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Preface

ICIAR 2005, the International Conference on Image Analysis and Recognition,
was the second ICIAR conference, and was held in Toronto, Canada. ICIAR is
organized annually, and alternates between Europe and North America. ICIAR
2004 was held in Porto, Portugal. The idea of offering these conferences came as
a result of discussion between researchers in Portugal and Canada to encourage
collaboration and exchange, mainly between these two countries, but also with
the open participation of other countries, addressing recent advances in theory,
methodology and applications.

The response to the call for papers for ICIAR 2005 was encouraging. From 295
full papers submitted, 153 were finally accepted (80 oral presentations, and 73
posters). The review process was carried out by the Program Committee mem-
bers and other reviewers; all are experts in various image analysis and recognition
areas. Each paper was reviewed by at least two reviewers, and also checked by
the conference co-chairs. The high quality of the papers in these proceedings is
attributed first to the authors, and second to the quality of the reviews provided
by the experts. We would like to thank the authors for responding to our call,
and we wholeheartedly thank the reviewers for their excellent work, and for their
timely response. It is this collective effort that resulted in the strong conference
program and high-quality proceedings in your hands.

We were very pleased to be able to include in the conference program keynote
talks by two world-renowned experts: Prof. Anastasios (Tas) N. Venetsanopou-
los, Dean of the Faculty of Applied Science and Engineering at the University of
Toronto, Canada; and Prof. Jelena Kovacevic, Director of the Center for Bioim-
age Informatics, Departments of Biomedical Engineering & Electrical and Com-
puter Engineering at Carnegie Mellon University, USA. We would like to express
our sincere gratitude to each of them for accepting our invitations.

We would like to thank Khaled Hammouda, the webmaster of the conference,
for maintaining the Web pages, interacting with the authors and preparing the
proceedings; and Cathie Lowell for her administrative assistance. We would also
like to thank the members of the Local Organizing Committee for their advice
and help. We also appreciate the help of the Springer editorial staff Christine
Günther, Anna Kramer, and Alfred Hofmann, for supporting this publication in
the LNCS series.

Finally, we were very pleased to welcome all the participants to this confer-
ence. For those who did not attend, we hope this publication provides a good
view into the research presented at the conference, and we look forward to meet-
ing you at the next ICIAR conference.

September 2005 Mohamed Kamel, Aurélio Campilho
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Abstract. In this work the relation between scale-space image segmen-
tation and selection of the localization scale is examined first, and a scale
selection approach is consequently proposed in the segmentation context.
Considering the segmentation part, gradient watersheds are applied to
the non-linear scale-space domain followed by a grouping operation. A
report on localization scale selection techniques is carried out next. Fur-
thermore a scale selection method that originates from the evolution of
the probability distribution of a region uniformity measure through the
generated scales is proposed. The introduced algorithm is finally com-
pared to a previously published approach that is also introduced into the
segmentation context to indicate its efficacy.

1 Introduction

The topic of color image segmentation represents a popular and interesting re-
search area. Several methods have been proposed in the past depending on the
nature of the problem involved [8], [11], [12]. Previous works have shown that
region based approaches outperform other methods in terms of segmentation
accuracy and satisfactory results have been presented by many researchers. Re-
cent segmentation methods tend to incorporate the multiscale nature of images.
This allows the integration of both the deep and superficial image structure [11].
A popular subcategory of these approaches employs the scale-space theory to
generate the domain of multiple scales.

The interaction of localization scale selection techniques and scale-space seg-
mentation is studied in this paper. More specifically the localization scale in
this work represents the starting point of the segmentation method. In the em-
ployed segmentation scheme, gradient watersheds are applied to the generated
non-linear scale-space stack and a multiscale region grouping/merging process
follows to form the final segmentation results. In the segmentation context, the
selected localization scale should not contain excessive or lacking information,
since this would produce an over- or under- segmented final result respectively.
Previous considerations for automated scale selection [1], [4] are reported and a
scale selection criterion is finally proposed and compared to the approach pro-
posed by Lin and Shi in [1].

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 1–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Outline of the Segmentation Scheme

The employed segmentation scheme may be divided into three stages; application
of watersheds in scale-space, multiscale dissimilarity estimation and finally region
grouping.

Generation of Scale-Space and Watershed Segmentation. The domain of mul-
tiple scales is generated by the iterative application of an inhomogeneous filter
that reduces the amount of diffusion at those locations, which have a larger like-
lihood to be edges [9]. This likelihood is measured by the squared gradient. The
PDE equation of the filtering process is expressed by:

δt · u = div(g(|∇u|2) · ∇u) (1)

where g(.) is a function that determines the amount of diffusion and is referred
to as diffusion tensor.

The watershed is subsequently applied to the modulus of the color gradient
of the generated scales, where the appropriate color distance is estimated by
local non-parametric density kernel estimation [3]. The linking of the watershed
regions for successive scales is applied using a spatial proximity criterion [10].

Region Dissimilarity at Multiple Scales. In this work the inter-region (dis) sim-
ilarity relation is represented by a Region Adjacency Graph (RAG) built on the
localization i.e. the starting scale. The RAG edge weights are determined by a
multiscale region dissimilarity measure. The employed region features are the dy-
namics of contours and the relative entropy of the region distributions. These are
used as fuzzy variables in a fuzzy rule based scheme to measure the dissimilarity of
two adjacent regions in each scale. Given the linking information from the previ-
ous stage, the outcome of the fuzzy logic system is subsequently summed up over
the successive scales to obtain a more robust dissimilarity measure. The multi-
resolution dissimilarity measure is expressed by the following equation:

RD(p, q) =
Sa∑

i=So

F (DCL(p,q)
i , RE

L(p,q)
i ) (2)

where p and q are two adjacent regions at the localization scale So,Lp,q is the
linking list derived from the scale space generation stage, DC i denotes the dy-
namics of contours in each scale i, RE i symbolizes the relative entropy of the
sample distributions of the two examined regions in scale i and F (., .) denotes
the fuzzy inference scheme that estimates the pairwise dissimilarity.

The Dynamics of Contours is a contrast measure based on the notion of
dynamics of the minima that were tracked during the watershed process and the
flooding scenario of the watershed transform. The latter is used to locate the
most significant minimum of the flooding chain [7].

The Relative Entropy is a stochastic dissimilarity measure between two dis-
tributions, estimated here by a variation of the Kullback-Leibler distance:

REp, q =
255∑
g=0

[
Pp(g) · log10(

Pp(g)
Pq(g)

) + Pq(g) · log10(
Pq(g)
Pp(g)

)
]

(3)

Parzen kernels are also utilized to estimate the multivariate probability density.
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Fuzzy Inference Scheme. The employed fuzzy inference scheme uses as in-
put variables the dynamics of contours and the relative entropy and as output
variable the degree of dissimilarity. Both input variables are divided into two
sets, namely SMALL and LARGE. The output variable comprises two fuzzy
sets called SIMILAR and NOTSIMILAR.

The fuzzy inference includes the following rules:

1. If dynamics of contours (SMALL) AND relative entropy (SMALL) THEN
output (SIMILAR)

2. If dynamics of contours (LARGE) OR relative entropy (LARGE) THEN
output (NOT SIMILAR).

Region Grouping. A subtractive nearest neighbor finding approach may be
applied to the RAG graph edges using the estimated dissimilarity measure
RD(p,q) as the graph edge weight. An additional algorithm was also employed,
based on a minimax operation on the RAG structure to produce the different
groups of regions (denoted by RAG-Minimax) [5]. RAG-Minimax derived better
segmentation results and was finally adopted in this work.

The nodes linked by the remaining edges are subsequently merged and up-
dated until the termination criterion is met. The termination criterion is deter-
mined by means of thresholding on the global distribution (histogram) of the
graph edge weights.

3 Selection of the Localization Scale

The overall performance of the proposed multiscale scheme is strongly dependent
on the number and significance of the regions present in the localization scale S0.
This is mainly due to the application of the watershed algorithm on the original
image to produce the initial region set. The number of regions may be reduced
by some type (Gaussian or Anisotropic Diffusion) of smoothing on the original
image; the smoothed image corresponds to the localization scale. Our task here
is to determine the amount of diffusion that needs to be applied, so that the
problems of over- and under- segmentation, and the dislocation of contours are
reasonably reduced.

The field of scale selection has been previously studied in the literature. Some
of the related approaches take into consideration the evolution of the top points
of the gradient image across scales [2], or the correlation of signal and noise
[6], when the image is corrupted by noise. Besides that, an interesting approach
was also presented in [1], where the appropriate scale is selected by calculating
a smoothness variable across scales and estimating the minimum of its second
order derivative (see Figure 1). The main idea is that if a noisy area is supposed
to be flat (i.e. small gradient magnitude) and it becomes smooth enough (i.e. the
weighted sum of the second order derivatives of the image is small) after some
iterations, the algorithm stops. As a result, the employed smoothness variable
is defined as the ratio of the flat pixels over the number of smooth pixels. If t0
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(a) (b)

Fig. 1. Lin and Shi (a) scale descriptor and (b) second order derivative of (a) for image
Lena

denotes the scale that corresponds to the second order derivative global minimum
of the smoothness variable, then the selected scale t1 is given by:

t1 = 2 · t0. (4)

In the following sections a brief study is conducted on selecting the localization
scale for watershed-based segmentation. Our objective is to determine an initial
scale that is characterized by the smallest possible over-segmentation, while pre-
serving all significant watershed lines. In order to quantify this requirement, a
scale descriptor has to be defined.

3.1 Scale Description Function

If we consider the scale selection as an interpretation problem, a global feature
should be defined to express the degradation of details in the context of seg-
mentation. In this work it is expressed by the portion of dissimilar regions in
the over-segmented image that is produced by the watershed transform in each
scale. Similarly, this corresponds to the probability of occurrence of dissimilar
regions i.e. visually significant contours.

The region dissimilarity measure adopted in this work is the relative entropy
between the distributions of two adjacent regions (see section 2). This dissimilar-
ity value is attributed to each watershed line. It is worth noting that the feature
of dynamics of contours is excluded from the scale descriptor calculation. This is
due to the fact that the dynamics of contours involves also information from the
flooding history in the watershed process, therefore it is not a pure statistical
homogeneity measure.

The scale description function can be considered as a stochastic process, the
distribution of which changes with scale. The proposed Scale Descriptor (SD) is
thus expressed by the following relation:

SD(t) = P (RE(t) > T ) = 1− P (RE(t) ≤ T ). (5)

The quantity SD is thus defined as the probability of relative entropy RE to be
larger than T (T is regularly set to 1). This probability is given by the density
estimation of RE for a given scale t. It is calculated as the ratio of the contours
with RE > T over the total number of contours for scale t or equally, from the
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(a) (b) (c)

Fig. 2. Three-dimensional plot of (a) the probability density of Relative Entropy as a
function of scale (image Lena), (b) the corresponding probability distribution (cumu-
lative) function and (c) the complementary of (b)

complement of the probability distribution function. This may be also defined as
the perpendicular intersection of the complementary distribution function (Fig-
ure 2c) for a specific value T of the Relative Entropy quantity across different
time scales. Figure 2 displays the evolution of the probability density of relative
entropy in successive scales (Figure 2a), the corresponding cumulative distrib-
ution (Figure 2b) and the complementary quantity of (b) with respect to the
value 1 (in Figure 2c). The evolution of SD is depicted in Figure 3a for the image
Lena.

(a) (b)

Fig. 3. Graph of (a) evolution of the scale descriptor SD and (b) its second order
derivative for image Lena

3.2 Scale Selection Approaches

According to SD, the localization scale is defined as the scale that follows an
abrupt loss of information. This is interpreted as a rapid decrement of the slope
of this function and is given by the global minimum of the second order derivative
(Figure 3b). This selected localization scale is therefore estimated by:

treq = k · argmin(
∂2SD

∂t2
). (6)

The k parameter was experimentally set to 2.
Some other variations of the above scale selection approach have also been

considered before concluding with the proposed method [4]. One consideration
was based on a normalized scale descriptor that was given by the probability
of RE> T over the total amount of contours that were estimated on all the



6 S. Makrogiannis and N. Bourbakis

generated time scales. It was observed that this scale description function has
an approximately exponential shape and several scale selection approaches were
accordingly developed. The first localization scale selection criterion was readily
estimated by the slope of the normalized scale descriptor itself. Another idea
was to approximate the normalized scale description function using exponential
approximation by solving the equivalent problem of an RC electronic circuit.
Two cases were examined here; the first one is to estimate the scale that is
equivalent to the RC parameter of an RC filter, when the capacitor is practi-
cally charged. According to the other case the localization scale is estimated as
the scale that is located closer to the corner of the exponential approximation.
However it was experimentally found that these three scale selection approaches
often produce under-segmented results, i.e. some important visual information is
lost [4]. Therefore the scale selection approach defined by (5) and (6) was found
to be more suitable for the proposed scheme and is also compared to [1] in the
following section.

4 Experimental Results and Conclusion

The proposed scale selection approach is compared to the Lin and Shi Selection
approach (denoted by LSS) using both qualitative and quantitative measures.
The qualitative evaluation is carried out by visually examining the delineation
accuracy and region uniformity of the final results. The quantitative evaluation
is obtained using the Yang and Liu criterion [12]:

Y LGC =

√
R

h · w · c ·
R∑

i=1

σi2 ·
√
Ai (7)

where h, w and c is the number of rows, columns and channels of the image
respectively, R the total number of regions, σ2

i the color error over region i, Ai

the number of pixels of region i. This criterion expresses the trade-off between
the suppression of heterogeneity and preservation of details. Smaller values of
YLGC, denote more accurate and concise segmentation results.

Table 1 summarizes the evaluation and comparison study of our proposed
approach for the localization scale selection (denoted by SODM: Second Or-
der Derivative Minimum), versus the Lin and Shi approach [1] adapted to the
image segmentation context. Furthermore, Figure 4 illustrates the localization
scale segmentation results of the compared methods for our test images. Figure
5 depicts the corresponding final results based on the different localization scales
to evaluate the overall system performance. Qualitatively, the SODM criterion
outperforms the LSS approach for every test image, i.e. the detected regions rep-
resent more accurately the visual content. From the quantitative YLGC segmen-
tation measure it becomes obvious that both of the examined methods produce
almost equal results, with the SODM approach being marginally better in three
cases.

In conclusion, the applicability of a localization scale selection to multiscale
image segmentation is examined in this paper. A study of scale selection methods
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Table 1. Scale selection results in terms of number of regions and segmentation accu-
racy

Test Image Parrots Peppers Tree Woman
Scale selection method LSS SODM LSS SODM LSS SODM LSS SODM
No. of Wat. Regions
(orig. image)

1621 1621 2239 2239 2582 2582 1345 1345

Selected Scale (t) 3.75 2.25 6.25 2.25 1.5 6.25 6.25 10.25
No. of Wat. Regions
(local. scale)

896 1020 937 1152 2056 1800 220 150

Segmentation Mea-
sure (local. scale)

187.74 212.19 138.49 170.53 527.88 315.02 22.24 16.28

No. of Regions (final) 120 120 100 100 200 200 25 25
Segmentation Mea-
sure (final)

69.40 67.98 52.46 47.57 98.66 94.26 6.82 7.05

Fig. 4. Contour maps of the localization scale (initial segmentation). First row: test
images Parrots, Tree and Woman. Second Row: Selected scale using LSS. Third Row:
SODM results.

Fig. 5. Final segmentation results. First Row: LSS results. Second Row: SODM results.
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has been conducted in order to automatically determine the localization scale of
the presented segmentation method. A novel scale descriptor has been proposed
that uses the relative entropy feature and several selection criteria have been
tested and compared to a previously reported scale selection approach.
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Abstract. Colour prediction models (CPM) can be used to analyze the print-
ing quality of halftone-based color printing systems. In this paper, we consider
the Neugebauer CPM which requires as input the fraction of occupation of each
primary. To obtain these numbers, we apply several image segmentation algo-
rithms, with and without contextual information. These segmentation algorithms
are evaluated with respect to another technique based on mixtures of factor ana-
lyzers. More importantly, the segmentation results are evaluated with respect to
the performance of the Neugebauer CPM when used with the obtained fractions
of occupation. This evaluation is carried out by comparing the predicted color
against that measured with a spectrophotometer, and testifies for the adequacy of
the approach.

1 Introduction

The macroscopic color of a halftone design depends on several factors, including the
morphology, ink distribution, and occupation area of the printed dots. Several ap-
proaches allow relating the microscopic distribution of dots with the resulting average
macroscopic color [12]. These approaches, which are important in practice since they
allow controlling the printing process, can be divided into two classes:

Regression-based: Some regression curve is adjusted to experimental data (usually
in a minimum mean squared error sense), without considering the physics of the
printing process. There are several regression-based models, such as Neugebauer,
Murray-Davies, Yule-Nielsen, modified Neugebauer, and others [12].

From “first principles”: These approaches are based on physical models of the pro-
cesses occurring during and after printing; they are harder to implement and, as far
as we know, haven’t achieved the performance of regression-based methods [12].

In this paper we apply the Neugebauer color prediction model (N-CPM) to printed
ceramic tiles. The N-CPM requires as input the relative area coverage of each printing
primary. To obtain estimates of these numbers, we apply several non-contextual and

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 9–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



10 P. Latorre, G. Peris-Fajarnes, and M.A.T. Figueiredo

contextual segmentation algorithms to the microscopic images of the printed surfaces.
All algorithms are tested on two color spaces: RGB and the so-called opponent color
space (OCS) [13], which were previously shown to give good results with one kind of
printed dot [6]. As far as we know, CPMs have only recently been applied to ceramic
tiles, but not using image analysis methods [4].

Section 2 describes the N-CPM and the experimental methods used to obtain the
printed ceramic tiles and the corresponding images. In Section 3, we briefly discuss
color image smoothing and the segmentation algorithms. Section 4 describes the gener-
ation of “ground-truth” images based on mixtures of factors analyzers [3]. Experimental
results are reported in Section 5. The paper is concluded in Section 6.

2 The Neugebauer Color Prediction Model and the Experimental
Procedure

We consider halftone designs of two inks, printed with an industrial binary CMYK ink-
jet printer for ceramic tiles [5]. For this type of printer, there are 24 basic colors, called
Neugebauer primaries [12]: the single colors cyan (C), magenta (M), yellow (Y), and
black (K); all binary overlaps (CM, CY, MY, CK, MK, YK); all ternary overlaps (CMY,
CMK, CYK, MYK), the single full overlap (CMYK), and the background.

According to the spectral Neugebauer CPM (N-CPM) [12], the overall reflectance
of a halftone pattern is predicted as

R(λ) =
∑

i

aiRi(λ), (1)

where λ denotes wavelength, Ri(λ) is the spectral reflectance curve (as a function of
wavelength) of the ith Neugebauer primary at full colorant coverage, and ai is the
fractional relative area coverage of that printing primary (with

∑
i ai = 1).

To assess the N-CPM for two kinds of dots, we digitally created and printed two
rows of 3 × 3 cm2 halftones with the two inks, one of them with a theoretical dot area
percentage fixed at 20%, and the other increasing from 20% to 80% in 10% steps (see
Fig. 1, Left) on 20cm× 30cm tiles with engobe and matt glaze layers on a fired biscuit
base (for better consistency). Each square is named with the corresponding colors and
dot area percentages; e.g., C20M30 refers to 20% cyan and 30% of magenta (theoreti-
cal). We also created 3×3 cm2 color squares with 100% occupation of the correspond-
ing Neugebauer primaries for these halftones; e.g., for cyan and magenta, these would
be cyan, magenta, and overlapping, at 100% occupation, as well as background.

We acquired images using a CCD color camera with a zoom lens, under a bank of
two 36-Watt daylight fluorescent lamps. The imaged area was 7mm×8.5mm, at 50cm
distance from the base of the camera to the tile surface (see Fig. 1).

For the application of the N-CPM, we measured reflectance curves of a 8mm radius
circle of each halftone square patch, as well as of each Neugebauer primary with an
integrating sphere MINOLTA CM-508i spectrophotometer, with illumination-geometry
D65/10◦. The spectral range covered is [400− 700] nm, in 10nm steps.

The segmentation algorithms will provide estimates of the ai parameters for use
in (1). This allows comparing the N-CPM predicted reflectance curve with the corre-
sponding spectrophotometer curve to assess its validity.
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Fig. 1. Left: Digitally created file for C and M . First row, Cyan fixed at 20%. Second row, Ma-
genta fixed at 20%. Right: Image of C at 30% and M at 20% acquired with the Zoom lens.

3 Segmentation Algorithms to Estimate Dot Area

Due to the noise in the acquired images, they are pre-processed by a non-linear, edge-
preserving, multichannel smoothing filter called adaptive nearest neighbor filter, the
details of which are found in [6] and [2]. To segment the images, we used the follow-
ing techniques, both in RGB and OCS: fuzzy C-means (FCM); FCM with contextual
information based on a Markov random field (FCM-MRF) [11]; mixture of Gaussians
(MoG); contextual MoG, via the iterated conditional modes (ICM) algorithm [7], [8];
a new MoG method which also smoothes the posterior class probability estimates. For
a detailed description of the FCM and FCM-MRF approaches, we refer the reader to
[11].

The MoG model for images with two types of dots (say, cyan and magenta) con-
siders each pixel as a sample of a random variable in IR3 (RGB or OCS) with a 4-
component MoG probability density function,

p(y) =
4∑

j=1

aj N (y|μj , Cj);

the four Gaussian components correspond to the four Neugebauer primaries: pure cyan,
pure magenta, overlap, and background. Parameters μj and Cj are the mean vector and
covariance matrix of each component, while aj is the weight of component j, to be used
in the N-CPM equation (1). The standard expectation-maximization (EM) algorithm [7]
obtains estimates of these parameters from a set of samples (pixels) {yi, i = 1, ...,N}
by iterating two steps:

E-step: Compute the a posteriori probability that pixel i, for i = 1, ...,N , was pro-
duced by component j (given the current estimates âj , μ̂j , and Ĉj)

τij =
âj N (yi|μ̂j , Ĉj)∑4

k=1 âk N (yi|μ̂k, Ĉk)
, for j = 1, 2, 3, 4; (2)

M-step: Update the parameter estimates according to (for j = 1, 2, 3, 4)

âj =
∑

i τij
N

, μ̂j =
∑

i yi τij∑
i τij

, Ĉj =
∑

i(yi − μ̂j)(yi − μ̂j)T τij∑
i τij

.
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The ICM approach is based on the same MoG model. The first phase of this ap-
proach is to run the EM algorithm until convergence. In the second phase, a modified
EM algorithm is applied, based on a modified E-step in which the a posteriori proba-
bilities are spatially smoothed using a window centered on that pixel:

τ ′ij =
ηij N (yi|μ̂j , Ĉj)∑4

k=1 ηikN (yi|μ̂k, Ĉk)
, with ηij =

exp(β
∑

n∈Wi
τnj)∑4

k=1 exp(β
∑

n∈Wi
τnj)

, (3)

where Wi is a window centered around pixel i and the τij are computed according to
the standard E-step (2). The smoothed τ ′ij posterior probabilities are then used in the
standard M-step.

We also propose a new method to smooth the a posteriori probabilities. The key idea
is that each set of a posteriori probabilities {τi1, ..., τi4}, which have to be nonnegative
(τij ≥ 0) and normalized (τi1 + ... + τi4 = 1), can be expressed by 3 unconstrained
real variables {αi1, αi2, αi3} using a so-called multinomial logistic transformation:

τi1 =
eαi1

1 +
3∑

j=1

eαij

, τi2 =
eαi2

1 +
3∑

j=1

eαij

, τi3 =
eαi3

1 +
3∑

j=1

eαij

, τi4 =
1

1 +
3∑

j=1

eαij

.

(4)
This transformation is of course invertible according to

αi1 = log
(
τi1
τi4

)
, αi2 = log

(
τi2
τi4

)
, αi3 = log

(
τi3
τi4

)
. (5)

The proposed approach consists of computing the αij variables according to (5) after
the last E-step, spatially smoothing these variables using any filter (since these variables
are under no constraints) and then recomputing the τij variables using (4).

4 Obtaining the “Groundtruth” Segmentations

In [6] it was shown, for one type of printed dot, that singular value decomposition
(SVD) could be used to create images that can be seen as groundtruth. In fact, the
SVD was just the first of a series of steps which included morphological operations
and the connected components labelling method; see [6] for full details. For images
of two printed dots, we propose the use of mixtures of factors analyzers (MFA) [3],
which can be seen as a local generalization of factor analysis (FA, [1]). For lack of
space, we can not give details of the MFA approach, and the reader is referred to [3]
for more information. Fig. 2 shows examples of these segmentations obtained by MFA,
after some post-processing steps [6], as well as segmentations obtained by the ICM
algorithm described in Section 3.

5 Results and Discussion

5.1 Segmentation Results

To compare the segmentation results produced by the algorithms described in Sec-
tion 3 with the MFA-based segmentations, we computed sensitivity per class (SC)
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Fig. 2. Left column: original images of C50Y 20 and M20Y 80. Center column: corresponding
MFA-generated groundtruth. Right column: ICM based segmentation results.

Table 1. Sensitivities (per class) and overall accuracies. GS1 means Gaussian smoothing with
standard deviation σ = 0.3 with a 3 · 3 window size. GS2, standard deviation σ = 1.0 with a
3 · 3 window size. GS3, standard deviation σ = 1.0 with a 5 · 5 window size. GS4, standard
deviation σ = 3.0 with a 5 · 5 window size. ANN is the adaptation of the Adaptive Nearest
Neighbour Filter, as in [2], applied on a 3 · 3 window.

SC-C SC-M SC-Y SC-CM SC-CY SC-MY SC-Back Overall accuracy

FCM 67,23 67,41 69,37 61,66 54,75 66,64 75,81 64,46

FCM-MRF 67,53 65,61 69,77 62,24 56,43 66,87 75,72 64,75

EM 67,54 74,70 71,62 70,26 57,42 82,60 81,20 73,64

EM - ICM 68,17 75,72 72,32 70,90 58,34 82,18 82,31 74,08

EM GS1 67,86 74,58 72,28 70,75 57,83 83,04 81,23 74,02

EM GS2 67,99 74,29 72,07 70,67 57,84 82,95 81,15 73,94

EM GS3 68,15 74,07 71,93 70,87 58,07 83,07 81,03 73,90

EM GS4 68,23 73,69 71,55 71,02 58,24 83,05 80,74 73,73

EM ANN 67,53 74,52 71,95 70,22 57,90 82,39 81,07 73,79

values as well as overall accuracies (OA). These quantities are given by: SC =
TP/(TP + FN), where TP stands for “true positives” and FN for “false negatives”;
OA = NCC/(NCC + NIC), where NCC denotes the “number of correct classifi-
cations” and NIC means “number of incorrect classifications”. Table 1 reports results
for all segmentation methods in RGB (all methods did worse in OCS, so we omit those
results). We see that the ICM algorithm gives the best results in terms of OA. The alter-
native method that we have proposed performs only slightly worse, with the advantage
that the contextual part is applied only once.

5.2 Assessing the Neugebauer Model

We assess the N-CPM by comparing the experimentally measured spectral reflectance
for each printed patch (see Section 2) against the spectral curves predicted by the N-
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Table 2. Comparing spectrophotometer and model predicted reflectance curves: first row in each
case is the MFA-based result, the second row is the result by the ICM algorithm

RMS value (%) DeltaE76 DeltaE00 MI00

6,74 4,86 3,66 1,99

5,31 3,27 2,30 1,36

8,15 5,50 3,98 1,74

4,69 2,93 2,39 1,48

8,75 6,90 5,09 1,70

6,81 4,84 4,02 2,07

7,73 4,98 3,80 1,63

5,82 5,25 4,53 1,89

5,12 3,97 3,07 1,24

5,98 4,22 3,27 1,38

3,69 6,25 4,37 0,44

4,79 6,86 4,99 1,28

2,25 1,34 1,00 0,53

5,56 3,58 2,58 1,16

7,77 7,66 5,71 2,33

4,37 3,54 2,54 1,31

6,20 3,98 2,68 1,72

5,52 5,63 3,87 1,62

4,96 6,05 4,03 0,94

3,97 3,14 2,02 1,15

1,55 1,24 1,04 0,22

1,87 1,13 1,11 0,15

6,57 10,25 6,00 1,05

6,27 9,26 5,39 0,76

4,30 2,89 2,14 0,72

4,83 3,76 2,68 0,67

6,40 5,03 3,43 0,78

5,05 3,75 2,64 0,76

8,40 7,30 6,91 1,02

8,76 7,50 6,99 1,03

5,48 5,01 3,07 0,77

8,89 7,69 7,06 1,06

4,95 3,88 2,66 0,79

4,76 5,86 5,13 0,91

5,47 5,99 4,95 0,89

3,95 4,39 3,39 0,80
M20Y70

M20Y30

M20Y40

M20Y50

M20Y60

C20Y50

C20Y60

C20Y70

M20Y20

C20M20

C20M30

C20M40

C20M50

C20M60

C20M70

C20Y20

C20Y30

C20Y40

CPM based on the groundtruth segmentation and the one obtained by the ICM algo-
rithm described in Section 3. The predicted spectral curves are obtained by plugging
the estimated dot area coverage (parameters ai from the segmentations) and the re-
flectance curves of the Neugebauer primaries into (1). To compare predicted and mea-
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Fig. 3. Model predicted spectral reflectance curves of C50M20 and C50Y 20

sured spectral reflectance curves, we use the following quantities [10]: the root mean
squared (RMS) error between the two curves; theΔEL∗a∗b∗ color difference; theΔE00
color difference; and the metameric index MI00. The ΔEL∗a∗b∗ and ΔE00 colour dif-
ferences are particularly relevant since they try to match the human color perception.
The procedure to obtain an L∗a∗b∗ color from a spectral reflectance curve is described
in [6].

Table 2 shows values for a set of test images. It is known that humans can only
discern color differences when ΔEL∗a∗b∗ > 3.5 [9]. Thus, we can state that the MFA-
based results and the results produced by the ICM algorithm yield good colour predic-
tions with the Neugebauer model.

In Fig. 3 we can see the experimental and predicted reflectance curves for two cases:
C50Y 20 and C50M20. For C50Y 20, we also show C40Y 20 and C60Y 20 reflectance
curves, and for C50M20, we show the C40M20 and C60M20 curves. These curces
can be seen as a kind of bounds for the predicted reflectances. These two plots show a
slight limitation in the lower part of the spectrum, for these two cases, of the prediction
capability.

6 Conclusion

We have investigated the use of some non-contextual and contextual segmentation algo-
rithms for images of halftone patterns with two types of printed dots, taken from ink-jet
printed ceramic surfaces. Groundtruth and ICM segmentation results are used to feed a
Neugebauer colour prediction model which outputs predictions of spectral reflectance
curves. These predicted curves were compared with experimental ones (obtained with a
spectrophotometer) under several error measures (some of them of perceptual nature).
We have concluded that the predicted colors are close to the measured ones.

This paper has established a color prediction framework for ink-jet printing tech-
nology on ceramic tiles for four-color patterns. The next step will be to analyze images
with three types of printed dots (C, M and Y ), which implies the existence of 8 (23)
different clusters, four of which correspond to overlapping of inks.
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Abstract. A modified FCM algorithm based on spatial and multireso-
lution constraints is described in this paper. First the pyramid is built
from the original image then in each level FCM parameters are computed
under a neighborhood spatial constraint. The coarse membership func-
tions propagate down to fine layers to improve segmentation accuracy.
The algorithm is tested on both synthetic and multispectral images. Ex-
perimental results are presented, showing the effectiveness of the method.

1 Introduction

Image segmentation is a key step in image processing and computer vision. It
appears fundamental towards semantic Data Base retrieval, in partitioning an
image into homogeneous regions with similar visual aspect from color, texture or
spectral features. Such segmentation can be formalized as a classification prob-
lem where each pixel is assigned to a specific class. Clustering techniques −
unsupervised classification − have thus gained considerable attention lately for
these applications [1,2]. Widely used in this purpose Fuzzy C-Means (FCM) algo-
rithm [3] shows good clustering performance[4]. The segmentation is obtained
by minimizing a criterion based on a fuzzy distance between the prototypes
and the image pixels. Although the original FCM algorithm yields good results
in segmenting noise-free images, it generally fails to segment images corrupted
by noise, outliers and other imaging artifacts. Therefore segmenting real world
images such as remote sensing images by FCM can lead to unreasonably incon-
sistent segmentation. One way to deal with this problem is filtering images before
to apply FCM. However filtering may loose some important information. To deal
with this problem earlier works [5,6] show the improvement in segmentation re-
sults by incorporating the spatial information into the FCM algorithm. Other
approaches incorporate a second constraint term for the membership function
to be influenced by neighborhood membership functions [7]. Likewise, the sec-
ond term added to the FCM objective function can deal straight with distances
of neighbors to prototypes [8]. Those methods favour a direct contribution of
neighbors’ intensity values while other properties of that neighborhood could be
taken into account.

In this paper we present an approach based on spatial and multiresolution
constraints for FCM. We do not consider only the spatial information in the
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image plan, but also at different levels of resolution. The clustering process
operates at each level of resolution, so that each point be influenced by its
spatial neighborhood and its immediate ancestor in the pyramid. Two terms
have been added to the original FCM objective function. The first one constrains
the membership function of a given pixel to follow the neighbors’ membership
function. The second propagates in a similar way the father membership function
to influence the child.

The paper is organized as follows. Section 2 describes the pyramidal represen-
tation. The new algorithm with the modified FCM is described in section 3. Our
segmentation method being tested on both synthetic and real images, results are
illustrated in section 4. The paper concludes in section 5.

2 Pyramidal Representation

Multiresolution methods are meant to provide a global view of an image by
examining it at various frequency ranges. Different types of details are put for-
ward at different levels in the associated pyramid structure. Also, it installs a set
of relationship between image elements in different layers. Therefor such repre-
sentation allows building some consistency property. Indeed, for instance if one
pixel belongs to a specific class with a high membership value at a level n and
its ancestor at level (n− 1) belongs to the same class with also a high member-
ship value, therefore the pixel assignment to this class gains higher confidence.
In most pyramidal decomposition schemes the image is successively decomposed
into (low-pass) versions by combination of convolution and sub-sampling. Given
an NxN image g and using an appropriate filter h with size LxK, the image at
lower resolution (n− 1) is given by

gn−1(x, y) =
L∑

i=1

K∑
j=1

h(i, j)gn(2x− i, 2y − j) (1)

A popular filter is the Gaussian (low-pass), other filters may turn appropriate
depending on applications and types of features to enhance. The pyramid is
obtained thereby applying the procedure described in (1) at successive levels,
making the size of images decrease continuously. For instance, a quad tree image
representation handles a pyramid structure where each element at level (n− 1)
has four children at level (n) see figure 1. Note that usually the higher level in
the pyramidal representation has 0 index and the lowest gets n.

3 Spatial Multiresolution Constraint

The traditional FCM algorithm minimizes the objective function J(U,V ) defined
as a sum of similarity measures. It is given by

J(U,V ) =
C∑

i=1

N∑
j=1

um
ij ‖ xj − vi ‖2 (2)
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Fig. 1. Pyramidal representation

where X = {x1,x2, ...,xN} denotes the set of data xk corresponds to feature vec-
tor. V = {v1, v2, ..., vC} represents the prototypes, known as the cluster centers.
U = [uij ] is the partition matrix which satisfies the following conditions:

U

⎧⎨⎩uij ∈ [0, 1] ∀i, j 0 <
N∑
j

uij < N ∀i
C∑
i

uij = 1 ∀j
⎫⎬⎭ (3)

m is a fuzzifier that indicates the membership fuzziness for each point. FCM
algorithm is an iterative process by minimizing the distance from each point to
the prototypes. The FCM objective function in Eq. 2 does not incorporate any
spatial context. This can lead to undesirable region formation. More over the
classification process is extremely noise sensitive, as any smoothing effect would
require neighbors. In order to overcome the problem, a regularization term will
be added to constrain Eq. 2 so that classification of each point be influenced by
its neighborhood and its immediate ancestor in the pyramidal representation.
The modified objective function becomes:

JSCM (U,V ) =
C∑

i=1

N∑
j=1

um
ij ‖ xj − vi ‖2 +

n

2
α

C∑
i=1

N∑
j=1

um
ij e

−∑k∈Ω um
ik

+ β

C∑
i=1

N∑
j=1

um
ijf

(n−1)
i (xj) (4)

where Ω is a set of neighbors (k 	= j). f (n−1)
i (xj) is the point xj ’s ancestor

membership function to the ith cluster in lower layer (n − 1) . Parameters α
and β are weights to control the influence of the related term. α is multiplied by
a scale factor (n

2 ) to diminish the importance of the spatial constraint at lower
levels. The objective function (4) is now comprised of three terms. The first is the
same as in regular FCM. The second is a penalty term that incorporates spatial
relationships in the neighborhood. It tends to forcing a pixel belong to the same
class as its neighbors thereby using the membership functions to correlate the
class of a point with classes of its spatial neighbors. This second term reaches
a minimum when the membership value of neighbors for a particular cluster is
large. Remains to incorporate the relationship between classes of elements at
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different resolution levels for more feature consistency thus more confidence in
the pixel classification. The third term conveys an influence of the father on the
labeling of a pixel. The membership function at a coarser level precisely provides
the fine level with information about the father membership value to a peculiar
cluster. Optimizing (4) with respect to U will be completed in a classical way
by a Lagrange multiplier technique.

JSCM (U,V ) =
C∑

i=1

N∑
j=1

um
ij

(
‖ xj − vi ‖2 +

n

2
αe−

∑
k∈Ω um

ik + βf
(n−1)
i (xj)

)

+
N∑

j=1

λj(1 −
C∑

i=1

uij) (5)

The derivative of (5) versus uij is

∂JSCM

∂uij
= mum−1

ij

(
‖ xj − vi ‖2 +

n

2
αe−

∑
k∈Ω um

ik + βf
(n−1)
i (xj)

)
− λj (6)

Solving for uij gives

uij =

(
λj

m(‖ xj − vi ‖2 + n
2αe

−∑k∈Ω um
ik + βf

(n−1)
i (xj))

) 1
m−1

(7)

Solving for λj with respect to the constraint (3), it comes

C∑
i=1

(
λj

m(‖ xj − vi ‖2 + n
2αe

−∑k∈Ω um
ik + βf

(n−1)
i (xj))

) 1
m−1

= 1 (8)

As λj does not depend in any term of the sum this yields

λ
−1

m−1
j =

C∑
i=1

(
m‖ xj − vi ‖2 +

n

2
αe−

∑
k∈Ω um

ik + βf
(n−1)
i (xj)

) −1
m−1

(9)

Eventually substituting in (7) the following update membership is obtained

uij =
1∑C

p=1

(
‖xj−vi‖2+ n

2 αe
−
∑

k∈Ω
um

ik+βf
(n−1)
i (xj)

‖xj−vp‖2+ n
2 αe

−
∑

k∈Ω
um

pk+βf
(n−1)
p (xj)

) 1
m−1

(10)

As seen from (10) the membership value of a point j to cluster i, defined by uij ,
depends on membership values of its neighbors and ancestor in the pyramidal
representation. At a given level of resolution, for a point to have a high mem-
bership value to a particular cluster depends on how its neighbors and father
belong to this cluster. The amount of regularization is controlled by the weights
α and β. In the particular case when α = β = 0 the membership value, uij ,
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is the standard FCM membership function. Increasing the values of α or β in-
creases the smoothness. The effect of spatial regularization is more important
in higher levels of the pyramid than in low levels possibly causing over smooth-
ness. Actually, the influence of the spatial constraint should be weaker at higher
levels. Therefore we chose to multiply α by a half of the level index −i.e. the
scale factor− . As a result, the importance of the spatial contribution effect in-
creases from top to bottom. Further achieving better performance is a matter of
trade-off between terms.

The prototype update equation is the same as in standard FCM, since the
second component of (4) does not depend on vi. Centroids update obeys the
following equation:

vi =

∑N
j=1 um

ijxj∑N
j=1 um

ij

(11)

The Fuzzy Spatially-Constrained C Means in Multiresolution, FSC2M2 , algo-
rithm consists in computing the parameters at each level of resolution with a
constant number of clusters for all levels. The FSC2M2 can be summarized by
the following steps:

Step 1 Fix the number of clusters
At each level:
Step 2 Initialize the centers and uij

Step 3 Compute the distance ‖ xj − vi ‖2
Step 4 Update the partition matrix using (10)
Step 5 Update centroids using (11)
Step 6 Repeat step 3 to step 5 till convergence
Step 7 Defuzzification at the bottom layer

Note that at level 0 f (n−1)
i (xj) is set to 0

The convergence is achieved when the change in membership values at layer n
is less than a threshold.

4 Experiments

Experiments have been carried out to check effectiveness of the proposed algo-
rithmic improvement. We adopt two kinds of test images: Synthetic and remote
sensing (RS) images. FSC2M2 is applied to images and results are compared
with those of standard FCM and sole spatial constraint − FSC2M −. The mul-
tiresolution scheme is the Gaussian pyramid and three levels are used for the
experiments. The weights α and β were set respectively to 180 and 100. In all
experiments the fuzzifier m is set to 2.

Fig. 2 shows results for an RGB color image (in (a)) corrupted by 30% of
shotnoise. The image contains four class patterns. Fig. 2 (b) shows the results
of the FCM algorithm, and (c) the results of FSC2M (β =0). FSC2M2 results
on these synthetic images are illustrated in Fig. 2 (d). In all such cases FSC2M2
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(a) (b) (c) (d)

Fig. 2. Segmentation results for synthetic images

outperforms FCM and FSC2M. Unlike FCM, FSC2M detects correctly the dif-
ferent classes, although some over segmentation due to noise remains that vanish
with FSC2M2. Also FSC2M2 proves more robustness of segmentation.

(a) (b) (c) (d)

Fig. 3. Segmentation results for one band RS images

(a) (b) (c) (d)

Fig. 4. Segmentation results for 3 bands RS images

In a second experiment real multispectral test images were obtained from
CCRS (http://www.ccrs.nrcan.gc.ca). The image was created by a C/X band
SAR system: in each pixel 3 bands represent the spectral characteristics. These
images contain many kinds of noise and artifacts due to the sensor, atmospheric
distortions.... Such conditions make it difficult to segment those images by classi-
cal FCM. However to evaluate our algorithm for RS images and study the effect
of bands information upon the segmentation we test one band and three bands
images.

Fig. 3 (a) shows forests as confirmed by the ground truth and in this case
we consider only one band. (b) shows FCM segmentation results in which many
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regions are not well segmented. From the same Fig the image (c) displays FSC2M
results. It can be seen that the case (d) (FSC2M2) provide a better matching
with perceptual regions and boundaries.

Fig. 4 (a) represents agricultural fields in 3 bands. The segmentation results
yielded by FCM, FSC2M and FSC2M2 are shown respectively in Figs. 4 (b)(c)
and (d). One can notice that FCM segmentation produces a lot of insignificant
regions, that make it less accurate than FSC2M2. The proposed method outper-
forms FCM and brings out satisfactory segmentation: the difference with FCM
remains qualitatively consistent on samples from a dozen of similar images(eg.
agricultural, forest, urban,...).

5 Conclusion

In this paper we proposed a new method for image segmentation. The FSC2M2

algorithm uses a modified version of the FCM objective function to increase
performance and robustness. We incorporate spatial and multiresolution infor-
mations, aiming at more effective segmentation. The results show that FSC2M2

proves a better accuracy than FCM on both synthetic and RS images.
However automatic determination of the number of classes is known as the

drawback of FCM algorithm. That is true as well for FSC2M2. Several algo-
rithms have been proposed to outcome this problem, they possibly combine
with FSC2M2 the same way as with FCM. In the present work weights are set
heuristically but we will now introduce stochastic methods benefiting from the
pyramid structure to compute them.
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Abstract. A novel segmentation algorithm for natural color image is proposed. 
Fibonacci Lattice-based Sampling is used to get the color labels of image so as 
to take advantage of the traditional approaches developed for gray-scale images. 
Using local fuzzy homogeneity derived from color labels, texture component is 
calculated to characterize spatial information. Color component is obtained by 
peer group filtering. To avoid over-segmentation of texture areas in a color im-
age, these color and texture components are jointly employed to group the pix-
els into homogenous regions by the mean shift based clustering. Finally, ex-
periments show very promising results. 

1   Introduction 

Image Segmentation is an important precondition in image analysis and visual pattern 
recognition. Although there have been hundreds of segmentation algorithms, they 
were developed only for gray scale images and could not be simply extended to color 
counterparts [1][2]. The difficulty mainly lies in the inherent correlation of multiple 
bands of color images. To circumvent this problem, two straightforward ways have 
been adopted in the previous works. One is to choose a color space with independent 
intensity and chromaticity channels, such as CIE LUV [3], HSV [4], etc. Another way 
is to reduce the dimensionality of the original color image. In [5], the original RGB 
space was transformed into the XYZ space which, subsequently, was used to form the 
xyY space. Using xyY, a measure of the chromatic information is derived, combining 
the (x, y) pair of chromaticity values into a single quantity. Deng and Manjunath [3] 
proposed an unsupervised image segmentation method called JSEG in which a 3-band 
color image was converted into a scalar map, i.e. color class map, after the color 
quantization step. In principle, every color quantization method can result in a class 
map after the pixels' color values are labeled by indices. However, these indices them-
selves do not typify the true color information and are only used to search quantized 
colors in the color palette. As an exception, Mojsilovic and Soljanin [6] presented an 
image-independent quantizer based on Fibonacci lattice sampling to form a structured 
palette by which the quantized images are more amenable to the type of processing 
used for grayscale ones. In our study, we apply this technique to the color image and 
in turn some features are extracted for image segmentation. 

In addition, texture also exists in images, which usually represents inhomogeneous 
areas. If only using color information, textural areas may be over-segmented where 
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the colors are different to some extent and hence the segmented images will be incon-
sistent with semantic understanding of humans. JSEG [3] is a popular color texture 
segmentation method proposed recently. The basic idea of JSEG is to separate the 
segmentation process into two stages: color quantization and spatial segmentation. 
The decoupling of color similarity from spatial distribution in JSEG allows for the 
development of more tractable algorithms for each of the two processing stages. On 
the other hand, color quantization plays a crucial role to the segmentation result be-
cause it provides a precondition for spatial segmentation. In fact, it is important to 
design an elegant color quantization algorithm and inappropriate ones may lead to 
under-segmentation or over-segmentation results. 

We argue that joint color-texture features should be used to represent the spatial in-
teractions within and between spectral bands more effectively. In this paper, we pro-
pose a novel color image segmentation method based on the Fibonacci lattice sam-
pling and the mean shift algorithm. Color and textural features are extracted from the 
quantized images based on Fibonacci lattice sampling, where color components are 
obtained by peer group filtering and texture components are constructed by fuzzy 
homogeneity. Then, a clustering technique based on mean shift is applied to the fea-
ture vectors to form the final homogenous regions. The paper is organized as follows. 
Section 2 depicts the construction of color and texture components based on Fibo-
nacci lattice sampling. A joint color-texture segmentation method based on mean shift 
is developed in Section 3 and some experimental results are given in Section 4. We 
conclude this paper in Section 5. 

2   Construction of Color Component and Texture Component 

Representing the color and texture information in a color image appropriately is a 
challenging work due to the spatial interactions between its color bands. In virtue of 
color space sampling based on Fibonacci lattice proposed in [6], we can construct 
these two components conveniently. 

2.1   Color Space Sampling Based on Fibonacci Lattice 

The Fibonacci lattice sampling scheme proposed in [6] provides a uniform quantiza-
tion of the CIE Lab color space and a way to establish a partial order relation on the 
set of points. At each different level of L values in the CIE Lab color space, a com-
plex plane in polar coordinates is used to define a spiral lattice as a convenient means 
for sampling. The following set of points on (a, b) plane constitutes a spiral lattice: 

2 , , ,j n
nz n e R n Zδ π τ τ δ= ∈ ∈h

 (1) 

Fig. 1 shows a spiral lattice for ( )5 1 2τ = −  and 1 2δ = , which is called Fibo-

nacci lattice. Each point nz  is identified by its index n. Parameter τ  and δ  deter-

mines the axial distribution and the radial distribution of the points respectively. If 
there exist LN  L values and PN  colors in the corresponding (a, b) plane, for each 

point in the palette, the corresponding symbol is composed by adding its chrominance 
index n to a multiple of its luminance index i 
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Pq n N i ,
 

(2) 

Consequently, the L, a and b values for any color from the palette can be recon-
structed from its symbol q. For a pixel p, with color components pL , pa  and pb , the 

process of determining the closest palette point starts with finding the closest lumi-
nance level sL  from the LN  levels available in the palette. The luminance level sL  

determines an (a, b) plane and one of the points nz , 0 pn N≤ < , in that plane is the 

minimum mean square error (MSE) solution. It means that the solution q is the point 
whose squared distance to the origin is closest to 2 2 2

p p pr a b= + . 

 

Fig. 1. Points of the Fibonacci lattice in a complex plane 

     

(a)                                     (b)                                     (c) 

Fig. 2. (a) Original image, (b) color quantized version using a Fibonacci palette with 540 colors 
and (c) Fuzzy Homogeneity of image displayed by gray levels 

In order to achieve as accurate color representation as possible, in our experiment, 
we use VQ quantization to extract L values. These L values can approximately denote 
the luminance levels of the image. Since the plane of (a, b) is not circular, there will 
be points in the Fibonacci lattice whose colors are not valid in the RGB space. Thus 

we label all these points as range invalid. The points are given by ( )02j n
nz s ne π τ α+= , 

where ( )5 1 2τ = − , 0 0.5α =  and 1s = . In Fig. 2(a), L component is quantized 

into {53, 60, 64, 66, 68, 71, 75, 79, 97} and using these L values and 60PN =  points 

in each plane to constitute the palette. Therefore the size of palette is 9 60 540× = , on 
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the other hand, the number of colors in valid RGB space is 523. Fig. 2(b) shows the 
quantized image in which it uses 71 valid colors in the palette. Thus, each pixel is 
labeled by the symbol q, which not only is the index of the palette, but also typifies 
the color information to some extent. 

2.2   Construction of Texture Component by Fuzzy Homogeneity 

Benefiting from the structure of the above color palette, it is possible to extend the 
processing methods for gray-scale images to color ones. Images usually contain both 
the textural and smooth areas. While smooth areas contain similar colors locally, 
textural areas may have different colors. Therefore it is important to consider both 
color and texture variation simultaneously to avoid over-segmentation of textural 
areas. In order to estimate smooth or textural areas, fuzzy homogeneity is used to 
describe local coarseness. In [7], intensities of three color components in RGB color 
space were extracted to calculate fuzzy homogeneity values. However, RGB repre-
sentation does not coincide with psychology of human eyes and there is high correla-
tion among its three components. Considering the fine characters of Fibonacci sym-
bols, we apply them to constitute fuzzy homogeneity. For an M N×  image, each 

pixel value 1,ij Qg N⎡ ⎤∈ ⎣ ⎦  is the corresponding symbol of palette, QN  is palette size. 

Apart from invalid symbols in RGB space, all M N×  pixels only occupy a subset of 
palette symbol values, vsubN . In this subset, symbol values are used to compute fuzzy 

homogeneity which is defined as 

( ) ( ) ( ){ }, ,1 ,1h X Y ij X Y ij ij vsubi j g g g N i M j Nλ λ λμ η× ×= ∨ ∈ ≤ ≤ ≤ ≤  (3) 

where ( ),h i jλμ  is the fuzzy homogeneity value at position ( ),i j  and X Y×  is the 

local window size which is 5 5×  in the experiment. is Laplacian operator, rep-

resenting the discontinuity such as abrupt changes of the corresponding color sym-
bols, and   represents the standard deviation which describes the contrast of the 

color symbols within a local region. See [7] for the detailed presentation. The compo-
sition rule is used to find fuzzy homogeneity of the pixel. Fig. 2(c) shows the fuzzy 
homogeneity of the image which is displayed by gray levels. 

Coarser the local region surrounding a pixel is, the less the homogeneity value the 
pixel has. Different normalized fuzzy homogeneity ranges denote corresponding lev-
els of homogeneous areas. We use fuzzy homogeneity ( ),h i jλμ  which is computed in 

the 3 3×  or 5 5×  local windows as texture component ( ),cT i j . 

2.3   Construction of Color Component by Peer Group Filtering 

In the global window, how to specify the center pixel’s color is related with that of 
adjacent pixels. In the smooth areas, because of similar colors around the center pixel, 
the center pixel can be replaced by averaging most colors of adjacent pixels so as to 
keep uniform visual perception. On the other hand, in the texture areas, we use the 
average colors which is similar to the center pixel to represent its color and discard 
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other distinct colors. Hence, remaining pixels keep the principal colors relevant with 
the center pixel and make for extracting main color parts in texture. Peer group filter-
ing (PGF) whose purpose is to smooth image and remove impulse noises [8] is a 
nonlinear algorithm classifying pixels into sets by means of similar colors. Assuming 
that there exist several clusters of colors in the global window, one set is similar col-
ors with the center pixel and others are distinct ones, we use the mean of former set to 
replace the center pixel color. 

After specifying the size of global window sideL according to image itself, we cal-

culate the distances of the color values of neighbor pixels ( )kp n  in the global window 

to the center pixel 0 ( )p n . Then all neighbor pixels in this window are sorted accord-

ing to these distances.  The peer group, which contains the center pixel and the 
neighbors of similar colors, is formed by choosing the m pixels with the minimum 
distances. The size of peer group ( )m n  is decided by 

2
1 2 2
2 2
1 2

| |
( ) arg max , 0, , 1side

a i a i
m n i L

s i s i  
(4) 

where 

( ) ( )1

1 20

1 1
( ) ( )

1

i k

j jj j i
a i d n and a i d n

i k i

−

= =
= =

+ −∑ ∑ , (5) 

( ) ( )2 212 2
1 1 2 20

( ) ( ) ( ) ( )
i k

j jj j i
s i d n a i and s i d n a i

−

= =
= − = −∑ ∑  (6) 

After the classification, we can compute the average color of the peer group based 
on their corresponding pixels’ symbols. If the average value is invalid in the palette, 
we specify its nearest valid symbol as its color component: 

( ) ( )
( ) 1

0
( ( ))

, int
( )

m n

kk
c

q p n
C i j

m n

−

=≅ ∑
 (7) 

3   Joint Color-Texture Segmentation Based on Mean Shift 

The color and texture components can be combined together to be a real number to 
represent homogeneous regions, however, it may lose some information since both 
components interfere with each other. In order to avoid this limitation, after the nor-
malization of color and texture component, homogeneity vector is formed: 

( ) ( ) ( ), , , , ,i j c cv c t C i j T i j=  (8) 

According to these feature vectors, we use a clustering technique namely mean 
shift to group pixels into homogeneous regions to gain final results. 
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3.1   Mean Shift Based Clustering 

Mean shift is a simple, nonparametric technique for estimation of the density gradient. 
Recently the idea is widely applied to several computer vision problems. As to the 
detail algorithm, please refer to [9]. 

Let f x( )  be the probability density function underlying a p -dimensional feature 

space, and ix  the available data points in this space. Under its simplest formulation, 

the mean shift property can be written as 

i h
iS

f x ave
,xx

ˆ ( ) [x ] x
 

(9) 

where ,xhS  is the p -dimensional search window with radius h  centered on x . The 

mean shift algorithm is described briefly as follows: 

1) Choose the radius h  of the search window; 
2) Choose the initial location of the window; 
3) Compute the mean shift vector and translate the window by that amount; 
4) Repeat till convergence. 

3.2   Joint Color-Texture Segmentation 

In [10], the mean shift algorithm was applied to color image segmentation. However, 
the method restricts analysis to the color space and do not take into account the spatial 
texture information, which affects the segmentation results. The approach in this work 
takes both color and texture into account. To conclude, the complete color image 
segmentation procedure is as follows. 

1) At first, Fibonacci lattice sampling is used to get the symbols of the pixels; 
2) In the symbol map, texture and color components are derived; 
3) The mean shift based clustering technique is used to group the pixels into sev-

eral homogeneous regions according to the feature vectors; 
4) An agglomerative clustering algorithm [11] is performed on the cluster cen-

troids to further merge close clusters such that the minimum distance between 
two centroids satisfies a preset threshold. 

4   Experimental Results 

To test the proposed algorithm, we have applied it on a number of real natural images 
from WWW. Fig. 3 and 4 show the two experimental results of the proposed method 
and the method of JSEG [3]. Fig. 3 (b) demonstrates that the proposed method posses 
great capabilities to distinguish different regions. Although JSEG segment main ho-
mogeneous areas, it neglects the stone in swamp and a part of hills which have differ-
ent colors in comparison with around pixels. Comparing to JSEG which does not 
consider the spatial information in process of color quantization, we quantize image 
using combination of color and texture components which describe the space rela-
tions. Moreover, JSEG uses color distribution to form pixels’ J values firstly and uses 
them to indicate whether the local area is in the texture region interiors or near 
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boundaries, hence J value itself does not contain color values directly. Our algorithm 
not only considers texture distribution, but also calculates color component as de-
scriptor. In general, the segmentation results match well with perceived boundaries. 

 

       
                     (a)                                      (b)                                      (c) 

Fig. 3. (a) Original image; (b) Segmentation by proposed method; (c) Segmentation by JSEG 

     
                      (a)                                      (b)                                      (c) 

Fig. 4. (a) Original image; (b) Segmentation by proposed method;  (c) Segmentation by JSEG 

5   Conclusions 

Color and texture are two most important ingredients in human visual perception. 
Many segmentation approaches used both of them to get homogeneous regions. In 
this work, a novel segmentation algorithm is proposed, which considers interaction of 
texture distribution and local color information. Using Fibonacci lattice-based quanti-
zation helps us calculate fuzzy homogeneity and obtain the texture representation. 
Peer Group Filtering is used to get the local major colors. We cluster these feature 
vectors jointly by means of mean shift method to get the final segmentation results. 
The proposed algorithm can detect small homogeneous regions surrounded by other 
ones and give effective results. 
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Abstract. A novel method of unsupervised image segmentation using contour-
let domain hidden markov trees model is presented. Fuzzy C-mean clustering 
algorithm is used to capture the likelihood disparity of different texture features. 
A new context based fusion model is given for preserve more interscale infor-
mation in contourlet domain. The simulation results of synthetic mosaics and 
real images show that the proposed unsupervised segmentation algorithm repre-
sents a better performance in edge detection and protection and its error prob-
ability of the synthetic mosaics is lower than wavelet domain HMT based 
method. 

1   Introduction 

Wavelet analyses have good non-linear approximation performance for piecewise 
smooth functions in one dimension. In essence, wavelets are good at catching point or 
zero-dimensional singularities, but bi-dimensional piecewise smooth functions re-
sembling images have one-dimensional discontinuities. This indicates that more pow-
erful representations of image are needed in higher dimensions. The Multiscale Geo-
metric Analysis takes up with the optimal presentation of multidimensional function. 
Ridgelet[1] represent good approximation performance while the target function has 
linear singularity. However, the approximation performance of rigelet for non-linear 
singularity functions will be equal to wavelets. Monoscale ridgelet[2] resolve the 
problem of sparse approximation of multi-variable functions, but the decompose scale 
is fixed. Curvelet[3] can decompose images at any scale and has better approximation 
performance than wavelets and rigelet. However, the existence of Randon transform 
in curvelet determines a higher complexity and redundancy which limited its applica-
tions. Inspired by curvelet, M.N.Do and Martin Vetterli present a “true” representa-
tion of bi-dimensional image: Contourlet[4]. It inherits the multiscale feature of 
curvelet transform, and it can be view as another realization of curvelet in certain 
meaning. 

In[5], hidden Markov tree (HMT) was proposed in the wavelet domain to achieve 
the statistical information of images by capturing interscale dependencies of wavelet 
coefficients across scales. Many unsupervised image segmentation algorithms[6,7] 
using wavelet domain HMT model are proposed and achieved satisfied results. Con-
tourlet transform also provide a natural multiscale structure of image analysis, and 
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contourlet domain HMT models[8] can characterize more anisotropic information 
than wavelet domain HMT model. Inspired by above methods, an unsupervised image 
segmentation method is developed based on contourlet domain HMT models. If an 
image contains different textures, hard clustering algorithm could be misclassified 
during the clustering process. Soft clustering algorithm FCM is used to capture the 
likelihood disparity of different texture features. A new context based interscale 
model named multiscale neighborhood context model is presented in this paper. This 
model considers the coefficients relationship in different scale. Simulation results of 
synthetic mosaics and real images show that this method is feasible and effective. 

2   Contourlet Domain Hidden Markov Trees Model 

2.1   Contourlet Approximation 

The contourlet transform not only has the multiscale and time-frequency-localization 
properties of wavelets, but also offers a high degree of directionality and anisotropy. 
Specifically, contourlet transform involves basis functions that are oriented at any 
power of two numbers of directions with flexible aspect ratios. With such a rich set of 
basis functions, contourlets can represent a smooth contour with fewer coefficients 
compared with wavelets. Due to this cascade structure, multiscale and directional 
decomposition stages in the contourlet transform are independent of each other. This 
feature makes contourlets a unique transform that can achieve a high level of flexibil-
ity in decomposition while being close to critically sampled (up to 33% overcomplete, 
which comes from the Laplacian pyramid) 1[4].  

 
(a) Wavelet                  (b) Contourlet 

Fig. 1. Wavelets have square supports that can only capture point discontinuities. Whereas 
contourlets have elongated supports that can capture linear segments of contours, and thus can 
effectively represent a smooth contour with fewer coefficients. 

Fig.2 shows example contourlet transforms of the “Barbara” image. For the visual 
clarity, only two-scale decompositions are shown. Each image is decomposed into a 
lowpass subband and several bandpass directional subbands. 

It is worth notice that only contourlets that match with both location and direction 
of image contours produce significant coefficients. Thus, the contourlet transform 
effectively explores the fact image edges are localized in both location and direction. 
Contourlet transform based on an efficient bi-dimensional multiscale and directional 
filter bank that can deal effectively with images having anisotropic information, and 
has many good properties such as multiresolution, localization, and anisotropy. 
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(a) Wavelet                                           (b) Contourlet 

Fig. 2. The image is decomposed into two pyramidal levels, which are then decomposed into 
four and eight directional subbands 

2.2   Contourlet Domain Hidden Markov Trees Model 

We first study the marginal statistics of the wavelet and contourlet coefficients of 
natural images. The followed figure plots the histograms of two finest subbands of 
image “Barbara”. 

(a) Wavelet                                      (b) Contourlet 

Fig. 3. One subband of wavelet and contourlet coefficients histogram of Barbara image 

These distributions exhibit a sharp peak at zero amplitude and heavy tails to both 
sides of the peak. This implies that the wavelet and contourlet transforms are sparse, 
at the majority of coefficients are close to zero. The kurtosis of the two shown distri-
bution are 21.03 and 20.59, which are much higher than the kurtosis of 3 for Gaussian 
distributions. Similar distributions are also observed at all subbands of other test im-
ages. Thus, the subband marginal distributions of natural images in wavelet and con-
tourlet domain are highly non-Gaussian. 

Compare with wavelet HMT model, the contourlet HMT model has a major advan-
tage is that it accounts for inter-direction dependencies, while the wavelet HMT 
model does not. There are two direction relationships in contourlet HMT model. The 
first one is like wavelet HMT model, the parent-children relationship are transfer in 
mono-direction. The other one is that a parent coefficient can have its children spread 
over two directional subbands. 

For preserve the scale characterizes with original image, the first parent-children 
relationship is adopted in our algorithm. The second one could be used in image  
denoising, texture retrieval [8].  
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(a) Mono-direction relationship  (b) Inter-direction relationship 

Fig. 4. Parent-children relationships for a possible contourlet decomposition 

3   Unsupervised Image Segmentation Using Contourlet Domain 
Hidden Markov Trees Model 

3.1   Supervised Bayesian Segmentation 

Image segmentation aims at addressing the problem of identifying different regions of 
homogeneous “textural” characteristics within the image. Supervised Bayesian image 
segmentation approach classifies an image using both image features and prior 
knowledge. Usually maximum a posteriori (MAP) estimation is involved[7],i.e., 

ˆ arg max [ ( , ) | ]MAP
x

x E C X x Y y= =  (1) 

where ( , )MAPC X x  is the cost function that assigns equal cost to any single erroneous 

estimation. To overcome the expensive computation intrinsic by MAP estimator, a 
sequential MAP (SMAP) estimator was developed with an alternative weighted cost 
function ( , )SMAPC X x in [9]. Assume ( )nY  is an image block at scale n , and ( )nX  is 

its class label. ( )ny  and ( )nx are the particular values of them. The SMAP estimator 

can be reformulated as[4]: 

( ) ( ) ( ) ( 1)
( )

( ) ( ) ( ) ( 1)

| |
ˆ ˆargmax{log ( | ) log ( | )}n n n n

n

n n n n

y x x xx
x p y x p x x+

+= +  (2) 

The two terms in (2) are the likelihood function of an image block and the contex-
tual information from the next coarser scale, respectively. As for the second part of 
(2), a context-based Bayesian segmentation algorithm, HMTseg, was presented by 
H.Choi et al in [5] where the contextual information is modeled as a context vector 

( )nv . The contextual prior ( ) ( )|
( | )n nx v

p c u is involved in the SMAP as the second part of 

(2). Assume there are N  different textures and SMAP estimate can be obtained by 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

| ,
ˆ ˆarg max ( | , )n n n

n

n n n n

x v yx
x p x v y=  

(3) 
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where ( ) ( )nx
p c is the probability mass function of class c at scale n and 

( ) ( )( | )n nf y x c= is the likelihood function of image block ( )ny  with respect to class c  

that can be calculated with one upward sweep process in the EM algorithm[10]. 
In HMTseg, the HMT model was applied to characterize texture images, aiming at 

capturing interscale dependencies of wavelet coefficients with the assumption of 
subband independence. Alternatively, an improved hidden Markov model, HMT-3S 
[11], was presented to characterize not only the dependencies of wavelet coefficients 
between different scales but those across wavelet subbands to enhance the accuracy of 
characterizing image statistics. Meanwhile, JMCMS was combined with HMT-3S to 
propose in [12] to capture more robust contextual information with multiple context 
models to improve the segmentation performance around boundaries. But above seg-
mentation methods belongs to supervised image segmentation, i.e., all image features 
are given in terms of HMT or HMT-3S models. Consequently, we propose an unsu-
pervised image segmentation based on Fuzzy C-means clustering, an efficient ap-
proach to soft clustering.  

3.2   Unsupervised Image Segmentation Using Likelihood Disparity 

The unsupervised Bayesian image segmentation can be represented as: without any 
feature prototypes or training data, find the region of interest or all the non-
overlapping distinct regions in an image. Multiscale analysis gives us a natural mul- 
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: Finer neighors

: Decision of the
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1, 2W W
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Fig. 5. Multiscale neighborhood context model 

tiresolution framework and contourlet domain HMT model are capable of capturing 
statistical properties of texture images. The unsupervised method is based on only the 
coarsest scale, corresponding to a large window size of localization operation in pa-
rameter estimation. At the coarsest scale in contourlet HMT model each node contains 
the statistical information from all other descendants at finer scales and can give us an 
robust computation of the model likelihood. Because of the tying within the subband 
during the model training, the whole image will be considered as one texture by using 
the Expectation Maximization (EM) training algorithm and only one global model can 
be obtained. Due to the different goodness of fit between this global model and local 
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texture regions, we can use the likelihood disparity to obtain a raw segmentation map 
by using the FCM clustering at the coarsest scale, where each node covers the largest 
area with the robust likelihood computation. Then the unsupervised segmentation 
process is converted to the self-supervised process.  

A new context based interscale model named multiscale neighborhood context 
model is presented in this paper. This model represents a good performance in multis-
cale fusion process. The weight operator can preserve the outline information in 
coarser scale and the detail information in finer scale simultaneity.  

4   Simulation Results and Analysis 

Here we test our methods on synthetic mosaics, aerial photo and synthetic aperture 
radar (SAR) images. Comparison results of our method and the wavelet based one are 
given. Wavelet transform we use DB4 three level decompose, and contourlet trans-
form we use classical ‘9-7’ LP and DFB three level decompose. 

 

     
(a) Texture image                   (b) Wavelet                      (c) Contourlet 

Fig. 6. Synthetic mosaic image segmentation results 

Here we give the error segment probability to evaluate the segmentation result. 

/error i totalp e e=  (4) 

Where ie  is the number of error pixel points and totale  is the total pixel number in 

the No.i class. The smaller error probability, the better result we achieved. 

Table 1. The error segmentation probability 

errorP (%) Mosaic1 Mosaic2 Average 

Wavelet  HMT 9.30 3.98 6.64 
Contourlet HMT 8.96 3.84 6.40 

For illustrate the effectiveness of our algorithm, we present segmentation results of 
other three images. 

From the above results we can see that the results based on our method has better 
performance in detecting and protecting directional edges. The more important is that 
it can detect more detail and mingle directional information. 
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(a) Texure image                (b) Aerial photo                  (c) SAR image 

     
(d) Wavelet                       (e) Wavelet                     (f) Wavelet 

     
 (g) Contourlet                    (h) Contourlet                        (i) Contourlet  

Fig. 7. Experimental results of other images 

5   Conclusion and Discussion 

The unsupervised image segmentation algorithm presented in this paper achieves 
better results than wavelet HMT based one. The effective representation of multidi-
mensional singularity information in image is known well by researchers in image 
processing field increasingly. The appearance and the development of the image 
multi-scale geometric analysis must bring vital forces in information processing. How 
to achieve an effective evaluation of real images is still a problem. 
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Abstract. C-V method, an active contour model developed by Chan and Vese, 
has been successfully applied to solve the problem of object detection in gray-
scale images. In this paper, a novel color C-V method which takes into account 
of color information and global property is presented. Choosing the appropriate 
color space for this model is also introduced. Finally, the applications of the 
proposed method to natural color images and microscopic halftone printing im-
ages are given and the experimental results show robust performance especially 
in case of weak edges and noisy inputs. 

1   Introduction 

Active contours or snakes [1] are used to detect the objects in a given image using 
techniques of curve evolution. This model can obtain accurate boundary of objects by 
deforming the initial curve which is defined in advance. The deformation process is 
guided by minimizing with respect to the initial curve a functional, whose local mini-
mum is given by boundary of objects. 

The classical active contours are based on gradient to detect boundary. In this way, 
only local information of boundary is used, thus it is fairly difficult to get ideal results 
dealing with fuzzy edge and discrete edge. To circumvent this problem, Chan and 
Vese [2] developed an active contour model, namely C-V method, which is based on 
Mumford-Shah model [3] and the level set approach [4]. C-V method [2] relies on the 
global information of homogeneous regions instead of local gradient; therefore it can 
obtain relatively better results in fuzzy or discrete cases. Besides, C-V method need 
not make restriction to the position of initial curve, and it is still effective to those 
images with abundant noise so that a process of denoising is not in need.  

Most existing active contours are confined to scalar segmentation. For a color im-
age, the usual approaches are either converting it into a scalar image beforehand or 
carrying out segmentation in each color channel respectively and then simply synthe-
sizing the result. However, neither of them can utilize color information effectively. 
The former approach neglects a fact that objects in color images usually have differ-
ent shapes in different color channels, so converting color images into scalar counter-
parts one may lose some useful features of the objects. In particular, C-V method will 
be invalid in the cases that the object and the background have the same intensity. As 
to the latter approach, the correlation between different color channels is not consid-
ered so that the segmentation accuracy cannot be ensured. 

Obviously, the segmentation of color images can not achieve satisfactory results if 
purely relying on scalar methods of segmentation. Only by integrating information in 
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the three color channels, can we segment color images effectively. Chan and Vese 
have proposed a method [5] similar to this idea, but the way of integration is still 
weighted sums of the channels, which does not differ from the method of transform-
ing color images into scalar images in nature (for the transformation is also weighted 
sums). As a result, this method still cannot collect sufficient information. Besides, 
there are too many parameters in the model, which lower the robustness. 

The aim of this paper lies in the extension of the original gray-scale C-V method to 
color images, making full use of color information to overcome the weakness of sca-
lar segmentation. In Section 2, we review the classical C-V method briefly. Section 3 
presents a novel color C-V method. We also modify the original C-V formulation to 
achieve better global property. The applications of our method to natural color images 
and microscopic halftone printing images are discussed in Section 4 and we conclude 
this paper in Section 5. 

2   Classical C-V Method 

Chan and Vese [2] proposed a method which employs active contours to segment 
images based on Mumford-Shah model [3]. This method is adapted to detect edges 
either with or without gradient. The particular details of it are following. 

Let Ω  be a bounded open subset of 2IR . Let ( , )I x y  be a given image so that 

( , ) :I x y IRΩ → . Let C  be the current active contour which divides the image into 

several parts and 0C  be the boundary of objects in the image. Let 0 ( , )I x y  be the 

segmented image. Then the aim of Mumford-Shah model is to find the true boundary 

0C  which divides the image into some approximately homogenous parts, when dif-

ference between 0 ( , )I x y  and ( , )I x y  becomes least in this partition. The problem 

turns to minimizing the following energy functional:  

2 2
0 0 0

/

( , ) ( ) | | | |MS

C

F I C Length C I I dxdy I dxdyμ λ
Ω Ω

= + − + ∇  (1) 

A simplified segmentation model is proposed by Chan and Vese based on this 
functional. That is, assuming the gray-scale of each homogenous region be constant: 
in region / ,iR C⊂ Ω  ( )i iI R C= , iC is constant. In this case, to minimize the energy 

functional is to find the best 0C , which minimize the difference between the seg-

mented image and the original image. 
Let the image be divided by C  into two parts: object oω  and background bω , and 

the means of them are oc  and bc  respectively. Then the simplified energy functional 

proposed by Chan and Vese is: 

2

( )

2

( )

( , , ) ( ) ( ) | |

| |

o b o o oinside C

b boutside C

F C c c L C vS C I c dxdy

I c dxdy

μ λ

λ

= + + −

+ −
 (2) 

where C  is a random close active contour. ( )L C is the length of C ; ( )oS C  is the area 

of the closed region; , 0, , 0o bμ ν λ λ≥ > . The sum of the two latter terms is mini-
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mized when C  fits the boundary of homogenous regions. We can obtain the best 
result of global segmentation from minimizing the energy function (2). 

The method of level set [4, 6] is applied to solve the model: let φ  be the value of 

SDF based on initial curve 0C , { }0 0| ( , ) 0C x yφ = . Each pixel has their own value of 

φ . Let [ ( )] 0inside Cφ > [ ( )] 0outside Cφ < . We define Heaviside Function: 

1, 0,
( )

0, 0.

z
H z

z

>
=

<
 (3) 

Then the final style of energy functional is: 

2 2

( ) ( )

( , , ) ( ) | | ( ) | |

| | | | .

o b

o o b binside C outside C

F C c c dxdy v H dxdy

I c dxdy I c dxdy

μ δ φ φ φ φ

λ λ
Ω Ω

= ∇ + ∇

+ − + −
 (4) 

Employing Euler-Lagrangian method to solve (4), we obtain: 

2 2

( , ) ( ) ( , )[1 ( )]

( ) , ( )
( ) [1- ( )]

( )[ [ ( , ) ] [ ( , ) ] ]
| |

o b

o o b b

I x y H dxdy I x y H dxdy

c c
H dxdy H dxdy

v I x y c I x y c
t

ε ε

ε ε

φ φ
φ φ

φ φ

φ φδ φ μ λ λ
φ

Ω Ω

Ω Ω

−
= =

∂ ∇= ∇ ⋅ − − − + −
∂ ∇

. (5) 

By solving (5) in numerical way, we obtain the value of φ  on the whole image. Then 

we can update the level set to lead the curve evolving to the boundary of objects.  

3   Color C-V Method 

Few efforts have been put on the extension of scalar C-V method to color counterpart. 
In [5], a color C-V method was proposed in which the result of segmentation in each 
color channel is synthesized by weighted sums. However, in vector valued image, the 
relation between vectors cannot be fully delivered by weighed sums, so there still 
exist some deficiencies in segmentation. We present a new color C-V method think-
ing much of using color information efficiently, which shows advantageous ability in 
segmentation to color images with weak edges, holes, and noise. 

3.1   A Novel Color C-V Method 

For vector valued images (e.g. sonar images and color images), because of the values 
of pixels are vectors, to apply directly C-V method to these images usually cannot get 
pleasant results: if we transform vector valued images to scalar images, the informa-
tion cannot be sufficiently used; if we segment the images from channel to channel, 
the relation between channels would be neglect thus the information would not be 
well utilized either. Therefore, we propose a new C-V method for vector valued im-
ages. Our method is based on vector space, gray-scale C-V method and human vision 
to overcome the shortages of original methods. 
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Let 0,iu be the i -th channel of value of the pixels in vector valued images, 

1,...i N= , C  is active contour. In N-dimension space, let 1( ,..., )Nc c c+ + += , 

1( ,..., )Nc c c− − −=  be N-dimension vectors. Substituting gray-scale in (2) by Euclidean 

distance between these vectors, we can obtain the color C-V method for N-dimension 
segmentation: 
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(6) 

where 0, 0
i i

λ λ+ −> > , they are weights of each channel. 

From the functional above, we conclude that the model is to find the best approxi-

mation of c+  and c−  which minimizes ( , , )F c c φ+ − . Active contour C  is the boundary 
between two homogenous regions. The former two terms are smooth terms, and the 
latter two terms are energy terms. In this case, we employ Euclidean distance to com-
bine information in the N channels according to the theory of vector spaces. In this 
way, boundary information in each channel is effectively used, avoiding the problem 
bought by the weighting method, and the obtained distances between vectors are more 
accordant to the physical understanding of multi-dimension spaces. 

In the formulation of level set, we can rewrite (6) as: 
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 (7) 

where μ  and iλ  represent the sensitivity of boundary detection. The more μ  and iλ  

are, the easier it is to remove high-frequency noise; instead, the less μ  and iλ  are, 

the better effect of the segmentation of minutiae boundary in the model. 
Employing Euler-Lagrangian equation to solve (7), we obtain: 
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1 1

1 1
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t N Nε
φ φδ μ λ λ

φ
+ + − −
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∂ ∇= ⋅ − − + −
∂ ∇

 (8) 

From (8), we find that the available range of δ  would affect the global property of 
the model. Therefore, we employ the method as following: substituting | |φ∇  for δ  in 

(8) to strengthen the global property of this equation. In this way, the available range 
of the equation extends to the whole area of images. After substituting, (8) will  
become:  
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For color images, N=3, we employ entropy average [6] method to solve (9): 
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Based on M-S model, our color C-V method is not only able to obtain pleasant results 
when segmenting color images heavily polluted by noise or involving fuzzy edges, 
but also able to achieve good global property, which helps resolve the problem in 
segmentation to those images within holes. Fig. 1(a) is an image having holes far 
from their exterior boundary; Fig. 1(b) is the result of segmentation based on original 
C-V method; Fig. 1(c) is the result of segmentation based on our novel color C-V 
method. 

(a)                                 (b)                                 (c) 

Fig. 1. (a) An image containing holes far from boundary and much noise. (b) Result of segmen-
tation using the C-V method proposed in [5]. (c) Result of the segmentation using our proposed 
method. 

We can find from Fig. 1: our color C-V method can detect those holes deep in the 
center of objects, raising the effect of segmentation. Besides, this method is robust to 
the position and shape of initial curve. By experiments, we demonstrate that no matter 
how position and shape of the initial curve is like, by color C-V method, we can ob-
tain the same correct result from each of them. This fact infers that the result of seg-
mentation is unrelated to initial curve. 

3.2   Choice of Color Space 

In most cases, RGB color space cannot really reflect the difference between various 
colors in human vision. Normally the distance between two distinct colors in our 
vision may be very tiny in RGB color space, thus the difference between these two 
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colors would be neglected. For example, in Fig. 2(a), the lower square cannot be de-
tected using RGB color space, and the result is Fig.2 (b). For the purpose of obtaining 
better results, we adopt LUV color space which is more even in distribution and more 
accordant with human vision. We find that, by transforming from RGB color space to 
LUV color space, the method can detect some objects and edges which cannot be 
detected using RGB color space. For example, in Fig. 2(c), the lower square is de-
tected after the transformation. 

(a)                                               (b)                                                 (c) 

Fig. 2. (a) A color image. (b) Result of segmentation using RGB space. (c) Result of segmenta-
tion using LUV space. 

Experiments demonstrate that by this transformation, color C-V method becomes 
more sensitive to boundary in images, avoiding the distortion of segmentation caused 
by tiny distance in RGB color space, and more accordant with human vision. 

4   Applications and Experimental Results 

The novel color C-V method can be applied to various domains. In this section, we 
will use natural color images and microscopic halftone printing image to show its 
performance. 

Fig. 3(a) is a natural color image. The image consists of flowers and leaves. Be-
cause of illumination, the values of pixels in the image vary from place to place. Be-
sides, there are some holes among the flowers and the buds are different from petals. 
Fig. 3(b) is the result of segmentation using original C-V method while Fig. 3(c) is the 
result of segmentation using our color C-V method. It is obvious that in Fig. 3(c), all 
of the pedals of the flowers are definitely separated from leaves and the background, 
while the holes and buds are detected too.  

In color printing images, halftone dot, visible only under a microscope, is the basic 
unit used to transfer color inks and organize tones of images. To get color prints with 
high quality, detecting and controlling the variation of dots with different ink colors 
(such as cyan, magenta and yellow) in printing process is very important. Microscopic 
halftone image segmentation is one of the significant steps in the computerized sys-
tem of printing quality control. 

Halftone image segmentation is affected by various factors: fuzzy edge and uneven 
density of halftone dot, complex background and abundant noise, all of which lead to 
high difficulty of segmentation. Classical methods applied to halftone image include 
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the entropy method [7] and the Otsu method [8] which both require a conversion from 
the original color images to gray-scale ones. In this work, we employ the color C-V 
method to segment the microscopic halftone images. Fig. 4 illustrates the segmenta-
tion results to a microscopic halftone image using classical methods in contrast to our 
method.  

From Fig. 4(b) and Fig. 4(c), we find that these traditional methods fail to correctly 
segment the halftone image for too much noise and the complex background. Instead, 
the color C-V method can obtain the satisfactory edges of halftones, unaffected by the 
severe noise and complex background. Two more examples are given in Fig. 5 where 
the color C-V method can deal with the weak edges in the halftone images elegantly. 

                     
(a)                                               (b)                                            (c) 

Fig. 3. (a) A natural color image. (b) Result of segmentation using Color C-V method without 
global property. (c)  Result of segmentation using our color C-V method. 

                

(a)                             (b)                                 (c)                                (d) 

Fig. 4. (a) A halftone image. (b) Result of segmentation using Otsu method. (c) Result of seg-
mentation using entropy method. (d) Result of segmentation using our color C-V method. 

                

   (a)                            (b)                                   (c)                                 (d) 

Fig. 5. (a) A halftone image. (b) Result of segmentation using our color C-V method. (c) A 
halftone image. (d) Result of segmentation using our color C-V method. 
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5   Conclusion 

In this paper, we propose a novel color C-V method. Considering the correlation be-
tween different color channels, we treat the color components of pixels in a color 
image as vectors and thus extend the original C-V method to the color case. The 
global property is incorporated into this model to deal with the cases of small holes 
occurring in color images. Besides, the suitable color space is also chosen for segmen-
tation according to human visual perception. Finally, we apply the proposed method 
to natural color images and microscopic halftone printing images and the results dem-
onstrate that the proposed method is promising in detecting poor-contrast boundaries 
even with noisy inputs in color images. 
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Abstract. The presence of speckle in synthetic aperture radar (SAR) images 
makes the segmentation of such images difficult. In this paper, a set of energy 
measures of channels of the undecimated wavelet decomposition is used to rep-
resent the texture information of SAR image efficiently. Furthermore, the ker-
nel FCM incorporating spatial constraints, which is characteristic of robustness 
to noise, is applied to the SAR image segmentation. A synthesized texture im-
age and a Ku-band SAR image are used in experiments and the successful 
segmentation results show the validation of the method. 

1   Introduction 

Recently, SAR image segmentation was attempted to use the spatial association of 
elements based on pixel intensities. Texture is just this kind of important characteris-
tic that represents not only the gray level statistic information of image but also the 
structural arrangement of surfaces and their relationship to the surrounding environ-
ment. In SAR image, it can be considered that texture is an innate property of all 
surfaces and different surface coarseness of land covers presents different texture [1]. 
Therefore, the segmentation of SAR images usually uses texture measures as features 
for the segmentation algorithm in order to improve its performance.  

Despite the lack of a complete and formal definition of texture, there are various 
methods available for texture extraction. More recently, the methods of multi-channel 
or multiresolution have received much attention in texture analysis [2] [3]. In all 
cases, a multiscale feature extraction with two or three levels led to better results than 
a single resolution analysis. The multiresolution properties of the wavelet transform 
are beneficial for texture discrimination. Due to the translation-invariant property, the 
undecimated wavelet decomposition [4] is used to represent the texture of the SAR 
image in this paper. Then stable texture features can be achieved. 

On the basis of feature extraction, the next step of SAR image segmentation in-
volves clustering. Fuzzy c-means algorithm (FCM) has been efficiently applied in the 
segmentation of SAR images [5] [6]. But it is also showed that the algorithm is sensi-
tive to the noise. Unfortunately, it is well know that there exist speckles in SAR im-
age, which needs robust clustering methods for segmentation. The kernel-based FCM 
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incorporating spatial constraints (Kernel SFCM) is introduced in paper [7], where the 
potential ability of this algorithm to restrain noise is demonstrated for MRI image 
segmentation. In this paper, Kernel SFCM is applied to the segmentation of the land 
covers in SAR image, and the high performance achieved suggests that this approach 
performs better than traditional clustering algorithms in SAR image segmentation. 

2   Wavelet Energy Measures for Texture Feature�

The use of a pyramid-structured wavelet transform for texture analysis was first sug-
gested in the pioneering work of Mallat [8]. Subsequently, various texture measures 
based on the wavelet decomposition energies are presented. In paper [9], [10] and [3], 
wavelet transform, tree-structured wavelet transform and wavelet packet are respec-
tively used for texture analysis and are applied to texture segmentation and classifica-
tion. For downsampling wavelet decomposition, there is neither loss nor redundancy 
of information between the levels. However, the downsampling has a drawback that 
the decomposition is not translation-invariant. On the contrary, the undecimated 
wavelet decomposition can provide robust texture features due to the translation-
invariant property. The energy of each subimage can be a favorable feature of texture 
because it indicates dominant spatial-frequency channels of the original image. We 
use the energy measures ( 1l -norm) as texture features in this paper. And the texture 

features are made up of the energies of subimages by the undecimated wavelet de-
composition over a window centered on the current spatial location, which makes the 
difference between classes more distinguish. 

It is also clear that a multiresolution feature extraction with 2 or 3 levels is prefer-
able to a local analysis with one level only. Then we implement 3-level wavelet de-
composition. The feature vector of each pixel can be represented as the 10-dimension 
vector 1, 1, 1, 1 2, 2, 2, 3, 3, 3( , )LL LH HL HH LH HL HH LH HL HHe e e e e e e e e e− − − − − − − − − − , in which, for example 

1LLe −  denotes the energy of the LL subimage in the first level. And LL subimage is 

obtained by lowpass filtering in both row and column directions, The detail images, 
LH, HL, and HH, contain high frequency components. 

3   Kernel SFCM for SAR Image Segmentation 

Speckles are another source of fluctuation existed in SAR image. Traditional cluster-
ing approaches are sensitive to noise and the performances are affected by the distri-
bution of the dataset greatly. Intuitively, because Euclidean distance is used for the 
comparability measure in these methods, the samples that are close to each other will 
be clustered together in the sample space. If the sample space can be clustered line-
arly, high performance will be achieved using the classical clustering algorithms. But 
when the sample space can be clustered non-linearly, the performance using the clas-
sical clustering algorithm is limited. Therefore, modified methods of the comparabil-
ity measure have been put forward. Du and Lee [6] applied FCM clustering to seg-
ment SAR images using a distance measure based on the Wishart distribution, 
namely, the Euclidean squared distance in the objective function of FCM is replaced 
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by the Wishart measure. In paper [11], an additional constraint is placed on the mem-
bership functions within the objective function of FCM that forces them to be spa-
tially smooth. Paper [12] proposed a spatial FCM in which the neighborhood informa-
tion is added to the objective function of FCM to improve the robustness to the noise. 

In addition, some kernel clustering algorithms have been proposed [7] [13] because 
of the particular processing ability of kernel. In these methods, the scalar product in 
the objective function is replaced by the kernel function. In paper [7], the spatial FCM 
(SFCM) is extended to Kernel SFCM with kernel technique. The applications of ker-
nel and spatial constraints enhance the robustness of the algorithm so that it is much 
more appropriate for the segmentation of SAR image. 

In SFCM, the median of the region around the central pixel is introduced to the ob-
jective function of FCM. The objective function is given by 
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Replacing the scalar product in (1) with a kernel function�the objective function of 
the Kernel SFCM is defined as 
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where ),( yxK  is the kernel function. Then the iterative functions of the cluster proto-

type iv and the membership iku  can be obtained from equation (4). 
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The iterative procedure of (5) and (6) is the Kernel SFCM algorithm. In this way, 
Kernel SFCM for SAR image segmentation can be summarized as follow. 

Step1: The original SAR image is extended near the edge in a mirror manner first. For 
each center pixel in a region of a sliding window, the 3-level undecimated 
wavelet decomposition is applied and the energy measures of channels are 
made up of the feature vector x  for each pixel. And then standardize the fea-
ture vectors in order to balance the role of each feature for segmentation. 

Step2: Evaluate the median filter image of the original image, which puts the relation 
between gray levels of neighboring pixels into consideration. Perform the pro-
cedure same as the Step1, and get the feature vector x  of each pixel in the 
median filter image. 

Step3: Set cluster number c and constant 2m = . Initialize the prototypes and set the 
threshold 0ε >  for a small value. Set the iteration counter 1g = . 

Step4: Repeat the following iteration 

1) Update the partition matrix U  with (5). 
2) Update the prototypes V with (6). 
3) 1g g= + . 

Until 1g gV V ε+ − <  

Step5: Defuzzy and assign all pixels to the corresponding class label. 

4   Experiments and Analysis 

Segmentations of synthesized texture image and SAR image have been carried out to 
test the efficiency of the proposed method in this paper. In comparison, FCM, SFCM 
and Kernel SFCM are respectively used for segmentation. 

In the first experiment, the synthesized texture image consists of three textures. 
The sliding window size is of 16 16× (pixels) for undecimated wavelet-decomposed. 
The RBF kernel function is used in Kernel SFCM, in which the width of RBF kernel 

1σ =  and the parameter 0.5α = . The results of the experiment are shown in Fig.1. 
From Fig. 1, it is obvious that the segmentation results with SFCM (Fig.1.(c)) and 

with Kernel SFCM(Fig.1.(d)) are better than that with FCM (Fig.1.(b)) for the reason 
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(a)                                      (b) 

    
(c)                                       (d) 

Fig. 1. Comparison of segmentation results on a natural texture image (a) test image; (b) with 
FCM; (c) with SFCM; (d) with Kernel SFCM 

that the spatial constraints are taken into consideration. In addition, the boundary is 
more correct in Fig.1.(d). 

Further experiment is carried out on the sub-image of the SAR image with 1-m 
resolution, Ku-band coming from the Rio Grande River near Albuquerque, New Mex-
ico. The image is of 256 256× pixels in size. It is segmented into three different land-
cover regions. The sliding window size is of 32 32× (pixels) for texture feature extrac-
tion by undecimated wavelet-decomposed. Parameter 3α = . Experimental results are 
shown in Fig. 2. 

From Fig. 2, the observation is that we can get the satisfied results based on FCM, 
SFCM and the Kernel SFCM respectively with the undecimated wavelet decomposi-
tion energy measures as the texture features. However, there is much background 
noise in Fig.2. (b). In Fig.2. (c), the spatial information is considered, so there is less 
noise than the result in Fig.2 (a). While there is little noise in Fig.2.(d) and the land 
covers are clustered correctly. 

5   Conclusion 

In this paper, the SAR image segmentation is investigated. A set of energy measures 
of channels of the undecimated wavelet decomposition is introduced to represent the 
texture information of SAR image efficiently. Considering the characteristic that there 
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(a)                                                   (b) 

     
(c)                                                   (d) 

Fig. 2. Comparison of segmentation results on a Ku-band SAR subimage (a) original image; (b) 
with FCM; (c) with SFCM; (d) with Kernel SFCM 

exist speckles in SAR image, the Kernel SFCM characterized by robustness to noise 
is applied to the SAR image segmentation. A synthesized texture image and a Ku-
band SAR subimage are used in experiments. As have been demonstrated by experi-
ments, the successful segmentation results show the feasibility and validity of the 
method. 
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Abstract. This paper addresses the segmentation of crystalline Zinc
oxide nanocolumns from microscopic images. ZnO is a direct band semi-
conductor suitable for many applications whose interest has been grow-
ing recently. One of these applications are light-collecting devices such
as solar cells, using nanostructured substrates. Electrodeposition is a
low cost technique very suitable for the preparation of nanostructured
ZnO, producing nanocolumnar ZnO crystals with a morphology that de-
pends on the deposition parameters and the substrate characteristics.
The parameters of the sample can be determined processing images of
the nanostructures, which is the objective of this study.

1 Introduction

Zinc oxide (ZnO) has some unique physical properties that make it very interest-
ing from the point of view of many technological applications. To realize any type
of device technology it is important to have control over the concentration of
intentionally introduced impurities, called dopants, which are responsible for the
electrical properties of ZnO. The dopants determine whether the current (and,
ultimately, the information processed by the device) is carried by electrons or
holes. In semiconducting oxides, it is generally possible to achieve one or other
of these types, but not both. The dopants are also called shallow level impurities
because they introduce energy levels close to one of the allowed energy bands in
the material and are easily ionized as a result. There may also be unintentional
impurities introduced during the growth of ZnO that have a deleterious effect
on the properties of the material. These are called deep level defects or impu-
rities and may be either elemental impurities arising from contamination of the
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Fig. 1. Example of nanocolumns of ZnO. Image obtained using scanning electron mi-
croscopy.

growth environment or structural defects in the ZnO crystal lattice. These struc-
tural defects can be vacancies in the crystal structure or interstitials, i.e. atoms
sitting in the open regions around lattice sites. In both cases, they may intro-
duce energy levels deep within the forbidden band gap of ZnO and act as traps
for carriers in the material. These uncontrolled defects make it very difficult to
obtain reproducible device performance and reliability.

One of the applications of ZnO, in the form of nanocolumns (Fig. 1), is light-
collecting devices such as solar cells. Electrodeposition is a low cost technique
very suitable for the preparation of nanostructured ZnO, producing nanocolum-
nar ZnO crystals with a morphology that depends on the deposition parameters
and the substrate characteristics [1]. The parameters of the sample can be de-
termined processing images of the nanostructures. This paper deals with the
segmentation of crystalline Zinc oxide nanocolumns from microscopic images for
parameter estimation and, thus, physical properties monitorization.

Electrodeposition procedure consists of a three electrode electrochemical cell
and a solution. The conducting substrate is set up as a working electrode. Three
growth variables are controlled during the deposition process: current intensity,
time and temperature. Images of the samples are obtained using scanning elec-
tron microscopy (SEM), using a Jeol JSM6300 [2].

As has already been stated, the morphology of ZnO layers depends on depo-
sition conditions and parameters. We will focus our attention to nanocolumns
of ZnO obtained by electrodeposition over GaN substrates after 30 minutes, a
current intensity of 2.5mA/cm2, and a temperature of 65oC (see Fig.2). ZnO
columns grown on GaN are at least twice higher than those grown on other sub-
strates. They are perfectly vertical aligned and oriented, and have approximately
the same size. The density is lower than using other substrates.

We propose in this work to utilize image processing techniques for an au-
tomatic analysis of images of nanocolumns of ZnO grown on GaN substrates.
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Fig. 2. Example of nanocolumnar ZnO grown on GaN substrate (top view)

Based on other similar applications of these techniques [3,4,5,6], the objective
is to measure the dimension, overlapping, and density of such nanocolumns in
SEM images to determine and monitorize the physical properties of the sample.

Thus, the method starts with a typical image preprocessing stage aimed at
obtaining a better version of the input image. Then, the output of the pre-
processing stage is binarized using a thresholding algorithm in order to clearly
separate the background from the foreground (nanocolumns). Next, a contour
extraction stage takes place. This stage comprises other substages such as: neg-
ative of the image, erosion, edge detection and thinning. The goal of this stage
is to obtain a chain of pixels for each 8-connected region. Finally, the resulting
columns (including overlappings and occlusions) are segmented and measured
using a raster-to-vector conversion algorithm and an arc segmentation method.
The stages of this method are shown in Fig.3.

Fig. 3. Diagram of the stages

For the practical application of the method proposed, we developed a software
tool for daily use in our physics laboratory. Programming has been done using
C++ language under Windows and Linux, using Borland C++ Builder and
Kylix compilers, respectively1. Next sections describe the stages of the process.

1 Windows is a trademark of Microsoft Corporation, and C++Builder and Kylix are
trademarks of Borland Software Corporation.
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2 Image Preprocessing

Top view images of ZnO nanocolumns usually have a reasonable good quality
because they are tall enough to enhance the contrast between the base and the
top of the columns. Therefore, columns correspond to bright pixels (foreground),
and background, dark pixels, corresponds to the base of the columns. Anyway, in
order to make the borders of the columns look sharper and more homogeneous,
we apply a noise reduction filter based on the median filtering, known as Tri-State
median filter [7]. We have succesfully applied this filter to similar cases because
it provides a good tradeoff between noise supression and edge preservation.

Being X(i, j) the input image, the output image Y (i, j)TSM is given by:

Y (i, j)TSM =

⎧⎨⎩
X(i, j), T ≥ d1
Y (i, j)CWM , d2 ≤ T < d1
Y (i, j)SM , T < d2

(1)

namely, the output is one out of three possible values, depending on the rela-
tionship between a threshold T and two distances, d1 = |X(i, j)− Y (i, j)SM |
and d2 = |X(i, j)− Y (i, j)CWM |. The respective outputs of filters CWM and
SM are a centered weighted median, and a standard median.

Other defects that may appear on the image are holes and spots. We apply a
method based on contour following [8] to remove them, according to a predefined
threshold.

3 Image Binarization

In order to separate background from foreground, that is, columns, an image
thresholding algorithm has been applied. There are many image thresholding
techniques available nowadays. However, due to the good separability of dark
and bright regions in these images, we chose a well known method of global
thresholding, Otsu’s method [9]. This algorithm has become a classical tool for
image binarization for its simplicity and good results.

4 Contour Extraction

The binarization stage outputs a monochrome image where the columns and
the background are clearly separated. Negative of the image is then computed
in order to make columns correspond to black pixels and background to white
pixels. Then image is eroded by means of mathematical morphology, using as
the structuring element the typical 4-connected cross, to remove small isthmuses
between neighbouring columns.

Next, a classical edge detector is applied [10], and the resulting image is
thinned [11] so as to obtain a one-pixel wide contour of each column or overlap-
ping columns. Thinning is the classical approach to skeletonization. As in other
stages of the process described in this work, there are many thinning algorithms
reported in the technical literature. We chose the method described in [11] due
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to its simplicity, high speed, and accuracy. In addition, the method is rotation
invariant. This algorithm is iterative, deleting those object pixels that lie on its
outer boundaries at each iteration. The core of the method is the use of 20 em-
pirical rules to decide whether a foreground pixel belongs to the object skeleton
or not. Considering the 8 neighbours of any pixel in the image as LU (Left Up),
L (Left), LD (Left Down), CU (Center Up), CD (Center Down), RU (Right Up),
R (Right), and RD (Right Down), the expression that combines these 20 rules is:(

LU ∗ L ∗ LD ∗ CD ∗RU ∗R)+
(
LU ∗ L ∗ LD ∗ CU ∗RD ∗R)+(

LU ∗ LD ∗ CU ∗CD ∗RU ∗R)+
(
LU ∗ L ∗ CU ∗ CD ∗RD ∗RU

)
+(

LU ∗ L ∗ CD ∗RD ∗R ∗RU
)

+
(
LU ∗ LD ∗ CU ∗ CD ∗RD ∗R)+(

LU ∗ L ∗ LD ∗ CU ∗ CD ∗RD ∗R ∗RU
)
+(

LU ∗ L ∗ LD ∗ CU ∗ CD ∗RD ∗R ∗RU
)
+(

L ∗ LD ∗ CU ∗RD ∗R ∗RU
)
+
(
LU ∗ LD ∗ CU ∗ CD ∗R ∗RU

)
+(

L ∗ LD ∗ CU ∗ CD ∗RD ∗RU
)
+
(
L ∗ LD ∗ LU ∗ CD ∗RU ∗R)+(

L ∗ LU ∗ CD ∗ CU ∗RU ∗RD)+ (L ∗ LU ∗ LD ∗ CU ∗R ∗RD)+(
L ∗ LU ∗ LD ∗ CU ∗ CD ∗R ∗RD ∗RU

)
+(

L ∗ LU ∗ LD ∗ CU ∗ CD ∗R ∗RD ∗RU
)
+(

L ∗ LU ∗ CD ∗R ∗RD ∗RU
)
+
(
L ∗ LD ∗ CU ∗R ∗RD ∗RU

)
+(

LU ∗ LD ∗ CU ∗CD ∗R ∗RD)+ (L ∗ LD ∗ CU ∗CD ∗RU ∗RD)
where overlined pixel values correspond to background pixels. If this expression
is true, the pixel could be considered as background since it does not belong
to the skeleton. However, these 20 rules are not enough to obtain a connected
representation of some horizontal or vertical lines of width 2 pixels in the input
image. Extremities of zigzag diagonal lines can also be incorrectly deleted. To
solve these problems, the procedure is slightly modified by adding some new
decision rules to the initial 20. These details can be found in [11]. These rules
are iteratively applied to every pixel in the image until no change takes place.
The state of the image at this point is shown in Fig.4.

5 Columns Segmentation

Before segmentation itself can take place, thinned contours are vectorized using
line following and a polygonal approximation algorithm, with a error threshold
of one pixel. The output of this vectorization process is a list of polygonal lines
(basic primitives are lines) that fit each contour. This list is the input to an arc
segmentation algorithm aimed at obtaining a higher order approximation, using
circular arcs. This algorithm is a simplification of that described in [12], based
on the following general principles to consider a polyline as an arc:

– Curvature. All segments should turn in the same direction, in other words,
the polyline is either concave or convex, but not both.

– Length. Segments are of approximately equal length.
– Shape. Points lie approximately on the same circle.
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Fig. 4. Columns contours extracted after edge detection and thinning of the thresh-
olded image

These principles can be completed with additional information of these spe-
cific images: only circular arcs are present, and line width is always 1 pixel.
The algorithm proceeds iteratively until all the polylines of each contour have
been merged or split to form suitable circular arcs. Starting with the first three
vertices of each polyline, the initial parameters of a circle (center and radius)
are computed. Then, following points are added provided a criterion, based on
curvature, length, and shape, is met, and parameters are recomputed. Else, a
new arc starts and the previous steps are repeated until there are no points left.

Once the contour of each column or groups of columns is extracted, it must
be analized in order to segment each one and therefore be able to measure the
parameters of the columns. There are some possible situations for each contour,
depending on the case:

– Isolated and complete columns. This is the optimal case, clean, complete,
and single column border is represented by a 8-connected chain of pixels.

– Two columns overlapping. Sometimes to columns grow too close that some
parts of the borders may merge. As a result, a figure with a shape similar to
the 8 number appears.

– Columns at edges of the image. The image usually does not comprise the
whole ZnO sample and therefore some incomplete columns may appear at
the edges of the image, represed by circular arcs.

– Multiple overlapping. In some cases, more than two columns grow very close
and consequently the resulting border is an irregular combination of circular
arcs from where true circles should be extracted.

The resulting approximation is therefore classified as one of the previous
cases: if the two enpoints coincide, it represents a full circle, else, it is an arc
featuring an incomplete border of a column. In this last case, according to the
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position of the arcs, namely, if they intersect with the edges of the images, they
correspond to columns at edges of the images, otherwise they are overlapping
columns. In both cases, arcs are approximated with full circles. More than an
arc can correspond to the same circle. An example of the result of this process
is shown in Fig.5.

Fig. 5. Segmentation and circle approximation of nanocolumns after vectorization and
arc detection

Finally, the software application computes the average area and dimension of
the circles, percentage of image area, and percentage of overlapping circle areas.
This last calculation is easily obtained using a circle intersection method and
computing the common area of the meeting circles.

6 Discussion and Conclusion

We have described a method to automatically measure some parameters of SEM
images of ZnO nanocolumns grown on GaN subtrates. This is of great interest
since ZnO is becoming one of the most popular semiconductors nowadays, with
many technological uses. This method has been implemented in a real software
application.

Our method outputs a circle approximation of the nanocolumns detected in
the image, and thus, a quantitative measure of their parameters can be obtained.
Circle approximation of nanocolumns accuracy is sufficient for our measures.
However, sometimes the error is too big because there are many stages involved
in this circle approximation: thinning, polygonal aproximation and arc segmen-
tation. We plan to apply a more direct method based on circle detection, and
therefore omit some stages. Circle detection can be performed using the popular
Hough transform, but other methods with lower computational cost and less
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memory requirements have appeared recently [13]. Some of these methods will
be studied as future work.

This method could also be utilized in other similar applications such as cell
detection, particle picking, and, in general, in any case where images of circular
features is of interest. Replacing circle detection procedure by an ellipse detection
[14], this scheme can be applied even in more situations.
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Abstract. Current methods of multimodal image registration usually
seek to maximize the similarity measure of mutual information (MI)
between two images over their region of overlap. In applications such
as planned radiation therapy, a diagnostician is more concerned with
registration over specific regions of interest (ROI) than registration of the
global image space. Registration of the ROI can be unreliable because
the typically small regions have limited statistics and thus poor estimates
of entropies. We examine methods to improve ROI-based registration by
using information from the global image space.

1 Introduction

We are concerned with multimodal image registration – the geometric alignment
of images obtained from different modalities [2]. A typical example occurs in the
planning of cancer treatment by radiation therapy, where it is common to use
data from both computer tomography (CT) and positron emission tomography
(PET), to obtain anatomical and functional information, respectively.

Most image registration procedures compare images directly, with specific
attention to landmarks, surfaces, or pixel/voxel intensity values. Limitations
of these procedures have led to the use of information theoretic methods to
characterize image alignment in terms of pixel correlations. Mutual information
(MI), introduced in [5], has become a standard measure of image registration –
see [3] for further developments.

Registration involves finding a spatial transformation to align a study image
Y to a target image X . In simple cases, affine transformations suffice, but, non-
linear transformations, based on elasticity for example, are required to account
for deformations caused by patient positioning and internal organ movement.

In cancer treatment, it is common for diagnosticians to be most concerned
with a particular region of the image, e.g., a cancerous lesion. Alignment is
more important over the regions of interest (ROIs) than over the global images,
and diagnosticians commonly improve ROI alignment by perturbing the global
registration result. Directly registering ROIs by estimating MI is prone to error:
The limited statistics provided by small regions are highly sensitive to noise and
to the region of overlap.
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The region of overlap is the common area contained within both the tar-
get and transformed study images. It is a function of the transformation, and
changes during registration. Pixels contained in the region of overlap determine
the overlap statistics used to estimate MI. Overlap statistics can cause artificial
increases in MI as images move out of alignment. To counteract this, Studholme
et al. [4] proposed normalized mutual information (NMI) which is invariant of
overlap statistics. Unfortunately, as we will show in Section 2.1, the limited sta-
tistics of small regions inhibit the effectiveness of NMI.

To improve ROI registration, we examine similarity measures that combine
global image information with ROI information. Our methods employ convex
combinations of either the MI of the images and ROIs, or the distributions of the
images and ROIs. The extreme limits of such convex combinations correspond
to registering the ROIs or registering the images. Our methods seem to improve
the registration of ROIs when compared to global image registration.

2 Mathematical Preliminaries

We consider an image X as an array of pixels with greyscale values xk, where
xk are random variables that assume the discrete greyscale values g1, g2, · · · , gN .
Our images are rescaled to 8 bits/pixel, so that N = 28 = 256 and gk = k − 1.
Associated with X is the greyscale probability distribution p = (p1, p2, · · · , pN).
Here pk is the frequency of occurence of greyscale value gk, normalized so that∑
pk = 1. The entropy of X is defined as

H(X) = H(p) = −
N−1∑
k=0

pk log pk, (1)

where log denotes log2, and H is measured in “bits.” Entropy is a convex down
function: For two probability distributions p and q, and for c ∈ [0, 1], entropy
satisfies.

H(cp + (1− c)q) ≥ cH(p) + (1− c)H(q). (2)

Consider two images, X and Y , with respective distributions p and q. The
relative entropy between p and q is defined as [1]

D(p‖q) =
N∑

k=1

pk log
pk

qk
, (3)

where by convention 0 log 0
q = 0 and p log p

0 = ∞. Relative entropy is non-
negative, and zero if and only if p = q, but it is not a metric since it is not
symmetric and it does not satisfy the triangle inequality.

Now let r denote the joint distribution associated with images X and Y : for
1 ≤ i, j ≤ N , rij is the probability of finding the greyscale values (gi, gj) in
corresponding pixel pairs. It follows that p and q are marginals of r, i.e.

N∑
i=1

rij = qj ,
N∑

j=1

rij = pi. (4)
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If the pixels of X and Y are independent, then rij = piqj and the joint distrib-
ution is the product distribution d, where dij = piqj .

Mutual information, I(X, Y ), is defined as the relative entropy between the
joint distribution r and the product distribution d, i.e.

I(X, Y ) =
∑
i,j

rij log
rij
piqj

. (5)

It is a measure of the distance from the joint distribution to the product dis-
tribution. The higher I(X, Y ) is, the more correlated are corresponding pixel
pairs. Hence, mutual information is maximized when the two images are most
correlated and the joint distribution is “furthest” from the product distribution.
As pointed out in [1], I(X, Y ) is a measure of the amount of information that
one random variable contains about another random variable. If the random
variables xi and yi are independent for all i, then I(X, Y ) = 0.

The joint entropy associated with the pair of images X and Y is

H(X, Y ) = H(r) = −
∑
i,j

rij log rij , (6)

i.e. the entropy of the joint distribution. ¿From Equation (4), H(X,X) = H(X).
Mutual information can thus be expressed in terms of entropy,

I(X, Y ) = H(X) +H(Y )−H(X, Y ). (7)

Note that I(X,X) = H(X). The relationship between H(X), H(Y ), H(X, Y )
and I(X, Y ) is expressed in a Venn diagram, as shown in Figure 2.2 of [1]. We
will compare this to NMI, defined in [4] by

Î(X, Y ) =
H(X) +H(Y )
H(X, Y )

. (8)

2.1 Some Simple Examples Tailored to the Registration Problem

In Figure 1 we plot I(X, Y ) vs. n, where the target X is the 512×512 pixel Lena
image, and Y is the same image shifted horizontally by n pixels. In the left plot, Y
is periodic; the image wraps around the computation window which is fixed to the
size of the target image. This case, though not realistic, is used to demostrate the
effects of overlap statistics. In the right plot, X and Y are cropped to the region
of overlap. This region decreases as |n| increases, which adversely affects the
statistics: As |n| approaches the target image boundary, I(X, Y ) falsely indicates
registration. In each case, I(X, Y ) shows a strong peak at registration, i.e. at
n = 0. Note, noise greatly reduces the amplitude of these peaks.

To examine effects of limited statistics, we use two transaxial magnetic res-
onance (MR) brain images, the target is proton density (PD) weighted and the
study is T2 relaxation time (T2) weighted; see Figure 2. Figure 3 shows registra-
tion curves for horiziontal shifts calculated for three ROIs of various size. The
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Fig. 1. MI for Lena and a horizontally shifted Lena using a fixed computation window
with periodic boundary conditions (left) and the region of overlap (right)

PD−weighted MR image T2−weighted MR image

Fig. 2. PD-weighted (left) and T2-weighted (right) MR brain images
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Fig. 3. Registration curves PD- and T2-weighted MR images and three ROI using NMI
(left), MI (middle), and MI computed with ROI union statistics (right)

left and middle plots display NMI and MI respectively, both are computed with
ROI overlap statistics (contributing pixels lie in the intersection of the ROIs).
The right plot displays MI computed with ROI union statistics (contributing
pixels lie in the union of the ROIs). Note the left and middle registration curves
are distorted by the limited statistics of the ROI overlap: In both cases, no
peaks occur at registration. The use of ROI union statistics, however, produce
registration curves with clearly defined peaks.
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These results suggest important consequences for medical image registration.
For example, in prostate-focused registration, a typical 256 × 256 pixel image
displays the prostate as a circle of radius 23 pixel-widths, an area of 1661 pixels.
If the 40× 40 pixel ROI from Figure 3 approximates the prostate, then even by
quadrupling the number of pixels used to estimate MI, using the 80 × 80 pixel
ROI, a meaningless registration curve will still be obtained.

3 Proposed Methods to Improve ROI Registration

As mentioned in Section 1, diagnosticians may be more concerned that images
are most accurately aligned over a region of interest, as opposed to the global im-
age. Small ROIs possess insufficient statistics to accurately estimate MI, but still
contain useful information. We present two methods to perform ROI registration
by “blending” the information of the ROI with that of the global image.

3.1 Method 1: Weighted Mutual Information

A crude way of performing such blending is to construct a convex combination
of the MI for two separate problems, namely, (i) the registration of the ROIs
and (ii) the registration of the global images. Thus we define

J(X, Y ; c) = (1 − c)I(XROI , YROI) + cI(X, Y ),
= (1 − c)I(pROI ,qROI) + cI(p,q), 0 ≤ c ≤ 1. (9)

Here, XROI and YROI denote the ROIs of images X and Y , with distributions
pROI and qROI , respectively. The case c = 0 corresponds to registration of the
ROIs and c = 1 corresponds to registration of the global images. J(X, Y ; c),
which we call weighted mutual information (WMI), performs a linear interpo-
lation between these two cases. Note that WMI is not a mutual information
function in the strict sense.

To facilitate optimization, a desirable feature of such blending would be to
enhance the peak of the similarity measure at registration. This, however, may
not be achievable: Since the distributions in Equation (9) do not depend on c,
it follows that

∂J(X, Y ; 0)
∂c

= I(p,q) − I(pROI ,qROI). (10)

Hence, it is not guaranteed a priori that this derivative is positive. Depending
upon the nature of the ROIs, it is possible that the RHS of Equation (10) is
negative, implying an initial decrease in WMI by the inclusion of global image
statistics. However, it is not only the amplitude of the peaks which is of concern
but also the location of the peaks, i.e., the point of registration.

This method can be altered to use the normalized mutual information from
each of the ROI and image, instead of the mutual information. We call this func-
tion WNMI, and it is computed in an analagous way to WMI, see Equation (9).
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3.2 Method 2: Mutual Information of Weighted Distributions

We now propose a method that employs weighted probability distributions – a
kind of statistical blending of an image with its ROI. For images X and Y , we
define the following weighted distributions (N -vectors), for 0 ≤ c ≤ 1:

pc = (1− c)pROI + cp
qc = (1− c)qROI + cq, (11)

and the following weighted joint distribution (N ×N matrix),

rc = (1− c)rROI + cr. (12)

By construction, the above weighted distributions are probability distributions
that linearly interpolate between the ROI and global image statistics.

To construct a similarity measure, we use these weighted distributions in the
definition of mutual information. From Equation (7), we define

K(X, Y ; c) = H(pc) +H(qc)−H(rc). (13)

K(X, Y, c) is the mutual information of weighted distributions (MIWD) derived
from the global images and their regions of interest. Note the two limiting cases,

1. K(X, Y ; 0) = I(XROI , YROI), the MI of the ROIs of images X and Y .
2. K(X, Y ; 1) = I(X, Y ), the MI of images X and Y .

Using the convexity of entropy, Equation (2), and the fact that log(x) is an in-
creasing function of x, one can derive the following inequality from Equation (13)
to relate WMI and MIWD (see Appendix for details):

K(X, Y ; c) ≥ J(X, Y ; c)− E(c), (14)

where
E(c) = −(1− c) log(1− c)− c log c. (15)

Note that E(c) is the entropy of a binary random variable with distribution
(c, 1− c), so E(0) = E(1) = 0 and E(1/2) = 1.

In Figure 4 we see the relationship between WMI and MIWD for our PD-
and T2-weighted MR images at registration, using two different ROIs for weight-
ing: a brain matter ROI and an eye socket ROI. Notice that as the weighting
parameter c changes, moving from the ROI to the global image, WMI is a linear
interpolation of the two values, whereas the behaviour of MIWD is dependent
on the statistics of the ROIs and images. (From the plot, we see that the MIWD
function is not convex.) The value of c which provides the right amount of mixed
statistics to most accurately register regions of interest is difficult to determine,
and the subject of future investigations. In the discussions to follow, we have
used c = 1

2 , corresponding to an equal weighting of both the image and the ROI
statistics.
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Fig. 4. WMI and MIWD vs. the weighting parameter c, for PD- and T2-weighted MR
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CT Chest Image PET Chest Image Zoom of CT ROI Zoom of PET ROI

MI of Zoom = 1.5471

Fig. 5. Original CT and PET transaxial chest images (left). Zooms of the regions of
interest in CT image space (right).

4 Results of an ROI-Based Registration Experiment

We have constructed a simple experiment using PET and CT transaxial chest
images that were manually aligned by a rigid-body transformation based on
fiducial point matching. Our goal is to improve the alignment of the unusually
bright area in the PET image with the visible tumor in the CT image. The ROIs
were independently defined for each image as approximately 3700 pixel polygons.
The images and a zoom of the ROIs (as defined by the target CT image) are
shown in Figure 5. Notice the poor alignment of the tumor regions.

For simplicity, the registration transformation was limited to vertical transla-
tions. The resulting curves are shown in Figure 6. Negative shifts correspond to
upward translations, and positive to downward translations, of the study PET
image with respect to the target CT image. The curves for WNMI, WMI, and
MIWD were computed using two rules:

1. If the ROIs do not overlap, use the value of the global MI or NMI (set c = 1).
2. If the ROIs overlap, weight using ROI union statistics.
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In order to maintain continuity of the similarity measure, for optimization
purposes, the value of c is made to decrease continuously from c = 1, at no ROI
overlap, to the desired weighting factor, here c = 1

2 , at and above some percent-
age of ROI overlap. One can think of this as slowly zooming in the statistics
from the global images to the local ROIs.

In Figure 6, each curve’s maximum determines the vertical shift required to
register the images (and ROIs) according to the similarity measure defining the
curve. The registration transformations determined by MI and NMI are small
translations, about 1 pixel, vertically up from the original position. The trans-
formation determined by registering only the ROIs, using ROI union statistics,
is a much larger upward translation, about 20 pixels. However, the registration
transformations determined by WNMI, WMI, and MIWD, lie in between these
two extremes with vertical translations around 13 pixels. Shifts of 13 pixels –
roughly 11 mm – are acceptable and may be compensating for internal organ
deformations caused by different positioning of the patient in PET and CT.

The registration curve for MI of ROIs, in Figure 6, demonstrates that it is a
poor similarity measure. The curve is rough with multiple local maxima which
inhibit optimization. Furthermore, it may not be desirable to discard the global
image information even when performing ROI-based image registration.

Figure 7 shows the results of registration by each similarity measure over the
zoomed region. Below each image is the mutual information calculated over the
zoomed region. While MI is affected by the limited statistics of the zoom region
(90 × 90 pixels), we use it as a quantitative measure of alignment for lack of
something more robust. MI is highest for registration by MI of the ROIs, and
second highest for registration using mixed statistics. Visually, the ROIs in the
bottom row (registration by WNMI, WMI, and MIWD) are more accurately
registered than those in the top row (registration by MI, NMI, and MI of ROIs).
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Fig. 7. Zoom of ROI as defined in the CT image (top row left). Results of registration
using MI, NMI, and MI of ROIs (top row left to right), and using WNMI, WMI, and
MIWD (bottom row left to right).

5 Summary and Concluding Remarks

In this paper, we have proposed two methods of blending image statistics with
ROI statistics to improve the registration of small regions. The first method,
WMI, is a simple convex combination of the mutual information of the global
images with that of the ROIs. The second method, MIWD, takes the mutual
information of the convex combinations of the marginal and joint probability
distributions from both the global images and ROIs.

We also explored the use of ROI union statistics as opposed to ROI overlap
statistics when dealing with small regions. Using the ROI union region is a
reasonable way to avoid the problems associated with using the overlap region,
especially for regions that are small to begin with. Taking the union region
of global images will reduce the effect of overlap statistics, but may have the
possibly negative effect of causing a registration of the background instead of the
foreground objects. This is not a problem for ROI-based registration, especially
in medical images, where the ROIs typically lie inside the foreground object.

The experiments presented above suggest the best registration result for small
ROIs may be obtained by maximizing WNMI, WMI, or MIWD using ROI union
statistics. We are still investigating the robustness of these similarity measures
with respect to the weighting parameter c as well as the content of the images
and regions of interest.

In applications, the ROI can be any interesting area (or areas) of the image,
for example significant edges. Our methods are easily modified for these cases.
One of the original motivations of this study was the idea of an “activity-based”
registration procedure, where the ROIs of an image are decided by some criteria,
e.g., variance or local entropy.

Finally, there may well be other mathematical ways of combining region
statistics, a subject that we are currently exploring.
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Appendix

In this Appendix, we derive the inequality in Eq. (14). From the convexity prop-
erty of entropy,

H(pc) ≥ (1− c)H(pROI) + cH(p)
H(qc) ≥ (1− c)H(qROI ) + cH(q). (16)

As for the final term in (14) (we use superscripts for c and ROI to minimize
notational complexity)

−H(rc) =
∑

rc
ij log rc

ij

=
∑[

(1− c)rROI
ij + crij

]
log
[
(1− c)rROI

ij + crij
]

= (1− c)
∑

rROI
ij log

[
(1− c)rROI

ij + crij
]

+

+ c
∑

rij log
[
(1 − c)rROI

ij + crij
]

≥ (1− c)
∑

rROI
ij log

[
(1− c)rROI

ij

]
+ c
∑

rij log
[
crij
]

= (1−c)
∑

rROI
ij log rROI

ij +c
∑

rij log rij+(1−c) log(1−c)+c log c

= −(1− c)H(rROI)− cH(r) + (1− c) log(1 − c) + c log c.

We have used the fact that the elements of r and rROI sum to unity. Combining
these results yields the desired inequality.
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Abstract. We combine the techniques of the complex wavelet trans-
form and Markov random fields (MRF) model to restore natural images
in white Gaussian noise. The complex wavelet transform outperforms the
standard real wavelet transform in the sense of shift-invariance, direction-
ality and complexity. The prior MRF model is used to exploit the clus-
tering property of the wavelet transform, which can effectively remove
annoying pointlike artifacts associated with standard wavelet denoising
methods. Our experimental results significantly outperform those using
standard wavelet transforms and are comparable to those from overcom-
plete wavelet transforms and MRFs, but with much less complexity.

Keywords: image denoising, complex wavelet transform, Markov ran-
dom field.

1 Introduction

Images and image sequences are frequently corrupted by noise in the acquisi-
tion and transmission phases. The goal of denoising is to remove the noise, both
for aesthetic and compression reasons, while retaining as much as possible the
important signal features. Traditionally, this is achieved by approaches such as
Wiener filtering, which is the optimal estimator in the sense of mean squared er-
ror (MSE) for Gaussian processes. However, the Wiener filter requires stationar-
ity and an accurate statistical model of the underlying process, these performing
poorly for natural images failing these assumptions. In practice, adaptive meth-
ods [1,2] were mostly used. These methods are good in that they are fast and
can effectively suppress noise for most natural images. More importantly their
adaptivity allows them to work for non-stationary processes (it is well-known
the natural images are non-stationary). The main problem with such methods
is their assumption that the natural images are independent random processes,
which usually is not true. For example, image textures are correlated and are
successfully modelled as Gaussian MRF (GMRF).

The last decade has seen a good deal of effort in exploiting the wavelet
transform to suppress noise in natural images [3,4,5,7], because of its effectiveness
and simplicity. It is now well-known that wavelet transforms with some regularity
have strong decorrelation ability, thus well-representing many natural images
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with relatively few large coefficients. So it is thus far more reasonable to assume
that the wavelet coefficients are independent, than the original spatial domain
pixels. This explains why good denoising results have been achieved by simply
thresholding or shrinking each wavelet coefficient independently [3,4]. Indeed, this
kind of approach has much better results than traditional methods [1,2], both
subjectively and objectively. However, for natural images the wavelet transform
is not quite equivalent to the ideal eigen value/Karhunen-Loeve decomposition,
so some correlation (dependence) still exists among the wavelet coefficients. For
example, large (in magnitude) wavelet coefficients tend to be clustered within a
scale and across scales. If these characteristics could be exploited in some way
for denoising, better performance might be expected. Indeed, MRF models have
been used for this very reason [5,7] and significantly better results obtained, both
subjectively and objectively. Specifically, pointlike artifacts associated with the
independence model have been effectively suppressed.

Considering the shift-variability of standard wavelets, or the complexity of
shift-invariant (undecimated) transforms, in this paper we propose to use com-
plex wavelet transform together with a MRF model for image denoising. A dif-
ferent formulation of the problem is also proposed. Sec. 2 describes the problem
formulation. Sec.3 introduces the basic ideas of the complex wavelets and its
useful properties. Sec.4 is about the probability models we use in the paper. In
Sec.5 we show some experimental results with discussions.

2 The Denoising Method

Standard wavelet-based denoising methods consist of three steps:

1. The wavelet decomposition of the image is computed:
Given noise-free image xo and wavelet transform H , then

x = Hxo

y = Hy
o

= H(xo + wo) (1)

where y are the noisy observations.
2. The obtained wavelet coefficients are modified:

x̂ = f(y) (2)

where f() denotes our proposed estimator.
3. The cleaned image is obtained from the modified wavelet coefficients by

inverse wavelet transform:

x̂o = H−1x̂(y) (3)

For the first step we need to choose the ”best” wavelet transform for an applica-
tion. Commonly used wavelets include Daubechies orthogonal wavelets with the
lengths from 2 to 10, bi-orthogonal wavelets with symmetry and several regular
(smooth) overcomplete wavelets implemented by the a trous algorithm . Gener-
ally speaking, overcomplete wavelets outperform the fully decimated wavelets for
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signal and image denoising because they are shift-invariant. For images, wavelets
with good orientation-selectivity (e.g. curvelet, ridgelet) are preferred. In this pa-
per we use the dual-tree complex wavelet proposed by Kingsbury [8] because of
its shift-invariance and orientation-selectivity properties. These properties will
be shown in Section 3.

For Step two we propose to use a Bayesian decision and estimation method
to modify the wavelet coefficients [5,7]. We classify the wavelet coefficients into
two groups:H0 and H1, representing noise and signal, respectively. Then the ith
coefficient is changed to minimize the mean square error:

x̂i = E(xi|y)
= E(xi|y, Li = H0)P (Li = H0|y)

+E(xi|y, Li = H1)P (Li = H1|y) (4)

where E() denotes expectation. Li ∈ {H0, H1} is the label of the ith coefficient.
In practice, we can assume E(xi|y, H0) = 0. There are several methods to

evaluate E(xi|y, H1). In this paper we simply set E(xi|y, H1) = yi. Thus we have

x̂i = P (Li = H1|y) · yi (5)

So to find x̂i the only unknown quantity is P (Li = H1|y). To get P (Li = H1|y)
one method is to find P (L|y) first [5,7], using the Bayesian rule

P (L|y) =
P (y|L)P (L)

P (y)
(6)

where L is the label field. Then based on models P (y|L) and P (L) we can use
stochastic sampling to find the joint probability P (L|y) and then the marginal
probability P (Li = H1|y). However, it is usually difficult to model P (y|L); in
[5,7], y was heuristically assumed to be an independent process given L.

In this paper we find x̂i in a different way, separating detection and esti-
mation. First we find the label field L by maximizing a posteriori probability
(MAP)

max
L

P (L|m) ∝ max
L

P (m|L) · P (L) (7)

where m is the feature vector for the classification. In Sec. 4 we also empirically
model P (m|L) as an independent process. However, it should be noted this model
is just used for detecting labels, not directly for estimating xi. This means we
only require the model of P (m|L) be good enough to classify labels correctly.
With L known we can then estimate xi by

x̂i = E(xi|yi, L(−i))
≈ P (Li = H1|yi, L(−i)) · yi (8)

=
P (yi|Li = H1, L(−i)) · P (Li = H1|L(−i))∑1
k=0 P (yi|Li = Hk, L(−i))P (Li = Hk|L(−i))

· yi

where L(−i) is the whole label field L excluding Li.
The required probability models (P (m|L), P (yi|Li = H1, L(−i)) and

P (Li = H1|L(−i))) are discussed in Sec. 4.
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3 The Complex Wavelet Transform

The present standard wavelet transforms are almost all real-value transforms,
such as Daubechies and biorthogonal wavelets [6]. They have some interesting
properties and are successfully used in many image processing applications (e.g.,
compression, denoising, feature extraction). However, under the constraint of
being real-valued they suffer from a few disadvantages [8]:

1. The real-valued orthogonal wavelet can not be symmetric, which is expected
for some applications;

2. Lack of shift invariance, which means small shifts in the input signal can
cause major variations in the distribution of energy between coefficients at
different scales;

3. Poor directional selectivity for diagonal features, when the wavelet filters are
real and separable.

A well-known way of providing shift-invariance is to use the undecimated form
of the dyadic filter tree, which is implemented most efficiently by the algo-
rithm a trous. However, this suffers from substantially increased computation
requirements compared to the fully decimated DWT. In addition, separable 2D
overcomplete wavelet transforms still have poor directional selectivity. Designing
non-separable direction-selective 2D wavelet bases is usually a complicated task.

If the wavelet filters are allowed to be complex-valued (this results in single-
tree complex wavelet (ST-CWT)) all the above three problems can be overcome
[8]. However, though (ST-CWT) can solve these problems it suffers from poor fre-
quency selectivity. Thus, Kingsbury [8] proposed the dual-tree complex wavelet
transform (DT-CWT) (Fig. 1). DT-CWT uses two real DWT trees to implement
its real part and imaginary part, separately. In addition to the other attractive
properties of the ST-CWT, DT-CWT has good frequency selectivity and easy
to achieve perfect reconstruction. Indeed, Selesnick [9] found that the real and
imaginary parts of the DT-CWT can be linked by the Hilbert transform. This
observation further explains why DT-CWT has those useful characteristics.

The 2D DT-CWT can be easily implemented by the tensor products of 1D
DT-CWT. Because the 1D filters are complex the 2D DT-CWT consists of six
wavelets (Fig. 2). Note the good directionality of the wavelet bases.

4 The a Prior Models

1. P (m|L)
As mentioned in Sec.2 P (m|L) is modelled as an independent process, i.e.

P (m|L) =
N∏

i=1

P (mi|Li) (9)

where m is the feature vector and L is the label field. We use the magnitude of
complex wavelet coefficient as the feature:

m(u, v) =
√

re
2(u, v) + im

2(u, v), u, v = 1, 2, ...,N (10)
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Fig. 1. two-level dual-tree complex wavelet transform

Fig. 2. 2D dual-tree complex wavelet bases (only three orientations are shown)

where u, v = 1, 2, ...,N are coordinates of the image field. re(u, v) and im(u, v)
are the real and imaginary parts, respectively

y(u, v) = re(u, v) +
√−1 · im(u, v) (11)

In this paper we assume re(u, v) and im(u, v) are Gaussian, as did in several
other papers (e.g. [3]). Thus, a good approximate model for m(u, v) is Rayleigh
distribution. Fig. 3 shows the histogram (from a group of natural images) of
m(u, v) and estimated Rayleigh function.

2. P (yi|Li = Hk, L(−i)), k = 0, 1
We assume a conditional independence

P (yi|Li = Hk, L(−i)) = P (yi|Li = Hk) (12)

and then model P (yi|Li = Hk) as complex Gaussian.

3. P (Li = H1|L(−i))
The label process L is modelled as a MRF. Specifically we use the auto-logistic
model [5]. This kind of models have also been successfully applied for texture
segmentation. It is described as

P (L) = 1/Z · exp(−V (L)) (13)
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Fig. 4. Labels without (a) and with (b) a priori model for one wavelet orientation
(15o)

where the energy function V (L) =
∑

i VNi(L) and the clique potentials are
defined as

VNi(L) =
∑
j∈Ni

Vi,j(Li, Lj) with

Vi,j(Li, Lj) =
{−γ if Lj = Li

γ if Lj 	= Li
(14)

where γ is a positive scalar. Ni is the first-order neighborhood system.
This a priori model for the label field tries to exploit the clustering property

of the wavelet coefficients. It has been shown to be useful for suppressing separate
noise artifact [5]. In Fig. 4 the influence of the a priori model is illustrated. We
used iterated conditional mode (ICM) in the maximization process.

5 Experimental Results and Discussions

We applied the proposed technique to several natural images with artificial ad-
ditive Gaussian noise. One result is shown in Fig. 5. For comparison we also
show the denoising result from [3]. This method is widely used in references for
comparison. It did not employ any a priori label model. Visually, Fig. 5(d) looks
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Fig. 5. (a) original (b) noisy (c) denoised image by adaptive thresholding [3] (d) pro-
posed method

much cleaner and thus more pleasing than Fig. 5(c), though the latter looks a
little bit sharper. Objectively the proposed approach is also about 1dB better
in the sense of SNR.

We also compared with the methods in [5,7] because they also used MRF a
priori model. We found the results looks similar and the differences in SNR are
less than 0.5dB. However, in [5,7] undecimated overcomplete wavelets were used.
Thus their complexity is much higher than the decimated complex wavelet (For
example for 2D decomposition the complex wavelet transform has a redundancy
of 4, independent of number of levels. But for the overcomplete wavelet transform
the redundancy is 4+3(NL−1), where NL denotes the number of levels). This is
especially true in the MRF iteration process. Furthermore, 2D complex wavelets
have better direction-selectivity which means potential for better denoising per-
formance. It should also be noted our problem formulation is different. We first
find edge masks according to MAP and then combine this knowledge with the
measurement to evaluate the conditional probability P (Li = H1|yi, L(−i)).
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Abstract. Vector median filtering is a well known technique for reducing noise
in color images. These filters are defined on the basis of a suitable distance or
similarity measure, being the most common used the Euclidean and City-Block
distances. In this paper, a Fuzzy Metric, in the sense of George and Veeramani
(1994), is defined and applied to color image filtering by means of a new Vector
Median Filter. It is shown that the standard Vector Median Filter is outperformed
when using this Fuzzy Metric instead of the Euclidean and City-Block distances.

1 Introduction

Images are acquired by photoelectronic or photochemical methods. The sensing de-
vices and the transmission process tend to degrade the quality of the digital images by
introducing noise, geometric deformation and/or blur due to motion or camera misfocus
[8,27]. The presence of noise in an image may be a drawback in any subsequent pro-
cessing to be done over the noisy image such as edge detection, image segmentation or
pattern recognition. As a consequence, filtering the image to reduce the noise without
degrading its quality, preserving edges, corners and other image details, is a major step
in any computer vision application [28].

One of the most important families of nonlinear filters is based on the ordering of
vectors in a predefined sliding window [27,28]. The output of these filters is defined
as the lowest ranked vector according to a specific ordering criterion using a particular
distance measure. Probably, the most well-known vector filter is the vector median filter
(VMF) [3] which uses the L1 (City-Block) or L2 (Euclidean) norm to order vectors
according to their relative magnitude differences. The direction of the image vectors
can also be used as an ordering criterion to remove vectors with atypical direction,
which means atypical chromaticity. The basic vector directional filter (BVDF) [33]
parallelizes the VMF operation employing the angle between color vectors as a distance
criterion. The BVDF uses only information about directions, so, it is not able to remove
achromatic noisy pixels from the image. The Directional Distance Filter (DDF) [16]
overcomes the difficulties of the BVDF by using both magnitude and direction in the
distance criterion.
� The author acknowledges the support of Spanish Ministry of Education and Science under
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However, those vector filters are designed to perform a fixed amount of smoothing
and they are not able to adapt to local image statistics. Within this aim, many different fil-
ters have been recently introduced in the literature [1,2,17,19,20,21,22,23,24,25,31,32].

In the color image processing field both magnitude and chromatic relations play a
major role [6]. These relationships are usually represented using a distance or similarity
measure. Many different distance and similarity measures have been introduced in the
literature [28,6,7,35,36,29]. Some of them are based on fuzzy theory [6,7,35,36,29] and
have been recently applied with many different purposes in image processing, such as,
image retrieval [9], image comparison [34], object recognition [11], or region extrac-
tion [10].

In this paper, a fuzzy metric in the terms of George and Veeramani [12] is defined
and applied to color image filtering by adapting the well-known VMF. The paper is
organized as follows. The fuzzy metric is defined in section 2. In Section 3, the pro-
posed filtering is explained. In section 4, some experimental results are shown. Finally,
conclusions are presented in section 5.

2 An Appropriate Fuzzy Metric

One of the most important problems in Fuzzy Topology is to obtain an appropriate
concept of fuzzy metric. This problem has been investigated by many authors from
different points of view. In particular, George and Veeramani [12] have introduced and
studied the following notion of fuzzy metric which constitutes a slight modification of
the one due to Kramosil and Michalek [18].

According to [12] a fuzzy metric space is an ordered triple (X,M, ∗) such that X
is a (nonempty) set, ∗ is a continuous t-norm and M is a fuzzy set of X ×X×]0, +∞[
satisfying the following conditions for all x, y, z ∈ X, s, t > 0:

(FM1) M(x, y, t) > 0
(FM2) M(x, y, t) = 1 if and only if x = y
(FM3) M(x, y, t) = M(y,x, t)
(FM4) M(x, z, t + s) ≥M(x, y, t) ∗M(y, z, s)
(FM5) M(x, y, ·) :]0, +∞[−→ [0, 1] is continuous.

M(x, y, t) represents the degree of nearness of x and y with respect to t. If
M(x, y, ∗) is a fuzzy metric space we will say that (M, ∗) is a fuzzy metric on X . In
the following, by a fuzzy metric we mean a fuzzy metric in the George and Veeramani’s
sense.

The authors proved in [12] that every fuzzy metric (M, ∗) on X generates a Haus-
dorff topology on X . Actually, this topology is metrizable as it was proved in [13,14],
and so the above definition can be considered an appropriate concept of fuzzy metric
space.

A fuzzy metric (M, ∗) on X is said to be stationary if M does not depend on t, i.e.
for each x, y ∈ X the function Mx,y(t) = M(x, y, t) is constant [15].

A subset A of X is said to be F-bounded [12] if there exist t > 0 and s ∈]0, 1[ such
that M(x, y, t) > s for all x, y ∈ A.

Example 4.4 of [30] suggests the next proposition.
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Proposition 1. Let X be the closed real interval [a, b] and let K > |a| > 0. Consider
for each n = 1, 2, · · · the function Mn : Xn ×Xn×]0, +∞[−→]0, 1] given by

Mn(x, y, t) =
n∏

i=1

min{xi, yi}+K

max{xi, yi}+K
(1)

where x = (x1, · · · ,xn), y = (y1, · · · , yn), and t > 0. Then, (Mn, ·) is a stationary
F-bounded fuzzy metric on Xn, where the t-norm · is the usual product in [0, 1].

Proof. Axioms (FM1)-(FM3) and (FM5) are obviously fulfilled. We show, by induc-
tion, the triangular inequality (FM4).

An easy computation shows that M1 verifies (FM4). Now, suppose it is true for
Mn−1. Then, for each x = (x1, . . . ,xn), y = (y1, . . . , yn), z = (z1, . . . , zn) and for
each t, s > 0 we have

Mn(x, z, t + s) =
∏n

i=1
min{xi,zi}+K
max{xi,zi}+K

=
∏n−1

i=1
min{xi,zi}+K
max{xi,zi}+K

· min{xn,zn}+K
max{xn,zn}+K

≥
≥ ∏n−1

i=1
min{xi,yi}+K
max{xi,yi}+K

· ∏n−1
i=1

min{yi,zi}+K
max{yi,zi}+K

· min{xn,yn}+K
max{xn,yn}+K

· min{yn,zn}+K
max{yn,zn}+K

=
=
∏n

i=1
min{xi,yi}+K
max{xi,yi}+K

· ∏n
i=1

min{yi,zi}+K
max{yi,zi}+K

= Mn(x, y, t) · Mn(y, z, s),
(2)

so Mn is a fuzzy metric on Xn, for n = 1, 2, . . . and clearly it is stationary.

Finally, Xn is F-bounded, for n = 1, 2, . . . Indeed, if we write a = (
n︷ ︸︸ ︷

a, . . . , a) and

b = (

n︷ ︸︸ ︷
b, . . . , b), then for each x, y ∈ Xn and t > 0 we have

Mn(x, y, t) ≥Mn(a, b, t) =
(
a+K

b+K

)n

> 0, for n = 1, 2, . . . (3)

��

In next sections we will use the above fuzzy metric and it will be denotedMn(x, y),
since it does not depend on t.

2.1 Computational Analysis

Computationally efficient distances are of interest in the field of order statistic filters
[4,5]. For this reason, the use of the L1 Norm is preferred to the L2 Norm in many
cases [28].

The particular case of the proposed fuzzy metric Mn suitable for 3-channel image
processing tasks will be M3, where M3(Ii, Ij) will denote the fuzzy distance between
the pixels Ii and Ij in the I image. For each calculation of M3: 3 comparisons, 6 ad-
ditions, 3 divisions and 2 products have to be computed. In the case of L1 Norm are
necessary 3 comparisons (absolute value), 3 subtractions and 2 additions whereas for
the L2 Norm 3 subtractions, 3 powers, 2 additions and 1 square-root have to be done.
As can be seen in Table 1, the computational complexity of M3 is even higher than
the L2 Norm. However, an optimization in the computation of M3 (Fast M3) may be
applied.
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Given a fixed parameter K in (1), numerator and denominator of each division in
(1) are in a bounded set [K, 255 +K] when processing RGB images. All the possible
divisions can be precalculated in a square matrix C where

C(i, j) =
min{i, j}+K

max{i, j}+K
i, j ∈ [0, 255] (4)

Using the pre-computation matrix, the calculation of Fast M3 for two pixels Ii =
(Ii(1), Ii(2), Ii(3)), Ij = (Ij(1), Ij(2), Ij(3)) is reduced to

M3(Ii, Ij) =
3∏

l=1

C(Ii(l), Ij(l)) (5)

By means of this optimization, 3 accesses to matrix and 2 products are enough to make
the computation.

The time measured for the construction of the matrix C is about 0.8 seconds in a
Pentium IV 2.4GHz. Although it supposes an initial cost, the gain is approx. 8μs (see
Table 1) in each computation, so, the initial cost is compensated when 105 computations
have to be done (which is roughly the computation involved in the filtering of a 50 · 50
pixels image1).

Table 1. Computational comparison between the classical metrics L1 and L2 and the proposed
fuzzy metric M3 measured in a Pentium IV 2.4GHz

Metric 1 Computation (μs) Computations per second
L1 Norm 28.37 3.524 104

L2 Norm 30.10 3.322 104

M3 34.68 2.883 104

Fast M3 26.98 3.706 104

The results presented in Table 1 show that the M3 Fuzzy Metric is computation-
ally cheaper than the classical L1 and L2 Norms when the optimization of the pre-
computation matrix is applied.

3 Image Filtering

3.1 Classical Vector Median Filter [3,28]

Let I represents a multichannel image and let W be a window of finite size n (filter
length). The noisy image vectors in the filtering window W are denoted as Ij , j =
0, 1, ...,n− 1. The distance between two vectors Ii, Ij is denoted as ρ(Ii, Ij). For each
vector in the filtering window, a global, accumulated distance to all other vectors in the
window has to be calculated. The scalar quantity Ri =

∑n−1
j=0 ρ(Ii, Ij), is the distance

associated to the vector Ii. The ordering of the Ri’s: R(0) ≤ R(1) ≤ ... ≤ R(n−1),
implies the same ordering of the vectors Ii’s: I(0) ≤ I(1) ≤ ... ≤ I(n−1) . Given this
order, the output of the filter is I(0).

1 For all the filters studied in this article has been used a 8-neighborhood 3× 3 size window W .
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3.2 Proposed Vector Median Filter

The proposed filter will parallelize the operation of the classical VMF with just one
modification. The ordering criterion usually used as defined above has to be inverted
due to the axiom (FM2) of the Fuzzy Metric (1), and then the vector median must now
be defined as the vector in the sliding window that maximizes the accumulated fuzzy
distance, as follows.

Being the fuzzy distance between two pixels Ii, Ij of the image I in the n length
sliding window W denoted as M3(Ii, Ij), the scalar quantity M i =

∑n−1
j=0,j �=i

M3(Ii, Ij), is the accumulated fuzzy distance associated to the vector Ii. According
to VMF, the ordering of the M i’s is now defined as: M (0) ≥ M (1) ≥ ... ≥ M (n−1),
therefore, the ordering of the vectors Ii is: I(0) ≥ I(1) ≥ ... ≥ I(n−1). Given this order,
the output of the filter Iout is defined as I(0).

This is, in general, the straightforward adaptation of the VMF when using a simi-
larity measure instead of a distance measure [28].

4 Experimental Results

In this section, the classical gaussian model for the thermal noise and the impulsive
noise model for the transmission noise, as defined in [28,32], has been used to add
noise to the well-known images Lenna (256 · 256), Peppers (512 · 512) and Baboon
(512 · 512). The performance of the filter has been evaluated by using the common
measures MSE, SNR and NCD as defined in [32].

Three different types of noise, according to the models in [28,32], have been con-
sidered in this section:

– Type A = low contaminated impulsive noise p = 7%, p1 = p2 = p3 = 0.3
– Type B = high contaminated impulsive noise p = 30%, p1 = p2 = p3 = 0.3
– Type C = mixed gaussian impulsive noise σ = 10, p = 15%, p1 = p2 = p3 = 0.3

4.1 Adjusting the K Parameter

TheK parameter included in the definition of the Fuzzy MetricM3 (1) has an important
influence on the filter performance. The metric is non-uniform in the sense that the
measure given by M3 for two different pairs of consecutive numbers (or vectors) may
not be the same. However, this feature may be very interesting since it is known that
the human perception of color is also non-uniform [26]. Clearly, increasing the value of
K reduces this non-uniformity. This effect is shown in Fig. 1 where the content of the
matrix C (4) for different values of K is presented.

After performing several tests, the results seem to show that a suitable value for the
K parameter for a variety of noise types is K = 210. The dependence of the perfor-
mance on the value ofK is shown in Fig. 2. The use of a proper value forK may lead to
an improvement of the filter performance up to 60%. In Fig. 2 the performance (MSE)
of the filter dependent on K is shown for the filtering of the Lenna image contaminated
with type B noise. For other performance measures as SNR and NCD the behavior is
similar to MSE. The performance is low for lower values of K . Increasing K leads to
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Fig. 1. Content of the pre-computation matrix C(i, j) for several values of K
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Fig. 2. Performance of the VMF using M3 in terms of MSE depending on K using the Lenna
image contaminated with type B noise

a maximum performance and then it decreases slightly for higher values of K . Finding
the optimum K is a problem we are trying to solve since it depends on the particular
image and noise. In spite of it, it has been found that in the most of the tested cases the
optimum is in the range [29, 215], as the case shown in Fig. 2.
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4.2 Comparing Performances

In order to compare the performance of the VMF using the metrics L1, L2 andM3, dif-
ferent images contaminated with different types of noise have been used as commented
in section 4.

The results of the performance measured in tems of MSE, SNR and NCD are shown
in Tables 2,3 and 4. Fig. 3 presents the peppers image contaminated with type B noise
(30% impulsive) and the output of the compared filters, standing out a detail of each
image.

Table 2. Comparison of the performance measured in terms of MSE, SNR and NCD using the
Lenna image contaminated with different types of noise

Filter A Noise B Noise C Noise
MSE SNR NCDLab MSE SNR NCDLab MSE SNR NCDLab

None 552.9 15.17 4.92 10−2 2318.51 9.35 20.80 10−2 1246.86 12.04 17.90 10−2

VMF L1 42.18 26.75 1.81 10−2 59.63 25.25 2.19 10−2 91.59 23.38 6.40 10−2

VMF L2 45.56 26.41 1.79 10−2 76.05 24.19 2.46 10−2 97.01 23.13 6.35 10−2

VMF M3 41.81 26.78 1.80 10−2 59.18 25.28 2.17 10−2 90.49 23.43 6.36 10−2

Table 3. Comparison of the performance measured in terms of MSE, SNR and NCD using the
Peppers image contaminated with different types of noise

Filter A Noise B Noise C Noise
MSE SNR NCDLab MSE SNR NCDLab MSE SNR NCDLab

None 566.94 14.42 4.84 10−2 2493.27 7.99 21.09 10−2 1324.56 10.73 19.66 10−2

VMF L1 18.87 29.19 4.84 10−2 35.49 26.45 2.34 10−2 63.10 23.95 7.53 10−2

VMF L2 19.30 29.10 1.88 10−2 40.37 25.89 2.46 10−2 64.98 23.82 7.51 10−2

VMF M3 18.71 29.23 1.86 10−2 33.35 26.72 2.29 10−2 62.10 24.02 7.48 10−2

Table 4. Comparison of the performance measured in terms of MSE, SNR and NCD using the
Baboon image contaminated with different types of noise

Filter A Noise B Noise C Noise
MSE SNR NCDLab MSE SNR NCDLab MSE SNR NCDLab

None 535.33 15.52 4.83 10−2 2301.44 9.18 20.76 10−2 1238.64 11.88 17.37 10−2

VMF L1 287.66 18.22 4.07 10−2 326.93 17.66 4.48 10−2 350.65 17.36 7.93 10−2

VMF L2 295.07 18.11 4.02 10−2 351.71 17.34 4.61 10−2 359.89 17.24 7.72 10−2

VMF M3 287.98 18.21 4.05 10−2 326.73 17.67 4.46 10−2 350.27 17.36 7.88 10−2

The results show that the VMF using the proposed fuzzy metric may give better
performance than using the classical metrics.

5 Conclusions

The metric (1) proposed in section 2, which has been proved to be a Fuzzy Metric in the
sense of George and Veeramani [12], is a suitable fuzzy metric to be used in multichan-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3. (a) Original image peppers pointing out the detailed area,(b) detailed area,(c) peppers
corrupted with noise type B and (d) detail, (e) result of the VMF using L1 and (f) detail, (g) result
of the VMF using L2 and (h) detail, (i) result of the proposed filter using M3 and (j) detail
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nel image filtering. The adaptation of the Vector Median Filter (section 3) for the use
of the proposed fuzzy metric outperforms the usual VMF’s using the classical metrics
L1 and L2, specially when the impulsive noise present in the image is high, as has been
shown in section 4. Moreover, the proposed metric presents a nice computational cost
(see section 2.1).

Fuzzy Metrics are a powerful tool which may be successfully applied in image pro-
cessing tasks since they are able to represent more complex relations than the classical
metrics.
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Abstract. In this paper, we present new wavelet shrinkage methods
for image denoising. The methods take advantage of the higher order
statistical coupling between neighboring wavelet coefficients and their
corresponding coefficients in the parent level. We also investigate a mul-
tiplying factor for the universal threshold in order to obtain better de-
noising results. An empirical study of this factor shows that its optimum
value is approximately the same for different kinds and sizes of images.
Experimental results show that our methods give comparatively higher
peak signal to noise ratio (PSNR), require less computation time and
produce less visual artifacts compared to other methods.

1 Introduction

For the last decade, various denoising approaches using wavelet transform have
been proposed and proved to be efficient for images as well as signals. It has
been shown that denoising using wavelet transforms produces superb results.
This is because wavelet transform has the compaction property of having only
a small number of significant coefficients and a large number of very detailed
coefficients. Therefore, it is possible to suppress the noise in the wavelet domain
by killing some detailed coefficients which represent the detailed information as
well as the noise.

Recently, several important approaches have been proposed by considering
the influence of other wavelet coefficients on the current wavelet coefficient to be
thresholded. Cai and Silverman [1] proposed a thresholding scheme by taking the
immediate neighbor coefficients into account. Their experimental results showed
apparent advantages over the traditional term-by-term wavelet denoising. Chen
and Bui [2] extended this neighboring wavelet thresholding idea to the multi-
wavelet case. Sendur and Selesnick [3] proposed bivariate shrinkage functions
for denoising. It is indicated that the estimated wavelet coefficients also depend
on the parent coefficients. The smaller the parent coefficients, the greater the
� This work was supported by research grants from the Natural Sciences and Engi-

neering Research Council of Canada.
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shrinkage. In [4] Azimifar et al. observed statistical correlations between wavelet
coefficients. Mihcak et al. [5] performed an approximate maximum a posteriori
(MAP) estimation of the variance for each coefficient, using the observed noisy
data in a local neighborhood. Crouse et al. [6] developed a framework for statis-
tical signal processing based on wavelet-domain hidden markov models (HMM).
The framework enables us to concisely model the non-Gaussian statistics of
individual wavelet coefficients and capture statistical dependencies between co-
efficients. Portilla et al.[7] presented an image denoising algorithm which is based
on a Gaussian scale mixture (GSM) model using an overcomplete multiscale ori-
ented basis. They define a vector using neighboring coefficients and obtain an
accurate estimate by the vector operations. Also Cho and Bui developed a gen-
eralized denoising algorithm using a multivariate statistical model and Bayesian
estimator in [8]. All these works show that incorporating different information
like neighbors and parents is helpful to remove noise and preserve details for
natural image denoising.

In this paper, we develop new shrinkage approaches by a hybrid combina-
tion of different schemes. Experimental results show that these methods obtain
comparatively higher peak signal to noise ratio (PSNR) for all the tested noisy
images.

2 Shrinkage Approaches for Denoising

In the wavelet domain, despite the decorrelating properties of the wavelet trans-
form, there still exist significant residual statistical dependencies between neigh-
boring wavelet coefficients. Our goal is to exploit this dependency to improve
the estimation of a coefficient given its noisy observation and a context (spatial
and scale neighbors).

Recently, there have been several works which try to use the context in the
wavelet domain [1][3][4][5][9]. Among them, Cai and Silverman in [1] proposed a
simple and effective approach for a 1D signal by incorporating the neighboring
coefficients. Their block thresholding method has excellent asymptotic properties
and attains the optimal rate of convergence in the Besov sequence space. This
means that the least upper bound of the expected denoised error is close to zero
when the length of the signal tends to infinity.

We define some common notations first. Let A be a clean natural image with
size N ×N , B the noisy image which can be expressed as B = A+ σC, and C
the zero-mean Gaussian white noise, which is C∼N(0, 1). σ2 is noise variance.
After performing multiresolution wavelet decomposition on B, we get the wavelet
coefficient yj,k, which is the k-th wavelet coefficient in j-th level for B. Due to
the linearity of the wavelet transform, we have:

yj,k = xj,k + σzj,k, (1)

where xj,k and zj,k are the wavelet coefficients of A and C respectively in the
same location as yj,k.
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2.1 Method 1

One of the simplest wavelet shrinkage rules for a noisy image is the universal
threshold λ =

√
2σ2 log N2 suggested by Donoho in [10]. The universal threshold

grows asymptotically and removes more noise coefficients as N tends to infinity.
The univeresal threshold is designed for smoothness rather than for minimizing
the errors. So λ is more meaningful when the signal is sufficiently smooth or
the length of the signal is close to infinity. Natural image, however, is usually
neither sufficiently smooth nor composed of infinite number of pixels. In fact, if
we suppose that an optimal threshold λ∗ which minimizes mean squared error
(MSE), λ∗ = αλ, α is always much less than 1.0 for natural images. We obtained
α in the range [0.2, 0.3] with Daubechies 8 filter, which is similar for different
kinds and sizes of images when we applied soft thresholding rule. We extend
NeighCoeff in [1] to 2D image based on this observation as follows:

x̂j,k = yj,k

(
1−M2λ∗2

/ ∑
sl∈Nj,k

s2
l

)
+
, (2)

where Nj,k is an M ×M window which consists of the thresholded coefficient
and its neighbors. In the experiments, we investigate the optimal threshold by
varying α and M .

2.2 Method 2

Although Method 1 yields very good performance, a constant α must be chosen
empirically. If we substitute λ∗ in Eq. 2 by a nonparametric threshold with
minimum risk, we may not need to use the universal threshold with a constant
α to build a robust shrinkage method. One of the existing optimal thresholding
methods is SureShrink, which uses an adaptive threshold by minimizing Stein’s
unbiased risk estimation(SURE ) for each wavelet decomposition level [11]. When
wj is an n× n wavelet subband in level j, SURE threshold λ∗ is

λ∗ = arg min
λ
SURE(wj,λ)

= arg min
λ

⎡⎣n2 − 2 ·#{k : |yj,k| ≤ λ} +
n2∑
k

min(|yj,k|,λ)2

⎤⎦ . (3)

Then a new shrinkage rule can be obtained from Eq. 2 by substituting the
nonparametric threshold λ∗ in Eq. 3 instead of the universal threshold.

2.3 Method 3

Here we suggest one more method so as to distinguish it from the other two
methods.

For the previous two methods, we have considered neighbor dependency.
There is another possible correlation between the wavelet coefficients lying in
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different decomposition levels. The statistical correlation between parent and
child coefficients has been widely recognized in image coding and denoising
[9][6][7][3][12] since zerotrees were introduced by Shapiro [12]. Parent and child
have interdependency similar to neighbors. Therefore, if we can utilize neighbors
spreaded both vertically and horizontally as shown in Fig. 1, a better perfor-
mance can be expected.

Level j

Level j+1p

sl

MxM neighbours (Nj,k)

Fig. 1. Choosing context for Method 3

According to this idea, we propose the following criterion by applying the
coefficients in the coarser level to Eq. 2:

x̂j,k = yj,k

[
1− (M2 + 1)λ∗2

/( ∑
sl∈Nj,k

s2
l + p2

)]
+

, (4)

where λ∗ = αλ like Method 1, sl denotes the coefficient to be thresholded and
its neighbors in an M ×M window, and p is a parent of the coefficient to be
thresholded, which is a coefficient matched in the coarser level (see Fig. 1). In
Eq. 4, it should be noted that a normalized factor, M2 + 1, is used which is the
number of correlated elements in the context. By this rule, the effect of the local
variance from the parent level is considered as well as from the current level.

The three proposed shrinkage rules have a common feature: Local sample
coefficients are taken from an M ×M window Nj,k for Method 1 and Method
2, and Nj,k and a parent coefficient p for Method 3 as shown in Fig. 1. If we
assume that the mean of the sample coefficients is zero, the local variance of yj,k

can be defined as σ2
yj,k

=
∑

a2
i /m, where ai denote the sample coefficients (sl

and p) and m is the number of local samples. In this case, we can notice that
both Eqs. 2 and 4 become x̂j,k = yj,k

(
1− λ∗2/σ2

yj,k

)
+.

In [5], linear minimum mean squared error-like (MMSE-like) estimator of xj,k

is given by x̂j,k = yj,k

σ̂2
xj,k

σ̂2
xj,k

+σ2 , where σ̂2
xj,k

is an estimated variance of xj,k. They

have computed an approximate maximum likelihood (ML) estimator for σ̂2
xj,k

as(
1

M2

∑
sl∈Nj,k

s2
l − σ2

)
+
. In other words, σ̂2

xj,k
=
(
σ2

yj,k
− σ2

)
+. Therefore, linear
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MMSE estimator can be rewritten as x̂j,k = yj,k

(
1 − σ2/σ2

yj,k

)
+. Since λ∗ ∝ σ

for the universal threshold used in Method 1 and Method 3, the shrinkage rule
of linear MMSE estimator is the same as that of these two methods if we assume
that α

√
2 logN2 = 1. In this sense, it could be said that Method 3 uses the local

variance considering both neighbor and level dependency. And our thresholds
have strong connection with the estimator based on the probability density of
the wavelet coefficients and prior like linear MMSE estimator.

3 Experimental Analysis and Evaluation

In our experiments, we have carried out various experiments using different
parameters and several kinds of gray-level images with 256× 256 and 512× 512
sizes. Among them three 512× 512 images, which are Lena, Boat and Barbara,
are used in this paper for comparison purposes. We assume that the noise model
is Gaussian additive white noise N(0, σ2). We have chosen Daubechies wavelet
D8 which is one of the most popular mother wavelets for denoising and the dual
tree complex wavelet transforms (CWT) [13]. In addition, Tranlation-invariant
(TI) CWT has been used by combining both TI and CWT. Since CWT has
the near shift-invariant property, TI CWT gives only slightly better results than
CWT.

Fig. 2. Cropped images (256×256) using proposed algorithms for 512×512 Barbara
image with σ=30 : Original (top-left), Noisy (top-center; 18.58dB), Wiener filter (top-
right; 24.73dB), Method 2 (bottom-left; 27.35dB), Method 1 (bottom-center; 27.92dB),
Method 3 (bottom-right; 27.96dB)
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Fig. 3. Cropped images (128×128) using proposed algorithms for 512×512 Boat im-
age with σ=20 : Original (top-left), Noisy (top-center; 22.10dB), Wiener filter (top-
right; 28.09dB), Method 2 (bottom-left; 29.81dB), Method 1 (bottom-center; 29.97dB),
Method 3 (bottom-right; 30.17dB)

For our proposed shrinkage algorithms, determining an optimal constant α
in Eqs. 2 and 4 for Method 1 and Method 3 is required. α can be chosen exper-
imentally. We found that the value is empirically similar to the optimal value
for universal soft-thresholding in [10] and located in a particularly narrow range
even for diverse types of images with different sizes and noise levels.

We set α to 0.16 ∼ 0.19 for both Method 1 and Method 3 depending on the
sizes of the neighboring and parent windows when we use CWT. In CWT, a
threshold should be doubled since it is compared with the sum of the squares of
the magnitudes calculated from both real and imaginary parts.

To evaluate and analyze our proposed algorithms, we compared them with
the existing effective approaches. Denoised images can be compared both visually
and numerically. We use PSNR for numerical measurement, which is the most
representative numerical measures for image quality.

A comparison of selected methods is given in Figs. 2 and 3 for a 512×512 size
Boat and Barbara images. For the varied noise variances, the measured PSNR
values are plotted in Fig. 4 for our proposed methods and other available existing
methods. We compared our method with the existing algorithms proposed in [3],
[7], [9], [14], and [15].

In [7], an image denoising algorithm using Gaussian scale mixtures is pro-
posed. In their experiments, the results are only 0.1dB ∼ 0.2dB better than ours
as shown in Fig. 4. However, it may not be proper to compare our results because
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Fig. 4. Comparison graphs for some principal approaches from 512×512 Lena image

Portilla et al. use a customized wavelet called steerable pyramid while we use the
usual orthogonal wavelets and CWT. The emphasis of our paper is in the study
of the effects of neighboring and level dependencies on thresholding the wavelet
coefficients. Moreover, our Matlab program takes 3 seconds for a 512×512 image
with CWT on 2.4GHz Pentium IV, whereas their Matlab implementation takes
roughly 40 seconds for a 256×256 image on 1.7 GHz Pentium III according to
[7]. One of the advantages of our methods is the low computational requirement
which makes our methods very competitive in real applications.

4 Conclusion

We have presented algorithms which take advantage of the higher order sta-
tistical coupling between neighbor wavelet coefficients and their corresponding
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coefficients in the parent level with effective translation-invariant wavelet trans-
forms. Also the multiplying constant of a threshold which produces lower MSE
for image denoising has been introduced and chosen empirically. Our methods
give fairly satisfying results in both visual and numerical aspects. In addition,
they are considerably fast and effective for thresholding and easy to implement.
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Abstract. This paper addresses a novel video summarization procedure
that produces a dynamic (video) abstract of the original video sequence.
To remain temporal characteristic in the video abstract, a newly time-
oriented feature is introduced. The approach relies on time instances,
frame rate of the original video sequence and display speed of the video
summary to select frames for a video abstract. This method preserves
the time-evolving dynamic nature of the video content. Based on a in-
put video sequence, real-time video summarization can be achieved at
different display speed.

1 Introduction

The emergence of digital videos has triggered an interest in various video-
processing fields especially video abstracting. There have been research efforts
that strive to output motion video summaries to accommodate better content
overviews. To date, the most common approach is to use a set of keyframes
extracted from the input video for its content summary. Many systems extract
a constant number of keyframes from each video shot [1]-[3], while sophisti-
cated systems assign more keyframes to scene shots with more changes [4]-[6].
To remove redundancies and duplicates from keyframes, there are also meth-
ods clustering keyframes based on their visual similarities [7]-[9]. However, while
keyframes are effective in helping the user to spot the desired shots from a video,
they are insufficient for the user to get a general idea of the video content. Fur-
thermore, another common drawback is that it simply presents a sequence of key
frames at a certain fixed rate without considering any time relationship between
successive key frames.

There also have been research efforts on dynamic video abstract based on
adaptive and dynamic sampling of sub-shots units of the video sequence,to pre-
serve the video content and time relationship [10]. Whereas, based on such a
method, once the video is given, the video abstract is fixed. User cannot have
video abstracts at different display speed and real-time video abstract cannot be
realized.

In this paper, a time oriented video summarization (TOVS) method is pro-
posed to generate a real time video summary at different display speed. This
method keeps the temporal characteristics of the video content and performs di-
rect fast playback based on the compressed video stream. Algorithms of related
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works and the TOVS procedure are described in Section II. Based on TOVS,
several algorithms are developed due to different purposes. Simulation results are
presented and analysed in Section III. Finally, some conclusions and discussions
are given in Section IV.

2 Time Oriented Video Summarization

As well known, the video stream is stored frame by frame. For video sum-
marization, If the original video stream is compressed, we define the corre-
sponding reconstructed frames as F̃0,F̃1,...,F̃N−1. If it is not compressed, let
F0,F1,F2,F3,...,FN−1 representing the frames in the original video stream, where
N is the total number of the frames, and the frames displayed in the video sum-
marization are denoted as G0,G1,...,GM−1. With C denoting the frame rate, the
video duration of the original video stream is N

C . The key frames are defined
as Fi,i ∈ IK := {Jk}k=0,...,L−1. As video summarization is based on the original
video sequence, a variable R is introduced to denote how many times the video
summarization is faster than original video sequence from vision effect. This R
is used to extract frames from original video sequence for video abstract and can
be specified by the laymen. Hence the corresponding video length of the video
summarization is N

CR .
Most video compression methods exploit motion estimation and compensa-

tion [11]-[12]. Therefore the videos consist of two types of frames, key frames
(including scene transition frames and the compulsory frames compressed by in-
traframe compression) and motion frames (frames in between two adjacent key
frames). As the data of a motion frame is dependent on some relevant motion
frames and the relevant key frame, so in order to reconstruct a motion frame
from a compressed video stream, those relevant frames also need to be recon-
structed. Meanwhile, video codec transmits two parts of data for a motion frame
Fi, one is motion vector field Fi,m, and the other is displaced frame difference
(DFD) Fi,d. The reconstructed motion frame is given by

F̃i = M(Fi,m, F̃i−1) +D(Fi,d), (1)

where the function M is a motion prediction unit based on motion vector field
Fi,m and the reconstructed previous frame F̃i−1, andD is an operator to generate
a DFD image from the compressed DFD data Fi,d.

Most researchers focus on retrieving the key frames to represent the content
of a segment of video sequences. With notions defined above, their common idea
can be described as

Gk = F̃Jk
, or Gk = FJk

, (2)

depending on whether the input video stream is compressed or not. Basically,
the extracted keyframes are presented in the video summary uniformly.

Unlike the reported work in the literature, we propose a video summarization
method with time-oriented features. Without loss of generality we assume the
initial time instance when we start the procedure is t0, and current time instance
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is t. Thus, the index of the current frame in the input compressed video is
j = [(t− t0)∗C ∗R]. Such a index j will be used to select frames to be presented
in the video summary. After that, the index j is updated as the current time
instance t varies. The process is repeated until the whole input video sequence
is read through. In other words, the frames in the video summary are selected
based on current time instance, frame rate of the input video stream, and display
speed of the video summary. Due to different purposes, several different video
summary algorithms are implemented based on TOVS.

2.1 TOVS Based on Key Frames

If we only display the key frames, TOVS is developed as TOVS Algorithm Based
on Key Frames only (TOVS-K). As mentioned, the index of the current frame in
the input compressed video clip is j = [(t− t0) ∗C ∗R]. Then we use this index
to find the relevant key frame knear = maxk∈Ik,k≤j{k} as shown in Figure 1. If
knear is already displayed in the video summary, then Gi = Gi−1, which means
knear will be displayed again. If knear is not displayed yet, then knear will be
selected into the video summary and displayed. The process is repeated until
the entire input video sequence has been read through.

Fig. 1. TOVS-K: (a) key frames in original video stream (b) displayed frames in video
summarization

TOVS-K is obtained by adding time-oriented features to those related video
summarization methods based on key frames, as mentioned in last section. The
difference between TOVS-K and traditional video summarization methods based
on key frames lies in that, the distributions of the keyframes in TOIVS-K is pro-
portional to their distributions in the original video clip, while in other methods,
keyframes are displayed uniformly. As shown in Figure1, it is clear that the dis-
played key frames in the video summary still keep the temporal characteristics
of the original video stream.
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2.2 TOVS Based on Idea Motion Compensation

Key frames are insufficient for the non-expert end-users to get a general idea of
the video content. Our research aims to develop a summarizing approach in the
compressed domain, to display not only keyframes but also some relevant frames
to make the video summary more natural. From such a point of view, TOVS
is developed as TOVS Based on Ideal Motion Compensation (TOVS-IMC) as
shown in Figure 2.

Fig. 2. TOVS-IMC: (a) frames in original video (b) selected frames in original video
(c) frames in video summarization

As noted, at time instance t, j = [(t − t0) ∗ C ∗ R] stands for the index of
the current frame in the input compressed video stream. Instead of displaying
relevent key frames as in TOVS-K, this frame j will be displayed in the video
summary. In order to reconstruct this frame, all the relevant frames need to be
reconstructed up to the previous key frame. After that, we repeat the process
by updating the index j as current time instance changes, until the value of j
exceeds N.

So compared with other traditional video abstract generation methods,
TOVS-IMC is different in several aspects. Since our simulations are comple-
mented by computers, the following are observed under pc environment. First,
with a time-oriented feature, TOVS-IMC may generate different number of
frames if it is repeated. Second, at each instance of TOVS-IMC, the time in-
terval between two successive frames may vary due to the variation of CPU and
memory usage of the system. Third, TOVS-IMC is an application in the sense
that no extra information is generated. At last, if the system performance is very
good (CPU of the computer is quite fast), TOVS-IMC will increase the frame
rate accordingly, which will result in a smoother video.

2.3 TOVS Based on Maximum Decoding Length

For real-time video summarization, the computation complexity has to be con-
sidered while it is not considered in TOVS-IMC. When R = 1, which means the
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video summarization is the same as the original video sequence, it is possible to
reach real-time video abstract. However, for a given R, the video abstract is R
times faster and the decoder D(Fi,d) will generate R times frames comparing
when R = 1. The computational complexity is highly increased. Therefore it
is impossible to realize TOVS-IMC real time for a large R. Since most of the
computation cost is spent on evaluating D(Fi,d), it is necessary to reduce the
computation complexity on it to achieve the real-time process. In view of the
fact that the motion prediction image M(Fi,m, F̃i−1) is a good approximation of
F̃i = M(Fi,m, F̃i−1) + D(Fi,d), so F̃i is substituted by M(Fi,m, F̃i−1) to enable
video summarization to be implemented in real time. This gives rise to TOVS
with a Maximum Decoding Length K (TOVS-MCK).

The process of TOVS-MCK is similar as the TOVS-IMC, the only difference
lies in the computation complexity. In TOVS-MCK, for a current selected frame
j in the original video stream, which will be displayed in the video summariza-
tion, while reconstructing all the relevant frames to reconstruct frame j, we use
F̃j = M(Fj,m, F̃j−1) +D(Fj,d) when i = j and F̃i = M(Fi,m, F̃i−1) when i 	= j.
That means the displayed frame difference is only used to refine the approaxima-
tion for frame j, while motion prediction image is taken to be the approaximation
for rest frames. So the computation complexity is highly reduced. Meanwhile,
another important idea for real-time process in TOVS-MCK is to introduce a
maximum decoding length K. Instead of reconstructing all the relevant frames
up to the relevant key frames, we reconstruct a number of K frames only. For
a current selected frame j in a compressed video sequence, when the index of
the relevant key frame is i, if i + K < j, then we reconstruct frame i to frame
i+ K, and the frame i + K is displayed in the video summarization instead of
frame j. Obviously, through such a process, the quality of the video summa-
rization is affected and the time accurancy of the frames displayed in the video
summarization may be lost. However, the video quality still can be controlled
through selecting and testing different value of K, and through TOVS-MCK, the
video abstract is becoming smoother comparing with the video summarization
generated by TOVS-IMC. Based on the observation that smoothness is more
important than time stamp accuracy of every displayed frame, such a trade-off
is worthwhile for real time applications. The selection of maximum decoding
length K depends on the performance of the system. If the CPU speed is quite
fast, K could be very large. The upper limit of K is the key frame rate of origi-
nal compressed video clip. To properly choose this maximum decoding length K,
the video summarization generated by TOVS-MCK can approach the quality of
video abstract produced by TOVS-IMC, meanwhile, it can be realized real-time.
In a word, TOVS-MCK is a trade-off between speed and the video quality in
video summary applications.

3 Simulation Results

Although video summarization by TOVS-IMC cannot be realized real-time, it
still can be regarded as a ideal case for video summarization applications from
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view point of quality, so it could be thought of a target to reach. Based on two sets
of test data, test data I and test data II, which are real video streams extracted
from two movies, we have tested TOVS-K and TOVS-MCK to generate real
time video summarization. The parameters of test data I, test data II and the
video abstracts generated are presented in Table 1.

Table 1. Test Data I and Test Data II

Test Data I Test Data II
Video Frame Size 320*240 320*174

Video Length 61.60(s) 68.42(s)
Key Frame Rate 16(f/s) 16(f/s)
Frame Rate C 15(f/s) 12(f/s)

R 5 5
Data Rate(kbps) 314 396
Summary Length 12.32(s) 13.68(s)

As test results of the two methods look similar from view point of whole
summary length, so it is necessary to zoom in the figures of the simulation
results, and eventually we get the curves as shown in Figure 3 and Figure 4.

Fig. 3. Video summaries generated based on test data I

It is clear from Figure 3 and Figure 4 that, only key frames are displayed in
the video summarization generated by TOVS-K, while the video summarization
generated by TOVS-MCK is approaching the one generated by TOVS-IMC and
the video content is more natural with more frames presented. Through the
simulation, we also found out that, the better the system performance (the
faster the CPU speed), the better the video quality and the smoother the video
summarization.
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Fig. 4. Video summaries generated based on test data II

4 Conclusion

In this paper, we have presented a novel time-oriented video summary method.
Three algorithms are proposed. The first (TOVS-K) is based on only key frames,
the second (TOVS-IMC) uses ideal motion compensation in addition to key
frames, while the third (TOVS-MCK) is a computationally efficient trade-off
of the second algorithm. These video summary algorithms can be used for any
compressed video clip if the compression codec exploits motion compensation.
Among the three methods, the video summarization generated by TOVS-IMC
has the best quality but it cannot be realized real-time. TOVS-K and TOVS-
MCK can both produce real-time video summarization, and the video abstract
made by TOVS-MCK can almost reach the quality as by TOVS-IMC. Our proce-
dures keep the temporal characteristics of the original video sequence and make
the video content in the video summarization more natural.
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Abstract. Shadow removal is of significance in computer vision. Shadow
usually adheres to texture, and it is difficult to decouple shadow from tex-
ture without any assumptions. In this paper, we suppose that the texture
beneath shadow should bear the similar patterns, which makes the prob-
lem of simultaneously recovering the reflectance and light attenuation
factor solvable with sole image. A novel shadow removal method is pro-
posed, which is fulfilled by complementing the lost radiance in shadow
region. Experiments show that our proposed approach could maintain
the texture structure and the coherent lighting with the intact region.

1 Introduction

Removing shadow in image is of significance to scene cognition, object tracking,
and image composition. Shadow often adheres to texture, the dependent relation
of shadow and texture causes shadow processing along with texture processing.

Shadow removal relates to the type of texture. Textures could be categorized
as two kinds: strong and weak according to the denseness/sparseness degree of
the constituent structure. Although humans’ eyes can distinguish shadow from
whichever texture, this procedure becomes rather difficult in machine vision, the
key point is how to fully comprehend those explicit and implicit informations.
It should be noted that the texture type is not invariant at all times, it varies
with the alteration of perspective depth and view position.

There exists the potential irradiance relationship between illumination and
shadow regions to be exploited for shadow removal. Illumination and shadow
(including umbrae and penumbrae) regions simultaneously appear in the same
image, illumination region receives total irradiance, while the shadow region re-
ceives part irradiance. If knowing the irradiance difference between illumination
and shadow regions, we can remove shadow by completing the lost irradiance
in shadow region. Our inspiration is partly influenced by Sato and Ikeuchi’s [1]
method, which estimated the irradiance with the priorly known object shape
and the requirement to input many images. Our approach could recover the ap-
proximate irradiance from only one image without knowing the object shape in
advance.

After we know the relative irradiance of sun and environment light (for conve-
nient description, the sun has a alias of direct light, the sky light is also named
to environment light), the reflectance of pixel should be known, and could be
used for shadow removal. Removing shadow and acquiring the reflectance are
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ill-posed problem with one image input, and these two problems are interweaved.
We reasonably limit the problem scope, which requires the specified regions must
appear with similar textural patterns, hence these two problems could be solved.
The presented limitation in the paper is not sole, we believe there should exist
others. Based on the limitation, the ratio of pixel’s intensity to mean intensity
of the same region serves as the relative reflectance of pixel.

The input image involving ambiguous shadow is solved in our succeeding tech-
nical report. The approach of this paper mainly concentrates on the image, from
which observer could discern different kinds of regions effortlessly.

When the light irradiance changes, the captured radiance of camera alters
too. To simulate this kind of physical phenomena, we use a virtual light source
to relight the pixel. The pixel radiance rises with the increase irradiance of light
source, and vice versa. During the irradiance tuning process, when light irradi-
ance reaches a certain threshold, pixel’s radiance would go beyond displayable
bound. Oppositely decreasing the irradiance of light source, pixel’s radiance
would fall into the radiance distribution of shadow region. Since the shadow
and illumination regions are given priorly, the tunable irradiance range can be
determined. We exploit the tuned irradiance amount and initial setting value of
light source to extract the coarse shadow matte, and employ the complement
space of color to remove shadow. The conception of the complement space is
somewhat similar to the inverse-chromaticity space proposed by Tan [16], whose
method is based on the statistical technique, while ours stresses the property
of individual pixel , and could keep the structure of complex texture. Finlayson
[13,14,15] proposed the intrinsic image, and used it serve the reflectance scalar
for shadow removal, but the accurate acquisition of intrinsic image need input
more than one image.

The paper contains three contributions: acquiring the irradiance of image,
extracting shadow matte and smoothing coarse shadow matte. The acquired
irradiance is used for relighting the shadow region, and the shadow matte de-
scribes the occlusion degree to irradiance of each pixel. Meanwhile, smoothing
the shadow matte is for more realistic result, these steps consolidate to remove
the shadow in single outdoor image.

This remainder of the paper is organized as follows: in section two we review
the related work, and present the derivation of the associated formulations which
serve as the theoretical basis for implementation in section three. We discuss two
key steps, the extraction of the coarse shadow matte and smoothing to the pulled
shadow matte, and summarize our work in last section.

2 Related Work

Shadow generation is from the object occlusion to light propagation. For the
existed shadow, moving object or moving light source can bring about moving
shadow. The shadow moving shadow [6,9,12] could be removed by using the suf-
ficient information in image sequence. These methods are difficult to be applied
to single outdoor image, for in one image less information could be exploited.
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Cham [4] and Jaynes [5] presented the approach of shadow removal by employing
the feedback information from the camera, this kind of shadow removal manner
is appropriate for indoor cinema or exhibition hall. Intrinsic image [9] is a im-
age of lighting elimination, and it essentially serves as the reflectance, but the
acquisition of accurate intrinsic image needs input more than one image.

If the shadow region is viewed as hole, some filling-in approaches of image
processing could be employed for removing shadow. Bertalmio [20] proposed the
inpainting method, which performs well when inpainting the small-patch region,
and could preserve the structure of texture and image simultaneously, however
the extension of inpainting to the large-patch hole brings about heavy compu-
tation. Perez and Blake [18] introduced PDE method to image editing, which
would be applied to fill the hole. The hole contour, which lies between illumina-
tion and shadow regions, would preserve because Poisson approach operates in
gradient domain. Drori [19] presented an image completion approach based on
fragment, which also could fill-in the large hole, while the process of searching
and matching leads to non-interactive response. For matting and compositing
shadow, Chuang [10] obtained the geometrical information of shadow caster via
passive way, Chuang’s method only fits for the small-scale scene.

3 Estimation of Irradiance and Reflectance

As Fig. 1 illustrates, Rillu, Rshadow and Rpro require user to specify in advance,
Rillu, Rshadow and Rpro are denoted by contours with color of black, white
and yellow separatively. The illumination region Rillu is entirely illuminated by
solar light Esun and environmental light Eenv, and the umbrae region Rshadow is
merely by Eenv, while the penumbrae region Rpenu is by the blending of Esun and
Eenv. The solar light attenuation factor α is introduced to describe the occlusion
degree to Esun, and α also represents the region type, one corresponds to Rillu,
zero to Rshadow, and values within interval [0, 1] to Rpro.

Fig. 1. Regions of Required to specify

For each pixel X(x, y) and color component K = R, G,B, the spectral power
distribution of incident light is E(λ), S(λ) is the surface spectral reflectance
function. The pixel received irradiance of each color component, regardless of
the material type as well as the shape of object, can be described as [15,16]:

IK(X) =
∫

Ω

S(λ,X)E(λ,X)qK(λ)dλ (1)
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where qK(λ) is the sensor spectral sensitivity, IK(X) is the color response of
sensor, Ω is the scope of visible spectrum.

An image of opaque dielectric-inhomogeneous objects taken by a digital color
camera can be described as:

IK(X) = Kd(X)
∫

Ω

Sd(λ,X)E(λ,X)qK(λ)dλ +Ks(X)
∫

Ω

E(λ,X)qK(λ)dλ (2)

where Kd(X) and Ks(X) are the diffuse and specular reflection factor respec-
tively. If the specular objects in image is absent, the last term of right hand side
in Eq. 2 can be omitted. And then, the total receiving irradiance of pixel in color
component K is that:

IK(X) = Kd(X)
∫

Ω

Sd(λ,X)E(λ,X)qK(λ)dλ (3)

It is the common assumption that the camera sensitivity has the narrow-band
characteristic that follows the Dirac Delta function [15], hence the E(λ,X) could
be approximated to the sum of αEsun and Eenv, and we introduce the notation
ρ as:

ρ =
∫

Ω

Sd(λ,X)qK(λ)dλ (4)

Thus the Eq. 3 can be rewritten as:

IK(X) = Kd(X)(αEsun + Eenv)ρ (5)

where α is the solar light attenuation factor.
In region R, the mean radiance IK can be discretely described as:

IK =
∑

X∈R
Kd(X)(αEsun + Eenv)ρ/NR (6)

where NR is the total number of pixels within R. In addition, the denotations
of Kd and Kd are the mean and relative reflectance respectively.

Because α is zero in Rshadow and α is one in Rillu, this means that in Eq. 5
the term of αEsun +Eenv keeps constant in the same type of region, so we could
derive Kd(X) by division of Eq. 6 to Eq. 5:

Kd(X) = Kd(X)NR/(
∑

X∈R
Kd(X)) = IK(X)/IK (7)

Under the assumption of similar patterns appearing in Rillu and Rshadow, we
approximately regard Kd to be equal between Rillu and Rshadow, so we could
derive the Eq. 8 and Eq. 9:

Eenv =
∑

K

∑
X∈Rshadow

IK(X)/NR (8)

Esun =
∑

K

∑
X∈Rillu

IK(X)/NRillu
−
∑

K

∑
X∈Rshadow

IK(X)/NRshadow
(9)
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Eq. 8 and Eq. 9 are the approximate estimation to solar light and environ-
mental light separately.

After gaining Esun and Eenv, we relight each pixel to remove the shadow. Ac-
curate irradiance acquisition [2,3] need input many sample images, and depends
on some prior constraints. In the paper, our goal is to remove the shadow in one
image, and produce the visually plausible effect.

4 Implementation of Shadow Removal

There are four unknowns in one equation of Eq. 5, we estimate these unknowns step
by step. Computation of Kd is given in subsection 4.1, followed by the extraction
of coarse shadow matte, next presented the smoothing to the extracted matte.

4.1 Computation of Kd

Diffuse reflectance scalar might be accurately represented either by BRDF [3]
or by BTF [17], the limitation of these methods is difficult to be applied to
outdoors. As we know, the observer is more sensitive to the relative radiance
variation than the absolute radiance, hence we remove the shadow by modifying
the relative variation of pixel color.

Eq. 5 involves two unknowns: α and Kd, after having known Esun and Eenv .
In this step Kd of Rpro is evaluated by Eq. 7. We store each pixel’s Kd into an
image, which is referred to as Kd map.

4.2 The Coarse Shadow Matte Extraction

From Eq. 5, we know that when the amount of total irradiance of Esun increases,
the pixel becomes more brighter, this means less irradiance is occluded, there-
fore α should decrease correspondingly, and vice versa. This process follows the
physical phenomena. To simulate this kind of phenomena, we imagine the image
is lighted by the virtual light whose irradiance is tunable. We impose a virtual
light at every pixel in order to mat shadow. We continuously increase irradiance
of the virtual light till pixel intensity reaches the maximal displayable bound.
There is no doubt that α equals to 0 at this time. Oppositely decreasing the
irradiance of virtual light, the pixel intensity falls into the radiance distribution
of umbrae region, the α at this time is 1. It should be noted that, due to the ex-
istence of texture, whether in illumination or shadow regions, there exists some
pixels exhibiting the opposite attribute to the region that they belong to, that
is, though one pixel lies in the illumination region, its intensity satisfies with
the intensity distribution of shadow region, so does this case for some pixels of
shadow region. The phenomena are more apparent in strong texture than weak
texture. We eliminate the texture influence by Gabor filters bank [8,11].

The initial irradiance of virtual light depends on the given illumination and
shadow regions. In most cases, the initial irradiance is set to the mean value of
Rshadow.
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We store each pixel’s α of into an image, which is referred to as α map. The
introductions of α and Kd map borrow from the conception of image processing.

4.3 Smoothing the Coarse Shadow Matte in Gradient Domain

The shadow generated in outdoors is a whole body of continuity and smoothness.
The transition area between umbrae and penumbrae exhibits smooth, no abrupt
change. In addition, the umbrae does not display entirely black. The pulled
coarse α map only manifests the light attenuation degree of individual pixel,
this is evident from Figure 2(c). We impose the constraint of continuity and
smoothness to make the shadow map more realistic.

Every α(X) should satisfy dual smoothness constraints: global and local. The
global smoothness constraint requires that within the whole region α(X) should
approach to the actual value α̂(X), and the local smoothness constraint requires
that α̂(X) should be close to the neighborhood for maintaining the smoothness,
which is equivalent to the requirement that the second-order derivative of α̂(X)
keep minimal variation. The smoothing constraint is given in least squares sense:

E =
∑
X

[α(X)− α̂(X)]2+

λ
∑
X

[(∂xxα(X))2 + (∂yyα(X))2 + (∂ddα(X))2 + (∂DDα(X))2]
(10)

where λ is the adjustor to smoothness degree, ∂dd and ∂DD are the second-order
partial derivative along primary and secondary diagonal.

Take partial derivative on both sides of Eq. 10, substitute the forward differ-
ence of first-order and second-order into the associated items, then derive Eq.
11 as that:

(1 + 24λ)α̂(x, y)+

λ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−4α̂(x+1, y)−4α̂(x+1, y−1)−4α̂(x, y−1)−4α̂(x−1, y−1)
−4α̂(x−1, y)−4α̂(x−1, y+1)−4α̂(x, y+1)−4α̂(x+1, y+1)
+ α̂(x+2, y)+α̂(x+2, y−2)+α̂(x, y−2)+α̂(x−2, y−2)
+ α̂(x−2, y)+α̂(x−2, y+2)+α̂(x, y+2)+α̂(x+2, y+2)

= α(x, y) (11)

where (x, y) denotes the pixel location. Applying Eq. (11) at every (x, y) within
Rpro, produces the linear equations. The number of equations increases with the
size of process region. In ideal case, the variation range of α̂(x, y) lies between
0 and 1. Due to the existence of noise, the scope of α becomes broader than
ideal case, and the actual range is between -0.2 and 1.2. The limited variation of
α̂(x, y) somewhat reduces the computation time. Furthermore, the convergency
accuracy might be set to be 0.1. If α is beneath 0.1, the observer hardly discerns
the visual variation. The recommended accuracy is 0.05. Therefore the limited
solution interval and small accuracy setting guarantee the smoothing procedure
with interactive response.
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(a) (b)

(c) (d)

Fig. 2. Matter Optimization

In Fig. 2, the smoothed α matte (c) is more approaching to outdoors than
coarse α matte (a), from the comparison of (b) and (d), the smoothness degree
is dramatically improved by smoothing. Setting adjustor λ to different values
leads to different smoothness degree.

It should be noted that the introduction of second order derivatives along
principle and secondary diagonal direction promotes the smoothness degree of
α map.

5 Conclusion

Shadow is like a sword with dual blades. Sometimes shadow needs to be re-
moved from the image or video because its existence is an obstacle to cognition,
segmentation, or tracking, however sometimes shadow plays an important role
in enhancing the realism of scene and understanding the spatial relationship of
objects. In a word, shadow is not always adverse.

Reducing the number of images for the task of shadow removal is our ef-
fort. Whether as few as possible, even only one image suffices to accomplish
the shadow removal has a trial answer. Under the assumption that the simi-
lar pattern appears in specified regions, we solved the ill-posed problem of si-
multaneously acquiring the pixel reflectance and light attenuation factor from
one illuminating equation. It should be noted that the visual satisfaction is our
pursuit.

Computing the irradiance of image is also addressed in the paper. We ex-
ploited the irradiance relationship among different kinds of regions, and devised
an approach to recover the irradiance from image. It should be noted that our
method performs well in point light source or approximatable point light than
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non-point light source, which does not mean the extension to the environment
of non-light source could not fulfill.

Extracting shadow matte is also given in the paper. Taking advantage of the
pulled matte, it is smooth to realistically composite the shadow into synthetic
scene. This dramatically reduces the load of modelling and rendering of geometry
object, especially the complex object.
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(a)Original image (b)Coarse shadow matte (c)Smoothed shadow matte (d)Shadow removal

Fig. 3. Some results

In Figure 3, four groups of result are presented. The second and third columns
of each row are coarse and smoothed shadow matte, respectively. The forth
column of the corresponding row is the result of shadow removal. From the
compare of second and third columns, it is obvious that the smoothed shadow
matte is more approach to the outdoors. Meanwhile, the shadow removal results
are rather perfect, though only one image is provided.
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Abstract. The weighted sum of squared differences cost function is of-
ten minimized to align two images with overlapping fields of view. If
one image is shifted with respect to the other, the cost function can be
written as a sum involving convolutions. This paper demonstrates that
performing these convolutions in the frequency domain saves a signifi-
cant amount of processing time when searching for a global optimum. In
addition, the method is invariant under linear intensity mappings. Ap-
plications include medical imaging, remote sensing, fractal coding, and
image photomosaics.

1 Introduction

One of the most common error metrics used in scientific applications is the
sum of squared differences (SSD). In image processing, the SSD cost function
is frequently used to asses the degree of similarity between two images. Im-
age registration, in particular, often uses this metric when judging what spatial
transformation brings two images of the same scene into alignment. It has been
shown that for images differing only by additive Gaussian noise, the SSD cost
function is the optimal choice [1]. Any problem that seeks to minimize the SSD
is called a “least-squares” problem.

Another common error metric is cross-correlation [2]. One of the reasons for
its popularity is the fact that its computation is equivalent to a convolution and
can therefore be evaluated efficiently in the frequency domain (see section 2.1
below). Without this speedup, performing image registration would be too slow,
particularly for 3D datasets or for large images (bigger than 1024× 1024) such
as those common in X-ray imaging and remote sensing. This method is common
practice in medical image registration [3,4].

In many image registration applications, only a small portion of each image is
used to register the images. For example, one might have two overlapping aerial
photographs, as in Fig. 1. If you can outline a window of the overlap in one of the
photos, then finding the correct alignment of the two photos can be achieved by
shifting one image over the other and evaluating the error norm in that window.
The offset that gives the optimum norm value is called the optimal registration,
and should correspond to the correct position. This windowed registration is
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(a) Source Image (b) Target Image

Fig. 1. Overlapping aerial photographs. A region of the overlap is outlined in the target
image.

equivalent to a weighted registration problem, where all the pixels outside the
windowed region have a weight of zero.

It is sometimes necessary to cast the intensities of an image down to a scale
that has a limited range. For example, suppose the intensity values of two over-
lapping images have to be mapped to the range [0, 255]. The way the cast is
typically done is to create a linear map such that the lowest intensity in the
image maps to 0, and highest to 255. If the intensity ranges of two overlapping
images is different, the intensity remappings will be different. This intensity cast-
ing causes corresponding pixels in the two images to have different intensities.
The mismatch confuses the cross-correlation and SSD cost functions, and can
lead to an incorrect registration result.

This paper proposes a method to efficiently compute the weighted SSD cost
function by representing it as a combination of convolutions. Also, the optimal
linear intensity remapping is determined with little additional effort.

2 Theory

2.1 Correlation Coefficient

When it comes to comparing images or functions, a common metric to mea-
sure the degree to which functions are similar is the Pearson’s cross-correlation,
defined as [2]

C(a) =
∫
f(x)g(x − a)dx√∫
f2(x)dx

∫
g2(x)dx

. (1)

In this context, C(a) measures the correlation between the function f(x) and
the shifted function g(x− a). For example, if g is equal to f , then C(a) achieves
its maximum value when a is zero (corresponding to no shift). This measure has
been used in automatic alignment algorithms in medical imaging [5, 3, 6].

It is well known that the operation of convolution can be carried out by a
multiplication in the frequency domain. The convolution of two functions, f(x)
and g(x), is defined as
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(f � g)(a) =
∫ ∞

−∞
f(x)g(a− x)dx . (2)

That is, the function g is flipped about x = 0 and shifted along the negative
x-axis by a distance a. To turn the numerator of (1) into a convolution, we define
a new function ḡ(x) that is equal to g(−x). Then, we replace g(x−a) in (1) with
ḡ(a− x). Now the numerator of (1) is a convolution between f(x) and ḡ(x).

Consider the Fourier transform of the convolution, F{(f � ḡ)(a)}. It is not
difficult to show that the Fourier transform of a convolution is equivalent to the
component-wise product of the two Fourier transforms (see Appendix B of [7]).
That is, F{(f � ḡ)(a)} = F{f(x)}(s) · F{ḡ(a − x)

}
(s). Thus, the numerator of

the cross-correlation function can be evaluated for all values of a by taking the
Fourier transform of each of f and ḡ, multiplying the two sets of coefficients, and
then applying the inverse Fourier transform to the result. Finding the maximum
of this function with respect to a is simply a matter of scanning the evaluated
function C(a) for its maximum value. Note that if f and g are real-valued, then
C(a) will also be real-valued.

One of the problems with the correlation coefficient cost function is that it
cannot be used as a measure for weighted registration problems. For weighted
registration problems, we turn to the sum of squared differences (SSD) cost
function.

2.2 Weighted Sum of Squared Differences

Given the functions f(x) and g(x − a) as before, the weighted sum of squared
differences (SSD) registration of g to f , with weighting function w, corresponds
to the value of a that minimizes

LW (a) =
∫ [

f(x) − g(x− a)
]2

w(x − a)dx . (3)

The weighting function, w, is greater than or equal to zero over its entire domain.
For example, w could be a piecewise constant function that is zero everywhere
except in a region where the registration is to operate – there its value is 1.
Then, minimizing (3) is the same as moving w in concert with g, and limiting
the domain of the SSD calculation to only the region where w is non-zero. By
expanding the square brackets in (3), we get

LW (a)=
∫
f2(x)w̄(a− x)dx +

∫
ḡ2(a− x)w̄(a− x)dx

−2
∫
f(x)ḡ(a− x)w̄(a− x)dx , (4)

where ḡ is defined as before, and w̄ is defined similarly. As with the evalua-
tion of the cross-correlation function, the weighted SSD cost function includes
convolution-like terms. The first integral is a convolution between f2 and w̄, and
changes with different values of a. We will denote it e1(a). The second integral
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is a constant with respect to a since the weighting function moves with ḡ. We
will denote this value as e2. Combining ḡ and w̄ so that their product ḡ(x)w̄(x)
equals h̄(x), the last integral of (4) becomes the convolution

∫
f(x)h̄(a − x)dx.

We will denote this last integral as e3(a). Thus, the weighted SSD cost function
for a given displacement a is

LW (a) = e1(a) + e2 − 2e3(a) . (5)

2.3 Intensity Remapping

In addition to finding the best match over all shifts, we can also find the best
match over all linear intensity remappings. That is, we wish to find the optimal
shift in conjunction with the optimal contrast and brightness adjustment to
make the corresponding parts of the two images as similar as possible. This
is analogous to replacing the intensity g(x) with sg(x) + t for some constants
s and t. Naturally, the optimal s and t will depend on the shift, a. With an
intensity-remapped g, the weighted SSD error measure can be written

LR(a, s, t) =
∫

[f(x)− s g(x− a)− t]2 w(x− a)dx . (6)

Now the problem becomes a minimization over a, s and t. In particular, for
every value of a, we wish to find the corresponding optimal values for s and t.
The optimal values can still be found efficiently since the convolution integrals
that arise can still be evaluated in the frequency domain. Writing F , G and W
instead of f(x), g(x− a) and w(x − a), respectively, we expand the brackets in
(6) to get,

LR(a, s, t)=
∫

F 2W + s2G2W − 2sFGW + t2W − 2tFW − 2tsGWdx (7)

= e1(a) + s2e2 − 2se3(a) + t2e4 − 2te5(a) + 2tse6 . (8)

Notice that (8) implies that e1, e3 and e5 are functions of a, while e2, e4 and e6 are
constants (since g and w shift with each other). Only the integrals that involve f
with g or w change with respect to a. For any given value of a, (8) is a paraboloid
in s and t that opens upward. The minimum value of the paraboloid can be
determined analytically by solving a simple 2 × 2 linear system of equations.
Hence, for a fixed a-value, the optimal s- and t-values are given by[

s
t

]
=

1
e2e4 − e26

[
e4 −e6
−e6 e2

] [
e3
e5

]
. (9)

Although the theory derived here is for 1D functions, it can easily be gen-
eralized to higher dimensions. For the remainder of this paper, we will focus on
2D images.
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2.4 Algorithmic Complexity

All the above analysis involving the Fourier transform also carries over to the
discrete Fourier transform (DFT). The discrete 2D analog for (3) is

LW (a) =
N∑

i=1

N∑
j=1

[fi,j − gi−a,j−b]
2
wi−a,j−b . (10)

In this section, we compare the cost (measured in floating point operations,
or flops) of computing the optimal solution for (10) by the direct computation
method, to the cost of evaluating (10) by performing convolution in the frequency
domain.

Suppose f and g are N × N images. The direct method to evaluate (10)
involves simply evaluating the double-sum for every valid shift (a, b). For a single
value of (a, b), evaluating the double-sum requires adding togetherN2 terms, and
each term requires one subtraction and two multiplications (since squaring is a
multiplication). Thus, at 3 flops per term, the double-sum takes (3N2 +N2− 1)
flops to evaluate. Since there are N2 values of (a, b), evaluating (10) for all values
of (a, b) takes (4N4 −N2) flops.

However, evaluating (10) by calculating the convolutions in the frequency
domain (via the form in (4)) takes O(N2 logN) flops. This is because the Fast
Fourier Transform (FFT) of an N × N image takes at most 4N2 log2N com-
plex operations (a complex multiplication followed by a complex addition) [8].
Each complex operation requires 8 flops, so the FFT takes at most 32N log2N
flops. To find the minimum of (4), a total of 5 FFTs need to be performed:
FFTs of f , f2, w̄, h̄, and an inverse FFT to transform the measure back to the
spatial domain. This brings the total number of flops to perform the FFTs to
160N2 log2 N . Other than the FFTs, the remaining tasks are all O(N2). These
tasks include evaluating the middle term in (4), and performing the element-by-
element multiplication of the Fourier transforms.

In many applications, the weighting function w is zero for a large portion of
the domain. To analyze this situation, assume that w is non-zero over a domain
of size M ×M , where M < N . Then, the sum in (10) has only M2 terms, and
hence the cost of evaluating it directly for a single value of a is (3M2 +M2− 1)
flops, and the cost of evaluating it directly for all values of a is (4N2M2 −N2)
flops, or O(N2M2).

Unfortunately, the Fourier method is not any cheaper to evaluate when M <
N ; the cost is the same as if w were nonzero everywhere. However, the Fourier
method is still cheaper than the direct method if M2 > logN .

The above complexity analysis is for the simple weighted SSD cost function
that does not include any intensity remapping. However, similar results are ob-
tained for the more complicated intensity remapping method. In (8), the terms
e1(a), e3(a) and e5(a) all involve convolutions.
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3 Methods

We implemented both the direct method and the Fourier method in the C++
programming language. All the Fourier transforms were done using the FFTW
library [9]. Image data was stored in contiguous memory to improve the cache
coherency (i.e. to cut down on the number of cache misses). The direct method
evaluates the error norm for only those shifts that have the entire window (non-
zero part of w) completely inside f .

On a set of satellite images from Intermap Technologies Inc. (Englewood,
Colorado), we timed how long each method took to find the optimal shift and
intensity remapping parameters. The timings were run on a 2.4 GHz Intel Pen-
tium 4 machine with 2 gigabytes of RAM.

The images were shrunken to various sizes to get a more complete picture
of their performance on different scales. Figure 1 shows the two images that
were used, and the window for comparison. For the largest set of images, f had
dimensions 3008× 3780, g and w had dimensions 3078× 3845, and the window
had dimensions 490× 2460. The four scaled-down sets of images had roughly 1

2 ,
1
4 , 1

9 and 1
25 the number of pixels in each image.

4 Results and Discussion

In all tests, both methods successfully determined the optimal translation and
intensity remapping parameters. Figure 2 shows the absolute difference image of
the two images merged using the optimal shift. The region of overlap is nearly
zero, indicating that the match is excellent.

The timing results are summarized in Fig. 3(a). The figure is a log-log plot
graphing the number of pixels in f (the source image) against the running time
in seconds. Note that f , g and w were all scaled equally for each execution. The
straight line of the direct method indicates that there is a power-law relationship
between the scale of the problem (in terms of number of pixels in f) and the
running time. The fact that the slope of the line is approximately 2 (with respect
to the logarithm of the axis labels) fits with the algorithmic complexity derived
earlier. In particular, it says that the computation time is proportional to the
square of the number of pixels in f (where f is N ×N).

Fig. 2. Difference image of registered images
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(a) Computation time (log-log) (b) Peak memory usage (log-log)

Fig. 3. Computation time and peak memory usage for the direct method and the
Fourier method. For each run, each of the images f , g and w were resized using the
same scale factor. Note that all axes are plotted in log scale.

The graph for the Fourier method is not as easy to interpret. However, the
graph is consistent with the complexity class derived above: O(N2 logN).

To get a better feel for the meaning of Fig. 3(a), let us consider some example
timings. For the smallest dataset, in which f and g are roughly 615× 760 and
the window is 96 × 480, the Fourier method took 1.36 seconds and the direct
method took 83.7 seconds. For the largest images, in which f and g are roughly
3008× 3780 and the window is 490× 2460, the Fourier method took 88 seconds
and the direct method took 46,873 seconds (just over 7 hours).

It should be noted that the prime factorization of the dimensions of f play
a role in the speed of the Fourier method. The FFT is a divide-and-conquer
algorithm and is most efficient when the length of the data can be factored into
a product of small prime numbers. The above experiments represent a rather
optimistic scenario, in which the dimensions of f have lots of small prime fac-
tors: 3008 = (2)6(47), and 3780 = (2)2(3)3(5)(7). However, the slow-down is
not terribly significant for less fortunate image dimensions. If f has dimensions
3019 × 3796 (3019 is a prime number, and 3296 = (2)2(13)(73)), the Fourier
method takes 168 seconds, slower by a factor of approximately 2.

The memory use by the two methods is also quite different. Figure 3(b) is
a log-log plot showing the peak memory usage (in megabytes), again with the
number of pixels in f on the horizontal axis. Both methods show a straight line
with a slope of roughly 1 (with respect to the log of the axis labels). Hence, as
we might expect, the memory requirements go up linearly with the number of
pixels. However, the Fourier method used about eight times as much memory
as the direct method (using over 1.5 gigabytes to process the largest image set).
The reason for this is that the images have to be stored as complex numbers
(single-precision). Another reason is that the Fourier method has to compute
and store e1, e3 and e5 in their entirety before evaluating LR(a, s, t). The di-
rect method can calculate these values one trial shift at a time. Furthermore,
the direct method does not need to store all of g and w, only the parts corre-
sponding to where w is non-zero. Our implementation takes advantage of this
shortcut.
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5 Conclusions and Future Work

When registering two images that are translated with respect to each other,
the SSD cost function involves a convolution term. Variants of the problem,
including the addition of a weighting factor and linear intensity remapping, still
yield convolution terms. The computational advantage of evaluating these terms
in the frequency domain is very substantial. In our experiments, the Fourier
method was at least 60 times faster (in some cases over 500 times faster) than the
direct method. The trade-off is the mount of memory required by the methods;
the Fourier method used about eight time as much memory as the direct method.

In most imaging applications, the original data to be aligned is real-valued
(i.e. the imaginary part is zero). For real-valued data, the FFT can be done
faster by taking advantage of the symmetry in the Fourier coefficients. Indeed,
the FFTW library has methods to compute the FFT of a real-valued dataset,
outputting a half-size set of Fourier coefficients (avoiding the redundancy caused
by the symmetry). Adapting the Fourier method described in this paper to take
advantage of this efficiency is trivial.

It should be noted that the direct method has some advantages. For example,
the cost function can be evaluated for a subset of trial shifts, while the Fourier
method is an inherently global operation. Thus, if the approximate registration
is known, it might be more effective to directly evaluate the cost function for
sample shifts around that initial guess rather than performing a global search
using the Fourier method. However, for the direct method to be faster on the
largest image set, fewer than 0.2% of the possible shifts could be sampled. More
than that and the Fourier method would be faster.

The SSD error measure is not necessarily the best cost function for registering
images. Which error norm is best will depend on a number of factors, such as
the type of noise present in the images. Some examples of other norms are the
L1 norm, total variation [10], and robust estimators [11, 12]. It may be feasible
to expand these error norms using a Taylor series. The convolution terms in the
Taylor series could then be evaluated in the frequency domain. The problem
is that more terms makes the Fourier method more expensive, and it is not
clear which error norms will still be faster using this approach. More work to
investigate other norms is needed.
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Abstract. In this paper, we propose a blur identification for fully digi-
tal auto-focusing (FDAF) techniques under the assumption of isotropic
point spread function (PSF). The proposed blur identification starts with
the estimation of one-dimensional (1D) step response, and estimate the
two-dimensional (2D) PSF using the fundamental relationship between
the step and the impulse responses. For more accurate blur identification,
we present the PSF interpolation method that fills out the PSF element
off the concentric circle. We also propose least squares 2D PSF solu-
tions that robustly estimates the strength of the concentric circles under
noisy, incomplete observation environment. Experimental results prove
that the proposed blur identification method outperforms the existing
ones in the sense of both accuracy and efficiency.

1 Introduction

As digital image processing techniques widely spread to various application ar-
eas, low-cost, high-quality imaging technology gains attraction in consumer, com-
munication, and computer industry. However, degradation of image quality is
unavoidable due to unskillful user’s operation or the insufficient depth-of-field of
camera lens. Among various image degradation factors, focusing is the most im-
portant one that determines the quality of processed image. In order to prevent
out-of-focus in an image acquisition process, most commercial products adopt
an auto-focusing (AF) system. A fully digital auto-focusing (FDAF) consists of
analysis and control modules, both of which are completely realized by digital
signal processing only [1]. The FDAF’s analysis module estimates a point spread
function (PSF) to measure a degree-of-focus on hand. In the control module, an
out-of-focus image is restored with the PSF estimated in the analysis module.
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Because the PSF should be obtained from the blurred image itself, the FDAF
falls into the category of blind image restoration.

In this paper, we extensively unfold and improve the algorithm proposed
in [1,3] to estimate the PSF for the analysis module based on boundary informa-
tion from the image itself, which are the degraded edges. Moreover, we propose
an interpolated isotropic PSF model and an associated algorithm to find useful
edges and estimate more accurate PSF coefficients. By modeling the isotropic
PSF as a function of linear combination of the PSF coefficients, we can reduce
the number of PSF coefficients. An out-of-focused input image is modeled as the
output of a two-dimensional (2D) linear system with finite impulse response, and
it is assumed that the original image involves ideal step edges. The edges blurred
by 2D convolution of the ideal step edges with 2D PSF then provide information
of the transfer function in the degradation system. After gathering the informa-
tion of the PSF from blurred edges, we can estimate the PSF by solving linear
simultaneous equations which will be derived from relation between 2D PSF and
blurred edge later. This relationship and the corresponding method for solving
the linear simultaneous equations will be intensively covered in this paper.

In Section 2, a novel blur identification algorithm is proposed. We also present
a new representation model of isotropic PSF and a robust 2D PSF estimation
in the same section. In section 3, we demonstrate the better performance of
the proposed blur identification algorithm, and the results identifying the syn-
thetic blurs with various types are compared to the existing blur identification
techniques. Finally, we conclude this paper in Section 4.

2 Isotropic Blur Identification

In this section, we present a blur identification algorithm for the FDAF under
the assumption of isotropic PSF.

2.1 2D Isotropic PSF Model

The discrete approximation of an isotropic PSF is shown in Fig. 1. As shown in
Fig. 1, many pixels are locate off concentric circles within the region defined as

SR =
{
(m,n)|

√
m2 + n2 ≤ R

}
, (1)

where R is the radius of the PSF and (m,n) represents the position of pixels in
the 2D coordinate. Elements of the PSF within SR are geometrically represented
in Fig. 1. Each pixel within the support SR is located either on the concentric
circles or not. Pixels on a concentric circle follow the model described in [1].
On the other hand, pixels off a concentric circle should be interpolated by using
adjacent pixel on the concentric circle as

h(m,n) =
{
αar + βar+1, if(m,n) ∈ SR,
0, elsewhere, (2)
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Fig. 1. Geometrical representation of a 2D isotropic discrete PSF: The gray rectangles
represent pixels within the radius of PSF and the empty ones are pixels out of the
radius of PSF

where ar and ar+1 respectively represent the rth and the r + 1st entries of the
vector, a = [a0a1 · · · aR]T . In (2), the index r is determined as

r =
⌊√

m2 + n2
⌋
, (3)

where �·� is the truncation operator to integer. Based on Fig. 1, α and β are
determined as

α = r − 1 +
√
m2 + n2, and β = 1− α. (4)

This approximation of 2D discrete PSF is available to the popular isotropic
blurs, such as Gaussian out-of-focus blur, uniform out-of-focus blur, and x-ray
scattering.

2.2 Detection of Feasible Edges

In order to get extract PSF information from a blurred edge, there should not be
any influence on the corresponding edge from any other adjacent edges. We call
it a feasible edge that satisfies two conditions: (i) linearity and (ii) uniqueness in
the region-of-interest. In order to detect the feasible edge, we first find vertical
and horizontal edge maps. By applying each Sobel operator to the blurred image,
we can separately get vertical and horizontal edge maps. By merging these edge
maps using the logical sum of Boolean operation, we get a new edge map con-
taining both vertical and horizontal edges. Then, for finding edges that satisfy
the uniqueness condition, we apply a spatial shape constraints to the edge map.

2.3 Least Squares PSF Estimation

In this subsection, we propose an advanced PSF estimation algorithm without
any recursive procedure or iterative optimization. In order to estimate all PSF



128 J. Shin et al.

coefficients, we use the fundamental relationship between 2D PSF and 1D step
response. The in-focused pattern image fP (k, l) can be represented as

fP (k, l) =
{

iL, if 0 ≤ k < N, and 0 ≤ l < t,
iH , if 0 ≤ k < N, and t ≤ l < N,

(5)

where the constant t represents the boundary of left and right in the pattern im-
age, i.e. the pattern image has two regions whose flat intensity values are iL and
iH , respectively. The blurred pattern image gP (k, l) is obtained by convolving
(2) and (5) as

gP (k, l) =
{ iL, if 0 ≤ k < N, and 0 ≤ l < t−R,
s(l), if 0 ≤ k < N, and t−R ≤ l ≤ t + R,
iH , if 0 ≤ k < N, and t + R < l < N,

(6)

where R is the radius of the PSF, and the sequence s(l) represents the 1D step
response and {s(l)}t+R

l=t−R = {s(t−R), · · · , s(t), · · · , s(t+R)} = {s0, s1, · · · , s2R}.
The radius of the PSF is straightforwardly determined by the starting and ending
positions of the 1D step response as,

R =
Ending position-Starting position-1

2
. (7)

At each feasible edge point obtained in the previous subsection, the 1D step
response is extracted along the direction orthogonal to the edge. For suppressing
noise effect, if the number of useful edge points is K, all 1D step responses are
averaged as

s =
1
K

K∑
j=1

sj , (8)

where sj represents the vector of step response corresponding to the jth edge.
The normalized 1D step response is obtained as

ŝ =
1
s2M

(
s− [iL](2M+1)×1

)
, (9)

where [iL](2M+1)×1 denotes a (2M + 1) × 1 dimensional vector whose elements
are equal to iL.

Each observed 1D step response corresponds to partial summation of the
PSF as

si = (iH − iL)
[ R∑

m=−R

−R+i∑
n=−R

h(m,n)
]

+ iL, 0 ≤ i ≤ 2R. (10)

After unpacking the summation in (10), simplifying the equation yields the fol-
lowing 2R+1 linear simultaneous equations:

s0 = (iH − iL)
{
h(0,−R) + 2

[
h(1,−R) + · · ·+ h(R,−R)]

}
+ iL,

s1 = (iH − iL)
{
h(0,−R + 1) + 2

[
h(1,−R + 1) + · · ·+ h(R,−R + 1)]

}
+ s0,

...
s2R = (iH − iL)

{
h(0, R) + 2

[
h(1, R) + · · ·+ h(R, R)]

}
+ s2R−1.

(11)
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Furthermore, using the discrete approximation, we can substitute all PSF ele-
ments into linear combination of free coefficients of the PSF as derived in (2).
For examples, the first and the last equations in (11) always become

s0 = (iH − iL)aR + iL, and s2R = (iH − iL)aR + s2R−1. (12)

Equations (11) can be rewritten in a compact matrix-vector form as

s = Da, (13)

where s is a 2R + 1-dimensional vector defined as

s ≡ 1
(iH − iL)

[
s0 − iL s1 − iL · · · s2R − iL

]T
, (14)

and a is a R + 1 dimensional coefficients vector. The (2R + 1)× (R + 1) matrix
D is not specified in a closed form, but has a form of

DT =

⎛⎜⎜⎜⎝
0 · · · 0 × · · · ×
... × · · · ×
0 × · · · × · · · ×
× × · · · × · · · ×

⎞⎟⎟⎟⎠ , (15)

where ×’s denote arbitrary nonzero entries. In equation (14) uncorrupted data
s should be contaminated by the noise which was added to the degradation
process. If s contains measurement error, then the corrupted version ŝ can be
represented as

ŝ = Da + e. (16)
Because the measurement error e is unknown, the best we can then do is to
choose an estimator â that minimizes the effect of the errors in some sense.
For mathematical convenience, a natural choice is to consider the least-squares
criterion,

εLS =
1
2
‖e‖2 =

1
2
(
ŝ−Da

)T (
ŝ−Da

)
(17)

Minimization of the least-squares error in (17) with respect to the unknown
coefficients a leads to so-called normal equations [4](

DT D
)
âLS = DT ŝ, (18)

which determines the least-squares estimate âLS of a. Note that the shape of
the observation matrix D guarantees its columns to be independent. Thus, the
(R +1)× (R +1) Grammian matrix is positive-definite [4] and we can explicitly
solve the normal equations by rewriting (18) as

âLS =
(
DT D

)−1
DT ŝ = D+ŝ, (19)

where (DT D)−1DT is the pseudoinverse of D. The optimal coefficients âLS are
used in constructing PSF which was modeled in (2).

Once the PSF has been constructed, our blind image restoration now becomes
a general image restoration problem [6]. Although we use a constraint least
squares (CLS) filter to resolve the image restoration problem with a posterior
PSF, any image restoration technique can be applied.
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3 Experimental Results

In this section, we present various experimental results not only for comparison
with the conventional PSF estimation algorithms but also for evaluating the
proposed algorithm with real out-of-focus images. Test images were captured
with the Nikon-D100 digital camera on a gas-stabilized optical table to avoid
another blurring artifact such as motion blur.

The algorithms to be compared include the nonparametric expectation max-
imization (EM) algorithm [2] and the isotropic blur estimation-based algorithm
proposed [1,3]. In order to show the performance of the proposed blur identifi-
cation algorithm, we deal with the synthetically blurred images by two different
types of PSFs. For the simulation, we used a 256×256 resolution chart image. We
synthetically made an out-of-focused version of the original image by convolving
with truncated 3× 3 Gaussian as⎡⎣0.0751 0.1238 0.0751

0.1238 0.2042 0.1235
0.0751 0.1235 0.0751

⎤⎦ (20)

where the variance of Gaussian function, σG = 1, was used. BSNR 30dB
Gaussian noise was added after the simulated out-of-focus blur. As the first
step of the proposed AF algorithm, the feasible edges should be extracted from
the blurred image according to the algorithm described in Section 2.2. The 1D
step responses used for estimating the 2D PSF was obtained from the final edge
map by using the scheme proposed in Section 2.3. As the result of the averaging
and normalizing, each step response could be estimated. In this case, the result-
ing, normalized 1D step response is overestimated because the entire energy of
unknown PSF is included. Threrefore, we overestimate the radius of the 2D PSF
to extract more samples in the 1D step responses. This process can cover the
modeling error mentioned in Section 2.1. Both PSFs obtained by the proposed
method and by other existing algorithms are given in Table 1. The PSF identified

Table 1. 2D PSF estimated with various algorithms for 3×3 truncated Gaussian out-
of-focus blur

The algorithm proposed in [1] Nonparametric EM algorithm [2] Proposed algorithm[
0.0000 0.1699 0.0000
0.1699 0.3202 0.1699
0.0000 0.1699 0.0000

] [
0.0842 0.1106 0.0787
0.1095 0.2338 0.1095
0.0787 0.1106 0.0842

] [
0.0731 0.1699 0.0731
0.1242 0.2074 0.1242
0.0731 0.1242 0.0731

]

by the nonparametric EM algorithm was obtained using 56 iterations including
the other parameters as: two noise variances are σv = 282.94 and σw = 4.1035,
and image model coefficients, a01 = 0.8814, a10 = 0.8969, and a10 = −0.7812.
In this experiment, the EM algorithm started with σv = 1.0 and σw = 1.0, and
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the initial PSF being unit impulse. As shown in Table 1, the PSF estimated by
the proposed algorithm is the most close to the Gaussian used for the simulated
blur.

Table 2. 2D PSF estimated with various algorithms for 3×3 unform out-of-focus blur

The algorithm proposed in [1] Nonparametric EM algorithm [2] Proposed algorithm[
0.0000 0.1704 0.0000
0.1704 0.3202 0.1704
0.0000 0.1704 0.0000

] [
0.0366 0.1623 0.0295
0.1634 0.2480 0.1634
0.0295 0.1623 0.0366

] [
0.0000 0.1978 0.0000
0.1978 0.2087 0.1978
0.0000 0.1978 0.0000

]

Uniform out-of-focus blur synthetically produced was also used for another
experiment. The 2D PSF is as ⎡⎣0.0 0.2 0.0

0.2 0.2 0.2
0.0 0.2 0.0

⎤⎦ (21)

and BSNR 30dB additive Gaussian noise was further added to the blurred image.
The correspondingly identified PSFs using three algorithms are tabulated in
Table 2. The result of the EM algorithm is obtained using 66 iterations including

Fig. 2. The result of the proposed digital auto-focusing
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σv = 329.45 and σw = 4.5836, a01 = 0.8919, a10 = 0.9024, and a10 = −0.7977
with the same initial condition of the previous experiment. While the algorithms
proposed in [1] and [2] are not adequate for unknown type of PSF with support
over 5×5 respectively because of inaccurate PSF model and the excessive number
of parameters. In case of 5 × 5 blur, 17 parameters are needed. The proposed
blur identification algorithm can estimate the PSF of relatively big size without
any prior knowledge.

Finally, in order to show the performance of the proposed FDAF algorithm,
out-of-focus images were restored. In Figs. 2, the upper and lower images respec-
tively show an out-of-focused image and the corresponding restored image.

4 Conclusions

We have introduced a signal identification for FDAF technique under the as-
sumption of isotropic PSF. The proposed identification method is compared
with the similar, introductory version proposed by Kim [1] and a nonparametric
EM-based algorithm by Lagendijk [2]. The two existing methods gives accept-
able PSF identification results with synthetic, relatively small support (3× 3 in
the experiment) out-of-focus blur. Kim’s method, however, fails in estimation
of the PSF when the support increases because of its PSF model is limited to
a very small support. Similarly, the EM-based method also fails with larger,
realistic out-of-focus blur because it requires estimation of 17 parameters for a
5×5 PSF and the estimation errors dramatically increases with larger supports.
Application areas of the AF technique using the proposed blur identification
include: light-weight, low-cost mobile imaging system, and automatic tracking
and high-resolution recognition in video surveillance system.
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Abstract. In this paper, the Mumford-Shah (MS) model and its varia-
tions are studied for image segmentation. It is found that using the piece-
wise constant approximation, we cannot detect edges with low contrast.
Therefore other terms, such as gradient and Laplacian, are included in
the models. To simplify the problem, the gradient of the original image
is used in the Rudin-Osher-Fatemi (ROF) like model. It is found that
this approximation is better than the piecewise constant approximation
for some images since it can detect the low contrast edges of objects.
Linear approximation is also used for both MS and ROF like models. It
is found that the linear approximation results are comparable with the
results of the models using gradient and Laplacian terms.

1 Introduction

One of the most difficult problems in image processing is image segmentation.
In principle, we cannot formally define what is image segmentation. However, in
practice, we have the following observations: For an observed image u0 (possibly
with noise), we try to find an optimal piecewise smooth approximation u of
u0 for each specific region. The regions are denoted by Ωi, i = 1, 2, ...,n. The
function u varies smoothly within each Ωi, and rapidly or discontinuously across
the boundaries of Ωi. The process of finding the boundaries of Ωi is called
segmentation. The boundaries of all Ωi are denoted as C and Ωi is an open set.
Therefore the whole image can be expressed as Ω =

⋃
Ωi

⋃
C.

To find the boundary, many methods have been suggested. For example,
Sobel and Laplace edge detectors have been used successfully to detect sharp
edges of images. However Sobel and Laplace methods calculate the gradient and
the second order derivative for each pixel of the observed image. Therefore, only
the property of the neighboring pixels is used. These are local approaches. The
global property of the input image is neglected in the these methods.

On the other hand, Mumford and Shah have proposed the following mini-
mization problem [8,1,16,17]:

infu,C{EMS(u,C) = α

∫
Ω\C

(u − u0)2dxdy + μ

∫
Ω\C

|∇u|2dxdy + ν|C|}, (1)
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where μ, ν,α > 0 are parameters which can be considered as weight factors. The
problem is to find u and C such that the above energy is minimal. C is the set
of segmentation curves and u is the approximation of u0. Since this approach
takes the whole image into consideration, and tries to minimize the energy of
the observed image, it is a global approach.

There are many variations of the Mumford-Shah model such as Rudin-Osher-
Fatemi (ROF)[18] like model which can be expressed as the following minimiza-
tion problem:

infu,C{EROF (u,C) = α

∫
Ω\C

(u− u0)2dxdy + μ

∫
Ω\C

|∇u|dxdy + ν|C|}, (2)

The difference between MS and ROF like models comes from the second term.
In the MS model, the Lp norm with p = 2 of the gradient allows us to remove
the noise but unfortunately penalizes too much the gradients corresponding to
edges. One could then decrease p in order to preserve the edges as much as
possible. One of the first work in this direction is the ROF model[18].

2 Piecewise Constant Approximation

If we assume that u is a constant in each region (u = c), Eq.(1) and Eq.(2) are
of the same form, that is

infu,C{E(u,C) = α

∫
Ω\C

(c− u0)2dxdy + ν|C|}. (3)

Using the level set function φ(x, y)[10]

φ(x, y, t) =

⎧⎨⎩
> 0 if (x, y) in Ω
= 0 if (x, y) in δΩ
< 0 if (x, y) in Ω̄

and the Heaviside function H(x), the two-phase version of Eq.(3) can be written
as[2,13,14,4,5]

E(c1, c2, φ) = α

∫
inside C

(c1 − u0)2dxdy + α

∫
outside C

(c2 − u0)2dxdy + ν|C|

= α

∫
Ω

(c1 − u0)2H(φ)dxdy + α

∫
Ω

(c2 − u2
0)(1−H(φ))dxdy

+ ν

∫
Ω

|∇H(φ)|dxdy (4)

where c1 and c2 are constants.
We have the following level set equation:

∂φ

∂t
= −δ(φ)[(c1 − u0)2 − (c2 − u0)2 − ν∇ · ( ∇φ|∇φ )] (5)
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with the boundary condition δ(φ)
|∇φ|∇φ · n̂ = δ(φ)

|∇φ|
∂φ
∂n = 0. The final solution

of Eq.(5) will minimize the function E(c1, c2, φ). Because c1 and c2 are con-
stants, we have ∂E

∂c1
= ∂E

∂c2
= 0. Therefore, c1(φ) =

∫
Ω

u0H(φ)dxdy∫
Ω

H(φ)dxdy
and c2(φ) =∫

Ω
u0(1−H(φ))dxdy∫

Ω
(1−H(φ))dxdy

.

3 ROF Model with Gradient Term

For the piecewise constant approximation, the second term of equations (1) and
(2) does not appear and the MS and ROF models are the same. In this case,
the whole image is segmented into different regions such that the variance inside
each region is small. Therefore the low contrast edges in a region will not be
detected since it will not cause much changes to the variance inside that region.
In order to detect these small differences, we need to include the gradient term in
Eq.(2) in our calculation. To include the gradient in the calculation means that
we need to solve two PDEs[1,3,9,12]: one for u inside and one for u outside curve
C. To simplify the problem we use the fact that the final solution of u should be
approximately u0, we replace the second term of Eq.(2) by

∫ |∇u0|dxdy. Thus,
the ROF model becomes:

infu,C{E(u,C) = α

∫
inside C

(c1 − u0)2dxdy + α

∫
outside C

(c2 − u0)2dxdy

+μ

∫
inside C

|∇u0|dxdy + ν|C|}, (6)

Notice that for the gradient term, we only calculate the gradient inside C.
The advantage of this approximation compared to the original ROF model is
that the calculation is fast since we do not need to solve two coupled PDEs for u
inside and outside respectively. Therefore, it would be more useful for practical
applications. The advantage of this approximation over the piecewise constant
case is that more edges can be detected.

The level set equation becomes:

∂φ

∂t
= −δ(φ)[(c1 − u0)2 − (c2 − u0)2 + μ|∇u0| − ν∇ · ( ∇φ|∇φ )], (7)

with the boundary condition δ(φ)
|∇φ|∇φ · n̂ = 0. It is clear that when μ → 0, Eq.(6)

becomes Eq.(4).

4 ROF Model with High Order Derivative

In both the MS and the ROF original models, high order derivatives of u are
not included. We of course can include high order derivative term of u in the
models. For example, if we include second derivative of u in ROF, then the ROF
model becomes:
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infu,C{E(u,C) = α

∫
Ω\C

(u− u0)2dxdy + μ

∫
Ω\C

|∇u|dxdy +

+λ

∫
Ω\C

|Δu|dxdy +
∫
ν|C|}, (8)

In order to study only the Laplacian term effects on the segmentation, we
will take μ = 0 in Eq.(8). Using u = u0 approximation in the third term of
Eq.(8), the above equation for two phases becomes:

infu,C{E(u,C) = α

∫
inside C

(c1 − u0)2dxdy + α

∫
inside C

(c2 − u0)2dxdy

+ λ

∫
inside C

|Δu0|dxdy +
∫
ν|C|}, (9)

In the above, we have only included the Laplace term for the inside region.
Thus, the level set equation changes to

∂φ

∂t
= −δ(φ)[(c1 − u0)2 − (c2 − u0)2 + λ|Δu0| − ν∇ · ( ∇φ|∇φ )] (10)

with the boundary condition δ(φ)
|∇φ|∇φ · n̂ = 0

In ref[6], Lee, BenHamza and Krim have also included the Laplace term in
their analysis. Where they have constructed an energy function as

infu,C{E(u,C) = α

∫
inside C

(c1 − u0)2dxdy + α

∫
inside C

(c2 − u0)2dxdy

+
∫
ν|C|+ βA−

γ[
∫

inside C

|Δu0|dxdy −
∫

outside C

|Δu0|dxdy]}, (11)

Here A is the area inside the curve. Due to the fact that
∫ |Δu0|dxdy is a

constant for a given image. Therefore, the largest value of
∫

outside C |Δu0|dxdy−∫
inside C

|Δu0|dxdy is the same as the minimum value of
∫

inside C
|Δu0|dxdy.

Therefore the model in Ref.[6] is similar to the above model. If λ = 0, Eq.(9)
becomes Eq.(4).

5 Linear Approximations of MS and ROF Models

In the MS model, the second term in Eq.(1) leads u to be smooth in each region.
However |∇u| becomes very large across the boundary line. Therefore the MS
model can be used to detect discontinuities in the image surface. They can also
be detected by the Chan-Vese (CV) model due to the fact that the variation of
the image intensity across the regions becomes very large if the boundaries are
step edges. But if the step edge is small, then this kind of boundary will be hard
to detect.



Edge Detection Models 137

In the following, we will use linear approximation instead of constant ap-
proximation. We will use a linear planar surface, u(x, y) = a + b · x + c · y, to
approximate the inside of each region in this section. Here a, b, c are constants.
From here onward

∫
means

∫
Ω

but for simplicity the Ω is omitted.
For the two-phase case, Eq.(1) and Eq.(2) become:

EMS(u1, u2, φ) = α1

∫
(a1 + b1x + c1y − u0)2H(φ)dxdy

+α2

∫
(a2 + b2x + c2y − u0)2(1−H(φ))dxdy

+μ(b2
1 + c21)

∫
H(φ)dxdy + μ(b2

2 + c22)
∫

(1−H(φ))dxdy +

ν

∫
|∇H(φ)|dxdy. (12)

and

EROF (u1, u2, φ) = α1

∫
(a1 + b1x + c1y − u0)2H(φ)dxdy

+α2

∫
(a2 + b2x + c2y − u0)2(1 − H(φ))dxdy

+μ
√

(b2
1 + c2

1)
∫

H(φ)dxdy + μ
√

(b2
2 + c2

2)
∫

(1 − H(φ))dxdy +

ν

∫
|∇H(φ)|dxdy. (13)

We obtain the following level-set equations for Eq.(12) and Eq.(13):

∂φ

∂t
= −δ(φ)[−ν∇ · ∇φ|∇φ| + α1(a1 + b1x + c1y − u0)2 + μ(b2

1 + c21)

−α2(a2 + b2x + c2y − u0)2 − μ(b2
2 + c22)] (14)

and

∂φ

∂t
= −δ(φ)[−ν∇ · ∇φ|∇φ| + α1(a1 + b1x + c1y − u0)2 + μ

√
(b2

1 + c21)

−α2(a2 + b2x + c2y − u0)2 − μ
√

(b2
2 + c22)] (15)

with the same boundary condition as Eq.(5).
We can calculate a1, b1, c1 via the following equations (α1 = α2 = 1)

a1

∫
H(φ)dxdy + b1

∫
H(φ)xdxdy + c1

∫
yH(φ)dxdy =

∫
u0H(φ)dxdy

a1

∫
xH(φ)dxdy + b1

∫
(x2 + μ)H(φ)dxdy

+ c1

∫
xyH(φ)dxdy =

∫
xu0H(φ)dxdy (16)
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a1

∫
yH(φ)dxdy + +b1

∫
xyH(φ)dxdy + c1

∫
(y2 + μ)H(φ)dxdy

=
∫

yu0H(φ)dxdy

We have similar equation for a2, b2, c2 but with 1−H(φ) replacing H(φ).
For the ROF model, we can calculate the a1, b1, c1 using the following equa-

tions:

a1

∫
H(φ)dxdy + b1

∫
H(φ)xdxdy + c1

∫
yH(φ)dxdy =

∫
u0H(φ)dxdy

a1

∫
xH(φ)dxdy + b1

∫
(x2)H(φ)dxdy +

μb1

2
√

b2
1 + c21

∫
H(φ)dxdy

+c1
∫

xyH(φ)dxdy =
∫

xu0H(φ)dxdy (17)

a1

∫
yH(φ)dxdy + +b1

∫
xyH(φ)dxdy + c1

∫
(y2)H(φ)dxdy

+
μc1

2
√

b2
1 + c21

∫
H(φ)dxdy =

∫
yu0H(φ)dxdy

We have similar equation for a2, b2, c2 but with 1−H(φ) replacing H(φ).

6 Experimental Results

We have implemented the above models using one level set function. In Fig.1, the
segmentation results of all the above models are shown. It is clear that the CV
constant model cannot detect all the boundaries in the image. On the other hand,
all other models give better segmentation results. This is not surprising at all.
Since it is well known that gradient and Laplacian terms can detect the boundary
very well for sharp edges. Therefore including the gradient and Laplacian terms
in the CV model can give us better results. For linear approximation model of
the MS and ROF models, we can expect some detail information inside each
region Ωi.

In Fig.2, we have also used Chan-Vese piecewise constant approximation
model, ROF like model with the gradient and Laplacian terms, the MS and
ROF models with linear approximation for the car plate image. It is found that
Chan-Vese piecewise constant approximation cannot detect the number 8 in the
image while it is detected by other models.

7 Conclusions

We have applied different variations of the MS model and the ROF model for
images segmentation. It is found that the piecewise constant approximation CV
model cannot detect the edges with low contrast in the image. For this kind
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Fig. 1. First row: (a) original image, (b) Chan-Vese piecewise constant approximation.
(c) ROF model with the gradient term. Second row: (d) ROF model with Laplacian
term, (e) MS model with linear approximation, (f) ROF like model with linear ap-
proximation.

Fig. 2. First row: (a) original image, (b) Chan-Vese piecewise constant approximation.
(c) ROF model with the gradient term. Second row: (d) ROF model with Laplacian
term, (e) MS model with linear approximation, (f) ROF like model with linear ap-
proximation.

of edges, we need to include the gradient term in the original models. To do
this, we can either use the original image to calculate the gradient or use linear
approximation of the image function u. Linear approximation ROF-like model
is also applied here and we find it produces similar results as the linear approxi-
mation of MS model. We also include the Laplacian term in the ROF model and
we have found that ROF model with Laplacian term can produce better results
than the piecewise constant approximation CV model.
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Abstract. A robust digital image stabilization algorithm is proposed using a 
Kalman filter-based global motion prediction and phase correlation-based mo-
tion correction. Global motion is basically estimated by adaptively averaging 
multiple local motions obtained by phase correlation. The distribution of phase 
correlation determines a local motion vector, and the global motion is obtained 
by suitably averaging multiple local motions. By accumulating the global mo-
tion at each frame, we can obtain the optimal motion vector that can stabilize 
the corresponding frame. The proposed algorithm is robust to camera vibration 
or unwanted movement regardless of object’s movement. Experimental results 
show that the proposed digital image stabilization algorithm can efficiently re-
move camera jitter and provide continuously stabilized video. 

1   Introduction 

The unwanted movements and vibration caused by unstable camera support may 
critically degrade the quality of video in both objective and subjective senses. Such 
movement in a camera shot often causes an incorrect superposition of the current and 
the reference images as well as malfunction of typical change-detection algorithms. 
Since compact consumer video cameras with powerful zooms are often subject to 
amplified fluctuation of images caused by hand motion, various digital image stabiliz-
ing systems have been developed to improve the visual quality [1]. The digital image 
stabilization system can be divided into motion estimation and motion compensation 
systems. The motion estimation system computes inter-frame global motion vectors, 
which are forwarded to the motion compensation system. The motion compensation 
system stabilizes the image sequence according to the motion vector. Various digital 
image stabilizing systems have been developed to minimize motion degradation. A 
digital image stabilizer generally consists of motion estimation and motion compensa-
tion systems. Most motion estimation systems adapt either block matching [2,3,4] or 
phase correlation algorithms [5,6,7]. In block matching, various matching criteria 
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such as: point matching [3], edge pattern matching [2], gray-coded bit-plane matching 
[1], and block motion vectors filtering have been developed. However, block match-
ing does not properly work without any clear pattern in the estimation region. There-
fore, we use phase correlation for motion estimation. 

In this paper, we propose digital image stabilization with Kalman filtering-based 
motion prediction and novel sub-pixel phase correlation-based motion correction. A 
frame motion vector (FMV) is estimated from local motion vectors (LMVs) of four 
rectangular sub-images, where phase correlation (PC)-based motion estimation is 
performed. Multiple LMVs are compared with the predicted FMV obtained by Kal-
man filter, and only qualified LMVs are averaged to produce the current frame’s 
FMV. The finally obtained FMV performs the correction in the Kalman filter for the 
next frame prediction. Fig.1. shows the block diagram of proposed system. The FMV 
is accumulated to the previous match accumulated motion vector (AMV) to the cur-
rent frame’s position to that of the reference frame. 

This paper is organized as follows: In Sec. 2, we summarize the sub-pixel phase 
correlation-based LMV estimation algorithm. Kalman filter-based FMV computation 
algorithm is described in Sec. 3. Experimental results and conclusions are respectively 
given in Secs. 4 and 5. 

 

Fig. 1. Block diagram of the proposed digital image stabilization system 

2   LMV Estimation by Phase Correlation 

2.1   Phase Correlation 

The phase correlation algorithm is based on the Fourier transform’s shift property, 
which states that a shift in the coordinate frames of two functions is transformed to 
linear phase difference in the Fourier domain. This can be described as follows.  

Let ),( yxfk  and ),(1 yxfk+  be two functions that are absolutely integrable 

over 2R , and have the relationship as 

),(),( 211 dydxfyxf kk −−=+ .  (1) 

According to the Fourier shift property we have that 

)}(2exp{),(ˆ),(ˆ
211 vdudjvufvuf kk +−=+ π , (2) 
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where f̂  represents the Fourier transform of f . Hence the normalized cross power 

spectrum is given as 

)}(2exp{
),(ˆ),(ˆ
),(ˆ),(ˆ

21
1 vdudj

vufvuf

vufvuf

kk

kk +−=
∗

∗
+ π , (3) 

where * represents the complex conjugate of the complex number. The normalized 
cross power spectrum may also be viewed as the cross power spectrum of whitened 
signals. There are two possible ways to solve (3) for ),( 21 dd . One is to use, in the 

Fourier domain, a three-dimensional (3-D) Euclidean space whose canonical refer-
ence frame is given by the two frequency axes and the phase difference between the 
two images. A more practical, robust approach is to perform inverse Fourier trans-
form of the normalized cross power spectrum. It becomes then straightforward to 
determine ),( 21 dd , since, from (3), ),( 21 dydx −−δ is the Dirac delta function cen-

tered at ),( 21 dd , which represents the displacement between the two images. 

   
(a) Previous image                  (b) present image                      (c) Difference image 

   
(d) Phase correlation             (e) compensated image                 (f) Difference image 

Fig. 2. (a) and (b) experimental images with a certain amount of displacements, (c) difference 
image between (a) and (b), (d) phase correlation, (e) compensated image, and (f) difference 
between (a) and (e) 

 2.2   LMV Estimation  

In each image frame of a video, four sub-images are defined as shown in Fig. 3(a). These 
sub-images are used to determine LMVs using phase correlation. For efficient FFT com-
putation, sub-images have square shape with horizontal and vertical pixel dimensions 
being a power of two. Typically a sub-image size of 6464× is preferred to reduce the 
computational and at the same time keep sufficiently large area for correct estimation. 
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(a) General method                                        (b) Proposed method 

Fig. 3. Two different arrangements of four sub-images 

For all four sub-images in an image frame, LMVs are estimated from the corre-
sponding sub-images of the previous frame based on phase correlation. For each sub-
image the largest peak amplitude location of the corresponding phase correlation 
surface is assigned as the LMV with the corresponding peak amplitude. The FMV the 
image frame can then be decided by suitably combining information from four LMVs. 

Fig. 3(a) shows a general method that uses square-shaped sub-images. In order to 
get more robust estimation, we proposed rectangular blocks as shown in Fig. 3(b). For 
efficient FFT computation, two blocks are combined into one square block as shown 
in Fig. 4. Fig. 4(a) could get more correct vertical motion vector and (b) could get 
more correct horizontal motion vector. 

 

(a)                                                     (b) 

Fig. 4. Square block made by combining two rectangular blocks for phase correlation 

The conceptual block diagram of the proposed stabilization system is shown in Fig. 
1. The LMV estimation unit produces LMVs from sub-image in different positions of 
the frame. The FMV decision unit determines the FMV by processing four LMVs and 
the FMVs in the previous frames. The AMV integration unit accumulates FMVs in 
the consecutive image frames to produce the optimal motion vector that compensates 
the current frame to the reference frame. Finally, the stabilized image is generated by 
reading out the proper region of fluctuated image in the frame memory. The proposed 
motion estimation algorithm is shown in Fig. 5. 
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Fig. 5. Proposed motion estimation algorithm of stabilization system 

3   FMV Prediction Using Adaptive Kalman Filter 

In general, an LMV from a subimage with moving objects tends to be erroneous. So it 
should be excluded from the FMV decision process. Since the hand movement is 
relatively slower than the frame rate of the video camera, FMVs of two successive  
 

 

(a) Computation of FMV using Kalman filter  
 

 

(a) Computation of AMV  

Fig. 6. Block diagram of  the proposed motion compensation system 
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frames fluctuated by camera’s jitter should be similar. Based on these properties of 
camera’s motion, we use a simple and robust motion prediction and correction 
scheme in which the FMV is determined by separately selecting the most maximum 
peak of each motion vector elements from subimage and using Kalman filter for 
selecting LMVs that are close to the predicted FMV. After determining the FMV, the 
motion correction system shown in Fig. 6 decides whether camera’s motion or 
unintentional panning affects the motion of a frame. 

An important point in motion compensation is the distinction between jiggling and 
panning. Jiggling is the oscillatory movement that has to be stabilized. It has no 
constant direction on consecutive frames and its amplitude is generally small. Panning 
is the wanted motion that user does to capture a wide area of the scene. It is directed 
in the same direction and displacements are bigger than jiggling. Vella presented 
distinction between jiggling and panning by a threshold, T, in [4]. If the absolute 
value of an FMV is larger than T, panning occurs non-preferably. In the similar way, 
even if the absolute value of the FMV is smaller than T, jiggling starts and it makes 
the image to become unstable. In this paper, we use AMV to deal with panning and 
jiggling [2]. The AMV computation procedure is given as 

]}1[)1(][{]1[][ −−++−= tFMVtFMVtkAMVtAMV αα , (4) 

where t represents time index, the constant k , 10 ≤≤ k  is used for smooth panning 
and virtually enlarging the effective AMV range, and α , 10 ≤≤ α , is used for 
filtering out the unexpected noise effect on the AMV. The proposed motion 
compensation system is shown in Fig. 6. 

4   Experimental Results 

In order to demonstrate the performance of the proposed algorithm, we used a single 
image frame from SONY DCR-TRV900 camcorder. We tested 480640 ×  images in 
both outdoor and indoor. Block diagram of the experimental set up is shown in Fig. 7. 
We connected the camcorder to a computer by using a frame grabber. From RGB 
color image, we extracted only luminance component for motion estimation. After 
motion estimation and compensation we can display both the original and stabilized 
images at the same time.  

 

Fig. 7. Block diagram of the experimental set up 

To show the performance of the proposed algorithm, Figure 8 shows the original 
image, stable image, and difference image in indoor and outdoor. 
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Fig. 8. Experimental results in indoor and outdoor 

Table 1 shows that the decision FMV using square block like a Fig. 3(a), and aver-
age for correction (A1), change position of block as a cross (A2) and rectangular 
block + Kalman filter for correction (P). From the experiments the proposed method 
gives the best results. The performance is evaluated in the sense of root mean square 
(RMS) error. The proposed method provides better results than most of other existing 
methods with a block matching and phase correlation. 

Table  1. Motion vectiors comparison between the proposed method and others 
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5   Conclusions 

In this paper, we proposed a digital image stabilization algorithm to remove unwanted 
motion by hand shaking. The proposed stabilization algorithm is based on rectangular 
sub-image phase correlation for motion estimation and Kalman filtering for motion 
prediction and correction. For efficient calculation, the luminance image is used. 
Robust digital image stabilization is realized by systematically estimating LMVs, 
FMV, and AMV and removing panning and jiggling. In experimental results, we 
showed that the proposed stabilization algorithm could efficiently remove the un-
wanted displacement from the image even with moving objects. In addition, the pro-
posed digital image stabilization algorithms can be applied to the video surveillance 
system to enhance face recognition rate and human tracking performance [8]. 
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Abstract. In this paper, a localized wavelet thresholding strategy which
adopts context-based thresholding operators is proposed. Traditional
wavelet thresholding methods, such as VisuShrink, LevelShrink and
BayesShrink, apply the conventional hard and soft thresholding oper-
ators and only differ in the selection of the threshold. The conventional
soft and hard thresholding operators are point operators in the sense
that only the value of the processed wavelet coefficient is taken into con-
sideration before thresholding it. In this work, it will be shown that the
performance of some of the standard wavelet thresholding methods can
be improved by applying a localized, context-based, thresholding strat-
egy instead of the conventional thresholding operators.

1 Introduction

Over the past decade, various wavelet-based methods have been proposed for the
purpose of image enhancement and restoration. Basic wavelet image restoration
techniques are based on thresholding in the sense that each wavelet coefficient
of the image is compared to a given threshold; if the coefficient is smaller than
the threshold, then it is set to zero, otherwise it is kept or slightly reduced in
magnitude. The intuition behind such an approach stems from the fact that
the wavelet transform is efficient at energy compaction, thus small wavelet co-
efficients are more likely due to noise, and large coefficients are generally due
to important image features, such as edges. Most of the efforts in the liter-
ature have concentrated on developing threshold selection criteria. Originally,
Donoho and Johnstone proposed the use of a universal threshold applied uni-
formly throughout the entire wavelet decomposition tree [3,4]. Then the use of
different thresholds for different subbands and levels of the wavelet tree was
found to be more efficient [5]. Some methods of selecting thresholds that adapt
to different spatial characteristics have recently been proposed and investigated
[1]. It was found that such adaptivity in the threshold selection tends to improve
the wavelet thresholding performance because it accounts for additional local
statistics of the image, such as smooth or edge regions.
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Although adaptive wavelet thresholding methods attempt to employ thresh-
olds that are adaptive to the local characteristics of the wavelet coefficients of
the signal, they still apply the conventional hard and soft thresholding oper-
ators. These thresholding operators are point operators which are applied on
each wavelet coefficients independently of its location or context. While it is
generally assumed that the wavelet transform performs a significant degree of
decorrelation between neighboring pixels, it is evident that some degree of de-
pendence between neighboring wavelet coefficients remains. Intuitively, it seems
more reasonable that when thresholding a wavelet coefficient, other neighboring
coefficients should also be taken into consideration.

In this paper, localized, context-based hard and soft thresholding operators,
which take into consideration the content of an immediate neighborhood when
thresholding a wavelet coefficient, are proposed. It will be experimentally shown
that the performance of three traditional wavelet thresholding methods, namely
VisuShrink, LevelShrink and BayesShrink, may be significantly improved by us-
ing these new context-based thresholding operators instead of the conventional
point operators.

This paper is organized as follows: Standard wavelet thresholding for image
denoising is briefly discussed in section 2. The localized thresholding operators
are then introduced in section 3. Section 4 includes the use of the cycle spin-
ning algorithm for enhancing the denoised estimates. Experimental results and
concluding remarks are given in sections 5 and 6, respectively.

2 Wavelet Thresholding for Image Denoising

Standard wavelet thresholding can be performed in the following steps:

1. Compute a linear forward discrete wavelet transform of the noisy signal.
2. Perform a nonlinear thresholding operation on the wavelet coefficients of the

noisy signal.
3. Compute the linear inverse wavelet transform of the thresholded wavelet

coefficients.

The second step in the above wavelet thresholding algorithm involves the selec-
tion of the threshold, λ, and the application of a thresholding operator. While the
selection of the threshold differs from one method to another, most traditional
wavelet thresholding methods apply the conventional hard and soft thresholding
operators, described next.

2.1 Conventional Thresholding Operators

Traditional wavelet thresholding methods have adopted the following conven-
tional operators corresponding to a threshold λ,

– The hard thresholding operator is defined as:

X̂ = Th(Y,λ) such that x̂ij = Th(yij ,λ) =
{
yij if |yij | ≥ λ,
0 otherwise. (1)
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– The soft thresholding operator is defined as:

X̂ = Ts(Y,λ) such that x̂ij = Ts(yij ,λ) =

⎧⎨⎩ yij − λ if yij ≥ λ,
yij + λ if yij ≤ −λ,
0 otherwise,

(2)

where X = [xij ],Y = [yij ] and X̂ = [x̂ij ] denote the wavelet coefficients
of the original noiseless image, the noisy image and the denoised estimate,
respectively.

The main difference among standard wavelet thresholding methods lies in the
selection of the threshold λ. Next, three commonly known traditional wavelet
thresholding methods are briefly described.

2.2 Standard Wavelet Thresholding Methods

In this section, three increasingly adaptive standard wavelet thresholding meth-
ods are reviewed.

– VisuShrink: Consists of applying the above thresholding operators using the
universal threshold λuniv =

√
2 ln(M)σw, for a noisy signal of size M and

noise intensity σw [3,4].
– LevelShrink: Account for some of the variability within the wavelet tree struc-

ture by using different thresholds for different decomposition levels. More
specifically, a level-dependent threshold is given by λj =

√
2 ln(M)× σw ×

2−(J−j)/2, for j = 1, 2, . . . J, where J is the total number of decomposition
levels and j is the scale level where the wavelet coefficient to be thresholded
is located [5].

– BayesShrink: Assumes that the probability distribution of the noiseless wave-
let coefficients follows a generalized Gaussian distribution [1]. An estimate of
the optimal threshold, λ, is then selected by minimizing the mean-squared
error between the noiseless wavelet coefficients, X, and their denoised esti-
mates, X̂. Based on this model for wavelet coefficients, it was experimentally
shown that the following threshold:

λ̂sub∗
j =

⎧⎨⎩
σ2
w√

σ2
Ysub

j

−σ2
w

if σ̂2
Ysub

j
>> σ̂2

w,

maxm=1,2,...,Mj{|Y sub
j,m |} otherwise,

(3)

is near optimal [1].

2.3 Remarks

The three standard wavelet thresholding methods described above apply the
conventional hard and soft thresholding operators, defined in Eqs. (1) and (2).
For a given threshold λ, these operators are point operators which are applied on
each wavelet coefficient independently of their location or context. Consequently,
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the value of each thresholded wavelet coefficient depends only on the value of
its noisy counterpart. While it is generally assumed that the wavelet transform
performs a significant degree of decorrelation between neighboring pixels, it is
well appreciated that some degree of dependence between neighboring wavelet
coefficients remains. In fact, natural images’ structures generally demonstrate
similarities across a number of resolution scales of their wavelet coefficients. For
instance, wavelet coefficients corresponding to a high activity subregion (i.e.,
edges) are generally clustered together and copied across the various resolutions
and subbands of the wavelet tree. One should therefore expect some degree
of dependence between neighboring wavelet coefficients corresponding to high
activity subregions of the image. Thus, a more efficient thresholding operator
should take advantage of this type of redundancy among neighboring wavelet
coefficients.

3 Localized Wavelet Thresholding Operators

We now describe a context-based thresholding strategy that thresholds a noisy
wavelet coefficient based not only on its value but also on the values of some of
its neighbors. This method can be outlined as follows:

1. For each wavelet coefficient to be thresholded, yij , its neighborhood con-
sists of an m ×m mask centered at (but excluding) yij and is denoted by
Cm×m(yij).

2. The maximum value (in magnitude) of the neighboring wavelet coefficients
within the mask, Mij = max{(k,l) �=(i,j)}∈Cm×m(yij) |ykl|, is then computed.

3. Now for a given threshold λ, consider the following localized hard and soft
thresholding operators:
– The localized hard thresholding operator is defined by X̂ = T loc

h (Y,λ),
such that:

x̂ij = T loc
h (yij ,λ) =

{
yij if |yij | ≥ λ OR Mij ≥ λ,
0 otherwise. (4)

– The localized soft thresholding operator is defined by X̂ = T loc
s (Y,λ),

such that:

x̂ij = T loc
s (yij ,λ) =

⎧⎪⎪⎨⎪⎪⎩
yij − λ if yij ≥ λ,
yij + λ if yij ≤ −λ,
yij if |yij | < λ AND Mij ≥ λ,
0 otherwise.

(5)

These simple, localized and context-based thresholding operators are presented
as alternatives to the conventional hard and soft thresholding operators defined
in Eqs. (1) and (2). The selection of these localized thresholding operators is
explained and motivated in the following observations:
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– These localized thresholding operators clearly take the values of the neigh-
boring coefficients, located within the defined mask, into consideration be-
fore thresholding each wavelet coefficients. Thus, taking advantage of the
dependence among neighboring wavelet coefficients.

– Note that only those wavelet coefficients that are insignificant and also sur-
rounded by insignificant coefficients are set to zero. However, an insignificant
coefficient is kept unchanged if it is located near a significant one.

– The issue of selecting the neighborhood and its size was investigated. It was
observed that larger masks result in sharper, but noisier estimates, exhibit-
ing more artifacts. On the other hand, smaller masks yield results that are
closer to the standard wavelet thresholding methods. It was experimentally
observed that a 3×3 window yields the best results for the three thresholding
methods, studied in the previous section.

4 Enhancement Using Cycle Spinning

The denoised estimates obtained by wavelet thresholding methods often exhibit
disturbing visual artifacts. In particular, pseudo-Gibbs phenomena tend to be
noticeable in the vicinity of edges and other sharp discontinuities. The idea of
using the cycle spinning algorithm has been previously proposed for the pur-
pose of reducing the pseudo-Gibbs disturbing artifacts that are often present in
wavelet-based image reconstruction and denoised estimates [2]. This procedure
may be summarized as follows:

x̂K =
1
K

K−1∑
h=0

D−h(IDWT (Tλ(DWT (Dh(y)))), (6)

where the noisy image, y, is first shifted, using a diagonal shifting operator, Dh,
the DWT is then computed, and the thresholding method of choice, Tλ, is then
applied. Then the IDWT is computed and the denoised image is unshifted. This
process is repeated for each shift, k = 1, 2, . . . ,K, and the respective results are
then averaged to obtain one denoised and enhanced estimate of the image.

5 Experimental Results

First, we present some results before and after the incorporation of the cycle
spinning idea, for the commonly used test image of Lena (512× 512 pixel, 8 bits
per pixel) and its noisy observation as corrupted by an AWGN noise with inten-
sity σw = 25, as illustrated in Fig. 1. We then present additional experimental
results using various noisy images.

5.1 Before Cycle Spinning

Table 1 illustrates a quantitative comparison of the quality of the denoised esti-
mates obtained by the three wavelet thresholding methods using the conventional
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Original image Noisy test image: σw = 25
512 × 512 pixels RMSE=25.00, PSNR=20.17

Fig. 1. The original and the noisy version of the test image of Lena

Table 1. Conventional vs. context-based thresholding comparison

Conventional thresholding Context-based thresholding
Hard Soft Hard Soft

RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR
VisuShrink 12.37 26.28 15.76 24.18 10.21 27.95 14.16 25.11
LevelShrink 10.01 28.11 11.30 27.07 9.37 28.69 10.07 28.07
BayesShrink 10.07 28.07 9.93 28.19 10.02 28.11 9.02 29.02

as well as the context-dependent hard and soft thresholding operators. In view
of these results, we make the following observations:

– For the studied wavelet thresholding methods, there is an improvement in
the quality of the denoised estimates obtained using the localized thresh-
olding operators compared to the denoised images obtained by traditional
thresholding schemes.

– The improvement achieved by the proposed localized thresholding operators
is more evident for the case of the VisuShrink and LevelShrink than it is for
the BayesShrink method. This can be explained by the fact that the optimal
threshold corresponding to BayesShrink was originally derived specifically for
the purpose of conventional soft thresholding as defined in Eq. (2). Thus this
threshold may no longer be optimal when using the localized thresholding
operators.

5.2 After Cycle Spinning

The cycle spinning algorithm was incorporated in order to enhance the denoised
estimates obtained by the studied wavelet thresholding methods using the con-
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Table 2. Conventional vs. context-based thresholding comparison after incorporating
the cycle spinning idea with K = 16 shifts

Conventional thresholding Context-based thresholding
Hard Soft Hard Soft

RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR
VisuShrink 10.27 27.90 14.94 24.64 8.87 29.18 12.76 26.01
LevelShrink 8.34 29.70 10.61 27.61 8.06 30.00 8.71 29.33
BayesShrink 8.64 29.40 8.66 29.38 8.71 29.33 8.36 29.69

ventional as well as the context-based hard and soft thresholding operators and
the results are illustrated in Table 2. In view of these results we make the fol-
lowing observations:

– When comparing the results illustrated in Tables 1 and 2, it is evident that
the quality of the denoised images is significantly improved by using the
cycle spinning method.

– Generally, the use of the proposed localized thresholding operators yields
better results than using the conventional thresholding operators before and
after incorporating the cycle spinning idea.

– Experimentally, it was observed that the quality of the denoised estimate
improves significantly after only a few shifts and then becomes stable and
little or no further gains are achieved through additional shifts. In our case,
a total of K = 16 diagonal shifts were used.

– Fig. 2 illustrates the results obtained by the LevelShrink method using the
conventional as well as the context-based hard thresholding operators, be-
fore and after incorporating the cycle spinning algorithm. The context-based
LevelShrink hard thresholding method yields the best results before and after
the cycle spinning algorithm.

– Clearly the cycle spinning algorithm may be rather computationally expen-
sive. Indeed, when incorporating this algorithm with K shifts for any denois-
ing method, the computational complexity is multiplied by a factor of K.

5.3 Additional Experimental Results

Fig. 3 illustrates the results of denoising four different test images, Lena, Boat,
Peppers and San Francisco, which were corrupted by an AWGN noise with
varying intensity; σw = 10, 20, 30 and 40, using the BayesShrink method be-
fore and after the incorporation of the cycle spinning (C.S.) algorithm. Again,
two versions of the BayesShrink scheme were implemented: the conventional
BayesShrink technique which adopts the conventional soft thresholding opera-
tor and a Context-Based (C-B) BayesShrink scheme which applies the proposed
context-based soft thresholding operator.
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(a) Standard hard LevelShrink (b) Context-based hard LevelShrink

RMSE=10.01, PSNR=28.11 RMSE=9.37, PSNR=28.69

Before cycle spinning

(c) Standard hard LevelShrink (d) Context-based hard LevelShrink

RMSE=8.34, PSNR=29.70 RMSE=8.06, PSNR=30.00

After cycle spinning

Fig. 2. A sample of the results

In view of these experimental results, we make the following observations:

– The results obtained by the C-B BayesShrink wavelet thresholding method
are consistently better than those obtained by the conventional BayesShrink
scheme. Indeed, this is the case for all test images and noise intensities.

– This improvement is even more evident before using the cycle spinning idea
than after applying this enhancement method. This is probably because the
use of the cycle spinning idea has benefited both methods by reducing most
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Fig. 3. Conventional vs. context-based (C-B) thresholding comparison for BayesShrink
before and after applying the cycle spinning (C.S.) idea with K = 16 shifts

of the artifacts, hence yielding closer enhanced denoised estimates for both
thresholding schemes.

– The cycle spinning idea is computationally expensive. In practice, some ap-
plications may not allow for this time complexity. Thus, the fact that the
proposed context-based thresholding strategy yields significantly better re-
sults than the conventional thresholding operator without applying the cycle
spinning idea is of great practical significance.

Based on the experimental results presented so far, it may be reasonable
to conclude that, in general, the proposed context-based thresholding operators
yield better results than the conventional thresholding operators.
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6 Concluding Remarks

In this paper, we have proposed a generalized class of localized, context-based
soft and hard wavelet thresholding operators that also depend upon the neigh-
boring coefficient values. Our experiments have shown that these operators yield
significant improvements over the conventional hard and soft thresholding point
operators, especially for the VisuShrink and LevelShrink methods. The incorpo-
ration of cycle spinning further improves the results, but at significant compu-
tational expense.
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Abstract. In the classical image processing paradigm, the fundamental idea of 
image enhancement is to produce a new image such that it exposes information 
for analysis more than the original image. Fuzzy Logic methods are one of 
valuable and frequently used techniques among many other image enhancement 
approaches. In this work we demonstrate that a type-2 fuzzy logic system is 
able to perform image contrast enhancement better than its type-1 counterpart. 
Examples are provided. Results are discussed. 

Keywords: Locally adaptive techniques; Fuzzy image enhancement; Type-2 
Fuzzy Sets. 

1   Introduction 

Fuzzy logic is a type of logic, in which fundamental issues of reasoning are 
approximate instead of exact. Research has shown that type-1 fuzzy logic systems 
have difficulties in modeling and minimizing the effect of uncertainties [10,11,12]. 
One reason that limits the ability of type-1 fuzzy sets to handle uncertainty is that the 
membership function for a particular input is a crisp value [10,11]. Recently, type-2 
fuzzy sets, characterized by membership functions that are fuzzy themselves, have 
been attracting interest. Moreover, it is becoming increasingly important for image 
processing systems to have adequate solutions for representing and manipulating the 
uncertainties involved at every processing stage. Tizhoosh [14] has already 
established a measure of ultrafuzziness and used fuzzy sets type-2 for image 
thresholding. This motivated the authors to create a type-2 fuzzy image enhancement 
algorithm based on extension of existing techniques. Among various methods, local 
contrast enhancement approaches have generally better results compared to global 
techniques [3,6,9]. Hence, we consider one of these techniques, namely the locally 
adaptive fuzzy histogram hyperbolization method, represented in [3], as a framework 
for our study. This method is based on type-1 fuzzy sets. In this paper, we have 
improved its performance by extending it to a type-2 algorithm. 

The paper is organized as follows: Sections 2 and 3 are devoted to fuzzy image 
definition and fuzzy hyperbolization. The locally adaptive image enhancement 
method presented in [3] is described in section 4. 

Section 5 discusses the concept of type-2 fuzzy sets. In section 6 our proposed 
approach for type-2 fuzzy image enhancement is explained. Section 7 contains the 
experimental results and provides some further discussion. 
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2   Fuzzy Image Definition 

According to the concept of fuzzy set theory, introduced by Zadeh [1,2], a 
mathematical framework for image processing problems can be established [4,5,8]. 
For the image I , when mng  represents the intensity of the mn -th pixel and mnμ  its 

membership value, then I can be represented as an array of membership values [6]: 

  
I =

μmn
gmnn

N

U
m

M

U ,      (1) 

where m = 1, 2, 3… M   and n  = 1, 2, 3… N . Using the linear index of fuzziness we 
can calculate the image fuzziness [5]: 

γ (I ) = 2

MN
min[ μ I (g ij ), μ I (g ij )]

j=1

M

i=1

N

,    (2) 

where )( ijI gμ is the membership function of grey level ijg  and μ I (gij ) = 1− μ I (gij ) . 

3   Fuzzy Hyperbolization 

The concept of histogram and fuzzy histogram hyperbolization is described in [7], [9], 
and [13]. In the method presented in [3], the membership value for each grey level is 
calculated as 

minmax

min)(
gg

gg
g mn

mn −
−

=μ ,     (3) 

where the image minimum and maximum grey level is represented by ming  and 

maxg , respectively. Then using parameter β  as a fuzzifier and the desired number of 

grey levels L , the new grey levels can be calculated using the following 
transformation [3]: 

]1[)
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1
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−×

−
−=′ −

−

βμ mng
mn e

e

L
g .    (4) 

4   Locally Adaptive Image Enhancement 

Among different methods of image enhancement, local enhancement techniques are 
frequently used. In the method proposed in [3] a locally adaptive approach is 
employed to divide an image into several sub-images. Based on the value of 
homogeneity, expressed by equation: 

2

min_max_

min_max_
)1(

globalglobal

localLocal
Homo gg

gg

−
−

−=μ ,    (5) 
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and given minimum and maximum size of the local window, using a fuzzy if-then-
else rule, the local window size surrounding each supporting point is calculated. The 
center of each neighborhood moves among center points of local windows. In order to 
avoid loss of information during the interpolation, the size of the larger window is 
chosen so that local windows have enough overlap with each other.  

Two matrixes of size NM × contain minimum and maximum grey levels of each 
sub-image. Using a 2-D interpolation function the membership value of every pixel 
can be calculated. Using these interpolated membership values and equation (4) will 
lead us to an enhanced image with the higher level of contrast [3]. 

5   Type-2 Fuzzy Sets 

The idea of type-2 fuzzy sets was introduced by Zadeh [12] as an extension to the 
ordinary or type-1 fuzzy sets [10,11]. Type-2 fuzzy sets are useful in situations where 
it is difficult to agree on the accurate membership function for a fuzzy set because 
there is an uncertainty in its shape, its location or in its other parameters [11]. Hence, 
the additional third dimension in type-2 fuzzy logic systems gives more degrees of 
freedom for better representation of uncertainty compared to type-1 fuzzy sets.  

Four sources of uncertainties have been identified for type-1 fuzzy logic systems: 
(i) uncertain meaning of the words, (ii) consequences associated with a histogram of 
values, (iii) uncertain measurements, and (iv) noisy data [10].  

These uncertainties in fuzzy sets result in an uncertain membership function. The 
fact that type-1 fuzzy sets have crisp membership functions makes them unable to 
model such uncertainties.  

A type-2 fuzzy set can be obtained by blurring the membership function of a type-1 
fuzzy set [10] (Fig. 1, 2). 

               

Fig. 1. Membership function of a Type-1 
Fuzzy Set [10] 

Fig. 2. Membership function of a Type-2 
Fuzzy Set [10] 

Now for the value of x′ , instead of a single value membership function u′ , the 
membership function takes on values wherever the vertical line intersects the blur 
(Fig. 2). Because there is no need to weight those values the same, we can assign an 
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amplitude distribution to all of them. Doing this for all, we create a three-dimensional 
membership function, which is a type-2 membership function that characterizes a 
type-2 fuzzy set. 

