

Lecture Notes in Artificial Intelligence 3717
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Bernhard Gramlich (Ed.)

Frontiers of
Combining Systems

5th International Workshop, FroCoS 2005
Vienna, Austria, September 19-21, 2005
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editor

Bernhard Gramlich
Technische Universität Wien
Fakultät für Informatik
Favoritenstrasse 9 - E185/2, 1040 Wien, Austria
E-mail: gramlich@logic.at

Library of Congress Control Number: 2005932552

CR Subject Classification (1998): I.2.3, F.4.1, F.4

ISSN 0302-9743
ISBN-10 3-540-29051-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29051-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11559306 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 5th International Workshop on
Frontiers of Combining Systems (FroCoS 2005) held September 19–21, 2005 in
Vienna, Austria. Previously, FroCoS was organized in Munich (1996), Amster-
dam (1998), Nancy (2000) and Santa Margherita Ligure near Genoa (2002). In
2004, FroCoS joined IJCAR 2004, the 2nd International Joint Conference on
Automated Reasoning. Like its predecessors, FroCoS 2005 offered a common
forum for the presentation and discussion of research results and activities on
the combination, integration, analysis, modularization and interaction of for-
mally defined systems, with an emphasis on logic-based ones. These issues are
important in many areas of computer science, such as logic, computation, pro-
gram development and verification, artificial intelligence, automated reasoning,
constraint solving, declarative programming, and symbolic computation.

There were 28 research papers submitted to FroCoS 2005, authored by re-
searchers from 16 countries. After extensive reviewing and discussion within the
Program Committee, 14 papers including two system descriptions were finally
accepted for presentation at the conference and publication in this volume. The
topics covered by the selected papers include: combinations of logics, theories,
and decision procedures; constraint solving and programming; combination is-
sues in rewriting and programming as well as in logical frameworks and theorem
proving systems. In addition to the regular accepted papers, this volume also
contains papers (three full ones and one abstract) corresponding to four invited
talks given by Luca de Alfaro (Univ. of California, Santa Cruz), Silvio Ghilardi
(Univ. of Milan), Fausto Giunchiglia (Univ. of Trento) and Eric Monfroy (Univ.
of Nantes & UTFSM/Chile).

Many people and institutions contributed to making FroCoS 2005 a success.
I would like to thank in particular: the members of the Program Comittee and
the additional referees for their careful and thorough reviewing work in a rel-
atively short time; the other members of the FroCoS Steering Committee for
their support and encouragement; the invited speakers for their stimulating con-
tributions; the members of the local Organizing Committee for their help with
all the local and practical organization issues; Andrei Voronkov for the free use
of his efficient EasyChair conference management system and his support; and
all institutions that supported FroCoS 2005 either as financial sponsors or by
other means: the Vienna University of Technology, Theory and Logic Group (In-
stitute of Computer Languages), the Database and Artificial Intelligence Group
(Institute of Information Systems), the Austrian Computer Society (OCG), the
European Association for Theoretical Comuter Science (EATCS), the European
Association for Programming Languages and Systems (EAPLS), and the Vienna
Convention Bureau (VCB).

July 2005 Bernhard Gramlich

Organization

Conference and Program Committee Chair

Bernhard Gramlich (Fakultät für Informatik, TU Wien)

Program Committee

Alessandro Armando University of Genoa, Italy
Franz Baader TU Dresden, Germany
Clark W. Barrett NYU New York, USA
Frédéric Benhamou LINA, University of Nantes, France
Michel Bidoit LSV, CNRS & ENS Cachan, France
Jacques Calmet University of Karlsruhe, Germany
Jürgen Giesl RWTH Aachen, Germany
Bernhard Gramlich TU Wien, Austria
Deepak Kapur UNM Albuquerque, USA
Maarten Marx University of Amsterdam, The Netherlands
Joachim Niehren INRIA Futurs, University of Lille, France
Christophe Ringeissen LORIA-INRIA Nancy, France
Manfred Schmidt-Schauß University of Frankfurt, Germany
Cesare Tinelli University of Iowa, USA
Ashish Tiwari SRI Menlo Park, USA
Frank Wolter University of Liverpool, UK

Local Organization

Aneta Binder Bernhard Gramlich
Franziska Gusel Gernot Salzer
Jana Srna

Additional Referees

Sergio Antoy
Frederic Blanqui
Iovka Boneva
Lucas Bordeaux
Balder ten Cate

Manuel Clavel
Jeremy Dawson
Stéphane Demri
Alexander Dikovsky
Clare Dixon

Gilles Dowek
Rachid Echahed
Cormac Flanagan
Vijay Ganesh
Thomas Genet

VIII Organization

Rajeev Goré
Jean Goubault-Larrecq
Laurent Granvilliers
Ludovic Henrio
Florent Jacquemard
Predrag Janičić
Ulrich Junker
Boris Konev
Marco Kuhlmann

Jordi Levy
Matthias Mann
Marco Maratea
Nicolas Markey
Hans de Nivelle
Silvio Ranise
Yves Roos
David Sabel
Frédéric Saubion

Thomas Schwentick
Helmut Seidl
Aaron Stump
Mateu Villaret
Benjamin Wack
Dirk Walther
Ting Zhang

Table of Contents

Logics, Theories, and Decision Procedures I

Invited Contribution: A Comprehensive Framework for Combined
Decision Procedures

Silvio Ghilardi, Enrica Nicolini, Daniele Zucchelli 1

Connecting Many-Sorted Structures and Theories Through Adjoint
Functions

Franz Baader, Silvio Ghilardi . 31

Combining Data Structures with Nonstably Infinite Theories Using
Many-Sorted Logic

Silvio Ranise, Christophe Ringeissen, Calogero G. Zarba 48

On a Rewriting Approach to Satisfiability Procedures: Extension,
Combination of Theories and an Experimental Appraisal

Alessandro Armando, Maria Paola Bonacina,
Silvio Ranise, Stephan Schulz . 65

Interface Formalisms

Invited Contribution: Sociable Interfaces
Luca de Alfaro, Leandro Dias da Silva, Marco Faella, Axel Legay,
Pritam Roy, Maria Sorea . 81

Logics, Theories, and Decision Procedures II

About the Combination of Trees and Rational Numbers in a Complete
First-Order Theory

Khalil Djelloul . 106

A Complete Temporal and Spatial Logic for Distributed Systems
Dirk Pattinson, Bernhard Reus . 122

Constraint Solving and Programming

Invited Contribution: Hybrid CSP Solving
Eric Monfroy, Frédéric Saubion, Tony Lambert . 138

An Efficient Decision Procedure for UTVPI Constraints
Shuvendu K. Lahiri, Madanlal Musuvathi . 168

X Table of Contents

Declarative Constraint Programming with Definitional Trees
Rafael del Vado Vı́rseda . 184

Logical Problem Analysis and Encoding I

Logical Analysis of Hash Functions
Dejan Jovanović, Predrag Janičić . 200

Combination Issues in Rewriting and Programming

Proving and Disproving Termination of Higher-Order Functions
Jürgen Giesl, René Thiemann, Peter Schneider-Kamp 216

Proving Liveness with Fairness Using Rewriting
Adam Koprowski, Hans Zantema . 232

A Concurrent Lambda Calculus with Futures
Joachim Niehren, Jan Schwinghammer, Gert Smolka 248

Compositional System Design and Refinement

Tutorial: The ASM Method for System Design and Analysis. A Tutorial
Introduction

Egon Börger . 264

Logical Problem Analysis and Encoding II

Invited Contribution: Matching Classifications via a Bidirectional
Integration of SAT and Linguistic Resources

Fausto Giunchiglia . 284

Theorem Proving Frameworks and Systems

Connecting a Logical Framework to a First-Order Logic Prover
Andreas Abel, Thierry Coquand, Ulf Norell . 285

System Description: Combination of Isabelle/HOL with Automatic
Tools

Sergey Tverdyshev . 302

System Description: ATS: A Language That Combines Programming
with Theorem Proving

Sa Cui, Kevin Donnelly, Hongwei Xi . 310

Author Index . 321

A Comprehensive Framework for Combined

Decision Procedures

Silvio Ghilardi1, Enrica Nicolini2, and Daniele Zucchelli1,�

1 Dipartimento di Scienze dell’Informazione
{ghilardi, zucchelli}@dsi.unimi.it

2 Dipartimento di Matematica,
Università degli Studi di Milano - Italy

Abstract. We define a general notion of a fragment within higher order
type theory; a procedure for constraint satisfiability in combined frag-
ments is outlined, following Nelson-Oppen schema. The procedure is in
general only sound, but it becomes terminating and complete when the
shared fragment enjoys suitable noetherianity conditions and allows an
abstract version of a ‘Keisler-Shelah like’ isomorphism theorem. We show
that this general decidability transfer result covers as special cases, be-
sides applications which seem to be new, the recent extension of Nelson-
Oppen procedure to non-disjoint signatures [16] and the fusion transfer
of decidability of consistency of A-Boxes with respect to T-Boxes axioms
in local abstract description systems [9]; in addition, it reduces decidabil-
ity of modal and temporal monodic fragments [32] to their extensional
and one-variable components.

1 Introduction

Decision procedures for fragments of various logics and theories play a central
role in many applications of logic in computer science, for instance in formal
methods and in knowledge representation. Within these application domains,
relevant data appears to be heterogeneously structured, so that modularity in
combining and re-using both algorithms and concrete implementations becomes
crucial. This is why the development of meta-level frameworks, accepting as in-
put specialized devices, turns out to be strategic for future advances in building
powerful, fully or partially automatized systems. In this paper, we shall consider
one of the most popular and simple schemata (due to Nelson-Oppen) for de-
signing a cooperation protocol among separate reasoners; we shall plug it into a
higher order framework and show how it can be used to deal with various classes
of combination problems, often quite far from the originally intended application
domain.

The basic feature of Nelson-Oppen method is simple: constraints involving
mixed signatures are transformed into equi-satisfiable pure constraints and then
� Work performed within the MIUR Project “Metodi Costruttivi in Topologia, Algebra

e Fondamenti dell’Informatica”. We wish to thank Manfred Schmidt-Schauss for
comments on a preliminary draft of this paper.

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 1–30, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 S. Ghilardi, E. Nicolini, and D. Zucchelli

the specialized reasoners try to share all the information they can acquire con-
cerning constraints in the common subsignature, till an inconsistency is detected
or till a saturation state is reached.

Nelson-Oppen method was guaranteed to be complete only for disjoint sig-
natures and stably infinite theories, till quite recently, when it was realized [16]
that stable infiniteness is just a special case of a compatibility notion, which
is related to model completions of shared sub-theories. The above extension of
Nelson-Oppen method to combination of theories operating over non disjoint sig-
natures lead to various applications to decision problems in modal logics: such
applications (sometimes involving non trivial extensions of the method as well
as integration with other work) concerned transfer of decidability of global con-
sequence relation to fusions [16] and to E-connections [4], [5], as well as transfer
of decidability of local consequence relation to fusions [8].

Thus, most of previously existing decidability results on fusions of modal
logics (for instance those in [33]) were recaptured and sometimes also improved
by general automated reasoning methods based on Nelson-Oppen ideas. How-
ever, this is far from exhausting all the potentialities of such ideas and further
extensions are possible. In fact, the standard approach to decision problems in
modal/temporal/description logics is directly based on Kripke models (see for
instance [9], [15]), without the intermediation of an algebraic formalism, whereas
the intermediation of the formalism of Boolean algebras with operators is essen-
tial in the approach of papers like [16], [8], [4], [5]. The appeal to the algebraic
formulation of decision problems on one side produces proofs which are much
smoother and which apply also to semantically incomplete propositional logics,
but on the other side it limits the method to the cases in which such a purely
algebraic counterpart of semantic decision problems can be identified.

One of the main reasons for avoiding first-order formalisms in favor of propo-
sitional modal logic-style languages lies in the better computational perfor-
mances of the latter. However, from a purely declarative point of view, first-
order formalisms are essential in order to specify in a semantically meaningful
language the relevant decision problems. This goal is mainly achieved in the
case of modal logic through first-order translations, the role of such translations
being simply that of codifying the intended semantics (and not necessarily that
of providing computational tools).

If a semantic class S of Kripke frames is given, relevant decision problems are
formulated as satisfiability problems (within members of S) for standard trans-
lations of propositional modal formulae. In these formulations, unary predicates
occurring in standard translations are considered in practice as second order
variables: in fact, satisfiability requires the existence of suitable Kripke mod-
els and the latter differ from mere Kripke frames precisely by the specification
of a second order assignment. The role played by second order variables be-
comes even more evident if we analyze the way in which standard translations of
modal formulae in fusions are obtained from standard translations of formulae in
the component languages. For instance, ST (♦1♦2x, w) is obtained by substitut-
ing into ST (♦1y, w) := ∃v(R1(w, v) ∧ Y (v)) the ‘abstracted’ second order term

A Comprehensive Framework for Combined Decision Procedures 3

{v | ST (♦2x, v)} := {v | ∃z(R2(v, z)∧X(z))} for Y (a β-conversion should follow
the replacement in order to get as normal form precisely ST (♦1♦2x, w)). Thus,
even if we do not ‘computationally’ trust first-order logic (and consequently not
even higher order logic, for much stronger reasons), it makes nevertheless sense
to analyze combination problems in the framework where they arise, that is in
the framework which is the most natural for them.

We shall work within Church’s type theory: thus our syntax deals with types
and terms, terms being endowed with a (codomain) type. In this higher order
context, we shall provide a general definition of a fragment (more specifically of
an interpreted algebraic fragment, see Definitions 3.2, 3.3) and of a constraint
satisfiability problem, in such a way that fragments can be combined into each
other and a Nelson-Oppen procedure for constraint satisfiability in combined
fragments can be formally introduced.

The general procedure is only sound and specific conditions for guarantee-
ing termination and completeness are needed. For termination, we rely on local
finiteness (better, on noetherianity) of the shared fragment, whereas for com-
pleteness we use heavy model-theoretic tools. These tools (called isomorphism
theorems) transform equivalence with respect to satisfiability of shared atoms
into isomorphism with respect to the shared signature, in such a way that sat-
isfiability of pure constraints is not compromised. The results of this analysis is
summarized in our general decidability transfer result (Theorem 5.1).

Of course, isomorphisms theorems are quite peculiar and rare. However, the
classical Keisler-Shelah isomorphism theorem based on ultrapowers [11] is suf-
ficient to justify through Theorem 5.1 the recent extension [16] of the Nelson-
Oppen results to non disjoint first-order signatures and another isomorphism
theorem, based on disjoint unions (better, on disjoint copies), is sufficient to
justify in a similar way the decidability transfer result of [9] concerning A-Box
consistency with respect to T-Boxes.1 Having identified the conceptual core of
the method, we are now able to apply it to various situations, thus getting
further decidability transfer results: these results cover the combination of A-
Boxes with a stably infinite first-order theory (Theorem 5.3), the combination of
two so-called monadically suitable fragments (Theorem 5.6) and the combination
(leading to monodic modal fragments in the sense of [32]) of a one-variable modal
fragment with a monadically suitable extensional fragment (Theorem 5.7).

For space reasons, we can only explain here our settings, give examples and
state the main results (for proofs and for more information, the reader is referred
to the full technical report [17]).

2 Higher-Order Signatures

We adopt a type theory in Church’s style (see [2], [3], [21] for introductions to the
subject). We use letters S1, S2, . . . to indicate sorts (also called primitive types)
1 Thus, the difference between the semantically oriented proofs of [9] and the alge-

braically oriented proofs of papers like [16], [8] seem to be mainly a question of
choosing a different isomorphism theorem to justify the combined procedure.

4 S. Ghilardi, E. Nicolini, and D. Zucchelli

of a signature. Formally, sorts are a set S and types over S are built inductively
as follows: (i) every sort S ∈ S is also a type; (ii) Ω is a type (this is called the
truth-values type); (iii) if τ1, τ2 are types, so is (τ1 → τ2).

As usual external brackets are omitted; moreover, we shorten the expression
τ1 → (τ2 → . . . (τn → τ)) into τ1 . . . τn → τ (in this way, every type τ has the
form τ1 . . . τn → τ , where n ≥ 0 and τ is a sort or it is Ω). In the following,
we use the notation T (S) or simply T to indicate a types set, i.e. the totality of
types that can be built up from the set of sorts S. We always reserve to sorts the
letters S1, S2, . . . (as opposed to the letters τ, υ, etc. which are used for arbitrary
types).

A signature (or a language) is a triple L = 〈T , Σ, a〉, where T is a types set,
Σ is a set of constants and a is an arity map, namely a map a : Σ −→ T . We
write f : τ1 . . . τn → τ to express that f is a constant of type τ1 . . . τn → τ , i.e.
that a(f) = τ1 . . . τn → τ . According to the above observation, we can assume
that τ is a sort or that τ = Ω; in the latter case, we say that f is a predicate or
a relational symbol (predicate symbols are preferably indicated with the letters
P,Q, . . .).

We require the following special constants to be always present in a signature:
	 and ⊥ of type Ω; ¬ of type Ω → Ω; ∨ and ∧ of type ΩΩ → Ω; =τ of type
τ τ → Ω for each type τ ∈ T (we usually write it as ‘=’ without specifying the
subscript τ). The proper symbols of a signature are its sorts and its non special
constants.

A signature is one-sorted iff its set of sorts is a singleton. A signature L is
first-order if for any proper f ∈ Σ, we have that a(f) = S1 . . . Sn → τ , where
τ is a sort or it is Ω. A first-order signature is called relational iff any proper
f ∈ Σ is a relational constant, that is a(f) = S1 . . . Sn → Ω. By contrast, a first
order signature is called functional iff any proper f ∈ Σ has arity S1 . . . Sn → S.

Given a signature L = 〈T , Σ, a〉 and a type τ ∈ T , we define the notion of
an L-term (or just term) of type τ , written t : τ , as follows (for the definition
we need, for every type τ ∈ T , a countable supply Vτ of variables of type τ):

– x : τ (for x ∈ Vτ) is an L-term of type τ ;
– c : τ (for c ∈ Σ and a(c) = τ) is an L-term of type τ ;
– if t : υ → τ and u : υ are L-terms of types υ → τ and υ, respectively, then
valτ (t, u) : τ (also written as t(u) : τ) is an L-term of type τ ;

– if t : τ is an L-term of type τ and x ∈ Vυ is an L-variable of type υ,
λxυ t : υ → τ is an L-term of type υ → τ .

