂ χ := CNOT (χ)

thus representing our ignorance about the inner working of the computer and
the result of the decision problem. The goal is to start with the switch “off” and,
after at least a time T , to determine which operation skip or CNOT has been
performed, without setting the switch to “on”.

Table 1. Functioning of the quantum computer Q

r = 0 r = 1

δ00 → δ00 δ00 → δ00 switch “off”
δ01 → δ01 δ01 → δ01 switch “off”

δ10 → δ10 δ10 → δ11 switch “on”
δ11 → δ11 δ11 → δ10 switch “on”

Consider the following program N :

N =̂ [ χ := δ00 � χ := H ⊗ (χ) � QC(χ) � χ := H ⊗ (χ) ]

where χ:q( 2), is the identity transform over qubits, and H is the single-qubit
Hadamard transform defined as:

H :q( ) → q( )

H(δx) =̂
1√
2
(δ0 + (−1)xδ1) .

We show that if the result of the problem is 1, then N can probabilistically infer
it with probability 1

4 , without running the computer. We reason on program N :

N

= law A-2, definition of H

χ := 1√
2
(δ00 + δ10) � QC(χ) � χ := H ⊗ (χ)
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= definition of QC and law A-3

[χ := CNOT( 1√
2
(δ00 + δ10))] � [χ := 1√

2
(δ00 + δ10) � skip] � χ := H ⊗ (χ)

= definition of CNOT and skip identity

[χ := 1√
2
(δ00 + δ11)] � [χ := 1√

2
(δ00 + δ10)] � χ := H ⊗ (χ)

= laws S-3, A-3

[χ := H ⊗ ( 1√
2
(δ00 + δ11))] � [χ := H ⊗ ( 1√

2
(δ00 + δ10))]

= definition of H

[χ := 1
2 (δ00 + δ01 + δ10 − δ11)] � [χ := δ00]

Suppose we now measure χ in the standard basis: if r = 0 (i.e. RHS of the
nondeterministic choice) we always measure 00 and, because with probability
1
4 we may measure 00 when r = 1, we cannot reliably infer the result of the
computation. Suppose now r = 1: with probability 1

4 we measure 10 and we
know for sure that 1 is the result of the problem. Furthermore, the computer has
not run, because if it had the output register (initially set to 0) should display
1. Therefore, if r = 1, with probability 1

4 we learn the result of the problem
without running the computer! The output 10 is thus a counterfactual outcome.
Finally, with probability 1

4 each we measure 01 and 11, thereby learning that
r = 1, but the computer has run (the output register has changed).

3.2 Formal Definition

We now code in qGCL the definition of protocol given by Mitchison and Jozsa
[5]. For a datatype D we denote by seq(D) the datatype of finite sequences of
elements of type D.

Definition 1. A protocol G is a terminating program of the following type:

G =̂ var χ:q( n), o:seq( n), ψ:q( p), s: p • body � Fin(Δ, s, ψ) rav

where:

1. body, according to Mitchison and Jozsa [5], is “a sequence of steps where
each step is one of the following:
(a) A unitary operation (not involving the computer) on a finite number of

specified qubits.
(b) A measurement on a finite number of specified qubits.
(c) An ‘insertion of the computer’ QC, where the state of two selected qubits

is swapped into the switch and output registers of the computer.”
2. o returns the list of outcomes of the measurements of steps of type (b).

In order to formally describe what we mean by saying that the computer has
not run, we procede as follows. After each insertion of QC we project the state
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over two orthogonal subspaces, the “off” and “on” subspaces, by entangling it
with a qubit from ψ. That transformation is defined as:

E:q( n) → q( n+1)

E(v) =̂ (Pδ0 ⊗ )v ⊗ δ0 + (Pδ1 ⊗ )v ⊗ δ1.

We note that we need as many qubits as the number of insertions of the com-
puter. The action of E is thus to create two coherent superpositions of the state
vector, one ‘living’ in the off subspace, the other living in the on subspace. By
measuring ψ at the end of the computation we can recognise a computation
which has always taken place in the (desirable) off subspace: in that case ψ
would reduce to δ0p (equivalently, s is the p-bit string 0, an “all-off” string). Our
method is equivalent to the graphical history approach of Mitchison and Jozsa
[5]: o and s collectively denote a history. The advantage of our approach is that
it embeds all the necessary concepts in a single, general-purpose programming
formalism.

We are now ready to formalise the definition of counterfactual computation
in qGCL.