We can characterize a type-2 fuzzy set A
~

 as [10]: 

˜ A = {((x,u), μ ˜ A (x,u)) | ∀x ∈ X ,∀u ∈ Jx ⊆ [0,1]} ,    (6) 

where Jx  is the primary membership of x and μ ˜ A (x,u)  is a type-2 membership 

function and 0 ≤ μ ˜ A (x,u) ≤ 1. The footprint of uncertainty (FOU), which represents the 

uncertainty in the primary memberships of the type-2 fuzzy set ˜ A , is expressed as [10]: 

  
FOU( ˜ A ) = Jx

x∈X
U .     (7) 

The shaded region in Fig. 2 indicates FOU. In [11] the authors indicate that “…in 
order to develop a type-2 fuzzy logic system, we need to be able to: (i) perform set 
theoretic operations on type-2 sets; (ii) know properties of membership grades of 
type-2 sets; (iii) deal with type-2 fuzzy relations and their compositions; and, (iv) 
perform type reduction and defuzzification to obtain a crisp output from the fuzzy 
logic system”. 

6   Proposed Technique 

In this section, we introduced our type-2 fuzzy set image enhancement method. This 
study is conducted by utilizing a type-2 fuzzy image processor, which is designed 
using a partially dependent approach. First, one of the best possible type-1 fuzzy logic 
systems [3,5,9] is chosen, and is subsequently used to initialize the parameters of the 
type-2 algorithm. Such an approach has the following advantages: (i) smart 
initialization of the factors of the type-2 fuzzy set, and ii) having a fundamental 
system whose performance can be compared with that of the new one.  

As mentioned before, a type-2 fuzzy set may be obtained by blurring a type-1 
membership function. For this purpose we use interval-based sets to construct the 
type-2 fuzzy set by defining the upper and lower membership values using 

5.0))(()( xxUPPER μμ = ,     (8) 

and 

2))(()( xxLOWER μμ = ,     (9) 

where 1)(0 ≤≤ xμ  is the membership function for value x  (Fig. 3). 

Applying a few changes in the method presented in [3], in addition to matrixes 
containing minimum and maximum grey level of sub-images, a third matrix with the 
mean value of sub-images is generated. Interpolated values are calculated by a linear 2-
D interpolation function. After calculation of )(xμ  using equation (3), μUPPER  and 

μLOWER  are calculated from equations (8) and (9), respectively. Now, the blurred area, 
referred to as the Footprint of Uncertainty, is bounded by upper and lower membership 
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functions (Fig. 3). Points within the blurred area' have membership grades given by 
type-1 membership function μ . Thus, FOU provides an additional dimension, thereby 

enabling the uncertainties in the shape and position of the type-1 fuzzy set to be 
represented. Here, 2Tμ  the proposed membership function is expressed as: 

μT 2(gmn) = (μLOWER ×α) + (μUPPER × (1−α)),   (10) 

where 0 ≤ α ≤ 1 and 

α = gMean

L
.     (11) 

Meang  symbolizes the corresponding mean value of each sub-image and L is the 

number of grey levels.  
Using 2Tμ values results in new grey levels and our proposed enhanced image. 

The idea behind equation (10) is that pixels in a very dark neighborhood will get a 
greater proportion of UPPERμ  thus higher grey values. Therefore, the image would be 

brighter in dark areas and thereby obtains a higher level of contrast. 

 

Fig. 3. Upper and Lower limits of a membership function and type-2 construction [14] 

7   Experimental Results 

In this section, the result of the proposed method is presented. Figure 4 shows the test 
images. The first four rows are X-ray images, and the last row is the Lena images. 
The first column of each row is the original version, the second column shows the 
result of locally adaptive type-1 fuzzy approach presented in [3], the third is the result 
of the same approach using μLOWER (x) = (μ (x))2, and the last column is the result of 
the proposed approach. In all 3 methods fuzzifier β = 1.1 and the minimum and 
maximum size of local windows are set to 10 and 20, respectively. 

To achieve a reliable subjective assessment on the proposed method, the results 
were presented to 15 observers (mostly medical experts). The test persons evaluated 
the quality of the images based on the ranking scale 1 (excellent) up to 5 (very bad).  
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    (a) (b) (c) (d)

    (e) (f) (g) (h)

    (i) (j) (k) (l)

    (m) (n) (p) (q)

    (r) (s) (t) (u)  

Fig. 4. (a), (e), (i), (m) and (r) original low contrast versions; (b), (f), (j), (n) and (s) results of 
type-1 fuzzy method in [3]; (c), (g), (k), (p) and (t) results of type-1 fuzzy method in [3] with 
membership function UPPERμ ; (d), (h), (l), (q) and (u) results of the proposed method 
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Mean Opinion Score (MOS) has been calculated to find an overall evaluation (Table 
1). The results show that the proposed method has the highest scores (highlighted 
rows) hence better quality of contrast. 

Table 1. MOS Evaluation 

Figure MOS Figure MOS 
4(b) 3 4(n) 3 
4(c) 3.47 4(p) 3.27 
4(d) 2 4(q) 1.73 
4(f) 3.2 4(s) 2.73 
4(g) 3.4 4(t) 3 
4(h) 2.73 4(u) 1.74 
4(j) 2.2 
4(k) 3.47 
4(l) 1.93 

 

8   Conclusion 

In this paper, we have proposed an elementary type-2 fuzzy image contrast 
enhancement algorithm that is based on a locally adaptive type-1 fuzzy histogram 
hyperbolization method. The results shown here demonstrate the effectiveness of 
type-2 fuzzy logic in image enhancement approaches. However, more experimental 
results are required in order to establish a reliable comparison. Type-2 fuzzy sets and 
their design and implementation is, compared to ordinary fuzzy sets, quite 
challenging. This paper should be understood as an initial attempt to apply the type-2 
idea on image enhancement. Further investigations are necessary to exploit the 
potentials of type-2 fuzzy sets for image quality improvement. 
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Abstract. Video shots provide the most basic meaningful segments for video
analysis and understanding. In this paper, we present a detection and classifica-
tion framework for the video shot segmentation in a coarse-to-fine fashion. The
initial transitions are detected from a sub-sampled video space. These coarse seg-
ments are later refined in the original video space with the technique of illumi-
nation artifacts removal and transition finalization. The transition type (abrupt or
gradual) are finally determined by exploiting the histogram intersection plot. The
proposed method has been tested on a large amount of videos, which contain a
variety of types of shot transitions. Accurate and competitive results have been
obtained.

1 Introduction

The increasing amount of video data available to us poses challenges to develop tools
for video indexing and searching, so that users can efficiently navigate through it. As
the most based semantic meaningful segments of the video, detecting shots becomes
an important and interesting problem in video processing and analysis. A video shot is
defined as a sequence of frames taken by a single camera with no major changes in the
visual content. The transitions between shots can be categorized into two types: abrupt
and gradual. The abrupt transitions is generated by directly appending one shot after
another. On the other hand, the gradual transitions are generated to present production
effects, e.g., wipes, fade-in, fade-out, dissolve, etc. The goal in the shot detection usually
contains two parts: transition localization and transition type determination.

Many efforts have been devoted into this area for the past years, and they can be
differentiated by their underlying mechanisms. Boreczky et al. [2] has proposed a shot
detection method based on the direct comparison of the pixels in the consecutive frames.
One modification of this approach [8] is to count the number of pixels that are signif-
icantly changed. They work well for sequences taken by still camera, but is highly
sensitive to the camera and scene object motion. Another group of approaches use the
similarity measures between global feature vectors. One popular feature used is the
color histogram. Yeo et al. [9] proposed an difference measure by computing the sum
of absolute differences between corresponding bins in the histogram. Furht et al. [3] has
used the color histograms in HSV space to make the system less sensitive to the light-
ing conditions. An alternative to the global comparison is the block-wise histogram
comparison proposed by Nagasaka et al. [7]. There methods are robust against the mo-
tion. However, they do not perform well on slow gradual transitions. Another important
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feature have been used is the edge information. Zabih et al. [10] has proposed an edge-
based similarity measure between frames. After motion compensation, the percentage
of edge pixels exiting from one frame to its following frames is computed. Even though
it is robust against global motion, the computational complexity is high.

In this paper, we present a coarse-to-fine approach for not only detecting the transi-
tions between video shots, but also classifying the transitions into one of the two types:
abrupt transition and gradual transition. The video is first segmented into coarse seg-
ments by analyzing in the sub-sampled video space. The shots transitions then are re-
fined by illumination artifacts removal technique and are finalized in the original video
space. The types of the transitions are determined by looking at the neighborhoods of
the initial transition boundaries. The rest of this paper is organized as follows: Section 2
discusses the overall algorithm, including boundary initialization, illumination artifact
removal, transition type determination and transition boundary finalization; Section 3
presents the system evaluation results; finally, Section 4 concludes our work.

2 Proposed Framework

2.1 Transition Boundary Initialization

During a shot transition, the visual similarity of the consecutive frames changes. This
can be detected by observing the color histograms of the frames. We use a 3-D color
histogram in RGB space, allocating 8 bins for each dimension. Let D(i) represents the
histogram intersection between frames f i−1 and f i, which is computed as,

D(i) =
∑

allbin b

min(Hi−1(b), Hi(b)), (1)

where Hi−1 and Hi are histograms of frames f i−1 and f i respectively, and b is the
individual bins. A transition boundary at f i is found if:

D(i− 1)−D(i) > Tcolor,

D(i + 1)−D(i) > Tcolor, (2)

where Tcolor is the threshold that captures the significant difference between the color
statistics of two frames.

For abrupt transitions (Fig.1(a)), where the difference in color distribution is large
enough, the above frame-to-frame histogram intersection performs well. However, for
the gradual transitions (Fig.1(b)), the color differences between consecutive frames are
not sufficiently significant to be captured, miss detection occur. To solve this problem,
we first temporally sub-sample the original video sequences (every fifth frame in the
experiments). The histogram intersection is then applied to the sub-sampled sequences,
thus amplifying the frame-to-frame visual differences (Fig.1(c)). This initial estimate
of shot boundary, which may not be accurate, is refined in the next step.

Once the approximate location of a transition boundary is obtained, we localize it
at the highest sampling rate. This is achieved by finding the frame corresponding to the
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Fig. 1. (a). Histogram intersection plot for a short video containing an abrupt transition; (b).
Histogram intersection plot for a sequence containing a gradual transition; (c). Histogram inter-
section plot for the sub-sampled video in (b) with sampling at every fifth frame

local minimum of the color histogram intersection plot. Let P be the initial estimate of
the transition boundary and a be the search range, the localized transition boundary at
frame M is determined as,

M = arg min({D(P − a), ..., D(P + a)}). (3)

2.2 Illumination Artifact Removal

The detection of the shot transitions is followed by the removal of outliers. We have ob-
served that in many videos that relate to meetings, briefings, celebrities, politicians, the
most common outliers are caused by the camera flashes. In such cases, the illumination
of consecutive frames abruptly changes and results in over detection of the transition
boundaries. To remove such outliers, we compute the average color statistics, KL and
KR, of the immediate left and right neighborhoods of a candidate transition boundary.
The visual similarity of these two neighbors is computed in terms of the Bhattacharya
distance dB between KL and KR,

Sim(KL,KR) = exp
(
− d2

B(KL,KR)
)
, (4)

where dB = −ln(
∑k

b=1

√
Kb

L,Kb
R). The candidate boundary is removed if both of the

neighborhoods present high similarity.

2.3 Determining Transition Type

Once the transition boundaries are localized, they are then classified into one of two
categories: abrupt and gradual. Examples of gradual transitions are dissolves, fade-ins,
fade-outs, wipes, and etc, and they often last for longer temporal periods. The length
of transition, however, may differ for different types of transitions. Since the estimated
initial boundaries from previous steps are represented by single frames, the gradual
transition could take place before the initial boundary, after the initial boundary, or
across the initial boundary (Fig.2(b)).
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Fig. 2. (a). Histogram intersection plot for a sequence with an abrupt transition; (b). Histogram
intersection plot for a sequence with a gradual transition. The average histogram intersection of
the neighbors around the initial transitions are shown in the figure. The windows size is 30 frames
in the experiment.

To determine the transition type, we consider frames in a neighborhood of size
b, on each side of the detected transition boundary P . If the transition is a gradual
transition, either one of the neighborhoods or both of them higher visual activity. The
visual activity of each neighborhood is computed as the average histogram intersections
DL and DR in each neighbor,

DL =
1
b

b∑
i=1

D(P − i),

DR =
1
b

b∑
i=1

D(P + i). (5)

If both DL and DR are high (visually smooth), the transition is categorized as abrupt
(Fig.2(a)). Otherwise, the transition is classified as gradual. Examples for both of the
types are shown in Fig.2(b) with visual activities in their neighborhoods.

2.4 Gradual Transition Boundary Determination

Once the transition type is determined, the exact starting and ending locations of the
boundaries need to be determined. The determination for the abrupt transitions is
straightforward, since the transition only takes place in two frames. It is more im-
portant to locate the beginning and ending frames of the gradual transitions, such the
accurate shot representation can be found and used in future video analysis and under-
standing.

We assume that the transition length is not infinite long. If we pick a point that is
far away from the initial boundary, and that point is inside the shot instead of on the
transition, then, the neighborhood around that point should be visually smooth. As we
move this point towards the initial boundary, the visual activity level in its neighborhood
starts raising up at the places where the transition starts or ends. If the point comes from
the left side of the initial boundary, the raising up point is the starting frame of the
transition. If it comes from the right side of the boundary, it is the ending frame of that
transition. This process is demonstrated in Fig.3 .
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Fig. 3. Locating the starting and ending frames in a gradual transition

3 System Evaluation Results

The data set we have experimented our framework on is provided by the US National
Institute of Technologies and Standards (NIST). The data set is an open benchmark
which contains 13 MPEG-1 news videos from CNN, ABC and C-SPAN news networks.
It has been used for the TRECVID forum in 2003 [1]. Each video is around thirty
minutes long. The news videos from CNN and ABC contain both news program and
commercials, while the videos from C-SPAN only contain news programs. The reason
of testing on news videos is that there are a rich amount of shots transitions covering
both abrupt and gradual types. Furthermore, since it is a Television program, many
variation of the gradual transitions are present. Therefore, it is a good testing bed for
shot transition detection and type determination.

We have applied our framework on all 13 news videos. There are three types of
accuracy measurements:

– Precision/Recall for Abrupt Transitions:

Precision =
Aabrupt

Xabrupt
, Recall =

Aabrupt

Yabrupt
, (6)

where Aabrupt is the number of matched abrupt transitions, Xabrupt is the num-
ber of detected abrupt transitions, and Yabrupt is the number of reference abrupt
transitions.

– Precision/Recall for Gradual Transitions:

Precision =
Agradual

Xgradual
, Recall =

Agradual

Ygradual
, (7)

where Agradual is the number of matched gradual transitions,Xgradual is the num-
ber of detected gradual transitions, and Ygradual is the number of reference gradual
transitions.

– Frame Based Precision/Recall for Gradual Transitions:

Precision =
A′

gradual

X ′
gradual

, Recall =
A′

gradual

Y ′
gradual

, (8)
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where A′
gradual is the total number of frames in the overlapping regions in matched

gradual transitions, X ′
gradual is the total number of frames in the detected gradual

transitions, and Y ′
gradual is the total number of frames in the reference gradual

transitions.

Filename Type Cut Recall Cut Precision Grad Recall Grad Precision Frame Recall Frame Precision
19990303.121216 CSPAN 1.000 1.000 0.000 0.000 0/0 0/0
19980619_ABC ABC 0.890 0.934 0.811 0.673 1150/1711 1150/1314
19980224_ABC ABC 0.820 0.874 0.717 0.648 970/1733 970/1074
19980425_ABC ABC 0.732 0.896 0.872 0.570 1522/2287 1522/1815
19980222_CNN CNN 0.737 0.904 0.712 0.365 735/1439 735/1043
19980515_CNN CNN 0.770 0.923 0.824 0.545 1252/2063 1252/1747
19980531_CNN CNN 0.757 0.897 0.824 0.494 749/1255 749/937
19980412_ABC ABC 0.800 0.907 0.861 0.598 1105/2118 1105/1301
2001614.1647460 CSPAN 1.000 1.000 0.000 0.000 0/0 0/0
19980308.1216980 CSPAN 1.000 1.000 0.000 0.000 0/0 0/0
20010628.1649460 CSPAN 0.962 0.916 0.000 0.000 0/0 0/0
20010702.1650112 CSPAN 1.000 1.000 0.000 0.000 0/0 0/0
19980203_CNN CNN 0.732 0.843 0.853 0.626 1478/2221 1478/1697
Mean 2097/2644 2097/2285 887/1090 887/1616 8961/14827 8961/10928

0.793 0.918 0.814 0.550 0.604 0.820

Fig. 4. System evaluation results for the first run of the proposed method. Since there is no gradual
transition in the C-SPAN videos, the corresponding precision and recall measures are set to zeros.

Filename Type Cut Recall Cut Precision Grad Recall Grad Precision Frame Recall Frame Precision
19990303.121216 CSPAN 1.000 1.000 0.000 0.000 0/0 0/0
19980619_ABC ABC 0.890 0.940 0.826 0.677 1163/1734 1163/1326
19980224_ABC ABC 0.820 0.886 0.725 0.641 980/1745 980/1084
19980425_ABC ABC 0.718 0.898 0.866 0.561 1514/2279 1514/1818
19980222_CNN CNN 0.728 0.914 0.722 0.361 738/1475 738/1039
19980515_CNN CNN 0.766 0.923 0.824 0.545 1252/2063 1252/1747
19980531_CNN CNN 0.740 0.898 0.833 0.491 753/1266 753/964
19980412_ABC ABC 0.794 0.907 0.861 0.595 1101/2114 1101/1292
2001614.1647460 CSPAN 1.000 1.000 0.000 0.000 0/0 0/0
19980308.1216980 CSPAN 1.000 1.000 0.000 0.000 0/0 0/0
20010628.1649460 CSPAN 0.962 0.916 0.000 0.000 0/0 0/0
20010702.1650112 CSPAN 1.000 1.000 0.000 0.000 0/0 0/0
19980203_CNN CNN 0.675 0.887 0.894 0.607 1544/2320 1544/1774
Mean 2065/2644 2065/2193 898/1090 898/1687 9045/14996 9045/11044

0.781 0.942 0.824 0.532 0.603 0.819

Fig. 5. System evaluation results of the second run

After the completion of the processing pipeline, transitions that are less than 5
frames long are declared as abrupt, and shots shorter than 20 frames are merged with
its previous one.

We have experimented for two runs with different processing parameters and the
evaluation results generated from the matching program provided by NIST are shown
in Fig.4 and Fig.5. Since there is no gradual transition in the C-SPAN videos, the cor-
responding precision and recall measures are set to zero.
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4 Conclusions

In this paper, we have presented a framework for the detection transitions between
video shots and the determination of their corresponding types. The method utilizes
the visual features in the video frames and performs in a coarse-to-fine fashion. The
framework contains four steps: Transition Boundary Initialization, Illumination Arti-
fact Removal, Transition Type Determination and Gradual Transition Boundary Local-
ization. The process is straightforward and easy for implementation. It has been tested
on an open benchmark data set provided by NIST, and competitive results have been
obtained.
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Abstract. In all-in-focus imaging, a series of photographs taken of the same 
objects, on different focal planes, are analyzed to create an entirely in-focus 
final image. Edge detection techniques determined by variable thresholds are 
applied to the 512x512 input images and they are then progressively subdivided 
into smaller, 2N sized blocks, varying in size from 256x256 pixels down to 1x1 
pixel. The 1x1 blocks are used to determine actual edges and the areas around 
them are then filled with progressively larger block sizes.  The particular image 
that is most in-focus over a given region is determined by comparing the sums 
of edge pixels for the corresponding blocks of the different input images.  
Beyond aesthetic value, all-in-focus imaging may be used in applications 
ranging from pattern recognition and object detection to biometrics. We have 
successfully detected in-focus regions in an image and have generated final, all-
in-focus images with only minor errors. 

1   Introduction 

When photographing a person who is several hundred meters in front of the Eiffel 
Tower, a decision must be made as to whether to focus on the subject in the 
foreground or the Tower in the background. Either choice results in the other object 
being out of focus. This is because like the human eye, current digital photography is 
only able to focus on a single focal plane at a time and as a result, objects which do 
not lie on that plane appear blurred.  

The focal plane is a flat plane orthogonal to the optical axis on which a lens is 
focused. Objects are typically located at distinct focal plane distances, with the last 
focal plane representing the “infinite plane”. All-in-focus imaging provides a method 
for capturing images on multiple focal planes and transferring them on a single image 
in which all objects are in-focus.  

In the past, several methods have been proposed to obtain all-in-focus images. The 
select and merge method generates a focused image from two differently focused 
ones [1] by blurring an image using a Point Spread Function (PSF) which is 
approximated by a Gaussian function. This technique yields unsatisfactory results 
when applied to more than two images [2]. Attempts to extend the select and merge 
method to handle multiple images by comparing each image to its neighbours and 
selecting the focused regions have been unsatisfactory. Other auto-focusing systems 
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[3] use a PSF to determine whether or not the input image is focused, but these 
systems are generally unsuccessful due to the difficulty of accurately determining the 
blur parameters. Another proposed method for generating a focus image is based on 
image fusion [4]. This method must be optimized for the fusion algorithm parameters 
which are expected to affect the contrast and stability of the image. Hui, et al. [5] 
generate an all-in-focus image from two images using a combination of image fusion, 
the wavelet transform, and an area-based maximum selection scheme. This technique 
generally does not perform well around boundary regions [1]. 

Shoa et al. [6] created all-in-focus images of micromechanical systems based on 
gradient operators and the premise that in-focus objects exhibit sharp edges. A light 
microscope equipped with a CCD camera with different focus settings was used.  Our 
goal in this paper is to extend this approach into the realm of general photography of 
images taken with a commercial digital camera. 

2   Image Acquisition 

Sample images were acquired with a 6.3 Megapixel EOS Digital Canon Rebel 
Camera set atop of a tripod. All camera settings were manually adjusted, with the 
focal planes uniquely determined based on the objects’ locations.  The images were 
then resized to 512x512 pixels and converted from colour to grayscale.  In order to 
get the best results, the nearest objects are placed approximately 10cm away from the 
camera, while the farthest objects were placed approximately 8-10m away. Below are 
example input images that will be referred to later in the paper. 

 
 

 

Fig. 1. Two sets of input images taken from the same position in which objects become in-
focus on different focal planes 
 

Additionally, contrast enhancement is applied so that objects become more distinct 
and isolated. Our algorithm uses a simple power law transformation with a  value of 
0.2 for this purpose. This technique enhances the desired edges of the objects to be 
identified as belonging to a region with the correct focal settings. 



176 M. Antunes et al. 

 

3   Edge Detection as a Focusing Metric 

Light refracts when it passes through a lens. The degree to which light waves in a lens 
bend upon exiting depends on their relative location to the lens, but to a first order 
approximation, all of the exiting beams converge at a specific point S from the lens. 
This location is called the focal point, and it defines the image plane that is most in 
focus. Any other location S’ will be blurred, and the degree of blurriness is correlated 
with the relative distance between S and S’. The blurring appears as a circle of radius 
b, whose relationship to the distance v’’ and lens diameter a is given by [6] 

 v
a

ba
v

+='' . (1) 

 

  
 

Fig. 2. A point P appears out of focus and it is imaged as a blurred disc at image planes 
different than S that violate the lens equation. Original grayscale images (top row) and their 
corresponding gradients (bottom row). 

The above image pairs show the original and gradient images at three different 
image focal planes. The blurring follows the smooth transition from the background 
and the gradient can therefore be used as a metric to measure the focal areas of more 
complex images.  The blurring effect can be explained using the following two 
systems: 

 

 
 

Fig. 3. (a) Modeling the image gradient using correct focus settings. (b) Image gradient when a 
different focal plane is chosen. The convolution increases the images radius and blurs the 
image. 

 
Although images are generally two-dimensional, a one-dimensional analysis is 

used here to simplify the explanation. The output of Fig. 3(a) represents the derivative 
of the impulse-like image. Because the partial derivatives of the image with respect to 
x and y can be calculated using convolution and the derivative of a Gaussian, the 
output is solely the derivative of a Gaussian function, which has one positive and one 
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negative peak. The gradient of the focused point in Fig. 2 is a ring whose magnitude 
has been plotted.  

The system in Fig. 3(b) describes what occurs when the impulse-like image has 
been degraded by selecting a focal plane in which the point is not in-focus. This is 
modeled as the convolution of the input impulse and a PSF, which is modeled in two 
dimensions as: 
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where b depends on the extent of the focus defect. The value of b(x) decays as a 
function of the focal settings: 
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The rapid decay in amplitude is evident in the two images of Fig. 2 which were 
taken at erroneous focal settings S’ and S’’ [7]. 

4   The Proposed Method Algorithm 

At this point in the algorithm the images have been pre-processed with the power law 
transformation for contrast enhancement and the gradient images have been computed 
using Roberts masks using a variable threshold. 

4.1   Variable Thresholding 

The use of a single threshold value as in [6] is insufficient when working with general 
commercial photographic images. This is because detailed images contain many 
variations in shape and texture and there is no universal edge detection indicator. A 
large threshold value results in only very distinct edges being selected. The selected 
image components are virtually guaranteed to be in-focus, but sections of an image 
which are in-focus may be neglected if they don’t have sharp edges. Low threshold 
values in contrast, identify slower transitions in pixel values as edges. Although more 
image components are identified, the edges of blurry objects are included in the edge 
detected image. 

In our algorithm, a default maximum value is defined for the threshold and then 
applied to the images to determine the sections which are in-focus. Once the resulting 
data is collected and processed, the threshold is then reduced by a variable amount 
and reapplied to the images so that areas which have not previously been detected at a 
higher threshold can now be identified.  This process continues over a range of 
threshold values until a predetermined number of iterations have been reached. 
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The varying amount by which the threshold is decremented is calculated by finding 
the midway point between the current threshold and a default minimum threshold.  
This approach has been chosen because small variations at high thresholds do not 
significantly affect a gradient image, whereas, small variations at low thresholds can 
affect the gradient image tremendously. Optimal results with reasonable execution 
times have occurred by using a maximum threshold of 0.500 and a minimum value of 
0.100 with 5 iterations.  Thus, threshold values of 0.500, 0.300, 0.200, 0.150, and 
0.125 are used. 

4.2   Image Subdivision and Edge Summation 

Each of the gradient images is progressively subdivided into 2N block sizes ranging 
from 256x256 to 1x1 pixel(s). For each threshold value, the sum of identified edge 
pixels in the gradient image is stored for each of the different sized blocks. This 
process is performed on each input image. The algorithm then uses these values to 
determine which of the input regions is the most in-focus for the given region. 

4.3   Detecting In-focus Regions 

The block that contains the most edge pixels is then mapped to a corresponding label 
image.  A label image tracks which gradient image has the most edges for a given 
region at a given block size. The various block sizes and the data they contain are 
stored in separate labelled images until the final decisions are made in the weighted 
voting section. This process also occurs for each threshold value, and a block ceases 
to be processed if a label image has already been established. 

In Fig. 4, the contents of the nine labelled images can be seen at the algorithm 
progresses.  From this figure, it is clear that the smaller sized blocks yield the high 
precision that is needed to reconstruct an all-in-focus image; however, these images 
show that there are still many regions that don’t have a label assigned to them.  Thus, 
the larger block sizes are used to fill-in the surrounding pixels.  Also, as the threshold 
lowers, the labelled images also become more complete because there a many more 
edges in the gradient images from which these labelled images were created.  Each of 
the various shades of gray represents one of the four input images as being selected to 
be the most in-focus for the corresponding block size.  The input images on the closer 
focal planes result in a dark colour and the input images on the farther focal planes 
result in a light colour. 

4.4   Weighted Voting and Final Pixel Selection 

Once the input images have been processed and the labelled images created for each 
block size, the various input image sections that will be mapped to the final, all-in-
focus image must be selected on a pixel-by-pixel basis. In order to create the final 
image, different weighting is assigned based on a) the size of the blocks which were 
used to create labelled image; and b) the iteration level in which the label was 
assigned.  In the first scheme, the 1x1 pixel blocks are assigned the highest weighting 
and the lowest weighting to the 256x256 pixel blocks.  The reason behind this 
approach is that the 1x1 pixel blocks contain the most specific information pertaining 
to an edge being detected. Essentially, the 2x2 pixel blocks are used to fill in around 
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the 1x1 blocks and the 4x4 blocks are used to fill in around the 2x2 blocks.  This 
approach assumes that pixels near distinct edges are also in-focus or in other words, 
pixels which are in the same general region lie on the same focal plane. 

 

 
    Legend              (a)                                                                                 (b)  

 
 

Fig. 4. (a) Initial label images for each block subdivision at the highest threshold for the bottom 
row of images in Fig. 1 (b) Final label images for each block subdivision at the lowest 
threshold for the bottom row of images in Fig. 1 

However, as objects become increasingly out-of-focus they begin to dilate as can 
be seen in Fig. 2 which results in boundary problems. As the edge detection threshold 
continues to decrease, pixels in the vicinity of an object’s actual edge may become 
falsely selected into the labelled images because they appear in the gradient image.  
As a result, simply assigning the highest weight to the 1x1 pixel blocks will not yield 
optimal results. Therefore, the algorithm also keeps track of which iteration it was on 
when the labelled pixel was selected and assigns a higher weighting to pixels which 
were selected at higher thresholds.  Using this approach, it is possible for the 
information in the labelled images created with larger sized blocks to be used over the 
information in labelled images with smaller block sizes so long as that the pixel label 
was determined at an earlier iteration for the larger block size. 

Specifically, the final value of any input pixel rxy is determined by referencing its 
pixel value in the 1x1 pixel labelled image. If the label image has a label assigned at 
that location and that label was assigned on the first iteration, then that {x,y} 
coordinate in the final labelled image gets the value indicated by the label. Now, if no 
label is associated with the rxy

th pixel at the 1x1 level, the algorithm then looks at that 
pixel location in the 2x2 labelled image to the label at that coordinate. If however, 
there is a label assigned to that location in the 1x1 labelled image but it was selected 
on the second iteration with a lower threshold, the algorithm then looks to see if there 
are labels assigned at the 2x2 level for that pixel.  If the labels at the 2x2 level were 
selected in the first iteration, then the corresponding location in the final labelled 
image will come from the 2x2 labelled image and not the 1x1 labelled image. This 
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continues until the 256x256 block sizes are reached.  Explicitly, 1x1 blocks can be 
outweighed by 2x2 blocks if, at the coordinate {x,y}, the labels were assigned to the 
2x2 blocks at least one iteration before the 1x1 blocks; but in this case they would not 
be outweighed by 4x4 blocks.  Furthermore, the 2x2 blocks, can be outweighed by 
8x8 blocks, if the labels were assigned to the 8x8 blocks at least two iterations before 
the 2x2 blocks. 

For both sets of input images in Fig. 1, the final labelled images can be seen below 
with the darkest shade of gray representing the nearest focal plane input image. 

  
 

Fig. 5. Final labelled image used to produce the final, all-in-focus image of the top row of input 
images from Fig. 1 (left) and the bottom row of input images (right) 

4.5   Creating an All-in-Focus Image 

Creating the final, all-in-focus image is simply a matter of traversing the final labelled 
image pixel by pixel in order to determine which input image has been selected as 
being in-focus.  Next, the algorithm simply extracts the pixel intensity value from the 
corresponding image, and stores the value at the same location in the final image.  
The result of applying our algorithm to the images in Fig. 1 can be seen below. 

  
 

Fig. 6. The final, all-in-focus image all-in-focus image of the top row of input images from Fig. 
1 (left) and the bottom row of input images (right) 

5   Conclusions 

As seen in Fig. 6, an all-in-focus image can be extracted from a series of images taken 
at different focal lengths with minor errors. Currently, the algorithm takes 
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approximately 20 minutes to run on a Pentium 4, 2.5 GHz PC. By optimizing the 
algorithm and with the ever increasing speed of integrated circuits, our approach may 
soon be an attractive technique for generating all-in-focus images in real time. 
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Abstract. Form document image processing has become an increasingly essen-
tial technology in office automation tasks. One of the problems is that the docu-
ment image may appear skewed for many reasons. Therefore, the skew estimation
plays an important role in any automatic document analysis system. In the past
few years, many algorithms have been developed to detect the skew angle of text
document images. However, these algorithms suffer from two major deficiencies.
Firstly, most of them suppose that the original image is monochrome and there-
fore they are not suitable to apply to documents with a complicated background.
Secondly, most of the current methods were developed for general document im-
ages that are not as complicated as form documents. In this paper, we present
a new approach to skew detection for grey-level form document images. In our
system, image decomposition by 2D wavelet transformations is used to estimate
the skew angle.

1 Introduction

Form documents play an important role in people’s daily lives. Various categories of
form documents, such as bank checks, invoices, flight tickets, etc., are widely used
and are generally processed manually. However, the manual processing method is very
tedious and expensive. Therefore, the development of an automatic system for the
processing of these forms is very much needed. In general, there are three interrelated
steps involved in dealing with the automatic processing of form documents, namely,
preprocessing, form layout analysis and form data interpretation and recognition. The
final step can be solved by adopting conventional optical character recognition (OCR)
techniques. The second step is to locate and extract the key items which need to be
interpreted and recognized. The accuracy of such system is primarily affected by the
preprocessing step, which may include skew estimation and correction, line extraction,
binarization, etc.
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The estimation of the skew angle and skew correction affects almost all of the sub-
sequent processing steps and, therefore, this step is very important. However, in the
previous methods, input images are always assumed with no or very slightly skewed
(≤ 2◦). Image skewness affects almost all of the subsequent pressing steps and there-
fore, skew correction is very important for the development of an accurate and efficient
form processing system. The most difficult problem is the estimation of the skew an-
gle, since the skew correction can be implemented using many traditional methods.
Many skew estimating algorithms have been developed for general document process-
ing. O’Gorman [1] classified these algorithms into three categories those based on the
projection profile [2], Hough transform [3] and nearest neighbor clustering techniques
[4]. However, few papers have considered the skew problem of form documents.

Although many algorithms in the above three categories of techniques are satis-
factorily accurate and fast for some general documents, none of these approaches is
suitable for complicated form documents. The skew estimation of form documents is
very difficult, due to their specific characteristics, namely:

– The type and size of the fonts may vary in a form document.
– Form document consists of table lines. In some cases, several categories of table

lines may appear simultaneously in one form.
– Handwriting strokes may be included. The size, stroke thickness, baseline and

color, etc. may vary significantly between forms filled in by different fillers.
– The problem of overlap may occur between the strokes, table lines and printed

fonts.
– A form document may include photos or a complicated background.
– Moreover, the color or intensity of the background, lines and strokes may also vary

in a form document.

Furthermore, most of those algorithms are only appropriate for machine-printed
pages without overlap. In practice, however, filled-in handwriting strokes and overlap
always appear in form documents. Moreover, almost all of the proposed methods are
limited to binarized document images. There is an increasing number of forms that are
used in daily life. Unfortunately, one can never expect perfect results, especially for
an image with a complicated background. Therefore, it is difficult to process complex
images using such approaches.

In this paper, we proposed a novel methodology based on 2D wavelet decomposition
technique, which has been used efficiently for the extraction of reference lines and filled
in strokes from form document images [5]. In our approach, wavelet decomposition
is an essential step, which is used to restrain the complicated background and then
estimate the local directions of the important components. Our system can still work
well, even if the grey values on the line and background change continuously.

2 Form Image Decomposition

In this section, we explain the basic notation of wavelet decomposition and then de-
scribe the construction of 2D wavelets with adjustable rectangular supports for skew
image processing.
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2.1 Construction of Non-orthogonal Wavelet with Adjustable Rectangle
Support

According to the wavelet theory [6, 7], an orthogonal wavelet can be defined by its own
scaling functionϕ(x) and wavelet functionψ(x). The 2D wavelet is usually constructed
from 1-D wavelet, by define ϕ(x)ϕ(y) as wavelet function, ψ(x)ϕ(y), ϕ(x)ψ(y) and
ψ(x)ψ(y) as scaling functions. These functions can be used to decompose any function
f(x, y) ∈ L2(R2) into four sub functions, as follows:

f(x, y) = fV ⊗V (x, y)⊕ fV ⊗W (x, y)⊕ fW⊗V (x, y)⊕ fW⊗W (x, y), (1)

Where the symbol A⊗B stands for the tensor product of the two spaces, A and B.
The support of a 2-D wavelet is usually a square area, because the same support

exists for both the scale and wavelet function of 1-D orthogonal wavelet. Therefore,
we introduce a method of constructing a 2D wavelet with rectangle support using two
1D wavelets. Let ϕ(x), ψ(x) and ϕ′(x), ψ′(x) be wavelet and scaling functions corre-
sponding to two wavelets may with different supports. Then, ϕ(x)ϕ′(y), ϕ(x)ψ′(y),
ψ(x)ϕ′(y), and ψ(x)ψ′(y) are a 2-D wavelet. As in the case of equation (1), any
f(x, y) ∈ L2(R2) can be decomposed as

f(x, y) = fV ⊗V ′(x, y)⊕ fV ⊗W ′(x, y)⊕ fW⊗V ′(x, y)⊕ fW⊗W ′(x, y). (2)

The constructed 2D wavelet might have adjustable rectangle support according to
the practice conditions. Similar to orthogonal wavelet, the decomposition of a 2D func-
tion by the proposed adjustable wavelet can also be accomplished by a two times inte-
gral, due to the fact that the wavelet and scaling functions are still separable.

2.2 Wavelet Decomposition of Skew Form Document Image

Two of these four sub-images in equation 2, LH and HL, incorporate various responses
to lines with different skew angles, as will be shown in Fig. 5. We use of this property
in order to estimate the skew angle of a form.

2.2.1 Mathematical Description
Suppose that the parameter equation of a straight line on a plane can be written in the
form

lc : {x = x0 + k1t
y = y0 + k2t

, t ∈ [a, b], (3)

which passes through the fixed point (x0, y0) and the slope of the line can be evaluated
by tanα = k2

k1
, where k1 and k2 satisfy the constraint k2

1 + k2
2 	= 0.

Although, from the mathematical point of view, a line does not possess any width in
practice as shown in Fig. 1, a real line in an image should have a width, w, and a slope
angle, α. Suppose that the center line is lc, and lp is a line parallel to lc. The widths in
the horizontal and vertical directions are wx = w

sin α and wy = w
cos α , respectively.

A grey image containing this line can be represented by

f(x, y) = { fline(x, y), |k2(x− x0) + k1(y − y0)| < k2wx or k1wy

fbackground(x, y), otherwise
. (4)
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Fig. 1. Description of a line with width w and slope angle α

For a compact supported wavelet, suppose that its support window is a rectangle
[a, b]× [c, d], then

fV ⊗W ′(x, y) =
∫ b

a

ϕ(
u

2
)du
∫ d

c

f(u+ 2x, v + 2y)ψ′(
v

2
)dv. (5)

As in the case of equation (5), the projection onto W ⊗ V ′ can be calculated by
Ψ2(x, y) = ϕ′(x)ψ(y) as

fW⊗V ′(x, y) =
∫ b

a

ϕ′(
v

2
)dv
∫ d

c

f(u+ 2x, v + 2y)ψ(
u

2
)du (6)

In fact, the width and height of the sub-image are only half that of the original
image, which allows the computational speed to be increased.

2.2.2 Choose Proper Wavelet Support
In this section, we discuss how to choose a proper rectangle support. We consider two
factors: the slope and width of the line to be extracted.

• The choice of support: with various types of rectangles.
• The response to different lines (angles, width) and at different positions.

If the skew angle is not close to π
4 , it is better to use a rectangle support by choosing

different support Coiflet wavelets. There are two advantages to using a rectangle sup-
port. Firstly, it can save computing time. Secondly, a better result can be obtained when
we decide the threshold to use and estimate the skew angle later on. In our experiments,
the 2-D Coiflet-Coiflet (C-C) wavelet filter [8] with rectangular supports which are used
for estimating the LH and HL sub images, is illustrated in Fig. 3. These wavelets are
constructed by the 1-D Coiflets at order 1 and 2, whose support width are 5 and 11,
respectively. We give an example in Fig. 4 to show the LH and HL sub-images under
the C1-C2 wavelets shown in Fig. 3.

2.2.3 Characteristics of Form Document Decomposition
An artificial image is presented in Fig. 5 to illustrate the properties described above.
The input image (a) shown in the upper middle of Fig. 5 consists of various lines with
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Fig. 2. The various types of ideal wavelet rectangu-
lar supports corresponding to the angle of a line and
horizontal direction

Fig. 3. The 2-D Coiflet wavelet functions:
ϕ(x)ψ′(y)

different slopes. On the left side, the LH sub-image corresponding to the projection onto
V ⊗W ′ is shown. The HL sub-image is located on the right side. One can see from Fig. 5
that the response in the LH sub-image becomes weaker, whereas the response in the
HL sub-image becomes stronger, as the direction of the lines changes from horizontal
to vertical.

Fig. 6 illustrates an example of line whose point intensity changes frequently. One
can see that a strong response is still obtained near the edge using the constructed
wavelet decomposition.

3 Determination of the Skew Angle

According to section 2.2, a form document image can be decomposed into two sub-
images, named LH and HL. The complexity of the background is well restrained in both
sub-images. Therefore, the lines can be distinguished from the background, regardless
of the response intensity.

A form is primarily composed of two perpendicular sets of lines. Some forms in-
clude only one set of lines. To decide the skew angle, we only need to find the direction
of the main set of lines. Our algorithm to estimate the skew angle and furthermore the
skew correction can be divided into the following steps.

Step 1: Binarization of Sub-images
Using the intensity distribution of LH and HL sub images, the binarization thresholds
can be estimated.

Step 2: Orientation of each Point in the Foreground
The orientation of a point (x, y) in the foreground is estimated by

ϕ(x, y) =
1
2

arctan(
2 ∗ μ1,1

μ2,0 − μ0,2
), (7)
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(a)

(b) (c)

Fig. 4. Wavelet decomposition of a Canadian Flight ticket using C-C wavelets. (a) Original skew
image; (b) & (c) LH and HL sub-images of (a), respectively.

Fig. 5. Responses of different slope lines. (a) Original image; (b) & (c) The LH and HL sub-
images of (a); (d) & (e) The distribution histograms for different orientations of the LH and HL
sub-images, respectively.
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(a)

(b) (c)

Fig. 6. The wavelet decomposition of an image with complex line and background. (a) Original
image; (b) & (c) The LH and HL sub-images of (a), respectively.

where

μp,q=
Nx∑

i=−Nx

Ny∑
j=−Ny

(x+i−x)p(y+j−y)q, if f(x+i, y+j) is a point in the foreground.

The center of mass (x̄, ȳ) and the (p, q) order central moments μp,q are calculated
as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = 1
M

Nx∑
i=−Nx

Ny∑
j=−Ny

(x + i), if f(x + i, y + j) is a point in the foreground

y = 1
M

Ny∑
i=−Ny

Ny∑
j=−Ny

(y + j), if f(x + i, y + j) is a point in the foreground.

(8)

Step 3: Estimation of the Skew Angle
The skew angle can be estimated from the distribution of the number of points for
different orientations, because the directions for all of the points near a line are approx-
imately parallel to the line. For an image containing a table, the majority of the points
have orientations which are parallel to the direction of the group of lines.

Suppose the table in a form document image mainly consists of two groups of per-
pendicular lines. Representing the two perpendicular directions as one unique direction
provides a convenient and reasonable method of finding the skew angle, because we can
rectify the result by means of the two angles obtained from the LH and HL sub-images.
Simultaneously, the range of ϕ(x, y) can be reduced by half. Here, we obtain the skew
angle in the interval (- π

4 , π
4 ], by

φ(x, y) =
{
ϕ(x, y), if |ϕ| ≤ π

4−sign(ϕ)(π
2 − |ϕ|), if |ϕ| > π

4
where sign(x) =

⎧⎨⎩ 1, if x > 0
0, if x = 0
−1, if x < 0

is the sign function.
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(a)

(b)

Fig. 7. Skew correction of a Canadian bank cheque shown in Fig. 4. (a) Histograms of different
gradient orientations of LHsub-image; (b) The skew corrected image.

In fact, φ(x, y) can be interpreted as a periodic function with a period π
2 . The most

straight-forward way of estimating the skew angle is to use the histogram of the number
of points for different orientations in the foreground of the image. The orientation his-
togram plots the number of pixels against the orientation. Fig. 5 is used to illustrate the
responses of different directional lines. For an image with two sets of lines, a common
approximate peak is reached in both histograms of the LH and HL sub-images. For an
image mainly containing one set of lines, the peak will appear at least in one histogram.
The peak value corresponds to the skew angle of the original form document image.
Therefore, only one of the LH and HL sub-images is needed to estimate the skew angle.

Fig. 7a shows the distribution of the numbers of points for different orientations of
the LH sub-image. The skew angle obtained from the histogram is about 23 degrees.

Step 4: Skew Correction Using Estimated Skew Angle
Using the skew angle θ obtained in the preceding section, the skew form document
image can be aligned by the rotation transformation{

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ , (9)

where (x, y) is the coordinate before being deskewed, and (x′, y′) is the coordinate after
being deskewed.

Fig. 7b shows the skew correction result for the original skewed document image
shown in Fig. 4a.



190 D. Xi, M. Kamel, and S.-W. Lee

4 Experiments and Conclusions

In this section, we first introduce the experimental results and then provide a discussion
of them.

The performance of the proposed algorithm was tested using a form documents
image database containing more than 300 skewed form document images, comprising
several categories of forms, such as sales slips, airplane tickets, bank checks, telephone
bills, and forms used in post offices, supermarket, schools, etc. The original images
were imported using optical scanners and were subsequently converted into gray scale
images. The scanning resolution range was from 200 to 600 DPI. The width or height of
the images in the database varies from 300 to 7000 pixels. Most of the form images have
a complicated background. The correction rate (considering the difference of the angles
from their theoretical values to be less than ±0.2◦) is more than 95 percent. The few
examples of failure are due to the number of form lines being too small and the presence
of too much “noise”, such as that resulting from characters, filled-in information and
the background.

The main contribution of this paper is the construction of a family of wavelet trans-
forms with adjustable rectangular supports. Compared to the classical approaches, such
as those based on the Hough transform, our system can be used for grey-level form
document images with complicated backgrounds, which those traditional methods may
not succeed on. At the same time, the computing complexity of our approach is low,
mainly due to the use of wavelet decomposition. The experimental results confirm the
excellent performance of this techniques.
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Abstract. A neglected challenge in existing e-Learning (eL) systems
is providing access to multimedia to all users regardless of environmen-
tal conditions such as diverse device capabilities, the heterogeneity of
the underlying IP network, and user modality preference. This paper
proposes a novel two-tier transcoding framework capable of adapting eL
multimedia to meet the end-user environmental challenges. This two-tier
architecture consists of 1)an application layer transcoder that adapts the
presentation format of the eL content as viewed in a browser to meet de-
vice capabilities and user modality preference, 2) a bitstream transcoder
that transforms multimedia streams to conform to the device’s processing
capabilities and to adapt the encoding rate to meet the network’s fluc-
tuating bandwidth. Results demonstrate the eL multimedia transcoding
for mobile devices and its low overhead delays.

1 Introduction

The maturity of the Internet has given rise to effective collaborative e-Learning
(eL) webcasting. Such applications allow various people from different physical
locations to communicate and interact together over the Internet. Fig. 1 shows
a screen shot of the web interface for the ePresence eL webcasting system that
has the capability of streaming video, audio, text, and slides to the end-user [1].

The increasing multimedia processing capability of mobile devices such as
Personal Digital Assistants (PDA), Pocket PCs, and Smart Phones as well as
advances in wired and wireless networks in terms of multimedia delivery have
added a new dimension to how people collaborate. Conventional eL applications
such as ePresence cannot support multimedia delivery that adapts to unique
device and network conditions. In light of this fact, there is a growing aspiration
for a Universal Multimedia Access (UMA) Framework [2] that provides seamless
access of multimedia to anyone, at anytime, by adapting eL content to unique
device capabilities, unreliable IP networks, and user personal preferences.

End-user devices differ in a multitude of processing capabilities such as frame-
rate, resolution, and number of audio channels supported. This diversity in device
capabilities requires media content to be adapted, and media streams that cannot
be processed by the device to be dropped. This must be performed in real-time to
avoid delays in delivering eL content and to provide the user with the experiences
that an individual attending the actual live event would have [3].

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 191–198, 2005.
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Fig. 1. ePresence: interactive e-Learning application

The second challenge to consider relates to the underlying network’s band-
width capacity and fluctuations determined by factors such as packet loss, delay,
and jitter [4]. This diversity in bandwidth characteristics gives rise to a need for
multimedia adaptation to provide variable bit-rate multimedia encoding.

Lastly, we address the challenge of delivering a given quality of experience [2]
to the end user. This involves negotiation of a Quality of Service (QoS) based
on personal preferences and preferred modality. This must be negotiated, not
granted because not all devices are capable of processing all types of media.

In order to resolve the three key challenges, multimedia transcoding [5] is
utilized to adapt eL content. Here, two types of transcoding are required; ap-
plication layer transcoding and multimedia bitstream transcoding. Application
layer transcoding adapts the presentation format of the eL content [6] to meet
device processing capabilities and user preferences (Fig. 1). Bitstream transcod-
ing [5] is performed on the the actual media to parse, transform, and truncate the
underlying multimedia streams to adapt the encoding rate to the network’s fluc-
tuating bandwidth capacity. Both transcoding approaches require descriptions
of varying device capabilities, network conditions, and user preferences. This can
be done using metadata, a tool used for describing, indexing, and searching the
properties of the user’s environmental conditions, and properties of the actual
media. Thus, metadata-driven transcoding [6] is needed to achieve application
layer transcoding and to provide adaptation parameters to achieve bitstream
transcoding. This paper proposes a novel scalable two-tier architecture for imple-
menting metadata-driven transcoding. Section 2 gives a brief overview of existing
eL systems architectures. Section 3 explains the proposed two-tier transcoding
architecture. Section 4 visually demonstrates the importance of transcoding for
an eL system by applying our approach to the ePresence architecture and pro-
vides the delay implications of real-time bitstream transcoding.

2 Related Work

Web-based eL systems such as the ones discussed in [7,3] include a combination
of video, audio, slides, chat session, and whiteboard functionality. A four-tier
electronic educational system (EES) model was proposed in [8] that provides a
degree of data personalization to the end-user. The top layer (instructional layer)
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allows educators to specify which media to include in the system (video, slides,
etc.). However, the end-user, does not have the flexibility to specify which eL
material they desire and no consideration is put forth concerning what modal-
ities individual user devices can process. The lower layers take the instructions
from this layer to create the final presentation format as seen through a browser.
Similarly, a metadata-based approach to delivering personalized course material
for a specific user learning needs was proposed in [9]. In particular, IEEE LTSC
Learning Object Metadata (LOM) is used to allow professors to deliver per-
sonalized material. For example, the user can choose the language or difficulty
level of the eL material. Programmable models such as Netscript 1, ANTS2, and
SmartPackets3 provide solutions for handling network traffic, however do not
address adaption to meet device and user preference needs.

These eL solutions do not adapting multimedia to meet each user’s unique
device capabilities, modality preference, and adapting the media encoding rate
to take into account fluctuating network conditions. Transcoding must be incor-
porated into existing eL applications all of the above mentioned user needs.

Application Layer Transcoding

XSLT Processor

Intermediate XML

XSLT Processor

Offline Transcoding
(Archived MM)

MPEG-4 Encoder

MPEG-21 Encoder

Type N Encoder

MPEG-21
UEDT

XSLT Cache

HTML, ASPX, JSP, ....

Bitstream Transcoding

MM Streams

(a) Proposed two-tier metadata-driven
transcoding architecture

(b) Metadata Transformation
Engine

Fig. 2. System overview

3 Proposed System

The objective of the proposed transcoding system is to adapt eL multimedia
to match a user’s environment characteristics (device capability, network condi-
tions, modality preference). The proposed architecture is shown in Fig 2(a).

Section 1 presented a motivation for metadata-driven transcoding. Metadata
syntax is represented using Extensible Markup Language (XML). Metadata de-
scription can be done through the MPEG-21 standard [10]. The tools offered
by the standard include the Usage Environment Description Tool (UEDT) [2]
to describe device capabilities, network conditions, and user characteristics as
1 http://www1.cs.columbia.edu/dcc/netscript/
2 http://www.cs.washington.edu/homes/djw/papers/00755004.pdf
3 http://www.net-tech.bbn.com/smtpkts/smtpkts-index.html
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well as the natural environment characteristics. The processing and transforma-
tions of this metadata can be accomplished using Extensible Stylesheet Language
Transformation (XSLT) [5]. Application layer transcoding requires transforma-
tion rules to process user metadata in order to determine the presentation pref-
erences. Bitstream transcoding requires these rules to process intermediate XML
and physically adapt multimedia to match the device’s processing capabilities
and network available bandwidth. Due to the short length of this paper, details
of XSLT sheets will not be explained, refer to [10] for more detail.

A generic metadata transformation system is proposed in [11] as shown in
Fig. 2. This solution consist of a Document Object Model (DOM) processor that
creates XSLT sheets and an XSLT processor that transforms XML with the cre-
ated XSLT sheet. The problem with DOM processing is its computational cost
making it an unviable solution for a real-time eL application. Our method per-
forms DOM processing a priori and caches XSLT sheets for transcoding. Here, an
XSLT rule for providing multimedia adaptation is chosen from a set of previously
cached sheets to provide best-effort service by replacing the DOM processor with
a selection phase that is more efficient for real-time transcoding.

The XSLT sheet selection processes is comprised of three steps. First, the
cached sheets are pre-filtered to determine a small set of possible sheets match-
ing the user request. The pre-filtering is done based on parameters that remain
unchanged throughout a session assuming the same device is used from the be-
ginning of the eL webcast until the session is terminated. Then, one of the sheets
from this set is chosen to be used during transcoding. Finally, the XSLT sheets
chosen are passed to transcoding modules to transform XML metadata to pro-
duce the appropriate presentation template and to transcode the multimedia
streams. This will be explained in more detail in subsequent sections. The pro-
cess of determining which sheet to select is up to the system designer.

Application layer transcoding begins by obtaining the user’s UEDT meta-
data. The main idea behind the application layer transcoding module is to choose
the best matching XSLT rule from the XSLT cache that will adapt the eL con-
tent layout (which is represented by an XML file) to meet user environment
characteristics. The sheet selected depends on the user’s device capabilities and
the desired modalities. This module produces and outputs the proper template
that will display the desired modalities in a browser (Fig. 1). The template pro-
duced depends on the underlying eL system interface (e.g. HTML, JSP, etc.).
The application layer transcoding module then passes control to the bitstream
transcoding module to adapt multimedia streams as shown in Fig. 2(a).

The next step in the adaptation process is bitstream transcoding. The bit-
stream transcoding module utilizes adaptation parameters from the application
layer module to transform the underlying streams. Depending on the imple-
mentation of the eL system, some of the components shown in Fig. 2(a) can
be excluded. This will depend on whether transcoding will be conducted offline
(i.e. on-demand) or in real-time (i.e. live and on-demand). As shown in Fig.2(a),
the bitstream transcoding engine consists of the intermediate XML, offline and
real-time (MPEG-4) encoders, and the XSLT processor.
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As a residual of application layer transcoding, intermediate XML metadata
is passed to the bitstream transcoding module. This intermediate XML contains
the metadata describing the modality and resolutions reserved for each as sup-
ported by the browser template produced by the application layer transcoder.
Additional information included are name and address of the multimedia that
the browser embedded protocols will attempt to access eL multimedia and other
optional parameters as required by the system.

Offline bitstream transcoding is in essence scalable coding [2]. Multiple scaled
copies of the same media are encoded and stored on the content server. The mul-
timedia copy that best matches the end-user’s environment parameters is deliv-
ered. Scalable coding can only be used for on-demand eL systems and is not a
viable solution for live webcasting. In contrast, real-time bitstream transcoding
requires only one version of the multimedia to be stored on the content server.
Multimedia is adapted in real-time to meet the end users environmental needs.
There are various bitstream encoding solutions [5] capable of providing real-
time transcoding. The XSLT processor in Fig. 2(a) can be used to transform the
intermediate XML metadata to any format required by the underlying eL sys-
tem’s encoder in order to perform metadata-driven transcoding. For example, if
the MPEG-21 Framework is used, the intermediate XML could be the environ-
ment description and the the bitstream description (BSD) [5] of the multimedia
streams. The XSLT processor would process the user’s environment description
to determine which XSLT sheet to retrieve from the cache in order to adapt the
requested multimedia streams. The output of the XSLT processor can be the
bitstream adaptation rules required by the MPEG-21 encoder to transcode the
multimedia streams to meet the end-user environmental needs.

The MPEG-4 Standard scalable tools are used to provide temporal, spatial,
and SNR scalability, hence can serve as the bitstream transcoder. The set of
rules obtained from the XSLT cache together with the intermediate XML serve
as input into the XSLT processor. The intermediate XML contains parameters
for temporal (e.g 15 f/s for PDA, 25 f/s for PC) and spatial (qcif for PDA, 4cif
for PC) scaling of video and slides and audio scaling parameters. The XSLT
processor outputs a script file that take into account the user’s environment
characteristics. This script is utilized by the MPEG-4 encoder to transcode the
multimedia streams. Real-time transcoding solutions are not limited to the pro-
posed MPEG-21 and MPEG-4 encoding solutions. The important point of the
XSLT processor (in combination with the intermediate XML) is to provide an
extensible architecture to incorporate any bitstream encoding solution that is a
viable or desired solution to virtually any eL system.

4 Results

Experimental results of our system for achieving application layer and bitstream
transcoding will be presented in this section. This will demonstrate why applica-
tion layer transcoding is crucial to delivering personalized eL material to meet the
user’s device, network, and personal preference to in order to affectively utilize
ePresence interface functionality. Results of the proposed bitstream transcoding
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approach will also be evaluated in terms of how delay will affect real-time multi-
media adaptation and delivery of ePresence material. Testing is conducted using
an FFMPEG encoder 4, Darwin Streaming Server 5, and a QuickTime Player to
provide an end-to-end MPEG-4 delivery framework. Note that multicasting is
not used because (a) the ePresence server resides over a restricted unicast net-
work gateway and (b) eL material needs to be delivered to each user separately
to match their unique environmental needs. However, a multicast solution would
be an important research topic to investigate for ePresence.

Application Layer Transcoding: Fig. 1 shows the current browser tem-
plate used to represent eL content. This template is intended for PCs with suit-
able multimedia capabilities with a large enough real-estate to display and pro-
cess all available modalities shown. Our application layer transcoding decision
process produces the same template if it is determined that the end-users de-
vice is capable of processing all available modalities. Hence this guarantees our
solution meets the interface requirements of the current ePresence system.

Application layer transcoding becomes crucial for mobile devices accessing
ePresence that have minimal multimedia processing capabilities as it determines
which XSLT rule is needed to match the device’s capabilities in processing the
requested modality. Fig. 3(a) clearly displays this problem. Fig 3a(i) and 3a(ii)
show how the display size affects the clarity of the delivered media for a PDA
and Smart Phone (SP) on the current ePresence system. Hence, it would not be
logical to stream all the available media to a PDA or Smart Phone. Fig 3a(iii)
and 3a(iv) show how the application layer transcodor takes all these factors into
account and logically adapts the available media and presentation format using
XSLT rules. Note that other possible adaptations (i.e. choice of modalities) can
be chosen for a PDA and SP. This ensures the proper delivery of material to
meet the device needs while trying to meet the end users modality request.

Bitstream Transcoding: Real-time video delivery applications must
stream content with negligible delay in order to produce a live lecture expe-
rience. The Real Time Streaming Protocol (RTSP) [4] can deliver a continues
flow of video (e.g. 28Kb/s for dial-up to a PDA, 100-300Kb/s for high speed to
a PC) with negligible streaming delays . This invovles pre-buffering a portion
of video at the user device to ensure that the buffer can maintain a steady flow
of media to playback while the rest is streamed over the webcast session. Al-
though RTSP can ensure a steady flow of media in the user device buffer, the
effect of transcoding delay must also be addressed and how it effect this steady
flow. Transcoding inevitably will cause delay due to the fact that video must be
converting between formats (e.g raw video to MPEG-4 format) or scaled (e.g.
change frame-rate).

One of the key challenges that designers of transcoding servers face is making
sure that the streaming server always has a continues flow of buffered media to
deliver. Fig. 3b shows an approximation of start-up delays at the beginning of
an eL webcasting session as a result of transcoding. These results are from real

4 sourceforge.net/projects/ffmpeg/
5 http://developer.apple.com/darwin/projects/streaming/
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(a) (i) PDA (no transcoding),
(ii) SP (no transcoding), (iii)
PDA (transcoded), (iv) SP
(transcoded)
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Fig. 3. Results: (a) Application layer transcoding, (b) Bitstream transcoding

experiments using the above mentioned streaming framework to a user that is
50Km away from the eL system server. It is expected that scalable coding will
producing the lowest overhead due to the fact that no transcoding is needed. The
start-up overhead observed is due to pre-buffering at the user device. As men-
tioned in Section 3, scalable coding can only be used for on-demand eL systems
and cannot be used for live sessions. eL sessions are archived using MPEG-4 en-
coding. This archived multimedia is transcoded by scaling the video and audio
to match the end users environmental characteristics. As Fig. 3b shows, there
is a noticeable delay increase in comparison to scalable coding (which skips the
transcoding step). The amount of delay increases proportional to the encoding
bit-rate. This is due to the computational intensity and memory usage that the
transcoder experiences as the target encoding bit-rate (e.g. 100Kb/s) increases.
For live eL sessions, the encoder requires the aid of a capturing device to transfer
and synchronize live video and audio from devices (e.g. video camera). As shown
in Fig. 3b, transcoding live session incurs the highest amount of delays. This ad-
ditional overhead is due to two factors: 1) delay from the capturing device, 2)
high computational intensity of transcoding raw video and audio to MPEG-4.

The encouraging conclusion that can be drawn from Fig. 3b is that start-
up delay overhead is going to be roughly under one minute. Assuming that an
eL session will be on average one hour in duration (e.g. course lecture), this
is an acceptable delay for the end-user to cope with. The benefits of adding
transcoding to the current ePresence architecture will be worthy of the tradeoff
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of a one minute start-up delay that the system will incur. Note that this delay will
probably increase as the user’s distance from the server increases (e.g overseas).

5 Conclusions

This paper has addressed the problem of Universal Multimedia Access in the
context of an e-Learning applications. More specifically, seamless delivery of mul-
timedia content to diverse end-users in unreliable network conditions has been
considered. The proposed solution is a real-time application level and bitstream
transcoding solution that can be be accomplished with low delay overhead to
deliver eL content to any user, despite there environmental restrictions.
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Highlight Detection and Removal Based on Chromaticity 
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Abstract. The presence of highlight can lead to erroneous results in Computer 
Vision applications such as edge detection, and motion tracking. Many algo-
rithms have been developed to detect and remove highlight. In this paper, we 
propose a simple and effective method for detecting and removal of highlight. 
We first use a window to help to remove the noise and reduce the data amount 
for analysis. We then apply K-means algorithm in a 5-D vector space to com-
puter diffuse chromaticity. In the case of non-white illuminant, illuminant 
chromaticity is estimated in the inverse-intensity space, and we use Fuzzy C-
mean clustering and linear fitting to get illuminant chromaticity. Finally, we use 
Specular-to-Diffuse mechanism to separate specular reflection component from 
image. Experiments show that it is robust and can give good results. 

1   Introduction 

How to detect and remove highlight reflected from inhomogeneous object is a hot 
research topic in Computer Vision. The existence of highlight can induce incorrect 
results in, e.g. edge detection, image segmentation and object tracking algorithms.  

Many algorithms have been developed to detect and remove highlight. in recent 
years. Light polarization analysis was used in early methods.  Wolff[1] et al. introduce 
polarizing filter to remove highlight. Nayar [2] et al. extended this work by taking 
object color into account and produce impressive results. In general, methods with 
polarization analysis are limited by hardware. Sato [3] et al. introduce a 4-D temporal-
color space by considering a series of images irradiated by the same illuminant in 
different directions. In the case of single color object, the requirement of the image 
series limits the applications of the algorithm. This method though can handle multi-
colored objects, requiring the users manually selecting different colors. Shafer[4] pro-
posed the well-known Dichromatic Reflection Model, which deem illuminated by a 
single light source. A cluster of uniformly colored object in RGB space forms a paral-
lelogram distribution defined by two vectors, namely surface (specular) and body 
(diffuse) reflection components. Body reflection component represents the object 
color, and the surface reflection component approximately has the same property as 
the illuminant. Based on Shafer’s work, Klinker[5] et al. found the cluster actually 
forms a slope T-shape and developed methods to determine the two component vec-
tors. Though using only a single image as input, without requiring hardware and im-
age series, the T-shape is difficult to extract because of the presence of the noise and 
that operating in 3-D space is not an easy task. To reduce computational complexity, 
Karsten[6] proposed a global method based on the 2-D UV space. Tan[7] et. al. devel-
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oped the STD (Specular-to-Diffuse) mechanism which is based on max intensity- 
chromaticity space. Tan’s algorithm is robust and easier than existing algorithms. 
Unfortunately, it is based on the assumption that the camera noise shows in linear. 
Furthermore, the process of finding diffuse pixel candidate is non-trivial. 

Based on the work in Tan[7] et. al., in this paper, we first propose to use the Best Fit 
Window. Then, a method based on max intensity-chromaticity space is proposed to 
detect highlight regions. In the case of non-white illuminant, we use a simple ap-
proach to estimate illuminant chromaticity. Finally, we use the STD mechanism to 
separate the specular component from images. 

2   Reflection Model 

Dichromatic Reflection Model describes the color of the reflected light as a combina-
tion of surface reflection and body reflection (Figure 1) as follows: 

L ( , ) = L  ( , ) + L ( , )b sλ θ λ θ λ θ  (1)

 

Fig. 1. Dichromatic Reflection Model (from [4]) 

Here, L, Lb and Ls denote the reflected light, body reflection component and sur-
face reflection component respectively.  denotes the wavelength and parameters  
include the direction angles needed for describing the reflection geometry. Separating 
the spectral reflection property of Lb, Ls and considering them as products of spectral 
power distributions Cb, Cs and geometric concerning factors mb, ms, we have 

L ( ) = C  ( ) + C ( )b b s sm mλ λ λ  (2) 

After spectral integration, we have the following image formation of digital cam-
era: 

I( , ) C ( )h( )d  + C ( )h( )ds s b bx y m mλ λ λ λ λ λ
Ω Ω

=  (3) 

where h(.) represents the camera sensor response function of incident light and 
represents the visible spectrum region. I(x, y) is the pixel intensity at location (x, 
y).We can rewrite the above equation as the following: 
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I( , ) I  + Is s b bx y m m=  (4) 

where I C ( )h( )ds s λ λ λ
Ω

= and I C ( )h( )db b λ λ λ
Ω

= . The two parts of right 

side of equation (4) denote specular reflection component and diffuse reflection com-
ponent respectively. As Tan[7] described, we can get a new formula from equation (4) 
expressed by chromaticity: 

I( , ) =  +   s bs bx y m mΓ Γ  (5) 

Where 
RGB

=I / Is s sΓ and 
RGB

=I / Ib b bΓ  represent specular chromaticity and dif-

fuse chromaticity respecitively. Obviously, 
RGB

sΓ  = 
RGB

bΓ = 1. 

3   Highlight Detection 

To separate the specular component using STD mechanism, diffuse chromaticity is 
required. For the objects with ideal Lambert surface, diffuse chromaticity is a constant 
but specular chromaticity is a variant. In this section, we obtain the diffuse chroma-
ticity based on a local window BFW for detecting highlight regions. 

3.1   The Best Fit Window 

Global specular information is considered in many previous methods [1, 2, 5], which is 
noise-sensitive and time-consuming in computation. Statistically, highlight regions 
are local with high intensity pixels. Assuming uniformly colored surfaces, any local 
diffuse chromaticity should be the same as the global one. We hence introduce a local 
window called the Best Fit Window (BFW, see Figure 2), and all  the analysis fol-
lowed in the paper will be based on this window. 

We locate the BFW by intensity: given a window, moving from the upper-left cor-
ner of the image and counting the number of pixels (denoted by s) in the window with 
intensity value larger than the global average intensity L1ave. We choose the corre-
sponding window of max(s) as the BFW. Our experiments show the result of one time 
computation is not satisfactory, especially for images with many low-intensity back-
ground pixels. We then calculate the new average intensity L2ave from the pixels 
whose intensity value larger than L1ave. Replace L1ave with L2ave and repeat the above 
procedure to find a better BFW. Generally, one more iteration can already produce an 
acceptable BFW. In our experiments, the size of BFW is set to 1/9 of the image size. 
It is worthy pointing out that: (1) Both diffuse and specular pixels should be included 
in the BFW. Therefore, existing methods such as the one described in [16] to deter-
mine the edges of highlight regions cannot be applied here; (2) The size of BFW, in 
theory, should be dependent on the scene contents (object size and orientation). It’s a  
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Fig. 2. The BFW and max intensity-chromaticity space. White window in a(2) and b(2) denotes 
BFW; c (2) depicts the max intensity-chromaticity space of c(1).  

hard task to determine it based on the scene contents. In stead, in this paper, we sim-
ply set it to be 1/3 of the image size; (3) BFW can be used to remove noise and im-
prove performances by reducing analysis data. Only if the objects in the scene are 
almost white we may then get a wrong BFW: in this case, other information other 
than intensity should be considered in determining the BFW. Actually, this is a diffi-
cultcase for all highlight detection and removal algorithms.  

3.2   Diffuse Chromaticity Estimation 

Tan [7] et al. introduced the max intensity-chromaticity space in which, a specular 
pixel A is closer to the left of the X axis than a diffuse pixel B with the same surface 
color. In Figure 2-c(2), the chromaticity of diffuse pixels is constant and the corre-
sponding points are located at the right side. However, the chromaticity of specular 
pixels is variable (the curve in the left). Actually, the beeline and the curve can be 
completely confused because of noise and un-uniform surface properties in real cases. 
Figure c(2) is actually composed of three parts: the left, middle and right parts. In the 
left part, chromaticity value closes to 1/3 which means it contains specular pixels with 
high brightness and pixels in shadow only illuminated by environment lights. The 
middle part mainly includes specular pixels with low brightness; and the right part 
mainly includes diffuse pixels. Background pixels and noise can make the separation 
very difficult. That’s the main reason why we use BFW: it can help to remove noise. 

Considering the max intensity- chromaticity space in BFW will be easier than in 
the entire BFW space. We build a 5-dimensional vector space composed of CIE 
La*b* color space (with weight of 4/5) and pixel location (x, y) (with weight of 1/5). 
We then apply K-means algorithm to cluster the data in the 5-D space into 2 regions 
based on Euclidian distances. We select a region with lower intensity, and then remap 
the data back to max intensity-chromaticity space (see Fig. 3), with the reasonable 
assumption that the pixels are candidates of diffuse pixels. We can then get the diffuse 
chromaticity using statistical histogram with 1% accuracy tolerance (see Fig. 3). 

Tan [7] et al. introduced a color ratio space to avoid noise. The process is not very 
convenient. Their algorithm assumes that the camera has linear noise. Our method 
doesn’t have this constraint: using BFW, the diffuse chromaticity can be simply ob-
tained. Moreover, our experiments show that the results are satisfactory  
(see Figure 5). 
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Fig. 3. Estimating the diffuse chromaticity using K-mean algorithm in 5-D space. Original 
image is b(1) in Fig 2. (Left) cluster 5-D vector into 2 regions. (Middle) remap data from 
region with lower intensity back to the max intensity-chromaticity space. (Right) Result for the 
highlight region detection. 

4   Non-white Illuminant 

The STD mechanism assumed pure white illuminant. Unfortunately, this is almost 
impossible in the real world. To apply STD mechanism to separate the specular com-
ponent, we need the illuminant chromaticity. The estimation of illuminant chroma-
ticity involves the color constancy problem [8~10]

 and many correlative methods have 
been developed [11~12]. We present a simple method based on inverse-intensity space 
[13] to estimate illuminant chromaticity. In the RGB color space, every color can be 
expressed by chromaticity as follows: κ (rr, gg, bb) = (R, G, B)/(R+G+B). Based on 
Equation (5) in Section 2, we can rewrite the chromaticity as: 

Since the  parts are equal to 1, by substituting Equation (5) into (6), we have: 

Define ( - )b b sa m= Γ Γ , Equation (7) can be described as: 

Equation (8) shows that we can estimate the illuminant chromaticity s if the image 
chromaticity κ and pixel intensity I(x, y) can be obtained. 

We project all pixels in the BFW into the inverse-intensity space. Obviously, dif-
fuse pixels locate towards the right of the x-axis. Pixels with low brightness illumi-
nated only by environment lights may also close to the right. For the distribution of  
 

RGB RGB
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m m
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             (a)                        (b)                         (c)                           (d) 

Fig. 4. Estimation of tlluminant chromaticity: (a): the original image (b): BFW pixels project-
ing into inverse-intensity space. (c): fuzzy C-mean clustering (3 clusters). (d): linear fitting of 
the first 2 clusters. 

the specular pixels, we simply choose the pixels with brightness values larger than the 
average of the BFW for analysis. Those pixels are then normalized with zero-mean 
and one-deviation, and a Fuzzy C-mean clustering is applied. In our experiments, all 
pixels are grouped into 3 clusters (see Figure 4 c). We then find the cluster whose 
center has the biggest x-coordinate (it includes some specular pixels), and perform 
linear fitting to the other two clusters. The intercept value is taken as the estimated 
value of the illuminant chromaticity (see Figure 4). 

5   Experiments 

Figure 5-6 show some results of our algorithm applied to a variety of images. In Fig-
ure 5, our algorithm outperforms the algorithm in Tan [7] et al. for multi-object cases 
(see images (a) and (b)); and their algorithm fails in (b) since when they remap pixels 
with the same color ratio value in color ratio space back to the max intensity- 
 

         
(a) Results with D1=0.61, D2=0.53                    (b) Results with D1=0.33, D2=0.55 

  
(c) Results with D1=0.42, D2=0.4                               (d) Results with D1=0.57, D2=0.47 

Fig. 5. Some highlight detection results. The left, middle and right images in each group are 
original images, resultant images of the algorithm in Tan [7] et al. (with diffuse chromaticity 
denoted by D1) and our algorithm (with diffuse chromaticity denoted by D2), respectively.  
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chromaticity space, the candidate diffuse pixels are very likely belonging to different 
objects which have different diffuse chromaticity. It can also be noticed that there is 
no clear difference between their algorithm and ours in (d), though the chromaticity 
values are largely different, this is because of the big gap between the max chroma-
ticity value of specular and diffuse pixels. In this case, different values of diffuse 
chromaticity in some allowable ranges can slightly change the detection results. 

Once we have detected the highlight regions, the STD mechanism is applied to 
separate the diffuse and specular reflection components. The method described in 
Section 4 is used to estimate illuminant chromaticity in the non-white illuminants 
cases. Images then can be normalized by dividing each pixel’s RGB with illuminant 
chromaticity. Figure 6 shows some such examples after highlights are removed. 

  

  

Fig. 6. Highlight removal results. The left, middle and right images in each group are original 
images, diffuse reflection specular reflection component, respectively. 

6   Conclusions 

In this paper, we propose to use the BFW to help to remove image noise and reduce 
the amount of the analysis data. Based on BFW, a weighted K-means algorithm is 
applied in a 5-D space to estimate diffuse chromaticity. In order to get non-white 
illuminant chromaticity, we perform fuzzy clustering and linear fitting in the inverse-
intensity space. Experiments show that our method is robust and can produce good 
results. Our method eliminates the assumption of linear noise of camera. Furthermore, 
our method of highlight region detection is separable and can be used independently. 
For example, we can first detect highlight regions using our algorithm and then use 
the inpainting algorithm to correct the color [14~15]. 

Acknowledgements 

The authors would like to thank the support from the China NSF under Grant 
#60273060, China Ministry of Education under Grant #20030335064, and Education 
Office of Zhejiang Province under Grant #G20030433. 



206 S.-C. Xu et al. 

References 

1. Wolff L.B, Boult T.: Constraining object features using polarization reflectance model. 
IEEE Trans. on Pattern Analysis and Machine Intelligence, (1991), 13(7):635–657. 

2. Nayar S.K., Fang X.S and Boult T.: Separation of reflection components using color and 
polarization. International Journal of Computer Vision, (1996) 21(3). 

3. Sato Y. and Ikeuchi K.: Temporal-color space analysis of reflection. Journal of Optics So-
ciety of America A., 11, (1994). 

4. Shafer S.A.: Using color to separate reflection components. Color Research and Applica-
tions, 10, (1985). 

5. Klinker G.J., Shafer S.A., and Kanade T.: The measurement of highlights in color images. 
International Journal of Computer Vision, (1990) 2:7–32,  

6. Karsten.S., Andreas K. Global and Local Highlight Analysis in Color Images, Proc. 1st 
Int. Conf. on Color in Graphics and Image Processing (CGIP), Saint-Etienne, France, Oct. 
1-4, (2000) 300–304. 

7. Tan R.T., Nishino K., Ikeuchi K.: "Separating Reflection Components Based on Chroma-
ticity and Noise Analysis”, IEEE Transaction on Pattern Analysis and Machine Intelli-
gence (PAMI) 26(10), October (2004) 1373–1379. 

8. Geusebroek J.M., Boomgaard R., Smeulders S.: and T. Gevers.: A physical basis for color 
constancy. In The First European Conference on Color in Graphics, Image and Vision, 
(2002) 3–6. 

9. Brainard D. H. and Freeman W. T.: Bayesian color constancy. Opt. Soc. Am. A 14, (1997) 
1393–1411. 

10. Funt B. V. and Finlayson G. D.: Color constant color indexing, IEEE Trans. Pattern Anal. 
Mach. Intell. (1995).17, 522–533. 

11. Lee H.C.: Method for computing the scene-illuminant from specular highlights. Journal of 
Optics Society of America A., (1986) 3(10):1694–1699. 

12. Lehmann T.M. and Palm C.: Color line search for illuminant estimation in real-world 
scene. Journal of Optics Society of America A., (2001) 18(11):2679–2691. 

13. Tan R.T., Nishino K., Ikeuchi K.: Illumination Chromaticity Estimation using Inverse-
Intensity Chromaticity Space, in proceeding of IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (CVPR 2003) June 18-20, (2003) 673-680. 

14. Marcelo B., Sapiro G., Ballester C., Caselles V.: Image inpainting. In: Computer Graphics, 
SIGGRAPH 2000. (2000) 417–424. 

15. Tan P., Yang J., Lin S., Shum H.: Illumination-Constrained inpainting for single image 
highlight removal. Journal of Software, China. (2004), 15(1):33–40 



Digital Video Scrambling Using Motion Vector
and Slice Relocation

Sang Gu Kwon, Woong Il Choi, and Byeungwoo Jeon

School of Information and Communication Engineering,
Sungkyunkwan University,

300 Chunchun-Dong Jangan-Gu Suwon, Korea
iamant1039@skku.edu, creata@ece.skku.ac.kr, bjeon@yurim.skku.ac.kr

Abstract. As digitalized content rapidly proliferates in networked sys-
tems, content security necessarily arises as one of the most important
issues. Many developers have studied techniques for allowing only autho-
rized persons to access content. Recently, video scrambling techniques,
one type of the authorizing tools, have been introduced. However, they
change the original video data, which often increases the bit rate of
the source data. To overcome this problem, we propose a scrambling
technique which deliberately distorts the original video sequences in a
reversible way by arbitrarily relocating the differential motion vectors
and MB (macroblock) starting positions in a slice. This method can be
applied to most common video coding techniques such as MPEG-1/2/4,
and H.264.

1 Introduction

As digital contents have been increasingly abundant everywhere, adequate pro-
tection of multimedia contents is highly required. Digital video sequences are
routinely distributed through non-private channels such as satellite links, cable
television networks, wireless networks, and the Internet. Accordingly, video con-
tent providers demand more secure yet simple techniques such as video scram-
bling. Digital video scrambling method deliberately distorts video signals in order
to discourage unauthorized viewing. For authorized clients, the descrambler can
properly restore the original video by referring to a legitimate key while unau-
thorized clients can decode the scrambled video but resulting in an unpleasant
distorted video. In recent years, many researchers have proposed various scram-
bling techniques [1]- [6]. The transform-based scrambling method utilizes residual
coefficient in frequency domains such as wavelet or DCT [4], [5]. Wavelet-based
schemes use such techniques as selective bit scrambling, block shuffling, and
block rotation [4], [5]. For the DCT-based schemes, there are DCT coefficient
scrambling, motion vector scrambling, and sign encryption [4], [5]. Other ex-
isting methods are motion vector scrambling [3] and the intra prediction mode
scrambling [6]. Motion vector scrambling changes the codeword of motion vector
in accordance to the value of CBP [3].

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 207–214, 2005.
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However, those methods except intra prediction mode scrambling [6] cause
increase of bit rate after scrambling. To overcome this problem, this paper pro-
poses two novel scrambling methods which are based on relocation of motion
vector and slice position in inter frame. Motion vectors are the key information
conveyed in most video coding techniques. If motion vectors are not properly
recovered by the decoder, the reconstructed video sequences will be distorted
severely. This proposed method can be applied to most video coding techniques.
We note that video sequences can be easily distorted by arbitrarily relocating
them using a slice scrambling method within a frame.

2 Proposed Scrambling Methods

We propose to relocate motion vector and slice positions in a deliberate but
reversible way for scrambling. The former exchanges a differential motion vector
DMV with one another, and the latter changes the location of slice within a
frame to give wrong information about MB positions to the video decoder.

2.1 Motion Vector Relocation

Temporal redundancy is removed by motion compensation in inter frame. In
motion estimation, a vector describing relative position between a given block
and the block in the reference frame which has minimum block matching error
is called the motion vector. For encoding the motion vector, differential value
of the motion vector and the predicted motion vector which is obtained from
neighboring blocks is encoded by a variable length code. The proposed method
utilizes this DMV for scrambling video data. The proposed method arbitrarily
relocates one DMV component in one block with a DMV component in another
block within the same slice or frame.

Fig. 1. Relocating x and y components of DMVs

The main idea of relocating DMVs is shown in Fig. 1. Where top line is the
original bitstream and bottom one is the bitstream after scrambling. ‘x’ and ‘y’
in the figure indicate the compressed information of the x and y component of
a DMV. Since the codeword of each DMV component is simply relocated in the
bitstream, total size of the bitstream is not changed as long as Huffman coding
scheme is used. When arithmetic coding scheme is used, total size of bitstream
may not be identical to original bitstream because symbols are jointly coded in
arithmetic coding, but it is expected almost the same with the size of the original
one.
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In the proposed method, we can see that the distortion of the scrambled
video is increased as the difference between the original DMV and the relocated
one is increased. A rule for the relocation of the DMV components uses a pseudo
random sequence generated by a key. For example, the first 4 bits of the sequence
decide how many places the DMV components are rotated to the right, and the
remaining bits decide whether one DMV component is swapped with next one.
If the sequence is ‘1101110...’, for instance, the first 4 bits are ‘1101’, so the order
of the DMV components is right-rotated by 13 places. If the DMV components
’0 1 2 3 4 5 6 7 8 9 A B C D E F’ were right-rotated by 13, for example, the
result would be ’3 4 5 6 7 8 9 A B C D E F 0 1 2.’ The remaining bits of the
sequence can then further modify order of the components. In this example the
fifth bit is ‘1’, so the first DMV component in the rotated list is swapped with
the second one, the sixth bit is ‘1’, so the second component is swapped with
the third one, and the seventh bit is ‘0’, so the third is not changed, etc. This
would result in ’4 5 3 6 7 8 9 A B C D E F 0 1 2’ until process of the first 7
bits. This relocation rule is only an example. The content owner can change the
relocation rule as the one wishes.

If there are sufficient number of DMVs within one frame, security is also
guaranteed. If there are N DMVs and those vectors are relocated randomly, the
combination of DMV arrays is up to (2N)!. Therefore it is too difficult to guess
right location of the DMV components without the authorized key. This method
is easy to implement and does not cause much computational complexity. The
detailed scrambling procedure for the encoder and decoder is as follows.

In the encoder, a pseudo random sequence of a certain length is generated
according to a specific key. After encoding one inter frame, the encoder reads
the pseudo random sequence to determine how to arbitrarily relocate the DMVs.
Then the encoder relocates the codewords of all DMV components of the bit-
stream in that frame. This procedure is executed for every frame. The descram-
bling procedure is similar to the scrambling in the decoder. After the decoder
reads the bitstream for one frame, a pseudo random sequence is generated by
the same specific key to determine the relocation rule.

Since the codewords of the DMV components are changed in the bitstream,
before decoding one frame procedure, the decoder first has to read whole bit-
stream for one frame, then relocate all DMV components using a pseudo random
sequence in the bitstream in advance; therefore bitstream parsing is required
twice. After this process is finished, the decoder starts decoding MBs process
with corrected bitstream, but it does not cause any more delay in decoding.

Only an authorized person who knows the key can properly reconstruct the
original video sequence. A non-authorized decoder uses wrong DMV components
for motion compensation of certain blocks, so the reconstructed pictures are
severely distorted.

2.2 Slice Relocation

The motion vector relocation scheme does not affect skipped blocks or intra
blocks which contain no motion vector. Background regions are likely to be
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encoded as skip mode due to their low spatial detail or little motion. For those
areas such as the background, a slice relocation method is proposed. A frame
consists of slices, and a slice consists of MBs. Since the proposed method relocates
the position of each slice within a frame, the spatial position of total MB data in
a slice can be changed. Through slice relocation, skipped MBs in a background
region can be replaced by inter MBs having motion vectors in the foreground
region. The proposed method modifies the MB starting position in each slice
header to relocate slices.

Fig. 2 shows the slices in one frame; the left side indicates the slice ordering
before scrambling and the right side after scrambling. The relocation scheme
used here is the same as the one used in the example in Section 2.1. In Fig. 2, for
example, the slice # 4 is changed to the slice # 0, so the MB starting position
of the slice # 4 is changed to the one of the slice # 0. In the same way, the MB
starting position of the slice # 5 is changed to the one of the slice # 1, and so
on.

Fig. 2. An example of a slice relocation rule

The proposed slice relocation method for scrambling does not require any
overhead in the bitstream. In order to relocate the slices, the number of MBs
and the structure of slice should be the same with each other. Besides a frame
should consist of at least two slices for using this scheme. Since it is likely to
be visible how slices are relocated in I (intra) slices, we don’t apply our scheme
to I slice. I slice can be scrambled by the method using intra prediction modes
proposed in [6]. The proposed method can be performed under the flexible MB
ordering (FMO) scheme adopted in the H.264 standard. The FMO technique can
flexibly change slice structure in various ways, so we can achieve more efficient
scrambling.

In the encoder and decoder, the scrambling and descrambling procedures
are similar to that of the motion vector relocation method. Before encoding one
frame, the encoder and the decoder check whether the frame is an I picture before
processing one frame. If the frame is an I picture, the encoder and decoder do
not read the pseudo random sequence by a specific key, otherwise they read it to
decide relocation rule and reversible relocation rule. In encoding one slice, the
encoder changes MB starting position in a slice using relocation rule. In decoding
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one slice, the decoder find the right position of slice using given starting MB
position from the encoder and reversible relocation rule which is derived from
the pseudo random sequence. A non-authorized decoder uses wrong starting MB
positions of slices, so the decoder places decoded slices at wrong positions within
a frame.

The proposed slice relocation method changes slice positions in a frame, so
all information in the original one is changed. This includes motion vectors, intra
blocks, and residual blocks. Therefore the video sequence is severely distorted.

3 Experimental Results

For the test sequence of our experiment, we used ‘Mother and daughter’ and
‘Foreman’ sequences of CIF size. We implemented our scheme on the H.264
reference software, JM 9.0. We tested it under H.264 baseline profile. Only the
first frame of each sequence is encoded as an I picture, and each frame contains
36 slices each of which consists of 11 MBs.

To see the effect of the proposed method, the scrambled sequences by motion
vector and slice relocation methods are shown in Fig. 3 and Fig. 4. In Fig. 3 and
Fig. 4, (a), (c), (e), and (g) show the scrambled sequences by motion vector
relocation method only, and (b), (d), (f), and (h) show the scrambled sequences
by both motion vector and slice relocation methods.

Note that the frames in (a) and (b) in Fig. 3 and Fig. 4 are not distorted
because the proposed scheme does not affect intra blocks. Thus the 1st frame is
decoded correctly. As shown in (c), (e) and (g) in Fig. 3 and Fig. 4, the video
sequences are gradually distorted as frame number is increased due to relocation
of the DMV.

In comparison to the ‘Mother and daughter’ sequence, we can see that the
‘Foreman’ is more severely distorted. It has many motion vectors not only in
foreground but also in background region due to the camera panning. Therefore,
background region is also distorted by the proposed motion vector relocation
method.

However, we can see that some regions are not properly distorted by mo-
tion vector relocation method in Fig. 4(g) and Fig. 3, because the ‘Mother and
daughter’ sequence has many background region and the Foreman sequence has
many intra blocks in certain frames. The background region is likely to be coded
by skip mode that just copies the collocated block in reference frame. Since the
skipped MB does not have the motion vector, the proposed motion vector reloca-
tion method is not applied in that area. In Fig. 4(g), we can see the hand clearly
in right-bottom region because MBs of this region are coded as intra blocks.

In order to distort the static region, the slice relocation scheme is additionally
applied. In Fig. 3 and Fig. 4, (d), (f), and (h), we can see that the background
region is getting worse by addition of slice relocation scheme due to dislocation
of slices. In Fig. 4(h), the 155th frame shows that right-bottom area are severely
distorted as compared to Fig. 4(g). However, if many MBs in a slice are coded as
intra blocks in Fig. 4(h), the slice can not be distorted efficiently. Intra prediction
mode scrambling resolves this problem [6].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Scrambled ‘Mother and daughter’ sequence; (a), (c), (e), and (g) are distorted
by motion vector relocation method, and (b), (d), (f), and (h) are distorted by motion
vector and slice relocation methods: (a) 1st frame, (b) 1st frame, (c) 51st frame, (d)
51st frame, (e) 101st frame, (f) 101st frame, (g) 201st frame, (h) 201st frame
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Scrambled ‘Foreman’ sequence; (a), (c), (e), and (g) are distorted by motion
vector relocation method, and (b), (d), (f), and (h) are distorted by motion vector and
slice relocation methods: (a) 1st frame, (b) 1st frame, (c) 51st frame, (d) 51st frame,
(e) 101st frame, (f) 101st frame, (g) 155th frame, (h) 155th frame
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This experiment shows that the motion vector relocation method does not
sufficiently scramble the sequence when the background of the original video
sequence does not have any motion or foreground has little motion. The slice
relocation method resolves this problem. Additionally, only the I picture can be
correctly reconstructed; the other frames are unpleasantly distorted. In the same
manner, successive frames refer to distorted blocks in their previous frames and
dislocate the position of each slice in the current frame. The proposed methods
can be applied with intra prediction mode scrambling [6] in H.264 for I picture
and intra blocks. Thus scrambling error can be drifted as motion compensation
is processed. As a result, we can obtain scrambling effects through the proposed
methods.

4 Conclusion

In this paper, two scrambling methods were proposed. One is the motion vector
relocation method and the other is the slice relocation method. Both methods
are designed to scramble only the inter frames. Since the proposed method only
relocates the codeword of motion vector and first MB position in slice within
video bitstream, there is no difference in total size of bitstream when it is coded
as Huffman coding. Besides, the motion vector relocation method can be applied
to most video coding techniques. The encoder and decoder can know relocation
information by referring to a specific key exchanged in a different channel, so se-
curity is increased. The proposed methods just require parsing bitstream twice,
but there is no other encoding and decoding process delay. The experimental re-
sult showed that video sequences can substantially be distorted by the proposed
method. They will be attractive for providing content protection in digital video.

When arithmetic coding scheme is used with the motion vector relocation
method, the bitstream may not be identical to original one, so it needs further
study to implement the method under the arithmetic coding scheme.
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Abstract. The validity of using the weighted information entropy to estimate 
the complex degree of the infrared images’ backgrounds is discussed in this pa-
per. A Butterworth high pass filter whose cut-off frequency can be adaptively 
regulated to meet the different backgrounds is proposed to restrain the different 
clutters. Since the backgrounds usually have some random change in the video 
sequences, an adaptive binarisation criterion for small target detection is also 
presented. Experimental results show the robustness of our method. 

1   Introduction 

In the actual sea-sky conflicts, the background of target is usually complex. The ro-
bustness of target detection is a crucial factor for tracking target. By the reason of the 
sunshine’s refraction, the ocean wave may generate many regions where the grey-
values in infrared images change dramatically, which is so-called “sea clutter”. It has 
been regarded as a difficult task to detect or trace small target under this condition. If 
we do not care more about the models of the backgrounds, the spatial high pass filter-
ing is normally used to detect the small target. Victor et al. put forward the morphol-
ogic operators for small target detection according to the prior knowledge of targets 
[1]. Peng et al. designed a 5 5 high pass template filter for real-time target detection 
[2]. Both two methods have good practicability for detecting the small target under 
the mild backgrounds, but they do not have the same performances in the sea clutter. 
Denney et al. presented a small target detective method based on the predication un-
der the adaptive auto-regressive background [3]. Many researchers have analyzed and 
confirmed the chaotic nature of the radar sea clutter signal [4, 5]. Leung and Lo pre-
sented a method for signal detection in the sea clutter based on prediction of chaotic 
characteristics [6]. In general, the different backgrounds ask different suitable meth-
ods for target detection. Based on the analysis of various target detective methods, 
Hilliard pointed out that low pass IIR filter has a better comprehensive performance 
for clutter prediction [7]. In this paper, the validity of using the weighted information 
entropy to estimate the complex degree of the infrared images’ backgrounds is dis-
cussed, and then an adaptive Butterworth high pass filter (BHPF) is designed to re-
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strain the different clutters. To handle the random change of the complex backgrounds 
in the video sequences, an adaptive binarisation criterion for small target detection is 
also presented. Experimental results show the robustness of our method. 

2   Theory Foundation: Butterworth High Pass Filter 

In order to separate small target from the complex backgrounds, we analyzed the 
characteristics of the images with infrared small target through their frequencies’ 
distribution. For the mild sky background, the images are mainly consisted of low 
frequency components. For the complex sea clutter background, the images mostly 
consist of middle frequency components. For the small target under the backgrounds 
mentioned above, it consists of high frequency components of the images. So the key 
problem is how to effectively separate the middle frequency from the high frequency. 
BHPF is a simple filter in frequency domain, which possesses some distinguished 
features not only maximum flat amplitude in the pass band, but also smooth transition 
between low frequency and high frequency. The transfer function of BHPF usually 
can be expressed as follows: 

rvuDD
vuH
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where r  is the order of the filter, which decides the slope of the curve diagram for the 
property of filtering. In our research case, since the order is not the key factor which 

influents frequency separation, we set 2=r  to simplify our discussion. 0D  is the 

cut-off frequency which decides the position of frequency separation in BHPF. 
2 2( , )D u v u v= +  is the Euclidean distance between the point ( , )u v  and the 

origin in Fourier spectrum. By regulating 0D , the filtering characteristics can be 

changed to meet different filtering requirements.

3   Using Weighted Information Entropy to Estimate the Complex 
Degree of Infrared Images’ Backgrounds 

Due to the fact that the variance of a grey-level image only describes the deviation 
degree between pixels’ grey and their mean in the meaning of statistics, it can’t pro-
vide any spatial information regarding the grey-value distribution of the images. 
Therefore, we propose an adaptive regulation scheme in terms of cut-off frequency 
based on the information entropy of different infrared images. 

3.1   A New Idea 

The information entropy is an efficient approach to illustrate the complex degree of 
grey-value distribution upon an infrared image. Let S denote the set of grey-values in 
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an infrared image with 256 grey-levels, and sp be the probability of grey-value s 

occurred in the set S, the information entropy of the image can be defined as follows 

255

0
( ) logs ss

H S p p
=

= − , when 0=sp , define 0log =ss pp  (2) 

The information entropy of an image denotes the average information about the 
image, but it neglects the importance of grey information. It can not represent our 
subjective judgments about the background of the image. Thus, we give some modifi-
cation to Eq. (2). 

Roughly speaking, in the infrared images with complex backgrounds, the small tar-
get and the clutter are normally appeared in the form of high grey-level. This largely 
impacts the direction of our subjective judgment for the image’s information. In order 
to emphasis the contribution of high grey-value components to the information 
entropy of an image, we specify the grey-value s  which corresponds to the probabil-

ity sp  to the weight coefficient, and then modify Eq. (2) as follows 

255

0
( ) logs ss

H S s p p
=

′ = − ⋅ when 0sp = , define log 0s sp p =  
(3) 

( )H S′  is named weighted information entropy (WIE) of the image. It provides an 

effective way to describe the information incorporated in different backgrounds be-
cause it combines the grey distribution information of the infrared images with our 
subjective judgments. 

3.2   Discussion of the Validity 

To explain the validity of using the WIE to describe the complex degree of the infra-
red images’ backgrounds, we will discuss three representative cases as follows. 

In the case of a grey-level image which only includes ( ,1 256)m m N m∈ ≤ ≤  

kinds of grey-value 1 2, , , ms s s , if the probability of each kind value to appear is 

equal, the weighted information entropy of the image is expressed as 
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(4) 

The formula (4) denotes that the mean of grey-values is an effective way to describe 
the complex degree of an image when it has the same probability distribution. For 
example, it can be comprehended into that the background of small target can be 
estimated roughly by the mean brightness of the images when we observe some infra-
red images which have even grey change. 
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 As for two infrared images which both include (1 256)r r≤ ≤  kinds of grey-

values, if their grey-values respectively are 1 2, , rs s s  and 1 2, , ras as as  (where 

a  is an intensity factor, and { }1 20 255 max , , ra s s s< ≤ ), and the probability 

of each grey-value in these two images is equal respectively, i.e.  

1 1 2 2
, ,

r rs as s as s asp p p p p p= = = , the two WIE values 1 ( )H S′  and 2 ( )H S′  

of these two images will satisfy the following equation 
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( ) log ( )
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It can be considered that general grey intensity is an important property to evaluate 
the backgrounds’ complex degree of the infrared images which have the same grey-
value distribution. For example, influenced by some uncertain factors such as sun-
shine’s refraction in the sea clutter or gain drift of the detective devices, the general 
grey intensity of the infrared image will be shifted randomly. Sometimes this shift 
or these shifts will badly weaken the Signal-to-Clutter Ratio (SCR) of the infrared 
images. The WIE of the images can accurately represent the shift of the general 
grey intensity, and it is advantageous for us to choose an appropriate detective 
method. 

. For an image which includes (1 256)r r≤ ≤  kinds of known grey-values 

1 2, , rs s s , the relationship between the WIE and the probabilities of the different 

grey-values of the image can be expressed as follows. 
Let 0α >  is an undetermined constant. An auxiliary function is defined as 

1 2
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If we calculate the first-order partial derivative for the r  variables 

msp (1 )m r≤ ≤  in the function 
1 2

( , )
ms s sF p p p and set them to zero, the 

probabilities of the different grey-values which make the WIE reach the maximum 
can be written as [8] 

( )exp 1 , 1,2,
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α= − − = when 0ms = , define 0
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Then we get the maximum value of the WIE 
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By calculating the first order derivation for the variable ms  in Eq. (7), we obtain 

2
exp 1 0ms

m m m

dp

ds s s

α α= − − >  (9) 

The probabilities 
msp  which make the WIE reach the maximum is a monotonic 

increasing function in the domain of variables ms , as shown in Eq. (9). In other 

words, if the grey-values of the image are known and the WIE of an image reaches 
the maximum, the probability distribution of the different grey is proportional to dif-
ferent grey-values, which is corresponding to the basic motivation for using the WIE 
to indicate our subjective judgment about the image. At the same time, we notice that 
the high grey-values should be controlled in some ranges. Eq. (7) indicates that 

1 0.368
msp e−< ≈  is an important condition that should be met to get the maximum 

value of the WIE, which obviously shows that the joint distribution of the different 
grey-values corresponding to the infrared images which have complex backgrounds, 
such as the sea clutter. 

We have analyzed the validity of using the WIE to estimate the complex degree of 
the infrared image’s background. An adaptive small target detective method is pre-
sented in the following sections. 

4   Adaptively Detect the Small Target in the Video Sequences 

Based on the analysis above, we can establish a connection between the weighted 
information entropy and the BHPF’s cut-off frequency. Our regulation scheme can be 
described by the following two steps: first, storing the WIE and the appropriate cut-
off frequency from some typical images with different backgrounds according to the 
prior knowledge; second, calculating the cut-off frequency of the BHPF by using 
piecewise linear interpolation method in real-time system. 

In the infrared video sequences, the backgrounds of the consecutive frames usually 
have some random change, so the WIE and the corresponding cut-off frequency of the 
BHPF of these two frames will also be changed. Obviously, it leads to the general 
grey intensity of the filtered images increase or decrease in different degree, so we 
can not detect the small target by a fixed binarisation threshold. Observe the two fil-
tered images of the consecutive frames, suppose that the maximum of the target re-

gion’s grey-values in the previous frame is pms  and the mean grey-values of these 

two frames are pes  and nes  respectively since the property of the small target in the 

consecutive frames does not change a lot, we can obtain an adaptive binarisation 

threshold of the next frame nΘ  by 

(1 )n pm ne pes s sεΘ = − ⋅ + −  (10) 
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where (0 1)ε ε≤ ≤  is a factor for keeping some grey margin (in our system, we set 

0.1ε = ). Experiments show that this criterion can not only utilize the new informa-
tion of the target, but also avoid losing targets in the multiple targets cases. 

The outline of the whole small target detective process is shown in Fig 1. 

 

 

Fig. 1. Outline of the whole small target detective process in the infrared video sequences 

5   Experiments and Results 

In Fig. 2, several images selected from an infrared video sequence are shown to con-
firm the validity of our method. Two common metrics can be used to evaluate the 
performance of the filters [7], they are defined as follows 

Signal-to-Clutter Ratio Gain: 
( )

( )
out

in

S
CSCR Gain

S
C

=  
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Background Suppression Factor: in

out

CBSF C=    
 

(12) 

where S  is the signal amplitude, C  is the clutter standard deviation within a single 
frame. The experimental data are listed in table 1, which shows that the filtering per-
formances of several common filters are very close with each other when they are 
used for the mild background of infrared images [see row A1 in table 1]. However, 
once the images are influenced by clutter, the filtered effect of median and wavelet 
modulus are better than 5×5 high pass template. Because Wavelet modulus filter 
essentially is an edge detection method, its filtering performance will be worse when 
the grey of background changes dramatically [see row E1, F1 in table 1]. It is obvious 
that our adaptive BHPF keeps better performance for small target detection under the 
different backgrounds. The column 3 in Fig. 2 is the binarisation results of the filtered 
images. Experiments show that the whole detective process of us is robust. 
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Fig. 2. Small target detective samples based on adaptive BHPF (Column 1: original infrared 
images in a video sequence; Column 2: filtered results of adaptive BHPF; Column 3: binariza-
tion results; ( )H S′ : the weighted information entropy of original image; 0D : cut-off fre-
quency of adaptive BHPF; T : binarisation threshold in the video sequences) 

Table 1. Comparison of several small target detective method (A1, B1, C1, D1, E1, F1: 
original infrared images which are showed in Fig. 2) 

filtering 
method 

median 
5×5 high pass 

template 
wavelet 
modulus 

adaptive BHPF 

Metrics 
SCR 
Gain 

BSF 
SCR 
Gain 

BSF 
SCR 
Gain 

BSF 
SCR 
Gain 

BSF 

A1 1.089 1.399 0.555 0.533 1.718 1.299 1.420 1.420 
B1 2.545 2.334 1.697 1.247 3.254 1.629 3.929 3.979 
C1 3.741 2.638 2.072 1.362 4.398 2.218 5.529 5.115 
D1 2.396 2.569 1.735 1.406 2.836 1.375 4.476 4.640 
E1 12.339 4.428 8.179 2.391 N/A N/A 17.619 6.433 
F1 27.076 2.121 14.393 1.053 7.978 1.001 21.677 3.869 

6   Conclusions 

In this paper, we use the weighted information entropy to describe the complex de-
gree of the infrared images’ backgrounds, and then an adaptive BHPF whose cut-off 
frequency can be regulated to meet the different backgrounds is proposed to restrain 
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the different clutters. Since the backgrounds usually have some random change in the 
infrared video sequences, we also present an adaptive binarisation criterion for detec-
tion. The experimental results confirm that the WIE is an effective method for evalu-
ating the complex degree of the infrared images’ backgrounds, and the robustness of 
our method is embodied. In real-time system, a small tracing window will be estab-
lished in terms of the correlative relationship for positions in the consecutive frames, 
which will dramatically decrease the complexity of algorithm. 
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Abstract. A new neural network adaptive switching median (NASM) filter is 
proposed to remove salt-and-pepper impulse noise from corrupted image. The 
algorithm is developed by combining advantages of the known median-type 
filters with impulse detection scheme and the neural network was included into 
impulse detection step to improve its characteristics. Comparison of the given 
method with traditional filters is provided. A visual example is given to 
demonstrate the performance of the proposed filter. 

1   Introduction 

Images are often corrupted by impulse noise due to errors generated in noisy sensors 
or communications channels. It’s important to eliminate noise in images before edge 
detection, image segmentation or object recognition procedures. The well known 
median filter and its derivatives have been recognized as effective means of impulse 
noise removal [1-3]. The success of median filters is based on two main properties: 
edge preservation and efficient noise attenuation with robustness against impulsive-
type noise. Edge preservation is essential in image processing due to the nature of 
visual perception [4].  

However, median filtering also removes very fine details and sometimes changes 
signal structure. The main reason is that the median filter uses only rank-order 
information of the input data within the filter window, and discards its original 
temporal-order information. To avoid the damage of “good” image pixels the 
switching scheme is introduced [5]. The idea of this median filter modification is 
based on impulse noise detection. If the impulses can be detected and their positions 
are correctly located in the image, it is feasible to replace the impulses by the best 
estimates using only uncorrupted pixels. Self-organizing neural networks [6], fuzzy 
techniques [7] or other methods can be used on the detection step. 

In the work [8] authors present a median-based switching filter, which is called 
progressive switching median (PSM), where both the impulse detector and the noise 
filter are applied progressively in iterative form. The main advantage of such method 
is that some impulse pixels located in the middle of large noise blotches can also be 
properly detected and filtered. Another interesting approach for impulse noise 
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removal is adaptive median (AM) filter [9]. It has variable window size for removal 
of impulses while preserving sharpness. Simulations on test images with PSM and 
AM filters confirm that these algorithms are superior to standard median filters in 
removing impulse noise.  

The new based-median neural network adaptive switching (NASM) filter is intro-
duced in this paper. It uses advantages of filters considered above. The neural network 
was included into impulse detection step to improve algorithm characteristics. 

The main tasks of this work are the development and testing of complex NASM 
algorithm and its comparison with different median type filters modifications with 
impulse detection scheme. The paper is organized as follows: in Section 2 we 
describe the proposed NASM algorithm. Section 3 shows the simulation results. 
Conclusions and directions for future work are given in Section 4. 

2   Impulse Noise Detection and Removing 

The noise considered in this work is bipolar salt-and-pepper impulsive noise which 
means fixed values 0 (pepper) and 255 (salt) for all the impulses. This model is 
mathematically expressed as 
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where pn = pp = 0.5R, ϕi denotes the uncorrupted (good) pixel values, 0 – fixed value 
of the negative impulses, 255 – fixed value of positive impulses, R – noise ratio  
(0 ≤ R ≤ 1) and xi denotes the pixel values of the degraded image. 

2.1   Impulse Detection 

Impulse detection procedure includes two steps: the first step is the preliminary 
impulse detection and the second step is the neural network impulse detection which 
is used to correct the preliminary result. The preliminary impulse detector can find 
almost all impulses for salt-and-pepper noise model, but some “good” pixels with 
values equal to salt or pepper values could be detected as impulses too. Network 
allows distinguishing such pixels from impulses and it is used to obtain final result of 
impulse detection.  

Preliminary Impulse Detection. Preliminary impulse detection algorithm uses two 
images. The first represents corrupted image {xi}, which displays values of pixel at 
position i = (i1, i2). The second is a binary flag image { fi}, where the binary value fi 
is used to indicate whether the pixel i has been detected as an impulse, i.e., fi = 0 
means the pixel i is good and fi = 1 means it is an impulse. In the beginning, we 
assume that all the image pixels are good, i.e., fi ≡ 0. 

Then for each pixel xi we find the minimum and maximum values of the samples 

in a WD × WD window (WD is an odd integer not smaller than 3). If we use W
iΩ  to 

represent the set of the pixels within a W× W window centered about i 
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After this we use simple measurement to detect impulses 
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The received binary flag image { fi} is the result of preliminary detection step. 

Neural Network Impulse Detection. Neural network impulse detection algorithm 
uses three images. The first represents corrupted image {yi}. The second is a binary 
flag image { fi} obtained by preliminary impulse detection. And the third is also a 
binary flag image {gi} which is used to write the final impulse detection result. At 
start we assume {gi} equal preliminary impulse detection result, i.e., gi ≡ fi.  

For each pixel detected as an impulse by preliminary detection we apply a network. 
There are two premises for network topology selection. The first is the size of input 
vector and the second is the size of output vector. During examination of training data 
we found that the most information consists in seven local characteristics of pixel. 
They are pixel value, medians and dispersions for different neighborhoods of 
estimated pixel. Here we use only pixels with fi = 0 for calculating of such values. Let 
MW denote the number of the pixels with fi = 0 in the W× W window. If MW is even, 
the median calculates as arithmetic mean of two middle elements of sorted data. Then, 
if  M3 more then 0, we preset elements of input network vector v 

iyv =0  

iijj yfyv −Ω∈== } ,0{Med 3
1 j         } ,0{Disp 3

2 ijj fyv Ω∈== j  

iijj yfyv −Ω∈== } ,0{Med 5
3 j          } ,0{Disp 5

4 ijj fyv Ω∈== j  

 iijj yfyv −Ω∈== } ,0{Med 7
5 j          } ,0{Disp 7

6 ijj fyv Ω∈== j . 

(5) 

The dimension of output vector in compliance with current task was selected to be 
equal to one in the case of two different output states (“good” and “bad”). In our 
algorithm three-layer network with SD neurons in hidden layer is used. During 
experimental work we found out that SD can’t be less than five.  

Let Di denote the output value of network with range [0;1] for pixel at position i, 
where Di approaches to 1 confirms that the pixel was detected as an impulse correctly 
and if Di approaches to 0 means that the pixel with high probability is “good”. Then 
we use simple measurement to pass corrected solution about pixel  
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The received binary flag image {gi} is the result of impulse detection procedure.  

2.2   Noise Filtering 

Two image sequences are generated during the filtration procedure. The first is a 

sequence of gray scale images, }},{,},{},{{ )()1()0( ⋅⋅⋅⋅⋅⋅ n
iii zzz , where )0(

iz  denotes the 

pixel value at position i  in the initial noisy image, and )(n
iz  represents pixel value at 

position i in the image after the nth iteration. The second is a binary flag image 

sequence, }},{,},{},{{ )()1()0( ⋅⋅⋅⋅⋅⋅ n
iii hhh , where the binary value 0)( =n

ih  means the 

pixel i is good and 1)( =n
ih  means it is an impulse. The initial flag image }{ )0(

ih  is the 

impulse detection result }{ ig , i.e., ii gh ≡)0( . 

In the nth iteration ),2,1( ⋅⋅⋅=n , for each pixel )1( −n
iz , we first find its median value 

)1( −n
im  of a FF WW ×  ( FW   is an odd integer and not smaller than 3) window centered 

about it. The median value here selected from only good pixels with 0)1( =−n
ih  in the 

window. Let M denote the number of all the pixels with 0)1( =−n
ih  in the FF WW ×  

window. If M is even, then median calculates as arithmetic mean of two middle 
elements of sorted data. If 0>M , then 
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The value of )(n
iz  is modified only when the pixel i is an impulse and M is greater 

than 0: 
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Once an impulse pixel is modified, it is considered as a good pixel in the subsequent 
iterations 
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The procedure stops after the NFth iteration when all of the impulse pixels have been 
modified, i.e., 

.0)( =
i

N
i

Fh  (10) 

Then we obtain the image }{ )( FN
iz  which is restored output image. 
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3   Simulation Results 

In our experiments, the original test images are corrupted with fixed valued salt-and-
pepper where negative and positive values are 0 and 255 respectively with equal 
probability. Mean square error (MSE) is used to evaluate the restoration performance 
in our experiments. MSE is defined as 

−=
i

iiu
N

MSE 2)(
1 ϕ  (11) 

where N is the total number of pixels in the image, ui and ϕi are the pixel values at 
position i in the test and the original images respectively. 

To implement NASM filter we need to define three parameters: WD, SD and WF. 
They are not sensitive to noise ratio and the best results for the most of the test images 
were obtained with WD = 7, SD = 5 and WF = 3. 

Average representation of neural network influence on the algorithm performance 
for the set of test images is shown on Fig. 1, where ASM and NASM algorithms with 
switched off and switched on neural network detection step respectively. 

ASM
NASM

706050403020100

M
SE

350

300

250

200

150

100

50

 
R(%) 

Fig. 1. Influence of neural network on the algorithm performance 

From Fig. 1, we can observe that neural network including gives sizeable positive 
effect on the algorithm performance, especially when the noise ratio is not too high. 

A comprehensive evaluation is reported in Fig. 2 and Fig. 3 that compare MSE for 
two images with different detail degree corresponding to six different algorithms: 1) 
simple median filter with window size 3× 3, 2) AM filter for window size from 3 to 
15, 3) PSM filter, 4) iterative median (IM) filter (iterative apply the simple median 
filter) with 3× 3 window and 10 iterations, 5) center weighted median filter (CWM) 
with window size 5× 5  and a center weight of 3 [10], 6) proposed NASM filter. 
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Fig. 2. A comparison of different median-based noise removal algorithms for the test image 
“Stream and Bridge” 
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Fig. 3. A comparison of different median-based noise removal algorithms for the test image 
“Peppers” 

The MSE curves demonstrate that in the presence of salt-and-pepper type of noise 
NASM algorithm is better than the other median-based methods on both images on all 
range of noise ratio. The algorithm was tested on many others images and the similar 
results were obtained.  

In Fig. 4, are shown the restoration results of different filtering methods for the test 
image “Lena” highly corrupted with 60% salt-and-pepper noise. Simple median filter 
can preserve image details but many noise pixels are remained in the image. CWM 
filter performs better than simple median filter, but also misses many impulse noises. 
IM filter can remove more impulses then CWM, but many good pixels are also 
modified, as the result we have the blurred image. PSM filter has problem in case of 
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Fig. 4. Restoration results of different median-based filters. (a) Corrupted image “Lena” with 
60% salt-and-pepper noise. (b) Median filter with 3 × 3 window size. (c) CWM filter with 5× 5 
window size and a center weight of 3. (d) IM filter with 3 × 3 window and 10 iterations. (e) 
PSM Filter. (f) AM filter. (g) Proposed NASM filter. (h) Original test image of “Lena”. 

noise blotches (a place in image where a large number of impulse pixels may 
connect). AM filter shows height result. It can remove most of the impulses, 
preserving details but edges in image are defected. The best result is obtained using 
NASM algorithm. It removes all of the noise pixels while preserving image details 
and edges very well. 

4   Conclusion 

The idea of new impulse noise removal algorithm has arisen on the basis of analysis 
of two known effective algorithms PSM and AM. The basic problem of PSM 
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algorithm is the filtration of highly corrupted images by the salt-and-pepper noise. In 
this case noisy pixels are grouped in blocks. PSM algorithm is unable to remove 
them. AM filter cannot distinguish “good” pixels of image with values equal to salt or 
pepper values from impulses, that is why AM filter defects borders of objects in 
image. The algorithm submitted in this work includes advantages of the filters 
considered above, eliminating their basic lacks. Also algorithm was improved with a 
help of neural network. Neural network positive effect appears especially when 
original image corrupted with salt-and-pepper noise has “good” pixels with values 
equal to salt or pepper values. Network provides the possibility to distinguish such 
pixels from impulses. Proposed algorithm demonstrates high results on overwhelming 
majority of test images. It removes the most of noise pixels while preserving details 
and edges of the objects even in highly corrupted images. This property is important 
for further processing (edges detection or objects recognition).     
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A Shot Boundary Detection Method for News Video 
Based on Rough Sets and Fuzzy Clustering1 
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Abstract. With the rapid growing amount of multimedia, content-based in-
fomation retrieval has become more and more important. As a crucial step in 
content-based news video indexing and retrieval system, shot boundary detec-
tion attracts much more research interests in recent years. To partition news 
video into shots, many metrics were constructed to measure the similarity 
among video frames based on all the available video features. However, too 
many features will reduce the efficiency of the shot boundary detection. There-
fore, it is necessary to perform feature reduction for every decision of shot 
boundary. For this purpose, the classification method based on rough sets and 
fuzzy c-means clustering for feature reduction and rule generation is proposed. 
According to the particularity of news scenes, shot transition can be divided 
into three types: cut transition, gradual transition and no transition. The efficacy 
of the proposed method is extensively tested on more than 2 h of news pro-
grams and 98.0% recall with 96.6% precision have been achieved. 

1   Introduction 

With the increasing proliferation of digital video contents, efficient techniques for 
analysis, indexing, and retrieval of videos according to their contents have become 
evermore important. A common first step for most content-based video analysis tech-
niques available is to segment a video into elementary shots, each comprising a con-
tinuous in time and space. These elementary shots are composed to form a video se-
quence during video sorting or editing with either cut transitions or gradual transi-
tions of visual effects such as fades, dissolves, and wipes. 

In recent years, a large number of metrics have been proposed to segment a video 
into shots by measuring the dissimilarity, or distance, between two or a short se-
quence of adjacent frames [1-3]. These metrics make use of such frames or video 
features as pixel values, statistic features, intensity and color histogram and etc. If the 
measured dissimilarity is greater than some predetermined threshold, the shot bound-
ary is assumed. How to adequately use features available is becoming the hot topic on 
shot boundary detection to improve the detection efficiency with keeping the detec-
tion accuracy, it is necessary to perform feature reduction for every decision of shot 
boundary. To this end, the rough set (RS) and fuzzy c-means (FCM) algorithm based 
                                                           
1  This work was supported by National Natural Science Foundation of China (No.60202004) 

and the Key Project of Chinese Ministry of Education (No.104173). 
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feature reduction and rule generation method is presented. First, features of video 
sequences used as conditional attributes are extracted and the decision attributes are 
also given. By calculating the correlation between conditional attributes, the impor-
tance of conditional attributes can be obtained. The final features can be achieved by 
clustering feature attributes with FCM. For each class, the fuzzy if-then rule is gener-
ated for decision with fuzzy inference he experimental results with real news vid-
eos demonstrate the effectiveness of the proposed scheme. 

2   Basic Concepts of Rough Sets 

The rough sets theory introduced by Pawlak in early 1980s[4-6] is an effective 
mathematical analysis tool to deal with vagueness and uncertainty in the areas of 
machine learning, decision analysis, knowledge discovery from database, inductive 
reasoning, pattern recognition and etc.. 

Definition 1: Let R be an equivalence relation on a universal set X. Moreover, let X/R 
denote the family of all equivalence classes introduced on X by R. One such equiva-
lence class in X/R, which contains Xx ∈ , is designated by [x]R. For any output class 

XA ⊆ , we can define the lower and upper approximations, denoted as )(AR  
and )(AR , which approach A as closely as possibly from inside and outside respec-
tively. Here, the union of all equivalence classes in X/R that are contained in A and the 
union of all equivalence classes in X/R that overlap with each other in A are defined 
respectively as 

},][]{[)( XxAxxAR RR ∈⊆=                                      (1) 

},][]{[)( XxAxxAR RR ∈≠∩= φ                                  (2) 

Definition 2[7]: Let U be a finite set of objects called the universe. A is a finite set of 

attributes, and V is a set of attribute values, where 

aa A
V V

∈
= , 

Va is called the domain of a. f is an information function, f: U × A → V, for every x 

∈ U and a ∈ A, f (x,a)∈ Va. By the information system we will understand a quadruple 

S = < U, V, f, A >. Then, a decision table is defined as an information system, A = 

(U,V, f, C D). The positive region of C to D is defined as 

/ ( )
POS ( ) ( )C

X U IND D
D C X

∈
=                                                    (3) 

In condition attributes, some attributes play an important role for classification re-
sults, while the others may not be more effects on classification results. So the impor-
tance or dependence of attributes can be used to measure the importance of classifica-
tion results and the attributes can be deducted. 

Definition 3: Let P and Q be the attribute sets (such as condition attributes and deci-
sion attributes). RQRP ⊆⊆ , : },,,{ 21 lXXXPU = , },,,{ 21 lYYYQU = . We say 
that Q depends on P in the degree of  k on P if  
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U

Q
Qk P

P

)(POS
)( == γ                                           (4) 

Where | |⋅  denotes the cardinality of a given set. Thus the coefficient k expresses the 

ratio of all elements of the universe which can be properly classified into blocks of the 
partition U/I(Q) with employing attributes P. It can be used to deal with consistency 
of information. 

3   Shot Boundary Detection Scheme Based on RS and FCM 

As mentioned in literatures, the selected low-level features are essential to achieve 
high accuracy for shot boundary detection. But there are too many features available 
in the video. By choosing the most appropriate features to represent a shot or video, 
the computational burden will be reduced which induces high efficiency. So, the fea-
ture optimal choice method based on RS and FCM algorithm is introduced. 

3.1   Fuzzy c-Mean Algorithm 

As an effective unsupervised analysis tool, the FCM algorithm has been widely used 
in many fields, including communication [8], medical treatment [9], training of neu-
tral network [10] etc. Recently, it has been introduced into content based video index-
ing and browsing by more and more researchers [11, 12]. In addition, the researchers 
used the RS and K-means clustering to segment images [13]. Shi [14] developed the 
hyper spectral band reduction based on RS and fuzzy c-means clustering.  Here, we 
introduce the RS and fuzzy clustering into the field of shot boundary segmentation. 
The basic FCM algorithm can be referred to [15] for more detailed discussion. 

3.2   Feature Selection Based on RS and FCM 

To detect the video shot boundaries, 12 candidate features are usually extracted for 
common use as follows. 

(1) The red (R), green (G) or blue (B) component in RGB model; 
(2) The hue (H), saturation(S) or value (V) component in HSV model; 
(3) Gray-histogram (G-H); 
(4) Color-histogram: the color histogram of RGB model (Rgb-H) and the color  

histogram of HSV model (Hsv-H) respectively ; 
(5) Statistic features: mean (M), variance (St) and skewness (P). 

Here, the extracted features from news videos are served as condition attribute set 
},,,{ 21 ncccP =  and the corresponding transition types of shots is defined as deci-

sion attribute set, Q = d. To select the primary features for decision, the FCM algo-
rithm is employed to analyze the classifying capability of various features  

)(dx
kck γ=    nk ,,2,1=                                     (8) 
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Through clustering, the closest feature to the center is selected as the primary fea-
ture. While, )(d

kcγ  reflects the whole classification capability of features. The classi-
fication capability of different features is different for various video transitions. So it 
is not enough accurately for measuring similarity to directly use )(d

kcγ as clustering 
feature vectors. The definition above can be modified as  

},,,{ 21 kmkkk xxxx =                                                  (9) 

where, , ( )k j k j jx c Y Y= , mj ,,2,1= , which represents the recognition rate of each 
shot transition to the k-th feature. For the same transition shots, the features that have 
the same classification results are thought to be similar. Through classifying, the xk 

( 1,2, ,k n= ) can be divided into feature groups with the similar classification capa-
bility. Then according to maximum membership rules and the characteristics of strong 
correlation between closed features, one feature is selected in each feature groups. 
Then, an equivalence deduction of original high dimension features is obtained. 

3.3   Rules Generation 

There is a shot transition or no transition in each demonstration, including cut transi-
tion, dissolve transition, wipe transition, zoom, pan, object motions, flash, the affects 
of caption appearance and disappearance in a shot. Then decision set includes cut, 
gradual and no transition. Table 1 gives the information of 30 test video clips with 
their features and fuzzy membership of variables. The fuzzy membership functions of 
features are shown in Fig.1.  

)(vμ
1μ 4μ

3μ2μ 5μ

 

Fig. 1. Definition of the fuzzy variable in Table 1 

From the decision table, the feature vector for FCM clustering, the classifiable 
ability of every feature to different shot transition can be calculated by (9). x1,1=8/12, 
x2,1=8/12, x3,1=7/12, x4,1=11/12, x5,1=0, x6,1=7/12, x7,1=7/12, x8,1=10/12, x9,1=11/12, 
x10,1=8/12, x11,1=9/12, x12,1=10/12; x1,2=11/12, x2,2=11/12, x3,2=0, x4,2=10/12, 
x5,2=11/12, x6,2=11/12, x7,2=11/12, x8,2=12/12, x9,2=12/12, x10,2=8/12, x11,2=9/12, 
x12,2=10/12; x1,3=0, x2,3=0, x3,3=10/12, x4,3=0, x5,3=0, x6,3=1/6, x7,3=0, x8,3=0, x9,3=0, 
x10,3=0, x11,3=0, x12,3=6/6. And the clustering results are shown in Fig.2 and Fig.3. 

According to the clustering results and maximum membership rules, the rules of 
shot transition can be obtained as follows. 
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(1) If 5μ=H or 4μ=H  and 5μ=− HHsv  or 4μ=− HHsv and 5μ=m or 

4μ=m , Then there is no transition  

(2) If 1μ=V or 2μ=V  and 1μ=− HG or 2μ=− HG and 1μ=m or 2μ=m , Then 

there is a cut transition   
(3) If 3μ=V  and 3μ=P , Then there is a gradual transition. 

Table 1. The decision table for shot transition 

Condition Attributes Set Decision Set 
No. 

R G B H S V G-H 
Rgb
-H 

Hsv
-H 

M St P Type D 

1 L L L Sr L L M M M L Sr Sr Zoom N 

2 Lr Lr Lr Lr Lr Lr Lr Lr Lr L L L Cut C 

3 Sr Sr Sr Sr L Sr Sr Sr Sr S Sr Sr Pan N 

4 Sr Sr Sr Sr Sr Sr Sr Sr Sr Sr Sr Sr No N 

5 Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Cut C 

6 M M L M L M M M M M M M Wipe G 

7 Sr Sr Sr Sr Sr L Sr Sr L Sr Sr Sr No N 

8 Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Cut C 

9 Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Cut C 

10 Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Cut C 

11 M M M M Sr M M S S M M Sr No N 

12 M M M M M M M M M M M M Wipe G 

13 Lr Lr Lr S Lr Lr Lr Lr Lr Lr Lr Lr Cut C 

14 M M M L L M M M M M M M Wipe G 

15 Lr Lr Lr Lr S Lr Lr Lr Lr Lr S Lr Cut C 

16 Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Cut C 

17 Sr Sr Sr Sr Sr Sr Sr Sr Sr Sr Sr Sr Zoom N 

18 M M S Sr Sr Sr SRr Sr Sr M Sr Sr Zoom N 

19 Sr S S Sr Sr Sr Sr Sr Sr Sr Sr Sr No N 

20 Lr Lr Lr M Lr Lr Lr Lr Lr L Lr Lr Cut C 

21 S S Sr Sr Sr M Sr Sr Sr S L L Zoom N 

22 Sr Sr Sr Sr Sr Sr L M M S Sr Sr Pan N 

23 Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Cut C 

24 M M M M M S M M M M M M Dissolve G 

25 M M L M M M M S SR S S S Zoom N 

26 Sr Sr Sr Sr Sr Sr L Sr L Sr Sr Sr No N 

27 M M S M M M M M M S M M Dissolve G 

28 M M M M M M M M M M M M Dissolve G 

29 L L L L L L L Lr LR L L L Cut C 

30 Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Lr Cut C 

Notice: Lr: Larger; L: Large; M: Middle; S: Small; Sr: Smaller; C: Cut transition; G: Gradual 
transition; N: No transition; D: Decision. 
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Fig. 2. Clustering result in the data space      Fig. 3. The position of clustering centers 

4   Experimental Results 

The method described above is applied to 5 news programs from CCTV-1, whose 
frame size is 352×240 and frame rate is 30 frames per second, which include cut, fade 
and dissolve, as well as zoom, pan and other camera motions and object motions. The 
detail information is shown in Table 2.  

Table 2. The detailed information on the news programs 

News program 1 2 3 4 5  Total 

Duration 34’55” 30’2” 36’26” 24’47” 15’44” 141’54” 
Video shots 374 323 396 247 187 1527 
Cut shots 339 315 390 237 178 1459 
Gradual shots 35 8 6 10 9 68 

Table 3. The comparison of our method with the histogram method (DOH) 

Program video News 1 News 2 News 3 News 4 News 5 Average 

Hits 370 320 388 245 182 1605 

Misses 12 10 16 7 8 53 

False 8 7 8 5 3 31 

Recall 97.8% 97.6% 98.2% 98.0% 98.3% 98.0% 

Proposed 

method 

Precision 96.6% 97.8% 96.1% 97.2% 95.8% 96.7% 

Hits 380 350 400 250 190 1570 

Misses 30 15 46 22 17 130 

False 36 42 50 25 20 173 

Recall 91.8% 95.1% 88.2% 91.0% 90.8% 91.4% 

DOH 

method 

Precision 90.3% 88.1% 87.2% 90.2% 89.3% 89.0% 

Here, we conduct an experiment with our method and the histogram-based method 
[15] on the same video clips respectively. The experimental results are summarized in 
Table 3. To evaluate the performance of the proposed scheme of gradual transition 
segmentation, we use the standard recall and precision criteria [12]. 
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Based on the 1,527 shot boundary detected, we achieves 98.0% recall with 96.7% 
precision. And there are two types of false detections in videos. One results from the 
existence of irregular camera operations during the gradual transitions. The other is 
due to a lot of flash effects in a shot. The misses are mainly due to the small content 
change between the frame pairs at some shot boundaries.   

In addition, the total classification capability of each feature, )(d
kcγ , is used as 

the feature vector for clustering, x1=19/30, x2=19/30, x3=7/30, x4=20/30, x5=11/30, 
x6=19/30, x7=18/30, x8=19/30, x9=23/30, x10=14/30, x11=18/30, x12=27/30. Then the 
clustering results are shown in Fig.4 and Fig.5. 

          

Fig. 4. Clustering result in the data space       Fig. 5. The position of clustering centers 

So the selected features for detecting shot boundary are B, H, S, G-H, S, P and de-
cision rules can be obtained as follows 

(1) If 5μ=B or 4μ=B and 5μ=H or 4μ=H  and 5μ=S or 4μ=S  and 

5μ=− HG  or 4μ=− HG and 5μ=S  or 4μ=S , 5μ=P or 4μ=P , Then 

there is no transition; 

(2) If 1μ=B  or 2μ=B and 1μ=H or 2μ=H  and 1μ=S or 2μ=S and 

1μ=− HG  or 2μ=− HG and 1μ=S  or 2μ=S , and 1μ=P  or 2μ=P , 

Then there is a cut transition;  

(3) If 3μ=B and 3μ=H  and 3μ=S  and 3μ=− HG  and 3μ=S  and 3μ=P , 

Then there is a gradual transition.  

The results from the above decision rules achieve 95% recall with 94% precision 
on the same video programs. Though it achieves good performance, the CPU time of 
the method based on the total classification capability is much higher than our 
method, obviously because there are more features used in the former method than in 
our method. And our method has a high accuracy because it is more accordant to the 
actual situation than the former one. 

5   Conclusions 

This paper presents a feature reduction method based on RS and FCM, by which the 
rules for shot boundary detection are obtained. Due to differences of the correlation 
between features, their classification capability is different for various shot boundary. 
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In addition, based on the characteristics of differences from the classification capabil-
ity of various features to different shot transition, the correlation between features can 
be defined using the classification ability of attributes (or dependence between attrib-
utes) in RS theory. Then, by FCM algorithm, the optimal feature reduction can be 
obtained. According to the reduction results, we achieve the decision rules for shot 
boundary detection. Experimental results on five real news videos illustrate the effec-
tiveness and the efficiency of the proposed method. 
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Abstract. Based on the directionality of images and combining the direction in-
formation with multiple resolution analysis, an image enhancement idea via fu-
sion based on directional filter banks is presented in this paper. Combining with 
LP analysis further, an image fusion method based on LPDFB is given in the 
paper. Using the experiments to compare the results, they prove its feasibility 
and validity. 

1   Introduction 

Image fusion processing has become a key point in image processing field as an im-
portant part of information fusion. It is a new technique to deal with different source 
images synthetically. To a two-dimensional image, the intention of fusion is to obtain 
a more exact, comprehensive and reliable image representation for a scene or a target 
by information exaction and integration. The reliability and automatic level of recog-
nition can be improved by image fusion. Recently, image enhancement via fusion has 
been widely used in multi-spectrum image comprehension, medical image processing, 
remote image processing and weather forecast field and so on. 

Generally, image fusion processing is carried out in the following three levels: 
pixel fusion, feature fusion, and decision fusion. Pixel fusion is the lowest-level fu-
sion, which analyzes and integrates the information before the original information is 
estimated and recognized. This process retains information as much as possible and 
provides the detail information with high precision. Feature fusion is done in the mid-
dle level, which analyzes and deals with the feature information such as edge, con-
tour, direction obtained by pretreatment and feature extraction. Decision fusion is the 
highest-level fusion, which points to the actual target. Before fusion, the data should 
be pre-cured to gain the independent decision result, so the cost is high and at the 
same time the information lose can not be avoided. At present, most study is concen-
trated in the pixel fusion and representative methods are based on the pyramid trans-
form [1], wavelet transform (WT) [2-4] and so on. The conventional WT idea consid-
ers the maximal absolute value of wavelet coefficients or local feature of two images. 
Wavelets are very effective in representing objects with isolated point singularities, 
while wavelet bases are not the most significant in representing objects with singulari-
ties along lines. As a consequence, the method based on the WT can not excavate the 
edge quality and detail information, especially for SAR images with abundant texture 
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information and much high frequency information included in the edges. The 
smoothness and lightness of fusion image are the key point of image fusion. Aimed at 
the disadvantages of wavelets, the direction information is combined with multi-
resolution analysis in this paper and we construct an effective directional filter banks 
(DFB) [5-6], further combining with LP decomposition. A method of image En-
hancement via fusion based on Laplacian Pyramid directional filter banks (LPDFB) is 
presented in this paper. 

2   Image Enhancement via Fusion Based on the DFB and LP 

2.1   Laplacian Pyramid (LP) Decomposition 

LP [7-8] is a multi-scale data representation. It captures data in a hierarchical manner 
where each level corresponds to a reduced resolution approximation. The basic idea 
of the LP is as Fig.1. The process can be iterated on the coarse version. 

M↓ M↑X

c

d

     

M↑ X̂c

d  
(a)     (b) 

Fig. 1. LP analysis and synthesis sketch map. (a) Analysis. The outputs are a coarse approxima-
tion c  and a difference d  between the original signal and the prediction. (b) Usual synthesis. 

We use a d d×  nonsingular integer matrix M  to represent the sampling operation. 
For an M-fold down-sampling, the input [ ]x n and the output [ ]dx n are related by [9] 

[ ] [ ]
d

x n x n= M  (1) 

For an M-fold up-sampling, the input [ ]x n and the output [ ]ux n are related by 

,
0

d

u

x k n k k
x n

M Z

 
(2) 

The coarse approximation signal 

[ ] [ ] [ ] [ ],
d

k Z

c n x k h n k x h n
∈

= − = ⋅ −M  (3) 

where we denote [ ] [ ]h n h n= − . The up-sampling and filtering operation results in 

[ ] [ ] [ ] [ ] [ ],
d d

k Z k Z

p n c k g n k x h k g n k
∈ ∈

= − = ⋅ − −M M M  (4) 
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Writing signals as column vectors, for example, ( [ ]: )d Tx x n n , we can express 
these operations as left matrix multiplications 

H     and Gc x p c= =   (5) 

where and G correspond to ( M)↓ H and ( M)↑G , respectively. We denote I as the identity 
matrices with appropriate sizes depending on the context. Using this matrix notation 
and according to (5), the difference signal of the LP can be written as 

( )d x p x x x= − = − = −GH I GH  (6) 

Writing (6) as matrix notation and combining with (5), we can write the analysis 
operator of the LP as follows 

( ) ( )c x
d

y

= H
I - G H

A

 
(7) 

In the LP structure, each level generates only one band-pass signal, so the resulting 
band-pass signals of the LP do not suffer from the “scrambled” frequencies.  

2.2   A Construction Method for DFB 

In 1992, Bamberger and Smith [10] explored non-separable filter banks in construct-
ing a 2-D DFB. Minh N Do and Martin Vetterli et al. studied the structured linear 
extension [6]. But by far, the application of DFB is limited in image processing.  

We define sampling operation on lattices in multi-dimensional d

Z system in this pa-
per. Using a d d×  nonsingular integer matrix  to represent the lattice as 

( ) { , },
d

LAT n n Z= ∈M  (8) 

The two-dimensional two-channel tree-structured filter banks decomposition is 
adopted in this paper. Using quincunx sampling lattice, the following matrices are 
possible representations of the two-dimensional quincunx sub-lattice [11] 

1 1 1 1
,     

1 1 1 1

−
= =

−0 1Q  Q  (9) 

The following four basic unimodular matrices are used in the DFB in order to pro-
vide the equivalence of the rotation operation 

1 1 1 1 1 0 1 0
,  ,  ,  

0 1 0 1 1 1 1 1

−
= = = =

−
0 1 2 3

R R R R  (10) 

Here, we use a useful tool — the Smith form, which can diagonalize any integer 
matrix M  into a product UDV , where U and V are unimodular integer matrices and D is 
an integer diagonal matrix [12]. The quincunx matrix in (9) can be expressed in the 
Smith form as 
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 and 
0 1 0 2 2 1 1 1 0 0 3 3 1 0Q = R D R = R D RQ = R D R = R D R   (11) 

Where 

2 0 1 0
 ,    

0 1 0 2
= =

0 1
D D   (12) 

are two 2-D diagonal matrices that correspond to dyadic sampling in each dimension. 
At the first two decomposition levels of the DFB, quincunx filter banks (QFB) are 

used at each level. We choose the sampling matrices in the first and second level to 
be

0Q and
1Q . From the third level, expand the rest of the tree. To achieve finer fre-

quency partition, we use QFB together with re-sampling operations. Re-sampled 
QFB’s of 

0R and
1R are used in the first half of DFB channels, which lead to sub-bands 

corresponding to basically horizontal directions or directions between +45° and -45°. 

2R and
3R are used in the second half of the DFB channels and lead to sub-bands corre-

sponding to the remaining directions. 
DFB can capture the high frequency information of the image, but on the contrary 

for the low frequency information. So before applying DFB, we combine it with 
multi-resolution analysis. We choose LP to pre-treat here. In the LP structure, each 
pyramid level generates only one band-pass signal, so the result signals do not suffer 
from the frequency scrambling effect. The following is the image enhancement 
method via fusion based on the Laplacian Pyramid Directional Filter Banks 
(LPDFB). 

2.3   The Image Fusion Algorithm Based on LPDFB 

Step1: Initialize parameters. We choose “9-7” filter as the LP decomposition filter and 
tree- structured DFB in this paper. The maximal decomposition level is 5.  
Step2: Decompose two local blurry input images respectively using LP and then we 
can obtain coarse approximation images “low1” and “low2” at half size respectively 
and detail images “high1” and “high2” at full size. 
Step3: Using DFB constructed by above method to decompose the detail images 
“high1” and “high2” in step2 independently, and we can get directional sub-band 
images “high-dir1” and “high-dir2” at this level. 
Step4: Take the coarse approximation images “low1” and “low2” in step2 apart as 
input and do the step2 iteratively until complete the initialized decomposition level. 
Step5: Add band-pass directional sub-bands information “high-dir1” and “high-dir2” 
as the row vectors to the final output “y1” and “y2”. 
Step6: Low-pass filter the decomposition results “y1” and “y2” and obtain two groups 
of coefficients “c1” and “c2”. 
Step7: Construct a set of new coefficients “c” by finding maximal absolute value of 
corresponding position of “c1” and “c2”. 
Step8: Take “c” as the input parameter of LPDFB and reconstruct the image to obtain 
the fusion results. 
 
 



 Image Enhancement via Fusion Based on LPDFB 243 

3   Numerical Experiments and Analysis 

3.1   The Evaluation Standard of the Effect of Image Fusion 

At present, there is not a general and uniform standard to evaluate the fusion image. So 
we use information entropy, average grads and standard deviation to analyze the fusion 
images. 

 Information Entropy(IE)[13]: According to information theory, the information 
entropy of an 8 bit image is 

255

2
0

log
t t

t

E p p
=

= −   (13) 

where tp  is the probability that pixel value is t. Information entropy indicates the 

change of information capability after fusion. The greater the entropy is, the more 
information in images. So the better fusion images are. 

 Average Grads(AG)[13]: We use g  to represent average grads. It can reflect the 

detail contrast of images sensitively. Therefore we can use it to evaluate the clearness 
of images. The formula is 

2 2

( 1 ) ( 1 )

1 1

( , ) ( , )1
2

( 1)( 1)

M N
i j i j

i j

i i

f x y f x y
g

x xM N

− −

= =

∂ ∂
= × +

∂ ∂− −
 (14) 

where ( , )f x y  is image function, M and N  are the number of row and column re-

spectively. In general, the greater it is, the clearer the image. 

 Standard deviation(STD) [13]: We use std to indicate sample standard deviation. It 
is an important index to weigh the information capability of images, also can evaluate 
the contrast. The formula is 

1

2
2

1

1
( )

1

n

i
i

std x x
n =

= −
−

 (15) 

where x  is the mean of pixels, ix  the pixels value. In general, the greater it is, the 

more information it increased. That is to say, we can find more information in it. 

3.2   Numerical Experiments 

To show the performance of the method in this paper, we choose a common natural 
image and a SAR image to experiment. Both the images are 512×512. In the ex-
periments, we use “sym4” wavelets, which is a family of near symmetry wavelets. 
To obtain external results, we do 2-level and 5-level WT decomposition respec-
tively. 
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3.2.1   Clock Image Fusion Experiments 

                               
(a) clock No.1 blurred image  (b) clock No.2 blurred image   (c) 2-level WT fusion result 

                
(d) 5-level WT fusion image    (e) LP directional filter banks fusion result 

Fig. 2. clock image fusion results 

Table 1. Comparison of “clock” image fusion results using different methods 

Images IE  AG  STD  
clock No.1 blurred image 4.8370 3.1994 51.0468 
clock No.2 blurred image 4.7995 2.3342 51.3058 
2-level WT fusion result 5.0952 3.2933 51.6693 
5-level WT fusion result 5.1094 3.8666 52.1719 

LP directional filter banks result 5.1158 4.0440 52.3658 

3.2.2   SAR Image Fusion Experiments 

                               
(a) SAR image No.1        (b) SAR image No.2         (c) 2-level WT fusion result 

                
(d) 5-level WT fusion image     (e) LP directional filter banks fusion result 

Fig. 3. SAR image fusion results 
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Table 2. Comparison of SAR image fusion results using different methods 

Images IE  AG  STD  
SAR image No.1 3.7441 8.9689 65.2375 
SAR image No.2 3.7806 8.2740 66.4160 

2-level WT fusion result 5.0756 5.3747 61.1428 
5-level WT fusion result 5.0706 1.3382 55.1222 

LP directional filter banks result 5.0793 11.8071 69.4398 

3.3   Experiments Analysis 

From the above experiments, we obtain two groups of numerical data (see Table 1 
and Table 2). According to the index in section 3.1 and combining visual effect, 
firstly we can find that the information entropy of the images after fusion by several 
methods is higher than original images. It shows that the information capacity is in-
creased. Further more the information entropy obtained by LPDFB method is higher 
than by 2-level and 5-level WT methods. Also the average grads and standard devia-
tion of fusion images are increased. It shows that fusion images reflect the detail fea-
ture of images better and each index obtained by LPDFB method is higher than by 2-
level and 5-level WT methods. It is benefit for target estimation and auto-
classification. In SAR image experiment section 3.2.2, the fusion results by WT idea 
not good and the average grads of fusion images are even lower than original images. 
It indicates that wavelets are not good at capture the detail and texture feature while 
LPDFB technique can. 

From the visual effect, in section 3.2.1, the blurred parts are enhanced by several 
methods after fusion. 2-level WT method makes the detail part of the image not clear, 
for example, the plate of the clock is still vague, while 5-level wavelet transform 
makes the images more clear but the serrate edges in quadrate clock is appeared. The 
method presented in this paper not only makes the detail image inosculate together 
but reconstructed fusion result is clear and overcome the serrate edge. In SAR image 
experiment section 3.2.2, 2-level WT enhances the information of original images, but 
makes texture of the light area vague, while 5-level WT result is dissatisfied. The 
reason is that for SAR images with inherent speckle noise, WT strips the low fre-
quency information directly. Consequently the detail information is lost in a certain 
extent. The loss is related to the decomposition level. The less level is, the more loss 
of detail information with more spectral information retained, and the more level is, 
the better spatial detail information representation with worse spectral performance. 
The method presented in this paper enhances the information of original images, also 
retains the texture and detail effectively and leads to the clear enhancement images, 
especially for SAR images. In conclusion, combining the indexes and the visual effect 
of fusion results, the method in this paper is preponderant. 

4   Conclusion 

Based on the wavelets, a Laplacian Pyramid Directional Filter Banks (LPDFB) is 
constructed in this paper. Furthermore a method of image enhancement via fusion 
based on the Laplacian Pyramid Directional Filter Banks (LPDFB) is given. It consid-
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ers that the directional information can be reconstructed and the edge contour can be 
retained effectively, especially for the texture feature of SAR images. The main idea 
of this method is as follows. Firstly, LP decomposition is carried to each original 
image. Each pyramid level generates only one band-pass signal, even for multi-
dimensional cases. The resulting band-pass signals of the LP do not suffer from the 
“scrambled” frequencies by down-sampling the low-pass channel only. Furthermore, 
each detail part is decomposed by directional filter banks (DFB) respectively, and 
leads to two groups of coefficients. Then, according to the rule of finding maximal 
absolute value of corresponding position, we construct a new group of coefficients. 
Finally, reconstruct the fusion images in term of new coefficients. The validity has 
been proved by the emulation experiments. 
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Abstract. Complex images with low signal to noise ratio (SNR) appear in 
various applications. To recover the associated phase images, noise effects, 
as loss of contrast and phase residues that can deteriorate the phase 
unwrapping process, should be reduced. There are various methods for 
noise filtering in complex images, however most of them deal only with the 
magnitude image. Only few works have been devoted to phase image de-
noising, despite the existence of important applications like Interferometric 
Synthetic Aperture Radar (IFSAR), Current Density Imaging (CDI) and 
Magnetic Resonance Imaging (MRI). In this work, a group of de-noising 
algorithms in the wavelet domain were applied to the complex image, in 
order to recover the phase information. The algorithms were applied to 
simulated and phantom images contaminated by three different noise 
models, including mixtures of Gaussian and Impulsive noise. Significant 
improvements in SNR for low initial values (SNR<5 dB) were achieved by 
using the proposed filters, in comparison to other methods reported in the 
literature.  

1   Introduction 

Images produced by systems such as Synthetic Aperture Radars (IFSAR), Current 
Density Imaging  (CDI) and Magnetic Resonance Imaging (MRI) appear as arrays of 
complex numbers with a poor signal to noise ratio (SNR) in many cases. 

Examples of noise sources in the complex images can be the acquisition hardware, 
physiological noise from patients, noisy artifacts provoked by movements during 
image acquisition (MRI, CDI) and phase jitter appearing in IFSAR. In all these cases 
noise produces a deterioration in SNR and a loss of contrast in the image, as well as 
phase residues that deteriorate the phase unwrapping process, used in most 
applications. 

In this paper we pursue to show some issues related to wavelet de-noising for 
phase images that differ from its application to magnitude images. 

Three noise models were considered in this work, which consisted in combinations 
of additive white Gaussian (AWGN) and impulsive noise. Results obtained in [1] as 
well as the algorithms shown in [2, 3] for magnitude images, have been considered as 
a reference for comparison. The noise models associated to complex images have 
been discussed in [2, 3]. Most de-noising algorithms developed for complex images 
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have assumed zero-mean AWGN, contaminating independently the real and 
imaginary parts. Noise distribution in the magnitude image is usually assumed to have 
a zero-mean Rician distribution, which behaves as a Gaussian distribution for high 
SNR and as a Rayleigh one for low SNR. This paper deals with phase images in low 
SNR environments. 

2   Materials and Methods 

2.1   Simulated Image 

The complex simulated image consisted [1, 2] in a magnitude image formed as a 64 x 
64 pixels square with intensity 210 (bright region) centered inside another square of 
size 128 x 128 with 90 units intensity (dark region). The original unwrapped phase 
image was defined as the bi-dimensional Gaussian function  

( ) ( )−+−=
2

2

2

2 6464
exp

vu
uv

vu
A

σσ
ϕ ,                              (1) 

with π7=A , 35002 =uσ   and 10002 =vσ . 

The complex image was formed from the magnitude and phase images. Its real and 
imaginary parts were contaminated with the combinations of AWGN and impulsive 
noise shown in Table 1, where  is the standard deviation for a Gaussian process with 
zero mean and PI  represents the percentages of impulsive noise 

The impulsive noise was modeled in the same way as in [1], where the probability 
of occurrence of an impulse for any part, real or imaginary, is given by 

                IPp −−= 11    .                                                                               (2) 

In Table 1 are shown the global percentage PI   of the impulses to be generated. 
Both the image and the noise were modeled considering and 8-bit resolution for the 
representation of their numerical values. 

 
Table 1. Noise models 

 
   NOISE  MODEL  PI ,  % 

1 60 0 

2 70 3 
3 90 5 

 
2.2   Measurement Parameters 

A set of measurements similar to those performed in [1] were performed, where we 
determined the values of SNR, the number of phase residues (RES), the standard 
deviation (STDEV) and the normalized mean square error (NMSE), defined as  
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where ϕ  is the original unwrapped phase, ϕ  is the recovered unwrapped phase after 

filtering and (i, j) are the píxel values in the direction (u, v). SNR was calculated as 

     

=
NMSE

SNR
1

log10 10 .                                                                          (4) 

The amount of phase residues that appear both in the noisy and in the denoised 
signals were calculated by applying systematically the expression 

    

( ) ( ) =⋅∇=
C

Kdrrr πϕϕ 2 .                                                                         (5) 

Here )(rϕ is the signal phase, )(rϕ∇  is the phase gradient and K is an integer 

number that accounts for the phase residues enclosed in the region C. 
 

2.3   Analysis of Noisy Complex Images  

A noisy complex image nz  perturbated by the presence of AWGN, is given by 

( ) ( )irn jz ηϕρηϕρ +++= sincos  .                              (6) 

Here ρ is the module or magnitude, ϕ  is the argument or phase and 

ir jηηη +=  is the complex AWGN, with zero mean and variance σ . 

By expressing the squared noisy magnitude, and grouping terms, we obtain  
 

)()sincos(2 2222
irirn ηηϕηϕηρρρ ++++=   .                                  (7) 

 

It is desired that 22 ρρ ≅n . The rest of the expression is the noisy influence, 

having AWGN from the real and imaginary parts and a mixture of the noiseless phase 
and magnitude with the noise components. The effect of noise in the magnitude image 
might influence the de-noising process applied to the real and imaginary parts 
independently. To alleviate this problem, the use of unit magnitude phasors (e.g., 
substituting the noisy magnitude by a unit value) was introduced and tested. In this 

case, if nnnz ϕρ ∠= , then nuz ϕ∠= 1 . 

The unit magnitude noisy phasor in a Cartesian coordinate system is  
 

                        nnu jsenz ϕϕ += cos  .                                                             (8) 
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When de-noising is applied to the real and imaginary parts of the complex image, a 
more direct relationship to the phase components will exist without the noisy 
influence from the magnitude. This improved phase recovery from the image. 

2.4   De-noising Algorithms 

A set of filtering algorithms in the wavelet domain was introduced here to improve 
SNR in phase images. The filtering processes begin with the application of the bi-
dimensional Discrete Wavelet Transform (DWT-2D) to both the real and imaginary 
parts of the noisy complex image zn. From this transformation, the noisy DWT-2D 

complex coefficients ch
ojc  ,  are obtained, where the index ch indicates whether the 

coefficient belongs to the real  (re) or imaginary (im) part of the complex image, 
while the terms j and o indicate the decomposition level and the orientation 
(horizontal, vertical or diagonal), respectively. 

The expression of the transformation T for the DWT-2D is given by 

                       [ ]nDDWT
ch

oj zTc 2 , −=   .                                                                    (9) 

The synthesis equation associated to equation (9) was applied to filter the 

thresholded wavelet coefficients ch
ojc  , , as 

                        [ ]ch
ojDDWT cTz  ,

1
2

−
−=  .                                                                 (10) 

The first filtering method described is based in the classical soft thresholding of the 
wavelet coefficients (called SOFT here). Thresholding was applied independently to 
the real and imaginary parts, as 
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 ,

 ,
 ,  (11) 

where thr is the threshold value, which will be discussed in paragraph 2.6. 
The second filtering method (called SOFT_UN) is performed by applying the 

threshold to the wavelet coefficients obtained from the unit-magnitude phasors, as 

                       [ ] nnnUu zzTz ρ/==  ,                                                             (12) 

where ρ is the magnitude image that corresponds to z, and  

                               [ ]uDDWT
ch

oju
zTc 2

 ,
−=   .                                                          (13) 

Now equation (11) is applied to these coefficients and we obtain  

                       = ch

oju
SOFTTHRUNSOFT

ch
oj cTc

 ,
__ ,     .                                         (14) 

In the third filtering algorithm (HARD), the wavelet coefficients of the real and 
imaginary parts of the noisy complex image were hard-thresholded independently. 
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The fourth filtering algorithm (COMP_UN) used hard thresholding followed by 
soft thresholding, where the latter was applied to the unit magntude phasors  

[ ][ ][ ][ ]
HARD

ch
ojDDWTUDDWTSOFTTHRUNCOMP

ch
oj cTTTTc ,

1
22__,

−
−−=  .                 (16) 

In the fifth filter (called AB_HARD), thresohlding was applied to the magnitude 
coefficients, instead of doing this for the real and imaginary parts independently.  

                        ( ) ( )2
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The filtering transformation was in this case 
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The threshold is obtained from the thresholds for the real and imaginary parts as 

( ) ( )[ ] 2

1
22  IMREG thrthrthr += .  

The sixth filter (A_H_S_U.) used hard thresholding of the magnitude coefficients, 
followed by soft thresholding of the coefficients of the real and imaginary parts of the 
unit magnitude phasors. Here         

= −
−−

HARDAB
ojDDWTUDDWTSOFT

UNSOFTHARDAB
oj cTTTTc

_
,

1
22

___
, .             (19)                 

Other filtering alternatives were also studied, including the Wiener filtering [2, 3]. 
We have illustrated here only the cases with which we obtained the best results. 

2.5   Threshold Calculation 

Threshold calculation was made through the median absolute deviation (MAD) 
estimate used in [4], with which the resulting threshold is 

               6745.0
)()log(2 ,1

ch
ocmediann

thr
⋅⋅

= ,                                     (20) 

where n is the number of pixels in the image and )( ,1
ch

ocmedian  is the value of the 

statistical median of the array formed by the absolute value of the wavelet coefficients 
from the first decomposition level. 
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3   Results 

Performance evaluation for the filters was realized using the simulated complex 
image described in 2.2, as well as an RMI phantom. Tables 2 and 3 show the results 
obtained for three out of the six filters described above, corresponding to SNR and 
NMSE for noise models 2 and 3. In all filters the wavelet Bior2.6 was employed, with  

Table 2. Results of filtering in terms of NMSE and SNR, noise models 2 and 3 

Image: Image 1 Wavelet: Bior2.6  Noiseless residues:  0  Trials: 20 
   
                     Noise model  2            Noise model 3 
   
 Filter          NMSE      STDV      SNR     NMSE      STDV     SNR    
   
   NONE        0.9144  5.39e-001    0.97   1.2821  7.85e-001  -0.61 
 
COMP_UN        0.0181  5.70e-002   23.32   0.0137  7.95e-003  19.47 
 
AB_HARD        0.0021  2.86e-003   29.11   0.0085  7.66e-003  22.39 
 
A_H_S_U        0.0018  2.81e-003   30.41   0.0079  7.77e-003  22.78 

Table 3. Results of filtering in terms of phase residues, noise models 2 and 3 
 
Image: Image 1  Wavelet: Bior2.6  Noiseless residues: 0  Trials: 20 
                                      
                    Noise model 2        Noise model 3 
 
    Filter        Nres       stdv        Nres       stdv 
   
      NONE      1396.80     47.75      2149.70     44.17 
          
   COMP_UN         6.50      3.30        12.35      4.85 
       
   AB_HARD         2.50      2.67         5.10      3.08 
     
   A_H_S_U         2.00      2.43         4.40      2.56 

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. De-noising of simulated image, wavelet Bior2.6, J=4, filter COMP_UN 
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J = 4. In all cases the SNR of phase images was less than 5 dB, to consider only low 
SNR environments. Figure 1 shows in the first column the original (wrapped and 
unwrapped) simulated images, in the second column the contaminated images 
(wrapped and unwrapped with an algorithm that does not tolerate phase residues) and 
in the third one the results obtained by using the filter COMP_UN. The simulated 
complex image was contaminated with noise model 2. 

 
 
 
 
 
 
 
 
 
 

Fig. 2. De-noising of phantom image. Wavelet Bior2.6, J=4, filter AB_HARD 
 
Figure 2 shows a phantom image in its original version, where a total of 28097 

phase residues were detected. After filtering with AB_HARD, the number of 
remaining phase residues was 4990 for an 82% decrement. In this case, once the de-
noising process has finished, further processing was applied in order to make more 
uniform the intensity of the background pixels, making the filtered image values in 
purely noisy regions to have low intensity.  

4   Discussion and Conclusions 

The proposed methods constitute a new alternative for phase image de-noising that 
differ from the traditional wavelet domain methods [2, 3, 4, 5] that are based in 
Wiener filtering or in soft thresholding and phase preservation of the wavelet 
coefficients. The filters introduced here showed very good SNR gain, as well as good 
preservation of edges and details in the phase image. This can be attributed to the use 
of hard thresholding in the first filtering stage.  

Soft thresholding showed a high SNR gain for all the noise models used in this 
work, however low edge preservation in some regions of interest was observed. At the 
same time a high suppression of background noise and phase residues was obtained, 
that justified its usage in the second filtering stage. 

The use of unit magnitude phasors showed to be effective to improve SNR. It was 
observed also that it was the magnitude image, and not the phase one, the most 
sensitive to phase changes in the wavelet coefficients. The magnitude image was 
degraded when the real and imaginary parts of the wavelet coefficients were filtered 
independently, while this process led to an improvement of the phase image.  

The noise reduction levels obtained surpass previous results reported in the 
literature [1] without the need of a high computational burden. The usage of 
concatenated filtering and unitary magnitude phasors together with combined 
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thresholding, while not useful for magnitude images, showed a high effectiveness as a 
novel procedure for phase image de-noising in the wavelet domain. 
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Abstract. We describe a method for objective and quantitative evaluation of 
image quality. The method represents a novel use of image enhancement 
concepts. It employs three new measures that evaluate the definition of 
contours, uniform intensity distribution, and noise rate in determining the image 
quality. Because the three measures have clear physical meanings, they can be 
selectively applied according to the viewer’s evaluation criteria. The three 
measures are relatively inexpensive to compute, making them suitable for 
automated ranking of image quality in personal digital imaging devices, such as 
digital cameras. However, the method is equally adept at evaluating other 
digital images such as those on the Internet. Experiments with the method show 
good correlation with visual quality assessment for various image subject types. 

1   Introduction 

With the advent of digital photography, especially the availability of affordable digital 
cameras and camera-equipped mobile phones, there is a flood of digital images taken 
with such equipment and kept in our PCs or on the Web. We need technologies that 
can evaluate the quality of such images to help users select the best ones for viewing 
and storing. In particular, such technologies should be computationally inexpensive so 
they could be implemented in the digital imaging devices. Also, it is desirable that the 
technologies provide meaningful and objective evaluation criteria so as to satisfy 
users’ individual selection needs. 

Certain progress has been made in image quality evaluation in various other image 
processing fields, such as photographic print [1], metallographic microstructure 
pictures [2], medical images [3], satellite photos and video after compression [4-6]. For 
objective evaluation of photographic images, a quality measure based on DCT [7] can 
compare differently processed versions of the same image. The IQM measure 
proposed by Nill [8] can compare different images but is computationally intensive and 
lack physical meaning. 

For effective and high-speed evaluation of image quality, we developed a new 
image quality evaluation method that employs three computationally inexpensive and 
physically meaningful measures to help identify high-quality images. The three 
measures evaluate the definition of contours, uniform intensity distribution, and the 
noise rate of an image. In fact, the three measures are conceptually complementary to 
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similar criteria used in image enhancement, which has seen good progress and real-
world applications in recent years [9,10]. Our work is an important innovation that links 
image quality to enhancement needs, which can help automate the selection of 
applicable enhancement techniques. 

In this paper, we give the derivation of our evaluation measures and demonstrate 
their use and results in trial applications. We also compare our method with the image 
quality measure proposed by Nill [8] analytically and with experimental results. 

2   Related Work 

2.1   Image Quality Measure (IQM) 

Norman B. Nill [8] proposed an image quality measure (IQM) in 1992, which is derived 
from digital image power spectra. The main idea is that all scenes have the same power 
spectrum because of a double stochastic Poisson process. IQM is given by 
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where ),( θρP  is polar coordinate form of the normalized power spectrum of a given 

2-D image consisting of 11 nn × pixels, and 

( ) (0.2 0.45 ) exp( 0.18 )A T T Tρ ρ ρ= + −  denotes the modulation transfer function 

(MTF) for computing the human visual system (HVS) characteristics. The constant T 
fixes the spatial frequency of the peak of the HVS MTF with respect to the image’s 
Nyquist frequency; here 51.1T = . )(ρW  is a modified Wiener noise filter. 

2.2   Analysis of IQM 

The IQM measure is a perspective computing for normally acquired arbitrary scenes, 
by filtering noises and considering the human visual system influence. It is shown to 
be an effective measure for assessing quality of aerial images. However, it is sensitive 
to power spectra changes rather than scene definition or intensity distribution 
changes. Because of IQM’s emphasis on the effect of power spectra, it is sensitive to 
image energy. As a result, it often happens that an image with a high IQM score 
(which suggests a high quality image) is not necessarily better looking from a 
subjective point of view than an image with a lower IQM score. Table 1 demonstrates 
a case where a picture with the best contour definition and clarity (the left side 
picture) receives the lowest IQM score.  

The examples shown in Table 1 and other similar examples suggest that we cannot 
rely on IQM in evaluating the quality of general images.  In the following we describe 
a novel evaluation method that represents a significant innovation in image quality 
assessment. We base our method on image enhancement concepts and define our 
image evaluation factors based on image enhancement technology. 
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Table 1. Examples show visually clearer pictures may receive lower IQM scores 

 
 
Sample 
images 

 
IQM 98.5 148.6 154.3 

3   Image Evaluation Factors 

There are two types of methods in image enhancement technology. One is to enhance 
contour information of images; the second is to filter noises from images. In section 
3.1, we define a contour-volume factor CVFt , which computes a mean contour 

volume per pixel in an image as a measure of the details in the image. In section 3.2, 

we define a noise-rate factor NFt  to consider the noise influence on the image. From 

the information entropy viewpoint, we define a uniform intensity-distribution factor 

UDFt  in section 3.3 to measure the color and intensity distribution of an image. All of 

them have clear physical meanings. 

3.1   The Contour-Volume Factor 

The contour-volume factor CVFt  measures the definition or details of an image. If 

the value CVFt  does not reach a given threshold, it means the image is not clear 

enough. We define the Contour-Volume Factor CVFt  by the following formula: 

=
1 2

21 ,
1

mallover malloverCV mmG
N

Ft )(  (2) 

where )( 21 m,mG  is a convoluted result array, obtained by the discrete convolution 

of the input image array )( 21 n,nF  with the array H in equation (4). N is the number 

of image pixels. The relation between G, F, and H is: 
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The convolution array of the high-pass (the Laplacian operator) form is: 
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Table 2 shows the CVFt  values of three pictures and demonstrates that the clearest 

image receives the highest CVFt  value while the most blurred picture receives the 

lowest CVFt  value. 

Table 2. Representing image quality (detail and clarity) by CVFt values 

 

Sample 
images 

CVFt  53.9 24.0 16.9 

IQM 189.2 114.2 82.6 

Note that for this set of images, IQM also gives the correct score trend. Experiment 
results show the contour-volume factor CVFt  and IQM values correlate positively in 

general as shown in Figure 1 below. 

 
Fig. 1. Positive correlation between experimental values of IQM and CVFt  

We have applied the contour-volume factor CVFt  to many real-world images and 

proved that it works well in measuring image clarity. It even works well for misty or 
foggy scenes as shown in Table 3. Note, however, in this case of foggy scenes, IQM’s 
scoring trend is different from that of CVFt . We consider the CVFt  scoring trend 

shown in Table 3 to be closer to what pleases the human visual experiences. 
The contour-volume factor CVFt  can be affected by noises, because noise points 

may be mistaken for contour points since they are both high frequency components, 
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thereby raising the CVFt  value. The noise-filtering factor described in the next 

section can help overcome this potential problem as well as distinguish noisy (e.g., 
dark) images from the less noisy ones in general. 

Table 3. Measuring foggy images by CVFt values 

 

Sample 
images 

CVFt  55.9 28.1 13.3 

IQM 250.2 179.4 228.6 

3.2   The Noise-Rate Factor 

According to image enhancement technology, a noise image )( 21 n,nF  could 

convolute with the Median Filter MFH  to produce a filtered image )( 21 , nnG . We 

define the noise-rate factor as 

3
2

2

1
ε
δ−=NFt . (5) 

Where [ ]−=
1 2n n

2
2121

2 ,, )(F)(G nnnnδ .  2δ is the noise volume index; the 

higher the 2δ value, the larger volume of noise of the image. The noise volume index 

is normalized by the energy of original image, =
1 2n n

21
22 , )( nnFε , to make 

the NFt  value between 0 and 1. 

Pictures captured under dark illumination condition generally have lower (noisier) 

noise-rate factor NFt  values, as illustrated in Table 4 below. Also, pictures with coarse 

grains (due to improper enlargement, for example) have lower noise-rate factor values.  
As discussed at the end of section 3.1, the noise-rate factor NFt  can be used to 

compensate for errors in contour-volume CVFt -based ranking of image quality.  For 
example, the CVFt  values for the sample pictures in Table 1 are (from the left to the 
right) 37.1, 32.2, and 34.0, respectively.  While this trend is better than that of IQM's, 
it still gives the rightmost, blurriest picture a higher score than the middle, clearer 
version of the same picture.  However, the product NFt  with CVFt  gives the correct 
ranking; the resulting product values are 34.1, 28.0, and 26.5 respectively. 



260 H. Yao et al. 

Table 4. NFt values is lower for a darker (noisier) picture 

 

 

Sample 
Images 

 
 

NFt  0.91 0.86 

3.3   The Uniform Intensity-Distribution Factor 

From information theory, the more uniform the intensity distribution of an image, the 
higher information entropy it contains. So, we define the uniform intensity-
distribution factor UDFt  as follow:  
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where L is the color depth, and kn  denotes the number of all pixels whose values 

equal to the kth color of the color depth. 

UDFt  is defined as a ratio of a pair of logarithm operators  to score the extent of 

the distribution uniformity. UDFt
 
 ranges between 0 and 1, because 
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Note the argument of the numerator in Equation 6 denotes the product of all 
color or intensity distribution for an image, and the argument of the denominator is 
the product of the number of each color in the ideal case – the most equalization in 
color distribution. In order to avoid calculating logarithm of 0, add 1 to each factor, 

and then we see the form 
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The UDFt  factor is used to pick out pictures with uniform intensity or color 

distribution. Table 5 shows an example of such an application. From Table 5, it is 
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clear that the uniform intensity-distribution factor UDFt  reflects the rich hierarchy of 

images. The images from the left to the right with decreasing values of UDFt  , shown 

in Table 5, are downtrend in color distribution.  

Table 5.  Flower images ranked by descending UDFt  values 

 
 
 
Flower 
images 

UDFt  0.86 0.84 0.83 0.77 

4   Computational Efficiency 

The IQM computation is more complex than our method. Its three components, 
)(ρW , square of )( ρTA , and ),( θρP  each contains one or more exponentiation as 

shown in equations 7 through 9 below.  Furthermore, the exponentiations are done (M 
x M) times where 21 nnM ==  as required by IQM. 
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( ) (0.2 0.45 ) exp( 0.18 )A T T Tρ ρ ρ= + −  (8) 
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where ),( vuH  is the discrete Fourier transform of the original image, 

22

MM
vu ,,, L−= , 2 2 /u v Mρ = + , 1tan

v

u
θ −=

. 
In contrast, the most time-consuming part in our method is the NFt  computation’s 

processing with the Median Filter. Experiment results show clear computational 
efficiencies of our method compared with the IQM. On a Pentium4 3.0GHz PC with 
1GB of main memory, an IQM computation requires 0.511 second whereas applying 
our method to the same images of 256×256 resolution requires only 0.012 second for 

CVFt , 0.038 second for NFt , and 0.003 second for UDFt , respectively. 
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5   Conclusion 

In this paper, we describe a novel method that represents a breakthrough in image 
quality assessment. Our work provides a computationally inexpensive technical 
means to assess image quality. The three measures used in our evaluation method, 

namely, the contour-volume factor CVFt , the noise-rate factor NFt , and the uniform 

intensity-distribution factor UDFt  all have clear physical meanings. They may be 

applied individually or jointly to help select images that satisfy specific user criteria. 
The derivation of our evaluation measures follows certain key concepts of classical 

image enhancement technology, which has seen decades of use in processing images. 
The usefulness of such measures can be seen clearly from the results of our 
experiments with a large number and varieties of real-world images. As a potential 
future extension of our work, our measures’ consistency with image enhancement 
techniques could make it possible to employ the measures to automate the 
determination of what enhancement to apply to an image.  
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Abstract. A new system—Monoscale Dual Ridgelet Frame (MDRF) is con-
structed in this paper, which can be viewed as a generalized version of Mono-
scale Ridgelet introduced by Candes. The MDRT takes the Dual Ridgelet 
Frame as its basic component. We show that localizing the Dual Ridgelet Frame 
into small squares, dyadic partition of [0, 1]2, constitutes a dual frame in 

2 2[0,1]L  again. As an example, the high performance of the MDRF for image 
denoising is demonstrated experimentally. 

1   Introduction 

It is well known that separable wavelet system in 2 dimensions can efficiently deal 
with point singularity but fails at dealing with straight singularity. Ridgelet system, 
introduced by Candes in [1], provides a new tool that can optimally represent func-
tions with straight singularity [2]. Donoho introduced an orthonormal basis for 

2 2( )L R —Orthonormal Ridgele that can be thought of as a 2L  substitute of Candes’ 
Ridgelet system and also performs many of the same tasks as the later, for example, 
Orthonormal Ridgelet can also optimally represent functions with straight singularity 
[2]. Orthonormal Ridgelet is constructed as the isometric image of a special wavelet 
basis for Radon space. To obtain orthogonality, Donoho made use of two special 
properties of Meyer wavelet, i.e., closure property under reflection about the origin in 
the ridge direction: , ,1( ) ( )j k j kt tψ ψ −− = , and closure property under translation by half a 

cycle in the angular direction: 1, , 2
( ) ( )ii l i l

w wθ π θ−+
+ = . Note that the latter closure prop-

erty would not hold for other prominent wavelet families such as Daubechies’ com-
pactly supported wavelet families. It is the closure properties that make it possible to 
construct orthonormal basis by removing the duplications. By substituting other or-
thonormal wavelet systems for Meyer wavelet, one can obtain a tight frame instead of 
orthonormal basis since the two special closure properties don’t hold anymore [4]. In 
paper [5], we constructed a system of this kind with frame bound 1 and called it 
Ridgelet Frame. Furthermore, in paper [6], we developed a new dual system for 

2 2( )L R  called Dual Ridgelet Frame constructed using biorthonormal wavelet basis, 
which can be viewed as the generalized version of Orthonormal Ridgelet and Ridgelet 
Frame. 
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These Ridgelet-type methods (in this paper by Ridgelet-type methods we mean 
Ridgelet system, Orthonormal Ridgelet, Ridgelet Frame and Dual Ridgelet Frame) 
deal with straight singularity by transforming them into point singularity first, then the 
resulting point singularity is dealt with by 1-D wavelet in the case of Candes’ Ridge-
let system, 2-D Meyer wavelet in the case of Donoho’ Orthonormal Ridgelet, com-
mon 2-D orthonormal wavelet in the case of Ridgelet Frame and biorthogonal wavelet 
in the case of Dual Ridgelet Frame. 

Based on a partition principle, Monoscale Ridgelet was constructed in paper [7], 
which took Candes’ Ridgelet system as basic component and can also efficiently 
deal with curvilinear singularity with very low curvature in 2-D. In this paper, we 
show that by localizing the Dual Ridgelet Frame into dyadic partition of [0, 1]2 , one 
can obtain a dual frame again, and we call the resulting frame Dual Monoscale 
Ridglet Frame (DMRF). The DMRF can be viewed as a generalized version of 
Monoscale Ridgelet and can also deal with curvilinear singularity with very low 
curvature in 2-D. 

2   Dual Ridgelet Frame and Dual Monoscale Ridgelet Frame 

It is well known that there exists an isometric map from Radon domain ℜ  to spatial 

domain 2 2( )L R  [8]. To construct a dual frame, we first constructed a dual frame in 
Radon domain using biorthogonal wavelet basis. Then, under the isometric map, the 
image of the resulting dual frame in Radon domain is also a dual frame in 2 2( )L R  [6]. 

Let , ,{ , : , }j k j k j k Zψ ψ ∈  and , ,{ , : , }i l i l i l Zω ω ∈  be two biorthogonal wavelet systems 

in 2 ( )L R . For convenience below, we denote the former one by ψ  and ψ . Analo-
gously, we denote the periodization version of the latter one on [0,2 )π  by 

,: ( )per
i lω ω θ=  and ,: ( )per

i lω ω θ= . Obviously, the tensor product { : }wλ ψ ω λ′′ = ⊗ ∈ Λ  and 

{ : }wλ ψ ω λ′′ = ⊗ ∈ Λ  is a biorthogonal system for 2 ( [0,2 ))L R π⊗ , here Λ  is the correla-

tive index set. 
Define orthoprojector Pℜ  from 2 ( [0,2 ))L R π⊗  to Radon domain by  

( )( , ) ( ( , ) ( , )) / 2P F t F t F tθ θ θ πℜ = + − + . (1) 

where 2 ( [0,2 ))F L R π∈ ⊗ . 

Let : 2w wλ λπ′ ′′=  and : 2w wλ λπ′ ′′= . Then, applying Pℜ  on wλ′  and wλ′ , we obtain 

: ( )=( ) 2 ( )
2

I T S
w P w w P wλ λ λ λπℜ ℜ

+ ⊗′ ′ ′′= =  (2) 

: ( )=( ) 2 ( ) 
2

I T S
w P w w P wλ λ λ λπℜ ℜ

+ ⊗′ ′ ′′= =  (3) 

where operator T  is defined by ( )( ) ( )Tf t f t= −  and operator S  is defined by 
( )( ) ( )Sg gθ θ π= + . 
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We had shown that ( )wλ λ∈Λ  and ( )wλ λ∈Λ  are dual frame in ℜ  6. Now let ( )λλρ ∈Λ  

and ( )λλρ ∈Λ  denote respectively the images of ( )wλ λ∈Λ  and ( )wλ λ∈Λ  under the iso-

metric map from Radon domain ℜ  to spatial domain 2 2( )L R . Then it follows that 
( )λλρ ∈Λ  and ( )λλρ ∈Λ  are dual frame also which we called Dual Ridgelet Frame (DRF). 

It follows that for 2 2( )f L R∀ ∈ , we have 

2 2 2 2

2 22

( ) ( )
| , |

L R L R
A f f B fλ

λ
ρ

∈Λ

≤ < > ≤ . (4) 

2 2 2 2

2 21 2 1

( ) ( )
| , |

L R L R
B f f A fλ

λ
ρ− −

∈Λ

≤ < > ≤  (5) 

And 

| , | | , |f f fλ λ λ λ
λ λ

ρ ρ ρ ρ
∈Λ ∈Λ

= < > = < >  (6) 

Below, we will show that based on a localization principle used in [7], a localized 
dual frame can be constructed using DRF. 

Suppose to deal with a bivariate function f  that is smooth away from smooth 

edges and supported on unit square 2[0,1] . We partition the unit square using uni-

formly dyadic squares, and each dyadic square can be expressed as [7] 

1 1 2 2[2 ,2 ( 1)) [2 ,2 ( 1))s s s sQ k k k k− − − −= + × +  (7) 

where s is the scale parameters, both 0s ≥  and 1 2,k k  are integers. Consider the re-

sulting small squares intersected with the smooth edge of f . Hypothesize the edge 

has very low curvature relative to the partition scale. Consequently, it is fairly straight 
in the associated small square, as shown in Fig.1.  

 

Fig. 1. Partitioning of the support of f  
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Let sQ  denote the collection of all dyadic squares at scale s. Then, the function f  is local-

ized smoothly near each of the dyadic squares of sQ  by windows Qw , an orthonormal partition  

of unity selected such that 2 1
s

Q
Q Q

w
∈

= . We localize DRF ( )λλρ ∈Λ  and ( )λλρ ∈Λ  to each dyadic 

square Q . By , ,( )
sQ Q Qλ λρ ∈ ∈Λ  and , ,( )

sQ Q Qλ λρ ∈ ∈Λ  we denote the resulting localized dual 

frame satisfying 

2 2 2 2

2 22
,[0,1] [0,1]

| , |Q Q Q QL L
A fw fw B fwλ

λ
ρ

∈Λ

≤ < > ≤  (8) 

2 2 2 2

2 21 2 1
,[0,1] [0,1]

| , |Q Q Q QL L
B fw fw A fwλ

λ
ρ− −

∈Λ

≤ < > ≤ . (9) 

And 

, , , ,| , | | , |Q Q Q Q Q Q Qfw fw fwλ λ λ λ
λ λ

ρ ρ ρ ρ
∈Λ ∈Λ

= < > = < >  (10) 

Summing (8) and (9) on all squares sQ , we obtain 

2 2 2 2

2 22
,([0,1] ) ([0,1] )

| , |
s s s

Q Q Q QL L
Q Q Q Q Q Q

A fw fw B fwλ
λ

ρ
∈ ∈ ∈Λ ∈

≤ < > ≤  (11) 

2 2 2 2

2 21 2 1
,([0,1] ) ([0,1] )

| , |
s s s

Q Q Q QL L
Q Q Q Q Q Q

B fw fw A fwλ
λ

ρ− −

∈ ∈ ∈Λ ∈
≤ < > ≤

 
(12) 

Using 2 1
s

Q
Q Q

w
∈

= , we have  

2 2 2 2

2 22
,([0,1] ) ([0,1] )

| , |
s

Q QL L
Q Q

A f f w B fλ
λ

ρ
∈ ∈Λ

≤ < > ≤  (13) 

2 2 2 2

2 21 2 1
,([0,1] ) ([0,1] )

| , |
s

Q QL L
Q Q

B f f w A fλ
λ

ρ− −

∈ ∈Λ

≤ < > ≤  (14) 

Multiplying each side in (10) by Qw , it follows that  

2
, , , ,| , | | , |Q Q Q Q Q Q Q Q Qfw fw w fw wλ λ λ λ

λ λ
ρ ρ ρ ρ

∈Λ ∈Λ

= < > = < >  (15) 

Again, summing this equality on all squares sQ  and using 2 1
s

Q
Q Q

w
∈

= , we obtain 

, , , ,| , | | , |
s s

Q Q Q Q Q Q Q Q
Q Q Q Q

f f w w f w wλ λ λ λ
λ λ

ρ ρ ρ ρ
∈ ∈Λ ∈ ∈Λ

= < > = < >  (16) 
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Now, from (13), (14) and (15), we obtain our conclusion that , ,( )
sQ Q Q Qw λ λρ ∈ ∈Λ  and 

, ,( )
sQ Q Q Qw λ λρ ∈ ∈Λ  is a dual frame in 2 2[0,1]L , which we call Dual Monoscale Ridgelet 

Frame (DMRF). 

3   Image Denosing Application 

Below, we will show the performance of DMRF for image denoising application 
through experiments. In these experiments, we employ decimated biorthogonal wavlet 
transform (DWT, 7/9 filter) and undecimated biorthogonal wavlet transform (UDWT, 
7/9 filter) in DMRF respectively, and denote below the former as D_DMRF, the lat-
ter, U_DMRF. We compare the performance of D_DMRF and U_DMRF with those 
of DWT (7/9 filter) and UDWT (7/9 filter). 

Table 1. Comparison of performance using different transforms for image denoising on a 
synthesis image in terms of PSNR  

σ /PSNR DWT UDWT D_DMRF U_DMRF 

10/28.1492 34.5271 36.1701 34.8398 36.6972 

15/24.6368 31.6652 33.5429 32.652 34.7966 

20/22.0855 29.3786 31.5276 31.0169 33.5218 

5/20.1862 28.075 30.2295 29.8569 32.3877 

30/18.5734 26.9885 29.1608 28.5179 31.425 

A synthesis image of size 256*256 with 255 gray levels is tested in our experi-
ments. For DMRF, the partition scale is fixed 3. In all settings, we use the simply 
thresholding procedures ( 3σ ). To study the dependency of the denoising methods on 
different noise levels, the original image is contaminated by additive Gaussian white 
noise with different standard variances, 10, 15, 20, 25 and 30. The PSNR of the de-
noised images, which are obtained by different transforms, versus the full range of 
input noise levels are listed in Table 1. 

Obviously, the denoising method based on U_DMRF substantially outperforms 
those based on others over all noise levels. In addition, for the original image over all 
noise levels, D_DMRF are 1-2 dB higher than DWT but slightly lower than UDWT, 
say, 0.3dB and or so. 

To compare the visual effect of different methods, partial experimental results are 
shown in Fig. 2. Here the noise level is of standard variance 20. When DWT is used, 
artifacts blemish the resulting image seriously (see Fig. 2 (c)). In the case of using 
UDWT, there are few artifacts, however the line-type structures contained in the 
original images blur obviously (see Fig. 2 (d) ). On the contrary, the line-type 
structure is well recovered by using DMRF (see Fig. 2 (e), (f)). 
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(a)                                                      (b) 

   
(c)                                                         (d) 

   
(e)                                                         (f) 

Fig. 2. Denoised images for visual comparison using different methods on a synthesis image 
(with additive Gaussian white noise of standard variance 20) (a) Original image, (b) Noisy 
image, PSNR=22.0855dB, (c) DWT (7/9 filter), PSNR=29.3786dB, (d) UDWT (7/9 filter), 
PSNR=31.5276dB, (e) D_DMRF, PSNR=31.0169dB, (f) U_DMRF, PSNR=33.5218dB 
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4   Conclusion 

We have developed DMRF, which is a dual frame in 2 2[0,1]L . DMRF is based on a 

localization principle and hence, it also can efficiently deal with edges of very low 
curvature as Monoscale Ridgelet. DMRF provides a new tool with potential power for 
various applications, especially for image processing application. Experimentally, the 
high performance of DMRF for image denoising has been obtained on the test image. 
These initial experimental results are very promising. Furthermore, DMRF consists of 
biorthogonal wavelet basis. An outstanding property of biorthogonal wavelet is its 
symmetry that corresponds to linear phase in signal processing application. The 
advantages arisen from the introduction of biorthogonal wavelet into DMRF, we 
believe, will be demonstrated in signal processing especially in image processing 
applications. 
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Abstract. Real time video streaming applications over the internet pose several 
challenging problems due to the time-varying loss/delay network characteris-
tics. Multiple description video coding is one method to alleviate the detrimen-
tal effects caused by these channel variations. However the selection of the 
source that is right for the channel having a desired cost is fundamental to the 
success of the multiple description technique. The proposed approach selects 
the set of descriptions which minimize an objective function for the streaming 
distortion.  

1   Introduction 

Path diversity is generally employed to improve the robustness of communication 
systems to propagation errors. The transmission of information over multiple paths 
with different channel characteristics improves the probability of receiving the infor-
mation from atleast one of the channels. The Internet being a best effort service is 
characterized by variable channel bandwidths, delays and packet losses. Thus for real-
time streaming applications over the internet the use of buffers or the retransmission 
of the data (ARQ) is not desired. One approach to improve the quality of service is by 
the use of multiple description (MD) video coding technique [1]. The MD video cod-
ing method provides good error resiliency without adding any excessive delays. 

In an MD video coding system the video sequence is encoded into two or more in-
dependently decodable descriptions and sent over separate paths through the network. 
The descriptions can be decoded independently. If all the descriptions are correctly 
received and decoded then the highest level of signal fidelity is achieved. However, if 
atleast one of the descriptions is correctly received, then the receiver can still recon-
struct the signal with acceptable quality. 

One of the methods to generate multiple descriptions is by the use of a scalar quan-
tizer. Vaishampayan in [2] has suggested the use of complementary quantizers, 
wherein each quantizer coarsely describes a single source but when combined to-
gether provides a more refined description. An alternative method to create multiple 
descriptions is segmentation of the video sequence in the transform domain using 
decorrelating transforms like the DCT. However, the removal of the correlation be-
tween the coefficients will lead to a less accurate estimate of the source when some of 
the descriptions are lost. This inefficiency can be mitigated to some extent by the use 
of correlating transforms as in [3], which restores the correlation by introducing statis-
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tical redundancies. An improvement over the DCT based transform domain approach 
is suggested by Ashwin et al in [4], wherein a partial decorrelation of the source is 
obtained using the wavelet transform. The major drawback of the above-mentioned 
approaches is that they are stand-alone codecs which are not compatible with the 
commonly employed video standards such as H.26x or MPEG standards. 

The segmentation of the video sequence in temporal space will provide the desired 
compatibility with the commonly used standard codec. Apostolopoulos in [5] has 
suggested a temporal segmentation method by splitting the video sequence into even 
and odd sub-sequences. The major drawback of this method is reduction in the com-
pression efficiency. This decrease in the compression efficiency is due to the decrease 
in temporal correlation between successive frames present in the sub-sequences. Also, 
the prediction error at the decoder end to reconstruct the original source in case one of 
the descriptions is lost, would be more since the odd frames need to be predicted from 
odd frames and even from even. This problem can be solved to some extent by intro-
ducing extra redundancies between the frames present in the odd and even subse-
quences as described in [6]. However the extra redundancies added would not be 
useful when both the descriptions are received. 

In one of our recent work [7] we proposed an improved temporal segmentation 
method by creating multiple intermediate sequences to retain the correlation between 
the adjacent frames present in the original source sequence. However the success of 
the proposed MD approach depends on dynamically matching the source characteris-
tics with that of the channel. Ali et al in [8] proposed a heuristic based solution to find 
the set of channel paths which minimized the streaming distortion for a given set of 
MD sources. This would be intractable in the case of large internet topologies. A 
more practical way of solving this problem is by the selection of the set of sources 
which will suit the channel characteristics. 

In this paper, we consider a scenario where multiple descriptions are to be opti-
mally matched with multiple channels so as to deliver the video stream with minimum 
distortions at receiver end; and propose an approach to achieve the same. 

2   Intermediate Frame Based Multiple Descriptions 

The MD coding scheme divides the source video data stream to ‘n’ (n>1) different 
descriptions. These ‘n’ different descriptions are coded independently and sent over 
‘n’ different channels. The reception of any single description will guarantee a mini-
mum quality of service and more descriptions together improves the quality. The 
correlation between the frames within a particular description is dependent on the 
temporal difference between the same two frames when they were a part of the origi-
nal data stream. In order to obtain the best compression efficiency along with good 
error resiliency this correlation should be the same as that of consecutive frames in 
the original data stream. The segmentation of the source data stream into even and 
odd sub-streams [5] will reduce the correlation between the frames in the individual 
descriptions resulting in a decrease in compression efficiency and error resiliency. 
The insertion of redundant frames as suggested in [6] improves the correlation to 
some extent, but will decrease the MD system performance in the case of reception of 
more than one description.  The Intermediate frame based temporal segmentation 
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approach proposed in one of our recent work [7] retains the correlation between the 
frames in the original data stream leading to an improved performance in both the 
compression efficiency and error resiliency. In the Intermediate frame based MD 
approach the temporal spacing between two adjacent frames is divided into ‘n’ inter-
mediate descriptions as shown in Fig. 1. 

Description 1

Description 2

Source Sequence

t=τ

Combination of
source sequence
and intermediate

frames

 

Fig. 1. Generation of Intermediate frames for n=2 descriptions 

The problem of estimating an intermediate frame given the previous and next 
frame is represented using a conditional probability model. The states in the model 
represent the positions of the macroblock within a pre-defined search region. The time 
‘t’ represents the instant between two adjacent frames at which the intermediate frame 
is to be estimated. The model estimates the probability of finding a macroblock pre-
sent in the intermediate frame to be in a particular state sj at a given time‘t’, given the 
states of the macroblock in the previous and next frame respectively. The state which 
yields the maximum probability ‘p’ for a particular ‘t’ is selected as the position of the 

macroblock in the intermediate frame being estimated. Let ),(1 yxg  and ),(2 yxg  

represent the forward and backward estimate of a pixel in the intermediate frame 
obtained from the previous and next frames respectively.   The two estimates are 
weighted in the ratio of p and (1-p) to obtain the bidirectional estimate of the pixel 

),( yxg  in the intermediate frame. 

                                       ),(*)1(),(*),( 21 yxgpyxgpyxg −+=                   (1) 
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A methodology to select the set of intermediate frame descriptions which minimize 
the streaming distortion to suit the individual channel constraints is described in the 
next section. 

3   Problem of Selection of Description That Best Suits Given 
Channel 

The selection of the source description that is right for the channel is fundamental to 
the success of the multiple description technique. The utilization of the error resil-
iency performance of the MD approach depends on the compatibility of the descrip-
tion characteristics with the channel constraints like bandwidth, delays/losses. The 
error resiliency of the MD approach can be evaluated by the streaming distortion 
parameter. Thus the objective is to select the set of source descriptions that minimize 
the streaming distortion. The streaming distortion parameter depends mainly on the 
following two factors: 

(1) The number of packets of data which are lost during transmission through the 
channel. Each individual frame in the video description is transmitted in the 
form of packets. The number of packets required for a frame depends on the 
significance of the frame in the sequence. For example, the ‘I’ frame is coded 
with more number of bits and the ‘B’ frame with the least number of bits. 
Thus the streaming distortion is significant in case of loss of a frame with 
high amount of information such as an ‘I’ frame.  

(2) The bit-rate of the description that is to be transmitted through the channel. A 
decrease in the bit-rate represents a more compressed data. Any loss of data in 
the compressed bit-stream will result in more distortion when the data is de-
coded. 

The objective is to minimize the effective distortion at the receiver by selecting N 
source descriptions from a finite set of available descriptions, for transmitting on N 
channels with specific characteristics. Objective function in terms of Streaming dis-
tortion is formulated as:  

Minimize Streaming distortion, D=
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        (2)  

where ijPk  is the number of packets transmitted for the jth frame in the ith description 

in a unit time tij which is the time taken to transmit the corresponding frame, ijpe is 

the packet error probability for the jth frame in the ith description, M is the number of 
frames in a description, N is the number of available channels and Bi is the bit-rate 
associated with the ith description. 
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Channel characteristics are time varying and we consider the transmission errors 
are mainly due to burst characteristics which result in packet drops. This implies the 

error probability ijpe  takes a value of either 1 or zero indicating the successful 

transmission of a packet or dropping of the packet as the case may be. In equation 

(2) term ijPk / tij  , represents normally transmitted packet and ijPk / tij  X 

ijpe represents transmitting error. 

The equation (2) simplifies to: 
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As an illustration consider a simple case of transmission through two channels. The 
Streaming distortion for the first frame in description-1 and description-2 is  
given by: 
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The optimum minimum value of streaming distortion can be obtained using a dis-
crete search over the solution space. The solution space is the set of intermediate frame 
descriptions each represented by a unique value of bit-rate (B) and the error –resiliency 
(L) performance for a known channel loss distribution. The distortion parameter for 
each description is different even if the descriptions are passed through the same chan-
nel having a particular packet loss distribution. A modified heuristic tabu-search algo-
rithm to find the optimum description is described in Fig. 2.The proposed algorithm is 
computationally efficient in the sense that the objective function is evaluated only for 
the recent solution set, S={S1,S2,S3}. 

4   Results and Discussion 

In order to quantitatively validate the error-resiliency performance of the proposed 
approach, experiments have been conducted on the first 100 frames of the Foreman 
sequence in the QCIF-YUV 4:2:0 format. 
The frame rate and the GOP size has been set to 30 frames/second and 20 respec-
tively. The standard ITU-T H.264 video codec is used to encode and decode the  
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Fig. 2. Algorithm to select the optimum description 
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Fig. 3. Streaming distortion in channel-1 and channel-2 for a set of 9 descriptions 

descriptions. For the verification of the proposed description selection algorithm the 
number of available channels has been set to 2.The descriptions are subjected to dif-
ferent loss characteristics corresponding to the two different channels. The proposed 
description selection algorithm is applied over the entire description solution set. An 
Intermediate frame description (say (x,1-x)) is referred based on the temporal posi-
tion(x) of each frame in the description with respect to the adjacent previous frame 
and temporal position(1-x) with respect to next frame when it was a part of the source 
sequence. The descriptions with temporal positions (0.5, 0.5) and (0.6, 0.4) were se-
lected as the optimal descriptions for channel-1 and channel-2 respectively based on 
the proposed description selection algorithm. In Fig. 3 the results for the streaming 

Steps: 
1) Choose an initial solution (Bi,Li) in solution space S{B,L}. 
2) The solution space can be split into four sub-sets: 

S1= {set of solutions which have Bit-rate>Bi and losses<Li} 
S2= {set of solutions which have Bit-rate>Bi and losses>Li} 
S3= {set of solutions which have Bit-rate<Bi and losses<Li} 
S4= {set of solutions which have Bit-rate<Bi and losses>Li} 

3) If S4 exists for a particular (Bi,Li) then form a new set S= {S1,S2,S3} 
and repeat from step-1. 

4) If S4 does not exist then evaluate the objective function for each pa-
rameter in the recent solution set and find the minimum. 

Modified tabu-search description selection algorithm
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distortion value are reported for a set of 9 descriptions (represented by their temporal 
position(x) in the source sequence) for channel-1 and channel-2. It can be observed 
that the optimum for channel-2 is the same description (0.5, 0.5). But, since transmit-
ting the same description over both the channels will not yield any improvement in  
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Fig. 4. PSNR in dB vs. Bit-rate in kbit/s for the single description reception 
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Fig. 5. PSNR in dB vs. Bit-rate in kbit/s  for the multiple description reception 

performance in the case of multiple description reception, the description (0.6, 0.4) is 
selected as the one to be transmitted through channel-2.The performance of the se-
lected descriptions is compared with the even-odd redundant sequence approach pro-
posed in [6]. In Fig.4 the PSNR values are reported versus the bit-rate used for the 
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single-description case. The performance of the intermediate sequence descriptions 
for the cases ((0.5, 0.5) and (0.6, 0.4)) are reported. This performance is compared 
with an odd and even sequence of frames having an additional redundancy of 12 
frames. It is clear from Fig.4 that the intermediate-frame MD approach results in an 
improved performance over the odd and even redundant sequence approach. In Fig.5 
the performance comparison of the intermediate frame MD approach with the odd-
even redundant sequence approach in the case of multiple description reception is 
reported. It can be inferred from Fig.5 that the Intermediate frame MD approach 
yields an improved performance.  

5   Conclusion 

In this paper we presented a formulation for description selection as an optimization 
problem to select the set of descriptions which suit the channel characteristics. This 
optimization contributes to the error-resilient performance of the Intermediate frame 
MD approach proposed in our previous work. The proposed approach can be applied 
to a varying number of channels each having different channel bandwidth and loss 
characteristics. 
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Abstract. Portable digital cameras have widespread recently. Their image 
quality, low cost and portability have drastically changed the culture of 
photography, today. Many professionals start to take photos of documents, 
instead of photocopying them. This paper presents an algorithm designed to 
remove the background of document images acquired through portable digital 
cameras.  

Keywords: Digital Cameras, Document Image Analysis, Background removal. 

1   Introduction 

The last five years have witnessed a fast growth on image quality of portable digital 
cameras. Their image grew in resolution to close to an order of magnitude while their 
price dropped by a factor of at least three. This price-performance improvement 
widened enormously the number of users of digital cameras burgeoning several new 
applications. One of them, completely unforeseen is using portable digital cameras for 
digitalising documents. Professionals of many different areas now use those devices 
as a fast way to acquire document images, taking advantage of their low weight, 
portability, low cost, small dimensions, etc. That attitude gave birth to a new research 
area [5] that is evolving fast in many different directions. 

This paper focus on the automatic background border removal of images of 
documents obtained with portable digital cameras. An algorithm for that purpose 
should impose as few restrictions as possible, because users tend to acquire those 
document images in non-ideal conditions of colour, texture, illumination of the surface 
the document is placed on for digitalisation, perspective camera-document, etc. 

The problem presented bears some resemblance with removing borders of 
monochromatic documents digitalized with automatically fed scanners 
[1][2][3][4][9]. Depending on a number of factors such as the size of the documents, 
its state of conservation and physical integrity, the presence or absence of dust in the 
document and scanner parts, etc. very frequently the image generated is framed either 
by a solid or stripped black border. This undesirable artifact, also known as marginal 
noise, not only drops the quality of the resulting image for CRT screen visualization, 
but also consumes space for storage and large amounts of toner for printing. 
Removing such frame manually is not practical due to the need of a specialized user 
and time consumed in the operation. 
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Although the disadvantages and problems introduced by background borders in 
images acquired with portable digital cameras were the same as in monochromatic 
scanned documents, the solutions to the two problems are completely unrelated. The 
main aspect is that the “nature” of the background noise introduced by digital cameras 
may be completely unpredictable. To the best of the authors´ knowledge, the 
algorithm presented herein is the first of its kind. 

2   Document Features 

The test images for the algorithm proposed here were bureaucratic document images, 
pages extracted from magazines and phone directories. The bureaucratic documents 
range from typeset letters, hand filled-in forms, to handwritten documents. Most 
documents make use of translucent paper in such a way that back-to-front interference 
was not observed [5][8]. No glossy paper was tested. Documents range in size from 
A5 to Legal, with predominance of size around A4. Some of them may include black-
and-white or colour photograph. The state of conservation of documents also varies 
widely. Documents may have damages that make noisy borders irregular in shape, 
thus increase the computational difficulty for their automatic removal. The only 
restriction imposed to documents is that there is an at least 2-pixel separation frame 
between the document background (paper) and document information. Figures 01 to 
04 exemplify some of the document images tested for border removal. 

The background to be removed served as support for taking the photography of the 
document and may be of any kind of colour or texture, provided that there is a colour 
 

.

 

 

Fig. 1. B&W document on dark background 
(Size 140.5 KB JPEG) 

 
Fig. 2. B&W document on light non-uniform 
background with texture (Size 367 KB JPEG) 
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Fig. 3.  Colour document on non-uniform 
colour background with texture (375.6 KB)

 Fig. 4. B&W document with text highlighted 
on colour background with texture (338.9 KB) 

difference of at least 32 levels between the image background and at least one of the 
RGB components of the most frequent colour of the document background (paper). 
The way the most frequent colour is found is explained below. 

3   The New Algorithm 

The proposed algorithm starts by splitting the image into nine regions. Statistical 
analysis is made in the central region to identify the colour of the pixel that 
corresponds to the background information of the document. Two axes are “drawn” 
on the photo frame. From the origin of the axes the algorithm moves outwards 
looking for the document border in the image. Once identified the intersection of the 
document border and the axes, the algorithm defines four border regions. Pixels in 
each of these regions are classified and the border contour is found. The document 
image is cropped as the internal area of the contour. In what follows, the algorithm is 
detailed. 

3.1   File Format Conversion 

The first step of the algorithm is to open the original JPEG-compressed image 
acquired from the camera and generate an uncompressed BMP equivalent. Any 
standard tool for image processing may be used for this file format conversion. The 
BMP file is used to generate a matrix of pixels with the corresponding RGB 
components of the image. 
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3.2 Region Splitting 

The image is divided into nine regions of 
similar areas. The most frequent colour of 
pixels of the central region is found and 
stored in a variable fcc. 

3.3   Axes Drawing and Scanning 

The central point in the image is used to 
set the origin of two orthogonal axes that 
split the image in four regions. Scanning 
the axes from the origin outwards one 
analyses the colour of each pixel. If the 
colour of a pixel is within the sphere S, 
centred on fcc, with radius t (tolerance) 
one considers the pixel as document 
background. A pixel may also be 
considered as document background if 
two of its colour components lie within S, 
but the third one lies within 
 the concentric outer sphere S’ of radius 
2t. For the documents analysed  t=16. 

There is no restriction either on 
document information or on colour/texture 
of the border, thus the analysis of the 
continuity of background information will 
provide the only clue for image 
segmentation. 

Whenever scanning the horizontal axis 
outwards if a pixel pi0 is not considered as 
document background that information is 
annotated. If the colour of the next pixel 
outwards p(i-1)0 is within a sphere of radius  
8 centred on the colour of pixel p(i+2)0 then 
pixel pi0 is considered as document 
background and the scan process moves 
further outwards. In this case, most 
possibly  p(i+1)0 and pi0 are pixels of the  

 

Fig. 5. Document with regions 

 

Fig. 6. Document with axes 

i 0
 

Fig. 7. Pixels from axes classified 

document information (notice that this distance is related to image resolution, for the 
camera used 72 dpi). 

Otherwise (p(i+2)0 is not considered document background), one checks if for at 
most two of the RGB-component the colour difference between p(i-1)0 and pi0 is of less 
than 16 levels, then there is a smooth colour transition between non-background 
pixels. Otherwise, there was an abrupt colour transition thus there are chances of 
having reached the framing border or some sort of picture within the document. In 
this case, one tests if the colour of p(i-1)0  is within S and p(i-1)0  is considered document 
background. Otherwise, the document background may have varied (due to the 
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position of the flash, environment illumination, etc.) and one tests if the colour of 
pixel p(i-1)0 is within a sphere of radius 16 centred on the colour of pixel p(i+2)0. If this 
requirement is not met then p(i-1)0 is labelled as non-background. The algorithm now 
moves on analysing the next pixel outwards. 

The same procedure is performed on the other three axes to classify their pixels. 

3.4   Marginal Region Definition 

Once the pixels on the axes have been 
classified and the document limits on 
them have been identified, four marginal 
regions of 25-pixel width are drawn (20 
pixels inwards, 5 pixels outwards). These 
marginal regions are analysed finding 
parameters that compensate differences 
in illumination. For each of the four 
marginal regions the most frequent 
colour fci is found. 

If any of the RGB-colour components 
of the fci obtained has 32 or more levels 
distant from fcc, fci is not considered and 
fcc is used as the most frequent colour for 
that region. 

3.5   Border Detection 

The limits of the document are found 
scanning the image having as starting 
point the bottommost projection of the 
limit pixel on the horizontal axis. 

 

Fig. 8. Marginal regions drawn 

 

Fig. 9. Border detection starting point 

The scan moves vertically until meeting two consecutive pixels of colour within a 
sphere centred on the fci of the leftmost marginal region with radius 32 (border 
finding step). This pixel is marked as document border. 

Now, the algorithm moves left one and bottom five pixels. Then the border finding 
step is repeated until reaching the topmost pixel. The abscissa of the leftmost point 
marked as border serves as the left-cropping limit. 

The procedure described in this paragraph is used for cropping the other margins. 

4   Results Obtained 

The algorithm presented above was programmed in C and its code is available under e-mail 
request to one of the authors. It was executed on an Intel Pentium IV, 2.4 GHz clock, 
512MB RAM and HD IDE and elapsed on average 1.2 seconds per image. One must 
remark that there was no concern about total run-time for the algorithm and that there are 
plenty of possibilities for optimisations. Over 380 images with different features were tested 
yielding satisfactory results. Figures 10 to 13 below present some of the results obtained. 
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Fig. 10. Cropped document of Figure 1 
(Size 78,9 KB JPEG) 

 
Fig. 11. Cropped document of Figure 2  
(Size 222 KB JPEG) 

 

 

 

Fig. 12. Cropped document of Figure 3 
(Size 282.9 KB JPEG) 

 
Fig. 13. Cropped document of Figure 4  
(Size 263.3 KB JPEG) 

In only two cases there were problems in the direct application of the algorithm. 
The first of them is in the case of glossy backgrounds of colour documents and photos 
taken with flash (see Figure 14).  In this case, the image presents a large colour 
variation from the mode in a non-uniform way. This sort of image did not allow the 
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minimal cropping of the border and thus some of the background border remained in 
the resulting image, as may be observed on Figure 15. 

 

 

 

Fig. 14. Colour document in glossy background  Fig. 15. Cropped image of Figure 14 

From the 380 images tested, only the one presented on Figure 16 presented 
problems of loss of information, due to cropping only a part of the document image. 

 

 

 

Fig. 16. Colour document in glossy background  Fig. 17. Cropped image of Figure 16 

One must observe that the documents exhibited in Figures 14 and 16 are highly 
complex exhibiting a large gamut (almost 200,000 colours), several illustrations and 
drawings, very high entropy, printed in low quality paper, etc. 

5   Conclusions and Lines for Further Work 

Portable digital cameras are a technological reality today that opens a wide number of 
challenges in image processing, including document image processing. This paper 
presents a simple, yet efficient algorithm for removing the background of the surface 
that served as support for document during digitalization. 

The new algorithm was tested on 380 images of documents. In all but two of the 
images the background was suitably removed. The two unsatisfactory results were 
found in the case of photos of documents taken with flash on a glossy surface. The 
application of the algorithm introduced provided and average saving on space for 
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image storage of over 40%, thus also saving bandwidth for image transmission 
through networks, and automatically zooming document image for browsers. 

The average processing time was 1.2 s per image, but there is room for introducing 
a large number of code optimizations to make the process much faster. 

The presented algorithm is the first step towards an environment for processing 
photos of document images. The next steps include filling in the remaining 
background border with document background, skew detection and correction, 
compensating lens and perspective deformations, automatic image-to-text 
transcription, amongst other things. 
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Abstract. X-ray digital tomosynthesis (DT) is very useful to PCB inspection 
because it can obtain a cross-sectional image of a local inspection area quickly. 
The image intensifier, which is usually used in DT, distorts X-ray images in 
shape and intensity. Therefore, image distortion correction is one of the most 
important issues in realizing DT system. In this paper, two image distortion cor-
rection methods for an X-ray DT system are presented and their performances 
are compared. The first method is to use a simplified distortion model by a  
distance ratio function in intensity correction, and by 2D point mapping poly-
nomials in shape correction. The second method is to use a general polynomial 
distortion model. The experimental results show a great improvement of the 
second method in compensation speed and accuracy. 

1   Introduction 

X-ray technology has been widely used in many industrial applications for inspecting 
inner defects which can hardly be found by normal vision systems. PCB solder joint 
inspection such as ball grid array (BGA) or flip chip array (FCA) is one of the 
applications that require such an X-ray inspection system[1]. An X-ray cross-sectional 
image can be obtained from two or more images projected from different directions 
by the methods such as tomography[2], laminography[3], or digital tomosynthesis. 

The principle of laminography comes from the geometric focusing effect by a 
synchronized motion between an X-ray source and a detector, which is shown in Fig. 
1. Digital tomosynthesis is a digital version of laminography, where a set of images of 
different views are stored and synthesized through computational operations in a 
computer[4]. It is one of the most useful X-ray cross-sectional imaging methods for 
PCB inspection because it can obtain a cross-section of a local inspection area 
quickly. Thus it has been often applied to PCB solder joint inspection[1,4-7]. 
However, the shape and the intensity of the X-ray images obtained by DT are 
distorted because of the image intensifier used in DT systems. This distortion breaks 
the correspondences between those images and prevents us from acquiring accurate 
cross-sectional images. Therefore, image distortion correction is one of the most 
important issues in realizing DT system. 

In this paper, two image distortion correction methods for an X-ray DT system are 
presented and their performances are compared. The first method is to use a 
simplified distortion model that is built by uniformly spaced grids and their distorted 
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images. The intensity distortion model is based on the distance ratio function between 
two grids, and the shape distortion model is based on two-dimensional point mapping 
polynomials. The second method is to use a general polynomial distortion model, 
which can cope with arbitrary, more complex and various forms of distortion. 
Experimental results show a great improvement of the second method in correction 
speed and accuracy. Also a series of experiments for PCB solder joint image 
acquisition is performed, and the correction performances by the proposed methods 
are compared. 
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Fig. 1. The principle of Laminography and Digital Tomosynthesis 

2   System Configuration and Image Distortion 

Fig. 2(a) shows a configuration of the developed X-ray DT system, which is 
composed of a scanning X-ray tube, an image intensifier, a view selector and a zoom 
camera[7]. An image intensifier with a large input screen is used as an X-ray detector 
so as to get all images projected at various directions. The region of interest of a PCB  
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Fig. 2.  The configuration of an X-ray Digital Tomosynthesis system 
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is projected on a circular trajectory on the image intensifier as the X-ray is steered on 
the trajectory, and eight or more images are sequentially acquired by the zoom camera 
through a view selector. A galvanometer or a rotating prism can be used as a view 
selector. The captured images are saved in the digital memory of a computer, and then 
synthesized to generate a cross-sectional image. 

The curved image input surface of the intensifier, however, distorts both of the 
shape and the intensity of the X-ray images. Fig. 2(b) shows eight distorted images of 
an uniformly spaced grid pattern projected onto the image intensifier according to the 
steered X-ray source location. It is not possible to get an accurate cross-sectional 
image from these distorted images, since the correspondences between the images are 
not maintained anymore. 

3   Distortion Correction by Using a Distance Ratio Function 

3.1   Intensity Distortion Correction 

The central area of the image intensifier is brighter than the peripheral area, since the 
incident angle of the X-ray to the curved input surface of the intensifier varies with 
the incident locations. To compensate for the distorted intensity and make it uniform 
over the image, the distorted intensity should be scaled up to the maximum level of 
the image. In order to do it, intensities are sampled over the image area and the 
distribution is modeled numerically. 

The distorted intensity ),( jidΦ  at a point ),( ji  of an image can be corrected to the 

compensated intensity ),( jicΦ  by dividing by the distance ratio function )( dLf  for the 

point, as given in Eq. (1). 
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Fig. 3.  Distorted intensity profile for a distance ration function 
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where ),( jiLd
 is defined as the distance from the highlight point ),( HH jiH =  to the 

point ),( ji . The distance ratio function )( dLf  has a value decreasing with 
dL  between 

0 and 1, thus plays a role of correcting an intensity 
dΦ  to 

cΦ . To build the ratio 

function )( dLf , 10 intensity values are sampled from the 10 small areas on the path 

from the point H to the point L, as shown in the Fig. 3. The coefficients of the 
polynomial )( dLf  can be determined by least square method. 

3.2   Shape Distortion Correction 

The shape distortion can be corrected by finding a mapping relationship between the 
uniformly spacing grid image and its distorted image. Thus, a point ),( ji in the 

original undistorted image is mapped to a point ),( yx  in the distorted image by the 

mapping relation, as shown in Fig. 4. As the sample data for distortion modeling, this 
paper used the data sets which consist of the uniformly spaced grid points of 11*11. 
There are two features in the shape distortion. One is that the distorted images are 
always symmetric with the projection center line of the x-ray. The other is that the 
peripheral area of the image intensifier is more elongated than the central area. Based 
on the two features, the mapping relationship can be represented by the following 
equations. 
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A distorted line, which is a distortion of an original horizontal line, is modeled by 
using a 2nd order polynomial as shown in Eq. (4). On the other hand, the x coordinate  
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Fig. 4. Two-dimensional point mapping for shape distortion correction 
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values ),( jixk
 of the distorted line are modeled as shown in Eq. (5). The parameters 

)( jPk
, )( jkα , )( jkβ  are functions of j, and they can be modeled by using 3rd order 

polynomials as shown in Eq. (6). The coefficients kk pp 30 ~ , kk aa 30 ~ , kk bb 30 ~  are 

determined by using least square fitting. 

4   Distortion Correction by Using a General Polynomial Model 

4.1   Intensity Distortion Correction 

In this section, the ratio of the intensity of an arbitrary position to the highest intensity 
is modeled by using a general polynomial. Let us assume that the ratio Φ  of the 
intensity in an arbitrary position ),( yx  to the highest intensity of an image is modeled 

in the format of a general polynomial, which can represent an arbitrary form of 
distortion on two dimensional plane. For example, if the ratio is modeled by a 3rd 
order polynomial, a ratio 

kΦ  in a position ),( kk yx  can be expressed as 

CQT
kk ⋅=Φ  (7) 

Where T
kkkkkkkkkkkkk yyxyxxyyxxyx ],,,,,,,,,1[ 322322=Φ , 

TccccccccccC ],,,,,,,,,[ 9876543210= . 

Assuming that 
mkΦ  denotes an actual measurement value of the ratio 

kΦ  in a 

position ),( kk yx , the error 
kEΦ  between 

kΦ  and 
mkΦ  is given by 

mk
T
kk CQE Φ−⋅=Φ . 

The coefficient vector C of a distortion model can be obtained by least square method. 
The squared error 2

ΦE  can be obtained as follows: 
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Therefore, an intensity model 
kΦ  can be obtained by Eq. (7), and it is used as a 

normalizing function to make the intensities uniformly distributed over the whole 
image area. An original intensity value ),(0 yxI  at a point ),( yx  can be scaled into 

),( yxI  by 

CQ

yxI
IyxI

T ⋅
⋅= ),(

),( 0
max

 (10) 

where 
maxI  is the desired maximum intensity value after intensity distortion 

compensation. 
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4.2   Shape Distortion Correction 

This section uses a general polynomial model on two dimensional plane to represent 
an arbitrary form of shape distortion. Let us denote the coordinates of an original 
reference pattern as ),( yx  and those of its distorted one as ),( YX . For example, if the 

distortion is modeled by a 2nd order polynomial, the distorted coordinates ),( kk YX  in 

a position ),( kk yx  can be expressed as ),(),( GSFSYX T
k

T
kkk ⋅⋅=  where 

T
kkkkkkk yyxxyxS ],,,,,1[ 22= , TffffffF ],,,,,[ 543210= , TggggggG ],,,,,[ 543210= , F and 

G are the coefficient vectors of a distortion model. 
Assuming that ),( mkmk YX  denotes the actual measurement coordinates of a distorted 

pattern in a position ),( kk yx , the error 
kE  between ),( kk YX  and ),( mkmk YX  is given by 
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The coefficient vectors F and G can be obtained by least square method. The 
squared error 2

XE  and 2
YE  can be obtained as follows: 
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Therefore, by using F and G of Eq. (13), an arbitrary point ),( YX  in the distorted 

image can be mapped into a point ),( yx  in the reference pattern. Increasing the 

polynomial order will definitely result in a more accurate mapping model. Fig. 5 
shows the result of intensity and shape distortion correction by using a general 
polynomial model. 
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Fig. 5.  Image distortion correction by using a general polynomial model 
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5   Comparison of Distortion Correction Performances 

A series of experiments to get the DT images of BGA was performed by using the X-
ray DT system shown in Fig. 2(a). In the acquired images shown in Fig. 6, the dark 
regions represent the cross-section of the focal plane. The cross-section at the middle 
of the lead ball has the maximum diameter. These DT images were acquired by 
integrating the 8 images taken from 8 different off-axis images which are corrected by 
using the distortion correction methods presented in above sections. 

In case of the first method using a distance ratio function, it took 1.81sec in 
correcting intensity distortion and 1.53sec in correcting shape distortion. In case of 
the second method using a general polynomial model, it took 0.32sec in correcting 
intensity distortion and 0.26sec in correcting shape distortion. So to speak, the second 
correction method improved the correction speed by 82.6%. On the other hand, the 
accuracy performance results after intensity and shape correction are as follows: the 
error between the corrected images and the original images is about 2.2 pixels in the 
image of 640*480 pixels in case of the first method using a distance ratio function, 
and the error is about 1.5 pixels in case of the second method using a general 
polynomial model. So to speak, the second correction method improved the correction 
accuracy by 31.8%. 
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(a) BGA (b) DT images for the focal plane 1-3  

Fig. 6.  X-ray DT images of BGA 

6   Conclusions 

In order for image distortion correction in an X-ray DT system, this paper presented 
two methods and compared their performances. The first method is to use a 
simplified distortion model by a distance ratio function in intensity correction, and 
by 2D point mapping polynomials in shape correction. The second method is to use 
a general polynomial distortion model. It can model arbitrary, more complex and 
various forms of image distortion on two-dimensional plane. And a series of 
experiments to get DT images of BGA was performed by using the presented 
correction methods. The experimental results showed that the second method 
improved the correction speed by 82.6% and the correction accuracy by 31.8% in 
an image of 640*480 pixels. 
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Abstract. This paper proposes an efficient video watermarking scheme using 
adaptive threshold and minimum modification of motion vectors. Our proposed 
algorithm guarantees the amount of embedded watermark data and minimizes 
modification of original motion vectors to avoid degradation of video quality 
without reducing payloads. Besides, our algorithm can embed and retrieve wa-
termark data without any increment of bit rate and original video contents. Ex-
perimental result shows that the proposed scheme obtains better video quality 
than other previous algorithms by about 0.5~1.1dB. Our scheme can be useful 
to real-time video watermarking which must be compatible to MPEG video 
coding.  

1   Introduction 

The rapid growth of digital media such as DVD, VOD and HDTV has caused an 
overflowing of illegal copies because digital media can be easily replicated without 
any loss. Thus, digital watermarking technology becomes more attractive in research-
ing for their copyright protection and product authentication. A good digital water-
marking system should satisfy the two fundamental requirements [1-3]. Firstly, the 
watermark must be robust against watermark attacks applied to the media content for 
the purposes of editing, compression or even deliberate attacks. Secondly, the water-
mark must be embedded in a transparent way to avoid degrading the perceptual qual-
ity of the original media. Apparently, these requirements may conflict with each 
other, so a good digital watermarking technique is a trade-off between invisibility and 
robustness. Video watermarking techniques have some other features compared with 
general watermarking techniques. The first one is that video watermarking must use 
blind detection in which the detection of the watermarking is performed without any 
original data. The second one is that the watermarking operation should be carried out 
on real time for actual application. The third one is that it must be compatible with the 
                                                           
* Corresponding author. 
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present video coding standards. A wide range of modifications in any domain can be 
used for video watermarking techniques. One technique is digital video watermarking 
which is focused on information hiding in the original video [4,5]. This method in-
serts a watermark by changing the least significant bit or modifying a statistical prop-
erty quickly. However, this is not robust enough to attacks such as filtering. Another 
technique challenges the compress domain such as DCT domain [6-8]. This method is 
robust enough to attacks but must modify the encoder because the watermark is in-
serted after DCT or quantization process. Another technique modifies video bitstream 
[9-11]. This method does not increase bit rate and does not degrade picture quality but 
the amount of watermark data are limited because of the specification of standards. 
Several video watermarking schemes based on motion estimation and motion vector 
have been published [12-14]. In most of the video coding standards, the motion com-
pensation prediction is commonly used. This is a powerful tool to reduce temporal 
redundancies in frames except intra video frames. The concept of the scheme is that 
watermark data are embedded quickly into motion vectors without change of the 
decoding speed and without any incremental change of bit rate in video stream. Be-
sides, this method can embed watermark data on both the compressed and the uncom-
pressed video bitstream. Furthermore, it can retrieve the embedded information with-
out original video contents.  

Thus, in this paper, we propose an efficient video watermarking scheme using 
adaptive threshold and minimum modification on motion vectors. There are two main 
ideas of our proposed algorithm. One is to guarantee the amount of the embedded 
watermark using adaptive threshold according to the accumulation number of the 
desired watermark data and the other is to minimize degradation of video quality 
when the watermark information is embedded to in original data. Therefore, our 
scheme will be useful for software-based real-time video watermarking system which 
must be compatible to MPEG video coding.  

2   State of the Art in Video Watermark on Motion Vectors 

In order to embed watermark information in original data, watermarking techniques 
apply slight modifications to the original data in a perceptually invisible method. To 
hide watermark information in motion vectors one can exploit more efficiently the 
information without any incremental change of bit rate in video bitstream and detect 
the watermark quickly. Zhao et al. [12] proposed a video watermarking scheme. How-
ever, this method relies on the procedure of motion estimation for detecting water-
mark. Zhongjie et al. [13] embedded watermark information into motion vectors on 
MPEG-2 compressions process. In this method, the watermark information is embed-
ded into the horizontal or vertical component of motion vectors according to water-
mark bits. In this scheme, all motion vectors should be updated by the even number 
values beforehand and the watermark was embedded into motion vectors and could be 
extracted blindly. However, this method required too much change of the motion 
vectors. Thus, the change of the motion vectors resulted in the degradation of video 
quality. Zhang et al.[14] proposed a video watermarking method that embedded in-
formation into larger value motion vectors. The larger motion vector magnitude indi-
cated the faster physical moving of the macroblocks. In this case, human eyes cannot 
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perceive well the change of the original motion vector compared with the small mag-
nitude of motion vectors. This scheme was that watermark information was embedded 
into the modified motion vectors only in the condition of large motion vectors. How-
ever, this method does not guarantee the amount of the embedded watermark data 
because of the fixed threshold value. The probability of a motion vector to be modi-
fied by the embedded procedure is greater than 1/2. Therefore, we proposed a method 
that can avoid degradation of video quality without reducing the payloads and retrieve 
the embedded watermark exactly and blindly. 

3   Proposed Video Watermark Scheme 

3.1   The Principle for Watermark Embedding 

We embedded the watermark in the macroblocks that were in the larger motion vector 
magnitudes. The two main ideas for the algorithm, called the adaptive threshold and 
the other is minimum modification on motion vectors. They are as follows: At first, 
the threshold ε  value is set adaptively according to the number of the desired water-
mark data using the histogram of the amplitude of the motion vectors. This process 
guarantees the amount of the embedded watermark data. After calculating the thresh-
old value, we define the feature vectors with two symbols (-1 or 1) which map each 
value to 0 and 1 value respectively. This is used to minimize the modification of the 
motion vectors when the pseudo-random sequence is used as the watermark. It means 
that the average probability of each watermark symbol is 1/2. 

     

(a) 
jj VH ≥                           (b) 

jj VH <  

Fig. 1. Modification process for watermarking 

The principle for watermark embedding is to modify motion vectors when the fea-
ture vectors and watermark sequences are different. Thus our proposed algorithm 
replaces an original motion vector by the larger motion vector which doesn’t change 
the feature vectors. The larger motion vector indicates the faster physical moving of 
the macroblocks. In this case, to change the motion vector will be less perceivable by 
comparing with changing the same value in motion vector when the macroblocks are 
in lower motion vector. This modification process of motion vector is illustrated in 
Figure 1. Our watermarking scheme proceeds as follows: 
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(1) Set the threshold ε  according to the accumulation number of the desired wa-
termark data using histogram technique. 

(2) Calculate the magnitude of the motion vector
iPMV .  

22
iii VHPMV += ,  ( MBi <<0 ), 

ii hH ×= 2 , 
ii vV ×= 2  (1) 

Where, MB is the number of the total macroblocks. The 
ih /

iv  is the i th hori-

zontal/vertical component of motion vector. The precision of motion vector is 
half-pixel accuracy. 

(3) Select the set E  that is the set of the macroblocks for watermarking. 
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Where, F  is a frame, M is the selected macroblocks by the threshold ε . 
(4) Define the feature vector ][ jρ  of ][ ],[ jVjH .  

][][][ jVjHj ⊕=ρ , (  0, njEj i <≤∈ ) (3) 

Where, the symbol ⊕  means XOR(exclusive OR) operation and ][ jH  and 

][ jV  mean modulo 2 operator of X with respect to 2 such as 

)2,mod(][ jHjH = )2,mod(][ jVjV = . 

(5) Updating the feature vector is equal to watermark sequences. It means that we 
always have the probability of which motion vectors are modified less than 1/2 
by the selective inversion of all feature vectors. This process is required for the 
preparatory operation in watermarking, but result of this calculation is so neg-
ligible that it may be ignored. 

=
⊕=

n

j

jWjq
1

][][ρ ,    
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→≤

 vectorsfeature allinvert      2/

 vectorsfeature all changet don'    2/ 

nq

nq  (4) 

(6) The principle for watermark embedding is to modify motion vectors when the 
feature vectors and watermark sequences are different. The watermarking pro-
cedure is shown below. 

program watermarking() 
 foreach( j  in E ) ][][ jWjq ⊕=+ ρ ; 

 if (  2/nq > ) invert all []ρ ; 

 foreach( j  in E ) { 
    if ( ][][ jWj ≠ρ ){ 

      if (
jj VH ≥ )  5.0+= jj hh ; 

      else         5.0+= jj vv ; 

     } 
 } 



298 K.-W. Kang et al. 

3.2   Watermark Detection Approach 

The retrieval process is very simple. This is an inverse process of embedding water-
marking. The algorithm of extracting watermark is described as follows: 

(1) Find the macroblock E  that has the watermark using magnitude of the motion  
          vector 

iPMV  and threshold ε  such as embedding process.  

(2) Detect the watermark data using the feature vectors. 

][][1 jjW ρ=  or ][~][2 jjW ρ= , ][][][ jVjHj ⊕=ρ , )0,( njEj i <≤∈  (5) 

(3) Finally decide ][ jW  between ][1 jW  and ][2 jW  by correlation of original wa-

termark data. This means that the correct watermark has a greater correlation 
value than the other value. 

4   Experimental Results 

To verify the effectiveness of the proposed video watermarking procedure, we con-
ducted an experiment that compared with Zhang’s method and Zhongjie’s method. 
The proposed algorithm has been tested on standard monochrome video sequence 
“football”, “flower garden” and “mobile”. The first sequence has very fast movement 
of the object and background, the second sequence has medium movement of the 
object and background and the last sequence has very slow movement of the object 
and background. All the frames of the video sequences are 352×240 pixels. The rate 
is 30 frames per second. We can use Hadamard matrix for watermark data which map 
each value to 0 and 1 respectively. 

Figure 2 presents original video frame and the watermarked video frame before the 
motion compensation. It is clear that the loss of watermarked image is very small and 
does not affect the image visual quality. 

       
(a) original images 

     
(b) watermarked images 

Fig. 2. Experimental results with the proposed algorithm 
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Table 1 shows the performance of the proposed method in terms of the video quality 
of the embedded macroblocks. The measure of invisibility is defined by average PSNR 
considering statistical characteristics because watermark data are embedded in the 
different motion vectors in the proposed method as well as other methods. Zhongjie’s 
method is ignored in our results because the modification of motion vector appeared 
greater than our method and Zhang’s method. The proposed algorithm is superior to 
Zhang’s algorithm in average PSNR by about 0.5~1.1dB because this reduces more the 
modification of the motion vectors than conventional ones. It is clear that the loss of 
PSNR of watermarked frames is very small. Thus, this method has more invisibility. 

Table 1. The average PSNR of the propsed method and other methods 

Sequences 
Proposed 
Method 

Zhang’s 
Method 

Zhongjie’s 
Method 

Football 42.72 dB 41.64 dB 32.81 dB 
Flower Garden 41.10 dB 40.62 dB 30.94 dB 
Mobile 31.80 dB 31.12 dB 27.26 dB 

Figure 3 shows the modified motion vectors that watermark information are embed-
ded by the proposed method and Zhang’s method on the sixth football image. We have 
confirmed that two vectors are unequal to each other as difference of the feature vectors.  

   
(a) Proposed method                           (b) Zhang’s method 

Fig. 3. The motion vectors of the modified macroblocks 

Table 2 shows the number of the modified motion vectors when embedded 64 wa-
termark data. The proposed method 1 means with feature vectors to minimizing the 
modification of the motion vectors and the proposed method 2 means without feature 
vectors. The proposed method 1 can guarantee the probability less than 1/2 for the 
minimum modification of motion vectors. 

Table 2. The number of the modified MVs of the proposed method and other methods 

Sequences 
Proposed 
Method 1 

Proposed 
Method 2 

Zhang’s 
Method 

Zhang’s 
Method 

Football 28.55 / 64 30.55 / 64 31.86 / 64 130.34 / 64 
Flower Garden 26.97 / 64 31.38 / 64 32.28 / 64 114.52 / 64 
Mobile 31.10 / 64 31.58 / 64 31.00 / 64   83.93 / 64 
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Figure 4 shows the PSNR result of a few frames. The proposed method has higher 
average than the other method except the little frames. This exception case is due to 
difference of the conditions on methods. 
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(a) football                                                   (b) mobile 

Fig. 4. The PSNR comparison of a few frames 

In the experiment, we corrupted the watermarked video by adding the uniform dis-
tributed noise with different intensity. The comparison results are shown in Figure 5, 
in which the x-axis represents error rate slots, and the y-axis shows the detected key 
value in each error rate slot. This means that the robustness is very strong because the 
watermark key is detected when the probability of 0.35 errors is given. 

0

10

20

30

40

50

60

70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
error rate

K
ey

=3
2

 

Fig. 5. The watermark detection results with error rate (key = 32) 

5   Conclusions 

Digital watermarking is recognized by the very important technology for copyright or 
ownership of digital multimedia data. Video watermarking systems require real-time 
applications and blind watermark detection. Thus, we proposed the efficient video 
watermarking method that was embedded without change of the encoding speed as 
well as bit rate and retrieved the embedded information quickly without original video 
contents. In particular, our proposed algorithm guaranteed the amount of embedded 
watermark data and minimized modification of original motion vectors to avoid deg-
radation of video quality without reducing payloads. Besides, our scheme was used to 
watermark directly on both the compressed and the uncompressed video bitstream. 



 An Efficient Video Watermarking Scheme 301 

Experimental results showed obviously that our algorithms got better video quality 
compared to conventional algorithms by about 0.5~1.1dB and got robustness against 
bit errors. Our scheme can be useful to real-time video watermarking which must be 
compatible to MPEG video coding. 
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Abstract. This paper presents a novel lossless compression technique to trans-
mit correlated images or data within sensor networks of inexpensive devices by 
exploiting the temporal correlation under the distributed source coding para-
digm where the complexity of the encoder is much lower than that of the de-
coder. The technique operates in pixel-domain to avoid any lossy transform and 
relies on syndrome decoding of trellis codes by innovatively encoding the final 
state of the trellis. Experimental results on standard test video sequences proved 
superiority of this technique against the entropy based LZW lossless coding as 
well as a recently developed asymptotically lossless distributed source coding 
technique. 

1   Introduction 

Consider a wireless encoding device, which transmits highly correlated data or im-
ages to a decoder. Conventional coding architectures, with computationally complex 
encoder and relatively simple decoder, are not suitable as power and memory are 
scarce at the encoder. Although distributed source coding refers to the compression of 
correlated sources which are not co-located, the similar techniques can be used to 
compress correlated as well as co-located data or images with a shift of computational 
complexity from the encoder to the decoder [1]–[3]. 

A mathematical model addressing this problem was first proposed in [1] based on 
the three decade old distributed source coding theories developed by Slepian and 
Wolf [4] for lossless compression, which was later extended for lossy compression by 
Wyner and Ziv [5]. This radical idea divides the source data space into a finite num-
ber of cosets [6], using channel coding techniques, where the distance among the 
elements of each coset is maintained greater than twice of the correlation noise in the 
data set. Compression of this technique stems from transmitting only the coset index 
instead of the actual value. The decoder is then able to extract the actual value from 
the given coset as long as some from of side information is already available at the 
decoder such that distance between the actual value and the side information is less 
than half of the distance among the elements in the coset. Considering the fact that 
consecutive video frames have very high temporal correlation, this mathematical 
model was then applied for video coding in [2] using trellis codes [7]. However, the 
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proposed codec lacks sufficient details for any practical implementation. Since then a 
number of lossy video codecs have been proposed within the distributed source cod-
ing paradigm. Pixel-domain and transform-domain codecs using turbo codes were 
proposed in [8]–[10] and [11], [12] respectively. But these codecs assume feedback 
from the decoder to the encoder and ideal detection of error at the decoder, neither of 
which is practical. The former precludes broadcast model of video transmission; 
while the latter leaves very little room for decoding. Moreover, none of the existing 
distributed video coding system is lossless. If the side information is not close enough 
to the original data the decoder fails to give exact output. Besides, use of any trans-
forms at the encoding side inherently renders the system to be lossy. 

Lossless compression of correlated images can find its application in the transmis-
sion of medical images where a sensor is used to monitor a patient’s condition. Al-
though there is high temporal correlation among the successive images transmitted by 
any monitoring device, existing lossless compression techniques exploits only spatial 
correlation. For the compression of correlated images, distributed source coding tech-
nique was first used in [13]. The system assumes that gray levels of the co-located 
pixels in correlated images differ by at most some fixed value and thus coset con-
struction is done by modulo encoding rather than using any channel coding technique. 
This practice however cannot perform well when the correlation is non-uniform. The 
idea was later extended in [14] by applying turbo coding on modulo encoded gray 
level values. This work assumed an upper bound of 10-6 symbol error rate and thus 
can be considered lossless only asymptotically. 

In this paper we present for the first time a truly lossless codec for correlated image 
or data sequence within the distributed source coding paradigm. The proposed scheme 
operates in pixel domain to avoid any lossy transform and uses trellis code to generate 
coset index to exploit inter-frame temporal correlation. In order to keep the complex-
ity of the encoder low, this scheme does not take any advantage from intra-frame 
spatial correlation. Experimental results showed that the compression ratio of the 
proposed scheme increases exponentially with the inter-frame correlation. The pro-
posed scheme also consistently outperformed the scheme in [14]. 

The rest of the paper is organized as follows. Section 2 presents the preliminary in-
formation theoretic results and the concept of syndrome (coset index) coding that 
form the basis of distributed source coding.  The proposed lossless codec is detailed in 
Section 3. Simulation results and comparison with other compression schemes are 
presented in Section 4. Section 5 concludes the paper. 

2   Preliminaries 

Consider the communication system in Fig. 1 where X  and Y  are correlated dis-
crete-alphabet memoryless sources. If Y  were known both at the encoder and the 
decoder, one can compress X  at the theoretical rate of its conditional entropy given 
Y , )|( YXH (see Fig. 1(a)). But surprisingly enough Slepian and Wolf [4] theoreti-

cally showed that by just knowing the joint distribution of X  and Y  one can com-
press X  at the same rate in certain cases, even if Y  is not known at the encoder (see 
Fig. 1(b)) [3]. Any practical realization of this theory would lead to a new paradigm 
of low-complexity video encoders that can be used on devices with limited power and 
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memory. However, the joint distribution of X  and Y  for any practical problem e.g., 
image sequence coding, is impossible to model. As a compromise, Puri and Ram-
chandran [2] and Girod et al. [8] independently developed lossy distributed video 
coding techniques using channel coding concepts. Although Y  is assumed available 
at the encoder, these techniques do not allow full exploitation of the correlation be-
tween X  and Y  using computationally expensive operations, such as motion search 
(see Fig. 1(c)). 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Communication system: the decoder has full access to the side information while the 
encoder has (a) full access; (b) no access; and (c) minimal access to the side information 

The main idea of distributed source coding in [3] is as follows. Let H  be the parity 
check matrix of a systematic binary linear block code ),,( dknC , where n  is the code 

length, k  is the massage length, and d  is the minimum Hamming distance of the 
code. It may be noted that C  is a k  dimensional subspace of the n  dimensional 

vector space n}1,0{  and hence, it induces a partition of the n  dimensional space into 
kn−2  cosets each containing k2  codewords of length n . In each coset the Hamming 

distance property of C  is preserved. The i-th coset of C  is associated with a unique 

index of length )( kn − , known as the syndrome T
jii Hcs ,= , where ji,c  is the j-th 

codeword of this coset for all j and i. Obviously the coset with syndrome 0  is the 
code itself. In compressing an n  bit sequence X  with correlated side information Y  
available at the decoder, X  is mapped into the )( kn −  syndrome bits associated with 

the coset containing X . Upon receiving this syndrome, the decoder decodes X  in the 
corresponding coset by choosing the codeword X ′  closest to Y  in Hamming dis-
tance. Thus the compression ratio achieved with this scheme is knn −: . If Y  is at a 
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Hamming distance less than or equal to 2)1( −d  from X , clearly XX =′ , which 

is the basis of the lossless compression scheme developed in the next section. 

3   An Asymmetric Lossless Compression Scheme 

The compression scheme presented in this paper is based on the concept of syndrome 
coding and syndrome decoding using trellis code similar to the technique in [3]. 

 
 
 
 
 
 
 
 
 
 
 
 

 

(a) (b) 

Fig. 2. (a) The principal trellis 0T  and (b) the trellis iT  with the syndrome ]101[=is  of a rate 
½ memory 2 trellis code having 3 stages where solid and dashed lines distinguish inputs 0 and 
1 respectively. The coset associated with trellis iT  has four codeword pairs ]101[  & ]302[ ,  

]121[  & ]322[ , ]103[  & ]300[ , and ]123[  & ]320[  having final state 0,3t , 1,3t , 2,3t , and 

3,3t  respectively. 

Syndrome Coding: Consider rate rr /)1( − , memory v , one dimensional, system-

atic, and distance invariant trellis codes having L  stages. Let }12,...,1,0{ −=∇ r  be 

the set of all unsigned integers of bit length r , which is partitioned into 

}22,...,2,0{1 −=∇ r  and }12,...,3,1{2 −=∇ r  keeping the minimum Euclidian distance 

between any two elements in each partition as large as possible. Stage Lj ,,1,0=  of 

the principal trellis has )2,2min( )1( vjr
ju −=  nodes, },,{ 1,0, −=

jujjj ttt . Each node 

of all but stage L  has )1(2 −r  labeled branches to the nodes in the next stage with all 
the labels taken from either 1∇  or 2∇ . Each of the abovementioned trellis code is a 

subspace of L∇ . Altogether there are L2  distinct trellises (cosets) each containing 
Lr )1(2 −  codewords. A codeword is an ordered sequence of branch labels correspond-

ing to a path from node oot ,  to a node in Lt (see Fig. 2). Note that rL  and Lr )1( −  

correspond to n  and k  respectively of the previous section. 
Let the trellis associated with i-th coset be iT  and the label of the branch (if exists) 

between nodes ajt ,  and bjt ,1+  be ),( ,1, bjaji ttl + . Each trellis iT  is associated with a 

unique syndrome L
i }1,0{∈s  and without any loss of generality, 0T  denotes the trellis 
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with syndrome 0 . For a given rL -bit codeword ),...,,( 110 −= Lxxxx  in iT  (say), the 

L -bit syndrome is  is obtained by algorithm ENCODE in Fig. 3. It may be noted that 

for lossless compression it is also necessary to send the final state Ltf ∈  along with 

the syndrome, which will be explained later in this section, leading to a compression 
ratio of 1:)/1(: rLvr ≈+  for vL >> . 

 

 
 

Fig. 3. The encoding and decoding algorithms 

Syndrome Decoding: It is assumed that the decoder has a side information code-
word ),...,,( 110 −= Lyyyy , which is correlated to x . Once the syndrome is  and the 

final state f  are received, the encoded codeword is retrieved using algorithm 

DECODE in Fig. 3 as follows: first the corresponding trellis iT  is generated using 

algorithm TRELLIS. This trellis is then used in the Viterbi algorithm to find the 
codeword x′ , which is closest to y  in Euclidian distance and corresponds to a path 

terminating at state f . The minimum squared distance 2
freed  of a trellis is defined to 

be 
2

min βααβα −≠∀∀  where α  and β  are distinct paths in the trellis having the 

same initial and final states [6]. If y  is at a Euclidian distance less than or equal to 

2)1( 2 −freed   from x , clearly xx =′ . 

Lossless CODEC: The proposed lossless compression scheme for correlated 
frames of image or data, each treated as a collection of non-overlapping mm × -pixel 
blocks, employs the abovementioned syndrome encoding and decoding techniques 

using trellis codes of 2m  stages. The first frame is transmitted using any conventional 
lossless coding technique. Each of the remaining frames is transmitted in order as 
follows. The encoder computes the Euclidian distance between the block to be en-
coded and the co-located block in the previous frame, used as the side information at 
the decoder. If the distance is zero, the encoder transmits only the SKIP signal indi-
cating that the block is same as the side information. If the distance is less than or 

equal to 2)1( 2 −freed , the side information is guaranteed to reconstruct the block at 

Algorithm ),,,DECODE( 0 fT i ysx =′  

),TRELLIS( 0 ii TT s← ; 

),,VITERBI( fTi yx ←′ ; 
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Algorithm ),ENCODE(),( 0 xs Tfi =
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the decoder without any loss from the syndrome of the block and the final state of the 
trellis that are only transmitted. Otherwise, the syndrome coding is discarded in favor 
of any conventional lossless coding technique due to the poor correlation of the side 
information. 

The decoder always has the lossless previous frame. Whenever it receives the 
SKIP signal it outputs the co-located block from the previous frame. For the syn-
drome coded blocks, it takes the co-located block in the previous frame as the side 
information to reconstruct the block from the received syndrome bits and the final 
state of the trellis. The conventionally coded blocks are reconstructed accordingly. 

4   Experimental Results 

The proposed scheme was implemented in MATLAB where the syndrome coding 
used a memory 7 rate 3/4 trellis code with natural mapping into one dimension. The 

connector coefficients of the trellis code were set as ,277)0( =h ,54)1( =h ,54)2( =h  

and 0)3( =h  [7]. After considerable experimentation we were convinced that its 

minimum squared distance, 162 =freed . Since consecutive video frames have very 

high temporal correlation, frames from six standard QCIF test video sequences were 
used in our experiment to represent correlated images. The inter-frame correlation 
among the frames of standard test sequences Football, Foreman, Carphone, Mother 
& Daughter, Miss America, and Grandmother are in order from the lowest to the 
highest. A rate rr /)1( −  trellis code can only be used to compress correlated images 

having at most r-bit gray levels per pixel. As we used a rate 3/4 trellis code, 8-bit gray 
level frames of the standard test sequences were down sampled to 4-bit gray levels by 
shifting the 8-bit value of each pixel to the right by 4 bits. 

Fig. 4 compares the performance of the proposed lossless distributed source codec 
against the widely used LZW entropy codec. First twenty frames from each of the six 
test video sequences were compressed using both the codecs and then compression 
ratios of the twenty frames were averaged for each of the six sequences. Correlations 
between successive frames for the video sequences were calculated and the averages 
were taken as its representative measure of temporal correlation of respective videos. 
The compression ratio of the proposed codec improved exponentially as the degree of 
temporal correlation increased in the test video sequences. Despite considering only 
the intra-frame spatial correlation, the LZW codec also improved compression effi-
ciency with the increase in temporal correlation. This anomaly was primarily due to 
the down sampling of gray scale frames, which increased spatial correlation as fewer 
levels were used. As expected, the proposed codec outperformed the entropy codec in 
terms of compression ratio for the last three standard sequences where the temporal 
correlation among the frames was significantly high. The gap between the compres-
sion ratios widened with the increase in correlation. For the remaining three test se-
quences with relatively low inter-frame temporal correlation, the entropy codec 
proved better in compression as the proposed codec could not exploit any spatial 
correlation.  

Fig. 5 depicts the performance of the proposed codec against the lossless LZW co-
dec as well as the asymptotically lossless codec developed in [14] by compressing 
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artificially generated images as used in [14].  Six noisy versions of the first frame of 
each of the test sequences Mother & Daughter, Miss America, and Grandmother were 
generated by adding AWGN. These noisy frames were then compressed using the 
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Fig. 4. Compression efficiency against the degree of temporal correlation in six standard test 
video sequences using the proposed and an entropy based codec 
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Fig. 5. Compression efficiency against the temporal correlation by adding AWGN to standard 
image frames using the proposed codec, the codec in [14], and an entropy based codec 

three codecs with the first frame as the side information. The compression ratios were 
then averaged for the three sequences. The superiority of the proposed codec was 
revealed as the compression ratio obtained increased exponentially with the degree of 
temporal correlation; while the same obtained by the other two codecs increased  
linearly. 
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5   Conclusions 

A lossless coding technique to compress correlated images or data under the distrib-
uted source coding paradigm has been presented in this paper. Simulation results 
showed that compression ratio as high as 4.25:1 was achieved for certain video se-
quences. The encoder is computationally very simple using only integer operations. 
On the other hand the decoder is comparatively complex than the encoder due to its 
reliance on the Viterbi decoding. However, the proposed technique exploits only 
temporal correlation, and our future work aims to exploit both temporal and spatial 
correlation under the distributed source coding paradigm.  
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Abstract. Symmetry information is used as the basis of a compression 
algorithm for images of decorative tiles yielding a compact representation. This 
allows faster network transmission and less space for storage of tile images. 
This paper presents an algorithm capable of automatically detecting the patterns 
of symmetry of images of tiles. The methodology developed may apply to any 
sort of repetitive symmetrical colour images and drawings. 

Keywords: Image compression, web pages, ceramic tiles. 

1   Introduction 

Searching the Internet, one finds several hundred sites related to ceramic tiles all over 
the world. Those sites range from virtual museums to manufacturer catalogues. "The 
decorative tile - azulejo in Portuguese (the word comes from the Arabic az Zulayj, 
"burnished stone") – was considered a fine element of decoration by all ancient 
civilizations. Persia was the centre for development of almost all the tile-producing 
techniques used in Europe and was probably also the birthplace of the azulejo. The 
Arabs took it from their lands in the East to Italy and Spain." [4]. From Europe tiles 
spread worldwide, being one of the most important finishing and decorative points in 
architectural design today, overall in warm weather countries. 

 

 
 

 

 
 
 

 

Fig. 1. Portuguese, 14x14 cm   
Size: 97kB (JPEG) 

Fig. 2. One-eight of Tile 1 
Size: 15kB (JPEG) 

Fig. 3. Transf. image 
Size: 15kB (JPEG) 

Tiles are seldom used in isolation. In general, they form panels applied to floors 
and walls. Since their very beginning, until today, the motifs are geometric figures 
with well-defined contours, painted in solid colours. Very rarely a ceramic tile 
exhibits more than four or five colours.  
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In a recent paper [16], Lins proposes a taxonomy and file format for tiles, based on 
the symmetry of their geometrical patterns. This minimises their drawing information 
and store them in a very efficient way. The pattern images are compressed and stored 
using formats such as JPEG [18][19] [26] or TIFF [18]. Figure 1 presents an example 
of a beautiful Portuguese tile whose pattern can be rebuilt from the “seed” exhibited 
on Figure 2 or more regularly presented on the rectangle of Figure 3. The original 
image was obtained by scanning a colour photograph from [4] with a flatbed scanner 
manufactured by Hewlett Packard, model ScanJet 5300, in true-colour 300 dpi. The 
total number of colours in the image of Figure 1 is around 60,000. Notice that all 
relevant information such as texture, predominant colours, etc. is still in the reduced 
image. The original size of tile 01 under JPEG compression is 97kB, while its seed is 
only 15kB under JPEG. Whenever the visualisation of files is needed, applets are 
loaded to assemble the original tile image from its components. Today, these applets 
work with compression algorithms only. However, there is work on progress to make 
them with progressive file formats, saving time in the transmission of these images 
through networks. In general, the progressive algorithms split up the original image 
into different “resolution layers”. Additional control information is used to reassemble 
the layers forming the original image. The increase in size observed in the progressive 
versions of GIF [18][19] and PNG [18] file formats was of less than 5% of the size 
without such facility, largely justifying their use. Surprisingly enough was the 
behaviour presented by JPEG, whose size of progressive compression schemes 
reached 10% less than the size of plain JPEG compression [15]. The only drawback of 
such algorithms is the larger computational effort involved in processing the image 
for its decomposition, which may involve several scans of the original image. As 
processing time is by far smaller than network transmission the use of progressive 
algorithms is largely recommended for images visualised through a network. 

This paper shows how to automatically detect symmetry patterns in images of 
ceramic tiles. The algorithm presented may be easily adapted to any other sort of 
repetitive symmetrical colour images and drawings. 

2   Detecting Symmetries 

Completely asymmetrical patterns are seldom found in decorative tiles, being more 
common in large wall tile panels with religious motifs.  In that case, little can be done 
in a systematic way to compress images based on geometry. This section analyses the 
patterns of the tiles presented which show some sort of geometrical symmetry. 
Symmetry detection has been reported as part of several pattern recognition schemes 
and even image segmentation strategies. However, it is important to stress that 
reference [16] reports for the first time in the literature symmetry detection as the 
basis for an image compression scheme. 

Early studies in geometry and theoretical mathematics addressed the evaluation of 
symmetry of convex sets [9]. These studies approach symmetry evaluation from the 
theoretical point of view and no method has been suggested to efficiently evaluate 
those measures. The transformation of the symmetry detection problem to a pattern 
matching problem introduces efficient algorithms for detection of mirror and 
rotational symmetries and location of symmetry axis [13][7][11][1][27]. These 
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algorithms assume noise free input and detect symmetry, if it exists, in collections of 
features such as points and line segments. Any minor perturbation of the input yields 
a wrong result in symmetry detection. However, upper bounds on the complexity of 
symmetry detection with limited error tolerance are reported in reference [1]. 

Symmetry in 2D can be discussed either as a global or local feature [31]. In the 
case of global symmetry all points in the image contribute to determining the 
symmetry. On the other hand, in the case of local symmetry every symmetry element 
is supported locally by some subset of the object, i.e. by smaller parts of the image. 
Globally symmetric methods are much more efficient at run time. They usually have a 
linear time complexity. However, they are generally sensitive to noise and occlusion. 
Local symmetry methods are more robust to noise and occlusion, are easily 
parallelizable, but also exhibit a high time complexity. 

Detection of 2D symmetry in digital images follows four different approaches. The 
first approach, also known as the direct approach, has as general principle to apply the 
symmetry transformation (i.e. reflection or rotation) to the image and then compare it 
to the original image [25][13][6][12]. These methods assume that an object is either 
perfectly symmetric or it is completely non-symmetrical. Thus, they are highly 
sensitive to noise and occlusion. Kuehnle [13] follows this strategy to make 
comparisons of an image and its reflection for detection of vehicles, however.  

The second approach uses a voting scheme. It is based on the fact that the 
symmetry axis or point of rotation is determined by two points in the object. Pairs of 
points are tested and vote for their preferred symmetry axis. The oriented line with 
highest vote is selected [22][21][14][23][24][20][31] as the symmetry axis. These 
voting schemes are complex, thus several methods have been suggested to reduce 
complexity by grouping points into regions or into curve segments. This strategy 
reduces the possible number of voting pairs. Voting schemes are robust under noise 
and occlusion in the input image and generally approach symmetry as a binary 
feature, where thresholding is performed to overcome noise in the input. 

The third approach [29][30][31] introduces the notion of a continuous measure, the 
symmetry distance. This approach is an evolution of the idea of Measure of Chirality, 
a measure of deviation from mirror-symmetry, described in references [3][8][10]. 
This approach produces the “degree” of symmetry of the image in relation to a given 
axis, instead of a “yes” or “no” response to symmetry. 

Finally, the most recent approach to symmetry detection is presented by Manmatha 
and Sawhney in reference [17]. They approach symmetry detection as an aid to 
identify the significant structure of images. Gaussians and their derivatives at multiple 
scales are used to find symmetry axis.  

3   A New Algorithm 

The new algorithm presented herein merges some of the elements of the first and third 
approaches presented in the previous section in a completely novel way. From the 
direct method it borrows the idea of trying to compare pixel to pixel parts from the 
overlapped image. The third method contributes with the notion that symmetry is not 
a binary feature, but that it is a continuous measure. However, instead of seeing the 
absence of symmetry as a shape distortion function, symmetry is detected by 
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analysing pixel to pixel distance in the colour space. Thus, the algorithm produces a 
measure of how different colours of pixels are. Although the scheme presented herein 
is tuned to work with images of ceramic tiles, there is no intrinsic reason why it could 
not work to detect symmetries in other kinds of images, such as textiles, papers, etc. 
Images to be studied and classified have well defined symmetric patterns. Their direct 
size compression for the raster image is shown on column to the right. The tile 
presented in Figure 01 exhibits a symmetry pattern of type horizontal-vertical-left-
right-diagonal, thus its seed has only one-eighth of the image original size. Some 19th 
century French tiles presented in reference [4] exhibit a higher degree of symmetry 
and a seed of only 1/32 of its original size would be enough for the generation of the 
original pattern. Its symmetry pattern is obtained by recursively applying the 
detection algorithm. It is worth observing that the higher the degree of symmetry the 
higher the gains in the compressed image [16]. Ceramic tiles may make symmetry 
detection easier than some other applications: 

 Images have simple geometrical motifs. 
 Tiles tend to use few colours. 
 Tiles have standard sizes, in general. 
 The axis of symmetry of tiles tends to correspond to the symmetry axis of 

the tile image or is deviated of a few pixels. 

Removing Borders 
A careful look at the image of the tile presented in Figure 01 shows that on the left 
side the image presents some “stains”. This sort of problem is common whenever 

dealing with images of historical tiles, such as the ones in [4]. 
Those stains were introduced by time, inappropriate 
conservation, excess of plaster when the tile was set, etc. They 
are not part of the tile “information” as such and can be seen as 
“noise” added to the image. Thus it must be filtered out before 
the symmetry detection process starts. Cropping an area of about 
80% of the original image not only avoids the border noise but 
also increase the efficiency of the algorithm, as a smaller 
number of points is analysed. Figure 4 shows the selected area 
for analysis from the tile presented in Figure 1. One may 
observe no border noise present in the selected area. For a matter 

of simplicity one assumes that the pattern of interest is at the centre of original image 
(small deviations from the centre cause no problem to symmetry detection). 

Image Segmentation 
The analysis of symmetry proposed herein checks the number of pixels that coincide 
under transformation and makes some statistics on them. However, not all pixels 
carry the same “degree of information”. Pixels from the background “cluster” need to 
be recognised and dealt with in a proper manner. Figure 5 presents the image of a 
non-symmetric tile where the number of background pixels by far exceeds the number 
of “information pixels” (in blue). Any symmetry detection scheme that simply counts 
the number of “coincident” pixels would wrongly conclude that there is a vertical 
symmetry in the image. Thus, a segmentation strategy is introduced: the first step of 
the algorithm is to find the colour pixel distribution. In general, colour pixel 
distribution form a multi-modal gaussian distribution centred on the background and 

 

Fig. 4. Work area 
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each of the “important” colour in the image. The image of the non-symmetric tile 
exhibited in Figure 5 has 22K colours and its histogram is presented in Figure 6, 
where one can observe a bi-modal (two-cluster) distribution with predominance to the 
right of the gaussians that form the image background. In reality the number of 
background pixels “distorts” the histogram and does not allow one to see that the 
colour pixel distribution is tri-modal with centre in “white”, orange and dark blue. 

  

Fig. 5. Tile 02, Portuguese tile Fig. 6. Colour histogram of tile 02 

The segmentation using the most frequent colour as threshold may lead to errors. 
There may be a large number of hues in the background and a colour of an 
information pixel may surpass in absolute value the frequency of background colours. 
The background colour is calculated by taking the colour frequency distribution and 

applying a cluster variation to each of them and re-calculating the 
number of members of the colour “cluster”. The cluster with the 
largest number of members is taken as the most frequent 
background colour. This part of the segmentation algorithm may 
be implemented in two steps. In the first one a table is formed 
while scanning the image. For each pixel read all entries on the 
table that correspond to the colour and variation of the pixel are 
incremented. The background cluster corresponds to the entry on 
the table with the largest value. The cluster variation of ±2 for 
each RGB component was found adequate for our purposes. All 

pixels whose colours belong to the sphere centred on the background cluster with 
radius (tolerance) t are mapped onto white. Otherwise, the pixel has its colour 
changed into black. The experiments performed pointed at a value of tolerance t=40. 
Figure 07 shows the image of tile 01 with the left-hand side of the analysis area 
shown with background pixels in white and information pixels in black. In reality, the 
whole image is segmented.  

Symmetry Statistics 
The segmented image and the original image are both used in the statistics performed 
to detect the existing pattern of symmetry in images.  Four patterns of symmetry 
depicted on Figure 08 are analyzed to start with. Each pattern splits the image in two 
regions: origin and target.  

 

Fig. 7. Segmented 
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Fig. 8. Patterns of Symmetry 

Each region is split into four sub-regions of equal sizes, corresponding to a 
different colour in each pattern of Figure 8.  Seven parameters are measured: i – the 
number of information pixels in the segmented image (si); b – the number of 
background pixels in the segmented image (si); ii – the number of matching 
information pixels at origin and target sub-regions in si; bb – the number of matching 
background pixels at origin and target sub-regions in si; bi – the number of 
background pixels mapped onto information pixels in the sub-region of si; ib – the 
number of information pixels mapped onto background pixels in the sub-region of  si; 
dif_ii – the sum of the squares of the RGB-component distance of the pixels in ii of 
the non-segmented (original) image. 

The parameter ldii calculated as presented on Table 02 is a variant of the calculus 
of Peak-Signal-to-Noise-Ratio (PSNR). The PSNR provides a measure of the quality 
of the generated image. The higher the PSNR the “better-quality” the generated image 
is. The following formula is the most common way of calculating it: 

                                                          

 f(i, j) - value of  pixel (i,j) in original image. 
F(i,j) - value of pixel (i,j) in “noisy” image 
 N and M are the number of columns and 
lines in original image. 
 

Table 2. Statistical Parameters of Tile Symmetry 

Description Formula Description Formula 
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Algorithm for Symmetry Detection 

COUNT = 0; 
FOR EACH sub-region DO 
  IF (tol_Pbb < pbb) COUNT 

+= kbb; 
  IF (tol_Pii < pii) COUNT += 

kii; 
  IF (tol_Pmn > pmn) COUNT 

+= kmn; 
  IF (tol_Pldii > ldii) COUNT 

+= kldii; 
  IF (tol_Id > Id) COUNT += 

kId; 
  IF (tol_Bd > Bd) COUNT += 

kBd; 
  IF (COUNT > Correct) then  

SYMMETRIC;  

Table 3. Statistical Parameters 

Parameter HVSymm. D Symm. 
Correct 28 32 
tol_pii  80 64 
tol_Id 2 0 
tol_pbb 88 70 
tol_Bd 2 2 
tol_pnm 0 0 
ldii 8 4 
kpii 2 4 
kpip 3 4 
kpbb 2 3 
kBd 2 1 
kpnm 1 2 
kldii 4 3  

The algorithm as presented above is able to detect the highest level of symmetry in 
tile images. If any symmetry pattern is found the algorithm should be applied 
recursively until no further symmetry is detected. 

4   Results Obtained 

The algorithm presented without recursion was tested on a group of images of 187 
tiles. The number of images that had their highest-level symmetry correctly detected 
was of 133, 71.13% of the images tested.  There were only 6 false-positive results, 
meaning that in 3.2% of the tested images there was symmetry detected where there 
was none. On the other hand, 48 images produced false-negative results, i.e. in 25.6% 
of the tested images there was undetected symmetrical patterns. The results presented 
are very conservative as the images tested presented a fair degree of complexity to 
verify the robustness of the algorithm. In general terms, whenever there was 
symmetry it was detected by the algorithm. However, as explained below, some 
images present an almost symmetric pattern that is difficult to detect as non-
symmetric, even by humans. 

5   Algorithm Limitations 

The parameters presented on Table 3 were set to provide conservative results and 
making the number of false-positive results minimal. The beautiful Turkish tiles 
presented in Figure 9 are responsible for three of the six false positive results obtained 
for the batch of 187 tiles tested. One must admit that the degree of complexity of the 
first and second tiles is so high that even humans have difficulty is realizing that they 
are not symmetrical. 
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Fig. 9. Non-symmetric Turkish tiles 

6   Conclusions 

Symmetry information may be used to make network transmission and storage of 
images more efficient. Automatic symmetry detection is far from being a simple 
problem. Several researchers have attempted different ways with relative success. 
This paper presents a new algorithm to find symmetries in images of ceramic tiles 
based on statistical analysis of images. The same approach may also be used in other 
materials such as textiles and carpets due to the similarity of their print. Modern tiles 
are produced by machines and pattern variation is minimal, thus making easier 
automatic recognition of the symmetry pattern. On the other hand, historical tiles 
were hand made and patterns vary not only between pieces, but also within each 
piece. Criteria are being developed for better automatic pattern classification. 

As already mentioned, the images presented herein were obtained by scanning the 
most beautiful tile images presented in reference [4] and from the Internet. This 
process, however presents the drawback of providing non-uniform final image 
resolution as the images presented in [4] vary in size. Thus, it is under consideration 
to obtain new images by direct digitally photographing those historical tiles, having 
the pioneer work of the late researcher António Menezes e Cruz extended by Silvia 
Tigre Cavalcanti, reported in reference [4] as a guidebook. One fundamental issue is 
also being addressed: what is the appropriate (minimal) resolution images should have 
in order to provide enough details to observe the beauty of the tiles at the lowest 
storage and network transmission costs. 
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Abstract. In this paper, we propose a fast video mixing method for reducing the 
computational complexity in the MCU (Multipoint Control Unit) used in the 
video conferencing. The conventional mixing method is based on the pixel-
domain transcoder, of which computational complexity is linearly increased as 
the number of participants is increased. Basically the method requires many de-
coders and one huge encoder to mix the multiple bitstreams. To reduce the 
computational complexity, we propose a hybrid mixing method based on the 
syntax-based bitstream modification and pixel-domain transcoder. The pro-
posed method reduces the computational complexity about 45% at the im-
proved quality, compared with the conventional mixing method based on the 
pixel-domain transcoder.  

1   Introduction 

With the broad deployment of the Internet, videoconference is now becoming more 
and more popular nowadays. For the better management of the multiple bitstreams 
from the participants in the videoconference, the MCU (Multipoint Control Unit) is 
often used. One of the important functions in the MCU is the mixing of the video 
bitstreams to distribute the mixed video bitstream to the participants. The computa-
tional complexity of the video mixing, however, is drastically increased as the number 
of participants is increased. For instance, if there are N participants in the video con-
ference, the MCU requires the N video decoders and one video encoder to produce 
the video bitstream of the mixed video signals. It means that the computational com-
plexity is impractical for the practical application though the MCU in the video con-
ference provides better organization of video conference.  

To use the MCU for the practical videoconference system, the reduction of compu-
tation-al complexity in the video mixing is critically necessary. In this paper, we pro-
pose a hybrid video mixing method based on the syntax-based bitstream modification 
and pixel-domain transcoding methods. From the analysis in our previous work [4], 
we showed that the compressed video signals are mixed with the additional header 
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description for the reference of the spatial DPCM. The additional header description 
is used at the boundary of the mixed video signals. For instance, the additional header 
description of H.263 [1] can be defined with the Annex K. In general, most video 
decoders in the market used the baseline codec of H.263 for the patents issues and 
computational complexity. For the reduction of computational complexity in the mix-
ing system, we use the syntax-based modification method for the bitstream corre-
sponding to the left side of the mixed video signals and apply the pixel-domain 
transcoder for the right-side of the mixed video signals. The simulation results show 
that the proposed method reduces the computational complexity about 45% at the 
improved quality, compared with the conventional mixing method based on the pixel-
domain transcoders.  

This paper is organized as follows: in Section 2, several conventional video mixing 
techniques are discussed. A proposed hybrid method applied in video mixing will be 
presented in Section 3. And in Section 4 the experimental results of the proposed 
method compared with the conventional methods are shown. The conclusions are 
drawn in Section 5. 

2   Conventional Video Mixing Methods 

There reported several mixing methods for multipoint videoconference. One of the 
direct techniques is pixel-domain mixing, which uses a transcoder [2, 3]. For instance, 
let’s consider four-party videoconference as shown in Fig. 1. The pixel-domain mix-
ing method is depicted in Fig. 2. Each of the four participants generates a H.263 QCIF 
bitstream by encoding its own frame sequence. The mixer consists of four cascaded 
decoders, one pixel mixer and one encoder as shown in Fig.2. Each bitstream is de-
coded and reconstructed by the transcoder in the mixer. In detail, all of the four recon-
structed QCIF video signals are mixed into a CIF video signal in pixel-domain. Fol-
lowing, the encoder in the transcoder re-encodes the new mixed video sequence into a 
CIF bitstream. The terminal of each participant, decodes the mixed bitstream and 
displays a CIF video including all of the four QCIF participants in real time.  

 
 

Fig. 1. Four-party videoconference 

The mixer based on pixel-domain transcoder is more flexible in terms of picture 
manipulation. However, this method has two major problems. The first is computa-
tional complexity. The mixer system should independently decode the bitstreams and 
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the raw video signals are mixed together. And the encoder re-encodes the mixed 
video signals into a single bitstream. So, four decoders, one encoder and pixel mixer 
are needed here. It requires large amount of memory and codec capacity. The other 
drawback in the transcoder is the quality degradation because the mixed video bit-
stream is a result of double encoding. Further, the re-encoding operation will cause 
more delay because of the steps of decoding and encoding as shown in Fig.2.  

 
 

Fig. 2. Pixel-domain Transcoder mixing technique 

To reduce the computational complexity, we proposed the syntax-based mixing 
method in [4]. Its basic concept is shown in Fig. 3. This method only need to analyze 
the bitstream based on syntax of video coding standard and modifies the control in-
formation without changing the video signal information in the video bitstream under 
certain constraints. Because this method uses simple bitstream copy-and-paste opera-
tion, it greatly reduces the computational complexity and reduces processing time. 
Further, it removes the re-encoder step, so the quality of the output signals will be 
increased compared with the mixer based on pixel-domain transcoder. 

 

Fig. 3. Bitstream-domain mixing system of two bitstream (Horizontal mixing) 

In our previous work [4], we assume that the quantization step sizes of all the bit-
streams are same. If the change of the quantizer exceeds the bound (-2 to 2) at the 
boundary of A and B, H.263 baseline codec cannot support the exact description of 
quantization step size and the incorrect dequantization causes quantization noise drift. 
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To solve this problem, H.263 Annex K method is used for the description of the quan-
tization step size [4]. In general, most video decoders in the market use the baseline 
codec of H.263 for the patents issues and computational complexity. For this reason, 
the constraints on the quantization step sizes should be solved in [4]. 

In [6, 7], the video mixing method for moving video signals are proposed which 
investigate the general framework to transcode the video signal. However, the method 
also requires DCT-domain motion estimation and compensation process. So the re-
duction of computational complexity is negligible.  

3   Proposed Hybrid Mixing Technique 

From the survey on the conventional methods, the mixing method based on pixel-
domain transcoder reduces the quality of videos and also has high complexity of com-
putation. Although the bitstream-domain mixer requires low computation and also has 
good output quality, the demerit is that the Annex K of H.263 is necessary. It is not 
realistic for the mixing system because of the popularity of market and additional cost. 
To solve these problems, we propose a new hybrid video mixing method shown in Fig. 
4. Through investigating, we know that bitstream-domain video mixing method is 
efficient in both complexity and visual quality. But for the bitstream from B and D, we 
cannot apply the bitstream-domain video mixing method because of the quantization 
step sizes. Since the sub-pictures from A and C start from the left side of pictures, there 
is no constraint on the quantization step size. So we use the syntax-based modifications 
for the bitstreams A and C. and we use the pixel-domain transcoders for the bitstream 
B and D to solve the constraint on the quantization step size.  

