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Abstract. In this paper we combine rewriting techniques with verifica-
tion issues. More precisely, we show how techniques for proving relative
termination of term rewrite systems (TRSs) can be applied to prove
liveness properties in fair computations. We do this using a new trans-
formation which is stronger than the sound transformation from [5] but
still is suitable for automation. On the one hand we show completeness
of this approach under some mild conditions. On the other hand we show
how this approach applies to some examples completely automatically,
using the TPA tool designed for proving relative termination of TRSs. In
particular we succeed in proving liveness in the classical readers-writers
synchronization problem.

1 Introduction

Usually, liveness is roughly defined as: “something will eventually happen” and
it is often remarked that “termination is a particular case of liveness”. In [5]
the relationship between liveness and termination was investigated in more de-
tail, and it was observed that conversely liveness can be seen as termination
of a modified relation. Since various techniques have been developed to prove
termination automatically, an obvious goal is to apply these techniques in order
to prove liveness properties. In [5] a method for transforming a class of liveness
problems to problems of termination of term rewrite systems (TRSs) has been
proposed. For a slightly different setting in [6] another approach was proposed.

Two transformations were given in [5]. The first one, sound and complete,
even for extremely simple liveness problems results in complicated TRSs for
which proving termination, especially in an automated way, is very difficult.
That was the motivation for another, much simpler, transformation, which is
sound but not complete.

In this paper this approach is extended in two ways. First we extend the
basic framework to fair computations. That means that we do not restrict to the
basic notion of liveness stating that any infinite computation eventually reaches
a good state, but we do this for infinite fair computations, being infinite com-
putations containing some essential computation steps infinitely often. Fairness
has been studied extensively in [4]. In applications one is often interested in the
behavior of infinite fair computations rather than of arbitrary infinite compu-
tations. For instance, in a waiting line protocol one may want to prove that
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eventually all old clients will be served. If it is allowed that infinitely many new
clients come in, one may think of an infinite computation in which this does not
hold: infinitely many new clients come in but no client is ever served. However,
if serving of clients is defined to be the essential computation step, in a corre-
sponding fair computation it can be proved that eventually all old clients will be
served. It turns out that just like liveness corresponds to termination, liveness
in fair computations corresponds to relative termination. So combining liveness
and fairness is a main issue of this paper.

The second extension is the following. It turns out that the simple trans-
formation presented in [5] often results in non-terminating TRSs, and therefore
is not applicable, also in liveness problems not involving fairness. Therefore we
propose a new transformation. Our new transformation is slightly more compli-
cated than the simple transformation from [5], but much simpler than the sound
and complete transformation from [5]. However, assuming some mild conditions,
in this paper we show that our new transformation is sound and complete too.
Moreover, we show in two examples that our new transformation results in TRSs
for which (relative) termination can be proved fully automatically. In particular
we consider the classical readers-writers synchronization problem, in which the
priority of access is controlled in an obvious way. The desired liveness property
states that every process in the system eventually gets access to the resource.
Using our technique we succeed in automatically proving this liveness property.
Both examples involve infinite state spaces and hence the standard model check-
ing techniques are not applicable to them.

To this end a tool — TPA (Termination Proved Automatically, http://www.
win.tue.nl/tpa) — was developed for proving relative termination of TRSs au-
tomatically, based on polynomial interpretations [9], semantic labelling with
booleans and with natural numbers [13], recursive path ordering [3] and a sim-
ple version of dependency pairs [1]. Most of those well-known termination tech-
niques, except dependency pairs, were extended in a straightforward way to deal
also with relative termination. TPA took part in the annual termination competi-
tion in 2005 (http://www.lri.fr/∼marche/termination-competition/2005)
where it got 3rd place out of 6 participating tools.

This paper is organized as follows. In Section 2 the general framework from
[5] is extended in order to deal with liveness with fairness. Next in Section 3 the
new transformation is introduced and the corresponding theorems on soundness
and completeness are given. Finally in Section 4 two examples are presented in
which this new approach has been applied.

2 Liveness with Fairness Conditions

2.1 Liveness in Abstract Reduction

First we present the framework as described in [5] with no more than necessary
details to understand its extension given later. For a more elaborate description
we refer to the original article.

http://www.
http://www.lri.fr/~marche/termination-competition/2005
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We give the model of the system that should be verified in the framework
of abstract reduction. We assume a set of states S and a binary relation on
states expressing computation steps, → ⊆ S × S. As usual we write →∗ for its
reflexive transitive closure and →+ for its transitive closure. We define a set of
states in normal form as NF ≡ {s ∈ S | ¬∃s′ ∈ S : s → s′} and a set of
terms in normal form reachable from a given set of states I as NF(I) ≡ {s ∈
NF | ∃t ∈ I : t →∗ s}. We call a reduction sequence maximal if it is either infinite
or its last element is in NF. By SN(I,→) we denote termination of reduction
sequences starting in I and by SN(→) termination of arbitrary sequences. That
is: SN(I,→) ≡ ¬∃t1, t2, . . . : t1 ∈ I ∧ ∀i : ti → ti+1 and SN(→) ≡ SN(S,→).

