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Abstract. Vector median filtering is a well known technique for reducing noise
in color images. These filters are defined on the basis of a suitable distance or
similarity measure, being the most common used the Euclidean and City-Block
distances. In this paper, a Fuzzy Metric, in the sense of George and Veeramani
(1994), is defined and applied to color image filtering by means of a new Vector
Median Filter. It is shown that the standard Vector Median Filter is outperformed
when using this Fuzzy Metric instead of the Euclidean and City-Block distances.

1 Introduction

Images are acquired by photoelectronic or photochemical methods. The sensing de-
vices and the transmission process tend to degrade the quality of the digital images by
introducing noise, geometric deformation and/or blur due to motion or camera misfocus
[8,27]. The presence of noise in an image may be a drawback in any subsequent pro-
cessing to be done over the noisy image such as edge detection, image segmentation or
pattern recognition. As a consequence, filtering the image to reduce the noise without
degrading its quality, preserving edges, corners and other image details, is a major step
in any computer vision application [28].

One of the most important families of nonlinear filters is based on the ordering of
vectors in a predefined sliding window [27,28]. The output of these filters is defined
as the lowest ranked vector according to a specific ordering criterion using a particular
distance measure. Probably, the most well-known vector filter is the vector median filter
(VMF) [3] which uses the L1 (City-Block) or L2 (Euclidean) norm to order vectors
according to their relative magnitude differences. The direction of the image vectors
can also be used as an ordering criterion to remove vectors with atypical direction,
which means atypical chromaticity. The basic vector directional filter (BVDF) [33]
parallelizes the VMF operation employing the angle between color vectors as a distance
criterion. The BVDF uses only information about directions, so, it is not able to remove
achromatic noisy pixels from the image. The Directional Distance Filter (DDF) [16]
overcomes the difficulties of the BVDF by using both magnitude and direction in the
distance criterion.
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However, those vector filters are designed to perform a fixed amount of smoothing
and they are not able to adapt to local image statistics. Within this aim, many different fil-
ters have been recently introduced in the literature [1,2,17,19,20,21,22,23,24,25,31,32].

In the color image processing field both magnitude and chromatic relations play a
major role [6]. These relationships are usually represented using a distance or similarity
measure. Many different distance and similarity measures have been introduced in the
literature [28,6,7,35,36,29]. Some of them are based on fuzzy theory [6,7,35,36,29] and
have been recently applied with many different purposes in image processing, such as,
image retrieval [9], image comparison [34], object recognition [11], or region extrac-
tion [10].

In this paper, a fuzzy metric in the terms of George and Veeramani [12] is defined
and applied to color image filtering by adapting the well-known VMF. The paper is
organized as follows. The fuzzy metric is defined in section 2. In Section 3, the pro-
posed filtering is explained. In section 4, some experimental results are shown. Finally,
conclusions are presented in section 5.

2 An Appropriate Fuzzy Metric

One of the most important problems in Fuzzy Topology is to obtain an appropriate
concept of fuzzy metric. This problem has been investigated by many authors from
different points of view. In particular, George and Veeramani [12] have introduced and
studied the following notion of fuzzy metric which constitutes a slight modification of
the one due to Kramosil and Michalek [18].

According to [12] a fuzzy metric space is an ordered triple (X, M, ∗) such that X
is a (nonempty) set, ∗ is a continuous t-norm and M is a fuzzy set of X × X×]0, +∞[
satisfying the following conditions for all x, y, z ∈ X, s, t > 0:

(FM1) M(x, y, t) > 0
(FM2) M(x, y, t) = 1 if and only if x = y
(FM3) M(x, y, t) = M(y, x, t)
(FM4) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s)
(FM5) M(x, y, ·) :]0, +∞[−→ [0, 1] is continuous.

M(x, y, t) represents the degree of nearness of x and y with respect to t. If
M(x, y, ∗) is a fuzzy metric space we will say that (M, ∗) is a fuzzy metric on X . In
the following, by a fuzzy metric we mean a fuzzy metric in the George and Veeramani’s
sense.

The authors proved in [12] that every fuzzy metric (M, ∗) on X generates a Haus-
dorff topology on X . Actually, this topology is metrizable as it was proved in [13,14],
and so the above definition can be considered an appropriate concept of fuzzy metric
space.