 
 

Fig. 4. Structure of the proposed hybrid video mixing method 

4   Simulation Results 

For the evaluation of the proposed video mixing method, we perform some simula-
tions, and the simulation environments are given in Table 1.  
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Table 1. Simulation Environments 
 

Recommendation 
Picture 
Name 

Source format Encoding bit-rate Frame umber 

H.263 A: Forman QCIF, 176*144 
4:2:0, 10kHz 64kbps 300 

H.263 B: Akiyo QCIF, 176*144 
4:2:0, 10kHz 64kbps 300 

H.263 C: News QCIF, 176*144 
4:2:0, 10kHz 64kbps 300 

H.263 D: Silent QCIF, 176*144 
4:2:0, 10kHz 64kbps 300 

4.1   Comparison Between Pixel-Domain and Bitstream-Domain Transcoder 
Method 

First we compare the performance between pixel-domain transcoder and syntax-
based methods. Four QCIF bitstreams listed in Table 1 are coded by these two 
methods. The comparisons of PSNR and CPU time for each video comparison are 
drawn in Fig. 5. The configurations of the simulation computer are: Pentium IV 
CPU 2.89 GHz, 1.00 GB memory. PSNR comparison shows that the quality of 
video using pixel-domain transcoder method is reduced due to the re-encoding. 
Further more, the computational complexity of transcoder is much higher than bit-
stream-domain method because of its decoding-encoding steps. In Fig.5, CPU time 
comparison proves that the computation of transcoder method is more complex. 
This is the reason why we select bitstream-domain mixing method as the main basic 
idea of the proposed hybrid mixing method.  

4.2   Performance Comparison of Various Mixing Methods 

Then, we do the simulation with two mixing methods: pixel-domain transcoder mix-
ing method and proposed hybrid mixing method. Fig. 6 gives the PSNR comparison 
of the two video mixing methods. In the proposed method, up-left and down-left parts 
used syntax-based mixing method and upright and downright parts use pixel-domain 
transcoder mixing method.  

From Fig.6 we can know that the quality of subimages A and C output sub-pictures 
utilizing proposed hybrid mixing method is better than that those using pixel-domain 
transcoder method, respectively. On the other hand, the qualities of B and D output sub-
pictures are very similar with utilizing pixel-domain transcoder mixing method, respec-
tively. With the same simulation computer, Table 2 shows the CPU times for mixing by 
the two methods. It means, that the proposed method is more efficient in computational 
complexity than the pixel-domain transcoder video mixing method, and it reduces the 
computational complexity about 45%. Further more, although the proposed method is 
less efficient than the method of syntax-based video mixing proposed in [5], it does not 
use H.263 Standard Annex K to deal with the problem of DQUANT. For this reason, 
the proposed method in this paper is more suitable for practical application. 
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(b) Akiyo 
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(c) News 
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(d) Silent 

Fig. 5. Performance comparison in PSNR and CPU time 
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(a) Foreman (syntax-based)                                 (b) Akiyo (pixel-domain transcoder) 
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(c) News (syntax-based)                                  (d) Silent (pixel-domain transcoder) 

Fig. 6. PSNR Comparison between proposed and pixel-domain transcoder mixing method 

Table 2. Simulation time compare 

         Method 

Compare option 
Pixel-domain 

Transcoder method Proposed method 

CPU time (Microsecond) 17.57 9.65 

5   Conclusion 

In this paper, we propose a new hybrid video mixing method for the videoconference 
system. From the study of video mixing techniques we know that the conventional 
video mixing method based on pixel-domain transcoder requires the higher computa-
tional complexity: four decoders and on encoder with four times encoding speed and 
memories.  There exists additive delay due to the steps of four-decoder pixel-
domain mixer one-encoder. And this method also reduces quality of video as a re-
sult of double encoding. Although the bitstream-domain mixing method is smart, it 
requires Annex K of Recommendation H.263 to prevent DQUANT drift error. To 
reduce the computational complexity, we propose a hybrid mixing method based on 
the syntax-based bitstream modification and pixel-domain transcoder. The proposed 
method reduces the computational complexity about 45% at the improved quality, 
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compared with the conventional mixing method based on the pixel-domain transcod-
ers. This new hybrid video mixing method for videoconference improves the effi-
ciency of video mixing. We believe that this video mixing system is valuable for 
practical implementation such as videoconference system, video chatting and so on. 
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Abstract. Dictionary-based compression methods are a popular form of data 
file compression. LZ77, LZ78 and their variants are likely the most famous of 
these methods. These methods are implemented to reduce the one-dimensional 
correlation in data, since they are designed to compress text. Therefore, they do 
not take advantage of the fact that, in images, adjacent pixels are correlated in 
two dimensions. Previous attempts have been made to linearize images in order 
to make them suitable for dictionary-based compression, but results show that 
no single linearization is best for all images. In this paper, a true two-
dimensional dictionary-based lossless image compression scheme for grayscale 
images is introduced. Testing results show that the compression performance of 
the proposed scheme outperforms and surpasses any other existing dictionary-
based compression scheme. The results also show that it slightly outperforms 
JPEG-2000’s compression performance, when it operates in its lossless mode, 
and it is comparable to JPEG-LS’s compression performance, where JPEG-
2000 and JPEG-LS are the current image compression standards.  

1   Introduction 

In the field of image compression there are two major approaches, lossless and lossy 
compression. In lossless compression, when an image is compressed and then 
decompressed, the reconstructed image is an exact copy of the original. In lossy 
compression, some information about the image is discarded to achieve better 
compression. This means only a close replica of the original image can be retrieved 
from the compressed data. The compression scheme presented in this paper is a 
lossless scheme. 

Among the most popular methods of lossless compression are dictionary-based 
schemes. Dictionary compressors encode a string of data by partitioning the string 
into many sub-strings, and then replacing each sub-string by a codeword. 
Communication between the compressor and decompressor is done using messages. 
Each message consists of a codeword and possibly other information. The dictionary 
in these schemes is the set of every possible codeword. LZ77 [1] and LZ78 [2] are 
two of the most famous dictionary-based compression schemes. 

In LZ77, the dictionary is a portion of the most recently encoded data. This is also 
called the search buffer. Codewords for sub-strings are pointers to the longest match 
for the sub-string found in the search buffer. Each message consists of the codeword 
for the sub-string, the length of the match and the code of the next symbol. 

 Senior  Member, IEEE ,
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There are many modifications to the original LZ77 scheme. Rodeh et al. 
introduced LZR [3], a scheme that uses LZ77 but with variable-size pointers. This 
means the pointer can index a sub-string anywhere in the previously encoded data, 
rather than just a previous portion. Storer et al. introduced LZSS [4], in which a flag 
bit is used to distinguish two types of messages, a pointer or a character. Bell 
introduced LZB [5], which also uses LZSS but with variable sized pointers as in LZR. 
In software, the PNG file format is based on LZ77. 

In LZ78, the dictionary codewords correspond to previously encountered sub-
strings. Each codeword consists of two parts, a pointer to the dictionary and the code 
of the next symbol. 

As in LZ77, there are many modifications to the original LZ78 scheme. Welch 
introduced LZW [6], which is similar to LZ78, but its dictionary initially contains an 
entry for every possible symbol. At each step, a new dictionary entry is formed, by 
composing the last codeword sent with the next symbol to be encoded. Thus, LZW 
eliminated the need to include the code of the next symbol in messages. Miller et al. 
introduced LZMW [7]. LZMW is similar to LZW but is slightly modified when adding 
dictionary entries. Where LZW composes the last codeword sent with the next symbol 
to be encoded, LZMW composes the last codeword sent with the entire next codeword. 
Jakobsson introduced LZJ [8], which is similar to LZW but when the dictionary 
becomes full, codewords that have only been used once are replaced. Tischer introduced 
LZT [9]. In this scheme, the dictionary entries are arranged according to recent use. 
When the dictionary becomes full, each new entry replaces the least recently used entry. 
In software, Unix Compress and the GIF file format are based on LZW. 

Fiala et al. introduced LZFG [10], which is similar to LZ77 because it uses a 
sliding window but also similar to LZ78 because only particular codewords are stored 
in the dictionary.  

LZ77, LZ78, and their variants, take advantage of the fact that adjacent data values 
are highly correlated. These dictionary-based schemes are designed to compress text 
and so only reduce one-dimensional correlations in data. Therefore, they do not take 
advantage of the fact that, in images, adjacent data values (pixels) are highly 
correlated in two dimensions. 

To adapt LZ compressors to suit the two-dimensional nature of images, Amir et al. 
[11] attempt to find ways to linearize images to facilitate the use of one-dimensional 
LZ compressors. However, tests show that no one linearization is best for all images. 

Dia et al. [12] present a two-pass two-dimensional LZ77-based scheme for binary 
images. In this scheme, pixels are encoded by searching for exact matching between 
these pixels and the already encoded pixels. Once such a match is found, the pixels 
are encoded by encoding the match location information instead. However, it is 
expected that this scheme will not perform well in the case of grayscale or color 
images, since the chances of finding large exact matches would be very small. 

Storer et al. and Rizzo et al. present a generalization of LZ77 to lossless 
compression of binary images [13,14]. The algorithm, known as two-dimensional 
sliding window block matching, uses a wave heuristic to scan the image and a multi-
shape two-dimensional suffix trie data structure to represent the dictionary, which is a 
window in previously encoded pixels. As in Dia et al. [12], it is likely that, if this 
scheme is applied on grayscale or color images, it would not achieve very good 
results, due to the small chances of finding large exact matches. 
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The dictionary-based scheme presented in this paper is designed to take advantage 
of the two-dimensional correlation between pixels in grayscale images. It is similar to 
Dia et al. [12], Storer et al. and Rizzo et al. [13,14] two-dimensional dictionary 
encoding schemes, but it allows for approximate matches since it is designed to 
compress grayscale images. 

The rest of this paper is organized as follows. Section 2 describes the proposed 
scheme in details. Section 3 presents the results. Finally, Section 4 offers the 
conclusions of this paper. 

2   The GS-2D-LZ Scheme 

Grayscale Two-Dimensional Lempel-Ziv (denoted as GS-2D-LZ) is an image 
compression scheme that is based on the popular family of LZ text compression 
schemes. However, its dictionary is built on the image history in two-dimensions, 
rather than in a linear fashion. Hence, it can take advantage of the two-dimensional 
correlations in image data. 

In GS-2D-LZ, an image is encoded in raster scan order, one block of pixels at each 
step. For each block of pixels an approximate match is searched for in previously 
encoded data. The block is encoded as a pointer to the location of this approximate 
match, along with the dimensions of the match and residual information to ensure that 
the compression is lossless. If no suitable match can be found, a block of pixels is 
encoded using a simple DPCM prediction scheme. After the entire image has been 
encoded in this fashion, the match location, match position, residual and predicted 
values are separately encoded using a statistical compression scheme.  

2.1   Search and Encoding Strategies 

The search area, in which matches are considered for a block, is rectangular in shape 
and located above and to the left of the encoder position. The search region is a 
function of search-width and search-height variables, which are adjustable parameters 
that identify the horizontal and vertical search distances, respectively.  

When searching for a match of the block rooted at the encoder position, each pixel 
in the search region represents a block of pixels rooted at the same position. There are 
search-width × search-height – 1 unique blocks to be considered (since the block 
rooted at the encoder position is not a possibility). 

In some cases, it is possible to extend matches into the region of un-encoded 
pixels. However, this must be carefully done so as not to allow matches that cannot be 
reconstructed by the decoder. The shape and positioning of the search region in GS-
2D-LZ has been designed to account for these facts. 

For a particular root pixel in the search region, the algorithm calculates the 
difference between that pixel and the pixel at the encoder position. To be considered 
as a possible match, the difference of these two pixels can not exceed the value of a 
variable called threshold, which is an adjustable parameter that identifies the 
maximum allowable error between pixels. If a pixel is qualified as a root of a 
potential match, the match is then extended to the right as wide as possible using the 
same criteria, i.e., in order for the match to be extended one pixel to the right, the 
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difference between corresponding pixels in the potential match and the block being 
encoded must be less than the threshold. 

Once a mismatch occurs, the match is then extended down as far as possible. This 
step is similar to the case when a match is extended right. When a mismatch occurs in 
a row extension, the width of the match is simply reduced in order to allow the match 
to continue extended downwards. Extending the match further downward by this 
manner will eventually force a reduction of the potential width to be less than 1. 
When this occurs, the algorithm deems that all possible matches at this root are 
exhausted and all found matches are evaluated in two different ways: 

1. The match must be large enough that more new pixels than the value of a 
variable called minimum-match-size are being encoded. The variable minimum-
match-size is an adjustable parameter. Due to the nature of the variable block size 
scheme that we use, encoded blocks will sometimes overlap with previously 
encoded pixels. In this situation, it does not matter that these pixels match or not, 
nor do these pixels count as new pixels. 

2. The potential matching block mean-square-error (MSE) is less than the value of 
a variable called maximum-MSE, which is an adjustable parameter. 

After considering every match rooted at each pixel in the search region, the largest 
match is selected and encoded. In the case where no match satisfies the above two 
conditions, the algorithm encodes a small block of pixels rooted at the position of the 
encoder, in order to ensure that progress is made. The dimensions of this block are 
fixed to no-match-block-width × no-match-block-height, where no-match-block-width 
and no-match-block-height are two adjustable parameters. To keep the algorithm fast 
and efficient, a simple DPCM [15] scheme is used to encode these pixels. 

The adjustable parameters in the GS-2D-LZ scheme have been empirically chosen, 
where search-width, search-height, threshold, minimum-match-size, maximum-MSE, 
no-match-block-width, and no-match-block-height are set to 4, 4, 27, 17, 2.5, 5, and 5, 
respectively. 

2.2   Data Structures Defined 

There are five tables that are used to record the matching information. These tables 
are called: Match Flag, Match Location, Match Dimensions, Residual, and Prediction 
Errors. 

The Match Flag table contains a Boolean value for each block of pixels, where a 
value of true is recorded in the table when a suitable match for the block is found and 
false otherwise. When a suitable match is found for a block, the position of the match, 
relative to the block being encoded, is recorded in the Match Location. At the same 
time, the width and height of the block being encoded are recorded in the Match 
Dimensions tables. Moreover, the difference between each pixel of the actual block 
and the corresponding pixel in the match found for the block is recorded in the 
Residual table. On the other hand, when no suitable match can be found, the 
Prediction Errors table is used to hold the errors between the DPCM predicted pixel 
values and the actual pixel values for each pixel of the block. 

After the entire image has been scanned, each table is encoded using PAQ6 [16]. 
Note that, a benchmark was made using a variety of statistical encoders (including 
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Huffman, Dynamic Huffman and Arithmetic) to find the best scheme to compress 
these tables. It turns out that the best scheme for this job was PAQ6. 

3   Experimental Results 

The GS-2D-LZ scheme described above was tested on a set of 16 different grayscale 
natural scene images, shown in Fig. 1.  

 

 

 

 
baboon–512x512 camera–256x256 lake–512x512 milkdrop–512x512 

 
  

barbara–720x580 columbia–480x480 lax–512x512 peppers–512x512 

  
boats–720x576 couple–512x512 lena–512x512 woman1–512x512 

  
bridge–512x512 crowd–512x512 man–512x512 woman2–512x512 

Fig. 1. Test images 

For each of these images, the compression performance (in bits per pixel) of the 
GS-2D-LZ scheme was compared to the compression performance of GIF, Unix-
Compress, PNG, BZIP2, JPEG2000 and JPEG-LS schemes, as shown in Table 1. 
Note that, GIF and Unix-Compress are based on LZW scheme, PNG is based on 
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LZ77 scheme, BZIP2 [17] is based on the Burrows Wheeler transformation, 
JPEG2000 [18] is the current JPEG lossy compression standard but operated in its 
lossless mode, and JPEG-LS [19] is the current JPEG lossless compression standard. 

Table 1. Compression performance measured in bits per pixel 

Image name GS-2D-LZ GIF Unix-
Compress

PNG BZIP2 JPEG2000 JPEG-LS 

baboon–512x512 5.84 8.98 7.84 6.01 6.38 5.88 5.82 
barbara–720x580 4.75 8.74 7.73 5.23 5.92 4.69 4.74 
boats–720x576 4.01 3.93 6.34 4.33 5.00 4.07 3.93 
bridge–512x512 5.35 5.44 5.00 4.94 4.30 5.74 5.50 
camera–256x256 4.38 6.77 6.68 4.67 5.12 4.54 4.31 
columbia–480x480 3.47 6.61 6.21 3.92 4.45 3.52 3.43 
couple–512x512 4.69 7.59 6.82 4.88 5.37 4.84 4.68 
crowd–512x512 4.05 6.89 6.01 4.53 4.71 4.20 3.91 
Lake–512x512 5.08 8.18 7.42 5.37 5.68 5.15 4.98 
lax–512x512 5.81 8.64 7.73 5.98 6.38 5.96 5.76 
Lena–512x512 4.06 7.66 6.68 4.39 5.07 4.06 3.99 
Man–512x512 4.58 7.90 6.95 4.93 5.49 4.69 4.50 
milkdrop–512x512 3.74 6.43 5.97 3.97 4.37 3.77 3.63 
peppers–512x512 4.65 4.54 7.22 4.91 5.37 4.63 4.51 
woman1–512x512 4.75 6.94 6.14 4.98 5.00 4.81 4.67 
woman2–512x512 3.37 6.60 5.73 3.77 4.19 3.32 3.30 
        
Average 4.54 6.99 6.65 4.80 5.18 4.62 4.48 

From Table 1, we can see that the compression performance of the GS-2D-LZ 
scheme surpasses the compression performance of the other dictionary encoding 
schemes, i.e., GIF, Unix-Compress, and PNG. Note that, in some cases, e.g., baboon–
512x512, barbara–720x580, lake–512x512, and lax–512x512, GIF scheme produces 
compressed files that are bigger than the original files. This is because the GIF 
scheme does not evaluate the compression performance before producing the 
compressed file. In Unix-compress, this issue has been considered and that is why the 
sizes of compressed files are smaller than or equal to the sizes of original images.  

Meanwhile, GS-2D-LZ scheme slightly outperforms JPEG2000, when operated in 
its lossless mode. At the same time, its compression performance is comparable to 
JPEG-LS’s performance.  

It is worth mentioning that while all other compression schemes (including 
JPEG2000 and JPEG-LS), are heavily optimized, the proposed scheme is not, since it 
was implemented just as a proof of concept. Moreover, there is a great deal of room 
for improvement in the proposed scheme, including the use of a better compression 
scheme that just DPCM to compress the mismatched blocks.  
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4   Conclusions 

In this paper, a novel two-dimensional dictionary-based scheme is introduced. 
Experimental results showed that the compression performance of GS-2D-LZ scheme 
outperforms and surpasses any other dictionary-based compression scheme. At the 
same time, it performs slightly better than JPEG2000 and is comparable to JPEG-LS. 
This implies that dictionary-based compression schemes can be as efficient as the 
current state of the art compression scheme.  
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Abstract. Image communication is a significant research area which involves 
improvement in image coding and communication techniques. In this paper, 
Principal Component Analysis (PCA) is used for face image coding and the 
coded images are protected with convolutional codes for transmission over Ad-
ditive White Gaussian Noise (AWGN) channel. Binary Phase Shift Keying 
(BPSK) is used for the modulation of digital (binarized) coded images. Re-
ceived binarized coded images are first decoded by the convolutional decoder 
using the Viterbi algorithm and then PCA decoded for recognition of the face. 
Unequal error protection (UEP) with two convolutional encoders with different 
rates is used to increase the overall performance of the system. The recognition 
rate of the transmitted coded face images without any protection is 35%, while 
equal protection with convolutional codes gives rates up to 85% accuracy. On 
the other hand, the proposed UEP scheme provides recognition rates up to 95% 
with reduced redundancy. 

1   Introduction 

Image communication is becoming increasingly important for diverse applications 
such as mobile communications, biomedical imaging, remote security systems etc. 
Hence, image communication problems are the focus of most recent scientific re-
search, aiming efficient and error-resilient image communication systems with im-
provement in image coding as well as in communication techniques.  

In this paper, eigenfaces technique is used for image coding. It is one of the most 
frequently used methods based on PCA which maps high dimensional data into a low 
dimensional space, saving memory and time [1]. PCA-coded images are used for 
image compression, recognition and transmission. BPSK is used for the modulation of 
image representation vectors transmitted over an AWGN channel. Transmitting coded 
images is predisposed for high errors at the receiver side since every entry of repre-
sentation vector carries much more image information than a single pixel. Therefore, 
it is very important to minimize errors due to channel noise. Employing UEP on par-
ticular bits of the transmitted coefficient increases the overall system performance. 

Convolutional codes are frequently used to protect source-coded data by adding 
redundant bits to it. Complicated convolutional codes perform better than the simple 
ones but require much more processing power and expensive circuitry. In order to 
satisfy performance and implementation requirements, in this paper, UEP is imple-
mented such that a few most significant bits (i.e. first 7 bits) are encoded with low-
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rate convolutional codes while the remaining bits are encoded with a relatively sim-
pler encoder (i.e. rate ½ encoder). Fig. 1 shows a general block diagram of the system. 

 
 
 
 
 
 

 

 

 

Fig. 1. Block Diagram of the System 

The main idea in PCA is to decompose a “face space” into a small set of character-
istic feature images called “eigenfaces”, which, when linearly combined represent one 
single face. Every eigenvector (eigenface), has a different eigenvalue which deter-
mines its contribution in representation of a face image [1]. Eigenvectors with larger 
eigenvalues have the highest contribution in representation while the effect of others 
is not so significant, especially if the number of eigenfaces is large [2]. In order to 
implement identification process for the large data set, data compression is necessary.  

In this paper, section 2 describes the eigenfaces approach in detail. Section 3 dis-
cusses the transmission of the projection vectors and unequal error protection of rep-
resentation coefficients. Most significant bits of each coefficient are encoded by con-
volutional codes with lower rate (with more redundancy) while the rest of the bits are 
encoded at a higher rate. Projection vectors are then sent over the AWGN channel. 
Using this UEP scheme, important information that affects face recognition the most 
is highly protected. Received coded images are decoded first by the Viterbi algorithm. 
Then PCA decoding is used which includes the recognition of the face. Section 4 
includes the results of simulations and the conclusions are stated in section 5.   

2   Principal Component Analysis  

Eigenface method is based on the linear PCA where a face image is encoded to a low 
dimensional vector. All face images are decomposed into a small set of characteristic 
feature images called eigenfaces. Each face image is projected on the subspace of 
meaningful eigenfaces (ones with the nonzero eigen-values). In this way, the collec-
tion of weights describes each face. Recognition of a new face is performed by pro-
jecting it on the subspace of eigenfaces and then comparing its weights with corre-
sponding weights of each face from a known database.  
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2.1   Calculating Eigenfaces 

Suppose that all face images in database are of the same size w×h.  Eigenfaces are 
obtained as eigen-vectors of the covariance matrix of the data points.  

Let i be an image from the collection of M images in database. Face image is a 2-
dimensional array of size w×h, where w and h are width and height of the image, 
respectively. Each image can be represented as a vector of dimension wh and the 
average image, , is defined as: 
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Each image, i , differ from the average image  by the vector ii −= . 

The difference vectors are used to set up the covariance matrix C, as shown  
below [4]. 
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Since there are M images in database, the covariance matrix C has only M-1 mean-
ingful eigenvectors. Those eigenvectors, ul , can be obtained by multiplying eigenvec-
tors, vl , of matrix L= T  (of size M×M) with difference vectors in matrix  [4].   
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The eigenvectors, ul, are called the eigenfaces [4]. Eigenfaces with higher eigen-
values contribute more in representation of the image. Therefore such eigefaces are 
used for construction of the “face subspace” for image projections which are em-
ployed in face identification, classification or recognition. Projection (representation) 
vectors for every image are defined as 

Ω = [ω1 , ω2 , … ,  ωM]. (5) 

k is the kth coordinate of the image  in the face subspace and is calculated as [4]: 

ωk= uk
T(Γk –Ψ),   k=1, …, M. (6) 

The projection (representation) vectors are indispensable in face recognition tasks, 
due to their uniqueness. 

2.2   Recognition 

As mentioned above, the projection vector, , is necessary for reconstruction and 
recognition of the image. Euclidian distance between representations of two different 
images ( 1 and 2) is used for the determination of the recognition rate. 
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While for perfect reconstruction of the face image all the coefficients may be 
needed, for recognition only the most significant ones play an important role. Figure 2 
shows recognition rates for 80 test images (2 per person) and 320 training images (8 
per person) evaluated for different number of coefficients used. In the system de-
scribed above (8 poses for each person) recognition rate saturates at 95% after 10 
coefficients have been used in recognition. The same rate is obtained even if all 320 
representation coefficients were used. This implies that it is enough to use only a 
certain number of most significant coefficients with larger corresponding eigen-values 
in order to have the maximum recognition rate. Minimum number of coefficients, 
required for successful recognition rates depends on the data used in training as well 
as the test images. 

 

Fig. 2. Recognition Rate versus the number of coefficients used for recognition 

3   UEP Using Convolutional Codes for PCA Coded Images 

Transmitting all the pixels of an image at a time requires a huge bandwidth and a 
large bit rate, which in practice is not available. Therefore, concentrated and com-
pressed form of data should be sent over the channel in order to meet consumer re-
quirements. This compressed form of data may be a coded image where amount of 
information per bit is substantially increased. Hence a single bit error may result in 
considerable decrease in performance [3].  
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In this paper, PCA is used for image coding, where coded information for each im-
age is carried in its projection (representation) vector. Most significant coefficients in 
the vector are shown to have higher contribution in representation of the face. Unfor-
tunately, this property of projection coefficients and eigenfaces cannot be used in 
noisy channels due to randomness of the noise and unequal ratio of the error on each 
coefficient. For instance, small coefficients originally with almost no contribution, 
after transmission may become large and can even have a different sign. Therefore it 
is important to protect least significant coefficients just like the most significant ones 
in transmission of projection vectors. One way to protect bits is to increase redun-
dancy of the source signal and make it less susceptible to the effects of AWGN chan-
nel. This is successfully done by convolutional codes where the code rate determines 
the amount of redundancy.  

3.1   UEP of Projection Coefficients Using Convolutional Codes 

Protecting all coefficients would require larger bandwidth and delay which would not 
allow much improvement as compared to pixel transmission. Fortunately, errors in the 
fractional part of each coefficient will not result in considerable representation change 
compared to errors on integer or sign part. Since every coefficient is transformed into 
a sequence of binary digits, it is enough to protect a first few bits representing the sign 
and the integer parts of each coefficient. The most significant bits are hence encoded 
using a low rate convolutional code with more redundant bits and noise resilience and 
the remaining bits are encoded with a simple rate 1/2 convolutional code [4]. After 
encoding, all bits are modulated and transmitted over AWGN channel. At the receiver 
side, coded bit streams are decoded by the corresponding convolutional decoders. The 
UEP method is applied on bit level and protects all the coefficients in the projection 
vector, providing sufficiently small bandwidth and transmission Eb/N0. 

Simulations are performed to assess the performance of the UEP scheme. Projec-
tion vectors are binarized using a 64 bit quantizer, where the most significant 5 bits 
represent the integer part and the sign of the coefficient and the remaining 59 are used 
for the fractional part. This particular arrangement of the bits depends on the nature of 
the data used in simulations and it can be varied to meet specific requirements. The 
maximum value of the coefficients is 16 and hence 4 bits are assigned for integer part 
and an additional bit is assigned for the sign.  After projection vectors are digitized, 
UEP method is applied on a bit level. As previously mentioned, bits which correspond 
to the sign and the integer part are encoded using a lower rate convolutional encoder 
while a simpler, rate 1/2 encoder is used for the remaining bits. In the simulations, 7 
bits are protected with a lower rate covolutional code in order to increase performance 
even more. Those received coefficients are used for recognition of the face (Fig. 1).  

4   Results and Discussion 

400 face images from ORL face database are used in this work (10 various poses for 
40 different persons) where 320 images (8 per person) are used for training and 80 (2 
per person) for testing [5]. Eigen-subspace is constructed from 320 training images 
and the remaining 80 test images are only used in recognition analysis.  



340 S. Hosic, A. Hocanin, and H. Demirel 

Convolutional codes used for the simulation have rates 1/2, 1/3 and 1/4. The most 
important criterion for optimal codes is maximizing minimum free distance dfree, 
which determines the error correction capability of the code and determines perform-
ance at high Eb/N0 values. The second criterion is minimizing the number of nearest-
neighbors, Adfree whose influence increases as the Eb/N0 decreases [6]. The codes 
used in the simulations are chosen to satisfy the both criteria. The results for perform-
ance analysis are based on comparison of recognition rates for transmitted coded 
images with: 

− UEP using rate 1/4 + rate 1/2 convolutional code 
− UEP using rate 1/3 + rate 1/2 convolutional code  
− All bits equally treated using: rate 1/2, rate 1/3 and rate 1/4. 

Performance of above mentioned models are also examined for 8-state and 32-state 
convolutional codes. 

4.1   Face Recognition of 80 Received Coded Images (Projection Vectors) 

Projection vectors of 80 test images are transmitted over the channel with AWGN. 
These vectors are received with errors, decreasing recognition rate significantly. Per-
formance is better for higher values of average Eb/N0 but the aim is to keep Eb/N0 as 
low as possible. Applying previously described UEP, encoding the first 7 bits of each 
coefficient with a low rate convolutional code, provides significant increase in per-
formance. By this way number of redundant bits is not very high and performance is 
satisfactory. Furthermore, recognition rates approach the ideal case even for the rela-
tively small values of Eb/N0. 

 

Fig. 3. Recognition Rate with and without UEP for 8-state encoders at 2dB 
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Fig. 3 and 4 compare the performance of the systems with 8-state and 32-state 
convolutional encoders in AWGN, with and without UEP for Eb/N0=2dB, respec-
tively. Without UEP and for low rate encoders, the number of encoded bits becomes 
large, increasing the data rate requirements. UEP reduces the number of bits for 
transmission, providing satisfactory results at a low Eb/N0. 

In Fig. 3, it is seen that at a low value of Eb/N0 = 2dB, UEP rate 1/4 + rate 1/2 
scheme increases recognition rate by approximately 5% compared with the equal rate 
1/3 encoding for all bits. This is true even though the UEP scheme has a lower redun-
dancy. For each coefficient, the UEP system results in 7· 4 + 57·2 = 158 bits while 
the Rate 1/3 code requires 64 · 3 = 192 bits. In order to improve recognition perform-
ance, more complicated convolutional codes may be used. Fig. 4 shows that the in-
creasing number of states of the encoders does not provide further performance gains.  

 

Fig. 4. Recognition Rate with and without UEP for 32-state encoders at 2dB 

5   Conclusion 

Coefficients of PCA-coded images, when transmitted over a noisy channel, are all 
equally important for image representation. Therefore protecting the first few bits of 
each coefficient is more useful than only protecting coefficients with higher corre-
sponding eigenvalues. Error correcting codes used to protect these coefficients must 
be carefully chosen to minimize the effects of the channel without increasing the 
added redundancy. It is shown that the proposed UEP scheme increases overall sys-
tem performance for face recognition at low Eb/N0 values. Face recognition rates for 
the UEP with rate 1/4 + rate1/2 Convolutional Codes reaches recognition rates up to 
95% and is higher than that of the equal protection with a rate 1/3 convolutional code. 
This is especially important considering that the UEP scheme requires much less 
redundancy. Increasing the complexity of the convolutional codes with larger number 
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of encoding states does not result in considerable increase in recognition performance. 
The proposed scheme may be efficiently employed for face recognition in adverse 
channel conditions where Eb/N0 is low with minimal added redundancy for error 
protection. 
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Abstract. For a hardware random number generator (RNG) in a crypto module, 
it is important that the RNG hardware offers an output bit stream that is always 
unbiased. J. H., et al. proposed a combination of the hardware component and a 
software filter algorithm. However, even though the hardware generating proc-
essor generates an output bit stream quickly, if the software filter algorithm is 
inefficient, the RNG becomes time consuming, thereby restricting the condi-
tions when an RNG can be applied. Accordingly, this paper proposes an effec-
tive method of software filtering for an RNG processor in a crypto module. To 
consistently guarantee the randomness of the output sequence from a RNG, the 
origin must be stabilized, regardless of any change in circumstances. Therefore, 
a tree model is proposed to apply the filter algorithm, making it less time con-
suming than J. H.’s conventional filter algorithm scheme. 

1   Introduction 

Ubiquitous computing is continuing to grow, resulting in the construction of mas-
sively distributed computing environments, such as the global positioning system 
(GPS) [1][2]. However, the particular constraints imposed by ubiquitous computing, 
including computational power and energy consumption, raise significantly different 
security issues, such as authentication, confidentiality, and integrity, along with more 
general issues, such as convenience, speed, and so on. A hardware random number 
generator uses a non-deterministic source to produce randomness, and more demand-
ing random number applications, such as cryptography, a crypto module engine, and 
statistical simulation, then benefit from the sequences produced by an RNG, a crypto-
graphic system based on a hardware component [1]. As such, a number generator is a 
source of unpredictable, irreproducible, and statistically random stream sequences, 
and a popular method for generating random numbers using a natural phenomenon is 
the electronic amplification and sampling of a thermal or Gaussian noise signal. How-
ever, since all electronic systems are influenced by a finite bandwidth, 1/f noise, and 
other non-random influences, perfect randomness cannot be preserved by any practi-
cal system. Thus, when generating random numbers using an electronic circuit, a low 
power white noise signal is amplified and then sampled at a constant sampling fre-
quency. Yet, when using an RNG with only a hardware component, as required for 
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statistical randomness, it is quite difficult to create an unbiased and stable random bit 
stream. The studies reported in [3][4][5] show that the randomness of a random 
stream can be enhanced when combining a real RNG, LFSR number generator, and 
hash function. Hence, in previous studies about RNG schemes in the security area, F. 
Cortigiani, et al. (2000) examined a very high speed true random noise generator, S. 
Rocchi and V. Vignoli (1999) proposed a high speed chaotic CMOS true random 
analog/digital white noise generator, Adel, et al. (2001) investigated the design and 
performance analysis of a high speed AWGN communication channel emulator, and a 
noise-based random bit generator IC for applications in cryptography was considered 
(Craig S, et al. 1998 [4]).  

However, the randomness of such combined methods is still dependent on the se-
curity level of the hash function and LFSR number generator. Thus, a previous paper 
proposed a real RNG that combines an RNG and filtering technique that is not de-
pendent on the security level of the period. Therefore, controlling a stable input volt-
age for an RNG is an important aspect of the design of an RNG. In particular, it is 
important that the RNG hardware offers an output bit stream that is always unbiased. 
Thus, J. H., et al. [5] proposed a method that combines the hardware component with 
a software filter algorithm. Nonetheless, even though the hardware generating proces-
sor generates an output bit stream quickly, if the software filter algorithm is ineffi-
cient, the RNG becomes time consuming, thereby restricting the conditions when an 
RNG can be applied. Accordingly, this paper proposes an effective method of soft-
ware filtering for an RNG processor in a crypto module. To consistently guarantee the 
randomness of the output sequence from an RNG, the origin must be stabilized, re-
gardless of any change of circumstances.  

Hereinafter, section 2 reviews the framework of an H/W RNG of crypto module, 
then section 3 examines the filter algorithm in J. H., et. al.’s model and introduces the 
proposed filter algorithm. Experimental results and some final conclusions are given 
in sections 4 and 5.  

2   Framework of RNG in Crypto Module 

An H/W random number generator includes common components for producing ran-
dom bit streams, classified as follows: characteristics of the noise source, amplifica-
tion of the noise source, and sampling for gathering the comparator output [4][6]. The 
applied noise source uses Gaussian noise, which typically results from the flow of 
electrons through a highly charged field [7][8][9]. Ultimately, the electron flow is the 
movement of discrete charges, and the mean flow rate is surrounded by a distribution 
related to the launch time and momentum of the individual charge carriers entering 
the charged field. The Gaussian noise generated in a PN junction has the same mathe-
matical form as that of a temperature-limited vacuum diode. The probability density 
f(x) of the Gaussian noise voltage distribution function is defined by Eq. (1). 
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where, σ  is the root mean square value of the Gaussian noise voltage. However, for 
the proposed Gaussian noise random number generator, the noise diode was a diode 
with white Gaussian distribution. The power density for the noise was constant with a 
frequency from 0.1Hz to 10MHz and the amplitude had a Gaussian distribution. The 
noise comes from the agitation of the electrons within a resistance, which sets a lower 
limit on the noise present in a circuit. Thus, when the frequency range is given, the 
voltage of the noise is decided by a factor of the frequency. The crest factor of a 
waveform is defined as the ratio of the peak to the rms value, and here a crest value of 
approximately 4 was used for the noise. However, with the proposed real random 
number generator, since the noise diode is a noise diode with a white Gaussian distri-
bution, the noise must be amplified to a level where it can be accurately thresholded 
with no bias using a clocked comparator.  

A hardware random number generator includes common components for produc-
ing random bit streams, classified as follows: characteristics of the noise source, am-
plification of the noise source, and sampling for gathering the comparator output. The 
applied noise source uses Gaussian noise, which typically results from the flow of 
electrons through a highly charged field, such as a semiconductor junction. 

Noise source
Generation

Signal
Amplification

Bit Pattern
Comparison

Bit Detection
Sampling

Power &
Clock control

I/O

ROM EEPROM RAM CPU

Crypto Engine

RNG  

Fig. 1. The architecture of random number generator in crypto module 

The microcomputer chips in most crypto modules consist of a CPU, ROM, RAM, 
I/O, EEPROM, etc. A crypto module also includes some form of power and clock 
control circuitry, BUS, and I/O interface. 

3   The Filter Model of H/W Random Number Generator 

3.1   Filter Algorithm in Conventional Model 

The conventional filter algorithm is applied in the next process of the output stream of 
the sampler to reduce the biased statistical randomness [5]. If the optimum buffer size 
[32bits] and significance level [γ ] are established, this supports unbiased and stable 

randomness. In the conventional model, a static buffer [S] memory of 32bits is used 
to buffer the “pass data” in the decision boundary, and the significance level for the P 
value is between 0.9995 and 1.0005. 

T
P

τ=      (2) 

where, the total sum τ  is the sum of the number of  “1” bit patterns and the total 
length T is half the value of the static length. 
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Fig. 2. Process of conventional filter algorithm model 

where, D is the sum of the passed/failed bit streams, W is the window step size 
(32bits), and n is the iteration of evaluation (1024th round). When the static buffer is 
fixed at 64bits, the half value of the static length is 32bits. If the value of {Σ{the num-
ber of a pattern “1”bit} / the half value of the static length within the total length} is 
included within the significance level, the decision will be the state of  “pass”. In step 
1, if the condition of  “pass” is decided, this is added as pass data to the buffer 
memory. In steps 3-4, if  “fail” is decided, through the conventional filtering process, 
this is included in the decision process. The process is then completed when the size 
of the desired bit stream is gathered. The failed bits (32bits, S) are then made uniform 
by conventional filter (i.e., the duty distribution of the bit stream “0” and “1” is nor-
malized). In conventional model, the output bit stream is expanded in steps of 32bits, 
while simultaneously evaluating the significance level. If the value of the duty cycle 
of the collected output bit stream, P, satisfies the condition of significance level, the 
32bit stream is added, otherwise it is discarded. As such, this filter process guarantees 
that the output bit stream has unbiased characteristics. 

3.2   Proposed Filter Algorithm for Tree Model 

A tree filter model is applied in the next process of the output stream of the sampler to 
reduce the characteristics of a biased bit stream and as an efficient method that can 
reduce the time consumption. 

In Fig. 3, the domain of the output bit stream, D is denoted as {D0, D1} = {D00, D01, 
D10, D11} = {D0, …, 0, …, D1, …, 1}. In level 2i, i is 1, …, 10. The evaluation of the 
significance level is performed on the basis of the level 2i unit. For example, if w is 
32bits and n is 1024, then the collected bit stream D is 32768 bits.  The levels are 
processed from level 20 to level 2i according to the increase in degree i for each level, 
thereby reducing the bit stream size. In level 20, if P is included within the signifi-
cance level, all evaluations are completed in the 1st round. Alternatively, if P does not 
satisfy the condition of significance level, it is divided by the tree from I = 0, then the 
divided sets D0 and D1 out of set D are evaluated in level 21, and all evaluations for 
sets D0 and D1 proceed in the 2nd round. 

If P for set D0 is included within the significance level and does not satisfy the con-
dition of significance level for the set D1 node, the bit stream for set D0 is collected, 
while the set D1 node is divided by the tree architecture into set D10 and D11 nodes and 
the evaluation of the significance level proceeds for the set D10 and D11 nodes. There-
fore, for the level 22 tree, the evaluation only proceeds after the tree division of sets D10 
and D11. Given the condition that set D1 does not satisfy the condition of significance 
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level, if D10 is within the significance level, it is difficult for the P of D11 to be within 
the significance level. Thus, in the level 23 trees, the D11 node is divided, then the di-
vided set D110 and D110 nodes are evaluated individually. If the evaluation of set D110 

passes, then the collected bit stream is {D0, D10, D110} and the evaluation of set D111 
can proceed. For the tree condition with the proposed filter model, the integer i is ex-
panded from 0 to 10. In the case of conventional model the process is performed 
through 1024 rounds, however, with the proposed model, the computational iteration 
of 1024 rounds correspond to the worst case under the same conditions. Most of the 
evaluations are decided in the medium level, which is not last level (i=10). Moreover, 
various representations of trees and mapping methods are possible. Yet, to simplify the 
tree filter algorithm, the filter trees are kept in a normalized form: the nodes are always 
labeled in a 2i order.  Where i is 1, 2, …., n. n is the order of the lowest and smallest bit 
stream set that is not within the accepted level of significance in the worst case.  

D=w×n

Level 20

D0=w×n/21 D1=w×n/21

D00=w×n/22 D01=w×n/22 D10=w×n/22 D11=w×n/22

Level 21

D0,..,0=w×n/2i D1, …, 1=w×n/2i

Level 2i

 

Fig. 3. Process of proposed filtering algorithm 

Algorithm: TreeBasedFilter for filter tree  
TreeBasedFilter():: 
1. Let Significance level γ  : 0.9995< γ 1.0005, width: w=[32]; 

2. Given RNGSequence size:d=2n*w/2i, i={0, …,n}, n={10}; 
3. for i={0,…,n} times do 
4. if(i==0) j==0 Goto EvaluationTest 
5. else for j={1,…,2i} times do 
6.   Let D be RNGSequence[i*d++][j]; Compute EvaluationTest(); 
7.   End for  
8. End for 

EvaluationTest( ):: 

1. If γ≤D , then D is PassedBitStream, SaveBitstream=D; 

2. Else, D is divided into set D0 and D1 

3. If γ≤0D  or γ≤1D , set D0 or D1 is PassedBitStream, SaveBitstream = D0 or D1 

4. Else, γ0D  or γ1D  then D0 or D1 is divided into D00/D01 or D10/D11 

 

4   Experimental Results 

A multiple bit stream of consecutive bits as the output from the RNG was subjected to 
a mono bit test (such as Eq. (2)), et al. [10][11]. If any of the tests fail, the module 
then enters an error state. The statistical RNG test method of FIPS140-1 is used, as 
derived using Eq. (2) on the basis of the statistical RNG randomness.  
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Fig. 4. Evaluation example 1 according to proposed tree scheme (failed prob. is 10%) 

According to Eq. (2), when the RNG has an output bit stream of 512bits, the win-
dow size is 32bits, As such, in the case of conventional model, 16 rounds need to be 
processed for the filter evaluation, as if the output bit stream (512bits) is divided into 
a window size of 32bits, this makes 16 fields. If P is not satisfactory for 1 field out of 
the 16 fields, i.e., the level of passed probability is 90%, the evaluation test start in the 
level of 256bits, this creates the tree division shown in Fig.4. When the failed prob-
ability presents a probability that does not satisfy the significance level in 20 levels 
consisting of 512bits, the mother tree is divided into the left child node and the right 
child node consisting of 256bits, respectively. In the case of one failed field, zero out 
of the one failed field occur in the left child node, while one out of the one failed field 
occur in the right child node. If it is assumed that one of the failed field in level 22 
(128bit units) diverge into a passed field unit in the left child node and a failed field 
unit the right child node, in 23 level (64bit units), one node occur that are not failed 
field, while one node occurs as failed field. Therefore, the nodes about the nodes that 
do not occur as failed fields are not processed. Accordingly, in the case of the com-
bined method consisting of a hardware method and software filtering to create the 
output bit stream of the RNG, whereas conventional model needed 16 rounds to 
evaluate the 16 fields, the proposed model only took 8 rounds. 

In Fig. 5, when P for the output bit stream of the RNG during the evaluation interval 
satisfied the significance level, i.e., the passed probability was about 90%, the compu-
tational burden for evaluating the significance level with conventional model was set at 
100%, meaning the computational burden for the proposed tree model was only about  
 

 

Fig. 5. Computation efficiency between conventional and proposed model 
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50%. As the computational burden was considered in relation to the passed probability 
of the significance level, the tree node level of the passed probability, which had an 
upper bound of 85%, was reduced to 12.5% with respect to the computational burden. 
But at a 75% passed probability for the output stream, the computational burden was 
not reduced to 0%. In the interval of lower bound of 75%, the proposed algorithm did 
not have effected. But in the interval of other condition, as P for the passed probability 
during the evaluation interval decreased, the computational burden increased. There-
fore, with regard to the passed probability and computational burden, the performance 
of the proposed tree model was superior to that of the conventional model.  

Meanwhile, Table 1 presents a comparison of the time consumption between con-
ventional and the proposed model in worst case. When the output bit stream of the 
RNG had gathered about 1.024Mbits, at an 80% passed probability, the time con-
sumed using the conventional model was about 5sec. However, the time consumed by 
the proposed model was about 4.375sec. Therefore, the time performance of the pro-
posed model was better than that of the conventional model.  

Table 1. Time consumption between conventional and proposed tree model according to 
passed probability in worst case (to obtain 1.024Mbits) 

Passed probability in evaluation interval (%) Time consumed with each 
model (sec) 50 60 70 80 90 

With conventional model  6.2  5.6  5.4  5  4.5 
With proposed model  6.2  5.6  5.4  4.375  2.25 

Reduced time  0  0  0  0.25  2.25 

Table 2 presents a comparison of the number of rounds processed between conven-
tional and the proposed model.  

Table 2. Filtering processing efficiency between conventional and proposed tree model accord-
ing to passed probability in worst case (to obtain 1.024Mbits) 

Passed probability in evaluation interval (%) Number of iterations 
for each model (rounds) 50 60 70 80 90 

With conventional model  52800  48000  45920  42667  36000 
With proposed model  52800  48000  45920  37334  18000 

Reduced iterations  0  0  0  5333  18000 

After gathering 1.024Mbits, the passed probability was 80% and the number of 
rounds with the conventional model was 42667, while the number with the proposed 
tree model was 37334. Therefore, with regard to the time consumption, computational 
burden, and number of iterations, the performance of the proposed model was supe-
rior to that of conventional model when applied to guarantee the stability of the hard-
ware output bit stream of the random number generator. 
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5   Conclusions 

A previous paper proposed a real RNG that combines an RNG and filtering technique 
that is not dependent on the security level of the period. Therefore, it is important that 
the RNG hardware offers an output bit stream that is always unbiased. Therefore, J. H., 
et al. proposed the combination of the hardware component with a software filter algo-
rithm. However, even though the hardware generating processor generates an output 
bit stream quickly, if the software filter algorithm is inefficient, the RNG becomes time 
consuming, thereby restricting the conditions when an RNG can be applied.  

Accordingly, this paper proposes an effective method of software filtering for an 
RNG processor in a crypto module. To consistently guarantee the randomness of the 
output sequence from a RNG, the origin must be stabilized, regardless of any change 
in circumstances. Therefore, a RNG is proposed that applies a filter algorithm that is 
less time consuming than conventional filter algorithm scheme. In addition, the com-
putational burden is also analyzed when applying the filter algorithm.   
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Abstract. A novel multiple description coding framework, called Layered Mul-
tiple Description Packetized Coding (LMDPC) is proposed in this paper. We 
first develop a two description coding scheme from SNR scalable layer coding, 
where the base layer is duplicated into both descriptions and enhancement layer 
was split into two parts and sent to separate descriptions, respectively. Two de-
scriptions are then partitioned horizontally and vertically, forming row packets 
and column packets for transportation. Because each row packet and column 
packet has only limited intersection, even packets lost happen on both descrip-
tions, the proposed algorithm still has very good error resilient ability. Experi-
mental results have verified the performance of the proposed MDC framework. 

1   Introduction 

Most of communication networks used nowadays are packet switching networks. 
Since packet loss in transmission occurs every now and then due to the network con-
gestion and channel failure, robust transmission frameworks are requisite in such 
packet erasure networks. Multiple Description Coding (MDC) emerges as a predomi-
nant method for overcoming transmission errors in unreliable packet switching net-
work and wireless channels and has received considerably attention [1].  

The basic idea of the MDC is coding a single source into several self-decodable bit 
streams called descriptions and delivered them over different channels to the receiver. 
If all the descriptions are received correctly, the decoder can have a high fidelity 
source reconstruction. If only some description is available, the decoder is still able to 
retrieve some information of the lost parts of signals resulting in a reconstructed im-
age with an acceptable quality.  

The first MDC scheme, Multiple Description Scalar Quantizer (MDSQ) is pro-
posed by Vaishampayan[2]. An alternate scheme, Multiple Description Transform 
Coding (MDTC) is introduced in [3, 4]. Both MDSQ and MDTC provide effective 
schemes to alleviate the effects of the transmission errors. However, the requirement 
for index assignments in MDSQ calls for complicated system design, while MDTC 
requires another correlating transform besides the conventional decorrelation trans-
form. To simplify the system implementation, Jiang and Ortega proposed a wavelet 
based MDC framework, Polyphase Transform and Selective Quantization (PTSQ), 
where zerotrees are separated into multiple phases and data from one phase and the 
protection information for another are composed to form a description [5]. Miguel et 
al. developed a multiple protection MDC scheme, called SPIHT for generalized mul-
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tiple description coding (MD-SPIHT) in a similar way, yielding better error resilience 
results with 16 descriptions [6]. In [7], Servetto et al. provided a coding scheme by 
combining multiple description scalar quantizers with subband coders. Cai et al. sug-
gested another novel subband MDC coder by splitting the significant coefficients in 
[8]. To exploit the advantages of both MDC and layer coding, Chou et al. [9] split 
multiple descriptions of FEC-MDC into layers, forming layered multiple description 
coding (LMDC).  

In this paper, we propose a new MDC framework, Layer Based Multiple Descrip-
tion Packetized Coding (LBMDPC), based on layered coding. Instead of forming 
LMDC, we employ the idea of SNR scalability to form MDC in this work. In the case 
of two descriptions, the base layer, which contains all critical information of the 
source, is duplicated and coded into both descriptions, and the enhancement layer, in 
which information is not so important as the former ones, is partitioned into two parts 
and coded in separate description. Both descriptions are then split to packets and 
separately dispatched by diverse channels.  

The rest of this paper is organized as follows: Section 2 describes the proposed 
MDC scheme, including the decomposition, reconstruction procedures, and simula-
tion results to illustrate the improved performances of the proposed framework. Sec-
tion 3 discusses the measure of packetization and related experimental results. The 
concluding remarks are given in Section 4. 

2   The Layer Based Multiple Description Coding 

2.1   The Framework of the Layer Based Multiple Description Coding 

Fig. 1 shows the framework of the proposed Layer Based Multiple Description Sub-
band Coding (LBMDC), where DWT and IDWT denote the forward wavelet trans-
former and the invert wavelet transformer; CQ and FQ represent the coarser quantizer 
and the finer quantizer, and CQ-1 and FQ-1 stand for their counterparts. C indicates a 
zerotree [10,11] or X-tree coder [12]. From the Fig. 1, one can find that the encoder of 
the proposed multiple description framework is no more than a SNR scalability codec. 
Only difference between the Fig. 1 and ordinary layered coding is that the enhance-
ment layer is now divided into two parts and separately coded. 

2.2   The Layer Based Multiple Description Subband Coding 

 Wavelet coefficients from the forward transformer is firstly coarsely quantized and 
coded by a SPIHT encoder to form the primary information. This primary information 
is then coded and copied to both descriptions to protect the key information of the 
source. The coefficients is then subtracted by the dequantized coarse coefficients and 
quantized one more time by a finer quantizer. Finally, the outputs of the finer quan-
tizer are down-sampled, coded, and transmitted from different channels. Similar to 
PTSQ and MD-SPIHT, we use SPIHT as the codec to make our conclusion more 
eloquent. Besides, it facilitates the down sampling process on the enhancement layer. 
In this context, the down sampling on the enhancement layer can be easily realized by 
decimating both significant coefficient list and insignificant coefficient list in SPIHT 
codec. 
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Fig. 1. The diagram block of the proposed MDC 

If both channels are available, we can reconstruct the wavelet coefficients from the 
central decoder with base layer information and total enhancement layer information 
from both channels. If one channel is erased, we can still reconstruct the wavelet 
coefficients from one of the side decoder with total information in the base layer and 
half of information in the enhancement layer from the available channel. 

2.3   The Simulation Results by Layer Based Multiple Description Subband 
Coding and Discussion 

The 7/9 biorthogonal wavelet filters introduced in [13], a five level dyadic wavelet 
transform, and a SPIHT codec [11] along with an arithmetic coder [14] are used in all 
our experiments in this work. Fig. 2 shows the reconstructed “Lena” images obtained 
using LBMDC for a bit rate of 0.5 bpp in about 25% redundancy rate. The redun-
dancy  is defined as follows: 

 = ( R1 + R2 - R0 ) / R0 (1) 

Where, R1, and R2 stand for the bit rate used in both side decoders and R0 is the de-
sired bit rate by a normal (single description) codec with the same distortion as the 
outcome of the center decoder. 

Fig. 3 – Fig. 5 show the simulation results obtained using the PTSQ [4], the MDSQ 
subband coding [6], and the proposed LBMDC, respectively. As can be seen from the 
plots, the proposed LBMDC algorithm consistently outperformed the PTSQ and the 
MDSQ subband coding algorithms for the target rate of 0.25 bpp, 0.50bpp, and 1.0 
bpp. 
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Fig. 2. The simulation results of the proposed LBMCD algorithm on “Lena” (Bit rate = 0.5 
bpp) 
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Fig. 3. The simulation results by the proposed LBMCD, PTSQ and MDC Subband Coding on 
“Lena” (Bit rate = 0.25 bpp) 
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Fig. 4. The simulation results by the proposed LBMCD, PTSQ and MDSQ Subband Coding on 
“Lena” (Bit rate = 0.50 bpp) 
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Fig. 5. The simulation results by the proposed LBMCD, PTSQ and MDC Subband Coding on 
“Lena” (Bit rate = 1.00 bpp) 

3   The Layer Based Multiple Description Packetized Coding 

The problem with LBMDC is that most of communication channels used nowadays 
are mainly packet switching networks, to fit in with such networks, the descriptions 
must be packetized before dispatched. Since transmitting networks are packet erasure 
channels, all available packets should be taken into account to improve the quality of 
the reconstructed image. 

3.1   The Realization of the Layer Based Multiple Description Packetized Coding 
Framework 

A spontaneous idea is to divide the transformed image into N sub-images and apply 
LBMDC on the sub-images to produce packets. However, if two sub-descriptions in a 
sub-image are totally lost, the reconstructed image will be degraded severely. coeffi  
 

 
Fig. 6. Horizontal and vertical decomposed sub-descriptions and their intersections 

 

(a) Horizontal   (b) Vertical       (c) Intersection of 
Decomposition decomposition                       row & column 



356 C. Cai and Jing Chen 

cients into two descriptions by LBMDC, and then split these two descriptions hori-
zontally and vertically (Fig. 6) separately, forming row sub-descriptions and column 
sub-descriptions, which are packed and dispatched through variety channels. 

Since each row sub-description and each column sub-description have only limited 
intersection, the lost of row sub-descriptions as well as few column sub-descriptions 
will not introduce serious distortions, and vice versa. Besides, we can reconstruct the 
lowest frequency band of the lost sub-image from its neighbor row and column sub-
descriptions.  

The decoder of the LBMDPC firstly groups all available sub-descriptions to recon-
struct the wavelet coefficients, and then estimate missed coefficients in the lowest 
band by their neighbors and set all other miss coefficients to zero. The received image 
is finally reconstructed from the coefficients.  

3.2   Experimental Results by the Layer Based Multiple Description Packetized 
Coding 

As mentioned before, we used the 7/9 biorthogonal wavelet filters, a five-level- 
pyramid-decomposition, and a SPIHT codec with an arithmetic coder in our ex-
periments. The computer simulation results on image “Lena” is shown in Fig. 7. 
Where, LBMDPC1denotes the outcomes of the proposed algorithm in the case of 
only row packets or column packets lost, and LBMDPC2, in the case of packets 
lost happened on both row and column descriptions. From this figure, one can see 
in the first case, the outcome of LBMDPC, LBMDPC1 has the best results. Even 
packets lost happen on both row and column descriptions, LBMDPC2, the out-
come by the LBMDPC, are still better than that of PTSQ and comparable with 
MD-SPIHT’s.  
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Fig. 7. The relationship of PSNR and lost packet number in image “Lena” by PTSQ, MD-
SPIHT, and the proposed algorithm 
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4   Concluding Remarks 

This paper has developed a new MDC framework, Layer Based Multiple Description 
Packetized Coding (LBMDPC) for image transmission in the packet erasure channels. 
Based on the layered coding, we first introduced a new scheme to split each wavelet 
coefficient of the image to form two bit streams, and then exploited an efficient way 
to packetize the streams to form row packets and column packets for transmission in 
packet erasure channels. Combined with the SPIHT codec, the proposed MDC 
scheme was developed into a new MDC system.  

Computer simulating results have shown that the proposed MDC framework has 
very good error resilient ability if only row packets or column packets are lost. Be-
cause each row packet and column packet has only limited intersection, even packets 
lost happen on both row and column descriptions, the outcome of the proposed algo-
rithm still better than that of PTSQ and are comparable with MD-SPIHT. 
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Abstract. SP(Synchronization-Predictive) frame coding, which enables high ef-
ficiency of switching between two video bitstreams with different qualities, is 
supported by H.264/AVC. And FGS(Fine-Granular-Scalability) coding is sup-
ported by MPEG-4 video standard. This paper proposes a solution for combina-
tion these two tools with each other so as to adapt to high bandwidth variations 
of Internet or wireless networks and to low bandwidth variations flexibly for 
transmitted video streams. Experimental results show that our proposed system 
outperforms FGS coding by 0.47dB and the H.264/AVC-based video stream 
switching approach by 0.23dB on average. 

1   Introduction 

It is a hot focus of current researches in video standards that how to transmit video 
streams over Internet and wireless networks. Two methods, stream switching(SS) 
and FGS(Fine-Granular-Scalability) video encoding, are settled on to the problem 
of random variations of bandwidth in these transmission environments. 

FGS video encoding has already been adopted by MPEG-4 video standard, 
which can provides better balance between coding efficiency and scalability than 
other scalable video codings, while maintaining a very flexible video coding  
structure. But its defect is the low encoding efficiency compare to other video en-
coding tools. A comparison with the traditional method under same bandwidth is 
conducted in [1] and the result shows FGS has 2-3dB disadvantages in its perform-
ance. Thus come so many improvements on promotion of the FGS performances 
such as [2,3], some of which attempt to use in H.264/AVC, however getting a  
limited effect. 

SP(Synchronization-Predictive) frame has been adopted in H.264/AVC for  
allowing high efficiency of stream switching methods among several bitstreams so 
as to elevate encoding efficiency[4,5]. Identical reconstructions of the SP frames 
are permitted even when different reference frames are being used during the period 
of bitstream switching. One of its advantages is its adaptation to the large scale of  
bandwidth changes, but having no flexibility of FGS. 



360 Z.-g. Li et al. 

Lately X. Sun et al propose a seamless switching scheme[6] to switch down at any 
frame or switch up at one expected SP frame to other scalable stream. Extra bitstream 
is needed in the case of switching up process, in which the current scalable bitstream 
is switched to one operated at higher rates. The most important deficit is that the com-
plexity of its decoder in decoding the high-bit-rate scalable bitstream is about three 
times of that of a standard MPEG-4 decoder. 

In order to overcome the shortcomings of these schemes above, we propose a 
method to combine the feature of FGS, i.e. the flexible adaption of varying bandwidth 
in a short span of range, together with the feature of SP frame's bitstream switching, 
i.e. the high coding efficiency of two or more pre-encoded bitstream with different 
rates to adapt to higher fluctuated bandwidth change, to use in H.264/AVC. The rest 
of this paper is organized as follows: section 2 and section 3 are the brief overviews 
of FGS coding and video bitstream switching, respectively. Section 4 presents the 
proposed combination solution. The experimental results and concluding remarks are 
in Section 5 and section 6, respectively. 

2   H.264/AVC-Based FGS Coding 

Our FGS structure consists of an H.264/AVC non-scalable base layer encoded at 
Rbase and an MPEG-4 enhancement layer encoded using bitplane coding at a maxi-
mum bit-rate Rmax. During transmission, the enhancement layer can be truncated at 
the rate Ravailable in order to fully utilize the available bandwidth. Fig. 1 illustrates 
the bitplane coding structure for the enhancement layer of FGS. The residue be-
tween the original image and the reconstructed image of base layer is compressed 
with bit plane coding technique for the DCT coefficients to form the enhancement 
bitstream. Since the bit plane coding produces an embedded bitstream with fine 
granularity scalability, it is possible for the server to truncate the enhancement layer 
in order to match the outgoing bit-rate with the channel capacity variations.  

 

Fig. 1. FGS scalability structure. BP1, BP2, …, BP7 are the bitplanes for the enhancement 
layer. 

If a channel capacity is 80kbps and output frame rate is10 frames/second, we have 
to code each frame with an average of 8000 bits. If a rate control is imposed on the 
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base layer such that it is coded with 6000 bits on average, we have to cut the FGS-
EL(Enhancement Layer) after 2000 bits on average, depending on the exact value of 
the actual number of bits we use. 

3   Video Bitstream Switching 

SP frame is one of the features in Extended Profile of H.264/AVC video standard to 
provide one with a high efficiency of switching among different video streams with 
similar contents but with different rates. One can insert SP frames in the bitstream 
to create drift-free switching positions to vary the transmitted bitrate/quality. Fig. 2 
shows that one can set up pictures SP1 in a low quality stream, and set up pictures 
SP2 in a high quality stream, and finish the process switching from the low quality 
stream to high quality stream within the same sequence by using the secondary SP 
frame, i.e. pictures SP12. Note that the number of bits for SP12 is usually far more 
than that for SP1 or for SP2. The process switching from the high quality stream to 
low quality stream is alike. So the method of SP frame is a scalability tool with 
coarse granularity, which is with a feature of large scale of scalability but with less 
fine-granularity or less flexibility than FGS.  

 

Fig. 2. Switching from low quality video stream to high quality one 

4   Combination of FGS Coding and Video Bitstream Switching 

Table 1 gives a brief comparison of video stream switching and FGS coding ap-
proach and tells one that the advantages and disadvantages of them are mutually 
complementary. The combination with each other can enhance the scalable effects 
for the video bitstreams. 

Before our video bitstream switching, there is an adaptive bit-rate selection. As-
sumed that the available bandwidth fluctuates in the range [Rmin , Rmax], and that two 
streams are used to cover this bandwidth range, one with low quality and the other 
 



362 Z.-g. Li et al. 

Table 1. Comparison of video stream switching and FGS coding 

Comparison Stream switching FGS 
Coding Efficiency High Become lower when increasing 

enhancement layer bit-rates 
Bandwidth Utilization Low High, close to 100% 
Adaptation to band-
width variation 

Only take effects at 
key frames 

Depending on streaming server, 
it can be done instantly 

Scalability step Coarse Granularity Fine Granular 

with higher quality with bit-rates R1 and R2, respectively, such that 

max21min RRRR ≤≤≤ . In order to be able to send a stream at any given band-

width, the bit-rate of the lowest quality stream should not be higher than the minimum 
available bandwidth. For this reason, R1 is selected to be equal to Rmin. The bit-rate R2 
for the higher quality stream is chosen to minimize the total distortion D of the fluctu-
ating bandwidth range as follows: 
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Where D1 and D2 are the calculated distortions of the low and high quality decoded 
streams respectively, and are measured in terms of mean square error. Although in theo-
retical the bit rate of each enhancement layer bitstream can be truncated up to Rmax, it is 
not necessary in our proposed combination scheme. The maximum bit rate covered by 
low quality stream is selected to be slightly higher than R2. With these two scalable 
bitstreams, any desired bit rate within the band-width range can be achieved by select-
ing the proper scalable video bitstream and truncating the enhancement layer bitstream. 
For example, if the available channel bandwidth is less than R2, then low quality video 
stream is sent to the client; otherwise the high quality one is sent. 

Our H.264/AVC-based FGS coding use two adaptive quantization techniques, i.e. se-
lective enhancement and frequency weighting simultaneously. Selective enhancement 
can be used to enhance a particular region of the video pictures, while frequency 
weighting can be employed effectively to reduce some of the block artifacts throughout 
an FGS coded video frame. The new value );;( kjic′  of a coefficient i of block 
j(within macroblock k) can be expressed as follows: 

),,(22),,( )()( kjickjic inkn fwse ⋅⋅=′  .  (2) 

Where ),,( kjic  is the original value of the coefficient, )(knse  and )(in fw  are the 

shifted number of bitplanes for selected macroblocks’ selective enhancement and selected 
DCT coefficients’ frequency weighting, respectively. 

Our proposed combination scheme with two scalable video bitstreams is depicted in 
Fig. 3. Small bandwidth change is accommodated by the truncation of FGS enhancement 
layer, and large bandwidth variation is then allowed by starting up switching from the low 
quality stream 1 to high quality stream 2 within the same sequence with the extra secon-
dary SP frame SP12 to take place of primary SP frame SP1 or SP2 or vice versa. 
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Fig. 3. Combining FGS coding with video stream switching 

5   Experimental Results 

The number of frames to be encoded is 30 in the simulations. The first frame is en-
coded as an I-frame and at fixed intervals, 1s, the frames are encoded as I- or SP-
frames whereas the remaining frames are encoded as P-frames under Extended Profile 
of H.264/AVC. The H.264/AVC encoder parameters are shown in Table 2. 

Table 2. Encoding parameters for the H.264/AVC base layers 

Test sequence Foreman 
Spatial resolution QCIF(176*144) 
Encoded frame rate 10fps 
SP Picture Periodicity 10Hz 
Quantization Parameter of SP-

Pictures for Prediction Error (QPSP) 
QP-2, where QP represents the 

quantized parameter used for P 
frames. 

Quantization Parameter of SP-
Pictures for Predicted Blocks (QPSP2) 

QP-1 

Number of reference frames SP frame and P frame both use 1 
reference frame. 

Frame Structure I P P…P SP P P … 
Rate-distortion optimization option Enabled 
Entropy coding CAVLC 
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The choice of the QPSP2 value in Table 2 can be application dependent: when SP 
pictures are used to facilitate random access, due to that SP frames placed within a 
single bitstream will have the major influence on compression efficiency, QPSP2 
value should be small; on the other hand, when SP pictures are used for video stream-
ing rate control, QPSP2 value should be kept close to QPSP since SP-pictures sent 
during switching from one bitstream to another will have large share of the overall 
bandwidth. We first set the quality of the non switching SP frames by using QPSP, 
then fine tuning the tradeoff between the size of the switching SP frames and non 
switching SP frames by using QPSP2.  

In our experiment, the bit rate periodically switches from 64 to 128 kbps. Each cy-
cle starts at 64kbps for 1s and then changes to 128kbps for 1s and then changes to 
64kbps for 1s. The overhead bits for switching are also included in this simulation. 
Apparently, the proposed scheme can achieve the best performance among these 3 
evaluated schemes from Fig. 4a and Fig. 4b. The performance of 2 different schemes 
compare to each other in terms of bandwidth adaptation in Fig. 4a: FGS coding and 
our proposed algorithm(FGS coding+video stream switching). The PSNR of Y com-
ponents of luma for proposed method have a gain of 0.47dB on average than FGS 
scheme. We know that our proposed method better than FGS coding by about 2dB 
after switching up, whereas the second switching(switching down) leads to a little 
degradation. The main reason of this degradation is that the same set of motion vec-
tors obtained from the high bit-rate bitstream is used to encode the low bit-rate video 
in the proposed scheme, and the coding efficiency of the low bit-rate bitstream is 
going to drop. 
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Fig. 4a. Dynamic performance of proposed method(solid line with diamond tags) vs. FGS 
coding(dashed line with triangle tags) 

Fig. 4b compares our proposed method with the individual video stream switching 
under the same conditions. The PSNR of Y components for the former scheme have a 
gain of 0.23dB on average than the latter one. 
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Fig. 4b. Dynamic comparison of proposed method(solid line with diamond tags) vs. video 
stream switching(dashed line with triangle tags) 

6   Conclusions 

A solution provided herein combining the FGS characteristics, with video stream 
switching based on H.264/AVC’s SP frame coding concept, is implemented into 
H.264/AVC reference software JM8.6. The base layer is encoded with H.264/AVC, 
and the enhancement layer is encoded with FGS coding. Our proposed switching 
scheme among scalable video bitstreams improves the efficiency of video streaming 
over a broad range of bit rates. And the switching among scalable video bitstreams is 
drifting-free. 
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Abstract. Imagine is a stream-based prototype processor designed for media 
processing. It uses a three-level bandwidth hierarchy to exploit parallelism and 
data locality. It has good performance in media processing. H.264 is the newest 
digital video coding standard. It can achieve high coding efficiency at the cost 
of complex computation. In addition, video pictures have natural stream 
features, such as good special locality and limited temporal dependency. This 
paper presents an accelerated implementation of motion estimation, which is the 
most time-consuming part in H.264 coding framework, on Imagine stream 
processor. Experimental results show that the coding efficiency for QCIF 
format can be up to 372fps and surpass real-time requirement. The acceleration 
of stream processing is significant. It proves that H.264 coding is suited for 
implementation on Imagine. 

1   Introduction 

Imagine is a prototype processor of stream architecture developed by Stanford 
University in 2002. We have done much research on Imagine stream architecture 
[1,2]. The stream model decomposes applications into a series of computation kernels 
that operate on data streams. A kernel is a small program executed in arithmetic 
clusters that is repeated for each successive element of its input streams to produce 
output stream for the next kernel in the application. Streams are ordered finite-length 
sequences of data records. Each record in a stream is a collection of related data 
words of the same type [3]. Imagine can provide high performance in many domains 
such as media processing and signal processing. For example, Imagine is able to 
sustain performance of 15.35 giga operations per second (GOPS) in MPEG-2 
encoding application, corresponding to 287 frames per second (fps) on a 320*288-
pixel, 24-bit color image [4]. 

H.264 [5], proposed by Joint Video Team (JVT), is a new digital video coding 
standard. It aims to high compression, high quality, and flexible network adaptability. 
Especially, it surpasses MPEG-4 in low-rate video coding, and is suited for the 
requirement of network video application with low bandwidth but high quality. H.264 
is widely-used in video telephony, videoconferencing, television broadcasting, video 
surveillance, stream media applications and so on.  

H.264 has high coding efficiency at the cost of complex computation. In addition, 
video pictures have natural stream features, such as good spatial locality and limited 
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temporal dependency. Considering the high performance of MPEG-2 on stream 
architecture, it is inferred that H.264 can increase its coding efficiency by stream 
processing. If so, not only one video coding standard can be implemented efficiently 
on Imagine. Even for different algorithms in the same standard, stream architecture 
may satisfy them in virtue of its programmability. 

Analyzing each module in H.264 encoder, it can be seen that motion estimation 
may consume 60% (1 reference frame) to 80% (5 reference frames) of the total 
encoding time of the H.264 codec and much higher proportion can be obtained if RD 
optimization or some other tool is invalid and larger search range (such as 48 or 64) is 
used [6]. Thus, the key of H.264 encoding optimization is how to improve motion 
estimation algorithms and how to implement existing algorithms efficiently. 

This paper introduces H.264 motion estimation algorithm and maps it onto Imagine 
stream processor. The experimental results show that the coding efficiency for QCIF 
image format can be up to 372 fps, which exceeds real-time requirement greatly. 
Compared with V1304 H.264 encoder [7], the speed up is 14.88 times and the 
acceleration of stream processing is significant. It proves that H.264 is suited for 
implementation on Imagine. 

2   UMHexagonS Motion Estimation Algorithm [6] 

UMHexagonS algorithm proposed by Tsinghua University can solve “local-
minimum” problem well, and therefore it is adopted by H.264 formally. This 
algorithm uses the hybrid and hierarchical motion search strategies. It includes four 
steps with different kinds of search pattern: 1) Predictor selection and prediction 
mode reordering; 2) Unsymmetrical-cross search; 3) Uneven multi-hexagon-grid 
search; 4) Extended hexagon-based search. With the second and third step, the motion 
estimation accuracy can be nearly as high as that of full search. But the computation 
load and operations can be reduced even more.  

Unsymmetrical-cross search uses prediction vector as the search center and extends 
in the horizontal and vertical directions respectively. Uneven multi-hexagon-grid 
search includes two sub-steps: First a full search is carried out around the search 
center. And then a 16-HP multi-hexagon-grid search strategy is taken. Extended 
hexagon-based search is used as a center biased search algorithm, including hexagon 
search and diamond search in a small range. 

3   Imagine Stream Processor [8] 

Imagine is a programmable coprocessor that directly executes applications mapped to 
streams and kernels. Fig.1 diagrams the Imagine stream architecture. Kernels 
typically loop through all input-stream elements, performing a compound stream 
operation on each element. A compound stream operation reads an element from its 
input stream(s) in the stream register file (SRF). During computation, all temporary 
data are stored in the local register file (LRF) of each cluster. And the computed 
results in a kernel are sent back to the output stream in the SRF. Only the initial and 
final data streams need to be transferred to the off-chip SDRAM. This storage 
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bandwidth hierarchy is able to meet the large instruction and data bandwidth demands 
of media processing well. 

 

Fig. 1. Imagine stream architecture 

Programming on Imagine is divided into two levels: stream level (using StreamC) 
and kernel level (using KernelC). These levels are corresponding to stream scheduling 
and stream processing in logic view respectively. Programmers can be absorbed in the 
stream framework definition and kernel partition at the stream level. While at the 
kernel level, programmers should pay attention to the implementation and 
optimization of the whole program. Imagine provides three kinds of parallelisms: 
instruction-level parallelism (ILP), data-level parallelism (DLP) and task-level 
parallelism (TLP). The choice of these three parallelism modes during the 
implementation depends on the characteristics of a practical application and the power 
of hardware resources.  

4   Implementation of H.264 Motion Estimation 

H.264 supports a range of block sizes (from 16*16 down to 4*4). Here we take 8*8 
block size as an example to describe our motion search kernel (called blocksearch). 

 

Fig. 2. Diagram of blocksearch kernel 
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The input and output streams of blocksearch are shown in Fig.2. The motion 
search window as reference frame is 24*24 and is loaded by way of three input 
streams. And the sequence of current blocks to be encoded is organized into one input 
stream. Motion vectors for each block produced by blocksearch will be the input for 
the next kernel. 

All these four input streams are of ubyte4 type (a basic data type in KernelC 
language [9]), which is composed of 4 packed 8-bit unsigned bytes. Thus, an ubyte4 
stream element can contain four luminance components of horizontally-adjacent 
pixels in the same block. Fig.3 illustrates the distribution of input stream in eight 
clusters. It can be seen that each cluster processes a row of pixels in an 8*8 block. 

24
ro

w
s

 

Fig. 3. Organization of motion search window and distribution of cluster 

Unsymmetrical-cross search operates the blocks in row1 first, that means the 
search process begins in the horizontal direction. The sum of absolute difference 
(SAD) is chosen as our matching criterion. The black and dark gray points in Fig.4 
form an 8*8 block. After computing SAD between this block and current block in 
Current MB, the black points in the left column are freed. And load the next column 
of pixels (gray points) to generate a new 8*8 block for the following search.  

When the left four columns of pixels are freed totally, eight corresponding stream 
elements are consumed, which are not reused in the following search. The search 
process in the horizontal direction of motion search window needs 17 times SAD 
computation. The vertical direction performs similar search process. The motion 
vector with the minimum SAD will be chosen as search center of next search step. 

A simple multi-hexagon-grid search is shown in Fig.5 (a full search in a small 
range is not described here.). The white points are processed in the previous 
unsymmetrical-cross search; the gray point presents the result position of 
unsymmetrical-cross search; and the black points are indicators of reference block 
used in multi-hexagon-grid search. It can be seen that the reference block stream is 
irregular, not in the horizontal direction or in the vertical direction. Thus, the data 
rearrangement is needed to organize reference blocks in the order as Fig.5 shows. 
Index stream or communication kernel is feasible for complex stream rearrangement. 
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Search in the horizontal direction
    

Fig. 4. Load and free pixels in                     Fig. 5. Search process of a simple multi-hexagon- 
unsymmetrical-cross search                         grid search 

There is large potential data-level parallelism in the block search process. We exploit 
the parallelism in two approaches, shown in Fig.6. One approach described above, uses 
four pixels as a stream element that we called pixel stream. SAD computation for 
different rows of a block can be processed simultaneously in eight clusters of Imagine. 
Data transfer is implemented through inter-cluster communication. While the second 
approach uses coarse-grain parallelism called macorblock stream, processing eight 
different blocks in its own motion search window to produce eight motion vectors 
simultaneously. The inter-cluster communication will be decreased. However, the 
number of stored reference block becomes larger. In addition, the motion search 
windows for each coding block may overlap and bring large redundancy. As a result, 
the requirement of SRF and LRF bandwidth will increase. Table 1 gives the comparison 
between pixel stream approach and macroblock stream approach. 

Table 1. Comparison between two approaches - pixel stream and macroblock stream 

 Pixel stream Macroblock stream 
Stream organization Natural Complex 

Record Size 1 word 16 words 
Loading overhead Little Large 

Bandwidth requirement Low High 
Communication Large Little 

5   Result Analysis 

For QCIF image format accepted by H.264 encoder, its definition is PAL: 176*144. At 
500MHz on the simulator of Imagine (ISIM), Imagine stream processor can provide 897 
cycles to execute unsymmetrical-cross search, and 1581 cycles for uneven multi-
hexagon-grid search in pixel-stream approach. Processing 8*8 block needs 2478 cycles, 
namely 4.956ns. Thus, the total time for processing a frame of QCIF image, which has 
396 invocations of kernel, is 1.96ms. Some techniques like loop unrolling or software 
pipelining may optimize kernel’s implementation and improve system performance. For 
example after unrolling loop twice, 569 cycles is needed for unsymmetrical-cross search 
and 1165 cycles for uneven multi-hexagon-grid search. In this instance, 1.37ms is 
enough for encoding one frame and the total performance improves nearly 30%.  
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While in macroblock-stream approach, it needs 5646 cycles for eight different 
macroblocks. The run time of kernel is 2.5 times faster than that of pixel-stream 
approach. However, it is only an ideal result. In practice, it will be limited by large 
overhead of stream loading. So we implemented our H.264 encoder by using pixel-
stream approach. 

       

Fig. 6. Kernel diagram of pixel stream                  Fig. 7. Schedule diagram of blocksearch 
and macroblock stream

Using our H.264 encoder including basic parameter-I slices, P slices and CAVLC, 
the coding efficiency for QCIF image on Imagine stream processor can be up to 
372fps. Table 2 illustrates the comparison of an average encoding time for each QCIF 
frame among JM50 reference program (written by JVT), ShowVideo encoder (with 
an improved algorithm) [10], V1304 (developed by DSP Research, Inc.) [7] and our 
implementation on Imagine. Though our experiment excludes extended hexagon 
based search, the motion estimation accuracy can satisfy the requirement of 
application. It can be seen that the speed of H.264 motion estimation on Imagine 
surpasses that of JM reference program greatly, and achieves more obvious 
performance improvement than that of improved algorithm on general PC. Compared 
with 25fps of V1304 H.264 encoder, the speed up is 14.88 times. It profits from that 
stream architecture can support a great deal of ALUs for computation-intensive 
application, and provide enough instructions and data to fill ALUs in order to keep 
ALU utilization high (see the circle in Fig.7, where horizontal axis displays hardware 
resources and vertical axis displays time. A rectangle within the axes indicates using a 
resource over a period of time. ). The actual coding efficiency may be lower than 
theoretic value that is because the data stream has extra loading overhead and the 
functional units keep idle until all required data stream elements are loaded in each 
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cluster. How to organize input/output stream efficiently and exploit parallelism to the 
utmost extent, is the key of improving the performance of application. 

Table 2. Comparison of different implementation for H.264 motion estimation 

 System 
Environment 

Chosen 
Algorithm 

Motion 
Estimation 

Range 

Average 
Encoding Time 

Imagine 
Implementation 

Imagine UMHexagonS 24 1.37ms/frame 

JM50 
Reference 
Program 

AMD 1.2G + 
DDR256M 

UMHexagonS 32 447.5ms/frame 

ShowVideo AMD 1.2G + 
DDR256M 

new algorithm 
in [10] 

32 22.5ms/frame 

V1304 
H.264 Encoder 

V1304 - - 40ms/frame 

(Data for JM50 and ShowVideo refer to [10]) 

6   Conclusion 

UMHexagonS motion estimation algorithm of H.264 encoder is mapped onto Imagine 
stream processor in this paper. We have achieved good performance that the coding 
efficiency for QCIF image format is up to 372fps. We can infer that H.264 coding 
standard is suited for Imagine based on the implementation of H.264 core algorithm. 
Thus, Imagine can implement many video-coding standards (MPEG-2, H.264 etc.). 
The flexibility is comparable with DSP, but the performance can be increased 
significantly. Imagine has such a great advantage in video coding domain. Our future 
work is optimizing the H.264 encoder on Imagine. It can provide experience and 
reference for mapping other video standard on Imagine, and make a contribution to 
application extension of Imagine. 
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Abstract. MPEG-2 test stream for evaluation the static picture quality
of digital television (DTV) should meet both good picture quality and
stable bit rate. In this paper, we present a method for generating a high
quality test stream to evaluate the static picture quality in DTV receiver.
The proposed method is suitable for encoding the static test pattern, such
as multiburst and crosshatch, and is based on user-defined quantization
and adaptive zero stuffing algorithm. The user-defined quantization is
suitable for minimizing the quantization error, which is the reason of
degradation of picture quality, and the adaptive zero stuffing algorithm
is used to solve the overflow of video buffer verifier (VBV) buffer while
encoding process by MPEG-2 encoder. Experimental results show that
the average PSNR and the bit rate of the proposed method have more
efficient and stable than those of the conventional.

1 Introduction

The basic structure of current TV system is newly created by digital technology,
delivering high quality video, audio, and data. As the DTV service becomes more
widely used than traditional analog TV system, how to measure a picture quality
in DTV becomes the main problem. So, the need for a reference test stream to
evaluate the picture quality of DTV has substantially increased [1]. The test
streams are needed to perform the role traditionally taken by static analogue
test patterns and are must satisfied MPEG-2 regulation [2]. From equipment
manufacture to system monitoring, the test stream are must guarantee the good
picture quality and stable bit rate during the decoding process to evaluate the
picture quality [3], [4].

At the heart of coding in MPEG-2 is the discrete cosine transform (DCT).
When the DCT is computed for a block of pels, it is desirable to represent the
coefficients for high spatial frequencies with less precision, which is considered
the spatial frequency response of the human visual system (HVS). This is done by
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a process called quantization. However, if the spatial frequencies become higher
and higher, quantization errors are increased. There is the reason of degradation
of picture quality at high spatial frequencies.

For the bit rate control in MPEG-2, if more coding bit than the allocated
target number are exhausted, the remaining bit resource in the GOP is getting
smaller, In such a case, insufficient coding bits can be allocated to the pictures
at the end of the GOP, which may result in severe degradation of picture quality
if buffer overflow. C.-T. Ahn et al. [5] proposed zero bit stuffing to prevent the
VBV buffer overflow which can cause annoying picture quality degradation. But
this method is used simply to prevent buffer overflow without improving picture
quality, so that it is difficult to expect good picture quality. if the target number
of bits and the number of actual coding bits for each picture do not match well,
than the degradation of picture quality and buffer overflow may occur at the
end of the GOP. J. W. Lee et al. [6] proposed target bit matching for MPEG-2
video rate control to solve this problem. This algorithm is based on accurate bit
estimation, but there is only better than the MPEG-2 Test Model 5 (TM5)[7]
algorithm for the complex and fast-moving sequence, while both algorithms yield
similar performances for the simple and slowly-moving sequence [6].

This paper proposed a new method for generating the reference test stream
to evaluate the picture quality of DTV. The test stream is encoded the static
test pattern, such as multiburst and crosshatch, by using MPEG-2 encoder. In
order to obtain the test stream with good picture quality, we propose a new user-
defined quantization and an adaptive zero stuffing algorithm. The user-defined
quantization table is suitable for minimizing the quantization error which is the
reason of degradation of picture quality, and the adaptive zero stuffing algorithm
that determines the number of zero stuffing bits for preventing buffer overflow
and maintaining good picture quality at the same time.

To evaluate the proposed method, we generate the test pattern stream us-
ing MPEG-2 encoder with and without the proposed algorithm respectively.
Experimental results show that the test pattern stream has a stable bit rate
during the decoding process, and the PSNR of the proposed method is about
4 dB higher than that of the conventional cases. The proposed method has a
stable bit rate and good picture quality and it is suitable for evaluation a DTV
receiver.

2 The Proposed Algorithm

To obtain a test stream with good picture quality and stable bit rate, this paper
proposed a new algorithm, which is suitable for encoding the static test pattern.
The proposed method is shown in Fig. 1.

2.1 Proposed User-Defined Quantization

DCT and visually-weighted quantization of the DCT are key parts of the MPEG-
2 coding system. Quantization is basically a process for reduction the precision
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of the DCT coefficients. It is desirable to represent the coefficients for high
spatial frequencies with less precision, which is considered the spatial frequency
response of the HVS. However, in case of quantizing with default weighting table,
if the spatial frequencies become higher and higher then quantization errors
increased, which is the reason of degradation of picture quality and undesirable
result. The new user-defined quantization is proposed to solve this problem. The
proposed weighting table values are set by the minimum value so that there is
no degradation of picture quality during quantization process, as shown in Fig.
2. Moreover, proposed weighting table is transmitted to one part of sequence
header and is available without change of decoder.

Proposed Zero
Stuffing Decision

Bit Rate Control

Source Coder

Proposed
Weighting Table

Target Bits

Picture

Signal
Activity

Scaling Factor

Actual
Coding Bits

Buffer

Buffer Status

Zero Stuffing

Bit Stream

Fig. 1. Block diagram for video compression by proposed algorithm

8 16 19 22 26 27 29 34

16 16 22 24 27 29 34 37

19 22 26 27 29 34 34 38

22 22 26 27 29 34 37 40

22 26 27 29 32 35 40 48

26 27 29 32 35 40 48 58

26 27 29 34 38 46 56 69

27 29 36 38 46 56 69 83

(a)

8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8

(b)

Fig. 2. (a) Default and (b) proposed quantization weighting table
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2.2 Proposed Zero Stuffing Algorithm

We propose a new algorithm that determines the number of zero stuffing bits
for preventing VBV buffer overflow and maintaining the high picture quality at
the same time. The proposed method is shown in Fig. 3.

D  = T - S

level  Setting,
Calculation Q

P
 and  n

Next Video Buffer
Status Prediction

n = n  + 1
( 0 < n  < level  )

Z  bits Zero Stuffing

Target Bits and
Actual Coding Bits Check

No

Yes

Z  = R
stuffing

  D

       R
stuffing

 =
n

level

Buffer Overflow ?

Fig. 3. Flowchart of the proposed zero stuffing algorithm

For this operation, we can exploit the relationship between the number of
actual coding bits and the number of target bits. The difference Di,p,b can be
determined by the following relation.

Di,p,b = Ti,p,b − Si,p,b (1)

where T and S are target number of bits and actual coding bits respectively. And
subscription i, p, and b correspond to a picture type I, P, and B respectively. If
the target number of bits and the number of actual coding bits for each picture
do not match well, then the degradation of picture quality and buffer overflow
may occur at the end of the GOP. However, if the number of zero stuffing bits
is allocated as much as Di,p,b to prevent buffer overflow, then the remaining bit
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resource in the next GOP is getting smaller. As a result, insufficient coding bits
are allocated to the pictures of the next GOP, and the severe degradation of
picture quality may occur. Therefore we propose a formulation that determines
the number of zero stuffing bits Zi,p,b and the initial buffer fullness di,p,b

0

Zi,p,b = Rstuffing ·Di,p,b (2)

and
di,p,b
0 = di,p,b

0 + (Si,p,b + Zi,p,b − Ti,p,b) (3)

respectively. The initial buffer fullness is updated per each picture. The ratio of
zero stuffing Rstuffing is

Rstuffing =
1

level
· n (4)

where level is set by the complexity of encoder, and n is calculated as follows:

α− 1 < n < α, n : interger (5)

α =
QP −QPmin

QPmax −QPmin
· level (6)

where the QP is the PSNR of current picture, the QPmin and the QPmax, the
minimum and the maximum PSNR, are updated or maintained by PSNR of
current picture, QP . We set the initial QPmin and QPmax to 20dB and 90dB
respectively. The setting up algorithm of QPmin and QPmax is shown in Fig. 4.
If buffer overflow is predicted at the next picture, then we increase the number
of zero stuffing bits through updating the Rstuffing and we can prevent buffer
overflow. Fig. 5 illustrates relationship between n and QP .

Picture Quality Check

Q
P max

 <  Q
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Q
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 = Q
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R
stuffing

 = 1

Yes
Q

P min
 <  Q

P
 < Q

Pmax

0 < R
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 < 1

No
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Q
P min

 =  Q
P

R
stuffing

 = 0

Fig. 4. The setting up algorithm of QPmin and QPmax
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Fig. 5. Relationship between n and QP

3 Experiments and Results

We have tested the performance of proposed algorithm with two static test
patterns, multiburst and crosshatch as shown in Fig. 6. They are encoded by
MPEG-2 encoder with and without the proposed algorithm. Bit rate, VBV buffer
size, and level are 12 Mbps, 9.78 Mbits, and 9, respectively. And TM5 is used
for rate control.

(a) (b)

Fig. 6. (a) Multiburst (1280 ×720) and (b) crosshatch (1920 ×1080)

Fig. 7(a) and Fig. 8(a) show the PSNR of the test streams. From those
figures, we can see that the proposed method is about 4.5 dB more efficient
than the conventional cases. Fig. 7(b) and Fig. 8(b) plot the VBV buffer state
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Fig. 7. (a) PSNR and (b) VBV buffer state of multiburst pattern encoded
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Fig. 8. (a) PSNR and (b) VBV buffer state of crosshatch pattern encoded

of the test streams. In both figures, the proposed test stream has a very stable
bit rate, while large fluctuation or overflow is occurred in the others’. Therefore,
we have not experienced any buffer overflow with the proposed algorithm while
high picture quality is to be maintained. The average PSNR of proposed and
conventional methods are shown in Table 1.

4 Conclusions

High quality test and measurement in the MPEG domain is required to evaluate
the static picture quality of DTV receiver. Therefore, high quality test stream is
essential if stable bit rate is to be maintained. This paper proposes a new method
for generating a high quality test stream to evaluate the static picture quality of
DTV receiver. Moreover the proposed method is suitable to compression of the
static test pattern. In order to obtain the test stream with good picture quality,
we propose a new user-defined quantization for minimizing the quantization
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Table 1. The average PSNR of the proposed method and the conventional methods

PSNR[dB]
Video Rate

[Mbps]
Test Images

Proposed Ahn et al. [5] MPEG-2 TM5

Multiburst

Crosshatch

12

12

62.8

65.4

58.7

58.6

58.6

62.7

error and an adaptive zero stuffing algorithm that determines the number of
zero stuffing bits for preventing buffer overflow and maintaining good picture
quality at the same time. To evaluate the proposed method, we generate the
test pattern streams by using MPEG-2 encoder with and without the proposed
algorithm. Experimental results show that the proposed test pattern stream has
a stable bit rate during the decoding process, and the PSNR of the proposed
method is about 4 dB higher than that of the conventional cases. The proposed
method has a stable bit rate and good picture quality and it is suitable for
evaluation a DTV receiver.
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Abstract. MPEG-4 visual simple profile is a widely used video compres-
sion standard for mobile solutions. In general, MPEG-4 video decoder
requires high computation power for its complex algorithms. It’s diffi-
cult to implement MPEG-4 video decoder on hand-held devices directly.
In this paper, we proposed a novel color space transform algorithm and
optimized the memory access operations. Moreover, the multiperless in-
teger IDCT is adopted to further speed up the decoder. Our optimization
is based on ARM7TDMI and ARM920T, which are very desirable cores
to mobile solutions for low power consumption. Experimental results
show that the optimized decoder acts about 5 times faster than existing
XVID MPEG-4 video decoder with small video quality degradation and
supports real-time video applications.

1 Introduction

MPEG-4 is an ISO/IEC standard developed by the Moving Pictures Expert
Group (MPEG) [1]. With the rapid development of Internet, MPEG-4 video
is adopted in real-time video communications, such as video telephone, video
conferencing and video-on-demand (VOD). In order to improve the compression
ratio, many effective but complex algorithms are applied in MPEG-4 standard.
However, due to limited computation power, the complex algorithms become
a bottleneck of real-time video applications, especially in mobile environment.
Optimization of those complex algorithms is inevitable.

There are three time-consuming modules of an actual implementation of
MPEG-4 visual simple profile decoder; namely, Frame Display (including the
color space transformation, through Frame Display is not part of the MPEG-
4 standard, it’s an important module for actual application), Memory Access
(including VOP reconstruction) and IDCT. Above 50% of the decoding time is
taken by these three parts [3].

Many researchers are working on the MPEG-4 video decoder optimization.
Roughly, current speed optimization for MPEG-4 software video decoder can
be classified into two approaches which are platform-independent and platform-
dependent. The former optimizes algorithms and data structures, which can be
� The work was supported by National Natural Science Foundation of China

(60203013), 863 Program (2004AA1Z2390) and Key Technologies R&D Program
of Zhejiang Province (2005C23047 & 2004C11052).
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applied in all kinds of platform, such as [3,4,11]; the latter mostly works on special
hardware platform, for example, [2] works for ARM7TDMI and [7] proposes the
optimization based on multiprocessors.

Although significant performance improvements are achieved with
approaches stated above, most of them only take consideration on CPU com-
puting ability rather than memory cache. According to [6], the decoding perfor-
mance with different memory cache is very different. ARM7TDMI, one of the
most widely used cores on mobile phone, does not encompass memory caches
and the CPU is usually lower than 100MHZ. The bottleneck is not only low CPU
computing ability but also small memory. The work done by [2] is much similar
to ours which is also based on MPEG-4 visual simple profile and hand-held de-
vices, but they haven’t considered the modules, File Input and Frame Display.
Referring to [3], these two parts take up the 37.6% of total decoding time. So
optimization of the whole decoding process is valuable for practical application.

ARM family cores are widely used in hand-held devices due to low power
consumption. In this paper, we present several speed optimization techniques
for MPEG-4 visual simply profile based on the architecture features of ARM
cores, especially the memory caches. Our focus is on real-time decoding and the
foundation of our approach is time profile result of the XVID software decoder
[8]. We classified the decoder modules into CPU intensive and memory intensive
modules. Referring to the time profile result, the most time-consuming modules
are selected for optimization. A fast color space transformation technique and
multiplierless integer IDCT are employed with about 10 times speed up and
0.5 PSNR drop. Furthermore, several optimized memory operating and other
algorithms are suggested to reduce the number of memory access.

The rest of this paper is organized as follows. Section 2 describes the details
of our approach. We present the experiment results in Section 3 and draw the
conclusions in Section 4.

2 Speed Optimization Techniques

The MEPG-4 visual simply profile decoding process can decompose into follow-
ing modules:

– Access Memory: VOP Reconstruction and other memory access operation.
– Color Space Transformation (CST): e.g. Converting from YUV to RGB565.
– IDCT: Fast Inverse Discrete Cosine Transform.
– Inverse Quantization (IQ): Dequantization.
– Motion Compensation (MC): Motion compensation.
– Padding: Rectangular padding for unrestricted motion estimation.
– Pixel Interpolation (Interp): Interpolation of pixels motion compensation.
– Saturation: Limiting the decoded pixel values to special range.
– Others: Routines that do not belong to any other modules.

Profiling the XVID decoder, we found that the decoding process is mainly
classified into two parts which are CPU intensive modules and memory access
intensive modules.
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Table 1 is the profile information of decoding process before optimization.
According to the time profile results, we focus on the color space transform,

IDCT and memory access process which include Access Memory and Padding.
Optimizing the memory access is much more important on ARM7TDMI because
these are no memory cache, and all data is from external memory.

Table 1. Time profile information of decoding process before optimization. (Obtained
by the Akiyo (SQCIF) sequence).

46%
CST 18% Memory Access

8% IDCT
3% MC
2% IQ
1% Interp

2% Saturation
4% Others

16% Padding CPU intensive Modules
(62%): CST(46%), IDCT
(8%), IQ(2%), MC(3%),
Saturation(2%), Interp (1%).
Memory intensive Mod-
ules (34%): Access Memory
(18%), Rectangular Padding
(16%)
Others (4%)

2.1 Converting YUV to RGB565

RGB565 is more widely used color format on hand-held display device rather
than YUV, which is the color space MPEG-4 standard based on. To display the
video on RGB565 based device, nearly half of the CPU cycles are consumed by
the color space transform due to pixel by pixel processing. A lookup table from
YUV to RGB565 is suggested to avoid the complex computing.

However, it’s too large to setup the full lookup table from YUV to RGB565
directly on common embedded devices, because 255 × 255 × 255 × 2 = 32MB
space is needed if each entry takes 2 bytes. Some simplification should be
done.

It’s well known that the human eye is more sensitive to luminance than
chroma. Hence the U and V components may be under-sampled to lower the
byte size of an image, for improving transmission speeds and saving disk space.
Meanwhile, only the high bytes of RGB format are employed in the RGB565. The
transfer formula is linear, so the YUV values’ low bytes do not have significant
impact. As a result, only the high 6, 5, 5 bits of the YUV values are used for
forming the lookup table. New table has only26× 25× 25 = 216entries, and each
entry is still 2 Bytes. The size of the reconstructed table is reduced to 128KB,
only 1/256 of the previous one.

The table is constructed by the following equations from (U’ V’ Y’) to (R’
G’ B’): (

Y U V
)T =

(
Y ′ U ′ V ′ )T . ∗ (3 7 7

)T +
(
1.5 3.5 3.5

)T (1)⎛⎝RG
B

⎞⎠ =

⎛⎝1.164 0 1.596
1.164 −0.391 −0.813
1.164 2.018 0

⎞⎠⎛⎝⎛⎝YU
V

⎞⎠−
⎛⎝16

128
128

⎞⎠⎞⎠ (2)
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Fig. 1. Converting from YUV to RGB565 with simplified table. All components like X’
should be complemented which are less than 8 bits. High-bits of the YUV components
are selected to form the index.

(
R′ G′ B′ )T =

(
R G B

)T
./
(
7 3 7

)T (3)

Where
(
1.5 3.5 3.5

)T is added to reach the average value and minimize the de-
viation. “.∗”, “./” mean applying multiplication or division operations on the
corresponding elements of the two matrixes.

The PSNR result in section 3 shows the quality drop is acceptable, especially
on low-resolution mobile devices with small LCD display.

On the other hands, the transform is a process performed pixel by pixel which
means a very large loop. For example, with the SQCIF (128×96) sequences, the
loop count reaches 128× 96 = 12288. The decoder will be significantly speeded
up even with small optimization on the loop body.

To avoid unnecessary data loading from memory, we limit the variables which
are used in the loop body to 14. Although ARM has 16 general proposal registers,
two of them should be reserved during the executing. They are pc which point
to the next instruction and sp which is the address of the stack.

Fig. 2. Four YUV components are loaded at the same time during the color space
transformation. Here the pixels with the same color are in one load-unit. Each loop
processes 16 pixels. (YCbCr 4:2:0 sampled).

Furthermore, in order to minimize the memory access, we process 16 pixels
at once. Y, U and V components are represented by 8 bits but the bandwidth
of ARM family is 32-bit. Four 8 bits U and V component can be loaded at once
to maximize the utility of the system’s bandwidth. Following the YCbCr 4:2:0
format, another 16 Y component should be loaded (Fig.2). Finally, only 6 loads
should be done compared to the original 16 + 4 + 4 = 24.

Also the index structure of lookup table will affect the memory access count.
In each 2 × 2 pixel region YCbCr 4:2:0 uses four bytes for the Y component
and one byte for each of the two chroma components. On the architecture with
memory cache such as ARM920T, a memory block named memory page will be
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Fig. 3. 16 bits index for color space transformation lookup table. (UVY pattern V.S.
YUV pattern) The former encounters more cache hits.

fetched at once. The UVY index pattern has much more chance to encounter
the cache hit than YUV pattern (Fig.3), because it keeps the high bits of the
index (UV) unchanged during the 2 × 2 region converting process.

2.2 Using Multiplierless Integer Transform

Inverse discrete cosine transform (IDCT) is a computationally intensive module
in video decoder. In some complexity mobile sequences, it may even consume
about 25% of decoding time. The standard DCT&IDCT is based on floating-
point computation. Although, many approximate integer-computation methods
are adopted to replace floating-point computation, the integer-computation-
based DCT&IDCT is still very complex due to many multiplicative operations.
In order to further reduce the complexity, we make use of multiplierless integer
transform algorithm to realize the conventional DCT&IDCT.

According to Y.J Chen’s algorithm [10], through Walsh-Hadamard transform
and lifting scheme, the DCT&IDCT can be processed without multiplication
which are replaced by adds and shifts, e.g. x ∗ 5 can be converted to x << 2+x.
So the multiplierless integer DCT&IDCT only utilize shift and add operations
and no multiplication is needed. Eight coefficients transform only requires 45
adds and 18 shifts operations, which significantly reduces the complexity com-
pared to the conventional one. Moreover, the multiplierless integer DCT&IDCT
inherits all desirable features of conventional DCT and adopting the new trans-
form algorithm will result in negligible video quality degradation.

2.3 Memory Access Optimizing

The memory access optimizing techniques are widely applied in our decoder,
especially, the VOP reconstruction module. ARM7TDMI, which does not have
memory cache, gets more benefit from these techniques.

Remove the padding process
Padding is a process adapt to the unrestricted motion estimation. If motion

estimation range can be limited into the VOP’s bounds during encoding, the
padding process can be discarded in decoder. After this, the compression rate
raises about 1%-3%, but 16% decoding time is saved.

Memory allocation pattern
Better organized data structure is a powerful tool to reduce the number

of memory access. Fixed Allocation pattern [9] can protect system from crash
which is caused by unprepared memory over use. It’s adopted mainly for rapidly
memory allocation. It can be found in almost all of the optimized decoder, for
example, the process pre-fetching the encoded data from the files.



388 L. Mo et al.

Rewrite memset and memcpy function for small size memory operation
The C library functions memset and memcpy are designed for all type data

size, including several checks for different cases. When the transformation data
is small, these checks will cause processing time increasing. So we can customize
these functions for special requirements.

32-bit aligned load/store
The bandwidth of ARM is 32-bit, and the time used to access (load / store)

8-bit data from memory equals that of 32-bit. So we can integrate four 8-bit
into one 32-bit when the content is continuous. This technique speed up de-
coder about 4 times. And it is widely used for all matrix operation in VOP
Reconstruction and MC processes.

Better use the register
To eliminate unnecessary memory accesses, we limit the parameters of a

function no more than four. Moreover, as the analysis of the section 2.1, the per-
formance will be effectively enhanced, if the parameters and temporary variables
of a performance critical function, such as the color space transfer process, are
limited to be no more than 14.

Block data transfer instructions
LDMIA and STMIA are instructions which load and store multiple words

from continue addresses into different registers. These instructions are helpful to
reduce the CPU cycles compared to the single data transfer instructions.

Merging the IQ and IDCT modules
Merging IQ and IDCT processes can reduce the number of the memory ac-

cess. IDCT process the dequantization result directly rather than storing then
reload it from memory. It can also be applied for Saturation control.

3 Experimental Results

To verify our optimization results, four SQCIF (128*96) and four CIF (352*288)
sequences, “Akiyo”, “Container”, “Foreman”, and “Mobile” are selected to show
the results. They are encoded by XVID encoder under MPEG-4 visual simply
profile. The devices used for the simulations are 30MHZ ARM7TDMI without
memorycacheand200MHZARM920Twith16Kmemorycache.Theother settings
are as follows: all the sequences are defined in a static coding structure, i.e., one
I-frame is followed by nineteen P-frames (1I19P), QP = 28, 32, 36 and 40 with a
frame rate of 30 frames per second and no skip frame throughout the 200 frames.

Our decoder is written by C and compiled by ARM c-compiler. The
performance-critical parts are written by assembly language. The profile tool
is GProf.

The comparison of each module’s decoding time for Akiyo between XVID [8]
and optimized decoder is shown in Fig.4.

Table 2 gives the frame rate (fps), speed up rate and PSNR of the eight
test sequences. As the module analysis result of Fig.4, the gain of saved time
is mainly from CST which is a stationary process and only decided by the pic-
ture size rather than the texture and motion complexity. The sequence Mobile
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Fig. 4. Decoding time comparison of each module for Akiyo sequence (SQCIF) between
XVID [9] and the optimized Decoder on ARM7TDMI. (Padding process is omitted).

has strenuous motion and complex texture, so the time consumed on IDCT and
Memory Access sharply increased. As a result, the speed up gain on stationary
sequences, such as Akiyo, are more than that on the sequences like Mobile. Aver-
age PSNR drop is about 0.5, and it’s more on mobile sequence. Fig.5 (a) shows
the PSNR of optimized decoder compared to the original for Foreman sequence
with 100k bitrate, 30kps and QP = 28; and Fig.5(b) gives the PSNR under differ-
ent bitrates. On ARM7TDMI (30MHZ, no memory cache), the decoding time is
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Fig. 5. Foreman with 100k bit rate, 30kfps and QP = 28. (a) R-D curve of original
pictures compared to the decoding result with fast CST. (b) PSNR values for different
bitrates.

about 10 frames per second for SQCIF sequences. Also we implemented the op-
timized decoder on the devices based on ARM920T (200MHZ, with 16k memory
cache), the decoding speed is about 40 frames per second for CIF sequences.

Furthermore, we find that the performance on ARM920T is about 4 times
better than that on ARM7TDMI though the testing sequences are about 8 times
bigger than that for ARM7TDMI. Except the special instructions for multimedia
application on ARM920T, the memory cache may be the key factor.

4 Conclusions

This paper presents various methods to optimize the MPEG-4 visual simple pro-
file software-based decoder. A fast color space transform algorithm is proposed
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Table 2. Decoding results on ARM7TDMI and ARM920T

Sequence
ARM7TDMI
(30MHZ, no cache)
(SQCIF sequences)

ARM920T
(200MHZ, 16K Cache)
(CIF sequences)

fps Speedup gain PSNR drop fps Speedup gain PSNR drop
Akiyo 13.6 6.8 −0.1 (db) 46.2 5.2 −0.1 (db)

Foreman 12.1 5.2 −0.7 (db) 44.0 4.2 −0.7 (db)
Container 13.0 6.3 −0.4 (db) 45.9 4.9 −0.3 (db)

Mobile 8.6 4.3 −0.9 (db) 35.0 3.3 −0.9 (db)

to tackle the most time consuming part of the MPEG-4 video decoder. Multi-
plierless integer IDCT is introduced to further speed up the decoder. We also
removed the padding process and optimized various memory access operations,
without significant bitrate growing. The optimized decoder is about 5 times
faster than the XVID decoder and supports the real-time video applications.

However, the aforementioned techniques, fast color space transformation and
multipierless integer IDCT, may cause display quality loss. Though PSNR drop
is small and the actual display quality is satisfactory on low resolution mobile
devices, we will overcome this problem in the future works.

References

1. ISO/IEC 14496-2:2001, Coding of Audio-Visual Objects - Part 2: Visual, 2nd Edi-
tion (2001)

2. Ramkishor, K.: Real Time Implementation of MPEG-4 Video Decoder on
ARM7TDMI, Proc. IEEE International Symposium on Intelligent Multimedia,
Video, and Speech Processing, May (2001)

3. Hovden, G., Ling, N.: On Speed Optimization of MPEG-4 Decoder for Real-Time
Multimedia Applications, Third International Conference on Computational Intel-
ligence and Multimedia Applications, September (1999)

4. Jung, J., Antonini M., Barlaud M.: Optimal Decoder for Block-Transform Based
Video Coders, IEEE Trans. on Multimedia, Vol.5, No.2, June (2003)

5. Panda, P. R. , Catthoor, F.: Data and Memory Optimization Techniques for Em-
bedded Systems, ACM Trans. on Design Automation of Electronic Systems, Vol.
6, No. 2, April (2001) 149–206.

6. Patel, K., Smith, B. C., Rowe, L. A.: Performance of a Software MPEG Video
Decoder, ACM Multimedia Conference, Anaheim, CA (1992)

7. Bilas, A., Fritts, J., Singh, J. P.: Real-Time Parallel MPEG-2 Decoding in Software,
Proc. of the 11th International Symposium on Parallel Processing (1997)

8. XVID v1.0.2, http://www.xvid.org/
9. Noble, J., Weir, C.: Small Memory Software Patterns for system with limited mem-

ory, Addison-Wesley Professional; 1st edition, November (2000)
10. Chen, Y. J., Amaratunga, K.: Multiplierless Approximation of Transforms with

Adder Constraint, IEEE Trans. Signal Processing, Vol. 49, No. 12, December (2001)
11. Chau, L. P., Ling, N., Hovden, G., Lan, H., NG, H. C., Lim, K. P.: A Real-Time

Realization of MPEG-4 Video Decoder, IEEE International Conference on Image
Processing, Kobe, Japan, Vol. 1, October (1999) 249–253



Marrying Level Lines for Stereo or Motion
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Abstract. Efficient matching methods are crucial in Image Processing.
In the present paper we outline a novel algorithm of ”stable marriages”
that is also fair and globally satisfactory for both populations to be
paired. Our applicative examples here being stereo or motion we match
primitives based on level lines segments, known for their robustness to
contrast changes. They are separately extracted from images, and we
draft the corresponding process too. Then for marriages to be organised
each primitive needs to be given a preference list sorting potential mates
in the antagonist image: parameters of the resemblance founding prefer-
ences are explained. Eventually all operators above are embedded within
a recursive least squares method and results are shown and compared
with a successful Hough based matching that we had used so far.

1 Introduction

Efficient matching methods are needed in all areas of Image Processing, rang-
ing from Segmentation - e.g. motion detection or 3D reconstruction from stereo
- to actual Pattern Recognition - e.g. model fitting or classification. Efficiency
then gets multiple meanings and can address properties as different as easy data
extraction and coding format, model simplicity, limited prior assumptions, ro-
bustness against ambiguities, conflict freeness etc. not to forget computability.
Within that frame, general enough methods are still to be produced. We tested
several, from Dynamic Warping on edge or region chain codes [1] for instance
to more recently Hough Transform on level lines [2]. In the latter we showed
how using n-tuples of carefully coded level line segments, sorted into several
sub populations according to the confidence in them, leads to an efficient multi-
pass voting process. Efficiency here is in the sense of ”fighting ambiguities (e.g.
repetitive patterns) thanks to a reinforcement of stronger by weaker features at
a limited enough computing expense”. In a wider approach to segmentation that
aimed at exhibiting nD image features in gathering (n-1)D ones [3] − edges from
points of interest, regions from edges etc − an interesting paradigm of optimisa-
tion on bi-partite graphs was tested against Bayesian techniques and shown to
sustain comparison well with them. It is called the ”stable marriage problem”,
of which the main interest is to guarantee no logical contradiction in the pairing
process provided two different sets of items are genuinely distinguished to be
cross-matched one-to-one and each item sorts every member of the antagonist
set in a so-called ”preference list”. Efficiency in that case stresses disambiguation
again and we thought to try the method to limit or skip multipass voting in the
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preceding scheme. The present paper is devoted to preliminary experimentations
in that direction for 3D Reconstruction and Motion finding.

It is organized as follows: first, we describe the level-lines’ junction extraction
resulting into primitives. Second, the preference list construction is explained.
Then, the stable marriages algorithm we designed for such matching is outlined.
After explaining how outliers are eliminated, we describe shortly the image trans-
formation estimation. Eventually, some results are displayed for comments.

2 Image Features

The feature type plays a significant role in the choice of a matching strategy. Less
reliable features may lead to very complex matching processes. The level-line is
chosen here for being a robust/reliable feature, its invariance property towards
contrast changes is known [4][5]. Ip being the image intensity at pixel p, the
level set Nλ of image I is made of the pixels which intensities are equal or larger
than λ, Nλ = {p�I(p) ≥ λ}. Borders of such level sets are called level lines
Lλ. One important property of level lines is that they can overlay but cannot
cross. Let Fλ be a set of overlaying level lines, called level line flow, defined
by Fλ =

{
LI

λ�λ ∈ [u, v]
}
. (v − u) is called the flow extension E . The method

proposed in [6][7] extracts the level lines by tracking such flows . In an image,
the point where two level line flows merge or split is called a flow junction.

The extraction process, under the form of a recursive automaton, performs
in 3 steps. First step consists of finding the level line flows at the left-top of
each pixel. The following flows are calculated for four directions: top down, right
left, bottom up, and left right. Then, flow extension is checked. If there are at
least two flows with extensions greater than a threshold, go for the second step,
if not pass to the next pixel. The second step consists in validating the flow
according to its length despite variations in the flow extension that may make
it a subset of the original flow found at first step. So the integral subset flow is
looked for continuation in every direction as respecting the following conditions:
(1) the predecessor flow must be subset of the successor flow (2) the integral flow
does not turn back towards its starting point (3) the integral flow must remain
a straight line. Then, we validate flows longer than a threshold. Each validated
flow is approximated by a line segment S characterized by the following 4-vector:
starting point p, length l, orientation θ and contrast (cl, cr) (average grey level
on the left/on the right), −→S = [p θ l (cl, cr)]. Its reliability is defined as the
product E × l of the extension by the length. The last step consists in validating
the junction. A junction combines separate flows at a given point −at least two
validated flows ( line segments)− . As a primary variable P , the junction is
characterized by five or seven parameters: Δθ being the angle between any two
line segments, −→P =

[
p −→S 1

−→
S 2
−→
S 3 Δθ1 Δθ2 Δθ3

]
.

3 Matching Candidate

When the primitives have been extracted separately from each image, following
the method introduced above, candidates have to be prepared for matching.
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Each primitive will create a preference list containing its potential mates (the
primitives of the other image to be possibly paired). Matching candidates are
searched for inside a bounded window the size of which results from a trade
off between computation cost and application constraints. The compatibility
between primitives is first tested following three constraints on the junction
properties : (1) there is at least one common level line between two junctions (2)
they must have the same order of area’s intensities (3) angles between any two
level line flows cannot change by more than 180 degrees. Note that preference
lists are thus incomplete (not all primitives in the other image belong to the list)
and likely have different number of matching candidates for different primitives.
The preferences are set then based on the junction similarity. Two categories are
distinguished according to the transformation range in the targetted application.

(1) if the images to match show an important displacement between them,
we rather use the junction properties for its similarity S: it is a weighted sum of
three separate terms: (1) junction reliability F , (2) region characteristics around
the junction R, and (3) geometric invariance G.

S = αF + γR+ δG
F =

∑N
i Fi

N with Fi the segment reliability,
N the segment number

R =
∑N

i=0

∥∥∥I(Ri)−I(R′
i)
∥∥∥2

N with I(Ri) the contrast (cl, cr)
G =
∑N

i=0 | li
li+1

− l′i
l′i+1
|+∑N

i=0 |Δθi −Δθ′i+1|
(1)

(2) if the displacement is small (like in limited motion analysis) a classic
similarity can be used , as the correlation or the sum of differences.

4 Stables Marriages Matching

After preselecting matching candidates by creating the preference list for each
primitive, an algorithm of stables marriages suitably designed for such problems
(see algo.1) will be used for actual matching. Let us first explain the stable
marriages paradigm ([8], [9]). In this problem, two finite sub-sets M and W of
two respective populations, say men and women, have to match. Assume n is
the number of elements, M = {m1,m2, ...,mn} and W = {w1, w2, ..., wn}. Each
element x creates its preference list l(x) i.e. it sorts all members of the opposite
sex from most to less preferred. A matching M is a one to one correspondence
between men and women. If (m, w) is a matched pair inM , we noteM(m) = w
and M(w) = m and ρm is the rank of m in the list of w (resp. ρw the rank of w
in the list of m) . Man m and woman w form a blocking pair if (m, w) is not in
M but m prefers w to M(m) and w prefers m to M(w). If there is no blocking
pair, then the matching M is stable.

A reliable algorithm of stable marriages in stereo or motion that is global
fitting from local attraction, should fulfill three criteria: stability (i.e. no local
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questionning of more global associations), sex equality (i.e. local/global balance
of the resemblance to matching) and global satisfaction (i.e. limited amount of
local counter run).

Classic stable marriage algorithms (see [8]) of complexity O(n2) guarantee
the stability only. The solution can be such that every primitive has a weak fit.
The proposed algorithm Blocked Zigzag (BZ ) (algo.1) meets the three criteria
thanks to a novel representation, called marriage table, that translates and sup-
plements the preference lists. The marriage table is a table with (n + 1) lines
and (n + 1) columns. Lines (resp. columns) frame the preference orders of men,
{1 · · ·p · · ·N ∞} (resp. women, {1 · · · q · · ·N ∞}). The cell (p, q) contains pairs
(m, w) such that w is the pth choice of m, and m is the qth choice of w. Cells can
thus contain more than one pair or none. The cell (p,∞) (resp. (∞, q)) contains
the pairs where the woman is the pth choice of the man (resp the qth choice of
the woman) but the man does not exist in her preference list (resp. the woman
is not in his preference list). A key feature of this table in the ”complete list”
case is that each line contains all men once and each column contains all women
once (see figure 1(a)).

Stable matchings are looked for by scanning this latter array and suitable
properties of the solution are associated to the type of scan. Indeed, one advan-
tage of the marriage table is that satisfaction, equality of sex and stability show
concurrently in the same representation. A solution with maximum global satis-
faction would display matched pairs as close around the origin (table bottom-left)
as mutual exclusion allows. More generally the table representation is indicative
of a result global satisfaction through the lay out of the selected couples. Intu-
itively the closer to the diagonal the more balanced treatment. Elements of a
pair in a cell close to the diagonal are equally satisfied or unsatisfied, depend-
ing on the distance to the origin. Stability gets a graphic translation too in the
marriage table.
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Fig. 1. (a) Marriage table : the pair (x,y), y is the 3th choice of x and x is the 4th

choice of y. (b) Blocking situation in marriage table. (c) BZ algorithm.

The BZ algorithm scans anti-diagonals of the table forward from maximum
to minimum global satisfaction but each one is read in swinging from center
to sides meaning maximum to minimum sex equality (see figure 1(c)). In each
cell, all pairs are accepted for marriage if their components are free. After all
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cells have been considered, the table is then revisited up to complete removal of
blocking situations as follows: potential blocking pairs are matched upon detec-
tion (test according to figure 1(b)) while both blocked couples are broken and
complementary elements are freed. To overcome cycles in the assignment the
number of rescanning is limited to the population size. Scan directions together
with questioning all previous marriages on demand guarantees the better at end.
However, BZ shows an increase in complexity to O(n3) due to systematic test
added.

Algorithm 1. Blocked zigzag algorithm
begin

while there is a bloking pair and rescan number < population size do
foreach anti-diagonal, maximum to miminum global satisfaction do

foreach diagonal, maximum to miminum sex equality back and forth
do

foreach pair (m, w) do
if m and w are free then

Marry m with w

foreach anti-diagonal, maximum to miminum global satisfaction do
foreach diagonal, maximum to miminum sex equality back and forth
do

foreach pair (m, w) do
if (m, w) is blocking pair then

Free m and w and their spouse
Marry m with w

end

5 Eliminating Outliers

BZ organizes the best correspondence possible for each primitive. Still, when
corresponding primitives do not exist in either image, the matching couple can-
not be else than a mismatch or a missing match, called outlier. We draft here the
simple method for eliminating outliers. Considering each couple as an ”optical
flow” and assuming there are only small displacements locally in images, such
optical flow gets same length and direction in average. Whence the algo.2:

6 Global Image Transformation

After matching and outliers elimination, couples can be assumed reliable enough
to estimating the global transformation between images. We outline here the
estimation process in the case of perspective transformation model that requires
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Algorithm 2. Outliers elimination algorithm
begin

foreach optical flow in small window do
foreach x ∈ {angle, length} do

Find neighbors-optical flows-
Order neighbors by x
Compute x between any two close flows
Order x from min to max
Find optimal threshold (x histogram)
Compute x in order (current flow, neighbors)
if x > optimal threshold then

Delete the current optical flow

end

to estimate 8 parameters. Model is of the form y = Xh, where h is the parameters
column: it follows 2.⎡⎢⎢⎢⎣

x′
0

y′
0
...

y′
N

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
x0 y0 1 0 0 0 −x′

0x0 −x′
0y0

0 0 0 x0 y0 1 −y′
0x0 −y′

0y0
...

...
...

...
...

...
...

...
0 0 0 xN yN 1 −y′

NxN −y′
NyN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
h0
h1
...
h7

⎤⎥⎥⎥⎦ (2)

And using the least square recursive method in [10], the transformation pa-
rameters are given by h = (XHX)−1XHy, h = X#y, hence hn = QnXHyn,
Qn = (XH

n Xn)−1

7 Experimental Results

In the sequel two series of test results are shown. First one compares the multi pass
Hough transform on extracted level-line-segment based primitives, with the stable
marriage algorithm run on the same. The difference between original and trans-
formedback images aredisplayed to thatpurpose. It is obvious to thenakedeye that
results are quite comparable, although theBZMarriages seemto spreaderrorsmore
all over the picture an in a lesser amount .Eachmethod gets areaswhere it performs
comparativelybetter− strong primitives orthogonal to the average displacement
for Hough and aligned with it for Marriages− . The same phenomenon occurs on
all similar images of the type that algorihms were tried on, as long as the transfor-
mation to be exhibited is not too complex (limited number of parameters). The
present example is extracted from the vision of a car getting out of a parking and
involves translations and planar rotations merely. Therefore in a second series of
experiments, results of primitive marriages are shown on stereo images extracted
from the data base “http://www.gravitram.com/stereoscopic photography.htm” of
monuments. The algorithm again performs qualitatively well despite projections
involved. Good news is that large structures are well distinguished, relatively
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. (a)(b) Original images to match, (c) Affine transformation by Hough: α = −9.0,
ψ = 1.0096, Tx = 5 and Ty = 3, (d) The difference between (b) and (c), (e) The vote
space after Hough 1st round, (f) 2sd round, (g) 3rd round, (h) Matching result by BZ,
(i) Affine transformation by BZ: α = −9.95, ψ = 0.9977, Tx = 4.10 and Ty = 6.73, (j)
The difference between (b) and (i)

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a)(b) The stereo images, (c) Matching results by BZ, (d) Result after elim-
ination of outliers, (e) Perspective transformation: h0 = 1.018769, h1 = −0.010705,
h2 = 20.975390, h3 = 0.013266, h4 = 0.986765, h5 = 2.239246, h6 = 0.000062,
h7 = −0.000035 and h8 = 1.000000, (f) The difference between (b) and (e)

bad news is that it seems to be to the detriment of more tiny details. That
would ask further study of the minimization precision vs. the size of considered
primitives, and more generally the impact of the features of selected segments
(length, contrast, orientation etc.).
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8 Conclusion

Stable marriages run comparatively well on image couples or sequences seg-
mented into level line based primitives. Our main applications being car driving
and experimental physics (electron microscopy, MRI etc.), they involve images
with potential high rate of ambiguities. We thus need to compare results with
our Hough technique satisfactorily used so far in a more quantitative way and
find explanations why one performs better that the other in which cases. That
is our next step in the study, as the whole matching process currently under
investigation and drafted in the present paper stands, better than many, the
growth of the transform parameter number.
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Abstract. The purpose of this paper is to allow for high level shape
representation and matching in multi-object images by detecting and
extracting the envelope of object groupings in the image. The proposed
algorithm uses hierarchical clustering to find object groupings based on
spatial proximity as well as low-level shape features of objects in the im-
age. Each grouping is then merged using a morphological algorithm. The
envelope is extracted by reconstructing the object from its dynamically
pruned concavity tree. We test our approach on a set of 45 multi-object
trademark images and we report results on object groupings and enve-
lope extraction.

1 Introduction

In the last decade, content-based image retrieval (CBIR) has received great
attention from researchers in various fields; for instance, image processing, com-
puter vision, pattern recognition, and database systems. This trend is mainly
motivated by the ever increasing number of images generated every day, and
the rapid developments in digital imaging technologies. Image comparisons in
CBIR are traditionally either intensity based (color and texture), or geometry
based (shape). Many systems have been proposed for content-based image re-
trieval. Among the most popular ones are QBIC from IBM [1], Virage [2], and
Photobook from MIT labs [3]. Shape-based image retrieval is generally harder
and less developed than color- and texture-based retrieval; for example, QBIC
is relatively more successful in intensity-based than in shape-based search [4]. A
common limitation of existing shape-based retrieval systems is that they do not
take into consideration the spatial arrangement of the objects (components) in
an image, which may reveal important properties of the scene being analyzed.
For instance, they may form a high-level boundary (called an envelope).

Semantic image retrieval has recently emerged as a result of the fact that most
users do not require to retrieve images based on only their low-level features [5].
Existing techniques fall behind that target. The ability of a CBIR system to
extract all or most relevant information from an image is a necessary first step
for the understanding of its content. As an example, multi-object images contain
more shape information than the mere sum of the shape information of the
individual components. For instance, a group of objects can be spatially arranged
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such that their envelope has a semantically high-level shape. Detection of such
boundaries, or envelopes, is useful as a mean for higher interpretation of the
shape information in the scene. (It may as well be an end by itself, as in image
restoration applications for example.)

Segmentation of the objects in an image is an important process for suc-
cessful automatic image retrieval. For natural images, this process is very chal-
lenging and beyond the scope of this paper. Therefore, we assume that objects
are already segmented and their boundaries are well identified. Many powerful
techniques have been proposed for the representation and matching of single
closed-boundary shapes [6, 7, 8], but their application to multi-object shapes is
not straightforward.

An important visual property of a group of objects is how they are perceived
as a whole. In this paper, an approach for envelope detection and extraction in
multi-object shapes is proposed. It consists of two main stages. In the first, a
hierarchical clustering algorithm is used to group objects based on both their
“physical” proximity, as well as their shape similarity. This idea has been sug-
gested in [9] in the context of concavity graphs. In the second stage, morpho-
logical operations are used to merge the components in each of the groupings
identified in stage one without changing their size. The envelope is then extracted
by reconstructing the merged component from its pruned concavity tree. The
remainder of this paper is organized as follows. Section 2 reviews some psy-
chological findings about human perceptual grouping of objects and Section 3
introduces the proposed approach. Experimental results are provided in Section
4. Finally, we conclude our work in Section 5.

2 Perceptual Grouping

Gestalt theory provides an interpretation of the human perception of visually
similar objects into groups [10]. The most significant principles of perceptual
grouping are proximity and similarity. The spatial distances between objects
are critical in grouping them. Also, objects of similar shape, size or orientation
are more likely to form envelopes than objects differing along these features.
Other findings by Biederman [11] suggest that the human visual system quickly
assumes and uses collinearity, curvature, parallelism, and adjacency of a group
of objects in order to perceive them as a whole.

Although the grouping task is made by humans effortlessly, it is not the case
for machines. Mathematical models tend to describe low-level features effectively
but fail in high-level interpretation. Our approach for objects grouping is based
on the perceptual grouping principles, where low-level image features and a set
of rules are employed to make decisions about the proximity, shape similarity,
and orientation of a group of objects.

3 The Proposed Approach

Given a multi-object binary image, our aim is to detect and extract any envelope
formed by a group of objects. This is achieved in two stages. First, hierarchical
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clustering is used to group the objects based on their proximity and their shape
similarity. Second, morphological operations are used to merge the objects in
each grouping and the envelope is then extracted by reconstructing the merged
object from its pruned concavity tree; thus removing any artifacts along the
boundary.

3.1 Object Grouping

Brain research showed experimentally that the processing of proximity and other
features are performed separately [10]. Therefore, in our approach, objects are
grouped separately based on their proximity, shape similarity, and orientation
using hierarchical clustering. Then, two alternative groupings are considered. In
the first, objects that belong to the same proximal and shape similarity groups
are judged as one group. The second alternative regards objects of the same
proximal and orientation groups as one group. The alternative that results in a
lower number of groups is considered as the final grouping.

Srivastava et al. applied hierarchical clustering to group similar silhouettes
to search shape databases efficiently [12]. Here, a hierarchical clustering algo-
rithm [13] is applied to the distance matrices of proximity, shape similarity, and
orientation. The result is a hierarchical tree, called dendrogram, which is not a
single set of clusters, but rather a multi-level hierarchy, where clusters at one
level are joined as clusters at the next higher level. In our application, clusters
are defined when there is a clear cut in the dendrogram. In this case, the com-
pactness of a cluster is defined by how similar its members are. For proximity
and shape similarity groupings, the standard deviation values of the distances
under each node in the dendrogram are used to decide where to cut. In order to
achieve scale invariance, these values are normalized to have zero mean and unity
variance, then the cut is made at the node with the largest normalized standard
deviation and higher than a certain threshold (which is evaluated experimentally
to be equal to one). For orientation-based grouping, the dendrogram cut is made
directly at the desired angle, which is considered to be ten degrees.

An illustrative example is shown in Fig. 1. Panel (a) shows the input multi-
object shape. The results of hierarchical clustering based on proximity, shape
similarity, and orientation are shown in panels (b), (d), and (e), respectively. The
dashed horizontal line shows the location of deciding the groups. Grouping based
on proximity and shape similarity results in six groups (note that the members
of each group fall in the same clusters of both proximity and shape similarity),
whereas grouping based on proximity and orientation gives only two groups.
Thus, the latter grouping is considered. The outcome of the object grouping
stage is shown in panel (c). In the following, the proximal, shape similarity, and
orientation distances between two objects are defined.

Proximity. The definition of a spatial distance between two objects that reflects
the human judgment of such distance is not yet clear. Clearly, the shortest
distance is totally independent of their shape. However, a desirable property of
the distance is for it to be sensitive to all points in both objects. Therefore, the
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Fig. 1. An example of object grouping and envelope extraction. See text for details.

Hausdorff distance is adopted [14]. The Hausdorff distance between two sets of
points is the maximum distance of a set to the nearest point in the other set.
More formally, the Hausdorff distance h(X, Y ) between two objects X and Y is
defined as:

h(X, Y ) = max
x∈X

{
min
y∈Y

{d(x, y)}
}

(1)

where x and y are points of objects X and Y , respectively, and d is the Euclidean
distance. In order to make the distance function symmetric, a more general
definition of Hausdorff distance would be:

H(X, Y ) = min {h(X, Y ), h(Y,X)} (2)

It is sufficient to consider only the boundary points of the two objects. How-
ever, we consider only the vertices of their convex hulls. This reduces the com-
putations dramatically with minor effect on the performance.

Shape Similarity. Based on the observation that objects forming an envelope
do not have complex boundaries, global shape descriptors are expected to de-
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scribe the objects effectively. Another reason for choosing global descriptors is
their compactness, which allows efficient computation of the distances between
them. Here, the shape of an object is described by its eccentricity and solid-
ity [15].

Orientation. The orientation of an object is taken as the orientation of its
major axis, which is the straight line segment joining the two points farthest
from each other. The major axis orientation is defined as the angle between
the horizontal axis and the axis around which the object can be rotated with
minimum inertia [15]. This feature is particularly important because objects may
form an envelope, although they are not similar in shape, when they are aligned
in parallel or in series.

3.2 Envelope Detection

This is the second stage towards the extraction of the semantic envelope. The
input to this stage is the output of the object grouping stage; specifically, a
label matrix of the object groupings in the image. There are two sub-steps in
this stage: the first is to morphologically merge the objects in each grouping;
whereas the second is to extract the envelope of the merged objects using a
contour-based concavity tree extraction algorithm. A requirement of the second
stage is that it is passed an image with a single component.

Merging the Groups. For each grouping identified in stage one, the con-
stituent objects are repeatedly dilated using a 3×3 structuring element until the
resulting grouping has only one component. If the dilation operation was per-
formed n times, and the envelope is extracted at this stage, it would be n pixels
larger than it should (because of the dilation). We need then to shrink the merged
component n pixels, but without splitting it. The shrinking can be done using
an erosion operation with a (2n + 1) × (2n + 1) structuring element. However,
the erosion might (or might not) split the merged component. A splitting will
occur if the (square) structuring element cannot slip through the neck joining
pairs of (original) components. To get around this problem, we morphologically
close the merged component with a diamond shaped structuring element with a
main-diagonal of 2n + 1 pixels. This will always guarantee that the subsequent
erosion will not split the merged component, as the square structuring element
will now be always guaranteed to pass through the necks. If we proceed with
the envelope extraction at this stage, the resulting envelope will then be tightly
snug around the components, as we need it to be.

Extracting the Envelope. The merged component identified in stage one can
now be used to extract the envelope. The contour of the merged component could
be used as the envelope at this stage, however, it needs to be smoothed. This
task is delegated to a contour-based concavity tree extraction algorithm [16] that
will ignore concavities that are smaller than a given threshold. This threshold
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Fig. 2. Illustration of the merging and envelope extraction process. Input image (two
groupings) (a), result of merging (b), concavity trees used to extract the envelope (c),
resulting envelope (d), and output image (e).

varies with the gaps in between the original components. It is currently set to
four times the area of the structuring element used in the erosion step. Fig. 2
illustrates the merging and envelope extraction process. We note that effectively
only two tree nodes (including the root) were used in the reconstruction of the
two envelopes from their corresponding concavity trees.

4 Experimental Results

A trademark image is a good example where multiple objects and their spatial
arrangement play the major role in the identity of the trademark. The proposed
approach was implemented and its performance evaluated on 45 trademark im-
ages containing a varying number of objects with various orientations and shapes.
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Fig. 3. Envelope extraction: examples

The outcome of the object grouping stage was subjectively correct for 39 im-
ages (out of 45). Moreover, when the envelope extraction algorithm was applied
to each of the 39 correctly grouped images, a subjectively correct envelope was
extracted. Fig. 3 shows samples of correct grouping and envelope extraction.

5 Conclusions

Envelope extraction is a very important stage towards high-level shape represen-
tation and similarity matching. In this paper, an approach for object grouping
and envelope detection is introduced. The proposed approach utilizes the prox-
imity and shape similarity between objects, as well as their orientations, for
grouping them. Hierarchical clustering allows such utilization. Then, the enve-
lope of each group of objects is approximated by means of morphological oper-
ations. A contour-based approach for concavity tree reconstruction is employed
to smooth the extracted envelope.

The proposed technique was tested using a diverse set of 45 (multi-object)
trademark images. The object grouping was subjectively accurate for 39 images.
In each of these 39 images, the (subjectively) correct envelope was extracted.
Our future work includes the evaluation of our algorithm with more multi-object
images and the extension to shape-based image retrieval.
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Abstract. We revisit the problem of model-based object recognition
for intensity images and attempt to address some of the shortcomings of
existing Bayesian methods, such as unsuitable priors and the treatment
of residuals with a non-robust error norm. We do so by using a refor-
mulation of the Huber metric and carefully chosen prior distributions.
Our proposed method is invariant to 2-dimensional affine transforma-
tions and, because it is relatively easy to train and use, it is suited for
general object matching problems.

1 Introduction

In this paper we will examine the view-oriented case for model-based object
recognition, in which 2-dimensional representations of 3-dimensional objects are
used, called aspects or characteristic views [1]. Such methods have recently be-
come quite popular because of their applicability in many areas and their ease
of implementation, since they avoid storing and reconstructing a full 3d model.
In addition, there is evidence to suggest that view-oriented representations are
used by the human visual system for object recognition [2]. The view-oriented
object recognition problem for a single view can be formulated as follows:

Definition 1. Suppose that we have a prototype template function F0, an image
function I and a transformation T that transforms the template as F = TF0.
The goal of object recognition is to minimise the expression:

min
ξ
S =

∫
R(ξ)

g(I(x), F (x))d2x , (1)

with respect to the transformation parameters ξ, where g(., .) is an error met-
ric and R the parameter space. If the minimum is less than or equal to some
threshold τ , then we have a match.

The main problem that arises from this formulation is the determination of
the parameters ξ that minimise the above expression. Solving for ξ depends on
the transformation T . For complicated transformations T , the optimisation is a
nonlinear process and the minimum is found using an iterative algorithm.

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 407–414, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1.1 Our Approach and Related Work

We have based our approach on previous popular work by [5] and [6]. First
Grenander et al. proposed a general deformable template model, by represent-
ing deformations of the template as probabilistic transformations, for Bayesian
inference on contour shape. Jain et al. used this approach together with a snake-
like potential function to influence the template toward edge positions in the
image. A similar scheme has been used by Cootes et al. [10], where the template
is represented by the mean shape of a training set and a linear combination of
the most important eigenmodes of the variation from the mean. The Bayesian
object localisation method introduced by Sullivan et al. [8] is another interesting
approach. Distributions of the template over the foreground and background are
learned from training images, and used as the likelihood in a Bayesian inference
scheme.

In our approach we use intensity information, without the need to extract
features from the image. Also, we use novel distributions for the prior and do
not assume that all transformations are equally possible. This disallows trivial
solutions of the transformation parameters. Finally, our likelihood function is
based on a more robust error metric that currently tends to one distribution
when the template overlaps with an object (foreground) and to another when
the template is on the background. A Bayesian formulation, that combines this
prior knowledge together with information from the input image, the likelihood,
is used in order to find a match between the image and the template. This
combination is realised in the posterior probability, a maximum of which may
indicate a possible match.

2 Deformation Model

The deformation model we propose consists of a prototype model template of
the representative shape of an object, a selection of parametric transformations
that act on the template, and a set of constraints that bias the choices of possible
deformation parameters.

2.1 Prototype Template Representation

The prototype template consists of the pixels (grey levels) within a (for conve-
nience) rectangular boundary, chosen as a representative example of an object
or object class. The prototype is based on our prior knowledge about the objects
of interest, and is usually obtained from training samples. Such training could
be based on Principal Components Analysis (PCA), shape alignment, or the
prototype could simply be the mean shape of the class. Unlike other methods,
our model is not parameterised, but instead the transformation is. The model we
are using contains grey level and boundary information in the form of a bitmap,
and thus is appropriate for general object recognition tasks, since in order to
apply the same method to a different class of objects we only need to generate
a new prototype image of this class.
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2.2 Parametric Transformations

Although the prototype template represents the most likely a-priori instance
of the object, we still need to deform it to match the image. The parametric
transformations consist of a global affine transformation A, and a local defor-
mation D. It is necessary to compose A as a product of individual meaningful
transformations (primitive matrices). Such a composition is not unique, but by
adopting a canonical order for the transformations, we could say, for example:
A = SRUx + d where S is an anisotropic scale matrix, R is a rotation matrix,
Ux an angular shear matrix on the x-axis, and d = (dx, dy) a translation vector.

The local deformation D is a 2d continuous mapping (x, y) → (x, y) +
[Dx(x, y), Dy(x, y)], defined as a simple sinusoidal function:

Dψ(x, y) = [Dx(x, y), Dy(x, y)] = [α cos(2πkxΔ),β cos(2πkyΔ)] , (2)

where ψ = (α,β, kx, ky,x0, y0) are the deformation parameters, with α,β being
the wave amplitudes, kx, ky the wavenumbers, and Δ =

√
(x− x0)2 + (y − y0)2

is the Euclidean distance from the centre point (x0, y0). We thus suppose that
we have a prototype template function F0(x, y) and a transformation T that
transforms the template as follows:

TF0(x, y) = F0(SRUx(x, y) +Dψ(x, y) + (dx, dy)) . (3)

This is the parametric transformation that will deform the template to match
the image. This transformation is realised by shearing the template by angle
ϕ, then rotating by an angle ϑ, scaling the result by sx, sy along directions x
and y respectively, locally deforming the resulting template by ψ and finally a
translation by d.

2.3 Probabilistic Constraints

Since not all choices of transformation parameters will produce a template that
resembles the object(s) in the image, it is necessary to restrict their variability.
We do so by imposing a probability density function (p.d.f) on the transforma-
tion T .

Consider the local deformation Dψ(x, y) first. We have chosen uniform dis-
tributions for the wave centre parameters x0,y0, since any centre point has an
equal probability of producing a valid sinusoid. We further assume that the two
sinusoids in (2) have amplitudes α and β that are independently and identically
normally distributed with zero mean and variance σ2

αβ . For the wavenumbers
kx and ky, we also assume zero mean, independent and identical normal dis-
tributions with variance w2. This results in a prior distribution for the shape
parameters ψ:

Pr(ψ) =
1

4πσ2
αβw

2 exp

{
−α2 + β2

2σ2
αβ

− k2
x + k2

y

2w2

}
, (4)

that favours small deformations of the object in preference to large ones.



410 V. Zografos and B.F. Buxton

For the rotation and translation, we can assume that all rotations and trans-
lations are equally possible and thus we can consider their parameters ϑ, d as
being uniformly distributed. However, the scale and shear transformations re-
quire a different approach, and special care is required for choosing their p.d.f.s.
The reason for this comes from the behaviour of the error function (1), for certain
values or ranges of values of the parameters s = (sx, sy) and ϕ. More specifi-
cally, if one or both of the scale parameters are very small, F (x, y) will collapse
into a single point or a line respectively. This of course is not going to be a
valid representation for the template but the error function will undoubtedly
have a minimum for these values of the scale parameters. Such trivial solutions
should not be allowed. Similar behaviour occurs with the shear angle ϕ, which
for ϕ = ±π

2 , will collapse the object into a line.
To avoid these problems, we need to forbid such values for the scale and shear

parameters. To do so, we define a prior for these parameters that will bias them
away from such values. A good choice for the scale parameters sx and sy is the
inverse Gaussian (Wald) distribution [11], which, if we assume that sx and sy

are independent, that their mean scale s̄ is 1, and that their scale parameter is
σs, leads to:

Pr(s) =
σs exp

[
−σs

2

(
−4 + 1

sx
+ sx + 1

sy
+ sy

)]
2π
√

s3
xs3

y

. (5)

The Wald distribution is ideal because it assigns very low probability to quantiles
close to zero, while it allows us to determine the probability of large values of
the scale parameter s by adjusting the tail of the p.d.f.. For the shear angle,
we would like to introduce a bias in favour of small deformations, and to rule
out the values ϕ = ±π

2 . Furthermore, when the mean shear angle is zero, the
distribution must be symmetric. On the other hand, if the mean angle is close
to −π

2 then the distribution for negative values must fall sharply, whilst the
distribution for high values must exhibit similar behaviour when the mean angle
is close to (but not quite) π

2 . We have therefore chosen a mixture model of two
Gumbel distributions [11], with:

Pr(ϕ) =
(1−A)e−

ϕ−ϕ
b −e− ϕ−ϕ

b +Ae
ϕ−ϕ

b −e
ϕ−ϕ

b

b
, (6)

where b is the shape parameter and A = ϕ+ π
2

π . Since the individual transforma-
tion parameters were assumed independent, the total prior p.d.f. Pr(ξ), is the
product of the individual p.d.f.s (4),(5) and (6).

3 Objective Function

Two commonly used metrics in template matching applications are the L2 met-
ric and the L1 metric which are valid from a maximum likelihood perspective, if
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the error residuals are normally distributed or exponentially distributed respec-
tively. However, [7] have shown that additive noise in real images is generally
not normally distributed, and the majority of the variation comes from illumina-
tion changes and in-class object variation. In addition, [8] have shown that when
using an error metric (such as the L2) and considering only the portion of the
image under the template, then the observations I are a function of the hypoth-
esis ξ. That is not valid in a Bayesian framework, since I should be considered as
fixed. In [8] a learning process is therefore used to model the different foreground
and background distributions. Here, we use a simple parametric distribution to
interpolate between the foreground and background behaviour. Since, in general
we know little about the latter it should be based on a robust statistic. The L1
metric, although robust, is singular when the residual goes to zero, and makes
the optimisation process difficult. For this reason, we have chosen as a metric, a
reformulation of the Huber norm [9]. This smooth Huber norm, is C2 continuous
and defined as:

gτ (x) =

√
1 +

x2

τ2 − 1 , (7)

where τ is the threshold between the L1 and L2 norms. The smooth Huber norm
treats residuals close to zero (template over the foreground) with the L2 norm
and large residuals (template over the background) with the L1 norm. By using
equations (1), (3) and (7) we obtain the combined objective function S which
needs to be minimized:

min
ξ
S(u, v) =

∫
R(ξ)

⎧⎨⎩
√

1 +
[I(u+ x, v + y)− TF0(x, y)]2

τ2 − 1

⎫⎬⎭ dxdy . (8)

If we reformulate (8) as a p.d.f we see that the likelihood of observing the input
image given the deformations on the prototype template is:

Pr(I|ξ) = C1 exp {−S(u, v)} , (9)

where C1 is a normalising constant, equal to 1/2(eK1(1)τ) where e is the expo-
nential and K1 is a modified Bessel function.

Finally, we may use the fact that Pr(ξ|I) ∝ Pr(I|ξ)Pr(ξ) and combine
equations (4), (5), (6) and (9) to obtain the posterior p.d.f. of the parameters
given an image I. The parameters may therefore be obtained by minimising the
corresponding negative log-likelihood which for example, if the mean shear angle
ϕ in (6) is zero, is given by:

min
ξ
{− logPr(ξ|I)} = log(

√
s3

xs3
y)− log

(
e−

ϕ
b −e− ϕ

b + e
ϕ
b −e

ϕ
b

)
+
k2

x + k2
y

w2

+ σs

(
1
sx

+ sx +
1
sy

+ sy − 4
)

+
α2 + β2

σ2
αβ

+ S(u, v) , (10)

where ξ = (sx, sy, ϕ, kx, ky,α,β,x0, y0, dx, dy, ϑ) are the transformation parame-
ters. Note that the distribution shape parameters b, w, σs, σαβ and the threshold
τ are treated as constant.
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4 Experimental Results

We have experimented with greyscale images of faces, such as those shown in
Fig. 1 and 2 . First, we present the effects of an appropriately chosen prior on
the error function. In this example, we have isolated the scale space by choosing
a rectangular template (the female face on the bottom right of the picture) and
varying the scale parameters sx,sy while keeping all other parameters constant.
The resulting sum of square differences error (normalised to a value of 1) can be
seen on the top-right of Fig. 1. Note, that the desired solution is at sx=sy=1 and
trivial solutions are located at values of either of the parameters s close to zero.
If we now choose a Wald prior, with a peak at (1, 1) (bottom-left), and calculate
the inverse log-probability, we get the surface on the bottom-right. The trivial
solutions have now become maxima, and the global minimum is at the desired
solution (1, 1). Compared to the original function, the log-posterior surface is
convex with a very large basin of attraction. We also show some optimisation
results, where a template is taken from the image (Fig. 2), and is randomly affine
transformed and locally deformed. We then use numerical optimisation to match
the deformed template to the original image and see if we can find the correct
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Fig. 1. The test image and template (top left) and the error function for the scale
parameters (top right). The desired solution is at sx = sy = 1. The chosen Wald
prior is illustrated (bottom left) and the resulting negative log-posterior probability
(bottom right). The desired solution remains at the same position but without the
trivial solutions.
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Fig. 2. A randomly transformed template is placed on the image (left), and by means
of numerical optimisation we find the parameters for which the log-posterior has a
minimum value. The results can be seen on the (right).

Table 1. Comparison between actual and estimated values of the transformation pa-
rameters from Fig. 2

Transformation Actual Estimated Absolute deviation

Rotation (ϑ) 30.47o 29.7046o 0.7654o

Translation (dx, dy) 211, 37 213, 38 2, 1
Scale (sx, sy) 1.3077, 1.1923 1.3125, 1.2719 0.0048, 0.0796
Shear (ϕ) 27o 24.6776o 2.3224o

Sinusoid (α, k) 1.96, 0.0327 0.0032, 0.0069 1.9568, 0.0258

parameters of the transformation. The template is placed on the image (Fig. 2,
left) and an exhaustive search is used on the translation parameters dx,dy , in
order to find a good starting location for the optimisation algorithm. Using, for
simplicity, a variation of the Simplex algorithm [12], we minimise the parameters
ξ and obtain the resulting template which is superimposed on the right image of
Fig. 2. Visually, the results are quite pleasing, with the affine parameters being
correctly identified within an appropriate error deviation (see Table 1).

5 Conclusions and Future Work

We have presented a robust treatment of the view-oriented object recognition
problem for intensity images under a Bayesian formulation. We have introduced
prior distributions to bias appropriately a template which is deforming under
affine transformation and a sinusoidal geometric deformation. Also, we have ad-
dressed the problem of different distributions of the foreground and background
by using the robust smooth Huber metric. Some preliminary results obtained
with our methods were presented.

There are many issues that we would like to examine in future work. In par-
ticular, we have only discussed grey-level imagery. Extension to colour imagery
is needed. In addition, we would like to experiment with other metrics, more
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closely related to what is known about the statistics of images of natural and
man-made scenes [13]. We would also like to experiment with explicit modeling
of the foreground and background distributions from training samples, using a
statistical mixture model. Finally, in this early stage of our work, we have not
discriminated between intrinsic variations of the template, that is variations of
the shape of the object that depend only on the properties of the object and ex-
trinsic variation which may depend on the viewpoint [14]. We hope to introduce
models for the extrinsic, viewpoint variations in the future.
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Abstract. In this paper, amultiscale representation and retrievalmethod
for 2D shapes is introduced. First, the shapes are represented using the area
of the triangles formed by the shape boundary points. Then, the Wavelet
Transform (WT) is used for smoothing and decomposing the shape bound-
aries into multiscale levels. At each scale level, a triangle-area represen-
tation (TAR) image and the corresponding Maxima-Minima lines are ob-
tained. The resulting multiscale TAR (MTAR) is more robust to noise, less
complex, and more selective than similar methods such as the curvature
scale-space (CSS). The proposed method is tested and compared to the
CSSmethod using the MPEG-7CE-shape-1 dataset. The results show that
the proposed MTAR outperforms the CSS method for the retrieval test.

1 Introduction

Shape analysis and matching depend mainly on the underlying shape representa-
tion method. The criteria that govern the performance of a shape representation
method include its invariance, robustness, stability, and uniqueness. Researchers
from various fields such as pattern recognition and computer vision have pro-
posed several techniques for 2D shape representation and matching. Examples of
these techniques include curvature scale space (CSS) [1],[2] and [3], fuzzy-based
matching [4], Fourier descriptors [5], and wavelet descriptors [6]. A recent review
paper can be found in [7].

The formulation of shape representation as a multiscale process has at least
two advantages. Firstly, the human perception of shapes can be viewed as a
multiscale by nature since many interesting shape properties are revealed at
different scale levels. Secondly, multiple scales achieve invariance to moderate
amounts of deformation and noise. A well established multiscale method is the
wavelet transform WT. It has been used in many disciplines including shape
analysis and recognition [8], and [9]. Many researchers have adopted the WT in
shape representation and matching [10], [6], [11], [12], and [13].

In this paper, a shape representation for closed boundaries that is called
multi-scale triangle-area representation (MTAR) is introduced. This representa-
tion possesses many advantages over the similar technique, the curvature scale
space (CSS) representation [1]. Utilizing the WT makes the MTAR more robust
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to noise and provides selectivity in the matching process, that is, coarse-to-fine
matching.

Mokhtarian and Mackworth [14], [1] proposed the curvature scale space (CSS)
method, which is considered one of the most well-researched closed-boundary
shape representations and it has been selected for MPEG-7 standardization [15].
In their method, a Gaussian kernel with increasing standard deviation σ is used
to gradually smooth the contour at different scale levels. At each scale, the
curvature of each contour point is measured by:

c(u, σ) =
ẋ(u, σ)ÿ(u, σ)− ẍ(u, σ)ẏ(u, σ)

(ẋ(u, σ)2 + ẏ(u, σ)2)3/2 (1)

Where c is the curvature at location u and scale σ, ẋ and ẍ are the first and
second derivatives of x, respectively. By setting (1) to zero, the inflection points
(or curvature zero crossings) are located at each scale. This results in a binary
image, called CSS image, which shows the end-points of the concave segments
along the contour at each scale level. As the scale level increases, the smoothing
effect increases and the number of inflection points decreases until the contour
becomes totally convex.

When matching two shapes, only the maxima of contours in their CSS im-
ages are used [16]. A near optimal correspondence between two maxima sets
is computed efficiently using many heuristics. However, CSS is concavity-based
representation and, therefore, can not describe totally convex shapes such as cir-
cles and squares. Another disadvantage of CSS is that it requires a large number
of iterations to obtain the CSS image (may exceed 200).

An efficient computation of the curvature scale space representation using
B-spline wavelets was proposed by Wang et al. [17], [18]. Their method provides
an alternative to the classical Gaussian-based scale space representation while
being much more efficient and relying on the well-established wavelet theory.

The remainder of this paper is organized as follows. In Section II, the pro-
posed representation is introduced. Section III presents the matching approach.
The experimental results are shown in Section IV. Lastly, Section V concludes
our work and suggests future work.

2 Multi-scale Triangle-Area Representation (MTAR)

In the following, we give a brief explanation of how to obtain the TAR for an
arbitrary closed contour. Then, the MTAR images using the WT are shown.
Also the effect of general affine transformations on MTAR images is introduced.

2.1 TAR Signatures

The TAR signature is computed from the area of the triangles formed by the points
on the shape boundary. Each contour point is represented by its x and y coordi-
nates. Then, separated parameterized contour sequences x(n) and y(n) are ob-
tained in order to facilitate applying 1D techniques on each sequence alone. The
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contour is re-sampled to N points and the curvature of each point is measured us-
ing the triangle area representation (TAR), as follows. For each three equai-distant
points P 1, P 2 and P 3, the signed area A of the triangle formed by these points is
computed. For the complete boundary points, the TAR signature equation equals,

A(i) =
1
2
(−P i

xP i−1
y +P i+1

x P i−1
y +P i−1

x P i
y −P i+1

x P i
y −P i−1

x P i+1
y + P i

xP i+1
y ), i = 1 : N

(2)

where N is the total number of points on the shape boundary. The triangles at the
edge points are formed by considering the periodicity of the closed boundary.
When the contour is traversed in CCW direction, positive, negative and zero
values of A mean convex, concave and straight-line points, respectively. Fig. 1
demonstrates these three types of the triangle areas and shows the complete
TAR signature for the bird shape.

Concave Area < 0 

Convex Area > 0 

Straight Line Area = 0 0 20 40 60 80 100 120 140
−1.5

−1

−0.5

0

0.5

1
TAR Signature 

Fig. 1. Three different types of the triangle-area values and the TAR signature for the
bird shape

When the length of the triangle sides is increased, i.e., by considering farther
points, the function of A will represent longer variations along the contour.

A TAR image is a binary image that is obtained by thresholding A(i) at zero
and taking the locations of the negative values at different values of triangle sides,
as shown in Fig. 2. Thus, the horizontal axis in a TAR image shows the locations
of the contour points and the vertical axis represents the triangle side length.

2.2 MTAR Images

The dyadic WT is applied to each contour sequence obtaining various decom-
posed levels. This reduces the effect of noise especially at low values of triangle
side lengths, as shown in the first column of Fig. 3. Only the approximation
coefficients are adopted in order to reduce the noise effect. At each scale level,
the same process of obtaining the TAR image in section 2.1 is also adopted here.
The result is the MTAR, which contains L+1 TAR images, where L = log2(N).
Fig. 3 also shows that only small number of iterations (vertical axis) are required
to obtain each TAR image. This is an advantage for the MTAR over the CSS
method which required large number of iterations for its images.

2.3 Maxima and Minima Points

Other important features that can be derived from the TAR signatures are the
maxima and minima points of these functions. For simplicity, only the locations
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Fig. 2. Illustration of the computation of the TAR image. The second column shows
the TAR signatures computed at specific triangle-side lengths. The TAR image (third
column) is obtained using all the triangle-side lengths from 1 to 30.
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Fig. 3. Examples of MTAR images for two different shapes at different wavelet scale
level (starting from l=0)

of these features are used in this paper at each triangle-side length. Fig. 4 il-
lustrates a star shape represented by its concavity regions, maxima lines, and
minima lines. The maxima points indicate the local convex points that corre-
spond to a convex region. This region can occur in a totally convex area or within
a concave region. For example, the small convexity region that is in the same di-
rection as the East is located within a larger concavity. This is shown in the TAR
image as a white (background color) region surrounded by the dotted

⋂
-shape

concavity region. The minima points also could occur in both regions, as shown
in the same figure. It should be noted that even when the shape become convex
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Fig. 4. A star shape and its TAR image showing the corresponding concavity region
(dotted area), convexity region (background), maxima lines (dotted lines), and minima
lines (circles lines)

(no concavity regions), the local maxima and minima are still tracked. This is
because that although the TAR becomes totally positive for large triangle-side
lengths, it still has the minima and maxima segments.

3 Matching

MTAR and CSS images, produced for the same shape, have many properties
in common. Both representations are concavity-based methods. However, CSS
method measures the curvature as the contour is smoothed by the Gaussian
functions at different scales. On the other hand, each MTAR image represents
the locations of the concavities using different triangle sides at a specific wavelet-
smoothed scale level. Therefore, we followed a similar approach to that of CSS
[19] for matching two MTAR image sets of two shapes. Matching is performed
in two stages as follows.

In the first stage, a set of global features are used to eliminate very dissimilar
shapes and exclude them from further processing. In our work, these features
include aspect ration AR, circularity C, eccentricity E and solidity S. In the
second stage, a similarity measure Ds between each two MTAR images of the
two shapes at certain scale is computed as described in [16].

As indicated before, the MTAR and the CSS images are concavity-based
representation methods which mean that they can’t differentiate between to-
tally convex shapes (e.g., circles and squares) easily. In order to increase the
discrimination of the MTAR method, the average sum of the maxima and min-
ima points Mt for each TAR image is added.

The dissimilarity measure between each two MTAR images at a specific scale
is a weighted sum of the global parameters, Mt, and Ds. Consequently, the final
dissimilarity distance between two shapes is a weighted sum of the dissimilarity
measures between their MTAR images.
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4 Experimental Results

The MPEG-7 CE-shape-1 dataset is chosen to evaluate MTAR and compare
its performance with that of CSS method. This dataset consists of 1400 shapes
grouped in 70 classes. Recently, this dataset has been widely used for shape
matching and retrieval.

The retrieval performances of the MTAR and the CSS methods are evaluated
in this test. The performances of the methods are assessed using the precision-
recall curves. Since the MTAR includes multiscale TAR images, the scale levels
from l = 1 to l = 4 of the MTAR are evaluated and compared to each other.
The corresponding average sum of the maxima and minima points are added to
each level. Fig. 5 shows that the first three scale levels of the MTAR have close
precision-recall values. However, scale levels l = 2 and l = 3 are less sensitive to
noise than the level l = 1 and hence needs less time for computation. Also the
discrimination of these two scales is higher than the scale level l = 4.

Fig. 6 shows that the combined MTAR achieves higher accuracy than the CSS
at all recall values. It also shows that the second scale is slightly better than the
CSS, whereas the third scale of the MTAR has comparable performance vs the
CSS method.
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Fig. 5. Precision-recall curves for the scale levels l = 1 to l = 4 of the MTAR with the
corresponding MaxMin
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2nd scale of MTAR+MaxMin, and the 3rd scale of MTAR+MaxMin
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Table 1. Processing times per single query for the MTAR and the CSS

Method Representation Feature Extraction Matching

2ndScale MTAR 15.6ms 35ms 1.5ms
Combined MTAR 76.7ms 100ms 5.2ms

CSS 3382.7ms 174ms 1.8ms

In order to assess the MTAR, it is compared with the similar method, the
CSS. The CSS has been selected for the MPEG-7 system after thorough and
comprehensive tests for different shape descriptors. The results of Fig. 6 show
that while the combined and the second scale have higher performance than
the CSS, the third scale level has almost the same accuracy of the CSS with
advantage of being less complex. This indicates that only one scale level can be
used for shape retrieval with the advantages of less sensitivity to noise, and less
complexity than the CSS.

The complexity of the MTAR and the CSS methods is tested using the
Matlab c©(ver. 6.5) program on Pentium IV 3.0 GHz PC.It is noticeable from
this table that the MTAR is less complex than the CSS method, especially in
the representation stage.

5 Conclusions

In this paper, a multiscale shape representation and retrieval method is intro-
duced. The application of the WT in this method reduces the noise and the small
boundary distortions, which accordingly improves the performance of the repre-
sentation. The computed average sum of the maxima and minima points at each
scale level increases the discrimination power of the proposed MTAR method.
The conducted experiment investigates the retrieval performance of the MTAR
at various scale levels. When compared to the related representation method,
the results show that MTAR outperforms the CSS method. Furthermore, using
only one scale level (especially, when l = 2 or l = 3) attains comparable results
and less complexity than the CSS method. The importance of comparing with
the CSS is that it is already chosen as an MPEG-7 shape descriptor. Further-
more, several methods are compared to the CSS in the literature including the
MPEG-7 experiment tests. In this paper, the MTAR outperforms the CSS even
though using a matching algorithm similar to that in [19], which was originally
designed for the CSS method.
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Abstract. To enhance the reliability of path planning in scenery guidance 
system, it’s very important to select reliable or high matching probability areas 
from the navigation reference images for performing unmanned aerial vehicles 
localization. This paper applies three measures and proposes a new selection 
scheme base on a simplified Mumford-Shah model. The proposed method 
artfully avoids selecting thresholds to separate the feature images and optimally 
selects robust-matching areas by evolving the level set function. Experiments of 
the selection show that the proposed method is efficient. 

Keywords: Navigation reference image, correlation matching, DCT, level set 
method. 

1   Introduction 

Unmanned aerial vehicle (UAV) must know where it is in the environment in order to 
perform useful tasks. Scene matching is one of the widely adopted techniques in 
navigation system for UAV. The real-time images acquired by the navigation system 
on-board during flight are compared with a prior-stored reference image to find the 
correct position of UAV at that time. Although the scene matching method is 
theoretically simple, it is essential to select robust-matching areas (RMA) in reference 
images for scene matching to optimize the reliable localization. 

Hall[1] presented a method for selecting the best subset of a scene where best is 
defined in terms of the minimum correlation length which is measured as the 50 
percent width of the correlation peak between the original and selected regions, but he 
didn’t take into account the disturbance of sub-peaks. Goldgof[2] et al. present an 
algorithm which uses Gaussian curvature for extracting special points on the terrain 
and use these points for recognition of particular regions of the terrain. Xiao [3] made 
use of the variance of image, continuity of the edges, the length of correlation etc. as 
measures to select RMA. Sim and Dudek [4] consider image locations with high edge 
density as possible landmarks, which are represented using an appearance-based 
method. Olson[5] describe a method based upon a maximum-likelihood robot 
localization to select landmarks by matching terrain maps. In another paper he[6]use 
image entropy for performing registration between images and the best registration is 
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determined using normalized correlation. Toshimitsu Kaneko[7] present a feature 
selection method based on the upper bound of the average template matching error for 
reliable tracking. Most methods described above have a high computation complexity. 
So, in this paper we try to use some effective features to give a fast and reasonable 
selection.  

The RMA Selection from navigation reference images is in fact a partition of RMA 
and non-RMA. This paper presents a novel method based on Mumford-Shah model 
and integrates different feature information: track-ability, entropy and DCT edge 
density. The proposed method avoids selecting thresholds to separate the feature 
images since improper thresholds may result large segmentation errors and uses a 
level set algorithm for minimizing the Mumford-Shah model energy by evolving a 
zero level set function. The selection border may change topology, break, merge and 
form sharp corners easily as the level set function evolves. The paper is organized as 
follows: section 2 presents details of the extraction of features. Section 3 describes the 
full selection algorithm. Then, section 4 presents several tests and results. Finally, 
conclusions are given in section 5.  

2   Features Extraction 

It is possible to significantly improve matching performance by choosing the best 
feature space. In this section, we describe the features used here. 

2.1   Track-Ability 

Shi and Tomasi[8] propose a method to select features with good texture properties 
and show how to monitor the quality of image feature dissimilarity that quantifies the 
change of appearance of a feature between two frames. Given the image )(xI  and a 

window )(xWin in image )(xI , the center of )(xWin is x . )(xw is a weighting 

function. Features of the point x can be measured use the matrix:  

∫∫ ++=
)(

)()()(
x

yyxyxx
Win

dwGZ  (1) 

),min()( 21 μμTr =x  (2) 

Where 21, μμ are the eigenvalues of the matrix Z .  

Small )(xTr values mean a roughly constant intensity profile within a window. 

Large )(xTr values can represent corners, salt-and-pepper textures, or any other 

pattern that can be tracked or matched reliably.  

2.2   Entropy  

Considering an image )(xI , with a probability function }255,...,0{),( ∈kkPI , 

Fisher’s information quantity q is defined as:  
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}255,...,0{),(log)( ∈∀−= kkPkq II  

)(kq is the amount of information brought by a pixel x whose gray level is k . The 

information brought by an image window )(xWin is the average of q in it. Called 

the entropy )(xWinH : 
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The size of the window is cl NN × . The entropy transformation captures the 

amount of local variation at each location in the image. They are insensitive to many 
issues in multi-sensor registration while retaining much image information.  

2.3   DCT Edge Density 

Randen [9] reviews most texture feature extraction approaches and performs a 
comparative study. Relatively the DCT approach is excellent due to its good overall 
performance and low complexity. We use DCT approach to extract the texture edge 
features since using traditional edge detection operators such as Laplace, Canny etc 
can produce clutters within the textures that we are not interested in.  

Two-dimensional NN ×  DCT coefficients ),( lkv  of an image block )(xNNW ×  

( x  is the center of the block) are given as 
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Define the DCT edge as: 
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The size of the block can be 8×8, 16×16… according to the variety of textures. The 
feature density of a block )(xWin  is the mean value of )(xDCT in it.  

3   Segmentation Method 

Measures discussed above can be represented as a vector ),(),(()( xxxMV HTr=  

))(xED . They represent the information of an area for robust matching. We need to 

integrate these three measures to get an effective selection. We can select a threshold 
for each feature image and use mathematical morphology to get RMA, but improper 
thresholds may result large selection errors. In fact the selection is a separation of 
robust matching areas from non-robust matching areas. Chan and Vese[10] proposed an 
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algorithm based on Mumford-Shah model, which could give an optimal partition of 
robust matching areas. This model has been widely used for image smoothing, 
segmentation, and surface reconstruction. We modify the algorithm for evolving 
interfaces to extract the goal areas. 

Let Ω be the image domain for intensity gray image ( )yxI , . Let C be a smooth, 

closed initial curve in 2R which separates the image into two areas ( )yxIo , , 

( )yxIb , . oω  is the object area and bω is the background. oc is the mean value 

inside of the curve C , bc is the mean value outside of the curve C . The goal of the 

model is to find true edges oC  between RMA and non-RMA. The energy function is 

as follows: 

( ) ( ) ( )
( ) ( )∫∫ −+−=+=

Coutside bCinside obo dxdycIdxdycICFCFCF
22

 (6) 

The minimum of the above energy will be an optimal piecewise-smooth 
approximation of the edge. We use level set formulation and algorithm for 
minimizing the Mumford-Shah energy introduced by S.Osher and J.Sethian.[11] In 
level set equation  

0|| =∇+ φφ Ft , .0),( =txgiven φ  (7) 

F is the speed function, the position of the closed curve is given by the zero level set 
of φ , φ is the level set function. A partial differentiate equation on the implicit 

function φ  is as follows: 
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Where H is the Heaviside function, ( )
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When we use the numerical algorithm for solving the above Euler-Lagrange 

equations, we use ( )yx,φ∇  to replace Dirac function ( )( )yx,φδ in order to expand 

the evolving space to the whole image. 
From equation (8), we obtain the evolving equation to segment navigation 

reference images. 
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Where )(xkMV is the k th value of vector )(xMV , 
i
kMV is the k th mean value of the 

inside closed curve and 
o
kMV  is the outside one. k

o
k

i μμ , denote the weighting 

parameters. Given an initial closed curve in the reference image. The speed of the 
curve depends on the curvature of the curve and three measures. Update and evolve 
the level set function φ  according to (9) until the stop criterion is met. The areas 

inside the closed curves are the robust matching areas we aim to achieve. 
 
 

                                        
 
 

         
 
 

         
 
 

    (a) Reference image                                   (b) Real rectified image 

    (c) Trackability map                  (d) Entropy map                  (e) DCT edge map 

    (f) Composite feature map           (g) Segmentation map         (h) Segmented region map 

Fig. 1. Results of selection 
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4   Experimental Results 

In this section, performance of our proposed algorithm is evaluated using two real 
images. The experimental platform used is a Pentium 4 1.7G processor-based PC, 
256M memory. In these experiments, we set the size of the image block 3636× when 
computing the track-ability and entropy information, and set it 88× for DCT  edge 
density. 

4.1   Example 1 

In this experiment, the real images Fig.1 (a) and (b) are used as test images with 256 
gray levels. The size of the images is 401 × 401pixels. Fig.1 (c), (d) and (e) are the 
feature map which has been discussed above. The total calculating time of the three 
features is 8.8 seconds. The brighter areas are corresponding to the salient feature 
areas such as the airport region. Fig.1 (f) is color vector-valued map. There are almost 
no salient features in the dark regions, which are corresponding to the farmlands. 
Fig.1 (g) shows the robust matching areas selection results in the reference image. It 
cost 6.8 seconds to segment the reference image. The areas inside the green closed 
curve are the regions we aim to achieve. From these images and table 1 we can see 
that the selected regions have salient features and these regions are robust to match. 

4.2   Example 2 and 3 

Another two examples will now be given to further demonstrate the technique we 
described. Fig.2 (a) is an airport region gray images which size is pixels. We can see 
that the airport areas have salient features, which was approved by Fig.2 (b). The total 
selection time is only 19s while the correlation matching method needs about one and 
a half hours. Fig.2 (d) was digitized at 240 by 240 pixel resolution with 256 gray 
levels. From these figures we can see that almost all salient feature areas are selected 
and the matching probability of these areas is much more high than other areas. 

4.3   Verification of RMA 

In order to evaluate the matching performance of RMA, We use a pair of images: 
rectified real-time image )','( yxR  and reference image ),( yxI . Every point in 

)','( yxR has a matching point in ),( yxI within an error. We select every point in 
reference image as observational point ),( yxp . There is a point )','(' yxp in )','( yxR  
matching with the observational point ),( yxp . Now we choose a square )'( pS as a 
matching template. The template side is d  and center is point 'p . Then, we use image 

correlation algorithm to search the matching area in ),( yxI . It’s a successful 

matching and we define 1)( =pC  if the distance between point p  and result matching 

point m  is smaller than a given threshold ε ( =),( pmD pmpm yyxx <−+− 22 )()( ), 

otherwise we define 0)( =pC if it’s a failure. Take into account all the points in the 
RMA we can calculate the probability of RMA: 
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∑
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The matching is more reliable if the probability of RMA is high. Here we set 3=  
and the size of square matching template is 3636 × . The probability of RMA and 
non-RMA can be calculated by using correlation-matching method. Table 1 shows the 
matching probabilities calculated by using three reference sample images. 
 
 

         
 
 

        
 
 
 
 

Table 1. Comparison of correct-matching probability and computing time for 3 sample images 

Computing time of our 
proposed method Example No. 

Probability of 
RMA 

Probability of 
non-RMA Feature extraction and   

Segmentation time 

Computing time 
of correlation 

method 

1 0.9388 0.7852 8.8s 6.8s 5473.8s 
2 0.9418 0.4467 7.4s 11.6s 5334.5s 
3 0.8523 0.4251 2.9s 3.1s 1893.4s 

5   Conclusions 

The selection of RMA in reference image is very significant for path planning in 
navigation system. In this paper we appliedd three features to characterize the stability 

(a) Reference image            (b) Composite feature map       (c) Segmentation map 

    (d) Reference image         (e) Composite feature map        (f) Segmentation map 

Fig. 2. Results of selection 
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of matching performance. These features are fast to calculate and insensitive to 
illumination changes etc. Our proposed method is based on Mumford-Shah model, 
which can give an optimal segmentation. We use a level set formulation and 
algorithm for minimizing the Mumford-Shah energy function with the three features. 
Experiments have shown that our proposed method is fast and effective. The selected 
regions are reliable to match. 
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Abstract. In this study, we propose two algorithms for measuring the distance 
between shape boundaries. In the algorithms, shape boundary is represented by 
the Beam Angle Statistics (BAS), which maps 2-D shape information into a set 
of 1-D functions. Firstly, we adopt Dynamic Time Warping method to develop 
an efficient distance calculation scheme, which is consistent with the human 
visual system in perceiving shape similarity. Since the starting point of the rep-
resentations may differ in shapes, the best correspondence of items is found by 
shifting one of the feature vectors. Secondly, we propose an approximate solu-
tion, which utilizes the cyclic nature of the shape boundary and eliminates the 
shifting operation.  The proposed method measures the distance between the 
features approximately and decreases the time complexity substantially. The 
experiments performed on MPEG-7 Shape database show that both algorithms 
using BAS features outperform all the available methods in the literature.   

1   Introduction 

In Content Based Image Retrieval Systems (CBIR), the major goal is to search all the 
images in the database that are "similar" to a query image according to some prede-
fined criterion. Usually, the images within a given distance from the query or the first 
few images that have the smallest distance to the query are retrieved as a result of the 
query operation. The similarity is measured by a distance function defined over the 
feature space of the images. The objective in most of the similarity measurement 
methods is to minimize the distance between two vectors by allowing deformations.  

Although a sound mathematical basis exists, similarity measurement between the 
shape features is a serious problem in the shape retrieval and indexing applications. 
The shapes, which are visually similar, may not be “close” to each other in the vector 
space, defined over a particular distance measure. Another problem in similarity 
measurement is the complexity of the algorithms. Since the distance is calculated 
between the query and each database shapes, the time complexity of the process is 
crucial for large databases. Current studies on boundary based shape similarity use 
exhaustive search in matching the starting point of the shape descriptors so that the 



432 N. Arica and F.T. Yarman Vural 

minimum distance can be found [1], [4], [5]. The problem gets even more compli-
cated, when the dimension of the vector space is large. 

The first motivation in this paper is to develop an efficient distance calculation 
method, which is consistent with the human visual system in perceiving similarity and 
possesses a remarkable robustness to distortions. For this purpose, we adopt Dynamic 
Time Warping algorithm, to the boundary based shape features. The shape boundary 
is represented using the Beam Angle Statistics (BAS) method, which represents 2-D 
shape information with a set of 1-D functions.  

It is well-known that the starting point of the representations may differ in shapes. 
The proposed algorithm finds the best correspondence of items by shifting one of the 
feature vectors. However, this process increases the time complexity of the algorithm 
so that it may not be practical to search for the optimal solution especially for the 
database applications, which require large number of comparisons. For this reason, 
instead of finding the exact distance, the suboptimal solutions which measures the 
distance between the features approximately, may be more appropriate. Secondly, we 
develop an efficient method which utilizes the cyclic nature of the shape boundary 
and eliminates the shifting operation.  

The performances of algorithms are tested using the data set of MPEG 7 Core Ex-
periments Shape-1 Part B, which is the main part of the Core Experiments. The ex-
periments show that the proposed similarity measurement algorithm outperforms the 
available methods in the literature.  

The paper is organized as follows. Section 2 provides a summary of the shape rep-
resentation based on BAS, proposed in [1]. Section 3 describes an improved version 
of Dynamic Time Warping algorithm used for the similarity measurement of BAS 
features. Section 4 explains a fast cyclic measurement between shape boundaries. The 
experiments performed on MPEG-7 Shape Database are presented in section 5. Fi-
nally, the last section concludes the paper and proposes future studies. 

2   Shape Representation Based on Beam Angle Statistics (BAS) 

BAS is based on the beams, which are the lines connecting the reference point with 
the rest of the points on the boundary [1]. The characteristics of each boundary point 
are extracted by using the beam angles in a set of neighborhood systems. The angle 
between each pair of beams is taken as the random variable at each point on the 
boundary. Then, the moments provide the statistical information about the shape. In 
the first moment, each valley and hill corresponds to a concave and convex visual part 
of the object shape. The other moments increase the discriminative power of the rep-
resentation. An example of the proposed representation is shown in figure 1. 

The BAS representation eliminates the use of any heuristic rule or empirical 
threshold value of shape boundaries in a predefined scale. BAS, also, gives globally 
discriminative features to each boundary point by using all other boundary points. 
Another advantage of BAS representation is its simplicity, yet consistency with the 
human perception through preserving visual parts of the shapes. The representation is 
scale, rotation and translation invariant. It is also insensitive to noise and occlusion. 
The details of the BAS representation can be found in [1]. 
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Next step in shape description is to describe the 1-D BAS functions in a compact 
way. For this purpose, we adopt piecewise constant approximation method. The BAS 
function is segmented into equal size frames and each frame is represented by the 
segment average. Intuitively, in order to reduce the dimension of BAS function from 
N to T, the data is divided into T equal-size frames. The average value of the data 
falling within a frame is calculated and the value obtained at each segment becomes 
the entries of the feature vector with dimension T. 

 
(a) 

 
(b) 

Fig. 1. (a) A sample shape boundary and (b) its fourth order statistics of Beam Angle 

3   Dynamic Warping with Penalty 

The matching process needs to compensate the slight variations on the BAS functions 
appropriately by compressing the function at some places and expanding it at others. 
The classical DW algorithm achieves this goal by finding an optimal match between 
two sequences, which allows stretching and compression of the sequences.  

In order to align two sequences, A=A1,...,AN and B=B1,...,BM using DW, we con-
struct an N-by-M matrix, where each element (i,j) contains the distance between the 
points Ai and Bj . The goal is to find a path through the matrix, which minimizes the 
sum of the local distances of the points, starting from (1,1) and ending at (N,M). This 
path is called warping path. If D(i,j) is the global distance up to (i,j) and the local 
distance at (i,j) is given by d(i,j), then DW algorithm uses the following recurrence 
relation: 
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Given D(1,1)=d(A1,B1) as the initial condition, we have the basis for an efficient 
recursive algorithm for computing D(i,j). The algorithms starts from D(1,1) and iter-
ates through the matrix by summing the partial distances until D(N,M), which is the 
overall matching score of the sequences A and B. DW is accomplished with a time 
and space complexity of O(NM). 

DW algorithm as described above, while not permitting changes in the ordering of 
the sequence items, allows unconstrained compression and expansion of the items of 
the two sequences. This may be suitable for some applications, such as speech recog-
nition, where the sequences of the same class may be traced out more slowly during 
one portion of the speech and more quickly during another portion. In order to allow 
such variations, it is necessary to distort the time axis appropriately. For this reason, 
the DW algorithms used for speech recognition does not need to penalize the expan-
sion and compression of the sequences in the matching process. However, in shape 
boundary, the free expansion and compression of some part of the sequence change 
the visual appearance of the shape. These variations may carry meaningful informa-
tion used to distinguish visually different parts of the shape boundary.  

The above discussion leads us to the consideration of constraining the warping path 
to limit the amount of compression and expansion to a certain extent in the matching 
process. In this study, we propose to assign penalties for expansion and compression 
of the BAS function. For this purpose, the horizontal and vertical moves in the DW 
matrix are penalized by a constant. This modification improves the performance of 
the similarity measurements in BAS descriptors. The proposed Dynamic Warping 
with Penalty (DWP) algorithm for calculation of distance between two BAS vectors 

q  and t is given below: 
 

 

4   Cyclic Sequence Comparison 

The BAS function, which is based on the shape boundary, is considered as a cyclic 
sequence. In order to align two BAS feature vectors, the starting boundary point is to 
be matched. This requires to define a unique starting point for each shape, which is 

1. Initialization : 
  D(1,1)= d( q(1), t(1)); 
  for 2  i  N   
  D(i,1)=D(i-1,1) + d( q(i), t(1)); 
  for 2  j  M   
  D(1,j)=D(1,j-1) + d( q(1), t(j)); 
2. Iteration: 
  for 2  i  N   
  for 2  j  M   
        D(i,j)=d( q(i), t(j)) + min {D(i-1,j-1), 
                                    D(i-1,j) +penalty, 
         D(i-1,j) +penalty }; 
3. Termination: 
  return (D(N,M) 
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not practically possible. For this reason, the alignment computation must determine 
the amount of cyclic shift that has taken place in order to find the optimal match. 

The easiest method of solving cyclic sequence comparison problem is to shift any 
of the sequences one item at a time and recompute the alignment. The optimal align-
ment is, then, found by the cyclic shift which results with a minimum distance [1], 
[2]. However, shifting the elements of any sequence at each time, makes the complex-
ity of the algorithm O(MN2) for the sequences with lengths M and N. 

Searching for strict optimality is not practical and efficient in image databases, 
which contain large number of shapes. Therefore, in practical problems, it is worth to 
find a suboptimal solution by approximate distance measures, rather than exact solu-
tion. The approximate approaches [6], [7], [8], double one of the sequences and then 
find the subsequence therein that best resembles the other sequence, which computes 
in time O(MN).  

In this study, we, also, approximate the optimal solution for the sack of efficiency 
and improve the method proposed in [8]. The original algorithm is developed for the 
partial matching of shape boundaries. However, our aim in BAS comparison is to find 
a matching between all the items of feature vectors. Thus, we improve the perform-
ance of the algorithm by assigning penalties in order to control the length of the warp-
ing path in the algorithm. 

Given two cyclic sequences A and B with lengths N and M respectively, a mini-
mum distance table with M columns and 2N rows constructed by concatenating the 
sequence A with itself (A2). Paths start from the first N entries of the first column and 
end at various points in the last column. D(i,j) is defined as the total distance on the 
minimum distance path from the (i,j) entry of the distance table to the end of the path 
at some point in the last column. The value of D(i,j) is evaluated as; 
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for i=1,...,2N-1  and  j=1,...M-1. The boundary conditions are   

( ) NiMiD 2,...,1,0, == and (3) 

( ) .1,...,1),1,2(),(,2 12 −=++= + MjjNDBAdjND jN
 (4) 

Finally let 

( ) ).1,()1,(0, iDidiD +=  (5) 

The values of D(i,0), i=1,...N are the total distances of the paths through the mini-
mum distance table from each starting point i in A running from the first point to the 
last point of B. The path with the lowest D(i,0) is the minimum distance path in the 
table.  

Now, we are ready to give CSC algorithm for the BAS features. Given two BAS 
feature vectors  q  and t, the cyclic sequence comparison method can be summarized 
by the following algorithm:  
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Note that, we change the recurrence relation by giving a constant penalty to the 

horizontal and vertical moves through the matrix. Although there is no theoretical 
reason for giving penalties, the discussion about this revision on the algorithm can be 
given by the following arguments: 

Given two sequences A and B, the algorithm given in [8], finds a subsequence Z of 
A2, which is most similar to B.  In the computation, there is no control over the length 
of minimum distance path. Therefore, the length of the subsequence Z, |Z| may tend to 
go far from |A|. This leads to the following consequences in the matching process. 
The algorithm in [8] calculates a partial matching of A against B. However, our aim is 
to measure the overall distance between the sequences. This requires to find a com-
plete correspondence between items of the sequences. The algorithm approximates 
the optimal solution and estimates a lower bound of the exact cyclic distance [7].  

The proposed algorithm gives penalties for horizontal and vertical moves and con-
trols the length of the path.  This heuristic enforces the path to go through the diago-
nal and approximate |Z| to |A|. By this way, the complete correspondence between the 
items of two sequences is computed and the optimal solution is approximated by 
stimulating the matching score. Another reason for using penalties lies within the 
same proposition as in the DW case.   

5   Experiments 

The performance of the BAS descriptor is tested in the data set of MPEG 7 Core Ex-
periments Shape-1 Part B, which is the main part of the Core Experiments.  

In the first set of experiments, the effect of modification in DW algorithm is tested. 
The exact cyclic distance between the BAS features is calculated by keeping one of 
the sequences fix and shifting the other one item at a time. The classical DW is re-
computed over and over again. The minimum distance is taken as the exact distance 
between the sequences. The penalty value in DW recurrence relation is taken as 50 for 

1. Initialization : 
  for 1  i  2N-1   
  D(i,M)=0; 
  for 1  j  M-1   
  D(2N,j)=D(2N,j+1) + d( q(2N), t(j+1)); 
2. Iteration: 
  for 2N-1  i 1   
     for M  j 1   
       D(i,j)= min {  D(i+1,j+1) + d( q(i+1), t(j+1)) , 
            D(i+1,j) + d( q(i+1), t(j)) + penalty, 
            D(i-1,j) + d( q(i), t(j+1)) + penalty }; 
 for 1  i  N 
      D(i,0) = d( q(i), t(1)) + D(i,1); 
3. Termination: 
  return  min 1  i  N  { D(i,0)} 
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this particular test data. The constant value used as a penalty in the algorithm im-
proves the similarity rates almost 2% at all sampling rates. This is depicted in Table 1. 

Table 1. Comparison of DWP and DW Algorithms (%) 

Length of Sequence Algorithm 
10 20 30 40 50 

DW  62.96 76.03 79.75 81.02 81.13 
DWP   65.85 77.57 81.26 82.23 82.26 

 

Another set of experiments are performed in order to compare the proposed cyclic 
sequence comparison algorithm with the original one in [8]. The penalty value re-
mains as 50 in this set of experiments. The proposed method outperforms the original 
algorithm almost 5 % at all sampling rates.  

Table 2. Comparison of Cyclic Sequence Comparison Algorithm and the algorithm proposed in 
[8] (%) 

Length of Sequence Algorithm 
10 20 30 40 50 

Cyclic DTW   63.35 76.02 80.82 81.60 81.82 
Partial Shape Matching 59.15 71.19 76.70 77.59 77.98 

In Table 3, the comparison of the BAS function with the recently reported results 
of [3] (Shape Context), [4] (Tangent Space), [5] (Curvature Scale Space), [9] (Zernika 
Moments), [10] (Wavelet) and [11] (Directed Acyclic Graph) is provided. As it is 
seen from the table, the proposed descriptor performs better then the best-
performance descriptors available in the literature, for the data set of MPEG CE 
Shape-1 part B. 

Table 3. Comparison of Proposed Algorithms with BAS vector size 50 and recent studies  

Shape 
Context 

Tangent 
Space 

CSS Zernika 
Moment

Wavelet DAG BAS 
with 
DWP 

BAS 
with 
CSS 

76.51 76.45 75.44 70.22 67.76 60 82.26 81.82 

6   Conclusion 

In this study, we propose some improvements in two different similarity distance 
methods defined on the BAS feature space. The first method used for similarity meas-
urement is Dynamic Warping (DW), which is widely used in speech recognition.  The 
DW algorithm finds an optimal match between two sequences, which allows stretch-
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ing and compression of sections in the subsequences. However, in shape boundary 
representation, the expansion and compression of some part of the sequence change 
the visual appearance of the shape. Therefore, the expansion and compression of BAS 
functions should be handled with a specific care, unlikely in speech case. For this 
reason, we propose to give penalties for subsequence expansion and compression of 
the BAS function. This simple modification of the cost function provides substantial 
improvement on the overall performance of the DW algorithm.  

The second method is cyclic sequence matching algorithm, which approximates 
the optimal solution. To ensure a consistent description of a shape, which is cyclic in 
nature, a unique starting point must be defined for each shape. Since this is impracti-
cal to achieve, the alignment computation must determine the amount of cyclic shift 
that has taken place in order to find the optimal solution. However, this process in-
creases the computational cost during the similarity measurement, resulting impracti-
cal computational cost for large databases. In order to avoid this complexity, we pro-
pose an efficient cyclic sequence comparison algorithm. In the performance evalua-
tion of proposed methods, we use the dataset of MPEG 7 Core Experiments Shape-1. 
It is observed that the proposed shape descriptor outperforms all the methods in the 
literature in this particular data set. 
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Abstract. In image deformation, one of the challenges is to produce a
deformation that preserves image topology. Such deformations are called
“homeomorphic”. One method of producing homeomorphic deformations
is to move the pixels according to a continuous velocity field defined over
the image. The pixels flow along solution curves. Finding the pixel tra-
jectories requires solving a system of differential equations (DEs). Un-
til now, the only known way to accomplish this is to solve the system
approximately using numerical time-stepping schemes. However, inac-
curacies in the numerical solution can still result in non-homeomorphic
deformations. This paper introduces a method of solving the system of
DEs exactly over a triangular partition of the image. The results show
that the exact method produces homeomorphic deformations in scenarios
where the numerical methods fail.

1 Introduction

Digital images can be “warped” or deformed using a non-rigid deformation. Each
pixel can have its own displacement vector indicating where it moves to. There
are different methods of determining these displacement vectors. One family
of methods, which includes elastic deformation [1] and thin plate splines [2],
uses a set of image control points that are moved, and the pixels in the image
move with them as if attached to a rubber sheet. These methods work well
for small control-point displacements, but large displacements can lead to non-
homeomorphic deformations [3]. That is, the spatial transformation may not
conserve local topology and therefore not be invertible. In applications such as
medical imaging and remote sensing, a non-homeomorphic deformation is not
desirable.

Deforming an image usually proceeds by traversing the pixels of the de-
formed image, determining a colour (or intensity) for each pixel. If one knows
where the pixel was moved from in the original image, the new pixel’s colour
can be found by interpolating the original image at that location. This process
requires the inverse of the deformation. For this reason, one usually stores the
inverse of the desired deformation. The deformation map consists of a displace-
ment vector for each pixel. In this context, the vector indicates where the pixel
was displaced from.
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There is no efficient way to find the inverse of a deformation defined using
control-point displacement maps. Simply negating the displacement vectors does
not suffice.

Instead of defining the deformation using control points, the pixels can be
moved by flowing along a velocity field [4]. A continuous velocity field is de-
fined over the image, typically by interpolating between a finite set of velocity
vectors assigned in the image. These methods are often called “flow methods”.
The velocity fields can be derived in conjunction with other constraints such as
smoothness and incompressibility [5, 6, 7].

However, given a velocity field, the operation of deriving the pixel trajectories
can be challenging, and amounts to solving a system of differential equations
(DEs) for each pixel. How easy the system is to solve depends on the type
of DEs. Some systems are solvable, while others have no known closed-form
solution (i.e. we cannot write down the solution in terms of combinations of
transcendental functions). For such situations, we can approximate the solution
using numerical time-stepping schemes [4]. This, too, has problems. The solution
is only an approximation and can contain inaccuracies.

In this paper, we show that by performing linear interpolation on triangu-
lar cells in the image, the resulting system of DEs is linear and can be solved
analytically. Thus, we derive homeomorphic deformations while avoiding the
inaccuracies of numerical approximate solutions.

2 Methods

2.1 Velocity Fields

Let f : R2 → R2 be a continuous function that represents the velocity field
over a 2D image. Hence, f(x, y) is the velocity vector at location (x, y). We can
model deformations as the movement of pixels as they follow this velocity field.
Determining the path of a pixel is then a matter of solving the system of DEs[

dx(t)
dt

dy(t)
dt

]
= f (x(t), y(t)) , (1)

where f (x(t), y(t)) is a vector-valued velocity function. Note the introduction of
the parameter t. For a particular deformation, the system is integrated (backward
or forward in time) to a predetermined stop time. The final resting point of each
pixel is where that pixel is displaced to in the deformation.

A velocity field is better than a control-point displacement map because a
velocity field is easily inverted by simply reversing the velocity vectors. A velocity
field also offers continuous deformations so that intermediate deformations can
be attained.

If velocity vectors are defined in our image (for example, at a subset of
pixel locations), we can define a continuous velocity field over the domain of the
image by interpolating between these velocity vectors. Bilinear interpolation can
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Fig. 1. Crossing pixel trajectories resulting from using a numerical solver. The gray
arrows represent the velocity vectors at the pixel locations where they are specified.
The velocity field is continuously interpolated between these vectors.

be used to interpolate between velocity vectors defined on a rectangular grid. In
this case, the system of DEs that governs the motion of pixels in the image is{

x′(t) = Ax(t) + By(t) + Cx(t)y(t) +D
y′(t) = Ex(t) + Fy(t) +Gx(t)y(t) +H ,

(2)

where x′(t) and y′(t) are time derivatives, and A, . . . ,H are constants based on
nearby velocity vectors, f . This system is the same as the interacting species
model, and is non-linear because of the “x(t)y(t)” corss-terms. There is no known
closed-form general solution to (2).

An alternative is to find an approximate solution to the system of DEs using
a numerical method. That is, the movement of each pixel through the velocity
field is estimated in discrete time steps using a numerical scheme. However,
depending on the characteristics of the velocity field, this can be problematic.
Figure 1 shows three numerical solution trajectories that cross each other. The
underlying velocity field is continuous, so the solution curves should not cross.
Hence, the error introduced by the time-stepping method changed the topology
of the solutions.

Consider performing linear interpolation on triangular cells instead of rec-
tangular cells. Since each of the x- and y-components of the velocity field can
be uniquely represented as a linear function in a triangular cell, the resulting
system of DEs is linear, {

x′(t) = Ax(t) + By(t) +D
y′(t) = Ex(t) + Fy(t) +H .

(3)

Linear systems of DEs are easy to solve [8], so the movement of the pixels
through the velocity field can be known exactly, and written as a combination
of transcendental functions.

2.2 Implementation

For a given image and velocity field, the deformation proceeds by first propa-
gating each pixel through the velocity field. The propagation of the trajectories
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runs from an initial time t0 until a final time tf . During that time, each pixel
flows with the velocity field to another location (unless it happens to rest on an
equilibrium point). The displacement map for the deformation is simply a record
of where each pixel rests at time tf .

A system has been built in MATLAB (MathWorks Inc., Natick, Massa-
chusetts) to derive image deformations by finding the exact solution of pixel
trajectories. The image is broken into triangles, the vertices of which are nine
pixels from the image1. The following is an outline of the methodology for finding
the exact trajectory of a pixel through a triangular cell.

Suppose we are starting from the point (xi, yi) at time ti in triangle T .

1. The three velocity vectors assigned to the vertices of T are used to define
two linear functions over T : one for the velocity’s x-component, and one for
its y-component.

2. Compute the coefficients for the triangle’s system of DEs using the linear
functions from step 1.

3. Find and store the general solution for the system of DEs. This involves find-
ing the (generalized) eigenvalues and eigenvectors of the system matrix [8].
This general solution still has two unknown constants of integration.

4. Use the initial data (initial point (xi, yi) and initial time ti) to determine
values for the unknown constants.

5. Two cases remain: either the trajectory stays inside triangle T for the re-
mainder of the propagation, or the trajectory intersects one of the triangle’s
edges at some time texit < tf .
(a) If the trajectory remains inside T , simply evaluate the solution at t = tf .
(b) If the trajectory leaves T , find the exit time texit and evaluate the exit

location (xexit, yexit). Use this exit point as a new initial point. Find out
which triangle the trajectory is entering, and go back to step 1 until the
final time has been reached.

For the sake of brevity, many of the details are omitted here. It is worth
noting that finding the time at which the solution curve intersects one of the
triangle’s edges results in a nonlinear algebraic equation in t that is not generally
solvable. However, fast and accurate solvers exist for such algebraic equations.
We use MATLAB’s fzero function, in conjuction with multiple samples of the
trajectory, to find the exit time if it exists.

We also implemented a numerical method for propagating the solution
through the triangular cells. The method is written as a MATLAB script. Its ve-
locity function is derived from the same triangulation as the exact method above,
but instead of seeking an exact solution, it uses MATLAB’s ode45 function, an
implementation of a 4th/5th-order Runge-Kutta time-stepping method [9].

2.3 Experiments

The exact method and the numerical method are compared through a series of
experiments. For testing purposes, a 256×256 image is partitioned into a triangle
1 Our implementation is not limited to pixel locations for triangle vertices. The vertices

can occur at any location.
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mesh of eight triangles. Each triangle is an isosceles right-triangle, measuring 128
pixels on the short sides (see Fig. 2). Velocity vectors are defined at the nine
vertices of the triangle mesh.

In each experiment, three different sets of results are produced for the numer-
ical method, each using a different maximum time step. In MATLAB’s numerical
DE solvers, the user can specify the maximum time step. In our experiments,
we derived three test values based on the Courant-Friedrichs-Levy (CFL) condi-
tion [10]. We took the CFL condition to mean that the time step should be short
enough so that a single step, taken at the maximum velocity in the velocity field,
cannot be larger than 128 pixels (the width of a triangle). We will refer to this
maximum time step as the CFL step. In our experiments, the tested maximum
time-step sizes are 60%, 70% and 80% of the CFL step size.

In the first experiment, we compare the trajectories of three pixels through a
challenging velocity field that makes the trajectories converge toward each other,
and then diverge again. The purpose is to see if changing the step-size constraint
changes the solution significantly, and to see if the solution trajectories cross over
each other.

In the second experiment, the numerical and exact methods are each used to
produce a displacement map. Each displacement map has two components: an
x-component and a y-component. For each pixel, the corresponding value in the
x-component gives the x-coordinate of the location where that pixel came from.
The y-component is defined similarly.

3 Results

Figures 2(a)-(c) contrast several pixel trajectories for the numerical method un-
der different maximum time-step sizes. Notice that, despite the same underlying
velocity field, the numerical methods give qualitatively different solutions for
different step-size constraints. In particular, the order of the trajectory curves is
not preserved in (a) and (c). Solution curves cannot cross over each other when
the velocity field is continuous. Even the strictest step-size solution (Fig. 2(a))
gives solutions that are qualitatively different from those of the exact method.

The displacement maps for the exact and numerical methods are shown in
Fig. 3. The figure shows the x-component for the displacement maps correspond-
ing to the numerical method with max time-step set to 60% of the CFL step,
and the exact method. The y-components are not shown here, but exhibit similar
results. Since the underlying velocity field is continuous, we expect the displace-
ment map to be smooth. However, notice the banding in the displacement map
for the numerical method. The artifact is not present in the displacement map
for the exact method.

4 Discussion and Conclusions

The velocity fields chosen for these experiments are somewhat pathological,
specifically designed to exhibit, in an obvious way, the sort of errors that the
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(a) 60% Max Step (b) 70% Max Step (c) 80% Max Step

(d) Exact

Fig. 2. Pixel trajectories for numerical and exact solution methods. Each trajec-
tory starts at the circle marker. The insets magnify the starting and ending of each
trajectory.

numerical methods can produce. However, such errors can occur in more subtle
scenarios. The examples in this paper illustrate that simply taking a shorter time
step does not necessarily lead to a qualitatively correct solution.

The banding observed in Fig. 3 seems to be related to the maximum step size
because the other numerical results showed similar bands of different widths.

The “exact” method is not truly exact since the point where the trajectories
exit one triangle (and enter the next) have to be located numerically. However,
finding the solution of a single algebraic equation is much easier than numerically
solving a system of DEs. The algebraic equation gives concrete feedback about
the error in the solution. The feedback available to numerical DE solvers is far
more nebulous.

Methods exist to remove redundant triangles from a triangulation [11]. If a
region of the velocity field is highly linear, it can be modeled by a single triangle.
Removing redundant triangles can help speed up the processing time of these
methods.

The deformation methods outlined in this paper are for 2D images. However,
they can easily be extended to higher dimensions. Higher-order linear systems
of DEs are still quite easy to solve exactly.

A 3D application for this type of exact solution method is in the field of
magnetic resonance (MR) diffusion tensor tractography. In this field, informa-
tion about the preferential direction of diffusion of water in the brain is collected
using an MR scanner. Since water in a nerve fiber bundle preferentially diffuses
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(a) Numerical x-component (b) Exact x-component

Fig. 3. Displacement maps for the numerical method (with maximum time step set
to 60% of the CFL step size), and for the exact method. The inset shows a contrast-
enhanced magnification of part of the map.

along the fiber’s axis, following these diffusion vectors can give doctors infor-
mation about long-range nerve connections in the brain. This technique, known
as “diffusion tensor tractography”, is similar in nature to following the velocity
vectors in image deformation. Current methods use discrete time-stepping tech-
niques to trace the nerve fiber bundles through a 3D dataset [12, 13, 14]. Often,
bundles converge with other bundles, and then separate again. Numerical meth-
ods to approximate the fiber tracts are subject to the same inaccuracy issues as
the numerical methods studied in this paper [12]. Although the spatial resolution
of a diffusion tensor image is somewhat coarse compared to the size of the nerve
fiber bundles, an exact solution might yield more consistent and possibly more
accurate results than the numerical methods.

Finally, more research needs to be done to investigate other methods of in-
terpolation to see if the resulting system of DEs can be solved exactly. So far
we have briefly considered Fourier basis functions and radial basis functions, but
believe that neither option leads to a solvable system.
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Abstract. Image classification is often used to extract information from
multi-spectral satellite images. Unsupervised methods can produce re-
sults well adjusted to the data, but that are usually difficult to assess.
The purpose of this work was to evaluate the Xu internal similarity index
ability to estimate the natural number of classes in multi-spectral satel-
lite images. The performance of the index was initially tested with data
produced synthetically. Four Landsat TM image sections were then used
to evaluate the index. The test images were classified into a large number
of classes, using the unsupervised algorithm ISODATA, which were sub-
sequently structured hierarchically. The Xu index was used to identify
the optimum partition for each test image. The results were analysed in
the context of the land cover types expected for each location.

1 Introduction

Image classification techniques are frequently used to produce land cover maps
from multi-spectral satellite images. Usually a supervised classification approach
is preferred, making use of training areas to characterise the spectral signature
of each class looked for in the image. The results are often disappointing, mainly
due to the presence of mixed pixels and an inadequacy between the classes antic-
ipated and the classes actually present in the data. A class identified in training
might not be spectrally distinguishable from the other classes. In contrast, there
might be some classes in the data, clearly distinguishable from the signal point
of view, which were not predicted a-priori. These issues are partly solved when
an unsupervised algorithm is applied to the data, but other problems do arise.
Unsupervised classification algorithms explore the multi-spectral feature space,
looking for densely occupied areas, or clusters, to which classes are assigned.
The classes obtained by this process are in principle better suited to the data,
but the results can be dependent on the algorithm and the choice of parame-
ters used. This is certainly an important aspect, as the cluster configuration is
only considered to be valid if clusters cannot reasonably occur by chance or as
a beneficial artefact of a clustering algorithm [1]. Even when this issue is sorted
out, there is still a difficulty: labelling the classes produced by the unsupervised
classifier. This post-classification labelling is sometimes difficult due to the large
number of classes usually created (K). An effective method to assist on this
process is to structure the classes hierarchically. A set of K-1 solutions is thus
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made available (classified images with 2, 3, ..., K classes), which brings a new
question: which one is the best partition? Or, in an alternative form, what is
the ”natural” number of classes in the dataset? This is a well-known problem in
statistics, but not much explored in image processing, due to the large number
of patterns to cluster. This is even more significant in remote sensing, as multi-
spectral satellite images are huge data volumes, which are not well manageable
for computationally demanding methods.

The validation of a clustering result can be accomplished by carefully apply-
ing statistical methods and testing hypotheses [1]. The use of an external index
of agreement, such as the Rand index, is appropriate for ascertaining whether
the data justify the number of a-priori clusters [2]. Internal examination of valid-
ity tries to determine if the structure is intrinsically appropriate for the data [1].
Milligan and Cooper [3] performed a comparative study of 30 similarity indices.
However, the large majority of these indices are very demanding computation-
ally, and thus inappropriate for digital images. One criterion that can be applied
to large datasets is based on the Minimum of Between Cluster Distance (MBCD)
[4]. An improved version of this criterion is proposed by Xu et al. [4]. The pur-
pose of this work was to estimate the usefulness of the Xu similarity index to
identify the natural number of clusters in a multi-spectral satellite image.

2 Method

2.1 Similarity Index

Let x1, x2, ..., xN be the patterns to classify, and xi a vector of the d-dimension
feature space. For digital images, the patterns are the image pixels. The classi-
fication of the image corresponds to the establishment of a partition C1, C2, ...,
Ck for the N patterns, so that i ∈ Ck if xi belongs to the class k. The centre of
class k is a vector mk, of dimension d, given by Equation (1), where nk is the
number of patterns assigned to class k.

mk =
1
nk

∑
i∈Ck

xi (1)

The Sum-of-Squared Error (SSE) for class k (Jk) is the sum of the quadratic
distances between all its elements and the class centre. The distance δ(x,y) be-
tween two vectors x and y is computed using a metric, such as the Minkowski
distance or the Euclidian distance [2]. The Ward distance (Equation 3) is used
to evaluate the distance between two clusters i and j [4].

Jk =
∑
i∈Ck

δ2(xi,mk) (2)

δw
ij =

√
ni × nj

ni + nj
× |mi −mj | (3)
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A dissimilarity measure (M), in terms of the Minimum of Between-Cluster Dis-
tances (MBCD), can be defined for a partition with k classes (Equation 4). Both
SSE and MBCD alone are insufficient to establish a criterion for the best parti-
tion. However, the two can be used together to form an index, as proposed by
Xu et al [4].

M = mini<j δ
w
ij i, j = 1, 2, . . . , k (4)

The initial classification procedure establishes a partition of the data in k classes,
which is then hierarchically clustered, producing k−1 partitions (with a number
of classes h = k, k−1, . . . , 2 classes). The index proposed by Xu, E(h), evaluates
the level h of the hierarchical structure by comparing the SSE and MBCD of
this level with the proceeding level. The index E(h) is computed using Equation
5, where J(h) is the sum of the Jk for all clusters of partition h.

E(h) =
M(h)−M(h+ 1)√
J(h)−√J(h+ 1)

(5)

When plotting the index E as a function of h, a significant maximum of E(h)
should be expected to appear at level h∗, where lie h∗ natural groupings or
clusters [4]. An example of a plot E(h) is presented in Figure 1. The figure
shows two partitions, 5 and 8 classes, and the Xu similarity index plot. In this
case there is a clear maximum for h = 5, indicating that the clustering in 5
classes is the most natural choice for this particular dataset.

Fig. 1. Example of the Xu index applied to synthetic data. Data classified into 5 classes
(left), 8 classes (centre) and Xu index plot (right).

2.2 Hierarchical Classification of Digital Images

Hierarchical clustering methods require the user to specify a measure of dissim-
ilarity between groups of observations. Agglomerative strategies for hierarchical
clustering start at the bottom of the hierarchical structure (the level where each
cluster contains a single observation) and at each level recursively merge a se-
lected pair of clusters into a single cluster. This produces a hierarchical structure
where each level of the hierarchy represents a particular grouping of the data
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into disjoint clusters of observations. The indices presented in the previous sec-
tion can be used to decide which level actually represents a ”natural” clustering
in the sense that observations within each of its groups are sufficiently more
similar to each other than to observations assigned to different groups at that
level [5]. Hierarchical clustering algorithms are widely used in some applications
as botany and medical diagnosis because they are extremely easy to compre-
hend [6]. However, the direct application of hierarchical agglomerative methods
to digital images is not viable due to the large number of patterns, and, as a
result, the enormous computational effort required. An alternative approach is
to use an efficient data-clustering algorithm (for example ISODATA) to establish
an initial partition of the image data. The tens (or few hundreds) of clusters of
this initial partition can then be easily managed to form a hierarchical clustered
structure.

The ISODATA (Iterative Self-Organizing Data Analysis Technique) unsu-
pervised classification method is a modification of the k-means algorithm [7].
Both are iterative processes, but the k-means method requires knowledge of the
number of classes present in the data. Initially, k centres are seeded along the
diagonal (or in other locations) of the feature space. Each pattern (or pixel, for
a digital image) is assigned to the class whose centre is closest, according to a
given metric (Euclidian distance, for example). Once all patterns are distributed
amongst the classes, an updated centre is computed for each class. The process
is repeated until all class centres are stable (up to a threshold value), or the
iteration limit is reached. The number of classes produced by the ISODATA
classifier can vary, within a pre-established range. In each iteration, two or more
classes can be merged, a class can be removed or split in two. These decisions
are controlled by a set of parameters, which will naturally influence the final
results. In the combined methodology, the clusters produced by the ISODATA
classifier are used as the initial observations to form the hierarchical clustered
structure for the digital images.

3 Index Performance with Synthetic Data

The performance of the Xu index was initially evaluated with synthetic data.
Each test was performed on a set of 100 elements, randomly generated with
Gaussian distribution curves. The following parameters were considered: data
dimensionality (d), number of Gaussians (n), standard deviation of the Gaussians
(σ). The number of classes that should be expected is n, although this will
be strongly dependent on the random generation process. Each pattern is a
d-dimension vector with components between 0 and 1.

The synthetic data generation followed a similar process to the method used
by Dubes [2]. It assures that a minimum number of elements are assigned to each
cluster, but allows some variability in the number of elements per cluster. The
process starts by randomly establishing the n Gaussian centres, assuring that
they are at least 2σ apart from each other, and at least at a distance σ from the
feature space edges. The number of patterns (100) is divided in n + 1 groups.
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Each Gaussian curve is assigned a group, and the elements of the remaining
group are randomly assigned to any of the Gaussians.

Each dataset generated was classified in k classes (with k = 2, 3, . . . , 12),
using MATLAB algorithm ClusterData [8]. The Xu index was computed for
each partition, and a plot of the index versus the number of classes created for
each dataset. As an illustration, Figure 1 shows the data and the E(h) plot for a
test with d = 2, n = 8, σ = 0.04. In this case, the number of classes suggested by
the index was 5, instead of the 8 expected. However, a visual inspection of the
data plot seems to suggest that the choice of 5 classes is actually a reasonable
one.

3.1 Evaluation of the Index Performance

A total of 140 sets of parameters were tested: d = 2, 3, 4, 5; n = 4, 5, 6, 7, 8;
σ = 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.10. For each set of parameters, a total of
200 data sets were produced and evaluated, each with 100 patterns. The number
of times that the Xu index plot indicated the expected number of clusters was
registered, and the success rate computed. Table 1 shows the success rate (in %)
for 24 sets of parameters (n = 6). For example, for d = 3, n = 6, σ = 0.02, the
Xu index selected 6 as the natural number of classes 140 out of 200 times, or
70.0 %. The results presented in Table 1 show that the effectiveness of the index
decreases with increasing σ and decreasing d. Although not shown in Table 1,
the effectiveness of the index also decreases with an increase of the number of
Gaussian curves (n), as expected. It is worth mentioning that for high values of
σ, the number of classes selected by the index is very often different than the
number of Gaussians used to generate the data, but still a reasonable choice.
This is illustrated in the example of Figure 1. This helps explaining the low
success rate of the index for high values of σ.

Table 1. Success rate of the Xu index with synthetic data (6 Gaussians), for various
values of data dimensionality (d) and standard deviation of the Gaussians (σ)

σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05 σ = 0.07 σ = 0.10
d = 2 86.5% 57.5% 33.5% 18.5% 11.5% 7.5% 6.5%
d = 3 94.0% 70.0% 56.5% 31.5% 27.5% 10.0% 4.0%
d = 4 87.0% 78.0% 60.5% 52.0% 36.0% 22.0% 12.5%
d = 5 83.5% 69.0% 61.5% 54.0% 45.5% 22.5% 8.0%

4 Results with Image Data

Four test images were selected to evaluate the performance of the Xu similarity
index. The images selected are small sections (of 512 by 512 pixels) extracted
from Landsat TM images of Portugal and Spain, acquired in October 1997.
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Fig. 2. First principal component of the test images I-Porto, II-Geres, III-Castela,
IV-Aveiro (from left to right)

The multi-spectral images have 6 bands, with a 30-meter pixel resolution. The
thermal band of Landsat TM was not used due to the lower spatial resolution [9].
The first principal component of each test image is shown in Figure 2, from left
to right: I-Porto, II-Geres, III-Castela, IV-Aveiro. The first principal components
featured in Figure 2 were only used for displaying purposes. They retained 82.4%,
64.9%, 88.5% and 83.3% of the total variance of the multi-spectral test images
I, II, III and IV, respectively.

4.1 Image Classification and Clustering

Each test image was classified using the algorithm ISODATA implemented on the
software PCI Geomatics [10]. The same set of parameters was used throughout,
including the range of classes allowed (20-40). The classifier converged for a
solution with 27 classes for test image III, and with 40 classes for the remaining
test images. The classification results were hierarchically structured, using the
Euclidian distance metric between the class centres (mk) as the agglomerative
criterion. This produced 39 classified images for test images I, II and IV (with
40, 39, ..., 2 classes), and 26 classified images for test image III.

4.2 Analysis

The Xu similarity index was computed for each classified image, and a plot E(h)
produced for each test image. The plots are presented in Figure 3, as a function
of the level on the hierarchical structure − the number of classes h. An initial
inspection of these plots seems to suggest that the optimum solution, or the
natural number of classes, is not always a unique choice.

For test image I, an urban area (the city of Porto), the index has 4 strong
maximums for h = 5, 9, 11 and 18. In urban areas such as this one, with a pixel
size of 30 meters, a great number of mixed pixels should be expected. This can
help explaining why there are several possible choices for the ”natural” number
of classes. The best choice according to the index is for h = 9, which was the
classified image selected for Figure 4 (left).

Test image II covers a mountainous region (Geres, Portugal), with some bod-
ies of water. In this case the Xu index clearly points to a partition with h = 4.
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Fig. 3. Xu index plots for test images I(top left), II (top right), III (bottom left), IV
(bottom right)

Fig. 4. Classification levels selected for test images I (h = 9), II (h = 4), III (h = 7),
IV (h = 7) (from left to right)

This is a consistent result, corresponding to four classes with well-distinguished
spectral signatures: water, bare soil, sparse and dense vegetation. The magni-
tude of the index for h = 4, compared to the other values of h, suggests that
this is the only natural choice for this image, although very subtle local max-
imum do appear for h = 9 and h = 29. The result for h = 4 is presented in
Figure 4.



454 A.R.S. Marçal and J.S. Borges

Test image III covers an agricultural area (in Castela, Spain), with a small
urban sector. The index plot seems to indicate a selection of h = 7, although
the magnitude is in this case rather low. A choice of h = 3 could also be done,
but the level of discrimination (only 3 classes) is perhaps inappropriate, from a
user perspective. The classified image at this level is presented in Figure 4 (3rd
from left). There are two well-distinguished classes in a large field in the bottom
part of the image. The remaining classes are assigned to smaller fields spread
throughout the image.

Test image IV includes a variety of land covers in the Estuary nearby Aveiro,
Portugal. There are deep and shallow water, sand, vegetation and urban areas.
The plot of E(h) points towards two possible choices: h = 3 or h = 7. The
magnitude of the index is higher for h = 3, but from a user perspective, perhaps
the partition of the data into 7 classes is a more meaningful one. This later choice
is presented in Figure 4 (right).

An additional evaluation of the Xu index adequacy for estimating the number
of classes on a multi-spectral satellite image could be done using ground truth
data. However, this is a difficult task, as the existing land cover maps (COS90)
were produced by air photo interpretation [11]. The land cover maps have much
greater spatial detail and diversity of classes than what can be realistically ex-
pected from a Landsat TM image. A considerable effort in data generalisation in
the existing land cover maps is therefore required in order to make a meaningful
comparison between the two datasets.

5 Conclusions

Unsupervised classification methods have great potential for the classification of
multi-spectral satellite images, as they permit the identification of the classes
that are naturally distinguishable in the data. One of the reasons that justify
the fact that these methods are often neglected for satellite image classification
is the difficulty in assessing the results produced. A number of statistical indices
have been developed and used to assess the classification results [3], but few are
applicable to large data volumes, such as multi-spectral satellite images.

The method tested here starts by clustering the multi-spectral image, using
an unsupervised classification algorithm, into a manageable number of classes.
These are then structured hierarchically, and the Xu internal similarity index is
used to select the ”natural” number of classes from this set of classified images.
The final result is a single classified image, although multiple results at multiple
levels of the hierarchic structure can also be provided. One aspect that should
be taken into account is the fact that the accuracy of the final classified image
selected is limited by the initial clustering. Another aspect is that hierarchical
methods impose hierarchical structuring whether or not such structure actually
exists in the data. The results suggest nevertheless that the method proposed
is effective in achieving a coherent result from the data perspective. The results
also seemed to be reasonable from an end user point of view, as the number of
classes selected were consistent with the diversity of land cover types expected
for each test image.
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Abstract. Generally, the performance of present day computer vision systems is
still very much affected by varying brightness and light source conditions. Re-
cently, Koenderink suggested that this weakness is due to methodical flaws in
low level image processing. As a remedy, he develops a new theory of image
modeling. This paper reports on applying his ideas to the problem of illumination
insensitive face detection. Experimental results will underline that even a simple
and conventional method like principal component analysis can accomplish ro-
bust and reliable face detection in the presence of illumination variation if applied
to curvature features computed in Koenderink’s image space.

1 Motivation and Related Work

In a recent paper on image processing methodology [1], Koenderink fiercely criticized
the common practice to understand digital greyscale images as entities embedded in R3.
He observes that if an image was indeed a set of points (xi, yi, zi)i=1...M ∈ R3 where
the intensity values zi = f(xi, yi) define a surface above the X, Y plane, the geometry
of R3 would allow to rotate this surface about an arbitrary axis. However, such a rotation
might cause intensity values to lie in the image coordinate plane and image coordinates
to be parallel to the intensity direction. Koenderink argues that a structure that allows
for operations leading to physically senseless configurations is not the most reasonable
choice for image modeling. As a more appropriate approach to mathematical image
modeling he proposes a structure which he calls image space I3. The basic idea is to
define I3 as a fiber bundle that locally looks like P2 × L where the base manifold P2

corresponds to the picture plane and the fibers L are logarithmic scales of the intensity.
An analysis of the (differential) geometry of this image space reveals that images in I3

are (by construction) invariant under different brightness transformations.
In this contribution, we explore the merits this model offers for computer vision. The

application domain for our investigation will be illumination insensitive face detection.
Face detection and recognition are arguably among the most popular topics in com-

puter vision and respective publications are almost innumerable. In fact, the field is so
active, it already produced its meta literature (cf. e.g. [2,3,4]). A complete survey of
face detection techniques therfore is far beyond the prospects of this report but we shall
single out a few contributions which are relevant for our discussion.

Since they were first considered by Sirovich and Kirby [5] and popularized by Turk
and Pentland [6], Principal Component Analysis (PCA) based approaches have become

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 456–463, 2005.
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a widespread tool in face detection. Although there are other subspace techniques like
Linear Discriminant Analysis, Independent Component Analysis, or kernelized PCA,
simple PCA is still among the most reliable methods [7,8]. However, its performance
is known to depend on light source conditions. Recent contributions aiming at illumi-
nation invariance hence measure the gradient similarity statistics [9] or combine edge
phase congruency information with local intensity normalization [10]. Others render
eigen-harmonics to recover a standard illumination [11] or use eigen light-fields [12].
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Fig. 1. Gamma transformations of an image and level sets of the
corresponding Gaussian curvature K in I3

Three general trends
become apparent from
this rough survey: i) Gra-
dient information (i.e. in-
formation from the realm
of differential geometry)
is considered to provide
an avenue to illumination
invariance. ii) PCA based
methods prove to be per-
sistent and are now be-
ing applied to more so-
phisticated data than the
mere pixel values of old.
iii) There are attempts
to embed the abstract
concept of face space
into richer mathematical
structures than the usual
vector spaces over the
field of real numbers.

In the following, we
will bring together all
these trends. First, we
will survey differential
geometry in I3 and inves-
tigate the features it pro-
vides for illumination in-
variant face detection. Then, we will discuss how these feature might be put forth into
a PCA based framework. We will address the use of real and complex valued feature
vectors and then shall present experimental results. A conclusion will close this contri-
bution.

2 Curvature Features for Face Detection

As a first step towards a more proper mathematical model for image processing, Koen-
derink examines the most suitable scale for the intensity dimension. Given that the
photon count on a CCD chip is Poisson distributed and assuming observations based on
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different time scales, he shows that a time independent estimation of the Poisson para-
meter λ leads to a uniform distribution on the log-intensity scale. As a consequence, he
proposes to use Z(x, y) = log(z(x, y)/z0) for the intensity dimension where z0 is an
arbitrary unit of intensity. Points in I3 are thus specified by coordinates {x, y,Z}.

Since his primary concern is a space where the intensity domain and the image plane
cannot interfere, Koenderink lists geometric constraints for I3. The resulting group of
possible transformations is the group of direct isotropic similarities. Since these do not
affect relations among a set of parallel 3D lines, they do not affect the curvature of
surfaces in I3. Moreover, as the geometry of I3 comes along with a degenerate metric,
Gaussian curvature and Mean curvature of surfaces are given by notably simple expres-
sions. In contrast to the lengthy formulas known from Euclidean geometry they simply
correspond to

K(x, y) = ZxxZyy − Z2
xy and H(x, y) =

Zxx + Zyy

2
. (1)

where Zxx = ∂2Z/∂x2, Zyy = ∂2Z/∂y2, and Zxy = ∂2Z/∂x∂y.
Using the example of Gaussian curvature K , Fig. 1 underlines that image intensity

transformations barely affect surfaces in I3. In the figure’s top row, we see an image
whose intensity was subjected to the gamma-transformations that are indicated in the
bottom row of the figure. The middle row shows a level set representation of the cor-
responding Gaussian curvature where bright spots indicate points of high curvature.
Obviously, K remains nearly constant across the different transformations.

Using curvature features derived in the fiber bundle I3 to tackle illumination in-
variant face detection is thus a tempting idea. In fact, curvature has been used in face
recognition before. In [13], a system is presented that combines curvature maps with
results from PCA based eye detection in order to improve facial part detection. And
[14] reports on using local principal curvature to register 2D face images with 3D mod-
els. However, given the ease and success of PCA in face detection and recognition, it
is surprising that there are yet no contributions that apply curvature features instead of
intensity information to compute eigenfaces.

Extending PCA to curvature features is of course straightforward. Given an input
image I(x, y), we can compute the curvature maps K(x, y) and H(x, y). Like in the
intensity approach, patches of m pixels can be represented as objects in Rm, i.e. as
vectors k and h, respectively. Therefore, given a set of n patches representing faces
stored in a m× n data matrix A, eigen curvature faces can be computed.

In contrast to the intensity based approach, however, curvature based face detection
offers a choice of two feature vectors for every pixel. The question is thus if and how
to combine Mean and Gaussian curvature? The intuitive approach is to consider the
direct sum k ⊕ h ∈ R2m. However, dealing with PCA and a set of n examples where
n � m, we note that even if the data matrix A is a 2m × n matrix, the matrix AT A
used to compute eigenvectors will remain n× n. Hence, doubling the dimension of the
data vectors will still result in a maximum of n eigenvectors. Moreover, with AK =
[k1,k2, . . . ,kn] and AH = [h1,h2, . . . ,hn] denoting the original data matrices and
A = AK⊕H denoting the one resulting from the embedding in R2m, we will have

AT A =
[
AT

KAT
H

] [AK

AH

]
= AT

KAK + AT
HAH (2)
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I.e. up to this point the embedding in R2m yields a mere additive connection of the
information contained in the vectors ki and hi where i ∈ {1, . . . ,n}. Of course, the
characteristic polynomial in the next step of the computation of eigenvectors introduces
products and nonlinearity. But nevertheless, it seems worthwhile to consider a more
complex entanglement of the two feature spaces.

A more complex entanglement is indeed possible if we consider the embedding
c = k + ih ∈ Cm. Since the new data matrix C is composed of complex vectors,
the standard approach to computing its eigenvectors requires multiplication with the
conjugate transpose C†. And as(

C†C
)
ij

= c∗i cj =
∑

l

kil
kjl

+ hil
hjl

+ i(kil
hjl
− hil

kjl
) (3)

we see that for an embedding in Cm mixed terms already appear before characteristic
polynomials are computed. Note that since C†C is a Hermitian matrix, its eigenvalues
will be real but its eigenvectors will be complex.

3 Experiments

The utility of the above features and feature combinations for illumination insensitive
face detection was evaluated by means of different experiments. This section summa-
rizes our findings concerning the following six feature spaces

– Im, the common m dimensional intensity space
– Qm, the corresponding intensity space after histogram equalization (often done in

the literature to compensate for illumination variation)
– Km, the Gaussian curvature space resulting from computations in I3

– Hm, the corresponding Mean curvature space
– Km

⊕
Hm, the 2m dimensional space combining Gaussian- and Mean curvature

– Km + iHm, the m dimensional complex space combining the curvature features

All experiments reported below were based on the same small training set of n = 34
images (note that recent approaches based on intensity cues require several thousand
training images to cope with lighting variations [3]). The gallery was retrieved from
the Internet [15] and shows 27 male and 7 female faces, eleven people are wearing
glasses, one person is bearded, 33 subjects are of Caucasian ancestry and one is Asian.
All images show frontal views of faces recorded under ambient daylight.

In order to obtain accurate curvature images K(x, y) and H(x, y) all necessary
derivations were computed using precise recursive Gaussian filtering [16]. Training data
resulted from cropping 80 × 80 windows (i.e. m = 6400) centered at the nose. After
vectorization, the data were normalized to unit length and zero mean. Eigenfaces were
obtained from a singular value decomposition of the (complex) data matrices. For each
of the considered features, the projection of image patches into the corresponding face
space was done using the eigenvectors corresponding to the eight largest eigenvalues.

The quality of a face detector was assessed by means of the distance between the
pixel where it yielded the highest response and the pixel where it should have occurred.
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i q k h k ⊕ h k + ih

Fig. 2. Face detection examples under some of the artificial brightness distortions from our first
series of experiments. Combined curvature features are most reliable in the case shown here.

To provide ground truth, the locations of the noses were labeled manually for all images
in our test sets. Dividing the measured distance by the maximum possible distance to the
nose yields the deviation δ ∈ [0, 1] to which we will refer for the rest of this discussion.

3.1 Semi Synthetic Data

The basis of our first test was formed by a set of 17 face images recorded under the same
conditions as the training set. These images show 10 male and 7 female subjects; 6 of
them are wearing glasses, 3 are bearded, one is of Asian ancestry the rest are Caucasian.
Each test image was subject to 17 different intensity transformations, yielding a set of
289 face images. Examples of some of the distortions can be seen in Fig. 2.

Table 1(a)shows that (combined) curvature features perform better than the inten-
sity based ones. The table summarizes the statistics gathered from the whole test set of
289 images. The first row lists the mean deviations μ(δ) resulting from the tested fea-
tures. The direct sum of curvatures has a one percent lead on the complex combination
but face detection using only Mean curvature also performs well. Pure intensity based
eigenfaces cannot compete given the kind of distortions in our test set. Eigenfaces from
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Table 1. Experimental results: mean (μ) and median (m) deviation in face detection (less is better)

i q k h k ⊕ h k + ih

μ(δ) 0.51 0.25 0.29 0.20 0.17 0.18
σ2(δ) 0.14 0.08 0.06 0.04 0.05 0.04
m(δ) 0.52 0.06 0.33 0.04 0.04 0.05

(a) semi synthetic data

i q k h k ⊕ h k + ih

μ(δ) 0.72 0.29 0.16 0.14 0.09 0.13
σ2(δ) 0.07 0.15 0.03 0.03 0.02 0.02
m(δ) 0.83 0.03 0.05 0.03 0.02 0.08

(b) real data

Fig. 3. Exemplary performance of the k ⊕ h feature under different lighting conditions
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Fig. 4. Distributions of the deviation δ found in experiments with the AR face database

equalized intensity patches yield much better results but are outperformed by three out
of four curvature based approaches. As Fig. 2 indicates, the precision in face detection
may vary between the considered distortions. Since this behavior is also to be observed
across different subjects, the mean might not be the most significant measure to charac-
terize the overall performance of the tested detectors. In the lower most row, Tab. 1(a)
thus lists the median deviations m(δ); they endorse our findings.

3.2 Real Data

In a second series of tests, we experimented with the AR face database [8] whose im-
ages show frontal view faces with different facial expressions under different lighting
conditions (see Fig. 3). Again, (after scaling the images by 0.45 so that their size com-
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Fig. 5. The largest 10 local maxima in the k⊕h face response map for an image of extreme light-
ing conditions. Considering the size of the middle face, the corresponding response admittedly
seems arbitrary. The other detection results, however, confirm our systematic experiments.

plied with our training set), the nose was labeled manually and the deviation δ was
measured to assess our approach.

Table 1(b) summarizes our findings. Again, face detection by PCA of k⊕h vectors
performs best; its mean deviation from the expected response location and the cor-
responding variance but also the median m(δ) are the smallest of all tested features.
Figure 3 displays examples that illustrate this performance.

The plots of the distributions of the different deviations in Fig. 4 enable a more de-
tailed analysis of the results. They document the complete breakdown of intensity based
face detection and show sharp peaks in the vicinity of δ = 0 for the histogram equal-
ized intensity q, the Mean curvature h as well as for the k⊕h feature. However, while
the equalized intensity based approach also yields a notable number of responses for
δ ∈ [0.5, 1.0], this is not quite as much the case for Mean curvature based face detec-
tion and even less so for the direct sum combination of Gaussian and Mean curvature.
This observation is also reflected in the true positive and false positive classification
rates we measured. Considering a 30 pixels radius around the manually labeled opti-
mal response location acceptable, PCA on vectors q yields a percentage of 67% true
positives and 33% false positives on the AR face database. For PCA on h and k ⊕ h
features, we obtained 75% vs. 25% and 80% vs. 20%, respectively.

3.3 Discussion

Given the fact that all our results were obtained using an approach as simple as PCA
trained on a small set of images of faces under ambient daylight, the above findings
are remarkable. Curvature maps computed in I3 definitely provide a promising avenue
to illumination insensitive face detection. Not only are these features able to cope with
severe artificial illumination distortions but also perform well when applied to images
taken under considerably different environmental lighting. Moreover, informal tests on
images like the one shown in Fig. 5 revealed that even rather extreme conditions can be
dealt with.

Concerning the different types of curvatures features or feature combinations that
have been tested, the result is clear. Combining Gaussian and Mean curvature feature
vectors in a direct sum yielded the best results in all our experiments. Appearance based
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face detection using the k ⊕ h feature produced useful and reliable results that hardly
deviated from manually labeled locations.

4 Conclusion

In this paper, we tested Koenderink’s proposal for a new image modeling paradigm. His
idea to use a different geometric model than the physically incorrect Euclidean vector
space R3 results in a representation of images that is invariant against several brightness
transformations. Moreover, due to its degenerate metric this space comes along with
remarkably simple expressions for features like Gaussian or Mean curvature.

Applying this idea to the problem of illumination insensitive face detection shows
that curvature features computed in I3 indeed provide an auspicious but simple solution.
Even an off the shelve appearance based method as simple as PCA does not require
complex preprocessing or sophisticated tweaking to produce robust and reliable results
under a wide range of lighting variations.
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Abstract. The goal of the skeletal shape extraction algorithm presented in this 
paper was to obtain a concise and robust description of planar shapes for object 
recognition and subsequent region segmentation. The solution of this problem is 
proposed in the form of a piecewise-linear skeletal representation of planar 
shapes, which is a very economical shape description, resistant to distortions 
and intensity changes. A vertex growing procedure – similar to that of pixel-by-
pixel region growing – have been developed to obtain rapidly piecewise linear 
skeletons of gray-scale object regions without their segmentation. 
Simultaneously, the complete planar shape of the objects of interest is extracted 
by a locally-adaptive binarization performed locally at the skeleton vertex areas. 
The vertex extraction is implemented using a visual attention operator, which 
can measure the saliency level of image fragments and select vertices at the 
local maxima of this operator.  

1   Introduction 

Appearance-based solutions of many computer vision tasks rely mostly on object 
planar shape extraction and analysis. Object planar shape – also considered as an 
object support region on the image plane – is stable with respect to various changes of 
intensity and lighting conditions and can be made invariant to geometrical 
transformations of scaling and rotation. Concise, adequate, and stable to distortions  
representation of the object shape is essential because most object recognition 
algorithms are implemented as procedures for shape feature extraction and 
comparison with a reference shape [1, 2]. The approach based on shape skeletons is, 
in this context, efficient since it can represent in a very concise manner the topology 
of an object with several connected parts and shape details [3-6]. Such a description 
permits the complete morphological reconstruction of the planar shape provided local 
scale values (i.e., diameter values) are available in each skeleton point. The well-
known contour-based representation as an alternative to the skeletal representation is 
less robust and requires a longer descriptive length on the average compared to the 
skeletal representation.  

The classical skeletonization algorithms such as those based on an iterative 
(morphological) thinning and distance transformation extract complete shape 
skeletons but they are not robust to various shape distortions and noise [3, 4]. These 
methods are usually limited to process binary images only. Some multi-scale 
algorithmic generalizations to gray-scale image analysis are also proposed [5-7].  
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Their performance strongly depends on the knowledge of some additional parameters, 
which are sensitive to distortions and irregularities. Complete skeletal shape is usually 
redundant to describe shape in the majority of object recognition applications [1, 2]. 
More recently, several methods were developed to describe skeletal shapes in a 
piecewise-linear manner by skeleton vertices and their connections in the form of 
straight-line segments [8-10].  This is a very concise (although not precise) 
representation of skeletal shapes without using classical skeletonization algorithms. 
For example, a statistical method of principal curves was used to extract directly the 
skeletal description of point sets [8]. In their initial form the algorithms for drawing 
principal curves using piecewise-linear approximation are limited to simple curves or 
manifolds, and requires initial positioning of the skeleton vertices. Another piecewise-
linear skeletonization algorithm involves unsupervised neural network methods, such 
as self-organizing maps [9]. The shape skeleton can be obtained from a data-driven 
minimal spanning tree topology of a self-organizing map. The method deteriorates 
significantly if the regions contain components of various local sizes. Another method 
for shape description uses local skeletal features in a limited number of salient 
locations [10]. 

In this paper, we present a novel algorithm to obtain a skeletal object description in 
gray-scale images and to execute adaptive binarization in the neighborhood of the 
skeleton vertices. The development of this shape extraction and segmentation method 
has the following objectives.  

• Piecewise linear skeletal shape description is obtained directly from gray-
scale images without intermediate image binarization.  

• There is a possibility to obtain easily the complete planar shape (region of 
support) based on the extracted piecewise linear skeleton.  

• The shape description has to be invariant to geometrical transformations such 
as translation, scaling, and rotation. 

• The method has to be robust with respect to variable contrast, noise, and 
some local distortions (occlusions). 

The underlying idea to extract vertices of piecewise-linear skeletons consists in 
using a visual attention operator, called multi-scale image relevance function (IRF), 
which takes its local salient maxima at the centers of the object of interest and its 
salient shape parts. Visual attention operators proved to be a time-effective solution to 
object localization problems since they allow focusing image analysis only on a few 
particular regions of interest containing potential objects of interest [11,12].  Such an 
attention operator, which is defined in the form of a multi-scale non-linear matched 
filter, was proposed earlier to extract local shape features for object description [10]. 
However, the previous algorithm is working well only on gray-scale images 
containing local shapes with high object-to-background contrast.   

The current algorithm of skeletal shape extraction in based on an improved, 
contrast-invariant version of the IRF and sequential extraction of skeleton vertices. 
The piecewise-linear skeletonization is implemented as a vertex-growing algorithm, 
which allows to increase the sensitivity in low-contrast and noisy areas of local 
shapes. Finally, an adaptive binarization scheme is involved for the complete  (pixel-
by-pixel) shape extraction in the vertex neighbourhoods. Since the shape extraction 
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algorithm is based of a morphological growing model, the description of this model is 
introduced first. 

2   Morphological Modeling of Object Planar Shapes 

In the current framework for shape description, an object planar shape is considered 
separately and independently from object intensity features. Such a separate treatment 
has certain advantages over the extraction of integrated shape features as descriptors 
of the image intensity surfaces because of the achieved invariance to transformation 
of translation, scaling and rotation and stability to some intensity changes and lighting 
conditions. Additionally, a few intensity and texture features can be used for object 
intensity description to represent intensity variations as a texture, especially in the 
case of large sizes of object support regions.  

For the purpose of multi-scale shape modeling and extraction, a formal definition 
of a scale system is used [1]: a structuring element at scale n of a uniform scales 
system is formed by the morphological dilation (denoted by ⊕), 01 SSS nn ⊕= − , n=1, 

2,...,M, where (M+1) is the total number of scales and the initial structuring element 
S0 defines the minimal scale and object resolution. The structuring elements have the 
same shape such as the disk shape (see example in Fig. 1a). 

(a)  (b)
Local scale, rl

Local
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center, vl
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Fig. 1. Object shape and intensity modeling: (a) an example of the elementary cell used in the 
morphological shape modeling; (b) cross-section of the intensity model 

Instead of using complete shape skeletons, a morphological piecewise-linear 
growing modeling is proposed. It includes, besides the structuring elements, an 
elementary cell model composed of two skeleton vertices, vl

0 and vl
k , connected by a 

straight line segment Gl,k  The growth of the elementary cell along the straight line 
segment Gl,k can morphologically  be described as follows (Fig. 1a) [1]:  
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where ⊕ denotes the morphological dilation, )( lm vS  is a structuring element with 

variable size (radius rm) as a function of point on the discrete straight line, vl∈Gl,k. The 
value of  rm is a linear combination of the scale sizes r0 and rk at terminal vertices vl

0 

and vl
k: 
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where d(.,.) is the Euclidean distance between two skeleton vertices on the image 
plane. A seed structuring element, S(vl

0), is first generated and centered at a given 
image skeleton vertex (seed point) vl

0.  A ring region D(vl
0)  around S(vl

0) is 
determined and the second vertex is positioned within this ring. This determines the 
first elementary cell related to the current skeleton vertex. Given a vertex topological 
order K – the largest possible number of skeleton segments – next k vertices, 
k=0,…,K-1, and elementary cells can be generated similarly within the region D(vl

0). 
All the elementary cells have common center vertex vl

0. In fact, the union of k 
elementary cells represents the object local planar shape at lth location. This 
procedure is applied recursively to all the vertices considering them as seed vertices.  

This shape model is associated with an intensity model of the image fragment 
centered at vl

0.  The intensity modeling involves two dominant intensity levels, a 
smoothing linear filter, and additive noise model, which can also represent a textured 
intensity in order to describe image intensity locally and concisely (see Fig. 1b).  

         
(a)  (b)  (c) 

Fig. 2. Examples of salient image locations and extraction of skeleton vertices 

3   Localization of Skeleton Vertices 

Localization of piecewise-linear skeleton vertices is based on a fast computation of 
the multi-scale IRF and determination of its local salient maxima. The IRF is defined 
generically as a visual attention operator, which takes local maximal values at centers 
of salient image fragments containing objects of interest. At certain model-based 
conditions, the IRF maxima are positioned on object medial axes or at the centers of 
its shape parts, which are relevant to shape description (see Fig. 2). In order to address 
the aforementioned problems of skeletal shape extraction for object recognition and 
segmentation it is suggested to apply an improved version of a model-based IRF 
previously described in [10]. The positions of local maxima of the multi-scale IRF 
coincide with salient object locations in a region of interest A: 

{ }lm
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∈

),(],),,([(maxmaxarg),,(
),(

,               (3.1) 

where g(i,j) is the input gray-scale image, Φ[g(i,j),Sm] is a non-linear matched filter at 
mth scale, and (if,jf)l are two coordinates of lth maximum, ρf  is the scale value at the 
maximum point. The region Γl⊂A corresponds to the masking region, which excludes 
determined maximum points from further analysis.  
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Four basic conditions are considered in the explicit expression for Φ(g(i,j),Sm): 1) 
significant local contrast; 2) local shape symmetry; 3) local homogeneity of intensity; 
4) specific scale range. The first condition is described by the absolute value for the 
local object-to-background contrast.  The local homogeneity condition means that the 
intensity variance is relatively small in the object region. The intensity range means 
specific values for the object intensity in order to distinguish it from the background 
or other objects. The function expression for Φ(g(i,j),Sm) is obtained in the form of 
three saliency terms which evaluate the four basic saliency conditions in the image 
location (i,j) [10]. 

The multi-scale IRF disclosed previously involves the shape symmetry condition 
only indirectly using circular symmetrical regions for the contrast estimation [10]. 
However, it is contrast sensitive and cannot work properly when extracting skeleton 
vertices of  relatively low-contrast local shapes. Consequently, an explicit shape 
symmetry term is introduced, which evaluates the level of shape symmetry separately 
from the contrast estimate.  The introduced shape symmetry term is computationally a 
matching distance between the current shape and a disk-shaped region centered at the 
same point and having the same scale.  

Determination of each local maximum of the multi-scale IRF is immediately 
followed by the local scale estimation. The local scale is crucial to the skeletal shape 
extraction since it determines the object local size hence the object region around the 
current salient location. A so-called saliency hypothesis is tested first in each local 
maximum point: whether to accept the point (if,jf) or not as the next skeleton  
vertex [10].  

    
             (a)                       (b)                 (c)        (d) 

Fig. 3. Illustrative example of IRF calculation (b), piecewise-linear skeleton extraction (c) and 
complete shape determination (d) using medium scale range of the IRF. Found salient maxima 
and local scales are superimposed on the initial image in (a). 

4   Piecewise-Linear Skeletonization by the Vertex Growing 
Algorithm 

The extraction of skeletal shape features relies mostly on the intermediate results of 
IRF computation, (Eq. 3.1), and is computationally insignificant as compared to the 
computation of the multi-scale IRF. The proposed IRF approach provides at the same 
time a simple method to trace consecutively skeleton vertices in order to obtain a 
piecewise-linear skeletal representation of planar  shapes. This can be done by 
analysing consecutive K maxima of the IRF next to a given salient location vl

0, where 
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K is the maximal topological order of vertices. Such a procedure determines K local 
skeleton vertices {vl

k , k=1,…,K}, which all are connected to the current (non-
terminal) vertex vl

0 according to the morphological model in Section 2. Given a 
neighborhood region B(vl

0) around the vertex vl
0, the algorithm for the skeletal shape 

extraction starts from a seed vertex (l=0) and puts all extracted vertices into a non-
terminal vertex stack. 

Step 0. Find first (absolute) maximum of the IRF in the whole image plane and 
set it as the seed vertex with number l=0 and local vertex number k=0. 

Step 1. Determine the location vl
k of the kth local maximum of IRF in the 

neighborhood region B(vl
0), which does not include all (k-1) previous IRF maxima. 

Step 2.  Test the saliency hypothesis with respect to kth local maximum. If the 
testing outcome is positive then go to Step 3, otherwise go to Step 4. 

Step 3. Mask the neighborhood region of vertex vl
k.   If k<K then k<-k+1 and go 

to Step 1, otherwise go to Step 4. 
Step 4. Find in the stack of non-terminal vertices the first non-terminal vertex 

having number l.  If not more untreated vertices then terminate the algorithm, 
otherwise set k=0 and go to Step 1.   

One may observe that the proposed vertex growing algorithm represents at the 
same time a region growing procedure by entire sub-regions corresponding to 
neighbourhoods of newly extracted vertices at the IRF maxima. Moreover, such an 
algorithm builds a minimal spanning tree starting from the seed vertex since each new 
vertex is selected at a time and is located within the ring B(vl

0) with a preset minimal 
distance to the spanning tree under construction [9].   

5   Locally-Adaptive Segmentation of Object Regions 

The piecewise-linear skeletonization algorithm provides only an approximate 
representation of object planar shape since its performance is limited by the range of 
straight-line segments and scales. Consequently, the complete object shape can be 
reconstructed morphologically, but the precision is not as high as it can be requested. 
However, if an object recognition task requires the complete object shape then the 
IRF-based localization provides additionally a reliable object segmentation.  

In object (region) segmentation, only the locally-adaptive threshold can solve the 
problem of intensity changes, variable lighting condition, and noise. Hence the 
proposed object skeletonization algorithm offers an advantage for two segmentation 
cases:  it provides a reliable seed point (i.e., skeleton vertex) for a classical,  pixel-by-
pixel region growing procedure and it contributes to the local threshold determination 
if using a thresholding procedure [13]. As long as the IRF approach exhibits a good 
accuracy of vertex localization it provides a good estimate for the optimal threshold 
value in the current vertex (if,jf). The optimal threshold t(if, jf) for the binarization is 
determined by minimizing the segmentation error (object vs. background) as follows 
[13]: 
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where h
~

 is the estimated local contrast between the object and background 
intensities, γ  is the ratio of prior probabilities for the occurrence of background and 

object points, and 2~σ  is the estimated noise variance. 

6   Experimental Results 

Since the performance of the developed algorithm, especially its localization 
precision, can be tested only with respect to the ground truth data some experiments 
were conducted with synthetic images with a priori known locations of skeleton 
vertices. Particular shape skeletons have been generated and test images with added 
noise have been created based on the underlying intensity model (Section 2). The 
position (two coordinates) and scale values of the skeleton vertices determined by 
salient maxima of the multi-scale IRF have been measured and compared with 
reference values to evaluate the accuracy. An example of synthetic image objects with 
known skeletons is shown in Fig. 3. Deliberately, an object (rectangle) with  a low 
contrast-to-noise ratio was included in order to test the sensitivity of the new IRF 
algorithm. The results of accuracy testing are given in Table 1. The error was 
measured in pixel resolution relatively to the correct values of the skeleton vertices. 
Analysis of these data shows good accuracy and robustness of the proposed approach 
to vertex extraction.  

 
Table 1. Measured accuracy of skeleton vertex extraction versus contrast-to-noise ratio 

Contrast-to-noise 
ratio 

 
2 

 
4 

 
8 

 
16 

 
32 

Localization error 1.3 0.9 0.5 0 0 
Scale error 3.1 1.8 0.2 0.1 0 

The objective of the second kind of experiments was the evaluation of the 
algorithm performance in extracting skeletal shapes in digital angiography (medical 
imaging). The task was to extract piecewise-linear skeletons and complete (binary) 
shape of blood vessels in a specified scale range, i.e., vessel diameters. The proposed 
method was also compared with the skeletonization method using self-organizing 
maps [9] and the algorithm for extracting local shape features using the IRF approach 
[10]. The results obtained by these three different algorithms are shown in Fig. 4. The 
method of piecewise-linear skeletonization using self-organizing maps performed 
worse even when applied to the binary version of the input image and gave visible 
imprecision such as jaggedness of lines. Some shift of the skeleton lines for the object 
medial axes can also be observed. In this algorithm the extracted skeleton vertices are 
connected using the minimal spanning tree algorithm. The algorithm with local shape 
feature also includes the stage of complete shape reconstruction based on the 
mathematical morphology,  Eq.  (2.1) and Eq. (2.2). Results in Fig. 4 shows that the 
new vertex growing algorithm performed better for the skeleton extraction and 
complete shape extraction due to the locally-adaptive thresholding (Section 5). Figure 
4 also contains images of the multi-scale IRF for these two methods. 
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(a)   (b)   (c) 

            
(d)   (e)   (f)   (g) 

 
Fig. 4. Shape extraction of main blood vessels in digital angiography:  (a) input image; (b) 
image of IRF without the use of shape symmetry term; (c) image of IRF with the explicit shape 
symmetry term;  (d) skeletal shape in the selected region of interest using the algorithm of local 
shapes [10]; (e) skeletonization by the algorithm of self-organizing map [9]; (f) skeletonization 
using the proposed algorithm; (g) planar shape extracted by the locally-adaptive thresholding. 

7   Conclusion 

A method for extraction of piecewise-linear skeletons using a visual attention operator 
was developed. It is based on the determination of salient locations by the local 
maxima analysis of a modified version of the multi-scale image relevance function. 
The proposed concise description of local shapes has the following advantages in the 
object recognition context. It permits a robust shape extraction directly from gray-
scale images in the presence of noise and under some local distortions. The complete 
planar shape of the objects of interest is extracted by a locally-adaptive binarization performed 
at the skeleton vertices.  
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Abstract. We have developed a generic ontology of objects, and a knowledge 
base of everyday physical objects.  Objects are represented as assemblies of 
functional features and their spatial relations. Generic shape information of ob-
jects and features is stored using a partial boundary representation.  Form-
function reasoning is applied to deduce geometric shape elements from a fea-
ture’s functions.  We have also developed a generic geometric shape based ob-
ject recognition method which uses many local features. The proposed recogni-
tion method considers the concept of ontology for representation of generic 
functions of objects. And the use of a general shape-function reasoning with 
context understanding enhances the performance of object recognition. 

1   Introduction 

To support a robot’s interaction with a typical human environment requires a ma-
chine-understandable representation of objects, including their shapes, functions, and 
usages.  Object recognition is supported by reasoning from each object’s generic 
shape information. An object may have internal degrees of freedom, which means that 
its appearance and detailed geometry are highly variable, even though it fulfils the 
same function. Hence, many objects which have different shapes and geometry struc-
tures may be commonly known by the same name.  

This condition can make model-based object recognition [1][2] extremely difficult 
because one may require either a classifier with a flexible  boundary,  or  many  dif-
ferent  object models. Thus, for capturing and recognizing the object shape, function-
based approach is introduced in [3]. The function models would capture a broad 
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variation in allowed shape without reference to any specific geometric or structural 
plan. For this reason, function-based models seem to provide better support for “pur-
posive” and “task-oriented” vision. 

Previous research has explored the relationship between form and function for ob-
ject recognition. The Generic Recognition Using Form and Function (GRUFF) system 
[4] represents objects as a set of functional elements (mostly planar surfaces), and 
spatial relations between elements.  It performs generic object recognition by match-
ing functional surfaces in the sensor input data to objects’ definitions. It uses the Ob-
ject Plus Unseen Space (OPUS) method to construct a partial 3D model from image 
and rangefinder data, but this has the drawback of sensitivity to varying image condi-
tions.  

Neumann et al. [5] performs context-based scene interpretation by modeling 
scenes as aggregates, where an aggregate is a set of entities and their spatial and tem-
poral relations.  They represent aggregates of scenes in description logic (DL), and 
match input models to scene definitions using the RACER DL reasoner [6]. However, 
their scene interpretation capability is beyond the current state-of-the-art in descrip-
tion logics, because a complete representation of the relations between entities ex-
ceeds the allowed expressiveness of RACER’s DL.  

2   Object Ontology 

We adopt the ontology formalism in developing a generic ontology of objects.  We 
use the standard OWL web ontology language, and the de facto standard Protégé 
ontology editor with OWL plugin [7].  Using this ontology, we have instantiated a 
knowledge base of ~300 objects for a typical indoor environment. 

A. Representation of objects 
Manufactured objects are typically assembled from multiple components, where 

each component contributes some specific functionality.  Reflecting this, we adopt a 
hierarchical feature-based representation. An object is decomposed into a set of fea-
tures and their spatial relationships, where a feature is a functionally significant subset 
of an object or another feature.  Features are characterized by the functions they pro-
vide.  Each feature can be further decomposed into more features. 

B. Spatial relations 
We define several spatial relations that frequently occur in everyday objects.  For 

each spatial relation, we provide a definition that can be implemented as a (geometric) 
algorithm.  For example, the above(A, B) relation is defined as: A is above B iff A’s 
highest point is higher than B’s highest point (with respect to the gravity direction), 
and A’s lowest point is not lower than B’s highest point. 

C. Form-function reasoning 
We characterize features using generic functions taken from function-based tax-

onomies for design [8][9].  While a feature is a 3D component, its functional ele-
ments, or organs [10], may correspond to subsets of its 3D shape.   By applying form-
function reasoning, we deduce geometric shape requirements for each functional 
element. 
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For example, a table’s primary function is to limit the downward motion of many 
objects of any shape. The key feature for a table is a counter, which is typically a thin, 
rigid 3D slab.  A counter’s key organ is its top surface.  To contact many objects im-
plies many contact points, from which we deduce a planar surface.  A table should 
also minimize the energy required to translate objects to different positions, which 
implies a horizontal orientation.  Hence, we deduce a shape requirement of a horizon-
tal planar surface for a counter’s top surface. 

D. Geometric shape elements 
We define a qualitative representation of geometric shape elements. A shape ele-

ment has a geometric datum (usually a surface), which represents a generalized por-
tion of a solid’s boundary.  Other constraints on the allowable orientation, curvature, 
and tolerance of a shape element are specified using a phrase structure. 

E. Representation of solids 
A boundary representation (B-rep) is a 3D model that rigorously describes a solid 

by enumerating the topological elements of its boundary, including its faces, edges, 
and vertices. Other solid representations can be converted to B-rep, so a B-rep is a 
good candidate to be a generic solid representation. 

On the other hand, an ontology of objects should also support generic representa-
tions of object families.  This requires a capability to tolerate wide variations in spe-
cific geometry, while capturing the critical geometric relations only. 

We adopt a partial B-rep scheme, in which a subset of a solid’s boundary is fully 
specified, representing the critical geometric and topological relations only. Remain-
ing portions of the boundary are abstracted away. Each solid has a bounding box data 
field, reflecting the principle that all real solid objects are bounded.  Each feature 
class’s shape information is then represented as a partial B-rep with 1 or more geo-
metric shape elements. 

3   Ontology-Based Object Recognition  

A goal of this work is to design a vision-based context understanding system to en-
able a mobile robot to look for an object that it never seen before, in a place of first 
visit, where the object may be partially or completely obscured by other object. Such 
a visual context understanding system usually requires us to recognize place, objects, 
spatial and temporal relations, activities, and intentions. 

In this paper, we describe the 2D object extractor.  This module recognizes objects 
using two approaches. In the model-based approach, SIFT features [11]– [13] and 
edge features are directly matched to pre-computed vision feature-based models of 
objects. In the case that no vision feature models exist for an object, ontology-based 
object recognition proceeds as shown in Fig. 1. 

• Local feature extraction obtains low-level vision feature information such as 
edges, lines, arcs, etc. 

• The object ontology is queried for the object’s feature decomposition and generic 
shape information, which includes geometric shape elements such as surfaces and 
curves, and spatial relations between features and shape elements. 
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• Low-level edge vision features are further processed to obtain mid-level vision 
features, such as rectangles.  These are matched to the geometric shape elements 
to identify a set of candidate object features. 

• For each object in the object ontology, check if all of its required features exist, 
and whether all spatial relations between its features are satisfied.  This groups a 
set of features and spatial relations into a new instance of that object class. 

• Repeat using only the unassigned shape elements in the scene data, until all input 
elements have been assigned to some object. 

 
 

Fig. 1. Ontology-based object recognition scheme 

A simplified subset of the ontology representation of a beam projector object is 
shown in Fig. 2. 
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Fig. 2. Object decomposition of a beam projector (partial) 
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4   Experimental Results  

To test this object recognition scheme, experiments were conducted on two kinds of 
beam projectors with different shapes and orientations, as shown in Fig. 3. First, edge 
information is extracted by using the canny edge detector, and it is further processed 
to generate the low-level image features such as connected line, arc, etc., as shown in 
Fig. 4.  Circular edges are identified as shown in Fig. 5, and these are matched to the 
circular curve geometric shape element for a beam projector’s lens feature.  Simi-
larly, rectangular edges are identified as shown in Fig. 6, and these are matched to the 
rectangular edge shape element for one face of a beam projector.  In addition, the 
encloses spatial relation is checked, which rejects all rectangular edges that do not 
enclose any circular curve.  The result of successful recognition of both beam projec-
tor objects is shown in Fig. 7. 
 

  
(a) Beam Projector-A                     (b) Beam Projector-B 

Fig. 3. Two test images 

 

 

 

 
 

  

Fig. 4. Edge extraction and low-level image features 

  

Fig. 5. Matching the circular curve geometric shape element 
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Fig. 6. Matching the rectangular edge geometric shape elementand the encloses relation 

 

 

 

 

  

Fig. 7. Successful recognition of both beam projectors 
 

The performance of proposed ontology based recognition method is tested by 
comparing the model-based recognition system (Matrox MIL 7.5). As shown in Fig. 8 
to Fig. 10, the several projector images are captured that have different size and orien-
tation. The left images show the results of proposed recognition and the right images 
 

  

Fig. 8. ontology (left) vs. model-based (right) recognition example 

  

Fig. 9. ontology (left) vs. model-based (right) recognition example 
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Fig. 10. ontology (left) vs. model-based (right) recognition example 

Table 1. The comparison of maximum probability of presence of beam projector 
 

Max. Probability Fig. 8. Fig. 9. Fig. 10. 

Model based 24.82% 29.30% 33.17% 

Ontology based 58.33% 60.36% 53.37% 

show the results of Matrox MIL 7.5. The Matrox MIL 7.5 shows the several matched 
results that the probability of recognition results exceeds the certain threshold level. 

Table 1 shows the maximum probability of recognizing projector-B using the 
model-based recognition method and proposed method. In most cases, the proposed 
method shows better results and average performance of recognition result also shows 
better result.  

The receiver operating characteristic (ROC) curves for the beam projector detec-
tors are shown in Fig. 11. More than 60 test sample images are used in this experi-
ment. The result of model-based beam projector detection method with Matrox MIL 
7.5 is shown in Fig. 11-(b). The curve A in this figure shows the projector-A detection 
result with the model of projector-A. The curve B shows the projector-B detection 
result with the model of projector-A. 

The curve A and B of Fig. 11-(a). show the projector-A and projector-B detection 
results with the proposed object recognition scheme. 

 

  
 (a) Proposed detection scheme                        (b) Model-based detection scheme 

Fig. 11. The ROC curve comparison 
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5   Conclusion 

We have developed a new object recognition scheme that combines generic shape 
information extraction and reasoning with function ontology for effective object rec-
ognition. The results of our research show that ontology based object recognition 
concept can be used to create a powerful object recognition scheme. 

As a future work, we will include 3-D features such as surface patches, surface 
normal vectors for enhanced objection performance with more complex objects. 

Acknowledgments 

This work is supported by KIST and Intelligent Robotics Development Program, one 
of the 21st Century Frontier R&D Programs funded by the Korea Ministry of Com-
merce, Industry and Energy.  

References 

1. David A. Forsyth and J. Ponce: Computer Vision: A Modern Approach. in Prentice Hall, 
August, 2002. 

2. R. Chin and C. Dyer: Model-based recognition in robot vision. in ACM Computing Sur-
veys, vol. 18, no. 1, pp. 67-108. 1986. 

3. L. Stark and K. Bowyer: Generic recognition through qualitative reasoning about 3-D 
shape and object function. in Proceedings of IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 251-256. 1991. 

4. Stark, L., and Bowyer, K.: Function-Based Generic Recognition for Multiple Object Cate-
gories. in Computer Vision, Graphics and Image Processing, Vol. 59, No. 1, pp. 1–21, 
Jan. 1994. 

5. Neumann, B., and Möller, R.: On Scene Interpretation with Description Logics. in FBI-B-
257/04 (Technical Report), Fachbereich Informatik, Universität Hamburg, 2004. 

6. Haarslev, V., and Möller, R.: RACER System Description. in Proc. Int’l Joint Conf. on 
Automated Reasoning (IJCAR 2001), LNAI Vol. 2083, Springer, 2001, pp. 701–705. 

7. Protégé, http://protege.stanford.edu. 
8. Kirschman, C. F. and Fadel, G. M.: Classifying Functions for Mechanical Design. in Jour-

nal of Mechanical Design, Vol. 120, pp. 475–482, 1998. 
9. Stone, R. B., and Wood, K. L.: Development of a Functional Basis for Design. in Proc. 

ASME Conf. on Design Theory and Methodology, Las Vegas, 1999. 
10. Haudrum, J.: Creating the Basis for Process Selection in the Design Stage. in Ph.D. Thesis, 

Institute of Manufacturing Engineering, Technical University of Denmark, 1994. 
11. D. Lowe: Distinctive image features from scale-invariant keypoints. in International Jour-

nal of Computer Vision, vol. 60, pp. 91-110, 2004. 
12. S. Se, D. Lowe, and I. Little: Mobile Robot Localization and Mapping with Uncertainty 

using Scale-Invariant Visual Landmarks. in International Journal of Robotics Research, 
vol. 21, pp. 735-758, 2002. 

13. S. Se, D. Lowe, and J. Little: Global localization using distinctive visual features. in Inter-
national Conference on Intelligent Robots and Systems, pp. 226-231, 2002. 



Statistical Object Recognition
Including Color Modeling

Marcin Grzegorzek� and Heinrich Niemann

Chair for Pattern Recognition,
University of Erlangen-Nuremberg,

Martensstr. 3, 91058 Erlangen, Germany
{grzegorz, niemann}@informatik.uni-erlangen.de

Abstract. In this paper an appearance-based statistical approach for lo-
calization and classification of 3-D objects in 2-D color images with real
heterogeneous backgrounds is presented. The object feature extraction
is done separately for the red, green, and blue channel. We compute six
dimensional local feature vectors directly from pixel values in the images
using wavelet multiresolution analysis. The first and second component
of the feature vectors depend on the pixel values in the red channel, the
third and fourth in the green channel, and fifth and sixth in the blue
channel. Then we define an object area as a function of 3-D transforma-
tions and represent the feature vectors as probability density functions.
In the recognition phase we use an algorithm based on maximum like-
lihood estimation for object localization and classification. Experiments
made on a real data set with 39600 images compare the recognition rates
for the new algorithm, which uses the color information of objects, with
the results in the case of gray level images.

1 Introduction

For many tasks the localization and classification of objects in images is very use-
ful, sometimes even necessary. Algorithms for automatic computational object
recognition can be applied for example: to face classification [11], to localization
of obstacles on the road with a camera mounted on a driving car, to service
robotics [13], to handwriting recognition, and so on. There exist two main ap-
proaches for 3-D object recognition: based on results of a segmentation process
[5], or directly on the object appearance [4]. The comparison of them can be
found in [7]. The appearance-based methods compute feature vectors from pixel
values in images without a previous segmentation process [8]. Some of them use
only one global feature vector for the whole image (e.g. eigenspace approach
[3]), others describe objects with more local features (e.g. neural networks [9]).
Many recognition systems do not make use of the color information of objects.
For some applications objects are distinguishable very well in the gray level

� This work was funded by the German Research Foundation (DFG) Graduate Re-
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space, for others the recognition algorithm with color modeling takes too much
time compared to the improvement of the localization and classification rates.
However, one can imagine situations, where two or more objects having totally
different colors seem to look identical in gray level images. Their classification is
very difficult, and it makes sense to use the color information of objects in this
case. For some objects, which have different colors for different views, also the
localization is easier in the color space.

In the present work we introduce the color modeling of objects, but in con-
trast to most approaches (e.g. [1]) we do not use histograms. Six dimensional
local feature vectors are computed directly from pixel values (appearance-based
approach) using wavelet multiresolution analysis [6] and modeled by density
functions [10]. The first and second component of the feature vectors depend on
the pixel values in the red channel, the third and fourth in the green channel, and
fifth and sixth result from pixel values in the blue channel. The main advantage
of the local feature vectors is that a local disturbance only affects the feature
vectors in a small region around it. In contrast to this a global feature vector
can change totally, if only one pixel in the image varies.

In Sect. 2 the training of statistical object models is presented. Beginning
with the computation of the object density value, up to the algorithm for object
localization and classification Sect. 3 describes the whole recognition phase. In
Sect. 4 the recognition rates for the new algorithm with color modeling are
compared with the results in the case of gray level images. Sect. 5 closes our
contribution with conclusions.

2 Statistical Object Model

In order to learn a statistical object model Mκ for an object class Ωκ we take
training images of the object Ωκ in known poses, compute feature vectors in
these images (Sect. 2.1), define an object area (Sect. 2.2), and model the feature
vectors by density functions (Sect. 2.3).

First we define a set of objects Ω = {Ω1, . . . ,Ωκ, . . . ,Ωk} and take training
images of them on a dark background in known poses. The original training im-
ages are preprocessed by resizing them to RGB images sized 2n×2n pixels, where
n ∈ {6, 7, 8, 9}. One image fκ,i for each object class Ωκ is used as a reference
image. By pose of an object in the image fκ,j we denote the 3-D transformation
(translation and rotation) that maps the object in the reference image fκ,i to
the object in fκ,j . The 3-D transformation can be described by a translation
t = (tx, ty, tz)

T and a rotation φ = (φx, φy , φz)
T. The x- and y-axes of the world

coordinate system lie in the image plane, and the z axis is orthographic to the
image plane (Fig. 2). A rotation about the x- and y-axes as well as a translation
along the z-axis (scaling) changes the size and appearance of the object in the
image. These are the so called external transformation parameters (text = tz and
φext = (φx, φy)T). The remaining transformation parameters are called internal
and do not change the object size and appearance. Up to the end of Sect. 2 the
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Fig. 1. Computation of a feature vector on a grid point xm for the scale s = 2. r,
ij are

calculated by horizontal and vertical low pass filtering of rij and resolution reduction
by factor 0.5. The final coefficients result from r,

ij as follows: br - low pass horizontal
and low pass vertical, dr,0 - low pass horizontal and high pass vertical, dr,1 - high pass
horizontal and high pass vertical, dr,2 - high pass horizontal and low pass vertical.

number of the object class κ is omitted, because the training of the statistical
object model is identical for all object classes.

2.1 Feature Vectors

For the feature extraction we divide each preprocessed image f into squares of
size 2s×2s (s ≤ n) pixels, and set in their centers grid points xm. On all of these
2n−s × 2n−s grid points six dimensional local feature vectors with the wavelet
multiresolution analysis [6] are computed:

cm = c(xm) = (cm,r,1, cm,r,2, cm,g,1, cm,g,2, cm,b,1, cm,b,2)
T

. (1)

The choice of the wavelet transformation follows from the experimental results.
The components cm,r,1 and cm,r,2 depend on the pixel values in the red channel,
cm,g,1 and cm,g,2 in the green channel, and cm,b,1 and cm,b,2 in the blue channel.
We explain their computation in detail only for the red channel (cm,r,1, cm,r,2)

T,
because for the other channels as well as for gray level images it is done in
the same way. We perform s-times the wavelet multiresolution analysis for the
red channel values in the local neighborhood of xm (neighborhood size: 2s × 2s

pixels) using Johnston 8-TAB wavelets [2]. The component cm,r,1 of the feature
vector cm is given by:

cm,r,1 = ln |br,s,m| , (2)

and cm,r,2 can be calculated with the equation:

cm,r,2 = ln(|dr,0,s,m|+ |dr,1,s,m|+ |dr,2,s,m|) . (3)

br,s,m is the low pass coefficient and dr,0...2,s,m result from combinations of low
pass and high pass filtering. An illustration of the feature vector computation
for s = 2 can be seen in Fig. 1 (indices m and s are omitted). In Sect. 4.2 we
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compare the results for color and gray level images. In the case of gray level
images two dimensional feature vectors cm = (cm,1, cm,2)

T computed according
to (2) and (3) are used [10].

2.2 Object Area

For the object model we consider only those feature vectors that belong to the
object and not to the background. For each feature vector cm in each exter-
nal training pose (φext,t, text,t) (for each training image) a discrete assignment
function is defined:

ξ̂m(φext,t, text,t) =
{

1, if cm,{r∨g∨b},1(φext,t, text,t) ≥ St

0, otherwise . (4)

St is chosen manually. If for all color channels the first feature vector coefficient
(cm,r,1, cm,g,1, cm,b,1) computed according to (2) is less than St, cm does not
belong to the object. In the test images objects appear not only in the training
poses, but also between them. In order to localize such objects we construct a
continuous assignment function ξm(φext, text) using values of ξ̂m(φext,t, text,t)
by interpolation with trigonometric functions. The set of feature vectors be-
longing to the object for the given external pose (φext, text) (called object area
O(φext, text)) can now be determined with the following rule:

ξm(φext, text) ≥ SO =⇒ cm(φext, text) ∈ O(φext, text) . (5)

The threshold SO is also chosen manually. In the case of internal transformations
the object area does not change the size and can be translated and rotated with
these transformations. So, we can write the object area as a function of all
transformation parameters: O(φ, t).