In the following, we consider the notation xτ (cτ) equivalent to x : τ (c :
τ), where x (resp. c) is a variable (resp. a constant); if it can be deduced
from the context, the specification of the type of a term may be omitted. More-
over, a term of type τ is also called a τ-term and terms of type Ω are also
called formulae. Given a formula ϕ, we write {x | ϕ} for λxϕ. Moreover,
we shorten valτ (· · · (valτn−1(t, u1), · · ·), un) to t(u1, . . . , un). Free and bound
variables are defined in the usual way; we use the notation t[x1, . . . , xn] (or
fvar(t) ⊆ {x1, . . . , xn}) to mean that the variables occurring freely in t are in-

A Comprehensive Framework for Combined Decision Procedures 5

cluded in the finite set x = {x1, . . . , xn}. We often indicate finite sets or finite
tuples of variables by the letters x, y,

Substitutions are defined in the usual way, but α-conversion (that is, bound
variables renaming) might be necessary to avoid clashes. We also follow standard
practice of considering terms as equivalence classes of terms under α-conversion.
β- and η-conversions are defined in the standard way and we shall make use of
them whenever needed (for a very brief account on the related definitions and
results, the reader is referred to [12]).

For each formula ϕ, we define the formulae ∀xυ ϕ and ∃xυ ϕ as {xυ | ϕ} =
{xυ | 	} and as ¬∀xυ ¬ϕ, respectively (the latter can also be defined differently,
in an intuitionistically acceptable way, see [21]). For terms ϕ1, ϕ2 of type Ω, the
terms ϕ1 → ϕ2 and ϕ1 ↔ ϕ2 of type Ω are defined in the usual way.

By the above definitions, first-order formulae can be considered as a subset
of the higher order formulae defined in this section. More specifically, when we
speak of first-order terms, we mean variables x : S, constants c : S and terms
of the kind f(t1, . . . , tn) : S, where t1, . . . , tn are (inductively given) first-order
terms and a(f) = S1 · · ·Sn → S. Now first-order formulae are obtained from
formulae of the kind 	 : Ω,⊥ : Ω,P (t1, . . . , tn) : Ω (where t1, . . . , tn are first-
order terms and a(P) = S1 · · ·Sn → Ω) by applying ∃xS , ∀xS ,∧,∨,¬,→,↔.

In order to introduce our computational problems, we need to recall the
notion of an interpretation of a type-theoretic language. Formulae of higher
order type theory which are valid in ordinary set-theoretic models do not form
an axiomatizable class, as it is well-known from classical limitative results. We
shall nevertheless confine ourselves to standard set-theoretic models, because
we are not interested in the whole type theoretic language, but only in more
tractable fragments of it.

If we are given a map that assigns to every sort S ∈ S a set [[S]], we can
inductively extend it to all types over S, by taking [[τ → υ]] to be the set
of functions from [[τ]] to [[υ]] (we shall freely refer to such an extension below,
without explicitly mentioning it). Given a language L = 〈T , Σ, a〉, an L-structure
(or just a structure) A is a pair 〈[[−]]A, IA〉, where:

(i) [[−]]A is a function assigning to a sort S ∈ T , a (non empty, if you like)
set [[S]]A;

(ii) IA is a function assigning to a constant c ∈ Σ of type τ , an element
IA(cτ) ∈ [[τ]]A.

In every structure A, we require that [[Ω]]A = {0, 1} and that 	,⊥,¬,∧,∨
are given their standard ‘truth-table’ meaning.

Given an L-structure A = 〈[[−]]A, IA〉 and a type-conformal assignment α to
the variables of L, it is possible to define (in the expected way) the interpretation
Iα
A(t) of the term t under the assignment α: notice that, if t has type τ , then we

have Iα
A(t) ∈ [[τ]]A. An L-formula ϕ is satisfied in A under the assignment α iff

Iα
A(ϕ) = 1 (we usually write A |=α ϕ for Iα

A(ϕ) = 1). A formula is satisfiable iff
it is satisfied in some structure under some assignment and a set of formulae Γ
is satisfiable iff all formulas in Γ are simultaneously satisfied.

6 S. Ghilardi, E. Nicolini, and D. Zucchelli

For signature inclusions L0 ⊆ L, there is an obvious taking reduct operation
mapping a L-structure A to a L0-structure A|L0 ; we can similarly take the L0-
reduct of an assignment, by ignoring the values assigned to variables whose types
are not in L0 (we leave the reader to define these notions properly).

3 Fragments

General type theory is very hard to attack from a computational point of view,
this is why we are basically interested only in more tractable fragments and in
combinations of them. Fragments are defined as follows:

Definition 3.1. A fragment is a pair 〈L, T 〉 where L = 〈T , Σ, a〉 is a signature
and T is a recursive set of L-terms.

3.1 Algebraic Fragments

We want to use fragments as ingredients of larger and larger combined fragments:
a crucial notion in this sense is that of an algebraic fragment.

Definition 3.2. A fragment 〈L, T 〉 is said to be an algebraic fragment iff T
satisfies the following conditions:

(i) T is closed under composition (that is, it is closed under substitution): if
u[x1, . . . , xn] ∈ T and ti ∈ T for all i = 1, . . . , n, then u[t1, . . . , tn] ∈ T ;

(ii) T contains domain variables: if τ is a type such that some variable of type
τ occurs free in a term t ∈ T , then every variable of type τ belongs to T ;

(iii) T contains codomain variables: if t : τ belongs to T , then every variable of
type τ belongs to T .

Observe that from the above definition it follows that T is closed under
renaming of terms. Quite often, one is interested in interpreting the terms of
a fragment not in the class of all possible structures for the language of the
fragment, but only in some selected ones (e.g. when checking satisfiability of
some temporal formulae, one might be interested only in checking satisfiability
in particular flows of time, those which are for instance discrete or continuous).
This is the reason for ‘interpreting’ fragments:

Definition 3.3. An interpreted algebraic fragment (to be shortened as i.a.f.) is
a triple Φ=〈L, T,S〉, where 〈L, T 〉 is an algebraic fragment and S is a class of
L-structures closed under isomorphisms.

The set of terms T in an i.a.f. Φ=〈L, T,S〉 is called the set of Φ-terms and
the set of types τ such that t : τ is a Φ-term for some t is called the set of
Φ-types. A Φ-variable is a variable xτ such that τ is a Φ-type (or equivalently,
a variable which is a Φ-term). It is also useful to identify a (non-interpreted)
algebraic fragment 〈L, T 〉 with the interpreted algebraic fragment Φ=〈L, T,S〉,
where S is taken to be the class of all L-structures.

A Comprehensive Framework for Combined Decision Procedures 7

Definition 3.4. Given an i.a.f. fragment Φ, a Φ-atom is an equation t1 = t2
between Φ-terms t1, t2 of the same type; a Φ-literal is a Φ-atom or a negation
of a Φ-atom, a Φ-constraint is a finite conjunction of Φ-literals, a Φ-clause is
a finite disjunction of Φ-literals. Infinite sets of Φ-literals (representing an in-
finite conjunction) are called generalized Φ-constraints (provided they contain
altogether only finitely many free variables).

Some Conventions. Without loss of generality, we may assume that 	 is a
Φ-atom in every i.a.f. Φ (in fact, to be of any interest, a fragment should at least
contain a term t and we can let 	 to be t = t). As a consequence, ⊥ will always
be a Φ-literal; by convention, however, we shall include ⊥ among Φ-atoms (hence
a Φ-atom is either an equation among Φ-terms - 	 included - or it is ⊥). Since
we have ⊥ as an atom, there is no need to consider the empty clause as a clause,
so clauses will be disjunctions of at least one literal. The reader should keep in
mind these slightly non standard conventions for the whole paper.

A Φ-clause is said positive if only Φ-atoms occur in. A Φ-atom t1 = t2 is
closed if and only if ti is closed (i ∈ {1, 2}); the definition of closed Φ-literals,
-constraints and -clauses is analogous. For a finite set x of variables and an i.a.f.
Φ, a Φ(x)-atom (-term, -literal, -clause, -constraint) is a Φ-atom (-term, -literal,
-clause, -constraint) A such that fvar(A) ⊆ x.

We deal in this paper mainly with the constraint satisfiability problem for
an i.a.f. Φ=〈L, T,S〉: this is the problem of deciding whether a Φ-constraint is
satisfiable in some structure A ∈ S. On the other hand, the word problem for Φ
is the problem of deciding if the universal closure of a given Φ-atom is true in
every structure A ∈ S.

3.2 Examples

Although there are genuinely intended higher order interpreted algebraic frag-
ments whose word problem is decidable (see for instance Friedman theorem
for simply typed λ-calculus) and also whose constraint satisfiability problem is
decidable (see Rabin results on monadic second order logic), we shall mainly
concentrate on examples providing applications at first-order level. The reader
should however notice that we need to use higher order variables and to pay
special attention to the types of a fragment in order for fragment combination
defined in Subsection 4.1 to cover the desired applications.

Example 3.1 (First-order equational fragments). Let us consider a first-order
language L = 〈T , Σ, a〉 (for simplicity, we also assume that L is one-sorted). Let
T be the set of the first-order L-terms and let S be an elementary class, i.e. the
class of the L-structures which happen to be the models of a certain first-order
theory in the signature L. Obviously, the triple Φ = 〈L, T,S〉 is an i.a.f.. The Φ-
atoms will be equalities between Φ-terms, i.e. first-order atomic formulae of the
kind t1 = t2. Word problem in Φ=〈L, T,S〉 is standard uniform word problem (as
defined for the case of equational theories for instance in [6]), whereas constraint

8 S. Ghilardi, E. Nicolini, and D. Zucchelli

satisfiability problem is the problem of deciding satisfiability of a finite set of
equations and inequations.

Example 3.2 (Universal first-order fragments). The previous example disregards
the relational symbols of the first-order signature L. To take also them into
consideration, it is sufficient to make some slight adjustment: besides first-order
terms, also atomic formulae and 	, as well as propositional variables (namely
variables having type Ω) will be terms of the fragment.2 The semantic class
S where the fragment is to be interpreted is again taken to be an elementary
class. For Φ=〈L, T,S〉 so defined, the constraint satisfiability problem becomes
essentially the problem of deciding the satisfiability of an arbitrary finite set of
literals in the models belonging to S.3

We now define different kinds of i.a.f.’s starting from the set F of first-order
formulae of a first-order signature L; for simplicity, let’s suppose also that L is
relational and one-sorted (call W this unique sort).

Example 3.3 (Full First-Order Language, plain version). We take T to be the
union of F with the sets of the individual variables and of the propositional
variables. Of course, Φ=〈L, T 〉 so defined is an algebraic fragment, whose types
are W and Ω. By Church theorem, both word and constraint satisfiability prob-
lem are undecidable here (the two problems both reduce to satisfiability of a
first-order formula with equality); they may be decidable in case the fragment
is interpreted into some specific semantic class S.

In the next example, we build formulae (out of the symbols of our fixed first
order relational one-sorted signature L) by using at most N (free or bound)
individual variables; however we are allowed to use also second order variables
of arity at most K:

Example 3.4 (Full First-Order Language, NK-version). Fix cardinals K ≤ N ≤
ω and consider, instead of F , the set FNK of formulae ϕ that contains at most N
(free or bound) individual variables and that are built up by applying boolean
connectives and individual quantifiers to atomic formulae of the following two
kinds:

– P (xi1 , . . . , xin), where P is a relational constant and xi1 , . . . , xin are in-
dividual variables (since at most x1, . . . , xN can be used, we require that
i1, . . . , in ≤ N);

– X(xi1 , . . . , xin), where i1, . . . , in ≤ N , and X is a variable of type Wn → Ω
with n ≤ K (here Wn abbreviates W · · ·W , n-times).

The terms in the algebraic fragment ΦL
NK = 〈LNK , T

L
NK〉 are now the terms

t such that t ∼βη {x1, . . . , xn | ϕ}, for some n ≤ K and for some ϕ ∈ FNK ,

2 Propositional variables are added here in order to fulfill Definition 3.2(iii).
3 Notice that, by case splitting, equations A = B among terms of type Ω can be

replaced by A ∧ B or by ¬A ∧ ¬B (and similarly for inequations).

A Comprehensive Framework for Combined Decision Procedures 9

with fvar(ϕ) ⊆ {x1, . . . , xn}.4 Types in such ΦL
NK are now Wn → Ω (n ≤ K)

and this fact makes a big difference with the previous example (the difference
will be sensible when combined fragments enter into the picture). Constraint
satisfiability problems still reduce to satisfiability problems for sentences: in fact,
once second order variables are replaced by the names of the subsets assigned to
them by some assignment in an L-structure, ΦL

NK-atoms like {x | ϕ} = {x | ψ}
are equivalent to the first-order sentences ∀x(ϕ ↔ ψ) and conversely any first-
order sentence θ (with at most N bound individual variables) is equivalent to
the ΦL

NK-atom θ = 	.

The cases N = 1, 2 are particularly important, because in these cases the sat-
isfiability problem for sentences (and hence also constraint satisfiability problems
in our fragments) becomes decidable [22],[27], [24], [28].

Further examples can be built by using the large information contained in
the textbook [10] (see also [13]). We shall continue here by investigating frag-
ments that arise from research in knowledge representation area, especially in
connection to modal and description logics. Before, we introduce a construction
that will play a central role in some applications of our results:

Definition 3.5 (Disjoint I-copy). Consider a first order one-sorted relational
signature L and a (non empty) index set I. The operation

∑
I , defined on

L-structures and called disjoint I-copy, associates with an L-structure M =
〈[[−]]M, IM〉 the L-structure

∑
I M such that [[W]]

I M is the disjoint union
of I-copies of [[W]]M (here W is the unique sort of L). The interpretation of
relational predicates is defined as follows5∑

I

M |= P (〈d1, i1〉, . . . , 〈dn, in〉) ⇐⇒ i1 = · · · = in and M |= P (d1, . . . , dn)

(1)
for every n-ary predicate P .

Disjoint I-copy is a special case of a more general disjoint union operation:
the latter is defined again by (1) and applies to any I-indexed family of structures
(which may not coincide with each other).

Example 3.5 (Modal/Description Logic Fragments, global version). A modal sig-
nature is a setOM , whose elements are called unary ’Diamond’ modal operators.6

OM -modal formulae are built up from a countable set of propositional variables
x, y, z, . . . by applying 	,⊥,¬,∧,∨ as well as the operators ♦k ∈ OM .

With every modal signature OM we associate the first-order signature LM ,
containing a unique sort W and, for every ♦k ∈ OM , a relational constant Rk

4 We need to use equivalence up to βη-conversion here to fulfil the properties of Defini-
tion 3.2. We recall that βη-equivalence (noted as ∼βη) is decided by the normalization
procedure of simply typed lambda calculus.

5 Elements of the disjoint union of I-copies of a set S are represented as pairs 〈s, i〉
(meaning that 〈s, i〉 is the i-th copy of s ∈ S).

6 The case of n-ary (also non-normal) modal operators does not create special diffi-
culties and it is left to the reader.

10 S. Ghilardi, E. Nicolini, and D. Zucchelli

of type WW → Ω. Suppose we are given a bijective correspondence x �−→
X between propositional variables and second order variables of type W →
Ω. Given an OM -modal formula ϕ and a variable w of type W , the standard
translation ST (ϕ,w) is the LM -term of type Ω inductively defined as follows:

ST (, w) = 	; ST (⊥, w) = ⊥;
ST (x, w) = X(w); ST (¬ψ,w) = ¬ST (ψ,w);
ST (ψ1 ◦ ψ2, w) = ST (ψ1, w) ◦ ST (ψ2, w), where ◦ ∈ {∨,∧};
ST (♦ψ,w) = ∃v(R(w, v) ∧ ST (ψ, v)),

where v is a variable of type W (different from w). Let TM be the set of those
LM -terms t for which there exists a modal formula ϕ s.t. t ∼βη {w | ST (ϕ,w)}.
A modal fragment is an i.a.f. of the kind ΦM = 〈LM , TM ,SM 〉, where LM , TM

are as above and SM is a class of LM -structures closed under isomorphisms
and disjoint I-copies (notice that LM -structures, usually called Kripke frames in
modal logic, are just sets endowed with a binary relation Rk for every ♦k ∈ OM).

ΦM -constraints are (equivalent to) finite conjunctions of equations of the form
{w | ST (ψi, w)} = {w | 	} and of inequations of the form {w | ST (ϕj, w)} �=
{w | ⊥}; such constraints are satisfied iff there exists a Kripke model7 based
on a frame in SM in which the ψi hold globally (namely in any state), whereas
the ϕj hold locally (namely in some states sj). Thus constraint satisfiability
problem becomes, in the description logics terminology, just the (simultaneous)
relativized satisfiability problem for concept descriptions ϕj wrt to a given T-Box
(we call T-Box a conjunction of ΦM -atoms like {w | ST (ψi, w)} = {w | 	}).

Example 3.6 (Modal/Description Logic Fragments, local version). If we want to
capture A-Box reasoning too, we need to build a slightly different fragment. The
type-theoretic signature LML of our fragment is again LM , but TML now con-
tains: a) the set of terms which are βη-equivalent to terms of the kind ST (ϕ,w)
(these terms are called ‘concept assertions’); b) the terms of the kind Rk(v, w)
(these terms are called ‘role assertions’); c) the variables of type W,Ω and
W → Ω.

The i.a.f. ΦML = 〈LML, TML,SML〉 (where SML is again a class of LML-
structures closed under isomorphisms and disjoint I-copies) is called an A-Box
fragment. By a thorough case analysis [17], it is possible to show that, without
loss of generality, constraints in this fragments can be represented as conjunc-
tions of concept assertions and role assertions, plus in addition negations of
role assertions and of identities among individual names. We shall call A-Boxes
these constraints8 and we reserve the name of positive A-Boxes to conjunctions
of concept assertions and role assertions.

7 A Kripke model is a Kripke frame together with an assignment of subsets for second
order variables of type W → Ω.

8 Standard description logics A-Boxes are just slightly more restricted, because they
include only concept assertions, role assertions and also all negations of identities
among distinct individual variables (by the so-called ‘unique name assumption’).

A Comprehensive Framework for Combined Decision Procedures 11

Example 3.7 (Modal/Description Logic Fragments, full version). If we want to
deal with satisfiability of an A-Box wrt a T-Box, it is sufficient to join the two
previous fragments. More precisely, we can build full modal fragments over a
modal signature OM , which are i.a.f.’s of the kind ΦMF = 〈LMF , TMF ,SMF 〉,
where LMF = LM , SMF is a class of LML-structures closed under isomorphisms
and disjoint I-copies, and TMF = TM ∪TML. Types in these fragments are W,Ω
and W → Ω; constraints are conjunctions of a T-Box and an A-Box.

Guarded and packed guarded fragments were introduced as generalizations
of modal fragments [1], [18], [23]: in fact, they form classes of formulae which
are remarkably large but still inherit relevant syntactic and semantic features of
the more restricted modal formulae. In particular, guarded and packed guarded
formulae are decidable for satisfiability. For simplicity, we give here the instruc-
tions on how to build only one kind of guarded fragments with equality (other
similar fragments can be built by following the methods we used above).