With respect to a set of initial states I ⊆ S and a set of good states G ⊆ S, we
say that the liveness property Live(I,→, G) holds if all maximal →-reductions
starting in I contain an element from G. More precisely:

Definition 1 (Liveness). Let S be a set of states, →⊆ S × S; G, I ⊆ S. Then
Live(I,→, G) holds iff

– ∀t1, t2, . . . :
{

t1 ∈ I
∀i : ti → ti+1

}
=⇒ ∃i : ti ∈ G, and

– ∀t1, . . . , tn :

⎧⎨
⎩

t1 ∈ I
tn ∈ NF

∀i ∈ {1, . . . , n − 1} : ti → ti+1

⎫⎬
⎭ =⇒ ∃i ∈ {1, . . . , n} : ti ∈ G.

We define the restricted computation relation →G≡ {(s, t) | s → t ∧ s /∈ G}.
The following theorem from [5] relates liveness to termination of →G.

Theorem 2. If NF(I) ⊆ G then Live(I,→, G) iff SN(I,→G).

2.2 Liveness with Fairness in Abstract Reduction

In liveness we are mainly interested in the behavior of infinite reduction se-
quences, or shortly, infinite reductions. However, in many applications one is
not interested in arbitrary infinite reductions but in infinite fair reductions, de-
fined as follows. Instead of a single rewrite relation → we have two relations
→,

=→⊆ S × S 1. An infinite reduction in → ∪ =→ is called fair (with respect
to →) if it contains infinitely many →-steps. Finally we say that liveness for
fair reductions starting in I with respect to →, =→ and G holds, denoted as
Live(I,→,

=→, G), if any fair → ∪ =→ reduction starting in I contains an element
of G. Note that all fair reductions are infinite, hence in investigating liveness
with fairness we are only interested in systems with infinite behavior.

Definition 3 (Liveness with fairness). Let S be a set of states, →,
=→⊆ S ×

S; G, I ⊆ S. Then liveness for fair reductions with respect to I,→,
=→ and G,

Live(I,→,
=→, G), holds iff

1 The notation for → and
=→ is chosen to be consistent with the notation for rel-

ative termination problems as used in TPDB (Termination Problem Database,
http://www.lri.fr/∼marche/tpdb/). The database serves as a base of problems
for Termination Competitions.

http://www.lri.fr/~marche/tpdb/
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– ∀t1, t2, . . . :

⎧⎨
⎩

t1 ∈ I
∀i : ti → ti+1 ∨ ti

=→ ti+1

∀i∃j > i : tj → tj+1

⎫⎬
⎭ =⇒ ∃i : ti ∈ G

Our definition is based on the notion of relative termination. We define that
→ terminates relatively to =→ if every (possibly infinite) → ∪ =→ computation
contains only finitely many → steps. We introduce the relation → /

=→ ≡ =→∗

· → · =→∗
and observe that relative termination of → to =→ is equivalent to

SN(→ /
=→). Also observe that SN(→/ ∅) ≡ SN(→) so termination is a special

case of relative termination.
The result of the next theorem gives us a method of verifying liveness with

fairness requirements.

Theorem 4. Live(I,→,
=→, G) holds iff SN(I,→G /

=→G).

Proof. (⇒) Assume that Live(I,→,
=→, G) holds and SN(I,→G /

=→G) does not
hold. From the latter we get that there is an infinite, fair reduction sequence
t1, t2, . . . with t1 ∈ I and ∀i : ti →G ti+1 ∨ ti

=→G ti+1. From the definition
of →G all ti /∈ G. But then this reduction sequence is a counter-example for
Live(I,→,

=→, G).
(⇐) Since SN(I,→G /

=→G) then in every infinite, fair → ∪ =→ reduction
starting in I there is an element from G (which blocks further →G ∪ =→G reduc-
tions) and that is exactly what the definition of Live(I,→,

=→, G) calls for. �

2.3 Liveness with Fairness in Term Rewriting

In previous sections we described the transition relation by means of abstract
reductions, and related liveness of → to termination of →G. Our goal is to
employ techniques for proving termination of rewriting in order to prove liveness
properties. To that end a transformation is required since usually →G is not a
rewrite relation even if → is a rewrite relation.

For a signature Σ and a set V of variables, we denote the set of terms over
Σ and V by T (Σ,V). Now we represent the computation states by terms, so S
becomes T (Σ,V) and I, G ⊆ T (Σ,V). Abstract reduction relations → and =→
now correspond to two TRSs over the same signature Σ: R and R=, respectively.
As a shorthand for →R we write → and for →R= we simply write =→. Just like
it is usual to write SN(R) rather than SN(→R), we will write Live(I, R, R=, G)
rather than Live(I,→R,→R= , G).