2.3 Density Functions of the Feature Vectors

All feature vectors computed in the training phase according to (1), (2), and
(3) are interpreted as random variables. The object feature vectors are modeled
with the normal distribution [10]. For each object feature vector we compute a
mean value vector μm and standard deviation vector σm. The density of the
object feature vector can be written as:

p(cm) = p(cm|μm,σm,φ, t) =
∏

i∈{r,g,b}

2∏
j=0

p(cm,i,j |μm,i,j, σm,i,j ,φ, t) . (6)

The feature vectors, which belong to the background are modeled by an uniform
distribution, and their density functions are constant p(cm) = pb.
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3 Localization and Classification

After a corresponding object model Mκ was created for each object class Ωκ,
we can localize and classify objects in test images. At the beginning each test
image is preprocessed and feature vectors are computed according to (1), (2),
and (3) with the same method as in the training phase (Sect. 2.1). Then we start
our localization and classification algorithm based on the maximum likelihood
estimation (Sect. 3.2), which maximizes the object density value (Sect. 3.1).

3.1 Object Density Value

In order to compute the object density value for the class Ωκ in pose (φ, t) for
the given test image f we determine the set of feature vectors that belong to the
object C = {c1, c2, . . . , cM} (object area Oκ(φ, t), Sect. 2.2) according to (5)
and compute their values using equations (1), (2), and (3). Then we compare the
calculated object feature vectors with the corresponding density functions (6)
stored in the object model Mκ and determine density values for these vectors
(p(c1), p(c2), . . . , p(cM )). The density value of object Ωκ in pose (φ, t) for the
given test image f is given by:

p(C|Bκ,φ, t) =
M∏
i=0

max {p(ci), pb} . (7)

Bκ comprehends the trained mean value vectors and standard deviation vectors
from Mκ and pb is the background density value (Sect. 2.3).

3.2 Recognition Algorithm

The localization and classification algorithm is realized with maximum likelihood
estimation [12] and can be described with the following equation:

(κ̂, φ̂, t̂) = argmax
κ

{argmax
(φ,t)

G(p(C|Bκ,φ, t))} . (8)

κ̂ is the classification result and (φ̂, t̂) is the localization result. First the object
density (normalized by G) is maximized according to the pose parameters (φ, t)
and then to the class κ. The norm function G is defined by:

G(p(C|Bκ,φ, t)) = M
√
p(C|Bκ,φ, t) . (9)

M is the number of feature vectors belonging to the object area Oκ(φ, t) (Sect.
3.1). This norm function reduces the dependency between the maximization
result and the object area size.

4 Experiments and Results

We verified our approach on a 3D-REAL-ENV image data base (Sect. 4.1). The
color modeling of objects brings the most profit in very heterogeneous environ-
ments compared to the algorithm for gray level images (Sect. 4.2).
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x

y

z

Fig. 2. 10 object classes used for experiments. In the first row examples of test images
with “more heterogeneous” backgrounds; from left: bank cup, toy fire engine, green
puncher, siemens cup, nizoral bottle. In the second row examples of test images with
“less heterogeneous” backgrounds; from left: toy passenger car, candy box, stapler, toy
truck, white puncher. In the right upper corner the coordinate system for the object
pose definition is shown.

4.1 Image Data Base

3D-REAL-ENV (Image Data Base for 3-D Object Recognition in Real World
Environment) consists of 10 objects depicted in Fig. 2. The experiments were
done using images of size 256 × 256 pixels. The pose of an object is defined
with external rotations and internal translations (φx, φy, tx, ty)T (Fig. 2). For
the training we took 3360 images of each object with two different illuminations.
The objects were put on a turntable (0◦ ≤ φtable < 360◦) and a robot arm with
a camera was moved from horizontal to vertical (0◦ ≤ φarm ≤ 90◦). The angle
between two adjacent training viewpoints amounts to 4.5◦. For the tests 2000
images with homogeneous, 2000 images with “less heterogeneous”, and 2000
with “more heterogeneous” backgrounds were taken. In the test images with
“less heterogeneous” backgrounds the objects are easier to distinguish from the
background than in the scenes with “more heterogeneous” backgrounds. The
object poses and the illumination in the recognition phase are different from the
training viewpoints and illuminations. For the test images with heterogeneous
backgrounds we used more than 200 different backgrounds.

4.2 Localization and Classification Rates

We count a localization result as correct, if the error for the external rota-
tions (φx, φy)T is not larger than 15◦ and the error for the internal translations
(tx, ty)T is not larger than 10 pixels. The feature extraction for the experiments
was made for the scale s = 3 of the wavelet multiresolution analysis (Sect. 2.1).
Fig. 3 presents the recognition rates depending on the distance of the train-
ing views for test images with homogeneous, “less heterogeneous”, and “more
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Fig. 3. Localization and classification rates depending on the distance of the train-
ing views for 2000 test images with homogeneous (first row), 2000 test images with
“less heterogeneous” (second row), and 2000 test images with “more heterogeneous”
backgrounds (third row). (— color images; · · · gray level images).

heterogeneous” backgrounds. Table 1 contains the recognition rates for 4.5◦ dis-
tance of training views. The color modeling brings the most improvement of the
localization and classification rates for test images with “more heterogeneous”
backgrounds. For scenes with homogeneous backgrounds the algorithm for gray
level images works very well, and it is not necessary to use the color informa-
tion of objects. Object localization and classification takes 3.6s in one gray level
image, and 7s in one color image on Pentium 4, 2.66 MHz, 512 MB RAM.

5 Conclusions

In this article a powerful statistical appearance-based approach for 3-D object
recognition in 2-D images with real heterogeneous backgrounds is presented.
After feature extraction, which is done separately for the red, green, and blue
channel, we define an assignment function, which assigns the features to the ob-
ject or to the background, and statistically model them by density functions. In
the recognition phase we use an algorithm based on the maximum likelihood es-
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Table 1. Recognition rates for 4.5◦ distance of training views for 2000 test images with
homogeneous, 2000 with “less heterogeneous”, and 2000 with “more heterogeneous”
backgrounds.

Distance Localization Classification
of Training Hom. Less Het. More Het. Hom. Less Het. More Het.
Views 4.5◦ Back. Back. Back. Back. Back. Back.

Color Images 98.5% 82.2% 77.1% 100% 93.0% 87.3%
Gray Level Images 99.1% 80.9% 69.0% 100% 92.2% 54.1%

timation for localization and classification of objects. Results show that the color
modeling brings a great improvement of the recognition rates in heterogeneous
environments. On the other side we proved that for scenes with homogeneous
backgrounds the use of gray level images is sufficient.

In the future we will try to obtain better recognition rates by transformation
of the RGB images into other color spaces. We will also consider the case of
multi-object scenes with context dependencies.
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Determining Multiscale Image Feature Angles
from Complex Wavelet Phases
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Abstract. In this paper, we introduce a new multiscale representation
for 2-D images named the Inter-Coefficient Product (ICP). The ICP is a
decimated pyramid of complex values based on the Dual-Tree Complex
Wavelet Transform (DT-CWT). The complex phases of its coefficients
correspond to the angles of dominant directional features in their sup-
port regions. As a sparse representation of this information, the ICP is
relatively simple to calculate and is a computationally efficient repre-
sentation for subsequent analysis in computer vision activities or large
data set analysis. Examples of ICP decomposition show its ability to
provide an intuitive representation of multiscale features (such as edges
and ridges). Its potential uses are then discussed.

1 Introduction

Wavelets, once used primarily for compression, have found new uses for image
content analysis. The ability of the wavelet transform to isolate image energy
concisely into spatial, directional, and scalar components have allowed it to char-
acterize the multiscale profile of non-stationary signals, including 2-D images,
very effectively. In particular, complex wavelets have shown a strong ability to
consistently represent object structures in 2-D images for object recognition and
computer vision activities.

In this paper, we explore methods of building upon the phase information
of complex wavelets to yield intuitive image representations. To date, complex
wavelet magnitudes have typically been used in place of real wavelets to improve
the consistency of segmentation, denoising, etc. However, phase information,
which indicates the offset of directional features within the support region of
a wavelet coefficient, has found less application to date in analysis and coding
applications (although stereo matching and motion estimation are two exam-
ples of its use). Recently, in [3], Romberg et al. have described a probabilistic
model, the Geometric Hidden Markov Tree (GHMT), which uses phase as well
as magnitude information to infer the angle and offset of contour segments in
the vicinity of a complex wavelet coefficient. In this paper, we introduce a faster
method to calculate the angle of directional energy in the vicinity of a coefficient.
This method, which we have named the Inter-Coefficient Product (ICP), may
� This work has been carried out with the support of the UK Data & Information

Fusion Defence Technology Centre.
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find use in large-scale image analysis or real-time computer vision, where compu-
tational complexity must be minimized. We introduce the ICP as a complement
to another phase-based transform, the Interlevel Product (ILP) [1]. Upon de-
scribing the background of complex wavelets (section 2), we will develop the
ICP transform in section 3 and show example ICP decompositions in section 4.
We conclude in section 5 with a discussion of potential uses of the ICP and its
relationship to the DT-CWT and the ILP.

2 The Dual-Tree Complex Wavelet Transform

Standard real wavelets, such as the Haar and Daubechies wavelets, suffer from
shift dependence. Shift dependence implies that the decomposition of image en-
ergy between levels of a multiscalar decomposition can vary significantly, if the
original image is shifted prior to decomposition. This variation limits the effec-
tiveness of the real wavelet transform to consistently represent an image object
at multiple scales.

Complex wavelets, including the linearly-separable Dual-Tree Complex
Wavelet [2] have been created to address the problems of shift dependence. A
complex wavelet is a set of two real wavelets with a 90◦ phase difference. For
2-D image analysis, the DT-CWT produces d = 1 . . . 6 directional subbands at
approximately π

10 , π
4 , 2π

5 , 3π
5 , 3π

4 , and 9π
10 (for convenience, these subbands are

often labelled with equally-spaced angles of 15◦, 45◦, 75◦, 105◦, 135◦, and 165◦

respectively). The impulse responses in each of these subbands are shown in fig-
ure 1. We note that the magnitude responses of each these subbands can be used
to infer feature orientations. However, the lack of precision in these methods is
the primary motivation for us to seek a superior representations through the use
of complex phase information.

Figure 2 shows both the phase (fig. 2a) and magnitude (fig. 2b) responses
of a DT-CWT coefficient to a shifting step response in 1-D. In particular, we

DT CWT real part

DT CWT imaginary part

π/10 π/4 2π/5 3π/5 3π/4 9π/10

Fig. 1. The real and imaginary impulse responses of the DT-CWT for each of the six
subbands
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a) The complex phase of a decimated level 3
DT-CWT coefficient (located at the central
dotted line), in the presence of a step edge
at all possible offsets (the x axis). Note that
when an edge or ridge occurs anywhere be-
tween the coefficient and its immediate neigh-
bours (shown as the vertical dashed lines),
the phase response is linear. This linearity
will be used to infer the offset of the edge, rel-
ative to the coefficient location, at this scale.
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b) The magnitude response of the same DT-
CWT coefficient under the same conditions.
The overall magnitude is calculated from real
and imaginary components, as shown.

Fig. 2. Illustration in the 1-D case of the behaviour of the phase and magnitude of
a DT-CWT coefficient (level 3, in this case) in the presence of a step edge, at the
indicated x coordinate, relative to the coefficient

observe that this phase response is consistently linear with respect to the feature
offset, in the vicinity of the wavelet coefficient. If we define DW as the distance
between adjacent coefficients, as indicated by the vertical lines in figure 2a, then
we have experimentally determined the relationship between coefficient phase
and feature offset to be −4.49/DW radians per unit length. With this ratio,
we can convert DT-CWT phase to a spatial offset of an edge or impulse, or
vice-versa.

In the 2-D case, the phase and magnitude relationships described above apply
to edges and ridges oriented in the direction of the subband. The ratios for 2-D
subbands differ from the 1-D example; for subbands 1, 3, 4, and 6, the ratio is
−4.49/

(
DW cos π

10

)
or −4.72/DW radians per unit length. For subbands 2 and

5, the ratio is −4.49/
(
DW cos π

4

)
or −6.35/DW radians per unit length. for these

2-D cases, the subband offset of a feature is defined in the direction normal to
the subband, as shown in figure 3.

3 The Inter-coefficient Product

In this section, we introduce the Inter-Coefficient Product (ICP). We begin in
sections 3.1 and 3.2 by showing how the orientation of a 2-D feature (such as
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d
A = S
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π/10A
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dge

Subband Direction

Fig. 3. Definition of the subband offset dA in the 2-D case between a coefficient
location A and a step edge

an edge or ridge) can be determined from the phase difference of two adjacent
DT-CWT coefficients. This derivation leads us naturally to the definition of the
ICP in section 3.3.

3.1 Determination of Feature Orientation from Neighbour
Coefficients

Consider Figure 4, which shows a feature (a step edge, in this case) that spans the
support regions of two horizontally adjacent DT-CWT coefficients at locations
A = (x, y) and B = (x + 1, y), at some arbitrary level. This figure illustrates
the trigonometric relationship between the angle of the feature and its subband
offsets with respect to these coefficients.

αθ1

π/10

d
BD

w
 sin π/10 d

A

d
A
- dB- Dw sin π/10 

π/10

D
wA

d
B

Step EdgeSubband Direction

Dw
 cos π/10 

B

Fig. 4. Trigonometric relationship between the angle θ1 = α + π
10

of a feature (step
edge, in this case) and its subband offsets dA and dB to two horizontally adjacent π

10

subband DT-CWT coefficients located at A=(x, y) and B=(x + 1, y)

As this step edge is closest to the d = 1, π
10 subband, the DT-CWT coefficients

Wl(x, y, 1) and Wl(x+1, y, 1) will correspondingly have large magnitudes in this
subband only. From figure 4, we can see that the angle of the feature, θ1, can be
calculated as
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θ1 =
π

10
+ α =

π

10
+ tan−1 dA − dB −Dw sin π

10

Dw cos π
10

(1)

where dA and dB are the subband offsets of the edge to the two coefficients
as defined in figure 3, using subband 1. These two offset lengths are equal to
DW

4.72
� Wl(x, y, 1) and DW

4.72
� Wl(x + 1, y, 1) respectively1, according to our phase/

offset relationships described at the end of section 2. Thus, we can rewrite Equa-
tion (1) as

θ1 =
π

10
+ tan−1

DW

4.72
� Wl(x, y, 1)− DW

4.72
� Wl(x+1, y, 1)−Dw sin π

10

Dw cos π
10

=
π

10
+ tan−1

[ � Wl(x, y, 1)− � Wl(x + 1, y, 1)
4.72 cos π

10
− tan

π

10

]
(2)

We note that for −π
5 < α < π

5 , which is the approximate range of feature
angles that will contribute to an individual subband, we can assume that α ≈
tan α. Applying this approximation twice to Equation (2), we can simplify this
expression to

θ1 =
π

10
+

� Wl(x, y, 1)− � Wl(x + 1, y, 1)
4.72 cos π

10
− π

10
(3)

⇒ θ1 =
1

4.49
[� Wl(x, y, 1)− � Wl(x + 1, y, 1)] (4)

Thus, for subband 1, we merely divide the phase difference between two horizon-
tally adjacent DT-CWT coefficients by 4.49 to obtain the angle of the dominant
feature in their vicinity.

3.2 Feature Orientation Calculations for All Subbands

In the previous section example, we considered the π
10 subband (d = 1) given

the orientation of our particular example of step edge. In the general case, to
detect a feature at any orientation, the same type of calculation is achieved for
all six subbands based on phase difference between appropriate neighbour DT-
CWT coefficients: we compare horizontal neighbours for the π

10 and 9π
10 subbands

(d = 1, 6), vertical neighbours for the 2π
5 and 3π

5 subbands (d = 3, 4), and
diagonal neighbours for the π

4 and 3π
4 subbands (d = 2, 5). Thus six orientation

angles are calculated θ1, ..., θ6, one for each subband. We have already determined
θ1 (see Equation (4)).

By symmetry, the geometric relationship in the π
10 subband d = 1 can be

equally applied to subbands d=3, 4, and 6, where feature angles in subbands 3
and 4 are measured relative to the vertical axis. For these two subbands, there-
fore, we would therefore modify equation (4) to add π

2 to the angle. However,
in the π

4 ,
3π
4 subbands 2 and 5, the Wl values possess a different relationship

with the angles of dominant features with two diagonally adjacent coefficients.
1 We denote the phase argument of a complex number c as � c = arg(c).
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Using subband 2, the angle of the feature is related to coefficient offsets by the
following simpler equation:

θ2 =
π

4
+ tan−1 dA − dB√

2Dw

(5)

Performing the same substitutions, assumptions, and simplifications as with
our previous example, we establish the linear relationship between θ2 and the
Wl coefficient phases to be

θ2 =
π

4
+

1
8.98

[� Wl(x, y + 1, 2)− � Wl(x + 1, y, 2)] (6)

As with the previous example, this relationship is identical for subband 5,
except that 3π

4 would be added to the phase of θ5 in the operation above.

3.3 Definition of ICP

In the previous section, we established the linear relationship formulae between
a feature orientation and the difference of phase between adjacent DT-CWT
complex coefficients. We calculate these phase differences by means of conjugate
products of the adjacent pairs of DT-CWT coefficients as detailed in the pre-
vious section. The complex products are a natural way to represent the feature
orientation (through the complex phase) and also the feature strength (through
the complex magnitude). Thus, if we consider Wl(x, y, d) to be the complex
DT-CWT coefficient at spatial location x, y (numbered from the top left cor-
ner), subband d, and level l, then we introduce the constant-phase complex
values WlΔ:

WlΔ(x, y, 1) = Wl(x, y, 1) × Wl(x + 1, y, 1)∗

WlΔ(x, y, 2) = Wl(x, y + 1, 2) × Wl(x + 1, y, 2)∗

WlΔ(x, y, 3) = Wl(x, y, 3) × Wl(x, y + 1, 3)∗

WlΔ(x, y, 4) = Wl(x, y, 4)∗ × Wl(x, y + 1, 4)
WlΔ(x, y, 5) = Wl(x, y, 5)∗ × Wl(x + 1, y + 1, 5)
WlΔ(x, y, 6) = Wl(x, y, 6)∗ × Wl(x + 1, y, 6)

(7)

From this definition, the feature orientation θd calculated for each subband d
in the previous section, can be expressed with respect to � WlΔ(x, y, d). For
instance, from equation (4), θ1 = 1

4.49
� WlΔ(x, y, 1).

The magnitudes of WlΔ are the product of the magnitudes of the two adjacent
DT-CWT coefficients, and the phases of WlΔ are their shift-invariant phase
differences. Note that we can divide the magnitudes of WlΔ by

√|WlΔ | to
mitigate the non-linear product effect of this operation.

Using the conjugate products WlΔ and the expressions for feature orienta-
tions θd, we now define the Inter-Coefficient Product.

Definition 1 (Inter-coefficient Product). Given a DT-CWT decomposition
of an image with coefficients Wl(x, y, d) for levels l and subbands d = 1, ..., 6, we
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define the Inter-Coefficient Product (ICP) for each subband d, level l and deci-
mated location (x, y) as the following set of complex coefficients {ψl(x, y, d), d =
1, ..., 6}:

ψl(x, y, 1) =
√
|WlΔ(x, y, 1) | × ei( 1

4.49
� WlΔ(x,y,1))

ψl(x, y, 2) =
√
|WlΔ(x, y, 2) | × ei( π

4 + 1
8.98

� WlΔ(x,y,2))

ψl(x, y, 3) =
√
|WlΔ(x, y, 3) | × ei( π

2 + 1
4.49

� WlΔ(x,y,3))

ψl(x, y, 4) =
√
|WlΔ(x, y, 4) | × ei( π

2 + 1
4.49

� WlΔ(x,y,4))

ψl(x, y, 5) =
√
|WlΔ(x, y, 5) | × ei( 3π

4 + 1
8.98

� WlΔ(x,y,5))

ψl(x, y, 6) =
√
|WlΔ(x, y, 6) | × ei( 1

4.49
� WlΔ(x,y,6))

where i =
√−1.

We will consider the contribution of a feature to the subband which is the
closest to its orientation, since it is where the DT-CWT coefficient response is
linear and the strongest. The coefficient magnitudes automatically reveal the
dominant orientation of the feature across subbands.

At each location (x, y) and each level l, the orientation of a potential feature
(such as an edge or a ridge) in the vicinity of (x, y) will be given by the phase of
an ICP coefficient. The magnitude of the ICP coefficient will reflect the strength
of this feature.

4 Results and Interpretation

Figure 5 shows an ICP decomposition for the “Lenna” image, for level l=3, 9π
10

subband in figure 5a, and level l = 4 (coarser), π
4 subband in figure 5b. When

overlayed upon the original image, we can see the ability of the ICP to follow
coarse and fine image contours.

If we shift the original image half the current subband coefficient spacing prior
to ICP transform, we apply the worst possible offset in multiscale misalignment
(described in [1]) that may occur if one was to compare two separate instances
of an image object. Figure 6 shows this offset; note that, relative to figure 5b,
the coefficients make small, predictable changes in direction and magnitude to
reflect changing support regions, but dominant edge features in the image keep
the coarse-level representation relatively invariant to multiscale misalignment,
which shows the shift independence of ICP.

Note also that the ICP is a reversible transform; with all the ICP coefficients
and the last row and column of DT-CWT coefficients, one can divide out all
of the original DT-CWT coefficients one row/column at a time (and thence
reconstruct the original image with a reverse DT-CWT transform). However, as
the ICP itself acts in the manner of a differential operator, modifications to the
ICP coefficients can propagate throughout the image, far beyond the support
range of the original coefficient.
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(a) (b)

Fig. 5. ICP Coefficients for “Lenna” picture, at a) Level 3, Subband 6; and b) Level
4, Subband 2. Note the ability of the ICP to follow, for example, the fine edge of the
top of the hat in a), and the coarse-scale π

4
rim of the hat on the left in b).

Fig. 6. ICP shift independence: the input image of figure 5b has been shifted by half
a sample in each direction prior to ICP transform. Although this shift corresponds to
the worst alignment case, we observe minor changes in the ICP coefficients.

5 Conclusions

The ICP transform extracts phase information from the DT-CWT transform
into an intuitive, sparse format that reveals the orientation of directional fea-
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tures with finer precision than with the sole use of magnitudes of real or complex
wavelets coefficients. The entire process from pixel domain to ICP domain is ef-
ficient to implement: the DT-CWT is linearly separable into row and column
operations, and the subsequent ICP operation performs simple operations on
decimated coefficients. Thus, we believe ICP coefficients to be appropriate for
multiscale image processing activities such as contour tracking, registration, and
rotation- and scale-invariant object recognition, in large images or real-time sys-
tems where computational complexity is a strong factor in system design.

In particular, we note that the ICP and the ILP [1] transforms complement
one another very eloquently in the description of multiscale features. The ICP
is highly informative as to small rotations and relatively insensitive to feature
structure. By contrast, the ILP is indicative of the nature of the feature itself
and is insensitive to small rotations. Between these two pyramidal image repre-
sentation transforms, we can build a highly informative hybrid representation of
image objects that can be detected at various scales and rotations. Our future
research will pursue such models with these coefficients.
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Abstract. The paper addresses the computer vision aspects of aligning a hy-
draulic cylinder prior to being hooked on a conveyer by a robotic arm. The ro-
botic arm is programmed to assume the cylinder’s clevis hole is perpendicular 
to the horizontal base of the stamping station; if the cylinder is not in this orien-
tation, the arm will unsuccessfully attempt to hook the cylinder on the conveyor 
line, dropping it to the concrete floor. The approach is based on the use of the 
Hough transform for circle detection. A camera is mounted in a rotational orien-
tation cradle and the different camera positions result in images in which the 
hole is seen as an ellipse that evolves to a circle as the correct angle is reached. 
The paper then discusses the effect of implementing circle detection on ellipses, 
and takes advantage of the count in the Hough parameter space that indicates 
the correct position. The approach has shown to be very efficient under the re-
strictions of positioning the cylinder in less than 35 seconds as well as achieving 
orientation errors less than +/- 5°. 

1   Introduction and Motivation 

In even the most precise automated assembly lines, there are times when moving 
objects or components are slightly out of alignment and attempts to continue produc-
tion result in an arrest of the system. PAL Manufacturing (a division of Princess Auto 
Limited) uses an automated line to produce hydraulic cylinders for various industries. 
Prior to being hooked on a conveyer by a robotic arm for painting, each cylinder is 
placed on a stamping station, where the date and serial number is imprinted into the 
cylinder. Presently, the cylinder always reaches this station out of its proper orienta-
tion for stamping and pick-up, requiring shop floor personnel to manually rotate it. It 
is proposed that an automated computer vision system can be implemented for PAL 
Manufacturing in order to properly orient the cylinders without human intervention, 
thus reducing the time for cylinder production.  

This paper describes the computer vision aspects of this project that is under de-
velopment at the Department of Electrical and Computer Engineering, University of 
Manitoba. The solution is based on the use of the Hough transform for circle detec-
tion. Albeit most of the images taken from the cylinder at erroneous positions yield 
ellipses, it is shown that the maximum count on the accumulator cell for circle detec-
tion peaks at the right position which can act as a control signal indicating the correct 
orientation of the cylinder. 
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2   Description of the Computer Vision System 

The system consists of a Rotational Orientation Cradle (ROC) – a mechanical appara-
tus (upon which a camera will be mounted) – that will physically seize and adjust the 
cylinder. Figure 1 shows the ROC already built for this project.  

 

Fig. 1. Rotational orientation cradle. Cylinder can be seen on the left side. 

Before stamping, each cylinder has a clevis welded on one end by a robotic weld-
ing machine; the cylinder is later hung onto the conveyor of thin-lined steel hooks by 
the hole(s) in this clevis. The robotic arm that will pick up the cylinders is pro-
grammed to assume the cylinder’s clevis hole is perpendicular to the horizontal base 
of the stamping station; if the cylinder is not in this orientation and the process is 
allowed to continue, the arm will unsuccessfully attempt to hook the cylinder on the 
conveyor line, dropping it to the concrete floor. A picture of two types of cylinders to 
be analyzed is shown in Figure 2. 

 

Fig. 2. Two types of cylinder clevises, both at incorrect positions 

As the camera rotates around the cylinder (as instructed by a microcontroller), the 
system will have to distinguish between the orifice elliptical shape when viewed from 
an incorrect perspective, and its perfectly circular shape when viewed directly from 
the vertical. An example is illustrated in Figure 3. 

When the correct orientation is found, the system will signal the microcontroller to 
halt rotation. The controller will then activate the ROC’s pneumatic clamp, securing 
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the cylinder in place (which is confirmed by a “clamp closed” limit switch), and then 
rotate the gripper and cylinder back to the correct vertical orientation. After the cylin-
der is stamped, the clamp will be released and the entire apparatus will retract from 
the cylinder to allow pick-up and hooking by the robotic arm.  

The main task of determining the lateral position of the cylinder will be accom-
plished through the use of an infrared limit switch mounted on the ROC’s gripper, 
triggered by the edge of the cylinder as the gripper moves towards it. The microcon-
troller will be pre-programmed with the relative distances of the holes from the edge 
of the clevis holes for each type of cylinder. This will give us the information of the 
location of the centre of the circle as well as one coordinate of the ellipse in the  
digital images. 

 

Fig. 3. The different shapes an orifice in a cylinder can take on the image 

Despite the complexity of the system, its actual specifications boil down to the two 
major features summarized in Table 1. However, these requirements are deceptively 
simple, as their satisfaction involves applying constraints on all aspects of the system. 
For instance, the first time-based requirement includes the time elapsed for the motors 
to move laterally into position and rotate around the cylinder, the image transfer time 
and subsequent computation and decision time, and finally, the time taken to seize 
and rotate the cylinder. The rationale behind the second requirement (which will be 
measured manually) is a matter of physical necessity: if the system does not rotate the 
cylinder clevis into a vertical position (within 5 degrees), it cannot be hung on the 
conveyor hook. 

Table 1. Orientation System Specifications  

Feature Value or Range 
Completion time 
per cylinder 

< 35 seconds 

Correct vertical 
orientation  

+/- 5° 
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3   The Use of Circle Detection on Ellipses 

In order to understand what results can be obtained using the Hough transform for 
circle detection when an image consist of an ellipse, we must first ask what type of 
circles can be drawn that touches a single point in the ellipse. 

3.1   Formation of an Ellipse Based on Circles 

In 1797, Mascheroni proved that every geometric construction can be done with a 
movable compass alone. Mascheroni's results were published before by Mohr in 1672, 
and this geometric construction technique is now known as Mohr-Mascheroni's theo-
rem. A very short proof can be found in [1]. 

In particular, an ellipse can be drawn using eight circles. The circles together with 
the ellipse formed are shown in Figure 4. Circle G in the figure is the one that touches 
the ellipse at a single point and its centre is always located at circle B (indicated by 
the arrow). As this centre moves along B, circle G changes its radius. The drawing on 
the right of this figure shows two different circles drawn in this way. There are two 
points in each left and right side of the ellipse that have the same circle with same 
radius and centre of location. This circle centre is the intersection of circle B with the 
major axis of the ellipse.  

 

Fig. 4. Construction of an ellipse based on eight circles. The arrow indicates the centre of circle 
G. On the right, the two points indicate the centers of circles G2 and G1. 

3.2   The Hough Transform 

The Hough transform is used to detect pixels in a binary image that correspond to a 
curve of specified shape. Different type of shapes can be defined such as straight 
lines, circles, parabolas, hyperbolas or any other type of function of several parame-
ters f(x, ) where  is the set of unknown parameters. For example, for a straight line 
f(xi, ) = axi + b in a binary image, there are two unknown parameters  = {a,b}. The 
algorithm consists of evaluating every pixel (xi,yi) in the binary image that satisfy the 
equation b = - axi + yi  for varying values of a and b and counting the points that inter-
cept in this new parameter space [2].  The parameter space defined by {a,b} is also 
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referred to as the accumulator and for the case of a circle it has three parameters 
{h,k,a} where h and k are the centre coordinates of the circle and a its radius; and for 
the ellipse the parameter space consist of  {h,k,a,b} where as before, h and k are the 
centre coordinates for the ellipse case and 2a, and 2b are the length of the horizontal 
axis and the length of the vertical axis respectively as shown in Figure 5. In our case, 
as depicted in Figure 5, the horizontal axis is always the major axis. The extra pa-
rameter for the ellipse and corresponding extra computations can be seen as a starting 
motivation towards favoring the choice of circle detection for computing the correct 
orientation of the cylinder. 

Nevertheless, circle detection using the Hough transform takes many computations 
and different approaches have been suggested to improve the computational required 
time [3, 4]. The algorithm can also be generalized in order to detect non-analytic 
objects [5]. 
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Fig. 5. Circle and ellipse and their equations 

3.3   Detecting Circles in Ellipsoidal Traces 

For a small piece of an arch in the ellipse, those pixels will contribute to counts in the 
accumulator of the Hough transform for circle detection at parameters equal to the ra-
dius of G (see Fig. 4) and the centre will be located along one of the arches of circle B 
contained within the ellipse. The normal of these pixels go from that point of the ellipse 
towards the point {h,k} of G.   

A series of ellipses were drawn with major axis equal to the diameter of a circle. All 
these shapes are depicted in Fig. 6. The Hough transform for circle detection was im-
plemented and used in each of these shapes. 

Figure 7 (a) shows the image of an ellipse that was used with the Hough circle detec-
tion algorithm. Parts (b) to (c) show the parameter space for three different radii values. 
The radius in (d) is greater than (c) which is greater than in (b). Because of the digitized 
curves, the count in the parameter space is the maximum for the biggest radius. That is, 
as a bigger circle is being fit in the ellipse, the Hough transform uses more pixels along 
the circle arch that touches the arch of the ellipse. Additionally, we can expect that as 
the ellipse in (a) approaches the circular shape, this count will increase and it will be 
maximum when it becomes a circle. We can also verify that the maximum count fol-
lows the circle centres along the arch in circle B in Figure 4.  
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Fig. 6. Several ellipses contained in a circle 

4   Results Obtained Using a Real Cylinder 

In terms of the angle orientation accuracy needed for this project, the maximum accu-
mulator count of the Hough transform occurs when the analyzed image is the one that 
has the cylinder at the correct position independently of any other variables. 
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Fig. 7. (a) Image of ellipse used in this example. (b-d) Hough parameter space for three different 
increasing radii. 
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Therefore, the angle accuracy is just restricted to the task completion time. In the 
worst case scenario, the cylinder has to rotate 90o. If ±  is the restriction, no less than 
90/  images must be analyzed. Thus, a time completion task can be specified by t = 
90(tcv + tr)/ , where tcv is the time required by the proposed algorithm to analyzed 
each image and tr is the time taken to seize and rotate the cylinder as well as the other 
tasks not related to tcv as indicated in section 2. 

A series of 16 images were taken with a cylinder at different orientations as shown in 
Figure 8. In this figure, the images correspond to image frames 4, 12 and 16 respec-
tively. As can be seen, illumination of the scene is a factor that can help because reflec-
tions can help on the threshold operation performed prior to the Hough transform. The 
total number of pixels to be evaluated then reduces by selecting a higher threshold that 
will mostly select pixels around the orifice.  

The Hough transform using circle detection was used in each of the image frames 
and the maximum count in the accumulator was computed and stored. Figure 9 shows 
the values obtained. Note how the plot peaks at image frame 12 which is the image of 
the cylinder at the correct orientation. 

 

Fig. 8. Three different image frames showing the cylinder at different position 
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Fig. 9. Three different image frames showing the cylinder at different position 
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5   Conclusions 

The use of the maximum values of the accumulator calculated using the Hough trans-
form for circle detection in the type of problem discussed in this paper can be the 
control signal that indicates the correct position of the hydraulic cylinders under con-
sideration.  The robustness of the Hough transform is necessary in order to account 
for noise and external objects in the images. The precision of the correct orientation is 
limited only by the maximum time allowed for completion of the task. In this particu-
lar example, because the centre location of the circle imaged by the clevis at the cor-
rect orientation is known, the parameter space is reduced only to searches for different 
radii only. This has helped on the initial tests performed and the time constraints will 
be met for this project. 
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Abstract. This paper describes a model-based method for detecting
lip region from image sequences. Our approach is by Sampled Active
Contour Model (S-ACM). The original S-ACM has the problem which
can’t expand. To overcome this problem, we propose the elastic S-ACM.
Moreover, based on the extracted lip contour, the effective delta radius
features are fed to the word HMM. We recorded ten words that uses
for the wheelchair control, and obtained a recognition rate of 89% with
twelve features.

1 Introduction

The voice is the most natural communication way for man. Many studies have
been done about voice recognition. However, the recognition rate decrease by a
surrounding noise such as other’s sound or voice. Therefore, the limitation such
as putting the microphone near mouth is need. On the other hand, the image
information of the lip shape is not influenced by the surrounding noise[1].

It is important to extract the efficient feature for lip reading. Basically, there
are roughly two method to extract visual feature of the lip from image sequences,
the image-based and the model-based method[2,3]. In this paper, we employ
the latter method. Sampled Active Contour Model (called S-ACM) which is a
dynamic power model[4] is applied to detect lip contour. However, this method
has the problem which can’t expand. This paper describes the modification for S-
ACM, and propose an automatic lip detection method using S-ACM. Moreover,
we define the effective feature to the lip reading. The lip reading that uses the
word for the wheelchair control is tried in this paper.

This paper is organized as follows. The next section describes about S-ACM
method. The automatic lip detection and lip reading method are in Section 3
and Section 4, respectively. Experimental results are in Section 5. Conclusion is
in Section 6.

2 Sampled Active Contour Model

There is a well-known method called ”Snakes” by Kass et al.[5] which defines a
contour as an energy minimizing problem. However, it is necessary to solve the

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 507–515, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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minimization problem of each elasticity loop in Snakes, the real-time processing
is difficult. On the other hand, Sampled Active Contour Model is proposed by
Hashimoto et al.[4] is a method for control each point by local three forces.
Sugahara et al.[6] modified S-ACM with adding new force the vibration.

2.1 Performance of S-ACM

Here we describe the essence of S-ACM. This is a method to determine a contour
of target region based on control points. The characteristics of S-ACM is closed-
loop of the polygon composed of contour point which work four forces shown in
Figure 1.

Pi-1

PiPi+1

target region

contour point

Fp+Fa+Fv

Fr

Fig. 1. Sampled Active Contour Model

These four force is a pressure F p, attraction F a, vibration F v, and repulsion
F r. Pressure F p shown in Figure 2(a) is a force to work at the bisector direction
of two neighboring control points. This force is a constant value. Attraction F a

shown in Figure 2(b) is a force to work in proportion to the distance of two
neighboring control points. Vibration F v shown in Figure 2(c) is a constant
value, and works to vertical direction of resultant force F p + F a. The direction
of F v is reverse in each loop. And, repulsion F r shown in Figure 2(d) is worked
when the control point touches the object boundary, and, as a result, this force
works to negative direction of other forces.

Pi-1

Pi

Pi+1

Fp

(a) Pressure F p

Pi-1

Pi

Pi+1

Fa1

Fa2

Fa=Fa1+Fa2

(b) Attraction F a

Pi-1

Pi

Pi+1

Fv

Fp+Fa

Fp+Fa+Fv

(c) Vibration F v

Pi-1

Pi

Pi+1

Fp+Fa+Fv

Fr

boundary

(d) Repulsion F r

Fig. 2. Four forces to each control point
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S-ACM is a method for applying to a binary image. This method also can
add or delete control point like Snakes.

2.2 The Problem of Original S-ACM

The original S-ACM can only shrink or stop. Therefore, an initial control point
should give a big one. Moreover, when it doesn’t contact the object boundary,
it enters into the object region, and the repulsion doesn’t work. As the result,
the shrinkage proceeds, and the contour becomes small.

Since we apply to the image sequence, a big initial contour is inconvenient.
It takes a lot of time until contour point stop when such initial contour is given
with each frame.

2.3 Proposal Method

Our idea is to consider an elastic S-ACM. The detail is as follows: when a control
point is in background shown in Figure 3(a), conventional forces (F p, F a, and F v)
are worked. Oppositely, when a control point is in object region shown in Figure
3(b), pressure F p doesn’t work and attraction F a works to opposite direction. As
a result, an inside control point moves outside. By this improvement, it doesn’t
need to give a big initial contour, and the proceeding time is shortened.

Pi-1

Pi

Pi+1

Fp

Fa F=Fp+Fa

(a) The case of outside

Pi-1

Pi

Pi+1

Fp

Fa
F=-Fp

target
region

(b) The case of inside

Fig. 3. Forces at outside and inside region

2.4 Comparison

A sample image of a curve region shown in Figure 4(a) is considered. A given
initial contour where a right part of cross the target region is shown in Figure
4(b). Figure 4(c) and Figure 4(d) show the result of the original S-ACM and
proposed method, respectively. Figure 4(c) is not satisfactory. This is because
the right part of contour point could not move. On the contrary, Figure 4(d)
obtained a correct contour.

Next consideration is a lip image shown in Figure 5(a). A given initial contour
which is a oval shape is shown in Figure 4(b). Figure 4(c) and Figure 4(d)
show the result of the original S-ACM and proposed method respectively. The
extracted contour of Figure 4(c) is inside of the lip region. Figure 4(d) is obtained
a correct contour.
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These results show our method could move elasticity and detect an accurate
contour.

(a) Sample image (b) Initial control points

(c) Original S-ACM (d) Proposed method

Fig. 4. Extracted results of sample image

(a) Lip image (b) Initial control points

(c) Original S-ACM (d) Proposed method

Fig. 5. Extracted results of lip image

3 Automatic Lip Detection
Our next problem is to extract a lip region from an image sequence without
manually operation. It is convenient that the size and the position of lip are
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fixed. However, such information is unknown, since these are changeable when
the person speaks.

Then, we first try to determine the lip location in the first frame, and detect
an approximate box region called the Region Of Interest (ROI). Next, the bi-
nalization is applied in ROI. Finally, S-ACM is applied and detect a lip contour.
Figure 6 shows the flowchart of the proposed automatic lip detection method.
The detail of our method shows as follows.

Detect lip corners and

determination of ROI

Binarization

Extract lip region by SACM

Determination of ROI

using previous frame

First frame ?

Detect lip position

Start

Yes

No

Fig. 6. Flowchart of automatic lip detection method

3.1 Base Point Detection

At first, we identify the base point from first frame as shown in Figure 7(b). For
this task, we convert the original image into the block image to prevent wrong
detection such as a pimple, and found most red block as the base point.

3.2 Set Up ROI

The top, bottom, left, and right position of lip are detected as ROI. Since S-ACM
is a method to apply a binary image, it is desirable to obtain a correct binary
image. Then, ROI where it touches the lip is set.

The edge image is obtained by sobel filter, and the lip joint is detected from
the maximum edge distribution in the horizontal line as shown in Figure 7(c).
After detected lip joint, the edge distribution of a vertical is calculated. Two
positions L′ and R′ in which the distribution value becomes lower than the
threshold from the center C for right and left both sides are detected. These
positions are related with left terminal point L and right terminal point R re-
spectively. Moreover, from the joint line, the maximum distribution value for
upper and lower both sides are detected as top terminal point T and bottom
terminal point B. These points are shown in Figure 7(d).

3.3 Binalization

Binalization is applied to the pixel in ROI. The image converts from RGB color
space into xy color space, and the average color in the four corners of ROI (skin



512 T. Saitoh and R. Konishi

(a) Original image

Base point

(b) Block image and detected base
point

distribution

 of edge value

distribution of edge value

L' R'

C

(c) Decide lip position

ROI

T

L

B

R

(d) Extracted ROI (e) Binary image

(f) Initial contour (g) Detected lip region

Fig. 7. Lip detection
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color) and the center (lip color) is calculated respectively. The pixel in ROI is
classified into the lip or the skin which is similar color. Figure 7(e) shows the
result of binalization.

3.4 Apply S-ACM

An initial contour of the oval shape that inside touches the ROI is set for the
first frame. Given the initial contour is shown in Figure 7(f). Then, we apply the
S-ACM. The extracted contour is shown in Figure 7(g). Though S-ACM can add
or delete control point at any time, in this lip detection, the number of control
point is fixed in relation to visual features.

3.5 For Other Frame

The initial contour for a frame except the first frame is given based on the
extracted contour of previous frame.

4 Lip Reading

4.1 Detect Speech Period

For detected a lip contour sequence, the speech period is decided. In this paper,
we set a condition to close his lip before and after the word utterance. Therefore,
the speech period is obtained from observed lip shape.

4.2 Visual Features

The distance ri of control point Pi and lip gravity G is calculated shown in
Figure 8. In addition, Δri is calculated as a time change of ri.

In our lip reading, the number of control point of S-ACM is fixed at twelve.
Then, the number of ri and Δri is twelve respectively.

G
P0

P1

P2P3

P4

P5

P6

P7

P8
P9

P10

P11

r0
r1

r2r3r4
r5

r6
r7 r8 r9 r10

r11

Fig. 8. Lip features

4.3 Recognition

The clustering by the k-means method is applied to the calculated feature, and
these features are converted into the label sequences. Next, these are fed to the
left-to-right type word HMM.
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5 Experiments

Ten Japanese words (”zensin”, ”koutai”, ”tomare”, ”mae”, ”usiro”, ”usetu”,
”sasetu”, ”migi”, ”hidari”, ”hanten”) for the wheelchair control were recognized.
We recorded 50 times for each word (namely, we recorded 500 image sequences).
The image size is 320 × 240 pixel and frame rate is 30 frame/sec. We set the
number of cluster as 12, the number of state of HMM as 6, and the extracted
control point of S-ACM as 12.

The automatic lip detection method was carried out 500 image sequences.
It confirmed that our method obtained good result by observation visually. The
average processing time of lip detection was 110 msec. per one frame on a DOS/V
PC (CPU:Pentium IV 3.2GHz with 1GB main memory).

The recognition process was carried out with twelve radius features and
twelve delta radius features. Out of 50 samples for each word, 40 samples are
a training set and the remaining 10 samples are a recognition set. By vary-
ing 10 samples, the total number of recognition trials is 50 for each words.
The average resulting recognition rates were 81% and 89%, respectively. This
result indicates that the delta radius features are more effective for word recog-
nition.

The next experiments were to determine which features among twelve control
points are more effective for recognition. This process was carried out for four
corner (left, right, top, and bottom) features, upper seven features, lower seven
features, and left side seven features. These results are shown in Table 1. It found
the most recognition rate was by twelve whole lip shape features.

Table 1. Recognition results

features recognition rate [%]
(number) zensin koutai tomare mae usiro usetu sasetu migi hidari hanten average

radius 90.0 90.0 90.0 76.0 72.0 64.0 86.0 86.0 78.0 82.0 81.4
delta radius(12) 90.0 96.0 98.0 82.0 80.0 84.0 96.0 78.0 94.0 92.0 89.0

delta radius(four corner)(4) 84.0 90.0 96.0 88.0 88.0 82.0 92.0 86.0 88.0 88.0 88.2
delta radius(upper side)(7) 86.0 94.0 94.0 76.0 84.0 76.0 92.0 92.0 92.0 92.0 87.8
delta radius(lower side)(7) 84.0 94.0 86.0 86.0 88.0 72.0 96.0 72.0 90.0 78.0 84.6
delta radius(left side)(7) 86.0 86.0 92.0 78.0 76.0 76.0 98.0 84.0 88.0 98.0 86.2

6 Conclusion

This paper has made some contributions. The first is modified S-ACM. The
original S-ACM has the problem which can’t expand, then we proposed an elastic
S-ACM. The second is that we proposed the automatic extraction of lip region
based on S-ACM. Moreover, the effective features were defined, and obtained
89% with twelve delta radius features.

In the future, we want to continue the experiment which the number of words
increases.
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Abstract. Real time recognition of visual face appearances (visemes)
which correspond to phonemes and their speech contexts is presented.
We distinguish six major classes of visemes. Features are extracted in
the form of normalized image texture. The normalization procedure uses
barycentric coordinates in a mesh of triangles superimposed onto a refer-
ence facial image. The mesh itself is defined using a subset of FAP points
conforming with MPEG-4 standard. The elaborated classifiers were de-
signed by PCA subspace and LDA methods. It appears that the LDA
classifier outperforms subspace technique. It is better than the best sub-
space PCA – in recognition rate by more than 13% times (97% versus
84%) and it is more than 10 times faster (0.5ms versus 7ms) and its time
is neglected w.r.t. mouth image normalization time (0.5ms versus 5ms).

1 Introduction

This research has been conducted to support animation of human face model
integrated with Polish speech generator.

With the increasing power of computer systems with respect of computing
and transmission speed the talking head application exhibits the greater realism
in both speech and dynamic visual face appearance (viseme), as well.

Except the performance of speech generator, the synchronization between
the spoken content and facial visual content, is of high importance. The visual
content should not only provide the time correspondence of face image and sound
but also respect the semantic context of the speech, and the internal emotions
of the speaker.

One of the important tasks in talking head system is the design of a correspon-
dence table between visemes and phonemes (CTVP table). This correspondence
is rather a relation of type one to many than a function. We can convert this
relation to a mapping if we consider a speech context for the particular phoneme.
In practice, it is enough to take into account three phonemes for such context,
the current phoneme, the previous one, and the next one, to get a unique viseme
to speech context.
� The work presented was developed within VISNET, a European Network of Excel-

lence (http://www.visnet-noe.org), funded under the European Commission IST
FP6 programme
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Fig. 1. Representative images for six major viseme classes – the 16 minor classes are
obtained by discrimination between small, medium, and high degree of mouth opening
within the first five major classes

In case of Polish speech patterns (the CORPORA database), the design of
phoneme context to viseme mapping requires recording of video and audio mate-
rial for more than 1000 seconds. Therefore we get more than 25000 visemes to be
classified and assigned to recognized phonemes context. This cannot be imple-
mented manually. Both, the automatic viseme classifier and phoneme classifier
are necessary to complete the design of CTVP table.

For phoneme classifier we have used a speech recognition engine based on
HTK toolkit (cf. [8]). As a side effect the speech recognition program produced
the phoneme and diphone transcription labelled by time information. Having
such timing we could segment the video sequence into phoneme related groups.
From each group this video frame was selected for viseme classification which
was closest in time to the middle of phoneme time interval, i.e. to the beginning
of diphone interval. The recognized viseme class (cf. Fig.1)was joined to the
phoneme context list. At the end from each phoneme list the class id was selected
using the majority rule.

This work explains how the viseme classifier had been designed to support
the creation of CTVP table. To this goal the performance of 80% could be
sufficient. However, we are going to use our viseme classifier to animate the
human head model on the basis of live video. Therefore the real time and the
high performance of the classifier are the main objectives of our research.

Beside this introduction, the paper consists of five sections. In the section
2, image normalization by piecewise affine mapping is described. The section
3 includes the presentation of the subspace classifier using PCA approach. In
the section 4 we discuss our implementation of LDA classifier based on two
singular subspaces method. The last section shows comparative results for the
two classifiers analyzed.

2 Image Normalization by Piecewise Affine Mapping

The realistic visual speech can be achieved by integrating the person specific
face model with mouth model optionally augmented with the model of chin and
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cheeks. Using a triangle mesh (cf. Fig.2), we can cover those speech sensitive
areas and try to get the model for at least two goals: viseme classification and
mouth animation. In mesh approach we deal with variations of the mesh shape

Fig. 2. Triangle mesh for mouth (left) and its neighbourhood (right) – on the left
identifiers of MPEG-4 FAP points are depicted

and of the mesh texture (appearance). In order to make comparable two meshes
we have to normalize them with respect to a reference mesh.

We perform the nonlinear normalization of the mesh by mapping each trian-
gle in the current image onto the corresponding triangle in the reference image.
Each local mapping is affine, but globally we obtain the mapping which is piece-
wise affine.

Let the i-th triangle Δi(P0, P1, P2) in the reference mesh M be mapped by
the affine mapping Ai(P ′) = BiP + ti onto the triangle Δ′

i(P
′
0, P

′
1, P

′
2) in the

current mesh M′, where Bi is the square matrix, ti is the vector, P ∈ Δi,
P ′ ∈ Δ′

i, i = 1, . . . ,K. Then we have the following properties:

1. The piecewise affine mappings A1, . . . , AK are continuous mappings of M
onto M′ in geometric space

2. If P = α0P0+α1P1+α2P2 has the barycentric coordinates α0,α1,α2 w.r.t the
triangle Δi(P0, P1, P2), then the pointAi(P ) = α0P

′
0+α1P

′
1+α2P

′
2, i.e. it has

the same barycentric coordinates with respect to the triangle Δ′
i(P

′
0, P

′
1, P

′
2) :

Ai(P ) = BiP + ti = Bi(α0P0 + α1P1 + α2P2) + (α0P0 + α1P1 + α2)t
= α0(BiP0 + t) + α1(BiP1 + t) + α2(BiP2 + t) = α0P

′
0 + α1P

′
1 + α2P

′
2

3. If f ′ : Δ′
i(P

′
0, P

′
1, P

′
2) → CRGB is the texture mapping in the current mesh

then the mapping f : Δi(P0, P1, P2) → CRGB is defined by the barycentric
coordinates for i = 1, . . . ,K as follows:

f(P ) = f(α0P0 + α1P1 + α2P2) � f ′(α0P
′
0 + α1P

′
1 + α2P

′
2) (1)

The above substitution transfers the texture from the current mesh onto the
reference mesh with possible deformation of linear segments which intersect
at least two triangles in the mesh.
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We have used the texture mapping as described in point 3 above and despite
the negative conclusion of the property 3 we observe no special visual degradation
in the mapped texture on visemes (cf. Fig.3).

Fig. 3. Comparison of original mouth views with the normalized images with respect
to the reference mouth (the leftmost image)

3 Subspace Method for Mouth Classification

Due to the robust normalization, all mouth classes can be now represented in one
texture space of high dimensionality N ≈ 103. Applying the Principal Compo-
nent Analysis (PCA - cf. [4]) reduces this dimensionality significantly. However,
the variability within the class using one PCA subspace for all classes is too
high. Therefore we model each class with its own separate PCA subspace. This
leads to the known subspace method of pattern recognition (cf. [5]).

In Fig.4 we show the dependence of subspace dimension Ki(e) on percent-
age of signal energy e represented by PCA subspaces obtained for six mouth
appearance classes, i = 1, . . . , 6.

Having PCA eigenvalues λ
(k)
i for i = 1, . . . , 6, and k = 1, . . . ,N, we compute

ei as follows:

ei(K) =
∑K

k=1 λ
(k)
i∑N

k=1 λ
(k)
i

· 100% (2)

The classification of mouth texture M ∈ RN by subspace method requires
computing of reconstruction Mi ∈ RN against each subspace (Mi,Wi),Mi ∈ RN ,
Wi ∈ RN×Ki :

Mi = Mi + Wi(W t
i (M −Mi)), i = 1, . . . , 6 (3)

Having reconstructions Mi of mouth texture M , the subspace method selects
the mouth class with minimum reconstruction error:

iopt = arg min
1≤i≤6

‖M −Mi‖2 (4)

The time complexity for the subspace classification for C classes, can be
estimated from the above formulas to O(NK + NC + N2) = O(N2).
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Fig. 4. Dependence of subspace dimension Ki(e) on percentage of signal energy e

included in the i-th subspace, i = 1, . . . , 6

Fig. 5. Recognition rate (left graph) and time (right graph) for PCA classifier as a
function of energy percentage e included in each class subspace at big and small training
images resolution

The subspace method does not require to have all classes modelled in one
space. However, having classes in one space means that we avoid C−1 additional
normalizations which take significant part of the algorithm’s time.

4 LDA for Mouth Classification

The advantage of having all texture classes in common space RN allows us to use
the Linear Discriminant Analysis (LDA) to design the extremely fast classifier
of linear complexity O(N).

Before we reached LDA feature vector of dimension five, the general Fisher
LDA criterium (cf. [2,6,7]) had been used for K dimensional training feature
vector yi = W txi, xi ∈ RN , i = 1, . . . , L, y ∈ RK , W ∈ RN×K :

Wopt = arg max
between class variance for {yi}
within class variance for {yi} =

tr(W tSbW )
tr(W tSwW )

(5)

where Sb, Sw are the between and within class scatter matrices.
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The above criterium has points of singularity if W is arbitrary. Therefore
Fisher imposed the following constraints on the domain of W :

W tSwW = I, W⊥ker(Sw) (6)

This leads us to the following steps to obtain the optimal W described in details
in [1] with two tuning parameters q, r corresponding to steps where singular
value approximation is performed (cf. [3])

1. Class mean shifting of the training sequence: X = [x1, . . . ,xL];
2. Grand mean shifting for class means: M = [m1, . . . ,mC ];
3. Singular Value Approximation for X with subspace dimension equal to q :

[UqΣq] := sva(X, q); Aq = UqΣ
−1
q ;

4. Whitening of columns in M : M = At
qM ;

5. Singular Value Approximation for M with subspace dimension equal to r :

Vr := sva(M, q); W = AqVr;

6. Return W;

Fig.6 shows the expected behavior of recognition rate versus tuning parame-
ters. The vector LDA features with maximum possible value r = C−1 = 5 gives
the best results. The LDA feature y = W tx for the texture vector x is classified
by the distance to LDA features yi = W txi representing the mouth appearance
classes, i = 1, . . . , 6 :

iopt = arg min
1≤i≤6

‖y − yi‖2 (7)

5 Experimental Results

For the training of models for feature extraction 497 mouth image were selected
with unbalanced distribution in the classes what corresponds to the distribution
in the whole recorded video sequence:

L1 = 127, L2 = 123, L3 = 42, L4 = 89, L5 = 37, L6 = 79

For the testing stage, 152 frames were selected independently of training frames.
Dimensions Ki of PCA subspaces were established using a common measure

e (cf. (2)):
e = ei(Ki), i = 1, . . . , 6

which specifies what fraction of signal energy (energy cover) included in the train-
ing set can be attributed to the given subspace. The Fig.5 (the left graph) shows
how the recognition rate depends on this measure. The performance graphs show
that the best results are obtained for high resolution training and testing frames.
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Fig. 6. Recognition rate versus LDA tuning parameter q and r = 1, 5 : all elements
(upper graph) and subsampled (lower graph) of texture vector are considered

However, the best result of 84% requires about three times more time for the
recognition than slightly worse result (83.3%) at about 20% less of energy cover
which also enables the real time recognition for video with 25fps. The time
performance is referred to our algorithm implementation on PC Pentium IV,
3.2GHz.

For LDA, the best result (97.2% – cf. Fig.6) is achieved for lower resolution
image with subsequent subsampling of texture vector. Since in case of LDA the
extraction time is independent of q we accept higher values of q if the recognition
rate is even slightly lower for low values of q.

It appears that mouth images which were wrongly classified are only from the
class of slightly opened mouth with visible upper teeth, without visible tongue.
They were confused with opened mouth, visible upper teeth and visible tongue.
However, by eye view (the important measure in talking head application) the
difference between such two images is not annoying while watching the mouth
animation.
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6 Conclusion

Real time recognition of visemes which correspond to phonemes and their speech
contexts is presented. The piecewise affine mapping allowed us to define the
texture vector indexed by barycentric coordinates. It appears that the classifier
outperforms the subspace technique. It is better than the best subspace PCA –
in recognition rate by more than 13% times (97% versus 84%) and it is more
than 10 times faster (0.5ms versus 7ms) and its time is neglected w.r.t. mouth
image normalization time (0.5ms versus 5ms). Moreover, LDA is better than
PCA for each possible feature vector dimension r = 1, . . . , 5.

Our recent experiments conducted on bigger testing database confirm supe-
riority of LDA over PCA.
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Abstract. Orthogonal moments are recognized as useful tools for object
representation and image analysis. It has been shown that the recently
developed discrete orthogonal moments have better performance than
the conventional continuous orthogonal moments. In this paper, a new
set of discrete orthogonal polynomials, namely Hahn polynomials, are in-
troduced. The related Hahn moment functions defined on this orthogonal
basis set are investigated and applied to image reconstruction. In exper-
iments, the Hahn moments are compared with the other two discrete
orthogonal moments: Chebyshev and Krawtchouk moments. The simu-
lation results show that the Hahn moment-based reconstruction method
is superior to the other two discrete orthogonal moment-based methods.

1 Introduction

Moments and functions of moments have been widely used in pattern recognition
[1],[2], image analysis [3], [4], [5], object representation [6], edge detection [7], [8]
and texture analysis [9]. Examples of moment-based feature descriptors include
the geometric moments, rotational moments, orthogonal moments and complex
moments.

Orthogonal moments defined in terms of a set of orthogonal basis are of-
ten preferred due greatly to its ability to represent images with the minimum
amount of information redundancy. Moment-based image reconstruction was pi-
oneered by Teague who noted that image can be reconstructed from a set of
orthogonal moments [3]. Since then, successive studies on orthogonal moments
such as Legendre moment and Zenike moments for image reconstruction have
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been extensively addressed in [4] and [5]. However, these moments usually in-
volve several major problems such as the numerical approximation of continuous
integrals, coordinate space transformation, high computational costs and etc.

Recently, a set of discrete orthogonal moment functions based on discrete
orthogonal polynomials, Chebyshev polynomials [10] and Krawtchouk polyno-
mials [11] have been successfully introduced as alternatives to continuous orthog-
onal moments. The discrete orthogonal moments hold most of useful features em-
bedded in the continuous orthogonal moments. Moreover, the implementation
of discrete orthogonal moments does not require any numerical approximation
since the basis set is orthogonal in the discrete domain of image coordinate space.
Therefore, the accuracy of image reconstruction can be expectably better than
the conventional continuous orthogonal moments.

In this paper, we will introduce a new set of discrete orthogonal moment
functions which are characterized with the discrete orthogonal Hahn polynomi-
als [12]. The resultant Hahn moment has most similar features to the Cheby-
shev and Krawtchouk moments, but it may outperform both the Chebyshev
and Krawtchouk moments. The rest of paper is organized as follows: In Sect.
2, we introduce Hahn polynomials and the related Hahn moments, then briefly
describe the computational aspects of the Hahn moments. In Sect. 3 we give out
the experimental results. Finally, we conclude the paper.

2 Hahn Polynomials and Moments

2.1 Hahn Polynomials

For any integer x ∈ [0,N − 1](N is a given positive integer), Hahn polynomial
of order n, n = 0, 1, ...,N − 1, is defined as [12],

h(μ,ν)
n (x,N) = (N + ν − 1)n(N − 1)n

×
n∑

k=0

(−1)k (−n)k(−x)k(2N + μ+ ν − n− 1)k

(N + ν − 1)k(N − 1)k

1
k!

, (1)

where (a)k = a · (a + 1) · · · (a + k − 1) = Γ (a+k)
Γ (a) is the Pochhammer symbol

and μ, ν (μ > −1, ν > −1) are adjustable parameters controlling the shape
of polynomials. The discrete Hahn polynomials satisfy the following orthogonal
condition:

N−1∑
x=0

ρ(x)h(μ,ν)
m (x,N)h(μ,ν)

n (x,N) = d2
nδmn, 0 ≤ m,n ≤ N − 1, (2)

where δmn denotes the Dirac function, ρ(x) is so-called weighting function which
is given by

ρ(x) =
1

Γ (x+ 1)Γ (x+ μ+ 1)Γ (N + ν − x)Γ (N − n− x)
(3)

and the square norm d2
n has the following expression
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d2
n =

Γ (2N + μ+ ν − n)
(2N + μ+ ν − 2n− 1)Γ (N + μ+ ν − n)

× 1
Γ (N + μ− n)Γ (N + ν − n)Γ (n+ 1)Γ (N − n)

. (4)

To avoid numerical fluctuations in moment computation, we usually scale the
Hahn polynomials by utilizing the square norm and the weighting function, i.e.,

h̃(μ,ν)
n (x,N) = h(μ,ν)

n (x,N)

√
ρ(x)
d2

n

, n = 0, 1, ...,N − 1. (5)

Therefore, the orthogonal property of normalized Hahn polynomials can be de-
scribed as

N−1∑
x=0

h̃(μ,ν)
m (x,N)h̃(μ,ν)

n (x,N) = δmn, 0 ≤ m,n ≤ N − 1. (6)

2.2 Hahn Moments of Image

Given a digitalized image f(x, y) with size N ×N , the (m+ n)th order of Hahn
moment of image is

Hmn =
N−1∑
x=0

N−1∑
y=0

f(x, y)h̃(μ,ν)
m (x,N)h̃(μ,ν)

n (y,N), m,n = 0, 1, ...,N − 1. (7)

Using (6), Eq.(7) leads to the following inverse moment transform

f(x, y) =
N−1∑
m=0

N−1∑
n=0

Hmnh̃(μ,ν)
m (x,N)h̃(μ,ν)

n (y,N). (8)

It indicates that the image can be completely reconstructed by calculating its
discrete orthogonal moments up to order 2N − 2. This property makes the dis-
crete orthogonal moments superior to the conventional continuous orthogonal
moments. If moments are limited to an order M , we can approximate f by f̂

f̂(x, y) =
M∑

m=0

M∑
n=0

Hm−n,nh̃
(μ,ν)
m−n(x,N)h̃(μ,ν)

n (y,N), x, y = 0, 1, ...,N − 1. (9)

2.3 Computational Aspects

Using (1) and (5), the zero-order and first-order normalized Hahn polynomials
can be easily calculated, i.e.,

h̃
(μ,ν)
0 (x,N) =

√
ρ(x)
d2
0

, (10)
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h̃
(μ,ν)
1 (x,N) =

{
(N + ν − 1)(N − 1)− (2N + μ+ ν − 2)x

}√
ρ(x)
d2
1
. (11)

Higher orders polynomials can be deduced from the following recursive relations,

Ah̃(μ,ν)
n (x,N) = B

√
d2

n−1

d2
n

h̃
(μ,ν)
n−1 (x,N) + C

√
d2

n−2

d2
n

h̃
(μ,ν)
n−2 (x,N),

n = 2, 3, ...,N − 1, (12)

where

A = − n(2N + μ+ ν − n)
(2N + μ+ ν − 2n+ 1)(2N + μ+ ν − 2n)

, (13)

B = x− 2(N − 1) + ν − μ

4
− (μ2 − ν2)(2N + μ+ ν)

4(2N + μ+ ν − 2n+ 2)(2N + μ+ ν − 2n)
, (14)

C =
(N − n+ 1)(N − n+ μ+ 1)(N − n+ ν + 1)(N − n+ μ+ ν + 1)

(2N + μ+ ν − 2n+ 2)(2N + μ+ ν − 2n+ 1)
. (15)

Equations (10)-(15) can be used to efficiently calculate the normalized Hahn
moment of any order. Also the weighting function ρ(x) can be solved by using
the recursive relation with respect to x, i.e.,

ρ(x) =
(N − x)(N + ν − x)

x(x + μ)
ρ(x − 1), x = 1, 2, ...,N − 1, (16)

with
ρ(0) =

1
Γ (μ+ 1)Γ (N + ν)Γ (N − n)

. (17)

To extract the image moment set {Hmn}(0 ≤ m,n ≤ N − 1), we can simply
use the following matrix notation,

H = HT
x f Hy (18)

where f denotes the N ×N image matrix and

Hx =
[
h̃

(μ,ν)
0 (x,N), h̃

(μ,ν)
1 (x,N), · · · , h̃

(μ,ν)
N−1(x,N)

]T
,

Hy =
[
h̃

(μ,ν)
0 (y,N), h̃

(μ,ν)
1 (y,N), · · · , h̃

(μ,ν)
N−1(y,N)

]T
and

h̃(μ,ν)
n (x,N) =

[
h̃

(μ,ν)
n (0,N), h̃

(μ,ν)
n (1,N), · · · , h̃

(μ,ν)
n (N − 1,N)

]T
,

n = 0, 1, ...,N − 1. (19)

Similarly, the inverse reconstruction procedure can be represented as

f = Hx H HT
y (20)
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Fig. 1. Test images. The left is binary image of Chinese character (size: 48 × 48) and
the right is the standard gray image of Lena (size: 96 × 96).

To approximate the image with limited moments of order up to M , we need
only to compute

H̃x =
[
h̃

(μ,ν)
0 (x,N), h̃

(μ,ν)
1 (x,N), · · · , h̃

(μ,ν)
M (x,N)

]T
,

H̃y =
[
h̃

(μ,ν)
0 (y,N), h̃

(μ,ν)
1 (y,N), · · · , h̃

(μ,ν)
M (y,N)

]T
and then yield the moment matrix H using (18). The approximation of image,
say f̂ , can be solved by the analogous way as shown in (20).

Noticed that the normalized Hahn polynomials are unavoidably related to
weighting function ρ(x). For the case of image reconstruction, we usually expect
that the Hahn polynomials are symmetric (odd or even) with respect to the
center point (x, y) = (N/2,N/2) (suppose N is even). As a result, we require
the same values for both μ and ν. For the sake of simplicity, we choose μ = ν = 0.

3 Experimental Results

To evaluate the performance of image reconstruction using Hahn moments, we
have selected several test images including the binary image and the gray level
image (shown in Fig. 1). Reconstruction results are compared with those us-
ing Chebyshev and Krawtchouk moments. Noisy images are also considered
to analyze the noise sensitivity of these different moment-based reconstruction
methods.

The mean square error (MSE) is used as the fidelity criteria measuring the
resemblance between the reconstructed images and the original one. It can be
defined by

MSE =
||f − f∗||2
||f∗||2 (21)

where || · || is the standard Euclidean norm and f∗ represents the original image
vector and f the reconstructed image vector.

Fig. 2 shows reconstructions using three different discrete orthogonal mo-
ments and the corresponding MSE comparison through the reconstruction pro-
cedure is depicted in Fig. 3. We observe that the reconstruction based on Hahn
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Fig. 2. Reconstructions using Chebyshev moments (first row), Krawtchouk moments
(second row, p = 0.5 [11]) and Hahn moments (third row, μ = ν = 0). The orders from
the left column to the right are 8, 16, 24, 32 and 47 respectively.
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Fig. 3. Comparisons of the binary image reconstruction results

Fig. 4. Reconstructions using Gaussian noise-contaminated binary image where the
maximum order is all fixed at 30. From left column to right column are: original images,
noisy images, and reconstructions using Chebyshev, Krawtchouk (p = 0.5 [11]), Hahn
moments (μ = ν = 0) respectively. The noise variance in the first row is 0.1 and the
second row 0.3.

moment function may outperform the other two types of discrete orthogonal
moments.

In Fig. 4, we test the noise robustness of different orthogonal moments. Gaus-
sian noises with different variances have been added to the original binary image
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Fig. 5. Noisy binary image reconstruction MSE comparison where Gaussian noise with
zero mean, variance: the left 0.1 and the right 0.3

(a) MSE: 0.1164 (b) MSE: 0.0830 (c) MSE: 0.0762

Fig. 6. Reconstructions of image Lena using (a) Chebyshev moments, (b) Krawtchouk
moments (p = 0.5 [11]) and (c) Hahn moments (μ = ν = 0) respectively. Moments up
to order 75 are used.

of Chinese character. All of the reconstructions have been normalized to binary
values with the same threshold 0.5. The MSE’s shown in Fig. 5 again indicate
the better performance of Hahn moments even if the image is contaminated with
slightly large variance Gaussian noise. In Fig. 5, we can see that the increasing
order moment may inversely degrade the image when image signal-to-noise rate
(SNR) is relatively low.

Fig. 6 shows the approximation of gray level image. Clearly, the Hahn mo-
ment based method can yield slightly lower MSE than the other two orthogonal
moments. It may indicate the best performance of discrete orthogonal Hahn
moments in image reconstruction.

4 Conclusions

In this paper, we have introduced a new set of discrete orthogonal polynomials,
namely Hahn polynomials. The corresponding Hahn moment functions defined
on this basis set were then investigated and applied to image reconstruction. In
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experimental studies, we have compared our Hahn moment based reconstruc-
tion method with the other two discrete orthogonal moments, Chebyshev and
Krawtchok moments based method. The results have shown the best perfor-
mance of Hahn moment based method.

References

1. Lo, C. H., Don, H. S.: 3D moment forms: Their construction and application to
object identification and positioning, IEEE Trans. Pattern Anal. Mach. Intell. 11
(1989), 1053–1064.

2. Flusser, J., Suk, T.: Pattern Recognition by affine moment invariants, Pattern
Recognition, 26 (1993), 167–174.

3. Teague, M. R.: Image analysis via the general theory of moments, J. Opt. Soc. Am.
70 (1980), 920–930.

4. Teh, C. H., Chin, R. T.: On Image analysis by the method of moments, IEEE
Trans. Pattern Anal. Mach. Intell. 10 (1988), 485–513.

5. Liao, S. X., Pawlak, M.: On image analysis by moments, IEEE Trans. Pattern
Anal. Mach. Intell. 18 (1996), 254–266.

6. Papademetriou, R. C.: Reconstructing with moments, Proceedings of 11th Inter-
national Conference, Pattern Recognition (1992) 476–480.

7. Luo, L. M., Hamitouche, C., Dilenseger, J. L., Coatrieux, J. L.: A moment-based
three-dimensional edge operator, IEEE Trans. Biomed. Eng. 40 (1993), 693–703.

8. Luo, L. M., Xie, X. H., Bao, X. D.: A modified moment-based edge operator for
rectangular pixel image, IEEE Trans. Circuits Systems Video Technol. 4 (1994),
552–554.

9. Tuceryan, M.: Moment-based texture segmentation, Pattern Recognition Lett. 15
(1994), 115–123.

10. Mukundan, R., Ong, S. H., Lee, P. A.: Image analysis by Tchebichef moments,
IEEE Trans. Imag. Proc. 10(9) (2001), 1357–1364.

11. Yap, P. T., Paramesran, R., Ong, S. H.: Image analysis by Krawtchouk moments,
IEEE Trans. Imag. Proc. 12(11) (2003), 1367–1377.

12. Nikiforov, A. F., Uvarov, V. B., Special functions of mathematical physics,
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Abstract. Recently semantic classification of images is of great interest for 
image indexing applications. On the one hand, researchers in the field of 
content-based image retrieval are interested in object(s) of interest in an image, 
which is useful for representing the image. In this paper, we present a semantic 
classification method of the object(s) of interest into artificial/natural classes. 
We first show that dominant orientation features in Gabor filtering results of 
artificial objects are very useful for discriminating them from natural objects. 
Dominant orientations in artificial object images are not confined to horizontal 
and/or vertical directions, while those in artificial scene images tend to be 
greatly confined to them. Two classification measures are proposed; the sum of 
sector power differences in Fourier power spectrum and the energy of edge 
direction histogram. They show classification accuracy of 85.8% and 84.8% on 
a test with 2,600 object images, respectively. 

1   Introduction 

In content-based image retrieval (CBIR), images are automatically indexed by 
summarizing their visual contents, and are searched and matched usually based on 
low-level features such as color, texture, shape, and spatial layout. Usually a 
successful indexing of database images through appropriate classification greatly 
enhances the performance of CBIR systems by filtering out irrelevant images. On the 
one hand, we know that there is obvious semantic gap between what user-queries 
represent based on the low-level image features and what the users think. Therefore, 
many researchers try to develop semantic classification methods that can be 
effectively used for semantic indexing applications processing very large image 
databases. There are several semantic classification methods [1-3] that automatically 
classify scenes into general types such as indoor/outdoor or city/landscape. 
Especially, Oliva et al. [4] tried to classify scenery images into artificial and natural 
categories by using power spectrum templates. 

On the one hand, many researchers believe that the key to effective CBIR 
performance lies in the ability to access images at the level of objects because users 
generally want to search for the images containing particular object(s) of interest. 
Thus several methods [5-8] that extract object(s) of interest from object images are 
studied. An object/non-object image classification method is also studied in [9]. 

There are few object classification methods; even though they believe that object-
based systems are more effective in retrieving object images than image-based 
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systems. The image classification methods [1-4] cannot be applied to object image 
classification. Park et al. [10] tried to classify object types to improve image retrieval 
performance, but their method classified unknown objects into only pre-defined 
specific classes such as cars, tanks, butterflies, etc. 

In this paper, we present an object classification method into artificial or natural 
class. Automatic classification of an object image into such classes is a challenging 
problem, because it is not easy to find generic properties of each class and 
discriminating features between two classes. The object image is the image that 
contains an (artificial/natural) object with black background. The object is 
automatically extracted by the central object extraction method [8]. We first show that 
artificial object images tend to have dominant orientation(s) in their Gabor filtering 
results while natural object images do not. In artificial scene images, dominant 
orientations are greatly confined to horizontal and/or vertical directions, but those in 
artificial object images are not. Two classification measures are proposed, which 
represent existence of the dominant orientations well. One is the sum of sector power 
differences in Fourier power spectrum where occurrence of dominant orientations 
appears as well as in Gabor filtering results. The other is the energy of edge direction 
histogram [1], which has high value for the histograms having peaks but does not 
depend on location of the peaks. 

2   Clustering Gabor Filtering Results of Object Images 

2.1   Gabor Filtering and Gabor Energy Map 

Given an object image (Fig. 1(a)), we pass it through a bank of 24 Gabor filters as 
shown in Fig. 1(b). The filter bank is similarly designed to the Gabor filter dictionary 
in [11]. The number of scales, the number of orientations, the lower and the upper 
center frequencies of interest are set by 4, 6, 0.1, and 0.4, respectively. The filtered 
image through the Gabor filter corresponding to i-th scale and j-th orientation is 
denoted by fij. The Gabor energy eij for fij is defined as the sum of magnitude squares 
of all complex pixel values in fij, as shown in Eq. 1. Fig. 1(c) shows a Gabor energy 
map M for the object image in Fig. 1(a). The value of M(i,j) is the Gabor energy eij. 

=
2

),( yxfe ijij
 (1) 

2.2   Clustering Gabor Feature Vectors 

To find generic properties of artificial and natural object images, a clustering 
experiment is performed on 1,200 object images (600 artificial object images and 600 
natural ones). A Gabor energy map for an object image can be considered as a 24-
dimensional feature vector for the image. The K-means technique is used for 
clustering 1,200 Gabor feature vectors. 
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  (a)                                (b)                                    (c) 

Fig. 1. An example of Gabor filtering and Gabor energy map: (a) an object image, (b) a Gabor 
filter bank designed with parameters, the number of scales = 4, the number of orientations = 6, 
the lower center frequency of interest = 0.1, and the upper center frequency of interest = 0.4, (c) 
a Gabor energy map for the object image in (a) 

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

cluster 6 cluster 7 cluster 8 cluster 9 cluster 10

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

cluster 6 cluster 7 cluster 8 cluster 9 cluster 10  

Fig. 2. Gabor energy maps for centroid vectors of the clusters that are determined by the  
K-means clustering algorithm with K = 10 

Fig. 2 shows Gabor energy maps (GEMs) for cluster centroid vectors when K = 10 
and the classification accuracy of the K-means technique is 82.6%. The first three 
GEMs represent characteristics of natural object class and the others that of artificial 
object class. We can see that there are relatively bright column stripe(s) in the GEMs 
of artificial object class. To show this phenomenon more clearly, Gabor orientation 
energy Ej is computed by summing the Gabor energies eij in corresponding orientation, 
as shown in Eq. 2. Then each Gabor orientation energy is drawn on the corresponding 
radiant axis of a radar chart as shown in Fig. 3. 

=

=
3

0i
ijj eE  (2) 

Fig. 3 shows ten radar charts corresponding to the GEMs in Fig. 2. Note that 
shapes of the radar charts for artificial object class are sharp-pointed. This shows that 
artificial object images tend to have dominant orientation(s) in their radar charts. 
However the dominant orientation(s) of artificial object images is not confined to 
horizontal and/or vertical directions as shown in Fig. 4, while that of artificial scene 
images tends to be greatly confined to them [4]. We can also see in Fig. 4 that the 
radar chart for natural object image (e.g. a pet dog) does not have any dominant 
orientation(s). 
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cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

cluster 6 cluster 7 cluster 8 cluster 9 cluster 10

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

cluster 6 cluster 7 cluster 8 cluster 9 cluster 10  

Fig. 3. Radar charts of Gabor orientation energy for the ten Gabor energy maps in Fig. 2. 
Shapes of the first three radar charts of natural object class tend to have round shapes, while 
those of artificial object class look sharp-pointed. 

 

Fig. 4. This figure shows examples of several image types and their radar charts. The first two 
object images of artificial class shows oblique dominant orientations, while the artificial scene 
images (a city image and a bedroom image) have horizontal and/or vertical dominant 
orientations in their radar charts. The right-most image of natural object class does not any 
dominant orientation. 

3   Classification of Artificial / Natural Object Images 

3.1   Sum of Sector Power Difference 

The dominant orientation discussed in section 2 can be considered as a texture feature 
of artificial object class images. This texture feature can be analyzed well in Fourier 
power spectrum by measuring the sector powers. 

Let F(u,v) be the discrete Fourier transform of an object image f(x,y). The power 
spectrum |F(u,v)|2 is defined by the magnitude of the spectral components squared. A 
sector power is measured by summing the power over range of corresponding sector. 
In this paper, six sectors are defined over half the power spectrum, as shown in Fig. 
5(a). Very low frequency powers are excluded from computing the sector powers in 
order to make dominant orientations clear. The radar chart of sector power (Fig. 5(b)) 
for the plane image in Fig 4 is very similar to that of Gabor orientation energy as 
shown again in Fig. 5(c). 
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Fig. 5. Comparing a radar chart of sector power with that of Gabor orientation energy for the 
plane image in Fig. 4: (a) sector definition used in this paper, (b) the radar chart of sector 
power, (c) the radar chart of Gabor orientation energy 
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Fig. 6. Distribution of SSPDs (sum of sector power differences) for 1,300 artificial object 
images and 1,300 natural object images. The SSPDs for natural object images tend to have 
lower values than those for artificial object images. 

Let the six sector powers be SPi (i = 0,1,…,5). The sum of sector power difference 
(SSPD) can be computed as in Eq. 3, which is very useful for representing existence 
of dominant orientations of any direction in the radar chart of sector power. 

=
+ −=

5

0
6mod)1(

j
jj SPSPSSPD  (3) 

The SSPD has a great value when there is abrupt change between neighboring 
sector powers. Thus SSPDs for artificial object images have greater values than those 
for natural object images. Fig. 6 shows distribution of the SSPDs for 1,300 artificial 
object images and 1,300 natural ones. 

3.2   Energy of Edge Direction Histogram 

The dominant orientation discussed in section 2 results mainly from occurrence of 
distinguishable line segments in boundary of an object and/or in internal region of the 
object. Thus, by finding the line segments, the dominant orientation can be analyzed 
in spatial domain as well as in spectral domain. 

The edge direction histogram (EDH) [1] is a good tool for representing existence 
of the line segments. In this paper, edges are extracted by using the Canny edge 
detector [12] and a total of 45 bins are used to represent the edge directions (0°∼180°) 
quantized at 4° interval. The EDH is normalized to compensate for different number 
of edge points and the energy of EDH is computed by summing squares of the count 
in each bin. 
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edge directionedge direction edge directionedge direction

 
                   (a)                               (b) 

Fig. 7. Examples of edge direction histograms (EDHs) and their energies: (a) the EDH for the 
plane image in Fig. 4, (b) the EDH for the pet dog image in Fig. 4 
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Fig. 8. Distribution of energy of EDHs for 1,300 artificial object images and 1,300 natural ones. 
Note that energy of EDH for natural object images tends to be smaller than that for artificial 
object image. 

Fig. 7 shows the EDHs for the plane image and the pet dog image in Fig. 4. The 
former shows a peak corresponding to the dominant orientation in its radar chart of 
sector power, thereby having greater energy than the latter. Note that energy of EDH 
is not dependent on the direction of dominant orientations. Fig. 8 shows distribution 
of energy of EDHs for 1,300 artificial object images and 1,300 natural ones. 

3.3   Classification of Object Images 

In this paper, an unknown object image is classified into artificial class if its SSPD or 
its energy of EDH is greater than a classification threshold t. However, we cannot find 
a good classification threshold in Fig. 6 and 8 because two distribution curves are not 
clearly separated. Fig. 9 shows sensitivity of classification threshold for the SSPD. 
The threshold with lowest error rate will be selected as an optimal classification 
threshold in our experiments. Note that error rates near the optimal classification 
threshold vary slowly. 

4   Experimental Results and Discussions 

Two classification measures are evaluated on 2,600 object images (1,300 artificial 
object images and 1,300 natural ones) selected from the Corel Gallery photo-CD. To 
compensate for different object sizes, each object is scaled for longer one between its 
width and its height to be about 210 pixels and is centered in a (256 x 256) black 
background. 
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Fig. 9. This figure shows sensitivity of classification threshold for the SSPD (sum of sector 
power difference). Error rates near the optimal classification threshold vary slowly, so selection 
of a classification threshold is not sensitive. 

Training object images (600 artificial object images and 600 natural ones) are 
randomly chosen from the 2,600 object images and the optimal classification 
threshold is selected as the threshold with the lowest error rate. Object classification is 
performed on the remaining object images. This procedure is repeated 30 times to 
reduce dependence of classification on the training set of object images. Average 
classification accuracies of the SSPD and the energy of EDH are 85.8% and 84.8%, 
respectively. 

Table 1. Evaluation of the classification results for each classification method based on 
precision, recall, and F-measure 

 SSPD Measure Energy of EDH Measure 
Precision 0.90 0.86 

Recall 0.80 0.84 
Artificial 
Object 

F-measure 0.85 0.85 
Precision 0.82 0.84 

Recall 0.92 0.86 
Natural 
Object 

F-measure 0.87 0.85 
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Fig. 10. Distribution of misclassified object images 

Table 1 shows classification accuracy based on precision, recall and F-measure. 
We can see that both measures are not biased because all the F-measures are almost 
equal to. However, in the classification by the SSPD measure, precision of artificial 
object is higher than its recall, while precision of natural object is lower than its recall. 
This means that the number of artificial object images not having dominant 
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orientations is larger than one of natural object images having dominant orientations. 
We also found that almost misclassification occurred near the optimal classification 
threshold (Fig. 10). 

5   Conclusions 

We first showed that the dominant orientation(s) of artificial object images in their 
radar charts of Gabor orientation energy was very useful for discriminating artificial 
object class from natural object class. Two classification measures, the sum of sector 
power differences in Fourier power spectrum and the energy of edge direction 
histogram, were proposed, which represented existence of the dominant orientations 
in any direction well. They showed classification accuracy of 85.8% and 84.8% 
respectively on a test with 2,600 object images. Our work can be applied to improving 
the performance of semantic-based image indexing. 
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Abstract. This paper proposes a novel method for the recognition of passports 
based on the fuzzy binarization and the fuzzy RBF network. First, for the ex-
traction of individual codes for recognizing, this paper targets code sequence 
blocks including individual codes by applying Sobel masking, horizontal 
smearing and a contour tracking algorithm on the passport image. Then the pro-
posed method binarizes the extracted blocks using fuzzy binarization based on 
the trapezoid type membership function. Then, as the last step, individual codes 
are recovered and extracted from the binarized areas by applying CDM masking 
and vertical smearing. This paper also proposes an enhanced fuzzy RBF net-
work that adapts the enhanced fuzzy ART network for the middle layer. This 
network is applied to the recognition of individual codes. The results of the ex-
periments for performance evaluation on the real passport images showed that 
the proposed method has the better performance compared with other ap-
proaches.  

1   Introduction 

The immigration control system authorizes the immigration of travelers by means of 
passport inspections which includes the determination of forged passports, the search 
for a wanted criminal or a person disqualified for immigration, etc. The determination 
of forged passports plays an important role in the immigration control system, for 
which automatic and accurate processing is required because of the rapid increase of 
travelers. We propose a fuzzy image binarization method and a fuzzy RBF network, 
and by employing these methods, implement a novel system for the preprocessing 
phase for the determination of forged passports.  

For extracting the individual codes from the passport image for recognizing, we 
extract the code sequence blocks including individual code using Sobel masking [1], 
horizontal smearing [2] and 4-directional contour tracking [3]. Then we extract the 
individual codes from the code sequence blocks using a novel fuzzy binarization 
algorithm, CDM masking [4] and vertical smearing. A novel fuzzy RBF network is 
proposed and applied for the recognition of extracted codes. The network constructs 
the middle layer using the enhanced fuzzy ART network for the adjustment of the 
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weight of connections between the input layer and the middle layer. It supports the 
dynamical change of vigilance parameter, which makes it more efficient. The experi-
ments for performance evaluation of the proposed fuzzy RBF network showed con-
siderable improvement in learning performance and recognition rate. 

2   Individual Code Extraction 

The passport image consists of the three areas, the picture area in the top-left part, the 
user information area in the top-right part, and the user code area in the bottom part. 
For the recognition of passports, we extract the user codes from the passport image 
and digitalize the extracted codes. 

2.1   Code Sequence Block Extraction  

Fig.1 shows an example of passport image used for experiments in the paper. First, 
we extract the user code area, and next, extract the picture area to obtain the raw in-
formation from passport images.  

The user code area in the bottom part of passport image has a white background 
and two code rows containing 44 codes. For extracting the individual codes from the 
passport image, first, we extract the code sequence blocks including the individual 
codes by using the feature that the user codes are arranged sequentially in the horizon-
tal direction. The extraction procedure for code sequence blocks is as follows: First, 
Sobel masking is applied to the original image to generate an edge image [1]. By 
applying the horizontal smearing to the edge image, the adjacent edge blocks are 
combined into a large connected block. By successively applying contour tracking to 
the result of smearing process, a number of connected edge blocks are generated, and 
the ratio of width to height for all the blocks are calculated. Finally, the edge blocks 
with the maximum ratio are selected as code sequence blocks.  

 

 

Fig. 1. An example of a passport image 

Fig. 2 shows an edge image generated by applying Sobel masking to the image in 
Fig. 1. Fig. 3 shows the results generated by applying horizontal smearing to the edge 
image. We use 4-directional contour tracking to extract code sequence blocks from 
the results in Fig. 3.  

The contour tracking extracts outlines of connected edge blocks by scanning and 
connecting the boundary pixels. This paper uses a 2 × 2 mask shown in Fig. 4 for the 
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      Fig. 2. Result of Sobel masking                 Fig. 3. Result of horizontal smearing 

4- directional contour tracking [3]. Contour tracking scans the smeared image from 
left to right and from top to bottom to find the boundary pixels of edge blocks. If a 
boundary pixel is found, the pixel is selected as the start position of tracking. The 
selected pixel is placed at the kx position of the 2 × 2 mask, and by examining the two 

pixels coming under the a and b positions and comparing with the conditions in Table 
1, the next scanning direction of the mask is determined and the next boundary pixel 
being tracked is selected. The selected pixels coming under the kx position are con-

nected into the contour of the edge block. By generating the outer rectangles includ-
ing contours of edge blocks, and comparing the ration of width to height of the rec-
tangles, the code sequence blocks with the maximum ration are extracted.  

 

 

Fig. 4. 2x2 mask for 4-direction contour tracking 

Table 1. Progress direction of a and b for 2× 2 mask 

 a  b  kx  ky  

Forward 1 0 a  b  
Right 0 1 b  ky  

Right 1 1 a  kx  

Left 0 0 kx  a  

2.2   Individual Code Extraction 

The individual codes are extracted by applying the proposed fuzzy binarization 
method and the CDM (Conditional Dilation Morphology) masking to the areas corre-
sponding to code sequence blocks in the original passport image.  

We propose a novel fuzzy binarization method based on the membership function 
of trapezoidal shape, which supports adaptive binarization for images with diversely 
shaped objects and various changes of intensity. Let T be the mean value between the 
maximum value (IMax) and the minimum value (IMin) of intensity in the original gray-

Scan  
direction 

kykx

a b 
Progress 
direction 
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scale image. Eq. 1 shows the relationship between the mean value T, Is and Ie. In the 
interval [Is, Ie] the degree of membership function of trapezoidal shape becomes 1.  

2
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×== ses II,
T

I  (1) 

Hence, the membership function for the interval [IMin, IMax] is formulated using Eq. 
2 and it is used to calculate the degree of membership. 
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For each pixel in the passport image, the degree of membership is calculated using 
Eq. 2 and binarization is executed by applying cut−α  to the degree of membership. 
Here, the α  value used in the cut−α  processing is given using Eq. 3 for the adaptive 
binarization of passport image.  

( ) 10075022 /.T −×=α  (3) 

That is, if the degree of membership of a pixel is greater than or equal to the α  
value, the intensity value of the pixel is set to 255. Otherwise, the intensity value is set 
to 0. We apply CDM masking to the result of binarization to recover the information 
loss caused by the low resolution of input. The CDM masking recover outer pixels of 
individual codes by executing only the dilation process without erosion and it is effi-
cient in the images with low resolution [4]. Finally, we use vertical smearing and the 
horizontal projection to extract individual codes form the result of CDM masking. By 
projecting the vertical smeared areas in the horizontal direction, the horizontal coor-
dinates of individual codes are calculated.  

2.3   Picture Area Extraction 

After individual codes are extracted, we extract the picture area containing the face 
using the start position of code sequence blocks and the characteristic that the vertical 
edge of picture area is greater than the horizontal edge, and the ratio of horizontal 
edge to vertical edge becomes approximately 3:4. As seen in Fig. 1 the picture area 
containing the face occupies 1/3 of the entire width of the passport page image, start-
ing from its left edge, which matches with, left edge of the code sequence blocks. 
Hence, we select the start position for horizontal phase to matches with the code se-
quence block, and the end position is determined by scan which covers up to 1/3 of 
the width of the image.  

Since, the Sobel masking makes the contour of picture more vivid by generating 
the thick edge, it is applied to the candidate area to extract edges. By generating the 
horizontal and vertical histograms in terms of the result of Sobel masking, the posi-
tion method using only the Sobel masking and the histogram reduces the time re-
quired for face area extraction. Fig. 6(b) shows the passport page image along with 
the result of extraction of picture area containing the face. This data can now be sent 
to a face recognition system, which recognizes the face by matching with the passport 
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database. The face recognition system can identify the person and provide name and 
other information from the passport database for validation of given passport.  

3   Enhanced Fuzzy RBF Network for Recognition of Passports 

We propose an enhanced fuzzy RBF network which constructs the middle layer using 
the enhanced fuzzy ART network for the recognition of extracted codes. In the tradi-
tional fuzzy ART network, the vigilance parameter determines the allowable degree 
of mismatch between any input pattern and stored patterns [5], [6]. Vigilance parame-
ter is the inverse of degree of tolerance. A large value of vigilance parameter classi-
fies an input pattern to a new category in spite of a little mismatch between the pattern 
and stored patterns. On the other hand a small value may allow the classification of 
the input pattern into an existing cluster in spite of a considerable mismatch. More-
over, because many applications of image recognition based on the fuzzy ART net-
work assign an empirical value to the vigilance parameter, the success rate of recogni-
tion many deteriorate [7], [8]. To correct this defect, we propose an enhanced fuzzy 
ART network and apply it to the middle layer in a fuzzy RBF network. 

The enhanced fuzzy ART network adjusts the vigilance parameter dynamically ac-
cording to the homogeneity between the patterns using Yager’s intersection operator, 
which is a fuzzy connection operator. The vigilance parameter is dynamically ad-
justed only in the case that the homogeneity between the saved pattern and the learn-
ing pattern is greater than or equal to the vigilance parameter. Also, the proposed 
fuzzy ART network adjusts the weight of connection for the learning patterns with the 
authorized homogeneity: Let pT  and *pT  be the target value of the learning pattern 
and the saved pattern respectively. If pT  is equal to *pT , the network decreases the 
vigilance parameter and adjusts the weight of connection between the input layer and 
the middle layer. Otherwise, the network increases the vigilance parameter and selects 
the next winner node.  

The algorithm dynamically adjusts the vigilance parameter as follows:  
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where ρ  is the vigilance parameter.  
The authorization of homogeneity for the selected winner node is executed accord-

ing to Eq. 5. 
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If output vector of the winner node is greater than or equal to the vigilance parame-
ter, the homogeneity is authorized and the input pattern is classified to one of the 
existing clusters. Moreover, in this case, the weight of connection is adjusted accord-
ing to Eq. 6 to reflect the homogeneity of the input pattern to the weight. 
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where β  is the learning rate between 0 and 1. When the weight is adjusted in the 
traditional fuzzy ART network, β  is set to an empirical value. If a large value of β  is 
chosen, the success rate of recognition goes down since an information loss is caused 
by the increase in the number of cluster center updates. On the other hand, if the 
learning is performed with a small value of β , the information of the current learning 
pattern is unlikely to be reflected in the stored patterns and the number of clusters 
increases [9]. So, in the enhanced fuzzy ART network, the value of β  is dynamically 
adjusted based on the difference between the homogeneity of the learning pattern to 
the stored pattern and the vigilance parameter. The adjustment of β  is as follows:  
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This paper enhances the fuzzy RBF network by applying the enhanced fuzzy ART 
algorithm to the middle layer, as shown in Fig. 5. 
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Fig. 5. Learning and recognition algorithm of the enhanced fuzzy RBF network 

4   Performance Evaluation 

For performance evaluation, we implemented the proposed algorithm and experi-
mented on an IBM-compatible PC with Intel Pentium-IV 2GHz CPU and 256MB 
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RAM. And the 20’s passport images of 600× 437 pixel size were used in the experi-
ments. Fig. 6 (a) shows the result of individual code extraction from the passport 
image in Fig. 1, and Fig. 6 (b) shows the result of picture area extraction. Fig. 7 shows 
the individual codes finally extracted by using fuzzy binarization and CDM masking. 

           
(a) Example of individual code extraction     (b) Example of picture extraction 

Fig. 6. Example of individual code and picture extraction 

 

Fig. 7. Example of codes extracted by fuzzy binarization and CDM masking 

Table 2 shows the number of code sequence blocks and individual codes extracted 
from the 20 passport images. The extracted individual codes contained 1140 alpha-
betic codes and 620 numeric codes. In the paper alphabetic codes and numeric ones 
were used separately in the learning and recognition experiments. 

Table 2. Number of extracted for code sequence blocks and individual codes 

 Code Sequence Blocks Individual Codes 
The number of extraction  

(success/target) 
 

40/40 
 

1760/1760 

Table 3. Comparison of the number of clusters between the fuzzy ART and the proposed fuzzy 
ART network 

 Number of  clusters / 
Number of patterns 

Proposed Fuzzy ART 48/1140 Alphabetic Codes 
Fuzzy ART 303/1140 

Proposed Fuzzy ART 14/620 Numeric Codes 
Fuzzy ART 142/620 

To evaluate the learning performance of the enhanced fuzzy ART network, this paper 
compared the number of clusters generated by the traditional fuzzy ART network and 
the enhanced fuzzy ART network in the learning experiments on individual codes. 



 Recognition of Passports Using a Hybrid Intelligent System 547 

Table 4. Result of learning and recognition by the proposed fuzzy RBF network 

 The number of 
nodes in middle 

layer 

The number of 
Epoch 

The number of 
recognition 

Alphabetic Codes 40/40 4068 1140/1140 
Numeric Codes 14/620 1527 620/620 

Table 3 shows the result of the learning experiments. In the experiments, the vigi-
lance parameters for the traditional fuzzy ART network were set to 0.9 and 0.85 for 
the alphabetic and the numeric codes respectively, and for the enhanced fuzzy ART 
network, the initial values of the vigilance parameter were set to 0.9 and 0.85 respec-
tively. As shown in Table 3, the number of clusters in the enhanced fuzzy ART 
network was much lower than in the traditional fuzzy ART network, so we may know 
that the enhanced fuzzy ART network refines the classification of the homogenous 
patterns properly.Table 4 shows the results of the experiment involving enhanced 
fuzzy RBF network for the 20 passport images for recognition. In the experiment, the 
initial values of the vigilance parameter used for the creation and update of the nodes 
in the middle layer were set to 0.9 and 0.85 for the alphabetic and the numeric codes 
respectively. As shown in Table 4, the proposed fuzzy RBF network was able to 
successfully recognize all of the extracted individual codes.  

In conclusion, the experiment for performance evaluation shows that the proposed 
fuzzy RBF network improves the learning performance and the success rate of 
recognition by supporting the dynamical change of the vigilance parameter and the 
adjustment of the weight of connection between the input layer and the middle layer. 

5   Conclusion 

Due to rapid increase of travelers globally, automatic and accurate processing of 
passports has become a necessity in order to avoid fraud and long waiting time for 
passengers. In this paper, we discuss an automated system for detection of forgeries in 
passports. 

First, we proposed a novel method for the recognition of passports based on the 
fuzzy image binarization and the fuzzy RBF neural network. In the individual code 
extraction phase, we extracted the code sequence blocks including individual codes 
by using Sobel masking, horizontal smearing and the 4-directional contour tracking 
based on the 2× 2 mask. Then we extracted the individual codes from the code se-
quence blocks by using the proposed fuzzy binarization, the CDM masking, and the 
vertical smearing. In this paper, an enhanced fuzzy RBF network was proposed and 
applied in the code recognition phase. This algorithm dynamically changes the vigi-
lance parameter in order to improve the clustering performance. In the experiments 
for performance evaluation using 20 passport images, it was found that the enhanced 
fuzzy RBF network outperforms traditional approach. 

In the future studies, we plan to implement a face authorization module, which can 
search many databases including driver licenses in order to detect the identity of the 
perpetrator. 
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Description of Digital Images by Region-Based
Contour Trees
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Abstract. In analyzing the morphological information of objects in im-
ages, isosurfaces play important and application-independent roles. For
continuous scalar field, Contour Trees have been used as a tool to select
and visualize isosurfaces. However, the tree structure of contour trees is
based on the critical points which does not exist in digital images. In
this paper, we propose a tree structure of isosurfaces in digital images
named Region-based Contour Tree. The proposed method describes a
finite number of isosurfaces in digital images completely, without redun-
dancy.

1 Introduction

With advances of imaging technology and improvements of computer power, the
opportunities of using digital images are rapidly increasing. In the medical field,
various types of digital images are used such as two-dimensional (2D) X-ray
projection images, 3D X-ray computer tomography images, magnetic resonance
images, and the temporal series of these images. The final goal of our research
is to extract, analyze and display the morphological information of observed
objects and relationship among them, from multidimensional digital images.

In analyzing the morphological information of objects in grayscale images,
isosurfaces (isolines in 2D) play important and application-independent roles. In
this paper, we focus on the relationship among isosurfaces in grayscale digital
images. Isosurfaces of digital images can be defined as connected boundaries
among pixels.

Max/Min Tree [1] is a tree structure to represent the transition of fore-
ground/background connected components with changes of the threshold to bi-
narize images. Watershed Lake Tree [3] is a related structure to Min Tree [4]
for watershed image analysis. These tree structures can be considered as the
structure of isosurfaces surrounding the connected components. However, these
cannot represent some regions and surrounding isosurfaces. For example, Max
Tree cannot represent holes inside connected components of foreground.

Inclusion Tree [5] to describe the relationship among closed isosurfaces can
overcome the disadvantage of Max/Min Tree. Remarkable point of Inclusion Tree
is the ability to describe the nesting relationship of shapes surrounded by closed
isosurfaces. A problem of Inclusion Tree is that the structure cannot represent
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“open” isosurfaces connecting to the boundary to the outside of images. From
the restriction of FOV (field of view), objects of interests and the surrounding
isosurfaces are frequently cut at the boundaries of observed images.

“Contour Tree” (CT) [6] is a data structure to describe the relationship
among isosurfaces in continuous scalar fields, based on the relationship between
the critical points (local maxima, local minima and saddle points) where topo-
logical changes of isosurfaces occur by the changes of threshold (isovalue). The
isosurfaces described by CT are not necessarily closed.

When digital images are represented as the set of pixels that have certain
area, the critical points can be defined only with introducing additional assump-
tions. In constructing CT from digital images, this characteristic is a problem
because some nodes of CT must correspond to the critical points. Asano pro-
posed an idea of CT that could be applied to digital images [7], but the problem
described above is not mentioned.

Our purpose here is to describe the relationship among isosurfaces in digital
images to handle all the isosurfaces with minimum additional assumptions. When
isosurfaces are defined as connected boundaries among pixels, a digital image
consists of a finite number of isosurfaces. If the pixel values consist of limited
integers that are widely used, the number of possible isosurfaces becomes much
smaller.

In this paper, we propose a modified data structure of the conventional CT
named Region-based Contour Tree (RBCT). RBCT describes the relationship
among isosurfaces from the set of regions, without introducing additional as-
sumptions to define critical points.

In the following sections, the scalar fields are assumed to be 2D. However, the
procedures proposed in this paper can be applied to higher-dimensional fields
directly.

2 Contour Trees for Continuous Scalar Fields

Contour Tree (CT) is a tree-structured graph, representing the transitions of
isosurfaces (appearance, disappearance, join and split) in continuous scalar fields,
with increase or decrease of the threshold (isovalue) of field value [6].

Figure 1 shows the outline of CT. Figure 1(a) represents a 2D scalar field,
and P , Q, R1, and R2 are isosurfaces. a,...,i denote critical points (local maxima,
local minima and saddles) where the topological changes of isosurfaces occur.

Figure 1(b) is the CT corresponding to the scalar field (a). We define CT
based on the references [8] [9] [10] as follows:

– CT is a tree-structured graph having nodes and arcs.
– A node of CT represents a critical point and the corresponding isosurface.

Nodes and critical points satisfy one-to-one correspondence.
– An arc of CT links two nodes. The arc represents a region bounded by two

isosurfaces corresponding to these two nodes. An arc and a region have a
one-to-one relationship.
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We call the nodes and arcs “supernodes” and “superarcs”, respectively. In a
region represented by a superarc, movement of an isosurface without topological
change occurs with the increase or decrease of the threshold.

Additional nodes can be introduced on the superarcs to represent isosurfaces
in the regions corresponding to the superarcs. The isosurfaces do not include
any critical points. We call these nodes “regularnodes.” “Nodes” consist of su-
pernodes and regularnodes. We use the word “arcs” as the links between nodes.
We call this type of CT Augumented Contour Tree (ACT) [10].

CT is a classical method, having a problem of the computational complexity
for the construction. Recently, several groups have proposed efficient methods
to construct CT [8][9][10][11][12].

Fig. 1. Contour Tree

3 Region-Based Contour Trees from Digital Images

In digital images, isosurfaces have different characteristics from those in continu-
ous scalar fields. In this section, we propose a modified data structure of Contour
Trees for digital images named Region-based Contour Trees.

3.1 Definition of Isosurfaces in Digital Images

In general, a digital image can be described as a set of pixels on the vertices of
a multidimensional, rectangular mesh. The pixels have values of non-negative,
finite integer.

A digital image can be binarized using a threshold of real value t. Here we
denote Ri(t) as the i-th region (i = 1, 2, ...) of connected pixels {p|V (p) ≥ t} and
Sj(t) as the j-th region (i = 1, 2, ...) of connected pixels {p|V (p) ≤ t}, where
V (p) is a pixel value of pixel p. Using R and S, an isosurface for threshold t can
be represented as a boundary of a pair of regions [Ra(T ), Sb(T − 1)], where T is
the minimum integer value in T ≥ t.

In binary images, ones of brighter or darker pixels are regarded as foreground,
and the others become background. In order to avoid the contradiction between
the connected regions of foreground/background, different types of connectivity
are introduced. Generally, a combination of 8- and 4-connectivity for 2D images
is used for foreground and background. In the following description, we deal with
brighter Ri(T ) as a foreground region, with 8-connectivity of pixels.
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3.2 Definition of the Transitions of Isosurfaces

When isosurfaces of a digital image are defined as boundaries among regions
described above, the isosurfaces are discontinuously altered with the change of
threshold. Because of the discontinuity, any critical points and corresponding
isosurfaces do not appear during the change of threshold.

Here we define the transitions of isosurfaces in digital images by the set of
isosurfaces before and after the transitions. We denote these sets of isosurfaces as
C+(T ) and C−(T ) for a transition with the decrease of threshold from t = T + ε
to t = T , where ε is a small positive value. These sets can be defined using the
following conditions:

– All isosurfaces Ci ∈ C+(T )(i = 1, ...,M) are the boundaries between one
region S1(T ) and adjacent regions Ri(T + 1).

– All isosurfaces Cj ∈ C−(T )(j = 1, ...,N) are the boundaries between one
region R1(T ) and adjacent regions Sj(T − 1).

– U(T ) ={p|V (p) = T } = R1(T ) ∩ S1(T ) 	= φ .

Figure 2 shows an example of the transitions. From the definition, the tran-
sitions can be classified as follows:

– appearance: M = 0,N = 1.
– disappearance: M = 1,N = 0.
– join: M > 1,N = 1.
– split: M = 1,N > 1.
– transition without topological change: M = 1,N = 1.

Other conditions of M,N represent the combination of these transitions.

Fig. 2. A transition of isosurfaces (join with the decrease of threshold)

3.3 Region-Based Contour Trees

As described above, any critical points and corresponding isosurfaces do not
appear in the change of isosurface. Therefore, the nodes of CT derived from a
digital image cannot correspond to any critical point. The fact is against the
definition of CT in section 2 . Here we modify the definition of CT to describe
digital images properly. The definition of the proposed CT having the structure
of ACT is as follows:
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– CT is a tree-structured graph having nodes and arcs.
– A supernode of CT represents a transition of isosurfaces involving topological

changes, and the set of isosurfaces before and after the transition.
– A superarc of CT links two nodes. The arc represents a region bounded by

two isosurfaces corresponding to these two nodes. An superarc and a region
have a one-to-one relationship.

– A regularnode is on a superarc. The node represents a transition of isosur-
faces in the region corresponding to the superarc. Nodes consist of supern-
odes and regularnodes. Arcs link nodes.

From the characteristics of isosurfaces in digital images, we can define:

– ni(i = 1, ...,X) : a node, and a transition of isosurfaces.
– aj(j = 1, ...,X − 1) : an arc.
– C(ni) ={C+(ni), C−(ni)}: a set of isosurfaces related to ni.
– U(ni) : a set of pixels related to ni.
– V (ni) : a field value that the pixels U(ni) have.
– R(ni) : a region of connected pixels including U(ni), having pixel value
t ≥ V (ni).

– S(ni) : a region of connected pixels including U(ni), having pixel value t ≤
V (ni).

Here we can represent all the transitions of isosurfaces in a digital image
by the set of nodes. Since any pixel in an image takes part in a transition of
isosurfaces, each pixel is an element of U(ni) of exactly one node ni.

If all the transitions of isosurfaces are represented by the nodes of CT, an arc
aj which links np and nq represents exactly one isosurface. If V (np) > V (nq) the
isosurface for aj is the boundary between R(np) and S(nq) where the threshold
t is V (np) ≥ t > V (nq). If the nodes represent all the transitions of isosurfaces,
the arcs represent all the isosurfaces in the image. The arcs and isosurfaces
satisfy one-to-one correspondence. Therefore, the arcs represent the isosurfaces
completely, without any redundancy.

It can be considered that nodes of the proposed CT represent regions in
an image, and the CT describes the structure of isosurfaces from the relation-
ship among the regions. From this characteristic, we call the CT “Region-based
Contour Tree (RBCT).” Figure 3 illustrates an example of RBCT. Figure 3(a)
represents a digital image, and Figure 3(b) is the RBCT corresponding to (a).

Figure 4 shows the isosurfaces of Figure 3(a) by various methods. Here, bold
and solid lines indicate the isosurfaces represented by these methods, and bro-
ken lines indicate the isosurfaces to be represented. The thin solid line is the
boundary of outside image. As shown in this figure, conventional Max Tree or
Inclusion Tree cannot represent several isosurfaces. On the other hand, RBCT
can represent all isosurfaces.

3.4 Introducing the Isosurfaces Surrounding Whole Images

If necessary, we can represent the isosurface surrounding whole image, by setting
the outside region of the image having pixel value ψ . If ψ is smaller than the
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Fig. 3. Region-based Contour Tree

Fig. 4. Isosurfaces represented by various methods

minimum pixel value of the image on outside boundary (extremely ψ = −∞)
or larger than the maximum value (extremely ψ = +∞), one closed isosurface
surrounding whole image is extracted.

We can introduce this isosurface to RBCT as follows:

– Set a node which represents outside region of an image, having pixel value
ψ = −∞(+∞). We call the node “virtual node”.

– Find a node nr where U(nr) includes the pixels on the outside boundary
and V (nr) is the minimum (maximum) pixel value on the outside boundary
if ψ = −∞(+∞). We call the node “root node”.

– Set an arc which links the virtual node and the root node. The arc represents
the isosurface surrounding the whole image. We call the arc “root arc”.

In this condition, all other isosurfaces are closed, and the resulting RBCT
become an equivalent tree structure as Inclusion Tree [5] . The resulting iso-
surfaces change in response to the value of ψ . Bold and solid lines of Figure 5
show the isosurfaces of Figure 3(a) for threshold t that 2 ≥ t > 1, viewing the
difference of isosurfaces with changes of the definition of virtual node.

3.5 Construction of Region-Based Contour Trees

RBCT can be constructed by modifying the method of Carr et al. [10] for con-
tinuous scalar fields. The outline of the procedure of their method is as follows:
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– Represent a scalar field by a multidimensional mesh, where each vertex has
field value.

– Sort the vertices of the mesh by field values in descending order.
– Construct a tree named Join Tree that represents the appearance, expansion

and join of foreground regions with decreasing the threshold, by tracing the
sorted vertices.

– Sort the vertices of the mesh by field values in ascending order.
– Construct a tree named Split Tree that represents the appearance, expansion

and join of background regions with increasing the threshold (which also
means the disappearance, contraction and split of the regions with decreasing
the threshold), by tracing the sorted vertices.

– Combine Join Tree and Split Tree to represent both tree structure. Since
these two trees have same number of nodes, the combination is easily
processed.

– Merge the linked pairs of nodes if the correspondent pairs of vertices have
the same field values.

In order to apply this method to construct RBCT, we deal with pixels of
a digital image as the vertices of the mesh. To introduce the difference of con-
nectivity of foreground/background regions, we used 8-connectivity to construct
Join Tree and 4-connectivity for Split Tree. It is easily understood that Join
Tree and Split Tree in the modified procedure for digital images are same as
Max Tree and Min Tree [1][2], respectively.

In the procedures listed above, computational complexity to sort pixels is
O(N log N) if heap-sort algorithm is used, where N is the number of pixels. Since
the pixel values are assumed to be finite integers here, counting-sort (bucket-sort)
algorithm having the complexity O(N) can be applied if the range of pixel values
is not large (8 to 16 bit [2]). Computational complexities for other procedures in
the list are O(N) when the numbers of connectivity for foreground/background
regions are treated as fixed, small-valued constants [10][2]. Spatial complexities
of them are O(N).

3.6 Experimental Result

In order to confirm that the proposed method works properly, we have carried
out an experiment to extract RBCT from a digital image. Figure 6 shows the

Fig. 5. Difference of isosurfaces with changes of the definition of virtual node
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Fig. 6. Experimental result

experimental result. Input image shown in Figure 6(a) is 64 × 64 pixel, 2-bit
grayscale image. Figure 6(b) is the RBCT corresponding to (a). Figure 6(c) is a
labeled image of (a) by the node IDs of RBCT (b).

4 Applications

4.1 Selection of Isosurfaces

For 3D images in paticular, selecting and visualizing isosurfaces corresponding
to the objects of interest are fundamental and important procedures in analyz-
ing morphological information of the objects. Thresholding procedure extracts
not only the isosurface of interest but also other isosurfaces, such as those sur-
rounding external noise area or internal holes (cavities in 3D) having the same
isovalue. Since RBCT describes all isosurfaces in images, any isosurface can be
extracted only by selecting the corresponding arc of the tree.

4.2 Image Segmentation

Selecting an isosurface from an image is equivalent procedure to divide the image
into two regions. Here, the isosurface is not necessarily closed. If one of two
regions represents an object of interest, this procedure can be considered as that
for image segmentation. The segmented region using an isosurface is obviously
connected, without holes (cavities).

Division of an image by an isosurface can be represented by using RBCT, as
division of the tree structure into two subtrees by removing the arc corresponding
to the isosurface.

Figure 7(a)(b)(c) illustrates an example of the image segmentation proce-
dure. Figure 7(a) represents a digital image and Figure 7(b) is the RBCT cor-
responding to (a). By removing the arc corresponding to an open isosurface A,
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the RBCT is divided into two subtrees, where these two trees correspond to the
regions. It can be seen that isosurface A divides image (a) into two sets of regions
{U1(0), U1(2), U1(3), U1(4), U2(4)} and {U2(0), U1(1), U2(2), U2(3)}, while the
corresponding arc in RBCT (b) divides the tree into two subtrees, where the two
sets of nodes for these subtrees correspond to the sets of regions. Figure 7(c) is
the segmented image of (a).

4.3 Image Filtering

Procedures to remove small regions in an image can be considered as those of
image filtering for noise reduction. Max/Min Tree is used for morphological area
filtering, where small foreground/background regions are removed, respectively
[2]. A purpose to introduce Inclusion Tree is to suppress noise by removing small
regions surrounded by closed isosurfaces [5].

After the image segmentation using RBCT described above, the segmented
region can be removed. Figure 7(d) shows the result of region removal from
image (a) using isosurface B. Using this procedure, image filtering to remove
small regions can be carried out using both closed and open isosurfaces.

Fig. 7. Image processing using Region-based Contour Tree

5 Conclusion

In order to extract the relationship among isosurfaces in observed digital images,
we have proposed a modified data structure of conventional CT named Region-
based Contour Tree (RBCT). RBCT describes a finite number of isosurfaces in
digital images completely, without redundancy. Our next step is to evaluate the
efficiency of the procedure to construct RBCT, and to improve it.
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Compressing 2-D Shapes Using Concavity Trees
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Abstract. Concavity trees have been known for quite some time as
structural descriptors of 2-D shape; however, they haven’t been explored
further until recently. This paper shows how 2-D shapes can be con-
cisely, but reversibly, represented during concavity tree extraction. The
representation can be exact, or approximate to a pre-set degree. This
is equivalent to a lossless, or lossy compression of the image containing
the shape. This paper details the proposed technique and reports near-
lossless compression ratios that are 150% better than the JBIG standard
on a test set of binary silhouette images.

1 Introduction and Background

A concavity tree is a data structure used for describing non-convex two dimen-
sional shapes. It was first introduced by Sklansky [1] and has since been further
researched by others [2,3,4,5,6,7,8,9]. A concavity tree is a rooted tree in which
the root represents the whole object whose shape is to be analysed/represented.
The next level of the tree contains nodes that represent concavities along the
boundary of that object. Each of the nodes on the following levels represents
one of the concavities of its parent, i.e., its meta-concavities. If an object or a
concavity is itself convex, then the node representing it does not have any chil-
dren. Figure 1 shows an example of a shape (a), its convex hull, concavities, and
meta-concavities (b), and its corresponding concavity tree (c). The shape has
f ive concavities as reflected in level one of the tree. The four leaf nodes in level
one correspond to the highlighted triangular concavities shown in (d), whereas
the non-leaf node corresponds to the (non-convex) concavity shown in (e). Sim-
ilarly, the nodes in levels two and three correspond to the meta-concavities
highlighted in (f) and (g), respectively. Typically, each node in a concavity tree
stores information pertinent to the part of the object the node is describing (a
feature vector for example), in addition to tree meta-data (like the level of the
node; the height, number of nodes, and number of leaves in the subtree rooted
at the node).

We recently proposed an efficient (in terms of space and time) contour-based
algorithm for concavity tree extraction [9] and we showed how it surpasses other
concavity tree extraction methods [6] in terms of speed and the accuracy of the
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Fig. 1. An object (a), its convex hull and concavities (b), the corresponding concavity
tree (c), and contour sections corresponding to concavities (d-g)

reconstructed image as a function of the number of nodes used in the reconstruc-
tion. In this paper, we explore the space efficiency of the method and compare
it to the JBIG standard compression algorithm. With some modifications to
the base algorithm, we are able to achieve near-lossless compression with ra-
tios 150% better than that of JBIG, and a subjectively imperceptible error of
around 0.006. The resulting compact representation is not the tree, but rather
it is a sequence of vertices generated while the tree is extracted. The accuracy
of the representation, and consequently the compression ratio, is controlled by
specifying the minimum depth a concavity has to be in order to be taken into
consideration. One direct advantage of this compressed representation is that
the shape at hand can be analysed without the need to fully decompress the im-
age. The resulting representation can as well be interpreted as a user-controlled
polygonal approximation method whose degree of matching the original shape is
also controlled by the same parameter as that controlling the compression ratio.
The next section explains the methods while Section 3 discusses experimental
results.

2 The Proposed Algorithm

Consider a 256x256 binary image containing a 128x128 black (filled) square, this
image would have an uncompressed size of 8 KB (1 bpp). JBIG is able to loss-
lessly compress it 80:1. We note however that if we only store the four corners of
the square in a vector-graphics fashion (which is enough information to losslessly
reconstruct it), we should achieve much higher ratios (around 800:1). The pro-
posed method generalizes this concept to any binary image (but it is particularly
suited to silhouettes images, single or multiple, with or without holes).
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Algorithm 1. Concavity Tree Extraction and Compression
Notation:

I is the input image.
F is the set of foreground (“1”) pixels (representing the shape in I).
B is the set of background (“0”) pixels.
C is the contour of F .
T is a rooted tree (the concavity tree of the shape in I).
S is the output sequence.
N is a node in T .

Require: I is bilevel, F is 8-connected, and B is 4-connected.
1: C ← contour of F
2: T, S = fCT( C )

Function T, S = fCT( C )
3: S ← [] {Initialise sequence S}
4: H ← convex hull of C
5: Re-arrange H so that it is a subsequence of C
6: T ← NIL
7: New N {Instantiate a new tree node}
8: N .data ← H {In addition to any features as necessary}
9: T ← N {T now points to N}

10: for { each pair of consecutive points p1 and p2 in H } do
11: C2 ← subsequence of C bounded between p1 and p2 {C2 is a concave section

along contour C}
12: S2 ← []
13: if depth(C2) > mindepth then
14: T2, S2 = fCT( C2 )
15: N .newchild ← T2 {T has a new subtree T2}
16: end if
17: S ← S, p1, S2, p2 {such that no two consecutive elements are identical}
18: end for

We focus on the case of an image containing a single object (no holes). The
extension to multiple objects (with or without holes) is based on it (an example
will be presented in Section 3; however, due to space constraints, the details are
omitted). The main steps of the compression algorithm are shown in Algorithm
1. The input image I is a binary image. The condition that the set of foreground
pixels F is 8-connected and the set of background pixels B is 4-connected will
ensure that there is only one object with no holes in I (provided that F does
not intersect the boundary of I). The output of the algorithm is a sequence
S of pixels along the contour of F . S is generated during the concavity tree
extraction process. If, for example, F is a rectangle, S will be the clockwise (or
anti-clockwise) sequence of the four corner pixels.

The algorithm basically computes the convex hull of F and makes it the
output sequence. It then iterates on each pair of consecutive vertices and inserts,
between each pair in the sequence, all the resulting subsequences generated by
recursively calling the main function on the section of the contour bounded
between the two points at hand. The sequence is only updated if the vertex is
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Fig. 2. Test set - originals

different from the one just before it. The number of rows and columns in the
image as well as the sequence S will be linearly stored on disk. (When the best
bit-per-pixel resolution is used, it was found that RLE compression will result in
no additional size reduction; an indication that the resulting file is quite compact
and has a maximum entropy.)

The complexity of the algorithm is O(nh) where n is the number of contour
pixels and h is the height of the resulting tree. More details can be found in [9]
with regard to the underlying base algorithm. (We note that the convex hull of
a contour can be computed in O(n).)

The reconstruction is done by a polygon filling algorithm applied to the re-
sulting sequence of vertices S. Even though the pixels in S are just a (usually
small) subset of the pixels in C, they are always enough for an exact (lossless)
reconstruction of the original set F . By controlling the parameter mindepth (line
13 of Algorithm 1), “shallow” concavities along C can be ignored, consequently
reducing the length of S, and therefore increasing the compression ratio. A min-
depth value of zero will result in a lossless compression. A mindepth value of
one, on the other hand, will result in a near-lossless compression with ratios
that are usually much higher than the lossless case (for an n× n image, where
approximately 32 < n < 256).

The method also allows for shape information to be extracted, possibly for
shape retrieval and matching purposes, from the compressed domain; that is,
without the need to fully decompress the image. This can be done since the
concavity tree of the shape can be easily extracted from the compressed domain,
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Fig. 3. Compression ratio versus error rate for the 37 images shown in Figure2

without the need to reconstruct the image, and then find its contour(s), which
can then be used for shape representation, matching, and retrieval as per [7, 8],
for example.

3 Experimental Results

We test the method on a set of 37 binary trademark images (see Figure 2) and
compare the resulting compression ratio with that of JBIG. Figure 3 shows the
plot of the reconstruction error as a function of the compression ratio averaged
for the 37 images. The average compression ratio for JBIG for the 37 images was
11.5:1. For a lossless reconstruction, our method achieved a compression ratio
of 5.7:1. However, with a near lossless reconstruction (examples are shown in
Figures 4 and 5), the compression ratio averages 17.4:1. The average error was
then 0.006. The method can simply be extended to multi-silhouette images,
with or without holes, as shown in Figure 6. In addition, the resulting sequence
of vertices that is used in the polygon filling operation can be used as a polygonal
approximation of the object, either in the lossless or lossy case. Figure 7 shows
some examples.

4 Summary and Conclusions

This paper presents a concise shape representation generated during the extrac-
tion of concavity trees. The representation is reversible and is equivalent to a
lossless, near lossless, or lossy compression. When compared to the JBIG stan-
dard, compression ratios that are on average 150% better are obtained with
a near-lossless error of 0.6%. The method is thus suitable for shape represen-
tation and matching in the compressed domain; polygonal approximation; and
vector-based image compression.
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JBIG/CCITT ratios:17/2.5/2.6/8.2
Error:0.00313

CT ratio:24

JBIG/CCITT ratios:18/3.2/3.6/8.8
Error:0.00462

CT ratio:23

JBIG/CCITT ratios:12/2.6/2.6/6.7
Error:0.00256

CT ratio:16

JBIG/CCITT ratios:14/2.9/2.9/7.6
Error:0.00485

CT ratio:21

(a) (b) (c) (d)

Fig. 4. Four examples of original (top) and compressed/reconstructed images (bottom).
Note the almost imperceptible pixel error in the images in the bottom. JBIG as well as
CCITT, group III, and group IV fax compression ratios are indicated below original.
Concavity tree compression ratios are below.

Original

JBIG: 14

Error:0.0062

CT ratio:13

Error:0.00645

CT ratio:17

Error:0.0112

CT ratio:20

Fig. 5. This figure shows the effects of increasing the compression ratio for a given
image. JBIG ratio is 14:1.

JBIG/CCITT ratios:18/2.6/3.3/8.3

Error:0.00315

CT ratio:22

Fig. 6. Extensibility to multi-object shapes with holes
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Fig. 7. The representation as a polygonal approximation of original (a) corresponding
to a reconstruction error of 0.0058 (b), 0.008 (c), and 0.01 (d)
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Abstract. A key issue of content-based image retrieval is exploring how
to bridge the gap between the high-level semantics of an image and its
lower-level properties, such as color, texture and edge. In this paper,
we present a new method using perceptual edge features, called generic
edge tokens (GET), as image shape content descriptors for CBIR. GETs
represent basic types of perceptually distinguishable edge segments in-
cluding both linear and nonlinear features, which are modeled as quali-
tative shape descriptors based on perceptual organization principles. In
the method, an image is first transformed into GET map on the fly. The
base GETs can be grouped into higher-level perceptual shape structures
(PSS) as additional shape descriptors. Image content is represented sta-
tistically by perceptual feature histograms (PFHs) of GETs and PSSs.
Similarity is evaluated by comparing the differences between the corre-
sponding PFHs from two images. Experimental results are provided to
demonstrate the potential of the proposed method.

1 Introduction

Content-based image retrieval (CBIR) is used to retrieve images from an archived
database or the Web, based on analysis of image content and a user query. A
major challenge of CBIR is to derive and represent meaningful semantics of and
image from various lower-level features, such as color, texture and shape.

Most of the research in this domain have been dealing with the following
three sub-areas: feature extraction, content representation and similarity mea-
sure. In the past few decades, various image features and extraction methods
had been developed. The most commonly used features may be divided into
following categories: color-based, such as color histograms and color moments
[1]; texture-based, such as Tamura features [2] and wavelet transforms [3]; and
shape-based, such as various Fourier descriptors [4] and moments [5]. In the area
of image content representation, vector or histogram based methods are used [3]
[1]. The methods for similarity measure include Minkowski distances, histogram
intersection, Chi-square test, and information theory based measures [1].

The performance of most current systems is far from satisfactory. In contrast,
the human vision system is incredibly powerful and flexible in evaluating content
similarities between images. Clearly the mainstream CBIR techniques are not
applying all the principles upon which human perception relies.
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Hence, some researchers propose to use perceptual organization principles to
model certain image features as perceived by humans. Perceptual features may
be descriptive in nature and can be grouped by theories of human perception
and cognition psychology [6]. Perceptual shape features, unlike color and texture
features which rely on pixel-level computations, may be treated as meaningful
entities that can incorporate with both local and global structural information.
The combination of these two types of information can be used to interpret the
semantics of the image. Perceptual grouping, as defined in theoretical psychology,
may be used to model and merge small perceptual entities into larger ones,
which may contain enhanced structural information. Some efforts have been
made to apply this approach to CBIR. In [7], straight line features were used for
grouping L-shape, U-shape and parallel lines for similarity measures. Bilodeau
[8] proposed a parts-based model for object representation in which perceptual
organization properties of proximity, similarity and parallelism were used for
object segmentation.

In this paper, we will present a new edge-based feature model for simulating
perceptual shape descriptors for CBIR, using generic edge tokens (GETs) [6].
GETs are base-level perceptual shape entities which are extracted on an ad hoc
basis. GETs are then grouped into perceptual shape structures (PSS), includ-
ing parallel pairs, and various junction patterns of GETs, which are higher-level
features of image content. The GET and PSS features together form perceptual
vocabularies for describing shape semantics. Image content is statistically rep-
resented by perceptual feature histograms (PFHs). Content similarity between
two images is measured by comparing the corresponding PFHs.

The remaining sections of this paper are organized as follows. Section 2 intro-
duces the generic model of GETs. Section 3 presents the content representation
and similarity measures. Section 4 provides experimental results, system evalu-
ation and comparison. Conclusion is drawn in Section 5.

2 Perceptual Features for CBIR

The base set of perceptual features for CBIR are generic edge tokens, i.e. GETs.
Each GET represents a class of edge segments which satisfy the property defini-
tions given in Figure 1. GETs can be grouped into higher-level shape structures
based on perceptual organization principles. Perceptual organization is interest-
ing because it helps discover the hidden structural information where constituent
parts themselves can’t express. Perceptual organization also makes this psycho-
logical property cognition process computationally implementable. Perceptual
shape features in our system are made up by the following classes: base GETs,
predominant GETs, parallel GETs and joint GETs.

2.1 Base GET Class

GETs are the minimum perceptual stable shape entities, first presented by Gao
and Wong in [6]. Figure 1 (left) shows how an object shape or edge pattern is
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partitioned into GETs by a set of perceptual curve partitioning points (CPPs).
GETs and CPPs are defined according to the monotonic changes of the generic
curve geometry function and its first derivative function. Suppose a planar curve
is expressed as y = f(x), GETs are defined by the monotonic variations of
f(x) and f

′
(x) binary functions, as is illustrated in Figure 1 (center). The eight

classes of GETs are defined by the eight possible combinations of the two binary
functions, shown in Figure 1 (right). Examples of GETs and CPPs extracted
from an image can be found in Figure 2.

Fig. 1. Sample GETs and CPPs are shown in the left. In the center are eight GET
types. The definition of 8 GET types are given in the right. ↑ stands for monotonic
increase and ↓ stands for monotonic decrease.

Fig. 2. The image on the left is original image; the right is its GET and CPP map

2.2 Predominant GET

Predominant GET, or long GET (LGET), is used to extract from an image
the most salient GETs, so as to best distinguish one image from another. In
this work, supposing the mean and standard deviation of GET length in an
individual image are μ and σ, predominant GETs are defined as those GETs
whose length are greater than μ + σ, assuming μ and σ vary by image.

2.3 Parallel GET Pair

Parallel GET pairs (PGETs) are important perceptual features since many man-
made objects have parallel edges, which can help distinguish images with man-
made objects from natural scene images. Unlike other research relying on parallel
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lines, our parallel GETs include parallel curve features as well. Parallel curve
segments are particular important for images containing curved objects, such as
cars, which have more parallel curves than parallel lines because of their smooth
metal surface. A commonly accepted parallel curve definition was given in [9].
It says that two curves are parallel if every normal to one curve is a normal to
the other curve and the distance between where the normals cut the two curves
is constant. However, it is computationally costly and unnecessary to strictly
follow this definition for extracting parallel curves. Based on our GET model,
parallel GET extraction process is illustrated in Figure 3 and explained below.
First, nearby GET pairs sharing a same GET type are screened. Then for each
GET pair, project both GET curves to the central line (l) of their chords (l1
and l2). If the overlap of the projection is longer than a pre-defined threshold
(mean value of GET lengths, in our case), the overlapped curves are considered
as a candidate PGET. A candidate PGET is truly parallel if they share a similar
distance among n pairs of points along curve. An empirical parallel confidence
pc is used to estimate the parallelism of PGET and defined as:

pc = 1− max(disti)−min(disti)
avg len

(1)

where disti is the distance between the ith pair of points along curve, and avg len
is PGET’s average curve length. A PGET example can be found in Figure 4
(upper right).

Fig. 3. Parallel GET extraction

2.4 Joint GET

Two adjacent GETs joint at a CPP and form a joint GET pattern (JGET). In
our experiment, there are curve-curve, curve-line and line-line GET joint types.
Figure 4 (lower right) shows detected line-line JGETs.

3 Image Content Representation and Similarity Measure

3.1 Feature Histogram Representation

Perceptual feature histograms (PFHs) are used to represent the statistical dis-
tributions of both GET features and perceptual shape structure (PSS) features.
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Fig. 4. The upper images, from left to right, are original image, GETs and detected
PGETs; the lower images, from left to right, are original image, GETs and JGETs

In GET feature histogram, GET type, GET length and frequency percentage
are used. In PSS histograms, features include PGET type, parallel confidence,
JGET type, joint angle and frequency percentage.

Sturges’ rule [10] is applied to determine the histogram bin number for GET
attributes. According to Sturges’ rule, the bin number is the integer number
closest to: 1 + log2(M), M is the number of observations. In our case, M is
for example the number of GETs detected in one image. Figure 5 is sample
GET histograms of a flower image, representing the frequency distribution by
GET type and GET length.

Fig. 5. Left: original image; center: GET map; right: GET histogram

3.2 Similarity Measure

The sum of weighted Euclidean distance of each PFH is used as the similarity
measure. First a distance dHi , i.e., Euclidean distance, is calculated for each pair
of corresponding histogram Hi and H

′
i , i = 1, 2, 3, 4. Then the distance between

two images is defined as:
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Similarity =
4∑

i=1

widHi (2)

The weighting coefficient wi is decided by decimal scaling normalization, where
wi = 10j, j is the largest number such that |max(wi ∗ dHi)| < 1. In our ex-
periment, the weights wi corresponding to GET, LGET, PGET and JGET his-
tograms are 10, 1, 1, 10.

4 Experiments and Evaluation

We randomly selected 164 images from seven categories of a benchmark dataset
[11]. Sample images are given in Figure 6.

Fig. 6. The test database has 164 images in 7 categories

Our evaluation is based on the method suggested by Müller et al. [12]. This
evaluation method combines both numerical measures and graphical represen-
tation. The evaluation measurements are:

– Rank1 and R̃ank: are the rank of the first relevant image and the normalized
average rank of all the relevant images retrieved:

R̃ank =
1

NNR
(

NR∑
i=1

Ri − NR(NR − 1)
2

)

where, N is the total image number, NR is the number of relevant images,
Ri is the rank of the ith relevant image.

– P(20), P(50), P (NR): the precision when the first 20, 50 and all relevant
images are retrieved.

– Rp(0.5) and R(100): the recall when the precision reaches 0.5 and when the
first 100 images are retrieved.

– A recall-precision graph.

Since our test dataset is relatively small, the measures are scale down propor-
tionally to the size of the dataset and the relevant images. For example, measure
P(20) and P(50) are changed to P(10), and R(100) is changed to R(20). Our
experiments are conducted on PFHs of (a) GETs only, (b) GETs and PSSs,
and (c) GETs and weight-adaptive PSSs. The experimental results of Rank1,
R̃ank and P (NR) on these three tests are quite similar, with 1, 0.14 and 0.27 re-
spectively. But P (10), Rp(0.5) and R(20), which indicate how the first retrieved
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images are similar to the query images, vary by tests. An interesting observation
can be made from Table 1 (a) and (b). When taking the P(10) as the main in-
dicator of effectiveness, application of the PSS features increases the precisions
for aircrafts and cars, but decreases the retrieval precisions of flower, tree and
mountain images. This corresponds to the fact that many man-made objects
have distinguishable parallel structures. Hence, in such cases, we further adjust-
ing the weighting of PSS histograms. By increasing the weighting on man-made
objects and decreasing the weighting of natural objects, an improved result is
achieved as shown in P (10) (c). Figure 7 shows sample results of two queries,
using PFHs of both GET and weight-adaptive PSS.

Table 1. P (10), Rp(0.5), R(20) comparison based on a) GETs only, b) GETs and PSSs,
and c) GETs and weight-adaptive PSSs

P (10) Rp(0.5) R(20)
(a) (b) (c) (a) (b) (c) (a) (b) (c)

04 25 1 (building) 0.8 0.8 0.8 0.32 0.37 0.37 0.29 0.24 0.24
12 33 1 (flower) 0.9 0.8 1 0.52 0.56 0.56 0.48 0.48 0.52
15 19 1 (tree) 0.9 0.8 0.8 0.95 0.9 0.95 0.7 0.65 0.65
15 47 1 (mountain) 0.8 0.7 0.9 0.71 0.82 0.79 0.46 0.39 0.46
20 20 1 (aircraft) 0.6 0.8 0.8 0.38 0.46 0.5 0.38 0.42 0.5
2026 29 1 (ferry) 0.9 0.9 0.9 1 1 1 0.92 0.92 0.92
29 06 1 (car) 0.5 0.7 0.9 0.38 0.88 0.88 0.5 0.75 0.81
Average 0.77 0.79 0.87 0.61 0.71 0.72 0.53 0.55 0.59

Fig. 7. Two samples of the top ten retrieved images. The upper left is the query.

5 Conclusions

In this paper, we present a set of novel perceptual edge features for CBIR. The
experiments proved our hypothesis that the proposed GET features are use-
ful for representing image as shape content descriptors. In addition to the base
GETs, the high-level structures of GET groupings are also valuable for shape-
based image content estimation. There are rich directions for future research in
developing GET-based techniques which include the following: 1) Define various
additional GET grouping structures. 2) Develop GET-based image representa-
tion schemes and similarity measure methods. 3) Investigate GET-based region
grouping and texture representation methods. 4) Integrate GET features with
colors.
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Abstract. This paper proposes a video retrieval system from compressed outdoor 
video surveillance databases. The aim is to extract moving objects from frames 
provided by MPEG video stream in order to classify them into predefined catego-
ries according to image-based properties, and then robustly index them. The prin-
cipal idea is to combine between useful properties of metrical classification and 
the notion of temporal consistency. Fuzzy geometry classification is used in order 
to provide an efficient method to classify motion regions into three generic cate-
gories: pedestrian, vehicle and no identified object. The temporal consistency pro-
vides a robust classification to changes of objects appearance and occlusion of ob-
ject motion. The classified motion regions are used as templates for metrical 
training algorithms and as keys for tree indexing technique.  

1   Introduction 

The large volume of images and videos pose a significant challenge for storage, re-
trieval and indexing the visual information from multimedia databases. Two ap-
proaches have been commonly used: a content indexing approach, where the index 
terms serve to encode the content of images; and a structural approach where images 
are represented as a hierarchy of regions, objects, and portions of objects. The content 
indexing approach is based on features such as colour, texture, shape and sketch ex-
tracted from an image, which essentially serve as the index. The structural approach is 
based on spatial relationships between objects or regions in a scene. In video indexing 
techniques using temporal features as keys, image sequences are indexed based on the 
motion properties of objects within the sequence. Temporal features allow the user to 
specify queries that involve the exact positions and trajectories of the objects in the 
shot. The survey of what has been achieved on the content-based image retrieval in 
the past few years and what are the potential research directions can be found in [Bru 
99] [Hab 99] [Fer 98] [Gud 95] [Idr 97] [Smo 94] [Sch 00] [Tiz 97].  

Many content-based image search systems have been developed for various appli-
cations in order to extract intrinsic image features suitable of automatic indexing and 
retrieval. These features are used to reduce the complexity of image comparisons and 
to improve the organisation of image database. Unfortunately, automatic retrieval of 
suitable features is very hard; it is usually only feasible for retrieval systems that in-
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corporate a high degree of domain-specific knowledge about the type of image con-
tents to be retrieved. In unconstrained images, the set of known object classes is not 
available. Also, use of the image search systems varies greatly. The knowledge of the 
image content can be used to index specific images in the database for purposes of 
rapid retrieval [Ike 01] [Nib 93] [Sch 00]. In this context, we developed a system for 
retrieval and indexing telesurveillance MPEG videos in relation to the dynamic con-
tent of image sequences. It includes a robust fuzzy inference system to classify mo-
tion regions into pedestrians, vehicles and no-identified objects.  

2   System Overview 

The system consists of five stages (figure 1). In the first stage (section 3), the digital 
video is segmented into elementary shots. In the second stage (section 4), all the mov-
ing objects are detected and segmented into motion regions. In the third stage (section 
5), the principal idea is to exploit on one hand, the useful properties classification of 
fuzzy metrical classification in order to distinguish between types of motion regions, 
and on the other hand, the notion of temporal consistency in order to provide a robust 
classification against changes of objects appearance, occlusion, and cessation of ob-
ject motion. In the fourth stage (section 6), once a motion region has been classified, 
it can be used as training template for the indexing and retrieval process. 

3   Video Segmentation 

The input data of the system consists of image sequences taken from outdoor video 
surveillance scenes. Video has both spatial and temporal dimensions and hence a 
good video index should capture the spatiotemporal contents of the scene. In order to 
achieve this, the first step in video indexing is to decompose a video sequence into 
shots. Video shots may be associated with key or representative frames that best rep-
resent the shot. Several shot detection algorithms on compressed and uncompressed 
video are presented in [Yeo 95, 96] [Shn 96] [Bru 99] [Idr 97].  

We propose to use a unified approach for scene change detection in motion JPEG 
and MPEG. This algorithm is based on the use of only DC coefficients. First we have 

to construct DC frame DC
mf for every frame in the sequence. The DC coefficients in 

JPEG and I-frames in MPEG are obtained directly from each block. The DC coeffi-
cients for B- and P- frames are also estimated. The sum of the difference magnitude 

of the DC frames DC
mf  and DC

nf  is used as a measure of similarity between  

two frames. 
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Where P( DC
mf ,I, i, j)  is the DC coefficient of block (i, j). A scene change from 

mf  to nf is declared whenever D( DC
mf , DC

nf ) exceeds a prespecified threshold. 
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Fig. 1. The video retrieval system overview 

Video shots may be associated with a key frame that best represents the shot and 
can later be used for the retrieval process. Let a shot represented by its first frame. 
Subsequent frames are then compared to the first frame, looking for a frame whose 
difference is above a given threshold Ts. If such a frame is found, it is considered as a 
key if it is followed by a continuous sequence of frames differing by at least Ts from 
the previous key frame. Choosing those frames of a video shot as key frames is based 
on the observation that consecutive frames are often almost identical. In addition, the 
shot is usually characterized by the first few frames, before the camera begins to 
zoom or close-up. So in our application it is a sufficient choice. 

4   Motion Region Detection 

Then, all the moving objects must be accurately isolated from the background in order 
to be classified. Two methods are possible: temporal differencing (TD) and template 
correlation matching [Bre 97] [Bru 99] [Hua 83] [Kru 98] [Lip 98]. Both approaches 
have advantages and drawbacks. TD is impossible if there is a significant camera mo-
tion. It also fails if the target becomes occluded. On the other hand, the template cor-
relation matching is not robust to changes in object size, orientation or even changing 
in light conditions. His use is most appropriate when the target size is small. So, the 
properties of these two methods are complementary. This is the motivation for com-
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bining TD and the notion of temporal consistency. The idea is to use TD to detect 
moving regions and apply temporal consistency algorithm to reduce misclassified mo-
tion regions.  

Firstly each I frame of a shot is smoothed with the second derivative in time of the 
temporal Gaussian function.  If fn is the intensity of the nth I frame of the shot, then 
the absolute difference function Δn is:   

Δn = | fn - fn-1 | (2) 

The result of the difference is binarized in order to separate changed pixels from oth-
ers. To do this, a threshold function is used and a motion image Mn can be extracted. 

Mn (u, v) = 
<Δ
≥Δ

Tvu

Tvuvuf n

),( if                0

),( if    ),(

n

n  (3) 

Where T is an appropriate threshold chosen after a several tests according to the 
exterior environment with different acquisition conditions [Khe 03].  

To separate the regions of interest from the rest of image, binary statistical mor-
phological operators (erosion and dilatation) are used. This allows decreasing the 
number of connected components. Then, the moving sections must be grouped into 
motion regions Rn(i). This is done using a connected component criterion (figure 2). It 
allows to group different motion sections susceptible to be a part of the same region, 
or allows grouping the residual motion parts into one motion region. This propriety is 
useful to identify pedestrian who are not rigid and also useful in occultation of the 
moving object and other target.  

5   Fuzzy Motion Region Classification System  

The task of the system is to distinguish the cars from pedestrians from other moving 
and stationary objects like animals, trees, roads and buildings in the image sequences 
and identify them as vehicles, human or non-identified object. The principal idea is to 
 

Scanning extraction 
windows 

The first block of target is 
containing at least 250 mo-
tion pixels  

Target Extraction (Connected 
component criterion) 
 Dispersion= 29.3654 
 Ratio = 2.3568 

 

Fig. 2. Grouping moving objects into motion regions using a connected component criterion 
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ratio=3.566  ratio=2.8976  disp = 61.8 dispersion = 42.5879 dispersion = 59.5103 

Truck dispersion = 29.1408 and ratio = 0.8438 Car ratio=0.4762 

 

Fig. 3. Human and vehicles dispersion/ratio values calculated for some image of the learning 
database 

exploit useful properties of fuzzy metrical classification in order to provide a robust 
method to classify motion regions.  Indeed, the regions are not always crisply defined, 
it is sometimes more appropriate to regard them as fuzzy subsets of the image [Bar 
92] [Bez 92] [Dzu 01] [Rud 94] [Tiz 97]. The motivation of the use of the geometry 
features is that is computationally inexpensive and invariant to lighting conditions. On 
the other hand, it is obvious that the human, with its small and more complex shape, 
will have larger dispersion than a vehicle (figure 3). 

If we define an appropriate membership function μ for the object [Khe 04], the 
area a and the perimeter p of the object can be calculated as follows: 

Area of fuzzy sets:  

a(μ) = μ       (4) 

Perimeter of a fuzzy set:  
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Where M and N are the dimensions of the image.  
Based on the perimeter and the area, the dispersion and the ratio of a fuzzy set can 

be determined as follows: 

( )
Area

Perimetre
Dispersion

2
=  (6) 

width

Length
Ratio =  (7) 

The classified motion regions are used as templates for metrical training algorithms 
(table 1). The fuzzy system is based on two entrances: the dispersion and the ratio of 
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the motion regions, and three exits: one exit for human, one exit for the vehicles and 
one exit for no identified objects. For every entrance, we have two fuzzy sets: one for 
the category of humans and other for the category of vehicles [Khe 03]. 

Table 1. Results of the learning algorithm 

Class Vehicle Pedestrian 

Dispersion [17   45] [23.2   125] 

Dispersion 

Concentration 

[20   30] [30   60] 

Ratio [0.1   1.1] [0.59   4.47] 

Ratio 

Concentration 

[0.2   0.7] [1.9   3.2] 

The system leads good performances (98%) over databases of 270 examples 
where 116 are pedestrians, 124 are vehicles and the rest represent states that are no 
identified. The accuracy of the classification is largely independent of target size, 
appearance shape or speed. However, the main difficulty with metrical classifica-
tion is that: when multiple humans close together, they can be misclassified as a ve-
hicle according to the simple metric, if the target is very small, it tends to be re-
jected as no identified object, and a partly occluded vehicle may look like a human, 
or some background clutter may appear as a vehicle. 

To overcome this problem, an additional hypothesis is used. The main idea is to 
record all potential motion regions PRn from the first frame of the shot. Each one of 
these potential regions must be observed along some frames of the shot to deter-
mine if they persist or not, and so decide to continue classifying them. To do this, 
for each new frame, each previous motion region PRn-1 is matched to the spatially 
closest current motion region Rn according to a mutual proximity rule. After this 
process, each previous potential motion region PRn-1 whish have not been matched 
to current region are removed from the list of accepted motion regions. And any 
current motion region Rn whish has not been matched is considered new potential 
region. The metric operators, dispersion and ratio of each frame, are used to update 
the classification hypothesis [Khe 04].  The most advantage of this method is that if 
an occluded object is misclassified it will be correctly classified with the passage of 
time. Another advantage is that the instable motions appearing at the background, 
such as leaves blowing in the wind, will be misclassified as no-identified regions. 

6   Indexing and Retrieval 

Indexing digital video, based on its content, can be carried out at several levels of 
abstraction, beginning with indices like the video program name to much lower 
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level aspects of video like the specified motion objects and their locations of the 
video [Idr 97] [Ray 96].  

The interactive retrieval system proposed in this paper includes a query interface 
sub-module and a query by content retrieval sub-module as shown in figure 1. To 
facilitate storage and retrieval in visual information systems, flexible data structures 
should be used. Structures such as R-tree family, R*-tree, quad-tree, and grid file 
are commonly used. Each structure has its advantages and disadvantages; some 
have limited domains and some can be used concurrently with others. To achieve a 
fast retrieval speed and make the retrieval system truly robust, a quad-tree indexing 
technique is applied [Khe 03]. The goal of the system is to be able to retrieve a set 
of sequences, which have motion objects similar to that specified by the query. A 
database of moving objects is formed, where each object is indexed according to its 
descriptors that are defined in the section 4. Image indexing techniques are then ap-
plied on the reference frames. 

7   Results  

The system has been implemented at the intelligent control and electrical power 
systems laboratory ICEPS, Research Centre of Dr. D. Liabes University. SBA.  Al-
geria. The system has been applied to large amounts of different video environ-
ments where human and vehicular activities are present. Fig. 4 shows some  
 

     
                               a.                                                              b. 

  
                               c.                                                              d. 

Fig. 4. Sequences from the ICEPS Laboratory Database automatically segmented and classified 
as vehicle regions (a), pedestrian regions (b), pedestrian and vehicles regions (c and d) 
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a. b. 

     

                                  c.                                                                      d. 

Fig. 5. Searching the sequences that contain mobile pedestrian (a), mobile vehicle and pedes-
trian (b). vehicle (c and d) 

examples of target classification. For single targets, the system provides a robust 
classification. Note that trees blowing in the wind are completely rejected. Further-
more, the accuracy of the classification is largely independent of target size, ap-
pearance shape, speed, lighting conditions or viewpoint. It is also computationally 
inexpensive. However, when multiple humans close together for a long time, they 
can be misclassified as a vehicle according to the simple metric. Another limitation 
of the system is that if the target is very smal, less than 4x4 pixels, it tends to be re-
jected as no identified object. The main problem with vehicles recognition is that 
when, vehicle is partially occluded for long times, it could be rejected. Also, pedes-
trians tend to move in close groups that can be misclassified as vehicles according 
to the simple metric. Fig. 4 and 5 show some results of the system. 

8   Conclusion 

The work presented here is concerned with motion region detection, classification and 
indexing moving regions from MPEG surveillance video sequences. The first stage is 
to decompose the video sequences into shots saving unnecessary decompression. 
Then, a set of representative frames is selected. The representative frames of a shot 
are used to the image pre-processing stage in order to generate a collection of moving 
regions of interest. A robust fuzzy system is proposed to classify moving regions into 
predefined categories; humans and vehicles, according to image-based properties. 
Classification is based on simple rules whish are largely independent of appearance or 
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3D models. Consequently, the metrical classification whish is explored in this paper, 
is based purely on object’s shape, and not on its image content. An additional hy-
pothesis on temporal consistency is used to make the classification system robust to 
changes of objects appearance and occlusion of motion regions. However, some prob-
lems remain to solve: it is necessary to study the problem that when multiple humans 
close together and when a target is very small.  
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Abstract. In this paper, a novel and efficient automatic image categorization 
system is proposed. This system integrates the MIL-based and global-feature-
based SVMs for categorization. The IPs (Instance Prototypes) are derived from 
the segmented regions by applying MIL on the training images from different 
categories. The IPs-based image features are further used as inputs to a set of 
SVMs to find the optimum hyperplanes for categorizing training images.  Simi-
larly, global image features, including color histogram and edge histogram, are 
fed into another set of SVMs.  For each test image, two sets of image features 
are constructed and sent to the two respective sets of SVMs. The decision val-
ues from two sets of SVMs are finally incorporated to obtain the final categori-
zation results. The empirical results demonstrate that the proposed system out-
performs the peer systems in terms of both efficiency and accuracy. 

1   Introduction 

Automatic image categorization has become more and more important with the de-
velopment of Internet and the growth in the size of image databases. Finding relevant 
images from Internet and a large size image database is not a trivial task if images are 
not annotated. Manual categorization is a possible solution, but it is time-consuming 
and subjective. As a result, many researchers have focused on automatic image cate-
gorization. A few existing systems are briefly reviewed here. 

Huang et al. [1] categorize images by using a classification tree, which captures the 
spatial correlation of colors in an image. Chapelle et al. [2] apply SVMs on the global 
16×16×16-bin HSV color histograms to categorize images. Smith and Li [3] classify 
images by applying a composite region template descriptor matrix on the spatial or-
derings of regions. Barnard and Forsyth [4] apply a hierarchical statistic model to 
generate keywords for classification based on semantically meaningful regions. Jeon 
et al. [5] use the cross media relevance model to predict the probability of generating 
a word given the regions in an image. Li and Wang [6] propose an ALIP system 
which uses the 2D multi-resolution hidden Markov model on features of image blocks 
for classification. Murphy et al. [7] build 4 graphical models to relate features of 
image blocks to objects and perform joint scene and object recognition. 

Recently, MIL (Multiple Instance Learning) has been applied for automatic image 
categorization. Maron and Ratan [8] use the DD (Diverse Density) learning algorithm 
for natural scene classification. Zhang and Goldman [9] use EM-DD algorithm, which 
combines EM (Expectation Maximization) with DD, to achieve a fast and scalable 
categorization. Andrews et al. [10] propose an MI-SVM approach for categorization, 
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where region-based image features are iteratively fed into SVMs until there are no 
updates in positive images. Chen and Wang [11] use the DD-SVM method, which 
combines EM-DD with SVMs for image categorization. Experimental results [10, 11] 
show that DD-SVM achieves the best categorization accuracy. 

In spite of their successes, all these categorization systems have their shortcom-
ings. Global-feature-based systems [1, 2] cannot precisely represent the semantics of 
an image, which corresponds to objects. Region-based systems [3-5] often break an 
object into several regions or put different objects into a single region due to inaccu-
rate image segmentation. The block-based [6, 7] and MIL-based systems [8-11] have 
the similar problems as the region-based systems. 

In this paper, we propose a novel machine-learning based approach, which  
combines MIL-based and global-feature-based SVMs, for image categorization. The 
MIL-based SVMs apply MIL on the segmented images to find the IPs (Instance Pro-
totypes). The IPs-based image bag features are further used as inputs to a set of SVMs 
to find the optimum hyperplanes. To address the inaccurate segmentation issues, we 
create the global-feature-based SVMs, where MPEG-7 SCD (Scalable Color Descrip-
tor) and the modified MPEG-7 EHD (Edge Histogram Descriptor) are used as the 
global features. For each test image, two sets of image features are constructed and 
sent to the two respective sets of SVMs. The decision values from two sets of SVMs 
are finally incorporated to obtain the final categorization results. 

The remainder of the paper is organized as follows. Section 2 describes our proposed 
approach.  Section 3 illustrates the experimental results. Section 4 draws conclusions. 

2   Proposed Approach 

2.1   MIL-Based SVMS 

Image Segmentation. To segment an image into coherent regions, the image is first 
divided into non-overlapping blocks of size 2×2 and a color feature vector (i.e., the 
mean color of the block) is extracted for each block.  The Luv color space is used 
because the perceptual color difference of the human visual system is proportional to 
the numerical difference in this space. 

After obtaining the color features for all blocks, an unsupervised K-Means algo-
rithm is used to cluster these color features. This segmentation process adaptively 
increases the number of regions C (initially set as 2) until two termination criteria are 
satisfied. That is: (1) the total distance Di from each block to the corresponding cluster 
center in the ith iteration is less than T1; or (2) the absolute difference between the total 
distances of the current and previous iterations (i.e., |Di – Di-1|) is less than T2. These 
two thresholds are empirically chosen so reasonable segmentation can be achieved on 
all images in our test database. 

Based on the segmentation results, the representative color feature c
jf  for each re-

gion j is calculated by the mean of color features of all the blocks in region j.  The 

representative texture feature t
jf  for each region j is computed by the average energy 

in each high frequency band after 2-level wavelet decompositions.  The wavelet trans-
formation is applied to a “texture template” image obtained by keeping all the pixels 
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in region j intact and setting all the pixels outside region j as white.  The length of the 
feature vector for each region is 9 with 3 color features and 6 texture features. 

Multiple-Instance Learning (MIL). MIL was originally studied by Dietterich et al. 
[12] in drug activity prediction and has recently received much attention in machine 
learning. In MIL, each image is a bag and its segmented regions are instances. Its 
objective is to find the commonalities in all positive images given a set of labeled 
images. The EM-DD [9] method solves this problem by finding the maximum DD 
value at point t in the bag feature space:  
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tlBtDD )|,Pr(maxarg)(  (1) 

where iB  is the thi bag, il  is the label of the thi bag, and n is the total number of la-

beled bags.  This maximum DD value indicates a higher probability that point t fits 
better with the instances from positive bags than those from negative bags.  The nega-
tive log transformation can be further used to simplify (1): 
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and dS  refers to the feature weight on dimension d. That is, finding the maximum DD 

value in (1) is equivalent to finding the minimum NLDD value in (2). 
The Quasi-Newton algorithm [13], a two-step gradient descent search, is able to 

find the point with the minimum NLDD value in (2). We start the search from every 
instance in all positive bags with the same initial weights to find its corresponding 
local minimum and associated weights. Unlike the DD and EM-DD methods, where 
the global minimum of all local minima represents the region of interests, our MIL-
based method uses all the distinct local minima, called IPs, to create the image bag 
features. These IPs are selected from all local minima by the following two condi-
tions: (1) they need to be far away from each other in the bag feature space; and (2) 
they need to have small NLDD values. Given IPs = { }mkwx kk ,,1:,( )
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where ijx  is the jth regional color and texture features of image i, Ni is the number of 

segmented regions in image i, and *w  represents the weighted Euclidean distance. 
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Support Vector Machines (SVMs). SVMs have been successfully used in many 
applications and are adopted in our proposed system.  A set of SVMs are used to train 
the bag features of all training images to find optimum hyperplanes, each of which 
separates training images in one category with the other categories by a maximal 
margin. That is, given m training data },{ ii yx ’s, where }1,1{, −∈∈ i

n
i yRx , SVMs need to 

solve the following optimization problem: 
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where C is the penalty parameter of the error term and )()() ,( ji xT
ixiyxK φφ=  is the 

kernel function. The Gaussian radial basis function kernel are used in our system 
since they yield excellent results compared to linear and polynomial kernels [14]. 

Since the SVMs are designed for the binary classification, an appropriate multi-
class method is needed to handle several classes as in image categorization. We use 
“one against the others” as it achieves comparable performance with a faster speed 
than “one against one”. We further map the SVM outputs into probabilities [15] so 
that our system returns the likelihood of each category that an image may belong to. 

2.2   Global-Feature-Based SVMs 

Inaccurate image segmentation may make the MIL-based bag feature representation 
imprecise and therefore decrease the categorization accuracy.  We add global-feature-
based SVMs to address this problem.  In order to compensate the limitations associ-
ated with the specific color space and the specific texture representation, we construct 
the global features in a different manner as used in creating the regional features.  To 
this end, two MPEG-7 descriptors are adopted in our system. 

The SCD is one of the four MPEG-7 normative color descriptors [16]. It uses the 
HSV color histograms to represent an image since the HSV color space provides an 
intuitive representation of color and approximates human’s perception. We directly 
adopt the 64-bin SCD in our system. 

The EHD is one of the three normative texture descriptors used in MPEG-7 [16], 
where five types of edges, namely, vertical, horizontal, 45° diagonal, 135° diagonal, 
and non-directional, have been used to represent the edge orientation in 16 non-
overlapping subimages. Based on the EHD, we construct gEHD (global EHD) and 
sEHD (semi-global EHD) to address the rotation, scaling, and translation related is-
sues. The gEHD represents the edge distribution for the entire image and has five 
bins. For the sEHD, we group connected subimages into 13 different clusters [16] and 
construct the EHD for each cluster. So the length of our modified EHD is 70 and the 
total length of our global feature is 134. 

After the global features of all the training images are obtained, they are fed into 
another set of SVMs to find optimum hyperplanes to distinguish one category from 
the others. This set of SVMs is designed by the same approaches used in the MIL-
based SVMs. 
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2.3   Fusion Approach 

For each test image, two sets of image features (i.e., MIL-based features and global 
features) are generated and sent to two respective sets of SVMs.  Let y1 and y2 respec-
tively be the output vectors from the MIL-based and global-feature-based SVMs for a 
given test image. The final output vector y is obtained by: 

21 *)1(* ywywy −+=  (5) 

where w determines the contribution from the MIL-based SVMs and is empirically set 
to be 0.5 as shown in Section 3.2. Once the integrated decision values are obtained, 
they are mapped to the probability values by the method introduced in [15]. 

3   Experimental Results 

To date, we have tested our categorization algorithm on 2000 general-purpose images 
from COREL database. These images have 20 distinct categories with 100 images in 
each category. These categories contain different semantics including Africa, beach, 
buildings, buses, dinosaurs, elephants, flowers, horses, mountains, food, dogs, lizards, 
fashion, sunsets, cars, waterfalls, antiques, battle ships, skiing, and deserts. 

3.1   Categorization Results 

To measure the effectiveness of the proposed system, we randomly choose 50 images 
from each category as training images and the remaining 50 images are used as the 
testing images.  We repeat the above procedure 5 times and calculate the average 
categorization accuracy for each category. 

The proposed system is compared with DD-SVM [10] and our implemented 
HistSVM [3]. For the first 10 categories, the overall average categorization accuracy 
of HistSVM, DD-SVM, and our systems over 5 runs is 79.8%, 81.5%, and 88.2%, 
respectively. Our system performs 10.5% better than the HistSVM system in terms of 
the overall accuracy. In addition, the feature length of HistSVM system is 4096, 
which is about 20 times longer than ours. Our system also improves the accuracy by 
8.2% over the DD-SVM system, which is 9 times slower than our system. 

Fig. 1 plots the average categorization accuracy for each predefined image cate-
gory of our proposed system, DD-SVM system, and HistSVM system. It clearly illus-
trates that the proposed system achieves the best average accuracy in most categories.  

 
 
 
 
 
 
 
 
 
 
Fig. 1. Average categorization accuracy for each category by using three different methods 
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3.2   Validation of the Proposed Method 

To verify the effectiveness of the proposed approach, the overall average categoriza-
tion accuracy obtained by assigning different weights to the global-feature-based 
SVMs and the MIL-based SVMs is shown in Fig. 2, where G and R represent global 
and regional weight respectively. It clearly shows that our method (G:M = 0.5:0.5) 
achieves the best performance. 
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Fig. 2. Average categorization accuracy for different global and regional weights 

It is observed that global-feature-based SVMs (i.e., G:R = 10:0) and MIL-based 
SVMs (i.e., G:R = 0:10) alone achieve the average accuracy of 82.6% and 77.6%, 
respectively.  It clearly shows the effectiveness of the fusion approach as it improves 
the global and regional SVMs by 6.8% and 13.7% respectively.  In addition, our 
global-feature-based SVMs system alone achieves better accuracy than both DD-
SVM and HistSVM systems. 

3.3   Sensitivity to the Number of Categories 

The scalability of the method is tested by performing image categorization experi-
ments over data sets with different numbers of categories.  A total of 11 data sets are 
used in the experiments.  The number of categories in a data set varies from 10 to 20.  
These data sets are arranged in the same manner as in [11] for fair comparisons.  That 
is, the first 10 categories form the first data set; the first 11 categories form the second 
data set; etc.  The average classification accuracy of our system and DD-SVM system 
by running 5 times on each of the 11 data sets is shown in Figure 3. 

 
 
 
 
 
 
 
 
 

Fig. 3. Comparison of the two methods on the robustness to the number of categories 
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We observe a decrease in average categorization accuracy as the number of catego-
ries increases. When the number of categories becomes doubled (increasing from 10 
to 20 categories), the average categorization accuracy of our proposed system and the 
DD-SVM system drops respectively from 88.2% to 75.3% and from 81.5% to 67.5%.  
However, our method outperforms DD-SVM consistently. 

4   Conclusions 

In this paper, we present an efficient and effective automatic image categorization 
system, which integrates MIL-based SVMs with global-feature-based SVMs.  The 
main contributions are: 

• EM-DD algorithm is used to find IP (Instance Prototypes) and the IP-based im-
age bag features are further combined with SVMs to partly solve the problem of 
inaccurate image segmentation. 

• Global-feature-based SVMs are integrated with MIL-based SVMs to further ad-
dress the issues associated with inaccurate image segmentation, where global 
features are different from the regional features so that the limitations associated 
with specific color space and specific texture representation are also addressed. 

• Multi-category SVMs are used to classify images by a set of confidence values 
for each possible category. 

The proposed system has been validated by testing with 2000 general-purpose im-
ages with 20 distinct categories.  The experimental results indicate that our system 
outperforms peer systems in the literature in terms of both accuracy and efficiency. 

The proposed system can be easily integrated into the image retrieval system, 
where both categorized keywords and the query image(s) can be combined as the 
query.  Furthermore, user’s relevance feedback can be added to dynamically update 
the categorized images so that categorization accuracy can be further improved. 
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Abstract. We present a modified version of the Generic Fourier Descriptor 
(GFD) that operates on edge information within natural images from the 
COREL image database for the purpose of shape-based image retrieval.  By 
incorporating an edge-texture characterization (ETC) measure, we reduce the 
complexity inherent in oversensitive edge maps typical of most gradient-based 
detectors that otherwise tend to contaminate the shape feature description.  We 
find that the proposed techniques not only improve overall retrieval in terms of 
shape, but more importantly, provide for a more accurate similarity ranking of 
retrieved results, demonstrating greater consideration for dominant internal and 
external shape details. 

1   Introduction 

In Content Based Image Retrieval (CBIR), shape information is widely considered to 
play a key role in the characterization of scenes.  Shape of itself however, is a difficult 
property to measure, and much work has been directed toward this effort.  Recent 
descriptors proposed for capturing shape information, generally fall into two 
categories: contour-based methods (such as the popular fourier descriptor and its 
variants) and region-based methods (such as Zernike moments, Hu’s geometric 
moments, etc).  Due to the difficulty in measuring and assessing shape properties of 
natural images, the majority of CBIR work reported using shape information alone, 
tends to focus on simplified shape databases such as those of binary logos [1] and 
iconified/trademark graphics.  In such collections, scenes often involve only a single 
object with a well defined shape, wherein a single class is often comprised of  a set of 
images with only minor variations to the dominant shape, that whilst altered, remain 
well defined.  In collections involving natural scenes however, such as those found in 
the well known COREL database, scenes are generally much more complex, 
involving many combinations of objects, of a variety of shapes and sizes that may or 
may not be embedded in equally complex backgrounds.  Often shape information 
becomes contaminated by the mixture of content in a scene, rendering shape based 
retrieval results, relatively poor.  In this work, we propose a modified region-based 
technique to better deal with CBIR applications in the domain of natural image 
databases. 

One of the major problems in attempting to use the contour-based standard Fourier 
descriptor (FD) as a feature for assessing the similarity between images based on 
shape, lies in its dependence on the prior knowledge of boundary information.  In 
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particular, it assumes that for each image, we have an ordered description of the 
points that form the connected path responsible for a particular boundary.  As such, 
when considering the boundary of regions of interest, some form of higher level 
segmentation becomes necessary. Unfortunately, even if such segmentation is 
available, it is often the case that multiple boundaries will occur within the image 
(either due to internal shape content or multiple regions of interest).  In previous work 
[2], the FD has been applied to the description of edge information of natural images 
found in the COREL database, and has met with limited success in terms of shape 
identification. 

In other work focusing on shape alone, Zernike moment descriptors (ZMD) have 
been proposed as a preferred technique over other region based techniques such as 
geometric moments (e.g. Hu’s moments) [3].  Derived from a complex set of 
orthogonal polynomials over the unit disk, a more rotationally invariant description of 
shape information is achieved, independent of boundary information.  Limitations 
exist in terms of computational complexity and a tendency to capture spatial moments 
in the radial directions rather than spectral features, thus spectral information is not 
captured evenly at each order resulting in loss of significant features useful for shape 
description [4]. 

As an alternative, a region-based 2D polar Fourier transform (PFT) attempts to 
better capture the spectral content of angular & radial information by transforming the 
polar description of an image into a rectangular image of radial vs. angular 
distribution of image intensities, upon which a standard 2D FT may be applied.  This 
approach has been demonstrated to maintain rotational invariance in that a rotated 
shape generally yields a similar spectral definition.  A generalized version of this 
technique (Generic Fourier Descriptor - GFD) was proposed in [4],[5].  Translation 
invariance was achieved by choosing the origin for polar space to be the centroid of 
the shape in question, thus all radial & angular content is then calculated from this 
origin.  Scale invariance was achieved by normalizing the coefficients of each spectral 
component in the PFT (i.e. one for each combination of radius & angle, or each point 
in the rectangular mapped image of radius vs. angle), by its DC component, whilst the 
DC component itself was normalized by the mass or area over which the polar image 
was taken.  This met with good results in simplified binary shape databases, although 
no real application to natural image data has been reported. 

2   Modified Edge-Based GFD  

In this current work, unlike that of [5], we consider the Canny edge description of 
natural image queries as input to a GFD inspired operator for shape description.  
Direct application of [5] might see a binary image formed from the original (either by 
thresholding or similar), such that a ‘caricature’ of the original could be utilized as 
input to the GFD.  The problem with this is that the computation becomes quite 
extensive as more pixels need to be considered in the shape image. In addition, 
achieving a consistent thresholding for a natural image is not trivial as it is very 
sensitive to contrast, etc.  By using an edge description we reduce the computational 
load (less pixels to consider in the polar mapping). 
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The GFD operator, as proposed by [5], involves first finding the polar description 
of the input edge image (mapped into a normal rectangular image format of radius vs. 
angle) with a 2D FT applied to this transformed image. The modified 2D FT is 
calculated as follows: 
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R  and T  are the radial and angular resolutions.  To get the GFD, we then normalize 
the PFT calculation as described previously, for more details see [4]. 

3   Ignoring Textured Regions Using ETC 

Quite often, excessive textured regions contaminate the edge description of dominant 
objects in a scene.  To remove the contaminating effect of over textured regions, we 
employ a further refinement in the shape image prior to extracting the shape 
description, by attempting to establish (and thus ignore) Canny responses resulting 
more from texture rather than more dominant edges.  In this way, we attempt to 
supply a set of edges that better reflect the regional boundaries within an image rather 
than every intensity variation. The edge-texture characterization (ETC) approach 
introduced in [6] provides a fuzzy discrimination between edge & textured regions 
and is adopted in this work. 

The principal of ETC is founded in examining the changes in variance occurring in 
a windowed local region when it is blurred by an averaging filter.  In smooth regions 
the variance does not really change, however the response in textured versus edge 
images is quite marked.  This is exploited in the ETC measure.  Based on the size of 
the local window considered, the ratio σσ ′= /k  between the standard deviation 

σ of original versusσ ′ of blurred intensities, yields a measure of deviation due to the 
underlying nature of the image content in that region.  A simple range of values 
captured by this measure can be attributed to a textured region, thus we can establish 
a regional mask over the textured regions so that they may be later ignored in the 
shape descriptor calculation. The equations of σ and σ ′ are defined as: 
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In the equation (2) and (3), N denotes a neighborhood set around the current pixel, 

jix , denotes the gray level value of pixel ),( ji in the set, and jix ,′  is the corresponding 
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smoothed gray level value under 5 X 5 averaging. x and x′  are the mean of the gray 
level values of the original and smoothed variables in the neighborhood set. Most of 
the estimated k  values are restricted to the interval [0 5].  Experimental results show 
that the textured area of most images is located in the interval [2.1 5]. In order to 
extract the textured area from the image, we apply a morphological operation (erosion 
and dilation) to deal with the texture map extracted by ETC measurement and form a 
complete texture area, then we can mask and  eliminate the texture area from the edge 
map extracted by Canny filter. 
 

 
 
 
 
 
 

 

Fig. 1. (a) Original image; (b) Edge map; (c) Edge map (texture removed) 

From fig.1(b), we see edge map of original image (Lenna) fig.1(a), extracted by the 
Canny filter, the edge map shows us that the feather texture of her hat produces an 
oversensitive edge response complicating the overall shape, fig.1(c) is the edge map 
after removing the textured part found with ETC and shows us the clear edge shape 
information. 

4   Experimental Results 

In order to test the retrieval performance of our proposed algorithm, we select three 
different shape descriptors: the standard Fourier Descriptor (FD), Modified Generic 
Fourier Descriptor (MGFD) and MGFD after removing texture part of edge map. Our 
simulations were carried out using a subset of the COREL image database consisting 
of 1000 natural color images (JPEG), from 10 classes that appeared to be more 
dominated by shape.  Each class included 100 conceptually similar images.  

Simulations were conducted to compare the retrieval effectiveness on this database 
when indexed with one of three alternative shape descriptors.  The first used the 
lowest 50 coefficients from a standard FD (denoted FD) as a feature vector for each 
edge mapped image.  The second feature vector is a set of 36 coefficients of the GFD, 
calculated for an equally distributed set of 4 radii and 9 angles (denoted MGFD).  The 
third feature vector is the same as the second, however the GFD calculation is 
performed on the texture removed edge map of each image (denoted MGFD1).  Each 
image in the database was then indexed with each of the three different feature 
vectors.  In retrieval, similarity was measured using the Euclidean distance between 
the feature vector of a query image, and those of all other images in the database. 
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To measure general retrieval performance, statistical results were calculated by 
considering 10 different query images from each class (forming 100 queries in total).  
For each query, the first 16 most similar images were retrieved to evaluate the 
performance of the retrieval. The table 1 shows us the Retrieval Rate (the percentage 
of images in the 16 retrieved, belonging to the same class as the query image). 

Table 1. Retrieval performance from three different sets of  shape features 

Class 1 2 3 4 5 6 7 8 9 10 Average 
FD(%) 17.9 21.0 22.3 18.6 41.2 23.8 41.2 63.7 32.5 20.0   30.2 
MGFD(%) 30.5 19.0 23.0 52.5 31.3 21.6 45.0 51.2 60.0 68.0 40.2 
MGFD1(%) 31.6 22.5 22.0 62.5 30.0 22.0 43.0 55.0 68.7 69.5 42.6 

Table 1 tells us that the retrieval results of most classes using the proposed MGFD 
and MGFD1 outperform results using FD. There were, however, a few classes 
demonstrating similar, but slightly worse performance. Such classes exhibit a much 
higher variation in shape between images considered of the same class conceptually, 
thus many images from different classes that have similar shape distribution are often 
confused.  This generally highlights the limitations in using this performance measure 
to evaluate shape based results.  This being said, the proposed MGFD1 method gives 
much better representation in the classes in which the images shape structure is more 
consistent across images, a factor especially evident in classes 4, 9 and 10, reflecting 
sets of rock formation, flag and aircraft images respectively.   

Although the retrieval rate improves about 12 percent using MGFD1 over the 
standard FD approach.  In most classes, the retrieval rate is similar to the edge 
mapped application of GFD (MGFD), with slight overall improvement.  To 
effectively gauge each descriptor more intuitively, we look at some explicit visual 
results, and offer a more subjective view of their relative success, in terms of the 
shapes of images retrieved (regardless of class), and their ranking in terms of 
similarity to the query. 

The left top first image in each of the following figures is the query image we 
selected. The order of similarity ranking is from left to right, top to bottom. In Fig. 
2(a), FD only retrieves 3 flag images, whilst in Fig 2(b) The whole boundary shape of 
the flags (roughly rectangular due to the flags waving) as well as the internal Union 
Jack feature becomes significant. MGFD not only extracts a more accurate exterior 
boundary feature than FD, but also considers interior shape features, retrieving 8 flag 
images with a strong feature in the top left of the flag.  In Fig 2(c), some of the more 
textured details in the flags are eliminated by the ETC consideration, thus only 
dominant edges (both internal and external) contribute to the search and improve the 
retrieval result. The proposed MGFD1 approach has the best performance, evident not 
only in a higher retrieval rate (10 flag images), but more importantly, in the set of 
Union Jack based flags dominating the most similar images, as opposed to the 
scattered flags found by the MGFD.  This reflects a greater accuracy in the ranking of 
similar result images by the MGFD1. 
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Fig. 2. Flag query – CLASS 9 (a) FD top; (b) MGFD middle; (c) MGFD1 bottom   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Aircraft query – CLASS 10 (a) FD top; (b) MGFD middle; (c) MGFD1 bottom 

In Fig. 3(a) FD only retrieves 3 aircraft images. Like the flags, the aircraft images 
exhibit some regularity in terms of shape, although this isn’t captured effectively by 
FD.  In Fig. 3(b) MGFD retrieves 9 aircraft images, but due to the influence of 
internal texture part, the fruit images (the 9th, 10th, 12th and 16th images) are retrieved 
falsely.  Their apparent similarity may be in that the fruit is distributed in an elongated 
manner, yet internal textures are erratic and confuse the similarity matching.  
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In Fig. 3(c) MGFD1 removes the texture ‘contamination’ (the grass and internal 
part of the plane) and retrieves 13 aircraft images.  Note also that the rock contour in 
the 15th retrieved image, where the shape somehow is similar to the straight body of 
the plane, with the kinking tail protruding upward at one end of the plane. This is 
similar to the contour in the rock formation. 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 4. Cat query – CLASS 3 (a) MGFD top; (b) MGFD1 bottom  

 
 
 
 
 
 
 
 

 
 

 

Fig. 5. Fruit query – CLASS 1 (a) MGFD top; (b) MGFD1 bottom 

In Fig. 4 the concept of a cat does not necessarily coincide with a consistent 
silhouette, in fact, in this class different numbers of cats may exist in some images.  
MGFD retrieves 3 cat images.  The 4th result, with 3 kittens is similar to the query.  
Likewise, the distribution in the tree images (2nd and 3rd), fruit (9th) and rock 
formations (7th, 15th) are more similar in terms of overall shape than the images with 
one cat.  In the MGFD1 result, not only are 5 cat images retrieved, but the rank of the 
3 kittens image is improved from 4th to 2nd, (i.e. it is considered most similar to the 
query), as opposed to the MGFD result.  In other queries from class 3 (not shown), 
MGFD occasionally yields a higher retrieval rate than MGFD1 (hence a slightly 
higher performance in Table 1).  This is misleading however, as closer inspection 
reveals that images from the correct class may be retrieved by the MGFD method yet 
have a very different shape from the query.  Also, some of the class images with 
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different shape are often ranked as more similar to the query image than those 
intuitively closer in shape (using MGFD).  The experimental results demonstrated that 
the MGFD1 approach achieves a better result as a shape feature.  This effect should 
mean that if MGFD1 is combined with other features (colour, etc), we expect that the 
other features will help capture more images from the same class, allowing MGFD1 
to sift out and rank the captured set more accurately. 

In the same way, the fruit query of Fig. 5 (FD omitted), shows that the clustered 
balloons are considered to be similar to the clustered fruit objects.  The MGFD1 result 
however, is still more accurate (same fruit ranked 4th for MGFD1, 12th for MGFD). 

5   Conclusions 

In this paper, we have proposed a modified generic Fourier descriptor (MGFD1) for 
image retrieval. Comparing with GFD, where the authors extracted the shape feature 
from the whole shape image in the MPEG-7 region shape database, if GFD is applied 
on natural image instead of binary trademark images, the computation will be very 
expensive because of high resolution and complicated shape information in natural 
images. GFD is not suitable for natural image retrieval. Our proposed MGFD1 
overcame this drawback. 

The PFT was applied to the Canny edge maps of images, thereby decreasing 
computational complexity. The MGFD1 shape feature improved average image 
retrieval rate (except where shape varied dramatically).  In such cases however, the 
similarity rankings were more intuitive.  It was argued that in the cases where 
retrieval rate was lower than that of MGFD, the ultimate performance of the system 
still showed improvement as images from the correct class, yet with different shape to 
the query, were rejected or ranked lower in terms of similarity to the query – 
reflecting an order that more closely fit the notion of shape.  In the future, we will 
apply the MGFD1 method both in combination with other successful low level 
features to further improve overall retrieval rate for natural image databases, and in 
retrieval based on the more specific notion of ROI (Region of Interest), where it is 
expected that overall retrieval rate as well as accuracy will be improved. 
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Abstract. This paper demonstrates an approach to image retrieval by
classifying images into different semantic categories and using probabilis-
tic similarity measures. To reduce the semantic-gap based on low-level
features, a relevance feedback mechanism is also added, which refines
the query parameters to adjust the matching functions. First and sec-
ond order statistical parameters (mean and covariance matrix) are pre-
computed from the feature distributions of predefined categories on mul-
tivariate Gaussian assumption. Statistical similarity measure functions
utilize these category specific parameters based on the online predic-
tion of a multi-class support vector machine classifier. In relevance feed-
back, user selected positive or relevant images are used for calculating
new query point and updating statistical parameters in each iteration.
Whereas, most prominent relevant and non-relevant category specific in-
formation are utilized to modify the ranking of the final retrieved images.
Experimental results on a generic image database with ground-truth or
known categories are reported. Performances of several probabilistic dis-
tance measures are evaluated, which show the effectiveness of the pro-
posed technique.

1 Introduction

Access to images based on low-level features (e.g., color, texture, shape, etc.),
is commonly known as content-based image retrieval (CBIR). Last decade has
witnessed an overwhelming research interest in CBIR systems with mainly three
common functionalities: selection of appropriate image features in the form of
feature vector, a distance based similarity matching function to compare query
and target images in a database, and an indexing mechanism for efficient retrieval
[13]. Early CBIR systems used low-level visual features without any semantic
interpretation of images and as a result, contributed to the well known semantic-
gap problem [6]. Therefore, new concepts are gaining popularity to improve
image understanding and retrieval in the form of semantic image classification,
adaptive similarity matching, and relevance feedback [6]. In a database whose
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semantic description is reasonably well defined and where category search is
prefered (e.g., Personal photo collection, Medical images of different modalities
etc.), it is possible to extract a set of low-level features to depict semantic content
of each image by identifying its class assignment using a classifier and to find
distinguishable feature distribution in each semantic categories. Thus, an image
can be best characterized by exploiting information of feature distribution of its
semantic category. Many early CBIR systems incorporated similarity matching
functions (e.g., Euclidean, Manhattan, etc.) without paying enough attention
about the underlying distribution of the feature space [11]. Similarity measures
based on empirical estimates of the distributions of features have been proposed
in recent years [11]. However, the comparison is most often based on point wise
or statistics of the first order (mean vector) of the distribution [5].

This paper is primarily concerned with the appropriate choice of similarity
matching functions based on the parameterization of underlying category specific
distributions of feature space. A major contribution of this paper is to propose
adaptive statistical similarity measure functions by utilizing a multi-class sup-
port vector machine (SVM) classifier and a relevance feedback (RF) mechanism.
Training samples in the form of feature vectors of known categories are used
to estimate the statistical parameters and train the SVM classifier by extrct-
ing low-level features. We assume that, the distributions of the features in each
category are multivariate Gaussian and based on this assumption, images are
characterized with the first and second order statistical parameters. These cate-
gory specific parameters are exploited by probabilistic distance measures based
on the online SVM prediction. However, it is also impossible that the low-level
features of the example image is just at the distribution center of a semantic
class of images. Hence, we incorporate RF to allow user to refine the query pa-
rameters, which will adjust the matching functions and modify the ranking of
finally retrieved images. Several objective comparison results of different distance
measures, such as Mahalanobis, Bhattacharyya, KL divergence, and Symmetric
KL divergence[8,10] are provided , which show the effectiveness of the proposed
approach.

2 Parameter Estimation for Statistical Distance Measures

Statistical distance measure is the distance between two probability distribu-
tions, which captures correlations or variations between attributes of the fea-
ture vectors and provides bounds for probability of retrieval error of a two
way classification problem. In this scheme query image q and target image t
are assumed to be in different classes and their respective density as pq(x)
and pt(x), both defined on IRd. When these densities are multivariate nor-
mal, they can be approximated by mean vector μ and covariance matrix C
as pq(x) = N(x; μq, Cq) & pt(x) = N(x; μt, Ct) where,

N(x; μ, C) =
1√

(2π)d|C| exp− 1
2 (x−μ)T C−1(x−μ) (1)
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here, x ∈ IRd and | · | is matrix determinant [8]. A popular measure of similar-
ity between two Gaussian distributions is the Bhattacharyya distance, which is
equivalent to an upper bound of the optimal Bayesian classification error prob-
ability [8] [10]. Bhattacharyya distance DB between query image q and target
image t in the database is given by:

DB =
1
8
(μq − μt)T

[
(Cq + Ct)

2

]−1

(μq − μt) +
1
2

ln

∣∣∣ (Cq+Ct)
2

∣∣∣√|Cq||Ct|
(2)

where μq and μt are the mean vectors, and Cq and Ct are the covariance matrices
of query image q and target image t respectively. Equation (2) is composed of
two terms, the first one being the distance between mean vectors of images,
while the second term gives the class separability due to the difference between
class covariance matrices. When all classes have the same covariance matrices,
the Bhattacharyya distance reduce to the Mahalanobis distance, a widely used
similarity measure in CBIR literatures [5,8].

DM = (μq − μt)TC−1(μq − μt) (3)

However, if inclusion of both query and target covariance matrices is useful,
Bhattacharyya distance will outperform Mahalanobis distance [5] as will be
shown in results section. Another distance measure from information theory,
Kullback-Leibler (KL) divergence or relative entropy [10] is regarded as a mea-
sure of the extent to which two probability density functions agree. Kullback-
Leibler divergence is not symmetric and does not satisfy the triangle inequality.
The Jeffrey-divergence (JD) or Symmetric KL divergence is the symmetric ver-
sion of KL distance with respect to pq(x) and pt(x) [10].

Computing the above parametric based probabilistic distance measures re-
quires estimation of μ and C. Suppose that there are L different semantic cate-
gories in the database, each assumed to have a multivariate normal distribution
with mean vector μi and covariance matrix Ci, for i ∈ L. However, the true val-
ues of μ and C of each category usually are not known and must be estimated
from a set of training samples N [8]. We estimated the μ and C of each category
based on maximum likelihood approach as

μi =
1
Ni

Ni∑
j=1

xi,j & Ci =
1

Ni − 1

Ni∑
j=1

(xi,j − μi)(xi,j − μi)T (4)

where xi,j is sample j from category i, Ni is the number of training samples
from category i and N = (N1 + N2 + . . .+ NL).

Similarity measure based on the above statistical parameters would perform
better if the right categories for query and database images are predicted in
real time. Hence, we utilize a multi-class support SVM classifier to predict the
categories and based on the online prediction, similarity measure functions will
be adjusted to accommodate category specific parameters. SVM is an emerging
machine learning technology which has been successfully used in content based
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image retrieval [3]. Given training data (x1, . . . ,xn) that are vectors in some
space xi ∈ IRn and their labels (y1, . . . , yn) where yi ∈ (+1,−1)n, the general
form of the binary linear classification function is

g(x) = w · x + b (5)

where x is an input vector, w is a weight vector, and b is a bias. The goal of SVM
is to find the parameters w and b for the optimal hyper plane to maximize the
geometric margin 2

||w|| between the hyper planes. A number of methods have
been proposed for the extension to multi-class problem essentially by solving
many two-class problems and combining their predictions in various ways [3].
One technique, commonly known as one-vs.-one is to construct SVMs between
all possible pairs of classes. During testing, each of the L∗(L−1)/2 classifier votes
for one class.The winning class is the one with the largest number of accumulated
votes. It has particular advantage when applied to problems with limited samples
in high dimensional spaces. We use this technique for the implementation of our
multi-class SVM for online category prediction by using the LIBSVM software
package [4].

3 Interactive Retrieval with Relevance Feedback

Users might have a different meaning of semantic description in mind or the
prediction of the classifier might go wrong. In these cases, they have the op-
tion to interact with the system and refine the search process; using a tech-
nique commonly known as relevance feedback (RF) technique. RF is an iterative
and/or supervised learning process used to improve the performance of informa-
tion retrieval systems [9]. A number of techniques of RF have been proposed in
the literatures[9,12], such as query point movement, feature re-weighting, active
learning etc.. However, most of these are based on the fact that the user does
not know the actual distribution of the images categories in the feature space
and any hidden relation with similarity matching functions.

Our idea of relevance feedback is the following: user will provide the initial
query image (q0) to retrieve K (fifteen) most similar images based on distance
measures described in previous section. If user is not satisfied with the result,
then system will allow him/her to select a set of relevant or positive images
similar to the query image. It is assumed that, all the positive feedback images
Pos(qi) at some particular iteration i will belong to the user perceived semantic
category and obey the Gaussian distribution to form a cluster in the feature
space. We consider the rest of the images as negative or non-relevant Neg(qi)
and they may belong to different semantic categories. The MindReader [12] re-
trieval system designed by Ishikawa et al. formulates a minimization problem on
the parameter estimating process where the distance function is not necessar-
ily aligned with the coordinate axis and allows for correlations between feature
attributes. They proved that, when using positive feedback (scores) and the
Mahalanobis distance, the optimal query point is a weighted average based on
available set of good results. We have followed a similar approach to update the
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Fig. 1. Functional diagram of the proposed similarity matching technique

parameter of the query class based on the positive feedback images from the
user, as our statistical distance measures are closely related to the distance mea-
sure they proposed. Let, NPos(qi) be the number of positive feedbacks to query
image qi at iteration i and tj ∈ IRd be the feature vector that represents j-th
image for j ∈ NPos(qi), then the new query point at iteration i+ 1 is estimated

as qi+1 = 1
NPos(qi)

∑NPos(qi)

j=1 tj as the mean vector of positive images and covari-

ance matrix is estimated as Cqi+1 = 1
NPos(qi)−1

∑NPos(qi)

j=1 (tj − qi+1)(tj − qi+1)T .
However, singularity issue will arise in covariance matrix estimation if fewer than
d+1 training samples or positive images are available; thus would be the case for
user feedback images. So, we add regularization to avoid singularity in matrices
as follows[7]:

ˆCqi+1 = αCqi+1 + (1− α)I (6)

for some 0 ≤ α ≤ 1 and I is the d × d identity matrix. Hence, the proposed
method is both a query point movement and parameter updating process. We
have used another strategy to modify the ranking of the retrieved images. Based
on the user feedbck of positive images, the multi-class SVM classifier will predict
the closely related and most prevalent category of the query image by applying
a voting rule in each iteration of feedback. We also consider the negative or non-
relevant images to be those, which are not selected as relevant and are among
the top 15 retrieved images in the previous iteration. From the non-relevant
images, SVM also predict the most dominant negative category with the same
voting rule. Let, SVM predicts Lpi and Lni pre-defined different categories from
NPos(qi) and NNeg(qi) images respectively in iteration i. For each image, if it
belongs to a particular predefined category based on SVM prediction, we increase
the counter for that category or label. Using this approach the most dominant
positive category is found by

Lmax = max(CL1 , . . . , CLpi
) (7)
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where each CLi , i ∈ (1, . . . , pi) is the occurence number(s) of a particular category
and (CL1 + . . . + CLpi

) = NPos(qi). Similarly, most dominant negative category
is found out from user perceived non-relevant images. Now for different distance
measures in i + 1 iteration, we reward those database images which belong to
the most dominant positive category and punish the one in dominant negetive
category. By rewarding, we mean that to decrease the distance measure value
by a constant β found experimentally and thereby increase the ranking and for
punishing it goes the opposite way by increasing the values. Hence, if an image of
a particular category in the database is close to many positive images of the same
category then we will increase its ranking and do the opposite for images belong
to most dominant negetive category. Figure 1, shows the block diagram of the
proposed online probabilistic similarity matching technique and user interaction
for image retrieval.

4 Experimental Setup and Results

For statistical parameter estimation and SVM training, we used a fully labeled
database of generic images as training samples. However, for actual testing of
similarity measure functions, we conducted our experiments on the whole data-
base without any labeling but with known ground truth. Our entire generic
database contains 3000 diverse images of natural scenery, people, animal, archi-
tecture, food, etc., which were taken from the Corel Photo Gallery. We experi-
mentally selected 15 semantically different categories (Mountain, Beach, Flower,
Architecture etc.) each with 100 images for generating the training samples. Now
to estimate the parameters of the distributions and providing input to the SVM,
feature vectors in the form of color and texture descriptors were extracted from
each sample image. We extracted the first, second and third central moments
of each color channel as proposed by Stricker and Orengo [14] for our color fea-
ture vector in HSV color space. Color moment descriptor is represented by a 9
dimensional color vector as (μh,μs,μv, σh, σs, σv, γh, γs, γv) here μ, σ and γ are
the mean, standard deviation and skewness of each color channel. We extracted
texture features from the gray level co-occurrence matrix [2]. A gray level cooc-
currence matrix is defined as a sample of the joint probability density of the gray
levels of two pixels separated by a given displacement. Second order moments,
such as energy, maximum probability, entropy, contrast and inverse difference
moment were measured based on the gray level co-occurrence matrix [2]. A fif-
teen dimensional feature vector was formed for three different displacements or
window sizes (1×1, 4×4, 9×9), with each consisting of a five dimensional feature
vector. We normalized color and texture feature vectors and combine them to
form a joint feature vector of 24 dimensions. For SVM training, we used radial
basis kernel function K(xi,xj) = exp(−γ||xi − xj ||2), γ > 0. After 10 fold cross
validation, we found the best parameters C = 15 and γ = .03 with an accuracy
of 81.23% in our current setting and finally trained the whole training set with
these parameters. For relevance feedback, we added a regularization parameter
of α = .75 in the updated covariance matrices and we increased or decreased a
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(a) Without-RF (b) With-RF

Fig. 2. Precision-recall curves for similarity measures functions

distance measure value with a constant β = .15, which were found experimetally
in the database consisting of the training images.

For performance evaluation, we selected a set of 10 bench mark queries for
each category not included in the database and used query-by-example search
method. For the similarity measure we compared the performances of Bhat-
tacharyya, Mahalanobis, KL divergence and Symmetric KL distance measures
along with most widely used Euclidean distance based on precision-recall metrics.
We also evaluated the performances of the distance measures (except Euclidean
and Mahalanobis with common covarinace matrix(Cd)), after the first three it-
erations of RF with the same set of 10 bench mark queries. Figure 2(a), presents
precision-recall curves for different distance measures. It clearly shows that best
performance was achieved by Bhattacharyya distance measure, whereas Euclid-
ean distance performed very poorly. The result is expected as Euclidean distance
does not take into account the correlations of its feature attributes. KL diver-
gence and Symmetric KL divergence performed almost equally, whereas perfor-
mence of Mahalanobis distance was somewhere in between Bhattacharyya and
Euclidean distances. Based on this observation, we can conclude that distance
measures which utilze both the covariances of query and database image cat-
egories performed better in our generic image database. Figure 2(b), presents
precision-recall curves for the four statistical distance measures after the first
three iterations of relevance feedback. It clearly shows that performances were
improved for these distance measures, which justifies our proposed RF approach
for query parameter updating and re-ranking of the retrieval results.

5 Conclusion

In this paper, we proposed a comparative statistical similarity matching tech-
nique based on image categorization and relevance feedback. Instead of com-
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paring only the feature vectors of query and database images, we estimated the
covariances of feature attributes in their category specific distributions and uti-
lized it in various similarity measure functions. We also proposed a relevance
feedback technique, which utilizes query shifting, parameter updating and re-
ranking simultaneously. Performances of different probabilistic distance measures
were evaluated in a generic image database with and without RF. Experimental
results and retrieval performances are promising, although it is solely meant to
illustrate the effectiveness of the probabilistic similarity measures and relevance
feedback with simple low-level features.
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Abstract. The aim of this work is to propose a method for recovering
the 3D geometry of a video sequence taken from a pair of stereo cameras.
The cameras are rigidly situated in a fixed position and there are some
objects which are moving in front of them. Our method estimates the
displacements of objects and the 3D structure of the scene. We establish
a temporal constraint that relates the computation of the optical flow
and the estimation of disparity maps. We use an energy minimisation
approach that yields a system of partial differential equations (PDE)
which is solved by means of a gradient descent technique.

1 Introduction

In this paper we present a new method for the reconstruction of the 3D geometry
of a scene from a stereoscopic video sequence. There are two video–cameras
pointing to the same scene and recording frames at the same time. These two
cameras are situated in a fixed position and always looking at the same direction.
There are some objects in front of the cameras that are moving. We suppose that
the stereo rig is weakly calibrated – the fundamental matrix is known–. We also
suppose that the objects could undergo large displacements.

For every stereoscopic pair of images in the sequence we may compute a dis-
parity map independently from the others, so we would obtain a set of indepen-
dent disparity maps. The problem with this is that, in general, the continuity of
the solution is not preserved and it is very sensitive to the presence of noise. If we
want to overcome this problem then we have to relate the estimation of disparity
maps during the sequence. One way to do this is to compute the displacement
of objects on both video–cameras and use this information to constraint the
computation of the disparity maps in time.

The aim of our method is both to estimate the optical flow for the two
cameras and to constraint the computation of disparity maps by introducing the
information of optical flows. We propose an energy–based method to estimate
a set of dense disparity maps. We introduce the so–called fundamental matrix
[3], [5], [4] in the equations and also compute the optical flows related with both
cameras.
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In order to deal with large displacements, we use a multigrid approach in
where the solutions at lower scales are used as initial approximation for upper
scales. At the end of the process we obtain three sets of dense matching functions
– the disparity maps associated with the stereoscopic system and the optical
flows for the left and right cameras, respectively.

This work is a continuation of previous works on optical flow [2] and disparity
map estimation [1]. These two methods were also based on energy minimization
techniques and showed to be reliable and accurate.

The paper is organized as follows: In Sect. 2 we explain several concepts
on optical flow estimation and the geometry associated to a static stereoscopic
system. In Sect. 3 the method is explained. In Sect. 5 there are some numerical
experiences with synthetic sequences. Finally the conclusions with a summary
of the most important contributions of this work are in Sect. 6.

2 Background

The optical flow is the apparent motion of pixels between images. Under the
Lambertian assumption that corresponding pixels have equal grey values, the
determination of the optical flow comes down to finding a function h(x) =
(u(x), v(x))t that complies with (1).

In our case we have two video-cameras so we may determine the optical flow
for each one. Looking at Fig. 1, we represent by hi,l(x) the optical flow for the
left camera and by hi,r(x) the optical flow for the right one. The subindex i

Fig. 1. We note by Ii,l(x) the images taken from the left camera and by Ii,r(x) the
ones from the right camera. hi,l(x) and hi,r(x) are the optical flows for both cameras
and gi(x) is the matching function computed between every stereoscopic pair.
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stands for the temporal estimation of optical flows between two consecutives
frames, l for the left video-camera and r for the right one.

Then the optical flow constraint equation may be expressed as

Ii,l(x) � Ii+1,l (x + hi,l(x))
Ii,r(x) � Ii+1,r (x + hi,r(x))

for the left and right cameras respectively. Ii,l(x) is the image captured by the
left video-camera at instant i and x = (x, y) is the coordinate for the pixels on
the image. Ii,r(x) is the correspondent for the right video-camera.

Regarding the stereoscopic system we know that at every instant both cam-
eras are related. We may compute the optical flow within a frame from the left
image into the right one. This kind of optical flow is constraint by a geometri-
cal relation that is called the epipolar geometry. We will call this optical flow
the stereo flow to note that the flow is undergoing the influence of the epipolar
geometry.

The epipolar constraint equation m′tFm = 0 states that two corresponding
points, m = (x, 1) = (x, y, 1) and m′t = (x, 1) = (x, y, 1) , on the two images
are related by the Fundamental Matrix, F [4], [5]. This allows us to estimate the
stereo flow only along certain lines like:

a(x) = f11x+ f12y + f13

b(x) = f21x+ f22y + f23

c(x) = f31x+ f32y + f33

In Fig. 1 we name this stereo flow as gi(x) = (ui,s(x), vi,s(x))t. The stereo
flow depends on a scalar function λ (x) and on the epipolar geometry in the
following way

ui,s(x) = −λi(x)b(x)√
a2(x)+b2(x)

− a(x)x+b(x)y+c(x)
a2(x)+b2(x) a(x)

vi,s(x) = λi(x)a(x)√
a2(x)+b2(x)

− a(x)x+b(x)y+c(x)
a2(x)+b2(x) b(x)

More details about this parameterization could be read in paper [1].
The stereo flow constraint equation is

Ii,l(x) � Ii,r (x + gi(x)) (1)

Regarding Fig. 2 it is easy to note that for any two consecutive frames on the
sequence we may establish a relation between the optical and the stereo flows as

hi,l(x) + gi+1(x + hi,l(x)) ≡ gi(x) + hi,r(x + gi(x)) (2)

The path of the vectorial functions hi,l and gi+1 should provide the same
result as following the path gi and hi,r. Therefore, we have to find out the
functions that fulfill this constraint. This temporal constraint relates all the
unknowns of our problem and represents a feature that is desirable to keep.
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Fig. 2. Temporal constraint hi,l(x) + gi+1(x + hi,l(x)) ≡ gi(x) + hi,r(x + gi(x))

3 The Method

The aim of our method is to estimate the stereo and optical flows for the video
sequence. The unknowns for the stereo flow are given by the gi vectorial functions
and thanks to the epipolar geometry it is equivalent to computing the scalar
functions λi, i = 1, ..N . The unknowns for the optical flows are hj,l and hj,r, j =
1, ..N − 1. These two ones are also vectorial functions and their components are
hj,l = (uj,l, vj,l) and hj,r = (uj,r, vj,r).

The variational approach proposed is given by the following energy func-
tional:

E(λi,hj,l,hj,r) = Es(λi) + Eol
(hi,l) + Eor(hi,r) + Ec(λi,hi,l,hi,r) (3)

with Es(λi) the energy corresponding to the stereo flow estimation, Eol
(hi,l) and

Eor (hi,r) the energies for the computation of the optical flows for the left and
right video-cameras respectively, and Ec(λi,hi,l,hi,r) is the energy that relates
the three unknowns as it is remarked on Fig. 2.

The energy functional for the disparity map estimation is

Es(λi) =
N∑

i=1

(∫
Ω (Ii,l(x)− Ii,r(x + g (λi(x))))2 dx dy

+α
∫

Ω ∇λi(x)tD(∇Ii,l)∇λi(x)dx dy
)

This energy is similar to the one explained in [1]. The main difference is that
in this case there is a family of stereoscopic pair of images and we have introduced
an addition to include all the frames. The first term of this energy is the data
term and refers to the stereo flow constraint equation (1). The second is the
regularizing term that makes it possible to find a unique and smooth solution.
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The optical flow energies are

Eol
(hi,l) =

N−1∑
i=1

(∫
Ω (Ii,l(x) − Ii+1,l(x + hi,l(x)))2 dx dy

+α
∫

Ω trace
(
(∇hi,l(x))t D(∇Ii,l)∇hi,l(x)

)
dx dy

)
for the left camera and

Eor (hi,r) =
N−1∑
i=1

(∫
Ω

(Ii,r(x)− Ii+1,r(x + hi,r(x)))2 dx dy

+α
∫

Ω
trace

(
(∇hi,r(x))t D(∇Ii,r)∇hi,r(x)

)
dx dy

)
for the right one. These two energies are similar to the one explained in paper
[2]. We have also introduced a summation. Note that the range of the addition
is from 1 to N − 1 since the optical flow cannot be computed for the last frame.

In these equations α is a constant and D(∇I) is a projection matrix per-
pendicular to ∇I. This matrix was first introduced by Nagel and Enkelmann
[7].

D(∇I) =
1

‖∇I‖2 + 2v2

(∇I⊥∇It
⊥ + v2Id

)
(4)

∇I⊥ is the vector orthogonal to the gradient and is given by∇I⊥=
(−Iy Ix

)t.
This is a projection matrix on the direction perpendicular to the gradient and
thus on the contour direction.

The last part of the energy arise from the relation between the optical and
stereo flows. Regarding Fig. 2 we may relate them as

Ec(λi,hi,l,hi,r) = β
N−1∑
i=1

∫
Ω
Φ (‖hi,l(x) + gi+1(x + hi,l(x))

−gi(x) − hi,r(x + gi(x))‖2
)

dx dy

This equation impose a constraint for consecutive frames. In this equation γ
is a constant and Φ (.) is a function like

Φ (s) = ρ
(
1− e

−s
ρ

)
Intuitively it acts like a force that attracts two corresponding points in the

Ii+1,r image. In most of cases if we follow the two paths we have to arrive to the
same point, but it is not going to occur unless we force it.

4 Energy Minimization

When we minimize the energy functional we obtain the associated Euler-
Lagrange equations. In this case we have a system of equations correspond-
ing to the three unknowns λi, hi,l and hi,r. Then we embed these equations
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into a gradient descent method and we obtain a system of time varying par-
tial differential equations. If we introduce some variables to simplify the equa-
tions B := −b(x)√

a2(x)+b2(x)
, A := a(x)√

a2(x)+b2(x)
, Ca := −a(x)x+b(x)y+c(x)

a2(x)+b2(x) a(x) and

Cb := −a(x)x+b(x)y+c(x)
a2(x)+b2(x) b(x) so the stereo flow is simplified to ui,s = Bλi + Ca

and vi,s = Aλi + Cb, then the gradient descent equation for the stereo flow is

∂λi

∂t
= α div (D (∇Ii,l) ∇λi) +

(
Ii,l − Iλi

i,r

)(
AI

λi

i,r,y +BI
λi

i,r,x

)
+βΦ′

i

(
ui,l + u

hi,l

i+1,s −Bλi − Ca− ugi

i,r

vi,l + v
hi,l

i+1,s −Aλi − Cb− vgi

i,r

)t(
1 + ugi

i,r,x ugi

i,r,y

vgi

i,r,x 1 + vgi

i,r,y

)(
B
A

)
Considering the left optical flow, the gradient descent equations are

∂ui,l

∂t
= α div (D (∇Ii,l) ∇ui,l) +

(
Ii,l − I

hi,l

i+1,l

)
I
hi,l

i+1,l,x

−βΦ′
i

(
ui,l + u

hi,l

i+1,s −Bλi − Ca− ugi

i,r

vi,l + v
hi,l

i+1,s −Aλi − Cb− vgi

i,r

)t(
1 + u

hi,l

i+1,s,x

u
hi,l

i+1,s,y

)
∂vi,l

∂t
= α div (D (∇Ii,l) ∇vi,l) +

(
Ii,l − I

hi,l

i+1,l

)
I
hi,l

i+1,l,y

−βΦ′
i

(
ui,l + u

hi,l

i+1,s −Bλi − Ca− ugi

i,r

vi,l + v
hi,l

i+1,s −Aλi − Cb− vgi

i,r

)t(
v
hi,l

i+1,s,x

1 + v
hi,l

i+1,s,y

)
For the right optical flow we have

∂ui,r

∂t
= α div (D (∇Ii,r) ∇ui,r) +

(
Ii,r − I

hi,r

i+1,r)
)

I
hi,r

i+1,r,x

∂vi,r

∂t
= α div (D (∇Ii,r) ∇vi,r) +

(
Ii,r − I

hi,r

i+1,r

)
I
hi,r

i+1,r,y

In order to overcome the problem of large displacements, we embed our
method into a multi-resolution framework. We start with a large initial scale n0
which yields the smallest image size. Then we compute the stereo and optical
flows for this scale using the gradient equations of the previous section. In the
following scale we use them as initial approximation. We repeat this process for
several scales and finish when we reach the final scale – the original sized images.

5 Experimental Results

In Fig. 3 we show a synthetic sequence of a cylinder which is moving horizontally
from the right border to the left one. The epipolar lines are also horizontal which
means that the projective planes of the cameras are situated in a common plane
and their focus are displaced horizontally.
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Fig. 3. Images of the cylinder sequence

In Fig. 4 we show the dense disparity maps associated with the previous
images. The average euclidean error for these maps are about 0,2. The value of
α = 0, 7 and β = 3x10−3.

Fig. 4. Disparity maps corresponding to the images in Fig. 3

6 Conclusions

In this paper we have proposed a novel method for the estimation of dense
disparity maps from a stereoscopic video sequence. The method that we have
proposed stablishes a unified framework to deal with optical flow estimation and
stereo flow computation in continuous stereo video. We have extended some well
studied stereoscopic and optical flow techniques for pair of images to a sequence
of images. In order to have a consistent solution we have introduced a temporal
constraint between the stereo and the optical flows. We obtain dense solutions
thanks to a variational formulation and to deal with large displacements we have
introduced a pyramidal approach.

Acknowledgements

This paper has been partly funded by the spanish Ministry of Science and Tech-
nology and FEDER through the research project TIC2003-08957, and by the



616 A. Salgado and J. Sánchez
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Abstract. Three-dimensional planar profile sampling of surfaces is a
very common method of structural recovery in 3D scanning. In handheld
3D scanners, this has scarcely ever been taken into account resulting in
poor precision ratings. Therefore, in this text we will describe a novel
use of the profiling geometrical context to derive an intuitive and phys-
ically meaningful approach on solving the 3D profile registration prob-
lem. We will finish by describing the global optimisation algorithm and
by showing experimental results achieved with a 3D scanner prototype
comprising a camera, a laser-plane projector and a pose sensor.

1 Introduction

Most three-dimensional recovery and reconstruction systems, commonly known
as 3D scanners, acquire samples of object surfaces on a three-dimensional scene
so as to achieve their goal. Examples of devices resorting to this methodology
are laser range finders, scanners using structured light projection, ultrasound
systems, stereoscopic systems (photogrammetry), to name but a few.

Although some of these systems instantly sample complete surface patches
from the object, others require a sweep of the three-dimensional scene in order
to sample large sets of curvilinear profiles. More precisely, these profiles belong
to planes which are projected in space in a controlled fashion in order to perform
the sweep — these planes may be formed by light projection, laser projection,
ultrasound projection, etc.

1.1 Brief Overview of Registration in 3D Scanning

Most of the research conducted regarding 3D registration has relied on the fact
that large sets of points sampled from a surface from each viewpoint can be
trusted as being accurately locally registered inside that set. As a result, integra-
tion can be achieved through registration of several overlapping surface patches
resulting from those point-sets [1,2].

However, there is also an important group of scanners that can only trustingly
yield sets of points locally registered as belonging to curvilinear planar patches.
These are the main subjects of our study, and examples of these devices belong
to one of the most cutting-edge and also challenging groups of 3D scanners of
today: the handheld 3D scanners.

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 617–624, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



618 J.F. Ferreira and J. Dias

1.2 Overview of Profile Registration

There is one main difficulty regarding the 3D registration process that implies a
big loss in redundancy when considering scanners that can only scan point-sets
of one planar profile at a time: each profile can only be registered with other
profiles that intersect it inside the bounds of the visible surface of the scanned
object [3].

This means that it is only possible to register crossing profiles as opposed
to overlapping surface patches and that the feature space is reduced to their
intersection points. Let us assume for now that this issue has been taken care
of so that intersecting profiles have been matched together. Then, one prelim-
inary solution to the 3D registration problem for a particular profile with its
set of intersecting profiles, down the line of well-known algorithms such as ICP
(Iterative Closest Point), could be given by the following equation (cf [1,3])

e =
N∑

i=1

∥∥W T
Cn

Pni −W T
Ci

P′′
in

∥∥2,
P′′

in = P| min
P∈pi

∥∥WTCn
Pni −WTCi

P
∥∥ (1)

where {C} represents the local referential corresponding to the sampling sensor
(usually a camera), {W} represents the global integrating referential and e is
the error function to be minimised in a least-square sense. This function rep-
resents the sum of squares of euclidian distances between the elements of each
pair, index i, of correspondent intersection points. These pairs consist of the
intersection points Pni, taken from the considered profile pn at point of view n,
for which the transformation W T

Cn
is to be estimated so as to achieve registra-

tion, and points P′′
in from the intersecting profiles pi at point of view i (paired

with transformations W T
Ci

, assumed given), taken to be correspondent through
matching based on the minimum euclidian distance.

Studies have been made by Hébert and Rioux, as shown in [3], that attempt
to solve the local registration problem by profiting from the profiling geometry
indirectly through the use of the properties of the plane which is tangent to the
scanned surface so as to match points between crossing profiles.

Our solution, described in the following text, directly exploits the benefits of
the profiling geometry to achieve better point correspondence, using the knowl-
edge that intersection points between profiles also belong to the lines of inter-
section of crossing profile planes.

2 Local Optimisation for 3D Profile Registration

In the following subsections, the main contribution of our work is presented,
which is twofold: a novel approach to profile matching and point correspondence,
and a powerful formulation and solution of the local optimisation problem.
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2.1 Profile Matching and Point Correspondence

In figure 1, a hypothetical (since all the true positions/orientations of all entities
are assumed known) scan situation is shown, consisting of a projected plane Π

n

3
of radiant energy1 (be it light, ultrasound or of any other kind of energy prop-
agating with a similar geometric model) crossing two other planes, Π

i

3 and Π
j

3,
all of which crossing an undulating surface creating profiles. Here we can clearly
observe the redundancy achieved by taking advantage of its geometry, since we
are considering several different entities that intersect at the same registration
points: two planes, one line and two profiles for each of these points.

Π3
j

pj

Π3
n

pn

Π3
i

lni

lnjip

Π3
i

jp

Π3
j

pn

Pnj

Pni

Fig. 1. Plane registration. One plane can be seen crossed by two other planes; their
intersection lines, their corresponding profiles and the profiles’ intersection points are
also shown.

We propose that each light plane intersection line referred to point of view
i and denoted as lin can be used as a search line to determine which points
belonging to profile pi correspond to other points belonging to profile pn in a
reference point of view n.

The mathematical formalisation of 3D registration of a profile performed in
this manner would thus be stated as

e =
N∑

i=1

∥∥W TCn
Pni −W TCi

P′
in

∥∥2,{
P′

in = lin ∩ pi

lin =
Ci Π

n

3 ∩
Ci Π

i

3

(2)

where all entities have the same meanings as in equation (1), with the exception
of P′

in, which represents the correspondent point in profile pi taken using search

1 Subscript “3” appears due to the fact that the planes usually present the third
restriction in triangulation based systems — see [4].
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line lin, which is the result of the intersection between
Ci Π

n

3 , the plane taken
from point of view n, and

Ci Π
i

3, the plane taken from point of view i, both
referred to {C

i
}.

2.2 Local Optimisation Methodology

The minimisation of the error function given by equation (2) is referred to as local
optimisation. This particular part of the 3D registration process has been studied
thoroughly in the past — it relates to the popular absolute orientation estimation
problem, which also has applications in photogrammetry, object motion analysis,
determining the hand-eye transform and pose estimation [5].

An overall study of the performances of the most popular closed-form meth-
ods proposed by several authors was done in [5]. Four major algorithms are
compared in this work and it makes clear that most of them achieve similar
results under realistic conditions. However, the first three methods are solutions
built on top of different formulations of the Procrustes problem where rotation
is estimated first, then translation, which for obvious reasons implies error prop-
agation and compounding — the implications of error propagation using these
types of formulations were studied in [6]. With this in mind, we have decided
on using Michael Walker’s solution, described in [7], which uses an elegant for-
mulation, resorting to dual quaternions to provide a linear least-square method
to solve simultaneously for rotation and translation, avoiding in this way error
compounding.

According to this method, the equation that represents the transformation
T that takes point Pni into coinciding with its match Pin is

p̊in = W(̊q)T Q(̊q)̊pni + W(̊q)T q̊′ (3)

where q̊ = [q1, q2, q3, q4]T (representing rotation) and q̊′ = [q′1, q
′
2, q

′
3, q

′
4]

T (rep-
resenting translation) are the real and dual parts, respectively, of the dual unit
quaternion ˘̊q corresponding to the screw motion related to WT

Cn
, and p̊ni and

p̊in are the purely imaginary quaternions corresponding to Pni and Pin, respec-
tively (for in-depth information regarding dual quaternions and the kinematic
notion of a screw, please refer to [8]).

In addition we have the following auxiliary matrices:

K(̊q) =

⎡⎣ 0 −q3 q2
q3 0 −q1
−q2 q1 0

⎤⎦ ,Q(̊q) =
[

q4I + K(̊q) q̊
−q̊T q4

]
,W(̊q) =

[
q4I−K(̊q) q̊
−q̊T q4

]

Re-writing equation (2) according to [7] and considering ˜̊pin, corresponding
to P̃in = W TCi

P′
in, and p̊in resulting from equation (3), gives
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e =
N∑

i=1

βi

∥∥∥p̊in − ˜̊pin

∥∥∥2,⎧⎪⎪⎨⎪⎪⎩
P̃in = WT

Ci
P′

in �→ ˜̊pin

P′
in = lin ∩ pi

lin =
Ci Π

n

3 ∩
Ci Π

i

3

(4)

where βi are constant positive weighting factors that may be used to reflect data
reliability [7,5].

Using dual quaternion properties and equation (3), one may expand the
squared norm as [7]∥∥∥p̊in − ˜̊pin

∥∥∥2 = q̊′T q̊′ + 2q̊′T
(
W(̊pni)−Q(˜̊pin)

)
q̊− 2q̊T Q(˜̊pin)T W(̊pni)̊q

+
(
(̊pni)T p̊ni + (˜̊pin)T ˜̊pin

)
(5)

Thus, the error function can be written as a quadratic function of q̊ and q̊′ [7]

e = q̊T C1q̊ + q̊′T C2q̊′ + q̊′T C2q̊ +K (6)

where

C1 = −2
N∑

i=1

βiQ(˜̊pin)T W(̊pni)

C2 =

(
N∑

i=1

βi

)
I

C3 = 2
N∑

i=1

βi

(
W(̊pni)−Q(˜̊pin)

)
K =

N∑
i=1

βi

(
(̊pni)T p̊ni + (˜̊pin)T ˜̊pin

)
(7)

Using unit norm condition of the dual unit quaternion ˘̊q, which in terms of its
real and dual parts implies q̊T q̊ = 1 and q̊′T q̊′ = 0, Walker et al. use Lagrange
multipliers (see [9]) to prove that the solution for q̊ is the eigenvector of [7]

A =
1
2
(
CT

3 (C2 + CT
2 )−1C3 −C1 −CT

1
)

(8)

corresponding to its largest positive eigenvalue. The solution for the dual part
is easily shown to be q̊′ = −(C2 + CT

2 )−1C3q̊ [7].
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3 The 3D Planar Profile Registration Algorithm

The global algorithm for three-dimensional profile registration can be described
as the successive iteration of the steps described in the text that follows, using
prior knowledge of the approximate attitude of each radiant energy plane (as
said in section 2.1, this can be light, ultrasound, etc.) as an initial value source
for transformation estimates.

At iteration t all Tn(t),n = 1..m for a total of m profiles are estimated as
follows:

1. Firstly, sets of all other energy planes which are known to cross each refer-
ential energy plane inside surface bounds are grouped. Planes which are not
intersected may be eliminated as lacking information, if wanted.

2. Next, each set of intersecting planes is processed by reference plane, and
points belonging both to the reference plane and to each corresponding cross-
ing plane which are closest to the intersection line estimates are determined
and matched per intersection line. Correspondences are validated if distances
between matched points are lower than a threshold.

3. Equation (4) is solved as described earlier so as to determine Tn(t). To this
end, transformations W T

Ci
corresponding to iteration t − 1 are used. The

weights βi are computed resorting to two unit and scale independent mea-
sures: the so-called Tanimoto measure or distance (similarity or proximity
measure) between two 3D points x and y given by [10,11]

ST (x,y) =
xT y

‖x‖2 + ‖y‖2 − xT y
=

1

1 + (x−y)T (x−y)
xT y

(9)

which is noticeably inversely proportional to the squared euclidean distance
between the points divided by its correlation, and is thus normalised; the
normalised orthogonality, measure between two crossing planes (i.e. crossing
planes which are “more” orthogonal yield more important correspondences)
with normals n̂ and m̂, respectively, given by

O(n̂, m̂) = 1− n̂ · m̂ (10)

Hence, βi = ST
j · Ok, was used, where j and k may be chosen empirically,

given the characteristics and average performance ratings of the scanner.
4. Finally, the global correspondence error given by the sum of distances be-

tween points is computed — if less than a chosen error threshold, the al-
gorithm is considered as having converged and is stopped; otherwise, the
algorithm proceeds to the next iteration. Another stopping condition is met
if all Tn(t) approximate the identity matrix.

4 Results and Discussion

Figure 2 on the next page shows the handheld 3D laser scanner prototype which
was used to scan a mannequin for the experimental application of the 3D planar
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Fig. 2. The Tele-3D handheld scanner’s schematics and photo on the left and the
mannequin test subject on the right. The Tele-3D is a triangulation-based laser scanner
with a camera, a laser-plane projector and a pose sensor mounted on a boomerang-
shaped acrylic structure.

Fig. 3. 3D planar profile registration — on the left, pre-integration using the pose
sensor readings to obtain initial values for transformations is shown; on the right, the
final result using our method is presented. Profiles with clearly different orientations
were clustered and represented with different colours so as to improve visualisation of
the results.
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profile registration algorithm. This system was set up using proprietary calibra-
tion algorithms2, which produced estimates for triangulation errors per profile
of 2.6mm and for pose orientation and position readings of 2.7 o and 12.6mm,
respectively [4]. Considering the magnitude of these error estimates, especially
the latter, good performance for the registration algorithm was paramount.

On figure 3 on the preceding page, the results yielded before (using the
pose sensor readings to obtain initial values for transformations) and after the
registration/integration process are shown [4]. The success of the proposed reg-
istration algorithm can be clearly seen by the reasonable re-orientation of the
profiles yielded with its application.
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Abstract. This paper presents a method for estimating the orienta-
tion of planar text surfaces using the edge-direction distribution (EDD)
extracted from the image as input to a neural network. We consider
canonical rotations and we developed a mathematical model to analyze
how the EDD changes with the rotation angle under orthographic pro-
jection. In order to improve performance and solve quadrant ambiguities,
we adopt an active-vision approach by considering a pair of images (in-
stead of only one) with a slight rotation difference between them. We
then use the difference between the two EDDs as input to the network.
Starting with camera-captured front-parallel images with text, we apply
single-axis synthetic rotations to verify the validity of the EDD transform
model and to train and test the network. The presented text-pose estima-
tion method is intended to provide navigation guidance to a mobile robot
capable of reading the textual content encountered in its environment.

1 Introduction

Our main research effort is concentrated on developing a vision system for an
autonomous robot that will be able to find and read text. This paper focuses on
the problem of text-pose estimation and we propose a method to compute the
orientation of the text surface with respect to the viewing axis of the camera
mounted on the robot. Once this information is known, the robot can be ma-
neuvered to obtain a front-parallel view of the text, which, in principle, would
give the best final OCR result.

Camera-based text reading in 3D space is a more defiant problem than classi-
cal optical character recognition (OCR) used for processing scanned documents.
Two major aspects are different and play a very important role: the text areas
must be first found in the image because text may be anywhere in the scene
(text detection) and, secondly, the orientation of the text surface with respect
to the camera viewing axis needs to be inferred (pose estimation) as it will be
different from case to case.

We built a connected-component-based text-detector that exploits edge, color
and morphological information to find candidate text regions from scene im-
ages [1]. Though far from perfect, we assume, in the rest of the paper, that text
detection is solved.

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 625–634, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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After text detection, the orientation of the text surface must be determined.
A very effective solution to text-pose estimation is based on finding vanishing
points of text lines [2, 3]. This type of knowledge-based approach has to impose
restrictions on text layout and the search for vanishing points is computationally
expensive.

Edge Direction
Distribution

Network
Neural

Rotation Angle
Estimated

o0 90o o180 o270 o360

p(  )φ

φ

Input
Layer

Layer
Hidden

Unit
Output

α, β, γ

X

Y

Z

β

β

n

Controllable camera
(pan, tilt, zoom, focus)

(rotation around X, Y or Z axis)
Planar surface with text

a b

Fig. 1. a) Experimental setup. b) Text-pose estimation method. The neural network
has one input unit for every EDD bin. The rotation angle is given by the output unit.

In contrast, we assume a different approach that can best be described
as a simple shape-from-texture model. Determining the orientation (pose) and
curvature (shape) of 3D surfaces from image texture information is a core vi-
sion problem. The proposed solutions make assumptions regarding the texture
(isotropic [4] or homogeneous [5]) and type of image projection (perspective [6]
or orthographic [7]). These general shape-from-texture algorithms rely on dif-
ferential distortions in the local spatial frequency spectra of neighboring image
patches. However, text texture does not have texels, it is homogeneous only in a
stochastic sense and also, as we shall see, strongly directional, being a difficult
candidate for the classical shape-from-texture algorithms.

We adopt a simplified, but more robust, feature-based method to solve the
problem of text-pose estimation. The feature that we shall use is the angu-
lar distribution of directions in the text region extracted from the edges. This
distribution changes systematically with the rotation angle and we develop a
mathematical model to describe this trend. We then show how the rotation an-
gle of the text surface can be recovered back from the edge-direction distribution
(EDD) using a feed-forward neural network. We assume that text lies on a pla-
nar surface and we consider only single axis rotations. In this case, the general
shape-from-texture problem reduces to determining the slant angle (the angle
between the normal and the viewing axis Z) for rotations around the X and Y
axes. We impose these constraints in order to obtain a basic module working on
the robot in real-time, rather than a broad and generic solution. Because robot
motion is confined to the horizontal plane, only the rotation angle (β) of text
around the vertical axis (Y) can be used for repositioning (see fig. 1a).
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2 Extraction of the Edge-Direction Distribution

The probability distribution of edge directions in the text area is extracted fol-
lowing a classical edge-detection method. Two orthogonal Sobel kernels Sx and
Sy are convolved with the image I (in eq. 1, ⊗ represents the convolution op-
erator). The responses Gx and Gy represent the strengths of the local gradients
along the x and y directions. We compute the orientation angle φ/ of the gra-
dient vector measured from the horizontal (gradient phase). A correction of 90
degrees is then applied to go from gradient-direction (φ/) to edge-direction (φ),
which is a more intuitive measure.

Gx = Sx ⊗ I, Gy = Sy ⊗ I, φ/ = arctan(
Gy

Gx
), φ = φ/ +

π

2
(1)

As the convolution runs over the image, we build an angle histogram of
the edge-directions by counting the pixels where the gradient surpasses a chosen
threshold. In the end, the edge-direction histogram is normalized to a probability
distribution p(φ).

3 Text Rotation in 3D and Transform Model for the
EDD

In this section, we analyze how the EDD changes with the rotation angle. We
shall consider canonical rotations of a planar text surface under orthographic
projection.

Rotation Around X Axis

Consider a needle OA of length l0 initially contained in the front-parallel plane
XOY and oriented at angle φ0 from to the horizontal. We rotate it by angle
α ∈ (−90◦, +90◦) around X axis to the new position OA’ and then we project
it back onto the front-parallel plane to OB (see fig. 2a). The projection OB will
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Fig. 2. a) Text rotation around X axis, b) EDD change after rotation around X by 50◦
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be of length l (l < l0) and oriented at angle φ (φ < φ0) from the horizontal. The
projection equations are:

lx = l cosφ = l0 cosφ0, ly = l sinφ = l0 sinφ0 cosα (2)

Forward and backward relations for needle length and orientation are:

l = l0
√

1− sin2φ0 sin2α, l0 = l

√
1− cos2φ sin2α

cosα
(3)

φ = arctan(tanφ0 cosα), φ0 = arctan(
tanφ

cosα
) (4)

The initial needle OA and its projection OB will appear at rescaled dimen-
sions in the image. If we consider that the needle actually stands for a small edge
fragment, we can now describe how the text EDD changes from the initial p0(φ0)
to pα(φ) after rotation. Two elements need to be taken into account: the length
change l0 → l and the angle change φ0 → φ. We express the new distribution as:

h(φ) = p0(φ0)
l

l0

dφ0

dφ
(5)

where h(φ) are some intermediary values. A renormalization of these values is
necessary in order to obtain a proper final probability distribution that adds up
to 1.

Therefore, the EDD transform model that we propose is:

pα(φ) =
hα(φ)∑
φ hα(φ)

, hα(φ) =
cos2α

(1− cos2φ sin2α)
3
2

p0(arctan(
tanφ

cosα
)) (6)

In eq. 6, the intermediary values h undergo renormalization. The expression for h
is obtained from eq. 5 after evaluating the lengths ratio and the angle derivative.

Unfortunately, the model cannot be formally developed beyond this point,
making the numerical analysis our only option. This is the reason why we for-
mulate eq. 6 using discrete sums. The EDD pα(φ) corresponding to rotated text
cannot be expressed in closed form as a function of the rotation angle α and the
base EDD p0(φ0) corresponding to front-parallel text.

Qualitatively, after rotation around X axis, text appears compressed verti-
cally. This foreshortening effect is reflected in the EDD (fig. 2b): the horizontal
component of the distribution increases at the expense of the vertical one. The
changes in EDD are more pronounced at larger angles and this makes possible
recovering the rotation angle α.

Rotation Around Y Axis

We apply a similar analysis considering a rotation of angle β ∈ (−90◦, +90◦)
around Y axis (see fig. 3a). The projection equations are:

lx = l cosφ = l0 cosφ0 cosβ, ly = l sinφ = l0 sinφ0 (7)
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Forward and backward relations for needle length and orientation are:

l = l0
√

1− cos2φ0 sin2β, l0 = l

√
1− sin2φ sin2β

cosβ
(8)

φ = arctan(
tanφ0

cosβ
), φ0 = arctan(tanφ cosβ) (9)

Applying eq. 5, the EDD transform model becomes:

pβ(φ) =
hβ(φ)∑
φ hβ(φ)

, hβ(φ) =
cos2β

(1− sin2φ sin2β)
3
2

p0(arctan(tanφ cosβ)) (10)

where h are intermediary values that undergo renormalization.
Here again, pβ(φ) (corresponding to rotated text) cannot be expressed in

closed form as a function of the rotation angle β and the base EDD p0(φ0)
(corresponding to front-parallel text).

Qualitatively, after rotation around Y axis, text appears compressed hori-
zontally. This foreshortening effect is reflected in the EDD (fig. 3b): the vertical
component of the distribution increases at the expense of the horizontal one.
The rotation angle β can be recovered because the changes in EDD are more
pronounced at larger angles.
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Rotation Around Z Axis

In this case, text rotation by angle γ ∈ (0◦, 360◦) simply results in a rotation of
the EDD (considered in polar form) by the same angle (see fig. 4):

φ = φ0 + γ, l = l0, pγ(φ) = p0(φ − γ) (11)

4 Text-Pose Estimation Method

First we attempted to recover the rotation angle using multilinear regression and
obtained correlation coefficients larger than 0.85 between the cosine squared of
the rotation angle and the probability values in the EDD. But an obvious and
more appropriate choice is to use a neural network to extract the nonlinear
inverse relationship between the EDD and the rotation angle. The ground-truth
data needed to train and test the network is obtained using synthetic rotations
starting from front-parallel views.

However, in trying to recover the rotation angle directly from the EDD, two
problems appear: font-dependence of the base EDD and quadrant ambiguity.

An important underlying assumptions is that the base EDD corresponding to
the front-parallel view is almost the same for all machine-print text. Otherwise,
a change in the EDD due to font will be wrongly interpreted as a rotation. This
assumption is not true: the EDD is actually different for different fonts. We very
successfully exploited this fact in solving the problem of identifying people based
on their handwriting [8].

The second problem is quadrant ambiguity for rotations around X and Y:
under orthographic projection, text looks the same under rotation of +α and −α
(+β and −β). The EDD cannot distinguish between the two situations and this
can also be confirmed by observing that the functions depending on the rotation
angle appearing in equations 6 and 10 are even. For eliminating this problem,
the idea is to consider in the analysis two images rather a single one, the second
image being rotated at a fixed small angle δ from to the first. In one quadrant,
the second image will be closer to the front-parallel view than the first. In the
other quadrant, the situation will be reversed. This will be clearly reflected in
the difference between the EDDs extracted from the two images and the neural
network will learn it from the training data. Using the difference between two
EDDs diminishes also the font-dependence problem. The robot, therefore, will
need - for rotations around Y axis - to make a small exploratory movement,
always to the same side (e.g. to the right) in order to alleviate the ambiguity.

For rotations around Z axis the quadrant ambiguity cannot be eliminated.
While usually the vertical component of text is stronger than the horizontal one
in machine-print, this difference is not reliable enough to obtain accurate predic-
tions based on it. The EDD is almost symmetric to rotations of 90◦ around Z axis
and consequently our solution can only encompass one quadrant. In this case,
two images are not needed, the EDD from a single image suffices to determine
the rotation angle.
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5 Results

We used a Sony Evi D-31 PAL controllable camera to collect 165 images con-
taining text in front-parallel view (gray-scale, 8 bits/pixel, 748x556 resolution).
We strived to obtain sufficient variability in the dataset: 10 different fonts, ap-
pearing at different sizes in the images, from a single word to a whole paragraph
per image. Single-axis synthetic rotations are applied to these images using our
own custom-built rotation engine. The number of bins in the EDD was set to
N = 36. This was found to give a sufficiently fine description of text texture
(10◦/bin).

First we verify the validity of our EDD transform model and then we train
a neural network to predict the rotation angle and evaluate its performance.

Verification of the Theoretical Model

From every image in the dataset, we extract the base EDD corresponding to
the front-parallel view. We then randomly select a rotation angle and we theo-
retically compute (using equations 6, 10, 11) what the EDD should be for the
rotated image (forward transform). We then apply the rotation on the image
and we directly extract the EDD corresponding to the new pose. We compare
the theoretically predicted EDD with the empirically extracted EDD to check
the validity of our formal model. An appropriate similarity measure between the
two EDDs is Bhattacharyya distance: the distance varies between 0 and 1 and
we express it in percentages to have an intuitive measure. If the distance is null,
the two distributions are identical.

We applied 400 random rotations on every image around each axis. The
average distance is around 1% (see table 1) and in fig. 5a we show its dependence
on the rotation angle. For rotations around X and Y axes, the error increases
with the rotation angle. At larger angles, text is so compressed that letters
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Fig. 6. Typical performance: ”good” example up, ”bad” example down. Angular pre-
dictions are given for rotations around X, Y, Z from left to right panel. Ideally all the
experimental points would be placed exactly on the diagonal for perfect predictions.

fuse together in a single lump and our mathematical model no longer correctly
describes the changes in the EDD. For rotations around Z, the error is small
and does not have a systematic trend, but we can observe a sampling artifact:
the error shows an oscillatory behavior as the probability flows from one bin to
another of the EDD.

Evaluation of the Angle Prediction Method

For predicting the rotation angle from the EDD (inverse transform), we use
a standard feed-forward neural network (3 layers, fully connected, nonlinear
transfer functions in the hidden layer). The network architecture is 36x10x1 (see
fig. 1b).

From the start, we split the data into 100 images for training and 65 for
testing. Every image is then rotated 400 times at random angles (40000 training
examples, 26000 testing examples). For rotations around X and Y, two rotated
images are in fact generated with a slight pose difference between them δ = 10◦.
The network is trained to predict the rotation angle (e.g. of the second image)
using the difference between the two EDDs. For rotations around Z, a single EDD
is used with rotations limited to one quadrant. Fig. 6 shows how the method
performs on two typical examples.

On the test data, we compute the root mean square (RMS) error between
the predicted and the real rotation angle. The average angular prediction error
is given in table 1. The method demonstrates good performance (3◦ - 7◦ angular
error). In fig. 5b we show the dependence of the angular error on the rotation
angle. As expected, it can be observed again that the error increases at larger
angles for rotations around X and Y axes. Another interesting observation is
that the prediction error for rotations around Y axis is larger than that for
rotations around X axis. So we performed the following simple test: we first
rotated all the images by 90◦ around Z and subsequently we applied all the
regular analysis. The angular error for rotations around X axis snaps into the
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Table 1. Correlation between theoretical model and empirical data (column 2). Overall
angle prediction error (column 3).

Rotation Theoretical Model Angle Prediction
around Error (percentages) Error (degrees)

X axis (pitch) 1.36% 3.8◦

Y axis (yaw) 1.11% 6.6◦

Z axis (roll) 0.78% 2.9◦

range of errors for rotations around Y axis and the reverse (see fig.5b), proving
to be an inherent property of the data. The explanation is that the vertical
component of text is more reliable than the horizontal one and, as it is most
affected by rotations around X axis, the prediction is more accurate in this case.
Unfortunately, rotations around Y axis represent the case of most interest for
our robotic application.

For rotations around Z axis, we can observe that for angles γ close to 0◦ and
90◦ the error increases as confusion appears (especially for uppercase charac-
ters) between the vertical and the horizontal components, which are the most
prominent in the EDD. This is the reason why we opted for a single quadrant
solution for this type of rotation.

The method becomes unreliable for small characters (less than 20 pixels in
height or width) as the EDD cannot be consistently extracted. We found that
the method works well if more than 10 characters are present in the image (see
fig. 6). In a qualitative evaluation, we found that the proposed method works
also on-line in combination with our controllable camera. The neural network,
trained and tested off-line on synthetic rotations, estimates reasonably well text-
pose during on-line operation under real rotations. The errors are, nevertheless,
relatively larger. We found that Greek fonts can be handled too by the same
neural network. It is important to note at this point that the proposed algo-
rithm is lightweight, on average 70 msec being necessary on a 3.0 GHz processor
to extract the EDDs from 2 images and run the neural network on their differ-
ence to predict the rotation angle. Therefore, using the robot’s ability to make
small exploratory movements seems like an attractive idea for solving the pose-
estimation problem. We treated here only canonical rotations. The method can
be directly extended to two-axis rotations. We have not addressed free three-axis
rotations. The proposed texture-based method for text-pose estimation does not
impose constraints on text layout. It works even when text lines are not present
or they are very short.

6 Conclusions

We presented a method for estimating the orientation of planar text surfaces us-
ing the edge-direction distribution (EDD) in combination with a neural network.
We considered single-axis rotations and we developed a mathematical model to
analyze how the EDD changes with the rotation angle under orthographic pro-
jection. We numerically verified the validity of our underlying mathematical
model. In order to solve the quadrant ambiguity and improve performance, for
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rotations around X and Y axes, we consider a pair of images with a slight rota-
tion difference between them. The change in the EDD is extracted and sent to a
feed-forward neural network that predicts the text rotation angle. The method
has been tested off-line with single-axis synthetic rotations and shows good per-
formance. Though limited in scope, the text-pose estimation method proposed
here is elegant, quite simple and very fast. Further work will be directed at inte-
grating this pose estimation method within a complete robotic reading system.
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Abstract. We describe a new stereoscopic system based on a multi-
spectral camera and an LCD-Projector. The novel concept we want to
show consists in the use of multispectral information for 3D-scenes recon-
struction. Each 3D point is linked to a curve representing the spectral
reflectance. This latter is a physical representation of the matter and
presents the advantage over color information, which is perceptual, that
it is independent from both illuminant and observer. We first present an
easy methodology to geometrically and spectrally calibrate such a sys-
tem. We then describe an algorithm for recovering 3D coordinates based
on triangulation and an algorithm for reflectance curves reconstruction
based on neural networks. The results are encouraging. they confirm the
feasibility of such a system and in the same time enable some multimedia
applications like simulating illumination change.

1 Introduction

In the field of 3D object reconstruction and metrology, vision-based systems are
becoming increasingly prevalent, including, for example, industrial applications.
In particular, within the framework of applications whose scene has a signifi-
cant volume, they seem preferable to techniques based on interferometry or the
watered effect, techniques which mainly measure nanometer order depths.

Vision systems can be divided into two categories: passive or active vision.
The passive systems use several sensors, cameras for example, to acquire the
scene. The method used to give position and depth information is based on the
matching of the points between images in order to reconstruct by triangulation
their position in 3D. The problem with such methods is in the detection and
matching of the characteristic points. The last is non trivial for two reasons:
firstly, the camera’s point of view can make a same scene zone appear differently
in various images; secondly, some visible parts in one image can be blacked in
another. Moreover, very small textured objects become very difficult to analyze
because of the lack of characteristic points appearing on their surface. Active
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systems replace one of the cameras of a passive system with a device which
projects a structured light onto the scene. This light creates a kind of texture
on the scene surface that a camera can then acquire. If it is supposed that
this system is geometrically calibrated, the position and the depth of the scene
points, as illuminated by the projected pattern, can be calculated. Many types
of structured light have already been studied. The interested reader can refer to
the Battle article [1] in which one can find state of the art techniques.

Within this framework, the use of systems made up of a camera and an
LCD projector has emerged [2]. Currently, projector-camera systems use a grey
level or RGB camera [3]. The main interest of color is to be able to differentiate
geometrically similar patterns by color coding. Color coding also allows an easier
matching of the points. Moreover, color data available in the acquired image
gives the color of the object surface’s reconstructed points present in a scene.
However, this knowledge can be strongly skewed because of the limited number of
color channels (three) within classical RGB camera. The concept that we wish
to describe in this article is based on the use of a multispectral camera built
with interference filters. In this case, a reflectance spectrum can be associated
with each 3D reconstructed point. A multispectral image is an image made up
of several monochannel images of the same scene. In each image we have data
about a specific wavelength according to the used interference filter. Such an
imaging technique is becoming more and more interesting because of its great
application potential. It is especially useful for the resolution of applied problems
requiring an analysis of the spectral field, for example remote sensing, medical
imagery, cosmetic products, high quality colors reproduction, etc. [4]. The system
that we developed is described in Section 2. Before using it to analyze a scene,
calibration is necessary, as described in Section 3. The term calibration is used
for both the geometrical calibration of the stereoscopic system and the spectral
characterization of the camera. Geometrical calibration consists of determining
the intrinsic and extrinsic parameters of the camera and the LCD projector.
The spectral calibration consists on the determination of the spectral sensitivity
of each channel of the system. This characterization is based on a spectral model
of acquisition. Treatment of acquired images permits scene reconstruction at the
geometrical and at the spectral level. This is described in Section 4. It is followed
by a discussion and presentation of results in Section 5. Lastly, the Conclusion
completes this article.

2 System Description

Firstly, we developed a low cost [5] multispectral imaging system. It is designed
to be portable and flexible, and is composed of a simple monochromatic CCD-
based camera, a standard photographic lens, seven interference filters, a PC
calculator, and C software developed especially for this system. A motorized
wheel is placed in front of the camera/lens system. The wheel has eight holes ac-
cepting seven filters and one hole empty, in order to make an acquisition without
filter. Such a multispectral camera can reproduce the color with more precision
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Fig. 1. The proposed 3D multispectral scanner

than a traditional RGB camera since it is less affected by metamerism [6]. The
complete 3D multispectral scanner system that we propose is composed of the
camera detailed above and an LCD projector. We chose an angle ranging be-
tween 35◦ and 40◦ between the camera sight axis and that the LCD projector
one, which is the best compromise [7]. In addition to the luminosity, the LCD
projector depth-of-field and optical characteristics are important in the choice of
an LCD projector. A study that we carried out showed that an LCD projector
could be described by a pinhole type model [8]. In sum, the results presented
in this article are based on a scene located at approximately 2m from the mul-
tispectral camera and LCD projector, with an area of 50cm per 50cm, and a
depth of approximately 20cm (’Fig. 1’).

3 Calibration

Before any acquisition, spectral and geometrical calibration is necessary. Once
done, several acquisitions and reconstructions can be carried out without having
to recompute these calibration parameters. In geometrical calibration, the only
constraint is not to modify the geometrical configuration of the stereoscopic
pair. As for the spectral characterization, it is necessary to preserve the camera
acquisition parameters and not to modify the scene illuminant.

According to a spectral model of the acquisition chain, the signal dk observed
from the camera output, relative to channel k (k=1...7), is given by Equation (1):

dk =

λmax∫
λmin

I(λ)r(λ)c(λ)tk(λ)o(λ)dλ + ηk (1)

where I(λ) is the spectral radiance of the illuminant, r(λ) is the spectral re-
flectance of the surface, c(λ) is the camera spectral sensitivity, tk(λ) is spectral
transmittance according to the filter number k, o(λ) is the transfer function of
optics, and ηk expresses the spectral noise of the kth filter.
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In order to faithfully attain the spectral reflectance, a set of radiometric
calibrations must be done. The interested reader can refer to the following article
[9]. Preprocessing and noise reduction finished, we can spectrally characterize
the system. The goal is to determine its spectral sensitivity for each channel
according to the spectral model of Equation (1). This spectral model is based on a
linear opto−electronic transfer function assumption. This assumption generally
holds when noise is reduced and makes Equation (1) as a simple multiplication
of spectra contained wavelength by wavelength in vectors. By sampling out of N
regular intervals the spectrum range in which we work, we can rewrite Equation
(1) in matrix notation. Thus, Equation (1) becomes:

dk = r(λ)T Sk(λ) (2)

where Sk(λ) = [Sk(λ1)Sk(λ2)...Sk(λN )]T and r(λ) = [r(λ1)r(λ2)...r(λN )]T are
respectively the vectors containing the spectral sensitivity of the acquisition sys-
tem relating to the channel k, and spectral reflectances. T is the transpose opera-
tor. We search to characterize the spectral response of the system by finding the
operator S = [S1(λ)S2(λ)...S7(λ)]T . To do this, we scanned the Macbeth chart
using a M inoltaCS − 1000 spectrophotometer and we acquired a multispec-
tral image of this chart. The results is a set of corresponding pairs (dp, rp), for
p=1,...,24, where dp is a vector of dimension k=7 containing the camera output
and rp is a vector of dimension N representing the spectral reflectances of the
pth patch. By observing the camera output responses, we can estimate the sys-
tem response to known theoretical reflectances in the input. This stage is called
learning because we use a neural network to invert the Equation (2). Specifically,
we use a linear neural network associative memories [10]. The use of linear oper-
ator is justified by the fact that we supposed a linear opto− electronic transfer
function and since the noise have been reduced in the pre-processing stage.

We chose a global solution which consists of calibrating the stereoscopic sys-
tem set. This weak calibration method does not require any object of known size
and can thus be carried out very easily. Both the camera and the projector are
modeled by a pinhole model [8]. Let M = (X Y Z 1)T be the 3D point homoge-
neous coordinates in the reference frame of the scene, let m = (u v 1)T be those
of its projection in an image and expressed in pixels, then we can write:

m = f(k,d,E,h,M) (3)

where k is a vector of length 4 containing the intrinsic parameters: (u0, v0)T

optical center coordinates and du, dv, pixel size in the two directions. E size
[3�3] and h size [3�1] are respectively 3D rotation, and 3D translation between
the world and camera reference frames. d is the polynomial coefficients vector
of the radial distortions which are most significant. Thus, the system calibration
is similar to that of a standard stereoscopic system composed of two cameras.
The only difference is based in the fact that the 3D characteristic points are not
physically on an object but emitted by the LCD projector. Thus, we created
an image pattern. It is made up of n luminous points on a dark background.
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This pattern is projected by the LCD projector on a support with an unspeci-
fied position, and then it is acquired by the multispectral camera without filter.
With the same pattern, this operation is repeated for q positions of this support.
’Equation (3)’ can be written for the camera and for the LCD projector. mp is
the point of the pattern projected on the support in M and mc its projection in
the image. We have 26 unknown factors for the whole25,camera and LCD pro-
jector. The establishment of the calibration parameters needs the minimization
of the sum of the following equations:

‖mp − f(kp,dp,Ep,hp,M)‖2 + ‖mc − f(kc,dc,Ec,hc,M)‖2 (4)

for each n ∗ p points. This overdetermined problem is nonlinear and we solved it
by Levenberg −Marquardt optimization method.

4 Reconstruction

The two calibration stages finished, it is now possible to acquire as many scenes
as we wish as long as the acquisition configuration remains unchanged. It suffices
to put the object to be reconstructed in the calibrated work volume. Then, a
multispectral image of the scene is acquired without light projection by the LCD
projector. This image will thereafter allow, during the spectral reconstructing
detailed in paragraph 4.2., correlating a reflectance spectrum to each 3D point
reconstructed of the scene. Then, a set of monochannel images is acquired with-
out filter. For each one, the LCD projector emits a sufficiently intense luminous
vertical line so that it appears on the surface of the scene and thus on the images.
The line is shifted pixel by pixel between the images.

4.1 Geometrical Reconstruction

The camera and the LCD projector being placed at the same height and ap-
proximately at the same distance front the scene, the projection of a vertical
line allows a precise 3D reconstruction. Because the distortion parameters of
the LCD are weak, we supposed them negligible. That is why 2D line in the
LCD projector image plan describes, in space, a 3D plan. We can calculate the
equation of this plan of sight with a 2D line, the optical center of the LCD pro-
jector and its geometrical calibration parameters in world reference frame. Let
us note that the origin of this reference frame is located at the farthest plan of
the work volume, in the top, right of the scene. We analyze each horizontal line
for each image. The coordinates of the pixel with the maximum value are ex-
tracted. After distortion correction, a 3D line is expressed in the world reference
frame. This line of sight goes through the pixel detected and the optical center
of the camera. We can finally calculate the intersection of the luminous plan and
the line of sight. A 3D point expressed in the world reference is so processed
from each horizontal profile of each image. Geometrical reconstruction allows us
to obtain the 3D position of the different parts of the luminous pattern on the
scene by using triangulation afterwards the spectral reconstruction associates a
spectral reflectance to each of them.
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4.2 Spectral Reconstruction

The spectral characteristics S of the multispectral system are henceforth known.
The estimate of a reflectance spectrum r̃ in each pixel of an acquired scene with
this system is thus possible. The vector d = [d1d2...d7]T containing the responses
for the 7 filters is given by Equation (2). The second step is the reconstruction.
Since all weighted synapses are gathered in the matrix S, the reconstruction
is fast and easy: the estimated spectral reflectance in each pixel of a scene is
equal to a product between the operator S and the camera response contained
in d.

During the training, the memory may learn only few samples among possible
stimuli. The memory stops learning when it ceases to mistake any more. So, it
may place the discriminating function too much close to the boundaries of the
samples with which it was trained. If we test it on new samples, the memory
may badly generalize its training. To overcome this problem, we use associative
memories with a rule of training which consists on continuously modifying the
strengths of the weight matrix. In doing so, the memory becomes more efficient
for generalization. Furthermore, this algorithm is low time consuming in the
reconstruction stage since it is forward matrices multiplication.

5 Results and Discussion

In order to evaluate the 3D reconstruction error, we compared the results of
our scanning method with those coming from the M inolta V IV ID 910 ’Fig.
2.c’ professional scanner. In order to visualize the 3D reconstructed cloud of
points ’Fig. 2.a’, and in general to handle the 3D data, we used 3D visualization
software. Our geometrical reconstruction gives a weak number of points. The
triangulation algorithms contained in the software are not appropriate for this
case ’Fig. 2.b’. That is why the aspect of reconstructed surface is granular on
this figure. The software used enables us to compare a dot cloud with a scanned
surface. We found that 99% of the values are between −0.8 and 0.8mm. On this
figure, it is seen very clearly that the strong errors are on the edges of the object
and on the level of the strong curves. The scanning method that we used involves
such errors because we have only one camera and thus a weak in-depth preci-
sion when scanning away from the camera axis. On other hand, the use of the
multispectral camera enables us to go up with the spectral reflectance of scene
surfaces. This information can be attached to each 3D reconstructed point. It is
a valuable information because it represents a physical property which depends
neither on the illuminant nor on the subjectivity of human vision. In order to
validate the reconstruction of the spectral reflectance by the suggested method,
we made a comparison, for a set of pixels, between the measured spectrum using
the spectrophotometer and the one reconstructed from the otput of the multi-
spectral camera. We calculated the frequently used Goodness-of-Fit Coefficient
(GFC) as criterion given by the formula:
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Fig. 2. a. Dots cloud obtained by 3D reconstruction, b. Triangulated surface, c. Surface
obtained with the scanner, and d. the distance card between b. and c.

GFC =

∣∣∣∣∣∑j Rm(λj)Rr(λj)

∣∣∣∣∣(∣∣∣∣∣∑j [Rm(λj)]
2

∣∣∣∣∣
)1/2(∑

j

[Rr(λj)]
2

)1/2 (5)

where Rm(λj) is the value of the measured spectrum with the spectrophotometer
at the wavelength λj , and Rr(λj) represents that related to the reconstructed
spectrum at the wavelength λj . Within the meaning of this criterion, the results
are very satisfactory. The reconstructed spectrum shows few errors compared
to that obtained by the spectrophotometer. We note an average error of the
GFC equal to 1.8% for a standard deviation of 0.7%. Once we have the recon-
structed 3D scene, each 3D point thus sees associated spectral reflectance. So,
we have a 3D spectral scene. In order to visualize it, we choose an illuminant
and associate a chromatic RGB triplet to each point. Note that we are able to
simulate and visualize the scene such as it will be with any illuminant. In order
to emphasize this point, the ’Fig. 3’ presents two 3D spectral scene visualized
with two different illuminants and finally projected in RGB space. This can be
interesting for some multimedia applications, e.g for three-dimensional artwork
objects for virtual museum. Thus, we show the method feasibility that aims at
the development of a 3D multispectral scanner for multimedia applications.

Fig. 3. Projection of the 3D spectral scene in RGB color space after simulation of
illuminant change, a. scene appearance under the CIE A illuminant, and b. scene
appearance under the CIE D65 illuminant (daylight)
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6 Conclusion

We have just presented an active stereovision system based on an LCD projector
and a camera. The characteristic of the latter is that it is a multispectral one.
The main contribution of the multispectral concept comes back to the possibility
of reconstructing and associating a reflectance spectrum for each 3D point. It
produces much more relevant information of the scene points than during the use
of color camera. The results presented proved the feasibility of such a system that
we named ”3D multispectral scanner”. Measured errors at the geometrical and
spectral level, remain relatively weak. Our current work consists of simultane-
ously generating and emitting several luminous patterns. The goal is to decrease
the number of acquisitions while preserving a dense scene reconstruction.
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Abstract. This paper describes a real-time stereo depth measurement image 
processing system. This system uses Xilinx Virtex-II Series XC2V3000 FPGA 
and generates 8-bit sub-pixel disparities on 640 by 480 resolution images at 
video rate (60 frames/sec) with maximum disparity ranges of up to 128 pixels. 
The implemented stereo matching algorithm finds a minimum of window-based 
sum of absolute difference (SAD) operation. And the preprocessing, scale trans-
formation and final stage compensation technique are adopted for maximizing 
the wide disparity range detection. The proposed vision system is suitable for 
real-time range estimation and robot navigation applications. 

1   Introduction  

Robots have been mostly used in industrial environment, but modern developments of 
household robot-cleaner suggest the necessity of household robots as becoming in real-
ity. Most industrial robots have been used for factory automation that perform simple 
and iterative tasks at high speed, whereas household robots need various interfaces with 
a man while moving in indoor environment like a household robot-cleaner does. 

Robots activate in indoor environment using various sensors such as vision, laser, 
ultrasonic sensor, or voice sensor to detect indoor circumstance. Especially robot’s 
routing plan and collision avoidance need three-dimensional information of robot’s 
surrounding environment.  This can be obtained by using a stereo vision camera 
which provides a general and huge amount of 3-D information.  But this computation 
is too big to solve in real-time with the existing microprocessor when using a stereo 
vision camera for capturing 3-D image information. 

High-level computer vision tasks, such as robot navigation and collision avoidance, 
require 3-D depth information about the surrounding environment at video rate. Cur-
rent general-purpose microprocessors are too slow to perform stereo vision at video 
rate. For example, it takes several seconds to execute a medium-sized stereo vision 
algorithm for a single pair of images on a 1 GHz general-purpose microprocessor. 

To overcome this limitation, designers in the last decade have built re-
programmable chips called FPGAs(Field-Programmable Gate Arrays) hardware sys-
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tems to accelerate the performance of the vision systems. These devices consist of 
programmable logic gates and routing that can be re-configured to implement essen-
tially any hardware function. Hardware implementations allow one to exploit the 
parallelism that usually exists in image processing and vision algorithms, and to build 
systems to perform specific calculations very quickly compared to software. 

A number of methods for finding depth information in video-rate have been re-
ported. Especially, multi-baseline stereo theory is developed and the video-rate stereo 
machine has the capability of generating a dense depth map of 256x240 pixels at the 
frame rate of 30 frames/sec in [1]. The developed stereo machine is applied to two 
applications: virtualized reality and z keying.  

Jeong and Oh [2] present a VLSI architecture and implementation for a highly par-
allel trellis-based stereo matching algorithm which obtains disparity and depth infor-
mation from a pair of images and has a complexity of O(N2) for N pixel scan lines and 
O(N) operations can be performed in parallel. But, the overall system can only 
achieve 4 frames/s for 320 by 240 pixel images with live image capture due to PCI 
bus usage by other PC components, and due to inefficient PCI implementation by the 
PC hardware and operating system. 

A multi-resolution, multi-orientation phase based technique called Local Weighted 
Phase-Correlation is introduced in [3]. And recently, researchers at Tyzx [4] introduce 
the DeepSea stereo vision system which makes the use of high speed 3-D images practi-
cal in many application domains. That system is based on the DeepSea processor which 
implements the Census stereo algorithm and computes absolute depth based on simulta-
neously captured left and right images with high frame rates, low latency, and low power. 

But, the stereo matching systems mentioned above have narrow detectable dispar-
ity range and also have difficulties in household mobile robot applications. In this 
paper, we adopted the image scaling transformation and SAD(Sum of Absolute Dif-
ference) based stereo matching, barrel shifting and final compensation processing for 
wide disparity measurement range. And this paper also describes the implementation 
of a stereo matching algorithm in hardware on FPGAs which has maximum disparity 
measurement ranges by comparing the existing hardware systems [1~4]. 

2   Stereo Matching Algorithm 

Many researchers have been devoted to solving the stereo matching problems [1~7] and 
some good results have been obtained. However, most methods have a computational 
complexity or structure that is not suitable for real time operation. For this reason, in 
spite of the rapid progress of VLSI technology, only a few real-time stereo vision sys-
tems have been built so far. Some of the significant systems are summarized in Table 1.  

Table 1. Comparison of stereo systems 

System(year) Frames/sec Image size Max. disparity 
CMU(1996)[1] 30 200x200 60 

Postech(2001)[2] 30 340x340 NA 
Toronto(2003)[3] 30 720x480 20 
TYZX(2004)[4] 200 512x512 52 
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Our goal is to construct an inexpensive and truly portable stereo vision system 
which can be used in household mobile robot. A mobile robot in indoor environment 
can interact with humans and other household products. In that case, the stereo vision 
system in mobile robot must detect objects in near position. 

 

Fig. 1. A stereo vision geometry 

As shown in figure 1, let’s consider a typical stereo matching system. Suppose that 
a typical 1/3” monochrome CMOS camera with focal length f = 7.4 mm and effective 
image area: 4.86 mm x 3.64 mm with image resolution of 640 x 480. The equation for 
the distance to the object is:  

d

b
fr =  (1) 

where d = observed disparity and can be calculated by dl – dr,  f = focal length of 
camera, and b = camera displacement. 

In above situation, a stereo vision system with 32 pixels of maximum disparity 
search range cannot detect depth information of objects which are located in closer 
than 1,827 mm. A household mobile robot must detect an object at the distance of 
around 500 mm. In that case, 128 pixels of maximum disparity search range are re-
quired. Thus, although, some of the previous systems have good matching perform-
ance, the wide disparity range requirements make them unsuitable for household 
mobile robot applications.  

Figure 2 shows the block diagram of proposed real-time stereo matching system. In 
preprocessing block, various image processing functions are used in order to make 
stereo matching easy.  Each processing block is designed to be bypassed fundamen-
tally.  The preprocessing block removes image noise and adjusts image levels when 
brightness levels or contrasts of input images from the two cameras are unequal.  

The scale transform block changes image resolution dependent on the given maxi-
mum disparity range. When taking a measurement of the disparity range using a real 
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robot applied with stereo matching system using vision, the same point of objects 
exists with big disparities between left image and right image as the robot and objects 
get closer. In this case the hardware complexity increases very sharply for calculating 
the wide range correlation between two images. For example, even though the simple 
window based SAD operation is used, the existing FPGAs have difficulties in includ-
ing the required logics for implementing the stereo matching with maximum disparity 
range of 128 pixels. 

 

Fig. 2. The overall system block diagram 

 

(a) Horizontal filter                                       (b) Vertical filter 

 

 (c) H/V decimator 

Fig. 3. Scale transform 
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Therefore, before measuring the pixel disparity of two images, the resolution of 
original image should be reduced first. This approach would expand the maximum 
value of disparity range easily, and this eventually solves the problem that mentioned 
earlier.  Before decrease image resolution, low pass filtering is essential to prevent 
aliasing. Figure 3 shows the scale transform block diagram. When decreasing image 
resolution, both horizontal and vertical direction could be decreased, but it is possible 
to perform stereo matching efficiently if even only resolution of horizontal direction 
is decreased.  

Figure 4 shows a detailed diagram of stereo matching block.  This block estimates 
depth information between camera and objects using data of similarity between left and 
right image. Similarity measure of left and right images can be solved in various ways 
and here we used SAD(Sum of Absolute Difference) to detect minimum disparity value.  

 

Fig. 4. Stereo matching system block diagram 

To compute SAD in real time, each left and right image use several line memories 
as shown in figure 4.  We can compute SAD by using 3 line memories for each left 
and right image when vertical window size is 4.  Line memory control block stores 
input images to line memory and reads stored images from line memories at the same 
time when a new input scan line image goes to the SAD block. The SAD operation in 
a window size W is given by following equation.  

∈ ∈

++−+++=
Wi Wj

rlSAD jyixIjydixIdyxf |),(),(|),,(  
(2) 

where Il and Ir are intensity values in the left and right images respectively.  
The horizontal delay block (H_DLY), which performs pixel delay for window op-

eration, gives that result to SAD computation block. Such operation is processed in 
parallel by number of horizontal lines of window. After that, the vertical direction add 
block (V_ADD) adds all of SAD values which are computed in horizontal direction. 
And then, we can extract SAD values between all windows for each disparity value.  
This block also provides SAD values of right image disparity upon left image by 
delaying vertical direction SAD value. 

A pixel where the SAD value has its minimum is called a matched pixel. To find a 
matched pixel, the minimum detecting block computes a minimum value of SAD for 
each disparity when left image and right image are centered. The disparity computed 
from SAD block of figure 4 can be obtained with reduced resolution according to the 
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decreasing in horizontal image resolution in scale transform block.  Therefore revis-
ing in compensation block will be performed finally.  That is, this block computes the 
maximum disparity value which has good precision after barrel shifting the output 
image pixels using the disparity values and computing SAD of neighbor sections for 
the last, and we can get disparity value with higher precision than pixel value. 

3   Experimental Results 

The proposed hardware architecture is firstly simulated in C. The simulation includes 
the pre-processing, scale transform, stereo matching and compensation. Figure 5 shows 
an example of image scaling. The vertical or horizontal filtering is an essential part of 
image size reduction and as shown in figure 5 (b) and figure 5 (c), if the proper filter-
ing is not included, the aliased image disables the correct stereo matching. The pro-
posed hardware architecture is implemented in VHDL and the VHDL simulation 
shows the same result compared to the C simulation. Figure 6 shows the output exam-
ples of stereo matching and figure 7 shows a snap shot of VHDL simulation window. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) original barbara image 

 
 
 
 
 
 
 
 
 
 

(b) size reduction without filtering                  (c) size reduction with filtering 

Fig. 5. Size reduction example 
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Finally, the proposed hardware architecture is implemented in FPGA. Figure 8 
shows the developed stereo vision system. We used 640x480 resolution and frame 
rates of 60 fps, 1/3” CMOS stereo camera, and the full logic is tested with Xilinx 
Virtex-II Series XC2V3000. The operation frequency of the proposed system is faster 
than 50 MHz and generates depth information on VGA resolution images in real-time. 
The total memory and logic gates for implementing the proposed stereo matching 
block with wide disparity range are described in table 2.  

Table 2. Memory and logic gates for implementing the stereo matching block 

Mem_Ctr Line Mem. V_WIN V_ADD Min_Find 
9,708 223,049 663,240 129,774 34,484 

 

Fig. 6. Output disparity map examples 

   

          Fig. 7. A snapshot of VHDL window          Fig. 8. The developed stereo matching system 
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4   Conclusion 

We have described a real-time stereo matching system which detects depth informa-
tion data using stereo camera. The proposed vision system uses Xilinx XC2V3000 
FPGA and generates 8-bit sub-pixel disparities on 640 by 480 resolution images at 
video rate with maximum disparity ranges up to 128 pixels.  

The proposed real-time stereo matching system is designed to detect higher dispar-
ity ranges and can be installed to household mobile robots. And with simple modifica-
tions, the detectable disparity range can be increased with ease. 

As a future work, we will include test result with in a real household mobile robot 
environment. The camera rectification is also an important problem and future work 
will include this function in FPGA. 
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Abstract. We present an application of a family of affine diagrams to
the detection of three-dimensional sampled structures embedded in a
perturbated background. This family of diagrams is an extension of the
Voronoi diagram, namely the anisotropic diagrams. These diagrams are
defined by using a parameterized distance whose unit ball is an ellip-
soidal one. The parameters, upon which depends this distance, control
the elongation and the orientation of the associated ellipsoidal ball. Based
on these diagrams, we define the three-dimensional anisotropic α-shape
concept. This concept is an extension of the Euclidean one, it allows us to
detect structures, as straight lines and planes, in a given direction. The
detection of a more general polyhedral structure is obtained by merging
several anisotropic α-shapes, computed for different orientations.

1 Introduction

The Voronoi diagram and its dual Delaunay triangulation are one of the most
significant concepts in computational geometry, they allow to design efficient al-
gorithms to solve proximity problems in many application areas, such as pattern
recognition, image processing, computer graphics, clustering or scientific visua-
lization. Historically, they were defined for a set of points and the Euclidean
distance. Without being exhaustive, they were extended to other geometric ele-
ments such as segments, circles and polygons. Also, they were generalized by
using other distances like L1, L∞ [1] and power distance [2]. A more general
family of diagrams, called affine diagrams [3], is defined for a set of points and a
distance such that the equidistant set of points from two points is an hyper-plane.
A detailed study of some affine diagrams and other extensions of the Voronoi
diagram are presented with their applications in [4].

In the context of computational morphology, which aim is to extract a shape
from the input data by means of computational geometrical structures [5], we
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study the problem of detecting linear structures as straight lines, planes and
polyhedral patterns, from a set of points. The existing methods, based on neigh-
borhood graph analysis and related to the Voronoi diagram, are especially con-
ceived for set of points having certain density conditions [4]. When patterns are
curves or surfaces, these conditions can be established explicitly. This solves the
problem of structure detection in several situations. However, they are unsuited
when patterns are represented by low density set of points, embedded into a
perturbated background. This is explained by the fact that these methods are
conceptually based on density analysis and do not integrate the morphological
aspect of a pattern to detect. To deal with these cases, we propose a method
which combines an anisotropic analysis and the morphological aspect of the pat-
terns to extract from the data. The analysis based on the anisotropy is employed
to detect linear structures from a two-dimensional set of points [6]. It is also used
to reconstruct parts of surfaces by local interpolation [7]. Recently, anisotropic
meshes has been built using curved anisotropic Voronoi diagrams [8].

The method we develop concerns the extraction of polyhedral structures from
a three-dimensional set of points, even if these structures are embedded in a per-
turbated background. The detection of the suitable patterns is formalized by a
particular family of affine diagrams, namely the anisotropic diagrams. Intuitively,
these diagrams are generated using ellipsoidal balls. The morphological aspect
of the pattern to detect is represented by a parameter Q, measuring the orien-
tation and the elongation of the ellipsoidal balls. For a fixed parameter Q and
a fixed value α, we compute from the anisotropic diagram, a three-dimensional
anisotropic α-shape of the set of points, which is an extension of the Euclidean
one [9]. The anisotropic α-shape detects, in the chosen direction, the existing li-
near structures with some non-significant ones. These non-significant structures,
due to the interaction of the background points, are removed by a filtering al-
gorithm. More generally, polyhedral structures can be extracted following these
steps : first, we compute a spectrum of anisotropic α-shapes ; second, we remove
non-significant structures from each shape of the computed spectrum ; third,
we merge the shapes of the filtered spectrum to get the adequate polyhedral
structure.

In this article, we first introduce several geometrical concepts related to the
α-shapes. Then we present the anisotropic concepts and its application to the
detection of sampled polyhedral structures.

2 Related Geometrical Concepts

2.1 The Voronoi Diagram and the Delaunay Triangulation

Let P = {p1, . . . , pn} be a finite three-dimensional set of points. Let d2(p, q) be
the Euclidean distance between two points p and q. The Voronoi cell V (pi, P ) of
pi ∈ P is the set of points p ∈ R3 such that d(p, pi) ≤ d(p, pj), for all pj ∈ P . The
Voronoi diagram of P , denoted by V (P ), is the set of the Voronoi cells V (pi, P ),
for i = 1, . . . ,n. From a morphological point of view, V (P ) is generated using a
unit ball as a structuring element.