Definition 2. Given a protocol G, a sequence m:seq( n) is a counterfactual
outcome of type r: if the following two conditions hold:

(1) ∀c: m • wp.Gr .[ o = m, s = c ] = 0 iff c 
= 0

(2) wp.G1−r .[
∑

χi:M
χi = 0 ] = 1

where M is the set of state vectors for which o = m, and Gr denotes protocol G
when QC = QCr, i.e. only operation QCr is performed by the computer.

Condition (1) states that if QCr is used in the protocol, then m is seen iff the
(only) computation leading to it has always stayed in the off subspace. Therefore
we can infer the result (r) of the problem for “free”, since the switch of the
quantum computer was always found at off. Condition (2) states that when
QC1−r is used, then all the computations leading to m annihilate themselves,
by means of the so-called destructive interference. That implies wp.G1−r.[o =
m] = 0, i.e. m never occurs (the converse needs not to hold) and we are sure
that the result of the problem is r.

3.3 Limits on Counterfactual Computation

In this section we show how qGCL can be effective in reasoning about coun-
terfactual computation. We begin by noting that a sequence of measurement
outcomes cannot be a counterfactual outcome of type 0 and 1 at the same time.
That is, if we define CFG(t) as the set of counterfactual outcomes of type t for
protocol G, then the sets CFG(0) and CFG(1) are disjoint.

Theorem 1. For any protocol G we have that CFG(0) ∩ CFG(1) = ∅.
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Proof. A contradiction arises between condition (2) for m:CFG(0) and condition
(1) for m:CFG(1). ��

Let p0
G and p1

G denote the probability of learning “for free” outcomes 0 and
1 respectively, in a protocol G; in our notation we write:

∀r: • pr
G =̂

∑
m:seq( n)

wp.Gr .[ o = m, s = 0 ].

The sum is well defined as G always terminates. One may wish to design a pro-
tocol for which both p0

G and p1
G are greater than 0 and perhaps p0

G + p1
G > 1.

Mitchison and Jozsa [5] stopped further conjectures, showing that for any pro-
tocol the two probabilities sum to at most 1. We replay here their result in our
formalism.

Theorem 2 (Mitchison and Jozsa). For any protocol G we have:

p0
G + p1

G � 1 .

Proof. We reason:

p0
G + p1

G

= definition of pr
G∑

t:

∑
m:seq( n) wp.Gr.[ o = m, s = 0 ]

= logic and definition of CFG(·)∑
m:CFG(0) wp.G0.[ o = m, s = 0 ] +

∑
l:CFG(1) wp.G1.[ o = l, s = 0 ]

= in the off subspace wp.G0 = wp.G1∑
m:CFG(0) wp.G0.[ o = m, s = 0 ] +

∑
l:CFG(1) wp.G0.[ o = l, s = 0 ]

= Theorem 1∑
m:CFG(0) wp.G0.[ o = m, s = 0 ]

� logic∑
m:seq( n) wp.G0.[ o = m, s = 0 ]

= wp-semantics and 1 top element

wp.G0.[ s = 0 ] � 1 ��

Mitchison and Jozsa also derived complexity constraints between pr
G and the

number of times the computer is inserted. They showed that for any protocol
G such that p0

G + p1
G = 1 − ε, the number of insertions of the computer must

necessarily tend to infinity as ε tends to 0.
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4 Probabilistic Extension

In this section we formalise in qGCL a probabilistic extension of counterfactual
computation proposed by Mitchison and Jozsa [5]. In particular, we consider the
case in which we allow a relaxation of condition (1) of definition 2, while (2) is
carried over intact.

Definition 3. Given a protocol G, a sequence m:seq( n) is an approximate
counterfactual outcome of type r: if the following two conditions hold:

(1′) wp.Gr.[ o = m, s 
= 0 ] < ε

(2′) wp.G1−r.[
∑

χi:M
χi = 0 ] = 1

where ε is a small real in the (0, 1] interval.

Condition (1′) implies that, when using QCr in the protocol, m may arise from
a computation which does not lie in the off subspace, i.e. the computer has run
throughtout the protocol. However, the probability of such an event is bounded
by the small number ε. It is of course expected that the computation of the
off subspace leading to m has probability greater than ε. Together, the two
conditions ensure that when we see m the answer to the decision problem is r
(because of (2′)), and with high probability the computer has not run.

Probabilistic protocols (i.e. protocols which feature approximate counterfac-
tual outcomes) face some of the limitations of non-probabilistic ones.

Theorem 3. For any probabilistic protocol G we must have p0
G + p1

G ≤ 1.

Proof. The proof of Theorem 2 still applies, as condition (2′) is what ensures
that an outcome can be only be measured under either Gr or G1−r. ��
However, probabilistic protocols do not require an infinite number of insertions
of the computer in order to reach the limit 1. The next example shows that a
single insertion suffices.