Example 3.8 (Guarded Fragments). Let us consider a first-order one-sorted re-
lational signature LG. We define the guarded formulae as follows:

– if X : W → Ω and x : W are variables, X(x) is a guarded formula;
– if P : Wn → Ω is a relational constant and t1 : W, . . . , tn : W are variables,
P (t1, . . . , tn) is a guarded formula;

– if ϕ is a guarded formula, ¬ϕ is a guarded formula;
– if ϕ1 and ϕ2 are guarded formulae, ϕ1∧ϕ2 and ϕ1∨ϕ2 are guarded formulae;
– if ϕ is a guarded formula and π is an atomic formula such that fvarW (ϕ) ⊆
fvar(π) (fvarW (ϕ) are the variables of type W which occurs free in ϕ),
then ∀y(π[x, y] → ϕ[x, y]) and ∃y(π[x, y] ∧ ϕ[x, y]) are guarded formulae.

Notice that we used second order variables of type W → Ω only (and not
of type Wn → Ω for n > 1): the reason, besides the applications to combined
decision problems we have in mind, is that we want constraint problems to be
equivalent to sentences which are still guarded, see below. Guarded formulae
not containing variables of type W → Ω are called elementary (or first-order)
guarded formulae.

Let TG be the set of LG-terms t such that t is βη-equivalent to a term of the
kind {w | ϕ(w)} (where ϕ is a guarded formula such that fvarW (ϕ(w)) ⊆ {w})
and let SG be a class of LG-structures closed under isomorphisms and disjoint
I-copies: we call the i.a.f. ΦG = 〈LG, TG,SG〉 a guarded fragment. The only
type in this fragment is W → Ω and constraint satisfiability problem in this
fragment is equivalent to satisfiability of guarded sentences: this is because, in
case ϕ1, ϕ2 are guarded formulae with fvarW (ϕi) ⊆ {w} (for i = 1, 2), then
{w | ϕ1} = {w | ϕ2} is equivalent to ∀w(ϕ1 ↔ ϕ2) which is guarded (just use
w = w as a guard).

3.3 Reduced Fragments and Residues

If Φ=〈L, T,S〉 is an i.a.f. and x is a finite set of Φ-variables, we let Φ(x) denote
the Φ-clauses whose free variables are among the x. If Γ is a set of such Φ(x)-
clauses and C ≡ L1 ∨ · · · ∨Lk is a Φ(x)-clause, we say that C is a Φ-consequence

12 S. Ghilardi, E. Nicolini, and D. Zucchelli

of Γ (written Γ |=Φ C), iff the (generalized, in case Γ is infinite) constraint
Γ ∪ {¬L1, . . . ,¬Lk} is not Φ-satisfiable.

The notion of consequence is too strong for certain applications; for instance,
when we simply need to delete certain deductively useless data, a weaker notion
of redundancy (based e.g. on subsumption) is preferable. Our abstract axioma-
tization of a notion of redundancy is the following (recall that we conventionally
included 	 and ⊥ among Φ-atoms in any i.a.f. Φ):

Definition 3.6. A redundancy notion for a fragment Φ is a recursive binary
relation RedΦ between a finite set of Φ-clauses Γ and a Φ-clause C satisfying
the following properties:

(i) RedΦ(Γ,C) implies Γ |=Φ C (soundness);
(ii) RedΦ(∅,) and RedΦ({⊥}, C) both hold;
(iii) RedΦ(Γ,C) and Γ ⊆ Γ ′ imply RedΦ(Γ ′, C) (monotonicity);
(iv) RedΦ(Γ,C) and RedΦ(Γ ∪ {C}, D) imply RedΦ(Γ,D) (transitivity);
(v) if C is subsumed by some C′ ∈ Γ ,9 then RedΦ(Γ,C) holds.

Whenever a redundancy notion RedΦ is fixed, we say that C is Φ-redundant wrt
Γ when RedΦ(Γ,C) holds.

For example, the minimum redundancy notion is obtained by stipulating
that RedΦ(Γ,C) holds precisely when (⊥ ∈ Γ or C ≡ 	 or C ≡ 	 ∨ D or
C is subsumed by some C′ ∈ Γ). On the contrary, if the constraint solving
problem for Φ is decidable, there is a maximum redundancy notion (called the
full redundancy notion) given by the Φ-consequence relation.

Let Φ=〈L, T,S〉 be an i.a.f. on the signature L=〈T , Σ, a〉 and let L0 =
〈T0, Σ0, a0〉 be a subsignature of L. The i.a.f. restricted to L0 is the i.a.f. Φ|L0 =
〈L0, T|L0,S|L0〉 that is so defined:

– T|L0 is the set of terms obtained by intersecting T with the set of L0-terms;
– S|L0 consists of the structures of the kind A|L0 , varying A ∈ S.

An i.a.f. Φ0 = 〈L0, T0,S0〉 is said to be a L0-subfragment (or simply a sub-
fragment, leaving the subsignature L0 ⊆ L as understood) of Φ=〈L, T,S〉 iff
T0 ⊆ T|L0 and S0 ⊇ S|L0 . In this case, we may also say that Φ is an expansion
of Φ0.

Given a set Γ of Φ(x)-clauses and a redundancy notion RedΦ0 on a subfrag-
ment Φ0 of Φ, we call Φ0-basis for Γ a set Δ of Φ0(x0)-clauses such that (here
x0 collects those variables among the x which happen to be Φ0-variables):

(i) all clauses D ∈ Δ are positive and are such that Γ |=Φ D;
(ii) for every positive Φ0(x0)-clause C, if Γ |=Φ C, then C is Φ0-redundant

with respect to Δ.

Since we will be interested in exchange information concerning consequences
over shared signatures, we need a notion of a residue, like in partial theory
reasoning. Again, we prefer an abstract approach and treat residues as clauses
which are recursively enumerated by a suitable device:
9 As usual, this means that every literal of C′ is also in C.

A Comprehensive Framework for Combined Decision Procedures 13

Definition 3.7. Suppose we are given a subfragment Φ0 of a fragment Φ. A
positive residue Φ-enumerator for Φ0 (often shortened as Φ-p.r.e.) is a recursive
function mapping a finite set x of Φ-variables, a finite set Γ of Φ(x)-clauses and
a natural number i to a Φ0-clause Resx

Φ(Γ, i) (to be written simply as ResΦ(Γ, i))
in such a way that:

– ResΦ(Γ, i) is a positive clause;
– fvar(ResΦ(Γ, i)) ⊆ x;
– Γ |=Φ ResΦ(Γ, i) (soundness).

Any Φ0-clause of the kind ResΦ(Γ, i) (for some i ≥ 0) will be called a Φ0-residue
of Γ .

Having also a redundancy notion for Φ0 at our disposal, we can axiomatize
the notion of an ‘optimized’ (i.e. of a non-redundant) Φ-p.r.e. for Φ0. The Nelson-
Oppen combination procedure we give in Subsection 4.2 has non-redundant
p.r.e.’s as main ingredients and it is designed to be ‘self-adaptive’ for termi-
nation in the relevant cases when termination follows from our results. These
are basically the noetherian and the locally finite cases mentioned in Subsection
3.4, where p.r.e.’s which are non redundant with respect to the full redundancy
notion usually exist and enjoy the termination property below.

Definition 3.8. A Φ-p.r.e. ResΦ for Φ0 is said to be non-redundant (wrt a
redundancy notion RedΦ0) iff it satisfies also the following properties for every
x, for every finite set Γ of Φ(x)-clauses and for every i ≥ 0 (we write Γ|Φ0 for
the set of clauses in Γ which are Φ0-clauses):

(i) if ResΦ(Γ, i) is Φ0-redundant with respect to Γ|Φ0 ∪ {ResΦ(Γ, j) | j < i},
then ResΦ(Γ, i) is either ⊥ or 	;

(ii) if ⊥ is Φ0-redundant with respect to Γ|Φ0 ∪ {ResΦ(Γ, j) | j < i}, then
ResΦ(Γ, i) is equal to ⊥;

(iii) if ResΦ(Γ, i) is equal to 	, then Γ|Φ0 ∪ {ResΦ(Γ, j) | j < i} is a Φ0-basis
for Γ .

Definition 3.9. A non-redundant Φ-p.r.e. for Φ0 is said to be complete iff for
every x, for every finite set Γ of Φ(x)-clauses and for every positive Φ0(x)-
clause C, we have that Γ |=Φ C implies that C is Φ0-redundant wrt Γ|Φ0 ∪
{ResΦ(Γ, j) | j ≤ i} for some i.

A non-redundant Φ-p.r.e. ResΦ is said to be terminating iff for for every x,
for every finite set Γ of Φ(x)-clauses there is an i such that ResΦ(Γ, i) is equal
to ⊥ or to 	.

Let us make a few comments on Definition 3.8: first, only non redundant
residues can be produced at each step (condition (i)), if possible. If this is not
possible, this means that all the relevant information has been accumulated (a
Φ0-basis has been reached). In this case, if the inconsistency ⊥ is discovered
(in the sense that it is perceived as redundant), then the residue enumeration
in practice stops, because it becomes constantly equal to ⊥ (condition (ii)).

14 S. Ghilardi, E. Nicolini, and D. Zucchelli

The tautology 	 has the special role of marking the opposite outcome: it is
the residue that is returned precisely when Γ is consistent and a Φ0-basis has
been produced, meaning that all relevant semantic consequences of Γ have been
discovered (conditions (ii)-(iii)).

If the redundancy notion we use is trivial (i.e. it is the minimum one), then
it is possible to show that only very mild corrections are needed for any Φ-p.r.e.
for Φ0 to become non-redundant. This observation shows that, in practice, any
Φ-p.r.e. for Φ0 can be used as input of our combined decision procedure.

3.4 Noetherian, Locally Finite and Convex Fragments

Noetherianity conditions known from Algebra say that there are no infinite as-
cending chains of congruences. In finitely presented algebras, congruences are
represented as sets of equations among terms, hence noetherianity can be ex-
pressed there by saying that there are no infinite ascending chains of sets of
atoms, modulo logical consequence. If we translate this into our general setting,
we get the following notion.

An i.a.f. Φ0 is called noetherian if and only if for every finite set of variables
x, every infinite ascending chain

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

of sets of Φ0(x)-atoms is definitively constant for Φ0-consequence (meaning that
there is an n such that for all m and A ∈ Θm, we have Θn |=Φ0 A).

An i.a.f. Φ0 is said to be effectively locally finite iff

(i) the set of Φ0-types is recursive and constraint satisfiability problem for Φ0
is decidable;

(ii) for every finite set of Φ0-variables x, there are finitely many computable
Φ0(x)-terms t1, . . . , tn such that for every further Φ0(x)-term u one of the
literals t1 �= u, . . . , tn �= u is not Φ0-satisfiable (that is, in the class of
the structures in which Φ0 is interpreted, every Φ0(x)-term is equal, as an
interpreted function, to one of the ti).

The terms t1, . . . , tn in (ii) are called the x-representative terms of Φ0.
Effective local finiteness is often used in order to make Nelson-Oppen proce-

dures terminating [16], [8], [4]:10 we shall see however that noetherianity (which
is clearly a weaker condition) is already sufficient for that, once it is accompanied
by a suitable effectiveness condition.

If Φ0 is noetherian and Φ is an expansion of it, one can prove [17] that every
finite set Γ of Φ(x)-clauses has a finite full Φ0-basis (i.e. there is a finite Φ0-basis
for Γ with respect to the full redundancy notion). The following noetherianity
requirement for a p.r.e. is intended to be nothing but an effectiveness requirement
for the computation of finite full Φ0-bases.

10 Notice that the above definition of local finiteness becomes slightly redundant in the
first order universal case considered in these papers.

A Comprehensive Framework for Combined Decision Procedures 15

A Φ-p.r.e. ResΦ for a noetherian fragment Φ0 is said to be noetherian iff it
is non redundant with respect to the full redundancy notion for Φ0.

It is possible to prove that a noetherian Φ-p.r.e. ResΦ for Φ0 is terminating
and also complete. Moreover, if Φ0 is effectively locally finite and Φ is any exten-
sion of it having decidable constraint satisfiability problems, then there always
exists a noetherian Φ-p.r.e. for Φ0 [17].

Noetherianity is the essential ingredients for the termination of Nelson-Oppen
combination procedures; on the other hand, for efficiency, convexity is the crucial
property, as it makes the combination procedure deterministic [26]. Following an
analogous notion introduced in [30], we say that an i.a.f. Φ is Φ0-convex (here
Φ0 is a subfragment of Φ) iff every finite set Γ of Φ-literals having as a Φ-
consequence the disjunction of n > 1 Φ0-atoms, actually has as a Φ-consequence
one of them.11 Similarly, a Φ-p.r.e. for Φ0 is Φ0-convex iff ResΦ(Γ, i) is always
an atom (recall that by our conventions, this includes the case in which it is
	 or ⊥). Any complete non-redundant Φ-p.r.e. for Φ0 can be turned into a Φ0-
convex complete non-redundant Φ-p.r.e. for Φ0, in case Φ is Φ0-convex. Thus
the combination procedure of Subsection 4.2 is designed in such a way that
it becomes automatically deterministic if the component fragments are both
convex with respect to the shared fragment.

An example from Algebra may help in clarifying the notions introduced in
this section.

Example 3.9 (K-algebras). Given a field K, let us consider the one-sorted lan-
guage LKalg, whose signature contains the constants 0, 1 of type V (V is the
unique sort of LKalg), the two binary function symbols +, ◦ of type V V → V ,
the unary function symbol − of type V → V and a K-indexed family of
unary function symbols gk of type V → V . We consider the i.a.f. ΦKalg =
〈LKalg, TKalg,SKalg〉 where TKalg is the set of first order terms in the above sig-
nature (we shall use infix notation for + and write kv, v1v2 for gk(v), ◦(v1, v2), re-
spectively). Furthermore, the class SKalg consists of the structures which happen
to be models for the theory of (commutative, for simplicity) K-algebras: these
are structures having both a commutative ring with unit and a K-vector space
structure (the two structures are related by the equations k(v1v2) = (kv1)v2 =
v1(kv2)). It is clear that ΦKalg is an interpreted algebraic fragment, which is
also convex and noetherian. Constraint satisfiability problem in this fragment is
equivalent to the ideal membership problem and hence it is solved by Buchberger
algorithm computing Gröbner bases.

As a subfragment of ΦKalg we can consider the interpreted algebraic frag-
ment corresponding to the theory of K-vector spaces (this is also convex and
noetherian, although still not locally finite). In order to obtain a noetherian
ΦKalg-p.r.e. for ΦK , we need a condition that is satisfied by common admissi-
ble term orderings, namely that membership of a linear polynomial to a finitely
generated ideal to be decided only by linear reduction rules. If this happens, we
11 When we say that a fragment Φ is convex tout court, we mean that it is Φ-convex.

The fragments Φ = 〈L, T, S〉 analyzed in Example 3.1 are convex in case S is the
class of the models of a first-order Horn theory.

16 S. Ghilardi, E. Nicolini, and D. Zucchelli

get a noetherian ΦKalg-p.r.e. for ΦK simply by listing the linear polynomials of
a Gröbner basis.

4 Combined Fragments

We give now the formal definition for the operation of combining fragments.

Definition 4.1. Let Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉 be i.a.f.’s on the
languages L1 and L2 respectively; we define the shared fragment of Φ1, Φ2 as the
i.a.f. Φ0 = 〈L0, T0,S0〉, where

– L0 := L1 ∩ L2;
– T0 := T1|L0 ∩ T2|L0 ;
– S0 := S1|L0 ∪ S2|L0 .

Thus the Φ0-terms are the L0-terms that are both Φ1-terms and Φ2-terms,
whereas the Φ0-structures are the L0-structures which are reducts either of a
Φ1- or of a Φ2-structure. According to the above definition, Φ0 is a subfragment
of both Φ1 and Φ2.

Definition 4.2. The combined fragment of the i.a.f.’s Φ1 and Φ2 is the i.a.f.

Φ1 ⊕ Φ2 = 〈L1 ∪ L2, T1 ⊕ T2,S1 ⊕ S2〉

on the language L1 ∪ L2 such that:

– T1⊕T2 is the smallest set of L1 ∪L2-terms which includes T1 ∪T2, is closed
under composition and contains domain and codomain variables;

– S1 ⊕ S2 = {A | A is a L1 ∪ L2-structure s.t. A|L1 ∈ S1 and A|L2 ∈ S2}.

T1 ⊕ T2 is defined in such a way that conditions (i)-(ii)-(iii) from Definition
3.2 are matched; of course, since Φ1 ⊕ Φ2-types turn out to be just the types
which are either Φ1- or Φ2-types, closure under domain and codomain variables
comes for free.

4.1 The Purification Steps

We say that a Φ1 ⊕ Φ2-term is pure iff it is a Φi-term (i = 1 or i = 2) and that
a Φ1 ⊕Φ2-constraint Γ is pure iff it for each literal L ∈ Γ there is i = 1 or i = 2
such that L is a Φi-literal. Constraints in combined fragments can be purified,
as we shall see.

One can effectively determine whether a given term t ∈ L1 ∪ L2 belongs or
not to the combined fragment: it can be shown [17] that it is sufficient to this
aim to check whether it is a pure Φi-term and, in the negative case, to split
it as t ≡ u[t1, . . . , tk] and to recursively check whether u, t1, . . . , tk are in the
combined fragment. 12 The problem however might be computationally hard:
12 This is well defined (by an induction on the size of t), because we do not require

our terms to be in βη-normal form (that is, we do not require in Definition 3.2 (i)
substitution to be followed by normalization).

A Comprehensive Framework for Combined Decision Procedures 17

since we basically have to guess a subtree of the position tree of the term t,
the procedure we sketched is in NP. Notice that these complexity complications
(absent in the standard Nelson-Oppen case) are due to our level of generality and
that they disappear in customary situations where don’t know non-determinism
can be avoided by looking for ‘alien’ subterms, see [7] for a thorough discussion
of the problem.

Let Γ be any Φ1⊕Φ2-constraint: we shall provide finite sets Γ1, Γ2 of Φ1- and
Φ2-literals, respectively, such that Γ is Φ1 ⊕Φ2-satisfiable iff Γ1 ∪ Γ2 is Φ1 ⊕Φ2-
satisfiable. This purification process is obtained by iterated applications of the
following:

Purification Rule

Γ ′, A

Γ ′, A([x]p), x = A|p
(2)

where (we use notations like Γ ′, A for the constraint Γ ′ ∪ {A})
– p is a non variable position of A;
– A|p is the subterm of A at position p (let τ be its type);
– no free variable in A|p is bound in A;
– x is a fresh variable of type τ ;
– the literal A([x]p) (obtained by replacing in A in the position p the subterm
A|p by the variable x) is not an equation between variables;

– Γ ′, A([x]), x = A|p is a Φ1 ⊕ Φ2-constraint (this means that it still consists
of equations and inequations among Φ1 ⊕ Φ2-terms).

The purification process applies the Purification Rule as far as possible; the
rule can be applied in a don’t care non deterministic way (however recall that
one must take care of the fact that the constraint produced by the rule still
consists of Φ1 ⊕ Φ2-literals, hence don’t know non-determinism may arise inside
a single application of the rule).