Three-Dimensional Structure Detection from Anisotropic Alpha-Shapes 653

Two points are neighbors in V (P ) if the intersection of their cells is not
empty. The graph obtained by connecting the points of P to their neighbors is
the dual of V (P ), called the Delaunay triangulation of P and noted D(P ). Recall
that a k-simplex, noted s(T ), is a polytope which vertices T are k + 1 affinely
independent points. In 3-dimensions, a 0-simplex is a vertex, a 1-simplex is an
edge, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. Then D(P ) is
a set of k-simplicies, 0 ≤ k ≤ 3, circumscribed to the boundary of an open ball
which is empty of points of P . Each k-simplex s(T ) of D(P ) is the dual of the
intersection of the k + 1 cells V (pi, P ), pi ∈ T .

2.2 Euclidean α-Shapes

Let b(α), 0 < α < +∞, be an open ball of radius α, b(α) is a point if α = 0
and an half-space if α = +∞. The α-shape of P , denoted by Fα(P ), is the set
of k-simplicies s(T ), k = 1, 2 and T ⊂ P , such that there exists an open ball
b(α) with b(α) ∩ P = ∅ and T ⊂ ∂b(α) ∩ P , where ∂b(α) is the boundary of
b(α). The α-shape of P is a sub-graph of the Delaunay triangulation of P [9].
For k = 1 or 2, a k-simplex s of D(P ) is an element of Fα(P ) if and only
if αmin(s) < α < αmax(s), where αmin(s) and αmax(s) are two positive real
numbers that can be computed from V (P ). Indeed, αmin(s) corresponds to the
minimum distance from a vertex of s to the Voronoi dual element of s. And
αmax(s) corresponds to the maximum distance.

By varying the value α from +∞ to 0, the α-shape of P catch different levels
of detail. When α = +∞, the α-shape is the convex hull of P . As α decreases,
cavities and holes are reflected. And when α = 0, then the α-shape is the set P .

3 Anisotropic Concepts

3.1 Global Anisotropy

Let R = (u1, u2, u3) be a rotation matrix and E be a scaling matrix with 1/ei on
its diagonal, where ei ≥ 1 for i = 1, 2, 3. In the next, the notation At represents
the transpose matrix of the matrix A. Then the anisotropy is formalized by a
3×3 metric tensor, denoted by M = RERt, commonly used in anisotropic mesh
generation [8] and scene analysis [10]. By definition, M is a positive definite
matrix that can be written as M = QtQ, where :

Q =

⎛⎝1/
√
e1 1 1

1 1/
√
e2 1

1 1 1/
√
e3

⎞⎠Rt.

In the next, the matrix Q identifies the anisotropy. Using the anisotropy, the
distance between two points of R3 is defined by :

dQ(p, q) =
√

(p− q)tM(p− q) =
√

(Q(p− q))tQ(p− q). (1)

It can be viewed as performing a non-uniform scaling along the axes of a rotated
orthogonal system on p and q before taking the Euclidean distance. Let τ be
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the transformation such that τ(p) = Qp, for all p ∈ R3. Then from equality (1)
we have:

dQ(p, q) = d2(τ(p), τ(q)). (2)

Balls associated to the distance dQ are ellipsoidal balls. Their direction axes are
given by R and their elongation ratio along these axes by E. Let bQ(p, r) be an
open ellipsoidal ball, centered at p, bounded by the ellipsoid ∂bQ(p, r) of radius
r > 0. Then the semi-axes of bQ(p, r) are r.

√
ei, for i = 1, 2, 3.

3.2 The Anisotropic Diagrams and Triangulations Based on the
Distance dQ

For a fixed anisotropy Q, let VQ(pi, P ) be the anisotropic cell of pi ∈ P . It is the
set of points p ∈ R3 such that dQ(p, pi) ≤ dQ(p, pj), for all pj ∈ P . Based on
the distance dQ, the equidistant set of points between two points is a plane. It
follows that the union of the anisotropic cells defines an affine diagram [3]. We
call it the anisotropic diagram of P and we note it VQ(P ). From a morphological
point of view, VQ(P ) is generated by ellipsoidal balls that have both the same
orientation and the same elongation ratio.

The dual of VQ(P ), obtained by connecting the points of P to their neighbors,
is the anisotropic triangulation of P , which we note DQ(P ). It defines a set of
k-simplicies s(T ), 0 ≤ k ≤ 3, such that s(T ) is the dual of the intersection of the
(k + 1) anisotropic cells VQ(pi, P ), for all pi ∈ T .

The anisotropic diagram and triangulation are extensions of the Voronoi
diagram and the Delaunay triangulation. When E represents the identity matrix
of R3, the ellipsoidal balls become balls, thus VQ(P ) becomes V (P ) and DQ(P )
becomes D(P ).

3.3 The Anisotropic α-Shapes Based on the Distance dQ

Let bQ(α), 0 < α < +∞, be an open ellipsoidal ball of radius α, bQ(α) is a point
if α = 0 and an half-space if α = +∞. Let Fk,α,Q(P ) be the set of k-simplicies
s(T ), T ⊂ P , such that b(α) ∩ P = ∅ and T ⊂ ∂bQ(α) ∩ P , where ∂bQ(α) is
the boundary of bQ(α). We define the anisotropic α-shape of P as the union of
the sets F1,α,Q(P ) and F2,α,Q(P ), and we note it Fα,Q(P ). For a given α and
through different values of Q, the family of anisotropic α-shapes extends the
Euclidean ones. When E is equal to the identity matrix of R3, bQ(α) becomes
b(α), and then Fα,Q(P ) becomes Fα(P ). Moreover, the anisotropic α-shapes are
sub-graphs of the anisotropic triangulations. So they are linked to the anisotropic
diagram.

Recall that τ is the transformation represented by the matrix Q. Let τ−1 be
the inverse of τ and let τ(P ) be the set of points τ(pi), for all pi ∈ P . Let s(T ) be
a k-simplex of vertices T = {p0, . . . , pk}. Then s(τ(T )) represents the simplex of
vertices τ(T ) = {τ(p0), . . . , τ(pk)}. The anisotropic concepts are related to the
Euclidean ones by the transformation τ : (1) v is a point of V (τ(pi), τ(P )) if
and only if τ−1(v) is a point of VQ(pi, P ). (2) For α ∈ R+, s(T ) is a simplex of
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(1) (2) (3) (4)

Fig. 1. Anisotropic α-shapes of (1) a sampled line (11 points) embedded in a random
perturbated background (1000 points). R = IdR3 and e1 = e2 = 1. (2) F25,Q with√

e3 = 4. (3) F15,Q with
√

e3 = 6. (4) F8,Q with
√

e3 = 8.

Fα,Q(P ) if and only if s(τ(T )) is a simplex of Fα(τ(P )). These relations prove
that the anisotropic α-shapes can be computed from the Euclidean ones. For a
given anisotropy Q and a value of α, the algorithm works in two steps to compute
Fα,Q(P ). First, V (τ(P )) and its dual D(τ(P )) are computed. And second, for
each simplex s(τ(T )) of D(τ(P )), if s(τ(T )) is a simplex of Fα(τ(P )), then s(T )
is retained as a simplex of Fα,Q(P ).

4 Detection of Structures

4.1 Detection of Structures in a Given Direction

The anisotropic α-shapes detect structures, like straight lines and planes. Re-
call that Q is computed from a scaling matrix E and a rotation matrix R. The
parameters α, E and R control the shape and the orientation of the ellipsoidal
ball. For a fixed orientation R, when α decreases from a fixed large value and
particular values of E increase from 1, the shape of the ellipsoidal ball varies
from the ball to finer elongated balls. Similarly, the behavior of the anisotropic
α-shape is as follows : it detects global structures as the convex hull of the set
of points. Then finer and localized structures appear gradually in the direction
given by R. This behavior is illustrated in the Fig. 1 and the Fig. 2. The example
of the Fig. 1 shows four α-shapes of a set of points. This set corresponds to the
samples of a straight line embedded in a perturbated background (Fig. 1(1)).
The Euclidean α-shapes cannot detect the straight line. This is due to the inter-
action of the sampled points with their background neighbors. When the balls
are replaced by ellipsoidal ones, the anisotropic α-shape reflects linear structures.
Those of the Fig. 1(2,3) are non-significants. An adequate choice of the parame-
ters α and E is illustrated in the Fig. 1(4), where the suitable linear structure
is detected, with some non-significant ones. The same behavior is observed with
planar structures (Fig. 2).

Let {pi, pi+1, . . . , pj} ⊆ P be a set of ordered points on a straight linear
structure L having orientation R. Suppose that the Euclidean distance between
two successive sampled points is constant. Also suppose that no background
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(1) (2) (3) (4)

Fig. 2. Anisotropic α-shapes (1) sampled planes (120 points) embedded in a random
perturbated background (1500 points). R = IdR3 (2) F10,Q with

√
e2 = 2,

√
e3 = 4,

e1 = 1. (3) F5,Q with
√

e2 = 4 and
√

e3 = 12. (4) F1.5,Q with
√

e2 = 7 and
√

e3 = 16.

points lie on L : d2(p, L) 	= 0 for all p ∈ P − {pi, . . . , pj}. Then, there exists a
pair (α, E) such that the line segment [pi+l, pi+l+1] is a 1-simplex of F1,α,Q(P ),
for all l = 0, . . . , j−i−1. In the same way, let PL ⊆ P be a set of points regularly
sampled on a planar structure L having orientation R. Suppose that for all
p ∈ P −PL, d2(p, L) 	= 0. Then there exists a pair (α, E) such that L is detected
by F2,α,Q(P ). In other terms, when a linear or planar structure is regularly
sampled, there exists an anisotropic α-shape such that the linear structure is
detected. This behavior is illustrated in the Fig. 1(4) and the Fig. 2(3).

4.2 Removing Non-significant Structures

For an adequate choice of the pair of parameters (α, Q), the anisotropic α-
shape also detects several structures that do not fit with the suitable struc-
tures (Fig. 1(4) and Fig. 2(3)). These structures, characterized by a low num-
ber of connected points, are called non-significants. To delete them, the sets
Fk,α,Q(P ) are filtered by analyzing their connected components. Formally, a k-
simplex is h-connected if it is incident to h (k +1)-simplicies. For a fixed value k
(1 or 2), a set of k-simplicies {si, si+1, . . . , sj} is a path of length l in Fk,α,Q(P )
if and only if the four following properties are verified :

(1) sz is a k-simplex of Fk,α,Q(P ) such that sz ∩sz+1 	= ∅, for all z = i, . . . , j−1
(2) for all (k − 1)-simplex s ⊂ sz, s is 1-connected or 2-connected
(3) there exists no k-simplex s in Fk,α,Q(P ) such that {si, . . . , sj} ∪ s verifies

the properties (1) and (2)
(4) the number of elements of the path is l.

The property (1) guarantees that the path represents a connex structure. The
property (2) ensures that the path has no ramifications. And the properties (3)
and (4) ensure that the length l of the path is maximal. A path is non-significant
in Fk,α,Q(P ) if and only if the length of the path is less than a fixed threshold t. To
delete the non-significant paths, the algorithm is the following : for l = 1, . . . , t,
the non-significant paths of length l, and the simplicies that become 0-connected,
are iteratively deleted. The action of the filter is illustrated in the Fig. 3 for k = 1



Three-Dimensional Structure Detection from Anisotropic Alpha-Shapes 657

(1) (2) (3) (4)

Fig. 3. Steps of the filter for F1,α,Q(P ) with (1) t = 1 and (2) t = 2 where dashed
segments are deleted ; and for F2,α,Q(P ) with (3) t = 1 and (4) t = 3, 4 where grey
triangles are deleted

and 2. The filter can remove two kinds of non-significant structure : artifacts on
the boundary of a structure and small connex structures.

4.3 Detection of Polyhedral Structures

Let {R1, . . . , Rl} be a finite set of distinct rotation matrices that decomposes R3

in l orientations. For fixed values of k, α and E, the set {R1, . . . , Rl} represents
the spectrum of the family {Fk,α,Q(P )}, where Q is represented by Ri and E,
1 ≤ i ≤ l. This family of graphs is suitable to detect dot pattern having a
polyhedral shape. In this way, we propose an algorithm which works in three
main steps. Its input data are the points of P , the matrices E and {R1, . . . , Rl},
the value of α and the filter threshold t. The algorithm is as follows :

(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 4. Polyhedral structure detection using F1,α,Q(P ). (1) a sampled polyhedral struc-
ture (50 points) in a random perturbated background (1500 points). (2) shows that
Euclidean α-shapes are not suitable to detect the line. (3) to (7) are some F1,α,Q(P )
before the filtering procedure. (8) Union of the F1,α,Q(P ) after the filtering procedure.
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(1) For 1 ≤ i ≤ l, the Fk,α,Q(P ) are computed.
(2) For 1 ≤ i ≤ l, the Fk,α,Q(P ) are filtered according to t.
(3) The resultant graph is the union of the filtered Fk,α,Q(P ) for 1 ≤ i ≤ l.

The detection of a polyhedral structure is illustrated in the Fig. 4.

5 Conclusion

In this article we have shown the adequacy of a family of graphs to detect
regularities in a three-dimensional set of points. This family is a set of anisotropic
α-shapes that extend the Euclidean ones. Each anisotropic α-shape, generated
by an ellipsoidal ball as a structuring element, is suitable to detect straight
linear or planar structures in a perturbated background. The elongation and the
orientation of the ellipsoidal ball, compensate the low density of the sampled
structures in the background and ensure the detection of these structures. From
an algorithmic point of view, the anisotropic α-shape can be computed efficiently
from the Euclidean Voronoi diagram.

The ongoing work is to construct extensions based on more complex structu-
ring elements than ball and ellipsoidal balls. These extensions will be employed
to detect patterns which are more complex than the polyhedral structures, such
as curved lines or surfaces. One of the possible applications is the detection of
structures in unorganized set of points collected from range scanners.
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Abstract. A morphological edge detector for robust real time image segmenta-
tion is proposed in this paper. Different from traditional thresholding methods 
that determine the threshold based on image gray level distribution, our method 
derives the threshold from object boundary point gray values and the boundary 
points are detected in the image using the proposed morphological edge detec-
tor. Firstly, the morphological edge detector is applied to compute the image 
morphological gradients. Then from the resultant image morphological gradient 
histogram, the object boundary points can be selected, which have higher gradi-
ent values than those of points within the object and background. The threshold 
is finally determined from the object boundary point gray values. Thus noise 
points inside the object and background are avoided in threshold computation. 
Experimental results on currency image segmentation for real time printing 
quality inspection are rather encouraging. 

1   Introduction 

Image segmentation plays an important role in image understanding and computer 
vision. For most image segmentation methods, such as thresholding, region growing, 
random field, deformable contours, etc., they can be roughly classified into two cate-
gories [1]: one is based on the measure of point homogeneity within objects, which is 
region-based segmentation method; The other is based on the measure of contrast on 
the border of objects, which is edge-based segmentation method. As one of the most 
commonly used classes, thresholding approaches are usually region-based and they 
are applied to convert the gray-scale image to a binary one, which usually contains the 
objects of interest and the background or, more generally, two classes in the image. A 
plethora of thresholding methods [2-13] and their performance evaluations on differ-
ent applications [14-17] have been proposed in past several decades, which can be 
approximately classified into six categories: histogram shape-based, clustering-based, 
entropy-based, image attribute-based, spatial-based and local characteristics-based 
approaches. 

In general, histogram shape-based approaches [2,3] analyze the shape properties of 
the image gray level histogram to find the threshold for the object and background 
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separation, such as the peaks, valleys and curvatures of the histogram. Clustering-
based approaches use certain algorithms, such as mean square [4] or fuzzy clustering 
[5], to group the image points into two clusters according to their gray values. En-
tropy-based approaches exploit the entropy of the gray level distribution in an image 
for thresholding, such as maximization of the entropy of the thresholded image [6] or 
minimization of the cross-entropy between the original image and the output binary 
image [7]. Image attribute-based approaches determine the threshold by searching 
some attribute quality or measure of similarity between the original and the binarized 
images, such as gray level moments [8], edge coincidence [9], etc. Spatial methods 
select the threshold by using not only gray value distribution but also the spatial rela-
tionship of pixels in a neighborhood, for example, in the form of correlation functions 
[10] or cooccurrence probabilities [11]. Local characteristics-based methods [12,13] 
adjust threshold value on each pixel according to the local image characteristics like 
range, variance, or contrast. These methods are usually either sensitive to image 
noises or complex in algorithm computation, which is not suitable for our real time 
image segmentation applications. Moreover, most of the existing thresholding ap-
proaches are region-based image segmentation methods. These methods consider only 
the point gray value homogeneity distributions, while the contrast information be-
tween the object and the background is not utilized. In this paper, we propose a new 
thresholding method based on the object boundary gray value distribution. Firstly, we 
define a novel morphological edge detector to select the object boundary points in 
image. Then the gray values of the object boundary point are used to derive the opti-
mal threshold. Therefore, the proposed method is an edge-based image segmentation 
method that avoids the noise effects within the object and background. 

The rest of this paper is organized as follows. Section 2 gives the definition of the 
morphological edge detector, based on which Section 3 proposes an adaptive algo-
rithm, together with the algorithm computation complexity analysis, to determine the 
optimum image gray level threshold. An experimental comparison of different ap-
proaches on real time currency image thresholding is provided in Section 4. Section 5 
draws the conclusions. 

2   Morphological Edge Detector 

Morphology techniques have been extensively applied in image processing, such as 
filtering, pruning, and shape representations [1]. Traditional morphological operations 
like opening and closing can be applied to filter out image noises. They are based on 
the combination of two fundamental operations: dilation and erosion, which are de-
fined in terms of the union (or intersection) of an image with a translated shape (struc-
turing element). In our thresholding method, we propose a new morphological object 
edge detector based on the morphology erosion and dilation operators, which is effi-
cient to remove the image noise for object boundary searching. 

First, we define two structuring elements as shown in Fig. 1: the static structuring 
element (SSE) B0(i, j) and the dynamic structuring element (DSE) B1(i, j), i={-1,0,1}, 
j={-1,0,1}. 
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Fig. 1. Static (SSE) and dynamic (DSE) structuring element 

The variable values in B1 are determined by the 3 by 3 neighborhood of an image 
pixel (x, y). The tk (k=1,..,9) is set to be 0 when the corresponding image pixel has the 
maximum or minimum value within the neighborhood. Otherwise the tk has value 1. 
Two examples are shown in Fig. 2. Given a gray-scale image I and a 3 by 3 structur-
ing element s(i,j), i,j={-1,0,1}, the morphology erosion ( ) and dilation (⊕) operators 
for the gray-scale image are defined as [1]: 

)},(),(min{),(  jisjyixIyxsI −++=Θ  (1) 

)},(),(max{),( jisjyixIyxsI +−−=⊕  (2) 

Based on the above definitions, we define the morphological edge detector as: 

|)()(| 0101 BBIBBIMG Θ×−⊕×= , (3) 

where (I×B1) is implemented by multiplying the gray values of pixels in the neighbor-
hood with their corresponding DSE B1 variables tk. It can be seen that B1 performs as a 
“mask” to filter out the noise points which has the maximum or minimum values in 
the neighborhood of pixel (x, y). Due to the connectivity of edge points in image, the 
gradient information can still be computed correctly after the removal of the two noise 
points. Here B0 is to specify the effective range (3x3) of the morphological operations 
with all elements being set to zero. The elements can be set to special values as differ-
ent weights for particular applications. 
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Fig. 2. Two examples to illustrate the morphological edge detector 

Here we use two examples to demonstrate the noise robustness of the MG operator. 
Given two neighborhoods as shown in Fig. 2(a) and (c), the first one includes a noise 
point and the second does not. The points with maximum and minimum gray values 
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are bolded in the neighborhoods. The corresponding DSEs (B1) are shown in Fig. 2(b) 
and (d), respectively. The MG operator computes the morphological gradient values 
as 2 for both cases, while the traditional gradient calculator usually generates different 
values due to the noise points. Moreover, the MG operator can detect the gradient 
from all directions, i.e., it is an isotropic operator. 

3   Thresholding Algorithm 

As described in the first section, current thresholding methods focus on the image 
gray value statistics analysis, such as histogram, image attribute and entropy, etc. In 
practice, most of images contain noisy points that prevent an accurate segmentation 
by a simple thresholding approach. Many researchers proposed different methods to 
overcome or reduce the image noise effects, such as spatial-based or local characteris-
tics-based algorithms. However, the computational complexity increased much in 
these advanced approaches, which are not suitable for real time machine vision appli-
cations. This paper proposes a new algorithm that utilizes the gray level contrast in-
formation provided by object boundary points to determine the correct threshold for 
image segmentation. In this section, the analysis on image morphological gradient 
histogram is firstly given for object boundary points selection. Then the image thresh-
old determination algorithm is described, followed by the algorithm computation 
complexity analysis.  

3.1   Morphological Gradient Histogram Analysis 

Given an image, the morphological edge detector is applied to compute the image 
morphological gradients and derive the morphological gradient histogram. As indi-
cated in Section 2, the proposed morphological gradients are computed after noise 
removal by using the DSE mask. Thus the morphological gradient histogram is reli-
able to determine the real object boundary points. Two sample images, together with 
their morphological gradient images and histograms are shown in Fig. 3. It can be 
seen that their histogram shapes are analogous, which in fact can be taken as a model 
according to the observations from the morphological gradient histograms of a large 
set (over a half million) of images. Therefore, we assume that the shape of an image 
morphological gradient histogram can be described as the curve in Fig. 4. If an input 
image has a large amount of edge points, we expect a “fat tail” at the right side of the 
gradient histogram shape, i.e., there are many high gradient points in the image, as 
shown in Fig. 3(c). On the other hand, if an input image has a small number of edge 
points, we expect a “thin tail” in the gradient histogram shape, i.e., there are only a 
few high gradient points in the image, as shown in Fig. 3(f). Thus the purpose here is 
to find a threshold in the morphological gradient histogram to correctly separate the 
images points with high and low gradient values. The image points with morphologi-
cal gradient values higher than the threshold will be considered as the object boundary 
points, while other image points with morphological gradient values smaller than the 
threshold are from the interior of object and background. 

From the probability theory, the mean and the standard deviation of a distribution 
are the most important statistical measurements to specify a pattern. Here the mean 
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Fig. 3. Two examples to illustrate the morphological gradient histogram model 

and the standard deviation of the image morphological gradients are used to deter-
mine the object boundary points. In Fig. 4, A is the mean of the image morphological 
gradients and B = A+D. D represents the standard deviation of the image morphologi-
cal gradients and it characterizes the image texture complexity. Thus B can be used as 
the gradient threshold to differentiate the object boundary points and the object and 
background interior points because the former always have larger gradient values than 
the later in our application. The image points with gradient values MG≥B are consid-
ered as the object boundary points, while the other image points with MG<B are ob-
ject and background points. 

                                          

Fig. 4. Morphological gradient histogram model 

3.2   Proposed Algorithm and Computation Complexity 

The complete thresholding algorithm for image segmentation is described as: 

(1). Apply the morphological edge detector MG to compute the image morpho-
logical gradients; 
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(2). Compute the mean and standard deviation of the image morphological gra-
dients; 
(3). Select object boundary points in image using the gradient threshold, which 
is the summation of the mean and standard deviation of the image morphologi-
cal gradients; 
(4). Average the gray values of the object boundary points to obtain the thresh-
old for image segmentation. 

The computation complexity of our algorithm is O(N), with N corresponding to the 
image size. In practice, it takes around 1ms for a Pentium IV (1GHz) to process a 
grayscale image of size 512×512. Thus the algorithm is suitable for real time image 
segmentation applications. 

4   Experiments 

In this section, two examples taken in different conditions are used to illustrate the 
proposed algorithm robustness on image noises by comparing its thresholding results 
with those of several other traditional methods: histogram shape-based method [2], 
clustering-based method [4], entropy-based method [6], image attribute-based method 
[8], spatial method [10] and local characteristics-based method [12]. 
 

     
 
 
    
 

    
 
 
 

Fig. 5. An example of thresholding results comparison 

Fig. 5 presents a rather difficult case: a dark image has very low contrast between 
object and background. The segmentation results by different methods are illustrated, 
from which it can be seen that the morphology-based method has better performance 

(b) Histogram method  
[2] result of (a)  

(a) Image example  
 

(c) Clustering method  
[4] result of (a)  

(d) Entropy method  
[6] result of (a)  

(e) Entropy method  
[8] result of (a)  

(f) Attribute method  
[10] result of (a)  

(g) Local method  
[12] result of (a)  

(h) The proposed  
method result of (a)  
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than most of the other methods. Most of the object boundary points can be correctly 
determined in this difficult example by our method. Fig. 6 compares the thresholding 
results by different methods on an input image with complicated background. It can 
be seen that the proposed method is the best to extract the object boundary after 
thresholding. Moreover, the time complexities of the proposed algorithm on these two 
images are around 0.5ms, while other methods took around 5ms to 10ms. The pro-
posed method has superior performances in both segmentation accuracy and speed 
compared with the other methods. 

    
 
 
 
 

    
 
 

 

Fig. 6. An example of thresholding results comparison 

Currently the algorithm has been widely applied on fifty-five banknote inspection 
systems in China for real time image segmentation. The segmentation error is less 
than 0.03% for around a half million real time currency images. The segmentation 
error is determined by the following quality inspection process using template match-
ing [18] between the segmented objects and different templates. 

5   Conclusions 

This paper presents a novel morphology-based thresholding approach for real time 
image segmentation. The proposed algorithm is an edge-based method, which deter-
mines the threshold according to the gray levels of object boundary points in image. A 
morphological edge detector is firstly defined and applied on the input image to com-
pute the image morphological gradients. Then the object boundary points can be de-
termined from the morphological gradient statistics analysis, with the elimination of 
the noise point effects. Finally the optimum image threshold is derived from the ob-
ject boundary point gray level distributions. The successful field application of the 
algorithm in a variety of currency image segmentation for real time printing quality 
inspection demonstrates the capability and potential of this new approach.  

(b) Histogram method  
[2] result of (a)  

(a) Image example  
 

(c) Clustering method  
[4] result of (a)  

(d) Entropy method  
[6] result of (a)  

(e) Entropy method  
[8] result of (a)  

(f) Attribute method  
[10] result of (a)  

(g) Local method  
[12] result of (a)  

(h) The proposed  
method result of (a)  
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Abstract. In this paper we extend the basic morphological operators
dilation and erosion for grey-scale images based on the threshold ap-
proach, umbra approach and fuzzy set theory to colour images. This is
realised by treating colours as vectors and defining a new vector ordering
so that new colour morphological operators are presented. Here we only
discuss colours represented in the RGB colour space. The colour space
RGB becomes together with the new ordering and associated minimum
and maximum operators a complete chain. All this can be extended to
the colour spaces HSV and L*a*b*. Experimental results show that our
method provides an improvement on the component-based approach of
morphological operators applied to colour images. The colours in the
colour images are preserved, that is, no new colours are introduced.

1 Introduction

Mathematical morphology is used in many applications in image processing such
as granulometry, pattern recognition, image segmentation, image filtering, etc.
Different colour morphological approaches have already been introduced, a.o.
[1], [2], [3], [4] and [5]. In this work we will present a new vector-based approach
for the extension of mathematical morphology to colour images. First we discuss
the component-based approach of morphology to colour images. Thereafter we
describe our new developed vector-based approach. In section 3 we introduce a
vector ordering for colours represented in the RGB colour space. With this order-
ing new maximum and minimum operators are proposed in section 4. We then
define the binary operations addition (+), subtraction (−) and multiplication
(∗) between a colour and a shade of grey to obtain useful vector morphological
operators for colour images (section 5). Not only the t- and u-morphological
operators (threshold and umbra approach) are extended to colours but also the
fuzzy morphological operators. Finally, in section 6 some experimental results
are shown, where we have compared our new approach with the well known
component-based approach.
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2 Basic Notions

2.1 Modelling of Images

Digital images are often represented by a two-dimensional array, where a pair
(i, j) denotes a position in the image, called pixel. Mathematically, a 2-
dimensional grey-scale image can be represented as a mapping from a universe
X of pixels (usually X is a bounded and finite subset of the real plane R2, in
practice it will even be a subset of Z2) to the universe of grey-values [0, 1], where
0 corresponds to black, 1 to white and in between we have all shades of grey.

2.2 Fuzzy Sets

A fuzzy set F in a universe X is a X − [0, 1] mapping, where for all x in X ,
F (x) denotes the degree in which x belongs to the fuzzy set F . Further on
we will need the extension of the binary logical operators conjunction (∧) and
implication (⇒) to fuzzy logic, where these operators are called conjunctors and
implicators. The most popular conjunctors C on [0, 1] are the triangular norms
minimum TM , algebraic product TP and Lukasiewicz triangular norm TW ; the
most popular implicators I on [0, 1] are the Kleene-Dienes implicator IKD, the
Reichenbach implicator IR and the Lukasiewicz implicator IW given by

conjunctor implicator
TM (a, b) = min(a, b) IKD(a, b) = max(1− a, b)

TP (a, b) = a.b IR(a, b) = 1− a+ a.b
TW (a, b) = max(0, a+ b− 1) IW (a, b) = min(1, 1− a+ b)

An extensive study of fuzzy sets can be found in [6].

2.3 Binary Morphology, Grey-Scale Morphology Based on the
Threshold Approach and on the Umbra Approach

For a detailed study of binary and grey-scale morphology we refer to [7], [8], [9].

2.4 Fuzzy Mathematical Morphology

Consider a grey-scale image A and a grey-scale structuring element B. Because
grey-scale images can be modelled as Rn − [0, 1] mappings (usually n = 2), we
can identify grey-scale images with fuzzy sets and extend binary morphology to
grey-scale morphology using fuzzy set theory. The translation Ty(B) of B by a
vector y ∈ Rn is then defined by Ty(B)(x) = B(x−y), ∀x ∈ Rn and the support
dA of A is defined as the set dA = {x ∈ Rn | A(x) > 0}.
Definition 1. Let A be a grey-scale image and B a grey-scale structuring ele-
ment, C a conjunctor on [0, 1] and I an implicator on [0, 1]. The fuzzy dilation
DC(A,B) and the fuzzy erosion EI(A,B) are the fuzzy sets defined by
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DC(A,B)(y) = sup
x∈Ty(dB)∩dA

C(B(x− y), A(x)) for y ∈ Rn,

EI(A,B)(y) = inf
x∈Ty(dB)

I(B(x − y), A(x)) for y ∈ Rn.

More information about fuzzy mathematical morphology can be found in [10],
[11], [12], [13].

2.5 Colour Morphology

Colour images are represented as mappings from a universe X of pixels to a
“colour interval” that can be for example the product interval [0, 1] × [0, 1] ×
[0, 1] (RGB). Colour images can be modelled using different colour spaces; here
we will only consider the RGB colour space. More information about colour
spaces can be found in [14], [15]. Mathematical morphology can be naturally
extended to colour images by processing the morphological operators on each
of the colour components separately. A major disadvantage of this approach is
that the existing correlations between the different colour components are not
taken into account and this often leads to disturbing artefacts, that is, colours
that are not presented in the original colour image appear. Another approach is
to treat the colour at each pixel in a colour image as a vector. Because we need
the concept of a supremum and infimum to define basic vector morphological
operators, we first have to define an ordering between colours in RGB.

3 New Vector Ordering in the RGB Colour Space

A colour in the RGB colour space is obtained by adding the three colours red,
green and blue in different combinations. Therefore a colour can be defined as a
vector in the three-dimensional RGB colour space, which can be represented as
a unit cube using a Cartesian coordinate scheme. This way every point in the
cube represents a vector (colour). The grey-scale spectrum is characterised by
the line between the black top Bl with coordinates (0, 0, 0) and the white top
Wh (1, 1, 1).

On the RGB cube we observe that colours lying close to black are ’dark’
colours while colours lying close to white are ’light’ colours, so we can order the
colour vectors with respect to their distance to black and white as follows:

1. To determine which of two colours is ranked lowest, colours are first ordered
from vectors with smallest distance to black to vectors with largest distance to
black. The smaller the distance to black, the lower the colour is ranked. This
way the RGB cube is sliced into different parts of spheres around the black top.
Colours that are part of the same sphere (around the black top) are then ordered
according to their distance with respect to white, from colours with largest dis-
tance to white to colours with smallest distance to white. So we will ’cut’ the
spheres around the black top with spheres with the white top as centre. Those
colours closest to white are farthest away from black and vice versa.
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2. Here we use a similar technique as in the previous point 1. If we want to know
which one of two colours is ranked highest in the RGB colour space, we look
at the distance with respect to white. The colour with the smallest distance to
white is ordered higher than the other colour. If the distance to white is equal,
so if both colours lie on the same sphere around the white top, we select that
colour lying farthest from black. Again, the RGB cube is sliced into parts of
spheres, but now first towards the white top and then towards the black top.
3. Finally there are colours that have the same distance to the black top and
the same distance to the white top, and thus lie on a circle (as profile of two
spheres) in the RGB cube. Colours lying on such a circle are ranked equally.

This leads us to a new ordering ≤RGB of vectors in the RGB colour space.
If we consider two colours c(rc, gc, bc) and c′(rc′ , gc′ , bc′) in the RGB cube, we
get:

c <RGB c′ ⇔ d(c,Bl) < d(c′,Bl) or
if (d(c,Bl) = d(c′,Bl)) then (d(c,Wh) > d(c′,Wh))

c >RGB c′ ⇔ d(c,Wh) < d(c′,Wh) or
if (d(c,Wh) = d(c′,Wh)) then (d(c,Bl) > d(c′,Bl))

c =RGB c′ ⇔ (d(c,Bl) = d(c′,Bl)) and (d(c,Wh) = d(c′,Wh)),

with d the Euclidean distance, i.e. d(c,Bl) =
√

(rc − 0)2 + (gc − 0)2 + (bc − 0)2.

4 Definition of New Maximum and Minimum

Based on this vector ordering in the RGB colour space, we can define new min-
imum and maximum operators. Consider a set S of n colours c1(r1, g1, b1), . . . ,
cn(rn, gn, bn) in RGB, with rα, gα, bα ∈ [0, 1] for α = 1, . . . ,n. We then define
the minimum ∧ of S, ∧S = ∧{c1, c2, . . . , cn} using the following approach:

if (∃!α)(d(cα,Bl) = min(d(c1,Bl), . . . , d(cn,Bl))) then ∧ S = cα

else if (∃!α)(d(cα,Bl) = min(d(c1,Bl), . . . , d(cn,Bl)) and d(cα,Wh) =
max(d(c1,Wh), . . . , d(cn,Wh))) then ∧ S = cα

else if (∃!α)(d(cα,Bl) = min(d(c1,Bl), . . . , d(cn,Bl)), d(cα,Wh) =
max(d(c1,Wh), . . . , d(cn,Wh)) and rα = min(r1, . . . , rn)) then ∧ S = cα

else if (∃!α)(d(cα,Bl) = min(d(c1,Bl), . . . , d(cn,Bl)), d(cα,Wh) =
max(d(c1,Wh), . . . , d(cn,Wh)), rα = min(r1, . . . , rn) and gα =
min(g1, . . . , gn)) then ∧ S = cα

else if (∃!α)(d(cα,Bl) = min(d(c1,Bl), . . . , d(cn,Bl)), d(cα,Wh) =
max(d(c1,Wh), . . . , d(cn,Wh)), rα = min(r1, . . . , rn), gα =
min(g1, . . . , gn) and bα = min(b1, . . . , bn)) then ∧ S = cα,

where 1 ≤ α ≤ n.

Analogously we define the maximum of S, ∨S = ∨{c1, c2, . . . , cn}, where we
first look at the white top and secondly at the black top.
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After the first two steps in the determination of the minimum or maximum
of a set of colours, there may still be colours lying on the profile of two spheres,
a circle, in the RGB cube. In this case we look at the red colour component R of
these remaining colours: the colour with the smallest R-value is the minimum,
the colour with the largest R-value is the maximum. If two or more colours of S
have the same minimum (resp. maximum) R-value, we look at the green colour
component G of these colours. The smallest G-value gives us the minimum, the
greatest G-value the maximum. Finally if there still remain colours with the same
minimum (resp. maximum) G-value, we consider the blue colour component,
where the smallest B-value will determine the minimum, the greatest B-value
the maximum.

We want to notice here that the last three steps in the determination of
minimum and maximum of a set of colours in the RGB colour space are a bit
artificial, because the three colour components R, G and B are equally impor-
tant. But in practical applications of morphological operators to colour images,
maximum and minimum are usually already obtained after the second step. And
if not, in other words, if we get more than one colour for the minimum or max-
imum after the first two steps, these obtained colours are equally ranked, and
then we really have to choose one.

It is easy to verify that the RGB colour space with the above defined order-
ing of colours and associated minimum and maximum operators is a complete
chain, with least element (0, 0, 0) and greatest element (1, 1, 1). Also important
to mention is that the minimum and maximum operators are vector preserving:
minimum or maximum of a set S of colours in the colour space RGB is a colour
contained in the set S, so no new colours are created.

5 New Vector Morphological Operators for Colour
Images

To apply the umbra and fuzzy morphological operators to colour images, we also
have to define the operators + and − between two colours, where the ordering,
minimum and maximum are defined as before. If c(rc, gc, bc) is a colour and
c′(rc′ , gc′ , bc′) a shade of grey (thus rc′ = gc′ = bc′) in RGB, we define the
complement 1 − c or co(c) of c, the sum c + c′ of c and c′, and the difference
c− c′ of c′ from c as:

(co(c))(x, y, z) = 1RGB − c with x
def
= 1− rc, y

def
= 1− gc, z

def
= 1− bc;

(c + c′)(x, y, z) with x
def
= (rc + rc′)/2, y

def
= (gc + gc′)/2, z

def
= (bc + bc′)/2;

(c− c′)(x, y, z)
def
= c + co(c′) = c + (1RGB − c′), with x = (rc + (1− rc′))/2,
y = (gc + (1− gc′))/2, z = (bc + (1 − bc′))/2.

For the fuzzy mathematical morphological operators we also need the operation
multiplication (∗) between two colours. As 3-dimensional structuring element in
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RGB we can and will take a symmetric grey-scale structuring element of the
form (all three colour components R, G and B are equally important)

B =

⎛⎝ cB1 cB11 cB1

cB11 1 cB11

cB1 cB11 cB1

⎞⎠×
⎛⎝ cB1 cB11 cB1

cB11 1 cB11

cB1 cB11 cB1

⎞⎠×
⎛⎝ cB1 cB11 cB1

cB11 1 cB11

cB1 cB11 cB1

⎞⎠
to give a certain weight, thus a certain grade of importance, to each colour in
the window we observe. So we define the product ∗ of a colour c(rc, gc, bc) and
a shade of grey cB(rcB , gcB , bcB ) of the chosen structuring element B as

(c ∗ cB)(x, y, z) with x
def
= rc ∗ rcB , y

def
= gc ∗ gcB , z

def
= bc ∗ bcB ,

where rcB = gcB = bcB ∈ {cB1 , cB11 , 1}.

6 Experimental Results

Consider a colour image C, modelled in the RGB colour space, and a grey-scale
structuring element BRGB. For the extension of the grey-scale morphological
operators to vector morphological operators for colour images we can apply two
methods:

1. we only work with distances
2. we work with distances and mixture of colours.

1. In the first method we calculate the maximum and/or minimum of the set
of colours contained in the considered m × m window (we choose m = 3) in
our image around a central colour pixel y and the maximum and/or minimum
of the grey-values in the chosen structuring element. Secondly we add, subtract
or multiply the two obtained distances in each colour pixel in our window and
determine the maximum or minimum of these m ∗m values. So the dilation and
erosion are the original colours (in the original image) of the pixels where this
maximum, resp. minimum is reached.
2. In contrast to the previous applied method we can also first mix the colours of
our window around a central pixel y (addition, subtraction and multiplication)
and then determine the maximum or minimum of this new set of colours, using
distances. Again, the dilation and erosion are the original colours of the obtained
maximum and/or minimum pixel.

Finally in our experimental results we have compared the new vector morpho-
logical operators with the component-based approach. We have used different
test images in our experiments (the well known Tulips, Trees and Lena im-
ages). Fig. 1 shows the Lena image, where the fuzzy dilation and erosion for the
conjunctor-implicator pair (C, I) = (TW , IW ) are illustrated. Notice that because
the dilation is a supremum operator, this operator will suppress dark colours and
intensify light colours: objects/areas in the image that have a dark colour become
smaller while objects/areas that have a light colour become larger. The erosion
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Fig. 1. Fuzzy morphological operators for (C, I) = (TW , IW ) in the RGB colour space:
at the top: original image, left column: the dilations DTW (A, B′) and right column:
the erosions EIW (A,B′): from top to bottom: the component-based approach and our
new approach, method 1 and 2
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on the other hand is an infimum operator so that light colours are suppressed
and dark colours intensified. The choice of the structuring element has of course
a great influence on the result and will obviously depend on the application. We
have also tried different structuring elements, in Fig. 1 the following structuring
element is used (scaled to [0, 255])

B′ =

⎛⎝155 235 155
235 255 235
155 235 155

⎞⎠×
⎛⎝155 235 155

235 255 235
155 235 155

⎞⎠×
⎛⎝155 235 155

235 255 235
155 235 155

⎞⎠ .
We may conclude that our new method provides more beautiful results than
those obtained by the component-based approach. Firstly, one great advantage
is that the colours are preserved and thus no new colours appear in the images
after applying the new vector morphological operators to it. Secondly, more de-
tails from the original colour image are preserved, and thus visible. On the other
hand visual observation shows that there still may appear some artefacts.
We have assessed the resultant images objectively. We have even done experi-
ments with several similarity measures [16] and these experiments have shown
that the loose of quality is lowest with our vector ordering approach.

Remark: We have already extended the above vector ordering approach for
colours to the HSV and L*a*b* colour space [17].

7 Conclusion

In this paper we have presented a new vector ordering procedure for morpho-
logical processing of colour images based on fuzzy sets, umbra and thresholding
techniques. The problem of looking for a vector ordering for colour or multivari-
ate morphological image processing is not new and is being developed since the
early 90’s. What is new here is the used approach, namely through the umbra
approach and fuzzy set theory. As future work we will compare our approach
with previous morphological approaches that have already solved the problem of
not creating new colours. Currently we are setting up an experiment regarding
the psycho visual behaviour of similarity measures, and this can also be useful
for the evaluation of morphological operators.
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 Morphological Operation for Parallel Processing 

Architectures*1 

Syng-Yup Ohn 

Hankuk Aviation University,  
Department of Computer and Information Engineering, 

Seoul, Korea 
syohn@hau.ac.kr 

Abstract. Morphological operations with 3D images require a huge amount of 
computation. The decomposition of structuring elements used in the morpho-
logical operations such as dilation and erosion greatly reduces the amount of 
computation. This paper presents a new method for the decomposition of a 3D 
convex structuring element into a set of basis convex structuring elements. Fur-
thermore, the decomposition method is applied to the neighborhood decomposi-
tion, in which each basis is one of the combinations of the origin voxel and its 
26 neighborhood voxels. First, we derived the set of decomposition conditions 
on the lengths of the original and the basis convex structuring elements, and 
then the decomposition problem is converted into a linear integer optimization 
problem. The objective of the optimization is to minimize a cost function repre-
senting the optimal criterion of the parallel processing computer architecture on 
which the operation is performed. Thus, our method can be used to obtain the 
different optimal decompositions minimizing the amount of computation for 
different parallel processing computer architectures.  

Keywords: mathematical morphology, dilation, erosion, structuring element, 
decomposition, convex polyhedron. 

1   Introduction 

Mathematical morphology provides powerful tools in the fields of image processing 
and computer vision. The basic operations of mathematical morphology are dilation 
and erosion, which stems from Minkowski addition and subtraction. An image pro-
cessing task can be achieved by arranging dilation and erosion operations as well as 
set operations suitably for the goal of the task. The structuring elements used in dila-
tion and erosion operations play the important role of the probe to detect and extract 
the geometrical characteristics of an input image, and one should choose the structur-
ing element with the size and shape appropriate for the purpose of the operation[1], 
[2]. If a large structuring element is decomposed into a set of smaller structuring ele-
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ments, the dilation of an image by the original structuring element can be achieved by 
a sequence of the dilation operations using the set of smaller structuring elements[3]. 
Generally, such a decomposition reduces the amount of computation required to per-
form dilation. 

Due to their regularity and simplicity, morphological operations are often imple-
mented on parallel processing architectures or VLSI for fast processing of images [6], 
[7]. Most parallel processing architectures are designed to efficiently perform local 
window operations within a window size of 3×3, and for pipelined architectures such 
as Cytocomputer, the size of the local window is restricted to 3×3[8]. Thus, the 
neighborhood decomposition of a structuring element, in which every component 
structuring element is a neighborhood structuring element consisting of a subset of the 
origin and its neighborhood pixels, is an important issue. 

The decomposition of 2D structuring elements was first investigated by Zhuang 
and Haralick[4]. Xu[8] and Park[9] developed the methods to decompose a 2D con-
vex- structuring element into a set of neighborhood structuring elements. Convex 
structuring elements are often used in morphological image processing because of its 
good geometrical characteristics[8]. 

3D mathematical morphology is shown to be effective in the areas of medical im-
age processing and shape analysis[10]. Also, numerous 3D parallel image processors 
have been proposed and implemented for fast processing of 3D images. As in the 2D 
case, it is desirable and often inevitable to decompose 3D structuring elements for 
effective and efficient computations of 3D morphological operations. Much research 
efforts are concentrated on the 2D decomposition problems. However, 3D decomposi-
tion problems are yet to be explored. Furthermore, the amount of 3D image data is 
generally much larger than that of 2D image data, and the fast image operations are 
indispensable.  

In this paper, we present the conditions for decomposition of a digital convex 
polyhedron into a set of basis digital convex polyhedra and propose a new technique 
for the neighborhood decomposition of 3D convex structuring elements. The structur-
ing elements in a neighborhood decomposition are neighborhood structuring ele-
ments, each of which is a subset of a set consisting of the origin voxel and its 26 
neighborhood voxels.  

Generally, the optimal decompositions of a structuring element are different for 
different computer architectures. Since different parallel processing machines exploit 
different modes of parallelism, one should choose the decomposition which provides 
a feasible implementation, yet, requiring the minimum amount of computation on a 
particular parallel processing architecture. In this paper, we defined cost function, 
which represents the total amount of computation or time required to perform a se-
quence of dilations by the structuring elements in a decomposition. By minimizing the 
cost functions representing the different optimal criteria for different architectures or 
computing environments, the optimal decompositions for different cases can be ob-
tained. 

This paper is organized as follows. In Section 2, the terminologies and notations on 
3D digital geometry are provided, and a digital convex polyhedron which is also a 3D 
convex structuring element is defined. In Section 3, we present the conditions for the 
decomposition of a digital convex polyhedron into the set of basis convex polyhedra. 
In Section 4, we propose the new technique for the neighborhood decomposition of 
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3D convex structuring element and show an example decomposition. Finally, Section 
5 presents our conclusion 

2   Preliminaries 

In this section, the geometrical terms on 3D Euclidean space are introduced, and their 
3D digital counterparts are analogously defined. In the following, E3 is the 3D Euclid-
ean space, and Z3 is the 3D digital space in which each component of the position 
vector of a point is an integer. Z3 is the 3D image space in which an image is repre-
sented as a set of the voxels in the volume occupied by objects. 

2.1   Notations on 3D Euclidean Geometry 

3D Euclidean hyperplane H normal to non-zero vector d and translation t is the set of 
points x such that d x = t. H divides the entire 3D Euclidean space into two half 
spaces. The set of points in H and the half space in the direction of -d forms the 
closed half space L with outward normal d and translation t.  L is the set of points x ∈ 
E3 such that d x ≤ t. If closed convex set K ⊂ E3 exists only in L and H ∩ K ≠ ∅, then 
H is called a supporting hyperplane of K with outward normal d, and  L is called the 
supporting half space of K with outward normal d. The closed bounded set K is called 
a convex polyhedron if it can be represented as the intersection of the set of closed 
half spaces. 

2.2   Notations on 3D Digital Geometry and Definition of Digital Convex 
Polyhedron 

The geometrical terms on 3D digital space is defined as follows. First, we define 26 
principal directions, each of which is a non-zero 3D vector consisting of  3 compo-
nents having the values of 1, -1, or 0, and they are denoted as di, i = 1, …, 26. Fur-
thermore, the principal directions are categorized into type 1, 2, and 3 depending on 
the number of non-zero components in the vectors representing principal directions. 
For example, principal direction (1, 0, 0) is type 1, and (1, 0, -1) is type 2. 

The digital hyperplane normal to principal direction di and translation t ∈ Z is the 
set of digital points in analogous Euclidean hyperplane. The digital hyperplane is the 
set of points x ∈ Z3 such that di x = t. Note that a digital hyperplane sweeps the whole 
digital space while t ∈ Z varies from minus infinity to plus infinity. Also, the digital 
half space with outward normal principal direction di and translation t ∈ Z is the set 
of digital points in analogous Euclidean half space. Similarly, digital supporting half 
space and hyperplane are the sets of points in the analogous Euclidean counterparts.  

3D chain code directions are defined on each of 26 hyperplanes with outward nor-
mal di. 8, 6, and 4 chain code directions are defined on type 1, 2, and 3 hyperplanes, 
and they are ordered in clockwise sense by their orientations. See Fig. 1 for the exam-
ples of the chain code directions. The j th chain code directions on the hyperplane 
with outward normal di are denoted as D(i,j). 

The digital face of a set of points S ⊂ Z3 with outward normal principal direction 
di,  denoted as F(S, di), is the set of the points shared by both S and the digital sup-
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porting hyperplane of S with outward normal di. The digital half spaces, hyperplanes, 
and faces are also categorized into type 1, 2, and 3 depending on their outward normal 
principal directions.  

The set of digital points P ⊂ Z3 is called a digital convex polyhedron (DCPH), 
which is also a 3D convex structuring element, if P satisfies the following two condi-
tions. 

i) P is the intersection of 26 digital half spaces with outward normal principal di-
rection di = 1, …, 26 

ii) The boundary of each face of P,  F(P, di), where i = 1, …, 26, can be represented 
with a chain code in the form of 

 
ml

mi
l
i

l
i DDD ),()2,()1,( ...21 ,                                           (1) 

 
where lj represents the number of repetition of chain code D(i,j)  and m depends on i.  

Fig. 1 shows an example of a DCPH. In the figure, each set of the voxels covered 
by one of polygons A, B, and C forms a faces. The principal directions of the faces 
shown are d1 = (0, 0, 1), d13 = (1, 0, -1), and d19 = (1, 1, 1). The face denoted as 
A/B/C is an example of type 1/2/3 faces. The set of arrows on each face represents the 
chain code directions on the face. The chain code directions are denoted as D(i,1), 

D(i,2),…, D(i,m) in a clockwise sense starting with the directions marked with *. The 
number of chain code directions defined on type 1/2/3 face is 8/4/6.  

Since a DCPH is the intersection of 26 digital supporting half space, it is bounded 
by 26 digital supporting hyperplane and enclosed by 26 faces. The face with outward 
normal principal direction di of DCPH P, represented as F(P, di),  is a digital convex 
polygon on the supporting hyperplane of the DCPH with outward normal di. A line 
segment or a vertex can be regarded as a degenerate form of a face.  

The jth edge of the face with outward normal principal direction di on DCPH, de-
noted as E(P, di, j), is the set of points corresponding to the chain code run of D(i,j)  in 
the boundary chain code of the face including the starting and ending points of the 
chain code run. Furthermore, |E(P, di, j)| denotes the length of digital edge E(P, di, j).  
i.e. |E(P, di, j)| = lj, where 1 2

( ,1) ( ,2) ( , ) ( , )... ...j m
l ll l

i i i j i mD D D D  is the chain code representation of 

the boundary of P. 

3   Decompositions of 3D Digital Convex Polyhedrons 

In this section, decomposition condition of a DCPH is derived. First, the condition for 
a DCPH to be decomposed into two basis DCPH’s is derived in terms of their faces, 
each of which in turn forms a digital convex polygon. Then the relationships of the 
faces are further converted into the relationships on the lengths of edges in each face. 
We ignore the positions of DCPH’s in the discussion of decomposition and only con-
sider the shapes of DCPH’s. The considerations on the position will be added later. 

3.1   Decomposition Condition of Digital Convex Polyhedron 

Suppose P = Q ⊕ R, where P, Q, and R are DCPH’s. Consider the i th face of P and 
the i th faces of Q and R, where the i th face of DCPH A denotes the face of A out-
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ward normal di. If we further suppose that the i th face of Q consists of the subset of 
the points on the hyperplane with outward normal principal direction di with transla-
tion tq, then the points u on the face satisfies di u = tq, where u = (xu, yu, zu) denotes a 
digital point. Similarly, for the points v on the i th face of R, di v = tr. Since the dila-
tion of two sets are defined as the set of the vector sums between the elements from 
each sets, the dilation of the i th faces of Q and R consists of only the points w such 
that di w = tq + tr. Furthermore, di x ≤ tq + tr for the points x ∈ Q ⊕ R, and the dilation 
of the i th faces of Q and R is on the supporting hyperplane with outward normal 
principal direction di and translation tq + tr, Therefore, the i th face of Q ⊕ R is 
equivalent to the i th face of P, and  

 
F(P, di) = F(Q, di) ⊕ F(R, di)                                       (2) 

 
for i = 1, …, 26. 

(2) is only a necessary condition for decomposition. It is not a sufficient condition 
since the dilations of some combinations of DCPH’s result in the images shaped like a 
DCPH but with holes inside. 

Since each face of a DCPH forms a digital convex polygon on a hyperplane, the 
condition for F(P, di) to be decomposed into F(Q, di) and F(R, di) can be represented 
in terms of the lengths of the edges of the faces as follows. 

 
|E(P, di, j)| = |E(Q, di, j)| + |E(R, di, j)|                                  (3) 

 
for j = 1, …, m and m depends on i. The decomposition condition for a convex poly-
gon to be decomposed into two basis convex polygon can be proved similarly to the 
case of a convex polyhedron. In [8] and [9], such decomposition condition is ex-
ploited to decompose 2D convex structuring elements. In case of type 1 faces, the 
dilation of the two images shaped as diagonal line segments in different directions 
results in a rhombus shaped image with holes inside and such an image can not be a 
face of a DCPH. The condition to prevent the decomposition with the combination of 
only diagonal line segments in different orientations is added in the case of type 1 
faces. 

4   Decomposition of Convex Structuring Element into 
Neighborhood Structuring Elements 

4.1   Decomposition of Convex Structuring Elements into a Set of Bases 

The decomposition condition of a DCPH can be extended to a linear combination 
form. The condition for DCPH P to be decomposed into the combination of  a1 Q1’s, 
a2 Q2’s,  …, an Qn’s such as  

P = a1Q1 ⊕ a 2Q2⊕…⊕ a nQn ,                                         (4) 

where P, Q1, Q2, …, and Qk  are  DCPH’s, and akQk represents ak-fold dilation of Qk, is  
 

|E(P, di, j)| = a1|E(Q1, di, j)| + a 2|E(Q2, di, j)|  +… + a n|E(Qn, di, j)|           (5) 
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for i = 1, … , 26, and j = 1, …, m, and m = 8, 4, 6 each for di of type 1, 2, 3 directions. 
Also, in the case of type 1 principal directions, the condition to prevent the decompo-
sition with the combination of only diagonal line segment shaped images in different 
orientations is added in the case of type 1 faces.  The above condition is called bound-
ary condition for decomposition. 

However, the dilations of some combinations of DCPH’s result in convex shaped 
volumes with holes inside. For example, the dilation of two DCPH’s each consisting 
of the set of the points on a hyperplane with outward normal principal directions (1, 1, 
1) and (1, -1, 1) does not results in a DCPH but a convex shaped volume with holes 
inside. To prevent such a combination in a decomposition, a condition on the connec-
tivity of voxels is added as follows. First, a DCPH is defined to be f-connected if two 
of the voxels in the DCPH share a face. Then the connectivity condition is that at least 
one f-connected DCPH should be included in the decomposition of an f-connected 
DCPH. For an f-connected DCPH, the boundary condition along with the connectivity 
condition serves as necessary and sufficient conditions for the DCPH to be composed 
into a set of basis DCPH’s in terms of shape only. For a DCPH which is not f-
connected, the connectivity condition is not necessary. 

Finally, the positions of DCPH’s in a decomposition is considered. Suppose A, B, 
and C to be the sets of 3D digital points such that C = A ⊕ B. Then minx(C) = 
minx(A) + minx(B), where minx(C)  denotes the minimum x-coordinate of the volume 
occupied by C, and similarly for y- and z-coordinates. Thus, if P = a1Q1 ⊕ a2Q2⊕…⊕ 
anQn , then minx(P) = a1minx(Q1) + a2minx(Q2) + … + anminx(Qn), and similarly for y- 
and z-coordinates.  

The boundary, position, and edge conditions are the necessary and sufficient condi-
tions for decomposition. The n-tuple (a1, a2, …, an) which satisfies the three condi-
tions determines a decomposition of DCPH P into the set of bases {Q1, Q2, …, Qn}, 
and the solution space of the n-tuples satisfying the three conditions contains all the 
possible decompositions of P into the set of bases. 

4.2   Neighborhood Decomposition of 3D Convex Structuring Elements and Cost 
Function 

The decomposition conditions for DCPH presented in the above can be immediately 
applied to the decomposition of a 3D convex structuring element into a set of 3D 
neighborhood structuring elements. A neighborhood structuring element is a 3D con-
vex structuring element which can be contained in the window of size 3×3×3 centered 
on the origin. There are altogether 16,678 neighborhood structuring elements (B1, 
B2…, B16678).  

A cost function which represents the total processing cost or time required to per-
form the sequence of dilation operations with structuring elements of a1 Q1’s, a2 Q2’s,  
…, an Qn’s can be formulated as 

1

n

k k
k

a c
=

,                                                        (6) 

where ck is the processing cost to perform a dilation operation with structuring ele-
ment Qk with an input image. Generally, it is reasonable to assign a constant cost to 
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each structuring element since the processing time for a dilation operation does not 
depend on the contents of an input image but on the size of the input image. A cost 
function can be used to represent the optimal criterion of decomposition for particular 
computer architecture on which the dilation is performed. The optimal decomposition 
for particular computer architecture is the one that minimizes the computation time or 
cost to perform dilation on the computer architecture, and different optimal decompo-
sitions can be obtained for different machine architectures. 

�

x

y

z�

�

�

 

Fig. 1. Example DCPH P and chain code directions on some faces. Each set of the voxels cov-
ered by one of polygons A, B, and C forms a faces. 

z

y

x

 

Fig. 2. Example DCPH Q and R. The arrows represent x, y, z directions and the volxels marked 
with 0 represent the origins. 

Cyto type 3D parallel processors are expected to have the capability to perform a 
local operation within a 3×3×3 cube window in one step. In this case, the cost of 
every local basis structuring element is the same; therefore, let ck = 1 for each k.  

In a 3D parallel array architecture, a dilation can be performed by translating and 
ORing an input image. Such an architecture has the capability that it can shift a whole 
image to a neighboring position in one step in a parallel fashion. For such an architec-
ture, the cost to perform a dilation operation with a structuring element is the number 
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of required shifts of input image, and ck is the number of shifts of an input image 
required to perform a dilation operation with Qk. The number of shifts depends on the 
topology of the connection among the processing elements in the array.  

The solution n-tuple that minimizes a cost function and satisfies the three decom-
position condition at the same time can be found by linear integer programming tech-
nique[11]. The objective function to be minimized is a cost function representing the 
optimal criterion of a computer architecture on which a dilation is performed. The 
constraints of the linear integer programming are the set of linear integer equations 
generated by the three decomposition conditions involving the original structuring 
element and the set of basis. 

4.3   Decomposition Examples 

Table 4 shows the decomposition results of the 3D convex structuring elements 
shown in Fig.1 and 2. 3D neighborhood structuring elements in the decompositions 
are listed in Table 1, 2 and 3. Also, in Table 4, the costs for performing dilations with 
the sequence of the structuring elements in the optimal neighborhood decompositions 
are compared to the costs with the original structuring elements. 

Table 1. Neighborhood structuring elements used for the optimal neighborhood decomposition 
of P in Fig. 1. Each matrix shows a slice of a structuring element on a plane z = i. The y/x -
coordinate of the first row/column of each matrix is 1, the second 0, and the third -1. 

 B17 B34 B44 B190 B480 B2019 B3938 

plane 
z = 1 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  1  0 
0  0  0 

0  0  0 
0  0  1 
0  0  0 

0  1  0 
0  1  1 
0  0  0 

0  0  1 
0  0  0 
0  0  0 

0  0  1 
0  0  1 
0  0  1 

plane 
z = 0 

0  0  0 
0  0  1 
0  0  0 

0  1  0 
0  1  0 
0  0  0 

0  0  0 
1  1  0 
0  0  0 

0  0  0 
0  1  1 
0  0  0 

0  1  1 
0  1  1 
0  0  0 

0  1  1 
0  0  0 
0  0  0 

0  1  1 
0  1  1 
0  1  1 

plane 
z = -1 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

Table 2. Neighborhood structuring elements used for the optimal neighborhood decomposition 
of Q in Fig. 2 

 B0 B88 B1646 

plane 
z = 1 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  1  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

plane 
z = 0 

0  0  0 
0  0  0 
0  0  0 

0  1  0 
1  1  1 
0  1  0 

0  0  0 
0  1  0 
0  0  0 

plane 
z = -1 

0  0  0 
0  1  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  1  0 
1  1  1 
0  1  0 
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Table 3. Neighborhood structuring elements used for the optimal neighborhood decomposition 
of R in Fig. 2 

 B2 B8 B30 B36 B42 B60 B68 

plane 
z = 1 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  1  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  1  0 
0  0  0 

0  0  0 
0  1  0 
0  0  0 

plane 
z = 0 

0  0  0 
0  0  0 
0  1  0 

0  0  0 
1  0  0 
0  0  0 

0  0  0 
0  1  0 
0  1  0 

0  1  0 
0  1  0 
0  0  0 

0  0  0 
1  1  0 
0  0  0 

0  0  0 
0  1  1 
0  0  0 

0  1  0 
0  1  1 
0  0  0 

plane 
z = -1 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

 B147 B154 B9641 B9646 B9730 B10409   

plane 
z = 1 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
1  0  0 
1  0  0 

0  0  0 
1  0  0 
1  0  0 

0  0  0 
0  0  0 
1  1  0 

0  0  0 
0  0  0 
1  1  1 

  

plane 
z = 0 

0  0  0 
0  0  0 
1  0  0 

0  0  0 
1  1  0 
1  1  0 

0  0  0 
1  1  0 
1  1  0 

1  0  0 
1  1  0 
1  1  0 

0  0  0 
1  1  0 
1  1  0 

0  0  0 
1  1  1 
1  1  1 

  

plane 
z = -1 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

  

Table 4. Optimal neighborhood decompositions of  P, Q, R and the costs of performing dilation 

 
Type of Architecture Optimal Decomposition Original 

Decomposi-
tion 

Cytocomputer 3B480 ⊕ B2019 ⊕ B3938 NA 5 stages 
P 

Parallel Array Processor 2B17 ⊕ 2B34 ⊕ 2B44 ⊕ 3B480 1350 shifts 35 shifts 
Cytocomputer 3B1646 NA 3 stages Q 

Parallel Array Processor 3B0 ⊕ 3B88 186 shifts 18 shifts 

Cytocomputer 
B147 ⊕ 2B154 ⊕ B9641 ⊕ B9646 ⊕ 

B9730 ⊕ B10409 
NA 7 stages 

R 
Parallel Array Processor 

3B2 ⊕ 2B8 ⊕ 4B30 ⊕ 2B36 ⊕ 5B42 
⊕ B60 ⊕ B68 

2358 shifts 23 shifts 

5   Conclusion 

In this paper, a new method to decompose 3D convex structuring element used in 
morphological operation is proposed. First, the decomposition condition for digital 
convex polyhedron is derived in terms of the length of edges of original and basis 
convex polyhedrons. The condition is applied to the decomposition of a convex struc-
turing element into a set of neighborhood structuring elements. Furthermore, we de-
fined cost function to represent the different optimal criteria on the decomposition for 
different parallel computer architectures. The optimal decompositions, which satisfy 
the decomposition condition and minimize the cost function at the same time, can be 
found by linear integer programming. Thanks to the cost function, our method can be 
used to obtain different optimal neighborhood decompositions for different cases. 
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Soft-Switching Adaptive Technique of Impulsive
Noise Removal in Color Images
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Abstract. In this paper a novel class of filters designed for the removal
of impulsive noise in color images is presented. The proposed filter fam-
ily is based on the kernel function which regulates the noise suppression
properties of the proposed filtering scheme. The comparison of the new
filtering method with standard techniques used for impulsive noise re-
moval indicates superior noise removal capabilities and excellent struc-
ture preserving properties.

1 Introduction

During image formation, acquisition, storage and transmission many types of dis-
torsions limit the quality of digital images. Transmission errors, periodic or ran-
dom motion of the camera system during exposure, electronic instability of the
image signal, electromagnetic interferences from natural or man-made sources,
sensor malfunctions, optic imperfections, electronics interference or aging of the
storage material all disturb the image quality.

In many practical situations, images are corrupted by the so called impulsive
noise caused mainly either by faulty image sensors or due to transmission errors.
In this paper we address the problem of impulsive noise removal in color images
and propose an efficient technique capable of removing the impulsive noise and
preserving important image features.

2 Vector Median Based Filters

Mathematically, a N1×N2 multichannel image is a mapping Zl → Zm rep-
resenting a two-dimensional matrix of three-component samples (pixels), xi =
(xi1,xi2, . . . ,xim) ∈ Zl, where l is the image domain dimension and m denotes
the number of channels, (in the case of standard color images, parameters l and
m are equal to 2 and 3, respectively). Components xik, for k = 1, 2, . . . ,m and
i = 1, 2, . . . ,N , N = N1 ·N2, represent the color channel values quantified into
the integer domain, [1].

� This research has been supported by the KBN grant 4T11F01824.
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The majority of the nonlinear, multichannel filters are based on the ordering
of vectors in a sliding filter window. The output of these filters is defined as the
lowest ranked vector according to a specific vector ordering technique, [2,3].

Let the color images be represented in the commonly used RGB color space
and let x1, x2, . . ., xn be n samples from the sliding filter window W , with x1
being the central pixel in W . Each of the xi is an m-dimensional vector. The
goal of the vector ordering is to arrange the set of n vectors {x1, x2, . . ., xn}
belonging to W using some sorting criterion.

In [3,4] the ordering based on the cumulative distance function has been
proposed: R(xi) =

∑n
j=1 ρ(xi,xj), where ρ(xi,xj) is a function of the distance

among xi and xj . The increasing ordering of the scalar quantities {R1, . . . , Rn}
generates the ordered set of vectors {x(1),x(2), . . . ,x(n)}.

One of the most important noise reduction filter is the vector median, [2].
Given a set W of n vectors, the vector median of the set is defined as x(1) ∈ W
satisfying

∑
j

∥∥x(1) − xj

∥∥ ≤∑j ‖xi − xj‖.
The orientation difference between two vectors can also be used as their dis-

similarity measure. This so-called vector angle criterion is used by the Basic
Directional Filter (BDF), to remove vectors with atypical directions, [5]. Other
techniques like the Directional Distance Filter DDF, [5,6,7,8] and their modi-
fications, [9,10,16] combine the distance and angular criteria to achieve better
noise suppression results,.

3 Proposed Filtering Design

The well known local statistic filters constitute a class of linear minimum mean
squared error estimators, based on the non-stationarity of the signal and the
noise model, [11,12]. These filters make use of the local mean and the variance
of the input set W and define the filter output for the gray-scale images as

yi = x̂i + α (xi − x̂i) = αxi + (1 − α)x̂i , (1)

where x̂i is the arithmetic mean of the image pixels belonging to the filter window
W centered at pixel position i and α is a filter parameter usually estimated
through, [13]

α =
σ2

x

σ2
n + σ2

x

, x̂i =
1
n

∑n

k=1
xk , ν2 =

1
n

∑n

k=1
(xk − x̂i)

2
,xk ∈ W, (2)

σ2
x = max

{
0, ν2 − σ2

n

}
, α = max

{
0, 1− σ2

n/ν
2} , (3)

where ν2 is the local variance calculated from the samples in the filter window
and σ2

n is the estimate of the variance of the noise process. If ν & σn, then
α ≈ 1 and practically no changes are introduced. When v < σn, then α = 0 and
the central pixel is replaced with the local mean. In this way, the filter smooths
with the local mean, when the noise is not very intensive and leaves the pixel
value unchanged when a strong signal activity is detected. The major drawback
of this filter is that it fails to remove impulses and leaves noise in the vicinity
of high gradient image features.
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Equation (1) can be rewritten using the notation xi = x1, [13] as

y1 = αxi + (1− α)x̂i = αx1 + (1 − α)x̂1 = (1− α) (ψ1x1+x2+. . .+xn)/n, (4)

with ψ1 = (1 − α + nα)/(1 − α) and in this way the local statistic filter (1) is
reduced to the central weighted average, with a weighting coefficient ψ1.

Fig. 1. Vector yi lies on the line connecting the vector xi and x(1) in the RGB space

Table 1. Kernel functions, (x = 〈−1, 1〉, h = 〈0,∞), [f(x)]+ = f(x) for x ≥ 0 and
0 if x < 0) used for the construction of the proposed filter (a) and its efficiency in
comparison with VMF, BDF and DDF, (b)

a)

Kernel K (x) K(x) = γhK(x)

(L) e−| x
h | 1

2h
e−|x

h |

(G) e
− x2

2h2 1√
2πh

e
− x2

2h2

(C) 1

1+ x2
h2

1
πh

1

1+ x2
h2

(T)
[
1 − ∣∣ x

h

∣∣]+ [
h(1−| x

h |)
2h−1

]+
(E)

[
1 − x2

h2

]+ [ 3h2
(

1− x2

h2

)
6h2−2

]+
b)

Filtering efficiency, (PSNR, [dB] LENA)
Noise p = 1% p = 3% p = 5%
Kernel hopt hest hopt hest hopt hest

L 40.75 40.70 37.92 37.90 36.38 36.35
G 39.22 39.22 36.96 36.95 35.68 35.67
C 39.65 39.39 37.11 37.03 35.72 35.67
T 40.46 40.45 37.76 37.76 36.27 36.27
E 40.87 40.81 37.96 37.94 36.39 36.34

VMF 33.33 32.94 32.58
DDF 32.90 32.72 32.25
BDF 32.04 31.81 31.14

The structure of the new filter called Kernel based VMF (KVMF) is similar
to the presented above approach. However, as our aim is to construct a filter
capable of removing impulsive noise, instead of the mean value, the VMF output
is utilized and the noise intensity estimation mechanism is accomplished through
the similarity function, which can be viewed as kernel function, known from the
nonparametric probability density estimation, (Tab. 1a).
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In this way, the proposed technique is a compromise between the VMF
and the identity operation. When an impulse is present, then it is detected by
the kernel K = f(‖x1 − x(1)‖), which is a function of the distance between the
central pixel xi = x1 and the vector median x(1), and the output yi is close
to the VMF. If the central pixel is not disturbed by the noise process then the
kernel function is close to 1 and the output is near to the original value x1. If
the central pixel in W xi is denoted as x1 and the vector norm as ‖ · ‖, then

yi = x(1) +K (x1,x(1)
) · (x1 − x(1)

)
= Kx1 + (1−K)x(1) , (5)

where K = f
(‖x1 − x(1)‖

)
, which is quite similar to (1).

If
{
x(1),x(2), . . . ,xi, . . . ,x(n)

}
denotes the ordered set of pixels in W , then

the weighted structure corresponding to (4) is
{
(1−K)x(1), . . . ,Kx1, . . . ,x(n)

}
.

It is interesting to observe that the filter output yi lies on the line joining
the vectors xi (x1) and x(1) and depending on the value of the kernel K it slides
from the identity operation and the vector median, (Fig. 1).

The proposed structure can be seen as a modification of the known tech-
niques used for the suppression of the Gaussian noise. In the proposed technique
we replace the mean of the pixels in W with the vector median and such an ap-
proach proves to be capable of removing strong impulsive noise while preserving
important image features like edges, corners and texture.

4 Experimental Results

The noise modelling and evaluation of the efficiency of noise removal methods
using the widely used test images allows the objective comparison of the noisy,
restored and original images.

In this paper we assume a simple salt & pepper noise model, [3,6,14]

xi =

⎧⎨⎩{vi1 , oi2 , oi3}, with probability p,
{oi1 , vi2 , oi3}, with probability p,
{oi1 , oi2 , vi3}, with probability p,

(6)

where xi represents the pixel in the corrupted image, oi = {oi1 , oi2 , oi3} rep-
resents the original sample and vi1 , vi2 , vi3 are random, uncorrelated variables
taking the value 0 or 250, with equal probability. The impulsive noise suppression
efficiency was measured using the commonly used PSNR image quality measure

PSNR = 20 log10

(
255√
MSE

)
, MSE =

∑N
i=1
∑m

k=1 (xik − oik)2

Nm
. (7)

The efficiency of the proposed filtering approach is summarized in Tab. 1
and also presented in Fig. 2. As can be seen the dependence on the kind of the
kernel function is not, as expected, very strong. However, the main problem is
to find an adaptive optimal bandwidth parameter h, as the proper setting of the
bandwidth guarantees good performance of the proposed filtering design.
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The experimentally found rule of thumb for the value of h called hest is:
hest = γ1/

√
σ̂, where σ̂ is the mean value of the approximation of variance,

[15] calculated using the whole image: σ̂2 =
∑N

i=1(xi − x̂i)2
/
8N2 or randomly

selected image pixels and γ1 is the coefficient taken from Tab. 1.
The comparison of the efficiency of the proposed scheme in terms of PSNR

for the optimal values of h and estimated by the developed rule of thumb is
shown in Tab. 1 and Fig. 4. In the corner of the Fig. 4 the magnified part of the
plot shows the excellent performance of the proposed bandwidth estimator. The
dotted lines represent the best possible PSNR values and the continuous line
show the PSNR obtained with the proposed estimation of the kernel bandwidth.
Practically the hest yields the best possible impulsive noise attenuation, (see also
the comparison in Tab. 1).

Fig. 2. Dependence of the PSNR on the h parameter for the KVMF with the L and T
kernels in comparison with the VMV for p ranging from 1% to 5%, (LENA image)

Fig. 3. Comparison of the estimated, (dashed line) and optimal bandwidth, (solid line)
as functions of the noise intensity expressed through σ for the LENA image

The illustrative examples depicted in Fig. 6 show that the proposed filter
efficiently removes the impulses and preserves edges and small image details.
Additionally due to its smoothing nature it is also able to suppress slightly the
Gaussian noise present in natural images, (see Fig. 5).
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Fig. 4. Dependence of the PSNR on the h parameter of the L kernel, for p = 1 − 5%
in comparison with the standard VMF, (LENA image). The dotted lines indicate the
optimal, (best possible) values of PSNR achievable by the KVMF filter and the VMF
and the continuous line presents the achieved PSNR using the hest bandwidth.

Fig. 5. Dependence of PSNR on the h parameter of the L kernel, for the Gaussian
noise of σ = 10 − 50, (solid line) in comparison with the VMF, (dotted line)
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TEST p = 3% VMF

KVMF-L BDF DDF

TEST p = 3% VMF

KVMF-L BDF DDF

Fig. 6. Comparison of the filtering efficiency of the proposed filter with the Laplace
kernel (KVMF-L) with the VMF, BDF and DDF methods
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5 Conclusion

In the paper an adaptive soft-switching scheme based on the vector median and
similarity function has been presented. The proposed filtering structure is su-
perior to the standard filtering schemes and can be applied for the removal of
impulsive noise in natural images. It is relatively fast and the proposed band-
width estimator enables automatic filtering independent of noise intensity.
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Abstract. A method for color indexing is proposed that is based upon
nonparametric statistical techniques. Nonparametrics compare the ordi-
nal rankings of sample populations, and maintain their significance when
the underlying populations are not Normally distributed. The method
differs from previous approaches to color indexing, in that it does not
involve histogramming. Principal component analysis is performed to ex-
tract the three orthogonal axes of maximum dispersion for a given color
signature. These axes are then used to select Lipschitz embeddings to
generate sets of scalars that combine all color channel information. These
scalar sets are compared against a ranked database of such scalars using
the Moses test for variance. On the resulting top matches, the Wilcoxon
test of central tendency is applied to yield the best overall match.

The method has been tested extensively on a number of image data-
bases, and has been compared against eight standard histogram methods
using four color space transformations. The tests have shown its perfor-
mance to be competitive with, and in certain cases superior to, the best
histogram methods. The technique also shows a greater robustness to
noise than all histogram methods, with a noise robustness comparable
to that of the more expensive Variable Kernel Density method.

1 Introduction

The use of histograms to compare and index images based upon their color con-
tent was first proposed by Ballard and Swain [10]. Histogramming is conceptually
straightforward and enhancements have aimed to improve robustness, particu-
larly to illumination changes, by empirically comparing the effects of different
combinations of color space mappings and histogram similarity metrics. In [4]
several invariant color models such as normalized rgb and Hue are proposed to
improve robustness to illumination effects. Color constancy has also been pro-
posed for illumination invariance [3]. Several comparision metrics such as Earth
Mover’s Distance, Jessen Divergence and Kolmogorov-Smirnov Distance, etc.,
are tested in [9].

We propose an alternative to histograms for color indexing that is based upon
nonparametric statistical methods (Nonparametrics). Nonparametrics are an el-
egant class of technique that assume very little about the underlying population.
In particular, a Gaussian distribution is not assumed, nor for that matter is any
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(b)

(c)
(a)

Fig. 1. Database Images: a) 1 of 3 database images of each object, b) remaining 2
database images for top left object, c) test image for top left object

other parametric form. This becomes important when comparing color values,
which can be arbitrarily distributed throughout the color space. Nonparametrics
use ordinal rankings to infer statistical properties from two sample distributions.
Ranking techniques have been previously applied to provide robustness in visual
correlation [1], by ranking the correlation windows and applying a distance met-
ric to the resulting rank matrices. While histograms themselves are considered a
nonparametric representation, to our knowledge nonparmetric statistical ranking
methods have not previously been applied to color comparisons.

2 Nonparametrics

The goal of Nonparametrics is to draw inferences from test statistics derived
from an ordinal ranking of the sample populations under comparison. Even if
the underlying populations are not normally distributed, their rank statistics will
be predictable if the two populations are similar. Nonparametric counterparts
exist for most classical statistical tests, such as the Student t-test and the F -test.

The Wilcoxon Rank Sum test is the nonparametric alternative to the two
sample t-test. If the samples are drawn from the same population, then they will
be similar, and this is examined by jointly ranking them. If the sum of the ranks
of the first sample population is significantly larger or smaller than that of the
second, then there is evidence to reject the hypothesis that the samples follow
the same distribution.

Let the two respective sample populations be denoted as X = {Xi}m
1 and

Y = {Yi}n
1 , and let Z = X∪Y = {Zi}m+n

1 be ordered such that Zi≤Zj ⇐⇒ i<
j. The quantities RX and RY are then defined as the sum of the ranks of Z whose
elements originated from X or Y respectively, i.e., RX = Σm+n

i=1 (i | Zi ∈ X).
The test statistic is then defined as W = (RX − μ)/σ, where μ and σ are the
respective mean and standard deviation of all ranks in Z. When there are no ties
in the ranks (i.e., no two Zi are identical) the expressions for μ and σ are derived
from combinatorics [7] as μ = n(m + n + 1)/2 and σ = [mn(m + n + 1)/12]1/2 .
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When ties exist, a correction factor is subtracted from σ to compensate for the
expected reduction in variance.

Whereas the Wilcoxon is a measure of central tendency, the Moses Ranklike
Test uses similar concepts to compare the relative dispersion of two populations,
and is analogous to the F -test. The Moses randomly partitions the data from
each of X and Y into groupings of size k. In the case where k unevenly divides
the number of observations, any leftovers are discarded. The variance is then
found for each of the resulting groupings. This set of variances for the groupings
of the sample populations forms two new distributions, i.e., C for X and D
for Y. The distribution C is calculated from the m′ groupings of X as follows.
Define C1, . . . , Cm′ by Ci =

∑k
s=1(Xis − Xi)2, i = 1, . . . ,m′, where Xi is the

mean of the ith grouping. Similarly, D is calculated from the n′ groupings of
Y. The Moses Ranklike test ends by applying the Wilcoxon to C and D. One
downside to the Moses test is the random grouping of the data. It is possible
for two separate tests to be run on the same data with different results. This is
accepted by an adjustment to the significance level of the test.

3 Application to Color Indexing

We apply Nonparametrics to image data by considering each pixel as a single
independant sample. The assumptions behind Nonparametrics are less stringent
than their classical counterparts, but it is assumed that the underlying popula-
tion is continuous. This assumption is significant because the probability of two
samples with identical values in a continuous population is small, whereas in a
discrete population duplicates are more likely. A complication therefore arises
when many pixels have the same value. Identical values produce ties in the sub-
sequent rankings, and the test statistics require some accomodation to maintain
significance when ties occur. The treatment of ties has itself been a topic of
separate investigation for Nonparametrics in general [8] and the Wilcoxon in
particular [2]. When both the sample population sizes and the number of ties
are large, the performance of the test statistic degrades [8].

In the case of image data, the number of ties can be large. The color space
contains at most 2563 possible values, which may be smaller than the number of
pixels in a large image. Even for smaller images, many objects tend to have large
regions over which the changes in color are small. As an example, the top left
image in Fig.1(a) contains 320,961 foreground pixels. The largest single grouping
of ties is 6,448 pixels (2%), and only 89,476 (28%) of the pixel values are distinct.

3.1 Color Space Embedding

A straightforward application of Nonparametrics would for each image produce
a separate ranking for each color channel. The similarities of the separate color
channels could then be compared using the Wilcoxon and Moses, and the results
combined into a single similarity measure. There are two problems with this
approach, the first being that simple transpositions of channel values cannot be
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discriminated. A mostly red image, for example, might be deemed similar to a
mostly blue image. The second problem is that a single channel is limited to
a small set of possible values, typically 256. All but the tiniest of images will
therefore produce many ties in each channel ranking.

The use of Lipschitz embeddings effectively circumvents these difficulties [6].
An embedding e is a reference point inserted at a specific location in space.
The value of a pixel p is then taken as ||p−e||, where ||.|| is the L2 metric. This
measure has the benefit of encoding all color channel information into a single
scalar value, which reduces the occurence of ties. Discrimination can be increased
by using multiple embeddings and combining the results from the separate tests.

The selection of embedding locations affects the quality of the results. An
arbitrary selection, such as chosing e1, e2, e3 to lie at the maximal values along
each axis is simple, though not necessarily optimal. Principal component analysis
(PCA) provides information to select embeddings tailored to a particular color
distribution.

The quality of an embedding e can be characterised by the number of different
points pi, pj where ||pi− e|| = ||pj − e||. The fewer such points exist, the less
ambigious the embedding. The set of possible points that are equidistant from e
form the surface of a sphere with a radius of ||p− e|| . Any datapoints that lie on
the surface of the sphere will be considered as the same point by the embedding,
even though the points may represent different colors. An embedding location
selected in the center of a point cloud will thus have a high probability of having
several datapoints in this state of ambiguity. Alternately, if it were selected to lie
outside the point cloud, the probability of equidistant datapoints will be reduced.
Discrimination can be further improved by choosing a location aligned with the
major axis of dispersion of the point cloud, thereby minimizing the size of the
arc that a sphere centered at e cuts in the cloud.

To align the embedding point with the data set, PCA is performed to estab-
lish the three orthogonal vectors associated with the axes of maximum dispersion
in the data. Along each principal component, e is chosen to be outside the bound-
ing box of the color data. The resulting axes and embedding locations e1, e2, e3
for an example dataset in RGB space are shown in Fig. 2.

Instead of using the Euclidean distance, the projected distance is used for the
scalar value to further reduce the level of embedding ambiguity. Each point p is
projected onto the principal component vj so that p becomes pj . The distance
function is then ||pj − e||. The arc defining the ambiguous points for a given
distance is reduced to a straight line perpindicular to the principal component
vj .

This process has two effects. It increases the descriptive power of the em-
beddings, and it also reduces the number of tied values. The effective dynamic
range is increased from 256 levels to a near continuous range along each of the
three eigenvectors. The object in the top-left image of Fig. 1(a) originally con-
tained only 28% distinct values. After the 3 sets of embeddings are calculated,
the number of distinct values is increased to 43% and the largest group of ties
is reduced from 6,448 (2%) to 1,850 (0.6%).



698 I. Fraser and M. Greenspan

PCA

CentralTendency
Test for 

Embedded

Variance

Test  for 

Background
Segmentation

Transformation

Color Space

Color Embedding

Embedding

Locations

m− best results

Signatures

Object

Pixels

Moses

Database
w.r.t

Object

Pixels

Final Output

Embedded

Wilcoxon

Database Images Input Images

Background
Segmentation

Color Embedding

Signatures

Fig. 2. Principal Axes and Embeddings Fig. 3. The NECRIS algorithm

4 Experimentation

A process flow diagram of our method, which we call Nonparametric Embed-
dings for Color Recognition and Indexing Systems (NECRIS), is illustrated in
Fig. 3. To evaluate NECRIS, the following histogram metrics [9,10] were imple-
mented and their performance was compared: Earth Movers Distance (EMD),
Bhattacharya Distance (BD), L2-Norm (L2), Kullback-Liebler Divergence (K-
L), Jessen Divergence (JD), Kolmogorov-Smirnov (K-S), Chi-Squared statistic
(χ2), and Histogram Intersection (HI). Standard histogram construction tech-
niques were used with the bin size set at the maximum color resolution for a
total of 256 bins per channel. It has also been shown that the choice of color
space representation can affect performance, especially when illumination varies
[4]. The four color spaces tested here were described by [4]: RGB, normalized
rgb (rgb), C1C2C3, and I1I2I3.

There are 3 distinct performance measures used in these experiments to com-
pare the various methods. The first is accuracy, which measures the percentage
of trials where the method matches the correct database object with the test
object. The second is recall, which is the ratio of correctly matched instances of
an object to the total number of instances of the same object available in the
database. The final performance measure is the percentile ranking. For R possi-
ble ranks and N input objects, let ri denote the rank of the correctly matching
database object to the input object i. If the best match is the correct object,
then ri = 1. Conversely if the correct object is the worst match, then ri = R.
The average percentile ranking r is given by [5] as r = 1

N

∑N
i=1

R−ri

R−1 .
The 9 methods were compared for each of the 4 color spaces on several image

databases, the first of which was the Swain and Ballard database [10] which
consists of 68 household items. Each object was placed on a black background
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Table 1. Accuracy and (Percentile Ranking) for Swain & Ballard Database

Metric RGB rgb c1c2c3 I1I2I3
EMD .30 (.935) .33 (.943) .47 (.962) .37 (.904)
BD .70 (.981) .93 (.993) .83 (.989) .67 (.988)
L2 .57 (.957) .73 (.988) .70 (.987) .47 (.955)
K-L .43 (.944) .30 (.902) .17 (.874) .37 (.972)
JD .60 (.946) .87 (.993) .67 (.984) .63 (.986)
K-S .37 (.931) .43 (.957) .47 (.952) .33 (.887)
χ2 .67 (.977) .93 (.993) .87 (.990) .67 (.989)
HI .63 (.974) .93 (.995) .83 (.991) .63 (.987)

NECRIS .77 (.988) .80 (.996) .77 (.988) .57 (.966)

Table 2. Accuracy (Acc), Recall (Rec), Av. Percentile Ranking(%) for Recall Database

RGB
Metric Acc Rec %
EMD 1 .83 1
BD 1 .94 1
L2 1 .92 1
K-L 1 .92 1
JD 1 .92 1
K-S .92 .94 .99
χ2 1 .94 1
HI 1 92 1

NECRIS 1 .89 1

rgb
Metric Acc Rec %
EMD 1 .83 1
BD 1 1 1
L2 1 .92 1
K-L 1 .89 1
JD .92 .94 1
K-S 1 .78 1
χ2 1 1 1
HI 1 1 1

NECRIS 1 1 1

c1c2c3

Metric Acc Rec %
EMD .92 .83 .99
BD 1 .94 1
L2 .92 .78 .98
K-L .92 .89 .99
JD .92 .83 .98
K-S .92 .72 1
χ2 1 .94 1
HI .92 .94 1

NECRIS 1 .94 1

I1I2I3
Metric Acc Rec %
EMD 1 .78 1
BD 1 .83 1
L2 .92 .81 .99
K-L 1 .89 1
JD 1 .86 1
K-S .92 .67 .98
χ2 1 .86 1
HI 1 .86 1

NECRIS .92 .72 1
A (A ) ( ) A (%)

to facilitate background subtraction. An additional 30 images of the objects were
acquired in random poses to serve as test images.

The results of the experiment on the Swain and Ballard database are tab-
ulated in Table 1. Recall is not included as there was only 1 instance of every
test object in the database, and so in this case recall is equivalent to accuracy.
In the RGB color space NECRIS outperformed all the histogram metrics with
an average percentile ranking of 98.8% and an indexing accuracy of 77%. The
normalized rgb color space raised the accuracy of the best histogram methods
significantly to 93%. NECRIS outperformed all of the histogram methods in rgb
in terms of percentile ranking at 99.6%. In the other two color spaces HI, BD and
χ2 show strong performance over NECRIS and the other comparison metrics.

An additional database was collected using a similar methodology as [10].
Twelve objects were taken in 3 poses each against a black background. The
images were acquired using a consumer level digital camera (Fuji FinePix6800Z).
A separate set of test images were acquired for each object with slightly different
scales and rotations. Fig.1a) illustrates 1 of the 3 database images acquired for
each of the 12 objects. Fig.1b) shows the remaining 2 database images for the
top left object of part a), and Fig.1c) shows the test image for this object.
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(a) Percentile Ranking

(b) Percent Accuracy

Fig. 4. Performance Degradation Under Added Noise

The accuracy, recall, and percentile ranking for all combinations of color
space and similarity measure are listed in Table 2. NECRIS performed well with
an accuracy of 100% though with a recall of 89% with the RGB color space.
In rgb and c1c2c3, NECRIS tied for best performance with the best histogram
metrics. The rgb color space yielded perfect accuracy and recall for NECRIS, HI,
χ2 and BD. In I1I2I3, of the three methods that did not obtain 100% accuracy,
NECRIS scored the highest average percentile ranking (99.8%) and the lowest
recall (72%).

To compare noise immunity, a similar methodology was used as [5]. Zero
mean Gaussian noise was added along all 3 channels for every input image in
the Swain and Ballard database. Following [5], the level of noise was selected
as σ ∈ {2, 4, 8, 16, 32, 64, 128}. The best 3 histogram metrics from the previous
test (BD, χ2, and HI). were run on this data. The color space selected for this
experiment was rg as used by [5].

The degradation in accuracy and average percentile ranking are shown graph-
ically in Figs. 4(a) and (b) respectively. NECRIS shows superior noise immunity
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over the best histogram methods. This is especially noticeable in the accuracy
metric. Fig. 4(b) shows that the accuracy of NECRIS outperforms all histogram
methods for noise levels σ > 8, and is accurate to 10% at σ=128, where the best
histogram result is only 3%. The average percentile ranking of NECRIS is gener-
ally higher for each level of noise, with the exception of σ=16. Most importantly,
the performance of NECRIS degrades more gracefully than all tested histogram
methods as the noise level increases. At the extreme(σ=128), NECRIS shows
an improvement of > 10% which is favorable compared to the Kernel Density
Estimation method for a similar experiment in the same rg color space [5].

5 Conclusions

The proposed NECRIS method shows comparable results with the best his-
togram metrics, in some cases outperforming all histogram methods. NECRIS
also shows a natural noise immunity that is not present in histogram techniques.
Without any special consideration, NECRIS shows a strong immunity under
simulated conditions and is comparable to the method proposed by Gevers and
Stokman [5]. NECRIS also does not suffer from the increase in complexity that
hinders the Kernel Density Estimation technique.

The time complexity of the NECRIS method is O(n), as are most of the
Histogram metrics. The preprocessing stage of NECRIS is O(n logn), although
this can be done offline for the database images. NECRIS also tends to be more
space efficient than histogramming, requiring only a small number of lists of
ranks, one for each embedding. By comparison, histograms are K-dimensional
data structures for K color channels, and therefore can be large. It is a common
technique in histogramming to reduce the color resolution along each channel in
order to save space, albeit possibly at the cost of reducing accuracy.

In future work, NECRIS can be improved by removing the random compo-
nent of the Moses Ranklike test. Further work will evaluate how NECRIS can
be applied to color constancy techniques [3].
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Abstract. A novel noniterative extrapolation method based on Tay-
lor series approximation is proposed for color filter array demosaicing.
New extrapolation equations are derived for the estimation of the green
plane with higher accuracy by including higher order terms of the Tay-
lor series. Our proposed method avoids interpolation across an edge and
thus reduces errors in the demosaiced image. It has been shown that our
method outperforms other techniques in image quality measures, espe-
cially around edges.

1 Introduction

Color filter array demosaicing refers to determining the missing color values at
each pixel when a single-sensor digital camera is used for color image capture.
The most common array used is the Bayer [1] color filter array as seen in Fig.
2, where the green color is sampled at twice the rate of the red and blue values.
This is due to the peak sensitivity of the human visual system which lies in the
green spectrum [1].

In this paper, we introduce a noniterative extrapolation method to recover
missing color pixels. It differs from others in that we extrapolate rather than
interpolate to recover missing color information. Our method is divided into two
stages. In the first stage, a higher order extrapolation of the green plane is carried
out to approximate four possible estimates with high accuracies. New equations
have been derived to produce these highly accurate estimates.

The second stage serves to select the best estimate out of the possible four
choices, using a classifier instead of a linear combiner. Other demosaicing meth-
ods [6],[8] determine the missing color values by combining weighted estimates
from corresponding directions. Inaccurate estimation of weightings will produce
artifacts which manifest themselves in the demosaiced output.

The remainder of the paper is organized as follows. Section 2 details the
extrapolation method. Section 3 presents the experimental results, and compares
this method with other existing methods, with the conclusion in Section 4.
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2 Demosaicing Using Taylor Series Extrapolation

In the first stage of our proposed method, we approximate the green plane using
Taylor series, by including higher-order terms. Similar techniques are used in the
red/blue plane extrapolation.

2.1 Stage 1 - Green Plane Extrapolation

The green plane is extrapolated first as it contains the most samples, twice as
many as the red or blue samples. The approximation is carried out using Taylor
series [7] as follows:

g(x) =
∞∑

m=0

g(m)(a)
m!

(x− a)m . (1)

Suppose we want to estimate the green value at position x (Gx) at which only
the blue value (Bx) is known. Let’s consider the one-dimensional case with an
edge boundary on the right-hand side of Bx, as shown in Fig. 1. To meet the
requirements for the assumptions used in the evaluation of the Taylor series
coefficients, we extrapolate the green value pixel at position x along the edge
from pixels on the left-hand side of it.

Fig. 1. 1D Bayer Pattern and Edge Boundary on the RHS of Bx

g(x) = g(x− 1) + g′(x− 1) +
1
2!

g′′(x− 1) + ...+
1
n!

g(n)(x − 1) + . . . , (2)

where g(x) is the value of a green pixel at location x. For first order approxima-
tions, we assume that:

g(n)(x− 1) = 0 for n ≥ 2 , (3)

and using the central difference approximation for first order differentiation:

g′(x) =
g(x)− g(x− 2)

2
=

Gx −Gx−2

2
, (4)

where Gx and Gx−2 are the missing green pixel values at position x and x-2 re-
spectively. Using forward and backward difference approximations may produce
different results.

Based on the assumption that the green and red/blue pixel values are well
correlated with constant offsets [4] along an edge:

Gx −Bx = Gx−1 −Bx−1 = Gx−2 −Bx−2 . (5)
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From (5):
Gx −Gx−2 = Bx −Bx−2 . (6)

Substituting (6) into (4):

g′(x− 1) =
Bx −Bx−2

2
, (7)

Hence by (2) and (3),

Ĝx = Gx−1 +
1
2
(Bx −Bx−2) , (8)

where Ĝx is the estimated green value at position x. By using Taylor series, we
have derived the same equation (8) as given by Lu and Tan [8].

We can improve the accuracy of the green plane approximation by including
the next higher order term, i.e. g′′(x− 1) , into the equation. For second order
approximation, we assume the third and higher order derivatives are negligible:

g(n)(x− 1) = 0 for n ≥ 3 , (9)

then (2) can be approximated as:

Ĝx = Gx−1 + g′(x− 1) +
1
2
g′′(x− 1) . (10)

By applying central difference approximation for g′′(x− 1) , we obtain

g′′(x− 1) =
g′(x) − g′(x− 2)

2
. (11)

Hence (10) can be modified to:

Ĝx = Gx−1 + g′(x− 1) +
1
4
(g′(x) − g′(x− 2)) . (12)

By (9), this implies that

g(3)(x− 1) = g′′(x− 1
2
)− g′′(x − 3

2
) = 0 . (13)

Therefore,
g′(x) = 2g′(x − 1)− g′(x− 2) . (14)

Substituting (14) into (12)

Ĝx = Gx−1 +
3
2
g′(x− 1)− 1

2
g′(x− 2) . (15)

Applying the central difference approximation,

g′(x− 1) =
g(x) − g(x− 2)

2
=

Gx −Gx−2

2
, (16)



706 J.S.J. Li and S. Randhawa

and

g′(x− 2) =
g(x− 1)− g(x− 3)

2
=

Gx−1 −Gx−3

2
. (17)

Substituting (16) and (17) into (12) gives:

Ĝx = Gx−1 +
3
4
(Gx −Gx−2)− 1

4
(Gx−1 −Gx−3) . (18)

Hence using (6), (18) becomes:

Ĝx = Gx−1 +
3
4
(Bx −Bx−2)− 1

4
(Gx−1 −Gx−3) . (19)

Now Ĝx can be determined by all known color values in the Bayer pattern. For a
2D image, we can obtain the extrapolated values for the other three directions,
top, bottom and right directions similarly.

Fig. 2. An 8x8 window of the Bayer pattern

Fig. 2 shows an 8 x 8 window of a Bayer array neighbourhood, where the
index (i,j) of each color is given by the row and column location. Consider the
case where we want to determine the missing green value G45 . It can be selected
from a list of

{
ĜT

45, Ĝ
L
45, Ĝ

R
45, Ĝ

B
45

}
where T, L, R and B indicate the top, left,

right and bottom directions from which the estimates are extrapolated w.r.t.
(19).

ĜT
45 = G35 +

3
4
(B45 −B25)− 1

4
(G35 −G15) ,

ĜL
45 = G44 +

3
4
(B45 −B43)− 1

4
(G44 −G42) ,
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ĜR
45 = G46 +

3
4
(B45 −B47)− 1

4
(G46 −G48) ,

ĜB
45 = G55 +

3
4
(B45 −B65)− 1

4
(G55 −G75) . (20)

(19) and (20) are new extrapolation equations derived for better approximation
of the green plane. By including the second-order terms, a higher accuracy is
introduced into the estimates of the missing values in the green plane.

Regardless of the orientation of an edge, at least one of the four estimates
will be an accurate estimate of the missing green color. To illustrate the above
mentioned concept, we use the pixels in the original image to pick one of the four
estimates based on the minimum mean square error criterion. Fig. 3(a) and (b)
show the original and the ideal selector output. These two images are visually
indistinguishable from each other and this indicates clearly that the selected
output is a very good approximation of the original. This confirms the presence
of a highly accurate estimate within the four extrapolated choices.

In most cases, higher order approximation is required for the green plane
only, and first order approximation is sufficient for the red and blue planes. (21)
and (22) are the equations for determining the red pixel value at a blue and
green position respectively. Equations are similar for the blue plane.

R̂TL
45 = R34 + (Ĝ45 − Ĝ34) ,

R̂TR
45 = R36 + (Ĝ45 − Ĝ36) ,

R̂BL
45 = R54 + (Ĝ45 − Ĝ54) ,

R̂BR
45 = R56 + (Ĝ45 − Ĝ56) . (21)

R̂T
44 = R34 + (G44 − Ĝ34) ,

R̂L
44 = R43 + (G44 − Ĝ43) ,

R̂R
44 = R45 + (G44 − Ĝ45) ,

R̂B
44 = R54 + (G44 − Ĝ54) . (22)

2.2 Stage 2 - Classifier

As one of the four estimates gives an accurate value, a classifier instead of a
linear combiner is needed to select one of the four directed samples. Since a
linear combiner, as used in other methods [6],[8], will blur an edge, our classifier
will preserve sharp edges better.

In our classification process, an orientation matrix for every pixel is produced
using the CFA image input. This is used to indicate the possible orientation of
an edge for that pixel.

At a red/blue pixel, e.g. B45, we define the vertical gradient and horizontal
gradient as:

V = |G35 −G55| , H = |G44 −G46| . (23)
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(a) (b)

Fig. 3. The Original Lighthouse image (a) and the Ideal Selector output (b)

At a green pixel, e.g. G44, the vertical and horizontal gradients are defined
as:

V = |R34 −R54| , H = |B43 −B45| . (24)

A logical function is used to produce an orientation matrix for the whole
color filter array image:

f(V < H) =
{

1, if V < H
0, otherwise

. (25)

A ’1’ in the orientation matrix indicates that a possible vertical edge exists
at that position.

The orientation matrix is used to indicate the orientation of edges in images,
and the underlying assumption made is that the neighborhood orientation must
be aligned in a direction along an edge. False indication of edges due to noise will
be removed by a smoothing filter. Experimental results indicate that a simple
standard 2D median filter will suffice for the application.

In order to avoid blurring an edge, an odd window width for the median
filtering is preferred. The orientation matrix is used to reject one sample before
we apply median filtering. If it is a ’1’ in the orientation matrix, a possible vertical
edge exists and hence one of the two estimates in the horizontal direction will
be rejected. Similarly for a ’0’ in the orientation matrix, we reject an estimate
in the vertical direction. The one, out of the two, to be rejected has the greatest
difference in magnitude from the median of the four extrapolated estimates.

3 Experimental Results

The picket-fence region of the lighthouse image was used to assess the edge-
preserving performance of our method and compare it with other methods. This
is a challenging area for many demosaicing methods because of the presence of
many edges close together. Table 1 lists the image quality performance measures,
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Table 1. Image Quality Performance Measures - MSE, MAE and NCD. Measures with
red, green and blue color planes listed as rows.

Method MSE MAE NCD
47.41 29.50

Bilinear 23.81 14.20 0.2337
45.69 28.26
31.97 19.92

Freeman [3] 13.98 6.60 0.1813
32.07 20.14
30.00 19.16

Kimmel [6] 23.81 14.16 0.1959
33.70 21.47
22.00 12.15

Hamilton [5] 10.80 3.45 0.0846
20.52 11.05
12.54 6.74

Lu&Tan [8] 8.36 3.95 0.0576
11.96 6.19
12.85 6.82

Gunturk [4] 7.24 2.72 0.0487
11.09 5.45
12.29 7.74

Plataniotis [10] 8.77 4.31 0.0435
11.79 7.28
6.17 2.92

Proposed Method 4.66 1.75 0.0123
5.39 2.38
2.20 1.05

Ideal Selector 2.89 1.18 0.0048
1.79 0.96

mean square error (MSE), mean absolute error (MAE) and normalized color
difference (NCD)[9], of the various demosaicing methods [3],[6],[5],[8],[4],[10].
Fig. 4 shows that our method is visually superior to other demosaicing methods.
It is clear that our proposed method outperforms all other methods in this region.
For the ideal selector as mentioned in 2.1, it gives us an error value which is an
order of magnitude below the other methods. This indicates that the higher
order approximation method gives a high accuracy output.

4 Conclusion

A new demosaicing method is presented that preserves edge information by
extrapolating from the same side of an edge. New equations are proposed for
the estimation of the green plane with higher accuracy by including higher order
terms based on Taylor series approximation. The underlying idea behind the
proposed method is that the desired output for a missing color pixel can be found
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Picket fence region of (a) the original Lighthouse image and the demosaiced
output images using (b) Bilinear interpolation, (c) Freeman, (d) Kimmel, (e) Hamilton,
(f) Lu&Tan, (g) Gunturk, (h) Plataniotis and (i) our proposed method

in one of four estimates extrapolated in four different directions. A classifier is
used to select the appropriate estimate. The results from this method are superior
both visually and quantitatively to those from other methods.
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Abstract. A camera is an effective tool in capturing images for colori-
metric use. However, the RGB signals generated by different cameras
are not equal for the same scene. Therefore, cameras are characterized
based on a CIE standard colorimetric observer. This paper proposes a
new method for obtaining camera transfer matrices under different white
balances using a 3×3 camera transfer matrix under a specific white bal-
ance point. As such, the proposed methods enables a camera transfer
matrix under any other white balance to be obtained using the colori-
metric coordinates for the phosphor primaries derived from a 3×3 linear
transfer matrix under a certain white balance point. Experimental results
confirmed that the proposed method produced a 3×3 linear transfer ma-
trix under any other white balance with a reasonable degree of accuracy
compared with the transfer matrix obtained by the conventional method.

1 Introduction

A color camera is a powerful acquisition tool in image processing and color
communication. However, the RGB signals generated by a camera are gener-
ally device-dependent, i.e., different cameras produce different RGB responses
to the tristmulus XYZ for the same scene. Furthermore, such RGB signals are
not colorimetric, as they do not directly correspond to device-independent tris-
timulus values based on CIE color-matching functions (CMFs). The reason for
this is that the spectral sensitivity of the color sensors used in cameras does
not correspond to device-independent tristimulus values based on CIE CMFs
[1]. Plus, the spectral sensitivity of the sensors used in different cameras varies
significantly from one another. Therefore, a transform that defines a mapping
between camera RGB signals and a device-independent color space, such as XYZ
or CIELAB, is essential for high-fidelity color reproduction.

The transform derivation process is known as camera characterization [2].
Colorimetric characterization methods can be divided into two general cate-
gories: spectral sensitivity based and color target based. With spectral
sensitivity-based characterization [3], the camera spectral sensitivity needs to
be measured using specialized apparatus, such as a monochromator and radi-
ance meter. Meanwhile, color target-based characterization [4]-[8] only requires
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a known target, making it more practical. Plus, polynomial regression is usu-
ally adopted for model derivation. Yet, a camera has a different colorimetric
characterization according to the white balance established by the photograph-
ing conditions. Therefore, tedious experiments are required to obtain a camera
transfer matrix under various white balance points for the same camera [2].

Accordingly, the current paper proposes a new method for obtaining camera
characterization under different white balances using a camera transfer matrix
under a specific white balance point. Experimental results confirm that the pro-
posed method can produce a 3×3 linear transfer matrix under any other white
balance with a reasonable degree of accuracy when compared with the transfer
matrix obtained by the conventional method.

2 Conventional Colorimetric Characterization of Digital
Camera

Colorimetric characterization methods can be divided into two general cate-
gories: (a) spectral sensitivity based and (b) color target based. With spectral
sensitivity-based characterization, the camera spectral sensitivity needs to be
measured using specialized apparatus, such as a monochromator and radiance
meter. A relationship needs to be found between the camera spectral sensitivity
and CIE CMFs. This relationship can then be used to transform the camera
RGB values into XYZ values. As such, the basic concept of color target-based
characterization is to use a reference target that contains a certain number of
color samples. These color samples are then imaged by a camera and measured
by a spectrophotometer to obtain the RGB values and their corresponding XYZ
values. Methods such as three-dimensional lookup tables with interpolation and
extrapolation [4]-[6], least squares polynomial modeling [7], and neural networks
[8] are typically used to derive the transformation between the camera RGB val-
ues and the XYZ values. However, color target-based characterization is more
widely used, as it only requires a known target, which makes it more practical.
Plus, polynomial regression is adopted for model derivation.

Device characterization by polynomial regression with least squares fitting
has already been adequately explained by many other researchers [2], [9], [10]. In
particular, Hong et al. [2] studied camera characterization using variable polyno-
mial regression with least squares fitting and found that camera characterization
accuracy is reliable when the number of training samples is over 60.

However, as previously mentioned, a camera will have a different colorimet-
ric camera characterization according to the white balance established by the
photographing conditions. Therefore, tedious experiments are needed to obtain
a camera transfer matrix using over 60 training samples under various white bal-
ance points for the same camera. Also, the training samples must be uniformly
spread within the camera’s color gamut. Therefore, a simple and soft method is
required for the characterization of a commercial camera. As such, this paper
proposes a new method for obtaining camera characterization matrices under
different white balances using a camera characterization matrix under a specific
white balance point.
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3 Proposed Colorimetric Characterization of Digital
Camera

3.1 Colorimetric Characterization of Ideal Color Camera

The intension of an ideal color camera is to provide RGB channel voltages suit-
able for a display with specified primary chromaticity coordinates and a speci-
fied reference white. As such, the RGB channel voltages required for the camera
to produce perfect color fidelity with a specified set of display primaries and
normalizing white illuminant can be calculated for a linear system as follows
[11], [12]: [

R G B
]T = K−1 · x−1

p · [X Y Z
]T (1)

K =

⎡⎣KR 0 0
0 KG 0
0 0 KB

⎤⎦ , xp =

⎡⎣xR xG xB

yR yG yB

zR zG zB

⎤⎦ (2)

[
KR KG KB

]T =
1
yW

· x−1
p · [xW yW zW

]T (3)

xp represents the phosphor primaries chromaticity coordinate matrix, and [xW

yW zW ]T represents the reference white illuminant chromaticity coordinate ma-
trix. Matrix K can be determined by requiring that the output be the desired
normalizing white illuminant for equal channel voltages.

3.2 Proposed Adaptive Colorimetric Characterization of Digital
Camera with the White Balance

This paper proposes a new method for obtaining a camera transfer matrix under
different white balances using a 3×3 camera transfer matrix under a specific
white balance point. A flowchart of the proposed method is shown in Fig. 1.

The camera characterization is determined as the product of the phosphor
primaries chromaticity coordinate matrix and tristimulus constant matrix, as
shown in Eq. (1). Here, the tristimulus constant matrix K is changed according
to a change in the camera white balance point. Therefore, once the phosphor
primaries chromaticity and reference white point of the camera are estimated,
a camera characterization matrix can be easily obtained under any other white
balance.

Thus, to obtain a camera transfer matrix under any other white balance ac-
cording to the proposed method, the 3×3 linear transfer matrix under a specific
white balance point is assumed to be equal to Eq. (1). Thereafter, the pro-
posed method obtains the phosphor primaries chromaticity and reference white
point of the camera as follows: First, R=1 and G=B=0 are substituted in Eq.
(1) to estimate the R phosphor primary chromaticity coordinates. The G and
B phosphor primaries chromaticity coordinates are also estimated in the same
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way. Second, R=G=B=1 is substituted to estimate the reference white chro-
maticity coordinates. Here, the value 1 means the normalized maximum RGB
camera output. Third, the tristimulus constant matrix K can be calculated using
the colorimetric coordinates estimated for the phosphor primaries and reference
white point.

Therefore, a camera transfer matrix under any other white balance can be
obtained using the estimated phosphor primaries chromaticity coordinate matrix
and tristimulus constant matrix.

X = xRKR, Y = yRKR, Z = zRKR (4)

T = X + Y + Z = xRKRc + yRKRc + zRKRc

= (xR + yR + zR)KRc = KRc (5)

x =
X

T
= xR, y =

Y

T
= yR, z =

Z

T
= zR (6)

Transfer characterization matrix of camera
under a specific white balance point

Estimation of phosphor primaries and
reference white points

Calculation of tristimlus constant matrix K
under any other white balance point

Transfer characterization matrix of camera
under any other white balance point

Fig. 1. Flowchart of the proposed colorimetric characterization according to white
balance

4 Experiments and Results

To assess the performance of the proposed colorimetric characterization of cam-
eras, experiments were conducted using 4 kinds of reference white and a Sony
DVCAM DSR200. The test color samples consisted of GretagMacbeth Col-
orChecker’s colors and 59 free colors that covered a large color gamut in XYZ
color space. The test color samples were displayed on a Sony G500 monitor and
the camera RGB values for each test color sample calculated by averaging the
RGB values of 80% of the pixels in the sample, excluding the boundary pixels.
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Table 1. Camera transfer characterization matrices resulting from polynomial regres-
sion with least squares fitting under each reference white

Reference White MRGB MGIM

D65

0.6135      0.2584      0.1748
0.3131      0.6915      0.0764
0.0306      0.1188      1.0330

0.5750      0.2240      0.1663
0.2837      0.6589      0.0765
0.0088      0.1099      1.0046

0.7662      0.2550      0.1801
0.3960      0.6709      0.0774
0.0394      0.1156      1.0600

0.7633      0.2284      0.1630
0.3915      0.6594      0.0648
0.0452      0.1144      1.0345

1.4392      0.2946      0.1032
0.7361      0.7645      0.0469
0.0825      0.1110      0.6296

1.2577      0.2403      0.1578
0.6220      0.7181      0.0988
0.0283      0.0861      0.6483

1.1718      0.2580      0.0652
0.5996      0.6938      0.0301
0.0592      0.0671      0.3832

5800 K

3200 K

A
1.0148      0.2189      0.0925
0.4912      0.6663      0.0565
0.0120      0.0596      0.3898

Table 2. Chromaticity coordinates for phosphor primaries estimated using proposed
method

Estimated Phosphor
Primaries

MRGB MGIM

x

y

z

R G B R G B

0.6410

0.3271

0.0320

0.2418

0.6471

0.1111

0.1361

0.0595

0.8045

0.6628

0.3271

0.0101

0.2256

0.6637

0.1107

0.1333

0.0613

0.8205

Table 3. Estimated transfer characterization matrices under each reference white based
on chromaticity coordinates for phosphor primaries obtained when using MRGB and
MGIM

Reference White
By Phosphor Primaries

Obtained by MRGB

By Phosphor Primaries
Obtained by MGIM

0.8014      0.2706      0.1918
0.4089      0.7241      0.0838
0.0400      0.1244      1.1337

0.6727      0.2022      0.1593
0.3319      0.5948      0.0733
0.0103      0.0993      0.9619

1.2587      0.2728      0.0940
0.6423      0.7301      0.0411
0.0628      0.1254      0.5559

0.8948      0.1788      0.0709
0.4415      0.5259      0.0326
0.0137      0.0878      0.4280

1.0122      0.2463      0.0438
0.5165      0.6592      0.0191
0.0505      0.1132      0.2587

5800 K

3200 K

A
1.0264      0.2264      0.0489
0.5065      0.6660      0.0225
0.0157      0.1111      0.2955
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Table 4. Chromaticity errors for tristimulus values obtained when using proposed and
conventional method

Reference
White

5800 K

3200 K

A

Estimated
Transfer Matrix

MRGB

MRGB_5800 K

MGIM

MGIM_5800 K

xm - xc

0.0076

ym - yc

0.0043 0.0061 6.84

MRGB

MRGB_5800 K

MGIM

MGIM_5800 K

0.0059 0.0043 0.0066 6.74
0.0066 0.0053 0.0072 5.22
0.0096 0.0050 0.0084 10.20
0.0098 0.0100 0.0113 1.050
0.0082 0.0075 0.0091 7.74
0.0091 0.0063 0.0166 7.27
0.0137 0.0087 0.0136 9.07
0.0082 0.0104 0.0105 11.30
0.0152 0.0124 0.0068 18.80
0.0079 0.0059 0.0149 7.33
0.0115 0.0094 0.0093 14.20

MRGB

MRGB_5800 K

MGIM

MGIM_5800 K

  u'v'   E*
uv
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Fig. 2. The xy coordinates (xm, ym)measured by the xy coordinates (xc, yc) calculated
using estimated transfer matrix. (a) A and (b) 5800 K.

First, 2 kinds of 3×3 transfer matrix were obtained according to a conven-
tional camera characterization method using variable polynomial regression with
least squares fitting, where MRGB was generated by least squares fitting the cam-
era RGB values to XYZ values using red, green, and blue samples, while MGIM

was generated by least squares fitting the camera RGB values to XYZ values
using all test samples. The camera transfer matrixes MRGB and MGIM under
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each reference white are shown in Table 1. Although the two transfer matrixes
were unequal, they did show a similar tendency.

Second, the chromaticity coordinates for the phosphor primaries were esti-
mated using the camera transfer matrix under white balance point D65. The es-
timated chromaticity coordinates for the phosphor primaries are shown Table 2.

Third, camera transfer matrixes under any other white balance were calcu-
lated using the estimated chromaticity coordinates for the phosphor primaries
and each reference white point. Table 3 shows the estimated transfer matrixes
under each reference white when using the proposed method.

Finally, the performance of the camera transfer matrix was compared when
using the proposed method and conventional method under each reference white.
Table 4 shows the chromaticity errors of the tristimulus obtained when using the
proposed method and conventional method. Here, MRGB 5800K , MRGB 3200K ,
and MRGB A mean the estimated transfer matrix when using the chromaticity
coordinates for the phosphor primaries obtained by MRGB. Also, MGIM 5800K ,
MGIM 3200K , and MGIM A mean the estimated transfer matrix when using
the chromaticity coordinates for the phosphor primaries obtained by MGIM . In
Table 4, the chromaticity errors (Exy and (E∗

uv as regards the average of the
estimated transfer matrix when using the proposed method were similar to those
when using the conventional method under each reference white.

In the experimental results, we confirmed that the maximum chromaticity
error between the proposed method and the conventional method is 0.017 in a
u′v′ chromaticity coordinates. It is known that two separated color patches can
usually be distinguished with a (u′v′ ≥ 0.04 [13], [14]. Therefore, the prediction
errors of the proposed method are excellent because this errors are smaller than
the threshold value that two separated color patches can be distinguished. It was
also confirmed that MRGB was more efficient than MGIM as the transfer matrix
to obtain the chromaticity coordinates for the phosphor primaries and reference
white. The xy coordinates measured by a spectroradiometer MINOLTA CS1000
were compared with the xy coordinates calculated by the estimated transfer
matrix. Fig. 2 shows the measured and calculated xy coordinates for the test
color samples, where the performance of the 3×3 transfer matrix estimated using
the proposed method was better than that of the conventional method.

5 Conclusions

This paper proposed a new method for obtaining camera characterization matri-
ces under different white balances based on a camera characterization matrix un-
der a specific white balance point. First, the transfer matrix is obtained through
a conventional method using variable polynomial regression with least squares
fitting under white balance point D65. Second, the chromaticity coordinates for
the phosphor primaries are then estimated from the camera transfer matrix.
By calculating the change in the tristimulus constant matrix K according to a
change in the camera white balance point, a camera transfer matrix under any
other white balance can be obtained. Experimental results confirmed that the
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proposed method enabled a 3×3 linear transfer matrix under any other white
balance to be produced with a reasonable degree of accuracy when compared
with the matrices resulting from the conventional method. Accordingly, the pro-
posed method is a simple and soft solution for obtaining commercial camera
characterization without the need for tedious experiments using over 60 training
samples under various white balance points for the same camera.
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Abstract. Color is an important cue both in machine vision and im-
age processing applications, despite its dependence upon illumination
changes. We propose a color constancy algorithm that estimates both the
set and the likelihood of feasible color mappings in respect to their fre-
quency and effectiveness. The best among this set is selected to rendered
back image colors as seen under a canonical light. Experiments were done
to evaluate its performance compared to Finlayson’s 2D gamut–mapping
algorithm, outperforming it. Our approach is a helpful alternative wher-
ever illumination is poorly known since it employs only image data.

Keywords: Color, color mappings, color constancy, color histograms.

1 Introduction

In a number of applications from machine vision to multimedia or even mobile
robotics, it is important that the recorded colors remain constant under changes
in the scene illumination. Hence, a preliminary step when using color must be to
remove the distracting effects of such a variation. This problem is usually referred
to as color constancy, i.e., the stability of surface color appearance under varying
illumination. Part of the difficulty is its entanglement with other confounding
phenomena such as object shape, viewing and illumination geometry, besides
changes in the nature of light and the reflectance properties of surfaces.

Generally, color constancy (CC) is understood as the recovery of descriptors
for the surfaces in a scene as they would be seen under a canonical illuminant.
This is similar to recover an estimate of the illumination color from an image
under an unknown light, since it is relatively straightforward to map image colors
back to illuminant independent descriptors [1]. Therefore, finding a mapping
between colors or the color of the scene illuminant are equivalent problems.

Some algorithms followed such a path, specially those related to the gamut–
mapping approach [2,3,4,5]. Recently, the trend has slightly changed to make a
guess on the illumination, as in color–by–correlation [1] or color–voting [6], rather
than attempting to recover only one estimate. A measure of the likelihood that
each of a set of feasible candidates was the scene illuminant is set out instead,
which is afterwards used to render the image back into the canonical illuminant.
� Sup. by the Spanish Min. of Edu. & Sci. under proj. TIC2003-09291 & DPI2004-5414.
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Some difficulties arise among the approaches above. The main one for us is
the dependence on the fact that all possible colors under a canonic illuminant be
available a priori. Besides, while gamut–mapping employs a selection strategy
blind to any information about the likelihood of a particular mapping, color–by–
correlation can only chose an illumination out of a discrete set of lights known
a priori. Real–world applications usually do not fit such requirements.

Hence, in this paper we propose a new color constancy algorithm that can
be used in tasks with little knowledge on the scene illumination. Our algorithm
computes the histogram of the feasible maps and recovers one to changes image
colors as if seen under a canonic light only using a canonic image picturing a
similar scene. The performance of this algorithm is compared to that of the
Finlayson’s 2D gamut–mapping, outperforming it and obtaining similar figures
to those of the color–by–correlation approach.

2 The Color Constancy Algorithm

The goal of this algorithm is to recover an image as seen under some canonic
illumination. This algorithm gives to each feasible color mapping a particular
likelihood related to its frequency and performance. The frequency is estimated
from the histogram of feasible mappings, while the performance evaluates how
close colors are rendered to those in the canonic set. The combined measure
is used afterwards to select the best color mapping. Hereafter, we describe the
basis of our algorithm along with its elements, namely, likelihood function, color
coordinates, color change model, and mapping estimation and selection.

Let Ic and Ia be the canonic and the actual images, respectively, picturing
similar scenes under two different lights. The algorithm only employs image
raw data and no segmentation is needed. Our aim is to find the likeliest color
transformation T mapping colors of image Ia as close to those of Ic as possible.
We note as I ⊂ Rd a set of colors, where d is the color space dimension. Its origin
can be either a specified color gamut or an image. The color histogram of I is
noted as HI . If a mapping T ∈<T> is applied to each color in I, a transformed
set T(I) is obtained. < T> is the set of feasible color mappings. Analogously,
T(HI) represents the transformation of the histogram HI by the map T.

In general, given two color sets, Ia and Ic, a model of color change consists
in a mapping T ∈<T> so that

T: Ia −→ Ic

s �−→ T(s) = q
(1)

where s ∈ S and q ∈ Q are corresponding colors. The set of feasible maps is
<T>= {T = Δ(S,Q) | ∀S ⊂ Ia and ∀Q ⊂ Ic} and Δ is a mapping estimation
scheme computing a map T out of two corresponding sets S and Q.

2.1 Likelihood Function

The color constancy algorithm must select the likeliest transformation T̂ from
the set <T> accordingly to a likelihood function LΔ(T | Ia, Ic) as
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T̂ = argmax
T ∈<T>

{LΔ (T | Ia, Ic)} (2)

Any likelihood LΔ is related to a probability function Pr as LΔ(T | Ia, Ic) =
log(Pr(T | Ia, Ic)), noting that the map maximizing LΔ(T | Ia, Ic) also max-
imizes Pr(T | Ia, Ic)), and vice versa. Hence, we must first get a value for the
probability of any mapping T. As an estimate of Pr(T | Ia, Ic) we use the his-
togram of the set of feasible mappings, noted as H<T>. In order to compute
frequencies we employ colors in the sets Ia and Ic, as well as the mapping esti-
mator Δ. The point is that the likelier a mapping is, the more frequent it should
be in the histogram H<T>, and the other way round.

Nonetheless, a particular mapping T can be produced from different groups of
colors. Thus, it is useful to define the set of all pairs (S,Q) giving rise to a certain
map T from the estimator Δ, i.e., Δ−1(T) = {(S,Q) ∈ 2Ia×2Ic | Δ(S,Q) = T},
where 2I stands for the set of all subsets of I. Therefore, the set Δ−1(T) is
equivalent to T and can be taken instead of it since Δ−1(T) = Δ−1(T′) ⇔ T =
T′. Hence, it is true that Pr(T | Ia, Ic) = Pr(Δ−1(T) | Ia, Ic).

In practice, Δ−1(T) can be thought as a finite disjoint union of singletons
{(S,Q)}, being each set a combination of colors from sets Ia and Ic, respectively.
Besides, to compute Pr((S,Q) | Ia, Ic) we must only remind that each {(S,Q)}
is formed by two independent sets, namely, S ⊂ Ia and Q ⊂ Ic. Therefore,

Pr((S,Q) | Ia, Ic) = Pr(S | Ia) · Pr(Q | Ic) (3)

Then, we get that

Pr(T | Ia, Ic)) =
∑

∀(S,Q)∈Δ−1(T)

Pr(S | Ia) · Pr(Q | Ic) (4)

that is, frequency of a mapping T in the histogram of feasible mappings H<T>

is computed adding the product of frequencies corresponding to all the pairs S
and Q giving rise to the mapping T by means of the mapping estimator Δ.

Pr(S | Ia) and Pr(Q | Ic) are approximated by the frequency of the corre-
sponding bins in histograms HIa and HIc . In case S = {s}, it is straightforward
that Pr(S | I) ≈ HI(s). Hence, in general, if S = {si}i=1,...,n, the probability of
the set under the hypothesis of independence of colors is

Pr(S | I) ≈
n∏

i=1

HI(si) (5)

On the other hand, usually some spurious peaks appear in H<T>, which
might mislead the algorithm. To improve the robustness of Eq. (4), a measure
of similarity between the transformed set T(Ia) and the canonic set Ic is taken
into account, evaluating the efficiency of a particular mapping T. We use the
Swain & Ballard intersection–measure between histograms defined in [7] as

∩(H1,H2) =
∑

k

min{H1(k),H2(k)} ∈ [0, 1] (6)
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The advantages of such a measure are that it is very fast to compute if
compared to other matching functions. Besides, if the histograms are sparse and
colors equally probable, it is a robust way of comparing images [7]. This step
helps in practice to eliminate outlier mappings among candidates.

As a consequence, we finally define our likelihood function by joining the
probability of a mapping and its performance in a single expression as follows

LΔ(T | Ia, Ic) = log(∩(T(HIa),HIc)) · Pr(T | Ia, Ic)) , ∀T ∈<T> (7)

where T(HIa) is the transformation of HIa by a mapping T and Pr(T | Ia, Ic))
is the frequency of T in the histogram H<T> computed with Eq. (4).

2.2 Color Coordinates

Colors can be represented as vectors in Rd. In our case, to alleviate problems
with specularities or shape and to reduce at the same time the computational
burden, we use the perspective color coordinates (r, g) = (R/B, G/B) proposed
by Finlayson in [3]. Finlayson and Hordley also proved in [8] for these coordinates
that the set of feasible mappings computed in a 3D space and projected into a
2D space afterward is the same as the one directly computed in a 2D space.

2.3 Color Change Model

It is been stated that any color change could be described using a homogeneous
linear relation [2]. Thus, the mapping T is specified in coordinates as follows

T: Ia −→ Ic

s �−→ T(s) = Tst = qt (8)

A reasonable tradeoff between simplicity and performance is attained employ-
ing a diagonal model [2,1,3]. This model assumes color sensors are completely
uncorrelated and any change in the light falling into them equates to indepen-
dently scaling each channel, that is, T = diag(t1, . . . , td). Equivalently, T can be
expressed as a vector t = (t1, . . . , td) ∈ Rd, so that, T = t Id. This is the model
used in this paper, despite the color constancy algorithm also works with any
other more complete model, involving more computational time as a result.

2.4 Mapping Estimation

Formally, the mapping estimator Δ is a function computing a mapping T ∈<T>
from two sets S = {si}i=1,...,n ⊂ Ia and Q = {qi}i=1,...,n ⊂ Ic, i.e.,

Δ : 2Ia × 2Ic −→ <T>
(S,Q) �−→ Δ(S,Q) = T (9)

A mapping T can be expressed as a matrix T so that q = T(s) is equivalent
to Tst = qt. In general, it is not possible to find a matrix T out of just a
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pair of corresponding vectors s and q, since we need, at least, as many linearly
independent pairs as the space dimension d. Taking advantage of the nature of
T and two sets of n ≥ d one–to–one corresponding vectors, namely, {si}i=1,...,n

and {qi}i=1,...,n, it is true that T (st
1 | · · · | st

n) = (qt
1 | · · · | qt

n).
If S = (st

1 | · · · | st
n) ∈ Md×n(R) and Q = (qt

1 | · · · | qt
n) ∈ Md×n(R) are

introduced by joining vectors columnwise, finding a matrix T consists in solving
the linear system Q = TS, where T is the unknown. The usual method to solve
this system is by a SVD to compute pseudo–inverse S+. Therefore, the version
of Eq. (9) in coordinates is

Δ : Md×n(R)×Md×n(R) −→Md(R)
(S,Q) �−→ Δ(S,Q) = QS+ = T (10)

In case the diagonal model is used, the above function is greatly simplified

Δ : Rd × Rd −→ Rd

(s,q) �−→ Δ(s,q) = ( q1
s1
, . . . , qd

sd
)t = t (11)

The method for carrying out the mapping computations between two color
sets consists in first computing the histograms of both sets and applying the
estimator Δ to every possible pair of color sets. Colors in S need not to be
really in a correspondence with those in Q, since all possible combinations are
checked. Nevertheless, in a real case some heuristic are necessary to speed up
the process. In our case, only the colors with nonzero frequency are considered,
which reduces the amount of computations to less than O

(
p2
)
, where p� n is

the number of histogram bins and n the number of colors in a set.

2.5 Mapping Selection

In addition to Eq. (2), other heuristics can be useful to improve the results

Max: As said in Eq. (2), the mapping with the highest likelihood is selected.
Mean: Mean among the candidates, after weighting them by their likelihood.
CMax: The same as in Max, after constraining the set of feasible illuminants,

as proposed by Finlayson.
CMean: The same as in Mean, after constraining the illuminant set.
CM: The center of mass of the convex hull from the set of feasible mappings.

3 Experiments and Results

We show now the performance of our color constancy algorithm compared to
that of Finlayson’s 2D gamut mapping. To that goal, the database1 considered
consisting in a set of 220 images from 20 objects viewed under 11 illuminants.

1 http://www.cs.sfu.ca/~color/data/objects under different lights/index.
html
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Basically, these are images (Fig. 1) of single colorful objects in a black back-
ground to avoid interreflections. The pose of the objects varied every time lights
were changed. Additionally, authors took care of analyzing the lights used to
produce the images, quite helpful in building the set of feasible illuminants.

A canonic image of the scene is employed as the reference for colors. Ex-
periments carried out basically consists in computing a distance between colors
from each scene and those of the canonic one before and after the CC stage to
measure the amount of reduction in color dissimilarity. This is done for the two
algorithms and one canonic image per set. The more the processed images resem-
ble to the canonic, the greater the color dissimilarity reduction. Each algorithm
has various selection heuristics. Our algorithm used CM , Mean, Max, CMean,
and CMax, as explained in Section 2.5. In Finlayson’s 2D–GM we employed the
center of mass (FinCM), the mean (FinMean), and the 3D mean proposed by
Hordley and Finlayson in [8] (FinHord), all constrained by the set of lights.

(a) (b)

Fig. 1. Sets of some objects under all light variation: (a) rollups, (b) book

Two measures of color dissimilarity were applied to estimate the performance
of the two CC methods, namely, the Swain & Ballard difference [7] and a RMS
error. The first accounts for the difference between the canonic and the processed
color histograms. Here, an extra result (True) is obtained using the maps from
the true lights in the database. Instead, RMSE compares two images obtained
from each actual image after transforming it with the true mapping and the one
from the particular CC algorithm. The canonic image is useless here because
RMSE is pixelwise and objects were moved from one image to another.

The results are summarized in Fig. 2 through Fig. 5. Plots in Fig. 2 and Fig. 3
show the results corresponding to the S&B distance, while Fig. 4 and Fig. 5
illustrate those using the RMSE distance. These graphics consist in three plots
each: mean, median, and a distribution boxplot2, where colors represents versions
of the algorithms. Additionally, the numerical values for the mean distances
and the percent reduction of the color dissimilarity are accounted in Table 1
(Finlayson’s 2D–GM) and Table 2 (our CC algorithm), where No CC correspond
to the distance between images before any CC is carried out.

First of all, when considering the performance of our algorithm, we state the
results from the Finlayson’s 2D–GM – 0.27 (RMSE) – are comparable to those in

2 A boxplot is a statistic descriptive tool showing, at once, a distribution of values.
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(a) (b) (c)

Fig. 2. Results using S&B and Finlayson’s 2D–GM. Blue: No CC. Red: True. Green:
FinCM . Magenta: FinMean. Violet: FinHord. (a) Mean, (b) median, and (c) boxplot.

(a) (b) (c)

Fig. 3. Results using S&B and our algorithm. Blue: No CC. Red: True. Green: CM .
Magenta: Mean. Violet: Max. Orange: CMean. Yellow: CMax. (a) Mean, (b) median,
and (c) boxplot.

(a) (b) (c)

Fig. 4. Results using RMSE and Finlayson’s 2D–GM. Blue: No CC. Red: FinCM .
Green: FinMean. Magenta: FinHord. (a) Mean, (b) median, and (c) boxplot.

(a) (b) (c)

Fig. 5. Results using RMSE and our algorithm. Blue: No CC. Red: CM . Green: Mean.
Magenta: Max. Violet: CMean. Orange: CMax. (a) Mean, (b) median, and (c) box-
plot.
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Table 1. Results using Finalyson’s 2D–GM algorithm

Finlayson’s 2D-GM FinCM FinMean FinHord No CC True
S&B Mean Dist. 0.3367 0.3357 0.3464 0.6036 0.2488

% Red. 44.22 44.38 42.61 ∼ 58.78
RMSE Mean Dist. 0.2732 0.2738 0.2655 0.3559

% Red. 23.24 23.07 25.40 ∼

Table 2. Results using our color constancy algorithm

Our CC alg. CM Mean Max CMean CMax No CC True

S&B Mean Dist. 0.3301 0.3301 0.2956 0.2805 0.2945 0.6036 0.2488
% Red. 45.31 45.31 51.03 53.53 51.21 ∼ 58.78

RMSE Mean Dist. 0.1330 0.1313 0.1382 0.1060 0.1200 0.3559
% Red. 62.63 63.11 61.17 70.32 66.28 ∼

[1] – 0.21 (RMSE) –. In Table 1 and 2 it is shown that with the S&B distance the
Finlayson’s 2D–GM best result is achieved with FinMean (44.38%), whereas for
our algorithm the best result is obtained with CMean (53.53%), which is pretty
close to the figure from the true lights mappings (58.78%). In respect to the
RMSE results, figures obtained for our algorithm (70.32%) are definitely better
than those of Finlayson’s 2D–GM (25.40%) and totally comparable to the best
CC algorithm so far, namely, color–by–correlation [1] – 0.11 (RMSE) –, which
is fairly a good result since our approach works with less information.

4 Conclusions

This paper describes a new color constancy algorithm. This is based on the
computation of the histogram of feasible maps between two light conditions and
selecting the best mapping on the base of a likelihood measure for each mapping
encompassing both its frequency and effectiveness. Experiments were done to
evaluate the performance of our algorithm in comparison to that of Finlayson’s
2D–GM, outperforming it and attaining similar results to those of the color–
by–correlation scheme. Our algorithm works with only a canonic image as a
reference and resulting maps are not restricted to a discrete set of feasible ones.
Besides using less information than other methods, it is a useful alternative in
tasks where little knowledge on the illumination is at hand.
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Abstract. In this paper, we report the results of a comparative study on
skin-color models generally used for facial region location. These include
two 2D Gaussian models developed in normalized RGB and HSV color
spaces respectively, a 1D lookup table model of hue histogram, and an
adaptive 3D threshold box model. Also, we present a new model - called
“adaptive hue lookup table”. The model is developed by introducing
the so-called “Continuously Adaptive Mean Shift” (Camshift) technique
into a traditional hue lookup table method. With the introduction of
Camshift, the lookup table is able to adaptively adjust its parameters
to fit the illumination conditions of different test images. In the exper-
iments reported here, we compare the proposed method with the four
typical skin-color filters in the scenarios of different human races and
illuminations. The obtained results indicate that the proposed method
reaches the best balance between false detection and detect rate.

1 Introduction

Automatic location of facial region is an important first step in face recogni-
tion/tracking systems. Its reliability has a major influence on the performance
and usability of entire face recognition/tracking systems. Numerous solutions
to the problem have been presented. Generally, they can be roughly classified
into two classes [1]: (1) gray-level based methods and (2) color-based methods.
Among the gray-level based methods, most are based on template matching
techniques [2]. The input image is windowed (with varying window sizes) from
location to location, and the sub-image in the window is classified as face or
non-face. Although accurate in terms of detect rate, most of them are highly
complicated and time-costing, which are major reasons why the kind of meth-
ods are not typically used in real-time tasks. Also, they are sensitive to facial
variations due to view-points, scales, rotations and illuminations.

The color-based methods are normally based on various skin-color filters and
region segmentation techniques [3,4]. This kind of methods have many advan-
tages compared to the gray-level based methods. First, processing color is much
faster than doing template matching. Second, color models are scale/orientation/
rotion invariant. These properties are particularly important for a real-time
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face/human tracking system. Successful applications of color-based algorithms
include some state-of-the-art face/human tracking systems, such as Pfinder [5]
and Yang’s face tracker [6]. In this work, we first study the properties of var-
ious skin-color filters, which are typically used for face detection tasks. Then,
a new model - called “adaptive hue lookup table” (AH-LT) is developed. By
introducing the so-called Camshift technique [7], the AH-LT model is able to
take advantages of the available color information, and adaptively update its
thresholds for different input images to identify skin-color. In the experiment
reported here, we compare the AH-LT model with four typical skin-color filters
in the scenarios of different human races and illuminations. The AH-LT model
shows promising results.

2 Skin-Color Models

2.1 2D Gaussian Model in RGB Color Space (RG-GM)

In the RGB color space, a triple of [R, G,B] represents not only color but also
brightness. A typical way to separate chromatic colors or pure colors (r, g) from
brightness is to apply a normalization process [8],

r = R/(R + G +B), g = G/(R + G +B) (1)

Eq.1 defines a mapping from R3 to R2, and the color blue is redundant after the
normalization due to r + g + b = 1. It is found by Yang et al. [6] that the human
skin-color distribution tends to cluster in a small region in the (r, g) space,
although in reality skin-colors of different people appear to vary over a wide
range. These variations are generally believed to be mainly caused by brightness
or intensity. Thus, the skin-color distribution can be represented exactly by a
2D Gaussian model N

(
u, Σ2

)
where u = (r̄, ḡ)T ,

r̄ =
1
N

N∑
i=1

ri, ḡ =
1
N

N∑
i=1

gi, Σ =
[

σrr σrg

σgr σgg

]
, (2)

N is the number of the training pixels. Fig.1:Left shows the skin-color distribu-
tion of a set of training samples, which are collected from different racial people.
For simplicity, we call the model “RG-GM” hereafter. A successful application
of RG-GM is Yang’s face tracker [6].

2.2 2D Gaussian Model in HSV Color Space (HS-GM)

Compared to RG-GM, a better way to extract chromatic colors seems to trans-
form color representation from the (R, G,B) space to the (H, S,V ) space, where
H denotes Hue distinguishing pure colors such as red, green, purple and yel-
low, S denotes Saturation referring to how far color is from a gray of equal
intensity, and V denotes Value embodying the lightness or intensity. Compared
with the (R, G,B) color space, the (H, S,V ) space embodies the artist’s ideas of
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Fig. 1. The skin color distributions in the normalized (r, g) space (Left), and the
(hx, hy) space (Right), respectively

tint, shade and tone. Unlike the normalization of (R, G,B), the mapping from
(R, G,B) to (H, S,V ) is nonlinear. Research studies indicate that HSV-based
models outperform RGB-based models in skin pixel classification [3,7].

Similar to the normalized RGB space, observations show the human skin-
color distribution also tends to cluster in a small region in the HSV space [9].
As such, we can model the skin-color distribution using a 2D Gaussian Model of
(H, S) components. It is well-known that H represents angle and S represents
distance. In order to combine the two variables with different units, we can
derive a pair of new variables (hx,hy) from (H, S) to represent color pixels,
where hx = S · cos (H), and hy = S · sin (H). Then, the skin-color distribution
can be modeled by a 2D Gaussian distribution: N(μ,K) with

μ =
1
N

N∑
n=1

Hn, K =
1
N

N∑
n=1

(Hn − μ)(Hn − μ)T (3)

where Hn =
[
h

(n)
x , h

(n)
y

]T
, and

(
h

(n)
x h

(n)
y

)
denotes the nth pixel. The model has

been applied into extraction of hand region [9]. For simplicity, we call it HS-GM
hereafter. Fig.1:Right shows the distribution of a set of training skin-color pixels
used in our experiments.

2.3 1D Lookup Table Based on Hue Histogram (H-LT)

Some researchers [7] found that saturation is also influenced by lightness. There-
by, a simple but efficient model is derived only from the histogram of the H
(hue) component. In this method, a hue histogram of the training skin-color
pixels is first built. Then, the histogram is smoothed by a Gaussian low-pass
filer. The values in each bin are further normalized to the range [0, 1]. The
obtained histogram is called hue lookup table (H-LT hereafter). The values in
the H-LT cells reflect the likelihood that the corresponding color is classified to
the skin color. Fig.2 shows the hue histogram used in our experiments.

2.4 Adaptive Hue Lookup Table Model (AH-LT)

Often it is found to be insufficient to use only hue information for skin-color
classification in practical applications [4]. In order to improve the performance,
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Fig. 2. (A): Original hue histogram, (B): Smoothed hue histogram

it is important to integrate saturation and value information into the skin-color
models. However, since the saturation and value of skin-color often vary with
illumination conditions, the models have to be able to adaptively update their
decision boundaries on (S,V ) according to the illumination conditions of the
input images. To this end, Cho et al. [10] presented an adaptive 3D threshold
box model (3D-TBox) in the HSV color space. The 3D box is constructed by
6 thresholds, i.e. upper and lower thresholds of H , S and V respectively. All
the pixels whose (h, s, v) fall in the box are identified as skin-color pixels. In the
model, the thresholds of hue is considered to be stable and fixed, while those
of saturation and value are adaptively updated when a new image is tested.
The update is implemented by a simple search procedure of gravity center. We
found that the updating algorithm can be improved using an efficient alternative
method - called “Continuously Adaptive Mean Shift Algorithm” (Camshift),
which is based on the Meanshift technique [11]. Also, it seems to be not a good
way to classify skin color using a pair of hard hue thresholds. An obviously better
alternative is the soft H-LT model.

Based on the above two points, an improved model - called “Adaptive Hue
Lookup Table Model” (AH-LT) is proposed here. The AH-LT model integrates
Camshift, H-LT and the adaptive scheme of 3D-TBox together. The advantages
of such a combination will be demonstrated in our experiments. The detail pro-
cedure of how the AH-LT model works can be divided into two steps: offline
and online. In the offline learning step, we firstly build the H-LT model from a
set of given skin-color pixels. Then, the initial upper and lower thresholds for
S, V are chosen manually by observing the skin color distributions of training
sample images that are obtained under various illumination conditions. In order
to compare our method with the 3D-TBox as fair as possible, we use the same
initial threshold values for S and V as [10].

In the online test step, we first go through the input image using H-LT to
find all skin-color pixel candidates. The threshold for the likelihood is set to
0.3 in our experiments. Then, we find the distribution of the skin-color pixel
candidates in the (S,V ) space by constructing a 2D (S,V ) histogram of these
candidates. All the values in the 2D histogram is linearly normalized to the range
[0, 1]. Thus, we can obtain a likelihood p(si, vi) ∈ [0, 1] for any candidate pixel
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from the normalized histogram or lookup table. Since (S,V ) of skin-color often
shift with variation of lightness conditions, we have to adaptively update the
thresholds of (S,V ) for different test images. This can be done by finding the
mode of the probability distribution p(si, vi) using the Camshift algorithm [7].

Since the Camshift algorithm is derived from the Meanshift [11], it is nec-
essary to introduce the Meanshift prior to the Camshift. The Meanshift is a
non-parametric technique that climbs the gradient of a probability distribution
to find the nearest dominant mode (peak). The procedure to calculate the Mean-
shift algorithm is given as follows:

1. Set size and location of initial search window W0.
2. Compute the mean location in the search window. Let M00, M10 and M01 denote

the zero-th and first moments for (s, v). These moments can be found by M00 =∑
(s,v)∈Wi

p(s, v), M10 =
∑

(s,v)∈Wi

s · p(s, v), and M01 =
∑

(s,v)∈Wi

v · p(s, v), where Wi

denotes current search window. Then we have the mean location (sc, vc), where
sc = M10/M00 and vc = M01/M00.

3. Center the search window at the mean location computed in Step 2.
4. Repeat Step 2 and 3 until convergence..

A shortcoming of the Meanshift algorithm is that the size of the search win-
dow cannot be updated, but it is overcomed in the Camshift algorithm. The
complete procedure to update the thresholds of (S,V ) using Camshift is given
as follows:

1. Set size and location of initial search window W0 (as shown in [10]).
2. Do Meanshift as above.
3. Update the search window size. Let M20 and M02 denote the second moments, and

we have
M20 =

∑
(s,v)∈Wi

s2 · p(s, v), M02 =
∑

(s,v)∈Wi

v2 · p(s, v). (4)

Then the length and width of the probability distribution “blob” can be found as
in [12]. Let a = M20

M00
− s2

c, b = 2
(

M11
M00

− sc · vc

)
, and c = M02

M00
− v2

c . We have the
length and width of the new search window,

l =
√

(a + c +
√

b2 + (a − c)2)/2, w =
√

(a + c −
√

b2 + (a − c)2)/2. (5)

4. Repeat Steps 2 and 3 until convergence. The final search window gives new thresh-
olds of (S, V ).

An assumption behind AH-LT is that the areas of real skin-color regions are
comparable to (or larger than) the areas of those regions similar to skin-color.
Otherwise, the Camshift may converge to the largest false skin-color region.
Fig.3 show an example obtained by AH-LT. The initial detect result without
threshold updating is shown in Fig.3(B), where some parts of the clothes were
detected as well as the face region. However, one can see that most of false
detects has been removed in Fig.3(C), after the threshold values of (S,V ) are
updated accordingly.
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Fig. 3. An skin-color detect example using AH-LT. (a): Input image; (b): Result ob-
tained with the initial threshold values recommended in [10]; (c): Result obtained with
the updated threshold values.

3 Experimental Results

In the experiments, a set of human images were collected from the Internet.
They are partitioned into two sets: training set and test set with no overlapping
between the two. Skin-color pixels are cut manually from the training images to
form a set of skin-color samples, which contain a total of 56279 pixels. The testing
set contains 200 images, consisting of different racial people (Asian, African and
Caucasian). Since the images were taken and digitized under various conditions,
it can be said that no special illuminations or other constraints are imposed on
the test images. Two experiments are implemented for the evaluation. One is
designed to compare performance of the five skin color filters for different racial
people. To this end, the testing set is manually partitioned into three groups
according to races of people in the images. Another is designed to compare
performance of the skin-color filters in different illuminations. In this experiment,
according to the illumination variations of the skin regions in the images, we
partition the test set to four groups: normal (161), reddish (13), bright (17) and
dark (9). The five skin-color filters are applied in the two experiments, and the
obtained results are shown in Table 1, where we define a detect if at least half
of the true skin-color regions are found in a given test image.

In the first experiment, there are 88 images of Asian, 12 of African and 100
of Caucasian in the test set. From Table 1(Races), it can be seen that there are
not significant difference in terms of detect rate among the three groups for each
skin-color model. This demonstrates the observation by Yang et al. [6], that is,
human skin colors tend to cluster into a small region in a color space. Also, not
surprisingly, the HSV-based models (HS-GM, H-LT, 3D-TBox and AH-LT) are
overall superior to the RGB-based model (RG-GM) in all the three groups. This
result is consistent with our analysis in previous sections.

In the second experiment, it can be seen from Table 1(Illuminations) that RG-
GM has the lowest detect rate among the five models. Specifically, it is difficult
for RG-GM to detect the reddish or too dark skin-color regions. For example,
only 2 out of 13 reddish images and 1 out of 9 dark images are detected by the
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Table 1. Detect rates (%) of the five skin-color models in different experimental con-
ditions of race and illumination

Algs. Illuminations Races
Normal Reddish Bright Dark Overall Asian African Caucasian

RG-GM 80.1 18.2 100 11.1 74.5 78.4 83.3 73
HS-GM 82 92.3 64.7 88.9 81.5 79.5 91.7 82
H-LT 93.8 92.3 100 100 94.5 93.2 91.7 96

3D-TBox 85.7 76.9 82.4 100 85.5 84.1 91.7 89
AH-LT 90 76.9 94.1 100 90 87.5 91.7 92

method. This shows that the RGB-based models are rather sensitive to variations
of illumination, because the saturation component influenced by illumination is
not separated. Similar observations are also found by Bradski et al. [7].

In Table 1, the overall detect rate of HS-GM is 81.5%. This result is higher
than that of RG-GM, but lower than those of the other three models. It failed
when the skin-color regions are too bright. Although H-LT obtained the highest
detect rate among the five models, it is found that its false alarm is much higher
than AH-LT. One reason is that H-LT cannot adaptively update its parameters
for the specific illumination conditions in different images. In contrast with H-
LT, saturation and value can be appropriately adjusted in the AH-LT approach
to fit the requirements of different inputs. As a result, some false detects can be
removed and skin-color regions can be more accurately extracted as shown in
Fig.3. Therefore, we have reasons to believe that the AH-LT method embodies
a better trade-off between detect rate and false alarm.

4 Conclusion

In this paper, a new skin-color model is introduced by combining several com-
monly used techniques, such as the hue lookup table, the continuously adaptive
mean shift, and the adaptive update of thresholds. Also, a comparative study
between the proposed method and four traditional methods is carried out in var-
ious experimental settings such as races and illuminations. The obtained results
indicate that the proposed AH-LT method is a promising solution to balance the
tradeoff of detection rate and false alarm. Due to low computational costs and
insensitivity to most facial variations such as view-points, scale, rotation and
expressions, we expect that the AH-LT method can be used as an important
pre-processing step in a real-time face location/tracking system.

Following the work presented here, there are several interesting topics to be
conducted in the future. First, many of existing color-based methods use Gaus-
sian models to approximate the skin-color distributions. However, it has been
found that the practical distributions in the color spaces are much more com-
plicated than Gaussian. Thus, it seems to be a better solution to map the color
spaces to a feature space, where the assumption is closer to be true. Such a
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mapping can be implemented by using a kernel technique such as [13]. Further-
more, more sophisticated pattern recognition techniques, such as discriminant
analysis used in face recognition [14,15,16] can be applied in the feature spaces
to enhance the separability between the two classes, skin and non-skin pixels.
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Abstract. We present a texture analysis approach for texture image indexing 
based on Gabor-like Hermite filters, which are steered versions of discrete 
Hermite filters. Hermite filters are the backbone of the Hermite transform, 
which is a polynomial transform and a good model of the human visual system. 
Experimental results show that our filters have better performance than Gabor 
filters. The texture analysis system is then applied to handwriting document 
indexing. For that doing, handwriting documents are decomposed into local 
frequencies through the presented filter bank and, using this decomposition, we 
analyze the visual aspect of handwritings to compute similarity measures. A 
direct application is the management of document databases, allowing to find 
documents coming from the same author or to classify documents containing 
handwritings that have similar visual aspect. The current results are very 
promising and show that it is possible to characterize handwritten drawings 
without any a priori graphemes segmentation. 

1   Introduction 

In this paper we present an image texture indexing system [11] [4] based on extracted 
features by filtering the textured images [9] [1]. We focus on the multi-channel 
filtering (MCF) approach. It is inspired by the MCF theory for processing visual 
information in the early stages of the human visual system (HVS) [1], where receptive 
field profiles (RFPs) of the visual cortex can be modeled as a set of independent 
channels, each one with a particular orientation and frequency tuning. It then involves 
the decomposition of an input image into multiple features images by filtering. Each 
such an image captures textural features occurring in a narrow band of spatial 
frequency and orientation. Among the MCF models having the above properties, 
Gabor filters [7] have been widely used in texture feature extraction [9] [1] and image 
indexing and retrieval [11]. Another model corresponds to Hermite filters of the 
Hermite transform [6] that agree with the Gaussian derivative model of the HVS [12]. 
It has also been shown that Hermite and Gabor filters are equivalent models of RFPs 
of the HVS [10]. However, Hermite filters have some advantages over Gabor ones, 
like being an orthogonal basis and filter separability which allows efficient 
implementation. Despite these advantages, Hermite filters are not used as much as 
Gabor filters for texture feature extraction. In previous investigations we have found 
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that cartesian Hermite filters perform less texture discrimination than Gabor filters. 
Hence, in order to improve texture discrimination, we present the Gabor-like Hermite 
filters, which are a modified version of steered Hermite filters [3]. 

The goal of our texture analysis system is the indexing of ancient manuscripts or 
handwriting documents from a texture viewpoint. Therefore, we apply the proposed 
Gabor-like Hemite filter bank to extract texture features. Our purpose here is to 
characterize precisely a handwriting document whatever its author is and to classify it 
into visual writers families. Our approach considers handwritings as special drawings 
that create a specific texture, which will be subsequently analyzed by considering 
orientations at different scales. Orientations extracted by the proposed filter bank are 
considered as sufficiently relevant perceptual features to characterize the special 
texture of handwritten drawings. The Gabor-like Hermite filter bank is a model that 
leads to the development of an original method of handwriting classification by the 
computation of handwriting signatures and similarity measures that reveal their 
“visual textural aspects”. 

2   Gabor-Like Hermite Filter Bank 

2.1   Cartesian Hermite Filters 

Hermite filters dn-m,m(x,y) decompose a localized signal lv(x-p,y-q) = v2(x-p,y-q) l(x,y) 
by a Gaussian window v(x,y) with spread σ and unit energy, into a set of Hermite 
orthogonal polynomials Hn-m,m(x/σ , y/σ). Coefficients ln-m,m(p,q) at lattice positions 
(p,q)∈P are then derived from the signal l(x,y) by convolving with the Hermite filters. 
These filters are equal to Gaussian derivatives where n–m and m are respectively the 
derivative orders in x- and y-directions, for n=0,…,D and m=0,…,n. Thus, the two 
parameters of Hermite filters are the maximum derivative order D (or polynomial 
degree) and the scale σ. Hermite filters are separable both in spatial and polar 
coordinates, so they can be implemented very efficiently. Thus, dn-m,m(x,y) = dn-m(x) 
dm(y), where each 1-D filter is: 

( ) 2 2/( ) ( 1) ( 2 ! ) ( / )n n x
n nd x n H x e σπσ σ −= − ⋅  . (1) 

where Hermite polynomials Hn(x), which are orthogonal with respect to the weighting 
function exp(-x2), are defined by Rodrigues’ formula [5] as: 

2 2

( ) ( 1)
n

n x x
n n

d
H x e e

dx
−= −  . 

(2) 

In the frequency domain, these filters are Gaussian-like band-pass filters with 
extreme value for (ωσ)2 = 2n [10], and hence filters of increasing order analyze 
successively higher frequencies in the signal. 

2.2   Krawtchouk Filters 

Krawtchouk filters are the discrete equivalent of Hermite filters. They are equal to 
Krawtchouk polynomials multiplied by a binomial window v2(x) = / 2x N

NC , which is 
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the discrete counterpart of a Gaussian window. These polynomials are orthonormal 
with respect to this window and they are defined as [5]: 

0

1
( ) ( 1)

n
n n

n N x xn
N

K x C C
C

τ τ τ

τ

− −
−

=

= −  . (3) 

for x=0,…,N and n=0,…,D with D N≤ . 
It can be shown that the Krawtchouk filters of length N approximates the Hermite 

filters of spread / 2Nσ = . In order to achieve fast computations, we present a 
normalized recurrence relation to compute these filters: 

1 1
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N n n
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for 1n ≥  and with initial conditions 0 ( ) 1K x = , 1
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N
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N
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2.3   Steered Hermite Filters 

In order to have a MCF approach based on Hermite filters, they must be adapted to 
orientation selectivity and multi-scale selection. For doing this, we apply their 
property of steerability [3]. The resulting filters then may be interpreted as directional 
derivatives of a Gaussian (i.e. the low-pass kernel). 

Rotated versions of a filter of order n can be constructed by taking linear 
combinations of the filter of order n. The Fourier transform of Hermite filters dn-

m,m(x,y) can be expressed in polar coordinates (ωx=ω cosθ , ωy=ω sinθ) as 

, ,
ˆ ˆ( , ) ( ) ( )n m m x y n n m md dω ω ω α θ− −=  where ˆ ( )nd ω , which expresses radial frequency 

selectivity, is the 1-D Fourier transform of the nth Gaussian derivative in (1) but with 
radial coordinate r instead of x. The cartesian angular functions of order n for 
m=0,…,n, are given as 

, ( ) cos sinm n m m
n m m nCα θ θ θ−

− = ⋅  . (5) 

which express the directional selectivity of the filter. 
Steered coefficients ln(θ) resulting of filtering the signal l(x,y) with these steered 

filters can be directly obtained by steering the cartesian Hermite coefficients ln-m,m as: 

, ,
0

( ) ( )
n

n n m m n m m
m

l lθ α θ− −
=

= ⋅  . (6) 

2.4   Gabor-Like Hermite Filters 

In order to turn the steered Hermite filters into a MCF bank, we construct a multi-
scale representation that fulfils the desired constraints in the frequency domain, which 
are mainly the number of scales S (radial frequencies ω0) and the number of 
orientations R in the filter bank. Since previous works have been done essentially with 
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Gabor filters, we have then adopted a similar multi-channel design. Moreover, both 
Hermite and Gabor filters are similar models of the RFPs of the HVS [10]. For these 
reasons, we have named the resulting filters as Gabor-like Hermite filters. The 
strategy design in the frequency domain is the same as that presented in [11]. It is to 
ensure that the half peak magnitude supports of the filter responses in the frequency 
spectrum touch each other. Let g(x,y) be a Gabor-like Hermite filter. Then, its scaled 
and oriented versions gs,r(x,y) are given by: 

, ( , ) ( ', ')s
s rg x y a g x y−=    ,   a > 1   ,   ,s r ∈  , 

' ( cos sin )sx a x yθ θ−= +  , ' ( sin cos )sy a x yθ θ−= − +  . 
 

(7) 

where θ=rπ/R, r=0,…,R–1, s=0,…,S–1. The scale factor a–s in (7) is meant to ensure 
that the energy is independent of scale s. Let σx and σu be, respectively, the spatial 
and frequency spreads of a 1-D Hermite filter as defined in (1) which has radial 
frequency selectivity ω0. Let fl and fh denote the lower and upper normalized center 
frequencies (between 0 and ½) of interest for the MCF bank. Then, for each scale, 
parameters a , σx , σu , and ω0 of each channel are computed as: 

0 02 fω π=  , 1/(2 )x uσ πσ=  , 0
s

hf a f−=  , 

1

1( / )S
h la f f −=  , 0( 1)

( 1) 2 ln 2
u

a f

a
σ −

=
+

 . 
(8) 

Gabor-like Hermite filters already have zero mean (null DC). The (discrete) 
Krawtchouk filters are linked to Hermite filters by these parameters as: 

22 xN σ=    and   2
0( ) / 2xD σ ω=  . (9) 

where [ ]⋅  rounds to the nearest integer whereas ⋅  does it too but towards infinity. 

Notice that for each scale there is a set of parameters (N,D). 

3   Texture Feature Extraction and Indexing 

The Gabor-like Hermite MCF-bank presented in the previous section is applied to 
decompose a given textured image into a set of filtered images that represent the 
image information at different frequencies and at different orientations. Therefore, 
each of the channel outputs of the filter bank can be considered as one component of a 
texture feature vector of dimension S⋅R. Thus, there are as much feature vectors as 
pixels in the image. For our application, we chose S = 4 scales and R = 6 orientations, 
which results in a bank of 24 filters. There is then an important dimensionality 
increasing which is S⋅R = 24 times the original image size. Dimensionality reduction 
is thus an important goal in image indexing techniques, since one needs to store such 
indexes. Parametric texture models use combinations of parameters to characterize 
textures [8]. We only keep parameters which describe well the essential structure of 
texture. For this purpose, we have tested different combinations of parameters and we 
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have found that the best results, for texture indexing, are obtained for only 
considering the spatial auto-correlation of coefficients of each subband. Since auto-
correlations imply a spatial lag from the central pixel in both x- and y-directions, we 
have then fixed it to M=7 as in [8]. It then represents, for each of the subbands, a 
dimensionality reduction which goes from the image size to (M2+1)/2 parameters, 
since the spatial correlation is symmetric. It yields S⋅R⋅(M2+1)/2 = 600 parameters, 
which is a significant dimensionality reduction. These parameters represent structures 
in images (e.g., edges, bars, corners). 

4   Experimental Results on Textured Images 

In this study, texture under consideration are either gray-scale or luminance-based. 
We have made our experiments on a well-known set of images by Brodatz [2]. The 
texture database consists of 112 different texture images where each one has an image 
with size of 640x640 pixels. Each of the images is divided into 9 256x256 
overlapping subimages, thus creating a database of 1008 images. We have then 
applied the texture feature extraction approach described in the previous section to 
every subimage in the database. The resulting feature vectors were saved as texture 
image indexes. Thus, one has a texture-based retrieval system in which distances 
between the query pattern and patterns in the database are computed. We have used as 
distance 1-|ρ|, where ρ is a normalized correlation coefficient in [-1;1]. In the ideal 
case all the top 9 retrievals, which have the lowest distance to the query, are from the 
same large image. We have measured the performance of the indexing system in 
terms of the average retrieval rate, which is defined as the average percentage number 
of patterns belonging to the same image as the query pattern in the top 9 matches 
(average recall). 

 

Fig. 1. Percentage retrieval performance (average recall) versus retrieved images. (solid line): 
Gabor-like Hemite filters, (dashed line): Gabor filters. 

The average retrieval rate (retrieval efficiency) according to the number of top 
matches considered is about 88% for the top 9 retrievals (see figure 1) when Gabor-
like Hermite filters are used. On the other hand, it is about 73% for the top 9 retrievals 
when Gabor filters are used. Therefore, a better performance is achieved with our 



742 C.J. Rivero-Moreno, S. Bres, and V. Eglin 

 

proposed filter bank. It means that, in average, about one texture among the 9 most 
relevant ones is apparently not well classified. 

5   Handwriting Document Indexing 

A handwriting document can be viewed as special drawings that create a specific 
texture with particular orientation and scale that depend on the document’s author. 
Thus, handwriting documents can be considered as textured images. The database we 
want to process contains historical handwriting documents. We assume that the 
images in the database are not significantly degraded by the presence of strong 
artefacts in their backgrounds so that a relevant handwriting characterization could be 
achieved. This characterization that rely on the shape of the handwriting lines is 
performed using the texture analysis system presented in the previous sections. By 
this way, the orientation and scale selectivity of the Gabor-like Hermite filter bank let 
a manuscript orientation and scale be extracted. Similarly to the case of general 
textures, we have chosen S=4 scales and R=6 orientations. Therefore, there are 24 
oriented filters and for each pixel in the image each of these 24 filters will give a 
response that characterize a given orientation at a given scale. In this case, the scale 
determines the size of the pixel neighborhood. Since we are only interested in 
handwriting analysis, we only keep responses on pixels identified as handwriting lines 
so that the background is left out. Therefore, we have a 24-valued vector for each 
handwriting line pixel. All these vectors can be represented as a cluster in a 24-
dimension space, and this cluster is a good characterization of the analyzed 
handwriting. Unfortunately, we cannot use these clusters as signatures, because of the 
data size they need on storage. Too big signatures take too much place in databases 
and too much computation time for comparison, and similarity evaluation during the 
retrieval step. That is the reason why we wanted to reduce those cluster-signatures to 
something as small as possible with a minimal information loss. We choose to keep 
geometrical information of the clusters, like the main axis, after a Principal 
Component Analysis (ACP) -like step. The signature for a given handwriting 
document is then the 24 normalized eigenvectors and the 24 corresponding 
eigenvalues of the covariance matrix computed from the orientation vector cluster. 
This is small enough for our needs, and the results we obtain show that this signature 
gives a good characterization of handwritings. With the signature of every document 
in the database, we only need to define a distance between these signatures to 
introduce the similarity notion in the database. Similarity leads to indexing which is 
the goal we want to reach. 

5.1   Similarity Computation 

Our signatures are made of 24 normalized eigenvectors Vi and the 24 corresponding 
eigenvalues Li. Li0 quantifies the importance of the vector Vi0 in the shape of the 
cluster. The distance we choose to define uses both information of vectors Vi and 
values Li in a linear combination. Thus, the distance D(Hi, Hj) between the 
handwriting Hi and the handwriting Hj can be expressed as: 
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This distance is symmetrical, which is a good property to assure coherent results 
during multiple comparisons of document databases. 

5.2   Practical Results and Evaluation on Handwriting Documents 

We have tested the whole system on our personal database composed of documents 
coming from different authors but mainly patrimonial handwritings documents. Most 
of the time, we have full pages of the same author and for evaluation purposes these 
pages are divided into smaller images, 9 per page. Then, most pages give us 9 images 
from the same author, containing what we can suppose to be similar handwritings. 
This is how we build our “ground truth”: images coming from the same original page 
image should look the same and have similar handwritings. It is difficult to complete 
this ground truth with similarities between different author’s handwritings because of 
the subjective judgment involved in such estimation. 

 

    

    

Fig. 2. Examples of images coming from the same authors (one author per row) 

 

 

 (a) (b) 

Fig. 3. (a) Precision and (b) recall curves computed on the entire database containing more than 
1400 handwriting documents 
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The figure 2 gives some examples of images coming from the same original page. 
Our database contains 1438 images coming from 189 different authors, in different 
languages and alphabets. The results we obtain are really promising because, 
according to our ground truth, a given request has, in the ten first better answers 
(documents with the higher similarity or equivalently the smaller distance), in average 
more than 83% of correct responses; see the recall curve on the figure 3. This is an 
average value computed on the documents that have 9 similar images in the database. 
These precision and recall curves are a common way to show the efficiency of an 
indexing system. They have been computed using the 20 first responses. Let’s 
remember that we only have 9 images for each handwriting document. That is the 
reason why the precision decreases strongly after the 9th response. 

6   Conclusion 

We have presented a new filter bank for efficient texture feature extraction: the 
Gabor-like Hermite filter bank, which is a multi-scale decomposition of steered 
discrete Hermite filters. Efficient indexing has been achieved by a powerful 
dimensionality reduction, which is based on spatial auto-correlations of all multi-
channel outputs. We have showed that our method is suitable for texture indexing 
purposes since the only available information is that resulting from our filter bank. 
Thus, these filters characterize well enough texture. This work is a response to 
scientific problems of historical handwritten corpus digitalization. It deals with 
handwriting document indexation and is applied here to a multi-language and multi-
alphabet corpus. We propose here a biological inspired approach for handwriting 
characterization and corpus indexing. The developed perception based model lies on 
the Hermite frequency decomposition for image indexing. The current results of 
handwriting document classification with Hermite-based orientation features are very 
promising. We are currently working on an enlarged database (with recent 
digitalization within a European project) and in consequence we are statistically 
evaluating the minimal required images sizes that guaranty the writer identification 
and a valuable image indexing. 
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Abstract. An efficient rotation invariant feature extraction technique for texture 
classification based on Gabor multi-channel filtering is proposed. In this tech-
nique, Gabor function is approximated by a set of steerable basis functions, 
which results in a significant saving in the computation cost. The classification 
of 15 classes of Brodatz textures are considered in our experiments. Results 
show that up to 40% of computation can be saved compared with traditional 
Gabor multi-channel filtering method. In the mean time, almost the same high 
texture classification correct rate can be achieved. 

1   Introduction 

Texture classification is a topic investigated by many researchers during the past 
decades. It plays an important role in many applications such as remote sensing, robot 
vision, document image processing, medical imaging and content based image re-
trieval. One important issue in texture classification is the extraction of features which 
can adequately characterize the textures under consideration. Furthermore, it is desir-
able in some applications that these texture features be invariant under certain trans-
formations, such as rotation, scaling and translation, and be insensitive to the varia-
tions of the pose and illumination. Many approaches for texture features extraction 
have been proposed in literature, including the co-occurrence matrix [1], Gabor filter-
ing technique [2-6], wavelet theory [7–9, 13], stochastic models [10-12], and fractal 
model [14].  

Among the proposed methods, multi-channel filtering technique using Gabor func-
tions has drawn much attention. Studies on the human visual system have suggested 
that its processing of pictorial information involves transforming it into a local spa-
tial/frequency representation [15], which can be computationally simulated by con-
volving the input image with a bank of filters with tuned frequencies and orientations. 
Gabor filters have been widely applied in such simulation since they have tunable 
orientations, radial frequency bandwidths and center frequencies. Furthermore, they 
optimally achieve joint resolution in the space and in the frequency domain.  
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Despite all these advantages, Gabor function based multi-channel filtering tech-
nique could be quite time consuming, especially when rotation-invariant features are 
needed. In that case, the sample rate of the orientation interval (usually [0, π)) at each 
fixed central frequency has to be dense enough. For example, a sample rate of 16 was 
used in [3] in script identification application. This drawback could become a bottle-
neck for the multi-channel filtering technique to be used in real applications. 

In this paper, we propose an efficient rotation-invariant feature extraction tech-
nique for texture classification, which is an extension to a commonly used Gabor 
function based multi-channel filtering model. In this model, Gabor filters with the 
same central frequency but different orientations are only rotated versions of each 
other. Therefore, these filters can be efficiently approximated using the steerable basis 
functions discussed in [16-19]. The effectiveness of the proposed method has already 
been observed in our previous work where the problem of language identification 
from printed documents was considered [25]. 

This paper is organized as follows: in section 2, we introduce a commonly used 
Gabor function based multi-channel filtering configuration. Based on this configura-
tion, rotation invariant features are extracted. In section 3, steerable filter theory is 
introduced and we explain how this theory can be applied to design an efficient fea-
ture extraction method. To demonstrate the validity of the new feature extraction 
method, classification of 15 Brodatz textures is investigated and the results are given 
in section 4. Section 5 concludes this paper. 

2   Rotation Invariant Feature Extraction 

2.1   Gabor Function Based Multi-channel Filtering Model 

Gabor filters are complex sinusoidal gratings modulated by 2-D Gaussian functions in 
the space domain, and shifted Gaussian functions in the frequency domain. They can 
be configured to have various shapes, bandwidths, orientations and center frequen-
cies. For the sake of convenience, we assume in this research that these filters can be 
defined as [26] 

)),,(2exp()),,(),,,((),;,( φπφφφ yxjFryxryxrgFyxh xyx ⋅=              (1) 

where φφφφφφ cossin),,( ,sincos),,( yxyxryxyxr yx +−=+= .  F is the radial frequency, φ 

stands for the orientation and 
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with σ being the scale parameter, which determines the channel bandwidth, and λ 
being the aspect ratio. The frequency response of (1) is 

]}),,()),,([(2exp{),;,( 2222 φλφπσφ vurFvurFvuH vu +−−=        (3) 

with φφφφφφ cossin),,( ,sincos),,( vuvurvuvur vu +−=+= .What we need to do in apply-

ing Gabor function based multi-channel filtering technique is to configure the channel 
parameters F, φ, σ, and λ. However, just a few values of these free parameters can 
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result in a large set of filters. To make it easier, we assume that λ be the same for all 
Gabor filters and σ be chosen to be inversely proportional to the central frequencies of 
the channels [20]. For filters with the same central frequency, σ will be the same.  

2.2   Rotation Invariant Features 

Each input image is first filtered by the Gabor filters in the filter bank. Then, we cal-
culate the mean and standard deviation of the filtered image, which are denoted as 
m(F, φ) and s(F, φ) respectively. 

For a given radial frequency, the rotation of the input image would only result in a 
shift in φ of both m(F, φ) and s(F, φ), and the amplitude of the 1-D Fourier transform 
in φ of these two quantities would remain invariant. Therefore, we can obtain rotation 
invariant features by taking 1-D Fourier transform in φ of both m(F, φ) and s(F, φ). In 
this research, only the amplitudes of the first 5 coefficients of the DFT are selected as 
features. Similar features may also be found in [3, 21].  

3   Feature Extraction via Steerable Gabor Filters 

The above mentioned feature extraction mechanism can be extremely time consum-
ing. Therefore, a more efficient feature extraction method is absolutely desirable. 

From formula (3), we can observe that the Gabor filters at a fixed central frequency 
(hence fixed σ) in the filter bank are actually the rotated version of one filter, let’s 
say, the filter with φ = 0°. This observation suggests that the theory of steerable filters 
can be applied to reduce the high computational cost of multi-channel filtering tech-
nique. 

3.1   Steerable Filter 

The concept of steerability was first proposed by Freeman and Adelson in [16] and 
was further discussed by others in [17, 18, 19]. Here, we are interested in the trans-
form of rotation. A function f(x,y) : R2 → C is steerable with respect to rotation if: 

(4)                                          ),()(),(
1=

=
M

j
jj yxkyxf ϕθθ  

here ),( yxf θ is the rotated version (by an angle θ) of f(x, y). { ),( yxjϕ }(j = 1, …, M) 

are the base functions which are independent of the rotation angle θ. { )(θjk }(j = 1, 

…, M) are called the steering functions of f associated with the base functions 
{ ),( yxjϕ } and depend solely on θ. 

It is well known that convolution is a linear operation. Therefore, if a filter is steer-
able with respect to rotation,  the filter output of a rotated version of this filter can be 
obtained by linearly combining the filter outputs of its associated basis functions, or 
specifically, 
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where I(x,y) is the image to be filtered. 
If M is smaller than the number of orientation samples we need, we can save some 

computations. If M is not so small, or even if no finite M can be found in formula (4), 
as the case of Gabor filter with non-zero shift in frequency domain [19], we still can 
find a way to approximate the exact Gabor filters without significant lost in classifica-
tion performance. 

3.2   Steerable Approximations of Gabor Filters 

Perona [17] proposed a singular value decomposition (SVD) based method to com-
pute the least-squares optimal set of basis functions. With a given tolerable amount of 
error, this method also gives the minimum number of basis functions.  

Perona’s method works as follows: Let G be a matrix whose columns are the trans-
formed replicas of a discretely sampled function f. Thus, each column in G corre-
sponds to a specific sample of the parameter space over which the function is to be 
steered and each row in G corresponds to a specific sample of the function's domain. 
The SVD decomposes the matrix G into a product of three matrices: 

(6)                   1
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G ==  , , and θ1, …, θp are the angles of rotation. SG is a diagonal 

matrix of non-negative singular values, in decreasing order of magnitude. It can be 
shown that the first n columns of UG represent the optimal, least-squares set of basis 
functions needed to steer f. The first n rows of the matrix WG give the weights of the 
linear combination needed to steer f. 

An approximation function D(n) as a measurement of the degree of approximation 
of the leading n basis functions given by SVD can be defined as: 
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where ),()( 22 iiSis GG =  and n = 1, …, p. D(n) is normalized to [0, 1]. As an example, 

Fig. 1 shows the approximation function D(n) for the basis functions of the Gabor 
filter spectrum in formula (3) with F = 16, λ = 1, p = 16 while Fig. 2 shows these 
basis functions. We can see that the first 8 basis functions actually account for 99% of 
the total square norm. The other 8 basis functions have little contribution and thus can 
be ignored when synthesizing the Gabor filter according to formula (5). 
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Fig. 1. Plot of the approximation function D(n) 

 

Fig. 2. Basis functions to steer the Gabor Spectrum function (3) with F = 16, λ = 1, p = 16. The 
basis functions are arranged in descending order of the magnitude of their singular values from 
left to right and from top to bottom. Image has been rescaled for better visibility. 

3.3   Fast Feature Extraction Using Basis Functions 

Feature extraction using exact Gabor filters has already been discussed in section 2. 
Here we show in pseudo-code how to extract features from these synthesized filter 
outputs.  

Initialize a desired approximation level τ between 0 and 1; 
For each needed central frequency F in current application Do 

• Calculate the p rotated replicas of the discretized Gabor spectrum function H(u, 
v; F, 0) based on formula (3); 

• Re-arrange each replica into a column vector and build the matrix G; 
• Do SVD of G; 
• Find n such that n is the minimum positive number satisfying D(n) ≥ τ; 
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• Use the first n columns of UG as basis functions, re-arrange each column back 
into a square matrix and do image filtering; 

• Use the first n rows of WG as weights and synthesize the original p filter out-
puts using formula (5); 

• Extract features as described in section 2. 
End For 

4   Experimental Results 

In this research, 15 textures are selected from the Brodatz album [22] to evaluate the 
performance of the rotation-invariant features extracted using our method. These 
texture samples are shown in Fig. 3. We follow the experiment configuration used in 
[23]. The training set for each class was composed by textures at angles 0°, 30°, 45°, 
60°. For each angle, 30 non-overlapping gray level image blocks of dimension 64×64 
pixels are considered. Test set for each class is obtained from images at angle 0°, 70°, 
90°, 120° and 150°. For each angle, 20 non-overlapping gray level image blocks with 
size 128×128 are selected. 

 

Fig. 3. Texture samples. From left to right. First row: D9 (Grass lawn), D10 (Crocodile skin), 
D15 (Straw), D17 (Herringbone weave), D20 (French canvas). Second row: D22 (Reptile skin), 
D29 (Beach sand), D37 (Water), D49 (Wood grain), D51 (Raffia woven). Third row: D68 
(Wood grain), D77 (Cotton canvas),D84 (Raffia), D93 (Fur), D103 (Loose burlap). 

The parameters for the filter bank are chosen as follows: two central frequencies 
are considered: F = 16, 32. An orientation sample interval of 11.25° is used. The as-
pect ration λ is set to 1. 20 features are extracted here. The approximation level is set 
to D(n) = 97.5%. For Gabor filters with central frequency 16, 7 basis functions are 
used. For Gabor filters with central frequency 32, 12 basis functions are used. In total, 
we can save 40% of image filtering operations.  

The Bayes classifier [24] is applied for texture classification in this experiment. It 
is the optimum one when the texture features are assumed to have a Gaussian distri-
bution. Table 1 gives the percentages of the correct classifications using the proposed 
steerable Gabor filtering method (SG), exact Gabor based multi-channel filtering 
method (GM) and the moment invariant (MI) method proposed in [23]. 
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Table 1. Percentages of correct classification for rotated texture samples using Steerable Gabor 
filtering method (SG), extact Gabor based multi-channel filtering method (GM) and the mo-
ment invariant (MI) method [23] 

 20° 70° 90° 120° 150° 
Texture (SG) (GM) (MI) (SG) (GM) (MI) (SG) (GM) (MI) (SG) (GM) (MI) (SG) (GM) (MI) 

D9 100.0 100.0 80 88.9 88.9 80 100.0 100.0 75 94.4 94.4 80 94.4 94.4 80 
D10 100.0 100.0 90 100.0 100.0 80 100.0 100.0 70 100.0 100.0 90 100.0 100.0 80 
D15 100.0 100.0 70 100.0 100.0 90 100.0 100.0 75 100.0 100.0 75 100.0 100.0 80 
D17 100.0 100.0 100 100.0 100.0 90 100.0 100.0 95 100.0 100.0 95 100.0 100.0 85 
D20 100.0 100.0 100 100.0 100.0 100 100.0 100.0 100 88.9 100.0 95 94.4 100.0 85 
D22 100.0 100.0 65 100.0 100.0 85 100.0 100.0 90 100.0 100.0 90 100.0 100.0 70 
D29 100.0 100.0 95 94.4 100.0 90 95.0 95.0 90 94.4 94.4 95 94.4 94.4 95 
D37 88.9 88.9 95 94.4 94.4 95 100.0 100.0 95 94.4 94.4 80 94.4 94.4 80 
D49 72.2 100.0 80 100.0 100.0 85 0.0 25.0 85 44.4 61.1 70 100.0 100.0 70 
D51 100.0 100.0 90 100.0 100.0 90 100.0 100.0 95 100.0 100.0 80 100.0 100.0 80 
D68 94.4 88.9 90 94.4 94.4 80 100.0 100.0 85 100.0 100.0 95 100.0 100.0 95 
D77 100.0 100.0 85 100.0 100.0 70 100.0 100.0 95 88.9 77.8 90 50.0 50.0 90 
D84 100.0 100.0 85 100.0 100.0 85 100.0 100.0 80 94.4 100.0 75 100.0 100.0 80 
D93 100.0 94.4 75 88.9 88.9 85 100.0 100.0 85 94.4 94.4 70 94.4 94.4 80 

D103 100.0 100.0 75 100.0 100.0 75 100.0 100.0 85 100.0 100.0 80 100.0 100.0 80 
Average 97 98.1 85 97.4 97.8 85.3 93 94.67 86.7 93 94.4 84 94.8 95.2 82 

In several cases, steerable Gabor approximation would outperform the exact Gabor 
filtering. The reason why this can happen will be investigated in the future. However, 
one possible reason is due to the insufficient data. 

5   Conclusion 

We proposed an efficient rotation invariant feature extraction technique for texture 
classification. This technique adopts the framework of Gabor function based multi-
channel filtering. However, Gabor filters with the same central frequency in this frame-
work are approximated by a finite set of steerable basis functions. By doing so, we can 
save some image filtering operations. The experimental results show that we can save 
up to 40% of computation with almost the same texture classification correct rate. 
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Abstract. Multiresolution histograms have been recently proposed as
robust and efficient features for texture classification. In this paper, we
evaluate the performance of multiresolution histograms for texture clas-
sification using support vector machines (SVMs). We observe that the
dimensionality of multiresolution histograms can be greatly reduced with
a Laplacian pyramidal decomposition. With an appropriate kernel, we
show that SVMs significantly improve the performance of multiresolu-
tion histograms compared to the previously used nearest-neighbor (NN)
classifiers on a texture classification problem involving Brodatz textures.
Experimental results indicate that multiresolution histograms in con-
junction with SVMs are also robust to noise.

1 Introduction

Texture classification is important in many applications, such as object recogni-
tion, image segmentation, content-based image retrieval and scene understand-
ing. Two major steps involved in texture classification are feature extraction
and classification method. Numerous features have been proposed for use in
texture classification, which are categorized into statistical, geometrical, model-
based and signal processing methods [1]. Many classifiers have been used in
conjunction with texture features, e.g., nearest-neighbor classifiers, Fisher lin-
ear discriminants, neural networks and support vector machines as summarized
in [2].

Multiresolution histograms have been recently proposed as robust and effi-
cient features for texture classification [3]. Multiresolution histograms have many
desirable properties, such as ease of computation, invariance to rigid motions,
and robustness to noise. The relatively high dimensionality of multiresolution
histograms as compared to other texture features, however, requires the use of
a classifier that does not seriously suffer from the curse of dimensionality [4].
Support vector machines (SVMs) gained a great deal of attention in the recent
years due to their good generalization ability on high-dimensional data [5,6].
SVMs therefore make a natural choice to deal with multiresolution histograms.

In this work, we evaluate the performance of multiresolution histograms us-
ing SVMs. We observe that the effective dimensionality of multiresolution his-
tograms can be greatly reduced using a Laplacian pyramid. With an appropri-
ately tuned Laplacian RBF kernel, we show that SVMs improve the classifi-
cation performance of multiresolution histograms significantly compared to the
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previously used NN classifiers. We also experimentally demonstrate that this
improvement in classification performance is robust to noise.

The organization of the paper is as follows. Brief introductions to both mul-
tiresolution histograms and SVMs are provided in Sections 2 and 3, respec-
tively. Section 4 presents the reasons for considering SVMs for multiresolution
histograms and a method to reduce the dimensionality of multiresolution his-
tograms. Section 5 presents experimental results on Brodatz textures, and Sec-
tion 6 concludes the paper.

2 Multiresolution Histograms

Multiresolution histogram is the set of histograms of an image at multiple scales
[3]. The multiscale decomposition of an image can be computed via Gaussian
or Laplacian pyramids [7]. Unlike a single image histogram, the multiresolution
histogram encodes spatial information in an image while retaining many desir-
able properties of the single image histogram, such as ease of computation and
invariance to rigid motions. Two dissimilar images having identical histograms
do not have identical multiresolution histograms since the image histograms at
lower resolutions are affected by spatial image information. This notion can be
formalized via generalized Fisher information measures [3,8].

The generalized Fisher information measures are directly related to the image
spatial variation or sharpness. For an image I of unit L1 norm, the generalized
Fisher information measure, as a function of a continuous parameter q, is given by

Jq(I) =
∫

D

|∇I(x)/I(x)|2 Iq(x) d2x, (1)

where the sharpness of the image I at a pixel x is given by |∇I(x)/I(x)|2. With
q = 1, the average sharpness J1 is the Fisher information.

The generalized Fisher information is also related to the rates of change of
histogram densities with image resolution. This relation can be obtained from
the Tsallis generalized entropy which can be expressed as a linear transformation
of the histogram. The Tsallis generalized entropy Sq of an image histogram with
unit L1 norm and density hj at intensity vj is given by

Sq =
m−1∑
j=0

(
vj − vq

j

q − 1

)
hj , (2)

and is a function of continuous parameter q. Here m is the number of bins in
the histogram. For q = 1, the Tsallis generalized entropy reduces to the familiar
Shannon entropy.

The resolution of an image can be decreased by using a Gaussian filter G(l) =
1

2πlσ2 exp
(
−x2+y2

2lσ2

)
, with resolution l. Let h̃j denote the histogram density at

intensity vj and S̃q the Tsallis generalized entropy of the filtered image I ∗G(l).
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The generalized Fisher information measure of the image I is related to the rate
at which the Tsallis generalized entropy changes as

Jq(I) =
σ2

2
dS̃q

dl
=

σ2

2

m−1∑
j=0

(
vj − vq

j

q − 1

)
dh̃j

dl
, (3)

where we used the expression (2). Thus the generalized Fisher information mea-
sure, which is a closed-form functional of an image (refer to (1)), can also be
expressed in terms of rates of change of histogram densities. This formally es-
tablishes the connection between the image spatial variation and the rates of
change of histogram densities.

We outline the steps involved in extracting the multiresolution histogram
features [3]: (i) construct the multiscale decomposition of an image via Gaussian
or Laplacian pyramids, (ii) compute the histograms of the image at different
resolutions at a chosen bin width and normalize all to have unit L1 norm, (iii)
convert the histograms into cumulative histograms, (iv) subtract the adjacent
cumulative histograms to obtain the difference histograms and concatenate the
difference histograms to form the feature vector. The step (iv) gives the rate of
change of histogram densities with image resolution. The cumulative histograms
are used because they capture the dependence between bins corresponding to
similar intensities, whereas the original histograms assume that different inten-
sity bins are independent [9].

3 Support Vector Machines

In this section, we briefly review SVMs for binary classification [5]. Given a set of
training examples {(xi, yi), i = 1, . . . , l}, where xi are the patterns (e.g., vectors
in Euclidean space Rn), and yi ∈ {±1} are the binary labels, a binary SVM
constructs a maximum margin hyperplane in a very high-dimensional space (can
be an infinite dimensional space) known as feature space F , while at the same
time minimizing the training error. The feature space is obtained by transforming
the input space, Rn, via a nonlinear map φ : Rn → F . The feature space is
usually of a much higher dimension than the input space.

Cover’s theorem [10] states that patterns that are nonlinearly separable in
the input space Rn become linearly separable in the feature space F with high
probability provided the dimensionality of the feature space is sufficiently high.
The maximum margin hyperplane, wT φ(x) + b = 0, therefore constructs a non-
linear decision surface in the input space (also called nonlinear SVM). It can be
obtained by solving the following primal optimization problem:

min
w,b,ξ

1
2
‖w‖2 + C

l∑
i=1

ξi, (4)

subject to yi(wT φ(xi) + b) ≥ 1− ξi, (5)
and ξi ≥ 0, i = 1, . . . , l (6)
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where ξi are the penalty terms associated with patterns φ(xi), and C is a con-
stant that determines the trade-off between the training error and the margin
width. The normal vector to the hyperplane can be found by forming the La-
grangian function and is given by w =

∑l
1 αiyiφ(xi), where αi are the Lagrange

multipliers corresponding to the constraints (5); w is thus determined only by
those patterns that have non-zero Lagrange multipliers. These patterns are called
support vectors. The αi can be obtained by solving the corresponding dual opti-
mization problem:

max
αi

l∑
i=1

αi − 1
2

l∑
i,j=1

αiαjk(xi,xj), (7)

subject to
l∑

i=1

αiyi = 0, (8)

and 0 ≤ αi ≤ C, i = 1, . . . , l (9)

where inner products in the feature space are replaced by a kernel function,
k(xi,xj) ≡ φ(xi)T φ(xj), evaluated at input patterns xi and xj . Thus the dual
optimization problem depends only on inner products in the feature space.

The decision function of the SVM also depends only on the inner products:
f(x) = sgn

(
wT φ(x) + b

)
and can therefore be expressed in terms of kernel

functions as f(x) = sgn(
∑l

i=1 αiyik(xi,x) + b). The SVM solution therefore
does not require any explicit feature space mapping as long as the inner prod-
ucts in the feature space can be efficiently computed. This can be accomplished
by choosing a symmetric positive definite kernel or a Mercer kernel k(xi,xj),
for which Mercer’s theorem [6] implies the existence of a mapping φ such that
k(xi,xj) = φ(xi)T φ(xj). Therefore, without considering the mapping φ explic-
itly, a nonlinear SVM can be constructed with an appropriate Mercer kernel; see
[6] for choices of a Mercer kernel and further details.

4 Learning SVMs with Multiresolution Histograms

We investigate the suitability of SVMs for texture classification using multireso-
lution histograms. The distance between two histogram feature vectors is usually
computed using L1 distance since it gives equal importance to all densities [11].
Other norms give higher (e.g., L2 norm) or lower (sublinear norms) importance
to higher bin counts, and vice versa. In the absence of any prior information,
the histogram is best represented by the L1 norm.

An SVM with a Laplacian RBF kernel (k(x,y) = exp(−∑i |xi − yi|/2σ2))
computes the similarity between feature vectors using the L1 norm. Furthermore,
the Laplacian RBF kernel is a Mercer kernel which ensures that the feature
space hyperplane has maximum margin [5]. This implies that Laplacian RBF
kernels perform better on histograms compared to other kernels. Previous work
using SVMs with Laplacian RBF kernels on histograms reported excellent re-
sults [12,13]. SVMs offer good performance on high-dimensional data with small
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training sample size [5,12], which is typically the case with multiresolution his-
tograms. It is therefore expected that SVMs with Laplacian RBF kernel perform
well on multiresolution histograms.

The dimensionality of multiresolution histograms can be reduced using Lapla-
cian pyramids without affecting the classification performance. This is possible
because successive images in a Laplacian pyramid are detail images (also signed)
with most pixel intensity values near zero. This results in sparse histograms
resembling Gaussian densities with low variance centered near zero [7]. Con-
sequently, the cumulative histograms of an image at different resolutions have
similar values at tails, where the tails represent high intensity values of either
sign. The difference histogram features corresponding to these tails tend to be
zero, which is not necessarily the case with Gaussian pyramids. If a given fea-
ture has the same value, zero in this case, for all the training samples, it can be
removed with no effect on the classification results. In other words, the training
samples lie in a lower dimensional subspace of a space of their original dimen-
sionality and can discriminate (classify) test patterns only along these feature
dimensions.

5 Experiments

We evaluate the performance of multiresolution histogram features using SVMs
on Brodatz textures. In [3], authors use L1 distance to match multiresolution
histograms. This is identical to a one nearest-neighbor classifier (1–NN) using
L1 distance. We demonstrate that the performance of multiresolution histograms
can be significantly improved by SVMs and it is also robust to noise. This im-
provement is significant particularly when the training sample size of the classi-
fier is small (as a fraction of the total samples).

5.1 Data

We experimented with 30 natural textures selected from Brodatz album1 [14].
A few sample textures are shown in Figure 1. The texture images are of size
640 × 640 with 256 gray levels. We divided each texture image into 100 non-
overlapping subimages (samples) of size 64 × 64. Each texture class thus has a
total of 100 samples. In all our experiments, the training set comprises 10% (10)
and the test set the remaining 90% (90) of the total samples of a texture class.
The test errors reported are averaged over 20 runs, where each time the 100
samples of each texture class are randomly split into 10 training samples and 90
test samples.

5.2 Experimental Setup

We extracted the multiresolution histogram features as described in Section 2.
The multiscale decomposition of subimages was computed using a Laplacian
1 Available at http://www.ux.his.no/∼tranden/brodatz.html
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Fig. 1. Sample textures from the Brodatz texture database

pyramid. The number of levels in the pyramid was set to 5, and the number of
histogram bins to 64. We did not subsample the images at lower resolutions to
avoid the problem of estimating histograms with too few pixels (with subsam-
pling, the lowest resolution image is of size 4×4). Features generated with these
parameter settings yielded the best results on both SVMs and NN classifiers. The
dimensionality of the feature vector is 256 obtained by concatenating the four
difference histograms of 64 bins, calculated by taking the adjacent differences of
the five cumulative histograms. The effective feature dimensionality, however, is
approximately 90 after removing all the zero features from the training set as
described in Section 4. The exact (number of) features removed depends on the
random partitioning of the total samples into training and test sets. The training
samples were normalized so that all the features are in the range [0, 1].

We have described SVMs for binary classification in Section 3. Multiclass
classification problem using SVMs is usually solved by training several binary
SVMs. We used one-vs-all classification scheme in which one binary SVM is
trained for each texture class to separate it from the rest [15]. We set the constant
C = 100 (refer to (4)). We tried both polynomial and radial basis function (RBF)
kernels for SVMs. The parameter σ of the RBF kernel was tuned manually for
the best classification results. For the NN classifiers, a value of k = 1 (1–NN)
yielded the best results.

5.3 Experimental Results

The classification results of both SVMs and 1–NN classifiers on noiseless and
noisy Brodatz texture samples are summarized in Table 1. The error rates shown
in the third column were obtaining by adding white Gaussian noise of standard
deviation 10 (on intensity scale [0,255]) to all the samples in the database. On
both noiseless and noisy textures, SVMs clearly outperform the 1–NN classifiers.
As expected, both SVMs and 1–NN classifiers perform best with L1 metric. The
SVM with Laplacian RBF kernel performs best on both noiseless and noisy
texture samples (error rates 1.44% and 1.79%, respectively), while the 1–NN
classifier with L2 metric performs worst (error rates 4.11% and 4.58%, respec-
tively). The SVM with Laplacian RBF kernel performs almost twice as better
as 1–NN classifier with L1 metric. In general SVMs with Laplacian or Gaussian
RBF kernels perform better than 1–NN classifiers. We observed a similar trend
in the results when the fraction of total samples used for training is increased to
25%. As can be seen from Table 1, the classification performance of SVMs re-
mains reasonably robust in the presence of noise. It is interesting to note that the
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Table 1. Error rates (E.r.) of SVMs with different kernels, and 1–NN classifiers with
different metrics on noiseless and noisy Brodatz textures. The error rates are averaged
over 20 runs.

SVMs E.r (%) E.r. (%)
(Kernel type) (noiseless) (noisy)
Polynomial (degree = 5) 2.93 3.26
Polynomial (degree = 6) 2.89 3.26
Polynomial (degree = 7) 2.92 3.25
Gaussian RBF(σ = 2) 2.30 2.54
Gaussian RBF (σ = 3) 2.26 2.57
Gaussian RBF (σ = 4) 2.49 2.77
Laplacian RBF (σ = 5) 1.56 1.79
Laplacian RBF (σ = 5.5) 1.44 1.79
Laplacian RBF (σ = 6) 1.75 1.92
1–NN Classifiers E.r. (%) E.r. (%)
(Metric type) (noiseless) (noisy)
L1 distance 2.86 3.68
L2 distance 4.11 4.58

error rates of SVMs with Laplacian or Gaussian RBF kernels on noisy samples
are lower than those of 1–NN classifiers on noiseless samples.

6 Conclusion

We evaluated the performance of multiresolution histograms using SVMs. We
verified that the dimensionality of multiresolution histograms can be reduced
significantly using a Laplacian pyramid. We also showed that the classification
performance of multiresolution histograms on Brodatz textures can be improved
significantly using SVMs with a Laplacian RBF kernel compared to the previ-
ously used 1–NN classifier. We also demonstrated the robustness of SVM classi-
fication performance in the presence of noise.
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Abstract. Texture classification plays an important role in identifying objects. 
The fractal properties based on moment feature images for texture classification 
are investigated in this paper. The two-order moments of the image in small 
windows are used as feature images whose fractal dimensions are then 
computed and employed to classify the textures using support vector machines 
(SVMs). Experiments on several Brodatz nature images and four in-vivo B-
mode ultrasound liver images demonstrate the effectiveness of the proposed 
algorithm. 

1   Introduction 

Texture classification is conventionally divided into two stages: first, textures in an 
image are differentiated and then their representations for further classification are 
developed. Secondly, appropriate classifier is selected to operate on the above 
representations and then discriminate the texture features associated with different 
texture classes.  

Various algorithms that perform texture analysis, such as statistical, model-based, 
and signal processing algorithms, have been developed in the past. The statistical 
algorithms include gray level co-occurrence matrix (GLCM) [1, 2], autocorrelation 
function analysis [3], and texture Spectrum [4]. Model-based algorithms include 
statistical modeling such as Markov random fields (MRF) [5] and fractal based 
modeling [6, 7]. Moment, as one of signal processing algorithms, has often been 
utilized previously for characterizing texture [8, 9].    

In this paper, an algorithm is developed to obtain texture features from the fractal 
dimensions of the feature images, which are computed by the moments of the image 
in local regions. The moments of a two-dimensional function is defined and the 
computation of fractal dimensions from the moment feature images is derived in 
Section 2. In Section 3, the support vector machines (SVMs) that uses the obtained 
features to classify the texture images is presented. Section 4 gives experimental 
results, and conclusions are then followed in Section 5. In this study, two performance 
indices are employed to evaluate the classification rate. One is the polynomial kernel 
degree of SVMs and the other is the size of the local subimages for fractal dimension 
estimation. The proposed algorithm is tested using several Brodatz and in-vivo B-
mode ultrasound liver images.  
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2   Features Extraction  

The moments alone are not sufficient to obtain good texture features in certain 
images. However, their distribution would be different for different textures. One 
solution suggested by Caelli [10] is to introduce a nonlinear transducer that maps 
moments to texture features. Coggins and Jain [11], on the other hand, use the 
absolute deviation of their feature vectors from the mean. Tuceryan [12] has chosen to 
use the hyperbolic tangent function as their nonlinear transducer which is logistic in 
shape. In this paper two-order moments of the original are introduced as the feature 
images and their corresponding fractal dimensions are computed for the classification. 

2.1   Moments 

The moments of an image are used to compute texture features. The (p+q)th order 
moment [13] of a function with two variables f(x,y) with respect to the origin (0,0) is 
defined as: 

( , ) ,p q
pqm f x y x y dxdy

∞ ∞

−∞ −∞

=  (1) 

where ,2,1,0=+ qp  .  

Tuceryan [12] took the image intensity as a function with two variables, f(x,y), and 
calculated the two order moments of each pixel in the image, which were interpreted 
as a convolution of the image with a mask. The set of values for each moment over 
the entire image can be regarded as a new feature images.  Fig.1 shows the masks 
corresponding to the moments up to the second order with a window size of three.  
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Fig. 1. The masks corresponding to the moments up to the second order with a window size of 
three 

In our experiments, subimages are selected randomly from each original image and 
their corresponding feature images M1, M2, M3, M4, M5, and M6 are derived from 

,,,,, 1120011000 mmmmm and 02m , respectively.  And then the fractal dimensions of 

the moment feature images can be computed to classify the texture. 

2.2   Fractal Dimension  

Fractal is a term introduced by Mandelbrot to describe the shape and appearance of 
objects that have the property of self-similarity. Among various approaches for 
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estimating fractal dimension (FD) in an image, the differential box counting (DBC) 
algorithm, which can cover a wide dynamic range with high computing efficiency, is 
adopted herein [15]. 

Assume that an image with M×M pixels has been scaled down to that of s×s 
pixels(s is an integer, and 2/1 Ms ≤< ), and the scale ratio r becomes Ms / . 
Subsequently, the image is considered as a three-dimensional space with (x, y) 
indicating the two-dimensional position and the third coordinate denoting intensity. 
The (x, y) space is partitioned into grids of size of s×s, and on each grid there is a 
column of boxes of size of s×s×h. If the total number of gray-levels is G, denote 

]/[]/[ sMhG = . Let the minimum and the maximum gray-level of the image in the (i 

,j )th grid both fall in the box number k and l, as illustrated in Fig.2.  

 

 

Fig. 2. Determination of nr(i, j) 
 

So, 

1),( +−= kljinr , (2) 

where, ),( jinr
is the contribution of Nr in the (i, j)th grid. By taking the contributions 

from all grids of the image, it gives as follows.  

=
ji

rr jinN
,

),( , (3) 

where, Nr is for different r (i.e., different s). And then, the fractal dimension Df  can be 
estimated by using the least-square linear fitting of log(Nr) versus log(1/r).  

The success of the texture classification by fractal performance algorithm greatly 
depends on how well it can model the underlying statistical distribution of data. The 
two-order moments can give six different feature images for each image, so it is more 
accurate than single original image.  

3   Support Vector Machines (SVMs) 

The features extracted by the preceding algorithm are used for classification. From 
Bayes classifiers to neural networks, there are many choices for an appropriate 
classifier. Among them, Support Vector Machines (SVMs) is a good candidate due to 
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their ability to transform the learning task to the quadratic programming problem in 
high-dimensional spaces [16]. 

Usually, an SVM constructs a binary classifier from a set of two-class labeled 
patterns called training examples. Given the training data set ( , )i ix y  

(where , 1, ,N
ix R i l∈ = is the N-dimensional input feature, l is the number of 

training samples, and { 1, 1}iy ∈ + − is the class label), the SVM selects the optimal 

separating hyperplane as follows:  

1

( ) sgn( )
l

i i i
i

f x y x x bα
=

= ⋅ + , (4) 

Where, the points from the data set that fall closest to the separating hyperplane are 
called support vectors. The coefficients iα  and b can be determined by solving the 

large-scale quadratic programming problem: 

1 , 1

1
( ) ( ),

2

l l

i i j i j i j
i i j

W y y x xα α α α
= =

= − ⋅  (5) 

Where, ( )W α  is subject to the constraints: 

Cy i

l

i
ii ≤≤=

=

αα 0,0
1

lifor ,,1= . (6) 

The parameter C can be regarded as the regularization parameter and be selected by 
the user. A larger C corresponds to assigning a higher penalty to the training errors. 
Under certain conditions, the computational intensive mapping process can be 
reduced with an appropriate kernel function K such that the decision function 
becomes: 

1

( ) sgn( ( , ) ).
l

i i i
i

f x y K x x bα
=

= +    (7) 

In this paper, polynomial kernel function is used as: 

( , ) ( ) , 0,d
i j i jK x x x x cγ γ= ⋅ + >   (8) 

where 1=γ c=1, and d is the degree of the polynomial kernel in our experiments.  

SVM is originally developed for two-class problems, however, it can be extended 
to multi-texture classification by adopting the one-against-others decomposition 
algorithm.  

4   Experiments 

The proposed classification algorithm has been tested on both nature images and 
some in-vivo B-mode ultrasound liver images. Fig.3 shows six nature images with 
512×512 pixels, D9 (Grass), D15 (Straw), D19 (Woolen cloth), D29 (Beach sand), 
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D68 (Wood grain), and D84 (Raffia), are from Brodatz album, 
http://sipi.usc.edu/services/database/database.cgi?volume=textures.  

 

         
(a) D9                          (b) D15                       (c) D19 

 

         
(d) D29                      (e) D68                         (f) D84 

Fig. 3. Nature images from the Brodatz album: (a) D9 (Grass), (b) D15 (Straw), (c) D19 
(Woolen cloth), (d) D29 (Beach sand), (e) D68 (Wood grain), and (f) D84 (Raffia) 

In our experiments, 40 subimages were randomly selected in every original image, 
and their corresponding fractal dimensions of feature images are computed separately, 
so there is a total of 240 patterns for training and classification. The entire sample set 
is randomly divided into two groups: set A (120 samples) and set B (120 samples), 
and set A is always used as training set to evaluate the performance of the classifier. 
Two different sample set are used as test set to obtain the correct classification rate 
(CCR) using the proposed SVM algorithm with polynomial degree 1 through 9. The 
CCRs are tested by set A, the same as the training set, are shown in Fig.4. Then, set B 
is used as test set (see Fig.5). It can be seen from Fig.5 that the CCRs for subimage 
with a size of 256×256 can reach 100% when the polynomial degree is higher than 3.  

In order to investigate the influence of the size of the subimage, the CCRs for 
different subimages, such as 128×128, 64×64, 32×32,16×16, and 8×8 pixels, are all 
taken into considered. It is obviously that the CCRs can be greatly improved by using 
the same training and test set (set A), which are larger than 95% when the polynomial 
degree is higher than 4. Even the size of the subimage is smaller than 64, the CCRs 
are still satisfactory. However, the CCRs decrease rapidly if different training and test 
set are applied as shown in Fig.5. 

Meanwhile, Fig.5 indicates that the size of subimages is the key factor in 
determining the texture patterns compared to the polynomial degree. The CCRs 
achieved by set B are basically the same for the same subimage, but decrease sharply 
with the sizes of subimage reduce. So it is preferable to choose suitable size of 
subimage for the texture classification. 
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Fig. 4. CCRs (in percentage) of Brodatz nature images tested by set A for Polynomial degree 1 
through 9 with different size of subimages (256×256, 128×128, 64×64, 32×32, 16×16, and 8×8 
pixels) 
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Fig. 5. CCRs (in percentage) of Brodatz nature images tested by set B for Polynomial degree 1 
through 9 with different size of subimages (256×256, 128×128, 64×64, 32×32, 16×16, and 8×8 
pixels) 

In addition, the proposed texture classification algorithm is applied to solve 
practical problems including identifying four types of B-mode ultrasound liver 
images, i.e. healthy, fatty, fibrosis and cirrhosis, as shown in Fig.6. There are four in-
vivo ultrasound images with 400×400 pixels for each type of liver, and 10 samples 
with 64×64 pixels are chosen from each type of image, in which only the liver 
parenchyma is left without major blood vessels, acoustic shadowing, or any type of 
distortion. The entire sample set is also divided into two groups: set A (80 samples) 
and set B (80 samples), and set A is always regarded as the training set. The CCRs 
tested by set A and B are shown in Fig.7, respectively. It is clearly that the CCRs are 
satisfactory for the same training and test set, and the CCR of 88.75% can be achieved  
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when polynomial degree is 5. But the CCRs are very poor tested by set B. This 
implies that this algorithm for the in-vivo liver disease identification should be tested 
by the same training and test samples. 

 

          
a) Healthy                    b)Fatty                       c) Fibrosis                    d) Cirrhosis 

Fig. 6. Four types of B-mode liver images:  a)Healthy b) Fatty c) Fibrosis d) Cirrhosis liver 
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Fig. 7. CCRs (in percentage) of four types of B-mode liver images by SVMs for Polynomial 
degree 1 through 9 and tested by two different test sets: set A and set B 

5   Conclusions 

In this paper, a texture classification algorithm is developed based on the fractal 
performance of the moment feature images, which is tested by using several nature 
images and four types of in-vivo ultrasound liver images. The classification rate with 
different subimage sizes and different polynomial degrees are compared in Fig.4 and 
Fig.5. The results show that the fractal dimensions obtained by moment feature 
images can reflect the textural properties of images.  

There are more works on this study need to be done in the future. First, the size of 
the window within which the fractal dimensions are calculated can be regarded as a 
scale parameter. This can be verified by the fact that the CCR corresponds to the size 
of the fractal window. Second, the selection of the fractal window to derive the 
texture features from the moment feature images is also not done automatically. In 
such case, the window should cover enough texture elements expressing meaningful 
features. Finally, the general purpose of SVMs algorithm requires that the polynomial  
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degree is provided artificially. In this experiment polynomial degrees from 1 to 9 are 
tested, and it shows that the polynomial degree 4~6 can provide good performance in 
classifying texture pairs.  
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Mapping Local Image Deformations into Depth
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Abstract. The paper presents a 2 frame structure-from-motion algo-
rithm that operates by mapping local changes (image deformations) into
estimates of time-to-collision (TTC). For constant velocity motion of the
camera in a stationary scene, time-to-collision amounts to coarse depth
data - useful for navigation and qualitative scene understanding. The the-
ory is supported by a set of experiments demonstrating accurate TTC
recovery from video sequence data acquired by a mobile robot.

1 Introduction

Recovery of structure from motion has been examined from a variety of ap-
proaches, mainly feature point extraction and correspondence[5,7] or comput-
ing dense optical flow[6,8,1]. Typically, the Fundamental Matrix framework or
a global motion model is used to solve for global motion after which the rel-
ative 3-D positions of points of interest in the scene can be computed[9,11].
Appearance-based methods have been mostly discarded for structure from mo-
tion because much of the shape and motion information are so confounded that
they cannot be recovered separately or locally[3]. Soatto proved that perspective
is non-linear, therefore no coordinate system will linearize perspective effects[10].
However, in [2] we showed that some useful structure and motion information
could indeed be directly recovered, namely time-to-collision (TTC) and head-
ing information. In this paper we present a practical, two-frame algorithm for
recovering TTC and experimental results showing how it can be used to re-
cover a qualitative 3-D scene description from video sequences acquired by a
mobile robot.

2 Theory

The key result from [2] is that useful shape and motion information can be ex-
tracted from the analysis of local image deformations along 1-D neighbourhoods.
The set-up is shown in Figure 1. Each oriented, rectangular window corresponds
to the image of of a cross-section of a 3-D surface, essentially a normal section
in the context of differential geometry[4]. There is a precise relationship between
the structure and motion of this cross-section and deformations of two corre-
sponding 1-D windows, (xa, ya, θi, t0) and (xa, ya, θi, t1) (Figure 1), that is made
explicit for particular choice of image formation model.

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 770–777, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Mapping Local Image Deformations into Depth 771

a θia 1(x , y ,    , t  )

a θia(x , y ,    , t  )0

0t

1t

Fig. 1. Oriented slits at image coordinates (xa, ya) at multiple orientations θi cover
the image plane at instants t0 and t1

The image formation model we use, i.e., the forward-model, is shown schemat-
ically in Figure 2. The mapping from cross-section to image is defined by the per-
spective camera model shown in Figure 2a, and the motion and structure model
relating 3-D change to appearance is shown in Figure 2b, the latter comprising
5 parameters, m = (Ω, δ, η,β, k). Referring to Figure 2b, the 3-D cross-section
is characterized by a curvature K, a normal vector N and distance from the
viewpoint, d. Distance d scales all lengths of the diagram, so it is factored out to
a canonical representation with unit distance between first viewpoint V P and
the fixation point on the surface 0. The surface normal vector N at 0 is encoded
by the angle η with respect to the first view axis V P − 0. The curvature of the
canonical surface, the reciprocal of the radius of the circular approximation to
the surface, becomes k = Kd.

γ
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Image plane
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0 N−11 ... ...
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R=1/K=d/k (or 1/k)

(a) (b)

Fig. 2. (a) The 1-D camera model. (b) Motion and structure model for a surface cross-
section

The motion model is chosen to minimize image deformation due to trans-
lation, defining the second viewpoint V P ′ at a given distance δ at an angle β
from the first view axis V P − 0. V P ′ is fixated on point Q on the surface, a
view rotation Ω away from the first fixation point 0. Collectively, the camera
and shape and motion models are sufficient to describe the forward mapping of
a 3-D contour, parameterized by orientation, η, and curvature, k, onto a 1-D
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image slit, I, and then onto a corresponding image slit, I ′ via translation, Ω,
change in distance to viewer, δ, and change in viewpoint direction, β. Details
are given in [2].

Solution of the inverse problem involves recovery of m given two 1-D win-
dows, I and I′. Here an appearance-based approach is used. For the experiments
presented in this paper, the parameter space m is quantized into 21 levels for Ω
and δ respectively, and 5 levels each for η, β, and k. This follows from [2] - only Ω
and δ are recoverable, but fortunately these parameters are sufficient to recover
TTC. For each of the 55,125 instances of mi, we create corresponding window
pairs, Ii and I ′i, by applying the forward model shown earlier in Figure 2.

Let Ii and I ′i be represented by n × 1 vectors such that Ii = HiI ′i, where
Hi is an n × n matrix that encodes the bi-directional mapping from Ii to I ′i
and vice-versa. We refer to this as a correspondence matrix, and it is relatively
straightforward to determine given Ii and I ′i. A practical procedure for com-
puting Hi is given in [2]. To minimize the effects of intensity variations between
frames, before computing Hi, Ii and I ′i are first normalized as Ĩi, Ĩ ′i for a zero
mean intensity and a contrast of 1 by finding the image’s brightness μI and
contrast ΔI .

μI �
∑

i Ii +
∑

i I ′i
2N

,

ΔI �
max

i
(|Ii − μI |, |I′i − μI |)

μI
⊂ (0, 1) ,

Ĩ =
I − μI
μIΔI

, Ĩ ′ =
I ′ − μI
μIΔI

. (1)

Another key result from [2] concerns the singular value decomposition (SVD)
of Hi. Let Ui and Vi be left and right matrices respectively of the SVD of Hi,
and let Uki and Vki be their corresponding kth order approximations. The latter
correspond to the first k columns of Ui and Vi respectively sorted by singular
values. Now let feature vector ŵi represent the image vectors Ĩ and Ĩ ′ as follows:

ŵi =
[
Uk

T
i /
√

2
... Vk

T
i /
√

2
]⎡⎣ Ĩ. . .

Ĩ ′

⎤⎦ , (2)

where Ĩ and Ĩ ′ are a pair of inputs for which we wish to test Hi. The feature
vector ŵi is now the best parameterization for the image pair assuming defor-
mation Hi. The residual error can be computed by projecting the feature vector
back into the image space. If the assumed deformation Hi is sufficiently close
to the scene geometry, then residual signal error ri, the difference between the
original image signal and the reconstructed image signal will be low,

ri =

⎛⎝⎡⎣ Ĩ. . .
Ĩ ′

⎤⎦−
⎡⎣Uki

. . .
Vki

⎤⎦ ŵi

⎞⎠/∥∥∥∥∥∥
⎡⎣ Ĩ. . .
Ĩ ′

⎤⎦∥∥∥∥∥∥ . (3)
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The likelihood of correspondence Hi given evidence (Ĩ, Ĩ ′) can be expressed
as a function L

(
Hi|Ĩ, Ĩ ′

)
,

L
(
Hi|Ĩ, Ĩ ′

)
� e−‖ri‖ ⊂ (0, 1] . (4)

The uncertainty of the maximum likelihood choice can be expressed as the en-
tropy h of the likelihoods for all the different hypotheses,

hi =
−∑n

i=1 L
(
Hi|Ĩ, Ĩ ′

)
log
(
L
(
Hi|Ĩ, Ĩ ′

))
log(n)

⊂ (0, 1] . (5)

3 Implementation

In practice, the computational complexity of searching for Hi is quite managable
[2]. Only Ω and δ are observable, so η, β, and k can be marginalized out by
averaging the 125 matrices associated with each Ω,δ pair. This reduces the search
space to 441 distinct Hi. Ω can be found independently by marginalizing δ, but
δ must be determined jointly with Ω. The net result is that Hi can be found
with a maximum of 21+21 = 42 matches, in each of n image orientations (n = 6
in this paper), for each i× j neighbourhood of the input image pair.

Time-to-collision is carried by the δ parameter, which indicates the ratio of
the distance between the new viewpoint to the surface over the distance between
the old viewpoint to the surface,

δ =
‖V P ′ −O‖
‖V P −O‖ . (6)

The time between observations, Δt, is known beforehand. Assuming that the
camera’s motion relative to the scene will continue at constant velocity, one can
estimate how much time will elapse before the camera reaches the point on the
surface it is looking at and heading toward,

T = Δt

(
δ

1− δ

)
. (7)

Recovering Ω and δ locally in forward time can be augmented by recovering
Ω′ and δ′ by reversing the sequence of the images. A direct method of computing
the time to collision T̃ between two images, using both forward and reverse
information, separated by a delay of Δt is to average the two contributions,

T̃ =
Δt

2

(
δ

1− δ
+

1
δ′ − 1

)
. (8)

Taking contributions from different orientations into account, and weighting
by their respective uncertainties (5), we obtain a more robust estimate of TTC,

T̃ =
Δt

2n

n∑
θ=1

(
δθhθ

1− δθhθ
+

1
δ′θh

′
θ − 1

)
. (9)
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4 Experiments

The forward model shown earlier in Figure 2 is used to produce correspondence
matrices Hi indexed by Ω and δ as outlined in Section 2. The range of values
for each parameter in experiments are summarized in Table 1.

Table 1. Parameters of structure from motion model. N and α are known constants.

Symbol Values Description
−4.0◦ translate left 32/64 pixels

Ω 0◦ no change
+4.0◦ translate right 32/64 pixels
0.80 zoom in 20%

δ 1.0 no change
1.25 zoom out 25%
−45◦ normal pointing 45◦ left of V P

η 0◦ normal pointing toward V P
+45◦ normal pointing 45◦ right of V P

−10◦ V P ′ moves to left of V P
β 0◦ V P ′ stays in line with V P

+10◦ V P ′ moves to right of V P

-4 concave surface
k 0 flat surface

+4 convex surface

Applying SVD to each of the Hi yields corresponding Uki,Vki pairs. These
detectors, some of which are shown in Figure 3, are automatically synthesized
to optimally recognise the distance-to-viewer change while remaining insensitive
to other surface motions.

The one-time offline training, i.e. constructing the 441 64×64 correspondence
matrices and their detectors by Singular Value Decomposition, required less than
90 seconds on an Intel Pentium 4 2660 MHz workstation.

The video test sequence was obtained by a video camera on a mobile robot
as it travelled along a linear trajectory through a room, taking images at known
positions in a fixed direction, looking in the direction of travel. The first and last
images of the 11 frame sequence are shown in Figure 4.

The robot’s position advances 20cm between each image, hence a velocity of
20cm per unit of time Δt. The map of maximum likelihood δ̂ and the map of
time to collision T were computed over a grid of 48×36 slits at 6 orientations and
are rendered in Figure 5. Computation time on an Intel Pentium 4 2660 MHz
workstation was approximately 90 seconds per image frame pair using an ex-
haustive search. In a practical implementation, the redundancy in the detectors
would be reduced using linear combinations of Principal Components, poten-
tially reducing computation time by a factor of 10. Using a sparser sampling of
the image plane would further reduce the computation time closer to real time.

One significant observation is that although the floor tile pattern expands
closer to the camera due to perspective and the texture of the floor is moving
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H
Ω = 0◦ Ω = 0◦ Ω = 4◦ Ω = 4◦

δ = 1.0 δ = 1.25 δ = 1.0 δ = 1.25

UT

VT

(a) (b) (c) (d)

Fig. 3. Correspondence Matrices for some motions. For each H, black indicates 0, white
represents 1. Hij (row i, column j) indicates the amount of correspondence between
Ii and I′

j . For UT and VT , black indicates -1 and white represents +1. Each row
of UT is a distorted sinusoid to be applied to I and the the same row in VT is the
corresponding distorted sinusoid for I′.

Frame 0 (t0) Frame 10 (t10)

Fig. 4. Lab1 sequence, source images

toward the robot, the floor is heading underneath the camera and does not appear
to be on a collision course with the camera. Because the camera line of sight is
parallel to the floor, the algorithm has effectively classified the floor motion as
maintaining constant distance from the camera, and thus not an obstacle. The
algorithm performs a literal figure-ground separation, and the obstacle blobs are
at least qualitatively useful for identifying the location of the nearest obstacles
in the image. Next, the quantitative estimates are examined.

Note that in Figure 5, there are holes in the time map between the table and
chair legs, where the back wall is beyond the detector’s range. The chair near
the center of the image started 400cm from the camera, and by the eleventh
frame is 200cm from the camera. The chair has a large opening in it, letting
a view of the background through. The image slits are based on a model of a
continuous surface, so some uncertainty in the maximum likelihood estimates in
this situation is unavoidable. The usefulness of the estimates can be shown in
Figure 6, comparing the mean of the estimated time to collision of the region
around that chair to ground truth from actual measurements.
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t1

t2

t3

t4

t5
Source δ map Time map

Fig. 5. Results from Lab1 sequence. For the δ map, δ = 0.8 (rapid approach) is rendered
as black, δ = 1.0 (no depth change) is middle gray and δ = 1.25 (rapid retreat) is
white. The time map indicates proximity (either about to touch or recently touched)
as brightness. Dark patches are more than 25 units of time away, either in the future
or the past.
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Time to collision estimate: Lab1 sequence, central chair
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Fig. 6. Neighborhood of central chair in Lab1 sequence. Image patches from frames
0, 3, 6, and 9 (left to right, top to bottom) are shown at left. At right, the mean
time to collision with this patch, shown as small circles are compared with the ground
truth (line).

5 Conclusions

A time to collision or contact map provides a form of figure-ground separation that
may be more informative to mobile robotics than instantaneous range images of
similar resolution: it not only provides the instantaneous location of obstacles in
the image plane, it also offers a prediction of their future locations. Distance to
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an obstacle is not the only factor to consider when ranking its importance to nav-
igation. For example, an obstacle 1m away but maintaining its distance from the
mobile robot is not significant, but an obstacle 20m away approaching at 2m/sec
is critical.

As an added feature of the method proposed in this paper, the floor is natu-
rally ignored in the case when the camera’s line of sight is parallel to the floor,
a task that is more difficult to achieve using optical flow methods.

The 1-D image slit surface model is often violated along various orientations at
different locations in the image plane during the experiment (narrow features such
as table legs, poor texture), and as a result, the maximum likelihood estimate at
those orientations and locations are given higher uncertainties. Pooling together
estimates from other, more confident orientations in the neighborhood leads to
group estimates that are more robust to gauge time to collision.
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Abstract. Traditional motion segmentation techniques generally de-
pend on a pre-estimated optical flow. Unfortunately, the lack of preci-
sion over edges of most popular motion estimation methods makes them
unsuited to recover the exact shape of moving objects. In this contri-
bution, we present an original motion segmentation technique using a
K-nearest-neighbor-based fusion of spatial and temporal label cues. Our
fusion model takes as input a spatial segmentation of a still image and
an estimated version of the motion label field. It minimizes an energy
function made of spatial and temporal label cues extracted from the
two input fields. The algorithm proposed is intuitive, simple to imple-
ment and remains sufficiently general to be applied to other segmentation
problems. Furthermore, the method doesn’t depend on the estimation of
any threshold or any weighting function between the spatial and tempo-
ral energy terms, as is sometimes required by energy-based segmentation
models. Experiments on synthetic and real image sequences indicate that
the proposed method is robust and accurate.

1 Introduction

Motion segmentation is one of the most studied research areas in computer vi-
sion. It refers to the general task of labeling image regions that contain uniform
displacement. Consequently, motion segmentation has often be related to mo-
tion estimation. Actually, a common way to segment an image sequence is to
estimate an optical flow field and then segment it into a set of regions with
uniform displacement. Such an approach is sometimes called motion-based [1]
since segmentation is performed on the basis of displacement vectors only. This
kind of segmentation is rather easy to implement and generates more accurate
results than say, an 8× 8 block classification-segmentation procedure. However,
motion-based approaches are known to depend on the accuracy of an optical
flow field which isn’t reliable over textureless and/or occluded areas. Conse-
quently, motion-based algorithms are doomed to return imprecise results, espe-
cially around edges of moving objects.
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To help motion segmentation converge toward more precise solutions (i.e.,
solutions in which the contour of segmented regions fit the silhouette of the
moving objects), some include spatial constraints to the segmentation process.
These constraints are often edges or regions extracted from one or more image
frames. Motion segmentation approaches with spatial constraints are often called
spatio-temporal techniques. These techniques are generally slower than motion-
based approaches, but generate more precise segmentation results.

The approach we propose is based on a K-nearest-neighbor-based fusion
procedure that mixes spatial and temporal data taken from two input label
fields. The first one is a spatial segmentation which contains regions of uniform
brightness while the second label field is an estimated version of the motion label
field we will search to refine. The two segmentation maps are obtained with an
unsupervised Markovian procedure. Our fusion method works with an iterative
optimization algorithm called ICM (Iterative Conditional Mode) [2] whose mode
(the maximum local energy for each site at each iteration) is obtained with a
K-nearest neighbor algorithm. The result returned by our fusion model is a label
field that exhibits uniform regions in the sense of brightness and motion.

The rest of the paper is organized as follows. In Section 2, we present some
motion segmentation techniques recently proposed by the computer vision com-
munity before section 3 describes the proposed technique. The Markovian
method we use to generate the two input label fields is discussed in Section
4 while the overall algorithm we proposed is summarized in section 5. Section 6
presents results produced by our method while concluding remarks are presented
in Section 7.

2 Previous Work

A great number of papers have been published in motion segmentation during the
past two decades [1,3]. Among the most popular motion-based approaches are the
ones using parametric motion models [1]. The goal of these motion segmentation
methods is to jointly estimate motion models and their associate motion regions.
To this end, the motion regions and the motion model parameters are generally
estimated in two steps [4] that are iterated until convergence. The first step
consists in estimating the motion model parameters according to a pre-estimated
optical flow field and the current motion label field [5,6]. By opposition, the
second step consists in estimating new motion regions while the motion models
are kept unchanged. Tekalp [7,8] summarizes these two steps with his Maximum
Likelihood (ML) and Maximum a Posteriori (MAP) procedures. The difference
between the former and the latter is the use of an a priori energy function that
helps smoothing the resulting motion label field.

To our knowledge, Murray and Buxton [9] were the first to embed motion seg-
mentation in a statistical framework using a Markov random field (MRF) model
and a Bayesian criterion (a MAP criterion). Their technique uses quadratic mo-
tion models and represents the segmentation field with a Gibbs distribution
whose energy is optimized with a Simulated Annealing (SA) algorithm. A few



780 P.-M. Jodoin and M. Mignotte

years later, Bouthemy and Francois [4] presented a motion-based segmentation
approach relying on 2D affine models, used to detect moving objects in a scene
observed by a moving camera. As for Murray and Buxton’s method [9], they pro-
posed a model based on a MAP criterion but include a temporal link between
successive partitions to ensure temporal coherence. Bouthemy and Francois uses
an ICM optimization to find the solution.

Other authors use motion segmentation to separate the scene into moving
layers [10]. A well known iterative approach is the one proposed by Wang and
Adelson [11]. The algorithm starts by estimating an optical flow field and sub-
divides the current frame into a predetermined number of square blocks. Affine
motion models are then fitted over each block to get an initial set of motion
models. Since the number of initial models is larger then the number of layers,
the models are merged together with a K-means clustering method. Some layers
can be split afterward to preserve spatial coherency.

Others have proposed segmentation models based on multiple features, such
as brightness and motion. They are often refereed to as spatio-temporal segmen-
tation techniques. In this context, Black [12] presented an incremental approach
with constraint on intensity and motion while accounting for discontinuity. Its
approach is based on a MRF and minimizes a three- term energy function using
a stochastic relaxation technique. Altunbasak et al. [13] presented a motion seg-
mentation approach working at a region level. As a first step, they independently
compute a motion-based partition and a color-based partition. Assuming that
color regions are more accurate than the motion regions, a region-based motion
segmentation is performed, whereby all sites contained in a color region are as-
signed a single motion label. Bergen and Meyer [14] show how to use a still image
segmentation combined with robust regression to eliminate error due to occlu-
sion. This technique computes depth cues on the basis of motion estimation error.

Finally, a recent paper proposed by Khan and Shah [15] presents a MAP
framework that softly blends color, position and motion cues to extract motion
layers. Each cue has its own probability density function (PDF). These PDF are
combined together with feature weights that give more or less importance to a
cue depending on some defined observations.

3 Our Method

Our motion segmentation procedure takes as input two label fields. The first
one is a spatial partition of a frame at time t (It) while the second one is an
estimated version of the motion partition (cf. Fig.1). In our application, these
two label fields –called respectively r and x[0]– are estimated separately with
an unsupervised Markovian procedure (although any other valid segmentation
approaches would do the trick). The Markovian framework used in this paper is
presented in Section 4.

Once r and x[0] have been computed, they are fed to a K-nearest-neighbor-
based fusion procedure. This procedure –which is the core of our contribution–
blends together spatial and temporal label cues to generate a partition with
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uniform regions in the sense of brightness and motion. In other words, this
fusion procedure optimizes an energy function made of spatial and motion label
terms extracted from the two input label fields. Details on this function and the
optimization procedure are presented in Section 5.

Compared to previous methods, our approach has legitimate advantages. To
start off with, our solution is unsupervised and, as opposed to [11] and [15],
doesn’t depend on any threshold or weighting function that might change from
one sequence to another. Secondly, our method is stable and doesn’t generates
unexpected results when its parameters are tweaked. For example, as opposed
to [13] that needs an accurate spatial partition, our method reacts well when
r and/or x[0] lacks precision. Finally, our method is simple to implement and
remains sufficiently general to be applied to other segmentation problems.

r x

ICM Optimization

[n]x

[0]

t−1 t t+1 t+2

Fig. 1. Schematic representation of our approach. From two frames at times t− 1 and
t, a spatial and a motion label field (r and x[0]) are estimated. These label fields are
then fed to the K-nearest neighbor fusion procedure (ICM optimization) that returns
a partition (x[n]) in which regions are uniform in the sense of brightness and motion.

4 Markovian Segmentation

Given Z = {X, Y }, a pair of random fields where X = {xs, s ∈ S} and Y =
{ys, s ∈ S}, represent respectively the label field and observation field defined
on S = {s = (i, j)}, a 2D lattice of N sites. Here, Y (an image frame It or a
vector field v) is known a priori whereas X has to be estimated. Each xs takes
a value in Γ = {1, . . . ,m}, where m corresponds to the number of classes of the
segmentation map while ys is a vector made of real elements.

Segmentation can be viewed as a statistical labeling problem, i.e., a problem
where each observation vector ys needs to be associated to the best class xs ∈
Γ . Thus, inferring a label field can be seen as an optimization problem that
searches for the best x in the sense of a given statistical criterion. Among the
available statistical criterion, the Maximum a posteriori states that a label field
x is optimal according to y when it maximizes the a posteriori PDF P (x|y). In
this way, x is optimal whenever x = arg maxx P (x|y) [2].

Because P (x|y) is often complex and/or undefined, it is common to assume
that X and Y are MRFs. In this way, this posterior distribution can be defined
by a Gibbs distribution of the form P (X |Y ) ∝ exp−U(X, Y ) where U(X, Y )
is an energy function [2]. From Bayes theorem [16], the a posteriori distribution
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can be represented as P (X |Y ) ∝ exp{−(U1(X, Y ) + U2(X))} where U1 and U2
are the likelihood and prior energy functions.

By assuming independence between each random variable Y s (i.e., P (Y |X) =∏
s∈SP (Y s|Xs)), the corresponding posterior energy to be minimized is

U(X, Y ) =
∑
s∈S

( Ψs(xs, ys)︸ ︷︷ ︸
U1(xs,ys)

+
∑

<s,t>

β
[
1− δxs,xt

]
︸ ︷︷ ︸

U2(xs)

), (1)

where U2 is an isotropic Potts model. Here, δa,b is the Kronecker function (returns
1 if a = b and 0 elsewhere), β is a constant, <s, t> is the set of binary cliques that
includes s, and Ψs(xs, ys) = − lnP (ys|xs). Notice that the cliques are defined
on a second-order neighborhood.

The conditional distribution P (ys|xs) models the distribution of the observed
data ys given a class xs. In this paper, this distribution is modeled with a
Normal law which depends on the two parameters (μxs , Σxs). Since there are m
different classes, there are m different Normal laws and a total of 2m parameters
Φ = [(μ1, σ1) , . . . , (μm, σm)]. Because these parameters are initially unknown,
they have to be estimated. To this end, we resort to an iterative method called
Iterated Conditional Estimation (ICE) [17].

Markovian Spatial Segmentation. The spatial label field r is obtained by
segmenting image frame It with a Markovian procedure based on the the frame-
work presented in the previous Section. Here, It stands for the observation field
y while ys is a singleton that takes its value in {0, . . . , 255}. For RGB color
images, the brightness of each site is obtained by simply computing the average
value of the three channels, i.e. ys = (It

sr
+ It

sg
+ It

sb
)/3.

Markovian Motion Segmentation. The second label field fed to the opti-
mization procedure is a motion-based partition called x[0]. Although this parti-
tion could be obtained with any method presented in Section 2, we decided to
use an unsupervised statistical Markovian procedure. Here, an optical flow field
v computed with an iterative version [18] of Simoncelli et al.’s algorithm [19]
stands for the observation field y. Every element ys is thus a two-dimensional
real vector. For every sequence we have tested, v was computed with a two-level
pyramid and an integration window of size 7× 7 [18].

5 K-Nearest-Neighbor-Based Fusion

Once r and x[0] have been estimated, they are fed to the K-nearest-neighbor-
based fusion approach as shown in Fig.1. This procedure seeks a motion label
field xmade of regions uniform in the sense of brightness (r) and motion (x[0]). To
this end, the fusion procedure was designed as a global spatio-temporal optimizer
minimizing the following energy function:

E(r,x) =
∑

s

V (rs,xs), (2)
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where V (rs,xs) is a local energy term and rs and xs are assumed to be indepen-
dent. This energy term returns a low value when the neighborhood surrounding
s (called ηs) is spatially and temporally uniform. To measure the degree of uni-
formity of a neighborhood ηs, the local energy term uses two potential functions
applied on every site t ∈ ηs

V (rs,xs) = −
∑
t∈ηs

δrt,rsδxt,xs . (3)

Here, ηs is a square integration window of size L × L centered on s and δ is
the Kronecker delta function. V (.) works in a similar way the well known K-
nearest neighbor algorithm does [16]. For a given site s and its neighborhood ηs,
V (rs,xs) counts the number of sites t ∈ ηs that are simultaneously in spatial
region rs and part of motion class xs. In this way, the class xs ∈ Γ that occurs
the most often within region ηs is the one with the smallest energy. The way V (.)
works is illustrated in Fig.2. In image r, site α is part of the black class (which
is a section of the vehicle) but has the immobile label in x[0]. When looking at
every site in ηα part of the black section of the vehicle in r, we see there is a
majority of sites with mobile label in x[0]. In other words, within the K-nearest
neighbors around site s with a black label in r, there is a majority of mobile
sites. For this reason, V (rα, mobile) < V (rα, immobile) and thus, α is assigned
a mobile label in the resulting motion field x[n]. The system works in a similar
way for site β.

Since there are no analytical solutions to x = argmaxx′ E(r,x′), we resort to
a classical iterative ICM [2] technique whose mode (the maximum local energy

x
[n]

r

I t

α

β

α

β

β
α

x
[0]

Fig. 2. Zoom on Karlsruhe sequence. Top left is label field r and top right is motion
label field x[0]. The motion label field contains two classes which can be understood as
the ”mobile” and ”immobile” classes. Bottom left is the image frame at time t while
bottom right shows the motion label field after the nth iteration. Note how x[n]’s region
silhouette is well localized as compared to x[0]’s.
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K-Nearest-Neighbor-Based Fusion Procedure

It Image frame at time t
v Vector field between It and It−1

r Spatial segmentation of It

x[k] Motion label field after kth iteration
ηs Window of size L×L centered at site s
δa,b Kronecker delta
m,m’ Number of motion/spatial classes

1. Initialization
v ← optical flow between It and It−1

x[0] ← segmentation of v in m classes
r ← segmentation of image It in m’ classes
i ← 0

2. ICM Optimization (Fusion)
do

i ← i + 1
for each site s ∈ S do

for each class xc ∈ Γ do
V (rs, xc) ←∑t∈ηs

δrt,rsδ
xc,x

[i−1]
t

x
[i]
s ← arg minxc∈Γ V (rs, xc)

while x[i−1] �= x[i]

Algorithm 1. Our spatio-temporal motion segmentation algorithm based on a
K-nearest neighbor algorithm

for each site at each iteration) is defined by local energy function V (rs,xs). The
complete algorithm of our method is presented in Algo. 1.

6 Experimental Results

To validate our algorithm, we have segmented sequences representing different
challenges. Some sequences are real while others are synthetic. The latter come
with perfect ground-truth image g and with various degrees of difficulty. The
tests presented aim at validating how stable and robust our algorithm is with
respect to the window size L×L and to the precision of the spatial partition r.

At first, we built two synthetic sequences with different textures that are more
or less easy to segment spatially. As shown in Fig.4, the sequences allow a well de-
fined spatial partition r, a medium and a badly defined partition r. In the badly
defined partitions (cf. last column of Fig.3), the objects edges in r are barely
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r

x

It

[0]

x [n]

Fig. 3. Sequences Karlsruhe, Taxi, Tennis, Trevor White, SequenceA, and SequenceB.
SequenceA and SequenceB are synthetic sequences with respectively a precise and an
imprecise spatial partition r. The first row presents frames at time t, the second row
spatial partitions r and the last two rows the motion label fields x[0] and x[n] super-
posed to It. Notice that x[0] is visually similar to the results returned by Tekalp MAP
algorithm [7,8].

recognizable. To measure how precise our algorithm is as compared to ground-
truth image g, we have computed the percentage of bad matching pixels [20],
i.e.,

B =
1
NS

∑
s∈S

(1− δxs,gs) (4)

where NS is the number of sites in S and δxs,gs is the Kronecker delta function.
In Fig.4, we compare our results to the ones obtained with methods close to

ours. The first method is Tekalp’s MAP [7,8] which is a motion-based Markovian
approach using affine motion models. The results return by this method are
visually similar to x[0] (c.f. third row of Fig. 3). The second method is Altunbasak
et al.’s [13] region-based approach which relies on a pre-estimated segmentation
map r. As shown in Fig.4, their method is more sensitive to the precision of r.
These results underline the fact that our algorithm reacts smoothly to a change
of its parameters L and r. It is thus stable and doesn’t generate unexpected
results especially when segmented regions in r don’t exhibit precise edges.

As for the real sequences, we superposed the motion label fields x[0] and
x[n] with image It to illustrate how precise the results are. Results are shown
in Fig.3. From left to right, sequences were segmented with respectively three,
three, four, six, four, and three motion classes. We can see that in most cases,
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Sequence A

Partition r MAP Alt. x[0] 3 × 3 7 × 7 11 × 11 21 × 21 31 × 31
precise 15.7 0.8 13.2 13.1 5.0 1.9 1.0 0.9
mediocre 12.5 12.5 10.8 10.7 5.4 4.0 4.2 5.3
imprecise 6.0 25.5 8.1 8.1 5.4 5.3 8.3 9.3

Sequence B

Partition r MAP Alt. x[0] 3 × 3 7 × 7 11 × 11 21 × 21 31 × 31
precise 11.1 0.4 6.2 2.9 0.4 0.4 0.4 0.5
mediocre 11.6 8.9 6.7 3.3 0.7 0.8 0.9 1.3
imprecise 12.4 42.6 5.2 3.3 2.0 2.6 2.7 5.4

Fig. 4. Percentage of bad matching pixels computed with three different versions of
two synthetic image sequences. From left to right: results obtained with Tekalp’s MAP
algorithm [7,8], Altunbasak et al. [13], our unsupervised statistical Markovian algorithm
and results obtained with our fusion algorithm. The five rightmost columns measure
the effect of the window size (L × L). The quality of the spatial partition r is ranked
from precise to imprecise depending on how well objects have been segmented (see
second row of Fig.3).

the segmentation map returned by our algorithm is more accurate than the ones
with no fusion procedure.

7 Discussion

In this paper, we have considered the issue of segmenting an image sequence
based on spatial and motion cues. The core of our method is a K-nearest-
neighbor-based fusion between a spatial partition r and a temporal partition
x[0]. The two fields are blended together by an ICM optimization procedure that
minimizes an energy function made of a spatio-temporal potential function. This
function works in a similar way the K-nearest neighbor algorithm does.

Although a spatio-temporal segmentation based on pre-estimated label fields
might appears as a step backward when compared to methods such as Black’s
[12] or Khan and Shaw’s [15] (that minimize one large spatio-temporal energy
function) it has legitimate advantages. To start off with, these methods rely heav-
ily on weighting functions and/or on weighting coefficients that give more or less
influence to the temporal data vs the spatial data. A bad choice of these parame-
ters can resolve in a bad segmentation. Also, because these parameters generally
depend on the sequence content, they have to be re-estimated when used on
new sequences. Unfortunately, tweaking these weighting factors isn’t trivial, es-
pecially when their number is large (such as 8 for Black’s [12]). Furthermore,
large energy functions (the ones with many energy terms and/or defined over
multidimensional data) are generally less stable than smaller ones and thus need
sometimes to be implemented along with a stochastic (and slow) optimization
procedure such as simulated annealing.

The point with our method is to alleviate these problems by minimizing in-
dividually the spatial and temporal energy functions before to blend it together.
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Our method can thus be seen as a divide-and-conquer approach that doesn’t rely
on weighting factors. It uses short energy functions that can be minimized with
a deterministic optimization procedure which converges faster than stochastic
solutions. This makes the solution stable and tractable. Furthermore, we believe
our fusion method is trivial to implement and, since it processes every pixels
independently, it could be efficiently implemented on parallel hardware.

Results obtained on real and synthetic image sequences shows that our algo-
rithm is stable and precise. It reacts well to a change of its parameters and/or to
a poorly estimated spatial label field r. In the future, we look forward to extend
this method to other vision problems such as stereovision, motion detection and
motion estimation.
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Abstract. In mineral processing industry, it is often useful to be able to obtain 
statistical information about the size distribution of ore fragments that move 
relatively to a static but noisy background. In this paper, we introduce a novel 
approach to estimate the 2D shapes of multiple moving objects in noisy back-
ground. Our approach combines adaptive Gaussian mixture model (GMM) for 
background subtraction and optical flow methods supported by temporal differ-
encing in order to achieve robust and accurate extraction of the shapes of mov-
ing objects. The algorithm works well for image sequences having many mov-
ing objects with different sizes as demonstrated by experimental results on real 
image sequences. 

1   Introduction 

In the mineral processing industry, there is often the need to determine the size distri-
bution of crushed ore fragments in order to optimize the performance of ore sizing 
equipments. Optical techniques have been widely used to provide this capability. In 
some of the applications, video sequences are available as the ore fragments move at 
high speed relatively to a static but noisy background.  In such cases it is possible to 
apply motion segmentation techniques in image processing to determine the size dis-
tribution of the ore fragments. In this paper, we present one such algorithm that com-
bines three existing common motion segmentation techniques, namely temporal dif-
ferencing, background subtraction, and optical flow [1][2][3], in order to reliably and 
accurately calculate the ore size distribution of multiple moving ore particles. 

Temporal differencing, or change detection based on frame difference [4][5][6], at-
tempts to detect moving regions by making use of the difference of consecutive 
frames (two or three) in a video sequence. This method is highly adaptive to dynamic 
environments, but generally does a poor job of extracting the complete shapes of 
certain types of moving objects [2].  

Background subtraction is a commonly used technique for segmenting objects of 
interest in static scenes [7][8][9]. It attempts to detect moving regions by subtracting 
the observed image from an estimated reference background image. The pixels where 
the difference is above a threshold are classified as foreground or the objects of inter-
est. The Mixture of Gaussians (MoG) method has enjoyed tremendous popularity for 
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background modeling since it was first proposed by Friedman and Russell [10]. 
Stauffer [11] presented an adaptive background mixture model by a mixture of K 
Gaussian distributions (K is a small number from 3 to 5). The method is stable and 
robust. The background subtraction technique works well at identifying moving ob-
jects, but it requires an accurate reference image and is usually sensitive to changes in 
illumination condition, background trembling and so on. 

Optical Flow methods refer to grouping those optical flow vectors that are associ-
ated with the same motion or structure [12][13][14][15]. It can be used to detect inde-
pendently moving objects even in the presence of camera motion. In theory, this is an 
ideal way to solve the segmentation problem; however, motion field usually appears 
quite noisy in real images and optical flow estimation involves only local computation 
[16]. Therefore, its accuracy is limited and segmentation from it generally does not 
detect the exact contours of the objects. Moreover, most optical flow computation 
methods are computationally complex and sensitive to noise. 

The analysis of the above three different segmentation methods reveals that tempo-
ral differencing is good at providing initial coarse motion areas. Background subtrac-
tion can provide the most complete feature data. Optical flow technique has an advan-
tage at detecting movement or the velocities of objects from an image sequence. We 
will demonstrate in this paper a new segmentation algorithm that combines these 
three techniques in order to arrive at a solution to our problem. Specifically, we use a 
GMM-based background subtraction algorithm to aggressively classify pixels that are 
likely moving in an image.  The resulting image is then filtered by a mask image 
generated with a combined optical flow and temporal differencing algorithm to re-
move noisy false positives. The last step also overcomes the well-known difficulty 
with optical flow in detecting exact object boundaries. 

The rest of the paper will be organized as follows. Section 2 outlines the algorithm. 
Section 3 presents background subtraction using Gaussian mixture model. Section 4 
describes optical flow computation by coarse-to-fine strategy and fusion with tempo-
ral differencing. Section 5 analyzes our experimental results. Finally section 6 pre-
sents our conclusions. 

2   Outline of the Algorithm 

The flowchart of our algorithm is shown in Fig. 1. The algorithm consists of back-
ground subtraction, optical flow computation, temporal differencing and data fusion. 
Stauffer and Grimson’s method [11] is used for background subtraction, which uses a 
mixture of normal distributions to model a multimodal background sequence. Pixel 
values that do not fit the background distributions are considered as foreground. For 
the task of optical flow computation, we adopt Lucas-Kanade method [17] which can 
quickly provide dense optical flow information, but only works well for small dis-
placement. So we use Bergen et al.’s hierarchical framework and parametric model 
methodology [18] to allow estimation of a wide range of displacements. One of the 
drawbacks of such a scheme, however, is the inaccurate estimate of motion bounda-
ries due to the use of image gradients and fixed support regions. In order to solve the 
problem, temporal differencing is considered as a support technique. Otsu’s algorithm 
[19] is chosen to determine this change. Specifically, those pixels whose intensity 
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differences are bigger than the Otsu threshold are considered as moving regions, and 
only the pixels within these regions retain the velocities of optical flow. In the data 
fusion step, we only consider those foreground objects as moving rejects, where the 
amplitude and direction of the optical flow are within the ranges of consideration. 

   

 
 

    Fig. 1. The block diagram of the algorithm 

3   Background Subtraction by MoG 

Background subtraction is a particularly popular method for motion segmentation, 
especially under those situations with a relatively static background. The numerous 
approaches to this problem differ in the type of the background model and the proce-
dure used to update the background model. Gaussian background models are among 
the most robust available. Stauffer and Grimson generalized this model by allowing 
for multiple Gaussian distributions per pixel to account for multimodal backgrounds. 

Each pixel in the scene is modeled by a mixture of K Gaussian distributions. The 
probability that a certain pixel has intensity xt at time t is estimated as:  

),,()(
1
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i

it xxP ∗=
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μηω  (1) 

where ωi is the weight, μi is the mean, i = σi
2 is the covariance for the ith distribu-

tion, and η is a Gaussian probability density function: 
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where α is the learning rate, set to be 0.05 in our algorithm. ρ is the learning factor 
for adapting current distributions, set to be constant 0.005. Mi,t is defined as follows: 
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After the updates, the weights ωi are renormalized. 
The K distributions are ordered based on ωi /σi and the first B distributions are used 

as a model of the background of the scene where B is estimated as: 
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The threshold T is the minimum fraction of the background model. Background 
subtraction is performed by marking any pixel that is more than λ (1.0∼1.5 in our 
experiments) standard deviation away from any of the B distribution as a foreground 
pixel. 

4   Optical Flow Computation 

There are many methods of computing optical flow. The most common are matching, 
gradient and filter based approaches. A recent study by Barron et al. suggests that 
Lucas-Kanade’s gradient-based method is among the most accurate and computation-
ally efficient methods for optical flow estimation [20]. In addition, the gradient solu-
tion can produce sub-pixel displacement estimates. However, this technique can only 
be applied for small displacements. In our application, the displacements of moving 
objects between consecutive frames are more than 15 pixels. Therefore, a hierarchical 
coarse-to-fine warping technique proposed by Bergen [18] is adopted to handle large 
displacements in our algorithm, as is illustrated in Fig. 2. It consists of four parts: (i) 
pyramid construction, (ii) motion estimation, (iii) image warping, and (iv) coarse-to-
fine refinement. 

A Gaussian pyramid is built for both source (at time t-1) and target images (at 
time t), which provides a range of coarse to fine views of the image. Initial motion is 
estimated at the coarsest level where the pixel displacements are small, so that the 
optical flow constraint equation becomes applicable. At the next finer level, the image 
at time t-1 is warped towards the image at time t using the current motion estimate. 
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The motion parameters are refined at this level and the process continues until the 
finest level. 

With the coarse-to-fine method described above, rough optical fields can be ob-
tained. In order to acquire accurate boundaries of moving objects, we apply the tem-
poral differencing technique to correct motion estimates. Otsu’s global threshold 
algorithm is used to detect change for the frame differencing image. Based on this 
threshold, the differencing image is classified into moving and static regions, and only 
moving regions retain the displacements computed before. Thus, relatively accurate 
optical flow fields are produced. In addition, in our particular case, since the moving 
objects are darker than the usually background, we need only consider positive 
change. Moreover, in order to handle the case when an object moves to a position 
previously occupied by a smaller object and creating an interior hole after change 
detection, we apply a simple fill-hole operation in a post-processing step. 

 

 
                               Fig. 2. Coarse-to-fine optical flow estimation 

5   Experimental Results 

This section demonstrates the performance of our proposed algorithms on an image 
sequence. Figure 3 shows the experimental results. The sequence shown here is 
640×480 images. The top row displays the images at frame 100,150 and 200 respec-
tively. The second row shows the results of background subtraction by mixture Gaus-
sian model. We can see clearly that there are many noise points caused by trembling 
of the background. The third row is the results of optical flow fields computed by 
combining hierarchical coarse-to-fine optical flow estimation and change detection. 
The results show that almost all the moving objects can be detected but with poor 
boundaries. The bottom row is the final segmentation results by fusing the data from  
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Fig. 3. Sample frames and segmentation results 

 
background subtraction and optical flow fields. It is clear seen that almost all the 
moving rejects with different sizes are successfully detected and the accurate bounda-
ries can be extracted. 

6   Conclusions 

This paper has shown a novel method for efficiently combining background subtrac-
tion, optical flow and temporal differencing methods, which is useful in environments 
where many moving objects with different sizes existed. In particular, the method 
leads to very precisely located boundaries. 

The approach had satisfactory performance on real image sequence and the tech-
nique is stable enough to support real applications.  



 2D Shape Measurement of Multiple Moving Objects 795 

 

References 

1. Kanade T. et al.: Advances in cooperative multi-sensor video surveillance. Proc. of 
DARPA Image Understanding Workshop, Morgan Kaufmann, November (1998) 3-24 

2. Collins R.T. et al.: A system for video surveillance and monitoring. Technical report, 
CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, May ( 2000) 

3. Wang L., Hu W., Tan T.: Recent development in human motion analysis. Pattern Recogni-
tion. Vol. 36, No.3 (2003) 585-601 

4. Bergen J. R. et al.: A three frame algorithm for estimating two-component image motion. 
IEEE Trans. On Pattern Analysis and Machine Intelligence. Vol. 14, no. 9, (1992)886-896 

5. Radke R. et al.: Image change detection algorithms: a systematic survey. IEEE Transac-
tions on Image Processing. Vol. 14, No. 3 (2005)294-307 

6. Miller O. et al.: Automatic adaptive segmentation of moving objects based on spatial-
temporal information. Proc. of VIIth Digital Image Computing: Techniques and Applica-
tions. Sydney. (2003)1007-1016, 10-12 

7. Chien S., Ma S., Chen L.: Efficient moving object segmentation algorithm using back-
ground registration technique. IEEE Trans. On circuits and systems for video technology. 
Vol. 12, No. 7 (2002) 577-586 

8. McIvor A. M.: Background subtraction techniques. In Prof. of Image and Vision Comput-
ing. Auckland, New Zealand (2000) 

9. Cheung S. C., Kamath C.: Robust techniques for background subtraction in urban traffic 
video. Video Communications and Image Processing. SPIE Electronic Imaging, San Jose, 
UCRL-JC-153846, UCRL-CONE-200706 (2004) 

10. Friedman N., Russell S.: Image segmentation in video sequences: a probabilistic approach. 
In Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelli-
gence. Morgan Kaufmann Publishers, Inc., San Francisco, CA, (1997) 175-181 

11. Stauffer C., Grimson W.: Adaptive background models for real-time tracking. Proc. of 
IEEE CS Conf. on Computer Vision and Pattern Recognition. Vol. 2 (1999) 246-252 

12. 12.T. Hirai et al: Detection of small moving objects by optical flow. In 11th International 
Conference on Pattern Recognitio. Vol. II, the Hague, Netherlands (1992) 474-478 

13. Huang Y. et al.: Optical flow field segmentation and motion estimation using a robust ge-
netic partitioning algorithm. IEEE Trans. On Pattern Analysis and Machine Intelligence. 
Vol. 17, no. 12 (1995) 1177-1190 

14. Bors A. G., Pitas I.: Optical flow estimation and moving object segmentation based on 
RBF network. IEEE Trans. On Image Processing, Vol. 7, no. 5 (1998) 693-702 

15. Chunke Y., Oe S.: A new gradient-based optical flow method and its application to motion 
segmentation. 26th Annual Conference of the IEEE Industrial Electronics Society. Vol. 2 
(2000) 1225-1230 

16. Dufaux F., Moscheni F., Lippman A.: Spatio-temporal segmentation based on motion and 
static segmentation. In Proc. of Second IEEE Int. Conf. of Image Processing. Washington 
(1995) 306-309 

17. Lucas B.D., Kanade T.: An iterative image registration technique with application to stereo 
vision. In Proc. of Image Understanding Workshop. (1981) 121-130 

18. Bergen J. R. et al: Hierarchical Model-Based Motion Estimation. ECCV (1992) 237-252 
19. Otsu N.: A Threshold Selection Method from Gray-Scale Histogram. IEEE Trans. Sys-

tems, Man, and Cybernetic. Vol. 8 (1978) 62-66 
20. Barron J. L., Fleet D. J., Beauchemin S.S.: Performance of optical flow techniques. Inter-

national Journal of Computer Vision. Vol. 12, No. 1 (1994) 43-77 



Dynamic Water Motion Analysis and Rendering
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Abstract. In this paper, we present a novel approach for analyzing the dynamic
water motion and transforming the motion in natural scenes to non-photorealistic
2D cartoons. We limit the domain of the original water sequences containing only
water surfaces with shallow relief, (the heights of the water wave are relatively
small compared to the wave lengths) and one parallel light source. Within this
constrained domain, we first automatically rectify the water wave sequence from
a generic pose to orthogonal view direction. Then we clearly reveal the relation-
ship between the rectified frames and the surface normal maps. Finally, as an
application, a non-photorealistic rendering step is applied to transform the wa-
ter motion to new cartoon sequences. several results are shown in the paper to
demonstrate the quality and widely usability of this novel approach.

1 Introduction

How to analyze dynamic water motion and render the motion in cartoon videos vividly
remains as a hard topic in computer vision and computer graphics communities for
years. In this paper, we focus on water sequences containing only water surfaces with
shallow relief, (the heights of the water wave are relatively small compared to the wave
lengths) and there is only one parallel light source with an illumination direction close
to the normal of the water wave tangent plane. Within this constrained domain, we
first automatically rectify the water wave sequence from a generic pose to orthogonal
view direction. Then we clearly reveal the relationship between the rectified frames and
the surface normal maps (derived from the height map). Finally a non-photorealistic
rendering step is applied to transform the water motion to a cartoon sequence.

1.1 Related Work

There has been a growing interest in computer vision communities focusing on the
research of dynamic motion [1,2,3,4,5,6,7].

The dynamic texture concept was first defined by Soatto et al.[2], who studied
the motion dynamics explicitly using moving average, auto-regression model, which
was inspired by [3]. It was also shown to be useful for segmentation, controlled video
synthesis, and recognition. Szummer and Picard [3] applied a spatio-temporal auto-
regressive approach(STAR) to model the dynamic texture. This method calculates the
regression coefficients directly from the image intensity value.

Another research direction introduced by Schödl et al. [8] presents a “video seg-
mentation” like technique called “video texture”. This technique was used to synthesize

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 796–803, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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seamless looping videos based on a proper segmentation of the input. No model was
actually constructed, therefore it is impossible to retarget the motion with the input to a
new sequence with different appearance.

Recently, some researcher worked on extracting physical based coefficients from
the dynamic motion of the scene [9]. These methods show the potential advantage of
being able to retarget pure motion to new synthesized sequences, though may have not
been explored clearly.

Retargeting approaches for image and video can be separated into two classes: style
retargeting and motion retargeting. The style retargeting was started by [10], in which
the drawing style of an image is simply retargeted to another image based on texture
examplar correspondence. Drori et al. [11] extended the work to extrapolate the novel
styles for a given image based on bilinear models [12]. Although these methods achieve
good style retargetting result, it can not be directly used to retarget motion. The global
motion exacting and retargeting has been a well studied problem [13]. Bregler et al.
[14] retarget the global and non-rigid motion extracted from characters in commercial
cartoon to new 2D or 3D cartoons. Fitzgibbon [7] registers the stochastic scene by the
global motion.

1.2 Overview

Our contributions in this paper include an automatic approach to rectify the water wave
sequence, a clear explanation of the relationship between the rectified frames and the
water surface normal. Also, to the best of our knowledge, our non-photorealistic ren-
dering method for water waves is the first of its kind.

This paper is organized as follows: Section 2 explains the automatic rectification and
clearly describes the relation between image and water surface normals. Section 3 gives
the non-photorealistic rendering method and several results are shown in Section 4.

2 Video-Based Analysis

2.1 Automatic Projective Rectification

Most existing water wave analysis and illumination analysis methods [15,16,17] require
that the input image or video is viewed orthogonally to avoid the projective distortions.
For an input image it is relatively easy to fulfil the requirement by taking the picture
from a airplane. However, to take a top-view water wave video with a fixed camera
is almost imposable. Therefore, the requirement of an orthogonal viewing direction
dramatically reduce the available video sources for these analysis methods.

Given a water wave sequence by fixed camera taken from a generic viewing direc-
tion, ideally our aim is to remove the projective distortion by transforming the frames
to an orthogonal viewing direction to the extent that the similarity properties can be
recovered for measurement. If we can find at least four pairs of corespondent points,
and the points in the orthogonal view appropriately exhibit their 3D space geometric
information, (if the points form a rectangle in 3D space, they should forms a rectan-
gle in the rectified frames) we can easily calculate the 3 × 3 homography MH for the
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rectification. As we know that a homography has four more degree of freedom than a
similarity, which is a transformation including only rotation, translation and isotropic
scaling, we only need to constrain four degree of freedom to recover the orthogonal
views. (the metric properties are up to an isotropic factor s). However, it is almost im-
possible to find the line at infinity and two vanishing points in a water wave sequence
automatically, neither even manually. We design an iterative method to correct 2 degree
of freedom for the rectification. Therefore, the rectified frames have two different scaler
factors s1, s2 along two orthogonal directions.

Assuming the water wave sequence has a relatively noticeable wave propagation,
and the wave is taken parallel to one of the coordinate axis (not losing generality, we
select axis x). In this case, vanishing point along the waves is much farther than the van-
ishing point of the moving direction. Under this assumption, the rectification problem
can be reduced to align the moving directions to parallel lines.

A location motion scale (LMS) is defined as the summation of the energy of local
motion flow in a neighborhood area.

LMS =
∑

(x,y)∈A

v2
x + u2

y

|A| (1)

LMS defines the strength of the dynamic motion projected on the image plane. For
a top-view isotropic water wave sequence, the values of LMS for different locations
should be very close. Based on this, we define our rectification method as below:

1. Pick four initial points P1, P2 and P3, P4 on two water waves respectively, therefore
P1P2 and P3P4 are parallel. Set LMSsmallest as LMS of the original image. Set
step length as Δ.

2. Locate the four correspondent points Qi, i = 1..4 in orthogonal viewing plane,
which form a parallelogram.

3. Calculate the homography MH between Pi and Qi, and rectify the water frame
based on MH .

4. Calculate LMS for the rectified image, defined as LMScurrent. If LMScurrent <
LMSsmallest,LMSsmallest = LMScurrent, P2 = P2 + Δ P1P2

||P1P2
||l; otherwise,

Δ = −Δ, P2 = P2 +Δ P1P2
||P1P2

||.
5. If |LMScurrent − LMSsmallest| > δ goto 3, else end.

Fig. 1 explains this algorithm and gives a rectified result and the related optical flow
plot.

2.2 Water Surface Normal

In Section 1 we give a constraint on the illumination direction to be near orthogonal to
the water surface plane. Though it appears rather restrictive, it is much easier to acquire
than an orthogonal viewing direction, and we demonstrate a clear relationship between
a rectified water surface plane and a surface normal map.

If the rectified water surface can be presented by Lambertian model, the image
intensities depend only on the angle between the surface normal at each pixel location
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Fig. 1. (a): the optical flow field based on the original frame. (c)(b):the rectified frame and the
correspondent flow field, notice that the (b) is much more isotropic than (a). (d): The explanation
of our rectification method. Q3,Q4 share the same location with P3,P4. The location of P2 can
be adjusted in the yellow thick line segment.

and the illumination’s direction. Based on this model and a constant albedo, the image
intensities can be presented by

I(x, y) =
α√

1 + H
[sin θ − cos θ(hx cos φ + hy sin φ)] (2)

where α is a coefficient defined by the surface albedo, θ and φ are the illumination’s
elevation and azimuthal angle, respectively. h(x, y) is the surface height at location
(x, y), with H = hx

2 + hy
2. When the elevation angle closes to 90 degree, equation 2

can be simplified as

I ≈ α√
1 + H

(3)

Under shallow relief assumption, H << 1. We then Applying a first order Tylor
series expansion to equation 3,

I ≈ α(1 − 1
2
H) (4)

Therefore, it is clear that following our constraints, the image intensities of the
rectified images are inversely proportional to H , and can not be affected by the direction
of surface normal in XY plane. Hence, we can directly use the rectified color intensity
image to substitute the surface normals for non-photorealistic rendering purpose.

3 Non-photorealistic Rendering Application

Mostly, 2D cartoon artists draw dynamic motions, eg., water waves and fire flames, in
a way that mimics the plausible motion of the original natural phenomena. An efficient
way to achieve this goal is to only preserve the dynamic motion in the cartoon but to
ignore the photometric properties of the original video. Keeping this in mind, we design
a simple, but effective approach to retarget the dynamic water motion to a stroke-based
2D cartoon. We turn back to examine the visual appearance within the dynamic motion
of water waves, and discover that mostly our eyes are attracted by the moving leading
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boundaries between dark and bright regions. These boundaries turn out to be curves
which roughly maintain their color intensity along the temporal direction.

Assuming a Lambertian image formation model, having similar image intensity is a
necessary condition of having similar surface normal vectors. A set of water surface lo-
cations in a neighborhood area can reflect the same light intensity if the angles between
their surface normals and the illumination direction are the same based on equation 4.
Therefore, giving one abstract stroke Si,j in the cartoon frame Fi corresponding to the
color intensity, finding an updated stroke Si+1,j in frame Fi+1 can be defined as find-
ing a stroke S′

i+1,j , on which every correspondent location with Si,j has similar color
intensity in I(p, i) and I(p′, i + 1).

The photometric model represents a stroke-based hand drawn image Ic by a col-
lection of N strokes S0,j , j = 1, 2, ...N , where S0,j = {p0,j,m = (xm, ym) : m =
1, ...,nj, i = 0}. For any time instance, i, the corresponding collection of strokes Si,j

is obtained by minimizing:

Si,j = arg min
pi,j,m

nj∑
m=1

(I(pi,j,m, i) − I(pi,j,m, i − 1))2

The above minimization can be achieved by applying a optical flow calculation.
Then we get a displacement vector (ui,j,m, vi,j,m) for each pi,j,m. An intuitive way to
obtain Si,j can be:

pi,j,m = pi−1,j,m + [ui,j,m, vi,j,m],

However, this calculation ignores a very important factor in cartoon animation:
stroke connectivity. optical flow results do not grantee the connectivity of the gener-
ated stroke. By examining some of the basic physical rules, we present a very simple,
but effective method to maintain the connectivity of the strokes.

Due to the fact that a set of forces acting on a object for translational motion is
equivalent to a proper force acting on the centroid of the object, we constrain our stroke
model to have solid connections between consecutive nodes. Therefore, the distance
L between the nodes can not be changed by external forces. Not losing generality, we
denote Si,j as S and pi,j,m as pm. Firstly, we find the centroid of S by ordering S in a
consecutive manner, and pick the median point pc in it. The location of pc in time i + 1
will be defined by the displacement vector uc, vc. Secondly, the two tails in S from pc

are treated equally. Here, we only show the updating of the right tail. The left tail has
a similar solution. Giving the right tail, CR = {pc, pc+1, pc+2, ...pend}, we define a
constrain tail, C′ = {pc + [uc, vc], ..., pend + [uend, vend]}.

For simplicity and clearness, we define a discrete version of the length calculation
along curve C′ starting at p′c and ending at p′end as

L(c,end) =
end−1∑

i=c

||p′i − p′i+1||

The resultant connected tail C′′ is computed by

p′′i = argp′′
i
(L(c,i) == (i− c)l)

where l is the unit length between two consecutive nodes.
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Fig. 2. This figure explains our approach to maintain the connectivity of synthesized strokes.
Initially, the distances between all adjacent points are the same, standard L. After finding the
point offset, a constraint stroke is located along all the double-circled points. The centroid is
directly updated by the offset, whilst all other points are stretched along the potential stroke by
constraining the distance between the adjacent points along potential stroke as standard L.

The cartoon sequences we generate here are parallel to XY plane. In general, the
water region in a cartoon scene can be constrained to a plane P . Therefore, there exist
a projective transformation between plane XY and plane P . In our case, users can
roughly specify the plane P in the cartoon scene with respect to that a cartoon video.
This does not require a perfect correctness of the geometric relations in the scene.

4 Results

We have tested our methods on synthesized and real water wave sequences. The pro-
gram runs on a Desktop PC with a P4 2.8gHz CPU, 512 MB memory.

Fig. 3 shows the non-photorealistic rendering results of a synthesized water se-
quence. it is first been tested without the connectivity constraint. The result clearly
shows that the strokes are broken down to points due to the offset updating. After ap-
plying the connectivity constraint, we can get much better results as shown in the bottom
row of Fig. 3.

Fig. 4 shows two synthesized cartoon videos generated from the same water videos
with different initial hand-drawn images. The mountain in the background is converted
from a real image to have a hand-drawn appearance. Two stroke-based images are drawn
by hand with different styles. Two different projective transformations are applied to
the images for matching their correspondent backgrounds. Each of them is driven by
the same set of water sequence, whilst, it is clear to see that they present dramatically
differences in those two image sets. This best demonstrates the advantage and flexibility
of our method.