A fuzzy metric (M, ∗) on X is said to be stationary if M does not depend on t, i.e.
for each x, y ∈ X the function Mx,y(t) = M(x, y, t) is constant [15].

A subset A of X is said to be F-bounded [12] if there exist t > 0 and s ∈]0, 1[ such
that M(x, y, t) > s for all x, y ∈ A.

Example 4.4 of [30] suggests the next proposition.
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Proposition 1. Let X be the closed real interval [a, b] and let K > |a| > 0. Consider
for each n = 1, 2, · · · the function Mn : Xn × Xn×]0, +∞[−→]0, 1] given by

Mn(x, y, t) =
n∏

i=1

min{xi, yi} + K

max{xi, yi} + K
(1)

where x = (x1, · · · , xn), y = (y1, · · · , yn), and t > 0. Then, (Mn, ·) is a stationary
F-bounded fuzzy metric on Xn, where the t-norm · is the usual product in [0, 1].

Proof. Axioms (FM1)-(FM3) and (FM5) are obviously fulfilled. We show, by induc-
tion, the triangular inequality (FM4).

An easy computation shows that M1 verifies (FM4). Now, suppose it is true for
Mn−1. Then, for each x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn) and for
each t, s > 0 we have

Mn(x, z, t + s) =
∏n

i=1
min{xi,zi}+K
max{xi,zi}+K

=
∏n−1

i=1
min{xi,zi}+K
max{xi,zi}+K

· min{xn,zn}+K
max{xn,zn}+K

≥
≥ ∏n−1

i=1
min{xi,yi}+K
max{xi,yi}+K

· ∏n−1
i=1

min{yi,zi}+K
max{yi,zi}+K

· min{xn,yn}+K
max{xn,yn}+K

· min{yn,zn}+K
max{yn,zn}+K

=

=
∏n

i=1
min{xi,yi}+K
max{xi,yi}+K

· ∏n
i=1

min{yi,zi}+K
max{yi,zi}+K

= Mn(x, y, t) · Mn(y, z, s),

(2)

so Mn is a fuzzy metric on Xn, for n = 1, 2, . . . and clearly it is stationary.

Finally, Xn is F-bounded, for n = 1, 2, . . . Indeed, if we write a = (
n︷ ︸︸ ︷

a, . . . , a) and

b = (

n︷ ︸︸ ︷
b, . . . , b), then for each x, y ∈ Xn and t > 0 we have

Mn(x, y, t) ≥ Mn(a, b, t) =
(

a + K

b + K

)n

> 0, for n = 1, 2, . . . (3)

��

In next sections we will use the above fuzzy metric and it will be denoted Mn(x, y),
since it does not depend on t.

2.1 Computational Analysis

Computationally efficient distances are of interest in the field of order statistic filters
[4,5]. For this reason, the use of the L1 Norm is preferred to the L2 Norm in many
cases [28].

The particular case of the proposed fuzzy metric Mn suitable for 3-channel image
processing tasks will be M3, where M3(Ii, Ij) will denote the fuzzy distance between
the pixels Ii and Ij in the I image. For each calculation of M3: 3 comparisons, 6 ad-
ditions, 3 divisions and 2 products have to be computed. In the case of L1 Norm are
necessary 3 comparisons (absolute value), 3 subtractions and 2 additions whereas for
the L2 Norm 3 subtractions, 3 powers, 2 additions and 1 square-root have to be done.
As can be seen in Table 1, the computational complexity of M3 is even higher than
the L2 Norm. However, an optimization in the computation of M3 (Fast M3) may be
applied.
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Given a fixed parameter K in (1), numerator and denominator of each division in
(1) are in a bounded set [K, 255 + K] when processing RGB images. All the possible
divisions can be precalculated in a square matrix C where

C(i, j) =
min{i, j}+ K

max{i, j} + K
i, j ∈ [0, 255] (4)

Using the pre-computation matrix, the calculation of Fast M3 for two pixels Ii =
(Ii(1), Ii(2), Ii(3)), Ij = (Ij(1), Ij(2), Ij(3)) is reduced to

M3(Ii, Ij) =
3∏

l=1

C(Ii(l), Ij(l)) (5)

By means of this optimization, 3 accesses to matrix and 2 products are enough to make
the computation.

The time measured for the construction of the matrix C is about 0.8 seconds in a
Pentium IV 2.4GHz. Although it supposes an initial cost, the gain is approx. 8µs (see
Table 1) in each computation, so, the initial cost is compensated when 105 computations
have to be done (which is roughly the computation involved in the filtering of a 50 · 50
pixels image1).