Proposition 4.1. The purification process terminates and returns an equi-sa-
tisfiable constraint Γ1 ∪ Γ2, where Γi is a set of Φi-literals.

4.2 The Combination Procedure

In this subsection, we develop a procedure which is designed to solve constraint
satisfiability problems in combined fragments: the procedure is sound and we
shall investigate afterwards sufficient conditions for it to be terminating and
complete. Let us fix relevant notation for the involved data.

Assumptions/Notational Conventions. We suppose that we are given two
i.a.f.’s Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉, with shared fragment Φ0 =
〈L0, T0,S0〉. We suppose also that a redundancy notion RedΦ0 for Φ0 and two
non-redundant Φi-p.r.e.’s for Φ0 (call them ResΦ1, ResΦ2) are available.13 We
13 Of course, ResΦ1 and ResΦ2 are assumed to be both non-redundant with respect to

RedΦ0 .

18 S. Ghilardi, E. Nicolini, and D. Zucchelli

also fix a purified Φ1⊕Φ2-constraint Γ1∪Γ2 to be tested for Φ1⊕Φ2-consistency;
we can freely suppose that Γ1 and Γ2 contain the same subset Γ0 of Φ0-literals
(i.e. that Γ0 := Γ1|Φ0 = Γ2|Φ0). We indicate by xi the free variables occurring
in Γi (i = 1, 2); x0 are those variables among x1 ∪ x2 which happen to be Φ0-
variables (again we can freely suppose that x0 = x1 ∩ x2).

In order to describe the procedure we also need a selection function in the
sense of the following definition:

Definition 4.3. A selection function Choose(Λ) is a recursive function accept-
ing as input a set Λ of Φ0(x0)-atoms and returning a positive Φ0(x0)-clause C
such that:

(i) C is a Φi-consequence of Γi ∪ Λ, for i = 1 or i = 2;
(ii) if ⊥ is Φ0-redundant wrt Γ0 ∪ Λ, then C is ⊥;
(iii) if C is Φ0-redundant wrt Γ0 ∪ Λ, then C is 	 or ⊥.

The recursive function Choose(Λ) will be subject also to a fairness require-
ment that will be explained below.

The Procedure FComb. Our combined procedure generates a tree whose in-
ternal nodes are labeled by sets of Φ0(x0)-atoms; leaves are labeled by “unsatis-
fiable” or by “saturated”. The root of the tree is labeled by the empty set and if
a node is labeled by the set Λ, then the successors are:

– a single leaf labeled “unsatisfiable”, if Choose(Λ) is equal to ⊥;
– or a single leaf labeled “saturated”, if Choose(Λ) is equal to 	;
– or nodes labeled by Λ ∪ {A1}, . . . , Λ ∪ {Ak}, if Choose(Λ) is A1 ∨ · · · ∨Ak.

The branches which are infinite or end with the “saturated” message are
called open, whereas the branches ending with the “unsatisfiable” message are
called closed. The procedures stops (and the generation of the above tree is
interrupted) iff all branches are closed or if there is an open finite branch (of
course termination is not guaranteed in the general case).

Fair Selection Functions. The function Choose(Λ) is fair iff the following
happens for every open branch Λ0 ⊆ Λ1 ⊆ · · · : if C is equal to ResΦi(Γi ∪Λk, l)
for some i = 1, 2 and for some k, l ≥ 0, then C is Φ0-redundant with respect to
Γ0∪Λn for some n (roughly, residues wrt Φi of an open branch are redundant with
respect to the atoms in the branch). Under the current assumptions/notational
conventions, it can be shown that

Proposition 4.2. There always exists a fair selection function.

Next Proposition says that our procedure is always sound and that it termi-
nates under noetherianity assumptions:

Proposition 4.3. (i) If the procedure FComb returns “unsatisfiable”, then
the purified constraint Γ1 ∪ Γ2 is Φ1 ⊕ Φ2-unsatisfiable.

(ii) If Φ0 is noetherian and RedΦ0 is the full redundancy notion, then the pro-
cedure FComb terminates on the purified constraint Γ1 ∪ Γ2.

A Comprehensive Framework for Combined Decision Procedures 19

Algorithm 1 The combination procedure
1: procedure FComb(Λ)
2: C ← Choose(Λ)
3: if C = ⊥ then
4: return “unsatisfiable”
5: else if C =
 then
6: return “saturated”
7: end if
8: for all A ∈ C do
9: if FComb(Λ ∪ {A}) = “saturated” then

10: return “saturated”
11: end if
12: end for
13: return “unsatisfiable”
14: end procedure

Completeness of the procedure FComb cannot be achieved easily, heavy con-
ditions are needed. Since our investigations are taking a completeness-oriented
route, it is quite obvious that we must consider from now on only the case in
which the input Φi-p.r.e.’s are complete (see Definition 3.9). In addition we need
a compactness-like assumption. We say that an i.a.f. Φ is Φ0-compact (where Φ0
is a subfragment of Φ) iff, given a Φ-constraint Γ and a generalized Φ0-constraint
Γ0, we have that Γ ∪ Γ0 is Φ-satisfiable if and only if for all finite Δ0 ⊆ Γ0, we
have that Γ ∪Δ0 is Φ-satisfiable.

Since it can be shown that any extension Φ of a locally finite fragment Φ0
is Φ0-compact [17], if we assume effective local finiteness in order to guarantee
termination, Φ0-compactness is guaranteed too.14

The following Proposition gives relevant information on the semantic mean-
ing of a run of the procedure that either does not terminate or terminates with
a saturation message:

Proposition 4.4. Suppose that Φ1, Φ2 are both Φ0-compact, that the function
Choose(Λ) is fair wrt two complete Φi-p.r.e.’s and that the procedure FComb
does not return “unsatisfiable” on the purified constraint Γ1∪Γ2. Then there are
Li-structures Mi ∈ Si and Li-assignments αi (i = 1, 2) such that:

(i) M1 |=α1 Γ1 and M2 |=α2 Γ2;
(ii) for every Φ0(x0)-atom A, we have that M1 |=α1 A iff M2 |=α2 A.

14 Notice that only special kinds of generalized Φ-constraints are involved in the defi-
nition of Φ0-compactness, namely those that contain finitely many proper Φ-literals;
thus, Φ0-compactness is a rather weak condition (that’s why it may hold for any
extension whatsoever of a given fragment, as shown by the locally finite case). Fi-
nally, it goes without saying that, by the compactness theorem for first order logic,
Φ0-compactness is guaranteed whenever Φ is a first-order fragment.

20 S. Ghilardi, E. Nicolini, and D. Zucchelli

5 Isomorphism Theorems and Completeness

Proposition 4.4 explain what is the main problem for completeness: we would
like an open branch to produce Φi-structures (i = 1, 2) whose L0-reducts are
isomorphic and we are only given Φi-structures whose L0-reducts are Φ0(x0)-
equivalent (in the sense that they satisfy the same Φ0(x0)-atoms). Hence we
need a powerful semantic device that is able to transform Φ0(x0)-equivalence
into L0-isomorphism: this device will be called an isomorphism theorem. The
precise formulation of what we mean by an isomorphism theorem needs some
preparation. First of all, for the notion of an isomorphism theorem to be useful
for us, it should apply to fragments extended with free constants.

Given an i.a.f. Φ=〈L, T,S〉, we denote by Φ(c) = 〈L(c), T (c),S(c)〉 the fol-
lowing i.a.f.: (i) L(c) := L ∪ {c} is obtained by adding to L finitely many new
constants c (the types of these new constants must be types of Φ); (ii) T (c) con-
tains the terms of the kind t[c/x, y] for t[x, y] ∈ T ; (iii) S(c) contains precisely
the L(c)-structures whose L-reduct is in S. Fragments of the kind Φ(c) are called
finite expansions of Φ.

Let Φ(c) be a finite expansion of Φ = 〈L, T,S〉 and letA,B be L(c)-structures.
We say that A is Φ(c)-equivalent to B (written A ≡Φ(c) B) iff for every closed
L(c)-atom A we have that A |= A iff B |= A. By contrast, we say that A is
Φ(c)-isomorphic to B (written A �Φ(c) B) iff there is an L(c)-isomorphism from
A onto B.

We can now specify what we mean by a structural operation on an i.a.f.
Φ0 = 〈L0, T0,S0〉. We will be very liberal here and define structural operation
on Φ0 any family of correspondences O = {Oc0} associating with any finite set
of free constants c0 and with any A ∈ S0(c0) some Oc0(A) ∈ S0(c0) such that
A ≡Φ0(c0) O

c0(A). If no confusion arises, we omit the indication of c0 in the
notation Oc0(A) and write it simply as O(A).

A collection O of structural operations on Φ0 allows a Φ0-isomorphism the-
orem if and only if, for every c0, for every A,B ∈ S0(c0), if A ≡Φ0(c0) B then
there exist O1, O2 ∈ O such that O1(A) �Φ0(c0) O2(B).

We shall mainly be interested into operations that can be extended to a
preassigned expanded fragment. Here is the related definition. Let an i.a.f. Φ =
〈L, T,S〉 extending Φ0 = 〈L0, T0,S0〉 be given; a structural operation O on Φ0
is Φ-extensible if and only if for every c and every A ∈ S(c) there exist B ∈ S(c)
such that

B|L0(c0) �Φ0(c0) O(A|L0(c0)) and B ≡Φ(c) A,
(where c0 denotes the set of those constants in c whose type is a Φ0-type).

Example 5.1 (Ultrapowers). Ultrapowers [11] are basic constructions in the mod-
el theory of first-order logic. An ultrapower

∏
U (technically, an ultrafilter U

over a set of indices is needed to describe the operation) transforms a first-order
structure A into a first-order structure

∏
U A which is elementarily equivalent

to it (meaning that A and
∏

U A satisfy the same first-order sentences). Hence
if we take a fragment Φ0 = 〈L0, T0,S0〉, where S0 is an elementary class and
〈L0, T0〉 is an algebraic fragment of the kind analyzed in Example 3.3, then

∏
U

A Comprehensive Framework for Combined Decision Procedures 21

is a structural operation on Φ0. A deep result in classical model theory (known
as the Keisler-Shelah isomorphism theorem [11]) says that two L0-structures
A and B are elementarily equivalent iff there is an ultrafilter U such that the
ultrapowers

∏
U A and

∏
U B are L0-isomorphic. Thus, if Φ0 is as above, Keisler-

Shelah theorem is a Φ0-isomorphism theorem in our sense.15 Notice also that
taking the reduct of a first-order structure to a smaller signature commutes with
ultrapowers, hence if Φ = 〈L, T,S〉 is an extension of Φ0 and S is elementary and
〈L, T 〉 is again a fragment of the kind analyzed in Example 3.3, then we have
that the Φ0-structural operation

∏
U is Φ-extensible (the structure B required

in the definition of Φ-extensibility is again
∏

U A, where the ultrapower is now
taken at the level of L-structures).

Example 5.2 (Disjoint Copies). Consider a modal fragment ΦM0 based on the
empty modal signatureOM0 (see Example 3.5); given any non empty set I, taking
disjoint I-copy

∑
I is easily seen to be a structural operation on ΦM0 . Moreover,

the totality of such operations (varying I) allows a ΦM0 -isomorphism theorem: to
show this, it is sufficient to observe that ΦM0(c0)-equivalent structures becomes
isomorphic if a sufficiently large disjoint union is applied to them, because the
cardinality of subsets definable through boolean combinations of the c0’s are
complete invariants for LM0(c0)-isomorphism (see [17] for details).

Now notice that a guarded elementary sentence is true in M iff it is true in∑
I M. Hence, taking disjoint I-copies is a Φ-extensible operation, provided Φ

is a modal or a guarded fragment (in the sense of Examples 3.5 and 3.8): notice
in fact that Φ(c)-atoms are equivalent to elementary guarded sentences, because
the second order variables of type W → Ω have been replaced in them by the
corresponding free constants c (which are constants of type W → Ω, that is they
are unary first-order predicate letters).

Sometimes an isomorphism theorem does not hold precisely for a fragment
Φ0 = 〈L0, T0,S0〉, but for an inessential variation (called specialization) of it. A
specialization of Φ0 is an i.a.f. Φ�

0 which has the same language and the same
terms as Φ0, but whose class of L0-structures is a smaller class S�

0 ⊆ S0 satisfying
the following condition: for every c0 and for every A ∈ S0(c0), there exists
A� ∈ S�

0 (c0) such that A ≡Φ0(c0) A
�.

Given an i.a.f. Φ = 〈L, T,S〉 extending Φ0, we say that Φ is compatible with
respect to a specialization Φ�

0 of Φ0 if and only if for every c and A ∈ S(c), there
exists a A′ ∈ S(c) such that A ≡Φ(c) A′ and A′

|L0
∈ S�

0 .

Example 5.3 (Stably Infinite First-Order Theories). The Φ0-compatibility no-
tion is intended to recapture, in our general setting, T0-compatibility as intro-
duced in [16]. The latter generalizes, in its turn, the standard stable infiniteness
requirement of Nelson-Oppen procedure. Let Φ = 〈L, T,S〉 be an i.a.f. of the

15 If Φ0 = 〈L0, T0, S0〉 is from Example 3.1-3.2 and quantifier elimination holds in
S0, then the U ’s are also structural operations on Φ0 allowing a Φ0-isomorphism
theorem (this observation is a key point for the proof of Theorem 5.2 below).

22 S. Ghilardi, E. Nicolini, and D. Zucchelli

kinds considered in Example 3.1 or in Example 3.2: we say that Φ is stably in-
finite iff every satisfiable Φ-constraint is satisfiable in some infinite L-structure
A ∈ S.

Let now Φ0 = 〈L0, T0,S0〉 be the i.a.f. so specified: (i) L0 is the empty one-
sorted signature; (ii) T0 contains only the individual variables; (iii) S0 is the
totality of L0-structures (i.e. the totality of sets). A specialization Φ�

0 of Φ0 is
obtained by considering the class S�

0 formed by the infinite sets.
By an easy compactness argument (compactness holds because Φ is a first-

order fragment and S is an elementary class), it is easily seen that Φ is stably
infinite iff it is compatible with respect to the specialization Φ�

0 of Φ0.

5.1 The Main Combination Result

By assuming the existence of Φi-extensible structural operations allowing a Φ0-
isomorphism theorem, it is possible to formulate a sufficient condition for our
combined procedure to be complete; if we put together this condition, the termi-
nation condition of Proposition 4.3 and various remarks we made in the previous
sections, we obtain the following decidability transfer result (see [17] for proof
details):

Theorem 5.1. Suppose that:

(1) the interpreted algebraic fragments Φ1, Φ2 have decidable constraint satisfia-
bility problems;

(2) the shared fragment Φ0 is effectively locally finite (or more generally, Φ1, Φ2
are both Φ0-compact, Φ0 is noetherian and there exist noetherian positive
residue Φ1- and Φ2-enumerators for Φ0);

(3) Φ1 and Φ2 are both compatible with respect to a specialization Φ�
0 of Φ0;

(4) there is a collection O of structural operations on Φ�
0 which are all Φ1- and

Φ2-extensible and allow a Φ�
0-isomorphism theorem.

Then the procedure FComb (together with the preprocessing Purification Rule)
decides constraint satisfiability in the combined fragment Φ1 ⊕ Φ2.

Remark. In case the shared fragment Φ0 is locally finite, a combination proce-
dure can be also obtained simply by guessing a maximal set Θ0 of Φ0(x0)-literals
and by testing the Φi-satisfiability of Θ0 ∪ Γi. This non-deterministic version of
the procedure does not require the machinery developed in Section 3.3 (but it
does not apply to noetherian cases and does not yield automatic optimizations
in Φ0-convexity cases).

Remark. Theorem 5.1 cannot be used to transfer decidability of word problems
to our combined fragments: the reason is that, in case the procedure FComb is
initialized with only a single negative literal, constraints containing positive liter-
als are nevertheless generated during the execution (and also by the Purification
Rule). However, since negative literals are never run-time generated, Theorem
5.1 can be used to transfer decidability of conditional word problems, namely of
satisfiability problems for constraints containing just one negative literal.

A Comprehensive Framework for Combined Decision Procedures 23

5.2 Applications: Decidability Transfer Through Ultrapowers

We shall use the Keisler-Shelah isomorphism Theorem of Example 5.1 to get the
transfer decidability result of [16] as a special case of Theorem 5.1.

Let Φ1 = 〈L1, T1,S1〉 and Φ2 = 〈L2, T2,S2〉 be i.a.f.’s of the kinds consid-
ered in the Example 3.1 or in Example 3.2 and let Φ0 = 〈L0, T0,S0〉 be their
shared fragment. The hypothesis for the decidability transfer result of [16] are
the following:

(C1) there is a universal theory T0 in the shared signature L0 such that every
A ∈ S0 is a model of T0;

(C2) T0 admits a model-completion T �
0 ;16

(C3) for i = 1, 2, every A ∈ Si embeds into some A′ ∈ Si which is a model of
T �

0 ;
(C4) Φ0 is effectively locally finite.

Theorem 5.2 ([16]). Suppose that Φ1 and Φ2 are i.a.f.’s of the kinds consid-
ered in Examples 3.1-3.2, which moreover satisfy conditions (C1)-(C4) above.
If constraint satisfiability problems are decidable in Φ1 and Φ2, then they are
decidable in Φ1 ⊕ Φ2 too.

If we take as T0 the empty theory (in the one-sorted first-order empty lan-
guage with equality), then T �

0 is the theory of an infinite set and condition (C3)
is equivalent to stable infiniteness (by a simple argument based on compact-
ness); thus, Theorem 5.2 reduces to the standard Nelson-Oppen result [25], [26],
[31] concerning stably infinite theories over disjoint signatures. We recall from
[16] that among relevant examples of theories to which Theorem 5.2 is easily
seen to apply, we have Boolean algebras with operators (namely the theories ax-
iomatizing algebraic semantics of modal logic): thus, decidability of conditional
word problem transfers from two theories axiomatizing varieties of modal alge-
bras with operators to their union (provided only Boolean operators are shared).
This result, proved in [33] by specific techniques, is the algebraic version of the
fusion transfer of decidability of global consequence relation in modal logic.

We remark that condition (C4) can be weakened to

(C4′) Φ0 is noetherian and there exist noetherian positive residue Φ1- and Φ2-
enumerators for Φ0,

as suggested by Theorem 5.1 (2). As an example of an application of Theorem 5.2
under this weaker condition one can consider the theory of K-algebras endowed
with a linear endomorphism: this theory is the combination of the theory of K-
algebras and of the theory of K-vector spaces endowed with an endomorphism
(positive residue enumerators for the noetherian shared fragment can be obtained
in both cases by the method outlined in Example 3.9).