5 Conclusion and Future Work

We present a novel approach in this paper to analyze dynamic water motion, and an effi-
cient non-photorealistic rendering method to retarget the motion onto 2D cartoons. This
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Fig. 3. Top row, image 1: One selected image for the synthesized top view water waves sequence.
Bottom row, image 1: The initial hand-draw stroke image. Top row, image 2 to 5: Rendering
result without the connectivity constraint. Bottom row, image 2 to 5: Rendering result with the
connectivity constraint.

Fig. 4. These results are derived from the same input rectified water wave sequence. (a) Same
stroke image from the previous result. (b) A hand-draw style background. (c) Four selected frames
from the rendered cartoon based on stroke map (a). (d) Another stroke map. (e) Three selected
frames from the rendered result.

work shows some promising results and it is easy to implement. The proposed method
is non-generative, therefore the rendering length is bounded by the temporal dimension
of the input video. However, due to the fact that the location motions are directly cal-
culated from the videos sequences, the resulting models capture more realistic dynamic
motion than other parametric models. Thus, the extracted model has wide usage like
motion retargeting or mixed reality.

In the future, we will explore the possibility to generate non-parametric model for
natural fire flames and other natrual dynamic motions.
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Abstract. Skin detection has been employed in various applications including 
face and hand tracking, and retrieving people in video databases. However most 
of the currently available algorithms are either based on static features of the 
skin color, or require a significant amount of computation. Moreover, skin de-
tection algorithms are not robust enough to deal with real-world conditions, 
such as background noise, change of intensity and lighting effects. This situa-
tion can be improved by using dynamic features of the skin color in a sequence 
of images. This article proposes a skin detection algorithm based on in-motion 
pixels of the image. The membership measurement function for recognizing 
skin/non skin is based on the Hue histogram of skin pixels that adapts itself to 
the user’s skin color, in each frame. This algorithm has demonstrated significant 
improvement in comparison to the static skin detection algorithms. 

1   Introduction 

Hand, head, and body tracking has become an important research topics in HCI, dur-
ing the last decade. Moreover, the applications are not limited to HCI, and have many 
other usages, like animation creation, virtual reality, disability support, performance 
measurement, and movement analysis. 

In research literature there are many studies on vision-based body tracking, detec-
tion and recognition. For many applications factors, such as availability of hardware 
and real-time operation are considered the most important characteristics. There are 
two significant approaches for body-parts tracking: pattern recognition (e.g. using 
neural networks or statistical analysis) which usually are used for face detection [1], 
and segmentation (e.g. skin color segmentation); are used for hand tracking and ges-
ture recognition [2].  

This paper presents a real-time approach for skin segmentation based on motion 
features of a video sequence. The system is reliably operable in a wide range of office 
environments, and it is robust with typical environment lighting and un-calibrated 
camera. The proposed system, needs an initial training with a small number of sam-
ples of segmented skin colors. It retrains and adapts itself to the user’s skin color 
while he/she is using the system.  
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2   Research Background 

Skin color segmentation has shown promising results for hand/face detection and 
tracking [3-5]. Different color spaces, including RGB, ICrCb, HSV, HSI, HS  and 
IUV color spaces have been used for this purpose [6-9]. The main idea in these ap-
proaches is using a set of training data (usually images in which skin region was 
manually segmented), finding a connected region in color space, and using the result 
as a color skin probability density function. Research shows the best results are a-
chieved by using RGB, HS, and Hue color spaces [2, 10]. Obviously, storing RGB 
training data requires a large amount of memory space, and because of the nature of 
RGB color space, a classifier based on it is very sensitive to the intensity of pixels. 
For covering different intensities, a bigger region in RGB space is required, which 
results in more false detections and less accuracy in the final results. Moreover, a 
smaller region in RGB color space also results a weaker classifier. 

HS [8] and Hue [8, 10, 11] as other color spaces have been used successfully in 
color skin segmentation. The interesting feature of Hue factor for skin color is its 
similarity even for different races. Research shows that probability density function in 
distribution of Hue factor is a single connected region that is almost Gaussian [2], and 
what is different for different races, is the Saturation factor [10].  

Bradski [10] has used this method to find the centre of mass of the skin pixels for 
face detection of the computer user. Kolsch and Turk [12] have used a similar ap-
proach for detecting a group of features they called “flocks of features”, for hand 
tracking. Ruiz-del-Solar and Verschae [13] have used this technique together with a 
fuzzy approach for calculating the membership degree of a pixel to the color skin set 
based on its probability density and its neighbors’ probability density.  Imagawa, Lu 
and Igi [5] have used a mixed approach based on locating the face using non-invariant 
features and estimating the color probability density function for segmenting hands.  

All of these methods except the last one can not dynamically adapt themselves to 
the change of color skin features like slight histogram shifting, due to change of light-
ing, environmental noises, or the effect of the color of objects that are similar to skin 
color. For instance, the hue factor of wood, is similar to skin color, and using it as 
indicated in Bradski [10], the filtered image will be like figure 1-b. It is obvious that 
tracking the face, because of the noise (wood color) is almost impossible. On the 
other hand, our observations show that the peak, including position and height, and 
width of the training histogram are dependent on the image grabbing hardware, and 
therefore the best results for a static (separate training and detection) algorithm can 
only be achieved by using the same hardware. 

(a) (b) (c) 

Fig. 1. (a) Original Image, (b) Filtered image based on thresholding Hue factor of skin color 
extracted from training data, (c) Hue histogram of the training data 
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Using the histogram as a probability density function, as mentioned in [13], and 
calculating membership probability to skin color based on neighborhood pixels, can 
reduce the number of morphological operations, that are required for noise removal. 
However the assumption that the skin color of the current user has the highest prob-
ability in the probability density function is not always reliable. Figure 2 presents a 
filtered image based on probability density of pixels; lighter pixels have highest prob-
ability in the training data and darker pixels have the lowest probability. In this condi-
tion, the segment that belongs to the skin color of the user is almost darker than the 
segment that belongs to the surface of the table. Therefore using the work of Ruiz-del-
Solar and Verschae [13] not only doesn’t improve the results but also decreases the 
accuracy of the color skin filter.  

The idea introduced in [5], because of the retraining and adapting to the color space 
that is used in the image, is more robust. However, in comparison to other methods, it 
requires a significant amount of computation for face detection. In addition, most of  
the fast face tracking techniques [1] are not robust to changes like rotation or to situa-
tions where a complete frontal view of the face is not presented. 

 

Fig. 2. In some conditions probability density of the skin color of the user is lower than some of 
the unwanted regions like wood color 

3   Design Discussion 

Based on the discussion and the results of other research work discussed in the previous 
section, we believe that using Hue factor for skin segmentation could be one of the fastest 
methods for implementing a skin detector. Because it requires few CPU instructions per 
pixel, it is a good candidate for real-time skin detection. In addition, it is reliable for ideal 
conditions (e.g. special applications, or using a blue background - Figure 3). 

(a) (b) 

Fig. 3. (a) Original image, (b) Filtered image using Hue threshold 
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Moreover, retraining the skin detector in a sequence of images improves this 
method for real-time video processing and finding skin color. Our method for improv-
ing the skin detector is explained in the following paragraph. 

3.1   Underlying Assumptions 

We should note that in this study, our primary assumption has been that the computer 
user is sitting in front of the camera; that is, a simple image grabbing device like a 
web cam, as input source of the incoming frames to skin detector (Figure 4). The 
camera is in a fixed position, and the user is the only moving object in front of the 
camera.  

 

Fig. 4. Testing environment 

3.2   Image Grabbing 

The image grabbing device was a Dragonfly camera based on Sony CCD, connected 
to a Pentium4 PC using an IEEE 1349 connection, with a maximum frame-rate of 30 
fps. Each frame was a raw RGB image, size 640x480. The software was a C++ pro-
gram developed using Visual Studio.Net™. A function converted RGB values to HSI 
values, ranging from zero to 255.  

3.3   Training and Calculating Initial Thresholds 

For training, we used about 20 colored images (approximately 3200000 skin color 
pixels) of hands in which the skin region had been manually segmented. Half of these 
images were recorded using our image-grabbing device, and the other half acquired 
from the Internet. Using this data, a histogram for Hue factor was calculated and the 
lower and upper bound of the threshold were specified such that 90% of the pixels 
inside the histogram were covered.  

4   The Algorithm 

Using just constant thresholding in practice is not sufficient for skin detection and in 
some cases not practical (Figure 1). On the other hand, our observations show that 
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manually changing the lower and upper bounds of the threshold can significantly 
improve the results. Based on the observations, and the assumption that the computer 
user is the only moving object in front of the camera, we used motion features of the 
image for re-evaluating the training histogram and recalculating the thresholds.  

In the first step, simple subtraction of two sequential frames is used as measure-
ment for motion detection. Although this technique is not reliable for recognizing a 
moving object, but it requires little memory space (one frame) and a small number of 
operations per pixel (integer subtraction). This makes it suitable for real-time applica-
tions. In this technique, the pixels that have a different value other than their value in 
the previous frame are considered changed pixels. Changed pixels can potentially 
belong to a moving object.  

In a real application, this technique has two main problems. The first problem is 
that the noise in CCD cameras can cause some sparse falsely-detected pixels. This 
effect can easily be eliminated, using simple morphological operations. Another prob-
lem is that a moving object in a 2D image fills the space that in the previous frame 
was the background, and the background fills the pixels that previously were the ob-
ject. Thus, we have two sets of pixels; one set belongs to the object, and the other set 
belongs to the background. We solved this problem by ignoring those pixels that can 
not pass through the primary filter for skin color detection. Therefore the probability 
of detecting some parts of the skin will be higher than non-skin (Figure 5).  

(a) (b) (c)

Fig. 5. A moving hand: (a) Original image, (b) In-motion pixels of the frame, filtered using Hue 
threshold (c) Mapping the result to the original image 

In the next step, the pixels that are considered as moving pixels belonging to the 
user’s skin are used for retraining the detector. In this article we have used a histo-
gram of Hue factor as the base for calculating low (TL) and high (TU) thresholds for 
filtering the image. From the motion detection frame (Figure 4-c), another histogram 
is extracted, and the second histogram is added to the original histogram using the 
following equation: 

Hn+1 = (1-A)*Hn + A*HM 

Hn+1 is the new histogram for skin detection (for the next frame) 
Hn is the histogram for skin detection in the current frame 
HM is the histogram of the in-motion pixels of the skin color (Figure 4-c) 
And A, is the weight for merging two histograms. 

Empirical results show that a value between 0.02 - 0.05 brings the best output for the 
final skin detector. For each frame, thresholds of the Hue factor are recalculated such 
that they cover 90% of the area of the new histogram. The filter for each frame could 
be described as follows. 
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I is the Hue factor for each pixel 
Hn is the Hue histogram for the skin color 
TL is the calculated lower threshold for histogram Hn 
TU is the calculated upper threshold for the histogram Hn. 

5   Results 

Filtering the input image using the described method significantly improves the per-
formance of the detector, by increasing the ratio of positive to false detections while 
still keeping the ratio of positive detections to actual pixels high (Figure 6).   

In the initial frames, the performance of the adaptive and non-adaptive filter is the 
same. In Figure 6-b, the surface of the table creates false detection, as the number of 
its pixels is approximately bigger than positive recognition (face area). It is obvious 
that using morphological operations can not remove this kind of noise (Figure 6-c). 

(a) (b) (c) 

 

(d) (e) 

Fig. 6. (a) Original Image, (b) filtered image using non-adaptive threshold, (c) After doing 
morphological operations Erode/Dilate on [b], (d) filtered image using adaptive threshold, (e) 
After doing morphological operations Erode/Dilate on [d]. 

Using the proposed algorithm, while the user is interacting with the computer (us-
ing mouse, keyboard, and sometimes slight changes in head pos), the system captures 
the movements and retrains itself based on the user’s skin color. Figure 6-d is the 
output of the adaptive filter after approximately 2 minutes of using the application. 
The unwanted detection (table, in this image), was almost eliminated, and the ratio of 
positive/false detections has increased dramatically. 

The system, together with color skin tracking, retrains itself based on new data 
gathered from moving pixels.  It also recalculates the lower and upper thresholds for 
filtering the next frame. Figure 7 represents changes in lower and upper thresholds 
through time.  



810 F. Dadgostar and A. Sarrafzadeh 

 

Fig. 7. Changes in lower threshold and upper threshold between frames 0 and 2791 

We have used this technique for face tracking of the computer user (Figure 8). The 
application is robust against environmental noise like lighting condition, noise caused 
by fluorescent lights, changes in intensity level caused by automatic gain control in 
digital cameras, and background noise. The performance of the system is less than 20 
milliseconds per frame, on a P4 2.2GHz PC, for an RGB image size 640x480 with 
non-optimized C++ code.  

 

Fig. 8. Face tracking using the proposed algorithm 
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Abstract. An efficient algorithm to segment the moving object is very
important in the surveillance system. In general, the change detection by
comparing brightness value is a good and simple method, but it shows
a poor performance under illumination change. Therefore, we propose
the segmentation algorithm to extract effectively the object in spite of
the illumination change. There are three modes to extract the object,
the criteria of mode selection are both available background existence
and illumination change. Then the object is finally obtained by using
projection and the morphological operator in post-processing. Further-
more, the double binary method using the similarity of brightness value
and spatial proximity is used to obtain more edge information. A good
segmentation performance is demonstrated by the simulation result.

1 Introduction

Video segmentation, which emphasizes partitioning the video frames to seman-
tically meaningful object and background, has become an important issue in
the content-based video coding. The conventional video segmentation can be
roughly divided into the two categories; one utilizes the spatial homogeneity and
the other uses the change detection from temporal information. The segmenta-
tion techniques based on the spatial homogeneity simplify an image by using
morphological filters, and then decide the region boundary [1], [2]. The motion
vector of each region is calculated and regions with similar motion are merged
together to form the final object region. However, this has the drawback that
the computation complexity is very high. The other segmentation techniques ex-
tract the moving objects by using a change detection mask from the consecutive
frames [3]-[6]. This algorithm is more efficient than previous category because it
is the motion that distinguishes a moving object from background.

In general, the motion detection is usually utilized as an image segmentation
technique especially where the background is stationary. The object segmenta-
tion technique just using the difference of brightness value is a simple scheme,
however, it has difficulty in extracting an accurate object region under the vari-
able illumination condition. The object segmentation based on the edge infor-
mation is quite efficient for the variable illumination conditions, on the contrary,
is more sensitive to noise.
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Kim et al. obtained the object by partitioning an object into the moving
region and the still region [5]. The moving region includes any motion in current
frame, which is obtained from the edge map of the difference in successive images.
The still region is obtained by the comparison of the edge of previous object and
the current frame edge. If the previous object is not correct, then the current
object is extracted wrongly because still region with errors has wrong effect to
get the current object. Chien et al. generate the reliable background information
by using the accumulated frame difference information, and then, extract the
object region by comparing the current frame with the constructed background
image [6]. However, this algorithm is not considered in case that the illumination
is changed suddenly.

This paper presents an efficient algorithm to extract the moving object even
if illumination change occurs in the remote surveillance systems. The informa-
tion of previous object is not utilized for extraction of object and the background
frame is updated on occasion of illumination change. There are three modes to
extract the object under varying circumstances. The first mode uses the differ-
ence between the background and the current frame while the available back-
ground frame exists. With a moment of illumination change the second mode
is applied. The object edge can be extracted eliminating the background edge
from the current frame edge. In last mode the object is extracted using both the
difference of the successive frames and the background removal method, simul-
taneously the background generation process makes steady progress until new
background frame is achieved. The final object can be obtained by using pro-
jection and the morphological operator. Furthermore, the double binary method
using the similarity of brightness value and the spatial proximity is used to
achieve the better performance of extraction.

2 Proposed Algorithm

In the video surveillance system, the camera is fixed and background remains
unchanged before the illumination change. Therefore, to consider the situation
on illumination change, we propose the separate extraction methods. In this
paper, the block diagram of the proposed method is shown in Fig. 1. The block
diagram has the three modes according to the circumstances. The extraction
mode should be adaptively selected in consideration of both the illumination
change and the existence of reliable background frame. And the all extraction
mode extracts the binary frame efficiently by using the double binary. In the
end, the final object can be extracted by using projection and the morphological
operator on the binary frame.

2.1 Decision for Illumination Change

This paper proposes the separate processing modes based on illumination change.
Thus each mode requires the criterion for illumination change. The reminder
except for the object region in the current frame is used to determinate the
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Fig. 1. The blockdiagram of proposed algoritm

criteria for illumination change. If the mean of brightness value in the reminder
is higher than the threshold, we assume that the illumination change is occurred.

2.2 The Extraction Mode

Background Difference. In this mode, the initial object is extracted from
the difference between the background and the current frame. This background
difference method shows a good performance as well as a little computation
complexity for extraction. The frame difference is obtained through the absolute
value of the difference between the background and the current frame. In this
case, the frame difference has a lot of background noises. This drawback can be
overcome using edge information. Then, the edge information of the background
difference performed by using the canny operator becomes the robust edge in-
formation for the noises. This method efficiently extracts the shape information
of object in video sequences having lots of noise in the stationary background.
The edge of difference OE1n is defined as follow:

OE1n = Φ|Cn −B| = θ(∇G ∗ |Cn − B|) (1)

Cn and B are the current and the background frame respectively. The represents
the canny edge detection [7], which is accomplished by performing a gradient
operation on the Gaussian convoluted image G∗I. The OE1n denotes the spatial
edge information of the initial object in this step.
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Background Removal. As the illumination suddenly is changed, the back-
ground difference method can’t generate the reliable initial object. Therefore,
we use the current frame edge and the background edge both of which have less
sensitiveness in the illumination change. In this mode, the initial object is con-
structed by eliminating the background edge from the current frame edge. After
calculating the edge of current and background frame with the canny operator
individually, we obtain the DoEn of difference.

The searching region is limited to minimize the influence of the background
noise. In order to obtain a searching region, a morphological dilation operator
can be applied to the previous moving object. The process obtaining the initial
object is defined as

OE3n(i, j) =
{

1, if ((DoEn(i, j) > Tr) and (FEn(i, j) > Tc))
0, otherwise (2)

where DoEn(i, j) is the frame difference which obtained both from the back-
ground and the current frame, FEn(i, j) is the current edge frame. Tr is the
threshold value for removing the edge points of background frame among those
of current frame, indicating 10 in simulation. Tc is the threshold value from Otus’
binary algorithm.

Frame Difference. This sub-section describes the extracting method of the
object when the brightness of the background region is not changed and the re-
liable background frame is not generated. The process of generating background
makes steady progress through registering the elements of the background in each
frame. If the reliable background frame is constructed finally, the background
difference method is performed to obtain the initial object. In this mode, both
the motion of the object and the current edge are used in order to extract the
exact motion of object. The edge of the frame difference is defined as

EoFDn = Φ|Fn − Fn−1| (3)

where Fn and Fn−1 are the current and the previous frame respectively. This
result frame has boundary of the object that happens to the object motion. We
select the pointer that the position of the EoFDn(i, j) is equal to the position
of the current frame edge FEn. Thus, this pointers, EPn, contain the only infor-
mation having any motion in the current frame. Moreover this mode is used the
background removal method for the sufficient edge information. The acquired
edge of an object is defined as follows:

OE2n(i, j) =
{

1, if ((EPn(i, j) > 0) or (OE3n(i, j) > 0))
0, otherwise (4)

A process for generating the new background frame is described as follows.
The pixels belong to the object in previous frame and the pixels having high
difference in value should be removed. The removed pixels are defined as
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(a) (b) (c) (d) (e)

Fig. 2. VOP Extraction process. (a) binary edge image, (b) horizontal element image,
(c) vertical element image, (d) logical AND of horizontal and vertical candidate image,
and (e) image after morphological operation.

∇(i, j) =
{

1, if ((DCPn(i, j) > T ) or (DORn−1(i, j)))
0, otherwise (5)

where is the excluded pixels in the background generation process, DCPn(i, j)
is the difference value in the successive frames and DORn−1(i, j) is the pixels
which belong to the previous object. And T is the calculated threshold value
by using the Otus’ algorithm. In this mode, the background generation process
makes steady progress in each frame. The residual pixels except for excluded
ones are to be dealt with candidate pixels of the background frame and used
for generating the new background frame. The candidate pixels are continuously
accumulated during several frames. Thus, the completed background frame is
defined as

BNew(i, j) =
1
M

N+M∑
k=N

Fk(i, j) (6)

where BNew(i, j) is the brightness value of the new background frame and
Fk(i, j) denotes the brightness values during continuous frames. M is the num-
ber of the accumulated frames, indicating 15 in this simulation. N denotes the
beginning frame number to be accumulated. The pixels to be satisfy equation
(6) during 15 frames become to represent the background element for the new
background.

2.3 Double-Thresholding

Thresholding for the difference from two input frames is the basic concept of the
change detection for binary. However, since the circumstance and characteris-
tics of video sequences differ significantly, the quality of the segmentation results
depends strongly on background noise, object motion, reliable and consistent ob-
ject information is very difficult to obtain. So the reformed double-thresholding
method is more robust and efficient in frame difference. The proposed double-
thresholding method using the similarity of brightness and spatial proximity
may include more edge information. Any pixel is connected to its eight neigh-
bors. Therefore brightness of the neighbor pixels may affect the decision for
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binary operation. The threshold value (Thigh) is calculated by using Otsu’ algo-
rithm, Tlow becomes 2/3 times Thigh. And the difference of two threshold values
is used to calculate weighted value of neighbor pixel. If the sum of the weighted
value and brightness value of targeting pixel is higher than Thigh, the targeting
pixel is classified into the object pixel. Otherwise, the targeting pixel is classified
into background pixel.

For the pixel elements that tend to have the possibility of becoming the object
pixel, we include the object pixel for more edge information. Thus, the proposed
method can obtain more edge information and detect efficiently the object pixels.

2.4 VOP Extraction

To extract the VOP of frame, the extracting the VOP stage has to perform a
morphological operation on the initial object, because the initial object has the
only the edge information of object. Both the horizontal and the vertical candi-
dates are declared to be the region inside the first and last edge points in each
row and column line. Fig. 2 shows the result image through the morphological
operation. After finding both horizontal and vertical candidates of VOP, the
intersection regions through the AND operation are further processed by the
morphological operation. Morphological operation applied to the VOP extrac-
tion uses the closing-operator that has 9 × 19 element in size. Post-processing
for eliminating sharp peaks and small islands use the opening operator that has
5× 7 element in size [8].

3 Experimental Results

The proposed algorithm was applied to the standard MPEG-4 test sequences
‘Hall monitor’ as well as the video sequence captured in the laboratory. In CIF
format 300 frames of ‘Hall monitor’ and 628 frames of sequences captured by
Sony DCR-TRV310 handycam were used. The error rate of the object is adopted
to evaluate the objective quality[6] for the proposed algorithm. The error rate is
defined as the following equation:

Error Rate =
Error P ixel Count

Frame Size
(7)

where the error pixel count represents the number of the pixels of which the
extracted binary object is different from the reference binary object.

In order to clarify the performance of the proposed algorithm even at the
various lightness circumstances, brightness is added artificially from the frame
38 to 300 of ‘Hall monitor’. Additional brightness value corresponding to the
illumination change is 50 at the luminous body. The amplitude of an additional
brightness value is gradually decreased to 20 while getting away from the lumi-
nous body. In the Fig. 3 and Fig. 4, the illumination change has existed from the
frame 38 to 300 and the luminous body located at the top left in frame. Fig. 3
shows the result under illumination change in the test sequence ‘Hall monitor’.
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Fig. 3. The comparison result of the separate methods
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Fig. 4. The result frame for ‘Hall monitor’ (a) frame 34, (b) frame 38, (c) frame 217,
and (d) frame 291

The error rate has been degraded abruptly from the fame 38 in the background
difference method, and shows bad result on the frame 38 in case only frame
difference method is used. However, the proposed algorithm shows continuously
the low error rate, the result represents the robust segmentation for illumina-
tion change. Fig. 4 (a) shows the result by the background difference method
and (b) shows the result by the background removal method at the moment of
illumination change. Fig. 4 (c) shows the result by the frame difference method
and (d) shows the result by background difference method because the reliable
background frame has accomplished at the frame 269. Fig. 5 shows the result
frame is extracted from the test sequences having the changed brightness from
the frame 150 to the 628. The test sequences represents the situation of sudden
illumination change such as the passenger may turn off the lighting fixtures.

4 Conclusions

In this paper, we propose an efficient moving object segmentation algorithm
for a surveillance system. Three separate modes for considering situation such
as illumination change are used to extract the object. The background differ-
ence mode among them has less computation complexity and shows good results
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(a) (b) (c)

Fig. 5. The result frame for test sequences (a) frame 149, (b) frame 150, and (c) frame
566

under non-illumination change. If the illumination may change, the edge infor-
mation, insusceptible to the effect of brightness, is used for extracting the object.
The process of generating background is used to construct a reliable background
frame after illumination change. And the double binary method considering the
influence of neighboring pixels may obtain more information about the object re-
gion. Our experimental results demonstrate that the proposed method is able to
extract successfully a moving object from video sequence in spite of illumination
change.
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Abstract. This paper presents a robust approach to track multiple ob-
jects for low resolution, far-field visual surveillance applications. Multiple
moving objects are detected by utilizing an adaptive background model
and tracked by resolving the correspondence between their trajectory
segments using proximity and appearance similarity measures. A new
confidence measure is assigned to each possible match between objects
and this information is maintained by a graph structure. This graph is
utilized to prune and refine the trajectories. Kalman filter is used to han-
dle discontinuities and occlusions. Proposed approach handles problems
such as spurious objects, fragmentation, shadow, clutter and occlusions.

1 Introduction

Success of many recent computer vision applications such as traffic monitoring,
visual event recognition for intelligent surveillance systems, human-computer
interaction etc. depends on reliable tracking and analysis of moving objects in
image sequences. Typically, tracking process involves a cycle of feature extrac-
tion, prediction, data association, and update. Tracking research in computer
vision generally concentrates on segmentation of the objects to be tracked, as-
sociation measures, and appearance models. As association strategy, generally
simple association methods such as nearest neighbor match is used. In [1], each
moving object is represented by a token consistent of its center position and size.
Data association is done by nearest neighbor association. In case of occlusion,
velocity, size, and intensity features are used to validate the data association.
In [2], temporal matching is based on support map and bounding box. In order
to track people through occlusions and grouping, person’s color distribution is
modeled using color histograms or mixture models. In [3], elliptic shape masks,
texture templates, and foreground probability templates; in [4], a RGB color
model which shows the appearance of each pixel of an object and a probabil-
ity mask; in [5], gray-textural appearance and shape information are used to
track objects. In [6], correspondence of connected components between frames
is accomplished using multiple hypothesis tracking which incorporates position
and size. While computer vision research generally relies on appearance models,
research in target tracking concentrates on assignment strategies such as SNF
(strongest neighbor filter), NNF (nearest neighbor filter), PDA (probabilistic
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data association), JPDA (joint probabilistic data association), and MHT (mul-
tiple hypothesis tracking) ([7,8,9]).

In high resolution videos, tracking can be performed using simple data associ-
ation techniques, since complex object appearance models can be obtained. But
in low resolution surveillance videos, the number of pixels supporting an object
is too few to obtain a complex color, shape or texture appearance model. There-
fore better association and filtering strategies are required for reliable multiple
object tracking. In this paper, we present a detection based multiple-object track-
ing method. Objects are matched based on their proximities and appearances.
Goodness of the matches are measured with a new confidence measure. Instead
of a simple association strategy, delayed decision enabled by multi-hypothesis
testing is used. Trajectories are pruned and refined in different stages of the pro-
cess. Proposed approach is robust to imperfections in moving object detection
such as spurious objects, fragmentation, shadow, clutter and occlusions. Figure 1
shows outline of the system.
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Fig. 1. Outline of the system

2 Moving Object Detection and Shadow Elimination

To obtain moving objects, we use the mixture of Gaussians (MoG) approach
described in [6] because of its adaptive and multi-modal nature. The recent his-
tory of each pixel is modeled by a mixture of k Gaussian distributions and RGB
color vector of each new pixel is assigned to a Gaussian. Then the distributions
are labeled as foreground or background based on their weight/σ ratio. This
process results in a background model and a binary foreground mask. Moving
cast shadows cause serious problems in this process because they can easily be
misclassified as foreground. This misclassification may lead to drastic changes
in the shapes of objects or merging of multiple objects. In order to improve
the performance of moving object detection, we formulated a shadow detection
algorithm based on a combination of photometric invariants reflectance ratio
and normalized color. The details of this algorithm is presented in [10]. Another
problem in moving object detection is the sudden illumination changes such as
the ones due to cloud movements. Mixture of Gaussians method can adapt to
gradual changes, but can not cope with sudden changes. These changes alter the
appearance of the background pixels suddenly and result in a drastic increase in
the number of false detections. Misdetections due to cast shadows and sudden
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illumination changes are both due to the changes in the illumination component
of the pixel color. Since our shadow detection algorithm relied only on spatial
and spectral information and not on a priori information on scene geometry or
object model, we were able to modify it to cope with the sudden illumination
changes. We removed the intensity test, because unlike shadows, illumination
changes may darken or lighten the background, and relaxed the compactness
constraint of shadow regions. Figure 2 shows shadow and sudden illumination
detection results.

Fig. 2. Results after shadow and sudden illumination change detection superimposed
on original. Left: moving objects and shadows. Right: moving objects and sudden
changes.

3 Tracking

Tracking module receives shadow corrected foreground masks and identifies con-
nected foreground regions in a frame. To overcome fragmentation and to remove
spurious objects, regions whose bounding boxes overlap are merged into a single
object, and regions with areas smaller than a threshold are eliminated. Obtained
region information is arranged into a graph structure we call ObjectGraph. Data
association module matches objects in frame(t) to objects in frame(t − 1).
ObjectGraph is updated by linking nodes corresponding to objects in frame(t)
to the nodes corresponding to objects in frame(t− 1). Match confidence value
is attached to each link. Segment generation module traces the links on Object-
Graph and generates trajectory segments. These segments are organized into
a data structure called SegmentList. SegmentList is refined by filtering spuri-
ous segments, and joining temporarily disconnected segments. Trajectories are
formed by linking these refined segments.

3.1 Data Association

Data association (correspondence analysis) matches objects in the current frame
to the objects in the previous frame. Matching is done based on proximity and
appearance similarity of the objects. For each frame(t), a match matrix Match
and a confidence matrix Conf are computed. Match(i, j) indicates whether the
ith object in frame(t) corresponds to the jth object in frame(t−1), Conf(i, j)
denotes the confidence in Match(i, j). Possible matches are kept to be pruned
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gradually, as more information becomes available. Besides one-to-one matches,
this scheme supports many-to-one, one-to-many, many-to-many, one-to-none,
none-to-one matches that may result from fragmentation, occlusion, entering,
exiting objects or group behaviors.

Proximity is measured in terms of L2 distance between the centroids of
the objects. For appearance model, we use color features. To measure color
(dis)similarity, for each object, an RGB color histogram is computed. N RGB
color vectors, corresponding to N peaks in the histogram are selected as color
descriptors of an object. Color dissimilarity Dcolor (Eq. 1) between two objects
OA and OB is computed as the weighted sum of the peak color distances. In
Eq. 1, L2(OA(i),OB(j∗)) denotes the distance of the ith peak color in OA to
its best matched peak j∗ in OB and PX(k) denotes the number of pixels in the
object X that have the kth peak color.

Dcolor(OA,OB) =
∑

i

(
L2(OA(i),OB(j∗))
MaxDistColor

× min(PA(i), PB(j∗))
min(

∑
(PA),

∑
(PB)

)
(1)

At this level, unfeasible matches with distances above a threshold are elimi-
nated. For color similarity, an absolute threshold called maximum match dis-
tance MMDcolor is used. For proximity measure, absolute and relative gatings
are applied. Absolute gating uses an absolute threshold MMDcentroid set for the
system based on the image resolution and average size of the objects. Relative
gating is used to compensate for the distortions of the perspective projection
(objects closer to the camera are seen larger and appear to be moving faster).
Objects’ heights are used to approximate their distances from the camera. Rel-
ative thresholds for horizontal and vertical displacement (Eq. 2) are computed
as a function of the object’s height and camera’s approximate tilt angle α.

MMDcentroid
x = f(heightobj) MMDcentroid

y = f(heightobj)× cos(α) (2)

We compute the confidence value of a match not only based on similarity and
proximity of the objects that are matched, but also based on availability and
goodness of other possible matches. Similarity confidence (Eq. 3) is a measure
of how similar the matched objects are.

Confsim(i, j) = 1− D(i, j)
MaxDist

(3)

Separation confidence (Eq. 4) is a measure of how distinct the match is. It
measures the competition between all possible matches for the current object.
The measure favors matches without competitors and matches with competitors
having higher distances. In Eq. 4, j∗ denotes the closest competitor in terms of
distance.

Confsep(i, j) =

{
1, no closest competitor
0.5− D(i,j)−D(i,j∗)

2×max(D(i,j),D(i,j∗)) , otherwise
(4)

Similarity and separation confidence measures are computed for both color based
and centroid based matching. Total similarity and total separation confidence
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values are computed as weighted sums of color based and centroid based confi-
dence values. Similarity and separation confidence values are further combined
into a single confidence value ConfMatch by a weighted sum. Matches whose
confidence values are below an absolute confidence threshold (absolute pruning)
and matches whose confidences values are below a percentage of the highest
confidence value (relative pruning) are eliminated from the possible match list.

3.2 Segment Generation and Trajectory Maintenance

Segment generation module processes the ObjectGraph and extracts object tra-
jectories. Nodes of ObjectGraph are classified into nine types: single, source,
source-split, sink, inner, split, sink-merge, merge, merge-split, based on the num-
ber of parent and child nodes. Trajectory segments, a linked list of inner nodes
(nodes that have one single parent and one single child), starting with a source
or split type node and ending with a merge or sink type node, are identified
and organized into a data structure called SegmentList. Extracted segments are
labeled. Each segment without a parent is given a new label. Segments that have
parents inherit their parents’ labels. If parents’ labels are inconsistent, smaller
label (older segment) is kept and a flag is set indicating the inconsistency. Trajec-
tory segments are first filtered to remove spurious segments, then discontinuity
resolution is performed to join temporarily disconnected trajectory segments.
Finally, trajectories are formed by linking segments sharing the same label.

Trajectory Segment Filtering: Moving object detection process results in
many spurious objects due to various sources such as noise, fragmentation, shad-
ows, illumination changes (i.e. cloud movements), reflections from specular sur-
faces (i.e. car windows), periodic movements (i.e. moving tree branches) etc. Use
of a multi-modal moving object detection scheme, such as mixture of Gaussians
used in this work eliminates some of the artifacts caused by repetitive motion in
the background. Shadow elimination module eliminates most of the moving cast
shadows. And filtering done before data association filters out small spurious
regions. The remaining artifacts that can not be totally removed by image or
object level processing produce spurious trajectories. At segment level, we use
heuristics based on temporal and spatial consistency, to filter out trajectories.

Temporal Consistency: Segments resulting from temporarily fragmented parts of
an object or uneliminated cast shadows tend to cause short segments that split
from or merge to a longer trajectory segment. Temporal consistency prunes these
segments. In order not to remove possible segments of an occluded trajectory,
filtering of the short disconnected segments are delayed until after discontinuity
resolution.

Spatio-temporal Cluster Check: Repetitive motion of the background (i.e. mov-
ing tree branches or their cast shadows), and spectral reflections (i.e. reflections
from car windows) tend to produce temporally consistent and spatially clus-
tered segments. We measure degree of spatio-temporal clustering with Average-
Displacement-Length ratio ADLR (Eq. 5) and with Diagonal-Length ratio DLR
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(Eq. 6). Trajectory segments whose ADLR or DLR are below a threshold are
filtered out.

ADLR =

∑n
i=2

√
(xi−x1)2

i−1∑n
i=2

√
(xi − xi−1)2

(5)

DLR =

√
(Max(xi,1)−M in(xi,1))2 + (Max(xi,2)−M in(xi,2))2∑n

i=2

√
(xi − xi−1)2

(6)

Discontinuity Resolution: Discontinuities in trajectories are caused by tem-
porarily undetected objects, due to low contrast, partial or total occlusion; or by
incorrect pruning in data association, due to significant change in appearance
or size caused by partial occlusion or fragmentation. To resolve discontinuities,
source and sink locations where the objects are expected to appear and disap-
pear are defined. Segments dissappearing unexpectedly (at a non-sink location)
and segments appearing unexpectedly (at a non-source location) are identified
as possible start and end points of discontinuities. A match matrix MatchSeg is
formed to match disappearing segments to appearing segments. Possible matches
are first filtered based on temporal consistency. SegApp (appearing segment) is
expected to start within ΔT frames from when SegDis (disappearing segment)
ends. If the time constraint is satisfied, Kalman filter is used to predict fu-
ture positions of the disappearing segments, and past positions of the appearing
segments. Direction and position consistencies are checked on the matched dis-
appearing & appearing segments, and the predicted segment joining them. If
the direction and position consistencies are satisfied color similarity is checked.
In case of multiple possible matches for a single disappearing segment, among
the possible matches, appearing segment starting earliest is selected. In case of
multiple possible matches for an appearing segment, disappearing segment that
ends latest is selected. The matched disappearing and appearing segments are
linked. Appearing segment inherits disappearing segment’s label, and propagates
this new label to its children segments.

4 Experimental Results

The proposed approach is tested on several outdoor sequences recorded by
two different cameras in different resolutions under varying lighting conditions.
Figure 3 shows visual results, table 1 gives numerical results for the sequences
walk-in, ups, and people2. The major difficulty in the walk-in sequence is strong
shadow. Beside moving cast shadows, there are static and self shadows. Some
of the moving cast shadows that could not be eliminated cause small split and
merge segments. Self shadow of the person walking on the left, combined with
static shadow of the wall causes fragmentation and spurious segments. Two trees
and a light pole in the scene causes occlusions.

The major problems in the ups sequence are perspective distortion, cast shad-
ows of the tree branches, and dynamic occlusion on the road (top right corner
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Fig. 3. Top to bottom: walk-in, ups, and people2 sequences. Left to right: trajectory
segments before pruning, trajectory segments after pruning, trajectories after discon-
tinuity resolution and final filtering. Red lines indicate resolved discontinuities.

Table 1. Numerical results for the sequences walk-in, ups, and people2. (SC:Scene
Complexity, OC:OCclusion source, PD:Perspective Distortion, Nall

S , Npruned
S : Number

of Segments before and after filtering, Nfinal
T : Number of trajectories after discontinuity

resolution and filtering, NGround
T : Number of trajectories inthe ground truth, FN, FP,

FM: Number of missed, misdetected,mismatched segments.)

SC OC PD Nall
S Nfiltered

S Nfinal
T NGround

T FN:FP:FM
walk-in low low low 19 7 4 4 0:0:0
ups med med med 413 38 13 13 0:0:1
people2 high high high 174 31 9 9 1:0:1

of the image). The field of view extends toward the horizon, so the variations
in object sizes and displacements are high, which makes filtering challenging.
Towards the end of the sequence a strong wind moves the tree branches close
to the camera. Their cast shadows on the ground plane cause large spurious
objects, which results in many spurious segments.

The major problems in people2 sequence are perspective distortion, non-
linear trajectories, occlusions, and reflections from the car windows. In people2,
pedestrians walk around the cars in a parking lot, so the trajectories are quite
non-linear and occluded by the cars. Both cloud and object movements cause
reflections on the car windows, which in result cause many spurious segments.
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These segments can not be filtered simply based on their lengths, since the cars
are close to the camera these segments are quite long.

As seen in figure 3 and table 1, we obtained promising results. Both mis-
matches (one in ups sequence, one in people2 sequence) happen far from the
camera. The mismatch in people2 sequence happens between two pedestrians
behind the cars and with similar appearances. The sequences will be available
at http://www.umr.edu/∼bunyak/tracking.

5 Conclusion

In this paper, we propose a detection-based tracking method and various filtering
and pruning approaches to obtain robust trajectories in low resolution, far-field
visual surveillance videos. Segmentation and tracking modules do not need ini-
tialization or training. Use of multi-hypothesis approach as assignment strategy
and the proposed confidence measures enable the system to delay the decisions
until further levels of processing. Various filtering and pruning approaches, ap-
plied at different levels of processing, eliminate spurious objects and trajectories.
Trajectories are further refined by resolving discontinuities utilizing Kalman fil-
ter and color similarity. This approach results in robust trajectory information,
which we will utilize later for automated annotation of simple visual events.
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Abstract. This paper presents a system that tracks human heads in
real-time under unconstrained environments where target occlusion,
varying illumination, and cluttered backgrounds exist. Tracking is for-
mulated as an active visual servo problem based on the integration of
a saccade and a smooth pursuit processes. The head is modelled as an
ellipse computed from the color clusters of candidate targets using a ro-
bust least square ellipse fitting algorithm. The Farnsworth Perceptually
Uniform Color Model is employed to represent the color information of
the visual objects. Kalman filtering is applied to the head ellipse to track
the evolution of the position, size, and orientation of the target such that
the occlusion of objects with similar color and shape as those of the tar-
get are effectively accommodated. Experiments with tracking scenarios
demonstrate the effectiveness of the system.

1 Introduction

Head tracking is an important issue for automatic human tracking in uncon-
strained environments. Human tracking has widely been investigated in robotic
vision, active vision, automatic surveillance, telepresence and interactive envi-
ronments [9,7], facial feature tracking and analysis [10], 3D head modelling [3],
and video coding [13]. Because of its rigid shape and constrained motion, a hu-
man head reveals reliable positional information for surveillance and monitoring
of people. Moreover, dimensional and orientational information of a head can
reliably be extracted by fitting the head to a parameterized shape, suggesting a
new approach to a wide range of applications from content-oriented video coding
and retrieving to metric visual measurements and active vision control.

Previous work on head tracking was reported in [4,5,10]. However, problems
such as occlusion in the presence of multiple targets with similar colors, integra-
tion of the tracking algorithm with active camera movement, and occlusion and
distraction by multiple targets were not adequately addressed in the work.

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 828–835, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this paper, we propose a cost-effective human head tracking system based
on a single pan/tilt camera and implemented using a low cost PC. The head
tracker is implemented by integrating the peripheral and foveated motion vision
strategies. The target head is initially located by clustering the candidate pixels
with colors similar to the facial skin and hair of a template of the target, manually
determined in an image before the tracking process begins. The color images are
represented in a perceptually uniform color space (PUCS). The tracking system
is comprised of a foveation module and a precaution module.

2 Head Modelling

Methods for modelling a human head can be classified into two categories: 2D
models and 3D models. With 2D models, a head is represented by a rectangular
region [4] or an elliptical area [2]. For the 3D case, on the other hand, ellipsoids [1]
and cylinders [3] are the representative shapes to model the head. In this work,
we represent a head with an ellipse for the following reasons: First, our tracking
method is performed within a 2D domain (image), regardless of arbitrary 3D
movements of the target. Second, an ellipse is a compact form to formulate the
positions, dimensions, and orientations of the moving head. Finally, it is easier
to fit candidate pixels to an ellipse.

2.1 Perceptually Uniform Color Space

Despite the color representation systems used in computer vision and image
processing, e.g. RGB, YUV and HSV, the Perceptually Uniform Color Space
(PUCS) proposed by Farnsworth [12] is important for the application of color
object detection/tracking. In PUCS, the MacAdam ellipses [8] that represent the
chromatic discrimination of the human visual system in the CIE 1931 XYZ color
system become circles with approximately the same radius ([12], page 311). With
this feature, the chromatic difference perceived by a human viewer is represented
in an isotropic metric. That is, any pair of colors with an equal distance in the
color representation system corresponds to a similar subjective color difference
perceived by human viewers, which implies that objects represented in the PUCS
can metrically be discriminated as a human being perceives colors.

To represent an image pixel in PUCS, the RGB components of the pixel in
our digital image are first transformed into the CIE 1931 XYZ format as follows
([12], page 139):

x = 1
s (0.49000r + 0.31000g + 0.20000b)

y = 1
s (0.17697r + 0.81240g + 0.01063b)

z = 1
s (0.00000r + 0.01000g + 0.99000b)

⎫⎬⎭ (1)

where
s = 0.66697r + 1.13240g + 1.20063b,

r = R
R+G+B

g = G
R+G+B

b = B
R+G+B

⎫⎪⎪⎬⎪⎪⎭ (2)
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In Eqs. (1) and (2), R, G,B are the quantized trisitimulus values of the pixel in
the range [0, 255] and (x, y) describes the chromaticity of the pixel. The lumi-
nance of the stimulus from pixel Y is represented in R, G,B, as follows:

Y = 0.298839R + 0.586811G + 0.114350B (3)

The chromaticity (x, y) is then transformed into the pair (uf , vf ) in PUCS
using Farnsworth’s nonlinear transformation [11]. The values of a visible color
(uf , vf ) are in the range [0, 91]× [0, 139].

2.2 Head Representation

We represent a head using a bimodal model in a simpler manner. The bimodal
model of a template head is constructed with a two-step procedure. First, from a
sample image in which the target head appears, we manually select two patches
F and H which represent a representative facial skin region and a hair region,
respectively. Let xf

i = (uf
i , vf

i ) be a point in F represented in the PUCS chro-
maticity. Construct a 2D histogram Hf with 92 × 140 bins from {xf

i }i=1···n,
where n is the number of the pixels in F . Second, find B∗, the bin with the most
pixel counts. Let b∗ be the index of B∗ corresponding to the most likely color
of the facial skin cf = (uf , vf ). To classify image pixels, the following criterion
is applied: ∀xf

i = (uf
i , vf

i )�, xf
i ∈ F and is registered as a facial skin candidate

pixel if and only if:

|uf
i − uf | ≤ utf and |vf

i − vf | ≤ vtf

where utf and vtf are thresholds that are determined as utf = σu, vtf = σv. σu

and σv are the standard deviations of the u and v components of the chromatic
variables {xf

i } in Hf .
The hair region is registered in a similar way as a facial region. However, since

the estimated chromaticity is usually unstable in dark hairs, the luminance Y
in Eq. (3) is utilized together with the chromatic information to form hair pixel
identification criteria as follows:

|uf
i − uh| ≤ uth, |vf

i − vh| ≤ vth, and |Yi − Yh| ≤ Yth

where (uh, vh) = ch is the most likely value for chromaticity of the hair, Yh

the luminance of the hair, and uth, vth, Yth are thresholds, which are empirically
determined as

utf = 1.5× σu, vtf = 1.5× σv, and Ytf = 3.0× σY

Experiments show that the empirical coefficients in the thresholds are robust
to the variation of environment.

Automatic determination of the color templates can only be achieved as
long as a reliable facial color detection algorithm is available. However, since
the scenarios are unconstrained in lighting condition, diversity of target colors,
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occlusion, and so on, it is not an easy task to implement such a reliable facial
color detection algorithm.

With these parameters, the head candidate pixels with either the facial skin
color or the hair color are clustered into candidate blobs according to the fol-
lowing procedure:

1. Starting with any candidate pixel pi = (xi, yi), where (xi, yi) is the
coordinates of xi in the image grid system, let Sk be a set such that Sk

is registered as Sk ) pi.
2. For pj ∈ N(pi) = {(x − 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)}, where pj

is the coordinates of xj , register Sk so that Sk ) pj , if either xj ∈ F or
xj ∈ H .

3. Repeat Step 2 until Sk cannot be registered with any candidate points
in the image.

4. Repeat Steps 1 through 3 until no new sets of candidate points can be
formed in the image.

With the clustering method, an image is segmented into blobs that refer to
candidate head regions and background regions. In the presence of noise and
false targets which are of similar color information as the real target, false head
blobs may be obtained. In this case, the head cannot be distinguished from the
false targets unless other discrimination criteria are applied.

2.3 Elliptic Fitting

For a given contour point set C, we fit the data in C to an ellipse with which
we can model the head with the parameters such that the position, orientation,
and shape of the head can explicitly be represented. In this research, we apply
least-squares based minimization to the ellipse fitting task. The minimization is
constrained by an algebraic ellipse condition 4ac− b2 = 1 resulting in a robust
and efficient solution [6].

Figure 1 illustrates examples of fitting head blob contours using the algo-
rithm. We observed that the algorithm works well with various sizes, angles, and
distributions of scattered data. In each case, the procedure correctly obtained
the positions and dimensions of the head.

                                    

(a) (b) (c)

Fig. 1. Head blobs of different sizes and orientations are tracked by ellipses
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2.4 Ellipse Modelling

A head is modelled as an ellipse E obtained through the elliptical fitting process.
Five parameters of the ellipse are adopted in the model: center coordinates xc =
(xc, yc), lengths of the minor and the major axes lm, lM , and yaw angle α. The
ellipse E is represented as E = {xc, yc, lm, lM ,α}. When incorporated into a
target filtering process, the model allows adaptive updates of the position, shape,
and orientation of the target being tracked. With these advantages, the model
is superior to previous elliptical head models. In Birchfield [2], the size, aspect
ratio, and the orientation of the model ellipse of a head remain fixed regardless
the constant changes in the information of the target in a tracking scenario. In
Comaniciu, et al. [5], the orientation of the ellipse is also fixed. The ellipse is
updated with limited size options during a tracking process. An adaptive scale
mechanism is implemented through a complex multi-bandwidth search process.

3 Head Tracking

A robust head tracker in unconstrained environments needs to possess two dis-
tinguishable functional components. The first is a bottom-up process which deals
with target representation (or modelling) and localization. The second is imple-
mented with signal filtering and data fusion functions that reveal the dynamics
of the targets, derive a priori probabilities of the scene from observations, and
evaluate hypotheses. Active tracking has an additional functional component
that is implemented with foveo-peripheral sensing and oculomotor mechanisms,
such as saccade and pursuit processes. How the three components are combined
determines the properties and performance of the tracker. Section 2 addresses
our approach for implementing the first component. This section will discuss the
last two components.

Kalman filtering is employed to implement the data fusion component of
the head tracker and thereby ensure robustness in the presence of occlusion
and cluttered background. The parameters of the ellipse E are the state of the
tracking system. The five components of the state vector are estimated using five
independent Kalman filters with each of the filters assigned to one parameter. A
constant-velocity dynamic model driven by white noise is utilized in the filters
for xc, yc, lm, and lM , whereas a Ornstein-Uhlenbeck velocity model with white
noise is applied to the rotation angle α. Such assumptions are made based on
the following considerations.

The head tracker works in an active tracking framework with a sensing
scheme involving foveation and peripheral vision mechanisms. The two vision
functions work cooperatively depending on the location of the target. The
foveation function is active when the target lies in the foveal area predefined
in images, whereas the peripheral vision function takes over the control of the
system only when the target moves out of the foveal area. The active head tracker
is implemented as a visual fixation process that localizes the target in an image,
and maintains and tracks the target within the fovea. The visual fixation process
is supported by saccade and pursuit processes that switch between foveation and
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fovea
Beyond

Stabilization
PersuitRest

Smooth pursuit

Target search

filtering
Kalman

Target lost

Initialization

Saccade

Foveation

   Vision
Peripheral 

Fig. 2. State transitions in the visual fixation process

peripheral vision states. The fixation process can be described graphically by the
state transition diagram illustrated in Figure 2.

4 Experimental Results

The proposed head-tracking system was applied to real scenarios demonstrating
good performance in various aspects. The tracking computations were performed
in video images with a 320× 240 pixels and 24 bit RGB color depth. The sys-
tem performs real-time foveal pursuit using the first model (30 frames/second),
whereas only semi real-time tracking speed is achieved with the second foveal
pursuit model due to latches in the serial communication between the computer
and the camera and the mechanics of the camera pan/tilt platform.

The video clip in Figure 3 demonstrates the bimodal color registration
method. The ellipses correctly remain on the head while the color distribution of
the target zone changes constantly as the person is turning about 180 degrees.

The effectiveness of the system in combatting the interference from similar
targets is shown in Figure 4. There are two scenarios of occlusion in the video

                                    

(a) (b) (c)                                    

(d) (e) (f)

Fig. 3. Bimodal color model in the head tracking
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(a) (b) (c)                                    

(d) (e) (f)                                    

(g) (h) (i)

Fig. 4. Tracking in presence of occlusion

clip. In the first scenario illustrated in Figure 4 (a) - (d), the camera tracks the
target correctly as he walks behind another person with a similar head color
distribution. In Figure 4 (c), the focus of the camera temporarily stays on the
second person’s face when the target is completely occluded. The focus of the
camera returns onto the real target after the target appears again in the view
in Figure 4 (d), indicating that the tracker predicted target positions correctly.
The system’s effectiveness of resisting other interference is demonstrated in the
second occlusion scenario shown in Figure 4 (e) - (i). Although the hand has
similar colors as the facial color, the system maintains its attention on the facial
area during the occlusion process.

Malfunction of the system exists in some situations. For example, when the
background has similar color as the target’s facial skin or hair, the system might
be allured to false targets. This problem could be tackled by introducing more
comprehensive criteria for target motion detection in the algorithm.

5 Conclusions

A head tracking system has been described and implemented for unconstrained
environments. The system works in an active tracking framework that integrates
foveo-peripheral sensing and color ellipse head fitting. The system can track
a head within the foveal area in real time, and it performs peripheral target
localization when the target moves to the periphery of the view.

Foveo-peripheral sensing is implemented with combined saccade and smooth
pursuit processes. With the sensing scheme, the system detects a head in im-
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ages by fitting candidate color blob contours to an ellipse. The centroid, size,
and orientation are state variables that are estimated during the tracking pro-
cess using Kalman filters. The head blob is obtained by registering candidate
pixels represented in the Perceptually Uniform Color Space and clustering the
registered pixels. The target is pursued smoothly within the fovea of the camera
and recaptured quickly by a saccade process. The system provides a reliable and
cost-efficient solution to visual tracking applications.
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Abstract. A novel region-based multiple object tracking framework based on
Kalman filtering and elastic matching is proposed. The proposed Kalman
filtering-elastic matching model is general in two significant ways. First, it is
suitable for tracking of both, rigid and elastic objects. Second, it is suitable for
tracking using both, fixed cameras and moving cameras since the method does
not rely on background subtraction. The elastic matching algorithm exploits both
the spectral features and structural features of the tracked objects, making it more
robust and general in the context of object tracking. The proposed tracking frame-
work can be viewed as a generalized Kalman filter where the elastic matching
algorithm is used to measure the velocity field which is then approximated using
B-spline surfaces. The control points of the B-spline surfaces are directly used
as the tracking variables in a grid-based Kalman filtering model. The limitations
of the Gaussian distribution assumption in the Kalman filter are overcome by the
large capture range of the elastic matching algorithm. The B-spline approxima-
tion of the velocity field is used to update the spectral features of the tracked ob-
jects in the grid-based Kalman filter model. The dynamic nature of these spectral
features are subsequently used to reason about occlusion. Experimental results
on tracking of multiple objects in real-time video are presented.

1 Introduction and Background

Multiple object tracking is challenging in several aspects. The first challenge arises
from mutual occlusion between objects. When occlusion occurs, some objects are par-
tially or totally invisible. This makes it hard to accurately localize the position of the
occluded object and track the occluded object continuously. The second challenge is
the formulation of a good object model. A good object model should be able to cap-
ture the most important and relevant information about the object and facilitate fast and
reliable tracking. The ability to deal with occlusion depends, to a great extent, on the
object model. The third challenge is to be able to accurately predict the object position
and update the prediction via accurate localization. The fourth challenge is to meet the
real time constraints of most tracking applications in the real world. Fast and accurate
object localization over time is the ultimate objective of a tracking system.

Generally speaking, there exist three broad categories of object models in the con-
text of tracking: contour-based models [1], [5], [8], [9], region-based models [2], [3],
[4], and feature point-based models [10], [12]. The contour-based model does not en-
code any color or edge information within the interior of the object. The contour infor-
mation by itself is not enough to handle general instances of occlusion. In the absence of
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any spectral information, feature point-based tracking methods are easily distracted by
noisy feature points in the background and are, by their very nature, limited to objects
rich in feature points. A region-based object model is more suitable when occlusion is
present since it encodes the spectral information.

Occlusion handling is another important issue that arises in multiple object tracking
systems and is closely intertwined with the choice of the object model. In the case of
contour-based models, the robustness of the occlusion reasoning is highly dependent on
the quality of object segmentation and typically, only simple cases are well handled [8].
Region-based object models that rely primarily on color/gray level histograms of the
moving regions are not well suited to handle occlusion since no object shape informa-
tion is available. Correspondence-based schemes [3] for occlusion handling typically
compute only a statistical probability that a pixel of a given color belongs to a specific
object which does not ensure accurate object localization.

Object position estimation/prediction is also an important issue in multiple object
tracking. An accurate estimation of the new location of the tracked object, provides
a good starting point for the tracking system. Some tracking systems do not rely on
estimation, instead, the results of matching and correspondence analysis are used to de-
termine the new position of the tracked object [3], [10]. However, since moving objects
typically exhibit spatial coherence, position prediction is both, feasible and computa-
tionally advantageous. The Kalman filter is a popular technique used to predict the
position(s) of the tracked object(s) on account of its computational simplicity [8], [9].
Also, the Kalman filtering algorithm is computationally less intensive than the particle
filter. It is for the above reasons that the Kalman filter is used in our tracking algorithm.

2 Overview of the Approach

In this paper, a region-based model that combines the Kalman filtering algorithm with
elastic matching is proposed for multiple object tracking. Each object is modeled as a
network of grids. The color information and the feature points are extracted for each
grid. The object contour and the object shape information are automatically encoded
within the grid network. The Kalman filtering algorithm is used as the velocity pre-
diction model on account of its simplicity. The velocity fields of the tracked objects
are represented using B-spline surfaces. One of the advantages of the proposed model
is that the tracked object can possess different velocity (or displacement) vectors in
the different image regions that comprise the tracked object. This permits tracking of
both rigid and elastic objects. Another advantage of the proposed model is that the ap-
proximation of the object contour as a convex contour or by a combination of several
elliptical contours as done in [8] is not necessary. Highly elastic objects such as fish can
be easily modeled and tracked using the proposed method.

The elastic matching algorithm is used to accurately localize the tracked objects
in the proposed model. Elastic matching has been used widely for deformable object
recognition [6]. In this paper, elastic matching is shown to be potentially well suited
for tracking of deformable objects. In the event of inaccurate prediction by the Kalman
filtering algorithm, the elastic matching algorithm can still guide the tracking towards
the optimal solution, thus overcoming the limitations of the Gaussian distribution as-
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sumption in the Kalman filtering algorithm. Another advantage of elastic matching is
that the tracking results are not dependent on the accuracy of the background subtrac-
tion used to extract the moving objects. This makes it possible to track moving objects
with a moving camera.

The rest of the paper is organized as follows. The overall tracking model is described
in Sections 3 and the three sub-models, i.e., the object model, the prediction model and
the velocity measurement model are described in Section 3.1, 3.2 and 3.3 respectively.
Section 4 describes the occlusion reasoning algorithm in detail. Section 5 presents ex-
perimental results for the proposed tracking scheme on video data from indoor and
outdoor scenes. Section 6 concludes the paper with direction for future research.

3 The Proposed Tracking Model

The proposed tracking model is composed of three sub-models: the object model, the
velocity estimation model and the velocity measurement model. The object model de-
fines the features for object representation and the tracking parameters. The features
used in the object model incorporate both color (spectral) and edge (structural) infor-
mation of the tracked objects. The velocity estimation model uses a canonical Kalman
filtering algorithm. B-spline surfaces are used to approximate the object velocity field
considering that the velocity in the image plane could potentially vary at different pixels
belonging to the same object. For example, when a person bows or starts to run, the up-
per and lower portions of the person’s body may undergo different displacements. The
control points of the B-spline surfaces are used as estimation variables in the Kalman
filtering algorithm. The B-spline surface approximation smoothes the velocity field ob-
tained via elastic matching, resulting in a velocity field that more closely approximates
the real world motion. Using B-spline surface approximation also allows for a finite
number of tracking variables to be used in the Kalman filtering algorithm. A detailed
description of the B-spline surface approximation algorithm can be found in [13]. The
velocity measurement model uses a generalized elastic matching algorithm to measure
the velocity of each grid in a region-based object model that is represented by a col-
lection of non-overlapping grids. The overall tracking framework is shown in Figure 1.
The Kalman filtering algorithm is used to estimate/predict the velocities of the control
points on the B-spline surfaces. The estimated control point positions are used to com-
pute the grid velocities, which are then used to initialize the elastic matching algorithm.
The elastic matching algorithm determines the new locations of the tracked objects by
seeking to optimize an energy function defined over the velocity field. The B-spline sur-
face control points are updated using the velocity field computed by the elastic matching
algorithm. The updated B-spline surface control points in turn are used to update the
Kalman filter parameters. The details of the proposed tracking scheme are provided in
the following subsections.

3.1 The Object Model

Given an image frame F (t), non-overlapping grid cells of size l× l pixels are imposed
on F (t) and the relevant features extracted for each grid cell. The parameter l controls
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Fig. 1. The proposed tracking model

the granularity of the object model. Let FG(t) denote the grid image at time t, i.e. the
set of all grid cells at time t. An object O(i) is modeled as a set of grid cells O(i) =
{G,GB}, whereG = {gk} is the set of grid cells that belong to the object andGB is the
set of grid cells that contain the boundary points. Note that G ⊂ FG(t) and GB ⊆ G.
The boundary grid cells GB are used to localize the boundary of the tracked object.
Henceforth we refer to each grid cell as a grid for the sake of convenience.

Each grid gk has several attributes given by gk = {X, ξ, c} where X = (x, y) is the
location of grid gk, ξ = (ξx, ξy) is the velocity of grid gk and c is the vector of extracted
features for grid gk. Note that each grid has its own velocity vector. B-spline surfaces
are used to approximate the velocity field of each object. Color and edge features are
extracted for each grid and denoted by the feature vector c = {cci , cei}, where cc is the
color feature vector and ce is the set of corner pixels associated with the grid.

Given an RGB color image, three new color channels are computed. The three new
color channels are a linear combination of the original RGB channels and are given by
I1 = (R+G+B)/3, I2 = R−B, I3 = 2G−R−B. These three new color channels are
more stable to changes in illumination than the original RGB channels [7]. The channel
I1 denotes the image intensity or luminance whereas channels I2 and I3 denote roughly
orthogonal color components. For each grid, the color features are the spatial average
of each color channel computed over all the pixels within the grid. The color feature
for a grid is denoted by cc = {i1, σ1, i2, σ2, i3, σ3} where ik is the spatial average of
color channel k computed over all pixels of the corresponding grid in the current image
frame and σk is the standard deviation of ik along the temporal dimension. When there
is insufficient temporal information for a grid, σk is initialized to a default value of σ0

k.
ABOVE. An online occlusion reasoning scheme, detailed in Section 4, is used to update
the aforementioned parameters for each grid.

The Harris corner detector [11] is used to extract the corner points. The corner
feature for a grid is represented by a set of corner points ce = {cei}. If the grid size is
small (i.e. 5× 5), very few or no corner points are detected within the grid resulting in
the absence of any structural information for that grid. Hence in our experiments, the
corner points associated with a grid are deemed to be those that are detected within a
window that is larger than the grid size and centered within the grid. Thus, corner points
from the neighboring grids are included within the set of corner points associated with
a given grid.

The similarity between two grids is quantified by the distance between their as-
sociated features. The distance between two color feature vectors is considered to be
the Euclidean distance d(cc1, c

c
2) = ‖cc1 − cc2‖2 whereas the distance between two sets

of corner points A and B is the Hausdorff distance H(A,B) [10]. Given the fea-
ture vectors associated with two grids g and g′, their feature distance is evaluated as
d(cg, cg′) = d(cc

g, cc
g′) + βH(ce

g, ce
g′), where β is a predetermined constant.
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3.2 Velocity Estimation Model

A Kalman filter is used to estimate/predict the velocity field of an object. Note that the
term velocity field, in our case, actually denotes the control point values resulting from
the B-spline surface approximation of the velocity field. The canonical Kalman filter
used in this paper can be described using the following equations:

ξ̂−k+1 = ξ̂+
k + qk (1)

Zk = ξ̂−k + vk (2)

where ξ is the estimated/predicted velocity field. and Zk is the actually measured ve-
locity field. Equation (1) represents the prior estimation of ξ whereas equation (2) de-
scribes the linear relation between the estimated ξ and the actually measured velocity
field Zk. Variables qk and vk represent random noise in the prior estimation and actual
measurement of the velocity field respectively. Both qk and vk are modeled as Gaussian
white noise with distributions N (0, Q) and N (0, R) respectively, where Q and R are
the corresponding covariance matrices.

3.3 Velocity Measurement Model

The Kalman filtering algorithm results in an estimation of the velocities for the control
points of an object velocity field, which are used to calculate the velocity (displacement)
of each grid from one frame to the next. The estimated displacement of each grid is used
to initialize the elastic matching algorithm. The elastic matching algorithm searches for
the corresponding location of the tracked object in the new image frame. Given the set
of grids G belonging to an object at time t − 1, where G ⊂ FG(t − 1), the elastic
matching can be viewed as a procedure to determine a mapping f : G �→ G′ where
G′ ⊂ FG(t) is a set of corresponding grids in the new image frame such that: (i) for
each g ∈ G, there exists g′ ∈ G′ such that g′ = f(g), and (ii) the following energy
function is minimized:

E(f) =
∑
g∈G

ogd(cg, cg′) + λ
∑

(g1,g2)∈G

[(Xg1 −Xg2)− (Xg′
1
−Xg′

2
)]2 (3)

In equation (3), og denotes the occlusion assumption for grid g: og = 0 if grid g is oc-
cluded, otherwise og = 1; g′1 = f(g1); g′2 = f(g2); d(cg, cg′) is the distance between
grids g and g′ (Section 3.1); Xgk

is the location of grid gk; and cg denotes the feature
vector associated with grid g. The first summation in equation (3) represents the contri-
bution to the energy function arising from the dissimilarity between the feature vectors
associated with grids g and g′. This summation is minimized when the feature vectors
associated with grids g and g′ = f(g) are similar. The second summation in equation
(3) represents the contribution to the energy function arising from the difference in mu-
tual distance between corresponding grid pairs which can be viewed as a measure of
object shape distortion. This summation is minimized when the object shape distortion
between successive frames is minimized.

By constraining the grid pairs (g1, g2) to be neighbors, the computational com-
plexity of the second summation in equation (3) can be significantly reduced and the
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energy function simplified. The simplified energy function can be written as E(f) =∑
g∈G E(g)g 	→g′ , in which

E(g)g �→g′ = ogd(cg, cg′) + λ
∑

gi∈O(g)

‖Xgi −Xg − (Xg′
i
−Xg′)‖2 (4)

Note that E(g)g �→g′ is the contribution of the mapping g �→ g′ to the energy function
E(f). Given an initial matching G �→ G′, an iterative local search is performed to
minimize the energy function E(f).

Given grids g and g′ (where g �→ g′), we search for a grid g′′ in O(g′) (the neigh-
borhood of g′), to see whether the alternative mapping g �→ g′′ can result in a lower
value of the energy function. If g′ is replaced by g′′, the overall change in the energy
function is localized to grid g and its neighboring grids gi ∈ O(g). The contribution of
the mapping g �→ g′′ to the energy function can be evaluated as:

E(g)g �→g′′ = ogd(cg, cg′′) + λ
∑

gi∈O(g)

‖Xgi −Xg − (Xg′
i
−Xg′′)‖2 (5)

The overall change in the energy can be evaluated as:

ΔE(f)g′→g′′ = E(g)g �→g′′ − E(g)g �→g′ =
∑

gi∈O(G)

(E(gi)g �→g′′ − E(gi)g �→g′ ) (6)

The iterative algorithm outlined below is used to minimize the total energyE(f). Given
the estimated velocity field computed using equation (1), the initial displacement of
each grid is computed and used to initialize the following algorithm for elastic match-
ing:
(1) For each grid g determine its initial matching grid g′ as predicted by the Kalman
filter.
(2) Compute the initial energy E(g)g 	→g′ for each pair (g, g′) using equation (4).
(3) For each grid g and its matching grid g′, compute ΔE(f)g→g′′ for all g′′ ∈ O(g′).
If there exists a g′′ ∈ O(g′) such that ΔE(f)g→g′′ < 0 and ΔE(f)g→g′′ is the minimum
amongst all g′′ ∈ O(g′), then replace g′ with g′′ as the mapping grid of g.
(4) Repeat step 3 until there is no change in the mapping f .

4 Object Parameter Updating and Occlusion Reasoning

After computation of the B-spline surface fit to the 2-D velocity field, the grid mapping
is recomputed based on the B-spline surface representation. Suppose there are n objects
at time t − 1, where object i is associated with a corresponding grid set Gt−1

i , i =
1, ...,n. By mapping Gt−1

i to grid image FG at time t, the corresponding grid set Gt
i

can be recomputed such that for each grid in Gt
i , there is a corresponding grid in Gt−1

i .
In a multiple object tracking scenario, occlusion reasoning is invoked if several grids

from different objects correspond to a single grid gt
i . The occlusion analysis is based on

the estimation of the conditional probabilities that the grid corresponds to each of the
several objects. The grid is deemed to correspond to the object for which the conditional
probability is maximized.
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Suppose grid gt at time t corresponds to m grids gt−1
ki

at time t − 1, where 0 ≤
i < m and 0 ≤ ki < n. Let gt−1

ki
be a grid associated with object ki, that is gt−1

ki
∈

Gt−1
ki

. We assume that the color feature vector for each object ki at time t exhibits

a normal distribution N (cc,t−1
ki

, σt−1
ki

) with mean cc,t−1
ki

and standard deviation σt−1
ki

.
The conditional probability that gt is the corresponding grid of object ki at time t is
p(gt|Gt−1

ki
) = N (cc,t|cc,t−1

ki
, σt−1

ki
). The grid gt is labeled as ki if the conditional prob-

ability p(gt|Gt−1
ki

) is a maximum over all possible objects. However, this simple ap-
proach could result in incorrect labeling due to noise and inherent inaccuracies in the
object model. To minimize such labeling errors, we exploit spatial coherence. For every
grid labeled using the above procedure, we check its eight neighbors; if five or more of
the eight neighboring grids have the same label ki, we change the label of this grid to
ki. The occlusion parameter ogki

is set to 1 and ogkj
is set to 0, where 0 ≤ j < m and

j 	= i.
After the grids within the confusion area are classified, the parameters of each non-

occluded grid are updated. If the color feature of grid g is cc,t−1 with standard de-
viation σt−1 at time t − 1, and the observed color feature at time t is cc

′,t then the
grid parameters are updated as cc,t = cc,t−1 + ρ(cc

′,t − cc,t−1) and (σt)2 = (σt−1)2+
ρ[(cc

′,t,−cc,t−1)(cc
′,t − cc,t)T − (σt−1)2] where ρ = αN (cc

′,t|cc,t−1, σt−1).

5 Experimental Results

The proposed tracking algorithm has been applied to various tracking scenarios. Fig-
ure 2(a) shows the snapshots of the tracking of a person bowing to reach the keyboard
on the table. The dots in the figure represent the grids in the object model and hence the
object shape. The tracking result shows that the proposed scheme can adapt to changes
in the object shape. The set of video frames in Figure 2(b) show the results of simulta-
neous tracking of three persons in an indoor video taken with a static camera. All the
three persons are continuously tracked and the tracking scheme is shown to be robust
and resilient to occlusion. Videos depicting the above results and various other tracking
results can be viewed at http://www.cs.uga.edu/∼xingzhi/research/elastic/index.html.

(a) Object deformation (b) Object occlusion

Fig. 2. Tracking under conditions of object deformation and occlusion

6 Conclusions

A novel multiple object tracking scheme based on Kalman filtering and elastic match-
ing is proposed in this paper. The proposed scheme provides a general framework for
tracking of both rigid and elastic objects. It can be viewed as a generalized Kalman filter
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where elastic matching is used to measure the velocity field which is then approximated
(and smoothed) using B-spline surfaces. Control points of the B-spline surfaces are
used directly as tracking variables in the Kalman filter. The limitation of the Gaussian
distribution assumption in the Kalman filter is overcome by the large capture range
of the elastic matching algorithm which can correct for the prediction errors made by
the Kalman filter. The B-spline surfaces are used to update the grid-based object color
features. The adaptation of the object color features is subsequently used in occlusion
reasoning. Since the proposed tracking method does not rely on background subtrac-
tion, it is suitable for object tracking in dynamic scenes captured using both, a static
camera and a moving camera.
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Abstract. Singular (unobservable) movements pose major challenges
for consistent 3D human arm tracking using monocular image sequences.
In this paper, we present an efficient and robust method for the detec-
tion and tracking recovery from one of the singular movements: rotation
about humerus with outstretched arm. In our approach using a particle
filter for 3D arm tracking, movement constraints (i.e. range of arm joint
angles) are not enforced in particle generation. Instead, singularity detec-
tion is achieved by looking for particles with joint angles violating these
constraints. Once such a singular movement has been detected, inverse
kinematics method is used to recover correct arm tracking by transfer-
ring invalid particles from unconstrained movement parameter space into
valid constrained space. Experimental results have demonstrated the ef-
ficacy of our approach in terms of explicit singularity detection, fast
recovery of tracking and small number of particles.

1 Introduction

3D arm tracking from monocular videos is one of the active research areas in
human motion analysis. Due to the broad spectrum of applications, it has re-
ceived much attention recently. Although arms are relatively simple articulated
body parts, robust 3D tracking using a monocular video still poses a challenge.

In addition to general tracking challenges, such as cluttered background,
(self-)occlusion, the existence of singular arm movements makes the problem
even harder to solve [2]. Several 2D approaches [1,2] have been proposed to solve
some of the 3D singularities, which are no longer singular in 2D approaches.
However there are 3D singular movements which stay singular for 2D approaches,
e.g. rotation about humerus with outstretched arm. In the presence of this type
singular arm movements, the image observation such as image edges of the arm
does not constrain the rotation of the upper arm. Particle filter has been applied
in human motion tracking widely. While the standard particle filter uses multiple
particles to sample the posterior distribution of the state space, it suffers from
the problem of high dimensionality, which causes sample depletion in most of
the state space. As a result, when a singular movement occurs, it is easy to
lose track. Recovering lost tracking is difficult. Therefore particle filter requires
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a large number of particles to thoroughly sample the high dimensional state
space effectively. There are several strategies for improving the efficiency of the
samples. [3,4] use learned dynamical model to introduce constraints. [6,5] design
efficient stochastic estimators for large state spaces. [7] exploits gradient-based
search strategies to find local and global minimum structure.

However, to effectively handle singular movement, explicit steps need to be
taken. In this paper, we present an efficient and robust method for the de-
tection and tracking recovery from such singular movements, namely rotation
about humerus with outstretched arm. The proposed method deploys the uncon-
strained samples to keep track of the arm in the image and transfers physically
invalid samples to valid state space using inverse kinematics.

2 3D Arm Tracking Using a Particle Filter

In our tracking approach, the upper arm and forearm are modeled as trun-
cated cones which are connected by the elbow joint. The state vector given by
Xt = [ϕx, ϕy, ϕz , ϕe, Tx, Ty, Tz]T . It contains global configuration of the arm
[ϕx, ϕy, ϕz ] and [Tx, Ty, Tz] which respectively represent the rotation angles and
translation of the upper arm coordinate system with the camera coordinate sys-
tem. ϕe is the relative rotation angle of forearm with upper arm.

The 3D arm model can be projected on image plane to generate predicted
edges using joint angle samples. Here the method discussed in [8]is explored to
obtain four straight lines as the projection edges.

A second order auto regressive process is used to model the dynamics. The
dynamic equation is: [

Xt

Ẋt

]
= F

[
Xt−1

Ẋt−1

]
+ Vt (1)

where Xt is the state vector and Ẋt is the velocity of the state vector. F is
dynamic matrix, process noise matrix is Vt = [0, vi1]T , where vi is angle velocity
ẋi, following a Gaussian random variable with distribution N(0, σ2

i ).
The likelihood based on arm configuration is pimage(zt|x(i)

t ). Both the edge
orientation and intensity of the detected edges are used to compute image like-
lihood. For one projection line, a set of independent normal lines are generated
to measure the likelihood of detected edge points, as shown in Figure 1. Along
each normal line, the detected edge points are located and the corresponding ori-
entations are calculated. If the difference between edge orientation of the point

Predicated Edges

Arm Image Edges

Normal Lines

Fig. 1. Edge matching process
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and the orientation of projected contour is less than a preselected threshold, the
point is set as edge candidates. This will reduce the clutter noise from the image
background. The resulting likelihood function is multi-modal. We combine the
distance measure with edge intensity measure. Let K be the number of peaks.
For each peak, the distance similarity measure is given by:

p(zk|c) = e−
f2(dk ;μ)

2σ2 k = 1 · · ·K (2)

where f(dk;μ) = min(d(zk, c),μ), d(zk, c) is the distance of point k to the pro-
jected contour c, μ controls the clutter-resistance of the tracker, σ2 is the variance
of model and input edge disparity.In these K candidates, the relative weight of
each candidate point can be obtained as πk = Ik

Nm
, k = 1, · · · ,K, where Ik is

the edge intensity value and Nm is the normalization factor. Given the clutter
probability, for each normal line l, the combined likelihood is obtained by

pl(zt|xi
t) =

K∑
k=1

πkp(zk|c) + U(1−
K∑

k=1

πk) (3)

where U is uniform distribution,1 −∑K
k=1 πk is background clutter probabil-

ity,here we choose 0.05. The overall likelihood is

pimage(zt|xi
t) =

L∏
l=1

pl(zt|xi
t) (4)

where L is the number of normal lines.

3 Singular Movement Detection and Tracking Recovery
Through Physically Invalid Samples

In this section, we present an algorithm to explicitly detect the presence of one of
the major singular movements: rotation about humerus with outstretched arm,
and to recover tracking from such singular movements. This type of movements
is singular because the projection lines of the arm are not affected by ϕx, rotation
about humerus with outstretched arm, i.e., different ϕx will create very similar
edges in the image.

In [9], the Condensation algorithm was used to successfully track an arm
through this kinematic singularity. However, in our experiments, we have found
out that for Condensation algorithm to successfully track arm through such a
singular movement, specific models of dynamic noises for each angle are needed.
For example, dynamic noise with large covariance is needed for ϕx, to cover the
gap in ϕx before and after the singular movement. However, such movement-
specified models are not suitable for general movements, since it will increase
local uncertainty and will cause more ambiguity. Furthermore, even in the case
of using this specific movement to handle such singular movement, the singu-
larity detection is not straightforward. From the tracking results, it’s hard to
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tell when a singular movement occurs and how long it lasts. These informa-
tion might be useful for particular applications, e.g. in rehabilitation of stroke
patients, when such a movement needs to be done during therapy and the pa-
tient’s performance needed to be monitored. A large number of particles are
needed to cover the necessary neighborhood in the state space when large dy-
namic noise is used. It consequently increases the computational intensity and
makes real-time implementation difficult.

Anatomical kinematic constraints limit the joint movements. In traditional
particle filter-based articulate limb tracking algorithms, these constraints are en-
forced to generate physically valid samples. For example, in [9], at regions close
to the endstop (angle limits) in the valid state space, the state velocity was re-
versed proportionally to a reversal coefficient drawn from a uniform distribution.
Thus all the samples are physically valid, i.e. within the possible state space de-
fined by the physical anatomical limits. However, at the same time, as we will
explain below, it also prohibits tracking recovery from singular movements.

Consider the scenario mentioned above, where ϕx slowly changed with arm
outstretched. Assume that ϕx changed from one position to the others, namely
from ϕx(a) to ϕx(b). Let the gap be Δϕx = ϕx(b) − ϕx(a) during the tracking.
Assume that ϕx is relatively large, say 60 degree. Since the change of ϕx is
unobservable in the image, nearly all entries in current samples corresponding
to ϕx will be far away from ϕx(b), the true rotation angle when small dynamic
noise is applied to ϕx. With the above anatomical constraints enforced in sam-
ple generation, the corresponding ϕx in samples are way off from the ground
truth. Consequently, tracking will fail right after the arm moves out of such a
singularity. One way to solve this problem is to allow the existence of physically-
invalid samples which can correctly track the arm profiles on the image plane
and then transfer these invalid samples back to valid sample space later. Hence,
tracking can be successfully recovered after singular movements. We apply this
“unconstrained+transfer” strategy to our framework.

In our approach, we use the joint angle limits in a way similar to the one
presented in [3], except that there is no hard upper bound applied in sample
generation for the elbow angle ϕe. The physical range of ϕe is [ϕe,min, π], where
ϕe,min here is chosen as 15 degrees. When there is a predicted sample, with ϕe

out of this physical range, it will not be corrected immediately. Instead, these
invalid samples will be utilized to keep track of the arm profiles on the image
plane and the forearm distal point (i.e. the wrist) in the 3D space.

Once a physically-invalid sample has been used to track the arm, it then can
be mapped or transferred back to the valid joint angle space. This step of sample
transfer is done through inverse kinematics. First, forward kinematics is used to
obtain the 3D position of shoulder, elbow and wrist from kinematic chain using
the joint angle configuration in the invalid sample, since the 3D shape of the
arm is known and modelled using connected truncated cones.

With these joints positions and rotation of initial position with respect to the
camera coordinate system, similar to [10], we can infer the actual joint angles
from the inverse kinematics, as shown in Figure 2.
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Fig. 2. Mapping using inverse kinematics

The elbow angle is the dot product of vector of −→x 1 and −→x 2, which are
normalized vector along local x axes direction. It should satisfy the inequality
ϕe > Ψmin. The rotation angle ϕx of upper arm can be obtained using inverse
kinematics. To calculate the shoulder rotation angles, we use a simple Euclidean
coordinate transformation. Given previous coordinate rotation with initial refer-
ence system, we know vector −→x in camera coordinate system as −→x 1 and current
coordinate system as [1 0 0]T . We can calculate the rotation for this vector
from these two systems to previous coordinate system. And we can obtain the
rotation angles ϕy and ϕz. Different from [10] is that we only get one angle value
for elbow angle and upper arm bone rotation angle. This is because we have joint
constraints to set the angle in specific range.

Since singular movements are being handled explicitly in our approach in
terms of the transfer of invalid samples into valid joint angle space, the prob-
ability of singularity can be computed directly. At time t, the probability of
singularity Ps(t) is given by

Ps(t) =

∑
j∈T wj

t∑N
i=1 wi

t

(5)

where N is the total sample number and T = {j : xj
t is mapped into valid space

at time t}.

4 Experimental Results

The current implementation is developed in C++ using a Pentium 4 3.0GHz
PC running Windows XP. No optimization is attempted. The system runs at
5 frames/sec with 640× 480 color image for 48 normal lines and 1000 samples.
The video camera has been calibrated beforehand and the initial fit of the model
to the first frame is done manually. The system tracks the right upper arm and
forearm.

The proposed approach has been tested against the basic Condensation al-
gorithm [9] using several video sequences.
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Fig. 3. Arm tracking with singular movement. The first row shows the tracking results
using the proposed our approach and the second row shows the result using the basic
Condensation algorithm. The third row is empirical posterior distribution of ϕx using
the proposed approach and forth row is results from the basic Condensation algorithm.

Fig. 4. (Left): Arm movements tracking results using the proposed approach with
inverse kinematics mapping with 800 samples. (Right): Arm movements tracking using
the Condensation algorithm with 1200 samples.

The first sequence has 500 frames. This sequence contains the singular move-
ment discussed in this paper. Both approaches used 500 motion samples. As
shown by figures in the first row of Figure 3, the proposed approach successfully
tracked arm movements when the arm rotated with the elbow angle moving away
from the singularity. However the basic Condensation algorithm tracked the first
singularity but lost another one (the second row of Figure 3). Corresponding to
the each image, empirical posterior distributions of ϕx obtained using both ap-
proaches are shown in third and forth row in Figure 3. It can be seen that the
ϕx estimates obtained using our approach have less uncertainty than those from
the Condensation algorithm when the arm moves out of singularity.

Figure 4 shows the tracking results using another sequence of 700 frames
involving more complicated arm movement with several singular movement seg-
ments. Our approach(left part) can track the movements using only 800 samples,
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Fig. 5. (Left): The MMSE estimates of ϕx, ϕe and cumulated probability of singularity
obtained using our method. The top plot shows the estimates of ϕx, the middle one
ϕe and lower one cumulated probability of singularity. (Right):The MMSE estimates
of ϕx and ϕe obtained using the Condensation. The first plot is the estimate of ϕx and
second one ϕe.

while basic Condensation (right part)will fail for some singularities and also has
more ambiguities even with 1200 samples and increased noise for ϕx.

Figures 5 shows the minimum mean square error (MMSE) estimates (the
mean of the empirical posterior distribution) of ϕx and ϕe using the two ap-
proaches. In addition, the third row of left part gives the cumulated probability
of singularity of the movement. It is the sum of instantaneous probability of
singularity over a window. Here we use window size s = 10 frames. We can
observe that the shoulder angle ϕx changes quickly near the singularity in our
method(left). While for Condensation algorithm, the shoulder angle ϕx changes
gradually(right).

The accurate detection of the presence of singular movement is of great im-
portance, as mentioned above, e.g. in rehabilitation of stroke patients. Using
Condensation algorithms, one can only roughly tell its presence by looking for
movement segments with outstretched arm (ϕe close to π) and changing ϕx in
the estimates. It is not quantitative and not accurate either. In our approach, the
probability of singularity can be computed by looking at the weights of trans-
ferred invalid samples. Moreover, during a singular movement, one expects the
invalid samples transferred gradually over a period of time. Therefore, the con-
tinuous nonzero value of probability of singularity in a small window strongly
indicated the presence of singularity. The cumulated probability of singularity
over this window is the probability of singularity of this movement segment.
In this sequence, there are totally six singular movements, indicated by seg-
ments“A”, “B”, “C”, “D”, “E”, and “F” in Figure 5 left part. They in turn
correspond to left part images in Figure 4. “A” relates to the first row, “B” the
left two images of the second row, “C” the right two images of the second row,
“D” the left two images of the third row, “E” the right two images of the third
row and “F” the last row. In the computed cumulated probability of singular-
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ity, we see that these singular movement segments are all related to continuous
nonzero regions.

5 Conclusion

We have presented an efficient and robust for the detection of arm tracking
recovery from one of the singular movements: rotation about humerus. In our
approach using a particle filter for 3D arm tracking, movement constraints (i.e.
range of arm joint angles) are not enforced in particle generation. Instead, sin-
gularity detection is achieved by looking for particles with joint angles violating
these constraints. Once such a singular movement has been detected, inverse
kinematics method is used to recover correct arm tracking by transferring invalid
particles from unconstrained movement parameter space into valid constrained
space. Experimental results have demonstrated the efficacy of our approach in
terms of explicit singularity detection, fast recovery of tracking and small number
of particles.
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Abstract. In multi-target visual tracking, tracking failure due to miss-
association can often arise from the presence of occlusions between targets.  To 
cope with this problem, we propose the predictive estimation method that iter-
ates occlusion prediction and occlusion status update using occlusion activity 
detection by utilizing joint probabilistic data association filter in order to track 
each target before, during and after occlusion.  First, the tracking system pre-
dicts the position of a target, and occlusion activity detection is performed at the 
predicted position to examine if an occlusion activity is enabled.  Second, the 
tracking system re-computes positions of occluded targets and updates them if 
an occlusion activity is enabled.  Robustness of multi-target tracking using pre-
dictive estimation method is demonstrated with representative simulations. 

1   Introduction 

In automatic visual object tracking such as autonomous vehicle navigation, human 
interface, traffic monitoring, and surveillance [1], it is desirable to track multiple 
objects simultaneously, while their motion is continuously analyzed [2][3][4].  Es-
pecially, the visual surveillance of human activity requires complex tracking algo-
rithms because of the unpredictable situations, which occur whenever multiple peo-
ples are moving, stopping, and interacting with each other.  Human actions within 
the field of view have no consistent rules concerning their movement.  When multi-
ple peoples are interacting with each other, a variety of events can occur such as 
occlusion, partial occlusion or short-time stopping.  However, Some tracking algo-
rithms have a weakness according to the given specific situation such as occlusions 
between targets. 

To overcome the weakness in occlusion time, following issues can be considered.  
First, the prediction about the occlusion activity of moving blobs should be done to 
predict occlusion occurrence and to associate them with real targets respectively.  
Second, the decision logic that identifies an occluded object should be supported with 
high reliability.  For associating an occluded target, partial information can be used by 
inspecting the overlapping region of occluded object in the predicted position. 
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Thus, we propose the predictive estimation method that iterates prediction and up-
date procedures of target position information by utilizing joint probabilistic data 
association (JPDA) filter to track each target before, during and after occlusion [5][6].  
First, the tracking system predicts the position of a target and occlusion activity detec-
tion is performed at the predicted position to examine if an occlusion activity is en-
abled.  Second, the tracking system re-computes positions of occluded targets and 
updates them if an occlusion activity is enabled.  In previous work [5], the limitation 
of some multi-target tracking algorithm using the JPDA is not specified in occlusion 
time because they does not refer necessary condition for constructing the validation 
matrix in JPDA filter.  This assumes that a moving blob can have only one source, 
and no more than one moving blob can originate from one person [6].  Thus, accurate 
position of each object even in the occlusion time should be recomputed.  To do this, 
our proposed occlusion predictor enables to re-compute the semi-accurate position at 
the predicted position.  In addition, general Kalman tracking algorithm has only an 
iterative innovation and prediction procedure to pursue a target trajectory, while we 
perform the occlusion reasoning procedure by comparing region occupancy in pre-
dicted position as an extra task with iterative innovation and prediction. 

The content of this paper is as follows.  In Section 2, we propose predictive estima-
tion method to track multi-targets reliably using joint probabilistic data association 
filter.  In Section 3, we show the result and analysis of multi-target tracking using the 
proposed method.  Finally, concluding remarks are presented in Section 4. 

2   Predictive Estimation to Track Multi-targets 

We assume that we found the moving blobs from image sequences, and performed 
data alignment in image coordinates.  In addition, it is important for any data repre-
sentation to contain a measure of the quality of data.  If a sensor is operating reasona-
bly well, it is expected that the acquired data will be within the explicit accuracy 
bounds.  For doing this, we present a set of minimum bounding rectangles (MBR) 
employing “object range” and “validation region”, as a means to represent the posi-
tion, size and region of a target as feature vectors for describing the accuracy bound 
and range. 

2.1   Track Initialization 

Prior to tracking using selected features for preceded processes, a track initialization 
step is necessary while the object’s kinematics model needs to be determined [6].  In 
order to model the kinematics of moving objects, representative parameters and ex-
pressions are defined as follows.  Let o = [o1, o2, …, oM] denote the set of objects to 
track, ϕ denotes the movement directions for object oi  and x=[ xi , yi ]

T denote the 

vector of points of center corresponding to oi , with v= [ ii yx , ]T ,where ix  and 

iy denote the derivative of xi and yi with respect to t, respectively.  The Kanade-Lucas 

tracking equation (1) is differentiated with respect to time t as follows. 
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The movement directions among features of the object are also computed using 
motion vectors extracted by the optical flow method.  To obtain the movement 
directions of objects, we first compute the direction of motion vector for each pixel 
located in the area of the object.  The direction ϕ of the vector is defined as follows: 
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where vx and vy are motion vectors in moving objects for x and y direction respec-
tively, and 22|||| yx vv +=v .  From Equation (2) of direction ϕ, we know x =||v||cosϕ 

and y =||v||sinϕ.  The equations are differentiated with respect to t as follows. 
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Using Equations (2) and (3), the proposed system model is given by 
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where Omxn is an m x n zero matrix, Im is an m x m identity matrix and s = [xT , vT , aT ϕ 
]T denote the system state, which is composed of center points, velocity, acceleration 
and direction of moving object. In the proposed method, the acceleration component 
in state vector is included to cope with maneuvering of object.  The model assumes 
random acceleration with covariance Q, which accounts for changes in image veloc-
ity.  As the eigenvalues of Q become larger, old measurements are given relatively 
low weight in the adjustment of state.  This allows the system to adapt to changes in 
the object velocity.  Since time interval Δt between one frame and next is very small, 
it is assumed that F is constant over the (tk , tk+1) interval of interest.  The state transi-
tion matrix is simply given by 

[ ]−Δ

ΣΔ−

ΔΔ

==

××

×××

××
−

×

×

ΨΔ

1 seccsc
||||2

2

  

2121

1222222

1222
1

222

122

2

22

ϕϕ
v
t

OO

OIOO

OOtGIO

OI
t

tII

eF t
k

 (6) 



 Predictive Estimation Method to Track Occluded Multiple Objects 855 

Let z = [z1, z2, …, zM ] and zi denote the measurement vector for object oi .  In the pro-
posed model, center points and movement directions for each object are treated as 
system measurements.  The measurement vector satisfies: 

=

+=
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),0(~      
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RNwwHzi s
 

(7) 

where matrix H connects the relationship between zi and s.  After all, the object kine-
matics model is determined by setting the appropriate parameters. 

2.2   Predictive Estimation Using Occlusion Activity Detection 

The purpose of occlusion activity detection is to provide the current status of occlu-
sion between objects, which are just labeled blobs of a blob detection level.  Accord-
ing to the occlusion status, a countermeasure to reliably track can be applied.  We 
assumed that occluded objects from the first time have not appeared, and the objects 
are non-rigid.  The predictive estimation procedure is as follows. 

 

Fig. 1. Occlusion prediction method using predicted position information 

- STEP 1: Occlusion Prediction Stage 

This step predicts the next positions (centroids) of blobs employing the Kalman pre-
diction model used in JPDAF [6] as in (a) of Figure 1: 

)()/()()/1( kukkXkFkkX +=+  (8) 

where X(k+1/k) is the state vector at time k+1 given cumulative measurements to time 
k, F(k) is a transition matrix, and u(k) is a sequence of zero-mean, white Gaussian 
process noise. Using the predicted position computed at equation (8), we can deter-
mine the redundancy of objects within the field of view using the intersection meas-
ure.  The decision of the occlusion is computed by comparing if or not there is an 
overlapping region between the validation regions, MBRi in the predicted center 
points as follows. 
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mji ,...,1,   where,  
otherwise0
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 F ji

oc =
≠∩ φ  
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where Foc is an occlusion alarm flag, the subscript i and j are the index of the detected 
target at the current frame, and m is a number of a target.  If a redundant region has 
occurred at the predicted position, the probability of occlusion occurrence in the next 
step will be increased.  Therefore, the occlusion alarm flag is set to 1. 

 

Fig. 2. Validation region using occlusion reasoning 

- STEP 2: Update Stage of Occlusion Status 

In the current frame, the occlusion status is updated to decide the occlusion occur-
rence.  The first time, the size of the labeled blobs is verified whether they are con-
tained within the validation region or not.  If the size of labeled blobs is contained 
within the validation region, the occlusion status flag is disabled.  Otherwise, the 
occlusion alarm flag is set to 1, we can conclude that the occlusion has occurred at the 
region, and the occlusion status is enabled.  At this time, from the predicted center 
points of the previous step, we apply the predicted position to the system and pre-
dicted MBR is recomputed as in Figure 2.  Then, the Kalman gain is computed and 
the measurement equation is updated.  In addition, the process transition mode is 
changed as in (b) of Figure 1. 

2.3   Data Association Between Moving Blobs and Real Targets 

Similarly to the PDA algorithm, the JPDA algorithm computes the probabilities of 
association of only the latest set of measurements Z(k) to the various targets [6].  The 
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key to the JPDA algorithm is the evaluation of the conditional probabilities of the 
following joint association events pertaining to the current time k. 

k

j

m

j
jt

1=

= θ  (10) 

where jtθ  is measurement j originated from target t (j=1,…,Mk, t=0,…,T) and m is a 

number of a target and subscript k is the current time.  We employ the process state 
transition model to differently cope with occlusion status according to the state transi-
tion mode as in (b) of Figure 1.  (1) A specific target enters into the scene.  (2) Multi-
ple targets enter into the scene.  (3) A specific target is moving and forms a group 
with other targets, or just moves beside other targets or obstacles. (4) A specific target 
within the group leaves a group.  (5) A specific target continues to move alone, or 
stops moving and then starts to move again.  (6) Multiple targets in a group continue 
to move and interact between them, or stop interacting and then start to move again.  
(7) (8) A specific target or a group leaves a scene.  The events of (1), (4), (5), and (7) 
can be tracked using general Kalman tracking.  In addition, the events of (2), (3), (6) 
and (8) can be tracked reliably using predictive estimation method. 

Figure 3 shows the final tracking flow incorporating the state transition model.  It 
performs predictive estimation steps using occlusion prediction and update by utiliz-
ing the Kalman filter. 

 

Fig. 3. Flow of multi-target tracking using JPDA 

3   Experimental Results 

The tracking scheme was tested on real image sequences to assess its capabilities for 
tracking multiple moving targets (two people) in complex road scenes.  Two different 
road scenes with increasing complexity were considered.  This system is more effi-
cient to multiple tracking under problems of tracking adjacent, overlapped targets and 
crossing targets than those related to the system described in [2][3] and [4].  This 
system addresses the problem of occlusions in tracking multiple 3-D objects in a 
known environment by employing predictive estimation and data association.  It is 
used to solve the problem of tracking adjacent, overlapped targets and crossing tar-
gets. 

Obtained images were sampled at video rate : example 1 (total 640 frames, 15 
frames per seconds, and its size is 240×320) and example 2 (total 570 frames, 15 
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frames per seconds, and its size is 240×320) which is a gray level image.  In the 
initial value of the JPDA algorithm to track multi-targets in Figure 4, the process 
noise variance = 10 and the measurement noise variance = 25 are used.  The initial 
position value of two people are set to A(17, 60), B(254,147) and A(16,115), 
B(108,215) in Cartesian coordinates.  The object A moved from the left-bottom to 
the right-top, and the object B moved from the right-center to the left-center in 
example 1.  In example 2, the object A moved from left to right and the object B 
moved from top to bottom.  An occlusion state is maintained for 34, 24 frames.  We 
assumed that we knew the size of a target to track within field of view.  Assumed 
size of target is set with the following parameters: validation region is (100 pixel, 
60~150 pixel) in example 1.  In example 2, validation region is (100~120 pixel, 
60~170 pixel). 

 

Fig 4. Multi-target tracking of two persons using JPDAF: (a) and (c) show the trajectories of 
tracking two people.  (b) and (d) show ellipses to represent noise variance. 

Robustness has been evaluated mainly in terms of location accuracy and error rate 
of feature extraction and capability to track under occlusion in complex load scenes.  
The table 1 is an error rate that extracted blobs are not targets within field of view.  It 
is computed as 

=

−
=

N

k

f

N

NN

N 1 0

01ε  
(11) 

where N is number of frames, Nf is number of extracted feature sets at frame k, and N0 
is number of moving objects at frame k. 
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Table 1. Simulation results of test image sequences 

Error Rate of Feature Extraction  
 

Error 
Rate( ε ) 

Data association is 
only applied. 

Predictive Estima-
tion without data 
association is ap-
plied 

Predictive Estima-
tion with data asso-
ciation is applied. 

Example 1 42.8549 15.8805 0.7862 
Example 2 14.2241 6.5621 0.4241 

The result of blob decision through gating and occlusion reasoning has a smallest 
error rate.  When occlusion activity is enabled, coupled objects are isolated using 
predictive estimation and each of the position of the two objects is re-computed.  The 
computed position value is inputted to the state measurement equation within a JPDA 
algorithm, and then proposed system tracked two people reliably. 

4   Conclusions 

In this paper, we proposed the predictive estimation method using occlusion predictor 
and the JPDA filter to remedy occlusion problems and to associate the relationship 
between moving blobs and real targets.  When using the JPDA filter for multi-target 
tracking, the necessary condition for constructing the validation matrix should be 
satisfied.  This filter assumes that a moving blob can have only one source, and no 
more than one moving blob can originate from one person.  Thus, accurate position of 
each object even in the occlusion time should be recomputed.  To do this, our pro-
posed occlusion predictor enabled to re-compute the semi-accurate position at the 
predicted position.  In addition, general Kalman tracking algorithm has only an itera-
tive innovation and prediction procedure to pursue a target trajectory, while we per-
formed the occlusion reasoning procedure by comparing region occupancy in pre-
dicted position as an extra task with iterative innovation and prediction procedure. 
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Abstract. A better understanding of cell behavior is very important
in drug and disease research. Cell size, shape, and motility may play a
key role in stem-cell specialization or cancer development. However the
traditional method of inferring these values manually is such an onerous
task that automated methods of cell tracking and segmentation are in
high demand. Image cytometry is a practical approach to measure and
extract cell properties from large volumes of microscopic cell images.
As an important application of image cytometry, this paper presents a
probabilistic model based cell tracking method to locate and associate
HSCs in phase contrast microscopic images. The proposed cell tracker
has been successfully applied to track HSCs based on the most probable
identified cell locations and probabilistic data association.

1 Introduction

One of the most important and common tasks for biomedical researchers is
cell tracking, which continues to be undertaken manually. Researchers visually
perform cell motion analysis and observe cell movement or changes in cell shape
for hours to discover when, where and how fast a cell moves, splits or dies.
This task is tedious and painful due to the often corrupted or blurred images,
the presence of clutter, fixing eyes for a long time, and repeating the same
task for different cell types. Furthermore, with the extent of cell imaging data
ever increasing, manual tracking becomes progressively impractical. As a result,
automated cell tracking systems are mandatory to further advance the study of
biological cells. Such a tracking system will require automatic object tracking,
usually under challenging conditions

A variety of semi-automatic or automatic methods have been proposed to
segment cell boundaries [1,2,3]. These methods include thresholding, watershed,
nearest neighborhood graphs, mean shift procedure and deformable models.
Overall, these can be divided into three major categories: boundary based, region
based, and thresholding.

Markiewicz et al [4] have used watershed for the segmentation of bone marrow
cells. Thresholding methods have been used by Wu [5] and Glasbey [6]. Different
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(a) (b) (c)

Fig. 1. (a) Phase contrast microscope image. (b) A mature cell is splitting. (c) Cell
model superimposed on original HSC image.

techniques have been used for choosing a suitable threshold, such as calculating
the image variance to separate the cell from the background [5], assuming the
intensity of the background to be uniform with a low variance while cell intensity
variance is high. Comaniciu et al [7] proposed a mean shift procedure method for
cell image segmentation for diagnostic pathology. Geusebroek et al [8] introduced
a method based on Nearest Neighbor Graphs to segment the cell clusters. Meas-
Yedid et al [9] proposed a method to quantify the deformation of cells using
snakes.

Due to the large number of cell types having different features such as shape,
size, motility, and proliferation rate, designing a universal cell tracking system is
impractical. In this paper, we focus on Hematopoietic Stem Cells (HSCs), which
proliferate and differentiate to different blood cell types continuously during
their lifetime, and are of substantial interest in gene therapy, cancer, and stem-
cell research. A novel cell tracking system is developed based on a probabilistic
cell model which effectively detect cells and a joint probabilistic data association
which associate detected cells over time.

2 Proposed Model-Based Cell Tracking

As a crucial step towards fully automatic cell tracking, an effective cell localiza-
tion/segmentation method is needed. To keep cells alive and dynamically active,
light exposure must be controlled during their life cycle. The limited light expo-
sure and cell transparency both contribute to the very low contrast, moreover
most of the cell staining techniques which are used to increase the contrast
between cell areas and background undesirably stain different parts of a tis-
sue unevenly, causing inhomogeneity. Fortunately the HSCs in our study have
a fairly regular shape and brightness pattern. Hence, a segmentation method
which exploits this useful information should be able to perform better than
simple thresholding.
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2.1 Cell Image Model

HSCs must be prepared befor imaging. HSC sample preparation is a two stage
process:

1. Extract and process mouse bone marrow.
2. Process and culture the HSCs.

After preparation HSCs are imaged using manual focusing through a 5X phase
contrast objective using a digital camera (Sony XCD-900). Images are acquired
every three minutes. When a cell division is observed, the progeny are imaged at
higher magnification using a 40X DIC objective. A typical HSC phase contrast
image is depicted in Fig. 1.

From Fig. 1 we observe that HSCs can be characterized as an approximately
circular object with a dark interior and a bright boundary. During splitting, a
mature cell is divided to give birth to two new cells, as marked by a circle in
Fig. 1(b). The radius of these new cells is slightly smaller than that of their par-
ent. The phase contrast imaging technique leads to an asymmetric cell boundary,
one side dark and the other side bright. So rather than a heuristic threshold-
ing approach, the specific, consistent cell attributes observed should allow us
to formulate a far more specific model, essentially a matched filter, to be more
robust to noise and low contrast. We propose to consider the following criteria:
Cell size, Boundary brightness, Interior brightness, and Boundary uniformity or
symmetry. These criteria are combined to formulate the probability of a cell in
image Ik at location (xc, yc) and radius r

P (xc, yc, r|Ik) = Pcb(B̄(xc, yc, r)) · Pic(B̄(xc, yc,
r

2
)) · Pcdf (D(cdf(B))) (1)

where the meanings of the individual terms Pcb, Pic and Pcdf will be elaborated
in the following sections.

2.2 Probability of Cell Boundary Pcb

As depicted in Fig. 1(c), to model a dark region surrounded by a bright boundary,
the proposed cell model consists of two concentric circles, with the radius of the
internal circle being half of that of the external one. The external circle represents
the bright boundary while the internal one represents the dark region inside a
cell. Assuming (xc, yc) and r as center coordinates and radius of the exterior
circle respectively, the continuous circle is discretized spatially as

|(xi − xc)2 + (yi − yc)2 − r2| ≤ ε2, (2)

where (xi, yi) are coordinates of circle boundary pixels and ε is half a pixel.
Function Bi(xc, yc, r), which is a vector returning the intensity of all boundary
pixels, is defined as

Bi(xc, yc, r) = {I(xi, yi), |(xi − xc)2 + (yi − yc)2 − r2|
≤ ε2 and i = 1, 2, ...,N}, (3)
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where N is the total number of pixels located on the cell boundary. In our
implementation, a rotation angle of 20◦ is adopted, and the total number of
boundary pixels (N) is equal to 18. The probability of cell boundary Pcb is
assumed to be Gaussian with mean μcb and variance σ2

cb

Pcb(B̄(xc, yc, r)) ∼ N(μcb, σ
2
cb), (4)

where B̄(xc, yc, r) is the average cell boundary intensity

B̄(xc, yc, r) =
∑N

i=1Bi(xc, yc, r)
N

. (5)

2.3 Probability of Cell Interior Pic

The interior dark region of a cell is represented by the internal circle in the
proposed model. Assuming (xc, yc) and r

2 as center coordinates and radius of
the interior circle, it is discretized as

|(xi − xc)2 + (yi − yc)2 − r

2

2| ≤ ε2. (6)

The probability of dark region inside the cell Pic is assumed to be another
Gaussian distribution with mean μic and variance σ2

ic

Pic(B̄(xc, yc,
r

2
)) ∼ N(μic, σ

2
ic), (7)

where B̄(xc, yc,
r
2 ) is the average intensity of cell interior region.

2.4 Probability of Uniformity of Cell Boundary Pcdf

Despite having an asymmetric boundary, both dark and bright sides of the cell
boundary maintain almost uniform intensities. To maximize the likelihood of
cell detection, an empirical cumulative density function (CDF) is calculated
to discriminate uniform background from the cell boundary. The CDF on cell
boundary pixel intensities is computed by

cdfn(B̄(xc, yc, r)) =
∑n

i=1 Bi(xc, yc, r)
N · B̄(xc, yc, r)

, n ∈ 1 : N (8)

A distance function D(cdf) is defined to find the maximum non uniformity of
cell boundary, i.e., the maximum cumulative distance of cell boundary intensities
from local mean:

D(cdf) = max
n∈[1:N ]

|cdfn − n

N
| (9)

An exponential function Pcdf(D) is used to penalize the non uniformity in cell
boundary:

Pcdf (D) = exp{−2 ·N ·D(cdf)} (10)
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Fig. 2. Measurement hypothesis for frame k which is generated based on image frame
k (Ik) by thresholding the local maxima map

2.5 HSC Tracking

A joint probabilistic data association (JPDA) method is proposed to solve the
object tracking problem. A probability map is obtained by applying the cell
model to the microscope image. The measurements are inferred from the input
microscope image by finding the local maxima in the probability map and
thresholding the local maxima map. As depicted in Fig. 2 the local maxima
which are at least δD apart in the probability map Pk are located and the
generated local maxima map is thresholded to obtain a set Sτh of local maxima
which are δD apart and are greater than a threshold τh

Sτh
=
{

Location : xh
k,1, x

h
k,2, ..., x

h
k,q

Probability : Pk(xh
k,1), Pk(xh

k,2), ..., Pk(xh
k,q)

This set is considered as HSC centre candidates. To track the HSCs over
time, each detected cell in the current frame must be associated to the proper
one in the previous frame as depicted in Fig. 3. To achieve this goal a distance
matrix D is generated to determine the validation gate of each cell as

D = {dj,i, j ∈ [1,Mk−1] and i ∈ [1,Mk]} (11)

whereMk−1, the number of rows is equal to the number of cells in previous frame
k − 1 and Mk, the number of columns is equal to the number of detected cells
in the frame k. Each element dj,i shows the euclidian distance between detected
cell j in frame k and identified cell i in frame k − 1.

The displacement of HSCs over time can be considered as a random walk,
hence a probabilistic validation gate is obtained by considering a Gaussian mo-
tion. A Gaussian function N(0, σ)

Pdj,i ∼ N(0, σ) =
1√
2π

exp (−d2
j,i

σ2 ) (12)

is applied on the distance matrix to obtain a Gaussian probability distance
matrix. Each element Pj,i of this matrix shows the probability of associating
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Fig. 3. Cell centre association over time

detected cell j in frame k to identified cell i in frame k − 1 and is higher if they
have smaller distance.

To associate the cell centers, a zero scan joint probabilistic data association
is considered as

P (fk| fk−1) =
∏

j∈[1,Mk−1]

max(Pj,i, PF ) ·
∏
N

max(Pj,i, PF ) ·
∏

∼F∩N

Page (13)

where PF is probability of false alarm and is assumed as a constant, Page is
age penalty which means cell split may not occur sooner than a minimum age,
S =∼ F ∩N is the set of splitted cells, F and N are

F : {i| i ∈ {False alarm}}
N : {i| i ∈ {New detected objects}} (14)

3 Results

By applying our proposed model based tracking method to the phase contrast
microscopic images, first a probability map of cell centers is obtained for each
frame. To further identify the cell centers, the probability map is thresholded
and local maxima are located. Eventually the detected cell centers are associated
based on proposed JPDA method.

Fig. 4(a) shows the detected cell centers which is obtained by applying the
proposed probabilistic cell model, locating the local maxima in the probability
map and thresholding the local maxima map. Results obtained by applying the
proposed tracking method are depicted in Fig. 4(b). As can be observed from Fig.
4(b), by applying our probabilistic model based tracking to depicted HSC image
sequence, it is able to identify and associate all cell centers correctly not only
in the non splitting case but also in the more challenging splitting case. Color
coding is used to high light associated cell centers such that different colors show
the association of cell centers over time.
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(a)

(b)

Fig. 4. (a) Detection of non splitting and splitting cell centers. (b) Associated cell
centers superimposed on original HSC image such that each color shows a different cell
track over time (from left to right).

4 Conclusions and Discussions

The fields of bioinformatics and biotechnology rely on the collection, processing
and analysis of a huge number of bio-cellular images, including cell features such
as cell size, shape, and motility. This paper presents a probabilistic model based
cell tracking method to locate and associate HSCs in phase contrast microscopic
images. Our statistical cell model, which is constructed after carefully observ-
ing HSCs in typical image sequences, captures the key properties of HSCs. By
matching the image data with the cell model, a probability map of cell centers
is generated for each frame. Cell centers are located by further thresholding the
probability map and locating the local maxima. Cell association is accomplished
based on a joint probabilistic data association in which random walk is consid-
ered to model the cell motion. It can be seen from the previous section that such
a probabilistic model- based cell tracking method has produced very promising
results.

Our future work includes further improving the cell model to more accurately
reflect unique properties of the cells under different conditions and to fuse infor-
mation from adjacent image frames to make the method more robust to noise
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and clutters. Designing a parametric cell shape with more degrees of freedom
has also been considered as future work to adapt the proposed model to other
cell types.
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Abstract. In this paper, we propose a new scheme for extracting the contour of 
the carotid artery using ultrasound images. Starting from a user defined seed 
point within the artery, the scheme uses the fuzzy region growing algorithm to 
create a fuzzy connectedness map for the image. Then, the fuzzy connectedness 
map is thresholded using a threshold selection mechanism to segment the area 
inside the artery. Experimental results demonstrated the efficiency of the 
proposed scheme in segmenting carotid artery ultrasound images, and it is 
insensitive to the seed point location, as long as it is located inside the artery. 

1   Introduction 

According to the heart and stroke foundation of Canada, stroke is the fourth leading 
cause of death in Canada, where approximately 16,000 Canadians die from stroke 
every year. Vascular plaque, a consequence of atherosclerosis, results in an 
accumulation of lipids, cholesterol, smooth muscle cells, calcifications and other 
tissues within the arterial wall. It reduces the blood flow within the artery and may 
completely block it. As plaque builds up, it can become either stable or unstable 
layers. Unstable plaque layers in a carotid artery can be a life-threatening condition. If 
a plaque ruptures small solid components (emboli) from the plaque drift with the 
blood stream into the brain. This may cause a stroke. Early detection of unstable 
plaque plays an important role in preventing serious strokes.  

Currently, carotid angiography is the standard diagnostic technique to detect 
carotid artery stenosis and the plaque morphology on artery walls. This technique 
involves injecting patients with an X-ray dye. Then, the carotid artery is examined 
using X-ray imaging. However, carotid angiography is an invasive technique. It is 
uncomfortable for patients and has some risk factors, including allergic reaction to the 
injected dye, kidney failure and the exposure to X-ray radiation. 

Ultrasound imaging provides an attractive tool for carotid artery examination. The 
main drawback of ultrasound imaging is the poor quality of the produced images. It 
takes considerable effort from radiologists to extract significant information about 
carotid artery contours and the possible existence of plaque layers that may exist. This 
task requires a highly skilled radiologist. Furthermore, manual extraction of carotid 
artery contours generates a result that is not reproducible. Hence, a computer aided 
diagnostic (CAD) technique for segmenting carotid artery contours is highly needed. 

Senior  Member, IEEE ,
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Mao et al.  [1] proposed a scheme for extracting the carotid artery walls from 
ultrasound images. The scheme uses a deformable model to approximate the artery 
wall. The user has to specify a seed point inside the artery. The initial contour shape is 
estimated from the image entropy map. However, the result accuracy depends, to a 
large extent, on the appropriate estimation of the initial contour. Furthermore, the 
deformable model takes a considerable amount of time to approach the equilibrium 
state. It is worth mentioning that the equilibrium state of a deformable model does not 
guarantee the optimal state or contour shape. 

Abolmaesumi et al.  [2] proposed a scheme for tracking the center and the walls of 
the carotid artery in real-time. The scheme uses an improved star algorithm with 
temporal and spatial Kalman filters. The major drawback of this scheme is the 
estimation of the weight factors used by Kalman filters. In the proposed scheme, these 
factors are estimated from the probability distribution function of the boundary points. 
In practice, this distribution is usually unknown. 

Da-chuan et al.  [3] proposed a method for automatic detection of intimal and 
adventitial layers of the common carotid artery wall in ultrasound images using a 
snake model. The proposed method modified the Cohen’s snake  [4] by adding spatial 
criteria to obtain the contour with a global maximum cost function. The proposed 
snake model was compared with a ziplock snake  [5] and was found to give superior 
performance. However, the computational time for the proposed model was 
significantly high. It took a long amount of time for the snake to reach the optimum 
shape. 

Hamou et al.  [6] proposed a segmentation scheme for carotid artery ultrasound 
images. The scheme is based on Canny edge detector  [7]. The scheme requires three 
parameters. The first parameter is the standard deviation of the Gaussian smoothing 
kernel used to smooth the image before applying edge detection process. The second 
and the third parameters are upper and lower bound thresholds to mask out the 
insignificant edges from the generated edge map. The authors empirically tuned these 
parameters, based on their own database of images. This makes the proposed scheme 
cumbersome when used with images from different databases. 

Abdel-Dayem et al.  [8] proposed a new scheme for carotid artery contour 
extraction. The proposed scheme uses a uniform quantizer to cluster the image pixels 
into three major classes. These classes approximate the area inside the artery, the 
artery wall and the surrounding tissues. A morphological edge extractor is used to 
extract the edges between these three classes. The system incorporates a pre-
processing stage to enhance the image quality and to reduce the effect of the speckle 
noise in ultrasound images. A post-processing stage is used to enhance the extracted 
contours. This scheme can accurately outline the carotid artery walls. However, it 
cannot differentiate between relevant objects with small intensity variations within the 
artery tissues. Moreover, it is more sensitive to noise. 

Abdel-Dayem et al.  [9] used the watershed segmentation scheme  [10] to segment 
the carotid artery ultrasound images. Watershed segmentation schemes usually 
produce over-segmented images. Hence, a region merging stage is used to merge 
neighbouring regions based on the difference on their average pixel intensity. A single 
global threshold is needed during the region merging process. If this threshold is 
properly tuned, the proposed scheme produces accurate segmentation results. 
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Fuzzy-based segmentation techniques are powerful in segmenting objects with 
diffused and not well-defined boundaries. Hence, these techniques can be used 
effectively to segment ultrasound images. In this paper, we proposed a novel scheme 
for extracting the contours of the carotid artery in ultrasound images. The proposed 
scheme is based on the fuzzy connectedness principle, where the fuzzy connectedness 
map is calculated starting from a seed point within the artery. This map is thresholded 
to segment the area inside the artery. The threshold is chosen, based on the histogram 
of the fuzzy connectedness map.  

The rest of this paper is organized as follows. Section 2 describes the proposed 
scheme in details. Section 3 presents the results. Finally, Section 4 offers the 
conclusions of this paper. 

2   The Proposed Solution 

We propose a novel scheme for segmenting carotid artery ultrasound images. The 
proposed scheme consists of four major stages. These stages are pre-processing, fuzzy 
region growing, threshold selection and finally boundary extraction stage. Fig. 1 
shows the block diagram of the proposed method. In the following subsections, a 
detailed description of each stage is introduced. 

 

2.1   The Pre-processing Stage 

Ultrasound images suffer from several drawbacks. One of these drawbacks is the 
presence of random speckle noises, caused by the interference of the reflected 
ultrasound waves. Another sever problem is that ultrasound images have relatively 
low contrast. These factors severely degrade any automated processing and analysis 
of the images. Hence, it is crucial to enhance the image quality prior to any further 
processing. In this stage we try to overcome these problems by performing two pre-
processing steps. The first is a histogram equalization step  [11] to increase the 
dynamic range of the image gray levels. In the second step, the histogram equalized 
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Fig. 1. The block diagram of the proposed scheme 
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image is filtered using a median filter to reduce the amount of the speckle noise in the 
image. It was empirically found that a 3×3 median filter is suitable for the removal of 
most of the speckle noise without affecting the quality of the edges in the image. 

2.2   The Fuzzy Region Growing Stage 

The concept of fuzzy connectedness is an efficient tool for segmenting objects with 
diffused and not-well defined boundaries  [12] [13] [14]. It uses the idea of “hanging 
together” image pixels or spatial image elements (spels). In digital images, the image 
is considered as a grid; in which each pixel is connected to its adjacent pixels by a 
link. The strength of a link is determined based on a certain fuzzy spel affinity. The 
selection of the fuzzy spel affinity reflects our confidence that a pair of spels belong 
to same object. There are several ways to define the fuzzy spel affinity  [15] [16]. A 
chain is a sequence of consecutive links that connects two pixels together. The 
strength of a chain is determined by the minimum link strength among the links 
forming the given chain. The fuzzy connectedness between any pair of pixels in the 
image is determined by the strongest chain connecting them. In the fuzzy region 
growing algorithm, a seed pixel is selected within the object of interest. The fuzzy 
connectedness between the seed pixel and every pixel in the image is calculated. This 
step produces a fuzzy connectedness map. Then, the object of interest can be 
segmented by thresholding this map. 

Using the image obtained from the previous enhancement stage, the fuzzy 
connectedness map is calculated. The user is asked to select a seed pixel that belongs 
to the object of interest. The seed pixel with its 8-connected neighbouring pixels 
provides 20 pairs of adjacent pixels as shown in Fig. 2. From these 20 pairs the 
following parameters are calculated: 

- μ1 and σ1 are the mean and the standard deviation of f(a) + f(b). 
- μ2 and σ2 are the mean and the standard deviation of |f(a) - f(b)|. 

where f(a) and f(b) are the intensity of two adjacent pixels a and b. We use the fuzzy 
spel affinity (a,b) defined as follows: 

2
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where a and b are two adjacent pixels and 

 Seed point 

 

Fig. 2. The 20 pairs of adjacent pixels used to calculate μi and σi of Equation 2 
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The fuzzy region growing algorithm is implemented following the dynamic 
programming model proposed in  [12]. A summary of this algorithm is shown in Fig. 3. 
The algorithm starts by setting the fuzzy connectedness of the seed pixel to one and all 
other members to zero. Then, the algorithm computes the connectivity of the eight 
neighbouring pixels. The condition in step 2 of the algorithm checks if the current chain 
between the seed pixel and the current pixel is stronger than the previously detected 
chains. If this condition is satisfied, the fuzzy connectedness of this pixel is updated and 
the pixel is added to the stack for further processing. This process continues until the 
stack becomes empty. This map will be used during the next stage to segment the area 
inside the carotid artery. More efficient implementations of this algorithm, based on 
greedy algorithms and Dijkstra’s Algorithm, can be found in  [13]. However, this is 
irrelevant to the main idea of this paper. 

2.3   The Threshold Selection Stage 

The objective of this stage is to find a suitable threshold to be applied to the fuzzy 
connectedness map. We propose a threshold selection scheme based on the analysis of 

 Module Name  Fuzzy Region Growing 
Input   Image I and Seed Pixel Pij 
Output  Fuzzy connectedness map FM of image I 
Description   
Variable 

Stack:        S  
Pixel:        CP /* current pixel*/ 
Pixel:        Q /* temporary pixel*/ 

Begin 
Step1   /*Initialization step */   

Initialize_stack (S)    /*stack initialization */  
Push pixel Pij into the stack S 
Set FM(Pij)  1 and set FM(x)  0 for all x ≠ Pij 

Calculate the parameters μ1, σ1, μ2 and σ2 for Pij 

Step2  
Repeat 
Pop pixel CP from the stack S 
 For every pixel Q in the eight-connectivity 

neighborhood of the current pixel (CP) Do 
Begin 
 If  min{FM(CP), Ψ(CP,Q)}> FM(Q) 

          Begin  
      Push pixel Q into the stack S 
      Set FM(Q)  min{FM(CP), Ψ(CP,Q)} 

           End 
End 

     Until the stack S is empty  
Step3 

Return the fuzzy connectedness map FM 
End 

 

Fig. 3. The Fuzzy Region Growing algorithm 
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the histogram of the fuzzy connectedness map. This map contains real values in the 
range from zero to one. In order to build the histogram of the fuzzy connectedness 
map, it is necessary to discretize its individual elements. Hence, we multiply the map 
elements by a large integer number (in our case, we chose 255 so that we can 
visualize the map as a gray image) and then round the results to the nearest integer 
values. The threshold selection process starts by a threshold value equals to the 
maximum level in the discretized fuzzy connectedness map. The algorithm calculates 
the area of the segmented region using this threshold by counting the number of 
pixels that have connectedness values greater than or equal to this threshold. Then, the 
threshold is iteratively decreased by one and the new area is calculated. At each step, 
the percentage difference of the segmented area is calculated according to 
Equation (3).  

t

tt

Area

AreaArea
areasegmentedofdifferencePercentage

−= −1  (3)

where, Areat is the area of the segmented region using threshold t. 
This process continues for all intensity levels in the map. The threshold is selected 

to be the one that corresponds to the maximum percentage difference. This threshold 
represents the point at which parts of the background start to merge with the object of 
interest. Fig. 4 shows a summary of the threshold selection algorithm. 

 

 Module Name Threshold Selection 
Input  Fuzzy connectedness map FM 
Output  Threshold value t* 
Description   
Variable 

Integer:   Histogram[MAX_Connectedness_LEVEL]  
Integer:   Area  /* segmented area size*/ 
Integer:   t 
Float: Percentage_Difference[MAX_Connectedness_LEVEL] 

Begin 
Step1  /* Convert the fuzzy connectedness map to discrete values */ 

Multiply every element of FM by 255 
Round every element of FM to the nearest integer value 

Step2 /*Initialization step */   
Generate the Histogram of FM 
Set t  MAX_Connectednes_LEVEL 
Set Area  Histogram[t] 
Set Percentage_Difference [t]  0 

Step3 /* Find the rate of change for all threshold values*/  
Repeat 

Decrement the threshold t 
Set Percentage_Difference [t]  Histogram[t]/Area 
Set Area  Area + Histogram[t] 

Until t=0 
Step4 /* find the optimal threshold*/ 

Return t* such that Percentage_Difference[t*] is maximum 
End 

 

Fig. 4. The threshold selection algorithm 
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2.4   The Boundary Extraction Stage 

The objective of this stage is to extract the boundaries of the segmented regions. 
Various edge detection schemes can be used for this purpose  [11]. In our system, we 
use a morphological-based contour extraction mechanism  [11],  [17]. First, the 
segmented image is morphologically eroded using a 3×3 rounded square structuring 
element. Then, the eroded image is subtracted from the segmented image to obtain the 
boundary of the segmented region, which represents the artery wall. Finally, the 
extracted contour is superimposed on the histogram equalized image. 

3   Results 

The test images used in this research were obtained using an ultrasound acquisition 
system (Ultramark 9 HDI US machine and L10-5 linear array transducer). The output 
is digitized with a video frame grabber before saving it. These images include patients 
with different ages and different degrees of plaque layers. Fig. 5(a) shows one of the 
original ultrasound images that are used as an input to our system. Fig. 5(b) shows the 
output after the histogram equalization step. Fig. 5(c) shows the output after applying 
the median filter where the amount of noise is reduced. Fig. 5(d) shows the fuzzy 
connectedness map (after multiplying it by 255) for the image shown in Fig. 5(c). The 
map shows that the area inside the artery appears as a bright region, while getting 
darker near the arterial walls. Fig. 5(e) shows the segmented image after applying the 
threshold on the fuzzy connectedness map shown in Fig. 5(d). Fig. 5(f) shows the final 
output of the proposed scheme. For clarity, we magnify the region of interest for both 
the histogram equalized image in Fig. 5(g) and the final image in Fig. 5(h). 

Since, the seed point represents the only input from the user, it is crucial to analyze 
the proposed scheme sensitivity to the seed point selection. For this analysis, we used 
a set of forty four images. For each image, five seed points were randomly selected 
inside the artery. The artery region was segmented for each selected seed point. These 
segmented binary images were added up to produce a grayscale image that 
demonstrates the overlapping areas between segmented regions generated by the five 
seed points. Fig. 6(a-e) show the five segmented areas for the test case shown in Fig. 
5, whereas Fig. 6(f) shows the summation image. The percentage overlap between 
segmented areas (the number of pixels having a value of 5 over all non-zero pixels) is 
88.23% for this test case. 

The statistical analysis over the entire forty four images revealed that, on average, 
the proposed scheme achieved a percentage overlap equal to 88.8%. Hence, we can 
conclude that the proposed scheme is less sensitive to the selected seed point.  

4   Conclusions 

In this paper, we proposed a novel scheme for carotid artery segmentation. The 
scheme is based on fuzzy region growing and thresholding techniques. The proposed 
scheme requires minimal user interaction.   Only one seed point is needed to start the 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Fig. 5. Experimental results: (a) Original ultrasound image; (b) The image after applying the 
histogram equalization step; (c) The histogram equalized image after applying a 3×3 median 
filter; (d) The Fuzzy Connectedness Map (after multiplying it by 255) for the image shown in
(c); (e) The segmented image using the calculated threshold; (f) The final result of the proposed 
scheme; (g) The original region of interest; (h) The region of interest with the extracted contour 
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fuzzy region growing process. All other parameters are calculated based on the image 
under consideration. Experimental results over a set of sample images showed that the 
proposed scheme provides a good estimation of the carotid artery contours, and it is 
insensitive to the seed point location, as long as it is located inside the artery. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 6. Experimental results using different seed points: (a)(b)(c)(d) and (e) are the segmented 
areas (multiplied by 255) using different seed points for the case shown in Fig. 5; (f) the 
summation image (scaled from 0 to 255) for (a) to (e) cases 
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Abstract. This paper presents a new cDNA microarray image segmen-
tation framework. The framework uses robust vector median filtering to
generate a root sigLnal which is an image obtained from the input by
repeatedly filtering it until no more changes occur. During the conver-
gence to the root signal, the framework classifies the cDNA image data
as either microarray spots or image background, and ideally separates
the regular spots from the background. Thus, the obtained root signal
represents the segmented microarray image. In addition, the framework
excellently removes noise present in the cDNA microarray images and
normalizes spots’ intensities.

1 Introduction

Complementary Deoxyribonucleic Acid (cDNA) microarray technology is a pow-
erful tool used to extract and interpret genomic information [1]-[5]. It has found
applications in gene and drug discovery, toxicological research, and diagnosis of
cancer, diabetes and genetic diseases [1],[2]. During the cDNA microarray exper-
iment, Ribonucleic Acid (RNA) from both control and experimental sample are
isolated and converted into cDNAs by the so-called reverse transcription process
[6], and the obtained cDNAs are labelled with fluorescent probes, usually Cy3
for the control and Cy5 for the experimental channel [7]. After hybridization,
heating and washing, a specialized scanner is used to acquire cDNA microarrays
at the ∼ 540 nm (Green) for the control (Cy3) and ∼ 630 nm (Red) for the ex-
perimental channel (Cy5) respectively [2],[7]. The scanning procedure produces
a Red-Green image (Fig.1) which is a multichannel vector signal which can be
represented, for storing or visualization purposes, as the RGB color image with
a zero blue component [2],[8],[9].

The objective of the microarray experiment is to measure the abundance
of hybridized RNA and analyze the gene expression activity in the recorded
samples [6],[8]. Based on a simple coloration concept, the observance of non-
fluorescent black spots in the microarray image denotes no binding of RNA
while the occurrence of red, green, or yellow spots suggests that RNA sequences
from the experimental, control, or combined population of cells contribute to
the abundance. Since strong noise and various impairments are present in cDNA
microarray images, image processing is used prior the analysis step.

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 879–885, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Typical cDNA microarray image (middle) with the decomposed Red (left) and
Green (right) channels

2 cDNA Microarray Imaging Basics

Let us consider, a K1 × K2 Red-Green (RG) image x : Z2 → Z2 representing
a two-dimensional matrix of two-component samples x(r,s) = [x(r,s)1,x(r,s)2]
with r = 1, 2, ...,K1 and s = 1, 2, ...,K2 denoting the image rows and columns,
respectively. The component x(r,s)1 indicates the R channel while x(r,s)2 indicates
the G channel. The two channels are combined to form the cDNA vector x(r,s)
in a two-dimensional vector space [8],[9].

cDNA microarray images (Fig.1) suffer from noise introduced during image
formation which is a complicated, nonlinear process influenced by many factors
[2]. Therefore, image processing is necessary in order to eliminate processing
errors from propagating further down the processing pipeline to the gene ex-
pression analysis tasks [1],[8]. The acquired cDNA signal x(r,s) = [x(r,s)1,x(r,s)2]
can be expressed as follows [9]:

x(r,s) = o(r,s) + v(r,s) (1)

where o(r,s) = [o(r,s)1, o(r,s)2] represents the original, noise-free cDNA signal
while v(r,s) = [v(r,s)1, v(r,s)2] is used to denote the various image impairments
introduced during image formation. The vectorial samples v(r,s) are considered
random in nature and can be modelled through the additive noise model [7]. The
noise signal v(r,s) is considered either impulsive in nature or it can be modelled
as mixed noise (white additive Gaussian noise followed by impulsive noise) [2],[8].

Each acquired cDNA sample x(r,s) is uniquely determined by its magnitude
M(r,s) =

∥∥x(r,s)
∥∥ =
√

(x(r,s)1)2 + (x(r,s)2)2 and directionD(r,s) = 1
‖x(r,s)‖x(r,s) =

1
M(r,s)

x(r,s) in the vector space [2]. Due to the various image impairments, such
as those attributed to [10],[11]: i) variations in the image background, ii) varia-
tions in the spot sizes and positions, iii) artifacts caused by laser light reflection
and dust on the glass slide, and iv) photon and electronic noise introduced dur-
ing scanning, the cDNA vector fields exhibit considerable variations in intensity
(Fig.1) [2],[8].
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3 Root Signals Based Segmentation Framework

The proposed cDNA image segmentation framework uses uniformity in the char-
acteristics of the cDNA vectors as the base for segmentation [2]. Since the noisy
samples deviate from other samples in a given data population [8], the determi-
nation of the outlying cDNA vectors is of a paramount importance. Due to the
vectorial nature of the cDNA microarray image, the microarray image process-
ing operator should process the cDNA image data as the set of vectors. The
most popular vector processing techniques, such as those listed in [9], operate
over magnitude or direction of cDNA vectors, or combine both magnitude and
directional characteristics to ensure proper processing of vectors within the lo-
calized image area. Such solutions have been used to denoise and enhance cDNA
microarray image, and detect spots’ edges [8],[11],[12].

In this work, we use the vector processing concepts to build a unique seg-
mentation framework. The framework employs the vector processing operator
to produce a root signal which represents a segmented microarray image. As
it is demonstrated in [2], by employing various vector processing operators the
framework offers solutions which differ in their design philosophy, characteristics,
and performance. To demonstrate the suitability of the proposed framework, the
well-known vector median filter (VMF) [13] will be used in the sequence.

3.1 Vector Median Filter

The most popular vector operators such as the VMF are based on the theory of
order-statistics [9],[14]. Since outliers are associated with the maximum extremes
of aggregated distances to other input vectors in the sliding window, the output
of the ordering-based vector filters is the lowest ranked vector in a predefined
sliding window. Such an approach makes the processing operators robust to noise
and various impairments present in cDNA microarray images.

The VMF operates over samples x(i,j) localized within a sliding window
W(r,s) = {x(i,j); (i, j) ∈ ζ = {(r − 1, s − 1), (r − 1, s), ..., (r + 1, s + 1)}}. The
filtering procedure replaces the sample x(r,s) placed in the window center through
a function y(r,s) = f(W(r,s)) applied to a local neighborhood area W(r,s):

y(r,s) = min arg
x(i,j)∈W(r,s)

∑
(g,h)∈ζ

∥∥x(i,j) − x(g,h)
∥∥

L
(2)

This window operator slides over the entire image, for r = 1, 2, ...,K1 and s =
1, 2, ...,K2, to cover all the pixels in the microarray image [9]. In the expression
above the term

∥∥x(i,j) − x(g,h)
∥∥

L
represents the L-metric (Minkowski metric

[14],[15]) used to quantify the distance between two cDNA vectors x(i,j) and
x(g,h):

‖xi − xj‖L =

(
m∑

k=1

|xik − xjk|L
) 1

L

(3)

where L denotes the norm parameter, e.g. the city-block distance (L = 1) or
considered here Euclidean distance (L = 2).
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3.2 Root Signals

TheVMFproducesrootsignalsify(r,s) = x(r,s), i.e.thefilteroutputy(r,s) isidentical
to a multichannel signal located at the reference window position (r, s). Due to the
localizednatureof cDNAimage features, theanalysis of the root signalsnecessitates
the definition of the following basic cDNA image structures which can be observed
in the processing window W(r,s), [2],[16]: i) a multichannel constant region is a
neighborhood formedby identical, in termsofbothmagnitudeanddirection, cDNA
image vectors, ii) a multichannel cDNA step edge is a multichannel constant region
followed by another multichannel constant region, iii) a multichannel impulse is a
cDNA image vector which significantly deviates from a surrounding multichannel
constant region, and iv) multichannel oscillation is a sequence of cDNA vectors
which is not part of a constant region, an edge, or an impulse. The consideration of
the structures defined above is essential in the proposed segmentation framework
since the root signals consist solely of constant neighborhoods (background and
spots) and edges (step transitions between spots and background) [2]. In order to
obtain a root, defined over a cDNA microarray image, the elimination of impulses
and oscillations (data variations) is an essential step.

Due to the low-pass nature of the smoothing operator, the utilization of the
VMF (as well as some other robust vector filters) in a unique cascade cycle [2]:
i) eliminates redundant information such as impulses and noise-like variations in
the sample population, ii) converges to VMF roots (signals invariant to further
processing by the VMF operator) that retain the spatial and spectral character-
istics of the input cDNA image, and iii) produces a root signal which represents a
segmented cDNA image. Since the VMF response to any input signal is uniquely
defined in (2) with the VMF output y(r,s) ∈ W(r,s), the root signal [2]:

x(r,s) = f
(
W(r,s)

)
(4)

can be obtained by filtering repeatedly with a VMF operator any finite-length
cDNA signal.

Assuming that yn
(r,s) is a vector in the image yn obtained after filtering n

times the input cDNA image x, the convergence to a root signal can be expressed
as a function of the difference between two successive filtering results [2],[17]:

γ =
∥∥yn,yn−1

∥∥
L

(5)

where y0 = x denotes the (input) cDNA microarray image which undergoes
segmentation. The proposed segmentation procedure is completed when γ = 0
indicating that there are no changes in the filtered signal and that the root signal
has been reached. Alternatively, the segmentation process can be stopped for γ
smaller that a user defined threshold. When the stopping condition is satisfied,
the value of n−1 denotes the iteration for which the root signal has been reached.

The VMF root signal based procedure divides an image into different regions
that are homogeneous with respect to its magnitude characteristics. Since pixels
with the same magnitude characteristics constitute meaningful regions, such as
the spots present in a cDNA microarray image, the problem reduces to pixel
classification defined as follows [2]:
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x(r,s) ∈ x → {F,B} (6)

where disjoint sets F and B denote the foreground and background cDNA vectors
x(r,s) in the microarray image x, respectively. The foreground is constituted by
microarray spots, typically of a circular shape of 150-200 cDNA vectors x(r,s).
A gap between spots or alternatively the presence of cDNA vectors residing
outside spots areas constitute the background. By extracting the spots from the
microarray image x, the background can be viewed as a homogeneous region,
while the essential foreground should remain heterogonous as a result of the
variable spots’ coloration [2]. The use of the VMF operator makes the vectors
within individual spots uniform and removes noisy foreground information.

It is argued in [2] that the root signal convergence process performs morpholog-
ical operations such as various compositions of erosion and dilatation operations
defined over W(r,s), which is considered as the structuring element. By employing
the robust filter, the proposed segmentation procedure removes ”positive” noise
(impairments present in background have magnitude larger than the desired back-
ground samples) similarly to morphological erosion or opening. At the same time,
the procedure removes negative noise (cDNA vectors which are, in terms of ampli-
tude of their components, smaller than neighboring vectors, and holes which have
been created by cDNA vectors of zero-like magnitude) similarly to morphologi-
cal dilatation or closing. In addition, the procedure removes any high-frequency
impairments such as outliers in the cDNA image data population, and any small
signal structures such as irregular spots or holes present in the microarray spots,
performing thus erosion/opening or dilatation/closing operations.

The replacement of the window center yn−1
(r,s) with the statistically most simi-

lar, to the cDNA samples within W(r,s), vector yn
(r,s): i) produces an image which

has normalized intensity in both the background and the spot locations, ii) en-
hances the difference between foreground and background information [2],[8].
As it is suggested in [2], the root-signal based segmentation procedure can be
completed by performing thresholding operations over the magnitude of the root
signal in order to remove residual irregular (small) spots and idealize the back-
ground in the segmented microarray image.

4 Experimental Results

In order to demonstrate the performance of the proposed segmentation frame-
work, we used a number of cDNA microarray images, such as those shown in
Fig.1 and Fig.2a. The images have been captured using laser microscope scan-
ners and vary in both complexity and noise appearance. The proposed method is
compared, in terms of performance, against other segmentation techniques such
as the clustering based segmentation technique and the morphological approach.

Fig.2 shows the input cDNA microarray image and the corresponding seg-
mented images. As it can be seen in Fig.2a, the input cDNA image contains
various foreground and background impairments, which usually affect the per-
formance of the processing and analysis techniques. Visual inspection of the
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(a) (b)

(c) (d)

Fig. 2. Experimental results: (a) input cDNA microarray image, (b)-(d) segmented
images obtained using (b) clustering technique, (c) morphological approach, (d) VMF
root-signals based framework

image shown in Fig.2b reveals that the clustering approach is sensitive to noise.
Fig.2c shows that the morphological approach delivers better performance, al-
though it does not completely eliminate the holes present in the spots while at
the same time enhances irregular spots in various image locations. However, the
best results are obtained using the proposed solution. Fig.2d clearly shows that
the proposed method removes noise, preserves the coloration of the spots and
readily separates the foreground information from the background.

5 Conclusion

This paper presented a root-signal based concept for cDNA microarray image
segmentation. A popular vector median filter was employed here to demonstrate
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the concept of the proposed framework by producing a root signal which is
invariant to further processing with the same type of the filtering operator. The
achieved root signal represents a segmented microarray image which exhibits
enhanced spot information and data normalization.
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Abstract. One of the key issues in microarray analysis is to extract
quantitative information from the spots, which represents gene expres-
sion levels in the experiments. The process of identifying the spots and
separating the foreground from the background is known as microar-
ray image segmentation. In this paper, we propose a new approach to
microarray image segmentation, which we called the adaptive ellipse
method, and shows various advantages when compared to the adaptive
circle method. Our experiments on real-life microarray images show that
adaptive ellipse is capable of extracting information from the images,
which is ignored by the traditional adaptive circle method, and hence
showing more flexibility.

1 Introduction

The analysis of DNA microarray gene expression data involves two main steps
[11]. The first step is image quantitation, i.e. the extraction of gene expression
data. The second step is gene expression data analysis, in which after the ratios
of the intensities are obtained, various methods can be applied to cluster the
genes into different functional groups based on the ratios retrieved in the first
step. Microarray image quantitation involves various steps, including addressing
or gridding, segmentation or background separation, and normalization. The
success of the subsequent steps in the analysis resort mainly in how efficient the
initial stages, gridding and segmentation, are conducted.

To deal with the microarray image segmentation problem, many approaches
have been proposed. Fixed circle segmentation, a traditional technique that was
first used in ScanAlyze [4], assigns the same diameter and shape (circle) to
all spots. GenePix [5] and ScanArray Express [6] also provide the option for
fixed circle method. A method that was proposed to avoid the drawback of fixed
circle is the adaptive circle segmentation technique and can be found in GenePix,
ScanAlyze, ScanArray Express, Imagene, and Dapple [1]. Seeded region growing
(SRG) has been successfully applied to image segmentation in general, and has
recently been introduced in microarray image processing [13].

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 886–893, 2005.
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Another technique that has been successfully used in microarray image seg-
mentation is the histogram-based approach. Using histograms to classify a pixel
into either foreground or background is a simple and intuitive idea. Chen et al.
introduced a method that uses a circular target mask to cover all the foreground
pixels, and computes a threshold using Mann-Whitney test [2].

Clustering has also been used in microarray image segmentation, showing
some advantages when applied to microarray image segmentation, since they are
not restricted to a particular shape and size for the spots [9,10,12]. Although they
produce irregular-shaped spots, clustering-based methods are prone to include
noisy pixels in the foreground regions, producing incorrect quantitation measures
for the spots in such cases.

In this paper, we present a novel fixed-shaped spot segmentation method,
which we call the adaptive ellipse method. Due to the fact that most of the spots
in a microarray have the form of circles or ellipses (in the most general case),
this method utilizes the process of diagonalization [8]. Our empirical results show
that the adaptive ellipse method produces quite good results compared to the
adaptive circle method, and can be applied to a much wider range of microarray
images. In fact, the adaptive circle method can be seen as a particular case of
the adaptive ellipse approach.

2 Adaptive Ellipse Method

The method that we introduce in this section can be seen as a generalization of
the adaptive circle technique. We first describe the process of diagonalization,
which is crucial in our method, and then the remaining details of the approach.

Diagonalization is the process of transforming a d-dimensional normally dis-
tributed random vector, x ∼ N(μ,Σ), where μ is the mean vector and Σ is the
covariance matrix, into a new normally distributed random vector z ∼ N(μz, I),
where I is the identity matrix. This is achieved by means of two linear trans-
formations: an orthonormal and a whitening transformation [8]. After applying
diagonalization, the normally distributed data with arbitrary mean and covari-
ance matrix is transformed into a distribution in which the covariance is the
identity matrix.

Diagonalization involves two steps. For a normally distributed random vector
x ∼ N(μ,Σ), first, the following orthornormal linear transformation transforms
x into another random vector y = Φtx, where Φ is a d × d orthogonal matrix
that contains the d eigenvectors of Σ, namely φ1 . . . φd. After this step, the
underlying covariance matrix, Λ, for y is diagonal, where the diagonal elements
of Λ are the corresponding eigenvalues of Σ, λ1 . . .λd. The next step is the
whitening transformation, which transforms y into a new random vector z =
Λ−1/2y, whose covariance is the identity matrix. Since z is normally distributed,
its elements (random variables) are independent and uncorrelated, and their
variances are equal to unity.

In our method, we use the diagonalization transformation to obtain new
pixel coordinates for a given spot, where the pixel intensities after normalized
yield a histogram that approximates the probability density function of a two-
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dimensional normally distributed random vector with the identity as the covari-
ance matrix. Once the transformation has taken place, the radius that determines
the “edge” to separate foreground from background has to be obtained. For this,
we propose a new procedure, since traditional image processing techniques, such
as the Laplacian transform, cannot be applied due to the fact that, after the
transformation, the pixel coordinates become real numbers. The details of the
steps involved in our approach are discussed below.

2.1 Parameter Estimation

We consider the spot region in terms of two sources: one containing the pixel
coordinates, namely X = {xij |i = 1 . . .m, j = 1 . . .n}, where xij is the coordi-
nate of the (ij)th pixel, and the other containing the pixel intensities, namely
I = {Iij |i = 1 . . .m, j = 1 . . .n}. We assume that each element, xij , occurs Iij
times in a sample dataset, and hence conforming a dataset D that contains xij ,
Iij times. Thus, assuming that the underlying random vector obeys the normal
distribution x ∼ N(μ, Σ), μ is estimated using the following expression:

μ =
1

Σm
i=1Σ

n
j=1Iij

Σm
i=1Σ

n
j=1Iijxij . (1)

On the other hand, the covariance matrix Σ is estimated as follows:

Σ =
Σm

i=1Σ
n
j=1Iij(xij − μ)(xij − μ)t

Σm
i=1Σ

n
j=1Iij

. (2)

Thus, the parameters of the underlying normally distributed random vector
have been estimated, and hence the next steps, which are discussed below, are
applied.

2.2 Diagonalization

After the two parameters, μ and Σ, of the underlying random vector x are
estimated, the next step is to apply diagonalization, based on the eigenvalues
and eigenvectors of Σ,Λ and Φ respectively. Since diagonalization is applied to
the original random vector, x, the corresponding pixel coordinates have to be
transformed to the new space by applying the following linear transformation:
z = Λ−1/2Φtx. This result can be verified by estimating μ′ and Σ′ in the new
distribution: the mean obtained using the transformed points is the same as
the mean obtained using the points in the original distribution, and Σ′ is the
identity matrix. After the diagonalization process, the dataset is transformed
into a new space, where the data points with the same probability have the
same Mahalanobis distance in the original space, while they lie on a circle in the
transformed space. Fig. 1 shows a typical case in which the spot takes the shape
of an ellipse in the original space. After the diagonalization process is applied,
the coordinates of the pixels are real (not necessarily integer) numbers, as can
be observed in the plot on the right hand side of the figure. For example, the
pixel coordinates, which in the original space are [1,1], result in [-0.4139, 0.4934]
in the transformed space.
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Fig. 1. Change of coordinates after diagonalization. The left image shows a sample
spot(Spot No. 12 of 1230c1G/R microarray image) that has an elliptic shape. The
right hand side shows the coordinates of each pixel in the transformated space.

2.3 Computing the Radius

Once the points (pixel coordinates) in the transformed space are obtained, the
aim is to compute the radius that determines the edge that separates the spot
from the background region. As pointed out earlier, the pixel coordinates, in
most of the cases, become real numbers, and so it is not possible to apply tra-
ditional edge detection techniques, such as the Laplacian transform. We adopt,
instead, a statistical method to compute the radius of the foreground region.
First, we use the Mann-Whitney test to estimate a threshold. A more detailed
discussion of Mann-Whitney test can be found in [3]. Pixels from the predefined
positions, i.e. the four corners and four middle-points in the edges of the spot
region, are chosen, namely y1, y2, . . . , y8. The pixels from the other region of the
spot are sorted and the lowest 8 pixels are chosen as x1,x2, . . . ,x8. We need a
parameter to compute the rank-sum statistic, namely W. If the null hypothesis
is not rejected, the pixel with the lowest intensity is discarded from the target
set, and the next lowest intensity pixel is chosen from the remaining pixels. The
process is repeated until the null hypothesis is rejected. The lowest intensity of
the eight pixels is then the threshold that determines the radius for the spot. The
pixels whose intensities are above the threshold are considered to be foreground
pixels. In the next stage, we sort all the pixels by their distance to the spot cen-
ter, μ, in an increasing order. Starting from the smallest distance pixel, we count
the number of foreground pixels and background pixels for the next 2n+1 pixels.
The foreground and background pixels are grouped according to the threshold



890 L. Rueda and L. Qin

obtained in the Mann-Whitney test. The process stops when the majority in the
testing set are background pixels. Otherwise, we move the starting pixel to the
next one in the sorted pixels and use the next 2n+1 pixels. The average distance
of the 2n+1 pixels is the radius that defines the foreground region. All the pixels
whose distance to the spot center, μ, is smaller than the radius are labeled “fore-
ground”, otherwise they are assigned to the background. In our implementation,
we set the size of the testing set to three pixels. A formal implementation of the
algorithm for the adaptive ellipse method can be found in [7].

3 Experimental Results

In order to evaluate the adaptive ellipse method proposed in this paper, we
performed some simulations on real-life microarray images obtained from the
ApoA1 data1, and compared our results with the well-known adaptive circle
method. In our experiments, the significance level was set to 0.01. This value
has been found to yield good results in most of our experiments. The programs
have been implemented in Matlab, and the source code is listed as an appendix
in [7].

Fig. 2 (a) shows the result of the adaptive ellipse method and the adaptive
circle method for some spots drawn from the 1230c1G/R microarray image. For
those ellipse-shaped spots, we observe that the adaptive ellipse method generates
a foreground region that is closer to the original spot in both shape and size
than adaptive circle method. Consider spot No. 49, for example. The foreground
region generated by the adaptive ellipse method has the form of an ellipse, while
the foreground region generated by the adaptive circle looks like a circle. The
same situation occurs as in spot No. 65, but in this case, the axes of the resulting
ellipse are not coincident with the coordinates of the system.

Fig. 2 (b), on the other hand, shows the comparison of the two methods for
some spots whose shape is similar to a circle. Because the circle is a particular
case of the ellipse, the adaptive ellipse method also works well for circular spots.
We observe that these two methods generate almost identical results for these
spots.

Based on the above observations, we conclude that the adaptive ellipse
method generates better results when dealing with spots that have the shape of
an ellipse. Meanwhile, it generates results as good as the adaptive circle method
when dealing with circular spots. In general, the adaptive ellipse method is suit-
able for a wider range of spots, and generates better results. This argument could
be shown theoretically, and is observed in the experiments below. The former
constitutes an open problem, and proposes a future avenue for research.

We also provide a numerical comparison; the measurement that we adopt for
the comparison is the intensity of the foreground region for each spot, and the
number of pixels belonging to that region. The results are shown in Table 1. The
first column for each method contains the number of pixels in the foreground
1 Apo A1 microarray data website. Terry Speed’s Microarray Data Analysis Group

Page. http://www.stat.berkeley.edu/users/terry/zarray/Html/apodata.html
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(a) Ellipse-shaped spots (b) Circular-shaped spots

Fig. 2. Different results obtained from the adaptive circle and adaptive ellipse methods
for spots taken from 1230c1G/R microarray image

region, Nfg, and the second column represents the total spot foreground intensity
of the green channel, Ifg. In the first two columns, we notice that the average
foreground intensity generated by adaptive ellipse is higher than adaptive circle,
in most of the cases. Meanwhile the number of pixels generated by the former
is approximately in the same range as the latter, but slightly larger. This can
be easily justified by the fact that adaptive ellipse finds a foreground region
that represents the spot foreground better, which means that it includes more
foreground pixels and fewer background pixels than the adaptive circle method.
Thus, it results in higher foreground intensity even though it contains more
pixels in general. In our experiments, seven out of the nine images result in
higher foreground intensity.

In order to enhance the quality of our assessment about the experiments,
we compare the number of “hits”, i.e. the number of the pixels that are incor-
rectly labeled by the two algorithms. Because there are no standard solutions for
microarray image segmentation and classifying the pixels manually is still sub-
jective and error-prone, we choose a histogram-based algorithm as the reference
method to classify the pixels into foreground and background. Then, we apply
the two methods to the same spots, and count the number of hits. The spots
are obtained randomly from image 1230c1G/R of the Apo A1 dataset. Table 2
shows the results. We observe that, in most of the cases, the adaptive ellipse
method generates fewer hits, which implies that it generates a foreground region
that is more similar to that of the histogram-based approach.
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Table 1. Comparison of Adaptive Circle method and adaptive ellipse method for a
batch of images from the ApoA1 dataset, where the first sub-grid of each image is
analyzed

Adaptive Circle Adaptive Ellipse
Nfg Ifg Ibg Nfg Ifg Ibg

1230c1G 28.24 3,652 846 28.34 3,670 843
1230c2G 25.36 4,301 1,120 25.80 4,314 1,123
1230c3G 28.17 4,178 595 28.29 4,181 592
1230c4G 24.37 3,248 818 24.57 3,235 816
1230c5G 26.88 2,914 459 26.91 2,961 459
1230ko1G 33.86 2,018 396 33.81 2,022 387
1230ko2G 20.69 2,353 532 20.54 2,373 531
1230ko3G 29.05 2,884 577 28.85 2,902 576
1230ko4G 24.56 2,735 564 24.64 2,729 563

Table 2. Comparison of adaptive circle and adaptive ellipse with a histogram-based
approach

File Hits Hits
(adaptive circle) (adaptive ellipse)

Spot Number → 12 24 36 12 24 36
1230c1 29 8 7 25 8 7
1230c2 48 22 24 47 21 24
1230c3 12 12 11 9 14 9
1230c4 36 13 17 36 10 16
1230c5 21 17 23 18 15 23
1230ko1 11 18 9 14 18 9
1230ko2 29 41 19 29 41 19
1230ko3 15 17 15 15 18 15
1230ko4 17 16 25 17 16 25

Total → Adaptive circle: 532 Adaptive ellipse: 518

4 Conclusions

We have introduced a new microarray image segmentation method, which we call
the adaptive ellipse method. The advantage of this method is that it results in
a foreground region that better represents the actual spots, and can be used for
a wider range of microarray images than the traditional adaptive circle method.
We view each spot in the microarray image from another perspective: the inten-
sities of the spot region conform a histogram that is used to approximate the
probability density function of a bivariate normal distribution. This enable us to
extract statistical information from the images that is typically ignored by the
traditional adaptive circle method, and hence showing more flexibility.

The empirical results on DNA microarray images drawn from the Apo A1
dataset show that the adaptive ellipse method can reveal the true shape of the
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spots, and works better than the adaptive circle method. We have shown the
superiority of adaptive ellipse over adaptive circle both visually and numerically.

The adaptive ellipse method, which generates quite satisfying results, still
has room for improvements. After the dataset is transformed to the new dis-
tribution, various methods can be applied to obtain the radius that defines the
foreground region. A possible approach is to compute the slope of the proba-
bility density function for each pixel, and then find the radius that generates
the largest slope average. This problem constitutes a possible avenue for future
research. More work can also be done in more elaborated experiments to seek
for better parameters of the present approach in finding the foreground radius.
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Abstract. Retinal exudates are typically manifested as spatially random  
yellow/white patches of varying sizes and shapes. They are a visible sign of 
retinal diseases such as diabetic retinopathy. Following some key preprocessing 
steps, colour retinal image pixels are classified to exudate and non-exudate 
classes. K nearest neighbour, Gaussian quadratic and Gaussian mixture model 
classifiers are investigated within the pixel-level exudate recognition frame-
work. A Gaussian mixture model-based classifier demonstrated the best classi-
fication performance with 89.2% sensitivity and 81.0% predictivity in terms of 
pixel-level accuracy and 92.5% sensitivity and 81.4% specificity in terms of  
image-based accuracy.  

1   Introduction 

Diabetic retinopathy is a severe and widely spread eye disease which can be regarded 
as manifestation of diabetes on the retina. Intraretinal hard exudates are a visible sign 
of diabetic retinopathy and also a marker for the presence of co-existent retinal oe-
dema. If present in the macular area, oedema and exudates are a major cause of visual 
loss in the non-proliferative forms of diabetic retinopathy. Exudates are  associated 
with patches of vascular damage with leakage and typically manifested as spatially 
random yellow patches of varying sizes and shapes [1]. Currently, there is an increas-
ing interest for setting up systems and algorithms that can screen a large number of 
people for sight threatening diseases, such as diabetic retinopathy and then provide an 
automated detection of the disease. 

In this paper we report the benefits of developing an automated decision support 
system for the purpose of detecting and classifying exudate pathologies of diabetic 
retinopathy. K nearest neighbour (KNN), Gaussian quadratic (GQ) and Gaussian  
mixture model (GMM) classifiers are exploited towards a binary pixel-level classifi-
cation task. The expectation-maximisation algorithm is applied to determine the 
GMM parameters and the optimum number of mixture model components is   decided 
based on the minimum description length criterion. Finally, to assess the efficiency of 
our pixel-level exudate recognition scheme in terms of image-based accuracy, an 
unseen set of images are classified using the optimum GMM classifier.  

Sinthanayothin [2] identified exudates in greylevel images based on a recursive re-
gion growing technique. The sensitivity and specificity reported was 88.5% and 
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99.7%, however, these measurements were based on 10x10 windows where each 
window was considered as an exudates or a non-exudate region. The reported sensi-
tivity and specificity only represent an approximate accuracy of exudates recognition, 
because any particular 10x10 window may be only partially affected by exudates. 
Gardner et al. [3] used a neural network to identify the exudates in greylevel images. 
The authors reported a sensitivity of 93.1%. Again, this figure is the result of their 
identification of exudates by classifying regular regions of size 20x20 pixels rather 
than a pixel-level classification. This involved training their network on patches that 
were ‘bad’ if one or more pixels in the 20x20 patch were exudates or ‘good’ if no 
pixels were affected.  

One novelty of our proposed method here is that we locate exudates at pixel-level 
rather than estimate for regions. The colour retinal images are automatically analysed in 
terms of pixel-level and image-based diagnostic accuracies and an assessment of the 
level of retinopathy is derived. This paper is organised as follows. Section 2 briefly 
outlines our image pre-processing steps. In Section 3, KNN, GQ, and GMM classifiers 
will be compared in how they perform in classifying the image pixels to exudates and 
non-exudates. Section 4 reports on the application of the GMM pixel-level classifier 
towards an image-based classification scheme. The paper is concluded in Section 5.     

2   Preprocessing 

We used 142 colour retinal images obtained from a Canon CR6-45 non-mydriatic 
camera with a 45° field of view. This consisted of 75 images for training and testing 
our classifiers in the pixel-level classification stage. The remaining 67 images were 
employed to investigate the image-based diagnostic accuracy of our system. The  
image resolution was 760x570 at 24bit RGB.  

Typically, there is wide variation in the colour of the fundus from different     pa-
tients, related to race and iris colour. The first step is therefore to normalise the im-
ages across the set [4]. We selected a particular image as a reference and used histo-
gram specification to modify the values of each image in the dataset such that its 
frequency histogram matched the reference image distribution (Figure 1(c)). The  
contrast of retinal images is not sufficient due to the intrinsic attributes of lesions. 
Thus, in the next step, the contrast between exudates and the retina background was 
enhanced using a local contrast enhancement method (Figure 1(d)).  

    
(a)                                  (b)                                  (c)                                    (d) 

Fig. 1. Colour normalisation and contrast enhancement: (a) reference image, (b) typical retinal 
image (including exudates), (c) colour normalised version, (d) after contrast enhancement 
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3   Pixel-Level Exudate Recognition 

Pixel classification can be performed based on non-contextual or contextual pixel 
labelling. Non-contextual labeling methods have an intrinsic limitation, as they do not 
take the spatial relationship of the pixels into account [5]. Here, for each image pixel 
x0 a feature vector consisting of multi-spectral values of pixels in a defined  
neighbourhood N(x0) were used as a feature representation. An odd-sized square   
window was centered on each underlying pixel x0 in the dataset. Then the Luv colour 
components (this colour space was found the most appropriate space for our analysis) 

of the pixels in the window composed into the feature vector of x0.  
The selection of a colour space for image processing is application dependent. To 

select the most suitable colour space for our pixel-based classification approach, we 
conducted a quantitative analysis and applied a metric to evaluate the performance of 
various colour spaces. This metric [6] estimated the class separability of our exudate 
and non-exudate pixel classes in different colour spaces and was measured using 
within-class and between-class scatter matrices. After within-class (Sw) and between-
class (Sb) matrices are measured the following metric J can be obtained:  

                                           =
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traceJ                                                          (1) 

A higher value of J indicates that the classes are more separated while the members 
within each class are closer to each other. We have experimented with different    
colour spaces and found that the Luv colour space is the most appropriate space for 
our   retinal image analysis (Table 1). Thus, we chose this colour space to carry out 
our pixel-level classification task. 

Table 1. Comparative analysis of different colour spaces 

Colour Space YIQ RGB HSL HSI Lab Luv 

J 2.20 2.25 2.64 2.81 3.32 3.67 

There might be no constraint on the neighbourhood window size N in theory, but it 
was assumed that most contextual information was presented in a small       
neighbourhood of the x0 pixel. Here, to determine the optimal window size, we     
examined various pixel patch sizes, i.e. 1x1, 3x3, 5x5 and 7x7. To construct learning   
datasets of exudate and non-exudate (including cotton-wool spots, red lesions, blood 
vessels and background) pixels, a consultant ophthalmologist manually segmented 75 
pre-proceed images and marked the exudate lesions. An almost balanced learning 
dataset of exudates and non-exudates was then established to eliminate any possible 
bias towards either of the two classes. This representative learning dataset comprised 
of 62501 exudate and 63046 non-exudate pixels.  

To model the exudate and non-exudate probability density function, we chose one 
very commonly used classifier, for every type of probability density estimation  
approaches, i.e. non-parametric KNN, parametric GQ, and semi-parametric GMM. 
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Each classifier was trained and tested against our four pixel datasets (1x1, 3x3, 5x5, 
and 7x7). 

In KNN classification, the number of neighbours, i.e. K needs to be pre-defined. 
Here, we experimented with different K values ranging from 1 to 7 (K was chosen to 
be odd to avoid ties), to find the optimum value with lowest misclassification error 
rate. Table 2 summarises the best overall performances accomplished using KNN 
classifiers. As can be seen, these classifiers achieved good generalisation ability, with 
a best overall performance of 90.26% against 5x5 pixel patch size dataset. In this 
case, the correct classification rates for exudate and non-exudate classes were 88.92% 
and 91.60% respectively. 

The Gaussian distribution is one of the most generally used density estimators. Ac-
cording to Bayes’ theorem, the posterior probability is written as: 

                                           ( ) ( ) ( )
( )xp

CPCxp
xCP ii
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|
| =                                                                (2) 

The likelihood function p(x|Ci) was defined in terms of exudates and non-exudates 
class mean and covariance matrix. P(Ci) was a priori probability denoting the          
probability that a pixel (exudate or non-exudate) occurs in the entire set of pixels. The     
posterior probability measured the probability of the pixel belonging to either the 
exudates (CExu) or non-exudates (CNon) class once we have observed the feature vector 
x. Here, the class attached to each feature vector x was selected based on a maximum 
a posterior (MAP) rule. Table 2 illustrates the overall performances achieved using 
GQ classifiers. The best obtained overall classification accuracy was 88.24%       
comprising of 89.14% and 87.34% correct classification rates for exudates and non-
exudates respectively. 

Table 2. The best overall pixel-level classification performances 

Classifier Pixel-level 

dataset KNN        GQ        GMM 

1x1 84.29% (K=7) 82.25% 85.13% 

3x3 86.85% (K=5) 86.15% 92.35% 

5x5 90.26% (K=5) 88.24% 96.49% 

7x7 89.87% (K=5) 87.58% 96.32% 

A disadvantage of parametric density estimation techniques is their lack of flexibil-
ity when compared with non-parametric methods. Although single Gaussian density  
estimation models can be set up easily, they are restricted in their ability to efficiently 
estimate more complex distributions [7]. GMMs combine much of the flexibility of 
non-parametric methods with certain amounts of the analytical advantages of para-
metric approaches. Basically, in a mixture model distribution, the data is represented 
as a linear combination of component densities in the form: 
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where K represents the number of components and each component is defined by wk 
and parameterised by k (mean vector and covariance matrix). The coefficient P(wk) 
is called the mixing parameter. We benefited from the theory behind these models and 
used a separate mixture of Gaussians to estimate the class densities p(x|Ci, ) of exu-
dates and non-exudates as follows: 

                         ( )
( ) ( )

( ) ( )−−−=Θ −

=

1

2

1

21 2

1
exp

det2

)(
,|

k k
T

k

k

d
k

K

k
i xx

wP
Cxp

i

μμ
π

                     (4) 

where μk and k represent the mean and covariance of the kth component of the 
 mixture density of class Ci. Ki denotes the numbers of components in class i and Ci 
refers to either the exudates or non-exudates class. Having estimated the likelihood 
functions of these two classes the posterior probabilities were obtained. The decision 
about the affiliation of each new feature vector x was then taken by applying the MAP 
rule. We assumed a full covariance matrix for each component, since these types of 
matrices have higher flexibility in estimating the underlying distributions. 

To determine the parameters of a GMM and fit a model to the data expectation 
maximisation algorithm was utilised. This algorithm started by making some initial 
guess for the parameters of the model and then iteratively modified these parameters 
and decreased an error function until a minimum was reached. The parameters were 
initialised using a K-means clustering algorithm. The K-means algorithm partition the 
feature space into K clusters. To apply K-means algorithm, the number of clusters, i.e. 
K (or equivalently the number of components) needs to be known. Choosing too few 
components produces a model that cannot accurately model the distributions. With an 
increasing number of components, the probability that the model fits the dataset better 
will be increased, but the model also loses its capability to generalise well.       

Here, the appropriate number of components was chosen by repeating the density 
model estimation and evaluating minimum description length criteria [8]. We  
obtained the optimum mixture model of each exudate and non-exudate pixel-level 
dataset separately by varying the number of components within a range of 1 to 20. 
The optimum number of GMM components for exudate and non-exudate datasets 
were found equal to 7 and 9 (for 1x1 dataset), 10 and 11 (for 3x3 dataset), 15 and 17 
(for 5x5 dataset), 19 and 23 (for 7x7 dataset) respectively. It is evident that by  
increasing the pixel patch size the model complexity was also raised and necessitated 
a higher number of components for effective density estimation.  

Table 2 summarises the overall performances achieved using GMMs. Typically, 
the performance of a classifier improves up to a certain point as additional features 
are added, and then deteriorates. This can be seen in Table 2, as performances contin-
ued to improve when the patch size was increased up to 5. At this point all classifiers 
achieved their best results. However, by increasing the pixel patch size more, i.e., to 
7, the accuracies were decreased.  

In many situations, such as our application, it is valuable to obtain a 2D or 3D pro-
jection of the original multivariate data for visual examination. Here, principal com-
ponent analysis was applied to the pixel dataset that achieved the highest classifica-
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tion accuracy, i.e. our 5x5 dataset. The first two exudate principal modes contained 
62.4% of the total variance, i.e. 49.7% + 12.7%. Similarly, the first two non-exudate 
principal modes represent 53.2% of the total variance (38.0% + 15.2%). 

Figure 2 shows the response of the  exudates 5x5 pixel dataset to the first two   
principal modes where the optimum number of GMM components was found equal to 
9 using minimum description length criteria. The yellow marks in this figure         
demonstrate the final locations of Gaussian component mean values, which were 
found initially by K-means and then expectation maximisation algorithms. On the 
other hand, this figure shows the estimation of mixture components and their centres 
as elliptical contours of equal probability in the direction of their eigenvectors and a 
diameter of twice the square root of the corresponding eigenvalues.  

The GMM classifiers performed better than the other two classifiers and provided 
the best results irrespective of the choice of pixel patch size. The best GMM classifier 
demonstrated an overall performance equal to 96.49%, based on the 5x5 pixel-level 
dataset (Table 2). In this case, the correct classification rates for exudates and        
non-exudates were 96.15% and 96.83% respectively. Therefore, this GMM classifier 
was utilized to classify the pixels of a new set of images.  

 
Fig. 2. GMM density estimation for the first two principal modes of exudate pixels (schematic 
of the estimated density) 

4   Application of Pixel Level Exudate Recognition on Whole  
     Retinal Image 

The performance of a medical diagnosis system is best described in terms of sensitiv-
ity and specificity. The sensitivity gives the percentage of correctly classified abnor-
mal cases while the specificity defines the percentage of correctly classified normal 
cases. Classification of the whole retinal image pixels was required to work on an 
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imbalanced dataset of exudate and non-exudate pixels where the number of true nega-
tives (TN) was much higher than the false positives (FPs). The specificity     measure 
was mostly near 100% and did not represent an informative measurement. Thus, we 
used the predictivity measure, which is the probability that a pixel classified as exu-
date is really an exudate. This was defined as: 

                                              
FPTP

TP
typredictivi

+
=                                                  (5) 

where TP refers to the true positive. In real applications, such as ours, there is no 
previous knowledge of actual prior probabilities of exudates and non-exudates. For 
example, the underlying test image can be either a normal image with no exudate, or 
an abnormal severe retinopathy image with a significant number of exudate pixels. 
Thus, to accomplish an efficient image classification process and control the balance 
between sensitivity and predictivity, we constructed a series of classifiers by varying 
the prior probability ratio of exudates to non-exudates using a decision threshold T. 
For instance, a threshold value equal to 0.8 sets the exudates’ prior probability to 0.8 
and non-exudates’ prior probability equal to 0.2 (i.e. 1-T). Figure 3 shows an abnor-
mal image that has been classified using the GMM classifier. The original image and 
its ground-truth are shown in Figures 3 (a, b). The corresponding classification results 
for T values of 0.3, 0.5 and 0.7 are illustrated in Figure 3 (c, e, g).  

    

(a)                                  (b)                                (c)                                     (d) 

    

(e)                                  (f)                                (g)                                     (h) 

Fig. 3. Pixel-level exudate recognition application on a retinal image using different ratio of 
exudate and non-exudate prior probabilities. The identified exudates are shown in blue and TPs 
in white. (a) Original image, (b) Ground-truth, (c) T = 0.3, (d) Superposition of (b) and (c), (e) 
T = 0.5, (f) Superposition of (b) and (e), (g) T = 0.7, (h) Superposition of (b) and (g).  
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By increasing the threshold value and assigning higher prior probabilities to the 
exudates, the number of TPs was increased while at the same time the false negatives 
(FNs) were decreased. Thus, the sensitivity measure was enhanced. Indeed, by in-
creasing the threshold value another reverse trend was noticed, where the FPs also 
begin to intensify, which leads to a decrease in predictivity. The trade-off between 
sensitivity and predictivity measures (choice of T) needs to be appropriately balanced 
according to the diagnostic strategy. We considered a new set of 40 abnormal images 
and then each image was separately classified with different T values. 

The overall pixel-level classification performance was obtained based on the  aver-
age of all images’ sensitivities and predictivities values. Table 3, summarises some of 
these averaged sensitivity-predictivity values. As is evident, the threshold values 
which provided the highest average of sensitivity and predictivity values were 0.40 
and 0.45. An important issue in choosing the threshold is ensuring that our classifier 
does not have a very high sensitivity for exudate detection; otherwise it can wrongly 
classify the normal images as abnormal. Therefore, to assess the efficiency of our 
proposed exudate recognition scheme in terms of image-based accuracy, we set the 
threshold T equal to 0.45 and classified the whole set of 67 retinal images (40 abnor-
mal and 27 normal) using the optimum GMM classifier. Then a final decision was 
made as to whether each image had some evidence of retinopathy. 

When we manually analysed the system’s decision on normal images we found 
that in most cases when a normal image had been wrongly identified as abnormal not 
many FP pixels had been detected. To improve the image-based specificity of the 
system without sacrificing the sensitivity, a threshold value was defined. Based on this 
threshold, each classified abnormal image with less than 50 identified exudate pixels 
in size was considered normal. This threshold was determined in agreement with our 
experiments and our consultant clinician. The GMM classifier could identify abnor-
mal images with 92.5% sensitivity (correct identification of 37 abnormal images out 
of 40), while it correctly classified 81.4% (correct identification of 22 normal images 
out of 27) of the normal images (the specificity).  

Table 3. Pixel-level accuracy in terms of sensitivity-prodictivity criteria 

T     Sensitivity      Predictivity 

       0.30  80.3    88.3 

0.40 87.2 83.0 

0.45 89.2 81.0 

0.50 90.4 79.5 

0.85 94.5 57.6 

5   Conclusions 

This paper has reported work undertaken to investigate the use of three well-known 
statistical classifiers, i.e. KNN, GQ and GMM for pixel-level exudate recognition. It 
was found that the GMM classifiers performed better than the other two classifiers. 
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KNN classifiers could outperform the GQs but the latter were much quicker to  
develop. An acceptable trade-off between the system’s sensitivity and predictivity was 
achieved by inspecting different ratios of exudate and non-exudate prior probabilities. 
The proposed scheme achieved 92.5% sensitivity and 81.4% specificity in terms of 
image-based classification accuracy. It also illustrated 89.2% sensitivity and 81.0% 
predictivity in terms of pixel-level accuracy. The results demonstrated here indicate 
that automated diagnosis of exudative retinopathy based on colour retinal images can 
be very successful. 
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Abstract. This paper presents two novel feature selection techniques for the 
purpose of prostate tissue characterization based on Trans-rectal Ultrasound 
(TRUS) images. First, suspected cancerous regions of interest (ROIs) are 
identified from the segmented TRUS images using Gabor filters. Next, second 
and higher order statistical texture features are constructed for these ROIs. 
Furthermore, a representative feature subset with the best discriminatory power 
among the constructed features is selected using two artificial life techniques: 
the Particle Swarm Optimization (PSO) and the Ant Colony Optimization 
(ACO). Both the PSO and ACO are tailored to fit the binary nature of the 
feature selection problem. The results are compared to the results obtained 
using the Genetic Algorithm (GA) feature selection approach. When Support 
Vector Machine (SVM) classifier is applied for the purpose of tissue 
characterization, the features obtained using the PSO and ACO outperforms the 
features obtained using the GA, i.e., they are capable of discriminating between 
suspicious cancerous and non-cancerous in a better accuracy. The obtained 
results demonstrate excellent tissue characterization with 83.3% sensitivity, 
100% specificity and 94% overall accuracy. 

1   Introduction  

Prostate cancer is the highest-incidence cancer and the second leading cancer killer in 
men. It is only curable at an early stage; therefore, early detection is highly 
recommended [1]. Different types of diagnosis such as the Prostatic Specific Antigen 
(PSA) value, family history, age, race, prostate volume, as well as Digital Rectal 
Examination (DRE) lack reliability and therefore, are not sufficient for accurate 
diagnosis. Depending on these results, the doctor usually refers the patient to the next 
common diagnostic stage which is using Trans-rectal Ultrasound (TRUS) imaging 
system. Based on the radiologist scrutiny to the TRUS image a biopsy operation 
might follow [2]. The radiologist experience plays an important role in identifying the 
biopsy locations.  

TRUS provides information about the size and shape of the prostate; it is also used 
for identifying different gland zones. TRUS is considered the dominant imaging 
modality for diagnosis of Prostatism as well as detection and staging of prostate 
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cancer.  However, TRUS is still deficient in early and accurate detection of tumours 
due to the low quality and noise characteristics of the TRUS images. The only way 
for recognizing the suspicious zones is with the aid of expert radiologist, which makes 
this process time consuming and operator dependent. Therefore, mimicking the expert 
radiologist decision is recommended as an assistive method for newer radiologists. 
This is achieved by the means of Computer Aided Diagnosis (CAD). 

CAD of prostate cancer is a developing field where several aspects can be tackled. 
A typical CAD system consists of a segmentation stage, region of interest 
identification, feature construction, feature selection and classification. The work in 
this paper is focuses on ROI identification, feature extraction and selection where the 
selected features are then tested by a classifier that is capable of dealing with the 
noisy and distorted features of the TRUS images.  

The first phase in CAD diagnosis from TRUS images is segmentation where the 
prostate boundaries are being detected from the TRUS image, a step that leads to 
determining the volume of the gland. Lots of research has been done in this area using 
different methods such as statistical shape model [3], super ellipses [4] and wavelet 
analysis [5] which makes it well established.  

The second important phase is ROI identification, which deals with highlighting the 
most probable cancerous regions in the gland, a step that is usually achieved by an 
expert radiologist. This step is crucial as studying the whole image is computationally 
demanding. Moreover, choosing the incorrect ROIs results in misleading features that 
might lead to inaccurate medical decisions. A promising ROI identification method 
using Gabor multi-resolution analysis was proposed and applied to TRUS images in [6].  

The next stage is feature construction where different statistical and spectral 
features are constructed from the identified ROIs. The features used in this paper 
include second order as well as higher order statistical features. The obtained features 
might have some redundancy or correlation; therefore, selection among features is 
necessary in order obtain a highly representative feature set [7]. Several methods can 
be used for feature selection. These methods can be categorized into classifier 
independent and classifier dependent feature selection. For the classifier independent 
feature selection, features are ranked according to the information content of each 
feature. While in the classifier dependent, a pre-specified classifier is used and the 
features that lead to the best classification results are selected.  

Mutual Information Feature Selection (MIFS), as a classifier independent 
algorithm, was applied to TRUS images features in [8] and leads to excellent results, 
however, on the expense of the computational effort. This paper focuses on classifier 
dependant feature selection algorithms. These methods are Particle Swarm 
Optimization (PSO) and Ant Colony Optimization (ACO). The results of these two 
artificial life techniques are then compared to the Genetic Algorithm (GA) based 
feature selection. 

The ultimate goal of this work is to mimic the radiologist’s decision which is 
achieved using several consecutive stages that are highlighted in figure 1. The first 
stage is ROI identification using Gabor filters; the second stage is extracting statistical 
features from the identified ROIs. The third phase is a classifier based feature 
selection based on GA, PSO or ACO. The results obtained are compared to the 
doctor’s diagnosis. 
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Fig. 1. Prostate Cancer Diagnosis from TRUS images 

2   ROI Identification 

ROI segmentation is a vital stage for TRUS image feature extraction for the purpose of 
prostate cancer diagnosis and it is usually performed by the aid of an expert radiologist. 
With the goal of assisting radiologist’s decision and getting accurate rapid results, there 
is a great need for an automated ROI segmentation algorithm. Multi-resolution filtering 
is an excellent method for texture investigation, which is achieved by using Gabor 
multi-resolution analysis that is able to segment the image according to the frequency 
response of the pixels. The pixels that have similar response will be assigned to the 
same cluster. The Gabor function was chosen for this application for its high  
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Fig. 2. Two different TRUS professionally segmented images and the corresponding ROIs 
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localization in both the spatial frequency domain as well as the spatial domain. The 
Gabor function in the spatial domain is a Gaussian modulated sinusoid, while in the 
spatial-frequency domain the Gabor function becomes two shifted Gaussians at the 
location of the modulating frequency. This method is applied in this paper and a sample 
of the segmented images and the original TRUS images is shown in figure 2. 

3   Texture Feature Construction 

Texture is used to describe the local spatial variations in image brightness which is 
related to image properties such as coarseness, and regularity. This is achieved by 
performing numerical manipulation of digitized images to get quantitative 
measurements. Texture analysis can potentially expand the visual skills of the expert 
eye by extracting image features that are relevant to diagnostic problem and not 
necessarily visually extractable. Statistical approaches represent texture with features 
that depend on relationships between the grey levels of the image. It is very helpful to 
know that different tissues have different textures. Benign tumors are described as 
regular masses with homogenous internal echoes, while carcinomas are masses with 
fuzzy borders and heterogenous internal echoes. In this work statistical texture 
features of identified ROIs are constructed. Statistical texture features proved its high 
recognition ability in ultrasound images. These features has been used for fetal lung 
maturity [9], liver tissue characterization [10], prostate cancer recognition [8] as well 
as some other applications. Second and higher order statistical features are used in 
this work where different texture features are constructed from the identified regions 
of interest of the TRUS images. 

3.1   Second Order Statistics 

The second order statistical features are considered crucial as the human visual system 
is capable of identifying different textures only if their second order statistics are 
different. However, textures which differ in higher-order statistics but have the same 
first- and second-order statistics cannot be recognized spontaneously by the human 
visual system. These features were used earlier for fetal lung maturity, liver tissue 
characterization, as well as prostate cancer diagnosis [8, 9, 10]. The two sets of second 
order statistical features used in this work are the Grey Level Difference Matrix 
(GLDM) and the Grey Level Difference Vector (GLDV). A set of nine features are 
constructed using GLDM and GLDV and the details of both methods are explained in 
[8]. 

3.2   Higher Order Statistics 

With the relative immaturity of CAD applied to TRUS images, it would be unsuitable to 
think about the image analysis only using second-order statistical techniques. Moreover, 
as textures differing in third or higher-order statistics escape the capabilities of the 
human perceptual system, it is expected that considering higher-order analysis of TRUS 
images will give good results. Two higher order statistical algorithms are adopted and 
applied for the first time to the TRUS images in this work which are the Neighborhood 
Grey Tone Difference Matrix (NGTDM) and the Grey Tone Run Length Matrix 
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GTRLM where nine features are extracted from both matrices. The details and 
mathematical formulation of these methods are explained in [11,12] respectively. 

 Neighborhood Grey Tone Difference Matrix NGTDM 
NGTDM features are the properties, that might be used to discriminate between 
different textural patterns, include coarseness, contrast, complexity, busyness (fineness), 
shape, directionality and texture strength. In this approach the ith entry in NGTDM is a 
summation of the differences between all pixels with grey-tone i and the average value 
of their surrounding neighbors. NGTDM applied in this work used a square region of 
five pixels as the neighborhood size. If i is the grey-level at (x,y) then the average grey-
level over the square neighborhood centered at (x,y) is given by: 
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Five texture features are constructed from the NGTDM which are: coarseness, 
contrast, busyness and complexity. The details of these features is explained in [11]. 

 Grey Tone Run Length Matrix GTRLM 
GTRLM calculates the run length of a specific image grey-tone in a direction  within a 
textured ROI. A run isa set of successive pixels having the same or similar intensities 
along a specified direction. The considered pixels have to be linearly adjacent in the 
direction . The run length is the number of pixels enclosed within the run. The number 
of runs with grey-tone i of run length j in some  direction is denoted 
by [ ]),(')( αα jirR = . Five features are computed from the GTRLM which are: short run 

emphasis, long run emphasis, grey tone distribution, run length distribution and run 
percentage. The mathematical formulation of these features is explained in [12]. 

4   Feature Selection 

The output of the previous stage is a feature vector that is composed of GLDV, GLDM, 
NGTDM and GTRLM features. This feature vector is applied to a classifier that should 
identify some classes (e.g., cancerous and non-cancerous). This feature vector might 
have some redundant and correlated features (curse of dimensionality) which is the 
main motivation for using the feature selection techniques.  

The principle of feature selection decides on a subset of features, which preserve 
most of the information needed for pattern classification [7]. An optimal set is a subset 
of features, which forfeit none of the information needed for classification and results in 
no increase in the minimum probability of error, when a decision rule is applied in both 
the observation and the subset space. The Feature Selection algorithms used in this 
paper are classifier dependant FS methods. This means that the possible feature subsets 
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are obtained and the classifier performance is tested for each subset and finally the best 
discriminatory feature subset is chosen.  

4.1   Particle Swarm Optimization (PSO) 

PSO [13, 14, 15] is a new population based stochastic optimization technique inspired 
by social behavior of bird flocking or fish schooling. Each particle is treated as a point 
in a 2n dimensional space where n denote the total number of features. Let vij and pij 

denote the jth component of the ith particle velocity vi and position pi respectively. 
We define the fitness of each particle as the recognition accuracy corresponding to 

the features selected by this particle using a pre-specified classifier (in this work, we 
use Support Vector Machine classifier.) 

The algorithm described in here is a slightly modified version of the PSO 
algorithm to fit the binary nature of the feature selection problem. 

The system is initialized with a group of random particles with 10 , ≤≤ jip , and 

then searches for optima by updating generations. In each iteration, each particle 
position is updated by following two "best" particles. The first one (denoted by pbest) 
is the best fitness it has achieved so far. The fitness value is also stored. Another 
"best" value that is tracked by the particle swarm optimizer is the best value (denoted 
by gbest), obtained so far by any particle in the population.  

After finding the two best values, the particle updates its velocity and positions 
with following equations  
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Where 0,1 21 ≤≤ rr are uniformly distributed random variables, 
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The output of the above adopted algorithm is a vector composed of ones that 
correspond to the selected features and zeros that correspond to the rejected 
features.  
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4.2   ANT Colony Optimization 

ANT Colony Optimization [16] is another heuristic optimization method for solving 
optimization problems which borrows ideas from biological ants. Experiments with 
real ants showed that ants go from the nest to the food source and backwards then, 
after a while, the ants prefer the shortest path from the nest to the food source. The 
ants communicate indirectly by laying pheromone trails and following trails with 
higher pheromone. Naturally, larger amount of pheromone will accumulate on the 
shorter paths to good food sources because larger number of ants will cross it back 
and forth per unit time as compared to longer paths.  

The originally proposed ANT colony optimization algorithm fits naturally in 
optimization problems corresponding to the selection of optimum permutation (such 
as the traveling sales person problem), i.e., we can apply it for the feature selection 
problem if we fixed the size of the subset of features to be chosen.  

In here, we present a simple algorithm that borrows ideas from the ANT colony but 
doesn’t have the above constraint, i.e., we don’t have to pre-determine the size of the 
optimal feature subset.   

The system is initialized with a group of ants moving across a full binary tree of 
depth n and 2n leaves. Each leaf corresponds to one of the possible 2n feature subsets. 
The root of the tree corresponds to the nest of the ants and the accuracy of the 
classifier based on the feature subset associated with each leaf corresponds to the 
amount of food found at the food source. 

The algorithm proceeds by iterating through the following three basic steps: 

 Construct a solution for all ants: At each node, each ant has to make a 
(statistical) decision whether to follow the right path or the left path. At the 
first iteration, all the ants will move randomly. However, on subsequent 
iterations, the ants’ choices will be influenced by the intensity of the 
pheromone trails left by preceding ants. A higher level of pheromone on the 
right path gives an ant a stronger stimulus and thus a higher probability to 
turn right and vice versa. Let Pherl(R) and Pherl (L) denote the value of the 
pheromone accumulated at the right edge and the left edge of a given node at 
the lth level of the tree. Then the ants’ behavior equivalent to having each ant 
choosing a uniformly distributed random variable 10 ≤≤ r  and choosing to 

follow the right edge at the lth level of the tree if
)()(
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LPherRPher
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to follow the left edge otherwise. 
 Do a global pheromone update: For our problem, this step is also different 

than the one proposed in the original ANT colony optimization algorithm. 
Instead of updating the pheromone along the visited arcs only, we update all 
the corresponding 2l-1 arcs at lth level of the tree. The amount of pheromone 
laid by each ant corresponds to the amount of food (i.e., the classifier 
accuracy) that the ant finds at the leaf of the tree at the end of the path 
followed by this ant. 

 Evaporate pheromone: After each iteration, a portion of the pheromone of 
the edge is evaporated according to a local updating rule, such that the 
probability of the selection of that edge by other ants decreases. This 
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prevents construction of similar paths by the set of ants and increases the 
diversity of the system.  The rate of evaporation provides a compromise 
between the rate of convergence and reliability of convergence. Fast 
evaporation causes the search algorithm to be stuck at local optima, while 
slow evaporation lowers the rate of convergence. After enough iteration of 
the algorithm, the pheromone of the good edges which are used in 
constructing of low-cost paths will increase and the pheromone of the other 
edges will evaporate. Thus, in the higher iterations the probability of 
constructing low-cost paths increases. 

As in the PSO method the accuracy criterion is based on SVM classifier.  

5   Classification 

Support Vector Machines are known to be a leading method for solving non-linear 
classification problems [8]. SVM depends mainly on pre-processing the data to 
represent patterns in a higher dimensionality space, usually much higher than the 
original feature space. This is achieved with a suitable non-linear mapping (.) to a 
sufficiently high dimension [8]. Data from two classes are always separated by a 
hyper-plane. In binary classification, the task is to find a function (.) that separates 
the two classes by learning from a set of samples. The hyperplane is selected so that it 
maximizes the margin between the two classes. The vectors (samples) defining the 
hyperplane are the most difficult patterns to classify and are called Support Vectors. 

Each of the four feature sets as well as the selected feature subsets using the feature 
selection algorithms above are examined using the Support Vector Machine classifier.  

6   Results and Discussion 

The constructed feature sets are separately tested using the SVM classifier. The 
results are shown in table 1 where cancer and non-cancer attributes represents the 
suspicious cancerous cases and the non-suspicious cancerous cases according to the 
radiologist opinion. A set of 96 regions were used in this study where 80 regions were 
used as training set and a set of 16 regions were used as the test set. The following 
parameters are used to evaluate these feature: 

Accuracy:           1 - probability of misclassification 
False Negative:  probability of classifying a cancerous prostate as a normal prostate. 
False Positive:    probability of classifying a cancerous prostate as a normal prostate. 
Sensitivity:          1 - false negative rate 
Specificity:          1 - false positive rate 

Specificity, sensitivity and accuracy are the measures used to test different feature sets 
applied in this work. The table shows that the classification accuracy obtained using 
second order statistics is much better than that obtained accuracy using the higher 
order statistics. It is expected to obtain this kind of result due to the fact that the main 
target is to mimic the expert radiologist, whose classification accuracy is bounded by 
the human vision capabilities that is limited to the second order statistics. It is also 
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clear that the GLDV features obtained better results than the GLDM features which 
show that the GLDM features have redundant information that is confusing the 
classifier. 

Table 1. Classification results using the constructed feature sets 

 Cancer Non-cancer 
cancer 5 1 

 
GLDM 

Non-cancer 1 9 
83.33% Sensitivity; 90% Specificity; 87.75% Accuracy 

 Cancer Non-cancer 
cancer 5 1 

 
GLDV 

Non-cancer 0 10 
83.33% Sensitivity; 100% Specificity; 93.75% Accuracy 

 Cancer Non-cancer 
cancer 4 2 

 
GTRLM 

Non-cancer 2 8 
Sensitivity = 66.67%; Specificity 90%; 81.25% Accuracy 

 Cancer Non-cancer 
cancer 4 2 

 
NGTDM 

Non-cancer 2 8 
Sensitivity = 66.67%; Specificity 80%; 75% Accuracy 

The constructed feature sets are combined together to form a feature set that 
includes GLDM, GLDV, NGTDM and GTRLM features. The proposed feature 
selection algorithms are then applied to the obtained feature set. Genetic algorithms 
[16] have been used for the past decade for feature selection applications. A basic 
binary GA feature selection is used in this work for the purpose of comparison with 
the results obtained using the above two techniques. The classification results show 
that the GA obtained the least classification accuracy with 83.33% sensitivity; 90% 
specificity and 87.75% accuracy where the PSO and ACO obtained a better 
classification results with 83.33% sensitivity; 100% specificity and 93.75% accuracy.  

Table 2. Classification results using the selected feature sets 

 Cancer Non-cancer 
Cancer 5 1 

 
GA 

Non-cancer 1 9 
83.33% Sensitivity; 90% Specificity; 87.75% Accuracy 

 cancer Non-cancer 
cancer 5 1 

 
PSO 

Non-cancer 0 10 
83.33% Sensitivity; 100% Specificity; 93.75% Accuracy 

 cancer Non-cancer 
cancer 5 1 

 
ACO 

Non-cancer 0 10 
83.33% Sensitivity; 100% Specificity; 93.75% Accuracy 
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7   Conclusions 

Two novel feature selection algorithms were applied for accurate feature selection for 
the purpose of prostate cancer diagnosis using TRUS images. ROIs were identified 
from the segmented prostate TRUS images using Gabor multi-resolution analysis 
leading to accurate identified regions. Second and higher order statistical texture 
features such as GLDM, GLDV, NGTDM and GTRLM were constructed from these 
automatically segmented regions. Moreover, a feature subset representing the most 
salient and uncorrelated features was generated utilizing three different artificial life 
techniques where the well established GA is compared to both the PSO and the ACO. 
Finally these features were used for tissue characterization using SVM algorithm. The 
obtained results revealed the out performance of the ACO and the PSO compared to 
the basic binary GA. The sensitivity was 83.3% for all three feature selection methods 
and the specificity was 90% for GA and 100 % for the PSO and ACO. Moreover, it is 
observed that the selected features using both the PSO and the ACO were from the 
second order statistical features which prove that the system is limited with the human 
visual system and cannot go beyond what the HVS can recognize. This shows a great 
radiologist mimicking capability of the proposed system. 
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Abstract. In the diagnosis of malignant melanoma, a skin cancer, the
degree of irregularity along the skin lesion border is an important diag-
nostic factor. This paper presents a new measure of border irregularity
based on conditional entropy. The measure was tested on 98 skin lesions
of which 16 were malignant melanoma. The ROC analysis showed that
the measure is 70% sensitive and 84% specific in discriminating the ma-
lignant and benign lesions. These results compare favourably with other
measures and indicate that conditional entropy captures some distin-
guishing features in the boundary of malignant lesions.

1 Introduction

Melanoma is a malignant tumour of melanocytes. The tumour initially starts
from the epidermis and if not detected and removed early it invades the dermis.
The patient’s survival rate is inversely proportional to the depth of the tumour.
Early detection of melanoma is the most important factor affecting the survival
of a patient.

Malignant melanoma can be characterised by shape, edge, colour and surface
texture of the lesion. The border irregularity of pigmented skin lesions is one of
the most significant diagnostic factors in clinical diagnosis of melanoma [6,7].

It has been empirically discovered that clinicians have difficulties in visually
assessing border irregularity of skin lesion outlines and that their assessments
are not invariant to reflection and rotation [7,4]. Much research on quantitative
measures of irregularity has been carried out to overcome these shortcomings
[7]. The most common approaches include the Compactness Index (e.g. [13]),
Fractal Dimension and Structural Fractal Dimension (e.g.[4]), measures based
on radial distance (e.g. [12]), Sigma Ratio and Indentation Irregularity Index
(III) [11]. III is the most successful algorithm to date for classifying skin lesions
on the basis of their border irregularity.

The term “Irregularity” is contextual and can express different meanings. If
irregularity is to be quantified, it is necessary first to develop its formal definition,
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or at least provide its formal description. Five attributes of irregularity have been
proposed [8]. One of these attributes which is of interest here is unpredictability.
The elements of a sequence corresponding to a regular shape or pattern are
predictable, whereas in an irregular shape or sequence they cannot be easily
predicted. That is, the extent to which a sequence can be predicted may suggest
its degree of irregularity.

This paper presents a new measure of border irregularity based on conditional
entropy. In contrast to the existing measures, the proposed measure is based on a
formal criterion of irregularity outlined above. A prior knowledge of some points
along the border of a normal skin lesion can be used to predict more points along
the same border with high degree of certainty, whereas predictions for abnormal
skin lesions will have reduced certainty leading to high value of entropy. That is
conditional entropy increases with the degree of unpredictability.

Section 2 presents a brief description of the entropy while section 3 presents
the proposed method of computing conditional entropy. Section 4 describes the
experimental data while section 5 describes the experiments. Results and dis-
cussion are presented in section 6. Finally, section 7 presents the conclusion.

2 Entropy

Entropy can be described as a measure of information, the degree of uncertainty
or unpredictability of a system or sequence. Entropy is directly proportional to
unpredictability. That is, a sequence which is highly unpredictable (or random)
has higher entropy than an easily predictable sequence. The original entropy
(equation (1)) called the Shannon’s entropy was designed by Claude Shannon in
1948 [2]. The wide range of applications of entropy has motivated different mod-
ifications to Shannon’s entropy. Some of its modifications are Renyi’s entropy
[3], mutual information, conditional entropy and joint entropy [5]. Here we are
interested in conditional entropy but first provide some background related to
joint entropy.

H(x) = −
∑
x∈X

Pr(x)log2Pr(x) (1)

Let X and Y be random variables such that x ∈ X and y ∈ Y and let Pr(x)
be the probability of a particular value x. The joint entropy H(X, Y) (equation
(2)) of X and Y measures the unpredictability associated with the joint proba-
bility Pr(x, y) of X and Y while the conditional entropy of Y given X denoted
H(Y/X) (equation(3)) measures the unpredictability associated with the condi-
tional probability Pr(y/x) of Y given X. Since H(X)≥ 0, equation (4) implies
that conditioning reduces entropy.

H(X, Y ) = −
∑
x∈X

∑
y∈Y

Pr(x, y)log2Pr(x, y) (2)

H(Y/X) = −
∑
x∈X

∑
y∈Y

Pr(x, y)log2Pr(y/x) (3)
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H(X, Y ) = H(X) + H(Y/X) (4)

Entropy has two major problems. First, it is not sensitive to the relative po-
sition of elements in a sequence, e.g. a periodic sequence 10101010101010101010
and a random sequence 110100111011001011 have the same entropy. This is due
to the fact that entropy is computed by counting the number of elements of the
sequence that belong to each distinct category of a sequence determined by the
value of the bin size r. This constitutes a weakness of any entropy based mea-
sure (such as conditional entropy and joint entropy), most especially in pattern
recognition and classification problems where the relative position of elements of
a signal is important. Secondly, the value of entropy is strictly dependent on the
bin size. A wrong choice may lead to a wrong and misleading result. We inves-
tigated these problems and proposed a new technique of computing conditional
entropy. This was implemented on both simulated and real data. Simulated data
was used to investigate the relationship between the proposed conditional en-
tropy and the amount of noise level in a signal while the real data was used for
characterisation of malignancy in pigmented skin lesions.

3 Computing Conditional Entropy

Conditional entropy can be computed using equation (3). This implies that two
sequences are needed for its computation, X and Y. We describe equation (3) as
a sequence based conditional entropy (SBCE) because H(Y/X) is computed by
computing the entropy of sequence Y based on the knowledge of sequence X (note
that we can have more than two random variables in which case the conditional
entropy of one variable can depend on two or more variables). The sequence
based entropy is not a good measure of irregularity because it is independent
on the relative positions of the elements of a sequence (see section 2). Here
we propose a new type of conditional entropy which depends on the relative
positions of elements of a sequence, we call it ”element based conditional entropy”
(EBCE).

Let X = x1,x2, ...,xn be a random sequence of length n. We define the ele-
ment based conditional entropy of a sequence X, denoted He(X), as the overall
conditional entropy of successive elements of X based on the preceding elements
(equation (5)). The EBCE is similar to the SBCE but they have two major dif-
ferences. The first difference is that unlike the SBCE, the EBCE is sensitive to
the relative positions of elements of X. Secondly the EBCE can be computed for
just one sequence while the sequence based conditional entropy is designed for
at least two sequences.

He(X) = −
t=n∑
t=m

Pr(xt, (xt−1, ...,xt−m+1))logPr(xt/(xt−1,xt−2, ...,xt−m+1))

(5)
where n is the length of X and m is the length of different subsequences of X.
The case for m=2 is represented in equation (6).
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He(X) = −
t=n∑
t=2

Pr(xt,xt−1)logPr(xt/xt−1) (6)

Like other entropy based measures He is directly proportional to unpredictability
and He of a regular sequence is 0. Like other entropy based measures, He is also
strictly dependent on the bin size r.

The computation of EBCE using equation (5) requires a good choice of m,
the bin size r and a good definition of the conditionality variable

qt = (xt/(xt−1,xt−2, ...,xt−m+1)) (7)

We have investigated different ways of defining qt using different choices of m and
r. Here we present the definition that gave us the best result. We use Hr

e (m0 →
mf ) to denote EBCE for fixed r and variable m where m0 and mf are the
minimum and maximum m such that 2 ≤ m ≤ n, n is the sequence length.∐i=n−m+1

i=1 {xixi+1xi+2...xi+m−1} will be used to denote a set of all subsequences
of X.

Let S be a set of all subsequences of X each of length m (see equation(9)).
Hr

e (m0 → mf ) can be computed by defining qt as the difference between the
last and the first element of each subsequence (see equation (8))

qt = (xt/(xt−1,xt−2, ...,xt−m+1)) = (xt − xt−m+1) (8)

S =
i=n−m+1∐

i=1

{xixi+1xi+2...xi+m−1} (9)

For example if X = {x1,x2,x3,x4,x5} and qt is computed for m=3, using equa-
tion (9) S = {x1x2x3,x2x3x4,x3x4x5} and q3 = {x3 − x1,x4 − x2,x5 − x3}.

4 Data Description

Medical experts regard a skin lesion that is nearly circular or elliptical in overall
shape as more likely to be normal than not [4]. In view of this we have taken
the ellipse to be a shape model for a normal skin lesion and to represent the
most regular instance of the lesion shape. Figure (1) shows examples of real
lesion outlines, (a) regular and (b) irregular. Thus if we assume prior knowledge
of a regular (normal) skin lesion, points along its border can be predicted with
high certainty whereas prediction for irregular skin lesions will have relatively
reduced certainty. That is irregularity increases with unpredictability, hence we
frame irregularity as unpredictability.

The lesion border data is represented as a sequence of (1D) radial coordinates
in a polar coordinate system centred at the centre of gravity of the lesion. The
coordinates constitute a sequence O = O1,O2, ...,OM where Oi, i=1, ..., M is an
ith boundary point.

In a polar coordinate system the radial coordinates of an ellipse can be rep-
resented by a sine function. In view of this the simulated data is composed of
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Fig. 1. Lesion Outline samples:(a)
regular, (b) irregular

Fig. 2. Simulated data

sine signals each of length 200 with random noise added at different points. The
data was grouped into 5 categories with each category having 50 sequences. The
first category is a set of 50 sine signals. These 50 signals were used to generate
the remaining four categories by adding Gaussian random noise (with standard
deviation ranging from 1 to 10) at all points, at 100 randomly selected points,
at 20 randomly selected points, and at 20 randomly selected points but clus-
tered together (See Figure (2) for some examples of these signals). The sine
signals without noise represent “normal” skin lesions while those with noise rep-
resent irregular skin lesions with the amount of noise suggestive of the degree
of irregularity. The conditional entropy for all the simulated and the real data
was computed using the proposed method. Our hypothesis is that conditional
entropy increases with the degree of irregularity.

5 Experiments

Simulated data consisted of 250 sine signals with different amount of noise. The
real data represented 98 skin lesion of which 16 were histologically confirmed
cases of melanoma [9]. The radial coordinates corresponding to lesion boundary
were extracted using a boundary modelling technique [1]. The data was nor-
malised by subtracting the mean and dividing by standard deviation to make it
scale invariant. Using equations(8, 9 and 5), EBCE was computed for both the
simulated and the real data. The value of r was set to r=0.01*SD (SD is the
standard deviation of each sequence) and m = 2 to n was used. It was observed
that in both cases Hr

e (m0 → mf) increased exponentially with increase in m (see
Figures 3a and 3b). To determine the degree of irregularity Hr

e (m0 → mf ) for
each sequence was fitted using an exponential fit and the exponential parameter
Hμ

e (i) was estimated. Additionally the standard deviation Hσ
e (i) and the slope

Hslope
e (i) (i is the lesion number) of each Hr

e (m0 → mf ) with respect to r was
computed.

To assess the discriminatory power of EBCE in characterisation of malig-
nancy of pigmented skin lesion the ROC analysis was performed for all the three
proposed estimators of irregularity: Hμ

e , Hσ
e and Hslope

e .
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5.1 Experimental Survey

One interesting question, not answered through the above experiments, was
whether any of the computed measures for real data corresponds to the hu-
man perception of the border irregularity in the skin lesions. To this end an
experimental survey was carried out. 20 skin lesion outlines randomly selected
from the full data set were given to 23 subjects, none of whom had medical
training. The subjects were asked to rank the outlines based on their degree of
irregularity. The level of agreement among the subjects was evaluated using rank
correlation rs based on Kendall coefficient of concordance W [10]. The value of
rs ranges from 0 (no agreement) to 1 (perfect agreement).

To test a “default” hypothesis, that irregularity simply depends on the mag-
nitude of variations along the boundary, the standard deviation was computed
for all the lesion outlines before normalisation.

Fig. 3. Conditional Entropy Fig. 4. ROC Curve

The Spearman coefficient of correlation was determined for each of the pro-
posed irregularity estimators (Hμ

e , Hσ
e , Hslope

e ), the visual assessment (using the
average ranking from the 23 subjects), and the standard deviation for the se-
lected 20 lesions. Finally, the relationship between all estimators was examined
using multiple linear regression analysis.

6 Results and Discussion

Figures (3a and 3b) show that EBCE increases exponentially as m increases in
both the simulated and real data. This is a good result because intuitively increase
in m increases the elements of each subsequence hence the probability of each ele-
ment decreases which leads to reduction in the degree of predictability. Addition-
ally Hμ

e and Hσ
e increase with noise level in the simulated data while Hslope

e de-
creases with noise level. These suggest that all the three statistics are potentially
useful estimators of noise levels of a signal. Since the noise level is an indicator of
the level of unpredictability, it can hence be proposed that all the three statistics
are potentially useful measures of degree of unpredictability of signals.
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The ROC analysis of Hμ
e as a melanoma classifier showed 68% sensitivity and

84% specificity, Hσ
e gave 70% sensitivity and 82% specificity while Hslope

e gave
70% sensitivity and 84% specificity. Figure 4 shows the ROC plots for all the three
statistics. These results show that EBCE can be used to measure the degree of un-
predictability of a signal and that boundary sequences corresponding to abnormal
lesions have high level of unpredictability (i.e. more irregular) when assessed using
Hslope

e . Hence we propose the use of Hslope
e as a measure of irregularity.

In a way of illustration, the value of Hslope
e for the regular lesion in figure 1(a)

is 0.03 and for the irregular lesion in figure 1(b) it is 0.01 on the scale where 0.06
corresponds to the most regular shape and 0.001 to the most irregular shape.

In the experiments examining the perception of irregularity, the coefficient of
concordance W was 0.886, indicating good agreement between all 23 subjects.
The assessment of irregularity by the subjects correlated moderately well with
both the EBCE (Hslope

e ) measure (Spearman correlation coefficient of 0.55) and
standard deviation (0.466). Correlation was very good between the EBCE ir-
regularity measure and standard deviation of the real data (0.87). The multiple
linear regression analysis for all three tests showed good correspondence (0.51).
These results suggest that humans have similar way of assessing shape irregular-
ity, and that the human notion of irregularity is similar to the assessment by the
indicators investigated here. The strong correlation between the EBCE measure
and the standard deviation suggest that the conditional entropy based measure
is good at measuring the variation along the lesion border.

We have compared the result of the proposed measure with one of the best
published melanoma predictors based on irregularity, the Indentation Irregular-
ity Index (III) [9]. The comparison used the area under the ROC curve, which is
a global measure commonly used to assess the overall predictive power of clas-
sification schemes. The III computed for a superset of the set of lesions used in
our experiments has the area under ROC curve of 0.73 [9], whereas the EBCE
gave area of 0.76. This indicates that the conditional entropy based measure has
a greater discriminatory power than the III index.

7 Conclusion

In this paper we have proposed a new measure of border irregularity based
on conditional entropy. This measure has been devised to quantify lack of pre-
dictability. We have demonstrated that abnormality of skin lesion can be de-
scribed using irregularity along the skin lesion border. Given some prior knowl-
edge of a normal skin lesion, points along its border can be predicted with high
degree of certainty whereas prediction for abnormal skin lesion will have re-
duced certainty leading to high value of entropy. That is entropy increases with
the degree of irregularity.

The ROC analysis of the conditional entropy based measure as a malignancy
predictor gave 70% sensitivity and 84% specificity. This result shows that the
conditional entropy based measure captures some distinguishing features in the
boundary of malignant lesions and thus can contribute to lesion classification.
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Abstract. This paper proposes an automatic hepatic tumor segmentation 
method of a computed tomography (CT) image using composite hypotheses. 
The liver structure is first segmented using histogram transformation, multi-
modal threshold, maximum a posteriori decision, and binary morphological 
filtering. Hepatic vessels are removed from the liver because hepatic vessels are 
not related to tumor segmentation. In order to find an optimal threshold, 
composite hypotheses and minimum total probability error are used. Then a 
hepatic tumor is segmented by using the optimal threshold value. In order to 
test the proposed method, 272 slices from 10 patients were selected. 
Experimental results show that the proposed method is very useful for diagnosis 
of the normal and abnormal liver. 

1   Introduction 

Liver cancer, which is the fifth most common cancer, is more serious in areas of 
western and central Africa and eastern and southeastern Asia [1]. The average 
incidence of liver cancer in these areas is 20 per 100,000, and liver cancer is the third 
highest death cause from cancer [1]. In Korea, the incidence of liver cancer is quite 
high at 19% for males and 7% for females [2]. New cases of liver cancer in the Seoul 
area have an approximate rate per year of 34.1 for males and 11.5 for females per 
100,000 people [2]. In order to improve the curability of liver cancer, early detection 
is critical. Liver cancer, like other cancers, manifests itself with abnormal cells, 
conglomerated growth, and tumor formation. If the hepatic tumor is detected early, 
treatment and curing of a patient may be easy, and human life can be prolonged. 

Liver segmentation using CT images has been vigorously performed because CT is 
a very conventional and non-invasive technique. Bae et al. [3] used priori information 
about liver morphology and image processing techniques such as gray-level 
thresholding, Gaussian smoothing, mathematical morphology techniques, and B-
splines. Gao et al. [4] developed automatic liver segmentation using a global 
histogram, morphologic operations, and the parametrically deformable contour model. 
Park et al. [5] built a probabilistic atlas of the brain and extended abdominal 
segmentation including the liver, kidneys, and spinal cord. Tsai [6] proposed an 
alternative segmentation method using an artificial neural network to classify each 
pixel into three categories. Also, Husain et al. [7] used neural networks for feature-
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based recognition of liver region. Seo et al. [8] presents efficient liver segmentation 
based on the spine.  

However, most previous research has been concentrated on only liver segmentation 
and volume construction. In this paper, a simple automatic hepatic tumor 
segmentation method using composite hypotheses (CH) is proposed. An automatic 
hepatic tumor segmentation method is presented in the following section. 
Experiments and analysis of results are described in the next section. Finally, the 
conclusion will be drawn in the last section. 

2   Hepatic Tumor Segmentation 

In this section, an automatic hepatic tumor segmentation method is presented. A liver 
structure is first segmented and then vessels in the liver are removed. Optimal 
threshold (OT) is found by composite hypotheses (CH) and minimum total probability 
error (MTPE). A region of interest (ROI) of a hepatic tumor is segmented and 
estimated. 

2.1   Liver Segmentation 

The first important work to segment a hepatic tumor is to segment a liver boundary. 
The ROI of the liver is extracted using histogram transformation such as convolution 
and scaling [9, 8]. Multi-modal threshold based on piecewise linear interpolation is 
performed to find the range of the ROI [10, 8]. Then the ROI is selected by maximum 
a posteriori decision [11, 8]. In order to eliminate other abdominal organs such as the 
heart and right kidney, binary morphological (BM) filtering is performed by dilation, 
erosion, and filling [8, 12, 13, 14]. Fig. 1(a) shows an abnormal CT image with a 
tumor. Fig. 1(b) shows the ROI of the liver. Also, Fig. 1(c) shows the segmented liver 
image using BM filtering. 

 

     
     
                        (a)                                              (b)                                             (c)   
       

Fig. 1. Liver segmentation: (a) CT image, (b) ROI of the liver, (c) liver image segmented by 
BM filtering 
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2.2   Vessel Elimination 

The liver image with a tumor obtained by BM filtering consists of the pure liver, 
tumor, and vessels. As vessels of the liver have no influence on tumor segmentation, 
vessels are eliminated from the liver. Histogram transformation for better histogram 
threshold is first performed to reduce histogram noises. Then the left and right 
valleys, called object ranges, are calculated using a piecewise linear interpolation 
method [10]. The vessel range is located in the rightmost side of the histogram 
because pixel values are higher than other objects. Therefore, the vessel range is 
decided easily. Fig. 2(a) shows the liver image after vessel elimination. 

2.3   Composite Hypotheses 

After eliminating vessels, the histogram has only two peaks, and the liver image 
consists of the pure liver and tumor region. Therefore, the gray-level value 
thresholding two regions is easily calculated by using bi-modal threshold method. 
However, it is not known this threshold value is optimal. In order to find the OT 
value, optimalT , composite hypotheses with a random parameter are used [11]. The 
composite hypotheses are given as    

 

),|(~: PLaxpxPL  where )(apA  is known.                           (1) 

 

),|(~: TumorbxpxTumor  where )(bpB  is known                     (2) 

 
where PL  and Tumor  are pure liver and tumor parts known to be Gaussian, each 
with known variances, PLσ  and Tumorσ , and unknown random means of A and B. 

Thus given probability density functions such as ),|( PLaxp , 
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where aμ~  and bμ~  are small different means from means of A and B and 2~
aσ  and 

2~
bσ  are small different variances from variances of A and B. 
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Using two formulas given as 
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joint probability densities are calculated by 
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)|( PLxp  is simplified by 
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where a mean is aμ~  and a variance is 22 ~
aPL σσ + . Also, )|( Tumorxp  is 

simplified by 
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where a mean is bμ~  and a variance is 22 ~
bTumor σσ + . The conditional mixture 

probability density (CMPD) is formulated by 
 

)|()|()( TumorxpPPLxpPxp TPL += .                          (13) 

 

The optimalT  is found by calculating the minimum total probability error 

(MTPE), )(TE , defined as [11] 
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∞
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where T is the threshold value. Then the optimalT  is selected by the threshold value 

calculating the minimum TPE. Fig. 2(b) shows the segmented tumor using optimalT . 

 

                           
 

(a)                                                          (b) 
                     

Fig. 2. Tumor segmentation: (a) liver image after hepatic vessel elimination, (b) segmented 
tumor using the optimal threshold value 

3   Experiments and Analysis 

CT images to be used in this research were provided by Chonnam National University 
Hospital in Kwangju, Korea. The CT scans were obtained by using a LightSpeed 
Qx/i, which was produced by GE Medical Systems. Scanning was performed with 
intravenous contrast enhancement. Also, the scanning parameters used a tube current 
of 230 mAs and 120 kVp, a 30 cm field of view, 5 mm collimation and a table speed 
of 15 mm/sec (pitch factor, 1:3).  

Ten patients were selected for testing the new proposed method to segregate a 
hepatic tumor. Five people had normal livers and the other five people had abnormal 
livers. 272 total slices from ten patients were used. One radiologist took part in this 
research in order to evaluate liver status. Fig. 3 shows examples of segmented tumors. 
Table 1 shows the data of evaluated slices followed by slice numbers, true negative 
(TN), false positive (FP), false negative (FN), and true positive (TP) [15]. 

As the evaluation measure, sensitivity, specificity, and accuracy were calculated. 
As sensitivity represents the fraction of patients with disease who test positive, 
sensitivity is defined as 

FNTP

TP
ySensitivit

+
= .                                          (15) 
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                                   (a)                                                         (b) 
 

          
                               (c)                                                          (d) 
 

          
                               (e)                                                          (f) 
 

Fig. 3. Examples of tumor segmentation 
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Table 1. Data of evaluated slices 

PATIENTS SLICES 

TAKEN 

FREQUENCY 

OF TN 

FREQUENCY 

OF FP  

FREQUENCY 

OF FN 

FREQUENCY 

OF TP  

PAT. 01 33 30 3 0 0 

PAT. 02 31 30 1 0 0 

PAT. 03 24 21 3 0 0 

PAT. 04 26 25 1 0 0 

PAT. 05 28 28 0 0 0 

PAT. 06 34 30 2 1 1 

PAT. 07 23 21 1 0 1 

PAT. 08 23 19 3 0 1 

PAT. 09 26 16 0 3 7 

PAT. 10 24 17 4 2 1 

TOTAL NUM. 272 237 18 6 11 

 

As specificity represents the fraction of patients without disease who test negative, 
specificity is defined as 

FPTN

TN
ySpecificit

+
= .                                           (16) 

 
Also, accuracy is defined as 

FNFPTNTP

TNTP
Accuracy

+++
+= .                               (17) 

 
In this research, we had 0.6471 of sensitivity, 0.9294 of specificity, and 0.9118 of 

accuracy. These results show the proposed method is very useful for diagnosis of the 
normal liver. Values of FP and FN are high for tumors located in the left portal branch 
and tumors with a diameter less than 2 cm. 

4   Conclusions 

In this paper, an automatic hepatic tumor segmentation method using composite 
hypotheses was proposed. The liver structure was first segmented in order to remove 
other abdominal organs. Hepatic vessels were removed from the liver because hepatic 
vessels were not related to tumor segmentation. Then optimal threshold was 
calculated by composite hypotheses and minimum total probability error. Finally, a 
hepatic tumor was segmented using the optimal threshold value. In order to evaluate 
the proposed method, 272 slices from 10 patients were selected. From the evaluation 
results, we had 0.6471 of sensitivity, 0.9294 of specificity, and 0.9118 of accuracy.  
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These results show that the proposed method is very useful for diagnosis of normal 
and abnormal livers. In the future, algorithms for reducing false positives of the left 
portal branch will be developed. 
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Abstract. Segmentation is a crucial task in medical image processing.
Snakes or Active Contour Models (ACM) are valuable tools to segment
images. However, they need a good initialization, which is usually pro-
vided manually by an expert. In order to achieve a reliable automation
of prostate segmentation in ultrasound images, morphological techniques
have been used in this work to automatically generate the initial snake.
The accuracy of the proposed approach is verified by testing several im-
ages. The automated segmentation of the prostate can be done in the
majority of the cases without user interaction.

Keywords: Seed Points; Initial Snake; Ultrasound; Prostate; Mathe-
matical Morphology; Active Contour Model.

1 Introduction

Prostate cancer is a common disease for men; early detection can be helpful for
effective treatment. Ultrasound imaging is a common imaging technique which
is used for prostate cancer detection. On the other hand, segmentation is one of
the main tasks for medical image processing. Snakes or Active Contour Models
(ACM) are valuable tools to segment images [1,2] because they can guaran-
tee smoothness and continuity of boundaries with small segmentation error [3].
However, snakes suffer from some weaknesses. For instance, they depend on the
assistance of the user to initialize the snake in the vicinity of the target tissue
[4, 8]. Although this assistance is sometime acceptable but it is generally an
obstacle preventing a reliable and full automation of the segmentation process.

In this paper, we propose a new technique that will enable us to overcome the
aforementioned drawback. By applying mathematical morphology, initial snake
is generated automatically leading to a fully automated prostate segmentation.
Morphological filtering and conditional erosion are used to find a portion inside
the prostate. The method can be generalized to any algorithm, which needs seed
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point(s) to start. By testing with 111 images, the success rate of correctly finding
specific zones of prostate is 84.68%. By this achievement, the fully automated
segmentation of the prostate can be achieved in the most of cases without any
user interaction.

The paper is organized as follows: In section 2, a brief overview of binary
mathematical morphology is given. In section 3, the proposed approach is in-
troduced. Section 4 and 5 deliver the experimental results and the discussion.
Finally, in section 6 the work is concluded.

2 Binary Mathematical Morphology(MM)

Mathematical morphology was developed based on works by Serra and Math-
eron [9,10,11]. Morphology is a shape-based approach to image processing. The
value of each pixel in the output image is based on a comparison of the corre-
sponding pixels in the input image with the structuring element(SE). The MM
techniques provide remarkable tools for image filtering [12], object extraction,
and edge detection [13]. Dilation, erosion, opening, and closing are fundamental
operators of mathematical morphology. Dilation expands the boundaries of the
object; erosion, as a dual operation to dilation, shrinks the boundaries of the ob-
ject. Objects and connections between them can be eliminated by opening with
suitable structuring elements. Closing removes small holes on the foreground,
which are smaller than the chosen SE. Combination of closing and opening is
also known as morphological filtering [14].

3 Proposed Approach

The proposed approach to automated snake initialization has several steps ac-
cording to the diagram in Fig. 1. The individual steps of the proposed approach
are discussed in the following subsections.

3.1 Thresholding

Since the binary morphology is being used in this approach, the gray level im-
ages should be converted to a binary image. Otsu method has been applied to
threshold the image [15]. This method calculates a threshold to minimize the
intra-class variance of the black and white pixels in the histogram.

A test image (Fig.2.a) and its thresholded version (Fig.2.b) are shown in
Fig.2. In order to have the prostate as foreground and other tissues as background
in the image, the thresholded image is inverted (Fig.2.c).

3.2 Morphological Filtering

In this stage white pixels in the background and black pixels in the foreground
which are smaller than selected structuring element are removed in two steps,
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Fig. 1. The individual steps of the proposed approach

(a) (b) (c)

Fig. 2. Thresholding of ultrasound image by Otsu method: (a) original image, (b)
thresholded by Otsu method, (c) after inversion

opening and closing. The structuring element (SE) used for filtering is defined
as a disk shape with diameter of 2 pixels, as follows:

SE =

[
0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

]
. (1)
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First, the opening step removes small islands (noisy points) and makes con-
tours smoother. Fig.3.a shows the result of opening on the inverted binary image.

The closing step smoothes contours and removes small holes. Fig.3.b shows
result of closing on opened image which is the final result of morphological
filtering.

(a) (b)

Fig. 3. Result of morphological filtering: (a) opening and (b) closing

3.3 Conditional Erosion

Erosion contracts the foreground boundary and eliminates holes on the back-
ground. Because it assigns the smallest neighborhood pixel value defined by SE
to each pixel. The conditional erosion is defined by:

Ek = (A*Bk), (2)

where Ek is the kth resulted image of erosion and Bk is the kth disk shaped
structuring element with diameter of 5 + 2(k − 1) pixels.

The condition to stop this erosion process is the remaining one object inside
of the solid background. The objects are labeled and counted in each step to
verify this condition.

The erosion is repeated with a two pixel larger SE in each iteration until one
object remains inside of the solid background. This object, with high probability,
should be a part of the prostate because the prostate obviously is the largest
object in this kind of medical images. Some results for the conditional erosion
are illustrated in Fig.4.

3.4 Initial Snake/Seed Points Extraction

After finding a part inside the prostate, the boundary of the detected region can
be determined as follows:

BoundInt(A) = A− (A*B). (3)

The object boundaries in the image are detected by the subtraction of the
eroded image from the original image. A sample result is shown in Fig.5. This
boundary, which is completely inside the prostate, can be used by active contour
models as the initial snake for prostate segmentation.
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(a) (b) (c)

(d) (e)

Fig. 4. Some selected results of conditional erosion: (a),(b),(c),(d) and (e) are eroded
images after 1, 3, 5, 7, and 9 iterations, respectively

(a) (b)

Fig. 5. (a) Initial snake resulted by applying internal boundary detection approach.
(b) the resulted snake is completely inside of the prostate, and can be used as an initial
snake for final prostate segmentation.

4 Experimental Results

The approach has been tested by 111 low quality prostate ultrasound images.
In 94 cases, the initial snake has been found inside the prostate, In 17 cases,
however, it failed to extract an inner portion of the prostate. Hence, the total
success rate of the approach is 84.68%. The results of applying the proposed
approach to two images to find the initial snake inside of the prostate are shown
in Fig.6.
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Fig. 6. The final results of applying the proposed approach to find the initial snake;
as seen, the extracted initials are totally inside the prostates and ready to be used by
active contour models

Failures can be categorized in two groups: 1) finding a wrong region (8 cases;
7.21%), which means the snake is not totally inside the prostate and 2) finding no
region (9 cases; 8.11%); which both kind of errors are caused because of very low
quality of captured images. Preprocessing prior to thresholding might decrease
the failure rate.

5 Discussion

The main part of our approach after thresholding and morphological filtering,
removing noise from the image foreground and background, is based on the
conditional erosion. In fact we assumed that the largest object in the image is
the prostate. This assumption is generally reasonable and can be supported by
empirical knowledge. By applying conditional erosion we can assume that the
last remaining object is (a part of) the prostate.

In the majority of the cases (84.68%) the result was what we expected but
the algorithm failed also for some cases (15.32%).

Two factors caused those failed results. The first reason for failure was the ex-
istence of a shadowy region in the image, which was larger/darker/smoother than
the prostate, an unusual case in this kind of images. This caused the prostate to
erode earlier than the shadowy region. In fact, the shadowy region is mistaken
with the prostate. An example for this case is given in Fig.7. The region en-
closed by thicker line is the mentioned shadowy region. The wrong result found
is marked by thinner line which is inside of that. About 47.06% of the failed
cases were caused by this problem.

It seems possible to overcome this kind of problem by applying different (e.g.
larger) structuring element for region outside of prostate. In fact applying adap-
tive structuring elements could solve this problem. Having images with higher
quality could be much helpful as well.

The second reason for the failure was a complete erosion of all objects at the
same time such that no specific region could be identified as the prostate. This
happens when in the last step of the erosion all remaining objects are smaller
than SE. About 52.94% of failing cases were caused by this phenomenon. This
problem can probably be overcome by applying adaptive SE as well. For instance,
one could make the SE smaller when only a small number of objects remain.
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Fig. 7. An example of finding wrong result due to existence of larger adjacent shadowy
region

6 Conclusion

The work in this paper aimed at automatic initialization of a snake or seed
points inside the prostate in ultrasound images. The success rate of the proposed
technique is 84.68% which can be improved by increasing the image quality. In
fact, this work represents a possibility achieving a fully automated segmentation
by snakes or active contour models. The proposed approach in this paper can
eliminate user interaction to define initial snake for the segmentation of the
prostate in ultrasound images.

Future objectives are directed towards adaptive thresholding and adaptive
erosion. The role of thresholding in this project is essential. Conditional erosion is
the main part of the method, and finding wrong result or no result has occurred
in this stage. According to our experiments, it seems that we should apply the
different erosion operations for the background and foreground. This means dif-
ferent structuring elements should be incorporated to erode the prostate region
and non-prostate region differently.

Acknowledgements. Special thanks toRobartsResearch Institute, London,On-
tario for preparing and providing database of prostate ultrasound images. This
project has been supported partially by a CIHR strategic training fellowship.
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Abstract. A reliable method to segment instruments in endoscope images is 
required as part of an enhanced reality system for minimally invasive surgery of 
the spine. Numerous characteristics of these images make typical intensity or 
model constraints for segmentation impractical. Rather, line-structure concepts 
are used to exploit the high length-to-diameter ratio expected of surgical 
instruments. A Bayesian selection scheme is proposed, and is shown to reliably 
differentiate these target objects from other line-like background structures. 

1   Introduction 

The risks associated with exposing the interior of a patient’s body during spinal 
surgery can be mitigated by minimally invasive techniques, under which a surgeon 
inserts instruments through a number of small incisions and views the surgical site via 
video from an endoscope, a monocular camera with integrated light source (fig. 1). 
Compared to conventional surgeries that fully expose the surgical site, patient risk and 
costly in-hospital recovery periods are reduced.   

Unfortunately, adoption of these procedures has been slowed by the considerable 
difficulties faced by surgeons, who lose depth perception since the surgical site is 
viewed indirectly via the monocular endoscope. Moreover, contextual depth cues are 
few, as the proximity of the endoscope to the objects being imaged creates a narrow 
field-of-view (FOV), on order of 5-cm or less. Ultimately, the long training needed to 
gain comfort and expertise working with such a difficult view of the surgical site has 
limited the spread of this approach. 

An enhanced reality surgical system to integrate 3D preoperative patient models 
with the endoscope video stream would help solve the problems of depth and context 
loss. Central to the success of this system is automatic recalibration of the extrinsic 
and intrinsic endoscope parameters, which may vary throughout the surgery due to 
camera motion and manual focusing.  The extrinsic parameters of the endoscope are 
updated in real time by using an optical tracking system. However, updating the 
intrinsic parameters requires tracking features that can be easily and automatically 
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detected from the image sequence. It is difficult to determine whether changes in 
features such as intensity arise due to camera or instrument movements, thus we only 
consider corners and others instrument features that represent precise 3D points on 
instruments. Relative camera and instrument movements reported by the optical 
tracking system can then be used to give real-world context to the image-based 
movements of the identified features so that the intrinsic camera parameters can be 
updated. Actually identifying these instrument features is complicated by several 
difficulties, the first of which are the characteristics of endoscope images themselves 
(see fig. 2): 

 

  

Fig. 1. Left—A typical set-up for a minimally invasive surgery (source: www.spineuniverse. 
com); Right—An endoscope tip, showing the integrated lens and light source (source: 
www.intuitivesurgical.com) 

 

Fig. 2. Two images of the same instrument.  Numbered areas correspond to the list of problems 
above.  Note that due to endoscope movement, only the prongs of the instrument are visible in 
the second image. 

i. Rapid intensity fall-off with radial distance from the image center; 
ii. Strong specular reflections from metallic instruments and moist tissues, which 

change unpredictably under endoscope and instrument movements; 
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iii. Large changes in the appearance of objects due to motion and focusing of the 
endoscope; 

iv. Blood, exposed tissue, and steam at the surgical site that blur and occlude 
boundaries; and 

v. Cut or exposed tissues, which cause strong variations in background textures 
and colours. 

A second complication arises from smooth instrument surfaces, which offer only a 
sparse set of features that are difficult to isolate from background features – a 
stringent detection criterion to suppress background may also too strongly prune the 
instrument features.  Zhang and Payandeh solved this problem by affixing artificial 
markers to the instruments [1]; however, such features are not immune to noise, 
occlusion, poor lighting, or wash-out from specular reflections.  More importantly, 
artificial markers complicate the sterilization of instruments, and we would like to 
move towards a tracking method that operates with instruments “as is.”  Accordingly, 
the preferred approach is to use as large a set of natural instrument features as 
possible.  To do so, background features must be distinguished from instrument 
features, and this demands a viable scheme to segment instruments from the image. 

Segmentation algorithms are typically constrained by metrics that are intensity-
based [2, 3], region-based [4, 5], or object-model based [6]. Unfortunately, many of 
the image characteristics outlined above make such constraints unreliable or 
impractical for our context. Instead, motivated by recent work by Chen and Amini 
[7], we have approached segmentation using the concept of line-structures, which 
exhibit a significant length-to-width ratio, a property common to instruments for 
minimally invasive surgery. 

In Section 2 we present a novel multi-scale, line-structure-based scheme to 
effectively distinguish between line-responses arising from instruments and from 
background objects.  Results are presented in section 3.  The discussion of section 4 
summarizes the advantages of the segmentation scheme. 

2   Multi-scale Line-Structure Segmentation 

A line-structure has an extended length compared to its width (a high 'length-to-width 
ratio'), and the intensity profile of the image of such an object will show only slight 
variation along, relative to across, its longitudinal direction.  Numerous line-detector 
operators have been developed to exploit this property [7, 8, 9].  Often, the scales and 
orientations of line-structures in an image are unknown, requiring the detection 
operator to be applied at several scales and orientations to identify the best line object 
at a point x = (x1,x2). 

2.1   Line-Structure Detection with the Hessian Matrix 

A popular detector, proposed by Lorenz et al. [9], is based on a Hessian matrix 
analysis. The characteristics of line-object intensity profiles imply that the second 
derivative across a line-structure should be large compared to along it. Accordingly, 
an eigen-analysis of the Hessian matrix Hx can be used to identify line-structures by 
looking for points with | 1| >> | 2| and having a high line response given by: 
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( ) ( )xx ,2, 1 σγσσ λ⋅=DR  (1) 

where the scale, , is the standard deviation of a smoothing Gaussian kernel,  > 0, 
and  compensates for the decrease in the response due to increased smoothing at 
higher scales.  Detection proceeds in three steps: First, an image is blurred with a 
Gaussian kernel at several scales.  Then, each image point x is assigned the extremum 
value of (1) across all scales, as well as the scale at which the extremum occurred.  
Finally non-maximum suppression of the set of responses (1) generates skeletons 
centered along the image's line-objects (note that a second function must be used with 
(1) to distinguish lines from step edges). 

Problems with Current Detection Methods 

Detection schemes like this have been shown to work very well for problems like 
vessel-tree extraction from 2D images and 3D volumes [7, 9], where the objects of 
interest have good contrast against relatively homogeneous backgrounds.  
Unfortunately, segmentation is complicated by the complex backgrounds of 
endoscope images.  In certain cases, background objects such as veins are themselves 
line-objects.  Current detection methods implicitly assume that any local extrema 
arising from a function such as (1) correspond to the objects to be segmented; the 
possibility of non-target line-structures is not considered, and line-responses arising 
from these objects cannot be differentiated.   This problem is illustrated in fig. 3(a), 
where the skeletons extracted by the previously described detection scheme based on 
(1) have been superimposed on the original endoscope image.  These skeletons all 
encode scale information and thus represent the final segmentation of the image.  
Clearly, the presence of blood vessels is problematic – our objective is to segment 
only instruments. 

           

                          (a)      (b) 

Fig. 3. Current line-object detection methods applied to endoscope images.  In (a), skeletons 
corresponding to the instrument and background objects (veins) cannot be differentiated. In (b), 
responses to background texture have led to isolated patches of segmented background, and 
have also resulted in inaccurate representations of instrument shape and size, as seen in the 
over-segmentation of the of the lower-left instrument prong (enlarged in image inset). 
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While the results in fig. 3(a) are clearly sub-optimal, the background skeletons at 
least correspond to real line-objects. In 3(b), the image background does not contain 
any line-objects, but the highly variable texture still gives rise to extrema in the 
response given by (1).  This introduces two difficulties: First, for the same reasons 
just mentioned, these extrema cannot be distinguished by current methods, leading to 
isolated regions of incorrectly segmented background. 

Second, skeletons corresponding to actual instruments can be quickly led astray of 
true object shapes, especially when instrument contrast is weak.  Consider the lower 
left prong of the instrument, which has been enlarged in the image inset.  At the 
extreme lower tip of the prong the instrument exhibits good contrast and the 
segmentation corresponds well with the actual shape.  However, a problem quickly 
develops as the segmentation follows the prong upwards: the contrast towards the 
right instrument edge falls, while a significant edge in the background tissue 
develops.  The response (1) to the intensity profile between this tissue and the left 
instrument edge is stronger than to the profile between the left and right instrument 
edges, and the non-maximum suppression scheme keeps only the response at the 
higher scale.  Thus the skeleton is led astray of the true instrument shape and encodes 
too-high scale information, resulting in over-segmentation.   

2.2   Modified Scale-Specific Line-Structure Detection 

A first step towards successfully applying line-object concepts to endoscope images 
involves making the initial detection process more robust to the problems of weak 
instrument contrast in the presence of background textures.  To increase robustness, 
we modify the line-structure detection process by applying non-maximum 
suppression to the responses (1) obtained at a specific scale, rather than to the set of 
across-scale extrema of (1).  Numerous scales are still processed, but we now have a 
set of skeletons at each scale. 

Limiting the extraction to individual scales reflects the observation that most line 
objects exhibit a high degree of parallelism between their occluding boundaries, so 
that the object scale in an image should vary little along its length. By restricting the 
extraction in this way, textures in the background at higher scales are less likely to 
lead the skeleton astray of the true object shape. 

Two problems remain: combining the skeletons from different scales, and 
identifying which skeletons correspond to instruments.  While previous detection 
schemes used extracted skeletons as the final segmentation result, the skeletons in our 
scheme are simply a comprehensive set of candidate instruments.  We now apply 
highly general assumptions to develop a Bayesian framework to distinguish which 
candidate skeletons to keep. 

2.3   Bayesian Identification of Instruments 

After the extraction step, each skeleton will have a scale and length.  This information 
can be used to identify instrument skeletons by considering that instrumentation used in 
minimally invasive procedures must be narrow enough (small scale) to fit through the 
small incisions on a patient’s body while long enough to reach the surgical site.  We 
embed these characteristics into a Bayesian expression for the probability that a skeleton 
corresponds to an instrument, given the skeleton’s observed scale  and length l: 
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The left term in the numerator of the right-hand side of (2) represents the 
likelihood of a skeleton having the observed length and scale, assuming the skeleton 
corresponds to an instrument.  The right term in the numerator reflects any a piori 
information regarding instruments in endoscope images.  The denominator can be 
ignored, leaving only the terms in the numerator to be defined more rigorously. 

Likelihood Term 
The long-but-thin characteristic of instruments implies that corresponding skeletons 
should have a high length-to-width ratio, and that the first term in the numerator of 
the right-hand side of (2) should assign higher probabilities to skeletons accordingly. 
However, skeletons with high ratios are more likely at smaller scales – as an 
instrument gets near the camera, its image scale will necessarily increase while its 
visible length will simultaneously decrease.  Therefore, any scheme that assigns 
probabilities to skeletons by looking for high ratios should allow for lower ratios at 
higher scales.  The following non-linear weighting is applied to each skeleton, which 
assigns a weight on [0 1) and is plotted in fig. 4: 

( ) ( ){ } ( )InstlPlInstlP 0,0ntaa
1

2

1
, ==−−+= σ

σ
β

σ
α

π
σ .     (3) 

 

Fig. 4. The likelihood given by (3) plotted against length and scale. For the 320x240 images 
presented later, the parameters in (4) were: lmin=60, max=40, lmax=240 and min=2. 

The shape of this functional is controlled as follows: 

− , a function of scale, positions the half-maximum point of (3) at the minimum 
length a skeleton must achieve before it can be considered a potential instrument.  
 varies inversely with scale: 
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  controls the sharpness of the transition of  from high to low scales, and is 
specified according to: i) h, the (high) scale at which it is reasonable to assume an 
instrument may give rise to a skeleton only lmin pixels long; and, ii) l, the smallest 
scale at which skeletons corresponding to instruments are expected, which may be 
up to lmax long.  To be as general as possible, these parameters are set once to cover 
the extreme cases of instrument length and scale that might arise in any endoscope 
image due to camera motion and focusing.   For the results presented later with 
320x240 images, lmin=60, h=40, lmax=240 and l=2 were used.  These values set 
the half-maximum of (3) at a line ratio of only ~1.5 at higher scales, and at 100 or 
more for smaller scales.  

−  determines the slope of the transition through the half-maximum.  For most 
endoscope images, textures and tissues that generate longer skeletons are more 
common at lower scales.  By extension, skeletons that correspond to background 
textures and exceed the lmin threshold in (4) are unlikely at higher scales, so we can 
allow a sharper transition to the high probability asymptote of (3) as the object 
scale increases: 

( )
σβ

σ
σα = .   (5) 

− The last term on the right hand side of (3) simply enforces P( ,l | Inst) = 0 for a 
zero-length chain. 

Prior Term 
The likelihood term just described cannot be guaranteed to suppress all non-
instrument skeletons: at lower scales especially, long background objects may still 
exist with a length over the threshold assigned in (4).  To increase the probability of 
isolating only instruments we observe that, regardless of the scale at which 
instruments appear in an image due to varying distances from the endoscope, they are 
typically physically larger than other highly line-like background objects such as 
veins.  This characteristic is embedded in the following a priori term: 

max

)(
σ
σ skelInstP = , (6) 

where skel is the scale of the extracted skeleton, and max is the maximum scale of all 
line objects detected. 
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2.4   Final Identification 

It is important to note that we do not use (2) as a maximum a posteriori detector of 
instruments, since we have no knowledge about the number of instruments that will 
be visible in an image.  Instead, we keep those skeletons in the image that have an a 
posteriori probability greater than 0.5. This value gives us reasonable confidence that 
the skeletons we retain correspond to instruments: while long line-objects such as 
veins may receive a high weighting from the likelihood term in (3) they are unlikely 
to be selected as an instrument unless they also have a large scale relative to other 
objects. 

3   Results and Discussion 

All segmentation results were obtained running non-optimized MATLAB code on a 
512-MB P4 IBM PC.  Parameters for detection using (2) are given in section 2, and 
were the same for all images. Segmentation results for the two endoscope images 
previously considered in fig. 3 are shown in fig. 5(a) and (b). 

Segmentation of fig. 5(a) is complicated not only by having to differentiate 
background line-objects from instruments as previously discussed, but also by the 
instrument's proximity to the endoscope, which makes it appear short and wide.  This 
problem is addressed by the likelihood term in (3), which is sensitive to the fact that 
shorter objects are common at higher scales.  Removing the background structures is 
handled by the a priori term in (6), which takes a greater value for the instrument due 
to its higher scale.   

Image 5(b) is of the same instrument shown in fig. 3(b).  This image illustrates 
again the utility of the likelihood term in (3), which helps suppress the numerous 
small, isolated background textures.  Further, the scale-specific skeleton extraction 
described in section 2.2 has helped ensure the final segmentation more closely reflects 
the true instrument shape. 

In 5(c), endoscope and instrument movements have created a dramatically different 
view of the instrument from 5(b).  Changes in appearance like this are common in our 
application, and would be difficult to handle with current model-based segmentation 
techniques; a comprehensive set of a priori models to guide segmentation is 
intractable, even using PCA approaches.  Our scheme robustly identifies the target 
regions without any prior knowledge of the specific instrument; only extended length 
relative to width is assumed. 

Finally, in fig. 6 we have compared our method to segmentation results obtained 
using the Gradient Vector Flow (GVF) approach for Snakes [10].  The images in (a) 
and (b) serve to underscore some of our introductory comments about difficulties 
applying existing segmentation metrics to endoscope images (see discussion of fig. 2).  
In (a), the GVF segmenting contour was initialized to the interior of the instrument 
region, and eventually stabilized on the boundaries of the strong reflection on the 
instrument surface.  In (b), the contour was initialized to a region outside the 
instrument, and the evolution was stopped after 150 iterations because the result was 
unacceptable – the contour had leaked over the real instrument boundary (a part of 
which has been superimposed in the image for clarity).  The problem here is the 
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strong dependence of the contour evolution on intensity/edge content in the image; 
the real instrument edge is weak, and evolution was only constrained by the apparent 
edge caused by the reflection.  The general shape measures we have embedded in our 
Bayesian line-object scheme are more stable indicators of instruments in endoscope 
images, and results of our method applied to the same image are shown in (c).  As in 
(a), the instrument is still under-segmented, but our method is more robust in general.  
Specifically, as 6(a) and (b) indicate, results with other methods can depend strongly 
on specifics of the implementation such as the initial location of the segmenting 
contour.  They may also leave unresolved the interpretation of the segmented regions.  
In contrast, all the results shown using our method were obtained with an identical 
implementation, and unlike in 6(a), the interpretation of the final segmentation in all 
cases is automatically provided. 

             

(a)    (b)    (c) 

Fig. 5. Results obtained with our proposed segmentation scheme using parameters given in 
section 2.  Results in (a) and (b) can be directly compared with those in fig. 3.  The result in (c), 
while sub-optimal, illustrates that our method is highly robust to changes in instrument shape – 
the instrument is the same as that in (b). 

             

(a)    (b)    (c) 

Fig. 6. Segmentation results obtained with a Snake-based contour approach are shown in (a) 
and (b), where the segmenting contour was initialized inside and outside the instrument, 
respectively. Segmentation of the same image obtained with our method is shown in (c). The 
segmentation in (b) has mistakenly included part of the instrument in the background. 
Moreover, unlike our method, neither of the results in (a) or (b) provide an interpretation of the 
final segmentation. 

At this time, a persistent problem with our method tends to be under-segmentation. 
This is particularly notable in images 5(c) and 6(c).  Work is currently under way to 
automatically identify and remove the strong reflections on the instrument surfaces 
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and should improve results:  with these reflections diminished, the intensity profiles 
will be closer to ideal, and the response in (1) will be more stable.   

Under-segmentation problems also result in part from a deliberate choice we have 
made.  If a we are to rely on natural instrument features for the overall tracking and 
calibration objective, it is better to under-segment an image than over-segment; we 
must have confidence that any features identified in the segmented regions correspond 
to an instrument rather than background.  Accordingly, we have set up the Bayesian 
detection scheme to be strict, and consequently, some skeletons corresponding to 
instruments are suppressed.  For instance, in fig. 5(c), the prior probability term in (6) 
has caused the loss of a skeleton corresponding to the bright reflection on the left 
instrument prong since the skeleton encodes a very small scale compared to the upper 
portion of the instrument. 

To conclude these discussions, it is important to reiterate why we do not 
circumvent the segmentation issue altogether and meet our calibration objective by 
simply tracking a set of artificial markers attached to the instruments.   Natural 
instrument features such as corners are consistent with an instrument's structure at a 
much higher-level compared to artificial markers, and tracking these natural, high-
level features is expected to create a more robust method overall.  Additionally, this 
approach does not impose any extra procedures on the surgical teams that will 
ultimately use the application.  An intensive validation using a large number of 
images is currently in progress to evaluate the precision of our approach compared to 
existing methods. 

4   Conclusions 

Endoscope images provide a particularly challenging set of obstacles for segmentation. 
Camera motion, inconsistent intensity, variable colour information, and uncertain 
contrast all hamper traditional segmentation approaches: while certain algorithms may 
perform well with one image, these constantly changing characteristics can render them 
ineffective on others.  These problems demand segmentation approaches based on more 
stable aspects of the images.  One constant, regardless of camera position, lighting, or 
background appearance, is the general shape of the target instruments themselves.  Their 
long and narrow structures point towards the use of line-structure concepts; however, 
previous line-structure segmentation schemes do not transfer well to these images.  In 
particular, changing contrast characteristics mean that responses similar to (1), which 
depend strongly on intensity, are unreliable. In our method, we have dramatically 
reduced the dependence of line-structure segmentation on the actual response magnitude.  
Instead, we have incorporated line-structure ideas into a Bayesian framework that allows 
us to extract many line-objects while still remaining confident we will isolate the ones 
that correspond to instruments.  This flexibility affords greater independence from, and 
adaptability to, the changing properties typical of endoscope images. 

At the cost of under-segmentation, we have shown the results of the method to 
reliably isolate only instrument regions in the image.  In other contexts where over-
segmentation is not as critical a concern, the Bayesian selection criteria can be 
loosened accordingly.  This speaks to a particular advantage of our approach: 
integration of line-structures into Bayesian concepts, which are highly adaptable to 
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myriad problems, should help extend the use of line-structure concepts to more 
challenging images than those with good contrast or homogeneous backgrounds. 
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Abstract. A new algorithm for an effective and automatic segmentation
of the carotid wall in ultrasonic images is proposed. It combines the speed
of thresholding algorithms with the accuracy, flexibility and robustness
of a successful geometric active contour model which incorporates an
optimal image segmentation model in a level set framework. Due to the
multiphase nature of these images, a sequential minimum cross entropy
thresholding is used to get a first approximation of the segments, reduc-
ing the problem to a two phase segmentation. This thresholding solution
is then used as a starting point for a two phase piecewise constant version
of a geometric active contour model to reduce noise, smooth contours, im-
prove their position accuracy and close eventual gaps in the carotid wall.

1 Introduction and Motivations

The diagnosis of atherosclerosis, i.e., the presence of plaque in artery walls, is
one of the most important medical exams for prevention of cardiovascular events,
like myocardial infarction and stroke. The intima-media thickness of the com-
mon carotid artery can be viewed as a descriptive general index of individual
atherosclerosis. Since the carotid is a superficial artery and of easy access, it
is quite suited for medical imaging using ultrasonography technology, which is
greatly desirable because of its low cost and small risk to the patient [1]. This
explains the great interest and effort, manifested by scientific community in the
last decade, in the development of algorithms for the segmentation of carotid
ultrasonic images. Even more attractive is the idea of using recent advances in
ultrasound acquisition technology, for 3D medical imaging, to reconstruct a 3D
surface model of the carotid walls from sequences of 2D ultrasonic images [1].
The 3D surface representation would allow a more friendly and powerful manipu-
lation of the artery data, as well as a better diagnosis. Unfortunately, automatic
segmentation of ultrasonic medical images is extremely difficult, due to their
complexity and to several degrading phenomena inherent to this type of image
acquisition technology. Some of these degrading factors are [1,2]: speckle noise,
occlusions, low contrast and movement artifacts. As a result, these images are
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noisy, some parts of the edges may be missing, producing gaps in organ bound-
aries (like the carotid wall), and their structure is so complex that it is difficult
to interpret even for a human eye. As a consequence, a manual segmentation of
these images, performed by an experienced medical doctor, is the usual adopted
procedure (see, for instance, [3,4]), which is a tedious and time consuming task
and tends to give subjective results.

We propose a new effective and automatic algorithm to perform segmentation
of the carotid wall in ultrasonic images. The procedure starts with a specially
conceived sequential thresholding, using a minimum cross entropy (MCE) algo-
rithm [5,6], which separates, reasonably well, the lumen (carotid interior, with
blood) from the soft tissues involving the carotid. The thresholding is very fast
and the resulting binary image is a good approximation to the desired segmenta-
tion (the extraction of the lumen), but it isn’t capable, on its own, to deal with
heavy noise or wall gaps. To overcome this, a second processing stage, involv-
ing a two phase piecewise constant geometric active contour [7,8], is applied to
the image, taking advantage of the information inherited from the thresholding:
the binary image is used for the contour initialization and some parameters of
the active contour are defined as a function of the threshold obtained in the first
stage. With a very fast convergence, the active contour cleans the noise, smooths
contours, improves their position accuracy and closes eventual carotid wall gaps.

The outline of the paper is as follows. Next section is a brief presentation of
previous work in this area, most promising trends and main difficulties. Section 3
introduces the Chan-Vese two phase piecewise constant geometric active contour
[7,8]. The proposed algorithm is described in some detail in section 4. Results
validating our algorithm are presented in section 5 and the paper ends with some
conclusions in section 6.

2 Previous Work

Since the first attempt to (semi-)automatically detect the carotid boundaries in
ultrasonic images [9], numerous investigators worldwide have tried to find better
approaches to this problem. A brief summary of this work can be found in [10,11].
As pointed out in [11], a direct comparison of these approaches is still pending.
Nevertheless, the approaches based on active contours [11,12,13,14] seem to be
the most powerful and promising, although generally with some limitations, like
manual initialization or gradient dependence. Another very interesting approach
for images severely degraded by noise and occlusions is the shape-based segmen-
tation [15], which has shown some success and may be very useful for segmen-
tation of images acquired with ultrasonography. Unfortunately, due to possible
presence of plaque and to the arbitrary angle of pulse incidence (essential for
3D surface reconstruction, for instance), our ultrasonic images have a very high
variability of shapes of the carotid walls, which constitutes a serious and discour-
aging problem for these models. In this context, the ideal segmentation model
for carotid ultrasonic images should be very flexible and include some sort of
an elastic force to deal with noise and eventual gaps along the carotid walls.
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Thresholding techniques are incapable of solving the problem of wall gaps and
there is usually some remaining noise that needs to be removed. Experiments
have shown that an anisotropic diffusion [16] after the thresholding is enough
to clean the noise and smooth irregularities in the boundaries, but not enough
to eliminate the gaps. This requires a more powerful technique like an active
contour with an elastic force. In previous active contour algorithms [11,12,13],
it is common the need for a manual initialization of contours near or inside the
carotid boundary, and propagation forces are usually based on gradients. In the
first case, the algorithm is not completely automatic, because it needs human
intervention in each individual image. This is even more discouraging if the final
aim is to create a 3D model of the carotid wall. On the other hand, gradient-
based active contours are greatly unadvisable when dealing with images with
high levels of noise or occlusions. In fact, if the noise is strong, it may cause the
stopping of the contour at false edges. And if there are contours with weak gra-
dient or even without gradient (‘cognitive contours’), the active contour will not
stop at these points. The Chan-Vese two phase piecewise constant active contour
model [7] solves both of these problems. It is robust to the initial position of the
active contour (unlike the multiphase version), and the propagation force for the
contour is not based on gradients, thus giving it the ability to detect cognitive
contours. Moreover, it is very accurate, it has the ability to automatically detect
interior contours and it is embedded in a level set framework [17,18].

3 Active Contour Models

The Chan-Vese two phase piecewise constant segmentation model, recently in-
troduced in [7,8], is the chosen active contour, for its potential and flexibility, as
discussed in section 2. This active contour belongs to a family of level set for-
mulations of the well-known image segmentation variational model of Mumford
and Shah [19].

In Chan-Vese active contours, the number of implicit functions in the model
is given by m = log2(n), where n is the number of phases in the image to
segment. Thus, for a two phase image, only one implicit function is needed.
The level set formulation for the Euler-Lagrange equation of the Chan-Vese two
phase piecewise constant model is [7,8]:

∂φ

∂t
= δε(φ)

[
μdiv

( ∇φ

|∇φ|
)
− λ1(u0 − c1)2 + λ2(u0 − c2)2

]
(1)

c1(φ) =

∫
Ω u0(x, y)Hε(φ(t,x, y))dxdy∫

Ω Hε(φ(t,x, y))dxdy
(2)

c2(φ) =

∫
Ω u0(x, y)(1 −Hε(φ(t,x, y)))dxdy∫

Ω(1 −Hε(φ(t,x, y)))dxdy
(3)

where μ,λ1 and λ2 are fixed parameters, u0 : Ω → R is the original image
function, Ω ⊂ R2 is open and bounded, φ : Ω → R is a Lipschitz continuous
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function with its zero level set representing the active contour that separates
the image regions defined by {(x, y) ∈ Ω : φ(x, y) > 0} and {(x, y) ∈ Ω :
φ(x, y) < 0}, Hε and δε = H

′
ε are C1 approximations and regularizations of

the Heaviside function H and Delta function δ. A more complete and detailed
description of this active contour model may be found in [7,8].

4 Proposed Hybrid Model

We have conceived an algorithm for carotid lumen extraction in ultrasonic im-
ages, consisting of two image processing stages, in the following sequence:

1. A new multiphase thresholding scheme, for carotid ultrasonic images, com-
putes an optimal threshold, Topt, for the separation of the lumen phase from
the other phases in the gray-scale image, I. This is described in subsec-
tion 4.1.

2. The gray-scale image, I, is then processed by a modified version of Chan-
Vese two phase piecewise constant active contour, which defines its intensity
constants, c1 and c2, as functions of the threshold, Topt, obtained in the
first stage. These functions are chosen to preserve the intensity classifica-
tion threshold between phases, while allowing the active contour to use its
elastic properties and image spatial information to reduce noise, smooth con-
tours and close eventual carotid wall gaps, left from the first stage. This is
described in section 4.2.

4.1 Sequential MCE Thresholding

A set of selected thresholding algorithms, chosen for their success or special inter-
est for ultrasonic image segmentation, were tested in carotid ultrasonic images.
These comparative tests showed that MCE produced the best results. Consid-
ering also that MCE criterion is the best choice when no assumption is made
about the populations’ distributions or their size and variance [5], this is the
best choice for the problem in hand.

The MCE algorithm was designed for images with only two phases, with bi-
modal histograms. Since carotid ultrasonic images are multiphase, a single MCE
iteration is not enough to isolate the lumen. Since the phase of interest, corre-
sponding to the lumen, is the darkest one, a straightforward way to adapt this
algorithm to these multiphase images is as follows. In the first iteration, the MCE
algorithm is used to divide the original image into two regions. In the second
iteration, the darkest region produced by the first iteration is further subdivided
into another pair of regions, and so on, until a certain stopping criterion is sat-
isfied. At the end of each iteration, only two regions are of interest: the region
with intensities below the last threshold and the region with all other intensities.
This is the sequential MCE thresholding. To select a reliable stopping criterion,
a set of evolution curves were computed for several different measures of the
pair of regions defined by the threshold at each iteration. Two of these measures
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turned out to be useful: the standard-deviation, σ, and the total contour length,
L, of the darkest region for each iteration. These curves showed that the desired
segmentation was systematically obtained when σ < 0.01, except for a small set
of more degraded images which had significant blood echo. Two segmentation
examples with this iterative algorithm, using only σ as stopping criterion, are
presented in Fig. 1.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Sequential MCE with stopping criterion based only on σ: a) Carotid A;
b) Carotid A after first threshold; c) Carotid A after last threshold; d) Carotid B;
e) Carotid B after first threshold; f) Carotid B after last threshold

As we can see in Fig. 1 (f), in images with some blood echo there is a tendency
to misclassify these blood spots as soft tissue. This typically results in new islands
of white regions inside the lumen, which sometimes fuse with the carotid wall.
Of course, this type of echo, when present, is weak. Thus, it is only detected at
the end of the iterative procedure. If the detection of these new white regions
happens, as it seems, only after the desired threshold, this misclassification brings
an increase in the total length of interface boundaries. A simple and effective
way to avoid this under-thresholding is to stop iterations and discard the last one
whenever a new thresholding produces an increase in the total interface length.
The evolution of L as a function of iterations for carotid A and carotid B can be
seen in Fig. 2 (a) and Fig. 2 (b), respectively. For carotid A, L never increases
and σ falls below 0.01 in the third iteration. In this case, Topt becomes the third
threshold obtained for the image. The result is the binary image in Fig. 1 (c).
On the other hand, for carotid B, L increases between the first and the second
iterations. Thus, for carotid B, the sequential MCE algorithm sets Topt as the
first threshold, discarding the second. This gives the binary image in Fig. 1 (e)
as the final thresholding segmentation.

If, in any case, these false tissue regions appear for the desired threshold or a
previous one, this means the image is too degraded and it might be preferable to
discard the image altogether, depending on the degree of degradation. Otherwise,
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(a) (b)

Fig. 2. Evolution of L: a) L vs Iterations for Carotid A; b) L vs Iterations for carotid B

we will be stuck with this over-segmentation of the lumen, since, in this case,
there is no automatic and universal way to distinguish between soft tissue echo
and blood echo, specially when considering the possible presence of plaque.

Next, a summary of the proposed sequential MCE thresholding algorithm is
presented:

1. Compute MCE threshold, T , for the entire gray-scale image, I.
2. Compute standard-deviation, σ, for pixels of I with intensity ≤ T .
3. If σ < 0.01, then set Topt = T and stop iterations.
4. Initialize Lnew with the total interface length for threshold, T . Set Tnew = T .
5. Set Told = Tnew and Lold = Lnew.
6. Compute a new MCE threshold, Tnew, for pixels of I with intensity ≤ Told.
7. Compute new total interface length, Lnew, for current threshold, Tnew.
8. If Lnew > Lold, then set Topt = Told and stop iterations.
9. Compute standard-deviation, σ, for pixels of I with intensity ≤ Tnew.

10. If σ < 0.01, then set Topt = Tnew and stop iterations, else goto step 5.

4.2 Chan-Vese Active Contour with Fixed Intensity Constants

The MCE sequential thresholding isn’t capable, on its own, to deal with heavy
noise or wall gaps. To overcome this, the threshold Topt is passed to a second
processing stage, which applies a two phase piecewise constant geometric active
contour to the gray-scale image, I, but taking advantage of the information in-
herited from the thresholding. The number of iterations necessary for the active
contour convergence is significantly reduced by initializing the active contour
with the approximation to lumen edges given by the thresholding stage. To
reduce the multiphase problem to a two phase case, we propose to fix the in-
tensity constants as c1 = 2Topt for the higher phase and c2 = 0 for the other
one, instead of updating them as in the original Chan-Vese model, where their
value is assumed to be unknown. This way, the elastic active contour is not
used to estimate the intensities of each phase, which are already known from the
thresholding. It just uses its elastic properties and the image spatial information
to clean the noise, smooth contours, improve their position accuracy and close
eventual carotid wall gaps.
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5 Results

The parameters used for the Chan-Vese model were: μ = 0.025×2552, λ1 = λ2 =
1, Δx = Δy = 1, ε = Δx and Δt = 0.1Δx. The value of parameter μ, which is
proportional to the elastic strength of the contour, was empirically determined as
a good compromise between maximum noise removal and minimum loss of image
details. Since the image gray level scale used is 0. . . 255, the factor 2552 present
in parameter μ is necessary to keep unity consistence in the level set equation.
The values used for the other parameters are the ones proposed in [7,8]. The
numerical scheme used in this work was the semi-implicit scheme proposed by
Chan and Vese in [7,8] for the two phase piecewise constant model, with the
Euler-Lagrange equation given by (1). To improve efficiency, part of the code
used in this work was implemented as a C function, which is called from Matlab.
This is the case of the semi-implicit updating scheme for the implicit function of
the level set equation. Before the initialization of the active contour in the second
stage, small black segments, left by the first stage, were automatically removed
to improve efficiency even more, avoiding eventual delays in the active contour
convergence due to segments without interest. The removal of these small black
segments is done using a labeling function from Matlab and requires very little
CPU time. The cleaning procedure is not applied to white segments, to prevent
the aggravation of eventual gaps along the carotid wall. The implicit function is
then initialized as a signed distance function with the contours of the cleaned
binary image as its zero level set. Figure 3 shows the results of the application
of the proposed hybrid algorithm to carotids A and B of Fig. 1. These results
clearly illustrate the effectiveness of our model for the segmentation of this type
of images.

Although the second stage (active contour) is much more time consuming
than the first one (thresholding), the hybrid algorithm formed by the combina-
tion of these two stages is still a very fast and effective algorithm when compared
to other alternatives, like multiphase active contours [8,20]. In fact, we have con-
firmed in our tests that the four phase piecewise constant model [8,20] requires
significantly more CPU time to converge than our model. Moreover, it fails to
correctly detect the carotid lumen boundary, sometimes leaving large gaps in the
carotid walls, which means an 8 phase version (at least) should be used, and,
therefore, an additional increase in the computational effort.

(a) (b)

Fig. 3. Chan-Vese 2 phase with fixed constants, c1 and c2, after sequential MCE:
a) Carotid A with contour; b) Carotid B with contour
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6 Conclusions

Ultrasonic images of the carotid pose a great challenge to automatic segmen-
tation, due to their complexity. A new algorithm for the segmentation of these
images was introduced, consisting of two image processing stages, which combine
a new MCE-based thresholding multiphase scheme with a modified version of
the Chan-Vese two phase piecewise constant active contour model. Instead of dy-
namically updating the phase intensity parameters, as in the original Chan-Vese
model, we have defined them as functions of the threshold obtained in the first
stage. This way we were able to reduce a multiphase problem to a two phase one
and drastically speed up the active contour convergence. The results obtained
confirm the effectiveness and efficiency of the proposed hybrid algorithm for the
lumen extraction in carotid ultrasonic images. This algorithm was specifically
designed to extract a single phase of interest from a multiphase image (or both
phases of a biphase image), and proved to be a good alternative when thresh-
olding algorithms or active contours give unsatisfactory results on their own. Of
course, it may be applied to other types of images. But, if these images are not
so complex as the ones considered in this work, the multiphase model presented
in [20] could be a better choice, specially if several phases are of interest.
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Abstract. A method is proposed to segment digital posterior-anterior
chest X-ray images. The segmentation is achieved through the registra-
tion of a deformable prior model, describing the anatomical structures of
interest, to the X-ray image. The deformation of the model is performed
using a deformation grid. A coarse matching of the model is done us-
ing anatomical landmarks automatically extracted from the image, and
maps of oriented edges are used to guide the deformation process, opti-
mized with a probabilistic genetic algorithm. The method is applied to
extract the ribcage and delineate the mediastinum and diaphragms. The
segmentation is needed for defining the lungs region, used in computer-
aided diagnosis systems.

Keywords: Gabor Filters, Free Form Deformation, Genetic Algorithms,
Model-based Image Segmentation.

1 Introduction

The automatic delineation of anatomical structures of interest in digital X-ray
chest images provides useful information required in computer-aided diagnosis
(CAD) schemes. For instance, the ribcage boundary represents a convenient ref-
erence frame of human thorax for locating such structures. In chest radiography,
CAD schemes have been developed for automated detection of abnormalities,
such pulmonary nodules [1] or cardiomegaly [2]. An overview of the literature on
lung field segmentation, rib detection and methods for selection of nodule can-
didates can be found in [3]. The accurate segmentation of anatomical structures
in chest X-ray images is still an open problem and manual extraction is often
considered as the most reliable technique.

We present an automatic technique for segmenting anatomical structures in
posterior-anterior (PA) chest X-ray images, based on the matching of a geometri-
cal deformable model, that represents the structures of interest to be segmented,
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to the X-ray input image. The proposed method relies on a registration process
as described in Sec. 2. Anatomical landmarks are initially extracted by process-
ing the input image and are used to coarsely align the geometric model to the
image. The deformation of the model, described in Sect. 2.2, is performed us-
ing Free Form Deformation (FFD) by minimizing an energy term derived from
oriented response maps, defined in Sect. 2.3 by means of Gabor filtering. The
model-based segmentation is then considered as an optimization problem solved
with a genetic algorithm (GA), presented in Sect. 3, carefully designed to pre-
serve the shape of the model during deformation. Finally, we present some results
and draw conclusions.

2 Materials and Methods

The aim of this work is to automatically segment anatomical structures in PA
chest X-ray images starting from a deformable geometrical model. The prior
model used represents the contour of the projected area of the lungs, non ob-
scured by overlying cardiac, mediastinal and subdiaphragmatic structures.

2.1 Geometrical Model

We describe the geometric prior model as a labelled set of vertices V ∗
n = (x∗n, y∗n)

in a system of coordinates OXY centered in the image plane, as shown in Fig. 1.
The construction of the model is based on a general technique, known as Point
Distribution Model [4]: a mean shape, or prototype, is obtained from statistical
analysis of manually traced contours in a training set of X-ray images, where
each labelled vertice V ∗

n represents the same part of the undeformed contour.

1

10

6934

50
51

91

100

X

Y

O

Fig. 1. PA chest X-ray image (left), geometrical model (middle) and its deformation
using a 5 × 5 FFD grid of control points randomly displaced (rigth)

This parametrization is used to represent the model into five different sec-
tions. The correspondence between anatomical structures and the model is easily
accomplished by defining each section of the model as a different subset S of the
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labelled vertices V ∗
n as follow: the subset Srib = V ∗

11−34,69−90 represents the tho-
racic cage or ribcage (see Fig. 1), Smed,R = V ∗

35−50 and Smed,L = V ∗
51−68 are

associated with the right and left boundaries of the mediastinum, respectively,
and Sdiaph,R = V ∗

1−10 and Sdiaph,L = V ∗
91−100 represent the boundaries of the

right and left diaphragm, respectively. The purpose of this model representation
will be explained in Sec. 3.

2.2 Model Deformation

The deformation of the prior model is accomplished using Free Form Deforma-
tion (FFD), a popular deformation technique in computer graphics [5]. The FFD
is controlled by a rectangular deformation grid, of size Nx×Ny, that surrounds
the model (or just a portion of it), and is defined by the lattice of control points
L∗

ij =
(
x∗ij , y

∗
ij

)
(i ∈ [1,Nx], j ∈ [1,Ny]).

When one or more points L∗
ij of the grid are moved to new positions, Lij, the

model is deformed correspondingly. The local coordinates (s∗n, t∗n), s∗n, t∗n ∈ [0, 1],
of each vertice V ∗

n in the model point set are first computed with respect to the
undisplaced FFD grid, and the new position Vn of each vertice, after moving the
control points, can be calculated using a bivariate tensor product:

Vn =
Nx−1∑
i=0

Ny−1∑
j=0

Bi,Nx (s∗n) ·Bj,Ny (t∗n) · Lij , (1)

where Bi,N (s) is the Bernstein polynomial blending function of degree N ,
defined as

Bi,N (s) =
N !

i! (N − i)!
· si · (1− s)N−i

. (2)

The deformation of the model using FFD is illustrated in Fig. 1, using a
5 × 5 grid of a lattice of control points, randomly displaced from their original
positions. Bilinear interpolation could be used as well to establish the relation
between the displacement of the grid points and the vertices to be deformed.