4.1 Probabilistic Protocol

We describe a probabilistic protocol which can infer the answer to the decision
problem with certainty, but requires a run of the quantum computer with prob-
ability 1

2 . We first draft the functioning of the protocol in words, then we code
it in qGCL, and we finally prove its correctness. Again, for simplicity we write
the state of the switch and of the output qubits as a single qureg.

We start with the switch and output register in the equally-weighted su-
perposition of standard states, that is χ = 1

2

∑
i: 2 δi. Then we perform phase

inversion on state δ11, thus giving χ = 1
2 (δ00 + δ01 + δ10 − δ11). We apply the

quantum computer:

χ =

{
v0 =̂ 1

2 (δ00 + δ01 + δ10 − δ11) if r = 0
v1 =̂ 1

2 (δ00 + δ01 + δ11 − δ10) if r = 1
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We now measure χ using observable { v0, v1, ( v0 ⊕ v1)⊥} where vi is
the unidimensional spaces spanned by vi and ⊥ denotes orthogonality. Since
v0 ⊥ v1, we are thus able to learn r with certainty and we do not perturb state
χ. A subsequent measurement of the switch qubit reduces χ to its off subspace
(i.e. switch set to 0) with probability 1

2 .
In qGCL the protocol is coded as follows:

K =̂ var χ:q( 2), ψ:q( ), o:{0, 1, 2}, s: •
In(χ)�
χ := Tδ11(χ)�
QC(χ)�
χ, ψ := E(χ)�
Fin(V , o,χ⊗ ψ)�
Fin(S, s,χ⊗ ψ)
rav

where:

1. for function f : n → between registers, unitary transformation Tf be-
tween quregs inverts χ (pointwise) about 0 if f holds and otherwise leaves
it unchanged

Tf :q( n) → q( n)

(Tfχ)(x) =̂ (−1)f(x)χ(x)

2. observable V =̂ {V0, V1, V2} has Vi =̂ E(vi) for i: , and V2 =̂ (V0 ⊕ V1)⊥

3. observable S =̂ {S0, S1} has Si =̂ 2 ⊗ δi

Proposition 1. Outcome m: is an approximate counterfactual outcome of
type m for protocol K. In particular, we have:

(a) wp.Km.[o = m, s 
= 0] = 1
2

(b) wp.K1−m.[
∑

χi:M
χi = 0 ] = 1

Proof. We reason directly on K:

K

= definition of In

χ := 1
2 (δ00 + δ01 + δ10 + δ11)�

χ := Tδ11(χ)�
QC(χ)�
χ, ψ := E(χ)�
Fin(V , o,χ⊗ ψ)�
Fin(S, s,χ⊗ ψ)

= definition of Tf and law A-2
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χ := v0�

QC(χ)�
χ, ψ := E(χ)�
Fin(V , o,χ⊗ ψ)�
Fin(S, s,χ⊗ ψ)

= definition of QC and laws A-3, S-3(
χ := v0�

χ := CNOT(χ) � χ, ψ := E(χ)

)
�
(
χ := v0�

skip � χ, ψ := E(χ)

)
�

Fin(V , o,χ⊗ ψ)�
Fin(S, s,χ⊗ ψ)

= law A-2, definition of CNOT and skip identity

(χ, ψ := E(v1))� (χ, ψ := E(v0))�
Fin(V , o,χ⊗ ψ)�
Fin(S, s,χ⊗ ψ)

= law S-2(
χ, ψ := E(v1)�
Fin(V , o,χ⊗ ψ)�

)
�
(
χ, ψ := E(v0)�
Fin(V , o,χ⊗ ψ)�

)
�

Fin(S, s,χ⊗ ψ)

= definition of Fin

⊕
⎡⎣⎛⎝χ, ψ := E(v1)�

o,χ, ψ := j,
PVj

(χ⊗ψ)

‖PVj
(χ⊗ψ)‖

⎞⎠@〈χ⊗ ψ, PVj (χ⊗ ψ)〉 | j:{0, 1, 2}
⎤⎦�

⊕
[(

χ, ψ := E(v0)�

o,χ, ψ := k,
PVk

(χ⊗ψ)

‖PVk
(χ⊗ψ)‖

)
@〈χ⊗ ψ, PVk

(χ⊗ ψ)〉 | k:{0, 1, 2}
]

�

Fin(S, s,χ⊗ ψ)

= law A-2 and linear algebra

(o,χ, ψ := 1, E(v1))� (o,χ, ψ := 0, E(v0))�
Fin(S, s,χ⊗ ψ)