16 We refer the reader to [16] for the definition and to any textbook on model theory
like [11] for more information.

24 S. Ghilardi, E. Nicolini, and D. Zucchelli

As another application of Theorem 5.1 based on Keisler-Shelah isomorphism
theorem, we show how to include a first order equational theory within descrip-
tion logic A-Boxes. To get a decidability transfer result for the combination of
an equational i.a.f. Φ = 〈L, T,S〉 from Example 3.1 and of an A-Box fragment
ΦML = 〈LML, TML,SML〉 from Example 3.6, we only need mild additional hy-
potheses. These are explained in the statement of the following Theorem:

Theorem 5.3. Suppose that we are given an equational i.a.f. Φ = 〈L, T,S〉 from
Example 3.1 and an A-Box fragment ΦML = 〈LML, TML,SML〉 from Example
3.6; suppose also that the signatures L and LML are disjoint, that Φ is stably
infinite and that SML is an elementary class. Then decidability of constraint
satisfiability problems transfers from Φ and ΦML to Φ⊕ ΦML.

Notice that the fragment Φ⊕ΦML of Theorem 5.3 is quite peculiar (combined
terms all arise from a single composition step).

5.3 Applications: Decidability Transfer Through Disjoint Copies

Disjoint copies are the key tool for transfer decidability results in modal frag-
ments. If OM1 and OM2 are modal signatures, we let OM1⊕M2 indicate their
disjoint union (OM1⊕M2 is called the fusion of the modal signatures OM1 and
OM2). Given a modal i.a.f. ΦM1 over OM1 and a modal i.a.f. ΦM2 over OM2 (see
Example 3.5), let us define their fusion as the modal i.a.f.

ΦM1⊕M2 = 〈LM1⊕M2 , TM1⊕M2 ,S1 ⊕ S2〉 .

Theorem 5.1 and the considerations in Example 5.2 show that decidability of
constraint satisfiability transfers from two modal i.a.f.’s ΦM1 and ΦM2 (operating
on disjoint modal signatures) to their combination ΦM1 ⊕ ΦM2 . Since it can
be shown that the latter differs from the fusion ΦM1⊕M2 only by trivial βη-
conversions, the following well-known decidability transfer result obtains:

Theorem 5.4 (Decidability transfer for modal i.a.f.’s). If two modal in-
terpreted algebraic fragments ΦM1 and ΦM2 have decidable constraint satisfiabil-
ity problems, so does their fusion ΦM1⊕M2 .

Fragments of the kind examined in Example 3.6 are not interesting for being
combined with each other, because the absence of the type W → Ω makes such
combinations trivial. On the contrary, full modal fragments from Example 3.7
are quite interesting in this respect (we recall that they reproduce both A-Box
and T-Box reasoning from the point of view of description logics). Under the
obvious definition of fusion for full modal i.a.f.’s, we have the following result
(the proof requires just slight modifications to the considerations of Example
5.2):

Theorem 5.5 (Decidability transfer for full modal i.a.f.’s). If two full
modal i.a.f.’s have decidable constraint satisfiability problems, so does their
fusion.

A Comprehensive Framework for Combined Decision Procedures 25

Theorem 5.5 (once completed with the straightforward extension to n-ary
non normal modalities) covers the results of [9] on transfer of decidability of
A-Box consistency (wrt T-Boxes axioms) in fusions of local abstract description
systems.

We now try to extend our decidability transfer results to appropriate combi-
nations of guarded or of two-variable fragments. However, to get positive results,
we need to keep shared signatures under control (otherwise undecidability phe-
nomena arise). In addition, we still want to exploit the isomorphism theorem of
Example 5.2 and for that we need the shared signature to be empty and second
order variables appearing as terms in the fragments to be monadic only. The
kind of combination that arise in this way is a form of fusion, that we shall
call monadic fusion. We begin by identifying a class of fragments to which our
techniques apply.

Let us call Φ∅ = 〈L∅, T∅,S∅〉 the following i.a.f.: (i) L∅ is the empty one-sorted
first-order signature (that is, L∅ does not contain any proper symbol, except for
its unique sort which is called D); (ii) T∅ is equal to TL∅

11 ;17 (iii) S∅ contains all
L∅-structures.

Definition 5.1. A monadically suitable18 i.a.f. Φ = 〈L, T,S〉 is an i.a.f. such
that:

(i) L is a relational one-sorted first-order signature;
(ii) T

L∅
11 ⊆ T ⊆ TL

ω1;
(iii) the Φ∅-structural operation of taking disjoint I-copies is Φ-extensible.

As a first example of a monadically suitable fragment, we can consider the
guarded fragments of Example 3.8 (see also the considerations in Example 5.2).
To get another family of examples, we introduce an alternative construction
for proving extensibility of the operation of taking disjoint I-copies. This con-
struction is nicely behaved only for fragments without identity and is called
I-conglomeration:

Definition 5.2 (I-conglomeration). Consider a first order one-sorted rela-
tional signature L and a (non empty) index set I. The operation

∑I , defined
on L-structures and called I-conglomeration, associates with an L-structure
M = 〈[[−]]M, IM〉 the L-structure

∑I M such that [[D]] I M is the disjoint
union of I-copies of [[D]]M (here D is the unique sort of L). The interpretation
of relational constants is defined in the following way

I∑
M |= P (〈d1, i1〉, . . . , 〈dn, in〉) ⇐⇒ M |= P (d1, . . . , dn)

for every n-ary relational predicate P different from equality.
17 See Example 3.4 for this notation and for other similar notation used below.
18 We remark that, despite the fact that the definition of a monadically suitable frag-

ment needs the present paper settings to be formulated, there is some anticipation
of it in the literature on monodic fragments (see for instance statements like that of
Theorem 11.21 in [15]).

26 S. Ghilardi, E. Nicolini, and D. Zucchelli

Notice that I-conglomerations and disjoint I-copies coincide for relational
first order signatures having only unary predicates.

Example 5.4. Let L2V be a first-order relational one-sorted signature; a two
variables i.a.f. over L2V is a fragment of the kind Φ2V = 〈L2V , T2V ,S2V 〉, where:
(i) T2V contains the terms without identity which belongs to the set TL2V

NK of
Example 3.4 for K = 1 and N = 2; (ii) S2V is a class of L2V -structures closed
under isomorphisms and I-conglomerations. To show that Definition 5.1 applies
to Φ2V , it is sufficient to check that a first order formula not containing the
equality predicate is satisfiable in M iff it is satisfiable in

∑I M.

For two monadically suitable i.a.f.’s Φ1 and Φ2 operating on disjoint signa-
tures, let us call the combined fragment Φ1 ⊕ Φ2 the monadic fusion of Φ1 and
Φ2. For monadic fusions we have the following [17]:

Theorem 5.6 (Decidability transfer for monadically suitable i.a.f.’s).
If two monadically suitable i.a.f.’s Φ1, Φ2 operating on disjoint signatures have
decidable constraint satisfiability problems, so does their monadic fusion.

Theorem 5.6 offers various combination possibilities, however notice that: (a)
the conditions for a fragment to be monadically suitable are rather strong (for
instance, the two variable fragment with identity is not monadically suitable);
(b) the notion of monadic fusion is a restricted form of combination, because
only unary second order variables are available for replacement when forming
formulae of the combined fragment.

5.4 Applications: Decidability Transfer for Monodic Fragments

Fragments in first-order modal predicate logic become undecidable quite soon:
for instance, classical decidability results for the monadic or the two-variables
cases do not extend to modal languages [20], [14], [19]. However there still are
interesting modal predicate fragments which are decidable: one-variable frag-
ments are usually decidable [29], [15], as well as many monodic fragments. We
recall that a monodic formula is a modal first order formula in which modal
operators are applied only to subformulae containing at most one free variable.
Monodic fragments whose extensional (i.e. non modal) component is decidable
seem to be decidable too [32],[15]: we shall give this fact a formulation in terms
of a decidability transfer result for monodic fragments which are obtained as
combinations of a suitable extensional fragment and of a one-variable first-order
modal fragment. Since we prefer, for simplicity, not to introduce a specific formal
notion of a modal fragment, we shall proceed through standard translations and
rely on our usual notion of an i.a.f..

Constant Domains and Standard Translation. Modal predicate formulae
are built up from atomic formulae of a given first-order one-sorted relational
signature L and from formulae of the kindX(x) (whereX is a unary second order

A Comprehensive Framework for Combined Decision Procedures 27

variable), by using boolean connectives, individual quantifiers and a diamond
operator ♦.19

There are actually different standard translations for first-order modal lan-
guages, we shall concentrate here on the translation corresponding to constant
domain semantics. The latter is defined as follows. The signature LW has, in
addition to the unique sort D of L, a new sort W ; relational constants of type
Dn → Ω have corresponding relational constants in LW of type DnW → Ω. We
use equal names for corresponding constants: this means for instance that if P
has type D2 → Ω in L, the same P has type D2W → Ω in LW . We shall make
the same conventions for second order variables: hence a second order L-variable
X of type D → Ω has a corresponding second order variable X of type DW → Ω
in LW .

Notice that a LW -structure A is nothing but a [[W]]A-indexed class of L-
structures, all having the same domain [[D]]A: we indicate by Aw the structure
corresponding to w ∈ [[W]]A and call it the fiber structure over w. The signature
LWR is obtained from LW by adding it also a binary ‘accessibility’ relation R
of type WW → Ω. This is the signature we need for defining the standard
translation.

For a modal predicate L-formula ϕ[xD
1 , . . . , x

D
n] and for a variable w : W , we

define the (non modal) LWR-formula ST (ϕ,w) as follows:

ST (, w) = 	; ST (⊥, w) = ⊥;
ST (P (xi1 , . . . , xim), w) = P (xi1 , . . . , xim , w); ST (X(xi), w) = X(xi, w);

ST (¬ψ,w) = ¬ST (ψ,w); ST (∃xDψ,w) = ∃xDST (ψ,w);
ST (ψ1 ◦ ψ2, w) = ST (ψ1, w) ◦ ST (ψ2, w), where ◦ ∈ {∨,∧};
ST (♦ψ,w) = ∃vW (R(w, v) ∧ ST (ψ, v)).

Monodic Fusions for Fragments. Let F1M be a class of Kripke frames closed
under disjoint unions and isomorphisms. We call one-variable modal fragment
induced by F1M the i.a.f. Φ1M = 〈L1M , T1M ,S1M 〉, where: (i) L1M := LWR

∅ ,
where L∅ is the empty one-sorted first-order signature;(ii) T1M contains the
terms which are βη-equivalent to terms of the kind {wW , xD | ST (ϕ,w)}, where
ϕ is a modal predicate formula having x as the only (free or bound) variable;
(iii) S1M is the class of the L1M -structures A such that [[D]]A is not empty and
such that the Kripke frame ([[W]]A, IA(R)) belongs to F1M .

For a monadically suitable i.a.f. Φe = 〈Le, Te,Se〉 (recall Definition 5.1), we
define the i.a.f. ΦW

e = 〈LW
e , TW

e ,SW
e 〉, as follows: (i) TW

e contains the terms
of the kind {wW , xD | ST (ϕ,w)}, for {xD | ϕ} ∈ Te: (ii) SW

e contains the
LW

e -structures A whose fibers Aw are all in Se.
Fix a one variable modal fragment Φ1M and a first-order monadically suitable

fragment Φe; we call monodic fusion of Φe and Φ1M the combined fragment
ΦW

e ⊕ Φ1M .
19 All the results in this subsection extend to the case of multimodal languages and to

the case of n-ary modalities like Since, Until, etc.

28 S. Ghilardi, E. Nicolini, and D. Zucchelli

Thus one may for instance combine guarded or two-variables fragments20

with one-variables modal fragments to get monodic fusions corresponding to the
relevant cases analyzed in [32],[15]. In fact (modulo taking standard translation),
in combined fragments like ΦW

e ⊕ Φ1M we can begin with formulae ϕ[x] of Φe,
apply to them a modal operator, then use the formulae so obtained to replace
second order variables in other formulae from Φe, etc. Fragments of the kind
ΦW

e ⊕ Φ1M formalize the intuitive notion of a monodic modal fragment whose
extensional component is Φe. Since Φ1M is also interpreted, constraint satisfia-
bility in ΦW

e ⊕Φ1M is restricted to a desired specific class of modal frames/flows
of time.

Theorem 5.7. If the one variable modal i.a.f. Φ1M and the monadically suit-
able i.a.f. Φe have decidable constraint satisfiability problems, then their monodic
fusion ΦW

e ⊕ Φ1M also has decidable constraint satisfiability problems.

The proof of Theorem 5.7 reduces the statement to be proved to Theorem
5.1, after translating our fragments into fragments of a language describing ap-
propriate descent data [17] (disjoint I-copies and fiberwise disjoint I-copies then
provide the suitable isomorphism theorem).

6 Conclusions

In this paper we introduced a type-theoretic machinery in order to deal with the
combination of decision problems of various nature. Higher order type theory
has been essentially used as a unifying specification language; we have also seen
how the types interplay can be used in a rather subtle way to design combined
fragments and consequently appropriate constraints satisfiability problems.

Decision problems are at the heart of logic and of its applications, that’s why
they are so complex and irregularly behaved. Given that it is very difficult (and
presumably impossible) to get satisfying general results in this area, the em-
phasis should concentrate on methodologies which are capable of solving entiere
classes of concrete problems. Among methodologies, we can certainly include
methodologies for combination: these may be very helpful when the solution of
a problem can be modularly decomposed or when the problem itself appears to
be heterogeneous in its nature.

In this paper, we took into consideration Nelson-Oppen methodology (which
is probably the simplest combination methodology) and tried to push it as far
as possible. Surprisingly, it turned out that it might be quite powerful, when
joined to strong model theoretic results (the isomorphism theorems). Thus, we
tried to give the reader a gallery of different applications that can be solved in
a uniform way by this methodology. Some of these applications are new, some
other summarize recent work by various people. New problems certainly arise
now: they concern both further applications of Nelson-Oppen schema and the

20 We recall that two-variable fragments are monadically suitable only if we take out
identity.

A Comprehensive Framework for Combined Decision Procedures 29

individuation or more sophisticated schemata, for the problems that cannot be
covered by the Nelson-Oppen approach. We hope that the higher order frame-
work and the model theoretic techniques we introduced in this paper may give
further contributions within this research perspective.

References

1. H. Andréka, I. Nemeti, and J. VanBenthem. Modal languages and bounded frag-
ments of predicate logics. Journal of Philosophical Logic, 27:217–274, 1998.

2. Peter B. Andrews. An introduction to mathematical logic and type theory: to truth
through proof, volume 27 of Applied Logic Series. Kluwer Acad. Publ., 2002.

3. Peter B. Andrews. Classical type theory. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume II, pages 966–1007. Elsevier/MIT, 2001.

4. Franz Baader and Silvio Ghilardi. Connecting many-sorted theories. In Proceedings
of the 20th International Conference on Automated Deduction (CADE-05), Lecture
Notes in Artificial Intelligence, 2005.

5. Franz Baader and Silvio Ghilardi. Connecting many-sorted structures and theories
through adjoint functions. In Proceedings of the 5th International Workshop on
Frontiers of Combining Systems (FROCOS-05), Lecture Notes in Artificial Intel-
ligence, 2005.

6. Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge Uni-
versity Press, Cambridge, 1998.

7. Franz Baader and Cesare Tinelli. Deciding the word problem in the union of equa-
tional theories. Information and Computation, 178(2):346–390, December 2002.

8. Franz Baader, Silvio Ghilardi, and Cesare Tinelli. A new combination procedure
for the word problem that generalizes fusion decidability results in modal logics.
Information and Computation. (to appear).

9. Franz Baader, Carsten Lutz, Holger Sturm, and Frank Wolter. Fusions of de-
scription logics and abstract description systems. Journal of Artificial Intelligence
Research, 16:1–58, 2002.

10. Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision problem.
Universitext. Springer-Verlag, Berlin, 2001.

11. Chen-Chung Chang and H. Jerome Keisler. Model Theory. North-Holland,
Amsterdam-London, IIIrd edition, 1990.

12. G. Dowek. Higher order unification and matching. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II, pages 1009–
1062. Elsevier/MIT, 2001.

13. C. Fermüller, A. Leitsch, T. Tammet, and N. Zamov. Resolution methods for the
decision problem, volume 679 of Lecture Notes in Computer Science. Springer-
Verlag, 1993. Lecture Notes in Artificial Intelligence.

14. D. M. Gabbay and V.B. Shehtman. Undecidability of modal and intermediate first-
order logics with two individual variables. Journal of Symbolic Logic, 58:800–823,
1993.

15. D.M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications, volume 148 of Studies in Logic and the
Foundations of Mathematics. Elsevier, 2003.

16. Silvio Ghilardi. Model theoretic methods in combined constraint satisfiability.
Journal of Automated Reasoning, 33(3-3):221–249, 2005.

30 S. Ghilardi, E. Nicolini, and D. Zucchelli

17. Silvio Ghilardi, Enrica Nicolini, and Daniele Zucchelli. A comprehensive frame-
work for combined decision procedures. Technical Report 304-05, Diparti-
mento di Scienze dellInformazione, Università degli Studi di Milano, 2005. URL
http://homes.dsi.unimi.it/~ghilardi/allegati/frocos05.zip.

18. E. Grädel. Decision procedures for guarded logics. In Proceedings of CADE-16,
volume 1632 of Lecture Notes in Computer Science, pages 31–51. Springer, 1999.

19. R. Kontchakov, A. Kurucz, and M. Zakharyaschev. Undecidability of first-order
intuituionistic and modal logics with two variables. 2004. manuscript.

20. S. Kripke. The undecidability of monadic modal quantificational theory. Z. Math.
Logik Grundlag. Math., 8:113–116, 1962.

21. J. Lambek and P. J. Scott. Introduction to higher order categorical logic, volume 7
of Cambridge Studies in Advanced Mathematics.

22. L. Löwhenheim. Über Möglichkeiten im Relativkalkül. Math. Annalen, 76:228–251,
1915.

23. M. Marx. Tolerance logic. Journal of Logic, Language and Information, 10:353–
374, 2001.

24. M. Mortimer. On languages with two variables. Z. Math. Logik Grundlag. Math.,
21:135–140, 1975.

25. Greg Nelson and Derek C. Oppen. Simplification by cooperating decision proce-
dures. ACM Trans. on Programming Languages and Systems, 1(2):245–257, Octo-
ber 1979.

26. Derek C. Oppen. Complexity, convexity and combinations of theories. Theoretical
Computer Science, 12:291–302, 1980.

27. D. Scott. A decision method for for validity of sentences in two variables. Journal
of Symbolic Logic, 27:477, 1962.

28. K. Segerberg. Two-dimensional modal logic. Journal of Philosophical Logic, 2:
77–96, 1973.

29. V.B. Shehtman. On some two-dimensional modal logics. In 8th Congress on Logic
Methodology and Philosophy of Science, vol. 1, pages 326–330. Nauka, Moskow,
1987.

30. Cesare Tinelli. Cooperation of background reasoners in theory reasoning by residue
sharing. Journal of Automated Reasoning, 30(1):1–31, 2003.

31. Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–
Oppen combination procedure. In Proc. of the 1st Int. Workshop on Frontiers of
Combining Systems, pages 103–120. Kluwer Acad. Publ., 1996.