2.3 Oriented Maps

Compared to other medical image modalities such computer tomography or mag-
netic resonance, edges are more difficult to extract from X-ray projections im-
ages. We decide to enhance the edges of the structures of interest to be delineated
in the PA X-ray image, using Gabor filters [6] in analogy with the processing
of stimuli by simple cells present in the human visual cortex. A receptive field
function of such a cell, gλ,σ,θ,φ (x, y), centered in the origin, can be represented
by a linear Gabor filter:

gλ,σ,θ,φ (x, y) = exp− x̃2+γ2ỹ2

2σ2 cos
(

2πx̃

λ
+ φ

)
, (3)

where
x̃ = x cos θ + y sin θ
ỹ = −x sin θ + y cos θ

. (4)
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and γ = 0.5 is a constant, called the spatial aspect ratio, that determines the
ellipticity of the receptive field of the simple cell. The value of the ratio σ/λ is
considered as in [7] to be 0.56, where 1/λ is the spatial frequency of the cosine
factor. We choose the standard deviation, σ, of the Gaussian factor (see Eq. 3)
to be a free parameter to fix. The value of σ is imposed by the width of the edges
we want to enhance. The phase offset φ, φ ∈ (−π, π] determines the symmetry
of the filter with respect to the origin. For φ = 0, π, it is a symmetric or even
function. For φ = −π

2 , π
2 , the filter is antisymmetric or odd. The parameter θ,

θ ∈ [0, π) in Eq. 4 determines the preferred orientation of a simple cell.
We assume that the positive spatial response Rθ,φ (x, y) of a simple cell to

the X-ray input intensity distribution I (x, y), with a receptive field (selective)
orientation θ, is given by:

Rθ,φ (x, y) =
{

rθ,φ (x, y) , rθ,φ (x, y) > 0
0, rθ,φ (x, y) ≤ 0 , (5)

where the filtered image rθ,φ (x, y) is computed by convolution:

rθ,φ (x, y) = I (x, y)⊗ gθ,φ (x, y) . (6)

Based on the columnar organization of cortical simple cells [8], the input
image is filtered with a bank of Gabor filters, and oriented maps Rθ,φ (x, y) can
be defined for a number Nθ of different equally spaced orientations:

θk = k−1
Nθ

· π, k = 1, · · · ,Nθ . (7)

Fig. 2. Orientated maps Rθ,φ (x, y) of PA X-ray image of Fig. 1, for θ = 3π
8

, φ = 0
(left), θ = π

2
, φ = 0 (middle) and θ = 0, φ = −π

2
(rigth)

Examples of oriented maps Rθ,φ (x, y), for different orientations and phase
offset values, are shown in Fig. 2.

Once the oriented maps have been computed, we can define an energy func-
tion, E, describing the mismatch between such enhanced edges and the vertices
of the deformed model. The definition of such function, based on the idea that
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boundaries of given orientation in the model have to mach with similarly oriented
edges enhanced by the processing of the X-ray image, is given by

E = 1− 1
Nv

·
Nv∑
n=1

Rθk,φ(n) (xn, yn), (8)

where Nv is the number of vertices defining the model, (xn, yn) are the coordi-
nates of the vertice Vn, and θk is the angle, given by Eq. 7, closest to the normal
of the contour model at the vertice Vn. Because symmetrical Gabor filters cannot
be used to discriminate between light-to-dark and dark-to-light transitions, dif-
ferent values of the phase offset φ of the orientation maps have to be considered.
The energy is computed taking into account the subsets of vertices S, defined
in Sect. 2.1, considering the following rules: φ (n) = 0 if Vn ∈ Srib, φ (n) = π

2 if
Vn ∈ {Smed,R ∪ Sdiaph,R}, and φ (n) = −π

2 if Vn ∈ {Smed,L ∪ Sdiaph,L}.
The registration of the geometric model to the X-ray image relies on its

deformation, using FFD, in order to match the salient edges of the oriented
maps, used to guide the model deformation considering the energy defined in
Eq. 8 as a registration function to judge the goodness of the fit. The matching
process is then considered as an optimization problem as explained in the next
section.

3 Model Registration

The registration of the deformable model to the X-ray image relies on its de-
formation and consists on the minimization of the energy defined by Eq. 8. For
this purpose, a sequential displacement of each control point of the FFD grid,
independently of all others, can be considered [9]. In this work, an optimization
strategy based on genetic algorithms (GA) [10] is adopted to solve this problem,
where Eq. 8 is used as the fitness function.

GA starts with an initial set or population of probable solutions, referred to as
chromosomes. Each chromosome C is an ordered list of the control points (genes)
Lij of a displaced FFD grid that deforms the model as explained in Sec. 2.2. In
each iteration of the algorithm, GA searches for the best chromosome (optimal
position of the grid points) that minimize the fitness function.

As a first step of the registration process, anatomical landmarks correspond-
ing to the center of the thorax, at the aortic arc level, and the center of the
upper lobes of each lung are automatically extracted from the processing of the
input image with a LoG filter, using a high standard deviation of 50 pixels.
These large scale anatomy features (see Fig. 4) are used to perform a coarse
alignment of each chromosome (undisplaced FFD grids) of the initial population
of the GA with the X-ray image. Because PA chest X-ray images have symme-
try axis nearly-vertical, these initial chromosomes are randomly rotated in the
image plane, with standard deviation of 3o. The goal function (Eq. 8) is then
evaluated for every chromosome in the population.

We adopt a GA in its probabilistic form [11], where a weighted mean of the
best chromosomes is computed according to:
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Cmean =
1

N∑
c=1

(1− Ec)
·

N∑
c=1

(1− Ec) ·Cc. (9)

where N is the fixed number of chromosomes considered to compute the mean
configuration and Ec is the fitness value of the chromosome Cc.

In each iteration, new chromosomes are generated by randomly displacing
the control points of the FFD grid represented by the mean chromosome Cmean.
Three mutation operators are defined for this purpose. They consists of verti-
cal random displacement of all the points, symmetrical displacement of external
points and random displacement of internal points of the FFD grid, as illustrated
in Fig. 3. All these random displacements are accomplished using a standard
deviation σm pixels and only one operator is applied to produce a new chromo-
some. Each operator is designed to increase the diversity in the population, and
to constrain the allowable deformations of the geometrical model.

Fig. 3. Mutation operators applied to a 5 × 5 FFD lattice of control points: vertical
displacement of all points (left), symmetrical displacement of external points (middle)
and random displacement of internal points (rigth)

The fitness function is now evaluated for the new chromosomes, and the best
chromosomes in the combined pool of current and new chromosomes are kept for
the next generation. The stopping criteria is defined in terms of the maximum
number of iterations of the GA.

4 Results

The proposed method has been tested on several PA chest X-ray images. The
orientation maps were generated using Nθ = 8 orientations, for a pair of quadra-
ture Gabor filters, with φ = 0,−π

2 , and σ = 10 pixels. We assumed that a FFD
grid of constant size 5 × 5 should allow enough degrees of freedom for a good
match of the model.

The number of chromosomes in the beginning and end of each generation was
N = 25, and the number of new chromosomes created in each generation was 50.
The value σm = 10 pixels was used for all the mutation operators. Segmentation
results for some digital chest X-ray images are shown in Fig. 4. 100 iterations of
the GA were enough to reach convergence in all the tested images.
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Fig. 4. First row : Extracted landmarks, displaced FFD grid and corresponding de-
formed model matched to X-ray image of Fig. 1; Second row : Segmentation results of
the proposed method for other images of the database

5 Conclusions

We have described a method for segmenting PA chest X-ray images based on
the global minimization of an energy function, defined from oriented maps of
enhanced edges of the image.

The search algorithm is implemented by using a probabilistic genetic algo-
rithm, avoiding an exhaustive search for the best transformation of the image.
The choice of a probabilistic GA relies on its ability of stabilizing the population.
This property is useful for the regularization of the geometrical model deforma-
tion. The mutation operators of this algorithm have been defined to preserve the
knowledge of the geometrical model. In this work, the symmetry exhibited by
PA chest X-ray images has been exploited, and can be included in the definition
of the fitness function as an additional term. The initial population of the GA
can be generated at random, but a robust extraction of anatomical landmarks
is required to properly initialize the registration process.

The method has been tested using a FFD lattice of control points of constant
size to deform the model. The method is suitable to be used in a global to local or
multi-resolution approach. The preliminary results obtained so far, although not
yet validated in a large set of images, make the method attractive. The method
herein presented has been worked out in two dimensions, although extension to
three dimensions will be considered in a near future.
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Abstract. X-ray images, such as mammograms, often contain high-intensity 
radiopaque artifacts in the form of horizontal or vertical stripes, often the result 
of the digitization process. These artifacts can contribute to difficulties in 
segmentation and enhancement algorithms. This paper presents an algorithm to 
suppress stripe artifacts based on weighted median filtering and shows how it 
affects post-processing segmentation. 

1   Introduction 

Many existing Computer Aided Detection (CADe) systems work by processing 
analog film mammograms acquired through digitization. Such mammograms often 
contain radiopaque artifacts in the form of identification labels, opaque markers, and 
wedges in the unexposed air-background (non-breast) region. Although a multitude of 
papers deal with tasks such as mammogram segmentation [1], very little work has 
been done in the realm of pre-processing relating to the suppression of background 
artifacts. The primary motivation for removing such artifacts from mammograms is 
too lessen their effect on subsequent processing algorithms. Artifacts can be defined 
as false features that can significantly hinder the automated interpretation of the 
images. 

A recent article examined the effectiveness of removing such artifacts from the 
background region of a mammogram prior to processing tasks such as segmentation 
[2]. One of the caveats of this algorithm was the presence of stripe artifacts in the 
background, often overlapping the breast region in such a manner that they could not 
be effectively removed. Fig. 1 shows an example of a stripe artifact overlapping the 
breast region. 

The effect of these stripes was made apparent during testing of a breast region 
segmentation algorithm using fuzzy reasoning [3]. Testing of the algorithm on 322 
mammograms from the MIAS mammogram resulted in eight failures. Of those, in 
five of these mammograms (1.55%) the failure was attributable to the presence of 
vertical strip artifacts. Fig. 2 shows the effect of a vertical stripe artifact on the 
segmentation algorithm. 

This paper proposes an automated approach for suppressing stripe artifacts from 
mammograms based on the use of a simple weighted median filter. 
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Fig. 1. Examples of stripe artifacts (left-to-right): (i) Mammogram after artifact suppression; 
(ii) LOG-accentuated form of (i) containing a residual “stripe” artifact 

 

    

Fig. 2. Effect of strip artifacts on segmentation (MIAS 138.l). (i) Original, (ii) Segmented 
mask, (iii) LOG-accentuated ROI of (i), (iv) Corresponding ROI of  (ii). 

2   Mammogram Artifacts 

There are two distinct regions in a mammogram: the exposed breast region and the 
unexposed air-background region. Visual assessment often results in the identification 
of radiopaque artifacts in the form of identification labels, opaque markers, and 
wedges in this background region. While the human visual system can easily ignore 
such artifacts during interpretation, a computerized system must first identify and 
classify features within a mammogram before it can decide whether  or not to 
eliminate them from the interpretation process. There are three main advantages to 
performing artifact suppression in mammograms. In the first instance it facilities 
lossless compression by making the background region more homogeneous. This is 
significant with large images where the background region comprises in excess of  
50% of the image. Secondly, a mammogram whose artifacts have been suppressed 
shows an improved “visual quality”. For example the histogram of a processed image 
provides a better representation of the range of intensities found in the breast region. 
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Thirdly, the removal of radiopaque artifacts from mammograms lessens their effect 
on subsequent processing algorithms [4]. For example, accurate segmentation of the 
breast region is an important phase in the computerized analysis of mammograms. It 
allows the search for abnormalities to be limited to the breast region of a 
mammogram without undue influence from the background. One of the problems 
with precise segmentation of the breast region is that the existence of artifacts (e.g. a 
label overlapping the breast region) often results in a nonuniform background region 
which may cause a segmentation algorithm to fail. Artifacts may also unduly 
influence algorithms which rely on the intensity distribution of mammograms such as 
similarity-measure based mammogram registration, or contrast enhancement. Van 
Engeland et al. [5] cite that excluding the background region in mammograms leads 
to improvement in the registration of temporal mammograms. Stripe artifacts in 
mammograms are visible as lines of bright intensity, oriented more or less vertically.  

3   Stripe Suppression 

A stripe is a local extremum of intensity along the x-axis of an image. Detection and 
suppression is complicated by the fact that they often overlay the breast region, and 
hence can be quite subtle in appearance. The objective of suppressing vertical artifacts 
is two-fold. If they exist in the background region of a mammogram, the application 
of an appropriate filter could lessen their effect in the context of direct post-
processing. Alternatively, if they exist in both the background and breast region, they 
could be suppressed for the purpose of improving the visual acuity of the image. 
There is little previous work dealing with the removal of such artifacts, the closest 
related to the detection and removal of line scratches in motion picture films [6]. 

3.1   Weighted Median Filter 

The algorithm relies on the application of a filter to aid stripe suppression, in this case 
the weighted median (WM) filter, first introduced by Brownrigg [7] in 1984. The WM 
filter uses a two-dimensional mask, M, of size n, containing coefficients which are 
used to weight a neighborhood in an image (See Fig.3). The action of the filter at 
point ( , )p q  of image mI is to take ( , )M i j copies of ( , )mI p i q j+ +  for 
, , ,i j n n= − . The values are sorted into ascending order and the median is 

determined. The resulting enhanced image is denoted eI . 
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Fig. 3. Mask for the weighted median filter 
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The weighted median filter is used for two purposes: (i) to help determine the 
locality of the stripe artifacts, and (ii)  to  help in the restoration process. 

3.2   Stripe Extraction 

After the filter is applied, a post-processing segmentation algorithm can be applied 
directly, or the region representing the stripe artifacts can be restored. To achieve the 
latter, we first subtract the processed image from the original, yielding a difference 
image containing the stripe artifacts. A morphological filter, opening by 
reconstruction [8] is then performed using a vertical structuring element (SE) to 
restore the vertical objects. The length of the SE used has been set to 10% the height 
of the image. To isolate the vertical objects, a binary image is created by computing 
the regional maxima of the restored image, according to connectivity defined by a 
vertical  SE. A regional maximum is a flat zone not surrounded by flat zones of higher 
gray values, where a flat zone is a connected-component of an image with the same 
pixel values [9]. The objects within the binary image are then expanded using 
morphological dilation in combination with a vertical SE to create a binary stripe 
mask image, maskI , from which the stripe artifacts can be restored.  

3.3   Stripe Restoration 

The final stage consists of post-processing the detected artifacts to restore or 
reconstruct the corrupted pixels of the identified stripe region. In this form of the 
algorithm, where the emphasis is on removing stripe artifacts from the background 
region, and hence their subsequent effect on segmentation algorithms, we use a 
restoration algorithm based on polynomial interpolation. The background region of a 
mammogram normally occupies a band of low intensity values on a closed interval. 
Polynomial interpolation is well suited to reconstructing homogeneous regions.   For 
each object pixel ( , )i j  in the stripe mask image, a corresponding 5 5× region is 

extracted from both  eI , mI and maskI . To create the surface to model, for every “live” 

pixel in maskI  (pixel value=1) select the corresponding pixel from the enhanced image 

eI . All other pixels are not stripe pixels and are selected from mI . The effect of this 

blended surface are shown in Fig. 4. A simple interpolation model based on a cubic 
polynomial is then used to approximate the “missing” pixel.  

  

0

0

0

0

0

0

1

1

1

0

1

1

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

0

1

1

0

0

0

0

0

0

0

1

1

1

0

0

0   

2

4

2

3

3

2

3 2

4

3

4

5

3

4 4

3

5

2

4

2

3

3

2

3 2

4

3

4

5

3

4 4

3

5   

3

3

2

3

3

3

4

4

3

3

2

3

3

3

4

4

 

Fig. 4. Stripe restoration (left-to-right) (i) Region extracted from the stripe mask showing “live” 
pixels; (ii) mI , and (iii) eI , showing corresponding pixels used for the surface modeling 
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4   Experimental Results 

The MIAS mammogram database [10] contains 34 images which contain some form 
of vertical stripe artifact. Of those 26 also contain significant background artifacts in 
the form of identification labels, opaque markers, and wedges. The mammograms 
were first cleansed of these artifacts using the algorithm described in [11]. Visual 
inspection of the results show that the algorithm was successful in suppressing the 
majority of stripe artifacts in the mammograms. The few instances where their were 
residual stripes occurred in regions where the stripes overlaid the breast region. This 
could be solved by improving the restoration algorithm used, however this must be 
balanced with making extensive changes to the breast region. For instance Joyeux et 
al. [6] augment the low-pass filter which is in the form of a cubic polynomial with a 
high-pass reconstruction technique based on Fourier series. 

Two examples of results are shown in Fig. 5 and 6. The mammogram in Fig. 5 
contains multiple vertical stripes, both overlaid on the breast region and the 
background region of the mammogram. Two of the stripes are quite distinct, the 
remaining are more subtle in appearance. Fig 5(iii) shows the extent of the stripe 
artifacts, and Fig. 5(iv) a LOG-accentuated form of the restored “live” pixels from the 
stripe mask. The mammogram shown in Fig. 6 contains both a single stripe artifact 
overlying the breast region and both a label artifact and radiopaque marker in the 
background region. The artifact suppression algorithm [11] is first used to remove the 
latter artifacts before the stripe algorithm begins (Fig. 6(ii)). Fig. 6(iv) shows the 
stripe artifact, and Fig. 6(v) a LOG-accentuated form of the restored “live” pixels 
from the stripe mask. 

To illustrate the effect of this algorithm on post-processing, we have extracted the 
breast region of the mammograms using a fuzzy-reasoning based algorithm [3]. Of 
the 34 mammograms containing vertical stripe artifacts, 21 are apparent enough to 
cause difficulties for the algorithm, not always sufficient to cause the algorithm to 
fail, but often enough to cause under-segmentation or discontinuities in the breast 
contour. Consider the example shown in Fig.7 representing a case of under- 
segmentation. Fig. 7(ii) shows the result of the segmentation algorithm with the  
 

   

Fig. 5. Experiment 1: MIAS (093.l) with multiple stripes (left-to right) (i) Original image; (ii) 
Median-weighted image, (iii) Binary mask of stripe artifacts, (iv) LOG-accentuated restoration 
template, (v) Image with stripes suppressed 
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Fig. 6. Experiment 2: MIAS (074.l) with single stripe overlying the breast region (left-to-right) 
(i) Original image; (ii) Artifact-suppressed image; (iii) Median-weighted image, (iv) Binary 
mask of stripe artifacts, (v) LOG-accentuated restoration template, (vi) Image with stripes 
suppressed 

artifacts removed, but the stripe nonetheless present. The effect on the lower portion 
of the mammogram is to incorporate part of the background to the left of the stripe 
into the breast region. The metrics for this particular image change from CM=1.0, 
CR=0.91, to CM=1.0, CR= 0.97, resulting in. 

    

Fig. 7. Example of post-processing segmentation (under-segmentation) (left-to-right) (i) 
Original mammogram (MIAS 99.l); (ii) Segmentation with no stripe suppression, (iii) 
Segmentation with stripe suppression; (iv) Ground truth image 
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Fig. 8. Example of post-processing segmentation (contour discontinuity) (left-to-right) (i) 
Original mammogram (MIAS 138.l); (ii) Segmentation with no stripe suppression, (iii) 
Segmentation with stripe suppression 

The second example, shown in Fig.8 shows the effect of the algorithm on 
removing stripe artifacts which result in contour discontinuities. Here the algorithm 
has suppressed the stripe artifact sufficiently to allow the segmentation algorithm to 
extract the breast region without any effects along the edge of the contour. There is no 
significant change in the metrics, CM=1.0, CR=0.99. All 21 mammograms showed 
improvement with respect to the segmentation accuracy achieved. 

5   Conclusion 

We have proposed a simple algorithm to suppress the presence of stripe artifacts in 
mammograms. The nature of the algorithm is such that it could easily be adapted to 
deal with horizontal stripe artifacts, or indeed scratch artifacts which exist in mediums 
such as historic photographs or films. Ongoing work will look at a more precise 
methodology of restoring the region containing the artifacts 

References 

1. Chandrasekhar, R., Attikiouzel, Y.: Segmenting the breast border and nipple on 
mammograms. Australian Journal of Intelligent Information Processing Systems. 6 (2000) 
24-29 

2. Wirth, M., Lyon, J., Nikitenko, D.: Removing radiopaque artifacts from mammograms 
using area morphology. SPIE Medical Imaging: Image Processing. SPIE. San Diego. 5370 
(2004) 1042-1053 

3. Wirth, M., Nikitenko, D., Lyon, J.: Segmentation of the breast region in mammograms 
using a rule-based fuzzy reasoning algorithm. ICGST International Journal on Graphics, 
Vision and Image Processing. 2 (2005) 45-54 

4. Pieka, E., McNitt-gray, M.F., Huang, H.K.: Computer-assisted phalanheal analysis in 
skeletal age assessment. IEEE Trans. on Medical Imaging. 10 (1991) 616-620 



 Suppression of Stripe Artifacts in Mammograms Using Weighted Median Filtering 973 

 

5. van Engeland, S., Snoeren, P., Hendriks, J., Karssemeijer, N.: A comparison of methods 
for mammogram registration. IEEE Trans. on Medical Imaging. 22 (2003) 1436-1444 

6. Joyeux, L., Buisson, O., Besserer, B., Boukir, S.: Detection and removal of line scratches 
in motion picture films. International Conference on Computer Vision and Pattern 
Recognition, Fort Collins, Colorado. (1999) 548-553 

7. Brownrigg, D.R.K.: The weighted median filter. Comm. of the ACM. 27 (1984) 807-818. 
8. Vincent, L.: Morphological grayscale reconstruction in image analysis: Application and 

efficient algorithms. IEEE Trans. on Image Processing. 2 (1993) 176-201. 
9. Dougherty, E.R., Lotufo, R.A..: Hands-on Morphological Image Processing. SPIE Press. 

Bellingham, Washington (2003) 
10. Suckling, J., Parker, J., Dance, D.R., Astley, S., Hutt, I., Boggis, C.R.M., Ricketts, I., 

Stamatakis, E., Cerneaz, N., Kok, S.-L., Taylor, P., Betal, D., Savage, J.: The 
Mammographic Image Analysis Society Digital Mammogram Database. Int. Workshop on 
Digital Mammography, York, England (1994) 375-378. 

11. Wirth, M., Lyon, J.: Suppression of background artifacts in mammograms using 
morphological image processing. (2005) under review. 



 

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 974 – 981, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Feature Extraction for Classification of Thin-Layer 
Chromatography Images 

António V. Sousa1,2, Ana Maria Mendonça1,4, Aurélio Campilho1,4,  
Rui Aguiar3, and C. Sá Miranda3 

1 Instituto de Engenharia Biomédica 
Rua Roberto Frias, 4200-465 Porto, Portugal 

2 Instituto Superior de Engenharia do Porto 
Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal 

ats@isep.ipp.pt 
3 Instituto de Biologia Molecular e Celular 

Rua do Campo Alegre, 823, 4150-180 Porto – Portugal 
4 Faculdade de Engenharia da Universidade do Porto 

Rua Roberto Frias, 4200-465 Porto, Portugal 
{amendon, campilho}@fe.up.pt 

Abstract. Thin-Layer Chromatography images are used to detect and identify 
the presence of specific oligosaccharides, expressed by the existence, at 
different positions, of bands in the gel image. 1D gaussian deconvolution, 
commonly used for band detection, does not produce good results due to the 
large curvature observed in the bands. To overcome this uncertainty on the band 
position, we propose a novel feature extraction methodology that allows an 
accurate modeling of curved bands. The features are used to classify the data 
into two different classes, to differentiate normal from pathologic cases. The 
paper presents the developed methodology together with the analysis and 
discussion of the results. 

1   Introduction 

The separation of materials based on Thin-Layer Chromatography (TLC) is used as a 
mean for the diagnosis of lysosomal pathologies that can be identified in the patient’s 
urine. This analysis results are influenced by the salinity of the samples, which are 
very variable from patient to patient. Even for the same person, urine samples 
obtained at distinct time instants present different salinities, as a consequence of the 
ingested amount of liquids. 

In a chromatographic analysis the salinity of the sample affects the shape and 
location of the bands, and these effects are dependent on the sample concentration. 
The processes for urine desalinization are not always successful in solving this 
problem, as it was verified in many results. 

Several methodologies proposed in the literature for chromatographic image 
analysis do not account for this problem [1-3]. In fact, 1D gaussian deconvolution, 
commonly used for band detection, does not produce good results due to the large 
curvature observed in the bands. To overcome the uncertainty on position of bands, 
we propose a novel feature extraction methodology that allows accurate modeling of 
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curved bands. The extracted features are used to classify the data into two different 
classes, to differentiate normal from pathologic cases. 

Section 2 presents briefly the method developed by the authors for initial band 
location. The problems associated with band curvature are discussed in section 3, 
where some solutions are also proposed. In section 4, we present some results for the 
2-class classification problem, using the new features extracted from the image data. 
Finally, some conclusions are discussed in section 5. 

2   Detection of Lanes and Bands 

In a previous paper [4], we proposed a method for band detection based on the 
analysis of the lane mean intensity profile. This method can be concisely described in 
two steps. In the first step, the lane mean intensity profile is extracted just considering 
a narrow central slice of the image. This profile is processed in order to estimate the 
corresponding baseline, which is afterwards subtracted from the original data, aiming 
at producing a signal where the local maxima are associated with possible band 
positions. In the second step, features that characterize the bands are extracted. For 
this purpose, it is assumed that the signal is a mixture of gaussian curves, such that 
each individual component corresponds to a band. The separation and characterization 
of these curves was performed using two different approaches: EM-algorithm and 
Trust-Region nonlinear least square method. The parameters of the gaussian curves 
were subsequently used for the classification phase: the band position is the mean 
value of the curve, the band width is calculated as four times the standard deviation, 
and the band area is obtained from the mixture coefficient of the corresponding 
gaussian in the mixture. 

When the bands present an ellipsoidal shape, 1D analysis is adequate. However, 
this is not the case when the bands present a parabolic shape, demanding a different 
approach that takes into account this deformation. 

Figure 1 presents four TLC lanes related with the same disease. The first three 
lanes show illustrative examples, and the last one is a typical pattern of this particular 
disease. The two lanes represented in the top of the figure correspond to 
chromatographic analyses of the urine of one patient, both obtained from the same 
sample. The first lane corresponds to normal urine, while the second one shows the 
chromatographic result using desalinized urine.  

The comparison of the two separation results allows some comments, namely that: 

• some bands disappeared with the desalinization process, causing a loss of 
relevant information; 

• some bands have parabolic shape in the normal lanes and linear shape in the 
desalinized lanes; 

• in the same lane, bands can  present different curvatures.  

From the first observation it is possible to conclude that the desalinization process 
may not be a good practice as it introduces distortions that will negatively affect the 
classification process. 
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Fig. 1. Results of chromatographic separation for patients with the same disease. The band 
positions estimated by the algorithm are represented by dashed lines. 

After the application of the original band separation algorithm described before, an 
accentuated variability in the position of the characteristic bands for the same class 
was noticed. This fact can be observed when comparing the band positions estimated 
by the algorithm for the third lane with the other three examples. The principal reason 
for the incorrect localization of the bands is that the estimation based on the analysis 
of a 1D profile is unable to cope with the accentuated curvature, as the extraction of 
curvature derived information demands a 2D analysis methodology.   

The identification of this problem lead us to the conclusion that the information 
obtained from the 1D profile is insufficient to characterize a band, and also that the 
information related with the curvature is an essential aid for the classification phase. 

3   Band Characterization 

The image analysis methodology developed to solve the characterization problems 
raised by the presence of curved bands on TLC image lanes is described in the 
following sections. With this goal in mind, 2D information is obtained based on the 
analysis of several parallel 1D profiles. The individual results are grouped together 
and a set of band features are derived. 

3.1   Band Shape Characterization  

In the lanes with desalinized or low saline concentration urine, bands present an 
ellipsoidal shape with its major axis perpendicular to the development direction of the 
chromatographic separation process. However, if the saline concentration is high, the 
bands usually present curved shapes, similar to those observed in figure 1. 
 This shape can be thought as a result of a deformation, where the major axis 
acquires a parabolic profile.  
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 Based on the assumption of a parabolic deformation, our main interest is the 
determination and characterization of the profile associated with every band resulting 
from the separation of Gaussian components. 
 Let us consider an orthonormal axis system defined by the lane central axis, with 
origin on the initial lane position (position of the first band of the lane). The axis scale 
is defined using the position of lactose as unitary distance reference. Figure 2 
illustrates the axis system for that particular lane. The reference lane of the image, 
with the lactose position used for setting the scale unit, is also represented in the same 
figure. 

 

Fig. 2. TLC lanes examples: top- normal class; middle – abnormal class; bottom – lactose 
reference. Lane axis system is marked on the middle lane. 

For each band, we look for a profile given by 

2y ax bx c= + +  (1) 

where a and c are, respectively, the curvature and central position parameters of each 
band. In an ideal symmetric band, the value of b is null; if the band has an ellipsoidal 
shape, then the parameter a is also zero. 

In what concerns the estimation of the band position feature for classification 
purposes, the basic idea is that the c value, which corresponds to the initial band 
position estimated by the original algorithm, is not the correct solution. Instead, a 
“corrected” band position, derived from the band parabolic profile, must be calculated 
and used as a feature for classification. 

3.2   Parameter Estimation 

For estimating the parameters of the approximation parabola we need to obtain 2D 
information from the lane region where the band is located. 2D analysis for this kind 
of images has already been suggested by some authors, as a solution for the band 
detection problem [1-2], as well as for a better characterization of bands [3]. 
However, none of these approaches consider the determination of band profiles.  
 When the lane is divided into several strips parallel to the lane central axis, from 
each of these strips a 1D profile similar to the central one can be obtained. After the 
analysis of these parallel profiles using the local maxima position detection, a specific 
band is expected to be represented by a local maximum in each of these parallel 

x 1 y 
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profiles. As a consequence, some sets of points correspond to effective bands, while 
others are mainly noise.  
 The results of strip analysis are illustrated in figure 3, where the detected maxima 
are marked. A visual observation of these results allows the identification of several 
coherent sets of points associated with bands, but most of the points located on the 
right part of the figure are essentially erroneous detection results.  

 
Fig. 3. Marks of the estimated locations of the bands, and representation of the lane central line 

The next step is the assignment of the initial set of unclassified pixels to one or 
more bands, using a sequential clustering process. The grouping starts with the 
separation of all detected points into two different sets, corresponding, respectively, to 
the points above (top set) and bellow (bottom set) the central line. From each of these 
sets, subgroups are generated containing the pixels belonging to the same band. For 
this purpose, each subgroup is initialized with the points at the farthest distance from 
the central line; the inclusion of new points is a subgroup is controlled by the distance 
between the pixel being currently analyzed and the most recently included one. For 
each subgroup, this procedure is iterated until the distance between the current 
candidate to inclusion and the point previously included is below a predefined 
threshold. This limit was calculated considering that, on adjacent strips of ideal 
ellipsoidal shape bands, the distance between the two local maxima is the strip width 
as these points are vertically aligned; for curved bands, the distance threshold is 
calculated assuming a maximal vertical misalignment of 60 degrees. When a point 
cannot be included in none of the already created subgroups, a new subgroup is 
constituted.  

 
Fig. 4. Schematic representation of the process for including local maxima into subgroups 

A schematic representation of the process for point inclusion is shown in figure 4. 
In this figure, strips are marked with dashed lines, and  is the angle that measures the 
vertical misalignment. 

A band is defined by the union of the closest two subgroups, one from the top set 
and the other from the bottom set. The criteria used for this purpose is the vertical 
distance between the subgroup centroids. After the conclusion of this union step, the 
subgroups that could not be associated with an existing band are once again verified. 

θ 
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If some intense local maxima are found, it is assumed that they belong to an 
undetected band and the subgroup is also considered.  

For the identified bands, profile characterization is obtained by quadratic 
regression using the associated sets of local maxima. 

Several considerations are taken into account to determine the final values of the 
parabolic parameters associated with each band: 

- if the curvature (parameter a) is negative, this parameter is set to zero; 
- the calculated value for b is ignored and set to zero. 

As a final result, only a and c values are considered for the band feature set. All the 
other characteristics such as the width, height, and area delimited by the band, are 
extracted using the method described in section 2. The goodness of fit was evaluated 
by the coefficient of determination, 2r [9]. Figure 5 shows the final approximation 
curves for the local maxima detected in the image of figure 3. 

 

Fig. 5. Approximation of band profiles by parabolic functions. For the bands 3 to 12, the 
coefficient of determination range is [0.76; 0.98]. 

4   Feature Extraction and Classification 

The main problem to be addressed is the extraction of a feature set for complete band 
characterization. For every band in the lanes, the following features are measured: 
width, area (both determined by the method described in section 2), and the 
coefficients from the parabolic profile. The basic idea is to combine these two last 
values, in order to generate a “corrected” band position.  

A “corrected” band position is defined from equation (1) as the y-value for a 
specific x-value. Aiming at determining the ideal x-value for establishing the best 
“corrected” band position feature, we have decided to evaluate the influence of x on 
the classification results for different values of x. In the defined axis system (fig. 2), 
the x variable can take values in the [−0.1, +0.1] interval.  

Our problem follows a typical supervised learning approach. Two classifiers based 
on parametric learning, linear (ldc) and quadratic (qdc), were selected. Two other 
classifiers, without parametric learning, were also used: the K-Nearest Neighbour 
Classifier (knn) with different values for K, and the Parzen density classifier (pdc) 
with maximum likelihood estimation for the smoothing parameter [5]. 

The dataset consists in 88 lanes, 49 classified as normal and 39 as abnormal. The 
abnormal group contains three different diseases. 

For classification purposes, only four bands per lane are used. The classifier is able 
to select the positions of the four bands to be analyzed, by comparison with four 
reference positions. Three of these reference positions correspond to the three 
pathological cases under study, while the forth is taken from the normal set. For each 
abnormal case, the reference corresponds to the position of the band that best 
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characterizes the disease, as mentioned in [6-8]. The reference associated with normal 
lanes takes a value slightly greater than 1 (position of the lactose band), taking into 
account the typical distribution of band positions in normal cases (see figure 2). 

The dataset was divided into two groups: a training set with 50% of the samples 
randomly selected, and, a test set with the remaining samples. The training set was 
used for a dimensionality reduction through principal components analysis.  The main 
conclusion was that, to preserve a significant fraction of the total variance, only 6 
components are necessary. 

As aforementioned, the extracted features, as a function of x to calculate the 
“corrected” band position, were evaluated with the four classifiers: ldc, qdc, knn and 
pdc. The classification results are presented graphically in figure 6.  

For all classifiers, the results show an increasing classification performance when 
the band position feature is a “corrected” value approximately defined near the two 
end points of the parabolic profile. This result is consistent with the visual observation 
of the two top lanes of figure 1, as a better agreement between bands position can be 
achieved if, for the curved bands on the top lane, the “corrected” positions are 
considered. 

   

Fig. 6. Classification performance using different values for “corrected” band position feature: 
left -ldc, qdc and pdc; right – knn for different values of k 

After the analysis of the classification results shown in figure 6, the value x=0.08 
was selected for obtaining the “corrected” band position feature. Table 1 presents the 
classification matrices for the ldc and pdc classifiers, obtained with these particular 
set of features. 

Almost all normal cases in the test set were correctly classified (only a 
misclassified case was reported for the pdc classifier). However, the classification 
error is still high for the abnormal class. A possible justification for these facts is the 
predominance, for normal cases, of the bands in the lane area to the right of lactose, 
while the selected three diseases present bands along the whole chromatogram. In 
fact, the use of a single band for disease/normal class characterization is probably not 
sufficient in this situation, and an approach based on the band distribution pattern 
should be followed instead. 
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Table 1. Classification matrices for the linear (left matrix) and parzen classifiers (rigth matrix). 
The classification errors are 16% and 14% respectively. 

 

5   Conclusions and Future Work 

In this paper, a novel methodology for the characterization of bands in Thin-Layer 
Chromatographic images is proposed. The new features extracted allow an accurate 
modeling of the curved bands that normally are present when normal urine samples 
are used on the chromatographic separation process. These features are utilized to 
classify data into two different classes, to differentiate normal from pathologic cases. 
The results show that the classifiers have better performance when the curvature of 
the bands is used to correct the initial band position.  

As future work, a new approach based on a band distribution pattern should be 
tried for abnormal/normal class characterization. 
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Abstract. Image and statistical analysis are two important aspects
of microarray technology. Of these, gridding is necessary to accurately
identify the location of each spot while extracting spot intensities from
the microarray images and automating this procedure permits high-
throughput analysis. In this paper, an automatic gridding and spot quan-
tification technique is proposed, which takes a microarray image (or a
sub-grid) as input, and makes no assumptions about the size of the spots,
and number of rows and columns in the grid. The proposed method is
based on a weighted energy maximization algorithm that utilizes three
different energy functions. The method has been found to effectively de-
tect the grids on microarray images drawn from databases from GEO,
Stanford genomic laboratories and on some images obtained from private
repositories.

1 Introduction

Microarrays, widely recognized as the next revolution in molecular biology, en-
ables scientists to analyze genes, proteins and other biological molecules on a
genomic scale [2,8]. Image processing and analysis is an important aspect of mi-
croarray experiments, one which have a potentially large impact on the identifi-
cation of differentially expressed genes. Image processing for microarray images
includes three tasks: spot gridding, segmentation and information extraction. In
the analysis of microarray experiments gridding techniques based on distribution
of pixel intensities play an important role, since automizing this process leads to
high throughput analysis, including segmentation [7], normalization, and clus-
tering [2]. Rougly speaking, gridding consists of determining the spot locations
in a microarray image (typically, in a sub-grid). The problem that we consider in
this paper takes a matrix of pixel intensities (or a sub-grid) as input and makes
the following assumptions: (1) number of rows of spots unknown, (2) number of
columns of spots unknown, (3) boundaries of the sub grid known, and (4) size
of the spot unknown. It can be stated more formally as follows.

Consider an image (matrix) A = {aij}, i = 1, ....,n and j = 1, ....,m, where
aij ∈ [0, p], and p is the maximum pixel intensity (usually 65,536 in a TIFF
image). The aim is to obtain a matrix G (grid) where G = {gij}, i = 1, ....,n and
j = 1, ....,m, gij = 0 or gij = 1 (a binary image), where 0 means that gij belongs
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to the grid. This image could be thought of as a “free-form grid”. However, in
order to strictly use the definition of a “grid”, our aim is to obtain vectors v and
h, v = [v1, ...vn], h = [h1, ...hn], where vi ∈ [1,m] and hj ∈ [1,n]. Informally
speaking, the latter implies that the grid is composed of lines (not necessarily
equally-spaced), which are parallel to the vertical axis or the horizontal axis.

Most of the previous approaches have used different application specific con-
straints, making some assumptions of the above-mentioned parameters, and pro-
ceeding in a semiautomatic manner. These parameters are not always available,
and have to be specified by the user. For example, when the size of the spots
is not known, the user needs to manually count the number of pixels in order
to estimate the appropriate size. Approaches that need this kind of information
available include Markov random fields (MRF), which is a well known approach
that applies different application specific constraints and heuristic criteria [5].
Another gridding method is the mathematical morphological model, which rep-
resents the image as a function and applies erosion operators and morphological
filters to transform it to other images resulting in shrinkage and area opening
of the image and which further helps in removing peaks and ridges from the
topological surface of the images [1,6]. Jain [3], Katzer [4], and Stienfath’s [10]
models are integrated systems for microarray gridding and quantitative analy-
sis. They impose different kinds of restrictions on the print layout or materials
used. Stienfath’s model requires filter arrays with radioactive label different from
glass arrays. Jain’s model requires the rows and columns of all grid to be strictly
aligned. Katzer’s model requires gaps between the grids and most of the other
existing approaches do not aim at solving the problem automatically.

In this paper, we propose a new energy maximization based approach for
automatic gridding of microarray images. The method that we propose relaxes
three assumptions made by traditional techniques, and is shown to be very ac-
curate in standard microarray databases.

2 A Weighted Energy Maximization Approach

Our approach to find the grid lines in microarray images is based on a series
of steps, which involve weighted energy maximization functions. We separate
the problems into two parts. First we find the spot size (or spot width) using
r arbitrary pixels in the microarray images using four different modules, and
one of three weighted energy functions. Then, we capture every spot in the
microarray image using the spot size and a recursive estimator to correct the
spot size, and by finding the local maxima within the range of spot width. The
weighted energy functions are described below, while the algorithm involved in
the proposed method are discussed in the next section.

The energy function takes a sub-image (a matrix of pixel intensities) as input.
It computes the energy of the sub-image by weighting each pixel based on a
parametric probabilistic distribution, where the underlying random variable is
the distance from the center of the sub-image to the corresponding pixel. In our
approach, we propose to use three different parametric distributions, namely
uniform, exponential, and normal.
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Consider a sub-image, B = {bij}, where i = 1, . . . ,nb, j = 1, . . . ,mb, bij ∈
[o, p], p is the maximum pixel intensity, and xij = [xij , yij ] represent the co-
ordinates of the pixels. Note that x represents the relative position in B. The
different functions are described below.

1. Uniform energy function: Assuming that the weights for the pixels are
assigned by means of a bivariate uniform distribution, e.g. they are all equally
weighted, the energy for B is computed as follows:

E =
nb∑
i=1

mb∑
j=1

bij , (1)

2. Exponential energy function: For this function, we first estimate the
mean of the distribution as c = [n/2,m/2]. The distance from each pixel xij

to the center is then computed as dij = [(c − x)t(c − x)]. Then, assuming
that dij is an exponential random variable, the weighted energy is computed
as follows:

E =
nb∑
i=1

mb∑
j=1

bijλe
−λdij , (2)

where λ is the parameter to the distribution.
3. Normal energy function: Assuming that the weighting function is given

by a bivariate normal distribution, whose mean is c, and whose covariance

is Σ =
[
σ2 0
0 σ2

]
, the energy is computed as follows:

E =
nb∑
i=1

mb∑
j=1

bij
1

2π|Σ| 12 e
− 1

2 (xij−c)tΣ−1(xij−c) , (3)

Thus, the only parameter needed is the variance of the distribution, σ2.

2.1 Gridding Algorithms

The first module involved in our method is the local maximum energy spot
algorithm, which takes a sub-grid, A, a starting pixel, p, a step size, s, a
“scanning” range, g, and finds the maximum energy sub-matrix of size nn ×
nb. The procedure that formalizes this algorithm is shown in Algorithm Lo-
cal Maximum Energy Spot. The algorithm proceeds by scanning a “por-
tion” of the sub-grid, at arbitrary positions which are s pixels apart. Once the
maximum energy is found at these arbitrary positions, the energy is maximized,
locally, by a “greedy” procedure.

The second module proceeds by scanning the image horizontally to the left
and then to the right. The aim is to find the positions of the “peaks” of energy
along the horizontal line. The procedure that implements this algorithm can be
found in [11]. This procedure receives (as input) a starting pixel that is obtained
from the greedy procedure discussed above, p = [h, v], and the sub-grid A. It
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returns an array that contains the positions of the peaks along the horizontal
line. The scanning to the right of h is done in a similar manner, and can also be
found in [11].

The vertical spot detection algorithm is similar to the horizontal one de-
scribed above, except that the former scans to the top and bottom of A, starting
from v. The output of the algorithm is a vector, v, which contains the positions
of the energy peaks. The formal algorithm can also be found in [11].

2.1.1 Capturing All Spot Centers

Once the peaks with maximum energy have been found for the horizontal and
vertical line, for the r selected points, the aim is now to find all the spots in
the microarray image (or sub-grid). To achieve this, we first estimate the spot
width by computing the difference between the positions of the peaks, which are
stored in hpeak (or equivalently for vpeak). Thus, an estimate of the spot width
mean is computed as follows:

μ̂i =
1

|hpeak|
|hpeak|−1∑

j=1

hpeak[j]− hpeak[j + 1] (4)

This is done for all r spots selected, obtaining one set of means for the
horizontal array, and another for the vertical array. Using the resulting means,
we then compute the mean of the means (for the vertical array is similar), as
follows:

μ̂h =
1
r

r∑
j=1

μ̂j (5)

Using this mean, we find all “potential” spot centers as follows. Starting from
the initial pixel, p = [h, v], move horizontally to the left (and to the right) μ̂h

pixels, and find the maximum local energy, which is at pixel pmax, and update
μ̂h recursively as follows:

μ̂h =
r

r + i
μ̂h + hi−1 − hmax (6)

Once a row is exhausted, the pointer is moved vertically using μ̂v, and updat-
ing it recursively as in (6). As a result, the “potential” spot centers are obtained
and stored in a matrix, C = {cij}, where cij = [xij , yij ], i = 1, . . . ,nc, j =
1, . . . ,mc.

Using these potential spot centers, the aim now is to find the actual spot
centers, and subsequently the corresponding grid. To achieve this, we construct
a histogram for all the horizontal positions in C, xij (and another histogram
for all the vertical positions, yij), by counting the number of occurrences of i,
i = 1, . . . ,n, in C. The corresponding histogram for a sample microarray image
(a sub-grid) is depicted in Figure 1. The peaks observed in the figure denote
the most likely positions for the columns (rows) of spots. Once this histogram is
constructed, the column (and row) lines are found by starting from the maximum
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Fig. 1. The histogram for the peaks obtained while traversing (horizontally left) an
image from the SMD database

peak in the histogram, moving μ̂h (which has been computed in (6)) pixels, and
finding a local maxima (a peak in the histogram). The estimate for the spot
width can be adaptively updated at this point, by keeping the running estimate.
This process is repeated until all the peaks are exhausted. The formal algorithm
that implements the procedure to find the grid columns and rows can be found in
[11]. It is not difficult to see (observing Figure 1) that finding the “peaks” of the
histogram is a straightforward task, once the potential spot centers are given.
It is, however, difficult to predict where the spot centers are, when the image
is rotated or the grids are distorted. This is a problem that we are currently
investigating.

3 Experimental Results

To perform the tests we collected the raw data (original microarray images) from
the cancer database from GEO1, and yeast cell cycle microarray images from
Stanford microarray database (SMD) [9].

We have analyzed the efficiency of our method using the uniform energy
function, where g = 40, and nb = mb = 10, by means of a numerical analysis.
The results have been obtained for images from SMD and GEO, and are shown

1 Electronically available at ftp://ftp.ncbi.nih.gov/pub/geo/data/geo/raw data/
samples/
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Table 1. Resulting accuracy for the proposed gridding method applied to microarray
images drawn from the Stanford dataset

Image Sub-grid NS NS R NS M Accuracy NP M Error

EE-channel 1 2 1828 1816 12 99.34 21 0.046
EE-channel 2 2 1837 1823 14 99.24 30 0.071
EE-channel 2 2 1886 1835 51 97.30 78 0.172
cdc-channel1 3 2022 2008 15 99.32 32 0.083
cdc-channel2 2 2039 2017 24 98.91 45 0.116
EE-channel 1 3 1837 1823 14 99.24 38 0.067
EE-channel 2 3 1828 1816 21 99.34 54 0.118
EE-channel 2 4 1872 1811 61 96.74 126 0.269
PE-channel 1 4 1904 1852 52 97.27 75 0.127
EE-channel 2 3 1881 1823 58 96.91 119 0.263
Average 98.36 0.133

Table 2. Accuracy in spot detection and pixel inclusion for the proposed method on
microarray images drawn from the GEO dataset

Image Sub-grid NS NS R NS M Accuracy NP M Error

GSM17163 2 340 340 0 100.00 0 0.000
GSM17186 5 380 380 0 100.00 0 0.000
GSM17137 5 377 373 4 98.94 5 0.040
GSM17192 5 422 422 0 100.00 0 0.000
GSM17190 16 354 354 0 100.00 0 0.000
GSM17192 13 410 410 0 100.00 0 0.000
GSM17186 12 147 140 7 95.24 21 0.446
GSM17192 6 405 405 0 100.00 0 0.000
GSM17193 4 429 426 3 99.30 5 0.035
GSM17137 2 424 420 4 99.06 7 0.050
Average 99.25 0.057

in Tables 1 and 2 respectively. The second column shows the sub-grid number
used in the experiment. The third column contains the number of spots in the
sub-grid, NS. The fourth column contains the number of “recognized” spots. The
fifth column displays the number of spots which are not entirely contained in
the grid cell, or which are misplaced, NS M. The percentage of spots (Accuracy)
that are correctly placed inside the grid cell is shown in the sixth column. The
total number of pixels, which are misplaced, NP M, is displayed in the seventh
column. The eight column contains the percentage of pixels (Error) which are
not included in the grid cell.

From the tables, we observe that the proposed method is quite accurate in
finding the grids for the microarray images tested. In both databases, SMD and
GEO, the percentage of spots which are correctly placed in their corresponding
grid cells is very high, exceeding 98%. Note that in this case, we are counting the
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Fig. 2. The resulting grid for an image (GSM17137, grid 9) which was drawn from the
GEO database

number of spots which contain all their pixels in the corresponding cell, while
those that contain at least one pixel outside the cell are counted as misplaced.
Regarding the number of pixels which fall outside the grid cell, we also observe
that the proposed method is quite efficient, yielding, on the average, around 1%
and 0.5% for SMD and GEO respectively. In most of the images, the accuracy
is exactly (or nearly) 100%, while in a couple of images the percentage is below
95%, which indicates that these images contain a relatively high amount of noise.
To visually observe the accuracy of the proposed method, in Figure 2 we show the
resulting grid, and the corresponding image (sub-grid 9) from image GSM17137.
The figure corroborates the accuracy of the proposed method in obtaining the
grid 100% accurately, despite the image contains noise and many spots with low
intensity.

4 Conclusion

In this paper, we propose a gridding approach, which is different from the existing
techniques, as we make no assumptions about the spot size, rows and columns
of the spots in the image or grids in the microarray image.

We have visually demonstrated that our approach is quite accurate in ob-
taining the grid for microarray images drawn from standard databases. In the
numerical comparison, the accuracy of our method has been found to be almost
100%, when counting the number of spots which are completely enclosed in a
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grid cell, and the number of pixels which belong to the spot, and are enclosed
in the cell too.

As a result of our study, we recommend that some additional work be done
in this area. In this paper, we only consider those sub-girds which have no
rotations. Although this is not the case always, in some case the images become
rotated after the spots are printed on the glass chip. This problem, which is
quite complicated, is currently being investigated. Also, additional testing on
other datasets, and using other energy functions are topics to investigate.
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Abstract. In this paper a novel approach to the impulsive noise re-
moval in color images is presented. The proposed technique employs the
switching scheme based on the impulse detection mechanism using the so
called peer group concept. Compared to the vector median filter, the pro-
posed technique consistently yields better results in suppressing both the
random-valued and fixed-valued impulsive noise. The main advantage of
the proposed noise detection framework is its enormous computational
speed, which enables efficient filtering of large images in real-time ap-
plications. The proposed filtering scheme has been successfully applied
to the denoising of the cDNA microarray images. Experimental results
proved that the new filter is capable of removing efficiently the impulses
present in multichannel images, while preserving their textural features.

1 Introduction

In this paper a novel approach to the detec-

Fig. 1. Two-channel image of the
cDNA microarray

tion and removal of impulsive noise in color
images is presented. The main advantage of
the described technique is its simplicity and
enormous computational speed. The proposed
method is using the well known vector median
filter for the suppression of the detected noise,
however different techniques can be used for
the denoising of the previously detected im-
pulses.

The cDNA microarray is a popular and ef-
fective method for simultaneous assaying the
expression of large numbers of genes and is
perfectly suited for the comparison of gene ex-
pression in different populations of cells. A mi-
croarray is a collection of spots containing DNA, deposited on the surface of a
glass slide. Each of the spots contains multiple copies of a single DNA sequence.
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The probes are tagged with fluorescent reporter molecules, which emit de-
tectable light when stimulated by laser. The emitted light is captured by a
detector, which records the light intensity. When the laser scans the entire slide,
a large array image containing thousands of spots is produced. The fluorescent
intensities for each of the two dyes are measured separately, producing a two-
channel image, (Figs. 1, 8).

The intensities provided by the array image can be quantified by measuring
the average or integrated intensities of the spots. However, the evaluation of
microarray images is a difficult task as the natural fluorescence of the glass slide
and non-specifically bounded DNA or dye molecules add a substantial noise floor
to the microarray image. To make the task even more challenging, the microar-
rays are also afflicted with discrete image artifacts, such as highly fluorescent
dust particles, unattached dye, salt deposits from evaporated solvents, fibers
and various airborne debris. So, the task of microarray image enhancement and
especially the removal of artifacts is of paramount importance, [1].

2 Impulsive Noise Removal

The majority of the nonlinear, multichannel filters are based on the ordering of
vectors in a sliding filter window. The output of these filters is defined as the
lowest ranked vector according to a specific vector ordering technique.

Let the color images be represented in the RGB color space and let x1, x2,
. . ., xn be n samples from the sliding filter window W . Each of the xi is an
μ-dimensional multichannel vector, (in our case μ = 3). The goal of the vector
ordering is to arrange the set of n vectors {x1,x2, . . . ,xn} belonging to W using
some sorting criterion.

The ordering based on the cumulative distance function R(xi) is usually de-
fined as: R(xi) =

∑n
j=1 ρ(xi,xj), where ρ(xi,xj) is a function of the distance

among xi and xj . The ordering of the scalar quantities according to R(xi) gen-
erates the ordered set of vectors, [2,3].

One of the most important noise reduction filters is the vector median. In the
case of gray scale images, given a set W containing n samples, the median of the
set is defined as x(1) ∈ W such that

∑
j

∣∣x(1) − xj

∣∣ ≤∑j |xi − xj | , ∀ xi,xj ∈ W .
Median filters exhibit good noise reduction capabilities, and outperform simple
nonadaptive linear filters in preserving signal discontinuities.

As in many applications the signal is multidimensional, in [4] the Vector Me-
dian Filter (VMF) was introduced, by generalizing the scalar median definition
using a suitable vector norm denoted as ‖ · ‖. Given a set W of n vectors, the
vector median of the set is defined as x(1) ∈W satisfying∑

j

∥∥x(1) − xj

∥∥ ≤∑
j
‖xi − xj‖ , ∀ xi,xj ∈ W . (1)

3 Proposed Noise Detection Algorithm

The main objective of the noise reduction algorithms is to suppress noise, while
preserving important image features like edges, corners or texture.
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Over the years various impulsive noise reduction algorithms have been pro-
posed, [5,6,7]. The main drawback of many standard filters is the fact that they
fail to distinguish between the original uncorrupted pixels and pixels affected by
the noise process, which leads to poor visual quality of the restored images.

This is also a serious drawback of the very popular Vector Median Filter. It
is quite easy to notice that the VMF offers good performance in the removal
of impulsive noise, but at the same time it introduces unnecessary changes to
the pixels not corrupted by the noise process, which leads to extensive image
blurring, destruction of image texture and even artifacts like artificial streaks.
This behavior of the VMF can be easily observed in Fig. 2d in which the the black
pixels indicate those image pixels that were changed by the VMF algorithm. The
test image was distorted by 5% random valued impulsive noise and the VMF
replaced 80.7% of the image pixels.

Let us now modify the concept of the peer group introduced in [8] and ex-
tensively used in various filtering designs, mostly under the name of extended
spatial neighborhood, [9].

The peer group P(xi,m, d), in this paper will denote the set of m neighbors
xj of the central pixel of W , which satisfy he following condition: ‖xi−xj‖ ≤ d,
xj ∈ W,xj 	= xi. In other words, the peer group P associated with the central
pixel xi of W is a set of m pixels which are in neighborhood relation with xi,
whose distance to the central pixel is not exceeding d, (Fig. 3).

(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of the efficiency of the new filtering design: a) test image GOLD-
HILL contaminated by random valued impulsive noise of p = 5%, b) black dots show
the pixels disturbed by noise, c) image restored with VMF, d) difference between the
original and the VMF output, e) new filter output, (m = 3, d = 50) and besides the
corresponding residual image f)
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The proposed impulsive noise detection algorithm works as follows: if there
exists a peer group P(xi,m, d), which means that at least m neighbors of xi

satisfy the closeness condition, then the pixel xi is treated as not corrupted by
noise, otherwise it is declared to be noisy and can be filtered with any efficient
noise reduction algorithm.

As the output is switched between the identity and a filtering operation,
various filtering designs can be used instead of the VMF, [5]. In this paper we
have chosen the VMF mainly to demonstrate the efficiency and extremely low
computational effort of the proposed noise detection framework.

The low computational complexity stems

Fig. 3. The concept of the peer
group centered at x1, (m = 5)

from the fact that when the peer group pa-
rameter m is low, for example m = 2, then
if the algorithm finds two pixels, which are
close enough to the central pixel under con-
sideration, the pixel xi is declared as noise-
free and the sliding window moves to the
adjacent pixel. Very often only a few calcula-
tions of the distances ‖xi−xj‖, xj ∈W are
needed to classify the pixel as undisturbed
by noise. The minimal number of calcula-
tion of the distances needed to classify the
pixel is thus equal to m and the maximal

number of distances is n−m, where n is the number of pixels contained in the
filtering window W . The number of distances needed for the detection of im-
pulses is extremely low when compared with the number of distances needed by
the VMF algorithm which is equal to n(n− 1)/2.

4 Simulation Results

In many practical situations, images are corrupted by noise caused either by
faulty image sensors or due to transmission errors resulting from man-made
phenomena such as ignition transients in the vicinity of the receivers or even
natural phenomena such as lightning in the atmosphere.

The impulsive noise is often generated by bit errors, especially during the
scanning or transmission over noisy information channels. In this paper the noisy
signal is modelled as xi = {xi1,xi2,xi3}, where xik = vik with probability π and
oik (original, undisturbed value) with probability 1− π, and the contamination
component vik is a random variable. We will assume two models, which will be
called impulsive salt & pepper or fixed-valued noise, when vik = {0, 255} and
impulsive uniform or random-valued noise, when vik ∈ [0, 255]. It can be noticed
that the first model is a special case of the uniform noise, as this noise can
take on only two values 0 or 255 with the same probability, assuming 8-Bit per
channel, color image representation.

In both noise models the contamination of the color image components is
uncorrelated, and the overall contamination rate is p = 1 − (1 − π)3. For the
measurement of the restoration quality the commonly used Root Mean Square



994 B. Smolka and K.N. Plataniotis

(a) (b) (c)

(d) (e) (f)

Fig. 4. Dependence of the PSNR on parameters m, d for the LENA image contam-
inated by salt & pepper (a-c) and uniform (d-f) impulsive noise for p = 10, 20, 30%

Error (RMSE) expressed through the Peak Signal to Noise Ratio (PSNR) was
used, as the RMSE is a good measure of the efficiency of impulsive noise sup-
pression. The PSNR is defined as

PSNR = 20 log10

(
255√
MSE

)
, MSE =

N∑
i=1

μ∑
k=1

(xik − oik)2

Nμ
, (2)

where N is the total number of image pixels, and xik , oik denote the k-th
component of the noisy image pixel channel and its original, undisturbed value
at a pixel position i , respectively.

The parameters m and d provide control over the performance of the impul-
sive noise detection process. For its assessment a series of simulations on natural
images was performed.

With regard to the parameter m of the peer group P the simulation results
show that when the contamination intensity is low, good results are achieved for
m = 2 in case of both the fixed valued and impulsive noise, (Figs. 4 a,d). For
higher noise probability p, the images contaminated by fixed valued impulsive
noise require m = 3, (Figs. 4 b,c). Surprisingly, good results are achieved for
m = 2, when the images are contaminated by random valued noise, (Figs. 4 e,f).
As the filtering results are not very sensitive to the choice of m, we used m = 3
for the comparisons with the VMF.

The experiments conducted on a broad variety of natural color images have
shown, [10,11] that the parameter d should be equal to about 50, (Fig. 6) as such
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a setting guarantees good performance of the proposed switching scheme, inde-
pendently on the image characteristics, noise model and contamination intensity.

The main advantage of the proposed

Fig. 5. Filtering efficiency of the pro-
posed noise removal algorithm in
comparison with the VMF for salt &
pepper noise for LENA image with
d = 50 and m = 3

noise detection technique is its enormous
computational speed. The comparison with
the VMF, presented in Fig. 5 shows that
the new technique is for low contamination
intensities 2-4 times faster than the VMF.

The efficiency of the proposed technique
can be observed in Fig. 7, in which zoomed
parts of the test color images were dis-
torted by uniform impulsive noise and re-
stored with VMF and with the new fil-
ter. As can be observed the incorporated
switching scheme enables the preservation
of edges and fine image details. This be-
havior is also confirmed in Fig. 2 f,g, which

shows that the new filter rejects the impulses and replaces only a small fraction of
the undisturbed pixels, (in this example the contamination intensity was p = 5%
and only 6.7% of the pixels were replaced by the VMF).

(a) (b)

Fig. 6. Dependence of PSNR on parameters d and p for the test images LENA cor-
rupted by salt & pepper (a) and uniform (b) impulsive noise for m = 3
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(a) (b) (c) (d)
Fig. 7. Illustrative examples of the filtering efficiency: a) zoomed parts of the color
test images, b) images contaminated by 5% uniform noise, c) restoration achieved with
the VMF, d) filtering results achieved using the new noise detection technique

(a) (b) (c)

(d) (e)

Fig. 8. Filtering efficiency on the cDNA images: a) noisy image, b) restored with the
new technique, c) restored with VMF, d) visualization of the difference between the
noisy image and its restored version corresponding to the new filter, e) error images
corresponding to VMF, (see also Fig. 2)
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The good performance of the proposed switching scheme can be also observed
in Fig. 8, which depicts the results of impulsive noise suppression in cDNA
microarrays. It can be noticed that the proposed filter removes the spikes only,
while preserving the textural information needed for the assessment of the spots
intensity. This behavior enables better evaluation of the spots intensities as the
impulsive noise is efficiently removed and does not affect the measurements of the
mean spot’s intensity. Additionally the removal of impulses and small clusters
enables further filtering of the Gaussian noise with fast linear techniques.

5 Conclusion

In this paper a new approach to the problem of impulsive noise detection and
removal in color images has been presented. The main advantage of the proposed
technique is its extraordinary high computational speed, which makes it attrac-
tive for real-time applications and denoising of very large images, like the cDNA
microarrays. The noise detection scheme has been coupled in this paper with the
vector median filter, however the computational speed can be further increased
when employing a less computationally demanding noise removal algorithm.
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Abstract. Since microcalcification clusters are primary indicators of
malignant types of breast cancer, its detection is important to prevent
and treat the disease. This paper proposes a method for detection of
microcalcification clusters in mammograms using sequential Difference
of Gaussian filters (DoG). In a first stage, fifteen DoG filters are applied
sequentially to extract the potential regions, and later, these regions are
classified using the following features: absolute contrast, standard devi-
ation of the gray level of the microcalcification and a moment of con-
tour sequence (asymmetry coefficient). Once the microcalcifications are
detected, two approaches for clustering are compared. In the first one,
several microcalcification clusters are detected in each mammogram. In
the other, all microcalcifications are considered in a single cluster. We
demonstrate that the diagnosis based on the detection of several micro-
calcification clusters in a mammogram is more efficient than considering
a single cluster including all the microcalcifications in the image.

1 Introduction

Breast cancer is one of the main causes of death in women and early diagnosis is
an important means to reduce the mortality rate. Mammography is one of the
most common techniques for breast cancer diagnosis, and microcalcifications are
one type of objects that can be detected in a mammogram. Microcalcifications
are calcium accumulations of 0.1 mm to 2 mm wide, and they are indicators of
the presence of breast cancer. Microcalcification clusters are groups of three or
more microcalcifications that may appear in areas smaller than 1 cm2, and have
a high probability of becoming a malignant lesion.

Nevertheless, the predictive value of mammograms is relatively low, compared
to biopsy. The causes of this low sensitivity [5] are the low contrast between the
cancerous tissue and the normal parenchymal tissue, the small size of microcal-
cifications and possible deficiencies in the image digitalization process. The sen-
sitivity may be improved having each mammogram be checked by two or more
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radiologists, with the consequence of making the process inefficient by reducing
the individual productivity of each specialist. A viable alternative is replacing one
of the radiologists by a computer system, giving a second opinion [2], [13].

Several methods have been proposed for detection of microcalcifications in
mammograms, like wavelets, fractal models, support vector machines, mathe-
matical morphology, bayesian image analysis models, high order statistic, fuzzy
logic, etc. The use of a Difference of Gaussian Filters (DoG) for detection of
potential microcalcifications has been addressed by Dengler et al. [4] and Ochoa
[11]. In this work, we developed a procedure that applies a sequence of Difference
of Gaussian Filters (DoG), in order to maximize the amount of detected proba-
ble individual microcalcifications in the mammogram (signals), which are later
classified by an artificial neural network (ANN) in order to detect real micro-
calcifications. Later, microcalcification clusters are identified. Additionally, the
hypothesis to be tested states that the diagnosis accuracy of the mammograms is
higher if it is based on the diagnosis of every microcalcification cluster detected
in the mammogram, instead of considering of all the microcalcifications in the
mammogram as a single cluster.

The rest of this document is organized as follows: in the second section, the
proposed procedure is described in detail. In the third section, the experimental
results are shown and discussed, and finally, in the fourth section, the conclusions
are presented, and some comments about future work are also mentioned.

2 Methods

The mammographic images used in this project were provided by The Mammo-
graphic Image Analysis Society [12]. The MIAS database contains 322 images,
and only 25 of them contain microcalcifications. Among these 25 images, 13 cases
are diagnosed as malignant and 12 as benign. The size of all images is 1024x1024
pixels, digitized at 8 bits. Several related works have used this same database
[3], [6], [7], [10].

The proposed solution model is shown in Figure 1. The general procedure
receives a digital mammogram (I) as an input, and it is conformed by five stages:
pre-processing, detection of potential microcalcifications (signals), classification
of signals into real microcalcifications, detection of microcalcification clusters
and classification of microcalcification clusters into benigns and malignants.

2.1 Pre-processing

The main objective of this stage is to eliminate those elements in the image that
could interfere in the process of identifying microcalcifications. A secondary goal
is to reduce the work area only to the relevant region that exactly contains the
breast. The procedure receives the original image as an input. First, a median
filter is applied in order to eliminate the background noise; second, a binary
image is created from the filtered image, where each pixel represents a 16x16
window centered in the corresponding pixel from the original image. If the gray
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Fig. 1. Proposed Model for Hypothesis Testing

average level of the window is below certain threshold (established empirically,
after visually analyzing the histograms of average gray level for several window
sizes), a zero value is placed in the binary image; otherwise, a unitary value is
placed. Third, an automatic cropping procedure is applied in order to delete the
background marks and the isolated regions, so the image will contain only the
region of interest. The result is a smaller image, with less noise.

2.2 Detection of Potential Microcalcifications (Signals)

This stage has the aim of detecting the mass centers of the potential microcal-
cifications in the image (signals). The pre-processed image of the previous stage
is the input of this procedure. The optimized difference of two gaussian filters
(DoG) is used for enhancing those regions containing bright points. A gaussian
filter is obtained from a gaussian distribution, and when it is applied to an im-
age, eliminates high frequency noise, acting like a smoothening filter. A DoG
filter is built from two simple gaussian filters. These two smoothening filters
must have different variances. When two obtained images after applying each
filter separately are subtracted, an image containing only the desired frequency
range is obtained. The DoG filter is obtained from the difference of two gaussian
functions, as follows: it is shown in equation 1, where x and y are the coordinates
of a pixel in the image, k is the height of the function and σ1 and σ2 are the
standard deviations of the two gaussian filters that construct the DoG filter.

DoG(x, y) = k1e
(x2+y2)/2σ2

1 − k2e
(x2+y2)/2σ2

2 (1)

The resultant image after applying a DoG filter is globally binarized, using a
threshold. In Figure 2, an example of the application of a DoG filter is shown.
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Fig. 2. Example of application of a DoG filter (5x5, 7x7)

A region-labeling algorithm allows the identification of each one of the points.
Then, a segmentation algorithm extracts small 9x9 windows, containing the
region of interest whose centroid corresponds to the point centroid. The size of
the windows is adequate for containing the signals, given that at the current
resolution, their area is 5x5 pixels in average.

Three selection methods are applied in order to transform a point into a
signal. The first one performs selection according to the region area, the second
one according to the gray level and the third one according to the gray gradient.
The result is a list of signals represented by their centroids. In order to detect
the greater possible amount of points, six gaussian filters of sizes 5x5, 7x7, 9x9,
11x11, 13x13 and 15x15 are combined, two at a time, to construct 15 DoG filters
that are applied sequentially. Each one of the 15 DoG filters was applied 51 times,
varying the binarization threshold in the interval [0, 5] in increments of 0.1. The
points obtained by applying each filter are added to the points obtained by the
previous one, deleting the repeated points. The same procedure is repeated with
the points obtained by the remaining DoG filters. All of these points are passed
later to the three selection procedures.

2.3 Classification of Signals into Real Microcalcifications

The objective of this stage is to identify if an obtained signal corresponds to
an individual microcalcification or not. With this in mind, a set of features are
extracted from the signal, related to their contrast and shape. From each signal,
47 features are extracted: seven related to contrast, seven related to background
contrast, three related to relative contrast, 20 related to shape, six related to the
moments of the contour sequence and the first four Hu invariants.

There is not an a priori criteria to determine what features should be used
for classification purposes, so the features pass through two feature selection
processes [8]: the first one attempts to delete the features that present high
correlation with other features, and the second one uses a derivation of the
forward sequential search algorithm, which is a sub-optimal search algorithm.
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The algorithm decides what feature must be added depending of the information
gain that it provides, finally resulting in a subset of features that minimize the
error of the classificator. After the two selection processes, only three features
were selected and used for classification (absolute contrast, standard deviation
of the gray level and the third moment of contour sequence).

A back-propagation neural network is used to classify each signal and to
obtain those signals that correspond to real microcalcifications. The number of
inputs for the neural network is three, equal to the number of selected features.
According to Kolmogorov’s theorem [9], and considering the number of inputs
as n = 6, three layers were considered. The hidden layer contains 2n + 1 = 7
neurons, and the output layer has only one neuron. The transfer function of each
neuron is the sigmoid hyperbolic tangent function, and the error is measured with
the mean square error function.

Even before the detection of microcalcification clusters, the global perfor-
mance of the neural network at the classification of individual microcalcifications
was 85%, confirmed by experts, and related to the application of the DoG filters
in sequence. After the individual microcalcifications were detected, they had to
be grouped in clusters. Two clustering procedures were proposed for compari-
son: a) Detection of microcalcification groups that can form clusters. In a single
mammogram, one or more clusters can be identified; and b) Consideration of all
the microcalcifications in a mammogram as part of a single cluster [1].

2.4 Detection of Microcalcification Clusters

During this stage, the microcalcification clusters are identified. The algorithm
tries to locate those microcalcification clusters occupying regions where the quan-
tity of microcalcifications per cm2 is higher. The microcalcifications forming a
cluster are later labeled. From each cluster, a cluster feature set is extracted.

There is an additional clustering procedure that considers all the microcal-
cifications identified in the mammogram as members of a unique cluster. From
each cluster, 30 features are extracted: six related to the shape of the cluster, six
related to the area of microcalcifications and 10 related to the contrast of the
microcalcifications. The same two feature selection procedures mentioned earlier
are also included in this stage. Only three cluster features were selected for the
classification process (minimum diameter, minimum radius and average radius).

2.5 Classification of Microcalcification Clusters into Benigns and
Malignants

This stage has the objective of classifying each cluster in one of two classes: be-
nign or malignant. This information is provided by the MIAS database. The clas-
sificator used in this stage is also a backpropagation neural network with three
layers, again considering Kolgomorov’s Theorem [9]. The performance measure
for this classificator is the success rate.

Finally, the performances provided by both classification processes (detection
of microcalcification clusters and single clustering) are compared.



Detection of Microcalcification Clusters in Mammograms 1003

3 Results

In order to demonstrate the proposed hypothesis in this work, an experiment was
prepared for evaluating two treatments applied to two datasets, and identify if
these treatments have some influence in the results or the variations are random.

Two data groups were prepared. From each data group, the following features
were extracted: minimum diameter, minimum radius, and average radius. The
first data group (GMC) corresponds to 40 identified microcalcification clusters,
using the density technique and a radius of 100 pixels. Each microcalcification
cluster has a diagnosis provided by the MIAS database. The second data group
(GSC) corresponds to the 22 unique, single clusters obtained by considering all
the microcalcifications in a mammogram as members of a single cluster. Each
single cluster (mammogram) has a diagnosis provided by the MIAS database.

Table 1 presents the obtained performances (proportion of correctly diag-
nosed mammograms) after 25 runs of each neural network (treatment). We can
observe that both means (0.91 for GMC and 0.89 for GSC) indicate very good
and similar performances by both treatments, and a statistical test should be
applied in order to know if there is a significant difference between them. If the
mean of GMC is significantly greater than the mean of GSC , it would mean that
considering one or more microcalcification clusters in a mammogram leads to a
more accurate diagnosis than considering all the microcalcifications as members
of a single cluster, thus confirmating the hypothesis of this work. The following
hypotheses were formulated:

1. H1: There is a significant difference between the means of GMC and GSC .
2. H0: There is no significant difference between the means of GMC and GSC .

The F test was used to validate or discard the hypothesis H0, and the probability
is 95%. Fcalculated is 4.82, and Ftable(0.48) is 3.01. Fcalculated is greater than
Ftable(0.48), so H0 is rejected and we can conclude that there is a significant
difference between the means of GMC and GSC , and the hypothesis of this
research is confirmed.

Table 1. Obtained performances (proportion of correctly diagnosed mammograms)
after 25 runs of each neural network (treatment)

N GMC GSC

1 0.98 1.00
2 0.93 0.91
3 0.98 0.95
4 0.90 0.86
5 0.85 0.82
6 0.95 0.91
7 0.93 0.91
8 0.95 0.91
9 0.83 0.82

N GMC GSC

10 0.85 0.82
11 0.95 0.91
12 0.95 0.91
13 0.90 0.86
14 0.88 0.82
15 0.93 0.91
16 0.93 0.91
17 0.90 0.86
18 0.95 0.91

N GMC GSC

19 0.90 0.86
20 0.88 0.86
21 0.95 0.91
22 0.90 0.86
23 0.90 0.86
24 0.95 0.95
25 0.88 0.86

mean 0.91 0.89
STD 0.04 0.05
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4 Conclusions and Future Work

It is not possible to use a single DoG filter and a unique binarization thresh-
old that maximizes the number of potential microcalcifications detected in a
mammogram, because it would identify only some frequency ranges. The use
of multiple DoG filters with different relations σ1/σ2 and different binarization
thresholds solves this problem, because more ranges of frequencies are analyzed.
The global performance achieved at the classification of individual microcalci-
fications was 85%, confirmed by experts, and related to the application of the
DoG filters in sequence.

The three features extracted from individual microcalcifications that maxi-
mize the rate of true positives and the success rate simultaneously are: absolute
contrast, gray standard deviation of a microcalcification, and a moment of con-
tour sequence (asymmetry coeficient). Contrast properties provide more infor-
mation than shape properties for the classification of signals into microcalcifica-
tions. The performance achieved for classifying signals into microcalcifications
are 70.8% for true-positives and 85.7% for all the examples. Despite the per-
formance in the classification of individual microcalcifications is not commonly
reported in literature, we consider that the performance obtained by the pro-
posed method (sequence of DoG filters) is reasonably good. On the other hand,
shape properties provide more information than contrast properties when micro-
calcification clusters are classified. In this case, the features that provide better
results for maximizing the success rate of the classificator are minimum diam-
eter, minimum radius, and average radius, all of them shape properties. The
performance achieved at diagnosing a microcalcification cluster is 91%. After
analyzing the result of the experiments, the main conclusion of this work is that
diagnosing a mammogram based on one or more microcalcification clusters in the
image provides better results than always considering all the microcalcifications
in the image as a single and unique cluster.

Several subjects were not solved nor implemented for this research, and they
are proposed as future work. It could be useful to use other mammography
databases, and test how different resolutions could affect system effectiveness.
The size of the gaussian filters could be adapted depending on the size of the
microcalcifications to be detected and the resolution of images. The correspon-
dence between the spatial frequency of the image and the relation σ1/σ2 has
to be thoroughly studied. Different features could be extracted from the micro-
calcifications in the images and tested also. Enhancements on the architecture
or training methods for the neural network, or even other approaches for clas-
sification could be proposed. Finally, it would be recommendable to study the
obtained results using ROC curves, for comparison with other works.
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Abstract. Neural Stem Cells (NSCs) have a remarkable capacity to
proliferate and differentiate to other cell types. This ability to differen-
tiate to desirable phenotypes has motivated clinical interests, hence the
interest here to segment Neural Stem Cell (NSC) clusters to locate the
NSC clusters over time in a sequence of frames, and in turn to perform
NSC cluster motion analysis. However the manual segmentation of such
data is a tedious task. Thus, due to the increasing amount of cell data
being collected, automated cell segmentation methods are highly desired.
In this paper a novel level set based segmentation method is proposed to
accomplish this segmentation. The method is initialization insensitive,
making it an appropriate solution for automated segmentation systems.
The proposed segmentation method has been successfully applied to NSC
cluster segmentation.

1 Introduction

Neural Stem Cells (NSCs) as building blocks of the brain can proliferate and dif-
ferentiate into all neural phenotypes. Progress in the analysis of NSC functional
properties is required for development of clinically applicable procedures for stem
cell transplantation and for the treatment of various incurable diseases. NSC can
be used to repair damaged neuro-degenerative processes such as Alzheimer and
to repair brain injuries such as stroke.

Due to the universal attributes of NSCs, there has been great interest to
develop a practical automated approach to measure and extract NSCs properties
from microscopic cell images and track individual cells over time. To accomplish
this task the NSC clusters must first be segmented. In practice, due to the
presence of clutter, corrupted and blurred images, manual cell segmentation is a
tedious task. An automated cell segmentation system may eliminate the onerous
process of manual cell segmentation, extracting cell features from microscopic
images.

Several methods have been developed for region segmentation such as region
growing, watershed and thresholding methods [2, 5]. Recently researchers have
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Fig. 1. (Left) Noisy NSC cluster image, (Right) Denoised image using BayesShrink
Wavelet denoising

been more interested in deformable partitioning methods based on Partial Dif-
ferential Equations (PDEs), as in deformable region segmentation by employing
methods of snakes and level sets [6,7,8] In this paper a PDE-based cell segmen-
tation method is presented to segment NSC Clusters.

2 Background: Level Set Method

Level sets were first introduced by Osher, Sethien and Malladi [6,7,9] for shape
recovery. This framework supports problems from fluid mechanics to image pro-
cessing [6], with image processing applications including segmentation, denois-
ing, and restoration. The initial position of an interface is considered as the zero
level set of a higher-dimensional surface. Implicitly representing the curve by the
zero level set of a function has some major benefits in comparison with the ex-
plicit definition and evolution of the interface. These benefits can be summarized
as topology independence and numerical stability to handle singularities. Since
each level set surface has a uniform spacing and is defined over a discrete grid,
all derivatives can be computed using finite difference approximations, hence the
problem of discretizing doesn’t occur with the level set representation, though it
is an important concern with an explicit representation of the interface in other
deformable models such as snakes.

Let ℘(t) be a simple time dependent closed curve which is considered as the
zero level set of a higher dimensional function Φ(x, y, t) [6,7,9]:

℘(t) = {(x, y)|Φ(x, y, t) = 0} (1)

To initialize the interface, let the level set function Φ(x, y, t) be consider as a
signed distance function:

Φ(x, y, t) = z(x, y) (2)

where z(x, y) is the distance from the closest point on the interface ℘(t) to the
point (x, y) such that if the point is inside the interface the distance is negative,
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for the points outside the curve, the distance z is positive and it is equal to zero
for all the points lie on the interface:

℘(t) = {(x, y)|z(x, y) = 0} (3)

Having Φ(x, y, t) = 0, for each point on the interface, the chain rule can be used
to derive

Φt +∇Φ(x, y, t).(x, y)′ = 0 (4)

Let N be the outward normal:

N̂ =
∇Φ
|∇Φ| (5)

The velocity function F is in the same direction with outward normal direction
and we have

(x, y)′ = F N̂ = F
∇Φ
|∇Φ| (6)

which yields the evolution equation of the interface as

Φt + F |∇Φ| = 0 (7)

where, Φ(x, y, t = 0) is known. By using the numerical solutions of hyperbolic
conservation laws (7) can be approximated. The approximation may be obtained
by defining a discrete grid in x−y domain and replacing the temporal and spatial
derivatives by finite differences. Assume (j, k) as the grid points and define a
uniform spacing between the grid points, Φk

jk is the approximate solution for
Φ(j, k, hΔt) in time step hΔt:

Φk+1
jk − Φk

jk

Δt
+ F |∇jkΦ

k
jk| = 0 (8)

Here the forward difference is used to define the finite difference. The curvature
of the interface at each point can be calculated using the divergence of the unit
normal vector:

ℵ = ∇. ∇Φ|∇Φ| =

{
ΦxxΦ

2
y − 2ΦxΦyΦxy + ΦyyΦ

2
x

(Φ2
x + Φ2

y)
3
2

}
(9)

3 Materials

NSC samples must be extracted and processed before imaging. NSC sample
preparation is two stage process consisting of

1. The extraction of NSCs from the mice, and
2. The processing and culturing of NSCs.

An NSC phase contrast image is depicted in Fig. 1. The cells were imaged using
manual focusing through a 5X phase contrast objective using a digital camera
(Sony XCD-900) connected to a PC computer by an IEEE 1394 connector. Im-
ages were acquired every three minutes. When a cell division was observed, the
progeny were imaged at higher magnification using a 40X DIC objective.
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4 Methods

Employing the level sets for NSC cluster boundary detection, (7) must be solved.
To find a solution for (7), considering the Hamilton-Jacobi equation:

,(q) = F
√

q2 = f |q| (10)

Thus (7) can be written as
Φt + ,(∇Φ) = 0 (11)

Let ∇Φ = q; using the hyperbolic conservation law we can conclude that

qt +∇,(q) = 0 (12)

By discretizing, this equation can be solved as

Φk+1
jk = Φk

jk −Δt,(∇Φ) (13)

where ∇Φ is computed using finite differences. Let the velocity function be [6]

F = Vg(V0 − ηℵ) (14)

where ℵ and η are curvature and curvature coefficients respectively, V0 is a
constant velocity coefficient and Vg is gradient based velocity term, we will have

Φt + Vg(V0 − ηℵ)|∇Φ| = 0 (15)

As the most important part of the solution, an appropriate velocity function
F based on the application (an automatic segmentation system) and nature
of phase contrast microscopic NSC images must be designed. The evolving
interface must converge toward a cluster boundary and stop in its vicinity.
F can be determined based on the specific features of the object such as the
object’s gray level intensity, its texture, specific shape, etc. Since cell clusters
and the background have almost the same gray level intensities, the first and
second order statistics of the cluster’s intensity are not useful terms to be
considered for velocity function definition. To segment the cluster boundary,
texture information can be used to define the velocity function. A bank of
Gabor filters was considered to derive the velocity function, but to achieve
valuable texture features by Gabor filter bank a minimum number of four
orientations and four radial frequencies are required that reach the number
of extracted textured images to 16 for every single frame. Although this is
a very moderate number of filtered images, the computational burden is too
expensive for this approach to be considered as an applicable solution for a large
number of images over time. Based on the cell cluster image properties, different
velocity functions were considered and designed. The following approach
uses a dynamic velocity function which satisfies the systems requirement and
produces the best results according to the segmentation accuracy and time spent:
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φ = φinitalize

VI = |∇B(Dβ [I])|
Vφnb

= |∇B(Dβ [I]φnb
)|

do
{

if (μ{Vφnb
} > μ{VI}) then

φk+1 = φk +Δt{|∇φ|(εℵ+ 1)}
else

φk+1 = φk +Δt{
|∇φ|(εℵ − exp(−α|∇B(Dβ [I])|))}

Vφk+1
nb

= |∇B(Dβ [I]φk+1
nb

)|
}
while(φk+1 	= φk)

BayesShrink Wavelet Denoising [10,11] (Dβ[I]) is used to denoise cell image I
and B(Dβ [I]) is blurred version of the denoised image which is obtained using a
Gaussian filter. Subscript (nb) shows that the gradient is calculated on a narrow
band close to the zero level set. The mean μ of the gradient is computed over
the image and on the narrow band of the zero level set as well. An important
attribute of this velocity function is that it changes based on the location of
interface and ensures that the zero level set is attracted toward the boundaries
(edge locations) and stops in the vicinity of edges. In the proposed method, in
each iteration the mean of gradient over a narrow band close to the zero level set
(μ{Vφnb

}) is computed. Level set deformations are based on its curvature as long
as (μ{Vφnb

} > μ{VI}) is satisfied. As soon as the zero level set contour passes
the boundary of the cell cluster, (μ{Vφnb

} > μ{VI}) is not valid anymore and
the level set deforms based on gradient speed function (exp(−α|∇B(Dβ [I])|))
and its curvature. The deformations will continue until the zero level set stops
on the boundary of the NSC cluster.

5 Results and Conclusions

Fig. 2 shows the the deformations of the level set toward cell cluster boundary.
The circular initialized curve is depicted, followed by the interface after 20, 30,
40, 50 and 60 iterations in which the interface is deforming based on its curvature.
After 70 iterations, Fig. 3, where the mean gradient of the narrow band level set
is not anymore greater than the mean gradient of the image, the interface begins
to shrink toward the cell cluster boundary with a velocity which has two terms.
The first is a gradient-based term and the second curvature-based. As depicted
in Fig. 4, the interface is converging to the cell cluster boundary in which the
major velocity term is the gradient based function.

In this paper a novel level set method was presented for Embryonic Stem
Cell cluster segmentation in Phase Contrast microscopy images. The proposed
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Fig. 2. The initialized curve (top left) and curvature based deformations after 20, 30,
40, 50 and 60 iterations

method is initialization insensitive and dynamically deforms toward cell clus-
ter boundary. Hence it is an appropriate solution for automated segmentation
systems. The proposed method is applied to NSC cluster image sequences and
promising results are produced. Future work is to adapt the model to other
cell types in the same category, extended in the form of coupled level sets with
adaptive motion functions.
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Fig. 3. Curvature based velocity function (left column) turns to gradient based velocity
function (right column)

Fig. 4. Deforming curve based on gradient based velocity: First row and second row
show the interface after 100, 200, 300 and 400 iterations where the cell boundary is
completely segmented by the interface
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Abstract. The work investigates the use of multi dimensional histograms for 
segmentation of images of chronic wounds. We employ a Support Vector 
Machine (SVM) classifier for automatic extraction of wound region from an 
image. We show that the SVM classifier can generalize well on the difficult 
wound segmentation problem using only 3-D dimensional color histograms. We 
also show that color histograms of higher dimensions provide a better cue for 
robust separation of classes in the feature space. A key condition for the 
successful segmentation is an efficient sampling of multi-dimensional 
histograms. We propose a multi-dimensional histogram sampling technique for 
generation of input feature vectors for the SVM classifier. We compare the 
performance of the multi-dimensional histogram sampling with several existing 
techniques for quantization of 3-D color space. Our experimental results 
indicate that different sampling techniques used for the generation of input 
feature vectors may increase the performance of wound segmentation by  
about 25%.  

1   Introduction 

Chronic skin wounds affect many people and take a long time to heal. Systematic 
measurement of the physical dimensions of a chronic wound is an excellent way to 
record the progress of healing. Normal practice of wound care includes weekly check-
up of a patient at which an image of wound is acquired. A clinician draws a contour 
around the wound and assesses its size by comparing contours in subsequent images. 
This is a time consuming and subjective process. The work here attempts at 
developing an automatic procedure for automatic segmentation of wound region in 
wound images. 

Even for restricted instances of wound image segmentation, the use of simple 
features is not sufficient for reliable differentiation of image pixels onto different 
classes. An efficient separation of classes can be achieved if features are derived from 
various histograms counted in a local neighborhood of image pixels [1]. Further 
improvement is obtained if multiple local histograms are linked together thus 
resulting into a single multi-dimensional histogram. Feature space generated by a 
sampling of such multi-dimensional histogram provides most efficient local 
description of image pixels.  

                                                           
* Corresponding author. 
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Several methods for the histogram sampling have been suggested in the literature. 
Chapelle et al. [2] downsize the original color range with 255 bins down to 16 bins. 
This reduces the size of any 3-dimensional color histogram to 163=4096. Experiments 
with a smaller number of bins have produced worse image classification, whereas a 
larger number of bins have not been tested on the ground of limited computational 
resources. Pietikäinen et al. [3] apply a more advanced approach by dividing each 
color dimension into N bins with an equal number of entrees. They confirm that best 
classification accuracy is obtained using the sampling into 16x16x16 bins. This kind 
of sampling was found to be efficient for wound segmentation [4]. However, both 
methods sampled each color dimension independently, which cannot be fully justified 
because it does not take into account the inherent dependency of different color 
dimensions in natural objects. 

In this work we employ 3-D color histograms to generate a set of features, which 
are then used as input to the Support Vector Machine Classifier (SVM) [5], [6]. We 
show that a single histogram of higher dimensions provides a better description of 
pixels of one class than a collection of several 1-D histograms. Also, the role of 
different sampling techniques cannot be underestimated. Our experiments indicate 
that different sampling techniques make a profound impact on the quality of wound 
segmentation.  

The paper is organized in six sections. We start by introducing the multi-
dimensional Histogram Sampling (Section 2). We proceed by describing SVMlight 
implementation classifier and generation of input feature vectors. (Section 3). Next, 
we look at performance of the SVM classifier by conducting experiments when using 
a single 3-D color histogram versus three 1-D histograms, and different sampling 
techniques (Section 4). Discussion of segmentation results concludes the paper 
(Section 5). 

2   Histogram Sampling 

We distinguish between the 3-D color space and a higher dimensional feature space, 
which consists of feature vectors attributed to image pixels. The Histogram Sampling 
as introduced [3] uses a normalized 1-D histogram M of an image, or an averaged 
histogram of a set of images, and samples it into a number of L bins, each one 
constituting an equal fraction of pixels 1/L: 

L
kM

l

lk

1
)(

1

=
−=

 

for all bins l=1,…,L. Note that such a sampling automatically gives a denser bin 
distribution for those histogram parts with larger number of elements thus providing 
an optimal sampling of histogram entries into bins.  

Let H be a local histogram H computed in a neighborhood of pixel (i,j). Next, H is 
sampled into the same set of bins, L. A number of histogram elements falling into 
each bin defines one feature per bin. Thus, elements falling into first L-1 bins (the last 
bin is excluded as dependent on the previous ones) define L-1 features, which, when 
taken together, form a point in the (L-1)-dimensional feature space. The point 
coordinates define a feature vector associated with the pixel (i,j). Fig. 1a shows an 
example of the Histogram Sampling. 
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An extension of Histogram Sampling for the case of multi dimensional histogram 
is built upon recursive sampling. Consider 3-D color space in which M being a 3-D 
image histogram. Let M1 be a selected image histogram of one color dimension. Next, 
M1 is being sampled into L equal sized bins. Elements El of M1, falling into each bin, 
l, form a set of entries for the computation of 1-D histogram of next color dimension. 
Let histogram M11 be generated. Next, M11 is sampled into L equal sized bins, too. 
The process of sampling is repeated recursively for all bins and three dimensions of 
the color space. It generates a total number of L3 bins which gives rise to a set of L3-1 
features. These features form a feature vector attributed to a central pixel of window 
used for the computation of local histogram. The multi-dimensional Histogram 
Sampling can be easily extended to a general case of N-dimensional histogram in 
which case a set of LN-1 features would be generated. Fig. 1b illustrates the Histogram 
Sampling in case of  two dimensions. 
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Fig. 1. a) Histogram Sampling into four bins. The image histogram (solid line) is sampled into 
four equal sized bins. The local histogram (dashed line) is sampled into same four bins. The 
Histogram Sampling defines three features indicating a fraction of entries falling into three first 
bins: 43%; 31% and 25% in our example. b) Schematic illustration of the multi-dimensional 
Histogram Sampling in case of two dimensions. Blue and Green channels are used for the 
generation of 15 color-based features. 

3   SVM-Based Wound Segmentation in the Color Feature Space 

SVM is an approach for supervised classification of data into two classes [6]. In this 
work we use SVMlight - implementation of the SVM classifier available for research 
application at http://svmlight.joachims.org/ [7]. SVM classification is performed in 
two stages. The aim of the first, training stage, is to find an optimal separating 
hyperplane which divides the set of test examples into two classes. Note that each test 
example has to bear a label of either class. During the second, classification stage, 
each input point is attributed a label according to the side this point appears with 
respect to the hyperplane. A more detailed account of SVM’s is out of the scope of 
this paper and here we will only discuss those aspects of the Training and 
Classification Stage, which are specific for wound segmentation.  
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Input to the SVMlight is a set of feature vectors attributed to selected image pixels. 
We use manually segmented images of wounds to compose a training set of feature 
vectors attributed to pixels of wound and non-wound class. Our experiments suggest 
that a balanced contribution of feature vectors from two classes improves the quality 
of classification. We therefore select an approximately equal number of evenly 
distributed pixels from across the wound and non-wound regions for the generation of 
input for the training stage.  

SVMlight offers three optional kernels such as linear, polynomial and radial one. In 
our experiments the radial kernel performed best followed by the polynomial and 
linear one. These results are consistent with earlier experiments on image 
classification [8]. 

The choice of feature space is crucial for the performance of the SVM classifier. In 
a “good” feature space, input elements originating from either wound or skin class, 
would form two volume clusters, which are widely separated from each other and 
easy to classify. In spite of the fact, that the color histogram technique is a very 
simple method, it has shown good results for image indexing and segmentation [1]. 
Below we investigate the impact of two factors on the performance of the SVM 
classifier: 1) the use of three 1-D color histograms versus a single 3-D color 
histogram for the generation of input feature vectors and 2) different quantization 
techniques employed in the histogram sampling.  

3.1   Computation of Feature Vectors 

A training set of input feature vectors for the case of N wound images and 3-D color 
histogram is obtained as follows. For every image, about 2000 evenly distributed 
pixels are selected from the wound region and approximately the same number from 
outside of the wound region. This gives rise to a set of about 4000 pixels for each 
image. Pixels from image background are counted as belonging to “not a wound 
class”. Pixels from a boundary region around the wound of about 12 pixels wide are 
not selected so as to exclude a confusing mixed wound/skin region. A 3-D color 
histogram is computed for every image using the selected pixels. A 3-D average 
histogram is generated by summing up all the 3-D color histograms and dividing the 
sum by the number of images, N. This average histogram is sampled into 64 bins 
using the multi-dimensional Histogram Sampling.  

The ordering of color dimensions in the RGB space used for the recursive 
sampling depends on the level of differentiation between wound and skin provided by 
these dimensions: color dimensions with higher differentiation are sampled first. This 
resulted into the blue/green/ red-ordering of dimensions for the recursive sampling.  

Computation of feature vectors for SVM segmentation utilizes the bins resulted 
from the Histogram Sampling of the average histogram. Computation of feature 
vectors for each pixel of an image to be segmented takes the following steps: 1) 
Generation of 3-D local histogram in a local window of about 75x75 pixels; 2) 
Sampling the local histogram into 64 bins resulted from the sampling of the average 
histogram; 3) Composing a 63-element feature vector out of entries of the local 
histogram falling into the first 63 bins. 
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4   Experiments and Results 

We present several experimental trials each one testing a specific way of computation 
of input feature vectors. Six images of different wound types were used for the 
training of the SVM in each experimental trial. Each of these images was then 
segmented using the trained SVM. As required by the training, the images were 
manually segmented onto a wound and “non wound” region.  

The quality of segmentation in each trial was measured by counting an average 
rate of erroneously classified pixels as follows. Let Wm be a number of wound pixels 
and let Sm be a number of “non-wound” pixels in a manually classified image. 
Similarly, let Wc and Sc be a number of pixels classified as wound and “non-wound” 
in a computer-segmented image, respectively. Error rate for misclassified wound 
pixels is given by the normalized intersection of the manual wound segment and the 
computer-generated non-wound segment: 

mcmwound WSWE /)(=  

where  denotes the intersection of two sets. Similarly, the error rate for 
misclassified “non-wound” pixels is given by the normalized intersection of the 
manually defined non-wound segment and the computer-generated wound segment: 

mcmskin SWSE /)(=  

Full classification error is then given by the sum of the above error rates:  

2/)( skinwound EEError +=  

4.1   Single Multi-dimensional Histogram Versus Multiple 1-D Histograms 

A series of experiments tested the quality of segmentation when sampling 1) three 1-
D histograms and 2) a single 3-D color histogram. In the first experimental trial each 
1-D histogram was sampled into 22 bins generating 63 input features per pixel. In the 
second trial each dimension of the 3-D color histogram was sampled into 4 bins 
giving rise to 63 features. The generated features were firstly used for the training of 
the SVM classifier on six wound images and, after that, for the segmentation of each 
one of these six images, independently. All other segmentation parameters used by 
the SVM classifier were kept identical in all experiments. 

Segmentation results in Table 1 display a convincing advantage in the performance 
of the SVM classifier for the case of 3-D color histogram over a corresponding 
collection of three 1-D histograms. We extent this conclusion to a more general 
statement: a better performance of multi-dimensional histogram can be explained by 
the fact that the sampling in the 3-D color space indeed exploits the inherent 
dependency of color dimensions usually shown by complex natural objects. This is 
especially true for the human skin. Light remitted from skin is a complete spectrum. 
Consequently, the 3-D color histogram is a gross approximation of the true remitted 
light. The composition of the spectrum for the skin depends on the mixture of scatters 
and absorbers in the skin, each one of these affecting each primary dimension of the 
spectrum. This results into correlation of R, G and B parts of the RGB histogram, 
which is exploited by the multi-dimensional Histogram Sampling. 
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Table 1.  The error percentile, Error, of erroneously classified pixels resulted from the 
segmentation of six images. Input feature vectors are generated by the independent sampling of 
1-D histograms (column 3 x 1-D), and the sampling of 3-D color histograms (column 3-D). 

 
Image 3 x 1-D 3-D 

1 
2 
3 
4 
5 
6 

0.63 
1.74 
1.25 
2.41 
1.86 
0.61 

0.36 
1.46 
1.38 
1.93 
1.56 
0.47 

Average 1.42 1.19 

4.2   Comparison of Different Sampling Techniques 

In order to perform an independent testing of the multi-dimensional Histogram 
Sampling technique, we have conducted a series of experiments in which other 
quantization methods were involved. Five sampling techniques have been tested: 

1. Independent Sampling (IS) performs independent sampling of each color histogram 
into N bins with an equal number of histogram entrees [4].  
2. Learning Vector Quantization (LVQ) performs the quantization of unlabeled data 
vectors into a smaller set of codebook vectors. Each data vector is then represented by 
its nearest codebook vector. An initial set of random codebook vectors is trained so as 
to minimize the error of misclassification of data vectors. We use an optimized LVQ1 
training algorithm [10] for the quantization of 3-D histogram. 
3. Vector Quantizer Design (LBG-VQ) [9] is a lossy data compression method based 
on the principle of block coding. The reason of applying the LBG-VQ for the 
sampling of 3-D histogram is similar to the motivation of any image compression 
algorithm, namely, the need to downsize an original dataset by extracting most 
important information while leaving out the rest. We use the LBG-VQ algorithm for 
the coding of wound images. Code vectors characterizing image pixels are used for 
generation of input features: each image pixel is attributed a feature vector that gives 
a fraction of occurrences of coding vectors in a local window. 63 coding vectors used 
by the LVG-VQ compression give rise to a same number of 63 features composing 
the elements of a feature vector. 
4. Random Density Estimation (RDE) employs the Voronoi Diagram which, in our 
case, is a partition of color space into Voronoi cells, each of which consists of 
elements closer to one particular object than to any others. The advantage of RDE is 
that the shape of Voronoi cells varies with the density of elements of the 3-D color 
histogram. Because most of the histogram elements are concentrated within an 
ellipsoid of revolution around the axis R=G=B, one would expect that flexibly shaped 
Voronoi cells could “better” partition the area within the ellipsoid than the square-
shaped bins of the Histogram Sampling. The following iterative procedure was used: 
1) Select N (N=250) random color vectors out of the elements of 3-D color histogram; 
2) Construct the Voronoi Diagram using the selected color vectors; 3) Compute a 
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number of histogram elements falling into each Voronoi cell; 4) Delete a color vector 
with the smallest number of histogram elements contained in its Voronoi cell; 5) 
Update the Voronoi Diagram down to N-1 cells; Step 4 and Step 5 were repeated until 
a required number of cells N (in our case N=64) is obtained. 
5. Histogram Sampling (HS) is the multi-dimensional Histogram Sampling technique 
(Section 3) applied to the 3-D color histogram. 

Table 2. Average segmentation error for the different sampling techniques. The average error is 
computed over six wound images. 

IS LVQ LBQ-VQ RDE HS 

1.42 7.86 1.35 1.12 1.19 

Table 2 shows how average error of segmentation of six wound images is affected 
by the use of the above sampling techniques. As evidenced by the error values, the 
RDE sampling provides the lowest rate of misclassified pixels. This can be explained 
by the fact that the Histogram Sampling based on the Voronoi Diagram provides an 
optimal partitioning of elements of the 3-D color histogram.  

4.3   Examples of Wound Segmentation 

The capability of SVM classifier to segment a wound was tested with numerous 
images. Here we show the result of segmentation of three test images from the 
sequence of six ones used in the previous experiments. Input feature vectors were 
obtained by the sampling of 3-D color histograms. Examples of segmentation in Fig. 
2 show that the SVM-classifier produces a fairly reliable segmentation of wound 
tissue despite of large variations in brightness of skin and quite a different appearance 
of wounds.  

   

Fig. 2. Three examples of wound segmentation. 63 input features were computed locally in the 
window of 95 pixels. The SVM classifier employed the polynomial kernel. Corresponding error 
rates for misclassified pixels are given in Table 1, images 1, 4 and 6, column 3-D.  

5   Conclusion and Future Work 

The Histogram Sampling technique generates the efficient set of feature vectors, 
which, when inputted into the SVM-classifier, enable the reliable segmentation of 
wound region in images. The generalized multi-dimensional Histogram Sampling of 
3-D color histograms further improves the discrimination of feature vectors.  
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Processing time needed for the SVM training depends linearly on the number of 
input feature vectors (i.e. of the number of training images), but also, on their 
“quality” in terms of how well these can be separated into two classes. For about 2000 
feature vectors from the wound class and the same amount from outside the wound 
region, the observed training time is of the order of 2 minutes (Pentium, 1000 MHz). 
If, however, the training feature vectors are not widely separated in the feature space, 
the convergence of searching for the support vector may become problematic.  

Our experimental results indicate that the sampling of 3-D color histogram 
generates input features with a better discrimination than those ones obtained by the 
independent sampling of 1-D histograms: the quality of wound segmentation in our 
experiments was improved by as much as 20%-30%. It is therefore always 
advantageous to employ the single 3-D color histogram for the generation of input 
feature vectors used by the SVM for wound segmentation. Experiments with different 
quantization techniques have lead to an unexpected result. Although the Learning 
Vector Quantization technique provide a “better” partitioning of multi-dimensional 
feature space in a sense that cell distribution is related to a density of space elements, 
the quality of wound segmentation is significantly worse. Also surprisingly, the rate 
of misclassified pixels resulted from the Voronoi Diagram sampling is comparable 
with the error rate when the multi-dimensional Histogram Sampling is used.  

More words are to be said with regard to 3-D color histograms. Despite of their 
simplicity, 3-D color histograms provide an efficient cue for the description of 
different image objects, which are in our case, of course, wounds. Color histograms 
are invariant to translation and rotation and change only slowly under change of angle 
of view and scale. As a result, Histogram Sampling generates image features, which 
are fairly invariant to small variations in brightness and scale. The multi-dimensional 
Histogram Sampling is therefore provides best cumulative measure characterizing 
image objects locally. Note that the 3-D color histogram can be easily extended to 
higher dimensions by adding other discreet distributions related, for instance, to 
texture. Applying the Histogram Sampling to the extended multi-dimensional 
histogram would certainly generate highly efficient local description of image pixels.  

A less optimistic conclusion of this work is this one: however robust and good the 
SVM segmentation is, it cannot produce a wound contour which is as fine as the 
manual one drawn by a clinician. It seems that there should be an additional and 
independent mechanism that complements region segmentation on a final stage of 
contour generation. The aim of our future research will be aimed at the fusion of two 
processing methods -the SVM segmentation and wound contour detection.  
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Abstract. Recognition of faces under varied poses has been a challenging area 
of research due to the complex dispersion of poses in feature space when 
compared to that of frontal faces. This paper presents a novel and robust pose-
invariant face recognition method in order to improvise over existing face 
recognition techniques. First, we apply the TSL color model for detecting facial 
region and estimate the direction of face using facial features. The estimated 
pose vector is decomposed into X-Y-Z axes. Second, the input face is mapped 
by a deformable template using these vectors and the 3D CANDIDE face 
model. Finally, the mapped face is transformed to the frontal face which 
appropriates for face recognition by the estimated pose vector. Through the 
experiments, we come to validate the application of face detection model and 
the method for estimating facial poses. Moreover, the tests show that 
recognition rate is greatly boosted through the normalization of the poses. 

1   Introduction 

Face Recognition including fingerprint, iris, and voice recognition is a significant 
aspect of identity verification systems due to the fact that these methods are far more 
accurate and effective than other techniques. Thus research in this area, especially 
face recognition, has gained prominence with results being spontaneously 
incorporated into application systems. In this paper we focus on the issues in face 
recognition. Since most studies in this field have employed full frontal facial photos 
the rate of recognition has been lower than that of the fingerprint and iris based 
techniques in the real-world due to the effects of illumination and variation of facial 
poses [1]. Additionally, the rate of recognition for a face varies depending on  
the pose.  

In order to overcome the insufficiency of the existing facial recognition methods, 
this paper proposes a pose-invariant face recognition system. Assessing and analyzing 
the ever-changing facial poses (external feature) we transform the face into a 
normalized form that can also be recognized by the existing face recognition systems. 
This approach boosts the accuracy of facial recognition and substantially reduces the 
FAR (False Acceptance Rate) and FRR (False Rejection Rate). 
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2   Face Detection and Pose Estimation Using Geometrical  
     Relationship  

Tint-Saturation-Luminance (TSL) color model has been known to be efficient in 
extracting facial region on image since its T-S space is classified densely and 
independent from illumination [2]. Sometimes, however, T-S color model detects 
spurious regions when the background has a similarity with the facial color. In this 
case, we find the final facial region using labeling. 

Irregular illumination sometimes causes different facial colors, and these are 
classified as a different region [3, 4]. In this paper following process is applied for 
reducing illumination effects: first, analyze effects of brightness according to angle of 
face, second, compensate value of intensity for effected region, and lastly, detect 
facial color. 

Facial poses are then calculated using the relative position of facial features: two 
eyes, and mouth. Generally, geometrical and template-based techniques use edge 
detection methods in pre-processing while detecting facial features since most facial 
features are horizontal shapes. However, facial features may not be horizontal shapes 
when input faces are angularly dispersed. Facial features in this paper are detected 
using their geometric relationship such as the line connecting two ends of the mouth 
being parallel to the line connecting the centers of two eyes and the length of two 
lines are almost same, etc. 

Provided the facial features (two eyes, mouth) are detected correctly, connecting 
the center of each feature makes a triangle. With the exact frontal pose, the center of 
the triangle coincides with the center of the facial region. As the pose varies, there is 
the offset between two centers, a direction vector. As Figure (1) indicates, the 
direction of vector v gives indication of facial pose; the length of vector is shift offset 
from center of facial region. We can estimate the values of yaw and tilt after 
analyzing this vector. ),( 11 yxA is the gravity center of the facial region and 

),( 11 yxB  is the midpoint of the triangle made by facial features. It is possible to 

decompose ABv =  into vyaw and vtilt using Eqn. (1)-(3). The formulas (1)-(3) are 
represented in degrees. In addition, halfface_width and halfface_height imply a radius of 
major and minor axis on the momentum of facial region, respectively.  

Fig. 1. Analyzing vector for estimation of angle 
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3   Synthesizing Deformable Face and Normalizing Poses 

This paper uses the CANDIDE-3 3D wire frame model for input face mapping [6]. 
The process of pose normalization finds additional features including facial features 
for mapping the 3D wire frame model with the input image. The mapped face is 
normalized by transformation of texture using inverse value of the estimated pose 
vector for frontal face. 

3.1   Mapping Input Image to Facial Model Using Extracted Features 

This paper uses template matching for finding facial features since it is known to be 
more accurate than other geometrical techniques and although it is a slower technique 
the speed of searching can be increased if positions of eye, nose, and mouth are 
roughly acquainted [7]. However, a problem with template matching is that the mask 
has to be similar with the object. And in our case the need to match a proper mask to 
image in real time becomes difficult as the input data has varying poses thus requiring 
many templates. Therefore, this study suggests a deformable template which 
transforms one template mask to special template by estimated geometrical value in 
advance (as in Fig. 3).  

Mapping implies overlapping between input image and facial model using 
extracted features. In this case, we use additional features of face in order to map 
more accurately as in Fig 2.  

    
(a)   (b)  (c) 

Fig. 2. Facial features for mapping. (a) Total features, (b) Features by deformable template, (c) 
Features by facial region we detected previous 

Three dimensions decompose rotation ),,( zyx rrrR=ℜ into rotation of x-axis, y-

axis, and z-axis. We use the homogeneous form in rotation and translation. Moreover, 
scale vectors use equal transformation matrix to apply different scales to x, y, and z-
axis respectively. So we can deform a model through calculating parameters 
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T
yxzyx ttsrrrP ],,,,,,[ σ=  using Eqn. (4)-(5) where g  is original model, σ  is 

parameter for shape, S is shape, t is translation matrix, R is rotation, and s is scale. 

tSgsRg ++= )( σ  (4) 

2
min featuresfg −  (5) 

 

     

 

Fig. 3. Deformation of facial model using estimated angle 

3.2   Transforming Input Face to Frontal Face 

Facial template consists of a phase model and texture. Therefore, total transformation 
of the facial template synthesizes a new model by transforming the coordinates of 
points and the textures of the triangle which comprises of these points. Generally, the 
pixel coordinates are always integers. But, in our approach, sometimes the 
coordinates of transformed texture can be non-integral. In this case we use a reverse 
direction warping which interpolate the points using adjacent four points before 
translation [8]. 

 The example of this process is presented in Fig. 4. The original template is 
deformed by estimated pose vector and mapped on to the input face. The texture is 
then transformed to normal value as shown in Fig. 4(f). The pose of the eyes is not 
rectified as it is not essential. 

                
(a)          (b)           (c)          (d)           (e)            (f) 

Fig. 4. Face mapping and pose normalization. (a) Original template, (b) Input image, (c) 
Deformation of template, (d) Mapping frame, (e) Mapping texture, (f) Pose normalization by 
transformation. 



 Robust Face Recognition from Images with Varying Pose 1027 

 

4   Empirical Analysis  

Fig. 6 outlines the experimental framework and process. The experimentation consists 
of two processes; Ex1 is face recognition without compensation while Ex2 is with 
compensating pose. Fig. 5 presents a sampling of input faces from a total of 45 used 
in the empirical analysis. 

 

 

 

Fig. 5. A variety of poses 

    Principle Component Analysis (PCA) is used for comparing the two processes Ex1 
and Ex2, and we analyze the Euclidean distance for rate of recognition [9,10]. For 
PCA, the face of ten people is used as learning data as shown in Fig. 7 [11]. 

Fig. 6. Flowchart of face recognition experiment 

    This paper measures Euclidean distance error k for each component between the 
normalized and DB faces using Eqn. (6) where kf represents the learning faces 

and if , the input faces. In these experiments the hair is also eliminated for an accurate 

measurement of face like in Fig. 8. 
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Fig. 7. Face examples for PCA; (a) Mean face, (b) Learning faces 

Fig. 8. Examples of extracting facial region for PCA 
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4.1   Results and Analysis  

Fig. 9 shows estimated angle of input images from Fig. 5 using our proposed method. 
There is no bar where it fails calculation of angle. The reason of failure implies that it 
is difficult to extract the opposite eye if the angle of yaw is large. 

 

Fig. 9. Angle of face through estimated poses (tilt) 

Almost of facial models are transformed in the same direction. However, as we can 
observe from Fig. 3, the error is large when the pose is upward facing. This is due to 
the ambiguity between the jaw and forehead region. The estimated pose value is used 
to normalize face as well as map input face to facial model such as Fig. 10.  
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In case that the angle of face is large, the mirroring process is needed due to the 
lack of facial information the region that is located on the other side of camera view 
[11]. For the mirroring process the visible half of face detected by the camera is 
duplicated and put it on the other side lacking information after transformation (see 
Fig. 10). 

 

Fig. 10. Examples of facial pose normalization 

    We test input faces shown in Fig. 5 using the two processes Ex1 and Ex2 as 
depicted in Fig. 6. The result of test is shown in Fig. 11. The graph represents the 
distance values of PCA coefficients between input images before and after 
normalization. The lower the distance value, the higher is accuracy of face 
recognition. Naturally, when the angle of face is close to the center the distance error 
measured is small and the more a face points downward the larger the distance error. 

Fig. 11. Difference of principle vector from normalized face 
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    Fig. 12 presents the result of recognition where the x-axis and y-axis of graph 
imply the number of faces in Fig. 5 and Fig. 7, respectively. No. 6 on the y-axis is a 
face that we want to detect. After normalization, more input faces on x-axis are 
recognized as a No. 6 on the y-axis. 

  
(a)                                          (b) 

Fig. 12. Results of recognition; (a) Before normalization, (b) After normalization 

    To judge the accuracy of face recognition we use minimum Euclidean distance 
between input face in Fig.5 and learning face in Fig. 7. Although face recognition 
generally uses a threshold value for reducing FAR(false acceptance rate), in our case 
a face satisfying a minimum distance is considered as similar for reducing FRR(false 
rejection rate) because it just confirms the recognition. Fig. 13 shows a proportion of 
results from Fig.12. Face No. 6 is our target face and its rate of recognition can be 
seen to increase from 13% to 76%. 

(a)                                             (b) 

Fig. 13. Improvements in recognition rate - (a) Before normalization, (b) After normalization 

5   Conclusion  

In general, varying facial poses create problems with acquisition, analysis, and 
recognition. Thus most studies showing plausible performance are restricted to frontal 
face and normalized face without rotation. In order to overcome this insufficiency of 
existing face recognition methods this paper proposes a novel pose-invariant face 
recognition system by using a normalized algorithm in preprocessing. 

Numerous tests have been experimented categorically to evaluate proposed 
algorithm and many facial images which have various poses, and used to experiment 
on normalization. Through the experiments, we come to validate the rationale of our 
face detection model and method for estimating facial poses. Moreover, the tests 
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show that recognition rate is greatly boosted through the normalization of poses by 
76%. The accuracy is improved six-fold than prior to pose transformation. In the 
future we would like to solve problems associated with distortion by large angles and 
design a facial model that it is optimized to warp the facial features. 
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Abstract. This paper presents a morphological- and color-based method for 
face localization in color images. Basically, it uses a skin-color segmentation 
technique in a novel color space, YCg'Cr', and the application of the shape 
information and the location of the facial features to the definition of a face 
model. First, a color-based segmentation technique detects the skin regions 
inside the image, and then, a combination of morphological operators and 
algorithms is used for completing the segmentation masks. At last, the feature 
extraction lets define a model based on the best-fit ellipse determined by the 
position of the eyes and mouth inside the image. Finally, the detection mask 
based on this ellipse is used for locating the face in the image under test.  

1   Introduction 

Recently, research activities have been increased in the image analysis and processing 
areas, due to new applications where object segmentation and recognition in color 
images is required. The achieved results in the face detection process depend on the 
complexity of the image and its application [1]. Several face segmentation techniques 
which work with a normalized face have been proposed in the last years, but some of 
them require that its location is previously known [2]. 

The main advantage of using face detection schemes based on color information is 
that it can be segmented independently on its size and position within the image. 
Considering that people with different skin color have major differences in their 
intensity than in its chrominance, and that human skin color is concentrated in a small 
region of the color space, color can been considered as a distinguishing and effective 
parameter for face detection [3-4]. 

Nevertheless, the classification into skin and non-skin regions will fail if faces are 
partially detected or there are skin-like objects in the background of the image, so 
faces are not correctly detected [3]. Color-based segmentation can be combined with 
other techniques in order to improve the segmentation results, so that the undetected 
areas may be added to the detected face [4].  

Different color spaces, such as RGB, HSV or YCbCr, and pixel-based skin 
detection methods have been proposed for the individual classification of the pixels in 
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an image as skin or non-skin, independently on its neighbors [4-6]. Color spaces with 
separated luminance and chrominance components, like the last two, seem to be more 
appropriate for face detection [5]. Based on YCbCr, two new color spaces, YCgCr 
and YCg’Cr’, a transformed space of the first one were specifically defined for face 
detection [7]. 

A new technique for face localization is presented in this paper. It is based on the 
combination of a chrominance segmentation scheme in the YCg’Cr’ color space and 
the use of the facial shape information and the extraction of the face features for 
determining its position. 

First, a pixel-based color segmentation algorithm is used, then pixels are grouped 
in order to determine skin regions which are completed by means of morphological 
techniques, and, at last, the detection of the face inside the image is performed using 
the position of the eyes and the mouth. Finally, the application of an elliptical model 
based on the extracted features is used for the face localization.  

2   YCg’Cr’ Color Space 

The YCgCr and YCg’Cr’ color spaces were specifically proposed for analysis 
applications, mainly for face segmentation [7]. YCgCr is based on YCbCr, but it 
differs on the use of the Cg color component instead of Cb. While the color spaces 
used in television systems (YUV, YCbCr) use the biggest color differences: (R-Y) 
and (B-Y), as they are transmission oriented, the YCgCr color space uses the smallest 
color difference (G-Y) instead of (B-Y). 

Besides, skin detection can be performed ignoring the luminance coordinate, as 
skin tone is more controlled by the chrominance than luminance components [6]. 
Then, the color analysis is simplified by reducing the space dimensionality, defining a 
color model in the chrominance plane. Skin color is concentrated in a small region of 
the chrominance plane, so the simplest color model used for classifying each pixel as 
skin or non-skin is based on the definition of a boundary box [5]. Therefore, a skin-
like pixel is determined when both of its color components are within the individual 
ranges defined by the maximum and minimum thresholds of each coordinate of the 
chrominance plane. 

Face regions are extracted from a set of training images acquired by different 
sources (digital cameras, scanned photographs, software edited images, etc.) under 
different lighting conditions, and are used for defining the maximum and minimum 
thresholds that constitute the boundary box.  

The transformed color space, YCg’Cr’, is based on the skin color distribution in 
the Cg-Cr plane, and basically consists of a 30º clockwise rotation of the Cg and Cr 
axes, so the color pixel segmentation will be performed in the new chrominance 
plane, Cg’-Cr’, represented in Figure 1. 

The vertical axis, Cr’, is defined in the direction of the line that connects the Red 
and Cyan colors in the Cg-Cr plane, where most of the skin pixels were distributed.  
(see Figure 1). The other axis, Cg’, is perpendicular to Cr’. The center of coordinates 
needs to be recalculated to (128,128), and the new axes range is [0, 255]. So, the 
transformed color space, YCg’Cr’, is defined by the following equations [7]: 
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Fig. 1. Skin color pixels in the Cg-Cr (left) and Cg’-Cr’ (right) planes 

Cg' =    Cg * cos 30º  + Cr * sin 30º - 48 . (1) 

Cr' =  - Cg * sin 30º + Cr * cos 30º + 80 . (2) 

 
The maximum and minimum values of Cg’ (Cgmin’, Cgmax’) and Cr’ (Crmin’, 

Crmax’) that constitute the boundary box were computed for each face region 
manually extracted during the training process for every individual image. They were 
characterized as Gaussian distributions, obtaining their statistics: mean, minimum, 
maximum, etc. for each Cg’ and Cr’ threshold.  

The skin color representation of an individual image in the YCg’Cr’ space, 
concentrated in a small area of the chrominance plane and distributed along the 
vertical axis is shown in Figure 1. 

3   Color-Based Segmentation 

Different decision regions defined by the thresholds for Cg’ and Cr’ calculated using 
their statistics: mean, minimum, maximum, centroids, modified-mean (Cg’-
½(Cg’mean-Cg’min) , Cr’ + ½(Cr’max -Cr’mean)), minimum for Cg’ and maximum 
for Cr’, etc. were tested in order to find the set that provides the best segmentation 
results with the training images. 

Two types of decision regions: maximum ([125,140] for Cg’ and [136,217] for 
Cr’) and modified-mean thresholds ([119,131] and [128,199] for Cg’ and Cr’) 
provided the best results. The skin region is better detected using the first set of 
thresholds, while the segmented region is bigger in the second case, as the eyes and 
the hair are detected too [7].  

For face detection purposes, it has been considered that the segmentation results 
achieved by means of the maximum set of thresholds are better, as only the skin-like 
pixels are detected.  

Similar tests were performed using a set of portrait-like images (AR face database 
[8]) with homogeneous background and different lighting conditions. Human faces 
with different types of facial expressions, such as neutral or smiling, objects 

Cr’ 

Cg’
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occluding the faces (like a pair of sunglasses or a scarf), and also several 
combinations of them have been tested.  

     
 

Fig. 2. Detection masks for Cg’ (left ), Cr’ (center) and both of them (right), using maximum 
thresholds 

 

 
Fig. 3. Color-based segmented face using maximum thresholds in the YCg’Cr’ color space 
 

 
 

 
 

Fig. 4. Segmented faces after using morphological operators: a) opening, b) opening + closing, 
c) erosion + closing, and d) erosion + closing + opening 
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The detection masks obtained by applying the maximum thresholds to one of these 
images for each of the color components and both of them are represented in Figure 2. 
The face region has been correctly detected, as the eyes, the hair and also the clothes 
have been eliminated during the color segmentation, as it can be seen on the detected 
face represented in Figure 3, obtained by the application of the final chrominance 
mask depicted in the last image in Figure 2. 

It will only be necessary to separate the neck from the face region in the image, as 
it has been considered part of the skin area.  

4   Morphological-Based Segmentation  

The segmentation process presented in the previous section should be continued in 
order to detect the whole faces by completing the color-based segmentation masks 
with the use of other techniques, such as morphological ones.  

For this purpose, two different morphological algorithms were implemented: first, 
a connected components method for selecting the bigger size region in order to 
consider it as a face candidate, and, second, a hole-filling technique for completing 
the segmentation mask, adding the undetected regions inside it, such as the eyes, the 
eyebrows, and the mouth. 

Those techniques which provided the best segmented faces after applying 
individual or combinations of morphological operators will be presented in this 
section. First, the segmentation results achieved by the only application of the 
opening morphological operator are represented in Figure 4a) after using the two 
algorithms for selecting the face region and hole-filling.  

Second, the combination of several morphological operators is considered: opening 
+ closing, erosion + closing, and erosion + closing + opening. They are also 
represented in Figure 4, after applying the two morphological algorithms. The results 
achieved in the four cases are different, as either both or none of the eyes and also the 
neck can be considered as part of the face region, depending on the set of operators 
used for the segmentation process. 

As can be seen in the examples depicted in Figure 4, not only the face region is 
segmented at this phase of the process, and it is necessary to complete the face region 
and eliminate some elements that are not part of it, like the neck. In some of the 
images under test, other head components that have been detected as face candidates, 
such as the hair, should also be separated from the face candidate, using the feature 
characteristics and an elliptical model of the face, as it will be presented in the next 
section. 

5   Face Detection  

This new phase of the detection process will basically consist of the implementation 
of a face model based on the location of the eyes and mouth features that will allow 
the definition of the best-fit ellipse adapted to the face contour, in order to separate 
the face region from the neck and hair areas.  
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This procedure will be described in this section. First, the detection of the eyes and 
mouth position inside the face region segmented in the previous section will be 
presented. 

5.1   Feature Extraction 

In the feature extraction step, based on the holes detection inside the face candidate 
region, the segmentation mask before applying the region-filling algorithm will be 
used, as only the bigger area should be selected. After considering all the 
morphological operators described in the previous section, the results achieved using 
the mask obtained in the case of the application of the erosion + closing operators to 
most of the images under test were better for this purpose. 

The localization of the position of the eyes and the mouth was obtained applying 
the connected components algorithm to the inverse mask of the region considered as 
face candidate. To avoid the incorrect consideration as eyes of either the eyebrows or 
the nose, due to its similarirty, a previous dilation operation is applied for reducing 
the size of the holes inside the face. According to the size of the image, a circular 
structuring element of radius 7 was used in this morphological operation. 

Before applying this algorithm to the feature extraction process, the image is split 
up into three: the upper left, the upper right and the bottom areas for detecting the left 
and right eyes and the mouth, respectively. Then, the detected regions are classified 
according to its size, considering as eyes and mouth areas those which have a 
minimum size of 250 and 145 pixels, respectively. The achieved results can be refined 
by including in the classification step other criteria such as the symmetric position of 
the eyes inside the face.  

The so-located areas corresponding to these features (left and right eyes and 
mouth) are represented in Figure 5 for the faces depicted in Figure 4c). 

   

 

Fig. 5. Left, right eye and mouth located areas for the men in Figure 4c) 

5.2   Best-Fit Ellipse Model 

Based on the feature regions extracted in the previous section, a simple model can be 
defined for representing the face by means of an ellipse fitted at the face contour, as it 
is represented in Figure 6a).  
    This model has been defined for characterizing the best-fit ellipse inside the 
limiting rectangle, considering the center of coordinates in the middle point of the line  
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that connects both eyes. The four parameters that will define this ellipse are: a) the 
upper left corner point (O), b) its minor axis, c) its major axis, and d) its orientation, 
defined by the angle formed between the X axis and the horizontal line. 

.               

 

Fig. 6. a) Face model and b) best-fit ellipses located for the men in Figure 4c) 

For determining the best-fit ellipse based on the features previously extracted the 
following distances should be calculated: first, between both eyes, d(OI-OD); second,  
between the left eye and the mouth, d(OI-OB); and third, between the eyes line and 
the mouth, d(I-OB). The parameters that define the rectangle: origin (O), width (w) 
and height (h) are calculated according to the following equations: 

 

K

OB) - d(OI
 OB)- d(O = ; 

mK

OD) - d(OI
 w = ; 

MK

OB) - d(I
h = . (3) 

 
where the K factors are experimentally obtained (K=0.5, Km=0.52 and KM=0.4). 

The best-fit ellipses thus obtained inside the detection masks are represented in 
Figure 6b). Based on the location of the eyes and mouth, a new segmentation method 
can be implemented using this ellipse.  

 

 
Fig. 7. Detected faces applying the proposed method to the men images in Figure 4c) 
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    The final segmentation mask is obtained by representing the best-fit ellipse in the 
previous mask, taking into account its orientation, which is the angle formed by the 
eyes and the horizontal axis. The detected faces using this final mask based on the 
best-fit ellipse are represented in Figure 7. 

6   Conclusions 

A new method for face detection has been proposed in this paper. It is based on a 
combined technique using the skin-color segmentation  in  the  YCg'Cr'  color  space  
and  also  the facial features position for defining a face model based in the best-fit 
ellipse determined by them.  

The final segmentation mask for the face localization is obtained considering the 
contour and orientation of this ellipse. Our future work will consist of improving the 
face localization method and the parameters used for the feature extraction and the 
face model presented in this paper in order to refine the segmentation results. 
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Abstract. A novel technique for facial feature detection in images of frontal 
faces is presented. We use a set of Gabor wavelet coefficients in different 
orientations and frequencies to analyze and describe facial features. However, 
due to the lack of sufficient local structures for describing facial features, Gabor 
wavelets can not perfectly capture the wide range of possible variations in the 
appearance of facial features, and thus can give many false positive (and 
sometimes false negative) responses. We show that the performance of such a 
feature detector can be significantly improved by using the local entropy of 
features.  Complex regions in a face image, such as the eye, exhibit 
unpredictable local intensity and hence high entropy. Our method is robust 
against image rotation, varying brightness, varying contrast and a certain 
amount of scaling.        

1   Introduction 

Detection of facial features (eyes, nose, mouth corners and etc.) plays an important 
role in many facial image interpretation tasks such as face verification, face tracking, 
face expression recognition and 3D face modeling. Generally, there are two types of 
information available for facial feature detection [4]: (i) local texture around a given 
feature, for example, the pixel values in a small region around an eye, and (ii) the 
geometric configuration of a given set of facial features, e.g. both eyes, nose, mouth 
and etc. Many different methods for modeling these types of information have been 
proposed. In [4] a method for facial feature detection was proposed which utilizes the 
successful Viola and Jones face detection method [5], combined with the statistical 
shape models of Dryden and Mardia [6]. In [10], the authors discussed a face 
localization and feature detection system which employs morphological filtering and 
blob coloring to generate hypothesis about eye locations followed by the use of 
deformable templates and the Hough transform to confirm theses hypotheses. In [11], 
Yang et al. proposed a hierarchical three level knowledge-based system for locating 
human faces and facial features in relatively complex backgrounds. Chang et al. [12] 
proposed a color segmentation and thresholding algorithm to pinpoint the eyes, 
nostrils and mouth in color head images. In [7] an efficient method was proposed for 
eye detection that used iris geometries to determine the region candidates which 
possibly contain the eye, and then the symmetry, for selecting the couple of eyes. In 
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addition, active contour models were employed in [13] to capture the eyebrows, 
nostrils and face.    

Our method uses the Gabor wavelet for describing and analyzing facial features. 
The Gabor wavelet has been widely used in image processing, pattern recognition and 
computer vision and there have been some successes in using Gabor filters for facial 
feature extraction [1, 2, 3]. Wiskott et al. [1] and Liao et al. [2] used a Gabor Jet, 
which is a set of convolution coefficients for kernels of different orientations and 
frequencies at one image pixel [1], to represent a facial feature. In both approaches a 
graph-like data structure called a Face Bunch Graph (FBG), is derived from training 
samples to describe facial features and to cover the wide range of possible variations 
in the appearance of facial features. The average of FBG is used in order to find the 
approximate position of each facial feature and then FBG is used without averaging to 
refine the approximate position.  In a similar but faster and simpler approach, Feris et. 
al. [3] used a two stage hierarchy of Gabor wavelet networks. The first stage localizes 
the whole face and the second stage searches for individual features. The approximate 
shape of the face, predicted from the first stage, is used to guide the feature detection.  

Although the overall performances of all these three approaches are satisfactory, 
there are two limitations: (i) if the actual position of a facial feature is not close 
enough to the approximated determined position, it will be located at a wrong point; 
and (ii) detecting a particular facial feature necessitates the presence of a whole face 
image and other facial features; which may decrease the efficiency of the system and 
increase the processing time.  A natural extension of these approaches for overcoming 
the above limitations is to ignore the use of a global models (e.g. FBG in [1, 2]) and 
use only the description of local structures (in our case, Gabor Jets) for finding and 
localizing each facial feature. Although this extension can solve the above two 
problems, it results in a more serious problem: due to the lack of sufficient local 
structures for describing facial features, Gabor Jets can not perfectly cover the wide 
range of possible variations in the appearance of facial features, and thus can give 
many false positive (and sometimes false negative) responses. 

Our method combines the Gabor Jet with the entropy of the local image intensities 
to increase both the reliability and overall accuracy of the feature detection system. 
The entropy of local attributes measures the predictability of a region with respect to 
an assumed model of simplicity [9]. In the case of entropy for pixel intensities, the 
model of simplicity corresponds to a piecewise constant region. For example the PDF 
(Probability Distribution Function) of intensities (an intensity histogram in our 
system) is peaked in the cheek region, which indicates that most of these pixels are 
highly predictable and hence entropy is low. However, the PDF in the eye region is 
flatter, which indicates that pixel values are highly unpredictable and this corresponds 
to high entropy.  Another reason for applying entropy is its robustness against image 
rotation, if it is computed in circular image regions (instead of rectangular regions). 
Further, to make the Gabor Jets invariant to image rotation, we assign an orientation 
to each pixel and then compute the Gabor Jet at that point within a circular window 
and relative to the assigned orientation.  In the following sections, we describe the 
approach in more details, and demonstrate the results of application to the ORL face 
dataset (14).  
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2   Facial Feature Extraction 

In our system, each image pixel is described by a set of complex-valued Gabor 
wavelet coefficients (Gabor Jet), and the entropy of local image properties. However, 
before describing each image pixel, we assign an orientation to the pixel and then 
perform all processing tasks within a circular window and relative to that orientation, 
in order to achieve invariance to image rotation.  This section provides a detailed 
explanation of the different steps of the method. 

2.1   Orientation Assignment 

In most of the orientation assignment approaches reported in the literature, three 
general methods are used for computing the principal orientation [16]: (i) gradient 
orientation at a center pixel location, (ii) a peak in the orientation histogram of the 
local region, and (iii) orientation of the eigenvector of the second moment matrix of 
the local region. Following the satisfactory results of the orientation invariant 
descriptors of Lowe [17] (which is based on (ii)), we use a similar approach, with some 
slight changes, for assigning a local orientation.    

For each image pixel, ),( yxI , the gradient magnitude, ),( yxm , and orientation, 

),( yxθ , is precomputed using pixel differences:   

22 ))1,()1,(()),1(),1((),( −−++−−+= yxIyxIyxIyxIyxm  (1) 

))),1(),1(/())1,()1,(((tan),( 1 yxIyxIyxIyxIyx −−+−−+= −θ

 

(2) 

At each particular image pixel, an orientation histogram is formed from the 
gradient orientations of that pixel and its neighbors within a circular window of radius 
s (in our experiments 11=s ). The value of s was chosen particular for the feature sizes 
in our test set, a more general solution would be to search scale space as is done in 
[17].  The orientation histogram has 36 bins covering the 360 degree range of 
orientations. Each sample, ),( yxθ , added to the histogram is weighted by 

),,().,( σyxGyxm × , where ),,( σyxG is Gaussian function at (x,y) with s×= 5.1σ . The 

highest peak in the orientation histogram, as well as any other local peak which is 
within 80% of the highest peak [17], correspond to dominant directions of the local 
gradients. In our experiments nearly 90% of pixels are assigned single orientation.  

2.2   Gabor Wavelets 

Gabor wavelets are biologically motivated convolution kernels in the shape of plane 
waves, restricted by a Gaussian envelope function [1]. The general form for a 2D 
Gabor wavelet is presented in equation 3. 

( ) −−×−=Ψ
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In the above equation, σ is a parameter to control the scale of the Gaussian (in our 

experiments πσ = ) and k is a 2D wave vector which its magnitude and angle 
determine respectively the scale and the orientation of the Gabor kernel. 

A set of convolution coefficients for kernels of varying orientation and frequencies 
at one image pixel, form a Gabor Jet. A Gabor Jet describes a small patch of grey 
values in an image around a given pixel. We chose 16 Gabor kernels in 8 orientations 
(as suggested in [1]), varying in increments of 8/π  from 0 to 8/7π , and in 2 scales 
(the third and fifth scales suggested in [1]) in which 4/|| π=k and 8/|| π=k . Since the 

phase of the Gabor coefficients varies so quickly with location, it could cause severe 
problems for matching [1] and therefore we ignore it.  

2.3   Local Entropy 

Facial features are unpredictable complex regions, located in nearly uniform 
distributed areas such as the skin (for eyes, nose, etc.) and the beard (for mouth 
features) regions. This fact leads us to use entropy as a measure for uncertainty and 
unpredictability. For employing entropy, we first need to provide a reasonable 
probability distribution function (PDF) which satisfies the following conditions:  (i) 

for all x, 0)( ≥xf  and (ii) 1)( =
allx

xf , where f(x) is a PDF.  

 

 
H(a) = 7.0095  H(c) = 5.3785 

 
H(b) = 6.8117 

 
 
 

 
H(d) = 5.6534 

 
Fig. 1. The PDF and local entropy for four different regions of the face are shown. Facial 
features (a,b) indicate unpredictable local area, flatter PDF and therefore higher entropy. 

 

      In our system, to estimate the local PDF at pixel ),( yx , we use the histogram of 

pixel values within a circular window of radius s and centered at ),( yx . Considering 

that the value of each bin in the histogram is greater or equal to 0, the first condition is 
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satisfied. Then to make the second one satisfied, we divide each bin by 2sπ . In our 
experiments we used circular windows of radius 5.  
      Given that X is a random variable which takes on a finite set of values according 
to a probability distribution p(x), the entropy of X is defined by: 

=
−=

n

i
ii xpxpXH

1
2 ))((log)()(  

 

(4) 

where X takes the value ix such that ni <≤0 . In our case n is 255, ix refers to the ith 

bin, and p(x) is the value of the ith bin in the histogram. In Figure 1, the PDF in four 
different regions of a face image (eye, mouth corner, skin and beard) are shown and 
for each of them, the entropy measure is computed. Facial features such as the eye 
and the mouth corner exhibit unpredictable local intensity and therefore high entropy. 
However, the PDF in skin and beard regions are peaked which indicates that most of 
their pixels are highly predictable and hence the entropy is low.     

2.4   Facial Feature Models 

To construct a model for a particular facial feature, the system requires a set of 
ww× sample image regions centered at that feature point (in our 

experiments 11=w ). For each of these sample images: (i) a Gabor Jet is computed at 
the center pixel, relative to the main orientation of the image region; (ii) The 
normalized histogram of the intensity (PDF) is generated; and (iii) the local entropy is 
calculated. The Gabor Jet and entropy value of each training sample are saved in a 
data structure, to be used in the detection process.  Our training set consists of 20 
sample images for each facial feature. In general, the training samples should be as 
different as possible to cover all the possible variations and reduce the redundancy. 
For instance, a good set of samples for constructing a model for the eye may include 
images of open, partially open, closed, male, female and eyes covered with glasses. 

2.5   Detection Algorithm 

After constructing the facial feature models, the system is able to detect facial features 
in a new face image. To locate a particular facial feature in an input image, the system 
does the followings. 

1. Calculates the entropy value for all pixels of the input image. 
2. Selects those pixels where their local entropy is above average (candidate 

points) 
3. Assigns an orientation(s) to each candidate point and then computes the 

Gabor Jet for each of them relative to the assigned orientation(s). 
4. Compares the Gabor Jet and the local entropy of each candidate point (at 

each main orientation), with the Gabor Jet and the local entropy of all trained 
models, using the following equation. 



 Rotation-Invariant Facial Feature Detection Using Gabor Wavelet and Entropy 1045 

[ ] [ ] ),(),() , ( 21212211 JJSHHSJHJHS GaborJetentropy ×=  (5) 

where: 

{ }
+

×=
21

21
21

,min
2),(

HH

HH
HHSentropy

 
 

(6) 

=
22

21 ),(
ii

ji
GaborJet

yx

yx
JJS  

 
(7) 

5. Selects the candidate point which has the highest similarity (according to 
equation 5) to any of the trained models.    

 
    Equation (6) measures the similarity between two entropies, 1H and 2H , based on 

Symmetrical Uncertainty [18]. Equation (7) measures the similarity between two 
Gabor Jets, 1J and 2J , based on the similarity function used in [1]. In equation (5) 

multiplication is chosen experimentally, to combine these two similarities.    
      Our facial feature detection algorithm can be applied only on face images and 
provided that the facial feature is presented in the input images. However, by 
performing a face detection algorithm on the input images, before applying the facial 
feature detection, the system can accept inputs without any limitation and then be 
applied on the detected face regions. The face detection algorithm we have used was 
proposed by Viola and Jones and is discussed in [5].  

3   Experimental Results 

The above proposed method was tested on the ORL face dataset. The ORL dataset 
consists of 400 frontal face images from 40 individuals. Although the images were 
taken under controlled conditions, the dataset does contain faces with complex facial 
features. We trained the system for detecting the left eye and left mouth corner. We 
selected 20 sample images, with high variety and low redundancy, for constructing 
the models of each of the two facial features. After training the system, the method 
was tested in two phases: (i) testing the system on original ORL faces, and (ii) testing 
the system on randomly rotated ORL faces. For each phase 100 images were selected 
randomly from those images which had not taken part in the training process. Each 
image in each phase was tested by two methods: (i) using only a Gabor Jet for 
describing each facial feature, and (ii) using Gabor Jet and entropy together, for 
describing each facial feature. The results of the preliminary experiments are 
summarized in Table 1 and some of the result images with located eye and mouth 
corner are shown in Figure 2. 

Our experimental results appear to show that local entropy can reliably guide 
Gabor Jet based feature detector to locate facial features in the face images. However, 
by studying the failure results of our method (Gabor Jet + Entropy) in phase 1, we 
found out that usually failure occurs when the appearance of the facial feature in the  
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input image, is considerably different from its corresponding trained models. Besides, 
approximately 50% of the failure cases in phase 2 occurred due to the incorrect 
orientation assignment.   

 

   (a)    

   (b)    

Fig. 2. (a) Examples of test images where their facial features are accurately localized using the 
Gabor Jet + local entropy method. (b) Examples of test images where one of their facial 
features is not located properly (only the wrong localized feature is shown). 

Table 1. Experimental results. A feature point was counted as accurately detected if it was 
localized within 5 pixels of the actual position. In each phase, the test sets consisted of 100 face 
images. 

Phase1 
(original Images) 

Phase2 
(rotated images) 

Localization % Localization % 

 
Methods 

eye mouth Eye mouth 
Gabor Jet 79% 86% 76% 82% 

Gabor Jet + Entropy  97% 98% 92% 95% 

4   Conclusions 

In this paper we have presented a rotation-invariant facial feature detection system 
based on combining the Gabor wavelet and the entropy measure. One of the 
advantages of our method is that it can be trained for any individual facial feature 
using a small set of sample images, and once trained, without the necessity to know 
the approximate position of the facial feature in the face image, or relative distances 
to other facial features, it can find the actual position of the feature (with relatively 
high accuracy rate).  
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Abstract. In this paper we propose a new range-based face recognition for sig-
nificant improvement in the recognition rate using an optimized stereo acquisi-
tion system. The optimized 3D acquisition system consists of an eyes detection 
algorithm, facial pose direction distinction, and principal component analysis 
(PCA). The proposed method is carried out in the YCbCr color space in order to 
detect the face candidate area. To detect the correct face, it acquires the correct 
distance of the face candidate area and depth information of eyes and mouth. 
After scaling, the system transfers the pose change according to the distance. 
The face is finally recognized by the optimized PCA for each area with the fa-
cial pose elements detected. Simulation results with face recognition rate of 
95.83% (100cm) in the front and 98.3% with the pose change were obtained 
successfully. Therefore, proposed method can be used to obtain high recogni-
tion rate with an appropriate scaling and pose change according to the distance. 

1   Introduction 

Human biometric characteristics are unique, so it can not be easily duplicated [1]. 
Such information includes; face, hands, torso, fingerprints, etc. Potential applications, 
economical efficiency, and user convenience make the face detection and recognition 
technique an important commodity compared to other biometric features [2], [3]. It 
can also use a low-cost personal computer (PC) camera instead of expensive equip-
ments, and require minimal user interface. Recently, extensive research using 3D face 
data has been carried out in order to overcome the limits of 2D face detection and 
feature extraction [2], which includes PCA [3], neural networks (NN) [4], support 
vector machines (SVM) [5], hidden markov models (HMM) [6], and linear discrimi-

                                                           
* This research was supported by Korean Ministry of Science and Technology under the  

National Research Laboratory  Project, Korean Ministry of Information and Communication 
under HNRC-ITRC program  at Chung-Ang university supervised by IITA, and the Research 
Grant of Kwangwoon University in 2005. 



 Face Recognition Using Optimized 3D Information from Stereo Images 1049 

 

nant analysis (LDA) [7]. Among them, PCA and LDA methods with self-learning 
method are most widely used [3]. The frontal face image database provides fairly high 
recognition rate. However, if the view data of facial rotation, illumination and pose 
change is not acquired, the correct recognition rate remarkably drops because of the 
entire face modeling. Such performance degradation problem can be solved by using 
a new recognition method based on the optimized 3D information in the stereo face 
images. 
    This paper proposes a new face detection and recognition method using optimized 
3D information from stereo images. The proposed method can significantly improve 
the recognition rate and is robust against object’s size, distance, motion, and depth 
using the PCA algorithm. By using the optimized 3D information, we estimate the 
position of the eyes in the stereo face images. As a result, we can accurately detect the 
facial size, depth, and rotation in the stereo face images. For efficient detection of face 
area, we adopt YCbCr color format. The biggest object can be chosen as a face candi-
date among the candidate areas which are extracted by the morphological opening for 
the Cb and Cr components [8]. In order to detect the face characteristics such as eyes, 
nose, and mouth, a pre-processing is performed, which utilizes brightness information 
in the estimated face area. For fast processing, we train the partial face region seg-
mented by estimating the position of eyes, instead of the entire face region. Fig.1. 
shows the block diagram of proposed algorithm. 

 

Fig. 1. Block diagram of the proposed algorithm 

2   Proposed Stereo Vision System 

In order to acquire the distance and depth information, we use a parallel stereo camera 
as shown in Fig. 2. From the stereo camera, we obtain the disparity between left and 
right images and estimate the distance by a stereo triangulation.  

2.1   Disparity Compensation of Stereo Images 

A block matching algorithm is used to extract the disparity in the stereo images, after 
applying 33 ×  Gaussian noise smoothing mask. 
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Fig. 2. Structure of a parallel stereo camera 

    In general, the block matching algorithm uses the mean absolute difference (MAD) 
or the mean square difference (MSD) as a criterion. However, the proposed method 
uses the sum of absolute difference (SAD) to reduce computational complexity as  

+−= Ny
j k,j)(i

R
I(i,j)

L
INx

iSAD ,        (1) 

where 
LI represents the 

yx NN × block of left image, 
RI  represents the 

yx NN ×  corre-

sponding block of right image, and k  represents the disparity between left and right 
images. In the stereo image matching, the disparity compensation between left and 
right images should be performed. When a point in the 3D space is projected on left 
and right images, the virtual line connecting two points is called an epipolar-line [9]. 
The corresponding blocks of the stereo images are matched on the epipolar-line with 
the same x-coordinate. The modified block matching algorithm based on 4×4 block is 
used for fast processing as shown in Fig. 3.  

     Fig. 3. Disparity compensation of stereo images 

    The proposed block matching algorithm can remove unnecessary operations and 
the performance of the proposed block matching algorithm is as good as the one of 
the global searching algorithm. The process of the proposed algorithm is as following. 
First, SAD is calculated at each row and then the minimum value of SAD at the corre-
sponding row is obtained as  
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    Finally, the minimum SAD of entire image can be obtained as   
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SADMIN
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SAD
.    (3) 
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    Also, the disparity value between left and right images can be calculated as [2]  

ktrightright −=* ,  ktleftleft +=* .    (4) 

2.2   Scaling of the Face Images According to the Distance 

320×240 RGB color images including face region are used as an input image. For fast 
processing and reducing the effect for illumination changes, the RGB input image is 
converted to YCbCr image. By defining the color range for Orientals' face skin as RCb 
= [77 127] and RCr = [133 173], a color-based image segmentation [10] is performed 
as  

∈∩∈
=

otherwise
CrRyxCrCbRyxCbif

yxS
,0

]),([]),([,1
),(

.     (5) 

By using the camera characteristics as given in Table 1, the distance can be measured 
as 

][
3

1080.86 m
rxlx

bf
D ××

−
= ,    (6) 

where b represents the width between cameras, f represents the focal length, and xl 
and xr respectively represent the distances of left and right images. Also, the constant 
of 86.80×103 represents the effective distance per pixel.  

 

Table 1. Camera’s component elements 

Item Characteristic 

Camera setting method binocular 
Camera setting width 65( ) 

Camera focus length(f) 3.6( ) 
Size 1 pixel 7.2×5.6( ) 

Resolution width 512(dots) 

 
    For the 320x240 input image, the maximum distance of the disparity, xl - xr is equal 
to 1, and the minimum distance is equal to 320. The scaling according to the change 
of distance [11] is performed as  

=
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x ,    (7) 

where x', y' represent the position after scaling processing, sx, sy represent the scaling 
factor, and x, y represent the current position. From the obtained distance in (6), the 
scaling factor of face image can be calculated as   

( )
dist

A
dist

V
dist

B
x

V /×= ,    (8) 

where Bdist, Vdist, and Adist, and represent the basic distance, the established value by 
distance, and the obtained distance, respectively. 

2.3   Range-Based Pose Estimation Using Optimized 3D Information  

In order to solve the problem of the low recognition rate due to the uncertainty of size, 
distance, motion, rotation, and depth, optimized 3D information from stereo images is 
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used. By estimating the position of eyes, the proposed method can estimate the facial 
size, depth, and pose change, accurately. The result of estimation of facial pose 
change is shown in Fig. 5.  

 

Fig. 5. Estimation of face rotation 

    In Fig. 5, the upper and lower images respectively represent the right image and the 
left image of frontal face. In Table 2, the range of 9 directions for face images is de-
fined to estimate the accurate facial direction and position of stereo images. 

Table  2. Range of  face position according to direction 

NW (-15°~ -30°) TOP (+15°~ +30°) NE (+15°~ +30°) 
LEFT (-15°~ -30°) FRONT (-5°~ +5°) RIGHT (+15°~ +30°) 
SW (-15°~ -30°) BOTTOM (-15°~ -30°) SE (+15°~ +30°) 

3   Pose Estimation and Face Recognition 

Face recognition rate is sensitive to illumination change, pose and expression change, 
and resolution of image. In order to increase the recognition rate under such condi-
tions, we should consider the pose change as well as the frontal face image. The rec-
ognition rate can be increased by the 3D pose information as presented in Table 2. In 
order to detect face region and estimate face elements, the multi-layered relative in-
tensity map based on the face characteristics is used, which can provide better result 
than the method using only color images. The proposed directional blob template can 
be determined according to the face size. In detail, to fit for the ratio of the horizontal 
and vertical length of eyes, the template should be defined so that the length of hori-
zontal axis is longer than that of vertical one as shown in Fig. 6 (a). The central pixel 
of a template in a W × H image is defined as Pc=(xc, yc). By using Wff × Hff directional 
template for face components, the average intensity DirI  of 8-neighborhood pixels is 

calculated in the central pixel, Pc. As a result, the brightness value at Pc, 
c

I  and the 

brightness difference value can be obtained. The principal direction, prd , and its 

magnitude, prd , are determined as the direction including the biggest brightness dif-

ference as shown in Fig. 6 (b). 
    Fig. 7 shows the result of the face region divided by the multi-layered relative in-
tensity map. We can build the database including 92×112 face images at each direc-
tion. The directional range of face image can be classified into 9 groups as shown in 
Fig. 7. 
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(a) Directional template         (b) New direction for map  

Fig. 6. Directional template for estimation of position for eyes and mouth 

Fig. 7. Face area division of multi-layered relative intensity map 

    The classified images are trained by PCA algorithm using optimized 3D informa-
tion component. The block diagram of the proposed optimized PCA algorithm is 
shown in Fig. 8. 

 

Fig. 8. The block diagram of PCA algorithm 

4   Experimental Results 

For the experiments, we extracted 50~400 face images from 320×240 stereo images. 
Fig. 9 shows the matched result of the left and right images captured at the distance of 
47cm.  
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Fig. 9. The matched result of stereo image pair 

    Figs. 10 show the 92×112 scaled versions of the images captured at different dis-
tances. The scaling ratio of the captured face images was determined with respect to 
the reference image captured at the distance of 100cm. The scaling up ratios are re-
spectively 1.2, 1.5, and 2.0 at the distances of 120cm, 150cm, and 200cm, while the 
scaling up ratios are 0.4 and 0.5 at the distances of 30cm and 50cm. The scaling fac-
tors were determined by experiment. Figs.11 show the samples of stereo image pairs 
used as input images. Figs. 12 show the some result images recognized by the 
proposed algorithm. The proposed algorithm can recognize the face as well as the 
pose of the face under pose changes. 

 
(a) Left images                                                  (b) Right images 

Fig. 10. The scaled version of the face images captured at the distance of 30, 50, 100, 120, 150, 
and 200cm 

 

Fig. 11. The samples of the input stereo image pairs 

 

Fig. 12. Various pose of the result images recognized by the proposed algorithm 

    In Table 3, the recognition rate is compared according to the distance. As shown in 
the Table 3, the highest recognition rate can be obtained at the reference distance of 
100cm. After training 200 stereo images, the recognition rates of the proposed meth-
ods were compared to those of the existing methods with respect to 120 test images. 
The recognition rate of the proposed method based on optimized 3D information is 
provided in Table 4. Experiment 1 and 2 respectively used frontal face images and 
images with various pose change. Table 4 shows that the recognition rate using the 
conventional PCA or HMM drops in inverse proportion to the distance. From the 
experiments, the proposed method can increase the recognition rate. 
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Table  3. The recognition rate according to the distance 

Recognition rate according to distance (%) 
No. of training 
images (L/R) 

No. of test 
images 30 

(cm) 
50 

(cm) 
100 
(cm) 

120 
(cm) 

150 
(cm) 

200 
(cm) 

200/200 120 90.00 93.33 95.83 91.67 90.00 87.50 

Table  4. Recognition rate comparison between the proposed method and others 

 Recognition rate (%) 

Distance Experiment-1 Experiment -2 PCA HMM 

30cm 90.0 93.3 90.0 91.7 

50cm 93.3 95.8 85.0 87.5 

100cm 95.8 98.3 81.7 87.5 

120cm 91.6 96.7 79.2 83.3 

150cm 90.0 93.3 68.3 75.8 

200cm 87.5 91.7 59.2 70.0 

5   Conclusions 

This paper proposed a new range-based face detection and recognition method using 
optimized 3D information from stereo images. The proposed method can significantly 
improve the recognition rate and is robust against object’s size, distance, motion, and 
depth using the PCA algorithm. The proposed method uses the YCbCr color format 
for fast, accurate detection of the face region. The proposed method can acquire more 
robust information against scale and rotation through scaling the detected face image 
according to the distance change. Experiments were performed in the range of 
30~200cm and we could get the recognition rate up to 95.8% according to the scale 
change. Also, we could get the high recognition rate of 98.3% according to the pose 
change. Experimental results showed that the proposed method can increase the low 
recognition rate of the conventional 2D-based algorithm. 
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Abstract. In many realistic face recognition applications, such as sur-
veillance photo identification, the subjects of interest usually have only a
limited number of image samples a-priori. This makes the recognition a
difficult task, especially when only one image sample is available for each
subject. In such a case, the performance of many well known face recogni-
tion algorithms will deteriorate rapidly and some of the algorithms even
fail to apply. In this paper, we introduced a novel scheme to solve the one
training sample problem by combining a specific solution learned from
the samples of interested subjects and a generic solution learned from
the samples of many other subjects. A multi-learner framework is firstly
applied to generate and combine a set of generic base learners followed
by a second combination with the specific learner. Extensive experiments
based on the FERET database suggests that in the scenario considered
here, the proposed solution significantly boosts the recognition perfor-
mance.1

1 Introduction

Face recognition (FR) which has many realistic applications such as forensic
identification, access control and human computer interface receives more and
more attentions in both the academic and industrial areas. However it is still a
difficult problem far from well solved since face objects usually exhibit various
appearance due to aging, illumination and pose variations. Furthermore, image
samples available for training are usually limited. Particularly, if only one image
sample per subject is available, the problem becomes even more challenging.

In literature, many state-of-the-art FR algorithms have been proposed and
the recent surveys could be found in[1] [2]. Among various face recognition tech-
niques, appearance based approach which treats the face image as a holistic pat-
tern is one of the most attractive methodologies [3]. A 2D face image is treated
as a vector in the high dimensional image space and the subject identification

1 This work is partially supported by a Bell University Lab research grant and CITO
Student Internship Program. The authors would like to thank the FERET Technical
Agent, the U.S. National Institute of Standards and Technology for providing the
FERET database.

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 1057–1064, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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is performed by applying statistical classification methodologies, among which
principle component analysis (PCA)[4], an unsupervised technique, and linear
discriminant analysis (LDA)[5][6][7], a supervised technique, are most commonly
used. It is generally believed that the supervised techniques are superior to those
unsupervised ones for classification purposes. However, such techniques are more
susceptible to the so-called “small sample size” problem, where the number of
the training samples is much smaller than the dimensionality of the samples.
The problem will be particularly severe when only one training sample is avail-
able for each subject. In such a case, the intra-subject information cannot be
estimated which makes the supervised learning technique such as LDA based
algorithms fail to apply. Thus training an unsupervised learner seems to be
the only choice. However, unsupervised learning techniques are not optimal for
classification tasks [5], furthermore, due to the fact that only limited number
of samples are available, the estimation of the statistical model is not reliable,
resulting in a poor performance.

In this paper, we proposed a scheme to solve the one sample problem by com-
bining a generic and a specific solution. A generic FR system is built on a generic
database. It is assumed that the subjects contained in the generic database do
not overlap those to be identified in a specific FR task. Therefore, a generic
FR system which is built to classify the generic subjects could be generalized
to identify the unseen subjects in a specific FR task. This is based on a rea-
sonable assumption, that human faces share similar intra-subject variations[8].
Thus discriminant information of the specific subjects (those to be identified)
can be learned from other. It is also a realistic solution since a reasonably sized
generic database is always existed. Therefore, without the one sample limita-
tion, supervised learning techniques can be applied on the generic database. It
is well known that supervised techniques are class specific and the learner which
is optimal for the trained subjects may not work well with those specific sub-
jects which are not included in the training session. In order to improve the
generic behavior of the supervised algorithms and enhance the generalization
power, a multi-learner framework is introduced. Generic FR system is formed
by combining a set of base generic FR subsystems which are trained on different
generic subsets. Since the generic learner does not target at the specific subjects,
it provides a bias solution for a specific FR task. In order to further improve the
recognition performance, a specific FR system is built on those specific subject
images (1 image per subject) by using an unsupervised leaning algorithm. The
final identification is performed by aggregating the output from both the generic
and specific FR systems. Extensive experimentations on the FERET database
[9] indicate that the proposed algorithm significantly improves the performance
under the considered scenario which is often encountered in practice.

The rest of the paper is organized as follows: Section 2 introduces the system
framework. The generic and the specific learners are described in section 3 and
section 4 respectively while their combination is discussed in section 5. Exper-
imental results obtained by using the FERET database are given in section 6
followed by the conclusion drawn in section 7.
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2 System Framework

In order to facilitate the presentation, some terminologies are defined. Let GalD
be the gallery set containing the subjects of interest with the identity labels,
one frontal image sample per subject. Let PrbD be the probe set which includes
the face images to be identified. It is assumed that there is no overlap between
gallery samples and probe samples. Thus the task of a FR system is to determine
which gallery subject the probe image belongs to. A generic database, denoted as
GenD is collected elsewhere. The subjects included in the GenD do not overlap
with those in the gallery set and the probe set.

In the training session, a number of generic subsets are generated from the
generic database. Each training subset contains the image samples of T subjects
which are selected randomly from the total subjects in generic database without
replacement. With each training subset, a corresponding base generic learner,
denoted as Hk

G, k = 1, ...,M , is built which includes a feature extractor and
a classifier. Similarly, the specific learner is generated from the gallery images,
denoted as HS . While in the operation session, both the probe p and the gallery
samples are inputed to the base generic learners and the specific learner. A
generic recognition result is obtained by aggregating the results from each base
learners which is denoted as the level 1 combination. The final determination is
performed by combining of the generic result and the specific result, which is
denoted as level 2 combination. The system framework is depicted in Fig.1

Fig. 1. System Framework

3 Generic Learner

3.1 Multiple Base Generic Learners

Let GenD be the generic set of size C × L containing C subjects L images
each. ti,j is the jth image of subject i, i = 1, ..., C, j = 1, ..., L. M generic
training subsets are generated from GenD, each of which contains T subjects
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randomly selected from all C subjects in the GenD without replacement. Let
SGenDk be the kth training subset containing T subjects, L images each, where
k = 1, ...,M . Therefore, a base generic learner, denoted as Hk

G, is trained on the
subset SGenDk.

In appearance approach, a learner is generally formed by a feature extractor
and a classifier. Since the generic database is collected elsewhere, it is reason-
able to assume that at lease two image samples are available for each generic
subject. Therefore, supervised techniques can be applied. In this paper, direct
linear discriminant analysis (DLDA)[10] is selected as generic feature extrac-
tor due to its good performance. Linear discriminant analysis (LDA) and its
variants[5][6][10] provide class specific solutions by maximizing the so called
Fisher’s criterion, i.e., the ratio of the between- and within-class scatters are
maximized, A = arg maxA

|AT SbA|
|AT SwA| , where Sb and Sw are the between- and

within-class scatter matrices of the training samples respectively and A is the
optimal transformation matrix from the original image space to the feature space.
Direct LDA procedure solves the above optimization problem by firstly diagonal-
izing the between-class scatter followed by diagonalizing the within-class scatter.
However, in the SSS scenario, the variance of the estimation of the small eigen-
values of Sw increases significantly resulting in exaggerating the importance of
the corresponding eigenvectors. Therefore, a modified but equivalent criterion is
utilized, i.e., A = arg maxA

|AT SbA|
|AT SwA+AT SbA| [7]. Following the feature extractor,

nearest center classifier is selected to determine the probe identity by calculating
the distance between the probe and each gallery subject in the extracted feature
subspace. The identity of the probe is therefore determined as the one with the
smallest distance.

Let Ak
G be the transformation matrix obtained from the generic training

subset SGenDk. Let GalD be the gallery set, containing of H image samples
si, i = 1, ..., H, one per subject, thus the generic base learner Hk

G outputs the
the probe identity as follows:

Hk
G(p) = argmin

i
Dk

G(p, si) Dk
G(p, si) = ||(Ak

G)T p, (Ak
G)T si|| (1)

whereDk
G denotes the distance of the probe and the gallery subject in the feature

subspace specified by Ak
G, and ||.|| is the distance metric. In this paper, Euclidean

distance is selected for DLDA extracted feature space.
In addition to the probe label, each base learner also makes a soft decision

by providing a membership score Rk
G(p, si) which indicates how the probe p

belongs to the gallery subject si. The larger the score, the higher possibility the
probe belongs to the subject si. Therefore, we define the membership score as
follows, i.e.,

Rk
G(p, si) = (Dk

Gmax −Dk
G(p, si))/(Dk

Gmax −Dk
Gmin) (2)

Dk
Gmax = max({Dk

G(p, si)}H
i=1) Dk

Gmin = min({Dk
G(p, si)}H

i=1)
With such definition, small distance results in high membership score and vice
versus. Therefore, the identity of the probe is equivalent to that with the highest
membership score, i.e., Hk

G(p) = argmaxiR
k
G(p, si).
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3.2 Combine Base Learners – Level 1 Combination

In order to combine multiple learners, many combination policies are developed
in literature[11]. In this paper, sum rule is selected to combine the generic base
learners for its simplicity and robust performance.

The final score, denoted as RG, is therefore the summation of the scores ob-
tained by all base learners and the identity is the one with the highest value,i.e.,
RG(p, si) =

∑M
k=1 R

k
G(p, si) HG(p) = argmaxiRG(p, si).

4 Specific Learner

The specific learner, denoted as HS , is trained on the gallery set, where each
subject only has one image sample. Therefore unsupervised learning techniques
are selected. In this paper, PCA is adopted as the specific feature extractor re-
sulting in a specific feature space specified by AS , while the classifier is again the
nearest center classifier. The membership score provided by the specific learner,
RS(p, si), is defined in a similar way, i.e., RS(p, si) = (DSmax − DS(p, si))/
(DSmax − DSmin), DSmax = max({DS(p, si)}H

i=1) and DSmin = min
({DS(p, si)}H

i=1), where DS(p, si) is the distance between probe p and gallery
subject si in the specific feature space AS . Here, Mahalanobis distance is selected
for the PCA based feature subspace due to its good performance. Correspond-
ingly, the probe identity is determined as: HS(p) = argmaxiRS(p, si).

5 Combine Generic and Specific Learners – Level 2
Combination

The generic leaner, trained on the samples of generic subjects, is usually bias
the optimal one for a specific recognition task, since it does not target at the
subjects of interest. On the other hand, the specific learner is exactly trained on
the subjects of interest, however, due to the limited sample size, the estimation
relies heavily on the gallery samples, giving rise to high variance. Therefore it
is reasonable to combine these two learners by using a regularization factor η
to balance the bias and variance. Here, we propose to combine the generic and
specific learners with the following form:

R(p, si) = ηRG(p, si) + (1− η)RS(p, si) H(p) = argmax
i
R(p, si) (3)

where η is the regularization factor, 0 ≤ η ≤ 1, RG(.) and RS(.) are the member-
ship scores provided by the generic and the specific learner and RG(.) has been
normalized to 0-1. It is observed that if η = 0, the final learner results in the
specific leaner which exhibits large variance. When η = 1, only generic learner
affects the performance resulting in a biased solution.
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6 Experiments

6.1 Experiment Setup

A set of experiments are performed on the FERET database. In the current
FERET database, 3817 face images of 1200 subjects are provided with the eye
coordinates information which is required to align and normalize the images.
In all experiments reported here, images are preprocessed following the FERET
protocol guidelines: (1) images are rotated and scaled so that the centers of the
eyes are placed on specific pixels and the image size is normalized to 150 ×
130; (2) a standard mask is applied to remove non-face portions; (3) histogram
equalization is performed and image intensity values are normalized to zero
mean and unit standard deviation; (4) each image is finally represented, after
the application of mask, as a vector of dimensionality 17154.

Among these 1200 subjects, there exist 226 subjects with 3 images per sub-
ject. These 678 images are used to form the generic training database. In ad-
dition, there are 1097 images of 207 subjects each of which has 4-9 images. Of
these images, we randomly select 207 frontal images, one per subject, to form
the gallery set while the remaining 890 images are treated as probes.

For specific learner, PCA is applied for feature extraction denoted asHS−PCA.
As for DLDA based generic learner,HG−DLDA, it is formed by the combination
of 50 base learners generated from 50 different generic training subsets, each of
which has H subjects, where H is varied from 30 to 110 with the interval of
10. For comparison purposes, two single generic learners trained on the whole
generic training set are also generated by using PCA and DLDA respectively,
denoted as HG−PCA−Single and HG−DLDA−Single.

6.2 Results and Analysis

The comparison of the correct recognition rate (CRR) obtained by the sin-
gle generic learners (HG−PCA/DLDA−Single) and the combination of multiple
base generic learners (output of level 1 combination,HG−DLDA ) is depicted
in Fig.2(a). As for the single generic learners, the best CRRs are utilized for
comparison. It is well-known that CRR is a function of feature number and
the best found CRR is the one with the peak value corresponding to the opti-
mal feature number (M∗) which is obtained by exhaustively searching all possi-
ble feature numbers. In addition, the comparison of the CRRs obtained by the
specific learner (HS−PCA), generic learner (HG−DLDA) and their combination
(HS−PCA +HG−DLDA) is depicted in Fig.2(b). It can be observed from Fig.2(a)
that the introduced multi-learner framework improves the recognition perfor-
mance with respect to the single generic learner. Fig.2(b) indicates that the
combination of the generic and specific solution further boosts the recognition
performance, outperforming either of them.

Fig.3(a) depicts the effect that the regularization factor η has on the recog-
nition performance. It can be observed that the best performance is between
η = 0 and η = 1. The result is consistent with our claim that balancing the
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Fig. 2. (a) CRRs obtained by the single generic learners and the combination of mul-
tiple base learners v.s. feature number for each base learner; (b) CRRs obtained by
the generic, specific learners and their combination v.s. feature number for each base
learner, η = 0.6; Each base learner is trained with 80 subjects

Fig. 3. (a) CRR obtained by the combination of generic and specific learners
HG−DLDA + HS−PCA v.s. η; Each base learner is trained with 80 subjects and re-
tain 20 features. (b) CRR obtained by the generic learner HG−DLDA with 20 features
v.s. number of subjects including in each training subset.

biased generic solution and the specific solution with high estimation variance
can provide better performance.

The last experiment deals with the influence of the subject number in each
training subset. Fig.3(b) demonstrates the relationship of the CRR obtained by
HG−DLDA and the number of subjects used to train each base generic learner.
The results indicate that the performance initially improves as the number of the
training subjects increases. However, if too many subjects are included, the per-
formance will degrade. It is well known that a necessary and sufficient condition
for combining a set of learners to be more accurate than any of its individ-
ual members is if these base learners are accurate and diverse[12]. When the
number of subjects are small, including more subjects and more samples could
increase the learning capacity of the base learner which makes the base learner
more accurate. However, since the number of the total generic subjects is fixed,
continuing increasing the subjects in each training subset leads to heavier over-
lapping between different subsets, thereafter, the base learners trained on which
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become more similar. The decreasing of the base learner diversity leads to the
combination effect degraded.

7 Conclusion

In this paper, we proposed a novel framework to combine the generic solution and
the specific solution for face recognition applications when only one image sample
for each subject of interest is available. A set of base generic learners trained on
the generic subject samples are firstly combined to provide a generic solution
followed by a combination with the specific solution obtained from the subject
samples of the interest. Experimentations on the FERET database indicate that
the proposed scheme significantly improves the recognition performance.
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Abstract. The present paper introduces a novel set of facial biomet-
rics defined in the frequency domain representing “facial asymmetry”.
A comparison with previously introduced spatial asymmetry measures
suggests that the frequency domain representation provides an efficient
approach for performing human identification in the presence of severe
expressions and also for expression classification. Feature analysis in-
dicates that asymmetry of the different regions of the face (e.g., eyes,
mouth, nose) help in these two apparently conflicting classification prob-
lems. Another advantage of our frequency domain measures is that they
are tolerant to some form of illumination variations. Error rates of less
than 5% are observed for human identification in all cases. We then pro-
pose another asymmetry biometric based only on the Fourier domain
phase and show a potential connection of asymmetry with phase.

1 Introduction

Human faces have two kinds of asymmetry - intrinsic and extrinsic. The former is
caused by growth, injury and age-related changes, while the latter is affected by
viewing orientation and lighting direction. Intrinsic asymmetry is the interesting
one since it is directly related to the individual face structure while extrinsic
asymmetry can be controlled to a large extent. Psychologists say that the more
asymmetric a face, the less attractive it is and more recognizable ([1], [2]), which
show the potential significance of asymmetry in recognition tasks.

A commonly accepted notion in computer vision is that human faces are
bilaterally symmetric ([3]) and [4] reported no differences whatsoever in recog-
nition rates while using only the right and left halves of the face. However, a
well-known fact is that manifesting expressions cause a considerable amount of
facial asymmetry, they being more intense on the left side of the face ([5]). Indeed
[6] found differences in recognition rates for the two halves of the face under a
given facial expression.

Despite extensive studies on facial asymmetry, its use in automatic recogni-
tion started in the computer vision community only in 2001 with the seminal
� The authors wish to thank CyLab and Technical Support Working Group (TSWG).
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work by Liu ([7]), who for the first time showed that facial asymmetry measures
are efficient human identification tools under expression variations. This was
followed by more in-depth studies ([8], [9]) on human as well as expression clas-
sification. But no work has yet been done on developing asymmetry measures
in the frequency domain for face identification which, given the correspondence
between the two domains, seems worthwhile to explore.

The paper is organized as follows. Section 2 describes the dataset used and
Section 3 introduces the new asymmetry measures in the frequency domain.
Section 4 presents some exploratory feature analysis and Section 5 contains the
classification results. A discussion appears in Section 6.

2 Data

We use a part of the “Cohn-Kanade AU-coded Facial Expression Database”
([10]), consisting of images of 55 individuals expressing three different emotions
- joy, anger and disgust. The data consist of video clips of people showing an
emotion, each clip being broken down into several frames. The raw images are
normalized using the same affine transformation as used in [8], the normalized
images being of dimension 128× 128. Figure 1 shows some of these. This is the
only available database, as per our knowledge, for studying facial asymmetry
under extreme expressions, and we use this small subset as out initial testbed.

Fig. 1. Sample images from our database

3 Asymmetry in Frequency Domain

Many computer engineering applications involve the frequency-domain represen-
tation of signals. The frequency spectrum consists of two components, magnitude
and phase. In 2D images, the phase captures more of the image intelligibility
than magnitude and hence is very significant for performing image reconstruc-
tion ([11]). [12] showed that correlation filters built in the frequency domain
can be used for efficient face-based recognition, and in fact, they perform as
well as those based only on the phase ([13]). Later [14] demonstrated that per-
forming PCA using the phase spectrum alone not only outperformed spatial
domain PCA, but also are tolerant to illumination and occlusions. These point



Facial Asymmetry: A New Robust Biometric in the Frequency Domain 1067

out that classification features in the frequency domain, and particularly phase,
are capable of producing potentially improved results.

Symmetry properties of the Fourier transform are often very useful ([15]).
Any sequence x(n) can be expressed as a sum of a symmetric or even component
xe(n) and an asymmetric or odd component xo(n). Specifically, x(n) = xe(n)+
xo(n), where xe(n) = 1

2 (x(n) + x(−n)) and xo(n) = 1
2 (x(n) − x(−n)). When a

Fourier transform is performed on a real sequence x(n), the even part (xe(n))
transforms to the real part of the Fourier transform R and the odd part (xo(n))
transforms to its imaginary part I (Fourier transform of any sequence is generally
complex-valued). The Fourier transform of a real and even sequence is thus real;
that of a real and odd sequence is purely imaginary. Now, since phase is defined
as θ = tan−1

(
I
R

)
, it will be zero in case I = 0. In other words, a symmetric 1D

sequence gives rise to zero-phase frequency spectrum. These observations imply
that the imaginary components of 1D Fourier transform slices of the face can
be considered as a measure of facial asymmetry in the frequency domain, and
provides a scope for establishing a connection with phase as well as developing
more refined classification tools.

3.1 The Asymmetry Biometrics

Following the notion presented in the earlier section, we define our asymmetry
biometrics as:

– I-face: frequency-wise imaginary components of rowwise Fourier transforms
- 128× 128 matrix of features

– Ave I-face: frequency-wise imaginary components of Fourier transforms on
averages of two-row slices of the face - 64× 128 matrix of features

– E-face: sum of the energy of the imaginary components of the Fourier trans-
form of averages of two-row slices of the face - a feature vector of length 64

For all three sets of features, the higher their values the greater the amount of
asymmetry, and vice versa. The averaging was done in order to study if smooth-
ing out noise in the image can reduce artificial asymmetry artifacts that gives
misleading results. To the best of our knowledge, these frequency-based features
as a means of representing facial asymmetry are novel in any computer vision
and pattern recognition problems.

4 Feature Analysis

Exploratory feature analysis provides an useful insight into the nature of the
different features and their utility in classification. Figure 2 shows the pattern
of asymmetry variation among the different expressions of two people using
the E-faces. The E-face features range from the forehead to the chin of each
face. They give a preliminary but convincing idea that these measures may be
helpful in recognizing people in the presence of expression variations, as well as
in identifying expressions. This hence constitutes a work parallel to that of [8]
and [9], in a frequency domain framework instead.
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Fig. 2. Asymmetry of facial features for 4 expressions. X-axis shows frequencies.

4.1 Discriminative Feature Sets

We studied the discriminative power of these asymmetry features to determine
the specific facial regions that help in identifying humans and expressions. We use
a quantity known as Augmented Variance Ratio (AVR; also used by ([8]), which
compares within class and between class variances, while penalizing features with
near-equal class means. For a feature F with values SF , AVR is calculated as

AVR(SF ) =
V ar(SF )

1
C

∑C
k=1

V ark(SF )
minj �=k(|meank(SF )−meanj(SF )|)

,

where meani(SF ) is the mean of the subset of values from feature F belonging
to class i. The higher the AVR value of a feature, the more discriminative it is
for classification. For human identification, the 55 subjects form the classes and
for expression classification, the classes are the 3 emotions.

Figure 3 shows the E-face AVR values for both human and expression clas-
sifications. For the former, features around the nose bridge seem to be most
discriminative whereas the mouth region appeared to differ mostly across expres-
sion. Figures 3(b) and (d) respectively show the facial regions that correspond
to the highest AVR values for the two classification problems. These results sug-
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Fig. 3. AVR values for E-faces.(a)-(b) correspond to human identification and (c)-(d)
to expression classification. The x-axis in (a) and (c) shows the different frequencies.

gest that the asymmetry of different face parts drives these two classification
problems and hence may be effective for both, and is consistent with [9].
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5 Results

Of the various classifiers tried (including SVM, LDA, FF), the best results were
obtained with Individual PCA (IPCA) which we report here. The IPCA method
([13]) is different from the global PCA approach ([16]) where a subspace W is
computed from all the images regardless of identity. In individual PCA, on the
other hand, subspaces Wp are computed for each person p and each test image
is projected onto each individual subspace using yp = WT

p (x−mp). The reader
is referred to [13] for more details about the procedure and its advantages over
the global PCA approach.

5.1 Human Identification

We trained on the neutral frames from all the 55 individuals and tested on their
peak frames of the 3 emotions. Hence this represents an expression-invariant
human identification problem, similar to the one reported in [8] which uses a
simplistic measure of facial asymmetry in the spatial domain called D-face. Sta-
tistical tests based on the results in Table 1 show that all of our proposed fre-
quency domain measures are significantly better than original D-face (p-values
<0.0001). When compared with the D-face PCs, there is no statistically signif-
icant differences (p-values>0.05). Further, the I-faces proved to be significantly
better than the E-faces, which may be due to the loss of discriminative infor-
mation by way of feature reduction. We will henceforth work with only I-faces.

Table 1. Error rates for human identification using frequency-domain measures

I-face Ave I-face E-face Spatial D-face D-face PCs
4.85% 3.64% 6.36% 17.58% 3.03%

5.2 Expression Classification

Our database has images with 3 different emotions: joy, anger and disgust. We
used only the peak frames from the 3 emotions for this, training on a randomly
selected subset of 30 people from our dataset and testing on the remaining 25.
This random division of the subjects into training and test sets was repeated 20
times (in order to remove bias due to subjective selection) and the final error
rates were obtained by averaging over these 20 repetitions. This experimental
setup was also followed in [9], and this facilitates easy comparison of results. The
results in Table 2 show that the frequency domain features outperformed both
the D-face measures with significant improvements of over 10% (p-values<0.001),
unlike the human identification case.

5.3 Illumination Variations

No experiments were performed on the illumination tolerance of the spatial mea-
sures, and hence we use a simple scheme as the first step towards studying this
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Table 2. Misclassification rates for expression classification. The figures in the paren-
theses denote the standard deviations over the 20 repetitions.

I-face Ave I-face D-face D-face PCs
26.93% (4.18%) 27.07% (3.77%) 39.60% (2.74%) 36.73% (3.88%)

for asymmetry features as such. We consider a “top-down” illumination pattern
which means that the illumination gradient moves only from bottom to the top
of an image (dark to light) and it is uniform over each row. We introduce this
kind of illumination artificially to the images in our database, as shown in Fig-
ure 4. We considered this setup since the Cohn-Kanade database is the only

(a) Origial image (b) Illumination matrix (c) Illuminated Image

Fig. 4. Creating the “illuminated” images. (c) = (a) ⊗ (b).

available database with extreme expressions, and no other illumination data-
base has the same type of controlled expression changes to facilitate studying
facial asymmetry. The two experimental scenarios for human identification that
we studied are as follows. Exp. 1: Train on all non-illuminated images, test on
all illuminated ones; Exp. 2: Train on non-illuminated neutral frames from 3
emotions, test on illuminated peak frames from 3 emotions. Clearly, the second
setup is more difficult and involves identification in the presence of both expres-
sion and illumination changes. As for expression classification, we use the same
setup as before, only the test images had illumination variations and the training
images did not. The results in Table 3 demonstrate that the I-faces are capable
of perfect identification of the same image under illumination.

Table 3. Error rates for human and expression classification under illumination changes
(std. deviations in parentheses)

Features Human (Exp.1) Human (Exp. 2) Expr.
I-face 0% 4.85% 30.93% (4.14%)

Ave I-face 0% 4.54% 32% (4.93%)

The I-face human identification results are exactly the same with and with-
out illumination variations, which can be explained as follows. By construction,
the illuminated images are scaled the same way for all elements within a row
(and differently for different rows). By the linearity property for Fourier trans-
form ([15]), and considering its polar form, this implies that the I-face features
for every row are now scaled versions of the original ones, and this same scaling
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applies to the same row in each image and hence this does not alter the classifica-
tion results. This is not true for the Ave I-faces because the averaging scales the
different elements of each row differently prior to applying FFT. Theoretically,
expression classification results should also be same for I-face, but the random
selection of training and test sets precludes the scope of exactly similar results.

5.4 Phase-Only Images

In order to study the connection between asymmetry and phase mentioned in
Section 3 more rigorously, we constructed same features using “phase-only” im-
ages (obtained by dividing the Fourier transform by its magnitude). We call
them I-faceθ and Ave I-faceθ. Human and expression identification results with
and without illumination changes using the same setup as before appear in Table
4. Both sets of human recognition results are comparable with those using the

Table 4. Misclassification rates for human and expression classifications using phase-
only images. Standard deviations for the latter appear in parentheses.

Images Features Human Expr.
No I-faceθ 4.85% 37.8% (4.98%)

Illum. Ave I-faceθ 5.45% 38.8% (4.76%)
Illum I-faceθ 4.85% 36.74% (4.63%)

Ave I-faceθ 5.76% 40.40% (4.76%)

original images, but expression results are considerably worse. This shows that
removing the magnitude loses relevant information for identifying expressions
but not for identifying people.

As with I-face, I-faceθ gives the same human classification results with and
without illumination variations. This happens since the scale factor a gets ab-
sorbed completely in the magnitude (exploiting the linearity property again),
keeping the phase and hence I-faceθ unchanged.

6 Discussion

We have shown in this paper that facial asymmetry measures in the frequency
domain offer a promising potential as an useful biometric in practice, especially,
in the presence of expression and illumination variations. This is an advantage
over spatial measures which are particularly sensitive to illumination variations.
An error rate of less than 5% for human recognition is very impressive and desir-
able given that the test images are very different from the training ones. This in
turn is very important for recognition routines in practice, for example, surveil-
lance photos captured at airports are expected to be quite diverse with respect
to facial expressions and illumination conditions. Our features also outperformed
the spatial measures in expression classification.

The phase-based measures also proved efficient for distortion-tolerant human
identification, which also established a nice connection with phase. The asym-
metry features based on the actual images and the phase-only images produced
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exactly same human classification results. This indicates (although empirically)
that phase contains all the asymmetry of a face, at least to the extent that is
necessary for classification purposes, and no crucial information is lost by re-
moving the magnitude. The Ave I-faceθ results are different from the Ave I-face
results and this may have arisen from the averaging.

Future research directions include studying the illumination tolerance more
rigorously by considering real images with illumination changes since artificial
manipulation often produces biased results. We will also consider frequency do-
main analogs of S-face features proposed by [9] which are based on edges.

References

1. Thornhill, R., Gangstad, S. W.: Facial attractiveness. Transactions in Cognitive
Sciences 3 (1999) 452–460

2. Troje, N. F., Buelthoff, H. H.: How is bilateral symmetry of human faces used for
recognition of novel views? Vision Research 38 (1998) 79–89

3. Seitz, S.M., Dyer, C.R.: View morphing. SIGGRAPH (1996) 21–30
4. Gutta, S., Philomin, V., Trajkovic, M.: An investigation into the use of partial-faces

for face recognition. In: AFGR. (2002) 33–38
5. Borod, J.D., Koff, E., Yecker, S., Santschi, C., Schmidt, J.M.: Facial asymmetry

during emotional expression: gender, valence and measurement technique. Psy-
chophysiology 36 (1998) 1209–1215

6. Martinez, A.M.: Recognizing imprecisely localized, partially occluded and expres-
sion variant faces from a single sample per class. PAMI 24 (2002) 748–763

7. Liu, Y., Schmidt, K., Cohn, J., Weaver, R.L.: Human facial asymmetry for
expression-invariant facial identification. In: AFGR. (2002)

8. Liu, Y., Schmidt, K., Cohn, J., Mitra, S.: Facial asymmetry quantification for
expression-invariant human identification. In CVIU 91 (2003) 138–159

9. Mitra, S., Liu, Y.: Local facial asymmetry for expression classification. CVPR
(2004)

10. Kanade, T., Cohn, J.F., Tian, Y.L.: Comprehensive database for facial expression
analysis. In: AFGR. (2000) 46–53

11. Hayes, M.H.: The reconstruction of a multidimensional sequence from the phase
or magnitude of its fourier transform. ASSP 30 (1982) 140–154

12. Savvides, M., Vijaya Kumar, B.V.K., Khosla, P.: Face verification using correlation
filters. In: 3rd IEEE Automatic Identification Advanced Technologies. (2002) 56–61

13. Savvides, M., Kumar, B.V.K.: Eigenphases vs.eigenfaces. In: ICPR. (2004)
14. Savvides, M., Kumar, B.V.K., Khosla, P.K.: Corefaces - robust shift invariant pca

based correlation filter for illumination tolerant face recognition. CVPR (2004)
15. Oppenheim, A.V., Schafer, R.W.: Discrete-time Signal Processing. Prentice Hall,

Englewood Cliffs, NJ (1989)
16. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. CVPR (1991)



Occluded Face Recognition by Means of the IFS

Andrea F. Abate, Michele Nappi, Daniel Riccio, and Maurizio Tucci
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Abstract. Due to growing demands in such application areas as law
enforcement, video surveillance, banking, and security system access au-
thentication, automatic face recognition has attracted great attention
in recent years. The advantages of facial identification over alternative
methods, such as fingerprint identification, are based primarily on the
fact that face is fairly easy to use and well accepted by people. However
it is not robust enough to be used in most practical security applications
because too sensitive to variations in pose and illumination. During the
last few years, many algorithms have been proposed to overcome these
problems using 2-D images, but very few has been made in order to
address the problem of partial occlusions. In this paper, a fractal based
technique is presented; the face image is partitioned in different regions of
interest, each one is indexed by means of an IFS system. A new distance
function is then introduced, in order to discard unuseful information.
The proposed method turns out to be faster and more robust than other
approaches in the state of the art.

1 Introduction

In last years security problems are capturing increasing attention from researchers.
Particularly the people authentication problem. A lot of biometrics, such as fin-
gerprint, hand-shape and iris have been studied until today, finding that two
main characteristics enact the success of a biometric: reliability and people ac-
ceptance. Indeed, iris recognition represents the most reliable approach, but it
is too much intrusive. On the contrary, fingerprint are easily applicable, but it
cannot be used with non consentient people. As very nice compromise between
acceptance and reliability, face recognition is emerging. Recognition rate of face
biometric is not comparable to that of iris and fingerprint, however the ease in
taking snapshots and video capturing make this method effective also when the
subject is unaware of the presence of a face recognizer. Furthermore the wide
range of commercial and law enforcement applications supported by the avail-
ability of feasible technologies favor the success of the face biometric. In general,
even if face recognition systems are so far from the recognition capability of
humans, it is true that human brain has noticeable limitations on the number
of the persons, that it can accurately remember. Therefore, research has been
made attempting to make face recognition systems fully automatic, also looking
for successful face classifiers. Existing approaches for Face Recognition can be
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classified in three principal cathegories, as suggested by [6]: Holistic meth-
ods - Eigenfaces, Fisherfaces, Support Vector Machine, Independent Compo-
nent Analysis, Feature-based methods - Dynamic Link Architecture, Hidden
Markov Model, Convolution Neural Networks and Hybrid methods - Modular
eigenfaces, Component-based. All these method deal with a large set of typical
drawbacks in face recognition, such as variations in expression, lighting, pose
and acquisition time. Neverthless, there exist few works about the problem of
the occlusions, such as [2]. In this approach, each face image is divided into k dif-
ferent local parts, each of them is modeled by using a Gaussian distribution (or,
equivalently, with a mixture of Gaussians), which accounts for the localization
error problem. Given that, the mean feature vector and the covariance matrix
for every local subspace are drawn out, while the probability of a given match
can be directly associated with the sum of all k Mahalanobis distances. However,
to compute all the mixture of Gaussian can be computationally expensive, in
some cases. Therefore, in this paper a fractal based technique is suggested, which
turns out to be fast and very robust with respect to synthetic as well as natural
occlusions. The new proposed strategy is based on IFS (Iterated Function Sys-
tems), largely used in image compression and indexing [1]. In this case, the affine
transformation are used in order to characterize auto-similarities into a face im-
age, extracting a compact feature vector with high discriminant power. Before
introducing the new method we recall the principal concepts of the IFS theory.
Given an input image I, it is partitioned in a set R of disjointed square regions
of size r × r named ranges. From the same image I, another set of overlapped
regions (domains) of size d× d (where usually d = 2r) is extracted. As a domain
is double sized with respect to a range, it has to be shrunk to the r × r dimen-
sion, with a 2 × 2 average operation on its pixels. That is made only the first
time, downsampling the original image and obtaining a new face image that is a
quarter of the original. However, to find the best match for each range r requires
an exhaustive search over all the set D, that is an impractical operation. Gen-
erally, ranges and domains are classified by means of feature vectors in order to
throw down the cost of the linear search on the domain pool. For a range r, only
the domains d, with a feature vector close to that of the range r are codified. In
order to compute the fractal code of an input image I, the DRDC method [5] has
been chosen, but many other methods are available in literature. In the DRDC
approach image blocks are classified defering range/domain comparisons respect
to a preset block d̃, using the approximation error as a feature vector. The rest
of this paper is organized as follows. Section 2 shows in more detail the feature
extraction process, while in Section 3 a new distance function is provided in
order to make robust and fast the matching operation between features vectors.
Furthermore, Section 4 provides a concise description of the measures, databases
and experimetal results compared to [2]. At last the conclusions are drawn in
Section 5.
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2 Features and Feature Vector Structure

In order to make method presented in this paper robust with respect to likely
occlusions, the feature extraction process is made local to the region, of interest,
defined as the union of four main areas, which are left eye, right eye, nose and
mouth. For each of these areas, a set of fiducial point is extracted and the average
approximation error is computed, so that point locations and approximation
errors represent the signature for the face. The first problem to be solved is
locating the face in the picture. The detection of a face is semi-automatical. The
center of the eyes and baseline of the nose are manually selected, extracting a
face region of size proportional to the distance among these three points. The
face region extracted from the input image is normalized to 256 × 256 pixels.
Nothing has been done for the original warping of the input images, which also
can affect the recognition rate. Once the segmentation of the face is done, the
face objects are independently indexed by means of the IFS systems as separate
region of interest. For each region of interest (eyes, nose or mouth) a set of fixed
points P = {P1, P2, . . . , Pn}, called entry points is considered.

For each Pi = (xi, yi) ∈ P , the algorithm extracts the corresponding range
Rxi,yi , whose upper-left corner falls in the position Pi. It searches for the first n
best fitting domains with respect to an affine transformation, as detailed in [5].
In order to render the method more robust with respect to small shifts around
the entry position (xi, yi) 18 nearest neighbors of the current entry points are
considered. Starting from the current entry point, all centroids are computed by
means of the above algorithm, then with a spiral visit centered in the current
entry point, 8 neighbors are considered. The neighbors are looked for on an
Archimede’s spiral ρ = a · θ, where ρ is the distance from the center to the
tracing point, θ is the angular distance covered and a is a fixed constant. With
the spiral visit, the higher the distance from the entry point, the less useful is
its information. This can be explained considering that the further the neighbor
is from the current entry point, the less their similarity to the current range.

In order to use the information about the distribution of similarities brought
out during the indexing phase, range/domain relations have to be organized so
that comparisons are possible. In this case, the domains are organized in a set
of clusters C = {C1, C2, . . . , Cm}, each represented by its centroid ci, and the
centroids are stored in memory as a list. Each centroid object in the list includes
its spatial coordinates, computed as the mean of the coordinates of domains to
the cluster, as well as the average approximation error between the domain and
the prefixed block. A detailed description of the clusterization algorithm follows:

Domain Insertion(List of Centroids CL, Domain D)
1) Search for the centroid ck in CL nearest to D
2) If ck doesn’t exists
3) create a new cluster with D as centroid ck
4) add ck to CL
5) Else
6) c

′
k (x) = ck(x)+D(x)

2 and c
′
k (y) = ck(y)+D(y)

2
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7) c
′
k (err) = ck(err)+D(err)

2

8) If ∃D ∈ cluster represented by ck ) distance
(
D, c

′
k

)
> d

9) Annul Updating
10) create a new cluster with D as centroid ck
11) add ck to CL
12) End

At first the list of centroids is empty; then, starting from the first entry
point, the corresponding range is extracted and the n best fitting domain are
searched. The domains are inserted in the clusters one at a time. Initially the
list of centroids is empty, then a new cluster is created and its centroid has the
same coordinates of the inserted domain. The second domain fitting the current
range is extracted by means of the IFS transformation and has to be inserted
in the correct cluster. The algorithm scans the list of centroids searching for the
centroid with minimum distance. If no suitable cluster is found, a new cluster
is created and added to the list, while the corresponding centroid has the same
coordinates and approximation error of the inserted domain. On the contrary, if
there is a cluster whose centroid is not further than a fixed threshold ε from the
domain to be inserted, the algorithm tries to update the cluster with the new
domain. The new coordinates are computed for the centroid according to (line
(6)), but taking into account also the new domain being inserted. After updating
the coordinates, a check is made where there is a domain in the cluster whose
distance from the centroid is greater than the fixed threshold ε. In this case,
the updating operation is canceled, and a new cluster is created with the same
coordinates and approximation error of the inserted domain.

Once the list of centroids has been computed, it has to be rearranged so
that a distance function can be defined for the comparisons to be performed
later. The ideal way to compare two face images would be to match the respec-
tive approximation errors of corresponding centroids in the two images. Since
each centroid in the list consists of two coordinates C(x, y), the nearness of two
centroids can be estimated in a simpler way using Euclidean norm.

Let L1 be a list of centroids of length n = |L1| to be compared with another
list L2, of length m = |L2|. An effective manner to compare the centroids in L1
and L2 is representing the centroids’ spatial location with Peano keys. From the
literature, it is known that Peano keys are useful in indexing tasks because they
map a 2D space into a 1D space, while preserving most of the spatial information
in the original data. Given a centroid C (x, y), the correspondent Peano key aC

is computed interleaving bits of x and y, from the less significant digit to the
most significant. The Peano keys so computed are then sorted. This can be done
in linear time O(n) with Radix Sort.

When comparing L1 and L2, a time O (m) is spent searching for the cen-
troid Cj

L2
in L2 nearest to the first centroid C1

L1
in L1, keeping memory of j.

It can be observed that the location of the next centroid in L2 nearest to Ck
L1

falls not so far from the position j—indeed, it is about j + c, where it has been
found experimentally that 0 ≤ c ≤ 10, and j is the position in L2 of the centroid
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nearest to Ck−1
L1

in L1, with k > 1. It can be deduced that for each centroid
in L1, only c centroids in L2 have to be tested. The overall complexity of the
comparisons is then O(n + c · m) = O(n + m)—linear, since c is a constant.
Low-complexity comparisons are crucial, considering that in a huge database of
face images, millions of images might have to be tested.

3 An ‘Ad Hoc’ Distance Function Δ (A, B)

This section defines the distance function used when comparing two feature
vectors. The domain of this function consists of 2D vectors S ∈ ,2, where
(a, b) ∈ S. The symbol a represents a Peano key obtained, while the real value b
represents the average of the approximation error for the centroid centered in
a = P (x, y). Given 2 vectors S, T ∈ ,2, the operator Ψ(S, T ) is defined as follows.

Ψi (S, T ) =
∣∣∣bμ(S,T )

T − bi
S

∣∣∣ (1)

with
μ (S, T ) = min

j

∥∥∥aj
T − ai

S

∥∥∥
2
,

that is, μ(S, T ) represents the index in T of the point aj
T = P1(x1, y1) nearest

to the point ai
S = P2(x2, y2) in S.

For each item aS = P (x, y) ∈ S, a search is performed for the nearest
item aT = P (x, y) ∈ T according to Euclidean norm |PS−PT |2, and the quantity
|bS − bT | is computed. This quantity represents the absolute difference between
the approximation errors corresponding to the nearest points PS ∈ S and PT ∈
T .

Lastly, the values of Ψi(S, T ) are summed for all i. In order to make the dis-
tance function more robust to partial occlusions, it can be noted that if Ψi (S, T )
is too large, it does not supply much useful information, and this can be inter-
preted as a sign of possible occlusion.

More precisely, if m̄ = 1
|S| ·
∑|S|

i=1 Ψi (S, T ) is the average value of Ψ over S, it
turns out that only the values of Ψi(S, T ) ranging from 0 to 2m̄ provide useful
information. Therefore, a threshold is applied to cut all values above 2m̄, leaving
smaller values untouched. This is done by means of the following function:

Δ (S, T ) =
1∣∣∣S̃∣∣∣

|S|∑
i

γi
S · Ψi (S, T ) +

1∣∣∣T̃ ∣∣∣
|T |∑
i

γi
T · Ψi (T, S) , (2)

where

γi
S =

(S (i)− 2 · E [S])− |(S (i)− 2 ·E [S])|
2 · (S (i)− 2 ·E [S])

and
S̃ =
{
(ai, bi) ∈ S|γi

S 	= 0
}
.
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4 Experimental Results

There are several standard database used by the scientific community in order
to assess the performances of the proposed face recognition algorithms. The AR
face database was created by Aleix M. Martinez and Robert Benavente at the
Computer Vision Center (CVC) [3]. It contains over 4,000 color images corre-
sponding to 126 people’s faces (70 men and 56 women). Images feature frontal
view faces with different facial expressions, illumination conditions, and occlu-
sions (sun glasses and/or scarf). The pictures were taken at the CVC under
strictly controlled conditions. In general in the face authentication application
the user doesn’t claim his identity and the system has to compare the input
face image with all the database, then it is a 1:N problem, which we refer to as
identification. Another case frequently occurs in low enforcement application, in
which there are huge databases containing images of criminals and when a new
person is reported to the police a lot of snapshots have to be manually analyzed.
In this case, it is very useful that a face authentication method guarantee that
the person we are searching for is retrieved at least in the first n entry, with n as
small as possible. Then, it makes sense to use CMS (Cumulative Match Score) [4]
as a measure of the performances, while in the former case the recognition rate
is applied. Experiments have been conducted on a subset of 50 subjects from
the AR Faces database. Three images have been used with different facial ex-
pression: neutral, angry and smile. One of the most interesting aspects is how
good are the recognition performances when the dimensions of the occluded
area increase. Then in the first experiment, for each face the neutral expression
is used as gallery, while neutral, angry and smile images with synthetic occlusion
represent the probe. Synthetic square occlusions of p × p dimension have been
added, where p varies from a low of 5 to a maximum of 50. For each value of

Fig. 1. Performances of IFS when synthetic rectangular occlusions occurr, comparison
with PAO algorithm
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Fig. 2. IFS and Martinez’ algorithm in the case of natural occlusions

Fig. 3. An example of the system response. The first image is the query image.

p the square is randomly localized in the image 100 times and mean results are
reported in Fig. 1. For this experiment the IFS performances are compared to
the probabilistic approach proposed by Martinez [2], referred as PAO, in this
paper. For PAO, results are drawn out from the tables in [2]. Fig. 1 shows also
drops of 10% in the CMS of the two methods confirming the robustness of the
IFS with respect to the synthetic occlusions. The second experiment has the aim
of testing the IFS based approach in case of natural occlusions, such as scarfs or
sunglasses. In the AR Faces database, two images with accessories are provided
for each person, in both sessions. A subset of 50 persons has been taken also for
this experiment. The neutral image has been used as gallery, while two images
with natural occlusion (scarf and sunglasses) have been used as probe. From
Fig. 2 is clear that PAO start better than IFS, but for ranks greater than 6, the
reverse is true. In particular for sunglasses occlusions the final gap between the
methods is about 5%. Furthermore, has been observed that in the most part of
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the performed tests, IFS has significantly outperformed PAO. These results are
particularly interesting considering applications such as low enforcement, where
it is admissible that the correct answer falls at least in the first n answers with n
as small as possible. At last, the Yale Database has been considered. It consists
of 165 images, 11 for each of the 15 different subjects. They mainly differ in
expressions and illumination conditions. Moreover, occluded images have been
added to the database, superimposing scarf and sunglasses images to the no-
glasses image in the database, for all subjects. Then, Fig. 3 shows the system
responce when the neutral image of the subject s is used as query image.

5 Conclusions

The interest of researchers for face recognition is firmly increasing in last years,
so that several solution have been proposed until today. However the most part
of the recent methods deal only with change in expressions and in illumina-
tion conditions, not considering the case of synthetic and natural occlusions. In
particular the literature about fractals applications in Face Recognition is very
poor. For these reasons in this paper a new fractal based approach, is proposed.
It is shown how IFS transformations can be readapted in order to provide a
good signature for face images, useful for the face recognition task. The index-
ing process has been made local and a new distance function is provided in order
to deal with partial occlusions. Experimental results show the robustness of the
proposed method with respect to synthetic occlusions (black squares randomly
localized on the image) and natural occlusions such as scarfs and sunglasses. In
particular, they underline that, in most cases, IFS overcomes tother methods in
the state of the art.
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Abstract. We present results on classification of palmprint patterns
from a large number of classes for biometric verification. We train opti-
mal trade-off correlation filter classifiers with patterns of subregions of
the palm as the actual biometric for the person’s identity. Our results
show that with less than 5 cm2 (less than 1 in2) of the actual palm
captured at a low resolution, correlation filter algorithms can verify the
authenticity of the palmprint pattern with error rates below 0.5% from
as many as 400 different patterns. There is no previous work on biomet-
ric palmprint recognition that studies pattern verification of such small
palmprint regions with such large number of classes.

1 Previous Work on Palmprint Recognition

Palmprint recognition performs matching of patterns in a palm surface with
previously learned templates. Although, these patterns, called simply palmprints,
have fingerprint like characteristics, it is not until recently that serious research
has been conducted to determine how reliable a palmprint may be for biometric
recognition [1][2][3].

Palmprints contain different types of patterns, such as principal lines and
smaller creases or wrinkles, textures and fingerprint-like ridges (see Figure 1).
Previous approaches to palmprint recognition include techniques to effectively
extract features from these different patterns [2][4][5][6], and use a specific feature
or a combination of them for palmprint classification [7][8][9]. There is a major
emphasis in palmprint recognition research on defining and extracting the most
appropriate features for known classification techniques.

In this paper, we show that advanced correlation filter classifiers perform
with very high levels of accuracy on palmprint verification. These optimal filters
have many advantages [10], of which probably the most outstanding is that they
are trained on the image pixels directly, reducing the feature extraction stage to
image segmentation. This training advantage simplifies the problem of palmprint
recognition.

Originally, the application of correlation filter classifiers for palmprint recog-
nition was presented in [11]. Here we present a follow-up study that includes
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Fig. 1. Palmprint features of a palm captured at a high resolution

the use of a considerably larger number of palmprint classes and low-resolution
image patterns from a limited palmprint area. Specifically, we show that cor-
relation filters can achieve error rates as low as 0.1% for palmprint patterns of
actual area of less than 5 cm2 (less than 1 in2) at a low capture resolution of 72
pixels-per-inch. A survey on the application of advanced correlation filters for
classification of other biometrics can be found in [12]; recent work in face and
fingerprints is presented in [13] and [14], respectively.

This paper is organized as follows. Section 2 reviews the theory of correlation
filter classifiers used in this study. The specifications of the palmprint database
and the image segmentation procedures are presented in Section 3. Results of
the different experiments performed are shown and discussed in Section 4, and
finally, conclusions are stated in Section 5.

2 Optimal Trade-Off Correlation Filter Classifiers

A correlation filter is designed to produce correlation outputs with high ampli-
tude at the origin while keeping the rest of the output plane as small as possible
when correlating an authentic image. Thus, the objective is to obtain strong
correlation peaks when applying the (space-reversed) filter to an image of the
filter’s pattern class (see Figure 2). With this in mind, we use as a match metric
the peak-to-correlation energy (PCE) ratio, given by

PCE =
maxg − μg

σg
(1)

where g is the output correlation plane, μg is its mean, and σg, its standard
deviation.
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Fig. 2. Applying an advanced correlation filter. The palmprint on top is an authentic
exemplar, and, when filtered with the correlation filter of the same class, yields a sharp
peak. In contrast, the palmprint below belongs to an imposter, and it yields a plane
with lower energy and no clearly-visible peak.

Different designs of correlation filters are available [10]. We briefly describe
the filter design process for the minimum average correlation energy (MACE)
filter, and then elaborate to describe other correlation filters known to be suc-
cessful in biometrics.

Given a set of N training images taking values in a d -dimensional image
space, the MACE filter design minimizes the average energy of the output corre-
lation planes, gi, corresponding to the images xi, subject to the constraints that
the amplitude value at the origin of each plane, gi(0, 0), is fixed to a specific
value.

This result is achieved in the following manner. Let D be a d × d diagonal
matrix carrying the average power spectrum of the training images, i.e.,

D(k, k) =
1
N

N∑
i=1

|xi(k)|2, (2)

where xi is the two-dimensional Fourier transform of xi in vector form. Then the
optimal filter h should minimize the average correlation energy (ACE) measure,
defined as ACE = h+Dh (where + is the transpose conjugate), and meet the
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constraints X+h = u, where X = [x1, ...,xN ] and u = [u1, ..., un]T carries the
constraint values. The solution to this problem [15] is

h = D−1X(X+D−1X)−1u, (3)

where the filter h is expressed in vector form.
Robustness to noise can be achieved by minimizing the output variance of

the correlation peak. If the noise in the training set is additive zero-mean and
stationary, with power spectral density values arranged in a d×d diagonal matrix
P, then a measure that can also be minimized through the same process is the
output noise variance, ONV = h+Ph. This design is the minimum variance
synthetic discriminant function (MVSDF) filter proposed by Kumar in [16].

For the palmprint classifier we propose, we use the optimal trade-off synthetic
discriminant function (OTSDF) filter [17], which finds a compromise between the
minimization of the ACE and ONV measures by minimizing the energy function

E(h) = α(ONV ) + β(ACE), (4)

where β =
√

1− α2. Then, the OTSDF filter is given by

h = (αI + βD)−1X(X+(αI + βD)−1X)−1u, (5)

where I is the identity matrix (we have further assumed the noise in the training
is white). The advantage of this filter is that it allows for the minimization of
the energy in the correlation plane, which produces sharp output peaks, while
adjusting for noise tolerance.

3 Palmprint Data Set

We used the PolyU Palmprint Database [1][18]. It consists of 600 grayscale im-
ages, with 72 ppi, 6 palmprints per palm; 50 palms are right-hand palms and 50
are left-hand palms. When collecting the database, 3 palmprints are captured
in a first session from each enrollee, and the other 3 in a second session about
two months later. We use the set of palmprints from the first session for training
and those from the second session for testing. Our method for extracting the
palmprint patterns (i.e., segmentation) for the experiments is the same as and
is explained in [11]. A brief description is provided in Figure 3.

4 Palmprint Verification Experiments and Results

The palmprint classification approach we propose is an OTSDF correlation filter
classifier, and we use these filters in all the experiments presented here. In de-
signing the filter for a given class, no information from the other classes is used,
meaning that no impostor images where included in the filter design. We discuss
results on two different sets of experiments.
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Fig. 3. Palmprint alignment procedure. An original image from the database PolyU
(top left). Thresholded image (top right). Through a contour search the fiducial points
at locations A and B are found. After computing the angle between the line through
these two points and the vertical axis, the image is rotated about point A. The pixel
at B translates to location C (bottom left), and the imaginary line through the two
original fiducial points is now aligned to the vertical axis. Then the center between A
and C is computed and a horizontal margin is defined to offset the box delimiting the
region of interest. Finally, the palmprint regions are extracted (bottom right). Each
square shown represents the regions of interest with size 64 × 64, 96 × 96, 128 × 128.

4.1 Experiment Set 1: Verification of 100 Classes

Our first set of experiments attempts verification of palmprint patterns from
100 users. We assume they all used their palm from the same hand, so that the
principal lines of all patterns are in the same direction. Because the database
consists of palmprints from 50 left hands and 50 right hands, we flipped the left-
hand palmprint images to appear as captured from right-hand palms, and still
consider them as a different class for a total of 100 classes. For classifiers designed
to use the geometrical structure of the image patterns (such as correlation filter
classifiers), this is a more difficult task as a result of the patterns increased
similarity.

In this manner, we perform five experiments for classifiers using five different
square regions with sides of length 64, 80, 96, 112, and 128 pixels. Results are
shown in Table 1.
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Table 1. Results of OTSDF filter classifier on 100 classes

n × n 64 × 64 80 × 80 96 × 96 112 × 112 128 × 128

Avg FRRz (M1) 2.6% (8) 1.0% (3) 0.3% (1) 1.0% (3) 0.3% (1)

Avg FARz (M2) 0.07% (23) 0.02% (6) 0.01% (3) 0.01% (3) 0.03% (10)

Avg FRRz : Average FRR at zero FAR. M1 misses out of 300.
Avg FARz : Average FAR at zero FRR. M2 misses out of 29, 700.

A correlation filter can be considered as a two-class classifier, therefore the
error rates are computed for each filter and the average of all the classes is
reported. In this way, we compute the average of the FRR at zero FAR (Avg
FRRz ) and the average of the FAR at zero FRR (Avg FARz ), which give a
better interpretation of the classifier performance when either no impostor or no
authentic palmprint exemplar is misclassified, respectively.

In this experiment, each correlation filter is tested to verify 3 authentic palm-
prints, but to reject 297 (3 images times 99 classes). The average FARz is thus
computed using 29,700 match scores. Therefore, considering this average, the
proposed classifier performs best with regions of size 96× 96 and 112× 112.

4.2 Experiment Set 2: Verification of 400 Classes

In this set of experiments we consider right-hand and left-hand palms from
the PolyU database as they are and use them without flipping the left hands
or performing any modification. Using a similar image segmentation method
as above, we extract square palmprint patterns from different non-overlapping
sections of the same palm, and consider each square section a different class. For
each experiment, these square palmprint patterns have sides of length 72, 64,
56, 48, 40, and 32 pixels. We are able to extract 400 different patterns from this

Table 2. Results of OTSDF filter classifier on 400 classes

n in2 cm2 Avg EER Avg FARz

72 1 6.4516 0.35% 0.58%

64 0.7901 5.0976 0.19% 0.30%

56 0.6049 3.9028 0.10% 0.19%

48 0.4444 2.8674 0.36% 0.48%

40 0.3086 1.9912 0.56% 0.80%

32 0.1975 1.2744 1.87% 2.53%
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database, and thus we train a classifier consisting of 400 filters, one per class
as before. Results are shown in Table 2, including the equivalent actual area of
the patterns used. The average false acceptance rate at zero rejection rate (Avg
FARz ) for each experiment is computed using 478,800 match scores.

It is interesting to note that the filters do not necessarily perform increas-
ingly worse as the area of the pattern is reduced. This shows that correlation
filters make efficient use of local biometric content found in the palmprints. Al-
though when the size of the pattern is extremely small, as expected, performance
degrades.

These results are promising, considering the parameters of the experiment
and the fact that the images in the database have a resolution of 72 ppi which
is not high enough to capture palmprint features so accurately. We believe that
increasing image resolution, and implementing more robust correlation filter de-
signs (for example, by simply including more images in the training set) will
provide classifiers with higher accuracy that will perform efficiently when the
number of classes is large.

5 Conclusions

We have shown that the performance of correlation filter classifiers is promising
regarding the implementation of palmprint verification for large data sets.

Our results show that implementation of correlation filters even with low
resolution images (72 ppi), provides palmprint pattern verification that is highly
accurate even for sizes of less than 1 in2. This result is outstanding, considering
that a whole palmprint is of approximately 5 in2.

Finally, because correlation filters use image segmentation instead of feature
extraction, the computational overhead and design of such preprocessing stage
can be avoided. By performing verification of a new user with a single linear
filtering operation of images of small size, correlation filters are a computationally
efficient and reliable verification algorithm for security systems that require very
high levels of accuracy.
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Abstract. This paper presents the evaluation of face recognition performance 
using visual and thermal infrared (IR) face images with advanced correlation 
filter methods. Correlation filters are an attractive tool for face recognition due 
to features such as shift invariance, distortion tolerance, and graceful 
degradation. In this paper, we show that correlation filters perform very well 
when the face images are of significantly low resolution. Performing robust face 
recognition using low resolution images has many applications including human 
identification at a distance (HID). Minimum average correlation energy 
(MACE) filters and optimal trade-off synthetic discriminant function (OTSDF) 
filters are used in our experiments showing better performance over commercial 
face recognition algorithms such as FaceIt® based on Local Feature Analysis 
(LFA) using low resolution images. We also address the problems faced when 
using thermal images that contain eyeglasses which block the information 
around the eyes. Therefore we describe in detail a fully automated way of 
eyeglass detection and removal in thermal images resulting in a significant 
increase in thermal face recognition performance. 

1   Introduction 

Despite a significant level of maturity with a few practical successes, face recognition 
is still a highly challenging task in pattern recognition and computer vision [1]. The 
performance of face recognition systems varies significantly according to the 
environments where face images are captured and according to the way user-defined 
parameters are adjusted in different applications [2]. Since a face is essentially a 3D 
object, lighting sources from different directions may dramatically change visual 
appearances due to self-shadowing and specular reflections, thus face recognition 
accuracy degrades quickly when the lighting is dim or does not uniformly illuminate 
the face [3].  

Illumination tolerant face recognition is an essential part of any face recognition 
system [4]. Currently there are many algorithms that have been developed with the 
aim of handling visual based face recognition in the presence of illumination 
variations [5]. Most algorithms developed for face recognition try to reduce the 
dimensionality of the face spaces in order to represent faces in a lower dimensional 
space. Such subspace analysis includes PCA (eigenfaces) [6], LDA (fisherfaces) [5], 
3D linear Subspace [7], Local Feature Analysis (LFA) [8], and Independent 

K
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Component Analysis (ICA) [9] are still active research fields due to the unsatisfactory 
performance when faces in real-life practical applications. 

   Unlike using the visible spectrum, recognition of faces using different multi-
spectral imaging modalities, in particular infrared (IR) imaging sensors [10][11] has 
become an area of growing interest. Thermal IR and particularly Long Wave Infra-
Red (LWIR) imagery is independent of illumination since thermal IR sensors 
operating at particular wavelength bands measure heat energy emitted and not the 
light reflected from the objects. Hence thermal imaging has great advantages in face 
recognition under low illumination conditions and even in total darkness, where 
visual face recognition techniques fail. However, thermal images of a subject wearing 
eyeglasses may lose information around the eyes since glass blocks a large portion of 
thermal energy emitted by the face. Therefore, automatic eyeglass detection is 
important for further processing for thermal face recognition without redesigning 
overall face recognition system. 

   The use of correlation filters as a biometric verification is expanding due to their 
efficiency and robustness to illumination variations and other distortions. However, 
relatively less effort has been made to demonstrate their performance using Infra-Red 
facial imagery. In this paper, in an attempt to show the effectiveness of face 
recognition with correlation filters, we evaluate the performance of visual and thermal 
imagery over several different face recognition algorithms including Principal 
Component Analysis (PCA), normalized correlation, and Local Feature Algorithm 
(LFA). Co-registered visual and long-wave infrared (8-12μm) images acquired from 
the Equinox databases are used for the performance evaluation.  

2   Advanced Correlation Filters 

As one of the most popular correlation filters; the MACE filter [12][13] is designed to 
minimize the average correlation plane energy resulting from the training images, 
while constraining the value at the origin to certain pre-specified values. The 
minimization of energy is done while satisfying the linear constraints that the 
correlation values at the origin resulting from the training images take on pre-
specified values (stored in row vector u), i.e., 

         uh =+                        (1) 
where X is a d2xN complex matrix, where the ith column contains the 2-D Fourier 
transform of the ith training image lexicographically re-ordered into a column vector. 
Minimizing the average correlation energy while satisfying Eq. (1) leads to the 
following closed form solution for the MACE filter h. 

                    uDDh -1-1 1)( −+=                     (2) 

where D is a d2xd2 diagonal matrix containing the average power spectrum of 
training images along its diagonal. A way to optimally trade off [14] between noise 
tolerance (achieved through low frequency emphasis) and peak sharpness (through 
high frequency emphasis) producing the following optimal trade-off filter: 

            1 1( )− + − −= 1h T X X T X u                    (3) 

where ( )21α α= + −T D C , 0 α  1 and C is a d2xd2 diagonal matrix whose  diagonal 
elements C(k,k) represent the noise power spectral density at frequency k.        The 
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peak-to-sidelobe ratio (PSR) and Peak-to-Correlation Energy (PCE) are one of the 
commonly used methods to measure the correlation output.  

3   Eyeglass Detection and Removal in Thermal Imagery 

Since thermal faces are integrated with several features comprised of different blobs, 
the use of an ellipse can be a powerful representation of certain features around the 
faces in the thermal images. Since eyeglass regions are usually cooler than any of the 
facial components [11], binary images can be achieved via thresholding. These binary 
images then are connected using the chain coding scheme; thus providing data points 
for fitting ellipses as shown in Figure 1. 

 

     
                                         (a)                    (b)                   (c) 

Fig. 1. Results of the connected components; (a) an original thermal image, (b) the thresholded 
thermal image, and (c) connected components  

From the results provided by inter-connected components using the thresholded 
thermal images, each connected component is fitted with ellipses. An equation for an 
ellipse can be denoted as the product of a coefficient vector a  and an independent 
variable (containing data points) x : 

            ( ) 0axx,a 22 =+++++== feydxcybxyaxF             (4) 

where ][ fedcba=a  and Tyxyxyx ]1[ 22=x . Ellipse fitting is to minimize the 

sum squared algebraic distance E= ( ) 2|,| xaF  over the set of N data points in terms of 

least squares. This can be denoted as  

}))x(a,({=a
N

2
ia

�
1

minarg
i=

F                     (5) 

Fitzgibbon et al [15] proposed direct least conic fitting algorithms while applying 
constraints 1=DaaT , where D is 6*6 matrix with D(1,3) = -2, D(2,2) = 1, D(3,1) = -
2, and otherwise containing zeros. This can be interpreted as applying constraints 
using 142 =− acb  with the unique solution a  which minimizes the algebraic distance 
E. After finding solutions for fitting ellipses, it is convenient to convert into the 
standard form of an ellipse to use its parameters effectively. Figure 2 shows an ellipse 
with the parameters that are used for the eyeglass detection in thermal face images. 
The center of an ith ellipse is denoted by Ci, 2αi denotes the length of major axis, 2βi 
is the length of minor axis, and iθ  indicates the orientation angle of the ellipse in the 
range of – π/2 < θi < π/2.  
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Fig. 2. Parameters of an ellipse used for the similarity measure 
 

A pair of ellipses of similar shape is considered as eyeglasses in thermal images. 
In this paper, the similarity of ith and jth ellipsoids is defined as  

             
+++

=
||2

2

1

1

jijijj

ii
ij k

k

k

k
S

θθθβα
βα                (6) 

where θij represents the angle between the centers of the two ellipses Ci and Cj and  k1 

and k2 are weighting factors for the similarity measure. Since those features used for 
the similarity measure are heterogeneous, weights are applied for better similarity 
measure. We assume that αjβj > αiβi so the similarity measure Sij is less than 1. The 
distance between a pair of ellipses are also considered and we discard if the major 
axis is five times larger than the minor axis (0.2<β/α<1).  

After detecting eyeglasses, the eyeglass regions are replaced with an average eye 
template in the thermal images. Manually selected landmarks points (20 points) for both 
left and right eye templates are used to retrieve the ellipse parameters in order to find the 
geometrical transformation between eyeglass   candidates as shown in Figure 3. 

  

 
    (a)                       (b)                   (c) 

Fig. 3. Estimation of elliptical parameters for both left (b) and right (c) eye template acquired 
from the average thermal image without eyeglasses (a) 

We apply an affine transformation for the replacement of the eyeglasses. Thus new 
points x′(x', y',1) in the eyeglass can be replaced by the points x (x, y,1) in the eye 
template. This can be denoted as Txx'=  where 

                    
 T −=

100

)cos(*)sin(*

)sin(*)cos(*

21

21

y

x

tss

tss

θθ
θθ

                   (7)  

where s1 and s2 are the major and minor axis size ratio between eye template and 
eyeglass respectively, θ  is the angle of the eyeglass, and translation vector tx and ty 
are assumed to be zero since the transformation is processed based on the center of 
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the two ellipses. Figure 4 illustrates an example of detecting eyeglasses in thermal 
images using the ellipse fitting method and the result of eyeglass replacement with a 
template eyeglass pattern. Only two ellipses in Figure 4(c) remained after applying 
the similarity measure scheme showing the true location of the eyeglasses. From the 
result of the similarity measure, we claim that eyeglasses are present if the score (Sij) 
is larger than 0.7.  

 

    
                            (a)                     (b)                   (c)                  (d) 

Fig. 4. Eyeglass detection and replacement; (a) an original image, (b) ellipse fitting results from 
connected components, (c) eyeglass regions detected, and (d) a face image replaced with 
eyeglass templates 

Table 1 summarizes the performance of eyeglass detection algorithm with the 
ellipse fitting method. For the performance of the eyeglass detection, a subset of 
LWIR Equinox database (a total of 1643 images, and 536 face images with 
eyeglasses) is used. We calculated the False Rejection Rate (FRR) and False 
Acceptance Rate (FAR). We also increased the number of thresholds in the range of 
[0.5 0.65] and measure the performance of the eyeglass detection using multiple 
thresholds showing that better performance can be achieved over a single threshold 
scheme with an Equal Error Rate (ERR) of approximately 7.0 %. A fully automatic 
eyeglass replacement is achieved when the similarity score is higher than 0.9.  

Table 1. Performance of the eyeglass detection scheme  

Number of 
Thresholds 

True 
Positive 

False  
Negative 

False 
Positive 

True 
Negative 

1 384 152 12 1095 
2 444 92 29 1078 
3 481 55 30 1077 
4 485 51 32 1075 
5 494 42 43 1064 
6 494 42 47 1060 
7 499 37 51 1056 

Total = 1643 Eyeglass= 536 No eyeglass= 1107 

4   Performance Comparison 

A subset of Equinox database [16] is used for the evaluation of visual and thermal 
face recognition performances. The database consists of visual and thermal IR images 
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of 3,244 (1,622 per modality) face images from 90 individuals. Images taken with 
frontal lighting conditions are used as the gallery images. The performance is 
measured via the first success rates (rank-1 recognition). Manually selected eye 
positions from the visual images are used for the normalization of faces not only for 
visual images and but also for the thermal images as they were acquired using a co-
registered thermal camera). This is one of the challenges of using only thermal images 
as it is very hard to determine where the eyes are and thus the use of a co-registered 
camera which can acquire both visual and thermal images is necessary to perform  
proper face normalization for scale, rotation using the eye locations. Figure 5 shows 
an example of the normalized faces acquired from both modalities.  

  

     

     

Fig. 5. The normalized faces: visual (top row) and thermal (bottom row) images of the same 
individuals taken from different conditions 

   The performance is evaluated while varying the face size to very low resolutions. 
Low resolutions also allow for using low-memory computing platforms and face 
recognition speed is faster with smaller image resolutions due to a lower 
computational demand. Also from a practical application, there are many real-world 
applications where the face images acquired from surveillance footage is of poor low-
quality low-resolution video feed. Figure 6 shows the performance of correlation 
filters (MACE and OTSDF). The best performance is achieved from the thermal 
imagery using the OTSDF filters producing a 96.5% recognition rate when 3 images 
are used during training; while the visual face recognition performance performs at 
best 85.0%. The results show that under variations such as illumination and 
expression, thermal face recognition can perform better than visual face recognition 
which is significantly affected by variations.  

   In an effort to show the effectiveness of correlation filters, we compared 
commonly used face recognition algorithms, such as Normalized Correlation, PCA 
and a well-known commercial face recognition software FaceIt®, which has been 
highly ranked by the face recognition vendor test (FRVT) based on Local Feature 
Analysis (LFA) are also included in this experiment. Table 2 shows the comparison 
results using a low-resolution face size (32*32 pixels) and a higher resolution face 
size of 128*128 pixels. FaceIt® gave robust performance results with visual and 
thermal images when face size is large enough, however for low resolution images 
(such as 32x32), OTSDF filter outperforms FaceIt® recognition algorithm. 
Throughout the performance comparison, thermal face recognition gives better 
performance over visual face recognition regardless of the different algorithms.  
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Fig. 6. Performance comparison with correlation filters using visual and thermal face 
recognition (No eyeglasses) 

Table 2. Performance comparison using different face recognition algorithms; Recognition 
Rates (%), No eyeglasses 

 Small face size 
(32*32) – 3 gallery 

Large face size 
(128*128) – 3 gallery 

 Visual Thermal Visual  Thermal 

OTSDF 84.10 96.84 79.98 88.83 
PCA 60.85 90.38 55.53 91.38 

Normalized 
Correlation 

46.16 56.28 51.54 60.91   

LFA (FaceIt®) 82.33 85.66 94.54 96.22 
 

Table 3 shows the performance comparison results where individuals are wearing 
eyeglasses. We reported the best performance of different algorithms regardless of the 
size of the face. We also observed that visual face recognition is only slightly affected 
by the presence of the eyeglasses. FaceIt® shows almost similar performance  
 

Table 3. Performance comparison using different face recognition algorithms; Recognition 
Rates (%), Eyeglass 

 Visual  Thermal 

 N/A Before Removal After Removal 
OTSDF 78.10 45.76 85.77 

Normalized Correlation 50.11 44.72 50.68 
LFA (FaceIt®) 90.11 40. 56 80.34 
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regardless of the presence of the eyeglasses in visual images also. Without the 
eyeglass removal, thermal face recognition shows a very low performance rates. After 
our proposed eyeglass removal method, overall performance is significantly improved 
in thermal face recognition regardless of the different algorithms. However our 
proposed OTSDF filter approach performs the best among the algorithms. 

5   Summary 

This paper presents the performance evaluation of visual and thermal infrared (IR) 
images using correlation filters and also includes comparison with other face 
recognition algorithms. From the experimental results, our advanced correlation filters 
show that the best performance can be achieved at very low resolutions (as low as 
32x32 pixels) for both visual and thermal images which are ideal for practical 
surveillance scenarios. Working with low resolution face images can also be an 
important factor for some face recognition applications where low-memory and fast 
speed are a critical issue. We also show that for subjects wearing eyeglasses, our 
proposed eyeglass replacement algorithm significantly improves the recognition 
accuracy in thermal images.  
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Abstract. The iris is considered one of the most reliable and stable biometrics 
as it is believed to not change significantly during a person’s lifetime.  Standard 
techniques for iris recognition, popularized by Daugman, apply Gabor wavelet 
analysis for feature extraction.  In this paper, we consider an alternative method 
for iris recognition, the use of advanced distortion-tolerant correlation filters for 
robust pattern matching.  These filters offer two primary advantages: shift in-
variance, and the ability to tolerate within-class image variations.  The iris im-
ages we use in our experiments are from the CASIA database and also from an 
iris database we collected at CMU.  In this paper, we perform automatic seg-
mentation of the iris (which surrounds the pupil) from the rest of the eye, nor-
malizing for scale and pupil dilation.  We then use these segmented iris images 
to compare the recognition performance of various methods, including Gabor 
wavelet feature extraction, to correlation filters. 

1   Introduction 

A biometric is any physical characteristic of a person which may distinguish that 
individual from others.  Biometric recognition has obvious applications in security, as 
well as any task that requires authorized access via an automatic identification system.   
One such biometric characteristic is the iris pattern, which is contained in the colored 
portion of the eye.  Figure 1 shows a sample image of the iris and its visible pattern, 
which is largely determined by a meshwork of muscle ligaments.  The iris pattern is 
thought to be unique to each eye, with a high degree of discrimination ability [1] (note 
that the left and right irises from the same person are also distinct).  The primary chal-
lenge is to build an iris recognition system that allows for intra-class variation result-
ing from pupil dilations, eyelid obstruction, camera focus, and other factors that can 
affect the iris pattern.  We employ correlation filters to handle this type of distortion. 

Most existing research in this area focuses on extracting consistent features from a 
segmented iris pattern.  Wildes [2] decomposed the iris signal into different frequency 
bands, using normalized correlation with templates to perform recognition.  Other 
feature extraction techniques have involved projecting the iris pattern onto an Inde-
pendent Components Analysis (ICA) basis [3], or a Fractional Fourier basis [4].  Most 
recently, iris patterns have been characterized by their location in global Principal 
Component Analysis (PCA) subspaces [5]. 
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Fig. 1. Iris pattern, contained in an eye image 

 
The most popular technique for feature extraction uses Gabor wavelet analysis [6] 

to represent the texture of the iris.  Daugman [7] pioneered this type of feature extrac-
tion for irises, using the phase response of Gabor filters.  His early success has popu-
larized this recognition algorithm as a standard in the field, including attempts at 
practical implementation [8].   

In Section 2, we discuss effective segmentation of the iris pattern from the rest of 
the eye image.  In Section 3, we describe two variations of the Gabor encoding algo-
rithm, and some specifics of their implementation for the purpose of testing.  Section 
4 explains correlation filter discriminants and their advantages when applied to iris 
images.  Sections 5 and 6 give results and conclusions. 

2   Iris Segmentation 

Segmentation and normalization of the iris pattern are natural pre-processing steps 
before feature extraction.  Once the iris region boundaries have been detected, we can 
map the iris image into polar coordinates I ( , ) using the center of the pupil as the 
origin.  In this mapping, the radial width of the iris (along the  axis) is normalized to 
one.  As a result, every iris pattern is mapped into the same rectangular area in the 
new coordinate system.  Figure 2 shows an example of a segmented iris mapping.  An 
attractive attribute of this type of segmentation is that it normalizes for translation and 
scale of the iris pattern, as well as pupil dilation.  However, in-plane rotations of the 
iris image result in cyclic shifts of the polar mapping. 

In order to compute the segmented mapping in Figure 2, we must find the inner 
and outer boundary of the iris.  Daugman discovered that modeling the iris boundaries 
as non-concentric circles was effective and reduced the problem to the selection of 6 
parameters (center positions and radii of the inner circle and the outer circle).  Con-
ceptually, each iris boundary may be detected as the location where the image inten-
sity along an expanding contour becomes suddenly brighter. 

 

 
Fig. 2. Iris pattern mapped to a normalized rectangle in polar coordinate system 
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 If we represent the original eye image as the intensity function E(x, y), we can de-

fine a partial circular integration at the circle specified by ,c cx y and r as 
 

I
( , , )  ( cos ,  sin ) c c c cp x y r E x r y r d

θ
θ θ θ= + +      (1) 

 
where I  is a sub-interval of [0, 2 ] including the angles most likely to be unaffected 
by eyelid occlusion; this includes the left and right sides of the eye.  We find our 
boundaries by searching for two local maxima satisfying 
 

, ,

( , , )
max

c c

c c
x y r

p x y r

r

∂
∂

              (2) 

 
We may think of  p(xc, yc, r) as a modified version of a circular Hough transform of 

the eye image (modified because we are only using a partial circle).  We compute a 
fast approximation to p(xc, yc, r), using a bank of contour filters as described in our 
earlier work [9].  After computing this space, we select the largest gradients in the 
radial direction, obtaining an estimate for both the inner and outer iris boundaries.   

We performed boundary detection and normalized segmentation on every eye im-
age in the two datasets we used for testing.  Figure 3 shows an example of our auto-
matic segmentation process.  Our segmentation succeeded in approximately 98-99% 
of eye images, and tends to fail mostly in cases of heavy eyelid occlusion.  Another 
algorithm for segmentation was developed by Masek and Kovesi [14], who publicly 
distribute their implementation.  We found that our segmentation algorithm works 
approximately 60 times faster in comparison (both use un-optimized Matlab code). 

 
 

  
Fig. 3. Iris boundary detection, and mapping into normalized polar coordinates 

3   Gabor Wavelet Iris Encoding 

In this section we discuss iris encoding using Gabor wavelet analysis; specifically, we 
describe two types of Gabor analysis that we use as a benchmark for recognition per-
formance. A 2D Gabor wavelet has the functional form of a complex exponential with 
a Gaussian envelope. Expressed in the segmented coordinate system, it is  
given by 
 

2 2

2 2
( , )  exp   

2 2
j

ρ θ

ρ θψ ρ θ ωθ
σ σ

= − − −                           (3) 

K



 Robust Iris Recognition Using Advanced Correlation Techniques 1101 

 

    The Gaussian envelope, with size determined by parameters  and , localizes the 
wavelet in space.  The complex exponential localizes the wavelet in frequency (in this 
definition, the center frequency is  in the direction of the  axis).  We change the 2D 
frequency component by rotating the Gabor wavelet, and by scaling it by powers of 2.  
Figure 4 shows the real part of a Gabor wavelet, at a sample orientation.  We can also 
change the spatial component of the Gabor wavelet by simple translation. 

Choosing different parameter values for scaling, rotation, and translation generates 
a family of Gabor wavelets.  Daugman first suggested using such a family of wavelets 
as a basis for representing the iris pattern (note that this basis is non-orthogonal).  The 
iris is projected onto the Gabor wavelet basis to yield a set of complex coefficients.  
Each coefficient is encoded by two bits, depending on which quadrant the complex 
coefficient lies in.  To compute a match score between two iris patterns, the percent-
age of matching bits of their characteristic codes is calculated. 

 

 

Fig. 4. 2D and 3D view of Gabor wavelet (real part) oriented at φ  = /4 

We implemented a Gabor wavelet encoding algorithm, selecting a basis of 2D Ga-
bor wavelets spanning 5 scales and 12 orientations and distributed spatially across the 
iris pattern.  This basis consists of more scales and orientations than are typically used 
for iris encoding [7], but we found that this basis performed better than the other 
wavelet family compositions we tried.  The basis generates a characteristic code for 
each iris on the order of 104 bits.  An alternate implementation, also made publicly 
available by Masek and Kovesi [14], uses a basis of 1D log-Gabor wavelets.  This 
basis has only one orientation (horizontal) but many translations. 

Once an iris has been encoded, comparing it to template codes is very computa-
tionally efficient, requiring only bitwise operations and sums.  As a result, many tem-
plates may be checked for match at a cheap computational cost.  The encoding proc-
ess, which involves a projection onto a large basis, does require some significant 
computation up front. 

Gabor wavelet encoding algorithms rely on the consistency of Gabor texture fea-
tures among iris patterns from the same eye.  However, the amount of intra-class 
variation of iris patterns (and by extension, their Gabor texture features) becomes 
problematically high for certain subjects and camera systems.  In addition, the only 
way that rotation of the eye image can be accounted for is to repeat the matching 
process for multiple rotated images during evaluation.     

Correlation filter classification offers an alternative way to address these problems.  
We compared a Gabor wavelet algorithm to the correlation filter algorithm in [9].  
Preliminary results on a dataset of artificially distorted iris patterns suggested that 
correlation filter recognition may improve accuracy under distortion, in part because 
it can handle rotation of the iris without the extra processing required by the Gabor 
wavelet method.  
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4   Advanced Correlation Filter Design 

A correlation filter is designed specifically for the recognition of one pattern class (in 
this case an individual’s iris), represented by a set of training images.  Given a test 
image, we apply the correlation filter by performing cross-correlation between the test 
image and the filter.  The resulting correlation plane C should contain a sharp peak if 
there exists a match between the filter and image.  We measure the degree of match 
using peak-to-correlation energy (PCE), defined here as PCE = (peak - μ)/  where μ 
and  denote mean and standard deviation, respectively.  Correlation filters are shift-
invariant (which means they can handle rotation of the iris), and they are designed to 
recognize distorted or noisy versions of their pattern class. 

There are a variety of advanced correlation filter design choices [10].  One com-
mon design technique sets constraints on the heights of the correlation peaks resulting 
from centered training images.  For example, all authentic training images, which 
contain a sample of the pattern class, must result in a correlation peak at the origin of 
C(0, 0) = 1, while all imposter training images must have C(0, 0) = 0.  Subject to this 
constraint, the filter design optimizes some performance criteria. 

For the Optimal Trade-off Synthetic Discriminant Function (OTSDF) filter [11], 
we optimize a trade-off between two different criteria, namely average correlation 
energy (ACE) and output noise variance (ONV).  ACE (given below) measures the 
average energy of the filter outputs resulting from our training images, which we wish 
to reduce to lower sidelobes.  Let h be a vector representing the correlation filter and 
D represent a diagonal matrix carrying the average power spectrum of the training 
images; then the ACE can be written as  
  

  ACE += h Dh     (4) 
 

where + denotes conjugate transpose.  The ONV characterizes the variance of the 
noise at the correlation output. If the input noise is white, ONV is given by 

  
 ONV += h h                  (5) 

 
Minimizing a weighted sum (determined by a parameter α ) of ACE and ONV sub-
ject to the constraints that the correlation peak is 1 for the authentics leads to  

  
        1 1 1( )− + − −=h A X X A X u                 (6) 

 
with 21α α= + −A I D . Vector u holds the peak constraints mentioned above (1 for 
authentics, 0 for imposters), and the ith column of matrix X contains the vectorized 

2D-Fourier transform of the ith training images denoted as ix . 

The OTSDF filter accomplishes two goals: it produces sharp peaks for training im-
ages, by reducing ACE in Eq. (4), and it achieves tolerance to additive white noise, by 
reducing ONV in Eq. (5).  The resulting filter gives good discrimination between 
authentic and imposter images, even when authentic test images are noisy.   

The primary computational cost when applying a correlation filter is the Fast Fou-
rier Transform (FFT) that generates the correlation plane C.  This is an order 

( log )O MN MN  operation for M by N images.  Comparing an image to multiple 
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filters requires one inverse FFT per filter, which is more expensive than comparing bit 
codes, but requires less computation up-front because there is no code to generate.  

5   Testing and Results 

We ran recognition experiments on two different iris databases: the CASIA database 
from the Chinese Academy of Sciences [12], and a database collected by the authors 
at Carnegie Mellon University (CMU).  Both databases contain the sort of within-
class iris image variations we would expect to encounter in a real recognition system.  
Adjustments in head and eye position, as well as camera position, introduce transla-
tions, rotations, and scale changes.  In addition, subjects frequently dilate and contract 
the pupil (an involuntary reflex) as well as occlude the iris with upper and lower  
eyelids.   

The CASIA database contains iris images collected under infrared illumination.  It 
has 108 iris classes, each with 7 images of the same iris (the 7 images are collected in 
two separate imaging sessions).  The resolution of each image is 280 by 320 pixels.  
The CMU iris database was collected under normal illumination and contains 101 iris 
classes.  Each class consists of approximately 20 - 25 images from the same eye, 
collected in two different sessions up to six months apart.  The original images have 
much higher resolution than needed (approximately 11 megapixels); consequently, 
they are downsampled before processing.  Figure 5 shows sample images. 

 

 

Fig. 5. Sample iris images from CMU (left) and CASIA (right) databases 

We compared the performance of advanced correlation filter designs to other 
methods: primarily the Gabor wavelet encoding methods described in Section 3, but 
also PCA [5] and normalized correlation.  We extracted sections of the iris not likely 
to experience eyelid occlusion and applied our classifiers to these sections. 

For testing on the CASIA database, we used the first image of each class for train-
ing data, and used the other 6 images from each class as test data.  In total, this al-
lowed for 648 authentic comparisons (between irises from the same class) and 69,336 
imposter comparisons (between irises from different classes).  We tried 4 recognition 
algorithms on CASIA; results are given in the ROC curves of Figure 6, which show 
False Accept Rate against False Reject Rate as the match threshold is varied. 

For the larger CMU database, we used 5 arbitrary images from each iris class as 
training data.  The remaining 20 images per class were used for the testing.  In total, 
this gave approximately 2,000 authentic comparisons and 200,000 imposter compari-
sons.  On the CMU database, we applied OTSDF correlation filter classification and 
both implementations of Gabor wavelet encoding classification.  The results are plot-
ted in the ROC curves in Figure 7. 
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Fig. 6. ROC curves comparing the performance of different algorithms on CASIA database 

  

Fig. 7. ROC curves comparing the performance of different algorithms on CMU database 

Correlation filters outperform the other methods on both datasets, giving an Equal 
Error Rate (EER) of 0.61% for CMU images, and 0.94% for CASIA images.  If we 
allow match thresholds to vary from class to class (i.e., each correlation filter has its 
own match threshold), the average class-by-class EER drops to 0.15% for the CMU 
database and 0.24% for the CASIA database. 

J. Thornton, M. Savvides, and B.V.K. Vijaya umar K
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6   Conclusions 

Iris patterns are intrinsically good biometric identifiers.  However, distortions due to 
instrument noise, camera focus, head movement, eyelid occlusion, and pupil contrac-
tion may increase significantly the amount of within-class variation of recorded iris 
patterns.  As a result, commonly used iris features are not always consistent enough to 
guarantee good recognition.  Rotations of the head or eye become shifts in the seg-
mented polar-mapped iris images.  When these images are projected onto some basis 
for feature extraction (whether Gabor wavelets or Principal Components), even small 
shifts tend to perturb the projection coefficients enough to degrade recognition.  Cor-
relation filter discriminants have the natural advantage of shift invariance. 

In our experiments, we show improvement in recognition accuracy on both CASIA 
and the CMU database by using a correlation filter method.  Specifically, we use 
OTSDF filters that have built-in noise tolerance.  Combined with fast iris segmenta-
tion pre-processing, they also offer built-in rotation invariance.  These two attributes 
account for the advantage we see in recognition performance. 
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Abstract. In this paper, we propose a secure and efficient protocol to transmit 
fingerprint images from a fingerprint sensor to a client by exploiting character-
istics of fingerprint images. To guarantee the integrity/confidentiality of the  
fingerprint images transmitted, a standard encryption algorithm is employed. 
Because the fingerprint sensor is computationally limited, however, such en-
cryption algorithm may not be applied to the full fingerprint images in  
real-time. To reduce the computational workload on the resource-constrained 
sensor, we apply the encryption algorithm to a nonce for integrity and to a spe-
cific bitplane of each pixel of the fingerprint image for confidentiality. Experi-
mental results show that the integrity/confidentiality of the fingerprint images 
can be guaranteed without any leakage of the ridge information. Also, the im-
age-based selective bitplane encryption can be completed in real-time on em-
bedded processors. 

Keywords: Biometrics, Fingerprint Verification, Embedded Processors. 

1   Introduction 

Traditionally, verified users have gained access to secure information systems, build-
ings, or equipment via multiple PINs, passwords, smart cards, and so on. However, 
these security methods have important weakness that can be lost, stolen, or forgotten. 
In recent years, there is an increasing trend of using biometrics, which refers the 
personal biological or behavioral characteristics used for verification[1-4].  

The fingerprint is chosen as the biometrics for verification in this paper. It is 
more mature in terms of the algorithm availability and feasibility[2]. Current exam-
ples of fingerprint verification include a social services database, wherein individuals 
must be prevented from using multiple aliases, watch list check in an immigration 
office, and identity card issuance.  Furthermore, we consider a sensor-client-server 
model[5] for remote user authentication. In this model, the sensor captures a finger-
print image, the client extracts some features from the image, and finally the server 
compares the extracted features with the stored features.  
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In this model, however, security issues ensure that the opponents will neither be 
able to access the individual information/measurements nor be able to pose as other 
individuals by electronically interjecting stale and fraudulently obtained biometrics 
measurements into the system[2, 5-6]. When the system and/or its communication 
channels are vulnerable to open physical access, cryptographic methods should be 
employed to protect the fingerprint information. Although either the system or the 
communication channel can be attacked in this model, we focus on the attacks on the 
communication channels only.  

The straightforward approach to guarantee the integrity/confidentiality of the fin-
gerprint images transmitted is to employ the standard cryptographic techniques[7]. 
This approach can work for the communication between the client and the server. 
However, a typical fingerprint sensor either does not have a processor or has a low-
end, embedded processor. In this paper, we assume the sensor has a low-end proces-
sor. Thus, it may not be possible for such low-end processors to apply the standard 
cryptographic techniques to the full fingerprint images in real-time.  

To reduce the computational workload on the resource-constrained sensor and to 
guarantee the integrity of the fingerprint image during the communication between a 
sensor and a client, we apply a standard encryption algorithm to a nonce, instead of 
the image itself. Also, to guarantee the confidentiality of the fingerprint image and to 
reduce the encryption time, we develop an image-based selective bitplane encryp-
tion algorithm for the resource-constrained sensor. We select the LSB of each pixel in 
the fingerprint image(called “LSB bitplane”) as a random noise and take the Exclu-
sive-OR of the LSB bitplane and all the pixels of the fingerprint image. Because an 
opponent cannot recover the original fingerprint image without knowledge of the LSB 
bitplane, we need to encrypt further the LSB bitplane by using a shared session key. 
As the client possesses the same session key, the client can recover the original 
fingerprint image by decrypting the encrypted LSB bitplane and then applying the 
same Exclusive-OR operation.  

With this image-based selective bitplane encryption, our protocol can reduce the 
computational workload significantly, and can guarantee the confidentiality of the 
fingerprint image from an opponent without any leakage of the ridge information. 
Based on the experimental results, we confirm that the proposed protocol can guaran-
tee the integrity/confidentiality of the fingerprint images and provide real-time per-
formance on embedded processors.  

The rest of the paper is structured as follows. Section 2 explains the overview of a 
typical fingerprint verification and the attack points in remote applications, and Sec-
tion 3 describes the proposed protocol based on challenge-response and image-based 
selective encryption. The implementation details and performance evaluation are 
described in Section 4. Finally, conclusions are given in Section 5. 

2   Background  

2.1   Fingerprint Verification 

A fingerprint verification system shown in Fig. 1 has two phases: enrollment and 
verification. In the off-line enrollment phase, an enrolled fingerprint image for each 
user is preprocessed, and the minutiae are extracted and stored in a server. In the  
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on-line verification phase, the input minutiae are compared to the stored template, and 
the result of the comparison is returned.  

In general, there are three steps involved in the verification phase[2]: Image Pre-
Processing, Minutiae Extraction, and Minutiae Matching. Image Pre-Processing 
refers to the refinement of the fingerprint image against the image distortion obtained 
from a fingerprint sensor. Minutiae Extraction refers to the extraction of features in 
the fingerprint image. After this step, some of the minutiae are detected and stored 
into a pattern file, which includes the position, orientation, and type(ridge ending or 
bifurcation) of the minutiae. Based on the minutiae, the input fingerprint is compared 
with the enrolled database in Minutiae Matching step. 

Note that Image Pre-Processing and Minutiae Extraction steps require a lot of in-
teger computations, and the computational workload of both steps occupies 96% of 
the total workload of the fingerprint verification[8]. Thus, it is reasonable to assign 
the time-consuming steps to a client, rather than to a resource-constrained sensor. 
This kind of task assignment can be found in a combination of a smart card and a card 
reader[9-10]. That is, the time-consuming steps are assigned to a more powerful card 
reader, rather than a resource-constrained smart card.   

  

 

Fig. 1. Illustration of the Fingerprint Verification 

2.2   Attack Points 

As shown in Fig. 2, many of the possible attacks in fingerprint verification systems 
were identified[6]:  attack at the sensor,  attack on the channel between the sen-
sor and the feature extractor,  attack on the feature extractor,  attack on the 
channel between the feature extractor and the matcher,  attack on the matcher,  
attack on the system database,  attack on the channel between the system database 
and the matcher,  attack on the channel between the matcher and the application 
requesting verification. Details of these attacks are explained in [6].  

Note that attacks , ,  are launched against communication channels; they are 
similar in nature and can be collectively called “replay” attacks[2]. In this paper, we 
focus on this replay attack, especially attack  where the resource-constrained sensor 
is involved. In general, the large-scale adoption of a security model based on an open 
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network requires the resolution of several practical problems relative to security and 
information reserve issues. In order to have a high acceptability, the mechanism basic 
tasks should be easy, fast, and inexpensive[11]. 
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2 
3 5 6
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Fig. 2. Illustration of the Attack Points[6] 

2.3   Previous Approaches 

A typical approach to protect fingerprint information is to employ the standard cryp-
tographic techniques such as encryption, hash, and digital signature. For instance, 
standard cryptographic techniques have been employed to protect biometrics informa-
tion in open networks[11-12] and communication channels between smart cards and 
card readers[13].  

Although many standard cryptographic techniques could be applied independent 
of the biometrics, some fingerprint-specific techniques have been reported recently. 
For instance,  invisible watermarking of fingerprint images may assure the database 
administrators that all the images in the database are authentic and are not tampered 
with by an opponent[14]. Such mechanisms of protection reduce the risk of unauthor-
ized insertion of spurious records into the database. The invisible watermarking can 
also be used to protect biometrics information over insecure communication channels 
by inserting it at a sender and verifying it at a receiver[15].  

Treating fingerprint as a key has been reported recently. For instance, by combin-
ing an error correcting code with the IrisCode, a canonical iris feature could be gener-
ated and standard hash functions can be used[16]. Furthermore, because only a hash 
of the iris feature and the error correcting digits are stored in the database record, the 
original iris cannot be reconstructed.  

In this paper, we focus on protecting fingerprint information over insecure net-
works by using standard cryptographic techniques, especially attack  shown in  
Fig. 2.  

3   Secure and Efficient Transmission of Fingerprint Images 

The goal of this research is to transmit fingerprint images securely with the reduced 
amount of computational workload. Thus, a resource-constrained sensor can transmit 
fingerprint images securely in real time by employing the proposed protocol. In this 
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paper, we assume that the sensor is connected physically to a specific client, and both 
the sensor and the client share the same master key for symmetric encryption. 

3.1   Challenge-Response Protocol  

With current technologies, a resource-constrained sensor cannot apply all the security 
components such as encryption module, digital signature module, hash function  
module, and random number generator to the full fingerprint image in real-time. 
Furthermore, asymmetry key encryptions such as RSA are infeasible on the resource-
constrained sensor as it is slow. Symmetry key encryptions such as AES, on the other 
hand, can be much faster and simpler to implement. To guarantee the integ-
rity/confidentiality of the fingerprint image and execute the required security  
components in real-time on the resource-constrained sensor, we propose a simple and 
effective protocol in terms of the computational workload and the security level. We 
will explain how we can achieve the goal with a standard symmetric encryption algo-
rithm. For the purpose of explanation, we define first the following notations:  

N : a nonce generated randomly in the client and used as a “challenge” 
Bio : biometric data such as fingerprint  
Km : a master key shared by both the sensor and the client 
f1(Km, N) : a simple function to generate a session key with Km and N 
Ks : a shared session key generated for each transmission 
f2(N) : a simple function to generate a “response”   

Fig. 3 illustrates an example of a simple challenge-response protocol to transmit 
the biometric data from a sensor to a client using a standard symmetric key algorithm 
only. As we mentioned, we assume that both the sensor and the client possess a mas-
ter key Km. For instance, the master key can be distributed when the sensor is installed 
on the client. As shown in Fig. 3, the client sends first a nonce N encrypted with Km. 
After receiving this message, the sensor generates a session key Ks by using a simple 
function f1(Km, N). Then, the sensor encrypts the input fingerprint image with the 
session key. The sensor also computes a response and encrypts it with the session key, 
and sends EKs(Bio) and EKs(f2(N))  back to the client. Because the client can also gen-
erate the session key, the client can confirm the source of the message. 

 

Fig. 3. Illustration of the Challenge-Response Protocol 
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This simple protocol requires only two steps of communications and guarantees 
both the integrity and the confidentiality of the fingerprint image transmitted. How-
ever, the sensor may not execute this protocol in real-time if it encrypts the full fin-
gerprint image. To complete the protocol in real-time on the resource-constrained 
sensor, we need to reduce further the computational workload of encrypting finger-
print images. 

3.2   Image-Based Selective Encryption 

To reduce the computational workload of encrypting fingerprint images further, we 
proposed the image-based selective encryption that encrypts the part of fingerprint 
image, instead of full fingerprint image. Note that we consider not frequency but 
spatial domains of fingerprint images because the transform to a frequency domain is 
a time consuming operation for the resource-constrained processors. 

 
                                                     (a)                                            (b) 

Fig. 4. Results of the Selective Spatial Encryption. (a) Results of the Selective Spatial Encryp-
tion; (b) The Composed Image by using the Mosaic Technique. 

Two approaches are possible for the image-based selective encryption. A straight-
forward approach, called “Selective Spatial Encryption”, is to partition the image 
and encrypt the central region of the partition, instead of the full fingerprint image. 
Because the central region of a fingerprint image may include a lot of significant 
information of the fingerprint such as cores and deltas, this approach may be consid-
ered as an efficient way to conceal the fingerprint information from an opponent. 
However, an opponent can intercept multiple of these selectively encrypted messages 
and generate a composed image by using the mosaic technique[2]. Because the com-
posed image looks similar to the original fingerprint image, this Selective Spatial 
Encryption cannot provide the confidentiality of the fingerprint image. Fig. 4 shows 
the results of the Selective Spatial Encryption and the composed image. Note that, to 
show the effect of the composition, the central region encrypted is shown as a white 
box. 

The other approach is “Selective Bitplane Encryption”[17]. In general, a finger-
print image is given in an 8-bit/pixel(bpp) precision. We consider the 8bpp data in the 
form of 8 bitplanes, where each bitplane is associated with a position in the binary 
representation of the pixels. The selective bitplane encryption approach is to encrypt a 
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subset of the bitplanes only, starting with the bitplane containing the Most Significant 
Bit(MSB) of the pixels.  

Fig. 5 illustrates the Selective Bitplane Encryption approach. Fig. 5 (a) represents 
an original fingerprint image, Fig. 5 (b) represents a distorted image after encrypting 
one bitplane, and Fig. 5 (c) represents a distorted image after encrypting two bit-
planes. As shown in Fig. 5, this approach can avoid the mosaic attack by distorting 
the whole pixel values of a fingerprint image. Also, compared to the full bitplane 
encryption, the computational workload of this encryption is reduced significantly.   

  

          
                          (a)                                  (b)                                 (c) 

Fig. 5. Results of the Selective Bitplane Encryption[17]. (a) Original Fingerprint Image; (b) 
Result of Encrypting the MSBs only; (c) Result of Encrypting the MSBs and the Next Signifi-
cant Bits. 

Note that, some structural information is still visible after encrypting the MSB 
only, whereas encrypting two bitplanes leaves no useful information. However, the 
two-bitplanes encryption is not safe for fingerprint images, either. For instance, the 
Replacement Attack[17] replaces the encrypted bitplanes by constant 0’s and compen-
sates the decreased luminance by adding 96 to each pixel. As shown in Fig. 6, the 
Replacement Attack can reveal the structural ridge information even from the two-
bitplanes encryption. Details of the Replacement Attack can be found in [17]. 

  

 

Fig. 6. Result of Replacing the MSBs and the Next Significant Bits of Fig. 5(c) with Constant 0’s 

To solve this problem, we use the Least Significant Bit(LSB) as the selective bit-
plane. Though the LSB contains the least significant information of the image, the 
LSB looks similar to a random number field[18] and is more suitable for our  
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algorithm than the MSB. Also, the LSBs obtained from the fingerprint images of the 
same person are always different. Thus, it is natural to select the LSB as our random 
noise, and the LSB itself needs to be protected from an opponent. In the following, we 
will describe the proposed selective bitplane encryption algorithm consisting of two 
steps: Image Distortion and LSB Encryption. 
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Fig. 7. Illustration of the Image Distortion using LSB 

In Image Distortion, we distort the full fingerprint image by using very simple 
operations. For each pixel, we select the LSB of it as a random noise and generate the 
LSB bitplane. Then, we take a simple Exclusive-OR of the LSB bitplane and all the 
pixels of fingerprint image(see Fig. 7). In this design, the LSB bitplane works as a 
one-time pad. Because the LSB bitplane is smaller than the full fingerprint image, the 
LSB bitplane is reused seven times for the given fingerprint image. However, the 
length of the LSB bitplane is too long to predict. Without knowledge of the LSB  
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bitplane, an opponent cannot recover the ridge structure of the fingerprint image from 
the result of Image Distortion. Therefore, in LSB Encryption, we only need to en-
crypt further the LSB bitplane by using a shared session key. As the client possesses 
the same session key, the client can recover the original fingerprint image by decrypt-
ing the encrypted LSB bitplane and then applying the same Exclusive-OR operation 
shown in Fig. 7. 

Fig. 8 shows the proposed protocol to transmit fingerprint images by using the im-
age-based encryption, and we call this protocol as “Image-based Selective Bitplane 
Encryption Protocol”. The only difference between Fig. 8 and Fig. 3 is the second 
step. Instead of encrypting the full fingerprint image, the sensor generates a distorted 
fingerprint image Bio LSB in Image Distortion. Then, the sensor encrypts the LSB 
with the session key, and sends Bio LSB||EKs(LSB)||EKs(f2(N)) to the client.  

 

Fig. 8. Illustration of the Proposed Protocol 

4   Implementation Details and Performance Evaluation 

For the purpose of evaluation, a small data set of 40 fingerprint images composed of 
four fingerprint images per one finger was collected from 10 individuals by using the 
optical fingerprint sensor[19]. The resolution of the sensor was 500dpi, and the size of 
captured fingerprint images was 248×292. The standard symmetric encryption algo-
rithm(AES) was used to guarantee both the integrity and the confidentiality.  

Fig. 9 shows an input image, the LSB bitplane, and the result of the proposed en-
cryption. As shown in Fig. 9(b), the LSB bitplane is smaller than a full fingerprint 
image by a factor of eight. The LSB bitplane looks like random noises and can vary at 
every fingerprint acquisition. Thus, unlike the Selective Spatial Encryption, it is diffi-
cult for an opponent to reveal the ridge structure of the fingerprint image even if he 
obtains multiple images distorted by the LSB bitplane.  

 The proposed algorithm is safe under the Replacement Attack because every bit-
planes are modified by the Exclusive-OR operation before encrypting the LSB bit-
plane. Fig. 10 shows the results of the Replacement Attack on the distorted image 
shown in Fig. 9(c). Compared to Fig. 6, the Replacement Attack cannot reveal any 
ridge information of the fingerprint image. 

Finally, we summarize the estimated execution times of the proposed encryption 
and the full encryption in Table 1. The encryption times were estimated by using the 
result reported in [20]. (Currently, we are porting the proposed algorithm to an ARM7 
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emulator board. The results of the porting will be reported in the final version of this 
manuscript.) As shown Table 1, the proposed encryption can reduce the time for the 
full encryption by a factor of eight. Furthermore, the results of Table 1 were estimated 
under the smart card chip environments. The encryption times can be reduced further 
if the proposed algorithm is executed under the embedded system(i.e., fingerprint 
sensor) environments having off-chip memories. 

  

     
                                       (a)                    (b)                      (c)  

Fig. 9. Results of the Proposed Encryption. (a) Input Image; (b) LSB Bitplane; (c) Result of the 
Distortion. 

            
(a)                                           (b) 

Fig. 10. Results of Replacement Attack. (a) Result of Replacing the MSBs of Fig. 9(c) with 
Constant 0’s; (b) Result of Replacing the MSBs and the Next Significant Bits of Fig. 9(c) with 
Constant 0’s. 

Table 1. Comparison of the Estimated Times to Encrypt Fingerprint Images of Size 248×292 

 
8051(8-bit) Processor 

3.57MHz 
ARM7(32-bit) Processor 

28.56MHz 
 Proposed Selective Encryption 3.01 sec 0.03 sec 

Full Encryption 24.12 sec 0.24 sec 

5   Conclusions 

Biometrics is expected to be increasing widely used in conjunction with other tech-
niques such as the cryptography on the network. In this paper, a secure and efficient 
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protocol has been proposed to transmit fingerprint images from a fingerprint sensor to 
a client. To guarantee the integrity and the confidentiality of the fingerprint images 
transmitted, only a standard encryption algorithm has been employed. To reduce the 
computational workload on the resource-constrained sensor, however, we applied the 
encryption algorithm to a nonce and to the LSB bitplane of the fingerprint image.  

The prototype system shows promising results. Because the full fingerprint image 
is distorted by applying simple Exclusive-OR operations with the LSB bitplane and 
then the LSB bitplane itself is encrypted, our protocol can reduce the computational 
workload by a factor of eight and guarantee the confidentiality of the fingerprint im-
age. Note that our protocol can also be applied to other biometrics such as face, iris, 
and vein, although this paper considered fingerprint only. Also, a case where each 
person carries his/her sensor with a USB token[21] can be investigated as future re-
search. 
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Abstract. Biometric authentication has been considered a model for quantita-
tively establishing the discriminative power of biometric data. The dichotomy 
model classifies two biometric samples as coming either from the same person 
or from two different people. This paper reviews features, distance measures, 
and classifiers used in iris authentication. For feature extraction we compare 
simple binary and multi-level 2D wavelet features. For distance measures we 
examine scalar distances such as Hamming and Euclidean, feature vector and 
histogram distances. Finally, for the classifiers we compare Bayes decision rule, 
nearest neighbor, artificial neural network, and support vector machines. Of the 
eleven different combinations tested, the best one uses multi-level 2D wavelet 
features, the histogram distance, and a support vector machine classifier. 
 
Keywords: Biometric individuality, Dichotomy model, Histogram, Iris authen-
tication. 

1   Introduction 

This paper examines various implementations of a dichotomy model to authenticate a 
person based on the iris biometric, i.e., establishing a measure of discriminative 
power of iris that is statistically inferable. It is a method for measuring the reliability 
of authenticating all of the population based on information obtained from a small 
sample of individuals drawn from the population. This problem of establishing the 
individuality of a biometric has been investigated for iris [1], for handwriting [2, 3] 
and for fingerprints [4, 5]. Here, we consider the individuality of the iris biometric. 
    Establishing a measure of a certain biometric uniqueness is a challenging problem. 
A very small error rate of a certain performance evaluation of a biometric model can 
be a candidate for a measure of individuality. There are two important models in bio-
metrics: identification (polychotomy, one-of-many decision) and verification (dichot-
omy, binary decision) [6, 7]. It has been argued that the verification model is clearly 
more suitable for establishing the individuality of a biometric rather than the identifi-
cation model [7]. Consider the many-class problem where the number of classes is too 
large to be observed, such as the population of a country. Most biometric identifica-
tion problems fall under the aegis of the many-class problem. Although classification  
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techniques that assume a fixed number of classes are not useful for establishing  
individuality in many-class problems, most existing studies use the identification 
model and present a confusion matrix [5, 8]. 
    In the dichotomy model [2, 7], we transform the many-class problem into a dichot-
omy by using a distance between two samples of the same class and between two 
different classe samples. Two patterns are categorized into one of only two classes – 
the patterns are either from the same class or from the two different classes. Given 
two iris samples, the feature distance between the two samples is classified as intra-
person, or  inter-person.  We use the terms intra-person distance and inter-person 
distance. Two types of errors, False Accept Rate (FAR) and False Reject Rate (FRR), 
are inferable to testing sets and even to the entire population.  
    The purpose of this paper is to investigate various combinations of features, dis-
tance measures, and classifiers used in iris authentication to find the best combination 
for the iris individuality. For feature extractions, we compare simple binary and multi-
level 2D wavelet features. For distance measures, we examine scalar distances such as 
Hamming, Euclidean, feature vector, and histogram distances. Finally, for the classi-
fiers, we compare Bayes decision rule, nearest neighbor, artificial neural network and 
support vector machines. Among the eleven different combinations tested, the best 
dichotomizer uses the multi-level 2D wavelet feature, histogram distance, and a sup-
port vector machine classifier. 
    The rest of the paper is organized as follows. Section 2 illustrates the dichotomy 
model which is a statistically inferable approach to establishing the individuality of a 
biometric. Section 3 presents the various features and distance measures explored for 
iris authentication. Section 4 compares the experimental results of various classifiers 
using different combinations of features and distance measures. Finally, section 5 
draws some conclusions. 

2   Dichotomy Model and Dichotomy Transformation 

The biometric individuality problem can be described as establishing a quantitative 
measure of the discriminative power of biometric data.  Quantitative measures can be 
obtained from performance evaluation of either the identification model or the verifi-
cation model.  
    Consider the multi-class problem where the number of classes is small and one can 
observe many instances of each class. To establish the individuality of the classes, one 
can cluster the instances into classes. It is a valid method to establish the individuality 
as long as a substantial number of instances for each class are observable. However, 
consider the many-class problem where the number of classes is too large to be ob-
served. Most biometric identification problems fall under the aegis of the many-class 
problem. Although classification techniques that assume a fixed number of classes are 
invalid for establishing individuality in many-class problems, most existing studies 
use the identification model [5, 8]. However, as the number of classes becomes huge 
– for example, in the millions – this problem is seemingly insurmountable and the 
error rates cannot be inferable to the entire population.  
    We formally state the dichotomy problem as follows [2,7]: given two randomly 
selected biometric samples, the problem is to determine whether the two samples 
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belong to the same person or two to different people. Figure 1 depicts the two biomet-
ric verification models: (a) a traditional parametric verification model [1] and (b) the 
dichotomy model used in [2, 7]. Daugman proposed degrees of freedom of iris mis-
match score distribution as a measure of the individuality or uniqueness of an iris 
pattern [1].  
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Fig. 1. Iris verification processes and dichotomy transformation 

    Let j
if  be the ith feature of the jth biometric data. First, features are extracted from 

both biometric data x and y: },,,{ 21
x

d
xx fff  and },,,{ 21

y
d

yy fff .  In the parametric verifi-

cation model of Figure 1 (a), a scalar distance measure is applied and two distributions 
are generated. By assuming the two distributions are normal one can easily find the 
decision threshold to minimize the FAR and FRR. On the other hand, in the dichot-
omy model of Figure 1 (b), each feature distance is computed – that is, the feature 
domain is transform into a feature distance domain: 

)},(,),(),,({ 2211
y

d
x

d
yxyx ffffff δδδ  where δ is a distance measure between a pair of 

features. Note that, in contrast to model (a) where the feature types must be homoge-
neous (binary or numeric), in this model (b) the features need not be homogeneous in 
type [7]. The dichotomizer takes this feature distance vector as input and outputs the 
decision, “same person” or “different people.” These models are considered sound 
and valid inferential statistical approaches [2, 7] even though their performances may 
vary. Section 4 will evaluate these models.  
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3   Feature Extraction and Distance Computation 

We review the features and distance measures used for iris authentication. First, we 
consider the iriscode [1], which is a binary feature vector extracted by applying a 2D 
Gabor wavelet filter. In [1], the Hamming distance in eqn (1) was used for the model 
in Figure 1 (a). 

yxyxyx ffffff •+•=∂ ''
),(  (1) 

Second, multi-level 2D wavelet features have been widely used [11-14]. The hierar-
chical wavelet transform decomposes an iris image into a set of frequency windows 
having narrower bandwidths in the lower frequency region [11]. G. Kee et al. pre-
sented a tree-structured wavelet transform in order to obtain means and standard de-
viations [12]. Mallat suggested that statistics obtained from wavelet decomposition 
are sufficient for presenting texture difference [13].  
    We use the 2D Daubechies wavelet transform technique to extract features from an 
iris image as folows. Each iris image is decomposed into 3 levels and each sub-image 
is divided into 2x2 windows, which results in 12 different sub-images. For each-sub 
image, mean and variance values are calculated. As a result, 24 numeric feature val-
ues are extracted. One can use the Euclidean distance between two vectors in eqn (2) 
for the Figure 1 (a) model. One can also use the absolute vector difference measure in 
eqn (3) for the Figure 1 (b) model. The result of the eqn (2) is a scalar value whereas 
that of the eqn (3) is a d-dimensional feature distance vector.  
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    Third, we utilize 12 linear type histograms as feature sets as previously proposed 
[14]. For each sub-image, the linear type of histogram is obtained as a feature from 
each decomposed sub image. x

if  and y
if  are ordinal histograms not simple numeric 

scalar values. There are numerous histogram distance measures [15] and we consider 
the two popular ones: eqn (4) shows the Euclidean distance and eqn (5) the histogram 
edit distance [15, 16].  Histogram distance measure is applied to each of the 12 histo-
grams per iris image, resulting in a 12 dimensional feature distance vector. 
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4   Comparative Experimental Results 

We compare the experimental results obtained by using several classifiers with a 
variety of different features and distance measures. From the iris biometric image 
database [12], we selected 10 left bare eye samples of 52 subjects.  The intra-class 
distance sample is acquired by randomly selecting two iris data from the same subject 
while the inter-class distance sample is obtained by randomly selecting two iris data 
from two different subjects.  We prepared three sets of inter and intra distance data for 
training and three independent ones for testing, each of size 1000 (500 intra-class and 
500 inter-class pairs). As shown in Table 1, we examined eleven different models. 
Models 1 and 2 use the parametric verification model of Figure 1 (a), and the remain-
ing models use the dichotomy transformation model of Figure 1 (b).   