For an introduction to term rewriting the reader is referred, for instance, to
[12].

Now, again after [5], we will introduce the notion of top TRSs, which we are
going to use to model liveness problems.

Definition 5 (Top TRSs). Let Σ be a signature and top be a fresh unary
symbol in this signature, that is top �∈ Σ. A term t ∈ T (Σ ∪ {top},V) is called a
top term if it contains exactly one instance of the top symbol, at the root of the
term. We denote the set of top terms by Ttop(Σ,V).
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A TRS over Σ ∪ {top} is called a top term rewrite system (top TRS) if for
all its rules � → r one of the following holds:

– Both � and r are top terms. Then we call this rule a top rule.
– Both � and r do not contain an instance of the top symbol. Then the rule is

called a non-top rule.

Clearly for top TRSs every reduction starting in a top term only contains
top terms. In the remainder we restrict ourselves to liveness with respect to

– reduction relations described by top TRSs,
– the set of initial states consisting of all top terms, and
– the set of good states of the form:

G(P ) = {t ∈ Ttop(Σ,V) | ¬∃p ∈ P, σ, C : t = C[pσ]},

for some set P ⊆ T (Σ,V), that is G(P ) represents top terms not containing
an instance of any of the terms from P .

So we are going to investigate liveness properties of the form:

Live(Ttop(Σ,V), R, R=, G(P ))

for some top TRSs R and R=. This is equivalent to proving that every infinite
fair reduction of top terms contains a term which does not contain an instance
of any of the terms from P .

As we will show later this type of question can be transformed to a rela-
tive termination question of an ordinary TRS. This allows us to employ the
techniques for proving relative termination for TRSs to verify liveness proper-
ties. Also, while quite restricted, this setting seems to be general enough to be
able to cope with some interesting and practical examples, two of which will be
presented at the end of this paper.

3 A New Transformation

3.1 Motivation

We are seeking a transformation with the property that relative termination of
the transformed pair of systems implies that the liveness property in question
holds (even better if we can have equivalence). In [5] two such transformations
were proposed: the first one sound and complete (equivalence between termi-
nation and liveness holds) and the second one only sound (termination implies
liveness but not the other way around) but significantly simpler. Experiments
with them show that the former is so complex that, although it is a nice theoreti-
cal result, in practice it leads to TRSs far too complicated for present termination
techniques to deal with, especially in an automated way. The sound transforma-
tion does not have this disadvantage but in several examples it is not powerful
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enough, leading to non-terminating TRSs, while the desired liveness property
does hold.

In this section we propose a new transformation avoiding the aforementioned
problems. But before we do that we will shortly introduce the sound transfor-
mation LS from [5] where P = {p}. As in our presentation also LS can be easily
generalized to allow P to contain more than one element, as remarked in [5].

Definition 6 (LS). Let R be a top TRS over Σ ∪ {top} and p ∈ T (Σ,V). We
define LS(R, p) to consist of the following rules:

� → r for all non-top rules � → r in R

top(�) → top(check(r)) for all top rules top(�) → top(r) in R

check(f(x1, . . . , xn)) → f(x1, . . . , check(xi), . . . , xn)
for all f ∈ Σ of arity n ≥ 1, 1 ≤ i ≤ n

check(p) → p

While LS is sound, it is not complete. This is illustrated by the following
TRS R = {top(f(x, b)) → top(f(b, b)), a → b}. Normal forms do not contain
symbol a and in every infinite reduction after finitely many steps only term
top(f(b, b)) occurs, so liveness for p = a holds. However, LS(R, p) admits an
infinite reduction, namely: top(check(f(b, b))) � top(f(check(b), b)).

3.2 Definition of the Transformation

We give a new transformation inspired by the sound and complete transformation
presented in [5] but significantly simpler so that obtained systems can still be
treated with tools for automatic termination proving. It can deal with a much
broader class of liveness problems than the sound transformation from [5]. We
present it for only one unary top symbol but generalization to more top symbols
and/or different arities is straightforward.

Definition 7 (LT). Let R and R= be top TRSs over Σ ∪ {top} and P ⊆
T (Σ,V). The transformed systems LT(R) and LT=(R=, P ) over Σ ∪ {top, ok,
check} are defined as follows:

LT(R)

� → r for all non-top rules � → r in R

top(ok(�)) → top(check(r)) for all top rules top(�) → top(r) in R

LT=(R=, P )

� → r for all non-top rules � → r in R=

top(ok(�)) → top(check(r)) for all top rules top(�) → top(r) in R=

check(p) → ok(p) for all p ∈ P

check(f(x1, . . . , xn)) → f(x1, . . . , check(xi), . . . , xn)
for all f ∈ Σ of arity n ≥ 1, 1 ≤ i ≤ n

f(x1, . . . , ok(xi), . . . , xn) → ok(f(x1, . . . , xn))
for all f ∈ Σ of arity n ≥ 1, 1 ≤ i ≤ n



238 A. Koprowski and H. Zantema

The idea behind this transformation is that the presence of an ok symbol at
the root of the term is intended to indicate existence of an instance of p ∈ P .
Every time a top rule is applied this ok symbol is transformed to a check symbol.
This check symbol can traverse toward the leaves and upon reaching an instance
of some term p ∈ P is transformed back into an ok symbol. This ok symbol can
move up again and allow further top reductions upon reaching the root of the
term.