32. F. Wolter and M. Zakharyaschev. Decidable fragments of first-order modal logics.
Journal of Symbolic Logic, 66:1415–1438, 2001.

33. Frank Wolter. Fusions of modal logics revisited. In M. Kracht, M. de Rijke,
H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic. CSLI, Stan-
ford, CA, 1998.

Connecting Many-Sorted Structures and

Theories Through Adjoint Functions

Franz Baader1 and Silvio Ghilardi2

1 Institut für Theoretische Informatik, TU Dresden
2 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano

Abstract. In a previous paper, we have introduced a general approach
for connecting two many-sorted theories through connection functions
that behave like homomorphisms on the shared signature, and have
shown that, under appropriate algebraic conditions, decidability of the
validity of universal formulae in the component theories transfers to their
connection. This work generalizes decidability transfer results for so-
called E-connections of modal logics. However, in this general algebraic
setting, only the most basic type of E-connections could be handled. In
the present paper, we overcome this restriction by looking at pairs of
connection functions that are adjoint pairs for partial orders defined in
the component theories.

1 Introduction

Transfer of decidability from component theories/logics to their combination
have been investigated independently in different areas of computer science and
logic, and only recently it has turned out that there are close connections between
different such transfer results. For example, in modal logics it was shown that in
many cases decidability of (relativized) validity transfers from two modal logics
to their fusion [14,21,23,3]. In automated deduction, the Nelson-Oppen com-
bination procedure [18,17] and combination procedures for the word problem
[20,19,4] were generalized to the case of the union of theories over non-disjoint
signatures [7,22,5,8,11,2], and it could be shown that some of these approaches
[11,2] actually generalize decidability transfer results for fusions of modal log-
ics from equational theories induced by modal logics to more general first-order
theories satisfying certain model-theoretic restrictions. In particular, these gen-
eralizations no longer require the shared theory to be the theory of Boolean
algebras.

The purpose of this work is to develop similar algebraic generalizations of
decidability transfer results for so-called E-connections [15] of modal logics. In-
tuitively, the difference between fusion and E-connection can be explained as
follows. A model of the fusion is obtained from two models of the component
logics by identifying their domains. In contrast, a model of the E-connection
consists of two separate models of the component logics together with certain
connecting relations between their domains. There are also differences in the
syntax of the combined logic. In the case of the fusion, the Boolean operators

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 31–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

32 F. Baader and S. Ghilardi

are shared, and all operators can be applied to each other without restrictions. In
the case of the E-connection, there are two copies of the Boolean operators, and
operators of the different logics cannot be mixed; the only connection between
the logics are new modal operators that are induced by the connecting relations.

In [1], this connection approach was generalized to the more general setting
of connecting many-sorted first-order theories. The use of many-sorted theories
allowed us to keep the domains separate and to restrict the way function symbols
can be applied to each other. To be more precise, let T1, T2 be two many-sorted
theories that may share some sorts as well as function and relation symbols.
We first build the disjoint union T1 � T2 of these two theories (by using disjoint
copies of the shared parts), and then connect them by introducing connection
functions between the shared sorts. These connection functions must behave
like homomorphisms for the shared function and predicate symbols, i.e., the
axioms stating this are added to T1 � T2. This corresponds to the fact that the
new modal operators in the E-connection approach interact with the Boolean
operators of the component logics. In [1], we started with the simplest case
where there is just one connection function, and showed that decidability of
the universal fragments of T1, T2 transfers to their connection whenever certain
model-theoretic conditions are satisfied. The approach was then extended to the
case of several connection functions, and to variants of the general combination
scheme where the connection function must satisfy additional properties (like
being surjective, an embedding, or an isomorphism).

However, in the E-connection approach introduced in [15], one usually con-
siders not only the modal operator induced by a connecting relation, but also
the modal operator induced by its inverse. It is not adequate to express these
two modal operators by independent connection function going in different direc-
tions since this does not capture the relationships that must hold between them.
For example, if � is the diamond operator induced by the connecting relation
E, and �− is the box operator induced by its inverse E−, then the formulae
x → �−�x and ��−y → y are valid in the E-connection. In order to express
these relationships in the algebraic setting without assuming the presence of the
Boolean operators in the shared theory, we replace the logical implication → by
a partial order ≤,1 and require that x ≤ r(�(x)) and �(r(y)) ≤ y holds for the
corresponding connection functions. If �, r are also order preserving, then this
means that �, r is a pair of adjoint functions for the partial order ≤. We call the
connection of two theories obtained this way an adjoint theory connection.

In this paper we give an abstract algebraic condition under which the decid-
ability of the universal fragment transfers from the component theories to their
adjoint theory connection. In contrast to the conditions in [1], which are com-
patibility conditions between a shared theory and the component theories, this
is a condition that requires the existence of certain subtheories of the component
theories, but these subtheories need not be the same for different components.

1 In the presence of (some of) the Boolean operators, this partial order is obtained in
the usual way, e.g., by defining x ≤ y iff x y = y, where is the join (disjunction)
operator. Note that the applications of � and �− preserve this order.

Connecting Many-Sorted Structures and Theories 33

We then give sufficient conditions under which our new condition is satisfied. In
particular, this shows that the decidability transfer results for E-connection with
inverse connection modalities follow from our more general algebraic result.

2 Notation and Definitions

In this section, we fix the notation and give some important definitions, in par-
ticular a formal definition of the adjoint connection of two theories. In addition,
we show some simple results regarding adjoint functions in partially ordered set.

Basic Model Theory. We use standard many-sorted first-order logic (see, e.g.,
[9]), but try to avoid the notational overhead caused by the presence of sorts
as much as possible. Thus, a signature Ω consists of a non-empty set of sorts
S together with a set of function symbols F and a set of predicate symbols P .
The function and predicate symbols are equipped with arities from S∗ in the
usual way. For example, if the arity of f ∈ F is S1S2S3, then this means that
the function f takes tuples consisting of an element of sort S1 and an element
of sort S2 as input, and produces an element of sort S3. We consider logic with
equality, i.e., the set of predicate symbols contains a symbol ≈S for equality in
every sort S. Usually, we will just use ≈ without explicitly specifying the sort.

Terms and first-order formulae over Ω are defined in the usual way, i.e., they
must respect the arities of function and predicate symbols, and the variables
occurring in them are also equipped with sorts. An Ω-atom is a predicate symbol
applied to (sort-conforming) terms, and an Ω-literal is an atom or a negated
atom. A ground literal is a literal that does not contain variables. We use the
notation φ(x) to express that φ is a formula whose free variables are among the
ones in the tuple of variables x. An Ω-sentence is a formula over Ω without
free variables. An Ω-theory T is a set of Ω-sentences (called the axioms of T).
If T, T ′ are Ω-theories, then we write (by a slight abuse of notation) T ⊆ T ′ to
express that all the axioms of T are logical consequences of the axioms of T ′. The
formula φ is called open iff it does not contain quantifiers; it is called universal
iff it is obtained from an open formula by adding a prefix of universal quantifiers.
The theory T is a universal theory iff its axioms are universal sentences.

From the semantic side, we have the standard notion of an Ω-structure A,
which consists of non-empty and pairwise disjoint domains AS for every sort
S, and interprets function symbols f and predicate symbols P by functions fA

and predicates PA according to their arities. By A we denote the union of all
domains AS . Validity of a formula φ in an Ω-structure A (A |= φ), satisfiability,
and logical consequence are defined in the usual way. The Ω-structure A is a
model of the Ω-theory T iff all axioms of T are valid in A. The class of all models
of T is denoted by Mod(T).

If φ(x) is a formula with free variables x = x1, . . . , xn and a = a1, . . . , an is
a (sort-conforming) tuple of elements of A, then we write A |= φ(a) to express
that φ(x) is valid in A under the assignment {x1 �→ a1, . . . , xn �→ an}. Note
that φ(x) is valid in A iff it is valid under all assignments iff its universal closure
is valid in A. An Ω-homomorphism between two Ω-structures A and B is a

34 F. Baader and S. Ghilardi

mapping μ : A → B that is sort-conforming (i.e., maps elements of sort S in A
to elements of sort S in B), and satisfies the condition

(∗) A |= A(a1, . . . , an) implies B |= A(μ(a1), . . . ,μ(an))

for all Ω-atoms A(x1, . . . , xn) and (sort-conforming) elements a1, . . . , an of A.
In case the converse of (∗) holds too, μ is called an embedding. Note that an
embedding is something more than just an injective homomorphism since the
stronger condition must hold not only for the equality predicate, but for all
predicate symbols. If the embedding μ is the identity on A, then we say that
A is an Ω-substructure of B. An important property of universal theories is
that their classes of models are closed under building substructures, i.e., if T is a
universal Ω-theory and A is an Ω-substructure of M, then M ∈ Mod(T) implies
A ∈ Mod(T) (see, e.g. [6]).

We say that Σ is a subsignature of Ω (written Σ ⊆ Ω) iff Σ is a signature
that can be obtained from Ω by removing some of its sorts and function and
predicate symbols. If Σ ⊆ Ω and A is an Ω-structure, then the Σ-reduct of A is
the Σ-structure A|Σ obtained from A by forgetting the interpretations of sorts,
function and predicate symbols from Ω that do not belong to Σ. Conversely, A
is called an expansion of the Σ-structure A|Σ to the larger signature Ω.

Given a set X of constant symbols not belonging to the signature Ω, but
each equipped with a sort from Ω, we denote by ΩX the extension of Ω by these
new constants. If A is an Ω-structure, then we can view the elements of A as a
set of new constants, where a ∈ AS has sort S. By interpreting each a ∈ A by
itself, A can also be viewed as an ΩA-structure. The diagram ΔΩ(A) of A is the
set of all ground ΩA-literals that are true in A. Robinson’s diagram theorem [6]
says that there is an embedding between the Ω-structures A and B iff there is
an expansion of B to an ΩA-structure that is a model of the diagram of A.

Adjoint Functions in Posets. We recall some basic facts about adjoints
among posets (see, e.g., [12] for more details). A partially ordered set (poset,
for short) is a set P equipped with a reflexive, transitive, and antisymmetric
binary relation ≤. Such a poset is called complete if the meet

∧
i ai ∈ P and the

join
∨

i ai ∈ P of a family {ai}i∈I of elements of P always exist. In case I is
empty, the meet is the greatest and the join the least element of P .

Let P, Q be posets. A pair of maps f∗ : P → Q and f∗ : Q → P is said to be
an adjoint pair (written f∗ f∗) iff the condition

f∗(a) ≤ b iff a ≤ f∗(b) (1)

is satisfied for all a ∈ P, b ∈ Q. In this case, f∗ is called the left adjoint to f∗,
and f∗ is called the right adjoint to f∗. The left (right) adjoint to a given map
f : P → Q may not exist, but if it does, then it is unique.

Condition (1) implies that f∗, f∗ are order preserving. For example, assume
that a1, a2 ∈ P are such that a1 ≤ a2. Now, f∗(a2) ≤ f∗(a2) implies a2 ≤
f∗(f∗(a2)) by (1), and thus by transitivity a1 ≤ f∗(f∗(a2)). By (1), this implies
f∗(a1) ≤ f∗(a2).

Connecting Many-Sorted Structures and Theories 35

Instead of condition (1), we may equivalently require that f∗, f∗ are order
preserving and satisfy, for all a ∈ P, b ∈ Q, the conditions

a ≤ f∗(f∗(a)) and f∗(f∗(b) ≤ b. (2)

If f∗ f∗ is an adjoint pair, then the mappings f∗, f∗ are inverse to each
other on their images, i.e., for all a ∈ P, b ∈ Q

f∗(a) = f∗(f∗(f∗(a))) and f∗(f∗(f∗(b))) = f∗(b). (3)

Adjoint pairs compose in the following sense: if f∗ : P → Q, f∗ : Q → P and
g∗ : Q → R, g∗ : R → Q are such that f∗ f∗ and g∗ g∗, then we also have
that g∗ ◦ f∗ f∗ ◦ g∗ (where composition should be read from right to left).

If P, Q are complete posets, then any pair of adjoints f∗ f∗ between P and
Q preserves meet and join in the following sense: the left adjoint preserves join
and the right adjoint preserves meet. The latter can, e.g., be seen as follows:

a ≤ f∗(
∧

bi) iff f∗(a) ≤
∧

bi iff ∀i.f∗(a) ≤ bi iff ∀i.a ≤ f∗(bi) iff a ≤
∧

f∗(bi).

Since a is arbitrary, this shows that f∗(
∧
bi) =

∧
f∗(bi).

Given a mapping f : P → Q between the posets P, Q, we may ask under what
conditions it has a left (right) adjoint. As we have seen above, order preserving
is a necessary condition, but it is easy to see that it is not sufficient.

If P, Q are complete, then meet preserving is a necessary condition for f to
have a left adjoint f∗, and join preserving is a necessary condition for f to have
a right adjoint f∗. These conditions are also sufficient: if f preserves join (meet),
then the following mapping f∗ (f∗) is a right (left) adjoint to f :

f∗(b) :=
∨

f(a)≤b

a and f∗(b) :=
∧

b≤f(a)

a.

Example 1. Let W1, W2 be sets, and consider the posets induced by the sub-
set relation on their powersets ℘(W1) and ℘(W2). Obviously, these posets are
complete, where set union is the join and set intersection is the meet operation.
Any binary relation E ⊆ W2 × W1 yields a join-preserving diamond operator
�E : ℘(W1) → ℘(W2) by defining for all a ∈ ℘(W1):

�Ea := {w2 ∈ W2 | ∃w1 ∈ W1. (w2, w1) ∈ E ∧ w1 ∈ a}.

The right adjoint to this diamond operator is the box operator �−
E : ℘(W2) →

℘(W1), which can be defined as the map taking b ∈ ℘(W2) to

�−
Eb := {w1 ∈ W1 | ∀w2 ∈ W2. (w2, w1) ∈ E → w2 ∈ b}.

It is easy to see that these two maps indeed form an adjoint pair for set inclusion,
i.e., we have �E �−

E . Conversely, for any adjoint pair f∗ f∗ with

f∗ : ℘(W1) → ℘(W2) and f∗ : ℘(W2) → ℘(W1),

there is a unique relation E ⊆ W2 × W1 such that f∗ = �E and f∗ = �−
E . To

show this, just take E to consist of the pairs (w2, w1) such that w2 ∈ f∗({w1})).
This shows that the adjoint pairs among powerset Boolean algebras coincide
with the pairs of inverse modal operators on the powersets defined above.

36 F. Baader and S. Ghilardi

Adjoint Connections. We define adjoint connections first on the semantic
side, where we connect classes of structures, and then on the syntactic side,
where we connect theories.

Let Ω1, Ω2 be two disjoint (many-sorted) signatures.2 We assume that Ω1
contains a binary predicate symbol !1 of arity S1S1, and Ω2 contains a binary
predicate symbol !2 of arity S2S2. The combined signature Ω1+∗Ω2 contains
the union Ω1∪Ω2 of the signatures Ω1 and Ω2. In addition Ω1+∗Ω2 contains two
new function symbols �, r of arity S1S2 and S2S1. Since the signatures Ω1 and
Ω2 are sorted and disjoint, it is easy to see that (Ω1+∗Ω2)-structures are formed
by 4-tuples of the form (M1,M2, �M, rM), where M1 is an Ω1-structure, M2

is an Ω2-structure, and

�M : S1 → S2 and rM : S2 → S1

are functions between the interpretations S1,S2 of the sorts S1, S2 in M1,M2.
Let K1 be a class of Ω1-structures and K2 a class of Ω2-structures such that

each of the structures in Ki interprets !i as a partial order on the interpretation
Si of the sort Si (i = 1, 2). The combined class of structures K1 +∗K2, called
the adjoint connection of K1 and K2, consists of those (Ω1 +∗ Ω2)-structures
(M1,M2, �M, rM) for which M1 ∈ K1, M2 ∈ K2, and �M, rM is an adjoint pair
for the posets given by S1,S2 and the interpretations of the predicate symbols
!1,!2 in M1,M2, respectively.

Let T1 be an Ω1-theory and T2 an Ω2-theory such that the axioms of Ti (i =
1, 2) entail the reflexivity, transitivity, and antisymmetry axioms for !i. The
combined theory T1+∗T2, called the adjoint theory connection of T1 and T2, has
Ω1+∗Ω2 as its signature, and the following axioms :

T1 ∪ T2 ∪ { ∀x, y. (�(x) !2 y ↔ x !1 r(y)) }.

In the sequel, superscripts 1 and 2 for the partial orders !1,!2 are sometimes
omitted. It is easy to see that the adjoint theory connection corresponds to
building the adjoint connection of the corresponding classes of models.

Proposition 2. Mod(T1+∗T2) = Mod(T1)+∗Mod(T2).

Example 3. We show that basic E-connections of abstract description systems,
as introduced in [15], are instances of our approach for connecting classes of
structures. A Boolean-based signature is a signature Ω including the signature
ΩBA of Boolean algebras. Boolean-based signatures correspond to the abstract
description languages (ADL) introduced in [15], with the exception that we do
not consider object variables and relation symbols.3

An algebraic Ω-model is an Ω-structure whose ΩBA-reduct is a Boolean al-
gebra. As a special case we consider Ω-frames, which are algebraic Ω-models
2 If Ω1, Ω2 are not disjoint, we can make them disjoint by appropriately renaming the

shared sorts and the shared function and predicate symbols.
3 This means that our approach cannot treat the relational object assertions of [15]

(see Example 9 below for more details). These object assertions correspond to role
assertions of description logic ABoxes, and are usually not considered in modal logic.

Connecting Many-Sorted Structures and Theories 37

F(W) whose ΩBA-reduct is the Boolean algebra ℘(W), where W is a set (called
the set of possible worlds). Ω-frames are the same as the abstract description
models (ADM) introduced in [15]. An abstract description system (ADS) is de-
termined by an ADL together with a class of ADMs for this ADL. Thus, in our
setting, an ADS is given by a Boolean-based signature Ω together with a class
of Ω-frames.

Let Ω1, Ω2 be Boolean-based signatures, and K1,K2 be classes of Ω1- and
Ω2-frames, respectively. Any element of their adjoint connectionK1+∗K2 is of the
form (F(W1),F(W2), �M, rM), where F(W1) ∈ K1, F(W2) ∈ K2, and �M, rM

is an adjoint pair between the powersets ℘(W1) and ℘(W2). The considerations
in Example 1 show that there is a relation E ⊆ W2 × W1 such that �M = �E

and rM = �−
E . We call such a relation a connecting relation. Conversely, assume

that F(W1) ∈ K1, F(W2) ∈ K2. If E ⊆ W2 ×W1 is a connecting relation, then
�E , �−

E is an adjoint pair, and thus (F(W1),F(W2), �E , �−
E) belongs to the

adjoint connection K1+∗K2.
Let ADS1,ADS2 be the ADSs induced by Ω1, Ω2 and K1,K2. The above

argument shows that the basic E-connection of ADS1 and ADS2 (with just one
connecting relation) is given by Ω1+∗Ω2 and the frame class K1+∗K2.