Table 1. Eleven different models 

Model Features Distance Measures Classifier 
1 Iriscode (Binary) Hamming eqn (1) Bayes decision 
2 Wavelet means & variances Euclidean eqn (2) Bayes decision 
3 Wavelet means & variances Vector difference eqn (3) Nearest Neighbor 
4 Wavelet means & variances Vector difference eqn (3) ANN 
5 Wavelet means & variances Vector difference eqn (3) SVM 
6 Wavelet histograms Euclidean  eqn (4) Nearest Neighbor 
7 Wavelet histograms Euclidean  eqn (4) ANN 
8 Wavelet histograms Euclidean  eqn (4) SVM 
9 Wavelet histograms Edit distance  eqn (5) Nearest Neighbor 

10 Wavelet histograms Edit distance  eqn (5) ANN 
11 Wavelet histograms Edit distance  eqn (5) SVM 

 

    The parametric method models 1 and 2 were trained on 500 scalar distance values 
obtained from the intra- and inter-class sets. These scalar distance values form distri-
butions and the mean and variance can be computed for each distribution. Assuming 
normal distributions, one can easily find the Bayes decision threshold. For testing, 
each scalar distance value is classified into the intra- or inter-distance class by com-
paring to the threshold value.  

Table 2. Parametric model evaluation results on 1000 independent sample pairs per test 

Model Sets FRR FAR Performance 

Training 19.0% 21.5% 79.8% 
Test 1 10.2% 4.6% 92.6% 
Test 2 12.0% 3.2% 92.4% 

1 iriscode + Ham-
ming eqn (1) 

Test 3 10.4% 3.2% 93.2% 
Training 13.5% 23.2% 81.7% 
Test 1 4.2% 25.6% 85.1% 
Test 2 5.6% 23% 85.7% 

2  Wavelet means & 
variances + Euclid-

ean eqn (2) 
Test 3 4.6% 24.2% 85.6% 
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    Table 2 shows the error rates and overall performance values for models 1 and 2. 
Two observations can be drawn from these results. First, the results of the traditional 
parametric model using the scalar distance measure in Figure 1 (a) are disappointing 
compared to those of the other model in Figure 1 (b). The reason is that multivariate 
distance analysis is clearly better than a single scalar distance analysis. The other 
observation is that the FRR in the testing sets are much smaller than those in the train-
ing set, suggesting that the two distributions are not normal. 
    Models 3-11 used the dichotomy transformation to obtain 500 samples of d-
dimensional feature distance vectors for intra- and inter-class sets.  Regardless of the 
types of features, the feature distance vectors are all numeric values when proper 
distance measures are applied. Thus, the feature distance vectors become inputs to the 
dichotomizer as shown in Figure 1 (b). We tested three well-known classifiers [17] as 
the dichotomizer: nearest neighbor, artificial neural network (ANN), and support 
vector machine (SVM).  
    We selected the artificial neural network for a dichotomizer because it is equivalent 
to multivariate statistical analysis. There is a wealth of literature regarding a close 
relationship between neural networks and the techniques of statistical analysis, espe-
cially multivariate statistical analysis, which involves many variables [17, 18]. We 
selected the support vector machine because it has gained considerable popularity 
recently and has become state-of-the-art [19].  

Table 3. Dichotomy model % performance results on 1000 independent sample pairs per test 

  Wavelet means & 
variances (Models 3-5) 

Histograms + eqn (4)  
(Models 6-8) 

Histograms + eqn (5) 
(Models 9-11) 

Test 1 90.5% 81.0% 89.9% 

Test 2 90.8% 80.6% 92.6% 
Nearest 
Neighbor 

Test 3 91.0% 81.3% 92.0% 

Training 95.8% 90.9% 99.2% 

Test 1 94.8% 82.4% 96.1% 

Test 2 96.7% 83.8% 96.9% 

Artificial 
Neural 

Network 
Test 3 95.6% 82.5% 96.7% 

Training 97.6% 88.9% 98.8% 

Test 1 96.2% 85.7% 97.9% 

Test 2 97.5% 86.3% 98.5% 

Support 
Vector 

Machine 
Test 3 96.7% 86.8% 97.9% 

 

    Table 3 shows performances of models 3-11. In general, SVMs outperform 
ANNs which, in turn, outperform nearest neighbor classifiers. The best performing 
SVM model was the one using the 2D three-level wavelet with the histogram distance 
in eqn (5).    
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Abstract. This paper proposes an algorithm detecting facial component to effi-
ciently extract the FCP (Facial Characteristic Point). The FCP plays an impor-
tant role in facial expression representation or recognition. For efficient FCP 
extraction using image processing, we analyze and improve the conventional 
algorithms detecting facial components that are the basis of the FCP extraction. 
The proposed algorithm includes face region detection without the effect of 
skin-color hair, eye region detection with weighted template, eyebrow region 
detection using a modified histogram, and mouth region detection using skin 
characteristics. 

1   Introduction 

Facial expression, together with speech, hand or body gestures, plays an important 
role in intentional communication. It is applied to the research that recognizes and 
expresses the intended meaning of the communication [1, 2, 3]. The research requires 
FCP extraction in preprocessing. Since a face is complex in structure and its shape 
and color vary according to viewpoint and lighting, it is difficult to extract the FCP 
from the face alone. The conventional techniques for FCP extraction require extensive 
processing time and use a specific hardware [2]. The hardware system is expensive 
devices, poses an inconvenience or psychological load to experimenters due to the 
markers, which are attached to the face, and it cannot detect variations of the FCP in 
local, but important regions. However, FCP extraction, through the use of image proc-
essing, can solve the problems in the hardware systems, since it extracts the FCP from 
a marker less facial picture. 

This paper proposes facial component detection that is the kernel of efficient FCP 
extraction using image processing. The proposed algorithm analyzes and improves the 
conventional algorithm. It removes the effects of skin-color hair in face region detec-
tion, it detects a more accurate eye region using weighted template, and it more easily 
detects the eyebrow and mouth regions using a modified histogram and skin charac-
teristics, respectively. To evaluate performance of the proposed algorithm, the facial 
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components are detected in various images and the FCP is extracted from them. The 
simulation result shows that the proposed algorithm properly detects the facial com-
ponents and extracts valid FCP. 

2   Facial Component Detection 

In this paper, the facial components to be greatly affected by facial expression are 
defined as the eye, eyebrow, and mouth. Fig. 1 shows the block diagram for the facial 
component detection. 

Input image 

Facial region detection

Eye region detection 

Eyebrow region 
detection 

Mouth region 
detection 

FCP extraction  

Fig. 1. Block diagram for facial component detection 

2.1   Facial Region Detection 

Facial region detection is important in preprocessing for the FCP extraction in face or 
facial expression recognition and is largely classified into two groups using facial 
template and color information. In the former, due to the various sizes and shapes of a 
face, which are dependant on viewpoint and distance, it is difficult to make an appro-
priate facial template [3, 4, 5]. In the latter, the face region can be easily extracted by 
the comparison of color information, although it is affected both by skin-color differ-
ences between races and variations in lighting [6, 7, 8]. We adopt the latter for the 
facial region detection, since the facial skin-color is distributed in the restricted color 
range and the color in an input image is easily acquired and compared with the stan-
dard facial skin-color. Additionally, we use the YCbCr color space to compute the 
skin-color, since it is separated by the chrominance components (Cb and Cr) and the 
luminance component (Y) and that can reduce the lighting effect. 

To detect the facial skin-color, we use [77, 127] and [133, 173] for the ranges of Cb 
and Cr, respectively. Fig. 2 shows the facial region detected by the comparison of the 
skin-color. The facial region is well detected. However, since such an image includes 
skin-color outside of a face, such as golden and dyed hair, this algorithm presents a 
serious problem to detecting them as a facial region and that has a fatal effect on sub-
sequent processing, such as eye or eyebrow region detection.  

We solve the problem of the facial region detection using the color information by 
using additive hair characteristics that a hair region has a larger luminance variation 
than a facial region. Equation (1) represents the luminance variation at coordinates (x, 
y). If it is larger than a specified threshold, its coordinate belongs to the hair region. 
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Fig. 2. Input image for facial region detection and a detected facial region (left and right) 
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The facial region without the skin-color hair effect is derived from the logical equa-
tion between the facial region image generated by the color information and the non 
hair region image generated by Equation (1) as shown in Equation (2). 

),(),(),( yxfyxfyxf HFRF ∩=  . (2) 

Fig. 3 shows the process of removing the skin-color hair effect by the proposed al-
gorithm. The algorithm using only color information includes the golden hair in the 
facial region. However the proposed algorithm removes the skin-color hair effect by 
using the luminance variation additively. The final facial region is detected by the 
postprocessing, the largest cluster is extracted as the facial region and then the holes 
in the facial region are changed into the facial region. 

 

Fig. 3. Images of the process of removing the skin-color hair effect, an input image with the 
golden hair, facial region detected by just color information, hair region detected by luminance 
variation, and a facial region image without the skin-color hair effect (left to right) 

2.2   Eye Region Detection 

Template is used to detect the eyes in the detected facial region and many eye candi-
date regions appear in its result. The real eye regions can be extracted by the follow-
ing facts. The eyes are located symmetrically in the upper facial region and under the 
eyebrow if the eyes and the eyebrows are detected simultaneously [9]. Fig. 4 shows 
the general process of detecting eye regions. First, many eye candidate regions are 
extracted from the facial region by the template matching and then the eye region 
picked out from the candidates by means of the above-mentioned facts. However, the 
detected eye regions give us less accurate information regarding the facial expression, 
since they are detected under placing more weight on their position than their shape.  
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Fig. 4. Eye candidate regions extracted template matching and the eye region picked out from 
the candidates using location information on the eyes (left and right) 

To get a more accurate eye shape, we complement the detected eye region with 
weighted templates. First, we assign a new eye search region: one half of width and 
height of the detected eye region is added to its right and left sides and its up and 
down sides, respectively. To provide against a much smaller search region, we also 
specify one fifth of the facial region width and two-thirds of height for its minimum 
width and height, respectively. Then we detect the edges in the eye search region with 
the canny edge operator and apply the weighted templates to the edge image. The 
weighted templates consist of four masks as shown in Fig. 5 and make it possible to 
detect more accurate eye shapes. In Fig. 5, a black block, a dark gray block, a light 
gray block, and a white block mean –1, 1, 2, and 0, respectively.  

 

Fig. 5. Weighted templates for left, right, up, and down sides used to get a more accurate eye 
shape (left to right) 

Fig. 6 shows the eye regions detected before and after using the weighted tem-
plates, respectively. The important corner edges are omitted in the detected eye region 
without the weighted templates, while the more accurate eye regions are detected by 
using the weighted templates. 

 

Fig. 6. Detected eye regions before and after using the weighted template (left to right) 

2.3   Eyebrow Region Detection 

Since their shapes change according to feeling and emotion, the eyebrows play an 
important role in the analysis of facial expression. We specify the eyebrow search 
region on the basis of the detected eye region. It is located just above the eye region 
and its width and height are twice and one half of the width of the detected eye re-
gion, respectively. In the eyebrow search region, the eyebrow region is detected by 
the threshold technique using a luminance histogram. In general, the histogram has 
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many peaks and valleys formed with one bin and they make it difficult to select the 
threshold fixing the eyebrow region.  

We adopt a modified histogram to solve the problem of the general histogram tech-
nique. In the modified histogram, the peaks and valleys formed with one bin are 
changed into the larger bin and the smaller bin between both side bins, respectively. 
We also decide the threshold value in the limited range, that is, from 20% to 50% of 
the accumulated histogram, since it is experimentally investigated that the eyebrow 
region occupies from 20% to 50% of the eyebrow search region. The minimum bin is 
selected in the limited range as the threshold value. Fig. 7 shows a process of generat-
ing the modified histogram and determining the threshold value. Fig. 8 shows the 
detected eyebrow region. A wrong detection can occur in the eyebrow search region 
that includes the hair or the shade region but it is revised by using the shape informa-
tion of the eyebrow. 

 

Fig. 7. The processes of modifying a histogram and determining a threshold value (left and 
right) 

                

Fig. 8. Input image for eyebrow region detection and a detected eyebrow region (left and right) 

2.4   Mouth Region Detection 

A mouth search region is specified by the positions of the detected eyes and the statis-
tical data regarding the geometric information of a face [8]. That is, the eyes and 
mouth are located statistically as shown in Fig. 9. The mouth search region is repre-
sented with two coordinates (Mleft, Mtop) and (Mright, Mbottom) by Equation (3) 

,  
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where, 
eyeY  is 2/)( rightleft YY + . 
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Fig. 9. Geometric structure of eyes and mouth 

 
As with the hair, the mouth region also has a large luminance variance, which is in 

this case due to the wrinkles on lips. We can therefore detect the mouth region using 
the luminance variance computed by Equation (1) in the mouth search region. Fig. 10 
shows the detected mouth region. 

  

Fig. 10. Input image for mouth region detection and a detected mouth region (left and right) 

3   FCP Extraction 

We appoint 34 points for FCPs in the facial region, as shown in Fig. 11. 16, 10, and 8 
FCPs are appointed in two eyes, two eyebrows, and the mouth, respectively. The x 
values of FCP are the right and left sides, one-fourth point, one half point, and three-
fourth points from the left side of each facial component region. The y values of the 
right and left sides in each region and the eyebrows are the middle points of the re-
gion thickness and the others are the outline of each region. 

4

1

4

1

4

1

4

1

 

Fig. 11. Appointed FCPs 
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4   Results of FCP Extraction Experiment 

We performed a FCP extraction experiment using the detected facial components and 
analyzed the results. The input image for the experiment must be a bust shot, includ-
ing a front view of the face without glasses, and the background has to be simple. Fig. 
12 shows the FCPs extracted by the proposed algorithm. They are located in the 
proper place considered in Fig. 11. Our experiment is carried out with 150 images. It 
extracts valid FCPs in 122 images, but invalid FCPs in the remaining 28 images. 

  

Fig. 12. Extracted FCPs in images 

The images with the wrong FCPs are classified into four cases as depicted in Table 
1. The first case was due to background effects. When the background with skin-color 
is detected as the facial region, the algorithm cannot detect the facial components as 
well as the FCP. The second case was because of long hair. Long hair covering the 
eyes and eyebrows causes the wrong eye region detection and makes it impossible to 
detect the remaining facial components. The third case was affected by viewpoint. 
The input image is limited but the limited images are already included in the image 
database for the experiment. Basically, they disagree with the geometric information 
of a face and as a result, the facial components cannot be normally detected in them. 
The fourth case regards a problem with skin-color range. The skin-color of several 
non-Caucasian people was out of the assumed Caucasian skin-color range and the 
facial region could not be detected in them. The front three cases were solved by 
cautious images acquisitions, and the last case solved by adjusting a skin-color range 
to a race. The image for facial expression representation can be generated in a less 
limited condition and the perfect FCP can be detected in it. 

Table 1. Analysis of images not to extract FCP 

The causes of failure The number of images 

Skin-color background 13 
Long hair 5 
Viewpoint 3 
Skin-color range 7 
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5   Conclusion 

This paper proposes the improved facial component detection algorithm for the FCP, 
important information for facial expression and recognition. The proposed algorithm 
analyzes and solves the problem of the conventional algorithm. It adopts the lumi-
nance variance, the geometric information of the facial components, the weighted 
template, and the modified histogram. They make it possible to detect the facial com-
ponents more easily and more accurately, and that is shown in the facial component 
detection experiment. The FCP extraction experiment also shows valid FCP detection 
in most of experiment images and the possibility of a perfect FCP detection in the 
images acquired in less limited conditions. 

References 

1. R. Chellappa, C. H. Wilson, and S. Sirohey: Human and Machine Recognition of Faces: A 
Survey. Proc. of the IEEE, vol. 83, no. 5 (1995) 705-740 

2. Y. H. Han and S. H. Hong: Recognizing Human Facial Expressions and Gesture from Im-
age Sequence. Journal of Biomedical Engineering Research, vol. 20, no. 4 (1999) 419-425 

3. R. Brunelli and T. Poggio: Face Recognition: Feature versus Templates. IEEE Trans. 
PAMI, vol. 15, no. 10 (1993) 

4. G. Chow and X. Li: Towards a System for Automatic Facial Feature Detection. Pattern Rec-
ognition, vol. 26, no. 12 (1993) 1739-1775 

5. V. Govindaraju, S. N. Srihari, and D. B. Sher: A Computational Model for Face Location. 
Proc. 3rd Int. Conf. Computer Vision (1990) 718-721 

6. R. C. Gonzalez and R. E. Woods: Digital Image Processing. Addison Wesley New York 
(1992) 

7. J. C. Russ: The  Image Processing Handbook, 3rd Ed.. IEEE Press (1999) 
8. D. Chai and K. N. Ngan: Face Segmentation Using Skin-color Map in Videophone Applica-

tion. IEEE Trans. Circuits and Systems for Video Technology (1999) 551-564 
9. H-S. Yoon, M. Wang, and B-W. Min: Skew Correction of Face Image Using Eye Compo-

nents Extraction. The Journal of the Korea Institute of Telematics and Electronics, vol. 33-
B, no. 12 (1996) 71-83 



 

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 1133 – 1140, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

The Effect of Facial Expression Recognition Based on the 
Dimensions of Emotion Using PCA Representation and 

Neural Networks 

Young-Suk Shin 

Department of Information Communication Engineering, Chosun University,  
#375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Korea 

ysshin@mail.chosun.ac.kr 

Abstract. A new approach for recognizing facial expressions in various internal 
states that is illumination-invariant and without detectable cues such as a neutral 
expression is proposed. First, we propose a zero-phase whitening step of the 
images for illumination-invariant. Second, we developed a representation of 
face images based on principal component analysis(PCA) representation ex-
cluded the first 1 principle component as the features for facial expression rec-
ognition, regardless of neutral expression. The PCA basis vectors for this data 
set had reflected well the changes in facial expression. Finally, a neural network 
model for classification of facial expressions based on dimension model was 
created. The dimensional model recognizes not only six facial expressions re-
lated to six basic emotions (happiness, sadness, surprise, angry, fear, disgust), 
but also expressions of various internal states. PCA representations excluded 
the first 1 principle component and neural network model on the two-
dimensional structure of emotion have improved the limitation of expression 
recognition based on a small number of discrete categories of emotional expres-
sions, and have overcome the problems of lighting sensitivity and dependence 
on cues such as a neutral expression. 

1   Introduction 

The work in facial expressions for human-computer intelligent interaction did not 
start until the 1990s. Models for recognizing facial expressions have traditionally 
operated on a short digital video sequence of the facial expression being made, such 
as neutral, then happy, then neutral[1,2,5,6,7,8]. All require the person’s head to be 
easily found in the video. Therefore, continuous expression recognition such as a 
sequence of “happy, surprise, frown” was not handled well. And the expressions must 
either be manually separated, or interleaved with some reliably detectable cues such 
as a neutral expression, which has essentially zero motion energy. 

Facial expression recognition from video involves relating these patterns to a cate-
gory of emotion. There are a small number of discrete categories of emotional expres-
sions [1,2,3,4,5,6,7,8] and data in the experiments is “pure” in the sense that a user 
willingly or naturally tried to express exactly one emotion. There is no guarantee that 
the facial expression recognized as sad corresponds to any genuine affective state of 
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sadness. Discrete categories of emotions can be treated as regions in a continuous 
emotion space. For example, a feeling of sadness can occur in both “lonely” and 
“grief”. Therefore, categories may be fuzzy in the sense that an element can belong in 
more than one category at once. 

In this paper, we present a new approach for recognizing facial expressions based 
on the  dimensions in various internal states that is illumination-invariant and without 
detectable cues such as a neutral expression. The first stage employed a zero-phase 
whitening step of the images for illumination-invariant. Second, we developed a rep-
resentation of face images based on principal component analysis representation ex-
cluded the first 1 principle component as the features for facial expression recogni-
tion, regardless of neutral expression. The PCA basis vectors for this data set had 
reflected well changes in facial expressions. Finally, a neural network model was 
created for classification of facial expressions based on the  dimension model. 

2   Database Based on the Dimensions of Emotion  

The face images used for this research were a subset of the Korean facial expression 
database[9]. The data set contained 500 images, 3 females and  3 males, each image 
using 640 by 480 pixels. Examples of the original images are shown in figure 1.   

Expressions were divided into two dimensions(Pleasure-Displeasure and Arousal-
Sleep dimension) according to the study of internal states through the semantic analy-
sis of words related with emotion by Younga et al. [10] using 83 expressive words. 
Each expressor of females and males posed 83 internal emotional state expressions 
when 83 words of emotion are presented. 51 experimental subjects rated pictures on 
the  degrees of expression in each of the two dimensions on a nine-point scale. The 
images were labeled with a rating averaged over all subjects. Table 1 is a part list of 
an expressor rated for degrees of expression in each of the two dimensions on a nine-
point scale. 

 

Fig. 1. Examples from the facial expression database  containing  83 posed  internal emotional 
state expressions 
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Table 1. A part list of an expressor rated for degrees of expression in each of the two dimen-
sions on a nine-point scale 

 
Dimension(human rating) 

Pleasure-Displeasure Arousal-Sleep 
Picture 

No. 
Named 
emotional 
word of 
Pictures 

M SD M SD 

2 disgust 7.5 1.31 7.07 1.6 
4 emptiness 5.87 1.2 4.17 1.98 
6 annoyance 7.23 0.82 5.63 1.54 
7 longing 6.07 1.08 5.1 1.56 
8 worry 7.4 0.89 6.03 1.79 

11 happiness 2.27 0.83 4.57 2.28 
15 surprise 5.27 1.39 7.97 1.94 
18 Fear 7.5 0.82 7.33 1.06 
20 satisfaction 2.9 1.03 4.33 1.86 
38 sadness 6.07 0.98 5.37 1.33 
49 isolation 6.07 0.78 4.83 1.23 
58 sleepiness 5.0 1.26 1.8 1.37 
64 distress 7.8 0.92 6.3 1.64 
67 comfort 3.77 0.97 4.57 1.96 
69 tiredness 6.17 0.99 4.3 2.05 

Abbreviation: M, mean; SD, standard deviation. 

3   PCA Representations of Facial Expressions 

The face images used for this research were centered the face images with coordinates 
for eye and mouth locations, and then cropped and scaled to 20x20 pixels. The lumi-
nance was normalized in two steps. First, a “sphering” step prior to principal compo-
nent analysis is performed. The rows of the images were concatenated to produce 1 ×  
400 dimensional vectors. The row means are subtracted from the dataset, X. Then X is 
passed through the zero-phase whitening filter , V, which is the inverse square root of 
the covariance matrix: 

                                              

XVW

XXEV T

=
= − 2

1

}{                                                       (1) 

This indicates that the mean is set to zero and the variances are equalized as unit 
variances. Secondly, we subtract the local mean gray-scale value from the sphered  
each patch. From this process, W removes much of the variability due to lightening. 
Figure 2(a) shows the cropped images before normalizing. Figure 2(b) shows the 
cropped images after normalizing. 

Some of the most successful algorithms for face recognition applied PCA represen-
tation are “eigen faces[11]” and “holons[12]”. These methods are based on learning 
mechanisms that are sensitive to the correlations in the face images. PCA provides a 
dimensionality-reduced  code that  separates the  correlations  in  the  input. 
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   (a)                                                                       (b) 

Fig. 2.  (a) The cropped images before normalizing. (b) The cropped images after normalizing. 

 
Atick and Redlich[13] have argued for such compact, decorrelated representations as 
a general coding strategy for the visual system. Redundancy reduction has been dis-
cussed in relation to the visual system at several levels. A first-order redundancy is 
mean luminance. The variance, a second order statistic, is the luminance contrast. 
PCA is a way of encoding second order dependencies in the input by rotating the axes 
to corresponding to directions of maximum covariance. 

In a task such as facial expression recognition,  the first 1 or 2 principal compo-
nents of PCA do not address the high-order dependencies of the facial expression 
images, that is to say, it just  displays the neutral face. Figure 3(a) shows PCA repre-
sentation that included the first 1 principle component. But selecting intermediate 
ranges of components that excluded the first 1 or 2 principle components of PCA did 
address well the changes in facial expression (Figure 3(b)).  

 
 
                                                                      
 

                                                        

 
 
 
 
        
                        

  (a)                                                                (b) 

Fig. 3. (a) PCA representation only included the first 1 principle component (b) PCA represen-
tation excluded  the first 1 principle component. 
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Therefore, to extract information of facial expression regardless of neutral expres-

sion, we  employed the 200 PCA coefficients, nP , excluded the first 1 principle com-

ponent of PCA of the face images. The principal component representation of the set 

of images in W in Equation(1) based on  nP  is defined as nn PWY ∗= . The ap-

proximation of W is obtained as: 
T

nn PYW ∗= .                                             (2) 

The columns of W  contains the representational codes for the training images 
(Figure 3(b)). The representational code for the test images was found by 

T
ntesttest PYW ∗= . Best performance for facial expression recognition was obtained 

using 200 principal components excluded the first 1 principle component. 

4   Recognition Performance 

The system for facial expression recognition uses a three-layer neural network. The 
first layer contained the representational codes derived in Equation (2). The second 
layer was 30  hidden units and the third layer was two output nodes to recognize the 
two dimensions: Pleasure-Displeasure and Arousal-Sleep. 

Training applies an error back propagation algorithm. The activation function of 
hidden units uses the sigmoid function. 500 images for training and 66 images ex-
cluded from the training set for testing are used. The 66 images for test include 11 
expression images of each six people. The first test verifies with the 500 images 
trained already. Recognition result produced by 500 images trained previously 
showed 100% recognition rates. The rating result of facial expressions derived from 9 
point scale on two dimension for degrees of expression by subjects was compared 
with experimental results of a neural network(NN). The dimension values of human  

and NN in  each of the two dimensions  are given as  vectors of   H  and  N .  The 
similarity of recognition result between human and NN was obtained as: 

       
),min(),(

H

N

N

H

NH

NH
NHS

⋅=
                                        (3) 

Table 2 describes a degree of similarity of expression recognition between human 
and NN on the  two-dimensions of emotion and indicates a part of all. The  result  of  
expression  recognition  of  NN  appears very  similar  to  the result of  expression 
recognition of human. In Table 2, the result of expression  recognition  of  NN  was  
matched  to the nearest emotion word within 83 emotion words related to internal 
emotion states. Figure 4 and 5 show the correlation of the expression recognition 
between human and NN in each of the two dimensions. The statistical significance of 
the similarity for expression recognition between human and NN on each of the two 
dimensions was tested by Person correlation analysis. The correlation in the Pleasure-
Displeasure dimension between human and NN showed  0.77 at the 0.01 level and 
0.51 at the 0.01 level in the Arousal-Sleep dimension.  
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Table 2. The  result data of expression recognition between human and NN derived from three 
people 

 
Human Neural Network Named emotional 

word of Pic-
tures(person) 

P – D A – S P –D A – S 

Recognition on 
Neural Network 

Similarity 

depression(a) 6.23 4.43 5.22 4.41 boredom 0.89 
crying(a) 6.47 4.10 6.16 5.19 sorry 0.94 
gloomy(a) 7.37 5.53 7.53 6.84 strain 0.90 
strange(a) 6.17 5.17 5.72 4.44 envy 0.89 
proud(a) 3.07 4.47 1.69 4.54 satisfaction 0.86 
confident(a) 3.47 4.57 2.90 5.35 grateful 0.93 
despair(a) 6.23 5.97 5.35 5.08 strangeness 0.85 
sleepiness(a) 5.00 1.80 3.13 2.96 resting 0.74 
likable(a) 1.97 4.23 1.42 3.96 warmness 0.89 
delight(a) 1.17 4.20 3.41 5.87 pleasantness 0.62 
boredom(a) 6.77 5.50 5.05 5.65 strangeness 0.85 
pleasantness (b) 1.40 5.47 3.12 4.35 contentment 0.88 
depression (b) 6.00 4.23 7.10 4.28 stuffiness 0.88 
crying(b) 7.13 6.17 7.46 7.07 displeasure 0.91 
gloomy(b) 5.90 3.67 6.93 5.73 sadness 0.76 
strangeness(b) 6.13 6.47 5.70 3.18 boredom 0.69 
proud(b) 2.97 5.17 4.56 2.31 sleepiness 0.71 
confident(b) 2.90 4.07 2.63 3.60 satisfaction 0.89 
despair(b) 7.80 5.67 7.19 5.61 sadness 0.94 
sleepiness(b) 6.00 1.93 6.34 3.07 emptiness 0.88 
likable(b) 2.07 4.27 3.52 5.12 longing 0.75 
delight(b) 1.70 5.70 1.79 4.92 contentment 0.87 
gloomy( c ) 6.60 3.83 4.14 5.19 longing 0.81 
strangeness( c ) 6.03 5.67 6.77 3.13 intricacy 0.85 
proud( c ) 2.00 4.53 2.48 3.01 satisfaction 0.76 
confident( c ) 2.47 5.27 2.30 3.57 satisfaction 0.72 
despair (c ) 6.47 5.03 4.52 4.44 longing 0.77 
sleepiness( c ) 6.50 3.80 5.52 3.82 boredom 0.89 
likable(c) 1.83 4.97 1.54 5.36 gratification 0.95 
delight(c) 2.10 5.63 2.98 5.30 longing 0.97 
boredom( c ) 6.47 5.73 7.55 5.50 confusion 0.92 
tedious( c) 6.73 4.77 6.98 6.27 confusion 0.87 
jealousy( c ) 6.87 6.80 3.14 6.11 pleasantness 0.68 

Abbreviation: P-D,pleasure-displeasure; A-S,arousal-sleep; Dep.,depression; Str., 
strangeness; Des.,despair; Del.,delight; Pro.,proud; Sle.,sleepiness; Bor.,boredom; 
Con.,confusion; Lik.,likable; Ted.,tedious; Int.,intricacy; Reg.,regret; Lon.,loneliness; 
Cry.,crying;War.,warmness; Hap.,happiness. 

5   Discussion 

Our results allowed us to extend the range  of emotion recognition  and to recognize 
on the  two dimensions of emotion with illumination-invariant without detectable cues 
such as a neutral expression. The result of  expression recognition between human 
and NN on the  two-dimensional structure of emotion showed  three significant  
conclusions.  
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Fig. 4. A rating result of facial expression recognition in Pleasure-Displeasure dimension 
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Fig. 5.  A rating result of facial expression recognition in Arousal-Sleep dimension 

First, the two-dimensional structure of emotion in the facial expression recognition 
appears as a stabled structure for the facial expression recognition. The correlation 
results of each dimension through Person correlation analysis  were significant  over 
0.5 at the 0.01 level. Secondly,  Pleasure-Displeasure dimension is analyzed as a  
more stable dimension than Arousal-Sleep dimension. Pleasure-Displeasure dimen-
sion was significant 0.77 at the 0.01 level, while Arousal-Sleep dimension was sig-
nificant 0.51 at the 0.01 level. This  result corresponds to a research for validating the 
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stability of two-dimensional structure of emotion about emotion word[14]. Third, 
when the whole face was presented, facial expressions were successfully recognized. 
This fact was reflected by PCA representation excluded the first 1 principle compo-
nent. This finding suggests that holistic analysis is important for facial expression 
recognition. 

We propose that the inference  of emotional states within a subject from facial ex-
pressions may depends more on  the Pleasure-Displeasure dimension than Arousal-
Sleep dimension. It may  be analyzed that the perception of Pleasure-Displeasure 
dimension may be needed for the survival of the species and the immediate and ap-
propriate response to emotionally salient, while the Arousal-Sleep dimension may be 
needed for relatively detailed cognitive ability for the personal internal states.  
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Abstract. Facial feature extraction is a fundamental problem in image process-
ing. Correct extraction of features is essential for the success of many applica-
tions. Typical feature extraction algorithms fail for low resolution images which 
do not contain sufficient facial details. In this paper, a region-based super-
resolution aided facial feature extraction method for low resolution video se-
quences is described. The region based approach makes use of segmented faces 
as the region of interest whereby a significant reduction in computational com-
plexity of the super-resolution algorithm is achieved. The results indicate that 
the region-based super-resolution aided facial feature extraction algorithm pro-
vides significant performance improvement in terms of correctly detecting the 
location of the facial feature points. There are 6.4 fold reductions in the compu-
tational cost. 

1   Introduction 

Facial feature extraction has been a topic of extensive research for several decades 
[7], [5]. This preprocessing is essential for the success of many applications such as 
recognition, teleconferencing, facial expression analysis, man machine interfacing and 
lip reading for the deaf etc. In facial expression analysis even the smallest errors can 
be interpreted differently leading to wrong facial expression recognition. In 3D model 
based low bit rate video coding, the correct extraction of features is imperative for the 
model adaptation, texture mapping and the subsequent animation.  

Most facial feature extraction and tracking methods are sensitive to various non-
idealities such as variations in illumination, noise, orientation and color space used.   
The problem becomes more challenging in adverse conditions where the resolution of 
the camera limits the quality of the images that one has to work with. In such adverse 
conditions, inserting the crucially needed details alleviates the difficulties aiding the 
correct extraction of features. As a technique which can produce a high resolution im-
age from a sequence of low resolution images, super-resolution [1] fills this gap very 



1142 T. Celik et al. 

 

nicely. In this paper we propose a region-based super-resolution aided facial feature 
extraction technique for video sequences that may not contain enough facial details. 
The region of interest, the human face in this paper is segmented from the incoming 
video. The region of interest is then super-resolved using a frequency domain  
registration method and the subsequent cubic interpolation [6]. The application of the 
super-resolution algorithm to a much smaller face region significantly reduces the 
computational cost of the algorithm. The facial feature extraction part is based on an 
efficient combination of methods such as morphology, median filtering, adaptive in-
tensity clustering, edge detection, circle and ellipse fitting. 

The proposed method was tested on two low resolution video sequences. For com-
parison purposes correct location of facial features are manually extracted for both 
low resolution and super-resolution images. Our results indicate that the region-based 
super-resolution aided method provides significant improvement in correctly detect-
ing locations of the facial features in video sequences taken in adverse conditions. 
The computational cost of the overall algorithm is reduced from around 4040 
MFLOPS (106 floating point operations per second) to around 625 MFLOPS per 
frame. 

2   Region-Based Super-Resolution 

The idea of super-resolution was first introduced in 1984 by Tsai and Huang [2] for 
multi-frame image restoration of band-limited signals. A good overview of existing 
algorithms is given by Borman and Stevenson [1]. Recently super-resolution image 
reconstruction has been a topic of active research. It promises to be a good tool which 
can improve the performance of many image processing applications. Super-
resolution is comprised of two main steps. First, the registration of the low resolution 
images onto a high resolution grid and second the super-resolution image formation. 
Correct registration is critical for the success of super-resolution image reconstruc-
tion. If the images are inaccurately registered, the high resolution image is recon-
structed from incorrect data and it is not a good representation of the original image. 
Popular methods for the registration are the spatial domain method of Karen [4] and 
the frequency domain approach as described in [6]. The subsequent reconstruction of 
the high resolution image can be accomplished by interpolation or iteratively as de-
scribed by Peleg et. al., [3]. In this work, the incoming video is segmented to isolate 
the face region from every frame. Following the segmentation a frequency domain 
registration method and the subsequent interpolation using four consecutive frames as 
described in [6] is employed. It should be pointed out that the segmentation of the 
face from the incoming video also helps the registration process since the horizontal 
and vertical displacements can be directly calculated. Fig. 1(a) shows the original 
low-resolution frames, the segmented frames which are input to the super-resolution 
algorithm are depicted in Fig. 1(b) and the super-resolved face images are shown in 
Fig. 1(c) 
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(a)  

   

 

(b)  

   

(c) 

Fig. 1. (a) The original low-resolution frames - 240 x 320 Pixels (b) Segmented face images - 
100 x 73 Pixels, (c) Super-resolved face images - 200 x 146 Pixels 

3   Facial Feature Extraction 

The facial feature extraction method uses the segmented and super-resolved faces for 
the processing. Fig. 2 shows the flowchart of the overall facial feature extraction algo-
rithm. The first step is the face detection part where the feature invariant approach 
with multiple attributes such as skin color and shape is employed for this purpose [7]. 
The output of YCbCr skin color modeling is a binary image with a set of connected 
components. Face candidate regions from these components are processed using me-
dian filtering and morphological operations to remove the non face regions. Several 
heuristic criteria such as holes inside the face candidate region together with orienta-
tion and a best ellipse fitting approach constitute the two independent face candidate 
elimination procedures. Once the face image is obtained, the facial feature sub-images 
for the left and right eyes, the nose and the mouth are detected from which the feature 
points are extracted. 
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The detection of pupils involves an intensity based adaptive clustering on the gray 
level eye sub-images. As a result of this adaptive clustering, pupils and eyebrows re-
main as the two largest dark regions. Nostrils are also found by applying intensity 
based adaptive clustering to nose sub-image. The biggest two regions in the clustered 
binary image are the nostrils. More challenging problem is to find the lip corners. Lip 
cut formed by applying Sobel vertical derivative operator to the mouth sub image is 
the most important cue [5]. It limits the vertical position of lip corners. Again, inten-
sity based adaptive clustering is applied to limit the horizontal position of right and 
left lip corners. A combination of lip cut information and clustered binary sub-image 
is used for extracting the lip corners. 

 
Low Resolution

Video

Skin Color Segmentation and
Morphological Operations

Face Candidates Exist? Quit

YFind Best Ellipse Fitting
Face Candidate

N

Remove Ears and Hairs

Estimate Right Eye
Sub-image

Estimate Left Eye
Sub-image

Detect Right Eye
Pupil

Detect Left  Eye
Pupil

Estimate Nose
Sub-image

Detect Nostrils

Estimate Mouth
Sub-image

Detect Lip
Corners

Y

Convert to Super-resolved Video

Detected Facial
Features  

Fig. 2. Flowchart of the facial features detection algorithm 
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The pictorial results of the above method for three consecutive frames of the low 
resolution video sequence are depicted in Fig. 3(a). The white dots indicate the loca-
tion of the detected features. In Fig. 3(b), the detected facial feature points for the 
same frames of the super-resolved face region are depicted. 

   
(a) 

   
(b) 

Fig. 3. Detection of feature points, (a) Frames 5, 6 and 7 of the low resolution sequence, (b) 
Frames 5, 6 and 7 of the super-resolved sequence 

4   Results and Discussions 

The detection algorithm presented above is applied to the low resolution and the su-
per-resolved video sequences. The original low resolution video sequences used in 
this comparison are nine second records of a single slowly moving approximately 
frontal face images in constant background. Each video sequence contains 90 frames. 
The frames are of size 240x320. The face region constitutes a very small portion of 
the whole frame with approximately 100x73 pixels. Two video sequences were tested. 
Subject A, Fig. 4.(a), was chosen as a difficult subject in that the facial features are 
obstructed by illumination. He has a light beard and moustache which obstructs the 
nostrils and the lip corners. There is almost no skin color region between the eye-
brows and the eye.  On the other hand, Subject B, Fig. 4(b), is an easy subject with a 



1146 T. Celik et al. 

 

distinct rounded face where the facial features are not obstructed. He has no beard and 
no moustache. The skin color region between the eye and eyebrows can be distinctly 
observed in Fig. 4b. Furthermore unlike subject A, subject B has no wrinkles on his 
face. 

 
               (a) 

 
            (b) 

Fig. 4. Subjects used in tests (a) Subject A, (b) Subject B 

In order to assess the effectiveness of the super-resolution aided feature extraction 
the feature points are manually extracted from both the low and high resolution im-
ages. Facial feature points from the two low resolution sequences are first extracted. 
Then the segmentation aided super-resolved face sequences are obtained and the fa-
cial feature points are extracted. If a facial feature is detected to be within three pixels 
of the actual location (determined manually) it is declared to be a correct detection. 
Table 1 shows the results of this comparison. In both video sequences tested the cor-
rect detection rate increases significantly with the super-resolution aided approach. 
Furthermore as can be observed from Fig. 3 the feature points detected by the aid of 
the super-resolution approach converges to the exact feature points. This may prove to 
be very valuable in applications like face recognition and facial expression analysis 
where the accurate locations of facial feature points are of utmost importance. 

The results shown in Table 1 for the low resolution sequences are quite different 
for the two subjects. The feature extraction algorithm performs very well for Subject 
B. However it does very poorly for Subject A. For the super-resolution aided ap-
proach, improvement is achieved for both subjects. Up to 18.89% improvement in 
correct detection is achieved for subject A. The improvement for subject B is more 
moderate and up to 3.34%.  The large improvement in the correct detection of facial 
features for subject A is a good indication of the usefulness of super-resolution aided 
approach. 

In order to evaluate the complexity of the proposed segmentation algorithm the 
method without segmentation is compared to the one with segmentation. Fig. 5 shows 
the computational cost of the super-resolution algorithm obtained using MATLAB 
Version 5.0. When no region segmentation is applied the computational cost is on the 
average 4040 MFLOPS per frame. Considering the fact that the one needs to process 
at least ten frames for a meaningful real time application it is obvious that with the 
current state of the art technology such a task is completely out of reach. When the 
region of interest segmentation is employed the super-resolution reconstruction takes 
only around 625 MFLOPS per frame. This corresponds to a computational cost reduc-
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tion of approximately 85%.  However this is still not within reach of the current state 
of the art technology. With such an approach and the current state of the art equip-
ment one can only process approximately 3-4 frames per second. Further reduction in 
computational cost of the super-resolution algorithm especially the registration part is 
required for real time implementation. 

Table 1. Performance of the super-resolution aided feature extraction method; (a) Subject A, 
(b) Subject B 

Correct Detection 
Rate (%) 

(3 Pixel Range) 

Low 
Resolution 

Super 
Resolution 

Correct Detection 
Rate (%) 

(3 Pixel Range) 

Low 
Resolution 

Super 
Resolution 

Left Eye 53.33 57.78 Left Eye 98.89 98.89 
Right Eye 64.44 73.33 Right Eye 93.33 95.56 
Left Nostril 90.00 98.89 Left Nostril 97.78 98.89 

Right Nostril 76.67 95.56 Right Nostril 95.56 97.78 
Left Lip Corner 78.89 95.56 Left Lip Corner 94.44 97.78 
Right Lip Corner 82.22 94.44 Right Lip Corner 95.56 98.89 

(a) (b) 
 

0 2 4 6 8 10 12 14 16
4

4.02

4.04

4.06

4.08

4.1

Frame Number

F
LO

P
S

 (
x 

10
9 )

0 2 4 6 8 10 12 14 16
0.615

0.62

0.625

0.63

0.635

Frame Number

F
LO

P
S

 (
x 

10
9 )

Original full size image 

Region of interest 

 

Fig. 5. Computational cost of super-resolution, (a) Original full-size image, (b) Region of interest 

5   Conclusions 

A region-based super-resolution aided automatic facial feature extraction method is 
presented. First the segmentation is carried out and head is extracted from the incom-
ing frames. Then the consecutive frames are used to reconstruct the higher resolution 
image frames via a frequency domain registration algorithm and the subsequent cubic 
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interpolation on a higher resolution grid. The facial feature extraction method in-
volves a position, scale, shape and skin color invariant face detection part and the 
subsequent extraction of facial features based on an efficient combination of geometry 
based methods. The results indicate significant improvement in the performance of 
the region-based super-resolution aided extraction algorithm with approximately 6.4 
fold reduction in computational cost. 
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Abstract. In this paper an intelligent and efficient combination of several meth-
ods are employed for face and facial feature tracking with the motivation for 
real time applications. Face tracking algorithm is based on color and connected 
component analysis. It is scale, pose and orientation invariant, and can be im-
plemented in real time in controlled environments. The more challenging prob-
lem of facial feature tracking uses intensity based adaptive clustering on facial 
feature sub-images. New search region estimation for each sub-image is pro-
posed. The technique employs facial expression aware eye sub-image predic-
tion. The simulation results indicate that facial feature tracking is efficient with 
an average tracking rate of 99% with a three pixel range under different head 
movements such as translation, rotation, tilt, and scale changes. Furthermore it 
is robust under varying facial expressions and non-uniform illumination. 

1   Introduction 

The Face tracking has become an increasingly important research topic. Many possi-
ble applications have been studied, including face or gesture recognition, teleconfer-
encing, robotics as well as human computer interaction. Template matching using 
stored templates representing whole face of different people in diverse posses or ex-
pressions is a type of approach for face tracking. These templates can also be used for 
training a classifier, such as neural network, that can help in the face-detection proc-
ess. Paul Viola and Michael Jones [1] proposed a machine learning approach for vis-
ual object detection, which is capable of processing images rapidly and achieving 
high detection rates. However, their framework has the disadvantage of not using 
temporal coherence. Any face detected in a frame provides information such as posi-
tion and color, to be used in the next frames to speed up the process. The simplest 
approach for face tracking is skin-color. Prem Kuchi et al. [2] proposed a face track-
ing algorithm by using YCbCr color space. They present CbCr Gaussian skin-color 
model for skin and non-skin classification. The search region is estimated based on 
detected position and the min-max boxes for the consecutive frames. In this approach, 
RGB to YCbCr conversion is required and it is more complex and slow in comparison 
with RGB to normalized rgb conversion. Moreover, major axis is not reliable refer-
ence to estimate search region, because of its variability due to the clothes of persons 
in skin color applications.  
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In this paper, we propose a face tracking algorithm by using skin-color feature of 
face. Skin-color is computationally cheaper and at the same time orientation, shape, 
scale and translation invariant. These properties make it a good candidate for real time 
applications. We choose normalized r-g colorspace for skin color modeling because 
of its fast and simple conversion from the RGB colorspace. The other important prop-
erty of normalized r-g, is that it is more tolerant in non-uniform lighting environments 
and one does not need to dynamically adapt its distribution. The face region, in the 
first frame, is located by using the algorithm explained in [3]. Once the center, minor 
axis and major axis are known of elliptic face, the search region is determined in the 
next frame by using last center position and minor axis of face. Then stochastic skin 
color modeling is applied to the search region and we get a set of connected compo-
nents in binary format. Morphological operations are applied for smoothing and than 
holes inside of face candidate regions are filled. Finally the region, which includes the 
previous face center position, is chosen as a face. The success rate of the proposed 
face tracking method is on the average 93%.   

Facial feature tracking is more challenging task than face tracking. Karin Sobottka 
and Ioannis Pitas [4] perform facial feature tracking by block (template) matching. 
Once, the facial features are detected, they initialize feature blocks. Then, tracking is 
done over time by searching for corresponding blocks in consecutive frames. Tem-
plate matching or other types of appearance based techniques are computationally 
expensive. Jong-Gook Ko et al. [5] proposed a computationally cheap method for 
tracking eyes, nostrils and lip corners. In their paper, they convert grey scale frame 
into binary image by using intensity computation, then apply graph matching to get 
most similar regions in the image. The most similar regions are assigned as eyes. 
From the eye positions, they estimate mouth region and locate lip corners by search-
ing most left and right columns. Finally, they determine nostrils by using eye and lip 
corner positions. However, in this approach, they convert whole image to binary im-
age for graph matching and it is very critical to estimate similarity of eyes when the 
background is complex. Furthermore, if the lighting is not uniform around the face, 
there are important feature losses by this approach.  
     In this paper, facial feature tracking is proposed by using intensity based adaptive 
clustering and binary image processing. Intensity based techniques are computation-
ally cheaper and therefore more attractive in real-time applications. Each facial fea-
ture is investigated in separate search windows. This compensates non-uniform light-
ing conditions on face. For each facial feature, the optimum search window is adapted 
dynamically in consecutive frames. After intensity based adaptive clustering for each 
search window, a set of connected components are obtained to determine the feature 
positions at that frame. Success rate of the feature tracking approach ranges from 82% 
to 99% for one pixel range and from 99% to 100% for 3 pixel ranges.  

2   Face Tracking  

Face tracking proposed in this paper is comprised of three main steps: search region 
estimation, stochastic skin color modeling and locating face region. 
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2.1   Search Region Estimation 

Once the face region in the first frame is determined, one can determine the face 
boundary box by estimating its corner coordinates. This can be done from the knowl-
edge of the major axis (majax), minor axis (minax) and the center (Xc,Yc) of the ellip-
tic face model which can easily be calculated from the detected face region. The cor-
ner coordinates of the face region are then given by (see Fig. 1(a)). 
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    Search region, for the next frame, is estimated by using the positions of the last 
frame and minax, depicted in Fig. 1(b). The corner coordinates of the new search 
region are defined by 
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    The reason why the minor axis is used in (3) and (4) is, it is reliable. Note that 
major axis can vary in open throat or close throat cases of clothes, since we apply skin 
color modeling. 

      

          (a) thi  frame                        (b) thi )1( + frame 

Fig. 1. Search region estimation for two consecutive frames 

2.2   Stochastic Skin Color Modeling 

The skin-color model is generated by supervised training of skin-color regions and the 
skin-color illumination brightness is reduced through normalization in Eq. (5). 

)/(

)/(

BGRGg

BGRRr

++=
++=  (5) 



1152 C. Direko lu et al. 

 

    The colors (r,g) are known as chromatic colors. According to [6] the skin-color 

distribution in chromatic color space can be approximated by the Gaussian ),( 2∑mN , 

where ),( grm=  is mean vector and Σ  is covariance matrix as shown below.                                      
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    With this Gaussian model, one can obtain the likelihood of skin color for any pixel 
x = (r,g) of an image with Eq. (7):              

))()(5.0exp(),( 1 mxmxgrP T −∑−−= −  (7) 

    With an appropriate threshold, the image can then be further transformed to a bi-
nary image showing skin regions and non-skin regions as shown in Fig. 2.  

              
(a)                                      (b) 

Fig. 2. Stochastic skin color modeling to search region 

2.3   Locating Face Region 

After the skin color modeling of the search region, we get a set of connected compo-
nents in binary form. We apply median filtering and erosion morphological operation 
for smoothing and then fill the holes inside of face candidate regions. This is practi-
cally depicted in Fig. 3(a). Finally, the region which includes the previous center 
position (Xc,Yc) of the face is chosen to be the new face region. This is shown in Fig. 
3(b) by placing a boundary box around the region declared as the new face. 

                  
      (a)                                     (b) 

Fig. 3. Locating the face region 
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    Some of the face tracking frames is shown in Fig. 4, with different scales and  
orientation. 

      
(a)                                         (b)                                           (c) 

Fig. 4. Face tracking 

The success rate of the proposed face tracking method is on the average 93%.  The 
algorithm only fails for rapidly changing illumination or when skin colored object at 
the background coincides with face. 

3   Facial Feature Tracking  

Left eye pupil, right eye pupil, nostrils, left lip corner and right lip corner are the fa-
cial features that are tracked. This is achieved by using a separate search region for 
each of them. This compensates non-uniform lighting conditions. Once we know the 
facial feature positions, the Euclidean Distance (ED) between left eye pupil and right 
eye pupil is taken as a reference to determine search regions for pupils and lip corners 
in the next frame as shown in Fig. 5.  

                    
  (a)  thi  frame                  (b) thi )1( +  frame         (c) thi )1( +  frame 

Fig. 5. Eye pupils, lip corners and nostrils  search windows estimation 

    The Euclidean Distance between left and right eye pupil in the ith frame is defined 
by  

22 )()( iiiii yleyrexlexreED −+−=  (8) 

    Where (xlei , ylei) is left eye position and (xrei, yrei) is right eye position in the ith 
frame. After determining the location of eye pupils and lip corners in the (i+1)th 
frame, this information together with  EDi is used to determine the search region for 
nostril extraction as shown in Fig. 6. 
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Fig. 6.  Search window estimation for nostrils 

    The respective equations determining the coordinates of this region are given by 
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where, (xlei+1,ylei+1) is location of left eye pupil, (xrei+1,yrei+1) is location of right eye 
pupil, (xlli+1,ylli+1) is location of left lip corner, and (xrli+1,yrli+1) is location of right 
lip corner in the  (i+1)th frame. 
     These processes continue dynamically. After the search region estimation, inten-
sity based adaptive clustering on each grey scaled region and then binary image proc-
essing is applied to determine the positions of features. Intensity based adaptive clus-
tering method is a thresholding process. The mean intensity value of the region forms 
the first threshold. The mean of lower values of first threshold is the second threshold. 
After three or more iteration we get the darkest region in the grey scaled image. The 
clustered image is a binary image which includes darkest regions as white connected 
components. Because of this adaptive process, lighting is not a problem.  

3.1   Eye Tracking 

The search window of left and right eye does not include any dark region other then 
pupil. After the intensity based adaptive clustering, pupil candidate regions appear. 
Then the possible holes inside the candidate regions are filled (see Fig. 7(b)). Finally 
the biggest candidate region is assigned as pupil and the center of that region is 
marked (see Fig. 7(c)).  

        
 (a)                        (b)                        (c) 

Fig. 7. Eye pupil detection 

There are also other situations where the eyebrow falls inside the eye search region 
when a person smiles or annoyed. To compensate this effect, the algorithm ignores 
regions touching the upper border of the search window.  
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3.2   Lip Corners Tracking 

To find left lip corner, intensity based adaptive clustering is performed since left lip 
corner is the darkest region in its search window, including smiling situations. After 
we get binary form, the leftmost pixel of the biggest connected component is chosen. 
The procedure is shown in Fig. 8. Similar procedure is applied for locating the right 
lip corner.  

 

                                            

                                          (a)                            (b)                           (c) 

Fig. 8. Left lip corner detection 

3.3   Nostril Tracking 

In order to find the nostrils, intensity based adaptive clustering offers us a set of con-
nected components, where the biggest two regions are assigned to be nostrils as de-
picted in Fig. 9. 

   
                (a)                      (b)                         (c) 

Fig. 9.  Nostril detection 

Some of the facial features tracking frames are shown in Fig. 10. 

         
                      (a)                                                (b)                                               (c) 

Fig. 10.  Facial feature tracking 

4   Results and Discussions 

The proposed techniques for face and facial feature tracking were tested on a typical 
head and shoulder video sequence taken with a webcam in a non-uniformly illumi-
nated environment. Each frame is of size 288x352 pixels. The subject in this test 
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sequence makes translational and rotational movements; approaches and recedes from 
the camera; tilts his head up and down and is allowed to express facial emotion. The 
performance of face tracking method is 93%. The algorithm only fails for rapidly 
changing illumination or when skin colored object at the background coincides with 
face. Table 1 shows facial feature tracking simulation results which are average of 
two different subjects at different environments. The results in Table 1 are based on 1, 
2 and 3 pixel range accuracy. The performance is obtained by comparing the simu-
lated results to the manually extracted feature locations for all frames. Of course from 
this perspective the 1 pixel range is not reliable due to the human error involved in the 
extraction process.  It should be noted that the performance tends to be almost perfect 
at an average tracking rate of 99% for the 3 pixel range. The various differences in the 
performance for 1 pixel range can be attributed mainly to the non-uniform illumina-
tion and partly to the dynamic nature of facial expressions. 

Table 1. Facial Feature Tracking Rate Performance (%) 

Facial Features 1 pixel range 2 pixel range 3 pixel range 
Left eye 92.68 100 100 
Right eye  98.78 100 100 
Left nostril 98.78 98.78 98.78 
Right nostril 92.68 98.78 98.78 
Left lip corner 81.71 100 100 
Right lip corner 85.37 96.34 98.78 

5   Conclusions 

The present paper described intelligent combination of efficient techniques for face 
and facial feature tracking with the motivation for real time applications. The methods 
employed were computationally efficient. The proposed region estimation technique 
backed by facial expression aware approaches resulted in an almost perfect facial 
feature tracking performance where in the 3 pixel range accuracy, an average of 99% 
tracking rate was obtained. The performance of the face tracking technique was 93%. 
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Abstract. There has been many hidden communication techniques proposed in 
the last few years. The focus was given to steganography to build such tech-
niques. Utilizing stego-key(s) to hide secret messages into images strengthen 
the security of these techniques. However, adopting one of the available key-
agreement protocols, to distribute stego-key(s) between the communicating par-
ties, will destroy the infrastructure of the entire communication. The reason is 
that, these protocols perform their transactions on sight, while the desirable 
communications need to be completely hidden. In this paper, a key-generation 
unit is proposed to be added to the steganography general model. This unit util-
izes a new key-agreement protocol, stego-KA, to help support the entire class of 
hidden communication techniques to exchange the sego-key(s) covertly. The 
proposed stego-KA protocol is based on Diffie-Hellman key establishment pro-
tocol and has significant advantages that support hidden communications.  

1   Introduction 

It has been said throughout time that, “a picture is worth a thousand words.” How-
ever, in this digital era, it could be said that, “a picture is worth a thousand secrets.” It 
should come as no surprise that a picture (digital image) might be distributed while it 
contains a secret message that is hidden to the human eye. This message can be ex-
tracted only by a sophisticated image utility, using a secret key. These types of appli-
cations are known as hidden communication techniques, which utilizing a technology 
known by steganography. 

One of the most realistic schemes for steganography applications goes back to 
Simmons in 1984 [1].  Simmons introduced his hidden communication model using 
the prisoner's problem, which became the most widely used scenario characterizing 
these models.  

The prisoner's problem states that, there are two criminals confined in separated 
cells. The warden gives them the opportunity to communicate with each other through 
a message-exchanging channel, which is monitored by the warden. The only restric-
tion on this channel is that it is open to the warden, and if any message is encrypted, 
the warden should have access to the decryption key. The main reason for this com-
munication is that the warden will mislead the prisoners by sending them false mes-
sages in order to trick the criminals into thinking they were sent by the other party. 
The prisoners, on the other hand, plan to use this channel in order to arrange an es-
cape. To do this, the prisoners will have to deceive the warden by finding a way of 
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communicating secretly between them in full view of the warden. This means that 
even if a message contains secret information it would look innocuous to the warden. 
Since the prisoners anticipate that the warden will try to deceive them by introducing 
fraudulent messages, they should prepare an authentication model along with their 
hidden communication. 

While Simmons utilized cryptography in his scheme, the vast majority of the in-
formation hiding schemes in literature [2-11] utilize steganography to solve the pris-
oners' problem. The main purpose of these schemes is that a secret message can be 
transmitted invisibly within another innocent medium, such as images. This transmis-
sion should occur so that only the sender and the receiver have the ability to insert, 
detect and extract the hidden message. 

The rest of this paper is organized as follows. Section 2 demonstrates the general 
framework of the steganography model. The analysis of the related steganographic 
techniques is given in Section 3. Section 4 states the main problem. The proposed so-
lution is described in detail in Section 5. The conclusion is offered in Section 6. 

2   Framework of Steganography Model 

In general, the basic framework of the image steganography model is illustrated in 
Fig. 1. This model consists of two main processes, namely the embedding process and 
the extracting process. The main function of the embedding process is to hide the se-
cret message, called embedded message, in a given image, called cover-image. In hid-
den communication techniques, the cover-image is no more than an innocent (unre-
lated to the embedded message) piece of information that is used to hide the secret in-
formation. A secret key, called stego-key, is used in the embedding process such that 
it makes the embedded message computationally infeasible to extract without pos-
sessing this key. The output of the embedding process is called stego-image, which is 
the original image holding the hidden secret message. This output becomes, at the 
other end, the input of the extracting process, in which the embedded message is  
 

 

Fig. 1. The framework of the watermark generation and embedding process 
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extracted from the stego-image to complete the hidden communication process. Since 
the stego-key is used in the embedding process, it needs to be used in the extracting 
process. Note that, the notation and naming conventions that are used in Fig. 1 are 
adopted after the first Information Hiding Workshop [15]. 

3   Analysis and Related Works 

In this section we will study steganography techniques based on the usage of the 
stego-key. The reason for this is to show at what extent the stego-key is important in 
the entire steganography processes, including embedding, extracting, and verifica-
tions. The stego-key can be used in one or more of the following functions: 

1. Determine the embedding position (the modified pixels) based on: 
− stego-key bit sequence, or 
− generated pseudo-random sequence seeded by a stego-key, 

2. Scramble the embedded message (hidden information) to randomize the hid-
den information, 

3. Scramble the cover image (pixel or block permutation) to : 
− protect the embedded message, and/or to   
− increase the embedding capacity. 

3.1   Using the Stego-key to Determine the Embedding Positions 

Kundar et al. [2] propose using the discrete wavelet transform (DWT) [12] to drive a 
multi-resolution representation of the image data. To hide one bit, the median of three 
coefficients will be quantized (modified) to match this bit value. These coefficients 
are selected based on the bit value of a stego-key. To restore the hidden message, the 
same stego-key is needed to the receiver. 

Qi et al. [3] use two different stego-keys.  In the embedding process, the message 
will be hidden in specific columns/rows of an image. The selection of these col-
umns/rows is based on the bit sequence of one secret key. A global blur operation is 
then applied to the entire image in order to make the marked columns/rows unpre-
dictable. The components of the blur kernel are also chosen based upon another se-
cret key. Therefore, this technique has a high security level since it is based on two 
different secret keys. However, these keys need to be agreed in advance by the both 
parties. 

Other kinds of applications attempt to locate an embedding position in an image 
using a pseudo-random sequence that is generated either by the stego-key or by any 
shareable seed between the sender and the receiver. Sharp [4] uses a linear feedback 
shift register (LFSR) [13] to generate the random sequence. This sequence is used to 
determine the order in which the pixels from the image are visited to embed the secret 
information. Therefore, the communicating parties need the same key in order to gen-
erate the same sequence.  

Licks at el. [5] present a technique that utilizes discrete Fourier transform (DFT) 
properties [14] to embed a pseudo-random sequence as a secret message. This se-
quence is generated in circular form based on a stego-key. The sequence is then  
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embedded into the magnitude part of the DFT coefficients at a specific secret radius. 
In the other side, this secret information is needed to verify or extract the embedded 
message. 

3.2   Scrambling the Embedded Message to Randomize the Hidden Information 

Some techniques attempt to protect the embedded message by scrambling the mes-
sages bits before being hidden. Liu et al. [6] scramble the secret message by adding to 
it a pseudo-random sequence generated by a shared secret key. The authors utilize the 
DWT coefficients to hide the message, and use a technique called error correction 
code and 2-D interleaving [7] to lower the detection error probability. 

Marvel et al. [8] use a similar idea to protect the embedded message. The spread 
spectrum communication, error correction coding, and image processing are com-
bined to present their technique. The embedded message is first encrypted using a se-
cret key. Another key is used to generate a pseudo-random sequence. Then both, re-
sults are modulated using a third secret key to embed the output into the cover image. 
These methods are also suffering from the key-distribution problem. 

3.3   Scrambling the Cover Image  

Another way to protect the embedded message is to randomize, or permute, the cover 
image using the stego-key before the embedding process. Pan et al., [9] propose to di-
vide the image into subblocks. These blocks are ranked based on a specific pattern 
matching method so that the higher ranked block is the most suitable for data embed-
ding.  The chosen block is then permuted using a secret key before the embedding 
process.  

Tseng et al. [10] propose a scheme that is able to conceal critical messages into bi-
nary images. The image is divided into small blocks; each block is scrambled by a bit-
wise exclusive-OR with a binary matrix of the same size. This matrix is played as a 
secret key. The output is then weighted by another secret integer matrix to determine 
which pixels need to be swapped to embed the secret message. At the end, the image 
pixels are modified so that the receiver can extract the message by applying reverse 
operation using the same secret keys. 

Some other applications attempt to increase the number of the transform coeffi-
cients that may be used to hide the embedded message bits. This can be done by de-
correlating the cover image samples that can result in uncorrelated and identical dis-
tributed samples over the entire image. Alturki et al., in [11], use this approach to em-
bed more data into the DCT domain of an image. The stego-key is used to de-
correlate the given image. The key is used to shuffle the image pixels so that the re-
sulting image looks like white noise to the viewer.  

All these methods require that the sender and the receiver to agree upon the shared 
stego-key in advance. 

4   The Major Problem 

We can conclude from the above analysis that, the common requirements to achieve 
hidden communication are simply: 1) the cover image and the hidden messages 
should be unrelated, 2) the hidden message should not provide any evidence of its ex-
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istence, and 3) the hidden message should not be accessible to anyone but the sender 
and the receiver, who possess the stego-key. We have also shown that, there are many 
hidden communication techniques that fulfill these requirements. However, the distri-
bution mechanism of the stego-keys has received less attention in most of these tech-
niques. Definitely, stego-key is an essential piece in either the embedding or the ex-
traction process in steganographic systems available today. As a result of this, any 
steganographic system needs an authenticated protocol that gives the two parties  
(the sender and the receiver) the ability to communicate and end up with a shared  
secret key.  

At first glance, it appears that utilizing any secure key-agreement protocol might 
solve this problem (the key distribution problem). As the matter of fact, an authenti-
cated key-agreement protocol is needed, however, one should indeed note that, these 
protocols always have some public transactions. This of course will flaw the infra-
structure of the hidden communication. It is also worse noting that, a secure solution 
of this problem is, in fact, a solution for the entire class of the hidden communication 
techniques. In this paper, a new approach that covertly enables two parties to establish 
a session secret key (stego-key) is proposed. More details are given in the following 
Section. 

5   The Proposed Key Generation Unit 

In this paper, we propose to modify the general model of the steganography, see Fig. 
2, by adding a new unit called “key generation unit”, [16]. The main purpose of this 
unit is to produce a shared secret key to the communicating parties (the sender and the 
receiver), so that the protocol transactions are performed undercover. This unit util-
izes a new hidden key agreement protocol (stego-KA). This protocol is based on Dif-
fie-Hellman key establishment protocol [17]. It operates on the group of points of an 
elliptic curve over a finite field [18]. Our protocol closely follows the approach of 
[19], and has significant advantages that support the hidden communications.  

 

Fig. 2. The modified general steganography model  
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5.1   Basic Notations 

Before discussing the protocol in more details, we first define some notation. 

E  A non-singular elliptic curve over a finite field ( )GF q that defines a set 
of points ( , )x y , which satisfy an elliptic curve equation 

2 3y x ax b= + + , where = mq p and p is a large prime, ∈, ( )a b GF q  
P  A point ( , )p px y of order n that satisfies the elliptic curve E 

(.)X   The x-coordinate of any point on the elliptic curve E 
,A Bd d   Long-term private keys for party A and B respectively, selected ran-

domly from the interval [1,n-1] 
,A BQ Q   Long-term public keys for party A and B respectively, where 

=A AQ d P and =B BQ d P . Note that, due to the hardness of the elliptic 
curve discrete logarithm problem [22], it is computationally invisible to 
get Ad from P and AQ  

,A Br r   Session private keys for party A and B respectively, selected randomly 
from the interval [1,n-1] at each protocol run  

,A BR R   Session public keys for party A and B respectively, where 

A AR r P= and B BR r P=  
H(.) The secure hash algorithm SHA-1 [20]. SHA-1 takes a message of an 

arbitrary length and produces a 160-bit output called a message digest 
I Any random stego-image 

( , )kHide m I  Hiding function to conceal the data m into the image I using the key k. 
Note that, any of the hidden communication techniques described in 
Section 3 might be used. 

( ), ( )rh I lh I  The right half side and left half side of the image I respectively 

5.2   Security Attributes Requirements 

Any secure key-agreement protocol should fulfill some security attributes [21]. Con-
sequently, the hidden key agreement protocol needs to satisfy these attributes as well 
to be a reliable protocol. These attributes include: 

Known session keys, the security of new session keys will not be affected if some 
previous session keys were disclosed. 

Forward secrecy, the security of previous session keys will not be affected if a long-
term secret key of one or more parties is compromised. 

Unknown key-share, party A cannot be forced into sharing a key with party B without 
A’s knowledge, i.e., when A believes the key is shared with some party 

≠C B , and B believes the key is shared with A. This attribute is also called 
man-in-the-middle. 

Key-compromise impersonation, if A's secret key is disclosed, any one who knows 
this key can impersonate A. Hence, this loss of information should not al-
low the adversary to impersonate other parties to A. 

In Section 5.4 we will show how the proposed protocol satisfies these attributes. 
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5.3   The Hidden Key-Agreement Protocol, Stego-KA 

The detail transactions of stego-KA protocol are described as follows: 

1. A selects a session secret key Ar and then computes a session public key AR .  
2. A computes the initial session key 0 A B A BK d Q d d P= = , 0K  is a point on the el-

liptic curve E. 
3. A choses a random digital image 1I , and then hides the value AR  into the 1I using 

initial session key 0K . I.e., computes the function 0 1( , )k AHide R I . Note that, this 
function might be the same as that will be used to hide the secret message in the 
original technique, see Section 3. Therefore the security strength of this function 
will be equivalent to the security of the entire technique. 

4. Image 1I  is published somewhere in an open network such as Internet. 
5. B obtains the image 1I then performs the following: 

− Computes the initial session key 0 B A A BK d Q d d P= =  
− Uses 0K to extract AR from the image 1I . Note that, the embedding and ex-

tracting processes are public methods, however 0K is accessible only to A 
and B. 

− Selects a session secret key Br and then computes a session public key BR  
− Generates the target session key ( )A B A BK X Q r R d= +   
− Computes the value 1 2( ( )) || ( ) || ( )A BZ H lh I X R X R= , where || be a bit-

stream concatenation 
− Select a random image 2I , and apply the function 1 2( || ( ), )K BHide R H Z I  
− Publishes the image 2I somewhere in an open network such as Internet 

6. A obtains the image 2I then performs the following: 
− Generates the target session key ( )B A B AK X Q r R d= +   
− Uses K to extract BR and 1( )H Z , which is z, from the image 2I  
− Computes the value *

2( ( )) || ( ) || ( )A BZ H lh I X R X R=  
− Verifies if *( )H Z z= ; if the validation failed, the protocol will be ended 

with a failure 
− Otherwise, computes the value 2 2( ( )) || ( ) || ( )B AZ H rh I X R X R=  
− Apply the function 2 2( ( ), )KHide H Z I  

7. B extracts 2( )H Z , which is 2z , from the image 2I using the session key  K and 
verify if 2 2( ( ( )) || ( ) || ( ))B AH H rh I X R X R z=  

8. If the validation failed the protocol will be ended with a failure, otherwise K will 
be the secret session key between A and B 

5.4   The Major Features of the Proposed Model 

The key-generation unit is able to provide the communicating parties with some as-
surance that they know each other’s true identities. Stego-KA protocol, which utilizes 
hidden key-confirmation transactions, has helped these parties end up sharing a com-
mon stego-key known only to them. This stego-key can then be used thereafter to es-
tablish the desirable hidden communications as it is described earlier in Section 3.  
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 In addition to the hidden transactions property, there are other security attributes 
for the Stego-KA protocol. 

Known session keys 
Based on the security definition of the elliptic curve addition, losing any informa-
tion about previous stego-key(s), i.e., ( )A B A BK Q r R dX= + , does not affect the 
protocol security. I.e., it doesn’t help an adversary to be able to discover a stego-
key that might be generated by a fresh protocol run, especially when the session 
keys, i.e., andA Br r are refreshed each time the protocol is carried out. 

Forward secrecy 
Stego-KA protocol provides perfect forward secrecy. If for example the long-term 
secret key of the party A is disclosed, i.e., Ad , the protocol security might be af-
fected. However, the past produced stego-key(s) will not. The reason for this is 
that, the agreed stego-key ( )B A B AK Q r R dX= + is chosen also based on the val-
ues andA Br r , which were chosen independently at random by parties A and B re-
spectively. Therefore, the adversary will face the elliptic curve discrete logarithm 
problem [22] to learn any extra information about the key. 

Unknown key-share 
Stego-KA protocol will not be completed until both parties prove knowledge of 
the shared stego-key by using it in subsequent communications. The hidden mes-
sage send from B to A provides key confirmation of B to A. The hidden message 
embedded and send from A gives an assurance to B that A actually possesses the 
key. 

Key-compromise impersonation 
Generating session keys andA Br r at each protocol run kills any hope to an adver-
sary to impersonate any party C to A, when Ad  is disclosed. Note that, if these ses-
sion keys are not evolved in the stego-key, the adversary can compute the secret 

( )C AQ dX + easily to impersonate C to A. 

6   Conclusion 

The main goal of this paper is to make stride towards the practical use of steganogra-
phy in hidden communications. The paper enhances the general steganography model 
by enabling the use of a hidden key-agreement protocol “stego-KA” through a new 
steganography unit called “key-generation unit”. Stego-KA protocol is based on the 
idea that the communicating parties need to contribute their information, through a 
hidden channel, by which the stego-key will be established. 

This paper also provides a new approach to classify key-based steganography tech-
niques, which are grouped based on the usage of secret keys. This new classification 
facilitates the way by which these hiding techniques could be utilized in the proposed 
protocol. 
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Abstract. An aspect ratio invariant visual secret sharing (ARIVSS) scheme is a 
perfectly secure method for sharing secret images, by expanding a secret pixel 
to m sub pixels in shadow images, with m being the pixel expansion; meantime 
the aspect ratio of the recovered secret image is fixed. The advantage of 
ARIVSS is that there is no loss of information when the shape of the secret im-
age is our information; for example, a secret image of a circle is compromised 
to an ellipse, if m does not have a square value. Two ARIVSS schemes, based 
on processing one and four pixel blocks, respectively, were previously pro-
posed. In this paper, we have generalized the square block-wise approach, to 
further reduce pixel expansion. 

1   Introduction 

In a (k, n) VSS scheme [1-7], a secret image is shared within n shadows. Any k (≤ n) 
shadow can be stacked to resolve the secret, but shadows of k−1 or less can obtain no 
information. When breaking a secret pixel into m sub pixels in a shadow image, using 
VSS operation, these m sub pixels should be placed in a neat rectangular block. Obvi-
ously, if the value m is not a square, the block will be rectangular and the aspect ratio 
of the recovered image will have changed. To avoid distortion, a simple method was 
suggested in [1]: the authors recommended adding extra sub pixels to retain the value 
of m as a square. This method is both trivial and easy; however for some m, pixel 
expansion can increase significantly. In previous work on this topic, an “ARIVSS 
scheme” using a 2×2-pixel square block was proposed to reduce pixel expansion, as 
well as to provide clarity in the recovered image [2]. 

Some other papers have also provided invariant aspect ratio features like the 
ARIVSS scheme [3-4]. There were no pixel expansion for these VSS schemes in [3] 
and [4]; the schemes in [5-7] need some simple operational logic and meantime, the 
size of the recovered image is completely the same as the secret image. In this paper, 
we have generalized the 2×2-sized square block to an a×a-sized (a>2) square block, 
to further reduce pixel expansion; our aim was to arrange the sub pixels in the shadow 
image, such that they have almost the same positions, relative to the pixels in the 
original secret image.  
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2   Preliminaries 

The first VSS scheme, proposed by Naor and Shamir, can be described as a n×m Boo-
lean matrix S=[s(i,j)] where s(i,j)=1 (resp. s(i,j)=0) denotes that the jth sub-pixel in the ith 
shadow is a black (resp. white) pixel [1]. When stacking arbitrary i1, i2, …, ir shadows 
(r≤n), by “OR”-ed Boolean operation, the “OR”-ed m-vector V gives different con-
trasts where the contrast is proportional to Hamming weight H(V). With the white and 
black whiteness h and l, where 0m h l> > ≥ , any m-vector V with H(V)≥m−l can be 
recognized as a black color; whereas, H(V)≤m−h is regarded as a white color. Finally, 
we can “see” the black and white secret image without the assistance of hardware. For 
sharing the black (resp. white) pixels in the secret image, the dealer randomly chooses 
from black (resp. white) sets C1 (resp. C0) where all the matrices are obtained by per-
muting columns of basis matrix B1 (resp. B0). 

2.1   Aspect Ratio of the Recovered Image 

When expanding a secret pixel to m sub pixels using VSS operation, the different 
arrangement of m sub pixels in the shadow image will cause a different aspect ratio of 
the shadow image. Naturally, we should put these m sub pixels into a neat rectangular 
block, such that the blocks can be arranged compactly with each other. Fig. 1 show 
the different arrangements of sub pixels for the pixel expansion m=6. In Fig. 1, the 
arrangement is in the proper order, a rectangular block. Fig. 1 (a) is the original secret 
image, a circle, and the recovered images in Fig. 1(b)-(e) are ellipses, using 1×6, 6×1, 
2×3 and 3×2 rectangular blocks, respectively. However, Fig. 2 shows an improper 
placement of sub pixels. It is observed that the non-rectangular arrangement cannot be 
put together compactly and that the VSS scheme is ineffective. 

 

 
   

 
 

    

  
 

 
    

(a) (b) (c)  (d) (e) 

Fig. 1. Arrangement of six sub pixels in a rectangle block 

 

      

Fig. 2. The non-rectangle arrangement 
 

If the value m is not a square, the rectangular block cannot be arranged as a single 
square block; thus the distortion of the shape of the recovered image is compromised, 
due to the changed aspect ratio (see Fig. 1). 
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2.2   The Previous ARIVSS Schemes 

Let the mapping f(·) be the function which shares a secret pixel p into m sub pixels 
i
jp , in the ith shadow, 1≤i≤n and 1≤j≤m, defined as follows. 

( , ) 0

( , ) 1

in  for 0,
( )

in  for 1.

i

j i j

i

j i j

p s S C p
f p

p s S C p

= ∈ =
=

= ∈ =
                               (1) 

Let 
1 2

( ; )i

m m j
A p M  be the arranging function which arranges m sub pixels into an 

m1×m2-sized rectangular block, with the position being located according the pattern 
M, where m=m1×m2. For example, we can use A16(·), A61(·), A23(·) and A32(·) for m=6; 
Figs. 1(b)(c) use the arrangements A16(·) and A32(·), respectively. The operational 
process of the conventional VSS scheme can be described by using functions f(·) and 

1 2

( )
m m

A ⋅ , as shown in Algorithm 1. 

Algorithm 1: [(k, n) VSS scheme with the pixel expansion m] 
Input: A secret pixel p in the original secret image I. 
Output: m1×m2-sized rectangular blocks in n shadow images Si, i=1, …, n. 

Step 1: i

j
p =f(p), for 1 j m≤ ≤ , i=1, …, n. 

Step 2: Choose the proper m1 and m2 (the aspect ratio approximates the image I) 
satisfying m=m1×m2. 

Step 3: Use 
1 2

( ; )i

m m j
A p M , where the position in pattern M is in sequence (Note: 

like Fig. 1), to create n m1×m2-sized rectangular blocks and deliver n blocks 
to S1, S2, …, Sn, respectively. 

Two previous ARIVSS schemes ([1], [2]), based on conventional (k, n) VSS 
schemes, with the pixel expansion m, are shown in Algorithm 2 and Algorithm 3, 
respectively. 

Algorithm 2: [(k, n) ARIVSS scheme with the pixel expansion ( )2

a
m ] 

Input: A secret pixel p in the original secret image I. 
Output: ma×ma-sized square blocks in n shadow images Si, i=1, …, n. 

Step 1: 
( )2

( ),  for 1<    

*,  for 

i

j

a

f p j m
p

m j m

≤
=

< ≤
, i=1, …, n, where 

a
m m=  ( m  is 

the smallest integer no less than m ) and the dummy pixel * may be “1” or “0”. 

Step 2: Use ( )
a a

i

m m j
A p  to create n ma×ma-sized square blocks and deliver n blocks 

to S1, S2, …, Sn, respectively. 

Algorithm 3: [(k, n) ARIVSS scheme with the pixel expansion ( )2

b
m 4 ] 

Input: Four secret pixels (2×2-sized square block), p(k,l), where 1≤k, l≤2, in the 
original secret image I. 

Output: mb×mb-sized square blocks in n shadow images Si, i=1, …, n. 

Step 1: 
( , ), ( , )

( ),   1<i

k l j k l
p f p for j m= ≤ , i=1, …, n. 



1170 C.-N. Yang and T.-S. Chen 

 

Step 2: Use 
( )2

(1,1), (1,2), ( 2 ,1), ( 2,2 ),

4

( , , , ,  *  ; )
b b

b

i i i i

m m j j j j

m mm m m m

A p p p p M
−

, where 4
b

m m= ,to 

create n mb×mb-sized square blocks. Pattern M may be one of three patterns: 
a regular pattern, a partially regular pattern or a totally random pattern [2]. 
Then, n blocks are delivered to S1, S2, …, Sn, respectively. (Note: these three 

patterns let the sub pixels 
( , ),

i

k l j
p  in the shadow Si have almost the same geo-

graphic location, position and direction relative to 
( , )k l

p  in I.) 

3   The Proposed ARIVSS Schemes 

3.1   Basic Concept 

From Algorithm 2 and Algorithm 3, it is observed that processing an a×a-sized square 
block of the original secret image, based on the conventional (k, n) VSS scheme and 
using an Ab,b(⋅) function can construct an ARIVSS scheme, where b is the smallest 
integer satisfying b2≥(m×a2), and the number of extra added dummy sub pixels is 

b2−(m×a2). The pixel expansion for this scheme is ( )2
b a . In fact, Algorithm 2 and 

Algorithm 3 are special cases for a=1 and a=2, respectively. To achieve the minimal 

pixel expansion for the ARIVSS scheme, we need to find the smallest ( )2
b a  for 

a>2. From the above description, designing an ARIVSS scheme for a>2, delivers the 
following problems: i) How do we measure the optimization of the mapping pattern? 
ii) How do we find the optimal mapping pattern? 

Let the mapping pattern for the arranging function Ab,b(⋅) for processing an a×a-sized 
square block be Ma,b=[m(i,j)], where m(i,j)=(k, l) or * (dummy pixel), 1≤i, j≤b and 1≤k, 

l≤a. In this paper, a measurement is defined, an average position weighting W , to esti-

mate the optimization of the pattern Ma,b. The higher the W , the less the distortion of 

the recovered image. Also, two optimal patterns are given: one is the pattern *

,a b
M  with 

minimum normal pixel expansion, PE , and the other is the pattern 
,a b

M Δ  with the 

maximum performance factor, PF; PE  and PF are clearly defined in Section 4. 

3.2   Encoding Algorithm 

By extending the 2×2-sized square block to an a×a-sized square block in Algorithm 3, 
the encoding algorithm for our ARIVSS scheme is given below. 

Algorithm 4: [(k, n) ARIVSS scheme with the pixel expansion ( )2
b a ] 

Input: a2 pixels (a×a-sized square block), p(k,l), where 1≤k,l≤a, in the original se-
cret image I. 

Output: b×b-sized square blocks in n shadow images Si, i=1, …, n. 
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Step 1: 
( , ), ( , )

( ),   1<i

k l j k l
p f p for j m= ≤ , i=1, …, n. 

Step 2: Use 
2 2

, (1,1), ( , ), ,
( , , ,  * ; )i i

b b j a a j a b

b a mm m

A p p M
− ×

, where b a m= , to create n 

b×b-sized square blocks according the mapping pattern Ma,b. Then, deliver the 
n blocks to S1, S2, …, Sn, respectively. 

The remaining problem in Algorithm 4 is how to find a good pattern, such that the 
distortion of the recovered image is as small as possible. 

3.3   The Mapping Pattern Ma,b 

The pattern Ma,b of arranging (a2×m) sub pixels and Nd (=b2−a2×m) dummy pixels in a 
b×b-sized square block are discussed in this section. To achieve the same relative 
position between two square blocks, to avoid distortion, we use the re-sampling 
method in image scaling [8], [9]. The secret image is first divided into a×a-sized 
square blocks and then b×b-sized square blocks. Fig. 3 is an example for a=4, b=7, 
m=3 and Nd =1 (72−42×3). The dotted line and the solid line represent the sampling by 
4×4-sized and 7×7-sized square blocks, respectively. The gray area is the secret pixel 

(1,1)
p  in the 4×4-sized square block. The four sub pixels in the 7×7-sized square block, 

m(1,1) m(1,2), m(2,1) and m(2,2) overlap the secret pixel 
(1,1)

p . 

 

 

Fig. 3. The overlapping between the sub pixel m(i,j) and the pixel p(k,l) in the pattern M4,7 
 

It is obvious that choosing the three sub pixels, m(1,1), m(1,2), m(2,1), for 
(1,1)

p  will re-

sult in maximum overlapping. To give the measurement of overlapping, the weighting 
( , )

( , )

i j

k l
W  of a sub pixel m(i,j) relative to a secret pixel p(k,l) is defined as the percentage of 

overlapping between m(i,j) and p(k,l). For example, in Fig.3, the values of weighting are 
(1,1)

(1,1)
W =1, (1,2)

(1,1)
W =0.75, and ( 2,1)

(1,1)
W =0.75. Using the weighting ( , )

( , )

i j

k l
W , the weight of a 

secret pixel p(k,l) for the pattern Ma,b=[m(i,j)] is defined in (2). 

( , )

( , )

( , )
( , )

All ,  and ( , )

.
i j

i j

i j
k l m

i j m k l

W W
=

=                                              (2) 

Our measurement for the optimization of pattern Ma,b is then defined as the average 
position weighting, as follows: 
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( )2
( , )

1 1

.
a a

k l d

k l

W W b N
= =

= −                                      (3) 

The first problem mentioned in Section 3.1 can be solved by using the measure-
ment defined in (3). An algorithm finding a pattern Ma,b, and the theorem shows the 

upper bound weighting uW  for the pattern Mab are shown below. 
 

Pattern Algorithm: [Find a pattern Ma,b for the arranging function Ab,b(⋅) in the 

ARIVSS scheme with the average position weight W ] 
Input: The values a, b and m. 
Output: Ma,b=[m(i,j)], where m(i,j)=(k, l) or * (dummy pixel); the average position 

weight W . 
Step 1: List the sets R(k,l)={m(i,j), which overlap p(k,l)}. 
Step 2: For k = 1 to a do 
              For l = 1 to a do 

{choose at most m non-chosen m(i,j) with large ( , )
( , )

i j
k lW  from R(k,l) and let 

m(i,j)=(k, l); Let the weighting of non-chosen m(i,j) increase a value δ, 
( , )

( , )

i j

k l
W ′ ′ = ( , )

( , )

i j

k l
W ′ ′ +δ, where 

( , )k l
p ′ ′  are the pixels around 

( , )k l
p ;}; 

/* the value δ can be used as a fixed step size or an adaptive step size */ 
Step 3: Let the non-chosen m(i,j)=*; 

Step 4: Output Ma,b=[m(i,j)] and ( )2
( , )

1 1

a a

k l d

k l

W W b N
= =

= − . 

 
Theorem 1: The upper bound of the average position weighting for the pattern Mab 

with the pixel expansion m is uW = ( ) ( )( )2 2
b a b a b a m b a+ − × − × 

( )( )2 2

d
a b N− . The proof can be found in the full version. 

 

 
  

(a) (b) The mapping pattern M4,7 (c) The recovered image 

Fig. 4. The mapping pattern M4,7 for m=3, a=4 and b=7 

Consider Fig.3 (m=3, a=4 and b=7). Using pattern Algorithm with a fixed step size 

δ=0.1459, the average position weighting W =0.697917. There is only one extra 
dummy pixel required in the mapping map M4,7 (see Fig. 4(b)), where Fig. 4(a) is the 
decimal representation for (k, l) position in a 4×4-sized square block. For a (2, 3) VSS 
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scheme with m=3, 
0

110
101
011

B =  and
1

110
110
110

B = , our ARIVSS scheme has the small 

pixel expansion ( ) ( )2 2
7 4b a = =3.0625 that approximates m=3. When using a 

dithered 160×160-pixeled LENA image as the secret image, the recovered image 
(280×280 pixels) is shown in Fig. 4(c). 

4   Comparisons 

Theorem 2 shows that our proposed ARIVSS scheme has less pixel expansion than 
the ARIVSS schemes in [1] and [2]. 

 
Theorem 2: The pixel expansions for Algorithm 2, Algorithm 3 and Algorithm 4, are 

2

m , ( )2

2 / 2m  and ( )2

/a m a , respectively, where a>2. Then the fol-

lowing holds: (1) There exists at least a value a(>2) such that 

( )2

/a m a ≤ ( )2

2 / 2m  ≤ 
2

m ; (2) ( )2

/a m a = m, as a → ∞. The 

proof can be found in the full version. 
 

Table 1. The normalized pixel expansion, performance factor and average position weighting 
for m=2 

a b 
a

PE PE  PF W  uW  a b 
a

PE PE  PF W  uW  

1 2 4.00 2.0000 0.500 1.0000 2.0000 11 16 2.12 1.0600 0.611 0.6472 0.7273 
2 3 2.25 1.1250 0.667Δ 0.7500 0.7500 12 17 2.01 1.0050* 0.602 0.6050 0.7083 
3 5 2.78 1.3900 0.577 0.8025 0.8333 13 19 2.14 1.0700 0.610 0.6524 0.7308 
4 6 2.25 1.1250 0.667 0.7500 0.7500 14 20 2.04 1.0200 0.611 0.6237 0.7143 
5 8 2.56 1.2800 0.594 0.7608 0.8000 15 22 2.15 1.0750 0.609 0.6548 0.7333 
6 9 2.25 1.1250 0.667 0.7500 0.7500 16 23 2.07 1.0350 0.606 0.6267 0.7188 
7 10 2.04 1.0200 0.612 0.6243 0.7143 17 25 2.16 1.0800 0.609 0.6580 0.7353 
8 12 2.25 1.1250 0.667 0.7500 0.7500 18 26 2.09 1.0450 0.608 0.6355 0.7222 
9 13 2.09 1.0450 0.609 0.6360 0.7222 19 27 2.02 1.0100 0.602 0.6082 0.7105 
10 15 2.25 1.1250 0.667 0.7500 0.7500 20 29 2.10 1.0500 0.607 0.6375 0.7250 

Table 1 shows the pixel expansion, PEa= ( )2
b a of our ARIVSS scheme (Algo-

rithm 4) for m=2, 1 ≤ a ≤ 20; also, the values W  and uW  for pattern ,a bM  are given. 

The trivial ARIVSS scheme in [1] (Algorithm 2) and the ARIVSS scheme in [2] (Al-
gorithm 3) are the special cases for a=1 and a=2. In Table 1, the normalized pixel 

expansion is defined as ( )
a

PE PE m= ; the performance factor PF W PE=  is the 

ratio of average position weighting to the normalized pixel expansion, used for meas-
uring the whole performance. Two optimal schemes are defined: the superscript “*” 
denotes the minimum normalized pixel expansion and the superscript “Δ” is the 
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scheme with the maximum performance factor. The former scheme has the small 
shadow size feature, while the latter has the best overall performance. It is observed 
that finding these two optimum schemes for a≤20 is enough, because the normalized 
pixel expansion was almost one and the performance factor approached a value for 

large a. The tables and the mapping patterns *

,a b
M  and 

,a b
M Δ  for other m are given in 

the full version. 

5   Conclusion 

In this paper we introduced a generalization of the ARIVSS scheme in [2]; in such 
schemes the aspect ratio of a recovered image is invariant. We considered how to map 
the sub pixels in the shadow image to the secret pixel in the original secret image, so 
that their relative positions were almost the same; in this way, distortion of the recov-
ered image was avoided. 
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Abstract. This paper explores the statistics of least-significant bit (LSB)
steganography. The problem of encoding a bit sequence (message) to
match the statistics of a random bit-sequence (cover) is considered. A
method of hiding information in the least significant bits (LSBs) of JPEG
coefficients is described; the method mimics either the chi-square statis-
tic of JPEG coefficients or their distribution. The method uses two-bit
codes to encode the message bits. It is shown to be very effective on
JPEG images of natural scenes.

1 Introduction

The goal of digital steganography is to modify a digital object (cover) to encode
and conceal a sequence of bits (message) to facilitate covert communication.
The goal of steganalysis is to detect (and possibly prevent) such communication.
Often, the cover media correspond to graphics files. Graphics files are the typical
choice because of their ubiquitous presence in digital society, but any medium
that contains a substantial amount of perceptually insignificant data can be
used.

Most steganographic methods operate in two steps. First, a cover object is
analyzed and the perceptually insignificant bits are identified. It is assumed that
changing these bits will not make observable changes to the cover. Second, the
identified bits are replaced by the message bits to create an altered cover object.
In this paper, cover object is an image in either bitmap or compressed JPEG [14]
formats. The perceptually insignificant bits usually correspond to the LSBs in
the image representation: in bitmap images these bits correspond to a subset of
the LSBs of the image pixels or the LSBs of the color palette entries, in JPEG
images they correspond to a subset of LSBs of the JPEG coefficients. Our work
applies to both image representations, but our empirical studies have only used
the JPEG coefficients.

In Section 2 we will review related work on steganography and steganaly-
sis. In Section 3 we will summarize a χ2 statistic-based method of detecting
steganographic content. We will also show that this detection method can be
easily foiled by not using all the available bits. We demonstrate, however, that
the χ2 statistic can change significantly when even a small fraction of available
bits is used. Although we are not aware of any published work that uses this

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 1175–1183, 2005.
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observation, it certainly suggests a means of detecting hidden data. However,
matching the statistics of the cover is easily achieved and in Section 4 we will
present a method for information hiding that mimics the χ2 statistics of the
cover, while placing a message that is as long as 50% of the available bits.

2 Literature Survey

Digital steganography is a relatively new research field [1,10,13]. The term ste-
ganalysis was introduced by Johnson and Jajodia [12] who discussed various
ways that anomalies introduced by some steganographic techniques could be
exploited to detect the presence of steganographic data in images. Detailed sur-
vey of early algorithms and software for steganography and steganalysis can be
found in [13,11,20].

The first quantitative technique for steganalysis was designed by Westfeld
and Pfitzmann [18]. They exploited the fact that many steganographic tech-
niques change the frequencies of pairs of values (pairs of colors, gray levels,
or JPEG coefficients) during a message embedding process. Their method was
shown to be effective in detecting messages hidden by several steganographic
techniques. This research prompted interest in both improving statistical detec-
tion techniques [4,5,6,7,21] as well as building new steganographic methods that
would be difficult to detect by statistical methods [15,19,16,8].

Various attempts have been made to make steganographic content difficult to
detect including reducing their capacity or payload and spreading the message
across the whole carrier. Anderson and Petitcolas [1] suggested using the parity
of bit groups to encode zeroes and ones; large groups of pixels could be used to
encode a single bit, the bits that need to be changed could be chosen in a way
that would make detection hard. Provos [15] designed a steganographic method
OutGuess that spreads a message over a JPEG file; the unused coefficients are
adjusted to make the coefficient histogram of the modified file as similar as
possible to the histogram of the original image.

Westfeld [19] designed a steganographic algorithm F5 that uses matrix cod-
ing to minimize the modifications of the LSBs. His method first discovers the
number of available bits and then spreads the message bits over the whole file.
Fridrich [7,5] recently developed method for successful breaking of this algorithm.
The method exploits the fact that modification of the JPEG coefficients by F5
produces change of blockiness that is strongly correlated with the embedding
rate.

Sallee [16] developed a hiding method that preserves distributions of individ-
ual JPEG coefficients. On the sender’s side the method estimates the distribu-
tions of the AC coefficients in JPEG images from the distribution of the most
significant bits (MSBs) of the coefficients. The estimated distribution is used by
an entropy decoder to encode compressed and encrypted messages into the LSBs
of the coefficients. On the receiver’s side the same distribution is estimated from
the MSBs of the coefficients and the message is extracted from the LSBs of the
coefficients by an entropy encoder. As Böhme and Westfeld [2] observed the fact
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that the distribution of the JPEG coefficients closely matches the distribution
of the MSBs can be used to detect messages hidden by this method.

Fridrich et al. [8] have proposed an information hiding method that imple-
ments the concept of ε-security proposed by Cachin [3]. The method makes use
of the JPEG quantization error by computing all rounding error for the JPEG
coefficients. Note that for some coefficients the rounding error is 0.5± ε. These
coefficients can be rounded either down or up without a noticeable difference and
they are considered changeable. The algorithm uses a random key to generate
a random binary matrix D that is known to both the sender and the receiver.
To embed a q-bit messages the sender solves a system of q linear equations in
GF(2).

3 Detecting Steganographic Content

Westfeld and Pfitzmann [18] developed a simple but effective method for de-
tecting LSB steganographic content. The method uses a statistic that is derived
from relative frequencies of conjugate pairs. It is described here for LSB stegano-
graphic insertion in JPEG image files. It was originally developed to detect mes-
sages inserted using the JPEG/JSTEG method [17].

The method begins with a histogram of JPEG coefficients that is created
as they are output by the decoder. Let the JPEG coefficients be drawn from
the set A. Even though 0 ∈ A and 1 ∈ A, JPEG/JSTEG embeds messages by
modifying LSBs of all coefficients, except for 0 and 1. A conjugate pair is the pair
of coefficients that have identical binary representations except for their LSBs
which are 0 and 1, respectively. For a binary number (bit string) a we denote
the corresponding conjugate pair with a′ and a′′, where a′ = 2a and a′′ = 2a+1.

Let A\{0, 1} = {a′
1, a

′′
1 , a

′
2, a

′′
2 , a

′
3, a

′′
3 , . . . a

′
k, a

′′
k} be organized into k conjugate

pairs. (Of course 0 and 1 also form a conjugate pair.) At any step as the decoder
processes the coefficients, a histogram bin for x ∈ A contains the number of
coefficients x output so far. In particular, h′i is the number of occurrences of a′

i

and h′′i is the number of occurrences of a′′
i .

In an unaltered image it could be expected that the frequencies of conjugate
pairs significantly differ. In the portion of an image altered by JPEG/JSTEG
these frequencies only depend on the relative frequencies of zeroes and ones
in the hidden message. Therefore, if the frequencies of zeroes and ones in the
message are approximately equal it could be expected that the conjugate pairs
have similar frequencies. The χ2 statistic with k degrees of freedom is given by

χ2
k =

1
2

k∑
i=0

(h′i − h′′i )2

h′i + h′′i
, (1)

The probability that the image contains steganographic content is estimated by
integrating from the density function

p = 1− 1

2
k
2 Γ (k

2 )

∫ χ2
k

0
e−

x
2 x

k
2 dx (2)
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Fig. 1. Two natural images: a falcon (left) and a barley field (right). Image sizes are
450 × 292 (falcon) and 480 × 320 (barley).
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Fig. 2. Probabilities of detection of steganographic content for the images in Figure 1.
Left: falcon, right: barley field. Graphs show the probabilities computed for full capacity
insertion (1:full line) and a half capacity insertion (1/2: dashed line).

This method is illustrated on two images in Figure 1 for two cases. In the first
case, a random bit sequence of the same length as the number of redundant bits
(number of coefficients different than 0 and 1) was inserted in each of the images.
In the second case, only 50% of the coefficients were used for insertion—i.e.,
every other coefficient was skipped. Probabilities computed using Equation (2)
are shown in Figure 2. It can be seen that in the full capacity insertion case
the probability was almost always very close to 1. However, in the half capacity
case (shown by the dashed line and marked by 1/2) the probability becomes 0
after more than 4000 coefficients are used for the computation. When the density
of insertion is 1/4 or less probabilities computed using Equation (2) become 0
everywhere. Based on these and other tests, it can be concluded that the method
is quite effective for detecting steganographic content when all of the redundant
bits are used. Similar (high detection) results can be obtained for short messages
if they are inserted into available bits (coefficients) at the beginning of the image
file.

When a shorter message is spread over all available bits this detection method
[18] becomes much less effective. However, it is not true that χ2 statistics are
not useful for detection in this situation. If χ2 statistic is computed using Equa-
tion (1) it can be seen that insertion of random bit sequences lowers χ2 consider-
ably. Figure 3 shows χ2 curves of the original (unaltered) images in Figure 1, as
well as χ2 curves of the altered images with insertion frequencies 1, 1/2, 1/4, and
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Fig. 3. χ2 statistic computed for the images in Figure 1. Number of skipped bits is
varied. The topmost curves correspond to the original (unaltered) images, the curves
marked by 1, 1/2, 1/4, and 1/8 correspond to the relative insertion frequencies, e.g.
1/4 corresponds to changing 1 out of every 4 bits. The “falcon” image (left) has 25179
coefficients available for embedding and the numbers of altered coefficients in the four
cases are: 12606, 6279, 3118, and 1569. The “barley” image (right) has 41224 coefficients
available for embedding and the numbers of altered coefficients in the four cases are:
20544, 10256, 5099, and 2545.

1/8. Note that bit insertion does not change the number of degrees of freedom for
χ2 statistic. Since any bit insertion generally lowers χ2 statistic, a new method
for detecting steganographic content based on a direct use of the statistic could
possibly be designed.

In the previous discussion we tacitly assumed that it is not known which
bits of the larger cover are being used. If it was known, say,that we used every
other redundant bit that could be exploited. However a pseudo-random number
generator can be used to determine which bits to use, so that any attempt at
“guessing” which bits contain steganographic content could be expected to fail.

4 Embeddings That Mimic Image Statistics

Can a better method be given for hiding a message in the redundant bits? In
Section 3 it was argued that while hiding a message within a cover nearly the
same size was difficult, the published methods were weak when the message was
shorter than the cover. However it was also shown that if only a fraction of the
cover bits were used then histogram-based statistical tests are still effective.

In this section we explore embedding a message in a longer cover, but using
all the cover bits in a way to avoid detection by histogram-based methods. This
method begin by encoding/expanding the message M into a longer sequence of
bits that can still be embedded in the available cover bits. The message M is
encoded by a symbol sequence S = 〈s1(m1), . . . , sN(mN )〉 where si encodes mi.
For example, since mi = 0 or mi = 1 this coding scheme can be used

si(0) ∈ {00, 11}, si(1) ∈ {01, 10}, i = 1, . . . ,N. (3)
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Input: M = 〈m1, . . . , mN 〉 (message),
B = 〈b1, b2, . . . , b2N , b2N+1〉 (JPEG coefficients)

Output: B∗ = 〈b∗1, b∗2, . . . , b∗2N , b∗2N+1〉 (modified JPEG coefficients)

for i = 1, . . . , N
Bi ← 〈b1, b2, . . . , b2i, b2i+1〉
if mi = 0 then

b11 ← b2i � 0, b12 ← b2i+1 � 0, b21 ← b2i � 1, b22 ← b2i+1 � 1
else

b11 ← b2i � 0, b12 ← b2i+1 � 1, b21 ← b2i � 1, b22 ← b2i+1 � 0
B1 ← 〈b∗1, b∗2, . . . , b∗2i−2, b

∗
2i−1, b

11, b12〉
B2 ← 〈b∗1, b∗2, . . . , b∗2i−2, b

∗
2i−1, b

21, b22〉
if |χ2(Bi) − χ2(B1)| < |χ2(Bi) − χ2(B2)| then

b∗2i ← b11, b∗2i+1 ← b12

else
b∗2i ← b21, b∗2i+1 ← b22

endfor

Fig. 4. Embedding algorithm. x � i replaces the LSB of x by i.

The embedding algorithm takes a message M = 〈m1, . . . ,mN 〉 and a sequence
of JPEG coefficients B = 〈b1, b2, . . . , b2N , b2N+1〉 and it produces sequence B∗ =
〈b∗1, b∗2, . . . , b∗2N , b

∗
2N+1〉. The extraction (decoding) algorithm will take the se-

quence of JPEG coefficients B∗ and extract the message M. (The encoding and
decoding algorithms use bits of the message to encode N and other required
information.)

An embedding algorithm must decide for each message bit which of the al-
lowed symbol sequences should be substituted for it. The greedy algorithm given
here hopes to produce an embedding such that the χ2 statistic of the altered
coefficients will be virtually the same as the original coefficients. (The algorithm
can be extended to similar statistical tests.)

The greedy embedding algorithm is shown in Figure 4. It encodes each suc-
cessive bit of the message in the best possible way relative the encodings of the
previous message bits; that is, the new bit is encoded in a way that matches
the old χ2 statistic as best as possible. Note that χ2 updates can be imple-
mented efficiently since each embedding only affects a pair of coefficients and
Equation (1) can be rewritten to first subtract the previous contribution of each
affected coefficient and then add the new contribution.

The algorithm was implemented and tested using a publicly available JPEG
implementation [9]. Examples of embedding messages using this algorithm into
images in Figure 1 are illustrated in Figure 5. Since messages would typically be
encrypted before being hidden, the experiments used random bit sequences for
the messages. It can be seen that the method described here follows the original
χ2 statistic very closely. The method inserts messages whose length is up to half
of the available (redundant) bits. It modifies about 1/3 of all redundant bits.
In the examples from Figure 5, the number of modified bits was 8361 out of
25179 for the “falcon” image and 13699 out of 41224 for the “barley” image.
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Fig. 5. Left: χ2 statistic for images in Figure 1 before (solid blue lines) and after
embedding (dashed red lines) random bit sequences by the algorithm in Figure 4.
Middle and right: boxplots of the differences between the χ2 statistics of the original
and altered images for ’falcon’ and ’barley’.

This can be compared to a full capacity embedding that changes roughly 1/2
of all redundant bits, and 1/2 capacity embedding that changes roughly 1/4
of all redundant bits. Both of those approaches result in χ2 statistic that is
significantly different from the statistic of unaltered images.

Fig. 6. Examples of natural images used in our experiments

Additional experiments were performed for images in Figure 6. As can be
seen in most cases the performance was similar to the results shown in Figure 5.
In a few cases (“palace”, “Edinburgh”, “Parthenon”) there is a number of points
marked as outliers where the χ2 of altered images differs significantly from the
χ2 of the original images; this is mostly due to the fact that a portion of each
image corresponds to a uniform bright sky region. The performance was not as
good on the image of the eye shown in the lower right corner of Figure 6. Our
method reduced the χ2 statistic by about 20%. Since this was an anomaly we
examined the histogram of the JPEG coefficients and discovered that for many
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conjugate pairs only one of the histogram frequencies was non-zero. Therefore,
many of the insertions into those coefficients decreased the χ2 statistic for the
image.
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Fig. 7. Boxplots of the differences between the χ2 statistics of the original and altered
images shown in Figure 6

5 Conclusions

In this paper we explored the statistics of least-significant bit steganography.
We considered the problem of encoding a message to match the statistics of a
cover. A method of hiding information in the LSBs of JPEG coefficients was
described; the method mimics the chi-square statistic of JPEG coefficients. This
is accomplished by using multiple codes for each of the output symbols. In addi-
tion, we showed how multiple codes can be used to guarantee that images with
messages embedded in them have the same coefficient histograms as the origi-
nal (unmodified) images. We demonstrated the effectiveness of the method on
JPEG images of natural scenes. Future work will include finding more effective
statistics for detecting hidden steganographic content in JPEG and other image
formats as well as designing hiding techniques that mimic higher order statistics
of images. In forthcoming work we will report on how these techniques can be
used in conjunction with methods in the literature.
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Abstract. An extended visual secret sharing (EVSS) scheme with innocent 
looking (unsuspicious) cover images was firstly proposed by Naor and Shamir. 
Most recent papers about EVSS schemes are dedicated to get a higher contrast 
of the concealed secret or a less size of shadow image. The conventional EVSS 
scheme uses the whiteness of black and white sub pixels to represent the gray 
level of the covered image while we use the gray sub pixels instead to achieve 
the high-quality shadow image. The term “high-quality” means that the shadow 
has high-quality image such as a photo picture. 

1   Introduction 

A new type of secret sharing scheme called visual secret sharing (VSS) scheme [1] 
can conceal the secret that is an image (printed text, handwritten note, picture, etc.) 
and provide an unconditionally secure way to encode the secret image into n shadow 
images given to a set P={1, 2, …, n} of n participants. We can easily recover the 

secret by using the human sight without the assistance of hardware. A VSS scheme 
for any access structure is defined by the qualified and forbidden sets of non-empty 
subsets, ΓQual and ΓForb, of {1, 2, …, n} to describe which combinations shall reveal a 
secret. We herein use Ateniese et al's general access scheme [2] to represent the VSS 
scheme. (ΓQual; ΓForb) for a general access structure of a VSS scheme is defined as 
ΓQual ⊆ 2P, ΓForb ⊆2P and ΓQual∩ΓForb=φ. Any set X={i1, i2, …, ir}∈ΓQual, where X⊆P,

can get the shared secret by stacking their shadow images, but any set X={i1, i2, …,
ir}∈ΓForb has no information on the secret image. 

Shadow images for the conventional VSS schemes are random and meaningless. 
The random shadow images are unusual but suspected to censors. Thus, it would be 
suited to design a VSS scheme with the extended ability, “the meaningful shadow 
images”. An EVSS scheme is a VSS scheme with meaningful shadow images [1, 3]. 
The EVSS scheme will address the problem that shadow images will be censored 
since they are suspected. Although the shadow images in [1, 3] are meaningful (not 
random), they do not have the qualities like real photographs. Desmedt proposed three 
visual cryptography schemes to hide the secret in the real high-quality shadow images 
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[4-6]. All of these three schemes are designed only for n=2 and cannot be extended to 
the VSS schemes for more participants. Other image secret sharing schemes with 
perfect quality secret image are shown in [7-9]; however they need computations for 
decoding. 

In this paper, we use gray sub pixels instead of black and white sub pixels in the 
shadow image and successfully transform the VSS scheme to our new EVSS scheme 
with high-quality shadow images. In Section 2, we describe the previous VSS and 
EVSS schemes. In Section 3, we propose our new EVSS schemes with high-quality
shadows based on gray sub pixels. Section 4 gives the contrasts for the proposed 
schemes. Section 5 concludes the paper. 

2   The Basic VSS Scheme and EVSS Scheme 

2.1   The VSS Scheme with Random Shadow Images 

For a black and white VSS scheme, each pixel in the secret image is divided into m
(the pixel expansion) black and white sub pixels in n shadows and shadow images are 
random and meaningless. The VSS Scheme is defined by n×m Boolean matrix S = 
[sij], where sij = 1 if and only if the jth sub pixel in the ith shadow is black, otherwise 
sij = 0. When shadows i1, i2,…, ir in a set X∈ΓQual are stacked, we “see” a recovered 
secret whose black sub pixels are represented by the Boolean “OR” of rows i1, i2,… ir

in S. The gray level of this recovered image is proportional to the Hamming weight of 
the “OR”ed m-vector V. For the fixed threshold 1 ≤ d ≤ m and relative difference α > 
0, if H(V)≥ d, this gray level is interpreted by the human sight as black, and if H(V) ≤
d –αm, the result is interpreted as white. 

DEFINITION 1 (VSS scheme).  A VSS scheme with a general access structure (ΓQual;
ΓForb) can be shown as two base n × m Boolean matrices B0 and B1. When sharing a 
white (resp. black) pixel, the dealer randomly chooses one row of the matrix in the set 
C0 (resp. C1) including all matrices obtained by permuting the columns in B0 (resp. 
B1) to a relative shadow. The chosen matrix defines the gray level of the m sub pixels 
in the recovered image. A VSS Scheme is considered valid if the following conditions 
are met [2]: 

1. (contrast condition) 
For any S in C0 (resp. C1), the “OR”ed V of rows i1, i2,…, ir in a set X={i1, i2,…,

ir}∈ΓQual satisfies H (V)≤ d –αm (resp. H (V)≥ d). 
2. (security condition) 
For any subset X={i1, i2,…, ir}∈ΓForb, the two collections of r×m matrices obtained 
by restricting each n×m matrices in Ci , i∈{0, 1}, to rows i1, i2, …, ir are not visual 
in the sense that they contain the same matrices with the same frequencies. 
3. (the image pattern on shadows) 
After the dealer’s operation, the shadows are random image when {1}, {2}, …, and 
{n} belong to ΓForb.
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2.2   The EVSS Scheme with Black and White Shadow Images 

EVSS schemes can provide the shadows with arbitrary images, i.e. they are 
meaningful and the user will recognize the image pattern on his/her shadow. The 
definition of the gray level and the contrast α of the recovered secret are the same as 
the VSS scheme. Additionally, a contrast αs for the shadow image that provides the 
meaningful image pattern is also given. An EVSS scheme with a general access 
structure (ΓQual; ΓForb) and P={1, 2, …, n} is formally defined as follows:

DEFINITION 2 (EVSS scheme). An EVSS scheme with a general access structure 

(ΓQual; ΓForb) can be shown as (n+1)2  base n×m Boolean matrices 1 1n n
s s s s

0 1
{( B ,B )} ,

and the corresponding sets are 1 1n n
s s s s

0 1
{( C ,C )}  including all matrices obtained by 

permuting the columns in 1 n
s s

i
B , where , ,

1 n
s s {0,1}∈ . When sharing a white (resp. 

black) pixel and the pixel in shadow t (1≤t≤n) is white (st=0) and black (st=1), the 

dealer randomly choose one row of the matrix in the set 1 n
s s

0
C (resp. 1 n

s s

1
C ). An VSS 

Scheme is considered valid if the following conditions are met [3] : 

1. (contrast condition) 

For any S in 1 n
s s

0
C  (resp. 1 n

s s

1
C ) and , , ) n

1 n
(s s {0,1}∈ , the “OR”ed V of rows 

i1, i2,…, ir in a set X={i1, i2,…, ir}∈ΓQual satisfies H (V)≤ d –αm (resp. H(V)≥ d). 
2. (security condition) 
For any subset X={i1, i2,…, ir}∈ΓForb, the two collections of r×m matrices obtained 

by restricting each n×m matrices in 1 n
s s

i
C , i∈{0, 1}, to rows i1, i2, …, ir are not 

visual in the sense that they contain the same matrices with the same frequencies. 
3. (the extended capability: the image pattern on shadows) 
After the dealer’s operation, the shadows are meaningful. This is due to H1(Vt)-

H0(Vt)≥αsm, where H1(Vt) and H0(Vt) are the Hamming weight of row t (i.e., shadow 

t) in 1 1 1
1

t t n
s s s s

i
C − + and 1 1 1

0
t t n

s s s s

i
C − + .

3   The Proposed EVSS Scheme with High-Quality Shadow Images 

3.1   Basic Concept 

For the EVSS scheme, the image patterns on shadows are just black and white; 
though meaningful, they do not possess the high-quality image such as a photo. Here, 
we propose new methods to construct the EVSS schemes with high-quality shadow 
images (High-quality EVSS). The High-quality EVSS (H-EVSS) scheme uses a 
different structure of the sub pixel. The new gray sub pixel is shown in Fig. 1, where a 
sub pixel is the gray level according to the cover image of the shadow, and the 
operation between sub pixels is the “ADDITION”. It means that a gray sub pixel 
“ADD” a gray sub pixel will cause a grayer sub pixel. 
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Fig. 1. “ADD” operation for gray sub pixels in the H-EVSS scheme 

The major differences between our H-EVSS schemes and the conventional EVSS 
schemes are described as follows: 

1) The H-EVSS scheme uses “ADD” operation for gray sub pixels defined in Fig. 
1 and the conventional EVSS scheme uses “OR”ed operation for black and white sub 
pixels. 

2) The H-EVSS scheme discards the criterion “with no trace of the cover images”
when stacking the shadows associated to participants in X ∈ ΓQual to recover the secret 
message. Note that when one discloses the shadow and stacks it with other shadows 
associated to participants in X to recover the secret, the cover image of the shadow 
need not keep secret. Therefore, we can get the secret, no matter we see the remnant 
images of the cover image or not. 

3) The H-EVSS scheme has high-quality shadows. (In fact, we achieve the high-
quality shadows at the cost of recovering the secret message with trace of the cover 
images.) 

4) The H-EVSS scheme has the less pixel expansion, because our scheme use the 
gray levels of sub pixel to represent the color of the shadow image while the 
conventional EVSS scheme uses the whiteness of the black and white sub pixels. 

3.2   An H-EVSS Scheme with a General Access Structure 

DEFINITION 3 (H-EVSS scheme).  An H-EVSS scheme with a general access 

structure (ΓQual; ΓForb) can be shown as two base n×m matrices 
0

B′  and 
1

B′  with 

element Gi and white. The corresponding sets are 
0

C′  and 
1

C′  including all matrices 

by permuting the columns in
i

B′ . When sharing a white (resp. black) pixel, the dealer 

randomly chooses one row of the matrix in 
0

C′  (resp. 
1

C′ ) to a relative shadow. The 

chosen matrix defines the gray level of the m sub pixels in the recovered image. An H-
EVSS Scheme is considered valid if the following conditions are met: 

1. (contrast condition) 

For any S in 
0

C′  (resp. 
1

C′ ), the “ADD” V of rows i1, i2,…, ir in a set X={i1, i2,…,

ir}∈ΓQual satisfies ( )H V ≥ m–d+αm (resp. ( )H V ≤ m–d), where ( )H V  is the 

whiteness of V (i.e. the number of the white sub pixels). Note that we use the 
number of the dominant color of sub pixels to distinguish the “black” and “white”. 
Here, the dominant color is “white” since it has the biggest contrast relative to 
other gray colors. 
2. (security condition) 
For any subset X={i1, i2,…, ir}∈ΓForb, the two collections of r×m matrices obtained 

by restricting each n×m matrices in 
i

C′ , i∈{0, 1}, to rows i1, i2, …, ir are not 

visual in the sense that the whiteness of ( )H V  are the same with the same 

W   ADD    W  =  W   W   ADD    Gi  =  Gi Gi    ADD   Gj  =  Gk
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frequencies. Although the gray sub pixels in V will disclose remnant images of the 
shadows; however, this does not affect the secrecy of secret sharing scheme. 
3. (the extended capability: the image pattern on shadows) 
After the dealer’s operation, the shadows are with high quality image. This is due 
to that the Gi level in the shadow i is chosen according to the corresponding pixel 
in the cover image of the shadow i. 

A transfer operation T(⋅) is defined as follows. Let B=[bij] be an n×m Boolean 

matrix, where 1≤ i ≤ n and 1 ≤ j ≤ m. Then ( ) [ ]
ij

B B b′ ′= =T  is

255 (white subbpixel),  if 0,

,  if 1,
ij

ij

i ij

b
b

G b
′ =

=

=

where 
i

G  is the level of the corresponding pixel in the cover image of shadow i.

The idea is that we use the gray sub pixel Gi to show the gray level of the pixel in 
the cover image and meantime the whiteness of the stacked result is used to recover 
the secret image. 

Construction: Let B0 and B1 be the base matrices for the VSS scheme with a general 
access structure (ΓQual; ΓForb). Then, the base matrices for an H-EVSS scheme can be 

obtained by 
0 0 1 1

( ) and ( )B B B B′ ′= =T T . (Note: the proof that the scheme from the 

construction is an H-EVSS scheme is shown in the full version). 

Example 1. Construct a simple 2-out-of-2 H-EVSS scheme with n=2, P={1, 2}, 

ΓQual={{1,2}} and ΓForb={{1},{2}}.

Use
0

1100
1100

B =  and 
1

1100
0011

B =  in the VSS scheme, we have the base matrices 

0
B′ =T(B0)

00
00

GG
GG

=  and 
1

B′ =T(B1)
00

00
GG

GG
= .                                                     

Fig. 2 shows the cover image, one shadow and the stacked result where the cover 
image is a photo picture of the members in our laboratory, and the secret image is a 
text image “VSS”. 

(a) the cover image (b) one shadow (c) Shadow 1 + Shadow 2 

Fig. 2. A 2-out-of-2 H-EVSS scheme 

Although the recovered image has the trace of the original cover image, there is no 
compromise for the secrecy. Finally, we really have the high-quality shadows and get 
the secret “VSS”.  
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Next, we discuss how to improve the contrast of the recovered secret (Section 3.3) 
and the contrast of the shadow image (Section 3.4) for the proposed H-EVSS scheme. 

3.3   Improve the Contrast of the Recovered Secret 

Different transformation methods, histogram slide to darkness, clipping at end and 
histogram shrink, are used to reduce the gray levels of an image [10]. We can darken 
the cover image to reduce the gray levels such that the affection of other gray sub 
pixels is diminished for human sight when recovering the secret. Then, the contrast of 
the recovered secret is enhanced.  

Fig. 3 shows the preprocessed cover images, their corresponding histogram 
diagrams and recovered images using different transformations. Fig. 3(a) is histogram 
slide to darkness with DL=100; Fig. 3(b) is clipping at end with UC=150 and 
LC=255; Fig. 3(c) is histogram shrink with US=0 and LS=100. 

 

     

Fig. 3. Preprocessed cover images and their corresponding recovered images 

3.4   Improve the Contrast of the Shadow Image 

We use the mean value of the cover image to substitute the white sub pixel to enhance 
the clearness of the shadow image. A new Transfer operation Tm(⋅) is defined. Let 

B=[bij] be an n×m Boolean matrix, where 1≤ i ≤ n and 1 ≤j ≤ m, and then 

( ) [ ]
m ij

B B b′ ′= =T  is defined as follows: 

,  if 0,

,  if 1,

m ij

ij

i ij

G b
b

G b

=
′ =

=
 

where 
i

G  is the level of the corresponding pixel in the cover image of shadow i and 

m
G  is the mean value of the gray level for the cover images of all shadows. 

Consider Example 1. Using the mean value instead of the white pixel, the base 

matrices 
0

B′  and 
1

B′  can be designed as 
0

B′ =Tm( 1100
1100

)  

 

  
  

m m

m m

G G G G
G G G G

=  and 

 
(a) DL=100 (b) UC=150 and LC=255 (d) US=0 and LS=100 
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1
B′ =Tm( 1100

0011
) m m

m m

G G G G
G G G G

= . From 
0

B′ and 
1

B′  matrices, the stacked white and 

black pixels are 2“G+G” 2“Gm+Gm” and 4“G +Gm”, respectively. Fig. 4(a)~(c) show 
Shadow 1, Shadow2 and the stacked result. Using the mean value (Gm=214 for the 
cover image Fig. 2(a)) to substitute the white sub pixel really gets a clear shadow 
image, and meantime the secret is still decoded by human sight. 

(a) Shadow 1 (b) Shadow 2 (c) Shadow 1 + Shadow 2 

Fig. 4. Improve the contrast of the shadow image by using Gm

4   The Contrasts of Recovered Image and Shadow Image for 
H-EVSS Schemes 

It is observed that, from the matrices 
0

B′ and 
1

B′ , each shadow will have xGyW sub 

pixels, where x+y=m, G is the gray level of the pixel of the corresponding cover 
image and W is the white sub pixel. The black and white pixels of the recovered 
image is represented as “m-l”G“l”W and “m-h”G“h”W sub pixels, respectively. Note 
that the G in stacked result denotes that “ADD” all sub pixels in the same position of 
different shadows. Accordingly, we may define the contrasts α and αs for our H-
EVSS scheme as follows to meet the real situation. 

The Contrast of Shadow Image αs:
Because the contrast of αs will be different from that of using different preprocessing 
methods, we typically give a definition of αs for using histogram to darkness method

with the darkness value DL, ( )255 255
s

DLα = − .

The Contrast of Recovered Image α:
The contrast of the recovered image should be proportional to the contrast 

( ) ( )( )h l m l− +  that is defined in [11], but will be compromised by other gray sub 

pixels. So, we define the new contrast α as ( ) ( )( ) ( )( )1 1
s

h l m l α− + × + .

The definitions are consistent with the real situation, e.g., DL=255 (the cover 
image is an all black image), the value αs=0 (all black image) and the value 

( ) ( )( )h l m lα = − +  (the same as the definition of conventional VSS scheme). For 

DL=0 the contrast αs is 1 and the value ( ) ( )( ) ( )1 2h l m lα = − + ×  is reduced.  
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5   Conclusion 

In this paper, we propose the new H-EVSS schemes. The decryption method of our 
new scheme is only to stack shadows. We show how to improve the contrasts of the 
recovered image and the shadow images. Also, the contrasts for the new H-EVSS 
scheme are defined. Experimental results show that our scheme is really possessed of 
the extended ability, the meaningful and high-quality shadow images. Moreover, our 
new H-EVSS scheme has the same pixel expansion like the VSS scheme; however the 
EVSS scheme will have more pixel expansion than the VSS scheme. 
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Abstract. Digital images are increasingly being used as steganographic
covers for secret communication. The Least Significant Bit (LSB) encod-
ing is one of the most widely used methods for embedding a message in
a digital image. However, the direct application of LSB encoding is vul-
nerable to steganalysis. For example, RS steganalysis is very efficient in
detecting the presence of a message in a digital image and to estimate its
approximate size. This paper presents a method robust to RS steganal-
ysis, that makes the presence of a message unnoticeable. The method
is based on the application of reversible histogram transformation func-
tions to the image, before and after embedding the secret message. The
method was tested on 4 greyscale images, with messages of 10%, 30%
and 90% of the maximum embedding size. The proposed method proved
to be effective in eluding RS steganalysis for all cases tested.

1 Introduction

There has always been interest in safely exchanging secret messages. Throughout
times, cryptographic tools have been developed and used in order to make the
message exchanged incomprehensible to anyone intersecting the communication.
A less known approach is steganography, although also used for thousands of
years. Steganography’s aim is to make the secret communication undetectable,
that is, to hide the presence of the secret message. The recent development of
Internet has brought new attention to both cryptography and steganography.
The interest in steganography has been enhanced recently by the emergence of
commercial espionage and the growing concerns about homeland security due to
terrorism. The purpose of steganography is therefore to hide (or embed) a secret
message into an artefact, called cover. After embedding the secret information
into the cover, it becomes a stego-artefact. Almost anything can be used as cover,
as long as it looks common and unsuspicious after the embedding process. With
the arrival of the digital era and the generalized usage of the Internet and email
for the exchange of files, digital covers such as audio, image and video files have
become the most obvious choices. This is party due to their widespread use, but
also because this type of media usually includes a random noise component in
which the secret message may be easily hidden.

The exchange of ever-growing volumes of data through the Internet, and
the widespread access to steganography software prompted the development of

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 1192–1199, 2005.
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steganalysis tools. The goal of steganalysis is to identify the presence of secret
messages embedded in an artefact. An alternative to this passive approach is to
perform active or malicious attacks, with the aim of modifying or destroying a
secret message that might have been embedded. From the perspective of someone
wishing to send a secret message, the best protection is achieved when steganog-
raphy and cryptography1 are used together. In this case, even if steganography
fails and the presence of the secret message is unveiled, there will still be an ad-
ditional layer of protection, as the message embedded is ciphered. An overview
of the most important topics in criptography, from a steganographer’s point of
view, is available in [1].

2 Steganography and Steganalysis on Digital Images

Digital images are considered a good choice for a steganography cover because of
their insensitivity for the human visual system [2]. The most common approach
is to use a substitution system, where the parts of the image considered to be
redundant or noisy are replaced by the bits of the secret message [3]. This is
done, most of the times, without any change in perceptual content in the cover
image [4]. There is no restriction concerning the nature of the message hidden,
as long as it can be represented by a stream of bits. In order to recover the
message, one only has to know the method and sequence by which the stream of
bits was embedded in the image. However, the stego-images produced by these
methods may be vulnerable to steganalysis as the embedding process modifies
the statistical properties of the cover image. Another problem is that the secret
content of the stego-image might be in jeopardy when the image is subjected
to manipulations such as lossy compression, denoising or image enhancement,
as these operations may modify the content of the image bits, thus making the
hidden message recovery impossible.

2.1 LSB Encoding

One of the common data hiding methods is based on manipulating the Least
Significant Bit (LSB) planes, by direct replacing the LSBs of the cover image
with the message bits [5]. LSB substitution can be performed on all types of
images, including raw uncompressed, compressed formats and indexed images.
An extended description and discussion of substitution methods, including LSB
methods can be found in [3]. The maximum cover size (in bits) is the total
number of bytes of the cover image. For 8-bit images, it is the total number of
pixels. For example, a text of over 5000 words can be embedded on a 512x512
pixels 8-bit image by the LSB substitution method (maximum message size of
262144 bits = 32768 bytes).

The changes introduced in a 8-bit cover image by the LSB substitution pro-
cess are very little. The possible swapping of a pixel’s LSB results in a change of
1 Criptography is here used to refer to all the widely used techniques to make infor-

mation ininteligible to any person who does not hold the key to decipher it.
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its Digital Number (DN) by +1 or -1. This will only occur, on average, for every
other bit of the embedded message bit stream. Although the use of additional
bit planes increases the embedding capacity of an image, the modification in the
cover image might become more easily perceptible visually.

An important issue regarding LSB substitution steganography is the selec-
tion of the location where the secret message is to be placed in the image. The
most common choices are sequential and pseudo-random methods. The sequen-
tial method starts on a specific pixel (usually the first one), using all subsequent
pixels until the message is fully embedded. The pseudo-random method gener-
ate a pseudo-random sequence of values (the indices of bytes of the cover image)
that determines the order by which the secret message bits are embedded.

2.2 Visual Steganalysis

One of the most basic forms of steganalysis for digital images is by visual inspec-
tion. This can be done directly on the image, or by the observation of a single
bit plane, most commonly the LSB. The observation of periodic or other type
of suspicions patterns in the image bit plane is used to reveal the presence of a
secret message. An example of LSB visual inspection is presented in [6]. Visual
steganalysis can be useful in the presence of a small number of suspicious images.
However, as the visual inspection of images requires direct human intervention,
visual steganalysis is not an effective method for scrutinizing large volumes of
image data.

The direct visual steganalysis is based on the faith that the observer’s atten-
tion will be called out by small discrepancies in uniform regions of the image.
When LSB substitution steganography is used, the DN pixel values of the cover
image will only have been changed by +1 or -1. For indexed colour images, even
this small modification might be easily noticeable, if the variations in colour are
not gradual in the colour palette. Colour indexed images are therefore consid-
erably vulnerable to direct visual steganalysis, and should be avoided as cover
images for LSB substitution steganography without further processing. On grey
scale images, or other type of colour images, a DN change of +1 or -1 will hardly
be perceptible, thus the presence of a secret message can only be noticed in very
uniform or highly saturated areas.

2.3 Quantitative Steganalysis

Fridrich et al. [7] [8] introduced a powerful, yet complex, steganalytic method
that is able to accurately estimate the length of the embedded message on a
digital image, for several LSB steganographic methods. The method is based
on the fact that the content of each bit plane of an image is correlated with
the remaining bit planes. In particular, for an 8-bit image, there is some degree
of correlation between the LSB plane and the other seven bit planes. When
a message is inserted in the LSB plane, its content is considered to become
randomised, and thus the correlation between the LSB plane with the remaining
bit planes is reduced or lost.
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The RS steganalysis method uses a discrimination function and a flipping
operation to identify three types of pixel groups - Regular (R), Singular (S)
and Unchanged (U) - depending on how the flipping changes the value of the
discrimination function [8]. The size of the group of pixels and the corresponding
flipping mask M is initially established. For example M=[010] will correspond to
a test performed on groups of 3 pixels at a time, where only the middle one is
flipped. In typical images, applying the LSB flipping mask to the pixels in the
group will more frequently lead in an increase in the discrimination function,
rather than a decrease, and thus the total number of regular groups in an image
will be larger than singular groups. The randomisation of the LSB plane forces
these differences to zero, as the length of the embedded message increases [8].

When a message with a relative length p is embedded in the cover image
(p = 1 for full length embedding), the fraction of image pixels with the LSB
flipped is, on average, p

2 . Flipping the LSB of all image pixels will result in an
image with a fraction of flipped pixels 1 − 1

2 . In the process of steganalysing
an image, the actual value of p is unknown. The relative number of R and S
groups is counted for the original image, and for the flipped version of that
image (with the LSB off all pixels flipped). These will result in four points for
the so-called RS diagram, which are used to estimate the value of p. A detailed
description of the RS steganalysis can be found in [8]. For greyscale images, the
RS steganalysis method can separate cover images from stego images with a 10%
embedded message [8].

3 Proposed Method

The standard process consists of embedding a message t into a cover image x.
The result is a new image y1, the stego-image, which should ideally be very
similar to the cover image. The process can be represented by equation, where
E is the encoding function.

y1 = E(x, t) (1)

This process may, however, be vulnerable to steganalytic methods, namely those
of statistical steganalysis. The proposed method uses histogram transformation
functions in order to defeat steganalysis. The idea is to break the signature that
is established between neighbouring pixels in the encoding process, by means of
histogram transformation pre and post encoding. Initially, a histogram transfor-
mation function f∗ is applied to the cover image, x. This function f∗ compresses
the range of levels used in the original image, to a narrower range. The secret mes-
sage is embedded in the resulting image f∗(x), producing an image E(f∗(x), t).
The final image y2 is obtained through the application of a histogram transfor-
mation function f that expands the range of values back to the initial range, as
expressed in Equation (2).

y2 = f(E(f∗(x), t)) (2)

A schematic representation of the encoding method is presented in Figure 1.
As in the standard method, the final image should be as close as possible to the
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Fig. 1. Scheme of the proposed method

original cover image. In order to extract the message from the image, one has to
apply the histogram transformation function f to compress the histogram back
to the range of values present at the encoding stage. It is therefore required that
the transformation function f∗ is the inverse of function f , a property stated in
Equation (3).

f∗(f(z)) = z (3)

Due to the discrete nature of digital images, this property does not stand when
the order of function f and f∗ is swapped. That is, f(f∗(z)) is usually not
equal to z. This is not a problem, as long as the changes introduced by the
compression and decompression of the histogram are not noticeable. There are
other properties that the histogram transformation functions f and f∗ should
obey to prevent strange artifacts to appear in the image. One requirement is
that both functions are monotonous, either increasing (4) or decreasing (5).

∀x1,x2; x1 > x2 ⇒ f(x1) ≥ f(x2) ∧ f∗(x1) ≥ f∗(x2) (4)

∀x1,x2; x1 > x2 ⇒ f(x1) ≤ f(x2) ∧ f∗(x1) ≤ f∗(x2) (5)

In this work, linear histogram transformation functions of the form presented
in Equations (6) and (7) were used, where �x� is the largest integer below x,
and a is a constant. The number of occupied levels of f(x) is the same as in x,
but due to the discrete nature of digital images, f(f∗(x)) does not occupy the
same number of levels as x. Let us consider an example with a cover image of
8-bit unsigned format and a = 10. The range of values in the original image x is
0-255, which is reduced to 0-232 by the application of the histogram compression
function f∗. The subsequent application of function f (Equation 6) will result in
an image y with a range of values 0-255, but with some pairs of levels merged.
For example, f∗ will compress both levels 219 and 220 to the same value (200),
which is then expanded to the level 220.

f(x) = x+
⌊x
a

⌋
(6)

f∗(x) = x−
⌊

x

a+ 1

⌋
(7)
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4 Results

Four test images were selected to evaluate the performance of the proposed
method. The test images are 512x512 pixels sections of photographs acquired by
a digital camera (Peacock, Dinosaurs, Chickens) and a film camera (Falkland).
In this later case the film was digitalized in a Kodak Photo Lab. The images were
converted to an 8-bit grey scale from their original 24-bit colour format. Figure
2 shows the greyscale version of the test images. Text messages with 10%, 30%
and 90% of the maximum embedding size were produced - messages A (3277
characters), B (9830 characters) and C (29491 characters).

Fig. 2. Test images (from left to right): Falkland, Peacock, Dinosaurs, and Chickens

4.1 Message Embedding

The messages were embedded in the cover images using LSB substitution steganog-
raphy with both sequential and pseudo-random methods. The messages were
embedded directly and using the histogram transformation functions (f and f*)
with a = 10 and a = 8 (6,7). A total of 72 stego-images were obtained - 4 cover
images, 3 messages, 3 types of functions and 2 location methods. For each test
image, 2 additional images were also produced by applying functions f* and f
(compression and expansion of the histogram), without embedding any message.
A total of 84 images were thus available for testing.

4.2 Visual Tests

The direct visual inspection of the stego-images did not reveal any clues about
the presence of the embedded messages, for test images. It is worth pointing out
that no direct comparisons were made between the stego-images and the cover
images, as in a normal scenario the cover image is not available. In fact, it is
good steganography practice to avoid the use of well-known cover images.

A visual inspection of the LSB plane of the stego-images was also performed.
This method proved very effective in detecting messages that were directly em-
bedded sequentially. The use of the proposed method reduced the footprint of
the sequential embedded message, but a careful observer could still detect the
presence of a message. However, the visual inspection of the LSB plane was
totally inefficient with pseudo-random LSB substitution steganography.
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4.3 RS Steganalysis

The RS steganalysis method was applied to the 72 stego-images, the 4 cover
images, and the cover images modified by compression and expansion of the his-
togram (8 images). Two flipping masks were used: M=[010] and M=[0110]. As
no significant differences were obtained with the two flipping masks, the results
presented throughout are for M=[010]. The differences in the message size esti-
mation by the RS method between sequential and pseudo-random stego-images
were also found to be negligible. Since the stego-images embedded sequentially
are vulnerable to visual steganalysis, the results presented are all for pseudo-
random LSB encoding.

The message size estimated by RS steganalysis with direct LSB encoding is
presented in Table 1. As expected, the RS method proved to be very effective
in estimating the message size. The difference between the estimated and the
actual length of the embedded message were below 5% for all cases except one -
for the test image Falkland and message C (90%) the estimated size was 83%.
The results from RS steganalysis with the stego-images produced with the pro-
posed method are considerably different, as it can be seen in Table 2. Two results
are presented for each test image and message: using histogram transformation
functions (f and f∗) with a = 10 and with a = 8. When the estimated mes-
sage length by RS steganalysis is below 5% (the typical range of accuracy of
the method), the steganalysis fails to detect the presence of the secret message.
This is achieved for all test images and message sizes, although not with ev-
ery set of histogram transformation functions. For the test image Falkland, the
stego-image with message C and functions f / f∗ with a = 10, the estimated
message length is 9.4%. For the test image Peacock, functions f / f∗ with a = 8
produce high negative values for the estimated message length, even without any

Table 1. Estimated message length for standard (direct) encoding

message falkland peacock dinosaurs chickens
None 0.1% 3.0% 1.3% -1.4%

A (10%) 9.7% 12.9% 12.1% 9.5%
B (30%) 29.1% 31.8% 31.8% 29.6%
C (90%) 83.0% 87.4% 85.4% 89.3%

Table 2. Estimated message length for the proposed method of encoding

message falkland peacock dinosaurs chickens
a = 10 a = 8 a = 10 a = 8 a = 10 a = 8 a = 10 a = 8

None 4.8% -1.2% 1.0% -16.7% -1.6% 3.3% -0.3% -1.3%
A (10%) 5.0% 0.7% 0.9% -18.8% -0.7% 4.3% -1.6% -1.1%
B (30%) 4.3% -0.5% 0.9% -21.7% -0.7% 3.7% -0.7% -0.3%
C (90%) 9.4% 4.9% 0.5% -29.5% -3.6% 2.0% 2.7% 2.3%
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message. The results for the other two test images are all below the 5% mark
for both sets of functions.

5 Conclusions

The proposed method, based on the application of reversible histogram transfor-
mation functions to the cover image, proved effective in defeating RS steganaly-
sis. The RS steganalysis method was successful in estimating the message length
embedded in standard stego-images, but failed to detect the presence of the em-
bedded messages, when using the proposed method. The two types of functions
used were effective on two test images, with messages of 10%, 30% and 90% of
the maximum embedding length. On the other two test images, only one of the
functions performed well for all 3 messages. The choice of the adequate set of
histogram transformation functions is dependent of the cover image. The imple-
mentation of the proposed method as a robust steganography software would,
therefore, require the automatic testing of various sets of histogram transforma-
tion functions, for a given cover image, selecting the set that provides the best
results for that image. An indication of the histogram transformation functions
used would then have to be inserted in a pre-defined location in the cover image.
For example, the linear histogram transformation functions used here would be
characterised by a single byte (the value of the parameter a).
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Abstract. In this paper, a new Target Density Function(TDF) is theo-
rized to image the radar targets by a new estimation algorithm. TDF is
represented in a specified manner. This method is developed by inspiring
of ambiguity functions. TDF is obtained in the range and scanning angle
plane different from Fowle-Naparst’s methods. Target density function is
produced via a linear phased array radar system. This is another gain of
the method. In addition to scanning, targeting and imaging properties,
by this way, the problem associated with beamforming is bypassed.

Keywords: Sensor imaging, radar imaging, SAR-ISAR, phased array
radar, dense-target environment, target density function.

1 Introduction

Radar imaging is a mapping process of 3-D object to 2-D image by extracting
the echo signals off the targets. It is provided with 2-D Inverse Fourier Trans-
form(IFT) by Inverse Synthetic Aperture Radars(ISAR) principles [20,19,5,18].
Radar image formation consists of three consecutive phases such as signal acqui-
sition, signal processing and image processing [20,19]. This study is interested
in first and second phases.

Target density function(TDF) is an important characteristic of radar
imaging. TDF is known with different names such as ambiguity function, den-
sity function, target density function, object(target), object reflectivity function,
doubly-spread reflectivity function, reflection coefficient [12,11]. They all seem
directly relevant to the representation of the exact object.

If TDF is considered as a reflection coefficient, according to Schlumberger/
oilfield glossary and American meteorological society/glossary of meteorology,
reflection coefficient is defined as the ratio of the received signal to the transmit-
ted signal. By this definition, when the reflected signals from different directions
are considered, TDF has an important role in producing of the radar images.

There are two approaches on TDF. First one considers point scatterers re-
flected off the target scatterer centers. Integration of all point scatterers is able to
give the whole object. This approach is based on inverse Fourier transform(IFT)
referred to ISAR principles [19,13,20,5,18].

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 1200–1207, 2005.
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Second method on TDF is dense-target environment approach credited to
Fowle and Naparst [7,8]. This takes into consideration the existence of densities
of the targets and it is based on the ambiguity functions with two variables as
range and velocity[3].

In this study, a new TDF is theoretically developed by a new approach on
range-scanning angle plane different from Fowle-Naparst and IFT-ISAR tech-
niques. While this is obtained via by a phased array radar system, the problem
associated with beamforming is bypassed. This is another advantage of this
study. All details of the new method is given in section 4.

2 Radar Systems

A typical radar (RAdio Detection And Ranging) measures the strength and
round-trip time of the microwave signals that are emitted by a radar antenna and
reflected off a distant surface or target. Radar is an active sensors that provides
its energy and capable of detection, tracking and targeting [1,2,13,4,6,19,20].

Let consider a point target at range R, with radial velocity v relative to a
collocated transmitter/receiver, as shown in Figure 1a.

Fig. 1. Radar-target Detection

Suppose an arbitrary signal f(t) is transmitted. The received signal after
reflection from a point target is given by

r(t) = af(s(t− τ)) (1)

where

τ =
2R

c

s =
c− v

c + v
(2)

Where, a is an amplitude that depends on the range of the object, its reflectivity
properties, and the frequency of operation among other factors; c is the speed
of propagation as speed of light.
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The returned signal, r(t) is a delayed and time-scaled version of the trans-
mitted signal, f(t).

If a SAR(synthetic aperture radar) imaging is considered, instead of a tar-
get point, if our target is composed of continuum of point targets, in receiving
mode, SAR processes the returned image signal to reach the target at x, y, z
coordinates[19,20,10].

s(t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ρ(x, y, z)f(t− 2R

c
)dxdydz (3)

Where f is the transmitted signal function, ρ is reflectivity function, R is the
range and c is the speed of light. SAR is a technique which is based on multi-
aperture sensing[9].

As for phased array radar systems, they perform radar functions much more
rapidly and with increased accuracy. Arrays may be considered as active element
or passive arrays. In the active array, a transmitter or receiver or both connected
directly to each element. In the passive array, only transmitter and one receiver
is used for the entire array system [1,2].

A general view of a phased array radar system is as the following Figure
1b. As can be seen, the waves reflected off the targets are received by the radar
system by phase differences. The differences are matched using a phase shifter,
then the process is finalized by the beam-forming.

3 Preliminaries of Density Functions

In radar research and applications, Target Density Function(TDF) is called with
different names such as ambiguity function, density function, target density func-
tion, object(target), object reflectivity function, doubly-spread reflectivity func-
tion, reflection coefficient etc..[12,11].

According to Schlumberger/oilfield glossary and American meteorological so-
ciety/glossary of meteorology, reflection coefficient is defined as the ratio of the
received signal to the transmitted signal. This indicates that when TDF is con-
sidered as a reflection coefficient, it is indirectly relevant to the object or image.

As TDF definition, reflection coefficient is used in IFT and ISAR image for-
mation. This technique defines the reflection coefficient by superposition method
which is integration of all point scatterers. Summation of the point scatterers
represent the whole object [19,13,20,5,18]. This is shown in the equation (3).
ρ(x, y, z) determines the integration of the point scatterers at the object or target.

First Density term related to the target density function term is called as
dense and density by Fowle et all [7]. In this paper, it is used to emphasize to
define complex targets and separate the single and multiple targets. In multiple
case, while a high density of similar targets is defined, in single case, a single tar-
get in a dissimilar clutter background is claimed. Then dense target environment
term is used by Naparst in his paper [8].

Fowle’s approach is inspired of ambiguity functions and considers the single
target. Ambiguity functions are important in radar signal design. They are capa-
ble of quantifying the behavior of a radar waveform. A typical ambiguity function
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describes the response of a particular range-velocity resolution of a radar to a
point target [3,14,17,16,15]. This type of ambiguity function with range-velocity
variables also correspond to Naparst’s approach based doppler effect as well. If
the ambiguity function A(x, y) corresponding to a function u(t) is defined by

A(x, y) =
∫ ∞

−∞
u(t− x

2
)û(t +

x

2
)e−j2πytdt (4)

where û is the complex conjugate of u. This approach provided important contri-
bution to radar applications to describe target density functions. The variables
x, y in ambiguity function (4),corresponds to the velocity and distance of Fowle
and Naparst’s models [7,8].

In addition to dense target environment concept, Naparst also described it as
a target density function in the same work. This approach was on multiple and
high density target environment differently from Fowle’s. He defined dense-target
environment that it includes a lot of targets that ranges and velocities of those
targets are very close to each other. This definition has also taken advantage of
Fowle’s single target density properties. Definition by Naparst, density of targets
at distance x and velocity y is D(x, y). In this case, the echo or the reflected
signal from targets will be

e(t) =
∫ ∞

0

∫ ∞

−∞
D(x, y)

√
ys(y(t− x))dxdy (5)

In this approach, it is assumed that all targets are illuminated equally. By this
way, the target density function seems based on the range-velocity variables
similar to ambiguity functions.

As stated, Fowle and Naparst’ approaches are firstly interested in high and
low dense-target environments.

4 Estimation of Target Density Function

Here, a new target density function(TDF) is estimated by a new algorithm. TDF
is an effective tool for imaging of the radar targets in dense-target environment.
A new target density estimation algorithm is theorized by making use of IFT-
ISAR(point scatterers) and Fowle - Naparst’ approaches. In this study, new TDF
is worked for radar imaging based on a linear phased array radar system. The
object at out of range is imaged by a new estimation algorithm using the target
density function.

The variables of the target density function are based on the coordinates as
range, R and angle β. If g(R,β) is a target density function at range R with
scanning angle β. In this work, by making use of the definitions of target density
function above, we describe a target density function as the following;

Definition. Target Density Function is as the limit of the ratio of the amplitude
of the signal reflected from an infinitesimally neighborhood about the point
(R,β) to the amplitude of the incoming signal.
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By this definition

g(R,β) = lim
d(Ω)→0

Ar

At
(6)

where d(Ω) is the diameter of the ball about the point (R,β) ∈ Ω, Ar and At

are the amplitudes of the reflected and the transmitted signals, respectively.
This definition is relevant to how much energy is reflected and it looks dif-

ferent from the other target density function definitions. Instead of ambiguity
functions based on range-velocity variables, imaging is taken by a new target
density function based on range and scanning angle. Although the new TDF is
obtained in different manner, it is similar to Naparst’s approach in terms of high
dense target environment.

Let consider the following Figure 2, as target plane. Where β is cosθ and R
is the range from the target to the radar.

Fig. 2. Phased array imaging

As can be seen in Figure 2, the target density function is a function of the
spatial coordinates (R,β) in the upper semi-plane.

Now let obtain the target density function. Let P (t) be any periodic function
of time, such as a train of pulses,where

p(t) =
∞∑

k=−∞
αk e

jkω0t (7)

ω0 = 2π × PRF, (8)

where PRF is the pulse repetition frequency.

sc(t) = ejωct (9)

Where sc(t) is the carrier signal.
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sm(t) = p(t)sc(t) (10)

Where sm(t) is the modulated signal.
The reflectivity of one point at g(R,β)

y(x, t) = sm(t− 2R/c− βx/c)g(R,β) (11)

Let generalize (11) to the whole radar-target semi upper plane by superpo-
sition principle;

If g(R,β) is the reflectivity of the point (R,β), and R1 is the maximum range
of interest target area; then

y(x, t) =
∫ 1

−1

∫ R1

0
sm(t− 2R/c− βx/c)g(R,β)dRdβ

=
∫ 1

−1

∫ R1

0
p(t− 2R/c− βx/c)e−jωc(2R/c−βx/c)ejωctg(R,β)dRdβ(12)

where y(x, t) is the output of the sensor located at center (the feature space),
and c is the speed of light.

The algorithm is as follows,

y(x, t)=
∞∑

k=−∞
αke

j(ωc+kω0)t
∫ 1

−1

∫ R1

0
e−j(ωc+kω0)2R/ce−j(ωc+kω0)βx/cg(R,β)dRdβ

(13)
Then, demodulation of the equation (13) via

sd(t) = e−j(ωc+kω0)t (14)

yields

Y (k,x) =
∫ 1

−1

∫ R1

0
e−j(ωc+kω0)2R/ce−j(ωc+kω0)βx/c g(R,β)dRdβ (15)

for each k and β, let be G(k,β)

G(k,β) =
∫ R1

0
g(R,β) e−j(ωc+kω0)2R/cdR (16)

Hence for each fixed k and β we obtain

Y (k,x) =
∫ 1

−1
G(k,β)e−j(ωc+kω0)βx/cdβ (17)

If this equation is considered as the following,

Yk(x) =
∫ 1

−1
Gk(β)e−j(ωc+kω0)βx/cdβ (18)
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If there are N sensors, each located at x = xi, this gives us the inner product of
Gk(β) with

ai(β) = e−j(ωc+kω0) xi
c β (19)

This enables us estimate Gk(β) as

Gk(β) ∼=
M∑

k=−∞
biai(β) (20)

for some constants bi.
Then, if let the equation (16), consider as a

Gk(β) = G(k,β) =
∫ R1

0
g(R,β) e−j(ωc+kω0)2R/cdR (21)

Let consider it as a Fourier series as the following.

g(R,β) =
∞∑

k=−∞
Gk(β)ej(ωc+kω0)2R/c (22)

If we change k, −N � k � N ,(N and ωc are chosen such that ωc
∼= Nω0), for

each fixed β we obtain the trigonometric Fourier series of g(R,β) with respect
to the variable R. Hence we estimate g(R,β)(we obtain 2N + 1 terms) as,

g(R,β) ∼=
N∑

k=−N

Gk(β)ej(ωc+kω0)2R/c (23)

As realized that although a phased array radar system is used during the
estimation of TDF, the problem associated with beamforming is bypassed. This
is another gain of our technique.

5 Summary and Conclusion

In this paper, a new target density function(TDF) is theorized by a new esti-
mation algorithm by utilizing the point scatterer and ambiguity functions. New
target density function is based on range and angle information different from
conventional approaches.

The new TDF is interpreted in a specified manner and partly inspired of
IFT-ISAR and Fowle-Naparst approaches. However, it is developed based on
range and scanning angle plane in high dense-target environment.

In addition to the new algorithm, second gain of this study is provided by the
phased array radar system. Although TDF is produced via by the phased array
radar, the problem associated with beamforming is bypassed. This is another
advantage of our technique.
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Abstract. In this paper, an adaptive scene-based nonuniformity and
ghosting artifacts correction algorithm for infrared image sequences is
presented. The method simultaneously estimates detector parameters
and carry out the non-uniformity and ghosting artifacts correction based
on the retina-like neural network approach. The method incorporates
the use of a new adaptive learning rate rule into the estimation of the
gain and the offset of each detector. This learning rule, together with
the consideration of the dependence of the detector’s parameters on the
retinomorphic assumption used for parameter estimation, may sustain
an efficient method that could not only increase the original method’s
ability for estimating the non-uniformity noise, but also increase the ca-
pability of mitigating ghosting artifacts. The ability of the method to
compensate for nonuniformity and reducing ghosting artifacts is demon-
strated by employing several infrared video sequences obtained using two
infrared cameras.

Keywords: Image Sequence Processing, Infrared Focal Plane Arrays,
Neural Network.

Topic: Vision and Image Processing, Signal Processing.

1 Introduction

Infrared (IR) imaging systems employ an IR sensor to digitize the information,
and due to its high performance, the most used integrated technology in IR
sensors is the Focal Plane Array (FPA). An IR-FPA is a die composed of a
group of photodetectors placed in a focal plane forming a matrix of X × Y
pixels, which gives the sensor the ability to collect the IR information.
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It is well known that nonuniformity noise in IR imaging sensors, which is
due to pixel-to-pixel variation in the detectors’ responses, can considerably de-
grade the quality of IR images since it results in a fixed-pattern-noise (FPN)
that is superimposed on the true image. Even more, what makes matter worse
is that the nonuniformity slowly varies over time, and depending on the tech-
nology used, this drift can take from minutes to hours. In order to solve this
problem, several scene-based nonuniformity correction (NUC) techniques have
been developed [1,2]. Scene-based techniques perform the NUC using only the
video sequences that are being imaged, not requiring any kind of laboratory
calibration technique.

Recently our group has been given special attention to the NUC method
based in a retina-like neural network approach developed by Scribner et al [3,4].
We developed an enhanced version of his NUC, which relies on the use of an
adaptive learning rate schedule in the parameters estimation update process
[5,6]. This adaptive learning rate is chosen to be dependent on the spatial content
of the readout data, constraining thus the speed of the learning process for each
detector on the IR-FPA independently. Nonetheless, in despite of the new degree
of adaptiveness added to the Scribner’s method, it still generates ghosting arti-
facts in cases such as when the infrared camera is recording objets that are not
moving with respect to the camera and then they suddenly leave the field of view.

Therefore, seeking for more effectiveness in the reduction of ghosting artifacts,
and also exploiting even further the exceptional potential of the original Scribner’s
method, in this paper, an extension of our previously developed scene-based NUC
method based in Scribner’s work is presented. Specifically, we include the use of a
new adaptive learning rate rule into the estimation of the gain and the offset of each
detector. This new learning rate is chosen to be dependent on the spatial variation
of the read-outdata of one frame, and on the temporal motion between consecutive
frames. In this way, faster adaptation is mainly allowed for such detectors not only
where the input data fits the hypothesis assumed by the retinomorphic model, but
also following temporal variations in theoperationpointof eachdetector.Moreover,
the estimation of eachneuron’s parameter is improvedwith the consideration in the
error function of the dependence of the retinomorphic assumption on the updated
detector’s parameters. The foregoing could not only increase the method’s scene-
based ability for estimating the non-uniformity parameters, but also increase the
capability of mitigating ghosting artifacts.

This paper is organized as follows. In Section 2 the new NUC method based
on Scribner’s work is presented. In Section 3 the NUC technique is tested with
video sequences of real raw IR data. In Section 4 the conclusions of the paper
are summarized.

2 The NUC Algorithm for Infrared Video Sequences

The aim of this paper is the development of a novel adaptive scene-based NUC
method for reducing the FPN and the ghosting artifacts in a fast and reliable
frame by frame basis. Formerly, we review the fundamental concepts of an avenue
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introduced by Scribner et al. [3,4], briefly showing his retina-like neural net for
NUC, and then, we present our proposed innovations.

2.1 Scribner’s Neural Network for NUC

First, we assume that each infrared detector is characterized by a linear model.
Then, for the (ij)th detector in IR-FPA, the measured readout signal Yij at a
given time n can be expressed as:

Yij(n) = gij(n) ·Xij(n) + oij(n) (1)

where gij(n) and oij(n) are the gain and the offset of the ijth detector, andXij(n)
is the real incident infrared photon flux collected by the respective detector. As
proposed by Scribner, equation (1) is reordered as follows:

Xij(n) = wij(n) · Yij(n) + bij(n) (2)

where the new parameters wij(n) and bij(n) are related to the real gain and
offset parameters of each detector as follows:

wij(n) =
1

gij(n)
bij(n) = −oij(n)

gij(n)
(3)

The expression presented in equation (2) is the responsible of performing
the non-uniformity correction on the readout data. Then, for each ijth detector,
the NUC model (2) can be considered as the simplest neural network structure,
which consists of a single linear neuron node, with an estimate weight (ŵij(n))
and an estimate bias (b̂ij(n)). Thus, the readout data Yij(n) is the input to the
ijth neuron, and its output X̂ij(n) is the estimation obtained for the real infrared
data. The entire array of single-input/single-output linear neurons constitutes
the base for Scribner’s adaptive NUC method. For a complete version of Scrib-
ner’s NUC method and our previously published enhancements of such method
see [3,4] and [5,6] respectively.

2.2 NUC Method with Ghosting Reduction Capabilities

This neural network approach allows the use of linear regression techniques to
perform the estimation of each neuron parameters. The needed error function
Eij(n) to accomplish this estimation task is defined as the difference between
a desired target value Tij(n) and the estimated infrared data X̂ij(n). Using
an analogy with biological retina-like processes, the target value proposed by
Scribner for estimating the unknown parameters can be assumed as the local
spatial average (mean filter) of the output data X̂ij(n). This assumption is based
on the retinomorphic hypothesis, which states that there is a high probability for
one detector, and its closest neighbors, of being illuminated by the same infrared
irradiance. Therefore, the error function is finally given by:

Eij(n) = Tij(n)− X̂ij(n), (4)

where the desired target value Tij(n) is calculated as:
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Tij(n) =
1

(2v + 1)2

i+v∑
k=i−v

j+v∑
l=j−v

X̂kl(n), (5)

where 2v + 1 is the kernel neighborhood, or averaging window size.
In this paper, this is the starting point for the development of our proposed

enhancements to Scribner and to our previous work. First of all, we consider
that the target Tij(n) in the functional Jij depends of each detector parameter
involved in the retinomorphic model, but these parameters are spatially indepen-
dent. Then, its partial derivatives (gradients) relatives to the desired parameters
to be estimated are expressed as follows:

Jij =
∑

n

Eij(n)2 =
∑

n

(Tij(n)− X̂ij(n))2 (6)

∂Jij

∂ŵij
= −8v(v + 1)

(2v + 1)2
·Eij · Yij (7)

∂Jij

∂b̂ij
= −8v(v + 1)

(2v + 1)2
·Eij

the functional J is minimized only when its both gradients in (7) are equal to
zero. Even that this new functional is more accurate than the Scribner’s one, we
do not expect major improvements since the difference between both functionals
is in the factor 8v(v+1)

(2v+1)2 , which is approximate equal to the constant factor of 2
derived by Scribner in his pioneering work.

We now update the steepest descent algorithm to solve this Least Mean
Square (LMS) optimization problem. In this gradient-based search algorithm,
the parameters to be estimated are recursively and smoothly updated with a
portion of each respective error gradient as follows:

ŵij(n+ 1) = ŵij(n)− ηij(n) · 8v(v + 1)
(2v + 1)2

· Eij(n) · Yij(n) (8)

b̂ij(n+ 1) = b̂ij(n)− ηij(n) · 8v(v + 1)
(2v + 1)2

·Eij(n)

where ηij(n) is an adaptive learning rate rule. In our previous work, we proposed
the use of an adaptive learning rate ηij(n), which depends on the local spatial
standard deviation of the input image σYij (n), and it was defined as follows:

ηij(n) = kalr · 1
1 + σYij(n)

(9)

where kalr is a constant that fix the maximum allowable value for ηij(n). There-
fore, if a given piece of the input image (a pixel and its neighbors) is smooth
enough, then the desired averaged target value at the output is more confident,
and the learning rate can get larger values. On the other hand, if the local input
standard deviation in the surroundings of a certain pixel is too high, like in an
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object border, the learning rate get smaller values. The local standard devia-
tion σYij (n) can be calculated with any desired window size, hopefully according
to the window size already used to calculate the local average for the desired
output.

We propose to introduce in the foregoing learning rate rule the ability of
reducing ghosting artifacts. We know that ghosting is generated when a target
that have being imaged for some time, suddenly leaves the field of view of the
camera. In other words, the operation point of the detectors imaging such target
have suddenly changed. Therefore, the adaptive learning rate rule should start
learning faster globally or at least for such detectors. Thus, the adaptive learning
rule designed for each neuron is expressed as follow:

ηij (n) =
kalr

1 + σYij (n)
×ΔY

ΔY = |p|+ |q|

Cpq (n) = real {IFT [FT (Y (n)) ·H∗ (n)]}

H (n) =
FT (Y (n− 1))
|FT (Y (n− 1))|2

where Cpq(n) is the correlation between the frame Y (n) and the frame Y (n−1).
FT and IFT indicate Fourier transform and inverse Fourier transform respec-
tively. H(n) is a classical adaptive correlation filter [7]. ΔY is a global factor,
which is proportional to the level of motion between the frames n and n − 1,
evaluated as the distant in pixels between (p, q) = (0, 0)(Center of Cpq(n)) and
(p, q) of the origin and the peak of the correlation matrix Cpq(n) respectively.
Thus, with this enhancement the learning rate ηij will not update the parameters
if ΔY = 0 since there is not motion between frames n and n − 1 and will up-
date the parameters as faster as the motion between consecutive frames required
(magnitude of ΔY ) eliminating ghosting artifacts by adapting the parameters
to the new operation points of the detectors.

The overall fast adaptive NUC scheme is presented in figure 1, where the in-
put image is the readout data Yij(n), which enters to the adaptive NUC neural
net model (represented by an array of linear neurons) that calculates the cor-
rected image version X̂ij(n). The local spatial average function (Neighborhood
Operation 1 ) is applied to the estimated corrected image X̂ij(n), generating thus
the target Tij(n) in order to calculate the Error function Eij(n). The error is
then feed-backed in the steepest descent Parameters Update Algorithm, where
the adaptive learning rate ηij(n) finally uses the local spatial variance (Neighbor-
hood Operation 2 ) of the input image and the estimation of the motion between
consecutive frames for ghosting reduction.
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Fig. 1. Scheme of the proposed Scene-Based Non-Uniformity Correction Method

3 Performance Evaluation with Real Infrared Image
Sequences

The main goal of this section is to test the ability of the proposed learning
rate rule to mitigate ghosting artifacts generates by using Scribner’s scene-based
NUC method or our enhancement to his method. The algorithm is tested with
two real infrared image sequences. The first sequence has been collected using a
128 × 128 InSb FPA cooled camera (Amber Model AE-4128) operating in the
3− 5μm range. As an example, figure 2(a) shows from left to right a raw frame,
the corresponding corrected frame by our previously published enhance version
of Scribner’s NUC method, and the corresponding corrected frame by the NUC
method proposed in this paper. It can be seen using only the naked eye, that
the ghosting artifact (the gate of the hangar) generates by the motion of the
camera is only eliminated in the frame corrected by the proposed NUC method.
The NUC performance is evaluated employing the index root mean square error
(RMSE) computed between the reference (the real IR sequence calibrated with
black bodies) and the corrected IR video sequence. Figure 3 shows the calculated
RMSE for each frame corrected using our previous upgrade to Scribner’s NUC
method and using the proposed method. Further,the average RMSEs computed
for the whole infrared sequence are equal to 79.75 and 78.61 for the sequence
corrected by our previously published enhance version of Scribner’s NUC method
and for the sequence corrected by the proposed NUC method, respectively. Note
that, we have reached an improvement of only 1.5% since a window size of v = 3
is used generating a factor 8v(v+1)

(2v+1)2 = 1.95, which is approximate equal to the
constant factor of 2 derived by Scribner in his work. Further, it can be seen in
figure 2(a) using only the naked eye that the non-uniformity is notably reduced
by both NUC methods.

The second sequence of infrared data has been recorded using a 320 × 240
HgCdTe FPA cooled camera (CEDIP Jade Model) operating in the 8 − 12μm
range. As an example, figure 2(b)(c) shows from the left to right a raw frame,
the corresponding corrected frame by our previously published enhance version
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(a)

(b)

(c)

Fig. 2. Performance of the NUC methods under real IR data. (a)(b)(c) The 1611− th

(1134 − th) (1340 − th) frames of the first (second)(second) set of IR data, at the
left the raw frames, at the center the corresponding frames corrected by our previous
enhancement to Scribner’s NUC method and at the right are the frames corrected by
proposed method.

of Scribner’s NUC method, and the corresponding corrected frame by the NUC
method proposed in this paper. Again, it can be seen by only using the naked eye,
that the non-uniformity presented in the raw frame has been notably reduced
by both NUC methods. Also, the ghosting artifact(see the ghost vehicle and
the ghost boxes) generates by the motion of the camera is only eliminated in
the frame corrected by the NUC method proposed in this paper. Thus, we have
shown experimentally with real IR data that the proposed scene-based NUC
method has the ability of notably reduces the ghosting artifacts and the non-
uniformity noise presented in IR-FPA sensors.
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Fig. 3. The evolution of the RMSE between the reference (set 1 calibrated with black
bodies) and the corrected frames of IR data set 1. Dashdot line represents the RMSE
computed for our previous upgrade to Scribner’s NUC method, and solid line represents
the RMSE computed for proposed NUC method.

4 Conclusions

In this paper an enhanced version of our previously developed upgrade to Scrib-
ner’s NUC method is proposed. The new method has the ability of not only re-
ducing the FPN, but also eliminating ghosting artifacts efficiently. It was shown,
using real IR data that the method is able to adapt the estimation of the non-
uniformity parameters to abrupt changes in the scene, reducing therefore the
ghosting artifacts efficiently.
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Abstract. Programmable graphics hardware have proven to be a powerful re-
source for general computing. Previous research has shown that using a GPU 
for local image processing operations can be much faster than using a CPU. The 
actual speedup obtained is influenced by many factors. In this paper, we quan-
tify the performance gain that can be achieved by using the GPU for different 
image processing operations under different conditions. We also compare the 
strengths and weaknesses of two of the current leaders in mainstream GPUs – 
ATI’s Radeon and nVidia’s GeForce FX. Many interesting observations are ob-
tained through the evaluation. 

1   Introduction 

Real-time image processing has many applications in areas such as robot navigation 
and object tracking. In order to achieve real-time performance many custom designed 
SIMD systems, which tend to be costly, have been used in previous research [2]. 

As programmable graphics hardware increases in power and decreases in price, it 
is becoming a more viable option for both simple and complex image processing op-
erations. While it is still challenging to implement some iterative algorithms for a 
current Graphics Processing Unit (GPU), many image processing operations are well 
suited for moving from the CPU to the GPU [1, 4-6, 8, 9]. Since local image process-
ing operations can be performed on GPUs in a moderately parallel manner, consider-
able performance increase can be achieved over their CPU counterparts. 

The total speedup obtained is influenced by many factors including the type of im-
age processing operation and the shading language used to implement the operation. 
The objective of our research is to quantify the performance gain that can be achieved 
for different image processing operations under different conditions. The experimen-
tal results show that, for the twelve operations tested, a current GPU is on average six 
times faster than the reference CPU. 

We also compare the strengths and weaknesses of two of the current leaders in 
mainstream GPUs – ATI’s Radeon and nVidia’s GeForce FX. While the game per-
formance and rendering abilities of both of these product lines are well studied, very 
little research has been published that highlight their performance in the area of image 
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processing. Based on a variety image processing operations, this paper provides a 
head-to-head comparison between the two. The results suggest that the ATI GPU 
gives a better overall performance. 

1.1   Related Work 

A modern GPU can be considered a streaming processor, which consists of two pipe-
lines: the vertex pipeline and the fragment pipeline. In most 3D graphics applications, 
the vertex pipeline is used to calculate the transformation and lighting of each vertex 
and the fragment pipeline is used for calculating the shading of each rasterized pixel. 

Even though they are primarily designed for 3D graphics applications, GPUs have 
shown to be useful for image-related applications such as fast Fourier transformation 
(FFT) [6], image segmentation [9], stereo matching [8], and motion estimation [5]. 
Using GPUs for these applications typically involves the following steps: (1) load the 
input images to the video memory and bind them to texture sampling units; (2) load 
the algorithm into the fragment processor as a pixel shader (also referred as fragment 
program); (3) set either the screen of a pixel buffer as the rendering target; and (4) 
execute the shader by rendering a image-sized rectangle. 

Some recent research [1, 7] has tried to evaluate the performance of programmable 
graphics hardware on image processing operations. In their paper [1], Colantoni et al. 
compare an nVidia GeForce FX card with reference AMD and Intel CPUs on five dif-
ferent image processing operations. They report that the average speedup of the GPU 
over CPU is around ten. Our evaluation results confirm Colantoni et al.’s findings even 
though a different set of operations are used. However, we also found that the speedup 
is much lower if we compare the performance of the GPU with an optimized CPU im-
plementation that utilizes the Multi-Media Extension (MMX) instructions. 

Sugita et al. compare an ATI Radeon 9700 Pro card with Intel Pentium 4 3GHz 
CPU [7] on several image filtering operations, as well as a stereo matching applica-
tion. Their results show that, compared to the MMX-optimized CPU implementation, 
the GPU implementation can achieve a speedup of three to six times on image filter-
ing operations, and about twice on the stereo matching application. 

Unlike these two papers, our research evaluates both ATI and nVidia GPUs, which 
makes it possible to provide a head on comparison between the two. Twelve different 
image processing operations have been carefully chosen. Some operations involve 
complex arithmetic calculations, such as image gradient magnitude calculation, while 
others involve comparison calculations, such as 3×3 median filtering. In addition, we 
also compare the two GPUs under both Direct3D and OpenGL APIs. 

2   Performance Evaluation on Image Processing Operations 

2.1   Image Processing Operations Selected 

In order to compare the performance of the GPUs with the reference CPU on different 
image processing tasks, a variety of operations are selected for testing. These opera-
tions can be roughly classified into the following three categories. 

Arithmetic Operations: For operations in this category, the output intensity I'x,y of 
pixel (x,y) depends solely on the input intensity Ix,y of the same pixel. As a result, 
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these operations mainly test the processor’s speed on arithmetic calculations. The 
functions involved for the different operations are listed below: 

• Negative:  yxyx II ,, 1 −=′

• Increase brightness: 2.0,, +=′
yxyx II

• Increase contrast: 5.1,, ×=′
yxyx II

• RGB to XYZ space: yxyx II ,,

0.9500.1190.019

0.0720.7150.213

0.1800.3580.412

⋅=′

Image Convolutions: Operations in this category calculate the linear combination of 
the intensities of neighboring pixels. Hence, the performance on these operations re-
flects how fast the processor is able to access the neighboring pixels. 

• Laplacian filter: 1,1,,1,1,, 4 +−+− −−−−=′
yxyxyxyxyxyx IIIIII

• 3×3 mean filter: 
−= −=

++=′
1
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1
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• 3×3 Gaussian filter: 
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Comparison-Based Operations: Different from previous operations, the operations 
in this category involve comparisons. Hence these operations evaluate how fast the 
branching calculations can be handled.

• Thresholding:  
≥
<

=′
5.01

5.00

,

,

,

yx

yx

yx I

I
I

• Dilation:  =′
+++−−+−−

+−+−

1,11,11,11,1

1,1,,1,1,

, ,,,

,,,,,
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• Erosion:  =′
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yxyxyxyx
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• Median filter:  =′
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,,,,,
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2.2   The Implementations on CPU and GPU 

Two different approaches are used to implement the above operations for the refer-
ence Intel CPU. The first approach uses a straightforward C++ implementation, com-



1220 M. Gong, A. Langille, and M. Gong 

piled using Microsoft Visual C++ .Net. Reasonable efforts have been put in to opti-
mize the performance of this implementation. However, attempts were not made to 
optimize at the assembly level. 

The second approach makes use of Intel’s Image Processing Library (IPL), which 
provides optimized image processing functions that take advantage of the MMX tech-
nology. We are able to find functions in the IPL for most of the operations listed 
above. For example, the Negative operation is implemented using the iplSubtractS 
function, which subtracts the intensity from a constant, and the Mean operation is 
implemented using the iplBlur function, which calculates the average intensity of 
nearby pixels. However, at the time of testing, we were unable to find any existing 
function in IPL that is optimized specifically for calculating the gradient magnitude of 
an image. As a result, the more general function iplConvolve2D is used to convolve 
the input image with two Sobel kernels and then combine the results by calculating 
the square root of the square sum. 

As mentioned earlier, to execute an image processing operation on GPU we need 
to implement the operation using a pixel shader and load the shader into the fragment 
processor. Writing a shader in the native assembly-like shading language tends to be 
confusing for programmers lacking experience in other assembly languages. It also 
had the disadvantage that the shader needs to be rewritten if and when we want to take 
advantage of more complex instructions provided by newer graphics hardware. To 
address these problems, several high level shading languages have been developed. 
The shaders written in high level shading languages can be compiled into the shader 
assembly code according to the hardware profile specified. Which hardware profiles 
can be used depends on the support provided by the chosen hardware and also de-
pends on which 3D API (OpenGL or Direct3D) is chosen for programming. 

To evaluate the performance of the GPUs under different shading languages and 
profile settings, we implemented the previously described image processing opera-
tions using three widely used high level languages: Microsoft’s High Level Shading 
Language (HLSL), nVidia’s Cg, and OpenGL’s OpenGL Shading Language (GLSL). 
Since HLSL and Cg are based on a common language that was co-developed by Mi-
crosoft and nVidia, our implementations for HLSL and Cg actually share the same 
code. The syntax for GLSL is different from that of HLSL and Cg. However, we are 
able to find similar functions to translate between the two. As a result, all three im-
plementations are comparable in terms of efficiency. 

Great effort was made to ensure the shaders were correct and efficient. The cor-
rectness is verified by comparing the images generated by the shaders with those gen-
erated by the corresponding functions in Intel’s IPL. Wherever possible, different 
variations for a shader were implemented and the one that producing the fewest in-
structions in the compiled assembly was chosen (Table 1 shows the number of in-
structions used for different operations). However, two constraints were placed on our 
implementation: (1) use only one rendering pass even though some operations are 
separable and can be more efficiently implemented using two rendering passes, and 
(2) no bilinear texture sampling is used although it can reduce the number of instruc-
tions needed for some operations [3]. These two constraints help to minimize the 
overhead for setting up the rendering process and to focus on comparing the perform-
ance of the fragment processors of the GPUs with the reference CPU. 
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Table 1. The number of texture and arithmetic instructions used for different operations when 
the HLSL code is compiled using the pixel shader 2.0 profile 

Instructions Instructions Instructions Arithmetic 
Ops. Tex. Arith. 

Convo-
lutions Tex. Arith. 

Comparison 
Ops. Tex. Arith. 

Negative 1 2 
Lapla-
cian 

5 9 
Thresh-
olding 

1 3 

Brightness 1 2 Mean 9 18 Dilation 9 17 

Contrast 1 2 
Gaus-
sian 

9 19 Erosion 9 17 

RGB2XYZ 1 5 Gradient 8 30 Median 9 59 

Table 2. Speed differences between the two graphics cards 

Feature ATI Radeon 9800 XT nVidia GeForce FX 5950 Ultra 
GPU Clock Speed 412 MHz 450 MHz 

Video Memory 
Speed 

730 MHz 850 MHz 

2.3   Test Conditions 

Two different GPUs are evaluated: The first is ATI’s Radeon 9800 XT (released on 
September 30, 2003) and the second is nVidia’s GeForce FX 5950 Ultra (released on 
October 23, 2003). Both graphics card have 256MB DDR RAM, were considered to 
be the top of their respective product line and occupied the same high-end home and 
small business desktop market niche at the time of their purchase. While these two 
video cards are considered to be in the same class, there are some key differences that 
should be noted (see Table 2). 

In terms of hardware profiles, both cards support pixel shader 2.0 (PS2.0) under the 
Direct3D API and fragment program 1.0 (ARBFP1) under the OpenGL API. In addi-
tion, the GeForce 5950 also supports a vendor-specific profile named FP30 under the 
OpenGL API. Since both HLSL and GLSL code can only be compiled into their own 
APIs while Cg code can be compiled into both APIs, this gives a total of four unique 
language and profile combinations for the Radeon 9800 (HLSL/PS2.0, Cg/PS2.0, 
GLSL/ARBFP1, and Cg/ARBFP1) and five combinations for the GeForce 5950 (with 
an additional Cg/FP30). 

The two graphics cards are installed on two identical PCs: IBM ThinkCenter M50 
(model 8189-T7U). Some of the key system specifications include: Intel 3GHz Pen-
tium 4 processor with 1 MB cache and hyper threading enabled, 512MB PC2700 
DDR RAM, 800MHz Front Side Bus, and 1 AGP slot operating at AGP 8X. 

For the GPU testing, in order to maximize both performance and shader language 
compatibility, the appropriate vendor drivers were installed1. Beyond the vendor driv-
ers the software on the test system consisted of Microsoft Windows XP (Service Pack 

2), Norton AntiVirus, Microsoft .Net Developer Studio, nVidia’s Cg Toolkit, the 
OpenGL Utility Toolkit (GLUT) for Windows and the Intel IPP libraries. 

1  nVidia’s driver (ForceWare 66.93 build 6.14.10.6693) is obtained from www.nVidia.com, 
and ATI’s driver (Catalyst 5.1 build 6.14.10.6505) is obtained from www.ati.com 
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Our objective is to measure the time needed for different image processing opera-
tions on different processors. Unfortunately, directly measuring the processing time is 
limited by the accuracy of the system clock. Instead, the application we developed 
repetitively performs an image processing operation on an image and measures the 
frame rate. The application waits one minute for the frame rate to be stabilize, and 
saves the result to a text file before exiting. 

3   Evaluation Results 

3.1   CPU vs. GPU 

Now we start to present the evaluation results. The first test compares the perform-
ance of both the nVidia GeForce 5950 and ATI Radeon 9800 with the Intel Pentium 4 
on the image processing operations previously discussed. In this test, the image size is 
fixed at 512×512, and the shading language and profile for the GPU is set to 
HLSL/PS2.0. 
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Fig. 1. Performance comparison among GPUs and the reference CPU, shown in both linear and 
log scales 

The frame rates measured for different implementations are shown in Fig. 1. In or-
der to illustrate the performance differences for both simple and complex operations, 
the frame rates are shown in both linear and log scales. The following observations 
can be made from the figure: 
• Both GPUs outperform the Pentium 4 on all operations except Median. The rela-

tively poor performance of the GPUs on the Median operation is likely caused by 
the lack of truth branching functionality. 

• Between the two implementations for the Intel CPU, the one utilizing IPL is gener-
ally faster. However, since there is no function in IPL that is optimized for gradient 
magnitude calculation, the implementation for Gradient using IPL is actually 
slower than the straightforward C++ implementation. 

• The time needed for Negative, Brightness, and Contrast operations is the same on 
each respective GPU, but this is not the case on Pentium 4. This suggests that the 
addition, subtraction, and multiplication operations require same number of clock 
cycles on the two GPUs, but different cycles on Pentium 4. 
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• As expected, the time needed for Dilation and Erosion operations is the same on all 
processors. 

• Considering its simplicity, the Negative operation requires a surprising amount of 
time on Pentium 4, even though the optimized function, iplSubtractS, has been 
used in the implementation with IPL. 

The speedup of the two types of GPUs over Pentium 4 is shown in Table 3. Two 
observations are worth noting here. Firstly the speedup for the Negative and the Gra-
dient operations are somewhat inflated due to the uncharacteristically poor perform-
ance of the CPU on these operations. Secondly, for the Median operation, the Radeon 
9800 is as fast as the Pentium 4, but the GeForce 5950 is actually about 6.5 times 
slower than the CPU. 

Generally speaking, the speedup is quite effective for both GPUs, and the Radeon 
9800 is the better performer between the two. Taking all twelve operations into ac-
count, the Radeon 9800 achieves an (geometric) average speedup of 6.61 while the 
GeForce 5950 achieves 2.70. In addition, comparison among the speedups for differ-
ent types of operations indicates that using GPUs gives larger performance gains on 
simple arithmetic operations, but the benefit is relatively small for operations involv-
ing complex comparisons. 

Table 3. The speed up of two types of GPUs over 3GHz Pentium 4. The comparison is based 
on the implementation that uses IPL since it produces better overall performance. 

3.2   Effects of Shading Languages and Profiles  

In the previous subsection, the image processing operations are implemented using 
HLSL and compiled using the PS2.0 profile. This subsection evaluates the perform-
ances of the two GPUs under other shading language and profile settings on 512×512 
images. Since Negative, Brightness, and Contrast operations take the exact same time 
to execute on both GPUs, two of the operations (Brightness and Contrast) are re-
moved from the evaluation to avoid redundancy. Similarly the Erosion operation is 
also excluded since it takes the same amount of time as Dilation. 

As discussed in Section 0, The Radeon 9800 supports four different lan-
guage/profile combinations, while the GeForce 5950 supports five. To compare these 
different settings for different operations, the relative frame rate is used as the per-
formance metric. The relative frame rate is defined as the frame rate under a given 

Speedup Speedup Speedup Arithmetic 
Ops. ATI NV 

Convolution 
Ops. ATI NV

Comparison 
Ops. ATI NV 

Negative 35.84 21.52 Laplacian 9.16 3.35 Thresholding 7.93 5.33 
Brightness 5.55 3.33 Mean 4.21 1.39 Dilation 3.57 1.48 
Contrast 11.30 6.79 Gaussian 3.15 1.18 Erosion 3.57 1.48 

RGB2XYZ 9.38 4.09 Gradient 25.79 7.70 Median 1.03 0.15 
Geo. Mean 12.05 6.68 Geo. Mean 7.48 2.55 Geo. Mean 3.20 1.15 
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language/profile setting over the frame rate under the HLSL/PS2.0 setting. As a re-
sult, the relative frame rates for HLSL/PS2.0 setting are always 100%. 

Fig. 2. The relative frame rates under different language/profile settings for the two GPUs 

The calculated relative frame rates are shown in Fig. 2. Careful readers may notice 
that some data is missing from the figure. This indicates that certain operations cannot 
be run under certain language/profile combinations. Our investigation found that these 
problems are caused by the following reason: When the Mean, Dilation, and Median 
operations are implemented using the HLSL/Cg standard and compiled into PS2.0 
profile using the latest version of Cg compiler (version 1.3, released on Jan 18, 2005), 
the generated assembly level shader code contains dependent texture operation se-
quences that are longer than the forth order, which exceeds the limit of the PS2.0 pro-
file. As a result, the code cannot be executed under the Direct3D API, regardless of 
which GPU is used. 

If we put these aberrations aside, the following can be observed from Fig. 2: 

• Under the Direct3D API, the two language/profile settings, HLSL/PS2.0 and 
Cg/PS2.0, have identical performance on the Radeon 9800, and their relative per-
formances on the GeForce 5950 are also very similar. 

• Under the OpenGL API, the performance differences among the three lan-
guage/profile settings, Cg/ARBFP1, Cg/FP30, and GLSL/ARBFP1, are as high as 
25% for some operations. However, none of the three settings give the best per-
formance on all operations. 

• For Radeon 9800, using the two settings under the Direct3D API gives better per-
formance on all image processing operations than using those under the OpenGL 
API. 

• No language/profile setting is a clear out-performer for the GeForce 5950. Gener-
ally speaking, the three settings under the OpenGL API give better performance on 
Negative and RGB2XYZ operations, while those under the Direct3D API give bet-
ter performance on Mean, Gaussian, Gradient, and Dilation operations. The two 
groups tie on Laplacian, Thresholding, and Median operations. 

0%

20%

40%

60%

80%

100%

120%

Neg
ativ

e

RGB2X
YZ

La
pla

cia
n

M
ea

n

Gau
ss

ian

Gra
die

nt

Thre
sh

old
ing

Dila
tio

n

M
ed

ian

R
el

at
iv

e 
fr

am
e 

ra
te

HLSL/PS2.0 Cg/PS2.0 GLSL/ARBFP1 Cg/ARBFP1

(a) ATI Radeon 9800 XT 

0%
20%
40%
60%
80%

100%
120%
140%
160%

Neg
ativ

e

RGB2X
YZ

La
pla

cia
n

M
ea

n

Gau
ss

ian

Gra
die

nt

Thre
sh

old
ing

Dila
tio

n

M
ed

ian

R
el

at
iv

e 
fr

am
e 

ra
te

HLSL/PS2.0 Cg/PS2.0 GLSL/ARBFP1

Cg/ARBFP1 Cg/FP30

(b) nVidia GeForce FX 5950 Ultra 



 Real-Time Image Processing Using Graphics Hardware: A Performance Study 1225 

4   Conclusions and Future Work 

In this paper, we compare two popular mainstream GPUs, the ATI’s Radeon 9800 XT 
and nVidia’s GeForce FX 5950 Ultra, with Intel’s 3GHz Pentium 4 on different image 
processing operations. The evaluation results show that, for the twelve operations 
tested, the Radeon 9800 is on average 6.6 times faster than the MMX-optimized im-
plementation on Pentium 4, while GeForce 5950 is on average 2.7 times faster. We 
also compare the two GPUs under different shading language and profile settings and 
obtain many useful observations. For example, we show that the HLSL and PS2.0 is 
the best choice for programming on Radeon 9800 since the best performance can be 
achieved under this setting. 

Both ATI and nVidia have released their newer generation GPUs: ATI Radeon 
X850 and nVidia GeForce 6800 Ultra. These GPUs are even more powerful and sup-
port the new pixel shader 3.0 profile. The performance of these GPUs on image proc-
essing operations will be studied in the future. 
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Real-Time and Robust Background Updating for Video
Surveillance and Monitoring
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Abstract. Background updating is an important aspect of dynamic scene analy-
sis. Two critical problems: sudden camera perturbation and the sleeping person
problem, which arise frequently in real-world surveillance and monitoring sys-
tems, are addressed in the proposed scheme. The paper presents a multi-color
model where multiple color clusters are used to represent the background at each
pixel location. In the proposed background updating scheme, the updates to the
mean and variance of each color cluster at each pixel location incorporate the
most recently observed color values. Each cluster is assigned a weight which
measures the time duration and temporal recurrence frequency of the cluster.
The sleeping person problem is tackled by virtue of the observation that at a
given pixel location, the time durations and recurrence frequencies of the color
clusters representing temporarily static objects are smaller compared to those of
color clusters representing the true background colors when measured over a suf-
ficiently long history. The camera perturbation problem is solved using a fast
camera motion detection algorithm, allowing the current background image to be
registered with the background model maintained in memory. The background
updating scheme is shown to be robust even when the scene is very busy and also
computationally efficient, making it suitable for real-time surveillance and mon-
itoring systems. Experimental results on real traffic monitoring and surveillance
videos are presented.

1 Introduction

Separating foreground from background (also known as figure-ground discrimination)
is an important though difficult problem in computer vision. Many background mod-
els have been proposed for surveillance systems. Based on the manner in which they
are generated, existing background models can be categorized as off-line (static) back-
ground models [1,2,3] or online (adaptive) background models [4,5,6,7,8,9,10]. Due to
the dynamic nature of the background, online adaptive background models are usually
preferred in real time video surveillance and monitoring systems. Broadly speaking,
there are two categories of online methods to model the background image. The first
category models the background image using a single color value at each pixel location
[4,5,6,7], whereas the second category uses multiple color values at each pixel location
[8,9,10]. For dynamic scenes with high levels of random noise, a single value is not
sufficient to represent the background color at a given pixel location. In the context of
video surveillance and monitoring in outdoor scenes, the source of random noise could
be the swaying of trees and the movement of grass due to breeze.

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 1226–1233, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this paper we propose an online background updating scheme for a real-time
traffic surveillance and monitoring system. The background color at a pixel location is
modeled as a mixture of Gaussian distributions as in [8,9,10]. In particular, we address
two critical problems that are confronted by real-world surveillance and monitoring sys-
tems. The first problem is sudden camera perturbation, which occurs occasionally but
causes typical background updating schemes to fail. In the context of traffic monitor-
ing and surveillance, cameras mounted on bridges or overpasses are typically subject to
structural vibrations caused by especially heavy moving vehicles, resulting in sudden
and random camera perturbations. The second problem is the sleeping person prob-
lem [7] where a moving object stops in the scene and becomes motionless for some
duration of time. A typical adaptive background model would result in the improper
merging of the temporarily stationary object with the background image. The sleeping
person problem arises frequently in the context of automated traffic monitoring when
moving vehicles stop temporarily at traffic lights or intersections.

2 Proposed Background Model

In the proposed background model, the camera perturbation is modeled as a Euclidean
transformation. A background image with dimensions greater than those of the actual
image frame in the video stream is generated and continuously updated. The first image
frame is aligned with the center of the background image. For each successive image
frame, a fast algorithm is used to estimate the camera motion (perturbation) parame-
ters and consequently determine the alignment of the new image frame with the stored
background image. The background updating procedure is performed on those locations
within the background image that overlap with the new image frame.

The color values at each pixel location in the background image are modeled as a
multiple Gaussian mixture (MGM). A novel weight updating scheme for the color clus-
ters is used to address the sleeping person problem. Once every T frames, the number
of color values that fall into each cluster is computed and stored in a counter. The cor-
responding cluster weight is updated once every T frames based on the counter value
and the previous history of the cluster. A new cluster may be created and an old cluster
deleted after comparing all the cluster weights. The cluster weight evaluation scheme
takes into consideration both the cluster duration and the recurrence frequency. The key
idea behind the proposed approach is to use the cluster weight to approximate the clus-
ter duration thus enabling one to decide whether or not to adapt a new cluster into the
background model. A significant advantage of the proposed approach is that since the
background updating is done once every T frames, it is computationally very efficient
and very well suited for real-time applications.

2.1 Camera Motion Estimation

As is common in most surveillance systems, the camera is assumed to be stationary.
However, we account for sudden camera perturbations, which occur occasionally but
nevertheless cause typical background updating schemes to fail. In the context of traffic
monitoring and surveillance, cameras mounted on bridges or overpasses are typically
subject to structural vibrations caused by especially heavy moving vehicles, resulting
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in sudden and random camera perturbations. Since the range of the perturbations is
typically small, we model them as a simple Euclidean transformation given by x′ =
x cos(θ) − y sin(θ) + sx and y′ = x sin(θ) + y cos(θ) + sy , where sx and sy are the
translational parameters along the X axis and Y axis respectively, and θ is the angle of
rotation assuming the first image frame in the video stream to be the reference image
frame. We also assume that sx, sy ∈ [−Ds, Ds] and θ ∈ [−Dθ, Dθ] where Ds and Dθ

are predefined bounds. The parameters (sx, sy, θ) are determined as follows:

1. For each triple (sx, sy, θ), compute the region of overlap between the image frames
f(0) and f(t).

2. Compute a match metric between the two image frames within the rectangular re-
gion of overlap.

3. Output the parameters (sx, sy, θ) which optimize (minimize, in our case) the match
metric between the two images.

Given the transformation parameters (sx, sy, θ), the region of overlap R between
f(0) and f(t) is computed. The match metric is given by m =

∑
(x,y)∈R |f(x′, y′; t)−

f(x, y; 0)|/A, whereA is the area of the region of overlapR. As an alternative to brute-
force search in the parameter space (sx, sy, θ), a more efficient search algorithm is used.
Since the camera is expected to be primarily static with a very small angle of rotation,
a local search procedure is used to determine the translational parameters (sx, sy) and
θ is assumed to be 0. The algorithm is described as follows:

1. Begin with (sx, sy) = (0, 0) and step size δ = δ0.
2. Explore the four neighbors of (sx, sy) in parameter space given by (sx + δ, sy + δ),

(sx + δ, sy − δ), (sx − δ, sy + δ), and (sx − δ, sy − δ). If any of these neighbors
results in a lower match metric, replace the current (sx, sy) with the neighbor that
results in the lowest match metric.

3. Repeat step 2 until there is no change in the match metric.
4. Update δ = δ/2, and repeat steps 2 and 3.
5. Repeat steps 2, 3 and 4 until δ = δmin.

Based on empirical observations on real data, the coarse-to-fine tuning of the step
size δ is seen to prevent the search from being trapped in a local minimum when the
range of translational motion is small.

After the optimal translational parameters (sx, sy) are determined, if the match met-
ric m is above a certain predefined threshold, then we search in the space of the rota-
tional parameter θ in the range [−Dθ, Dθ] to determine the optimal Euclidean trans-
form parameters. If m is less than the threshold, then no further search in the θ space
is deemed necessary, i.e. θ = 0. After the alignment of the new image frame with the
background image is performed, the background updating is done at the corresponding
locations in the background image.

2.2 Background Image Updating

A background color at a pixel location usually persists for a longer time duration than
any foreground color and has a higher frequency of recurrence [1,8]. Thus, it is logical
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to assign to each cluster center a weight that takes into account both, the time duration of
the cluster and its recurrence frequency as an alternative to the simple weight updating
scheme described in [10]. Consequently, in the proposed scheme, the weight assigned
to each cluster is indicative of both, the time duration of the cluster and the cluster
recurrence frequency. Thus each cluster is characterized by the following parameters:

– Ci: Centroid or mean of the ith color/gray level cluster.
– σ2

i : Variance of the ith color/gray level cluster.
– Ni: Total number of colors/gray levels that have matched the ith cluster. Initially,

Ni = 1 for all clusters.
– tli: The most recent time that the ith cluster has been updated. Initially, tli = 0 for

all clusters.
– ni: The number of colors/gray levels that have matched the ith cluster in recent

history.

Given color Xk at a certain pixel location in the current frame, we compare it to the
existing cluster centroids associated with this pixel location. If Xk ∈ [Ci − 2.5σi, Ci +
2.5σi] then Xk is deemed to match the ith cluster. The centroid and covariance of the
ith cluster are updated as follows:

Ci = Ci +
1
L

(Xk − Ci) (1)

σ2
i = σ2

i +
1
L

((Xk − Ci)2 − σ2
i ) (2)

where L is an integer representing the inverse of the learning rate. The advantage of
using an integer L instead of the learning rate α in equations (1) and (2), is that the need
for floating point computation at each update is averted. For example, in equation (1)
we can accumulate the difference (Xk−Ci) and decrementCi by 1 if (Xk−Ci) < −L
and incrementCi by 1 if (Xk−Ci) > L. If color Xk does not match an existing cluster
then a new cluster is created replacing an existing cluster j with minimum weight Nj .

In order to efficiently compute the time duration and recurrence frequency of a
cluster, we quantize the time series x(t) into time slices of interval T . For all clusters
in a given time slice, if the number of colors that have been assigned to cluster i in
that time slice is ni then the time duration of the cluster is updated as: Ni = Ni + T
if ni > T/2; otherwise Ni = Ni + ni. Thus, if a cluster at a given pixel location
is assigned more than T/2 colors in a given time slice, then this cluster is deemed to
dominate this time slice. Consequently, we reward this cluster by adding T to Ni else
we update its time duration by adding the actual number of matched colors ni to Ni.

We also check for the recurrence frequency of clusters. If a cluster has not been
matched for some period of time and then matched again, it is probable that the cluster
does represent the real background. If this cluster has been deemed to be sufficiently
exposed during the current time slice, i.e., ni ≥ δ then we increase its weight by increas-
ing its value of N . On the other hand, if ni < δ then the cluster is deemed insufficiently
exposed and its recurrence frequency ignored during the current time slice. We measure
the recurrence frequency of the ith cluster by checking the last time tli that the cluster
was matched. If t − tli > 2T , then Ni = Ni + T/2, that is Ni is incremented by an
extra duration T/2 to account for the cluster recurrence and tl is set to t. Checking for
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recurrence frequency is useful when the dynamic scene is very busy. In this situation,
the true background color/gray level may not persist at a given pixel location for a long
time duration, however its recurrence frequency will typically be high. Increasing the
value of N to account for the high recurrence frequency increases the probability of this
color/gray level to be considered as part of the background.

The clusters at each pixel location are ranked on the basis of their N values, the
higher the value of N , the higher the priority for the corresponding color/gray level of
that cluster to be considered as part of the background. However, it is necessary to set
an upper limit for the value of Ni since too large a value of Ni will make it difficult
for an actual new background color cluster to be considered as part of the background.
We set the upper limit of Ni to Δ. At any pixel location, if Nmax > 1.25Δ where
Nmax = maxi(Ni), we scale down all the Ni values by multiplying them by 4/5.
If Ni = 0 then the ith cluster is deleted. All the clusters which satisfy the condition
Ni > Nmax/3 are deemed to represent the valid background colors/gray levels. If a
cluster has not been updated for a time period Δ, then it is deleted. The background
updating is performed once every T frames.

The background updating algorithm is summarized as follows:

1. Given an observed color/gray level Xk at a pixel, check all of the pixel’s clusters.
If Xk matches cluster i, then update the centroid and the variance of cluster i using
equations (1) and (2). Set ni = ni + 1.

2. If there is no match, create a new cluster and replace an existing cluster with the
smallest Ni value. For the new cluster, set C = Xk, N = 1, n = 1, σ2 = σ2

0 and
tl = k.

3. If (t mod T ) ≡ 0 and t > 0 then for each cluster i at each pixel,
(a) Check the value of ni and update Ni as follows:

i. If ni > T/2, then Ni = Ni + T .
ii. Otherwise, Ni = Ni + ni.

(b) Check for recurrence: If ni > δ and t − tli > 2T , then Ni = Ni + T/2 and
tli = t.

(c) Reset all ni values to zero.
(d) Check which clusters will be deemed as belonging to the background. All clus-

ters i such that Ni > Nmax/3 where Nmax = maxi(Ni) are considered to
belong to the background.

(e) If Nmax > 1.25Δ, then Ni = Ni ∗ 4/5, for all i.
(f) For any i, if k − tli > Δ, then delete this cluster.

3 System Implementation

The background updating scheme described above was incorporated into a real-time
traffic monitoring system and tested on color (RGB) and grayscale video sequences of
real traffic scenes. All video sequences were sampled at a constant rate of 30 frames per
second (fps). We chose values of L = 1024 and k = 4 in our implementation. Since
the background is constantly refreshed, the value of Ni for the cluster corresponding to
the actual background eventually increases to 1.25Δ. In the context of traffic monitor-
ing, we assumed that a vehicle stops temporarily for up to 2 minutes at a traffic light
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or intersection, which amounts to 3600 frames at a sampling rate of 30 frames per sec-
ond. In order to avert the sleeping person problem, this delay of 3600 frames must be
less than Δ/3 since all clusters for which Ni ≥ Δ/3 are considered to be part of the
background. Since we need to choose a value of Δ > 3 × 3600 = 10800, we chose a
value of Δ = 12000. We also chose T = 2 seconds (60 frames) and δ = 20. Thus, if
a cluster that has not been updated for the past 2T = 120 frames, has received more
than 20 updates in the current time slice, then it is treated as an instance of a recurring
background color/gray level and the Ni value of the cluster is incremented by T/2.

4 Experimental Results

To simulate camera perturbation, the video streams were gathered while the tripod
mount of the camera was being manually shaken. Figure 1(a) shows the background
image from the moving camera.The actual size of the image frame is 360× 240 pixels
whereas the background image size is 400× 280 pixels.

(a) Camera Motion (b) Frame3541 (c) Weights (d) Backgroung im-
age

Fig. 1. Experimental Results

Experimental results on the captured videos captured show that the proposed
scheme for camera motion compensation works well and that the background updat-
ing scheme is capable of recovering from abrupt and random camera motion, provided
it is small.

A comparison between the proposed background updating scheme and that of Stauf-
fer and Grimson [10] is performed using video streams, captured by a static camera, of
a busy traffic scene containing several vehicles and with traffic lights present. Figures
1(b), 1(c) and 1(d) summarize the experimental results on a grayscale video sequence.
Figure 1(b) shows a grayscale image frame at time t = 3541 where time is measured in
terms of the frame number in the video sequence. In this frame it is evident that some
cars have stopped at a traffic light. Figure 1(c) shows the weights Ni of each of the
k = 4 gray level clusters associated with pixel location (180, 134) at time t = 3541.
In Figure 1(c), the cluster centroids are denoted by C1, C2, C3 and C4 and the max-
imum cluster weight Nmax is marked as 1 with the other cluster weights scaled in
proportion. In Figure 1(b), the pixel location (180, 134) is marked by the intersection
of the corresponding vertical and horizontal lines for the sake of clarity. It can be seen
that although there is a stationary car at this pixel location for some length of time, the
weight of the corresponding gray level cluster is small compared to that of the gray level
cluster which denotes the actual background. Hence the gray level of the stationary car
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(a) Our scheme (b) Grimson’s scheme

Fig. 2. Background image and object segmentation at time 3841 with learning rate α = 1/1024

at this pixel location is not treated as a background gray level. Figure 1(d) shows the
background image generated with the proposed background model where, at each pixel
location, the gray level displayed is the one corresponding to the cluster center with
the maximum weight Nmax. Since none of the stationary vehicles are merged with the
background image, the background updating scheme can be seen to be robust in the
face of the sleeping person problem. It is also adaptive since the cluster parameters are
periodically updated. However, since the updating is done once every T = 60 frames
(i.e., 2 seconds at 30 fps), the proposed scheme is also computationally efficient.

In an RGB color video sequence, each color cluster is represented as
C = {cr, cg, cb, σ2}, that is, the same σ2 value is used to represent the variance of
the cluster along each of the R, G and B axes. Given a new observation X = (r, g, b)
and a cluster C = {cr, cg, cb, σ2}, if the condition d < 2.5σ is satisfied, where
d = max(dr , dg, db) and dr = |r− cr|, dg = |g− cg|, db = |b− cb|, then X = (r, g, b)
is deemed to have matched the cluster C. Furthermore, the parameters of cluster C are
updated as follows: cr = cr + (r− cr)/L, cg = cg + (g− cg)/L, cb = cb + (b− cb)/L
and σ2 = σ2 + (1/L)(d2

r + d2
g + d2

b − 3σ2).
Figures 2(a) summarize the results of our scheme for an RGB color video sequence.

The image on the left in Figure 2(a) is the background image generated at time t =
3841, and the image on the right is the result of foreground object segmentation at the
same time instant. It is evident that the stopped cars can be detected using background
subtraction.

Figure 2(b) depicts the background image and the result of foreground segmenta-
tion at time t = 3841 using the background updating scheme proposed by Stauffer
and Grimson [10] with the same learning rate of 1/1024. It is evident that the objects
that become temporarily motionless are partially merged into the background and can-
not be extracted. More results on real traffic monitoring videos are available online at
http://www.cs.uga.edu/∼xingzhi/research/bkg/demo/. From these videos it can be seen
that, the proposed scheme suffers from the sleeping person problem initially when little
information about the background is known. However, the proposed scheme is observed
to eventually overcome this problem and converge to a stable background image. Stauf-
fer and Grimson’s scheme, in contrast, is observed to suffer from the sleeping person
problem from time to time.

5 Conclusions

In this paper we proposed a background updating scheme for a real-time traffic monitor-
ing system. Specifically, we addressed the camera perturbation problem and the sleep-
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ing person problem. To make the background updating scheme adaptive to gradual
changes in the background, we used a multi-color model where multiple color clusters
were associated with each pixel location in the background image. The cluster parame-
ters were updated periodically to adapt to gradual changes in the background. To make
the proposed background updating scheme robust in the face of the sleeping person
problem, the color clusters at each pixel location were assigned weights based on the
observation that the clusters corresponding to the real background colors were likely
to persist for a longer time duration and also have a higher recurrence frequency com-
pared to the clusters that correspond to colors from temporarily motionless objects. The
camera perturbation was modeled as a Euclidean transformation and the camera per-
turbation compensation procedure was modeled as a fast local search procedure in the
perturbation parameter space to optimize an image match metric. Experimental results
on grayscale and color video sequences obtained from real traffic scenes showed that
the proposed background updating scheme could adapt to gradual or long-term changes
in the background while ignoring short-term changes arising from the sleeping person
problem. The proposed scheme was also shown to be computationally efficient since
most of the computation was performed once every 60 frames (or 2 seconds at 30 fps).
Moreover, the background update equations were optimized by greatly reducing the
floating point computation, thus making the scheme well suited for real-time applica-
tions. Although the proposed real-time background updating scheme was specifically
designed for a real-time traffic monitoring system, it is nevertheless applicable to most
surveillance systems, in which the sleeping person problem is seen to occur but the time
period for which a moving object is temporarily stationary has a definite upper bound.
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Abstract. In a video surveillance system, moving object detection is the most 
challenging problem especially if the system is applied in complex environ-
ments with variable lighting, dynamic and articulate scenes, etc.. Furthermore, a 
video surveillance system is a real-time application, so discouraging the use of 
good, but computationally expensive, solutions. This paper presents a set of im-
provements of a basic background subtraction algorithm that are suitable for 
video surveillance applications. Besides we present a new evaluation scheme 
never used in the context of moving object detection algorithms. 

1   Introduction 

In the last decade the improvement of computer performance has made real time 
video analysis affordable on commonly available hardware. Thus there has been a 
growing interest in low-cost in video analysis applications. Among them, a central 
role is played by intelligent video surveillance systems, i.e. system able to detect a set 
of predefined events related to object moving in the scene, and to trigger an appropri-
ate reaction. 

Usually a video analysis system may be split into two main steps: localization of 
the objects of interest and object tracking, i.e. following the object trajectory trough 
successive images in the video sequence. The object detection step plays an important 
role in video surveillance systems. For the time being all the techniques of object 
detection supply good results under particular circumstances,  where the environment 
is completely controlled with respect to key factors such as the lighting or the position 
of the camera. For video surveillance applications these conditions can not be as-
sumed in the general case because the environment in which the system has to work is 
typically characterized by variable lighting, dynamic and articulate scenes and a set of 
problems due to meteorological events that affect the detection performance. 

This paper, after a description of the overall proposed system, describes a novel 
object detection algorithm based on background subtraction that results more robust 
in real applications. In particular our approach presents an innovative procedure for 
updating the reference image, that is robust with respect to sudden lighting changes or 
to structural scene changes; we will also propose novel corrective algorithms, that will 
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allow the correction of the object detector results in order to assure good outputs for 
the subsequent processing stages. The effectiveness of our approach is validated by 
means of a new evaluation scheme. The experimentations are performed on the stan-
dard PETS database [2] which is recognized to be a benchmark for object detection. 

2   Related Works 

Video surveillance applications need to work in the absence of detailed a priori 
knowledge about the objects of interest, and this reason makes it preferable the use of  
segmentation algorithms working without models. These algorithms, usually, try to 
segment the frame of the video into two regions: foreground (pixels belonging to the 
objects of interest) and background (all the others). In a second phase the foreground 
pixels are grouped to determine the blobs representing the objects.  

In video surveillance systems, background subtraction is the most used approach for 
the object detection step. The basic idea is to obtain the foreground region comparing 
current image with reference image. The pixels of the background can be either repre-
sented by a single color value [8] or by a probabilistic distribution. In [5] the authors use 
an uniform distribution; this choice is effective only if the background model is always 
perfectly synchronized with scene changes. Alternatively, in order to reduce the sensi-
tivity to the variation of the light conditions or to mitigate waving tree problems (they 
occurs when part of the background of the scene is detected as object of interest because 
it is performing little movements), a simply statistical model is used introducing a Gaus-
sian description of the background pixel [13]. Although this solution mitigates errors 
due to a not perfectly synchronized reference image, on the other side it produces a 
system less sensitive in the regions where a great variance of colors has been calculated 
(also for the detection of the objects of interest). To avoid this loss of sensitivity, a more 
complicated statistical model for pixel representation, Mixture of Gaussian (MOG) has 
been proposed ([10]). For outdoor scenes, illumination conditions, usually, change sig-
nificantly during the day because of sun position or meteorological events; some false 
positives (objects detected by the system that do not truly exist) derive by these circum-
stances: this problem is commonly referred to as light of day problems [11]. In fact, if 
the background is not accurate or consistent with current scene condition, the detection 
cannot result reliable. Background model, essentially, may be updated using two differ-
ent ways: non recursive [11, 7] and recursive techniques [5, 13, 6]. The first ones proc-
ess, for each frame, a sliding window of N past frames and calculate the median value 
[7] or a linear prediction [11] of the background parameters. The second technique 
updates the background model using current frame and previous background informa-
tion; it is used as input of a Wiener filter in the Pfinder system [13]. In [6], instead, the 
reference image is updated using an Infinite Impulse Response filter. Others algorithms, 
similarly to our approach, in order to manage also sudden illumination changes. [5, 4, 1] 
apply fast update rate only to the pixels belonging to instantaneous background  region, 
while the regions belonging to the detected object are not updated. The drawback of 
these approaches is that errors in the objects detection may produce an erroneous refer-
ence image compromising the detection performance of the successive frames. 

In this paper we present an algorithm, belonging to the last category, suitable for 
real time applications and robust enough for outdoor scenes. In real time applications 
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more performance constraints have to be considered than in the case of post-
processing applications. An adequate frame-rate has to be obtained in order to pre-
serve the continuity of the video information to analyse. For this reason the used algo-
rithms in addition to resulting reliable must not be excessively time consuming. An 
improvement of the algorithm of background maintenance has been developed and a 
set of heuristics have been added  at the plain background based approach. Further-
more, the results of an extensive experimentation process (described in detail), are 
shown, in order to validate the effectiveness of the heuristics within real applications. 

3   System Architecture 

The object detection is divided into three steps (Fig. 1): the pixel segmentation proc-
esses the input frames producing a foreground pixel mask, that is obtained threshold-
ing the absolute difference between the current image frame and the reference image; 
then, a morphological dilatation filter is applied to the foreground pixel mask; finally, 
by a connected components labelling algorithm the blob segmentation step identifies 
the semantically separated objects and localizes them.  

 
 

Fig. 1. Object detection flowchart 
 

Each detected object is described by means of its bounding box. The latter is 
evaluated as the smallest rectangle, whose sides are parallel to the edges of the frame 
in which the object is inscribed. In the following the bounding boxes will simply 
called boxes. Then an object tracking block preserves the identity of objects across the 
frames assigning them univocal IDs. In this way we obtain the trajectories of every 
object and after a perspective correction a classification of the objects behavior can be 
done. If some behaviors are classified as  interesting events, the system reacts appro-
priately on the basis of the application context. For the foreground detection step an 
adaptive background based algorithm has been implemented. In our model the back-
ground pixels are represented by their RGB values. Finally, a tracking algorithm has 
been implemented, in particular this system uses an overlap – based algorithm [3] 
because of the high frame-rate (16 f/s for 384x288 resolution on a P4 2.8Ghz). 

4   Algorithm Improvements 

First at all, let us introduce some definitions. We indicate the background image used 
for computing the differences with the term reference image, to distinguish it from 
instantaneous background that we will define later. Since we do not deal with occlu-
sions (that are a tracking level problem), in the following, we will use the words “ob-
ject” and “blob” with the same meaning.  

Regarding the foreground detection step, we have already mentioned in section 2 
that the basic background subtraction algorithm only works acceptably in very limited 
circumstances. In order to make the system robust also in outdoor conditions, in the 

Morphological filter Pixel segmentation Blob segmentation 
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following we will propose a set of improvements. The values of the parameters were 
chosen on the basis of a training phase. In the simplest algorithms for the object de-
tection [8] the threshold for the pixel segmentation is chosen statically depending on 
the scene. As regards the definition of the threshold, we have chosen an algorithm that 
differs from the basic approach for the introduction of a dynamic strategy to update 
the threshold in order to adapt it to the reference image changes. The main idea is to 
increase or decrease the threshold on the basis of the brightness changes of the scene. 
A similar strategy is shown in Gupte et al. [4]. But whereas in [4] the authors change 
the threshold on the basis of the static distribution of intensity levels in the current 
frame, we adapt the threshold on the basis of the variation of the intensity during the 
image sequence. The threshold is updated according to this formula:  
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Where Th is the current threshold; It is the average of the pixels intensity; Et-n[I] is the 
moving average of I calculated by the last n frames; χ is a percentage (we have chosen a 
value of 25%); ΔL and ΔH are the percentage respectively of the decrement and  increment 
of the threshold (for both 0.3). The value of threshold has an upper and a lower bound.  

In the pixel analysis, often, some conditions cause little isolated background areas 
to be detected as foreground pixels. We have added a noise filter that operates at blob 
level to remove the spurious objects according to their dimensions. 

The shadows problem is very hard to solve at pixel level. In [1] the authors try to 
detect the shadows considering the properties of the HSV color space. A very interest-
ing approach [9] considers three properties for the detection of the shadows: the pres-
ence of a uniform dark region, the luminance changes with respect to the previous 
frame and the shadow’s edges. We propose a technique for the shadow suppression 
that results very little time consuming but which performances are comparable whose 
[1, 9] for the proposed application. For each object, bounded by its box, we define its 
histogram as the function that associate for a box abscissa x, the number of fore-
ground pixels over that column; this histogram is normalized by the relative box 
height. A foreground pixel is recognized as shadow pixel if: 

( ) ( ) ( ) ih TyxIyxBTxH >−∧< ,,  (2) 

Where H(x) is the histogram value at x abscissa, Th is the histogram threshold (equal 
to 0.4), B(x,y) and I(x,y) are the image reference and current frame intensity, and  
finally Ti (35) is the intensity threshold. So the recognized shadow pixels are elimi-
nated from the foreground mask.  

When a foreground mask depurated from shadows pixels has been obtained, the 
connected component labelling is executed again on the regions interested by shadow 
removal. In Fig. 2 it is clear the effectiveness of our algorithm. 

 
 
 
 

Fig. 2. Foreground mask before (left) and after (right) shadow filtering 
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As regard the image reference updating strategy we use the algorithm proposed in 
[4] with some improvements. After pixel segmentation, we have the binary object 
mask to distinguish the moving pixels from the others. We call instantaneous back-
ground those locations where the mask is 0 and detected objects region those location 
where the mask is 1. The basic updating formula (IIR filter) used as a starting point is: 

),(*),(*)1(),(1 yxIyxByxB nn αα +−=+  (3) 

Where Bn(x,y) is a background pixel at time n, I(x,y) is a current frame pixel and α is a 
coefficient representing the update speed. The first difference in comparison with the 
author of the work [4] is that we chose to use two different updating speeds depending 
on the region: for the instantaneous background pixels, the new values are updated 
very quickly using α=0.5; instead for the detected objects region a very slow update 
policy is needed, α value depends on the application, we choose it equal to 0.0001. 
The above-mentioned solution needs that in the start-up period a coherent background 
can be obtained: this means that the system must start in a condition in which a num-
ber of free scene frames can be obtained. Even so a problem afflicts this approach: it 
is represented by the condition in which during a quick illumination change, such as 
the transit of a cloud in front of the sun, a slowly moving or stopped object is present 
in the scene. In this case the scene area under this stopped object is not updated. This 
inconsistency causes the creation of a wrong foreground blob in the mask when the 
above-mentioned object leaves its position. In [4] this problem is not solved, so we 
have introduced a new processing step. Specifically, for each object, it is calculated, 
for the pixels adjacent to its bounding box, the average variation ( ) between the 
image reference at frame n and n+1. On the basis of this variation we update the re-
gion under the identified object according to this formula: 

Δ+=+ ),(),(1 yxbyxb nn
 (4) 

It is worth to notice that in a real context the problem of object camouflage is very 
frequent. In fact for a wrong detection it is not needed that the whole object camou-
flages itself with the scene. If only a part of it is similar to the background, it may be 
broken, after foreground detection, into two or more blobs. This causes a serious loss 
of precision for the detector and it may affect successive tracking and classification 
steps. The problem cannot be solved by any pixel level algorithm and only a little 
number of works faces this problem at higher levels. Marcenaro et al. [8] deal with 
this problem merging regions that are partially overlapped or near; the main drawback 
of this approach is that it can merge different objects in an unique blob.  

We present a slight improvement that try to solve this drawback. The base hypothesis is 
that, if the video frame rate is higher than 6-7 fps, object dimensions cannot change sud-
denly. In fact the algorithm uses the following idea: if the height of an object decreases 
suddenly and a new object is detected where the old object should be positioned, it is 
classified as a broken object. In details, the system calculate the moving average of the 
height, over a sliding window, for each object.  If the current object height results lower by 
a fixed percentage than the average height, the system checks whether there is a new ob-
ject (an object that is appeared in the current frame) within the bounding box of the object 
modified according to the calculated average height. If this check succeeds, the new object 
is removed and the old one is extended to enclose the corresponding region. 
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5   Experimental Results 

Whereas there are several approaches to evaluate the performances of the tracking 
algorithms (the second step of a complete tracking system), it has not been made 
much effort (besides some exceptions [11]) to evaluate the performances of the mov-
ing object detection step. One reason is the huge effort needed to produce the ground 
truth. In fact a detailed ground truth requires the evaluation of each pixel of each 
frame. Furthermore, an evaluation at pixel level, i.e. counting misdetected pixels (as 
in [11]), provides measure that is not so meaningful, and it cannot be intended to be a 
good ranking of the algorithms. Here we use a quantitative method, widely used in 
other contexts, but never in the evaluation of this kind of algorithms. The method is 
described in the following. The ground truth is defined, for each frame, as the box 
coordinates representing the real moving objects present in the frame. Traditionally, 
the performance of an information retrieval system is evaluated with the measures of 
precision and recall. 

For object detection systems, the notion of correct detection does not have a pre-
cise, suitable definition; the question cannot be answered with a simple “yes” or “no”, 
since objects may be partially detected. We used an evaluation scheme (presented in 
[12] in the context of text detection in video sequences) which exploits geometrical 
information (overlap) in the precision and recall measures. The goal of a detection 
evaluation scheme is to take a list of ground truth boxes Gi = 1..|G| and a list of de-
tected boxes Dj = 1..|D| and to measure the quality of the match between  the two lists. 
From the two lists G and D of detected boxes and ground truth boxes, two overlap 
matrices σ and τ are created. The rows i = 1..|G| of the matrices correspond to the 
ground truth boxes and the columns j = 1..|D| correspond to the detected boxes. The 
values are calculated as follows: 

 

(5) 

 
 
 
 
 
 
 
 

Fig. 3. a) One-to-one matching; b) One-to-many matches with one detected box; c) One-to-
many matches with one ground truth box  

The matrices can be analyzed for determining the correspondences between the two 
lists: 

One-to-One Matches: Gi matches against Dj if row i of both matrices contains only 
one non-zero element  at column j and column j of both matrices contains only one 
non-zero element at row i. The overlap area needs to have a certain size compared to 
the rectangle in order to be considered successful (σij ≥ e1 and τij ≥ e2). 
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One-to-Many Matches with One Ground Truth Box: Gi matches against several 
detected boxes if row i of the matrices contains only one non-zero element at column 
j. The two additional constraints of Σj σij ≥ e3 and ∀j : τij ≥ e4 ensure respectively that 
the single ground truth rectangle is sufficiently detected and that each of detected 
rectangles is precisely enough. 

One-to-Many Matches with One Detected Box: Dj matches against several ground 
truth boxes if column j of the matrices contains only one non-zero element at row i. 
Also here we add the constraints of Σi τij ≥ e5 and ∀i : σij ≥ e6. 

Based on this matching strategy, the recall and precision measures are given as follows: 
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The function MatchD(Dj) is defined accordingly. This evaluation takes into account 
one-to-many matches, but “punish” them slightly. These measures provide an intui-
tive measure of how many boxes have been detected correctly and how many false 
alarms have been produced. 

 

Fig. 4. Results on PETS dataset: a) Standard Algorithm; b) Improved Algorithm 

 
 

Fig. 5. Results on PETS 2001: a) Dataset 2 Camera 1; b) Dataset 4 Camera 1 

Two sequences from PETS2001 dataset have been chosen as testing set. Some other 
sequences from the same database have been used to tune our algorithm parameters. 
The two test sequences are: the “testing” sequence – dataset 2 – camera 1 from 80 to 
1487  and the “testing” sequence – dataset 4 – camera 1 from 1 to 1082. In Fig. 4 one 
example showing the foreground mask and the moving objects detected by the basic and 
the improved algorithms on PETS dataset, is provided. In the results of the basic algo-
rithm and the algorithm with the novel heuristics, added step by step, are shown. 

First of all we want to remark that the absolute values cannot be taken into account 
in a comparison with other algorithms because of the different evaluation schema 
used. You can notice that the original algorithm has performances surely improvable, 
especially for the precision index. Adding the improvement on the threshold the in-
dexes increase a lot. This proves the effectiveness of the novel improvement. The 

(a) (b) 

(a) (b) 
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noise filter raises enormously the precision index because of the reduction of numer-
ous false positive. The drawback is a slight reduction of the recall index. Finally, with 
the other heuristics (shadow filtering and broken object resolution) the precision index 
continue to increase. Here we want to underline that in a video surveillance system we 
are interested to recognize the events occurring in the scene avoiding false alarms (i.e. 
inexistent events). Therefore the effort to try new solution for the last  two problems 
has been justified by the most favourable precision index obtained. 

6   Conclusions 

In this paper we discussed some improvements of a classical background subtraction 
algorithm. Furthermore we have shown the application of an evaluation scheme never 
used in moving object detection algorithms. The results, within the video surveillance 
framework,  are promising. In the future we want to assess the performances of our 
approach carrying out a comparison with other algorithms using the presented evalua-
tion scheme. 
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Abstract. A hardware-oriented block matching algorithm and its area-efficient 
VLSI implementation are presented.  The proposed technique benefits from the 
simplicity of the Pixel Difference Classification algorithm (PDC) , further 
exploits the inherence of the characteristics of the data being processed, and the 
goal of an area-efficient implementation is reached. A quality investigation 
based on processing video sequences confirms the stability and performance of 
the proposed algorithm when compared with the conventional full-search as 
well as low-complexity techniques.  Realized in TSMC 0.18-micron CMOS 
technology the chip has a core area of 1.01 2mm . For a comparable video 
quality, the proposed implementation has shown a significant silicon area 
deduction compared with the recently published conventional implementations. 

1   Introduction 

Motion estimation (ME) is the most time consuming task in encoding video of today’s 
hybrid video coding standards such as MPEG. As portable HDTV systems, such as 
MPEG cameras, become more popular, high-efficiency, small-area and good picture 
quality ME processor is essential, since ME technique requires more than 80% 
performance of the codec. However, the existing motion estimation algorithms and 
hardware design methods are not well fitted into high-level design smoothly. Existing 
designs are mostly based on the matching criterion called mean absolute error (MAE) 
[1] as defined below 
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where ),( jia  represents pixels of the reference block, ),( jib  are pixels of the 

candidate block, the position ),( lk of a candidate block that results in the minimum 

distortion denotes the motion vector v. 
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By exhaustively searching all candidates within the search window, full search 
(FS) method provides the most optimal solution among all block-matching search 
strategies. But its high computational complexity made it difficult to be implemented 
compact enough to fit in a single-chip MPEG2 encoder [4,5]. 

In order to reduce the computational complexity of FS, many fast search methods 
have been developed [2]. Among them, the 3-step search (3SS) is the most adopted 
for modification and implementation. Recently published ME processors designed 
within single-chip encoders for MPEG@HL are based on modified 3SS [4,5]. By 
using a large search pattern in the first step, the 3SS is very efficient to find the global 
minimum especially for those sequences with large motion. On the other hand, it 
becomes inefficient in estimating of small motions since it will be trapped into a local 
minimum. Although computations are cut down, all fast search methods including 
3SS suffer video quality degradation. 

Previous work focus on the MAE criterion, in which the 16-bit accumulators take 
large silicon area, and become bottleneck of the entire architecture [8]. In this paper, 
we propose a new approach: by modifying the pixel difference classification 
algorithm (PDC)[7], a new hardware-oriented matching criterion has been developed. 
It replaces the 16-bit accumulators with 8-bit counters and has comparable and stable 
video quality as the MAE. Combined with the FS, an area efficient motion estimator 
has been implemented, the test chip core implementation has shown a significant silicon 
area deduction compared with the recently published conventional implementations. For a 
resolution of 1920 × 1080 HDTV format, search window size of –8/7, clock rate of 
100MHz, it is capable to process 50 frames per second, make single-chip realization 
of MPEG@HL codec an easy job. 

In the following parts, the proposed algorithm — simplified PDC (SPDC) is 
presented in section 2; section 3 compares video processing quality of SPDC with 
conventional algorithms; Hardware implementation results are discussed in section 4, 
and section 5 concludes the paper. 

2   Proposed Algorithm 

In order to understand the proposed algorithm, it is necessary to give a brief 
description of the PDC algorithm first. In the PDC algorithm described in Eq. (3)-(5), 
instead of accumulating, the absolute errors are at first compared with a threshold tp , 

then the results p i j k l( , , , ) , which is a binary representation for "no or yes", are 
counted together to form average cost functions PDC k l( , ) . The largest PDC k l( , )  
represents the best match.  
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    ),(maxarg
1,

lkPDCv
plkp −≤≤−

=   (5) 

From the above description we know that the pixel threshold tp  is a constant 8-bit 

value lies between ( )16~00 FF , and this value is not fixed by the original algorithm. 

For design of architectures, a fixed value of the pixel threshold will save an 8-bit 
input port and simplify the circuits. In order to reach this goal, several video 
sequences with different grades of dynamism have been used to evaluate the 
performance of the PDC algorithm under different pixel thresholds.  

First, 15 points distributed among the 256 tp  values are selected; and then, motion 

vectors are calculated by the algorithm under these values. The PSNR (peak signal-
noise-ratio) of the reconstructed frames based on the motion vectors are reported as an 
objective measure of the processing quality. Some of the results are shown in Figure 1 
and 2.  The following phenomena have been observed: 

1) For all video sequences tested, when the pixel threshold tp  takes the values 

within the range of 15 ~ 31, the performances have shown quite stable. 
2) For scenes contain large motions and many moving objects such as Football, the 

bigger the value of  tp  is, the better the performance. 

3) For video sequences with small motions and only one moving object, such as 
Miss America and Claire, the opposite result has been observed, e.g. the smaller 
the tp  is, the better the estimation. 

4) For most video sequences contain moderate background and several objects’ 
motions such as Table Tennis, Flower Garden and Salesman, performance 
within the above mentioned range are quite stable and close to each other. 

Based on the investigation and hardware design consideration, we have chosen the 
value of 15 = ( )160F as the fixed value for the pixel threshold. Once the value of the 

pixel threshold is fixed, Equation (3) can be replaced by Equation (6). Observing this 
equation, we found a coincidence can be used to cut down hardware further without 
degrading the video quality of the algorithm. Here the value 0F acts as a low-pass 
filter, it blocks bigger errors of the pixels. In another word, we need only checking the 
4 MSB of the absolute difference of pixels, only when these 4 bits are all 0, this pair 
of pixels is counted as matching pixels.  

Fljkibjiaif

Fljkibjiaiflkjip

0),(),(0

0),(),(1),,,(

>++−=

≤++−=
                         (6) 

Therefore calculations described in Eq. (3) can be further simplified by truncating the 
4 LSB bits of the pixel difference, omitting the comparator, checking only the 4 MSB 
bits of the pixel difference. In this way, the 8-bit comparator is replaced by a 4-input 
OR gate, circuits is therefore further simplified. Consider parallel implementation,  
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hundreds of processing elements are needed, so the hardware cut down is quite 
significant. This part of the hardware benefit we got was not at the expense of the 
video quality.  

 
 

 

Fig. 1. Performance of PDC at selected 3 values of pixel threshold corresponding to video 
frames  

where  _____  tp  = ( )161F ,  .-.-.-  tp  = ( )160F , *-*-*-  tp  = ( )1607  
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Fig. 2. Performance of PDC at different values of pixel threshold for the sequences of Football, 
Flower Garden, Claire and Table Tennis 

3   Performance Comparison 

Performance of the proposed SPDC algorithm is compared with the MAE, both by 
full search method. Because the 3SS combined with the MAE is the most adopted for 
fast and cost effective hardware implementations, so it has been included in our 
comparison too.   

Several video sequences are used including Football, Table Tennis, Flower 
Garden, Miss America and Salesman. Motion vectors of each frame are estimated 
against its previous frame. A comparison between the PSNR of the reconstructed 
frames is reported as an objective measure of the visual quality achieved, some of the 
results are shown in Figure 3.  

Figure 3 compares the PSNR of the reconstructed frames processed by different 
algorithms. For the Football sequence, which contains fast motions, the proposed 
algorithm shows a less than 0.5dB average degradation compared with the MAE 
algorithm. For the sequence Flower Garden, which contains camera panning, 
performance of the proposed algorithm is even closer to the MAE algorithm. However 
the 3SS low-complexity algorithm shows a very poor quality, its PSNR shows unstable 
and unreliable performances of this kind of fast search methods. Due to the page 
limitation, the reconstructed frames and their error images for different video sequences 
compared with the proposed SPDC and other algorithms cannot be  shown here.  

4   Implementation Result 

Based on the proposed algorithm, we have designed and implemented a systolic array 
architecture. For this architecture, the number of processing elements (PE) needed by 
the systolic array is the parameter of the search area. For a search area of 12 −p , the 

required PEs are 2)2( p ; this number has also to be selected for the reference block 

size to avoid data management problems resulting in idle cycles and decreasing of the 
hardware efficiency. For the test chip, block size is chosen at 16×16, search area –8/7, 
therefore 256 PEs are needed.  
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Fig. 3. Comparison of performance 

     where   .-.-.-  proposed SPDC + FS,  ______  MAE+ FS,  *-*-*-  MAE+ 3SS 

A comparison of one PE hardware cost for the proposed SPDC and the 
conventional MAE is given in Table 1. Architectures of the proposed PE and the 
conventional one for the MAE are shown in Figure 4.  The PE structure for the MAE 
is obtained from [3, 6]. The proposed PE uses an 8-bit counter replaced the 16-bit 
accumulator in the PE for MAE. The fixed pixel threshold technique proposed in this 
work cut down further more hardware cost. Generally for every PE, a 30~40% of area 
and about 60% of power is saved by the proposed design. 
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(a) MAE PE Design [8] 
 

8b subtractor    8b counterOR

4MSB

 

(b) Proposed SPDC PE Ddesign 

Fig. 4. Comparison of processing element structure 

The chip layout is obtained by TSMC 0.18-micron CMOS technology. It has a core 

size of 1.01 2mm , 32 signal pins, which shows a motion estimator with full-search 
quality, suitable for HDTV applications at about 1/4 of the silicon area of the 
conventional MAE realization [3].   

5   Conclusions 

In this paper, we present a hardware-oriented block-matching algorithm and its 
implementation with full search quality for HDTV applications. The architecture is 
highly regular and modular, saves tremendous designing time. For a video format of 
1920×1080 pixels resolution, the proposed implementation can process as many as 50 
frames / sec (fps), fast enough for 30fps HDTV applications. 

Table 1. Comparison of Processing Element Design Technology: 0.18μm  CMOS, 6 metal 
layers

Clock 
Cycle 

Algorithm Cell 

Area (
2mμ )  

Dynamic 
Power(mW) 

5ns  MAD 10127.40 13.08 
 TPC 6809.88 4.94 
Savings  32.8% 62.2% 
10ns MAD 8216.58 6.30 
 TPC 4890.92 2.07 
Savings  40.5% 67.1% 

Compared with conventional algorithms and their implementations in terms of 
video quality and cost, contributions of the proposed work are significant. It brings a 
fresh new approach to the research field of algorithms and their implementations for 
motion estimation. 
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Abstract. This paper proposes an iterative methodology for real-time
robust mosaic topology inference. It tackles the problem of optimal fea-
ture selection (optimal sampling) for global estimation of image transfor-
mations. This is called IGLOS: iterative global optimal sampling. IGLOS
is a unified framework for robust global image registration (optimum
feature selection and model computation are considered within the same
methodology). The major novelty is that it does not rely on random
sampling procedures. Furthermore, by considering an optimal subset of
the total number of correspondences, it naturally avoids trivial solution.
IGLOS can cope with any motion parameterization and estimation tech-
nique. Applications to underwater linear global mosaics and topology
estimation are presented.

1 Introduction

In underwater activities, globally coherent seabed maps are useful tools to a
human operator on a survey mission. Also, they have been used as spatial rep-
resentations to support underwater autonomous navigation [?,5,10]. In building
image mosaics there are two main tasks: image registration and image rendering.
If only pair-wise registration is performed, small levels of noise in the estimation
process may lead to large accumulated error, particulary if there are loops in
the trajectories where non time consecutive frames overlap [1,8]. Furthermore,
underwater applications are particulary prone to outliers due to independent
moving objects (e.g., fishes or algae), poor lighting condition and mismatches.
Therefore, robust global registration is required. Traditionally, this is accom-
plished with random sampling based algorithms between overlapping pairs fol-
lowed by mosaic global topology estimation, in particular, with linear models
[3,6].

This paper addresses the problem of robust global mosaic topology inference
in real-time operations. Instead of removing outliers by random sampling, our
methodology tackles the problem of optimal feature selection by sorting. An
iterative approach is propose: from a set of correspondences and a model, we
choose a subset of points that minimize the regression error. This methodology

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 1250–1257, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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is called IGLOS: iterative global optimal sampling. Feature selection process
is the same as the one used in least trimmed squares [7]. IGLOS depends
upon one single parameter that needs no estimation: pt, the required number
of features to compute the model (pt parameter). Usually, trivial solution is
avoided by introducing penalizing terms on the cost function [6,8] or using
restrict motion models [2]. In our method, by imposing the choice of pt optimal
features, spread over the image, we not only increase robustness to outliers but
also avoid degeneracy. The major contributions are robustness, optimality and
low complexity, which makes it suitable for real-time topology estimation.

2 Iterative Global Optimal Sampling (IGLOS)

2.1 Problem Formulation

Consider the image registration example of Figure 1. For the sake of clarity,
assume that camera motion between Ik (image k) and the reference image I0 is
adequately described by an affine transformation H0k

1, and that p correspon-
dences were found between pairs of images (Ii, Ij). Let hk = row(H0k) be a
column vector formed by stacking the first two rows of H0k (see [4] for details
on row operator). In matrix form:

H0k =

⎡⎣αk
1 αk

2 αk
3

αk
4 αk

5 αk
6

0 0 1

⎤⎦
hk = [αk

1 ,α
k
2 ,α

k
3 ,α

k
4 ,α

k
5 ,α

k
6 ]t

h0 = [1, 0, 0, 0, 1, 0]t

Using the notation x = [u v 1]t and C(x) =
[
u v 1 0 0 0
0 0 0 u v 1

]
the registration error

between a pair of corresponding points, measured in the reference image I0 is
given by εn

ij = ‖C(xn
ij)·hi−C(xn

ji)·hj‖22, where xn
ij ↔ xn

ji is the nth (n ≤ p) pair
of corresponding points between images Ii and Ij , in homogenous coordinates.
The global residue is written as:

ε =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(x1
01) −C(x1

10) 0

...
...

...
C(xp

01) −C(xp
10) 0

C(x1
02) 0 −C(x1

20)
...

...
...

C(xp
02) 0 −C(xp

20)
0 C(x1

12) −C(x1
21)

...
...

...
0 C(xp

12) −C(xp
21)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·
⎡⎣h0
h1
h2

⎤⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

2

= ‖A · h̄‖22 = ‖ε̄‖22 (1)

1 This is the most general collineation allowing for the residual vector to be expressed
as a linear combination of the motion parameters, for more than 2 images.
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Fig. 1. Image registration example with three images

Note that each row of matrix A is related to the coordinates of a single matched
pair. Given a model estimate h̄, finding the optimum set of inliers is tantamount
to choosing the entries of ε̄ such that the global error ε is minimum in the least
squares sense. This can be done by left multiplying A by a diagonal matrix P
with 1, 0 entries respectively. Thus, the problem of global robust registration can
be stated through the following optimization problem:

Problem 1.
(P∗, h̄∗) = argmin {‖P ·A · h̄‖22}

P ∈ Dpt
01 , ‖h̄‖ = 1

where Dpt
01 is the set of diagonal matrices with {0, 1} entries and rank pt (to

avoid null solution). The pt parameter is the total number of required inliers (the
number of 1’s in P). If pmin is the minimum number of features to instantiate
some model (e.g., pmin = 3 for affine or pmin = 4 for the general homography)
and pk correspondences were found between each image pair Mk, in a total of M
matched pairs, then pt is the sum of all ptk : pmin ≤ ptk ≤ pk correspondences
between all matched frames. In the example of Figure 1, ptk = pmin = 3 , ∀k

then pt =
∑3

m=1 ptk = 9.
Since (P∗ and h̄∗) are unknowns, this problem is a nonlinear optimization

problem. Furthermore, it is an integer problem in the P variable. Its combina-
torial nature requires exhaustive search to finding a solution. To avoid this ex-
haustive search issue, some algorithms randomly sample the search space which
is equivalent to randomly assign 1’s and 0’s in matrix P. Though complex, Prob-
lem 1 is separable, in the sense that knowing one variable we can easily compute
the other. Decoupling Problem 1, makes possible to avoid combinatorial explo-
sion.

2.2 Iterative Approach for Solving Problem 1

Assume that, at iteration q, one knows an estimate Pq of P, that is, a subset
of correspondences. Knowing h0 (e.g., for affine transformation h0 = [100010]),
the registration error is ε = ‖(Pq ·A) · h̄ − (Pq ·A0) · h0‖22, where A0 collects
the columns correspondent to the reference image, A the remaining columns
and h̄ is the frame-to-mosaic global model for the remaining frames. Writing
b0 = (Pq ·A0) · h0, Problem 1 reduces to
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Problem 2. h̄∗ = argmin {‖(Pk ·A) · h̄− b0‖22}
h̄

which solution gives an optimal h̄ for the considered set of features. Note that
Pq is idempotent ((Pq)t · Pq = Pq). As long as A is full rank (pk ≥ pmin) and
assuming affine motion, the solution to Problem 2 is

h̄∗ = (At ·Pq ·A)−1 · (Pq ·A)t · b0 (2)

Given h̄∗, an optimal set of correspondences can be found by solving

Problem 3.
P∗ = arg min {‖P · ε̄‖22}

P ∈ Dpt
01

If an efficient solution for the above problem exists, one may iterate between
choosing the optimum set of features with known motion and computing the
best global transformation from a set of pt correspondences. Initialization and
other implementation issues are discussed in Section 3.

2.3 Optimal Sampling: Inlier Selection

Optimal sampling refers to the selection of the inliers that minimizes ε, that is,
efficient solution of Problem 3. Reshape h̄ by reintroducing h0 into the proper
entries (considering a sequence of N frames, h̄ = [h0 h1 , . . . , hN ]t for I0 = I1).
Given the transformation, all pair-wise residues measured in the mosaic frame
εn

ij are stacked into the residual vector ε̄ in ascending image order. Recalling
that P is idempotent, the global registration error can be expressed as

ε = ‖P · ε̄‖22 =
Tp∑
j

(ε̄j)2 ·Pjj (3)

Thus, optimal sampling is accomplished by sorting the residual vector and
choosing the first ptk entries between each matched pair Mk. Sorting ε̄ is per-
formed in

∑M
k=1O(pk log pk) complexity, where pk are the correspondences found

in each matched pair Mk , k = 1, . . . ,M . ptk is the number of required inliers,
that is, pmin ≤ ptk ≤ pk. It turns out that this process leads to the criterium of
the least trimmed squares [7]. Figure 2 outlines the methodology.

K
n

ow
n

 h

Optimal
sampling

Known P

Problem 1

(h*,P*)=argmin{ || PAh ||  }
2

2

Problem 2

2
2oh*=argmin{ || PAh - PA h ||  }o

Solution in D
01
pt

Problem 3

2
2

P*=argmin{ || PAh ||  }

Fig. 2. Outline of the methodology
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3 Implementation

Section 2.3 describes how to efficiently solve Problem 3. Given some initial fea-
ture subset (or motion estimation), one may iterate between find the optimal
subset of features and compute the model with the selected subset until the
following is verified

| ‖Pq ·A · h̄q−1‖22 − ‖Pq ·A · h̄q‖22 | ≤ θ (4)

or a q = Kmax iterations (N is the total of frames in the sequence).
By defining regions on the image, features may be selected by constraining

them to these regions in order to avoid degeneracy. Also, in Problem 2 ,b0 is null
everywhere except for the entries correspondent to coordinates in the reference
frame. Therefore, reducing the number of selected features introduces less zeros
in b0, thus avoiding a solution close to the trivial solution (h̄ = 0).

Note that by decoupling Problem 1, inlier selection and motion computation
are made independent. Extending IGLOS for accurate global registration is done
by replacing Equation 2 with a nonlinear method.

To decrease computational burden, one may consider only the frames that
overlap with the last one acquired. This considerably reduces the dimension of
P, consequently, the computational cost. Furthermore, instead of using batch
least squares, model can be obtained using recursive least squares [3], making
IGLOS suitable for real-time applications.

3.1 Initialization

We propose an iterative initialization2. In case of image mosaicing, we used the
assumptions that image motion is smooth. In fact, one reasonable assumption
is that the transformation between consecutive image is (picewise) constant. In
other words, initial motion estimates between consecutive images are given by
H(l−1)l = H(l−2)(l−1), where Il is the last acquired frame. If the transformation
between the first 2 frames is known (a global translation which can be easily es-
timated or computed by other methods), frame-to-mosaic initialization proceeds
as follow:

H0l = H0(l−2) · H(l−2)(l−1) · H(l−1)l

H(l−2)(l−1) = (H0(l−2))−1 · H0(l−1)

H(l−1)l = H(l−2)(l−1)

H(l−1)l = (H0(l−2))−1 · H0(l−1)

⇒ H0l = H0(l−1) · (H0(l−2))−1 · H0(l−1) (5)

for l ≥ 3.

4 Experimental Results

Consider that a planar seabed is filmed by a moving camera pointing downwards.
In each selected frame, a set of features were matched with a correlation based
2 The authors acknowledge Prof. José Santos-Victor for this contribution.
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Image 6 Image 86

Fig. 3. Two images from the rock sequence, taken at non consecutive time. Superim-
posed inliers are depicted as circles ’o’, outliers as crosses ’x’ and IGLOS optimum set
as asterisks ’*’. No outlier was returned in the optimum.

Fig. 4. Global IGLOS mosaic image. Topology is superimposed.

matcher as in [2]. The mosaic in Figure 4, constructed from a N=96 frames
sequence3, contains 610 overlapping pairs (Figure 3). Besides the real outliers,
the set was contaminated with 30% of outliers, randomly taken from a uniform
distribution over the image plane, to give a benchmark for performance. We re-
quire ptk = 25 inliers for every Mk matched pair and affine model was assumed.
Setting the first image as the reference frame I0, we assume h2 and h3 (the trans-
form from frames I2 and I3 to I0, respectively) to be a global translation, after
which initializations proceed as described in Section 3.1. Images were rendered
with the use-last operator.

Figure 4 presents the correctly estimated topology superimposed. The max-
imum number of iterations per frame was set to Kmax = 50 but the average

3 The authors acknowledge Nuno Gracias for the image set and rendering procedures.
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Fig. 5. Details from resulting mosaics. Left: from IGLOS mosaic. Right: from linear
least squares mosaic.

number of iterations per frame was K = 42.7345. In the same conditions, a ran-
dom sampling algorithm would have done Kp = 24 iterations per overlapping
pair, meaning that K = 24·610

96 = 152.5 iterations per frame would be necessary
to assure, with 95% of probability (not optimal), that all points sampled i one
sample would contain no outliers. The returned optimal set contains no outliers
(Figure 3). Besides efficiency, selecting an optimum set of features promotes ac-
curacy on linear mosaic construction, which is important in survey missions.
Figure 5 illustrates details of the resulting mosaics with IGLOS and linear least
squares. Superimposed boxes highlight the differences. Despite outliers, in the
left image it is possible to observe that only one rock and sea weed exist. IG-
LOS provides a methodology for real-time robust mosaic topology estimation
and improves accuracy in the resulting mosaic.

5 Summary and Conclusions

We have formulated the problem of global robust registration as a nonlinear
mixed-integer optimization problem. To avoid NP hard problem, an iterative
methodology was proposed, IGLOS: iterative global optimal sampling. Outliers
rejection is performed through pair-wise sorting and model is globally estimated.
The applicability of IGLOS to robust global consistent mosaics was discussed.

The methodology presented does not rely on random sampling procedures or
on any estimate of the inlier standard deviation to assure robustness. Other mo-
tion parameterizations (e.g., similarity or full collineation) and non-linear estima-
tion are straightforwardly introduced in the methodology. Major contributions
are robustness with low complexity and optimality in the least squares sense.
The tradeoff is dependence of initialization. IGLOS provide a unified framework
for robust global registration (optimum feature selection and model computa-
tion are performed within the same methodology). In autonomous navigation,
IGLOS allows for real-time robust mosaic topology inference.
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Abstract. This paper describes a digital image warping method which reduces 
the geometric and optical distortions in several display devices such as wide 
screen CRTs, Projection TVs and Projectors. The 2-pass scan line warping al-
gorithm is introduced and it effectively reduces the typical type of display dis-
tortions such as keystone, pincushion, or barrel types. The proposed warping 
algorithm also considers the image scaling function and renders arbitrary image 
scaling up or down with display distortion correction. The proposed architecture 
is successfully implemented in hardware and operates at the clock speed around 
40 ~ 160MHz. Finally, it is successfully adopted in display distortion correction 
purposes.  

1   Introduction  

Recently, digital TV enables high quality display resolutions according to the devel-
opment of innovative display devices such as flat panel PDP, LCD, ELD(Electro 
Luminescent Display) and several kinds of projection TV sets based on the PRT, 
LCD, DLP and LCoS. The advantage of projection system is that the large screen can 
be obtained easily compared to the flat panels or direct view display devices. But the 
projection display system tends to be bulky compared to the plat panel display sys-
tems. Therefore, extensive development efforts are being conducted into large screen 
display systems with light weight and small volume and depth.  

The low cost display system uses direct-view CRT screens and the maximum 34” 
or 36” CRT size is used for wide screen display. As the screen size gets larger, the 
CRT also has larger display distortions. The traditional CRT uses the DY(Deflection 
Yoke), CPM (Convergence and Purity Magnet Rings) and magnetic tapes to reduce 
and correct the several kinds of geometric distortions[1]. But, the adjustment of DY 
and CPM gets more complex as the size of CRT gets bigger. Thus, to solve these 
problems systematically, the imaginary position coordinate is introduced in [2]. By 
using a DSP technology, this system realizes a microcomputer controlled multi-scan 
monitor system with geometry correction and deflection control. But this kind of 
control methods cannot be applied to the other kind of display distortion correction 
[3]. 

The digital image warping technique can be a good solution for solving the above 
mentioned display image distortion problems [4][5]. The image warping is a key 
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feature for implementing image morphing which has proven to be a powerful tool for 
visual effects in film and television, enabling the fluid transformation of one digital 
image into another. Image morphing is realized by coupling image warping with color 
interpolation. Image warping applies 2-D geometric transformations to the images to 
retain geometric alignment between their features. 

A number of methods for correcting the lens distortion in real-time or embedded 
applications have been reported. Especially, a lens geometric and photometric distor-
tion correction method to obtain a high quality image with low cost digital cameras is 
introduced in [6]. Lens geometric distortion coefficient of a digital camera is esti-
mated using a simplified camera calibration technique. Based on the estimate of the 
lens geometric distortion coefficients, image warping adapted for DSP architecture is 
applied in this method. 

Wu [7] presents an efficient inverse warping algorithm for generating novel views 
from multiple reference images taken from different viewpoints. His method proceeds 
in three steps: preprocess for edge-pixel extraction, inverse warping from the primary 
image, and hole filling from remaining reference images. Using the algorithm, two 
virtual offices have been tested and they can navigate virtual environments at an in-
teractive rate. 

In this paper, we adopted the digital image warping techniques in low cost display 
equipment and described the hardware architecture of the proposed method. Due to 
the characteristics of display equipment, digital image warping should be imple-
mented in real-time. Therefore, we introduced the two-pass scan line warping algo-
rithm which can be implemented in real-time hardware for correcting the typical types 
of display distortions such as keystone, pincushion, or barrel.  

2   Digital Image Warping for Display Distortion Correction 

The typical geometrical and optical distortion examples in display devices are shown 
in Figure 1. The real-world restrictions of manufacturing tolerances result in display 
devices that deviate from the ideal case. Depending on the type of display device, one 
or more geometrical distortions can be occurred. The CRT type displays tend to show 
the tilt and pincushion type distortions. The projector typically shows the keystone 
type distortions. The projection type displays tend to show the tilt, keystone, barrel 
and pincushion. These distortions usually require external correction logic to perform 
the device to operate within tolerances demanded by the end-user.  

Figure 2 shows the block diagram of proposed digital image scaling and warping 
system. The resolution of input image can be different compared to the resolution of 
display devices. Thus the image-scaling block is also an essential part of the proposed 
digital warping system.  

By using the 2-pass scan line algorithm, the warping function is operated in the 
horizontal and vertical directions, separately. This operation should consider with the 
image scaling function to minimize the required hardware cost. In the warping mode, 
as shown in figure 2, the input image is scaled into the display size in horizontal di-
rection and stored to the video memory. After that, the image is scaled into the display 
size in vertical direction in the vertical scaling block. And then, the image is warped 
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in the vertical direction and stored to the video memory. Finally, the image is warped 
in the horizontal direction and the proposed block generates the video which is the 
image scaled to the display resolution and intentionally added distortions which re-
duces the display distortions in final display stage. 

The detailed description of the vertical and horizontal warping block is shown in 
figure 3 and figure 4.  

 

Fig. 1. The typical display distortion examples 
 

 

Fig. 2. The overall warping system 

 

Fig. 3. The vertical warping block diagram 
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Fig. 4. The horizontal warping block diagram 
 

 

Fig. 5. Source and destination image coordinates 

 
As shown in figure 5, suppose that a source image Isrc with pixel coordinates (u, v) 

undergoes geometric transformation to produce a target image Itgt with coordinates  
(x, y). This inverse mapping function can be expressed as the following polynomial 
equations. 
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The transform can represent more complex shape of distortion when selecting the 
large number of N. But the hardware complexity for implementing the transform also 
increases. The typical shapes of distortions in conventional display devices were in-
troduced in figure 1 and the relations between the orders of polynomial N and the 
possible shape of correctable distortions are summarized in Table 1. 
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Table 1. The correctable distortion shapes with the different selection of N 

The order of polynomial, N The type of correctable distortions 
1 Horizontal Skew, Vertical Skew, Tilt 
2 Keystone 
3 Pincushion, Barrel 

 
For correcting the pincushion and barrel distortion, N = 3 is selected in our imple-

mentation. 
The reverse mapping scan line algorithm has the following three steps. 

Step 1.  From the equation 1, derive the auxiliary function x = Hu (y) which can be 
obtained by solving the x position of target image with respect to target y po-
sitions by holding u constant.  

When the order of polynomial N equals 3, the equation (1) and (2) can be rewritten 
as following equations. 
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In above equations, the y3 and x3 terms are not required for correcting the pincush-
ion and barrel type distortions. Thus, we can get more compact and simple forms. 
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In order to calculate the auxiliary function Hu (y), let’s hold u constant in equation 
(5). Then the equation (5) can be rewritten as a simple quadratic equation.  

02 =++ CBxAx  (7) 

Here,  
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By solving the quadratic equation, we can get auxiliary function Hu (y) as follows.  

A

ACBB
yHx u 2

4
)(

2 −±−
==  (11) 

Step 2.  Once x = Hu(y) is determined, the second step plugs it into the equation (2). 
And then we can get v = V(Hu (y),y) which can evaluate the source v coordi-
nate of all pixels with respect to target y position. From this mapping func-
tion, we can get vertically warped intermediate image Iint as follows. 

),())),((,(),(int vuIyyHVuIyuI srcusrc ==  (12) 

Step 3.  The mapping function u = U(x, y) is applied to the vertically warped image 
Iint and finally we can get vertically and horizontally warped image Itgt. 

),()),,((),( intint yuIyyxUIyxI tgt ==  (13) 

3   Experimental Results 

The proposed hardware architecture is firstly simulated in C. The simulation includes 
the image scaling and display distortion correction and these functions are conducted 
in x and y direction, independently. The display distortion correction functions  
 

 

Fig. 6. C simulation window with source and destination images 
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    (a) original image                  (b) after skew adjustment           (c) after tilt adjustment 

 
 
 
 
 
 
 

(d) after keystone adjustment  (e) after pincushion adjustment   (f) after barrel adjustment 

Fig. 7. VHDL simulation results 

include pincushion, keystone, skew, tilt and convergence correction. Figure 6 shows a 
snap shot of simulation window with the source image is located in top left position. 
After the adjusting the warp variables in simulation window and clicking the “Apply 
Warp” button, the target image is generated in the right side of the source image. 
Horizontal and vertical pincushion control function is used in this figure. 

The proposed hardware architecture is implemented in VHDL and the VHDL simu-
lation shows the same result compared to the C simulation. Using the hardware emu-
lation, many still and moving images are tested. Figure 7 shows VHDL simulation 
result of several types of display distortion correction. The first image shows original 
flower image. The next images show the results of skew, tilt, keystone, pincushion 
and barrel warp control. 

Finally, the proposed hardware architecture is implemented in FPGA. The opera-
tion frequency of the proposed 2-pass scan line digital image warping system is faster 
than 162MHz and can be applied for UXGA resolution display system. 

4   Conclusion 

We have described the 2-pass scan line digital image warping method and real-time 
hardware architecture. For integrating the image scaling and digital image warping, 
the warping system is separated into two parts and generates intermediate image. This 
intermediate image enables raster-scan input and raster-scan output and also enables 
the overall system working in real-time. Most of the distortion types of display de-
vices such as skew, tilt, keystone, pincushion and barrel are considered and the pro-
posed image warping method can adjust and correct all of these display distortions in 
real-time. 
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The camera lens system also has a similar kind of geometric and photometric dis-
tortions. The rectification of stereo matching system also has a similar problem. 
Therefore, the future work will investigate these application areas and find solutions 
for correcting these problems by using the developed real-time digital image warping 
method.  
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Abstract. Motion estimation (ME) is the main bottleneck and by far
the most time-consuming module in real-time video coding application.
Based on sufficient statistical analysis, a novel complexity-controllable
ME algorithm is presented in this paper. The proposed algorithm con-
sists of three effective stages: 1) initial stage with zero-motion detection,
2) predictive stage with early termination scheme, and 3) local refined
stage by small diamond search. Furthermore, with given complexity con-
straints, a complexity-controllable scheme is introduced into the search
process, which can achieve the preferable tradeoff between motion ac-
curacy and ME complexity. Experimental results demonstrate that our
proposed algorithm achieves similar performance with significantly re-
duced number of search points in comparison with some well-known ME
algorithms, such as diamond search, hexagon-based search and enhanced
hexagon-based search, etc. Moreover, due to its complexity-controllable
feature, our algorithm can be adapted to various devices with a wide
range of computational capability for real-time video encoder.

1 Introduction

With the rapid development of networks, more and more real-time video coding
applications come into being. Because of complexity constraint, many highly effi-
cient but complex algorithms cannot be directly used in real-time video encoder.
Although specific fast algorithms can be adopted to satisfy a specific scenario, it
is not a cost effective way since there are so many different scenarios. Therefore,
it is desirable to design complexity-controllable algorithms which can adapt to
the available computational resources dynamically.

Motion estimation (ME) plays an important role in video coding system to
eliminate temporal redundancy between video pictures. Because of simplicity
and effectiveness, block-matching ME has been widely adopted by video coding
standards, such as MPEG-x and H.26x[1]. Meanwhile, ME is computationally
intensive, e.g. the full search algorithm consumes up to 80% of computing time.
� The work was supported by National Natural Science Foundation of China
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For this reason, many fast ME algorithms have been developed to alleviate the
heavy computation load, such as new three-step search (TSS)[2], four-step search
(FSS)[3], diamond search (DS)[4] and hexagon-based search (HEXBS)[5]. Fur-
thermore, some predictive ME algorithms[6][7] use spatio-temporal correlation
to ulteriorly reduce the search points. However, despite the significant speedup,
ME still consumes the largest amount of computational resources, especially in
real-time video coding.

In order to further reduce the complexity, complexity-scalable ME has been
studied, which can provide a proper tradeoff between motion accuracy and
computational-complexity. In reference [8], a partial-distance metric is used to
limit the number of candidates through a threshold-process that enables com-
plexity scalability. In reference [9], complexity scalability is obtained by scaling
the number of the processed motion vector (MV) fields and the number of vector
evaluations.

Different from previous works, in this paper, we present a novel complexity-
controllable ME (CCME) algorithm. In the proposed algorithm, the ME process
consists of three stages, called initial stage, predictive stage and refined stage.
The search process of each block can be terminated at any aforementioned stage
due to zero-motion detection and early termination schemes. Withal, different
texture and motion within block lead to different search complexity. Therefore,
a complexity-controllable scheme is used to adaptively allocate resources to each
block and controls the entire complexity of all ME in one picture is up-bounded,
which is crucial for real-time video coding application to avoid delay and jitter.

The rest of the paper is organized as follows. Sufficient statistical analysis
and the three-stage ME algorithm are presented in Section 2. In Section 3, the
complexity-controllable scheme is proposed. Experimental results and compara-
tive analysis are shown in Section 4 and conclusions are drawn in Section 5.

2 Proposed Motion Estimation Algorithm

2.1 Initial Stage with Zero Motion Detection

The block motion in real world video sequences is usually gentle, smooth, and
varies slowly. Most of blocks can be regarded as stationary or quasi-stationary.
Fig. 1 shows the MV distribution based on full search algorithm for three test
sequences. For “News”and “Silence”with movement restricted to the center area,
nearly 80% blocks can be regarded as stationary. And for “Foreman”which con-
sists of disordered motion in all directions, the MV distribution is still center-
biased. Commonly, macroblock (MB) with the size of 16× 16 is used to perform
ME, and the sum of absolute difference (SAD) is used to measure the matching
error. After analysis of other ten sequences, we also observed that the average
SAD of the stationary MB is within the range of 500–1300. Therefore, we choose
a threshold T1 used to detect the stationary MB. If SAD in MV(0,0) is less than
T1 (SAD(0,0) < T1), we can figure out that the MB is stationary (zero-motion).
Higher threshold will result in larger detection error, so we set T1 = 550, which
achieves good speedup with negligible ME accuracy degradation.
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Fig. 1. MV distribution through full search for (a)News (b)Silence (c)Foreman

So the initial stage can be summarized as follows. Check the SAD ofMV (0, 0).
If SAD(0,0) < T1, the MB can be regarded as zero-motion, otherwise go to the
next stage.

2.2 Predictive Stage with Early Termination Strategy

For those video sequences, such as “Foreman”, “Mobile&Calendar (M&C)”and
“Coastguard”, which contain large or global motion contents, they cannot benefit
much from the initial stage by zero-motion detection because the percentages of
stationary MB are only 25.8%, 22.4% and 11.3% respectively.

From previous research[6][7], the spatio-temporal correlation can be used
to predict the MV of current MB because the MV always varies slowly both
spatially and temporally. To minimize the computational cost and storage re-
quirement for the prediction, in our predictive stage we only consider the spatial
correlation and MVs of three adjacent blocks (left, top, and top-left) are chosen
as the predictors (Fig. 2 ).

Fig. 2. Candidate predictors P1, P2 and P3 for current macroblock C

We also analyze the prediction accuracy for these sequences and Table 1
shows the results. It can be seen that the prediction becomes more accurate when
more predictors are evaluated. Moreover, we also find that if the three predic-
tors have the same MV, the MV of the current MB is the same with a very high
probability, e.g. 90.5%, 93.3% and 93.7% for “Foreman”, “M&C”and “Coast-
guard”respectively. Furthermore, we analyze the SAD correlation between adja-
cent blocks through full search algorithm. After prediction, if minimal predictive
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SAD of current block is less than minimal SAD of adjacent blocks, continued
search can achieve little benefit. In order to ensure the search accuracy, we set
up the early termination strategy with two necessary conditions: if the three
predictors have the same MV and the predictive SAD is less than threshold T2
(formula (1)), the search can be early terminated.ρ is a scale parameter, through
exhausted experiments and statistical analysis, we set ρ = 1.2 which can achieve
good speedup without much ME accuracy degradation.

Table 1. Percentage of prediction accuracy with each predictor and their combinations

Sequence P1 P2 P3 P1&P2 P1&P2&P3
Foreman 57.0% 58.9% 53.7% 71.7% 79.3%

M&C 77.6% 78.4% 71.4% 89.1% 90.2%
Coastguard 81.8% 71.7% 75.2% 90.8% 92.3%

Through the aforementioned analysis, the predictive stage can be summarized
as follows. Three adjacent predictors are selected to predict the MV of current
MB. If the three predictors have the same MV and the predictive SAD value of
current MB is less than threshold T2, set the MV of current MB as the same and
early terminate the search. Otherwise, calculate the SAD value of the predictive
MVs and select the one which obtain the minimal SAD as the starting point for
next refined stage.

T2 = max{T1, ρ×min{SADleft, SADtop, SADtopleft}} (1)

2.3 Refined Stage by Small Diamond Search

After prediction, there is still some displacement between the best predictive MV
(starting point) and the final MV. An additional local refinement search can be
used to eliminate the displacement. Due to spatial correlation, after prediction
the displacement should be small. The displacement can be defined by formula
(2).

D = min
1≤i≤3

{max{|MVCx −MVP ix |, |MVCy −MVP iy |}} (2)

Where D denotes the displacement, MVCx ,MVCy denote the x and y compo-
nents of final MV of the current macroblock C and MVP ix ,MVP iy denote the
x and y components of predictive MV, 1 ≤ i ≤ 3. Table 2 shows the probabil-
ity within different displacement. The statistical results also demonstrate that
D = 4 is a nearly best choice to confine the search area for the local refinement
search. In refined stage, we use small diamond search (Fig. 3 ) to complete the
refinement.

So the local refined stage can be summarized as follows. Check the four points
around the center (starting point) as Fig. 3 (a). If the center is still the best
point, the search is finished. Otherwise, perform the recursive search as Fig. 3
(b) until the best point lies in center or until the recursive search time exceeds
four.
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Table 2. Probability within different displacement

Sequence D = 0 D ≤ 1 D ≤ 2 D ≤ 3 D ≤ 4
Foreman 75.1% 86.8% 90.1% 93.7% 95.3%

M&C 92.6% 97.4% 98.4% 98.8% 99.2%
Coastguard 93.2% 98.6% 99.6% 99.8% 99.9%

Fig. 3. Small diamond search pattern (a) first step (b) recursive step

3 Complexity-Controllable Scheme

In order to define effective complexity for ME algorithm, we set the search points
(SP ) as the uniform complexity measurement. For every search point, SAD
value must be calculated and evaluated, which is the most time-consuming and
high-frequency operation in ME process.

Our proposed ME algorithm consists of three stages and each stage has its
own complexity. The initial stage has fixed complexity (1SP ). In predictive stage,
the best case is that the three predictors have the same MV, the complexity
is 1SP ; the worst case is that the three predictors have different MVs, every
predictor should be evaluated to decide the starting point for refined stage and
the complexity is 3SP . In refined stage, the complexity range from 4SP to 16SP

in terms of small diamond search pattern and four recursive search time limit.
Therefore, the complexity of ME for one MB can be defined by formula (3).

CMB = 1 + α(p + β(4 + 3r)) = 1 + αp + αβ(4 + 3r) (3)

Where CMB denotes the complexity, α and β are binary coefficients (α = 0
means zero-motion and α = 1 means non-zero-motion; β = 0 means early-
termination and β = 1 means non-early-termination), p denotes the number of
evaluated predictors and 1 ≤ p ≤ 3, r denotes the recursive search time in small
diamond search and 0 ≤ r ≤ 4. Therefore, the CMB can range from 1SP to 20SP .
In order to realize complexity-controllable feature, we can adjust parameters p
and r to control the complexity and ensure complexity-bounded. For example,
if we limit p = 2 and r = 2, the CMB is limited to 13SP .

Through the complexity-controllable scheme, we set the parameters p and r
so as to limit the ME complexity and ensure real-time for video coding. Since dif-
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ferent MB contains different texture and motion, uniformly allocating computa-
tional resources may bring about some resource wasting. Because of zero-motion
detection and early termination scheme adopted in our proposed algorithm, we
can easily realize resource adaptive allocation by a simple controller. Before ME,
every MB is uniformly allocated the computational resources (SP ) according to
computational capability. A controller contains the available SP which can be
used to perform ME of current MB. The controller must guarantee that the
ME complexity of the current MB cannot exceed its own available SP through
aforementioned complexity-controllable scheme. Due to zero-motion detection
and early termination strategy, the residual SP of current MB can be added
to the available SP of next MB. As a result, the simple controller not only en-
sures the total complexity upper-bounded, but also realizes resource adaptive
allocation.

After adding resource allocation scheme to the ME process, the CCME al-
gorithms can be described as Fig. 4.

Fig. 4. Process of the proposed CCME algorithm

4 Experimental Results

To evaluate the performance of the proposed CCME algorithm, we first compare
it with DS[4], HEXBS[5] and predictive enhanced HEXBS[7] algorithms without
complexity constraint. And second, we add complexity constraint into the algo-
rithm to evaluate the complexity-controllable feature. The experimental setup is
as follows: the distortion measurement of mean square error (MSE) used, block
size of 16× 16, and search window size of ±15. Three groups of sequences (CIF
format) have been chosen, because they present different kinds of motion which
can achieve the comprehensive evaluation.

The averageMSE values and average number of SP are summarized in Table
3 for different algorithms without considering the complexity constraint. It is
very clear that the CCME achieves considerable speedup in terms of SP with
almost the same or better MSE distortions compared to the DS, HEXBS and
enhanced HEXBS algorithms. For “News”and “Silence”, with motion limited
within a small region, the CCME achieves averagely 4 times faster with about
2% MSE distortion increasing. For “Foreman”, with disordered large motions,
the CCME achieves averagely 2 times faster and lower MSE distortion. For
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“M&C”and “Coastguard”, with large or global motion, the CCME also achieves
significantly speedup with negligible MSE change.

Table 3. Average MSE per pixel and average SP per MB for different algorithms

Average MSE per pixel
News Silence Foreman M&C Coastguard

DS 24.24 22.40 74.14 239.77 65.82
HEXBS 24.66 22.67 78.26 249.40 67.89

Enhanced HEXBS 24.95 23.01 61.87 241.01 67.73
Proposed algorithm 25.08 23.18 59.66 240.87 67.72

Average SP per MB
DS 12.80 13.34 17.52 13.63 15.01

HEXBS 10.69 11.02 13.75 10.79 12.96
Enhanced HEXBS 8.35 9.01 11.37 8.89 9.15
Proposed algorithm 2.39 3.19 6.82 6.52 6.27

The complexity-controllable feature is described in Fig. 5. Given different
complexity constraints, our proposed algorithm can adapt to a wide range of
computational capability and achieve a preferable tradeoff between ME accu-
racy and complexity due to resource adaptive allocation scheme. Two sequences,
“Foreman”and “Coastguard”are selected to accomplish the test. It can be seen
that with multilevel predefined complexity constraint (SP per MB), our pro-
posed algorithm with resource adaptive allocation (RAA) scheme is obvious
better than the one without RAA scheme.
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Fig. 5. Complexity-controllable feature of the proposed algorithm with and without
the resource adaptive allocation (RAA) for (a) Foreman (b) Coastguard
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5 Conclusions

In this paper, we proposed a novel complexity-controllable motion estimation
algorithm. The proposed CCME algorithm makes use of three effective stages
to achieve superior search performance. Moreover the complexity-controllable
scheme can achieve a preferable tradeoff between ME accuracy and complexity.
As for the performance, the CCME algorithm speeds up the search about 2–5
times faster than the well-known DS, HEXBS and enhanced HEXBS algorithms
without any motion accuracy degradation. Furthermore, given different complex-
ity constraints, the complexity-controllable scheme represents good performance
and decreases 15%–30% MSE distortions comparing to the one without this
scheme. And also, we believe that the performance of the CCME algorithm
could still be improved by using a more intelligent resource allocation scheme.
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