Few remarks concerning the transformation:

– For readability concerns we will write →LT instead of →LT(R) and =→LT

instead of →LT=(R=,P ).
– In order to apply automatic techniques the set P should be finite, otherwise

the TRS LT=(R=, P ) is infinite.
– If the liveness problem does not involve fairness, so it is modelled by single

TRS R, then we define the result of the transformation to be also a single
TRS, namely LT=(R, P ).

3.3 Soundness

Now we show soundness, that is relative termination of the transformed system
implies liveness of the original one.

Theorem 8 (Soundness). Let R, R= be top TRSs over Σ ∪ {top}, let P ⊆
T (Σ,V). Then:

SN(LT(R)/ LT=(R=, P )) =⇒ Live(Ttop(Σ,V), R, R=, G(P ))

Proof. Assume that SN(LT(R)/ LT=(R=, P )) holds and Live(Ttop(Σ,V), R, R=,
G(P )) does not hold. By Theorem 4, SN(Ttop(Σ,V), →G /

=→G) does not hold
as it is equivalent to Live(Ttop(Σ,V), R, R=, G(P )). That means that there is
an infinite →G /

=→G reduction of top terms. We will show that this infinite
reduction can be mapped to an infinite →LT /

=→LT reduction, thus contradicting
SN(LT(R)/ LT=(R=, P )). For that purpose it is sufficient to show that:

top(t) →G /
=→G top(u) =⇒ top(ok(t)) →LT /

=→LT top(ok(u))

that is that any step in →G /
=→G can be mimicked by a step in →LT /

=→LT. It
easily follows if we can show that:

(i) whenever top(t) →G top(u) then top(ok(t)) →LT /
=→LT top(ok(u)), and

(ii) whenever top(t) =→G top(u) then top(ok(t)) =→∗
LT top(ok(u)).

(i) First observe that if top(t) →G top(u) by the application of a non-top rule
� → r then the same rule is present in LT(R) so we trivially have top(ok(t)) →LT

/
=→LT top(ok(u)).
If on the other hand top(t) →G top(u) by application of a top rule then from

the definition of top TRSs we have that t = �δ and u = rδ for some substitution
δ and some rule top(�) → top(r) from R. Note that top(u) is part of an infinite
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→G /
=→G-reduction so top(u) →G top(w) or top(u) =→G top(w) for some term

w. Then from the definition of →G we get that top(u) does contain an instance
of some p ∈ P which means that we have u = C[pγ] for some context C and
some substitution γ. Then we have:

top(ok(t)) = top(ok(�δ))
→LT top(check(rδ))
= top(check(C[pγ]))

=→∗
LT top(C[check(p)γ])

=→LT top(C[ok(p)γ])
=→∗

LT top(ok(C[pγ])) = top(ok(u))

The reasoning for (ii) is similar, just the first step is from =→LT(R) instead of
→LT(R). �

3.4 Completeness Results

In the previous subsection we proved that our approach is correct, that is that
the proposed transformation is sound. Now we will try to address the question
of its power. First we show (Theorem 9) that any liveness problem that could be
dealt with using LS can also be dealt with using LT. Then we show that under
some restrictions our new approach is even complete.

Theorem 9. Let R be a top TRS over Σ ∪ {top} and let p ∈ T (Σ,V). Then
SN(LS(R, p)) implies SN(LT=(R, {p})).

Proof. Follows from the observation that any LT=(R, {p}) reduction can be
mapped to LS(R, p) reduction by dropping all ok symbols and the rule for prop-
agating ok symbol is terminating in itself.

Note however that there is no ‘if and only if’ in Theorem 9, which means that
LT may succeed in case LS fails. A very simple example showing that is the TRS
R = {top(f(x, b)) → top(f(b, b)), a → b} used at the end of Section 3.1 to show
incompleteness of LT. We concluded there that LS(R, p) is not terminating,
however it is not difficult to see that LT=(R, {p}) is terminating. Two more
complex and practical examples will be presented in Section 4.

There is a good reason why the sound and complete transformation presented
in [5] is so complicated, so clearly enough we cannot hope that a transformation
as simple as LT would be complete. The best we can hope for is completeness
under some additional restrictions on the shape of TRSs modelling the liveness
problem. Indeed that is the case. First we present three such requirements along
with examples showing that if they do not hold completeness is lost. However,
for the setting of liveness problems, these requirements are quite mild. Then we
will prove completeness for the restricted set of systems for which they do hold.