This example shows that the adjoint connection of frame classes really captures
the basic E-connection approach introduced in [15]. On the one hand, our ap-
proach is more general in that it can also deal with arbitrary classes of algebraic
models (and not just frame classes), and even more generally with signatures
that are not Boolean based. On the other hand, in [15], also more general types
of E-connections are considered. First, there may be more than one connecting
relation in E . In our algebraic setting this means that more than one pair of ad-
joints is considered. Though we do not treat this case here, it is straightforward
to extend our approach to several (independent) pairs of adjoints. Second, in
[15] n ≥ 2 rather than just 2 ADSs are connected. We will show later on how
our approach can be extended to deal with this case. Third, [15] considers ex-
tensions of the basic connection approach such as applying Boolean operations
to connecting relations. These kinds of extensions can currently not be handled
by our algebraic approach.

3 The Decidability Transfer Result

We are interested in deciding universal fragments i.e., validity of universal for-
mulae (or, equivalently open formulae) in a theory T or a class of structures K.
The formula φ is valid in the class of structures K iff φ is valid in each element
of K. It is valid in the theory T iff it is valid in Mod(T). It is well known that the
validity problem for universal formulae is equivalent to the problem of deciding
whether a set of literals is satisfiable in some element of K (some model of T).
We call such a set of literals a constraint.

By introducing new free constants (i.e., constants not occurring in the axioms
of the theory), we can assume without loss of generality that such constraints

38 F. Baader and S. Ghilardi

contain no variables. In addition, we can transform any ground constraint into
an equi-satisfiable set of ground flat literals, i.e., literals of the form

a ≈ f(a1, . . . , an), P (a1, . . . , an), or ¬P (a1, . . . , an),

where a, a1, . . . , an are (sort-conforming) free constants, f is a function symbol,
and P is a predicate symbol (possibly also equality).

Before we can formulate the decidability transfer result, we must first define
the conditions under which it holds. These conditions are conditions regarding
the existence of certain subtheories T0 of the component theories. Let Ω0 be
a single-sorted signature containing (possibly among other symbols) a binary
predicate symbol !, and let T0 be a universal Ω0-theory that entails reflexivity,
transitivity, and antisymmetry of !.

The first condition is that T0 must be locally finite, i.e., all finitely generated
models of T0 are finite. To be more precise, we need the following restricted
version of the effective variant of local finiteness defined in [11,2]. The theory T0 is
called locally finite with an effective bound iff there is a computable function BT0

from the non-negative integers into the non-negative integers with the following
property: if the model A of T0 is generated by a set of generators of size n, then
the cardinality of A is bounded by BT0(n).

The second condition requires the existence of certain adjoint functions. We
say that T0 guarantees adjoints iff every Ω0-embedding e : A→ M of a finitely
generated model A of T0 into a model M of T0 has both a left adjoint e∗ and a
right adjoint e∗ for the posets induced by the interpretations of ! in A and M.

Definition 4. Let Ω be a (many-sorted) signature, and K be a class of Ω-
structures. We say that K is adjoint combinable iff there exist a finite single-
sorted subsignature Ω0 of Ω containing the binary predicate symbol !, and a
universal Ω0-theory T0 such that

1. every axiom of T0 is valid in K;
2. the axioms of T0 entail reflexivity, transitivity, and antisymmetry for !;
3. T0 is locally finite with an effective bound;
4. T0 guarantees adjoints.

Let T be an Ω-theory. We say that T is adjoint combinable iff the corresponding
class of models Mod(T) is adjoint combinable.

For adjoint combinable classes of structures, decidability of the universal
fragment transfers from the components to their adjoint connection. It should
be noted that the universal theory T0 ensuring adjoint combinability need not
be the same for the component theories.

Theorem 5. Let K1,K2 be adjoint combinable classes of structures over the
respective signatures Ω1, Ω2. Then the decidability of the universal fragments of
K1 and K2 entails the decidability of the universal fragment of K1+∗K2.

Proof. Let T
(1)
0 and T

(2)
0 be the universal theories over the signatures Ω

(1)
0 and

Ω
(2)
0 ensuring adjoint combinability of K1 and K2, respectively. To prove the

Connecting Many-Sorted Structures and Theories 39

theorem, we consider a finite set Γ of ground flat literals over the signature
Ω1 +∗Ω2 (with additional free constants), and show how it can be tested for
satisfiability in K1 +∗K2. Since all literals in Γ are flat, we can divide Γ into
three disjoint sets Γ = Γ0 ∪ Γ1 ∪ Γ2, where Γi (i = 1, 2) is a set of literals over
Ωi (expanded with free constants), and Γ0 is of the form

Γ0 = {�(a1) ≈ b1, . . . , �(an) ≈ bn, r(b′1) ≈ a′
1, . . . , r(b

′
m) ≈ a′

m}

for free constants aj , bj, a
′
i, b

′
i.

The following procedure decides satisfiability of Γ in K1+∗K2:

1. Guess a 4-tuple A,B,μ, ν, where:
(a) A is a finite Ω

(1)
0 -structure generated by {a1, . . . , an, a′

1, . . . , a
′
m} such

that |A| ≤ B
T

(1)
0

(n + m) and ! is interpreted as a partial order, and B
is a finite Ω

(2)
0 -structure generated by {b1, . . . , bn, b′1, . . . , b

′
m} such that

|B| ≤ B
T

(2)
0

(n + m) and ! is interpreted as a partial order.
(b) μ : A −→ B and ν : B −→ A is an adjoint pair for the partial orders

induced by the interpretations of ! in A,B such that

μ(aj) = bj (j = 1, . . . , n) and ν(b′i) = a′
i (i = 1, . . . , m).

2. Check whether Γ1 ∪Δ
Ω

(1)
0

(A) is satisfiable in K1 (if not, go back to Step 1).
3. Check whether Γ2 ∪Δ

Ω
(2)
0

(B) is satisfiable in K2 (if not, go back to Step 1).
If it is satisfiable, return ‘satisfiable’.

4. If all guesses fail, return ‘unsatisfiable’.

Local finiteness with an effective bound of the theories T
(i)
0 entails that the

functions B
T

(i)
0

are computable. Since the signatures Ω
(i)
0 are finite, there are

only finitely many guesses in Step 1, and we can effectively generate all of them.
Steps 2 and 3 are effective since satisfiability of a finite set of literals in Ki

(i = 1, 2) is decidable by our assumption that the universal fragments of K1 and
K2 are decidable. Thus, it is sufficient to show that the procedure is sound and
complete.

To show completeness, suppose that the constraint Γ is satisfiable in K1+∗K2.
Thus, there is a structure M = (M1,M2, �

M, rM) ∈ K1+∗K2 satisfying Γ . In
particular, M1 ∈ K1,M2 ∈ K2, and �M rM is an adjoint pair such that

�M(aj) = bj and rM(b′i) = a′
i.

4

Let A be the Ω
(1)
0 -substructure of M1|Ω(1)

0
generated by {a1, . . . , an, a′

1, . . . , a
′
m},

and B be the Ω
(2)
0 -substructure of M2|Ω(2)

0
generated by {b1, . . . , bn, b′1, . . . , b

′
m}.

The Ω
(i)
0 -reduct Mi|Ω(i)

0
of Mi (i = 1, 2) is a model of T

(i)
0 . Since T

(i)
0 is univer-

sal, the substructures A,B are also models of T
(1)
0 , T

(2)
0 , respectively. In partic-

ular, this implies that ! is interpreted as a partial order in A and B. Since the
4 Here we identify (for the sake of simplicity) the constants aj , a

′
i, bj , b

′
i with their

interpretations in M1, M2.

40 F. Baader and S. Ghilardi

theories T
(i)
0 are locally finite with an effective bound, the cardinalities of these

substructures are bounded by the respective functions B
T

(i)
0

.

We know M1 ∈ K1 satisfies Γ1. In addition, since A is an Ω
(1)
0 -substructure

of M1, Robinson’s diagram theorem entails that M1 satisfies Δ
Ω

(1)
0

(A). Thus,
Γ1 ∪ Δ

Ω
(1)
0

(A) is satisfiable in K1. The fact that Γ2 ∪ Δ
Ω

(2)
0

(B) is satisfiable in
K2 can be shown in the same way.

To construct the adjoint pair μ ν, we consider the Ω
(1)
0 -embedding e and

the Ω
(2)
0 -embedding f , where

e : A→M1|Ω(1)
0

and f : B →M2|Ω(2)
0

are given by the inclusion maps. Since the theories T
(i)
0 guarantee adjoints, these

embeddings have both left and right adjoints. Let us call f∗ the left adjoint to
f and e∗ the right adjoint to e. We define

μ := f∗ ◦ �M ◦ e and ν := e∗ ◦ rM ◦ f.

Since adjoints compose, we have indeed μ ν. It remains to be shown that
μ(aj) = bj and ν(b′i) = a′

i. We restrict the attention to the first identity (as the
second one can be proved symmetrically). We know that �M(aj) = bj , and since
e is the inclusion map we have e(aj) = aj . Thus

μ(aj) = f∗(�M(e(aj))) = f∗(�M(aj)) = f∗(bj).

Since f is the inclusion map, we have f∗(bj) = f(f∗(f(bj))) and because f∗ f
we know by (3) that f(f∗(f(bj))) = f(bj) = bj . If we put all these identities
together, we obtain μ(aj) = bj .

To show soundness, we argue as follows. If Γ1 ∪ Δ
Ω

(1)
0

(A) is satisfiable in

K1, then there is a structure M1 ∈ K1 that satisfies Γ1 and has A as Ω
(1)
0 -

substructure. The Ω
(1)
0 -reduct of M1 is a model of T

(1)
0 , and since T

(1)
0 is uni-

versal this implies that the substructure A is also a model of T
(1)
0 . Analogously,

if Γ2 ∪ Δ
Ω

(2)
0

(B) is satisfiable in K2, then there is a structure M2 ∈ K2 that

satisfies Γ2 and has the model B of T
(2)
0 as Ω

(2)
0 -substructure.

In order to construct a structure M = (M1,M2, �
M, rM) ∈ K1+∗K2 satis-

fying Γ = Γ0 ∪ Γ1 ∪ Γ2, it is enough to construct the adjoint pair �M, rM such
that it extends the pair μ, ν provided by Step 2b of the procedure. Let

e : A→M1|Ω(1)
0

and f : B →M2|Ω(2)
0

be the Ω
(1)
0 - and Ω

(2)
0 -embeddings of A,B into the reducts of M1,M2, respec-

tively. Without loss of generality we can assume that e, f are inclusion maps.
Since the theories T

(i)
0 guarantee adjoints, these embeddings have both left and

right adjoints. Let us call e∗ the left adjoint to e and f∗ the right adjoint to f .
We define

�M := f ◦ μ ◦ e∗ and rM := e ◦ ν ◦ f∗.

Connecting Many-Sorted Structures and Theories 41

Since adjoints compose, we have again �M rM. It remains to be shown that
M := (M1,M2, �

M, rM) satisfies Γ0, i.e., �M(aj) = bj and rM(b′i) = a′
i.

5

Again, we restrict the attention to the first identity (as the second one can
be proved symmetrically). We have μ(aj) = bj , and �M(aj) = f(μ(e∗(aj)) =
μ(e∗(aj)) since f is the inclusion map. Thus, it is enough to show that e∗(aj) =
aj . Since e is the inclusion map, we have e∗(aj) = e(e∗(e(aj))) and because
e∗ e we know by (3) that e(e∗(e(aj))) = e(aj) = aj . "#

Proposition 2 and the above theorem yield the following transfer result for
adjoint theory connections.

Corollary 6. Let T1, T2 be adjoint combinable theories over the respective sig-
natures Ω1, Ω2. Then the decidability of the universal fragments of T1 and T2
entails the decidability of the universal fragment of T1+∗T2.

4 Applications of the Transfer Result

In order to apply Theorem 5, we must find universal theories that extend the
theory of posets, guarantee adjoints, and are locally finite with an effective
bound. Given such theories T

(1)
0 , T

(2)
0 , every pair K1,K2 of classes of Ω1- and

Ω2-structures whose members are models of T
(1)
0 , T

(2)
0 , respectively, satisfy the

conditions of Theorem 5, and hence allow transfer of decidability (of the univer-
sal fragment) from K1 and K2 to K1+∗K2.

In order to ensure the existence of adjoints for embeddings, it is enough that
meets and joins exist and embeddings preserve them. For this reason, we start
with the theory of bounded lattices since it provides us with meet and join.
Recall that the theory TL of bounded lattices is the theory of posets endowed
with binary meet and join, and a least and a greatest element. In the following,
we assume that the signature ΩL of this theory contains the function symbols
#, 0 for the join and the least element, the function symbols ", 1 for the meet
and the greatest element, and the relation symbol ! for the partial order. Note,
however, that is not really necessary to have ! explicitly in the signature since
it can be expressed using meet or join (e.g., x ! y iff x # y = y).

The theory TL is not locally finite, but we can make it locally finite by
adding as extra axioms all the identities that are true in a fixed finite lattice A.
The theory TA obtained this way is locally finite: two n-variable terms cannot
be distinct modulo TA in case they are interpreted in A by the same n-ary
function An → A, and there are only finitely many such functions. This argument
also yields an effective bound: if |A| = c, then BTA(n) = ccn

. In addition, TA
guarantees adjoints. To show this, consider an ΩL-embedding e : B → M of a
finitely generated model B of TA into a model M of TA. Since B is a finite, it is a
complete lattice, and the preservation of binary joins, meets, as well as the least

5 As before, we identify (for the sake of simplicity) the constants aj , a
′
i, bj , b

′
i with their

interpretations in M1, M2.

42 F. Baader and S. Ghilardi

and greatest element by e implies that e preserves all joins and meets. Thus, it
has both a left and a right adjoint.

If we take as A the two element bounded lattice, then it is well known (see,
e.g., [13]) that the theory TA coincides with the theory TD of distributive lattices,
i.e., the extension of TL by the distributivity axiom x#(y"z) ≈ (x#y)"(x#z).

Corollary 7. Let K1,K2 be classes of Ω1- and Ω2-structures whose members
are models of the theory TD of distributive lattices. Then the decidability of the
universal fragments of K1,K2 implies the decidability of the universal fragment
of K1+∗K2.

Obviously, any pair of classes of frames over two Boolean-based signatures (see
Example 3) satisfies the precondition of the above corollary.

Corollary 8. Let Ω1, Ω2 be Boolean-based signatures, and K1,K2 be classes of
Ω1- and Ω2-frames. Then the decidability of the universal fragments of K1,K2
implies the decidability of the universal fragment of K1+∗K2.

As shown in Example 3, a Boolean-based signature together with a class of
frames corresponds to an ADS in the sense of [15]. To show the connection
between Corollary 8 and the decidability transfer result proved in [15], we must
relate the problem of deciding the universal fragment of a class of frames to the
decision problem considered in [15].

Example 9. Consider a Boolean-based signature Ω and a class K of Ω-frames.
Taking into account the Boolean structure and the (implicit or explicit) presence
of the partial order !, an Ω-constraint can be represented in the form

t1 ! u1, . . . , tn ! un, v1 �≈ 0, . . . , vm �≈ 0.

We call such a constraint a modal constraint. It is satisfiable in K whenever there
are F(W) ∈ K and w1, . . . , wm ∈ W such that

t
F(W)
1 ⊆ u

F(W)
1 , . . . , tF(W)

n ⊆ uF(W)
n , w1 ∈ v

F(W)
1 , . . . , wm ∈ vF(W)

m .

If one restricts the attention to modal constraints with just one negated equa-
tion (i.e., if m = 1), then one obtains the traditional relativized satisfiability
problem in modal logic. The satisfiability problem introduced in [15] is slightly
more general since the set of constraints considered there can also contain object
assertions involving relation symbols. As mentioned in Example 3, such asser-
tions can currently not be handled by our approach. Consequently, our transfer
result applies to a slightly more restricted satisfiability problem than the one
considered in [15]. On the other hand, our result holds for more general theories
and classes of structures, i.e., also ones that are not given by classes of frames.

Complexity Considerations. The complexity of the combination algorithm
described in the proof of Theorem 5 can be quite high. It is non-deterministic

Connecting Many-Sorted Structures and Theories 43

since it guesses finitely generated structures up to a given bound, which may
itself be quite large. In addition, the possibly large diagrams of these structures
are part of the input for the decision procedures of the component theories.

Depending on the theories T
(i)
0 , specific features of these theories may allow

for sensible improvements, due for instance to the possibility of more succinct
representations of the diagrams of models of T

(i)
0 . We illustrate this phenomenon

by showing how our combination algorithm can be improved in the case of adjoint
connections of Boolean-based equational theories, as treated in Corollary 8. With
this modified algorithm, we obtain complexity bounds that coincide with the ones
shown in [15]. Actually, the algorithm obtained this way is also similar to the
one described in [15]. It should be noted, however, that the correctness of this
modified algorithm still follows from the proof of our general Theorem 5.

Thus, let Ω1, Ω2 be Boolean-based signatures, and K1,K2 be classes of Ω1-
and Ω2-frames, respectively. As theories T

(1)
0 , T

(2)
0 we can then take the theory

BA of Boolean algebras. Let Γ = Γ0∪Γ1∪Γ2 be a constraint, where Γi (i = 1, 2)
is a set of literals over Ωi (expanded with free constants), and Γ0 is of the form

Γ0 = {�(a1) ≈ b1, . . . , �(an) ≈ bn, r(b′1) ≈ a′
1, . . . , r(b

′
m) ≈ a′

m}

for free constants aj , bj , a
′
i, b

′
i. If we follow the instructions in the proof of The-

orem 5 literally, in order to guarantee the satisfiability of Γ , we must find:

1. a finite Boolean algebra A generated by G1 := {a1, . . . , an, a′
1, . . . , a

′
m} such

that Γ1 ∪ΔΩBA(A) is satisfiable in K1;
2. a finite Boolean algebra B generated by G2 := {b1, . . . , bn, b′1, . . . , b

′
m} such

that Γ2 ∪ΔΩBA(B) is satisfiable in K2;
3. an adjoint pair μ : A −→ B and ν : B −→ A, such that

μ(aj) = bj (j = 1, . . . , n) and ν(b′i) = a′
i (i = 1, . . . , m). (4)

It is well known that a Boolean algebra generated by n + m elements can have
cardinality 22n+m

, and hence its diagram may also be of doubly-exponential size.
However, we will show that exponential space is sufficient to represent all the
relevant information contained in such a diagram.

Let us call G1-minterm a term τ that is of the form

"
g∈G1

στ (g),

where στ (g) is either g or g. Notice that the G1-minterm τ is uniquely determined
(up to associativity and commutativity of conjunction) by the function στ , and
hence there are as many G1-minterms as there are subsets of G1. We associate
with every finite Boolean algebra A generated by G1 the set WA of the G1-
minterms τ such that A |= τ �= 0. The following is not difficult to show:

(i) the map associating with g ∈ G1 the set {τ ∈ WA | στ (g) = g} extends to
an isomorphism ιA : A −→ ℘(WA);

(ii) BA |= ΔΩBA(A) ⇔ δ(A), where δ(A) is the conjunction of the formulas
τ = 0 for τ �∈ WA.