= law S-2 and definition of Fin and E

⊕
⎡⎣⎛⎝ o,χ, ψ := 1, 1

2 (δ000 + δ010 + δ111 − δ101)�

s,χ, ψ := j,
PSj

(χ⊗ψ)

‖PSj
(χ⊗ψ)‖

⎞⎠@〈χ⊗ ψ, PSj (χ⊗ ψ)〉 | j:

⎤⎦�

⊕
[(

o,χ, ψ :=0, 1
2 (δ000 + δ010 + δ101 − δ111)�

s,χ, ψ :=k,
PSk

(χ⊗ψ)

‖PSk
(χ⊗ψ)‖

)
@〈χ⊗ ψ, PSk

(χ⊗ ψ)〉 | k:

]
= law A-2 and linear algebra
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[(o, s,χ, ψ :=1, 0, 1√
2
(δ000 + δ010)) 1

2
⊕ (o, s,χ, ψ :=1, 1, 1√

2
(δ111 − δ101))] �

[(o, s,χ, ψ :=0, 0, 1√
2
(δ000 + δ010)) 1

2
⊕ (o, s,χ, ψ :=0, 1, 1√

2
(δ101 − δ111))]

By inspection we can easily see that claims (a) and (b) are fully satisfied (K1 is
the LHS of the nondeterministic choice, while K0 is the RHS). ��

We observe that protocol K thus exhibits two counterfactual outcomes: 0
and 1. Mitchison and Jozsa also exhibited a protocol with two counterfactual
outcomes which fully satisfies definition 2, and for which p0 = p1 = 0.172,
thereby giving p0 + p1 = 0.344. However, the main advantage of protocol K is
that it reaches the probability bound 1 with a single insertion of the computer,
while a standard protocol reaches 1 only in the limit.

Proposition 2. Protocol K is optimal, that is p0
K + p1

K = 1.

Proof. It follows by Proposition 1 and Theorem 3. ��
We note that K is also optimal with respect to the number of insertions of the

computer, since at least one insertion is required by any protocol. In Table 2 we
provide a summary of the features of standard and probabilistic counterfactual
computation.

We conclude by providing another example of probabilistic protocol, which
stems from protocol K. Of course it cannot improve protocol K, but it provides
another example of protocol (and of quantum computation, in the end). We first
recall the “inversion about the mean” transform introduced firstly by Grover in
his search algorithm [2]. It is the unitary transform M(·) defined as:

M :q( n) → q( n)

(Mχ)(x) =̂ 2
(

1
2n

∑
y: n χ(y)

)
− χ(x).

Together with transform Tf , they form Grover’s algorithm core iteration.

Table 2. Standard vs. probabilistic protocols

G standard protocol G probabilistic protocol

p0
G + p1

G ≤ 1 (Mitchison and Jozsa [5]) ≤ 1 (Theorem 3; protocol
K attains exactly 1)

Number N of insertions N → ∞ when p0
G + p1

G → 1 N can be as low as 1
of the computer (Mitchison and Jozsa [5]) (our protocol K)

Our new protocol works like protocol K, except that before the last (diagonal)
finalisation we first unitarily transform the switch and the output register in such
a way “to drive” the switch to the off state. In qGCL it is coded as follows, where
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for simplicity we did not include the qubit ψ for distingushing between the off
and on subspaces:

O =̂ var χ:q( 2), o, s: 2 •
In(χ)�
χ := Tδ11(χ)�
QC(χ)�
Fin(W , o,χ)�
(χ := Tδ10(χ)) � o � (χ := Tδ11(χ))�
χ := Tδ00(χ)�
χ := M(χ)�
Fin(Δ, s,χ)
rav

where W is the observable { v0, v1, ( v0 ⊕ v1)⊥}. We argue that outcome
m: is an approximate counterfactual outcome of type m, and that p0

O = p1
O =

1
2 . We give here an informal proof of our claim.

We know from the functioning of K that, assuming QCr has been executed,
the state after the measurement of W is:

χ =
1
2
(δ00 + δ01 + δ1r − δ1¬r).

The following conditional thus transforms the state to:

χ =
1
2
(δ00 + δ01 + δ10 + δ11).

The next instruction flips the sign of the amplitude for basis state δ00:

χ =
1
2
(−δ00 + δ01 + δ10 + δ11).