Example 1. Let us begin with a very simple example, namely:

R = {top(a) → top(b), b → a} R= = ∅.
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Consider liveness with P = {a}, meaning that in every reduction eventually
a term without a is reached. It is an easy observation that in every infinite
reduction of this TRS its two rules have to be applied interchangeably, so after
at most one step the term without a is reached and liveness holds. But the
transformation yields:

LT(R) = {top(ok(a)) → top(check(b)), b → a}
LT=(R=, P ) = {check(a) =→ ok(a)}.

The above system allows an infinite →LT /
=→LT reduction, namely:

top(ok(a)) →LT top(check(b)) →LT top(check(a)) =→LT top(ok(a)) →LT . . .

The reason why things go wrong here is that some term from P (being a in this
case) can be created, that is there are reductions from terms not containing an
instance of p (for any p ∈ P ) to terms containing an instance of p (for some
p ∈ P ). We can mend that by forbidding this kind of behavior. Let us note
that this means restricting to liveness problems for which if the desired property
holds at some point it will hold from that point onwards.

From now on, for readability concerns, we will assume that rules from R are
given as l → r and rules from R= as l

=→ r and we will just present a set of
rules leaving the separation to R and R= implicit. Now we move on to another
example showing another property that can destroy liveness.

Example 2. Consider the TRS over {f, g, top, a, b} consisting of the following
rules:

top(g(x, y, a)) → top(f(x)), f(x) → g(x, x, x).

In any infinite top reduction the second rule is applied infinitely often, and
a straightforward analysis shows that after applying the second rule in a top
reduction, no infinite reduction from a term containing the symbol b is possible.
So liveness with P = {b} holds. The transformed system reads:

(1) top(ok(g(x, y, a))) → top(check(f(x))) (7) check(g(x, y, z))
=→ g(x, y, check(z))

(2) f(x) → g(x, x, x) (8) f(ok(x))
=→ ok(f(x))

(3) check(b)
=→ ok(b) (9) g(ok(x), y, z)

=→ ok(g(x, y, z))

(4) check(f(x))
=→ f(check(x)) (10) g(x, ok(y), z)

=→ ok(g(x, y, z))

(5) check(g(x, y, z))
=→ g(check(x), y, z) (11) g(x, y, ok(z))

=→ ok(g(x, y, z))

(6) check(g(x, y, z))
=→ g(x, check(y), z)

and allows an infinite reduction, namely:

top(check(f(ok(a))))
(2)→top(check(g(ok(a), ok(a), ok(a))))

(6)
=→

top(g(ok(a), check(ok(a)), ok(a)))

(11)
=→ top(ok(g(ok(a), check(ok(a)), a)))

(1)→
top(check(f(ok(a)))) → . . .

This time completeness was harmed by duplicating rules in the original system.
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Example 3. Finally consider the following simple TRS consisting of two rules:
top(f(a)) → top(b) and b → b. Clearly liveness with P = {a} holds but after
transformation we obtain a non-terminating TRS since b can be rewritten to
itself. This gives rise to the third, and last, requirement, namely that the signa-
ture of the TRS for which we consider liveness problem must contain at least
one symbol of arity ≥ 2. This is a really weak requirement: it is not required
that this symbol occurs in the rewrite rules.

Now we will prove that if all three restrictions are satisfied, that is there
are no duplicating rules, terms from P cannot be created and Σ contains some
symbol of arity ≥ 2, then the completeness holds.

Before we state the completeness theorem we need some auxiliary results.
First let us denote by t the term t after removing all occurrences of ok and check
symbols. Formally:

check(t) = t

ok(t) = t

f(t1, . . . , tn) = f(t1, . . . , tn) for f �∈ {check, ok}

We need two lemmas for which the proofs are easy and can be found in
[8]. First we will state the lemma which shows that the reduction steps in a
transformed system can be mimicked in the original system after removing extra
ok and check symbols.

Lemma 10. Given two TRSs R and R= over the same signature Σ and arbi-
trary terms t, u, we have the following implications:

(i) t →LT u =⇒ t → u

(ii) t
=→LT u =⇒ t

=→∗
u

Later on we will need the following lemma stating that extending TRS with
administrative rules for check and ok preserves termination.

Lemma 11. Given two TRSs R and R= over Σ (top, ok, check �∈ Σ). Let S
consist of the following rules:

check(p) → ok(p) for all p ∈ P

check(f(x1, . . . , xn)) → f(x1, . . . , check(xi), . . . , xn)
for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

f(x1, . . . , ok(xi), . . . , xn)) → ok(f(x1, . . . , xn))
for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

Now if SN(R/R=) then SN(R/(R= ∪ S)).