Table 1. Computational comparison between the classical metrics L1 and L2 and the proposed
fuzzy metric M3 measured in a Pentium IV 2.4GHz

Metric 1 Computation (µs) Computations per second
L1 Norm 28.37 3.524 104

L2 Norm 30.10 3.322 104

M3 34.68 2.883 104

Fast M3 26.98 3.706 104

The results presented in Table 1 show that the M3 Fuzzy Metric is computation-
ally cheaper than the classical L1 and L2 Norms when the optimization of the pre-
computation matrix is applied.

3 Image Filtering

3.1 Classical Vector Median Filter [3,28]

Let I represents a multichannel image and let W be a window of finite size n (filter
length). The noisy image vectors in the filtering window W are denoted as Ij , j =
0, 1, ..., n− 1. The distance between two vectors Ii, Ij is denoted as ρ(Ii, Ij). For each
vector in the filtering window, a global, accumulated distance to all other vectors in the
window has to be calculated. The scalar quantity Ri =

∑n−1
j=0 ρ(Ii, Ij), is the distance

associated to the vector Ii. The ordering of the Ri’s: R(0) ≤ R(1) ≤ ... ≤ R(n−1),
implies the same ordering of the vectors Ii’s: I(0) ≤ I(1) ≤ ... ≤ I(n−1) . Given this
order, the output of the filter is I(0).

1 For all the filters studied in this article has been used a 8-neighborhood 3× 3 size window W .
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3.2 Proposed Vector Median Filter

The proposed filter will parallelize the operation of the classical VMF with just one
modification. The ordering criterion usually used as defined above has to be inverted
due to the axiom (FM2) of the Fuzzy Metric (1), and then the vector median must now
be defined as the vector in the sliding window that maximizes the accumulated fuzzy
distance, as follows.

Being the fuzzy distance between two pixels Ii, Ij of the image I in the n length
sliding window W denoted as M3(Ii, Ij), the scalar quantity M i =

∑n−1
j=0,j �=i

M3(Ii, Ij), is the accumulated fuzzy distance associated to the vector Ii. According
to VMF, the ordering of the M i’s is now defined as: M (0) ≥ M (1) ≥ ... ≥ M (n−1),
therefore, the ordering of the vectors Ii is: I(0) ≥ I(1) ≥ ... ≥ I(n−1). Given this order,
the output of the filter Iout is defined as I(0).

This is, in general, the straightforward adaptation of the VMF when using a simi-
larity measure instead of a distance measure [28].

4 Experimental Results

In this section, the classical gaussian model for the thermal noise and the impulsive
noise model for the transmission noise, as defined in [28,32], has been used to add
noise to the well-known images Lenna (256 · 256), Peppers (512 · 512) and Baboon
(512 · 512). The performance of the filter has been evaluated by using the common
measures MSE, SNR and NCD as defined in [32].

Three different types of noise, according to the models in [28,32], have been con-
sidered in this section:

– Type A = low contaminated impulsive noise p = 7%, p1 = p2 = p3 = 0.3
– Type B = high contaminated impulsive noise p = 30%, p1 = p2 = p3 = 0.3
– Type C = mixed gaussian impulsive noise σ = 10, p = 15%, p1 = p2 = p3 = 0.3

4.1 Adjusting the K Parameter

The K parameter included in the definition of the Fuzzy Metric M3 (1) has an important
influence on the filter performance. The metric is non-uniform in the sense that the
measure given by M3 for two different pairs of consecutive numbers (or vectors) may
not be the same. However, this feature may be very interesting since it is known that
the human perception of color is also non-uniform [26]. Clearly, increasing the value of
K reduces this non-uniformity. This effect is shown in Fig. 1 where the content of the
matrix C (4) for different values of K is presented.