The execution of M on χ gives χ = δ00. This means that we always end up in the
initial “off” state δ00. Furthermore, we recorded the outcome of the measurement
of W , which identifies with certainty the result of the decision problem. We note
that although O always ends in δ00, there are computations which return the
outcome m, but do not belong to the off subspace. Those computations have
been annihilated by the functioning of the algorithm (by embedding state χ via
transformation E one can easily calculate them). Therefore, we cannot claim
that the result is always for free, and that motivates condition (1) of definition
1 requiring that only the computation in the off subspace must have non-zero
probability.

5 Conclusions

Counterfactual computation allows a seemingly paradoxical effect: to infer the
result of a computation without running it. This remarkable fact can be achieved
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by means of peculiar properties of quantum mechanics. In this paper we showed
how it is possible to formalise counterfactual computation in a framework pro-
vided by the quantum programming language qGCL, thereby showing that coun-
terfactual computation is just an example of quantum computation. The main
benefit of this approach is the possibility of exploiting the well-established body
of programming laws which comes with qGCL. Next, we proposed a probabilistic
extension of the original definition of counterfactual computation and we casted
it into qGCL. We showed that probabilistic counterfactual protocols share some
of the limitations of non-probabilistic protocols. In particular, for any probabilis-
tic protocol G we must have p0

G + p1
G ≤ 1. We presented a probabilistic protocol

K for which p0
K + p1

K = 1, thus being optimal. Furthermore, our protocol K
requires a single insertion of the quantum computer, while any non-probabilistic
protocol would reach the upper bound 1 only with an infinite number of in-
sertions. Therefore, the probabilistic relaxation of counterfactual computation
helps only with respect to the complexity of the protocol.
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A pGCL Semantics

In this section we briefly review expectation-transformer semantics for pGCL
[6], qGCL’s parent language. Furthermore, we list some associated programming
laws used in this work.

Definition 4. The state x of a program P is the array of global variables used
during the computation. That is

x =̂ (v1, . . . , vn) : T1 × T2 × . . .× Tn.

The Cartesian product T1 × T2 × . . .× Tn of all the data types used is called the
state space of program P .

An expectation is a [0, 1]-valued function on a state space X and may be
thought of as a “probabilistic predicate”. The set Q of all expectations is defined:

Q =̂ X → [0, 1].

Expectations can be ordered using the standard pointwise functional ordering
for which we shall use the symbol �, and p � q means “p everywhere no more
than q”. Standard predicates are easily embedded in Q by identifying true with
expectation 1 and false with 0. For a standard predicate p we shall write [p] for
its embedding.

The pair (Q, �) forms a complete lattice, with greatest element the constant
expectation 1 and least element the constant expectation 0. For i, j:Q we shall
write i ≡ j iff i � j and j � i (or i 	 j). The set J of all expectation
transformers is defined:

J =̂ Q → Q.

Not every expectation transformer corresponds to a computation: only the sub-
linear ones do [6].

The following table gives the expectation-transformer semantics for some
pGCL commands (we shall retain the wp prefix of predicate-transformer calculus
for convenience):

wp.abort.q =̂ 0

wp.skip.q =̂ q

wp.(x := E).q =̂ q[x\E]

wp.(R � S).q =̂ wp.R.(wp.S.q)

wp.(R # cond $ S).q =̂ [cond] ∗ (wp.R.q) + [¬cond] ∗ (wp.S.q)

wp.(R � S).q =̂ (wp.R.q) � (wp.S.q)

wp.(R p⊕ S).q =̂ p ∗ (wp.R.q) + (1 − p) ∗ (wp.S.q)
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where q:Q, x:X , p:[0, 1] and cond is an arbitrary predicate over state space;
q[x\E] denotes the expectation obtained after replacing all free occurrences of x
in q by expression E; � denotes the greatest lower bound. Recursion is treated
in general using the existence of fixed points in J .

We now list a few algebraic programming laws which we used in the paper;
the semantic models adopted and proofs can be found in [3,6]. In the following
laws we use the term e to indicate an expression whose type is determined by
the context.

Law (Id “skip identity”). (P � skip) = (skip � P ) = P

Law (P-1). P 1⊕ Q = P

Law (P-2). P r⊕ Q = Q 1−r⊕ P

Law (S-2). (P r⊕ Q) � R = (P � R) r⊕ (Q � R)

Law (S-3). (P � Q) � R = (P � R)� (Q � R)

Law (A-1). (x := e) � (P r⊕ Q) = (x := e � P ) r[x\e]⊕ (x := e � Q)

Law (A-2). (x := e � x := f) = (x := f [e\x])

Law (A-3). (x := e � P � Q) = (x := e � P )� (x := e � Q)

Since standard conditional is a particular case of probabilistic choice, laws S-2
and A-1 hold for that, too.
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Tošić, Predrag T. 191
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