Proof. Easy using Lemma 10.
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Now we will present the theorem stating that for non-duplicating TRSs rela-
tive termination on top terms is equivalent to relative termination on arbitrary
terms. We start by an example showing that non-duplication is essential for that.

Example 4. Let us consider the following TRS:

top(f(x)) → top(a) f(x) =→ g(f(x), f(x))

Here relative termination on top terms follows from the observation that any
→-step on any top term always yields the normal form top(a). However, this
system admits the following fair reduction:

f(top(f(x)) =→ g(f(top(f(x)), f(top(f(x))) → g(f(top(a), f(top(f(x))︸ ︷︷ ︸
initial term

) =→ · · · .

Theorem 12. Let R, R= be non-duplicating top TRSs over Σ. Then we have:

SN(T (Σ,V), R/R=) ⇐⇒ SN(Ttop(Σ,V), R/R=)

Proof. The (⇒)-part is trivial. For the (⇐)-part assume we have an arbitrary
infinite fair reduction; we have to prove that there is also an infinite fair top re-
duction. By putting a top symbol around all terms we force that all terms in the
infinite fair reduction have top as the root symbol. Next among all infinite fair
reductions having top as the root symbol we choose one in which the number N
of top symbols occurring in the initial term is minimal. Due to non-duplication
in every term in this reduction at most N top symbols occur; due to minimal-
ity of N we conclude that each of these terms contains exactly N top symbols.
We write top(C[top(t1), . . . , top(tn)]) for the initial term in the reduction for a
context C not containing the symbol top. Since the number of top-symbols re-
mains unchanged every term in the reduction is of the same shape, having the
same number n of holes in the context. Due to minimality every infinite → ∪ =→
reduction of top(ti) contains only finitely many →-steps, for i = 1, . . . , n. Due
to definition of top TRSs all steps are either in the context C or in descendants
of top(ti). Since the descendants of top(ti) allow only finitely many →-steps
and there are infinitely many →-steps in total, we conclude that there are in-
finitely many →-steps in the contexts. More precisely, we arrive at an infinite top
reduction of top(C[x, . . . , x]) containing infinitely many →-steps, contradicting
SN(Ttop(Σ,V), R/R=). �

Now we formulate the theorem which states that, under the three extra re-
quirements introduced before, the transformation defined in Sect. 3.2 is complete.

Theorem 13 (Completeness). Let R, R= be top TRSs over Σ ∪{top}. If the
following conditions are satisfied:

(i) if u contains an instance of some p ∈ P and t → u or t
=→ u then t also

contains an instance of p,
(ii) both R and R= are non-duplicating,
(iii) there is at least one function symbol of arity ≥ 2 in Σ.
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then:

Live(Ttop(Σ,V), R, R=, G(P )) =⇒ SN(LT(R)/ LT=(R=, P ))

Proof. Assume Live(Ttop(Σ,V), R, R=, G(P )) and conditions (i)-(iii) hold and
SN(LT(R)/ LT=(R=, P )) does not hold. Then there is an infinite →LT /

=→LT

reduction. Due to non-duplication of R and R=, LT(R) and LT=(R=, P ) are
also non-duplicating and by application of Theorem 12 we get that there is an
infinite top →LT /

=→LT reduction, call it ω.
Assume infinitely many terms in ω contain instances of terms from P . By

the observation that an instance of p occurs in C[pδ], Lemma 10 applied to ω
gives rise to an infinite top reduction in R/R= having infinitely many terms
containing instances of p ∈ P . Due to (i) all terms in this infinite reduction
contain instances of p ∈ P contradicting Live(Ttop(Σ,V), R, R=, G(P )). Hence
only finitely many terms in ω contain instances of terms from P . So removing
this finite prefix of ω yields an infinite top →LT /

=→LT reduction ω′ in which no
instance of p ∈ P occurs at all.

Note that non-top rules of R are relatively terminating to non-top rules of
R=. Assume they are not. Then there is an infinite → /

=→ reduction sequence
obtained using non-top rules of R and R=. Let f ∈ Σ be a function symbol of
arity ≥ 2 (its existence is ensured by (iii)). Put the infinite → /

=→ reduction
in context top(f(p, �, . . .)). This yields an infinite, fair top reduction containing
p and thus contradicting Live(Ttop(Σ,V), R, R=, G(P )). Now, by application of
Lemma 11, we conclude that non-top rules of LT(R) are relatively terminating
to non-top rules of LT=(R=, P ).

In ω′ top rules are applied infinitely often as non-top rules of LT(R) are
relatively terminating to non-top rules of LT=(R=, P ). Note that because of (ii)
the only way to create an ok symbol is by application of the rule check(p) =→
ok(p). Every top reduction removes one occurrence of the ok symbol, so the
aforementioned rule should be applied infinitely often. But since p does not
occur in ω′ this rule is not applicable which leads to a contradiction and ends
the proof. �

Examples 1, 2 and 3 show that conditions (i)-(iii) of this theorem are essential.