After performing several tests, the results seem to show that a suitable value for the
K parameter for a variety of noise types is K = 210. The dependence of the perfor-
mance on the value of K is shown in Fig. 2. The use of a proper value for K may lead to
an improvement of the filter performance up to 60%. In Fig. 2 the performance (MSE)
of the filter dependent on K is shown for the filtering of the Lenna image contaminated
with type B noise. For other performance measures as SNR and NCD the behavior is
similar to MSE. The performance is low for lower values of K . Increasing K leads to
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Fig. 1. Content of the pre-computation matrix C(i, j) for several values of K
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Fig. 2. Performance of the VMF using M3 in terms of MSE depending on K using the Lenna
image contaminated with type B noise

a maximum performance and then it decreases slightly for higher values of K . Finding
the optimum K is a problem we are trying to solve since it depends on the particular
image and noise. In spite of it, it has been found that in the most of the tested cases the
optimum is in the range [29, 215], as the case shown in Fig. 2.
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4.2 Comparing Performances

In order to compare the performance of the VMF using the metrics L1, L2 and M3, dif-
ferent images contaminated with different types of noise have been used as commented
in section 4.

The results of the performance measured in tems of MSE, SNR and NCD are shown
in Tables 2,3 and 4. Fig. 3 presents the peppers image contaminated with type B noise
(30% impulsive) and the output of the compared filters, standing out a detail of each
image.

Table 2. Comparison of the performance measured in terms of MSE, SNR and NCD using the
Lenna image contaminated with different types of noise

Filter A Noise B Noise C Noise
MSE SNR NCDLab MSE SNR NCDLab MSE SNR NCDLab

None 552.9 15.17 4.92 10−2 2318.51 9.35 20.80 10−2 1246.86 12.04 17.90 10−2

VMF L1 42.18 26.75 1.81 10−2 59.63 25.25 2.19 10−2 91.59 23.38 6.40 10−2

VMF L2 45.56 26.41 1.79 10−2 76.05 24.19 2.46 10−2 97.01 23.13 6.35 10−2

VMF M3 41.81 26.78 1.80 10−2 59.18 25.28 2.17 10−2 90.49 23.43 6.36 10−2

Table 3. Comparison of the performance measured in terms of MSE, SNR and NCD using the
Peppers image contaminated with different types of noise

Filter A Noise B Noise C Noise
MSE SNR NCDLab MSE SNR NCDLab MSE SNR NCDLab

None 566.94 14.42 4.84 10−2 2493.27 7.99 21.09 10−2 1324.56 10.73 19.66 10−2

VMF L1 18.87 29.19 4.84 10−2 35.49 26.45 2.34 10−2 63.10 23.95 7.53 10−2

VMF L2 19.30 29.10 1.88 10−2 40.37 25.89 2.46 10−2 64.98 23.82 7.51 10−2

VMF M3 18.71 29.23 1.86 10−2 33.35 26.72 2.29 10−2 62.10 24.02 7.48 10−2

Table 4. Comparison of the performance measured in terms of MSE, SNR and NCD using the
Baboon image contaminated with different types of noise

Filter A Noise B Noise C Noise
MSE SNR NCDLab MSE SNR NCDLab MSE SNR NCDLab

None 535.33 15.52 4.83 10−2 2301.44 9.18 20.76 10−2 1238.64 11.88 17.37 10−2

VMF L1 287.66 18.22 4.07 10−2 326.93 17.66 4.48 10−2 350.65 17.36 7.93 10−2

VMF L2 295.07 18.11 4.02 10−2 351.71 17.34 4.61 10−2 359.89 17.24 7.72 10−2

VMF M3 287.98 18.21 4.05 10−2 326.73 17.67 4.46 10−2 350.27 17.36 7.88 10−2

The results show that the VMF using the proposed fuzzy metric may give better
performance than using the classical metrics.

5 Conclusions

The metric (1) proposed in section 2, which has been proved to be a Fuzzy Metric in the
sense of George and Veeramani [12], is a suitable fuzzy metric to be used in multichan-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3. (a) Original image peppers pointing out the detailed area,(b) detailed area,(c) peppers
corrupted with noise type B and (d) detail, (e) result of the VMF using L1 and (f) detail, (g) result
of the VMF using L2 and (h) detail, (i) result of the proposed filter using M3 and (j) detail
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nel image filtering. The adaptation of the Vector Median Filter (section 3) for the use
of the proposed fuzzy metric outperforms the usual VMF’s using the classical metrics
L1 and L2, specially when the impulsive noise present in the image is high, as has been
shown in section 4. Moreover, the proposed metric presents a nice computational cost
(see section 2.1).

Fuzzy Metrics are a powerful tool which may be successfully applied in image pro-
cessing tasks since they are able to represent more complex relations than the classical
metrics.
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