4 Examples

In this section we present two examples illustrating the applicability of the pro-
posed transformation. None of them could be treated with the use of the LS
transformation described in [5]. Both relative termination proofs of the trans-
formed systems were found completely automatically by TPA .

Example 5 (Cars over a bridge). There is a road with cars going in two direc-
tions. But on their way there is a bridge which is only wide enough to permit
a single lane of traffic. So there are lights indicating which side of the bridge is
allowed to cross it. We want to verify the liveness property, namely that every
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car will eventually be able to cross the bridge. For that clearly we need some
assumptions about the lighting system. We want to be as general as possible so
instead of assuming some particular algorithm of switching lights we just require
them to change in a fair way, that is in the infinite observation of the system
there must be infinitely many light switches (or equivalently: no matter when
we start watching the road after some, arbitrary, time we will see the change of
lights). Also we assume that before a light switches at least one car will pass
(otherwise liveness is lost as lights can change all the time without any cars
passing).

We model the system with a unary top symbol whose arguments start with
a binary symbol left or right indicating which side has a green light. The argu-
ments of left and right start with unary symbols new and old representing cars
waiting to cross the bridge. The constant bot stands for the end of the queue.
New cars are allowed to arrive at the end of the queue at any time. What we
want to prove is that finally no old car remains.

(1) top(left(old(x), y)) → top(right(x, y))

(2) top(left(new(x), y)) → top(right(x, y))
(3) top(right(x, old(y))) → top(left(x, y))
(4) top(right(x, new(y))) → top(left(x, y))
(5) top(left(bot, y)) → top(right(bot, y))
(6) top(right(x, bot)) → top(left(x, bot))
(7) top(left(old(x), y)) =→ top(left(x, y))
(8) top(left(new(x), y)) =→ top(left(x, y))
(9) top(right(x, old(y))) =→ top(right(x, y))
(10) top(right(x, new(y))) =→ top(right(x, y))
(11) bot

=→ new(bot)

We have the following semantics of the rules:

(1) − (4) Car passes and the light changes.
(5) − (6) No car waiting, light can change.
(7) − (10) Car passes, light remains the same.

(11) New car arriving.

We want to prove liveness with P = {old(x)}. For that purpose we need
to show relative termination of the transformed system. It is an easy observa-
tion that the following procedure is termination-preserving: if for every rule the
number of occurrences of some symbol is bigger or equal in the left hand side
than in the right hand side, then remove the rules for which it is strictly bigger.
This approach, already presented in [5], corresponds to proving termination with
polynomial orderings with successor as interpretation for symbol begin counted
and identity for all the other symbols.

The proof of relative termination can be given as follows. First count occur-
rences of old to remove four rules. Then apply semantic labelling over {0, 1}taking
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constant 1 for old, identity for remaining unary symbols, disjunction for all bi-
nary symbols and constant 0 for bot. In the resulting system repeatedly apply
counting argument to remove all the → rules thus proving relative termination.
The details including the proof generated automatically by TPA can be found
in [8].

The next example we investigate is commonly known as “the readers-writers
problem” and goes back to Courtois et al. [2]. It is considered as a classical
synchronization problem.

Example 6 (The readers and writers problem). Some resource is to be shared
among a number of processes. There are two types of processes: “readers”, which
perform only reading operation and “writers” which can perform both reading
and writing. The safety requirement is that writers must have exclusive access
to the resource (that is when a writer has access to the resource no other process
can have it) whereas readers can share the access (as long as there is no writer
active at the same time).

It is usual in literature ([11], [10]) to concentrate only on safety requirements
and propose a solution with priority for readers (writers) which can clearly lead
to starvation of writers (readers). In [7] a fair solution to this problem has been
proposed. We will present another variant of this starvation-free solution, where
the access to the resource is controlled in a first-come first-served manner and
we will verify that indeed starvation is not possible, corresponding to liveness.

To achieve that we introduce a flag indicating which group of processes (either
readers or writers) has priority. If only one group claims the resource it is simply
allowed to use it. But in case of a conflict, that is two groups interested in
use of the resource, the group having priority is allowed to access it and then
the priority is changed. Without adding this priority flag obviously the desried
liveness property does not hold.

As in example 5 we distinguish between old and new processes and verify
that finally there are no old processes in the system. We model reader processes
by unary function symbols: RAO, RAN, RIO, RIN where the second character
indicates whether the reader is currently Active (performs reading) or Inactive
(waits for access to the resource) and the third character indicates whether the
reader is Old or New. The argument is used to organize processes into lists.
Similarly for writers we have WAO, WAN, WIO, WIN. However WAO and WAN
are constants as there can be at most one active writing process at a time and
there is no need to keep a list of such processes.

The whole system is then modelled by means of binary function symbols
sys-r or sys-w indicating priority for readers or writers respectively. The first
argument describes all readers in the system and the second one models writ-
ers. Readers are modelled by a binary operator read whose first argument con-
tains the list of active processes terminated by constant RT and the second
argument contains the list of processes waiting for the resource terminated by
constant RB. Similarly, the binary operator write describes writers processes.
Its first argument can be either WT (no active writer),WAO (active old writer)
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or WAN (active new writer). The second argument describes a list of inactive
writers.

Due to using lists to represent active processes, we make one additional
restriction that simplifies the modelling substantially, namely we assume that
reading processes free the resource in the same order as they got access to
it. It corresponds to the situation when the reading operation always takes
some fixed interval of time. Now we are ready to present the model of the
system.

(1) RB
=→ RIN(RB) (4) RAN(RT) → RT

(2) WB
=→ WIN(WB) (5) WAO → WT

(3) RAO(RT) → RT (6) WAN → WT

(7) top(sys-r(read(r1, RIO(r2)), write(WT, WB)))
=→ top(sys-r(read(RAO(r1), r2), write(WT, WB)))

(8) top(sys-w(read(r1, RIO(r2)), write(WT, WB)))
=→ top(sys-w(read(RAO(r1)r2), write(WT, WB)))

(9) top(sys-r(read(r1, RIN(r2)), write(WT, WB)))
=→ top(sys-r(read(RAN(r1), r2), write(WT, WB)))

(10) top(sys-w(read(r1, RIN(r2)), write(WT, WB)))
=→ top(sys-w(read(RAN(r1), r2), write(WT, WB)))

(11) top(sys-r(read(RT, RB), write(WT, WIN(w))))
=→ top(sys-r(read(RT, RB), write(WAN, w)))

(12) top(sys-w(read(RT, RB), write(WT, WIN(w))))
=→ top(sys-w(read(RT, RB), write(WAN, w)))

(13) top(sys-r(read(RT, RB), write(WT, WIO(w))))
=→ top(sys-r(read(RT, RB), write(WAO, w)))

(14) top(sys-w(read(RT, RB), write(WT, WIO(w))))
=→ top(sys-w(read(RT, RB), write(WAO, w)))

(15) top(sys-r(read(r1, RIO(r2)), write(WT, w)))
=→ top(sys-w(read(RAO(r1), r2), write(WT, w)))

(16) top(sys-r(read(r1, RIN(r2)), write(WT, w)))
=→ top(sys-w(read(RAN(r1), r2), write(WT, w)))

(17) top(sys-w(read(RT, r2), write(WT, WIO(w))))
=→ top(sys-r(read(RT, r2), write(WAO, w)))

(18) top(sys-w(read(RT, r2), write(WT, WIN(w))))
=→ top(sys-r(read(RT, r2), write(WAN, w)))

The meaning of the rules is as follows:

(1 − 2) New inactive process appears in the system and is queued to wait
for the resource.

(3 − 6) Active process finishes reading/writing.
(7 − 10) Nobody is writing nor waiting for write access — inactive reading

process is allowed to start reading; priority does not change
(11 − 14) Nobody is reading nor waiting for read access and nobody is writ-

ing — writer is allowed to start writing; priority does not change.
(15 − 16) Nobody is writing and priority is for readers — reader is allowed

to start reading; priority is switched.
(17 − 18) Nobody is reading nor writing and priority is for writers — writer

is allowed to start writing; priority is switched.

What we want to prove is that finally no old process remains in the system.
This corresponds to verifying liveness with the set P = {RAO(x), RIO(x), WAO,
WIO(x)}.

To prove this liveness property we need to show relative termination of the
transformed system. This was done completely automatically by TPA . The proof
produced by TPA consists of more than 1000 lines. It proceeds by repeating a
number of times the following procedure: apply semantic labelling, remove some
rules using polynomial interpretations, unlabel the system to obtain a TRS with
few rules less than before labelling. The proof applies semantic labelling with
different interpretations 7 times. For a more detailed description we again refer
to [8].
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5 Conclusions

This paper describes a technique to transform a liveness problem with fairness
to the problem of proving relative termination of a transformed TRS. In two
presented examples the latter could be done fully automatically. The only human
activity in this approach is modelling the original problem in the language of
term rewriting. The advantage of this approach compared to standard model
checking is that it can easily deal with liveness problems involving infinite state
spaces.

In modelling liveness problem as TRS there is usually a lot of choice. This
choice can influence the difficulty of the corresponding termination problem.
This holds for instance for readers-writers example presented in Section 4 for
which we considered a number of variations not all of which could be proved
by TPA. Therefore improving TPA to be able to handle the broader class of
relative termination problems is an obvious goal. Therefore we consider work
on adopting existing termination techniques (like dependency pairs) for prov-
ing relative termination as well as developing techniques specifically for proving
relative termination to be an interesting subject of further research.
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