44 F. Baader and S. Ghilardi

Fact (ii) means that δ(A) can replace ΔΩBA(A) in the consistency test of Step 1
above, and the same consideration obviously applies to B in Step 2. The size of
δ(A) is singly-exponential, and to guess δ(A) it is sufficient to guess the set WA
(and not the whole A).

A similar technique can be applied to Step 3. By Fact (i) above, we have
A � ℘(WA) and B � ℘(WB). Hence, the considerations in Example 1 show that
the adjoint pair of Step 3 is uniquely determined by a relation E ⊆ WB ×WA.

To sum up, the data that we are required to guess are simply a set WA of
G1-minterms, a set WB of G2-minterms, and a relation E among them. All this
is an exponential size guess, and thus can be done in non-deterministic exponen-
tial time. The decision procedures for the component theories receive exponen-
tial size instances of their constraint satisfiability problems as inputs. Finally,
Condition (4) can be checked in exponential time. From the considerations in
Example 1 and from Fact (ii) above, it follows that μ(aj) = bj is equivalent to
the following statement:

∀τ ∈ WB. (τ ∈ ιB(bj) iff ∃τ ′ ∈ WA. (τ ′ ∈ ιA(aj) ∧ (τ, τ ′) ∈ E)).

Since WA and WB are of exponential size, this condition can be tested in expo-
nential time. The same approach can be used to test the conditions ν(b′i) = a′

i.
Overall, the improved combined decision procedure has the following com-

plexity. Its starts with a non-deterministic exponential step that guesses the
sets δ(A) and δ(B). Then it tests satisfiability in K1 and K2 of Γ1 ∪ δ(A) and
Γ2 ∪ δ(B), respectively. The complexity of these tests is one exponential higher
than the complexity of the decision procedures for K1 and K2. Testing Condi-
tion (4) needs exponential time. This shows that our combination procedure has
the same complexity as the one for E-connections described in [15].

Let us consider the complexity increase caused by the combination procedure
in more detail for the complexity class ExpTime, which is often encountered
when considering the relativized satisfiability problem in modal logic. Thus, as-
sume that the decision procedures for K1 and K2 are in ExpTime. The combined
decision procedure then generates doubly-exponentially many decision problems
of exponential size for the component procedures. Each of these component de-
cision problems can be decided in doubly-exponential time. This majorizes the
exponential complexity of testing Condition (4). Thus, in this case the overall
complexity of the combined decision procedure is 2ExpTime, i.e, one exponen-
tial higher than the complexity of the component procedures.

5 N -Ary Adjoint Connections

We sketch how our results can be extended to the case of n-ary connections
by using parametrized notions of adjoints, as suggested in [10]. For simplicity,
we limit ourselves to the case n = 3, and use a notation inspired by Lambek’s
syntactic calculus [16]. Let P1, P2, P3 be posets. A triple (·, /, \) of functions

· : P1 × P2 → P3, \ : P1 × P3 → P2, / : P3 × P2 → P1

Connecting Many-Sorted Structures and Theories 45

is an adjoint triple iff the following holds for all a1 ∈ P1, a2 ∈ P2, a3 ∈ P3:

a1 · a2 ≤ a3 iff a2 ≤ a1\a3 iff a1 ≤ a3/a2.

To illustrate this definition, we consider a ternary variant of Example 1.

Example 10. Suppose we are given three sets W1, W2, W3 and a ternary relation
E ⊆ W3×W2×W1. With two given subsets a1 ⊆ W1, a2 ⊆ W2, we can associate
a subset a1 ·E a2 ⊆ W3 as follows:

a1 ·E a2 := {w3 | ∃(w2, w1) ∈ W2 ×W1. (w3, w2, w1) ∈ E ∧ w1 ∈ a1 ∧w2 ∈ a2}.

If we fix a1, the function a1 ·E (−) : ℘(W2) → ℘(W3) preserves all joins, and
hence has a right adjoint a1\E(−) : ℘(W3) → ℘(W2), which can be described as
follows: for every a3 ⊆ W3, the subset a1\Ea3 ⊆ W2 is defined as

a1\Ea3 := {w2 | ∀(w3, w1) ∈ W3 ×W1. (w3, w2, w1) ∈ E ∧ w1 ∈ a1 ⇒ w3 ∈ a3}.

Similarly, if we fix a2, the function (−) ·E a2 : ℘(W1) → ℘(W3) preserves all
joins, and hence has a right adjoint (−)/Ea2 : ℘(W3) → ℘(W1), which can be
described as follows: for every a3 ⊆ W3, the subset a3/Ea2 ⊆ W1 is defined as

a3/Ea2 := {w1 | ∀(w3, w2) ∈ W3 ×W2. (w3, w2, w1) ∈ E ∧ w2 ∈ a2 ⇒ w3 ∈ a3}.

It is easy to see that the three binary operators (·E , /E, \E) fulfill the definition
of an adjoint triple (with set inclusion as partial order). Conversely every adjoint
triple (for set inclusion) is induced in this way by a unique ternary relation E.

Using the notion of an adjoint triple, we can now define a ternary vari-
ant of the notion of an adjoint connection. Let Ω1, Ω2, Ω3, be three disjoint
signatures containing binary predicate symbols !i of arity SiSi (i = 1, 2, 3).
The combined signature +∗(Ω1, Ω2, Ω3) contains the union Ω1 ∪ Ω2 ∪ Ω3 of
the signatures Ω1, Ω2, Ω3 and, in addition, three new function symbols ·, \, /
of arity S1S2S3, S1S3S2 and S3S2S1, respectively. For i = 1, 2, 3, let Ki be
a class of Ωi-structures such that each of the structures in Ki interprets !i

as a partial order on the interpretation of Si. The ternary adjoint connec-
tion +∗(K1,K2,K3) of K1,K2,K3 consists of those +∗(Ω1, Ω2, Ω3)-structures
(M1,M2,M3, ·M, \M, /M) for which M1 ∈ K1, M2 ∈ K2, M3 ∈ K3, and
(·M, \M, /M) is an adjoint triple for the underlying posets.

Using the observations made in Example 10, it is easy to see that the ternary
adjoint connection corresponds to the basic E-connection of three ADSs. Under
the same conditions as in Theorem 5, and with a very similar proof, we can
show that decidability of the universal fragment also transfers to ternary adjoint
connections.

Theorem 11. Let K1,K2,K3 be adjoint combinable classes of structures over
the respective signatures Ω1, Ω2, Ω3. Then decidability of the universal fragments
of K1,K2,K3 entails decidability of the universal fragment of +∗(K1,K2,K3).

46 F. Baader and S. Ghilardi

6 Conclusion

The main motivation of this work was to develop an algebraic generalization of
the decidability transfer results for E-connections shown in [15]. On the one hand,
our approach is more general than the one in [15] since it also applies to theories
and classes of structures that are not given by ADSs (i.e., classes of frames). More
generally, since the theories T

(1)
0 , T

(2)
0 need not be the theory of Boolean algebras

and since T
(1)
0 need not coincide with T

(2)
0 , we do not require the underlying logic

to be classical propositional logic, and the components may even be based on
different logics. On the other hand, we currently cannot handle the relational
object assertions considered in [15], and we cannot deal with extensions of the
basic E-connection approach such as applying Boolean operations to connecting
relations. It is the topic of future research to find out whether such extensions
and relational object assertions can be expressed in our algebraic setting.

The paper [1] has the same motivation, but follows a different route towards
generalizing E-connections. In the present paper, we used as our starting point
the observation that the pair (�, �−) consisting of the diamond operator induced
by the connecting relation E, and the box operator induced by its inverse E− is
an adjoint pair for the partial order ≤ defined as x ≤ y iff x# y = y, where # is
the Boolean disjunction operator. In [1] we used instead the fact that the dia-
mond operator behaves like a homomorphism for #, i.e., �(x#y) = �(x)#�(y).
This was generalized to the case of connection functions that behave like homo-
morphisms for an arbitrary shared subsignature of the theories to be combined.
The conditions required in [1] for the transfer of decidability are model-theoretic
conditions on a shared subtheory T0 and its algebraic compatibility with the
component theories T1, T2. There are examples of theories T0, T1, T2 satisfying
these requirements that are quite different from theories induced by (modal)
logics. However, there is a price to be payed for this generality: since no partial
order is required, it is not possible to model pairs of connection functions that
are induced by a connecting relation and its inverse. In contrast, the conditions
considered in the present paper are abstract algebraic conditions, which do not
look at the structure of models. They require the existence of certain adjoint
functions for embeddings between models of subtheories of the component the-
ories. These subtheories need not be identical for different component theories,
and there is no additional compatibility requirement between the subtheories and
the component theories. In order to require adjoints, we must, however, assume
that the models are equipped with a partial order. In addition, one possibility to
guarantee the existence of adjoints is to assume that the subtheories provide us
with meets and joins. In this case, the theories that we obtain are quite close to
theories induced by logics, though not necessarily classical propositional logic.

References

1. F. Baader and S. Ghilardi. Connecting many-sorted theories. In Proc.
CADE-20, Springer LNAI 3632, 2005. Extended version available on-line at
http://lat.inf.tu-dresden.de/research/reports.html.

Connecting Many-Sorted Structures and Theories 47

2. F. Baader, S. Ghilardi, and C. Tinelli. A new combination procedure for the
word problem that generalizes fusion decidability results in modal logics. In Proc.
IJCAR’04, Springer LNAI 3097, 2004.

3. F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of description logics and
abstract description systems. J. Artificial Intelligence Research, 16:1–58, 2002.

4. F. Baader and C. Tinelli. A new approach for combining decision procedures for
the word problem, and its connection to the Nelson-Oppen combination method.
In Proc. CADE-14, Springer LNAI 1249, 1997.

5. F. Baader and C. Tinelli. Deciding the word problem in the union of equational
theories. Information and Computation, 178(2):346–390, 2002.

6. Ch.-Ch. Chang and H. J. Keisler. Model Theory. North-Holland, 3rd edition, 1990.
7. E. Domenjoud, F. Klay, and Ch. Ringeissen. Combination techniques for non-

disjoint equational theories. In Proc. CADE-12, Springer LNAI 814, 1994.
8. C. Fiorentini and S. Ghilardi. Combining word problems through rewriting in

categories with products. Theoretical Computer Science, 294:103–149, 2003.
9. J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem

Proving. Harper & Row, 1986.
10. S. Ghilardi and G. C. Meloni. Modal logics with n-ary connectives. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik, 36(3):193–215, 1990.
11. S. Ghilardi. Model-theoretic methods in combined constraint satisfiability. J.

Automated Reasoning, 33(3–4): 221–249, 2004.
12. S. Ghilardi and M. Zawadowski. Sheaves, Games and Model Completions, vol-

ume 14 of Trends in Logic. Kluwer Academic Publishers, 2002.
13. G. Grätzer. General lattice theory. Birkhäuser Verlag, Basel, second edition, 1998.
14. M. Kracht and F. Wolter. Properties of independently axiomatizable bimodal

logics. J. Symbolic Logic, 56(4):1469–1485, 1991.
15. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract

description systems. Artificial Intelligence, 156:1–73, 2004.
16. J. Lambek. The mathematics of sentence structure. The American Mathematical

Monthly, 65:154–170, 1958.
17. G. Nelson. Combining satisfiability procedures by equality-sharing. In Automated

Theorem Proving: After 25 Years, volume 29 of Contemporary Mathematics, pages
201–211. American Mathematical Society, 1984.

18. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, October 1979.

19. T. Nipkow. Combining matching algorithms: The regular case. J. Symbolic Com-
putation, 12:633–653, 1991.

20. D. Pigozzi. The join of equational theories. Colloquium Mathematicum, 30(1):15–
25, 1974.

21. E. Spaan. Complexity of Modal Logics. PhD thesis, Department of Mathematics
and Computer Science, University of Amsterdam, The Netherlands, 1993.

22. C. Tinelli and Ch. Ringeissen. Unions of non-disjoint theories and combinations
of satisfiability procedures. Theoretical Computer Science, 290(1):291–353, 2003.

23. F. Wolter. Fusions of modal logics revisited. In Proc. Advances in Modal Logic,
CSLI, Stanford, 1998.

Combining Data Structures with Nonstably

Infinite Theories Using Many-Sorted Logic�

Silvio Ranise1, Christophe Ringeissen1, and Calogero G. Zarba2

1 LORIA and INRIA-Lorraine
2 University of New Mexico

Abstract. Most computer programs store elements of a given nature
into container-based data structures such as lists, arrays, sets, and mul-
tisets. To verify the correctness of these programs, one needs to combine
a theory S modeling the data structure with a theory T modeling the ele-
ments. This combination can be achieved using the classic Nelson-Oppen
method only if both S and T are stably infinite.

The goal of this paper is to relax the stable infiniteness requirement.
To achieve this goal, we introduce the notion of polite theories, and we
show that natural examples of polite theories include those modeling
data structures such as lists, arrays, sets, and multisets. Furthemore, we
provide a method that is able to combine a polite theory S with any
theory T of the elements, regardless of whether T is stably infinite or
not.

The results of this paper generalize to many-sorted logic those recently
obtained by Tinelli and Zarba concerning the combination of shiny the-
ories with nonstably infinite theories in one-sorted logic.

1 Introduction

In program verification one has often to decide the satisfiability or validity of log-
ical formulae involving data structures such as lists, arrays, sets, and multisets.
These data structures can be considered as structured containers of elements of
a given nature. For instance, one may want to reason about lists of integers, sets
of booleans, or multisets of reals.

One way to reason about data structures over elements of a given nature
is to use the Nelson-Oppen method in order to modularly combine a decision
procedure for a theory S modeling the data structure with a decision procedure
for a theory T modeling the elements. However, this solution requires that both
S and T be stably infinite. Unfortunately, this requirement is not satisfied by
many practically relevant theories such as, for instance, the theory of booleans,
the theory of integers modulo n, and the theory of fixed-width bit-vectors [8].

Recently, Tinelli and Zarba [13] introduced a generalization of the one-sorted
version of the Nelson-Oppen method in order to combine theories that are not

� This work is partly supported by grants NSF ITR CCR-0113611, NSF CCR-0098114,
and projects ACI GECCOO, and QSL VALDA-2.

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 48–64, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Combining Data Structures with Nonstably Infinite Theories 49

stably infinite. More precisely, they introduce the notion of shiny theories, and
prove that a shiny theory S can be combined with any other arbitrary theory T ,
even if the latter is not stably infinite. They also provide a list of shiny theories
which includes the theory of equality, the theory of partial orders, the theory of
total orders, and the theory of bounded lattices.

Despite these promising results, Tinelli and Zarba’s method has two draw-
backs.

First, when combining a shiny theory S, one has to compute a function
mincardS . This function takes as input an S-satisfiable conjunction Γ of literals,
and returns the minimal cardinality k for which there is a T -model of Γ of
cardinality k. Although mincardS is computable for a wide class of theories, its
complexity is in general NP-hard. Due to this high complexity, it is natural to
study how to avoid the computation of mincardS .

Second, the notion of shininess is too strong, and it may be very difficult to
find further examples of practically relevant shiny theories. We believe that this
difficulty is due to the fact that the notion of shiny theories was introduced in
one-sorted logic.

In this paper we are interested in the problem of combining a theory S mod-
eling a data structure with a nonstably infinite theory T modeling the elements.
More in detail, the contributions of this paper are:

1. In order to sidestep the difficulties of finding shiny theories, we operate in
many-sorted logic rather than in one-sorted logic.

2. We introduce the notion of polite theories, and we prove that natural ex-
amples of polite theories are those modeling data structures such as lists,
arrays, sets, and multisets.

3. We provide a new combination method that is able to combine a polite
theory S with any theory T , regardless of whether T is stably infinite or not.

4. We generalize the notion of shininess from one-sorted logic to many-sorted
logic, and we prove that—under rather weak assumptions—shininess is
equivalent to politeness in one-sorted logic. The equivalence is less clear
in many-sorted logic.

The crux of our combination method is to modify the Nelson-Oppen method.
The nondeterministic version of this method consists in guessing an arrangement
over the set of shared variables. This arrangement is used to build equalities and
disequalities between variables, to constrain simultaneously the inputs of decision
procedures for component theories. Our modification is related to the variables
involved in an arrangement; precisely:

Modification 1: Guess an arrangement over an extended set of variables, and
not just the shared ones. For correctness, the extended arrangement must
also contain opportunely introduced fresh variables, whose role is to witness
that certain facts hold for the data structure.

Our method does not require the computation of a mincardS function, and
it is therefore easier to implement than the one presented in [13].

50 S. Ranise, C. Ringeissen, and C.G. Zarba

Related work. Implicit versions of Modification 1 were already used by Zarba in
order to combine the theory of sets [15] and the theory of multisets [14] with
any arbitrary theory T of the elements, even if T is not stably infinite.

The first explicit version of Modification 1 is due to Fontaine and Gri-
bomont [6] who combine the theory of arrays with any other nonstably infinite
theory T not containing the sort array. Their result applies to conjunctions of
literals not containing disequalities between terms of sort array.

The latest explicit version of Modification 1 was used by Fontaine, Ranise,
and Zarba [7], in order to combine a nonstably infinite theory T of the elements
with the theory Tlength of lists of elements with length constraints.

Baader and Ghilardi [1,2] have recently introduced a new method for com-
bining theories over nondisjoint signatures using many-sorted logic. Their result
for theories over nondisjoint signatures—together with ours for nonstably infinite
theories—shows that it is very convenient to combine theories using many-sorted
logic.

Organization of the paper. In Section 2 we introduce some preliminary notions,
as well as the concept of polite theories. In Section 3 we present our combination
method. In Section 4 we compare the notion of polite theories with the notion of
shiny theories. In Section 5 we prove that natural examples of polite theories are
those modeling data structures. In Section 6 we draw conclusions from our work.
For lack of space, most proofs are omitted. They can be found in the extended
version of this paper [10].

2 Preliminaries

2.1 Syntax

A signature Σ is a triple (S, F, P) where S is a set of sorts, F is a set of function
symbols, P is a set of predicate symbols, and all the symbols in F, P have arities
constructed using the sorts in S. Given a signature Σ = (S, F, P), we write ΣS

for S, ΣF for F , and ΣP for P . If Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2) are
signatures, their union is the signature Σ1 ∪Σ2 = (S1 ∪ S2, F1 ∪ F2, P1 ∪ P2).

Given a signature Σ, we assume the standard notions of Σ-term, Σ-literal,
and Σ-formula. A Σ-sentence is a Σ-formula with no free variables. A literal
is flat if it is of the form x ≈ y, x �≈ y, x ≈ f(y1, . . . , yn), p(y1, . . . , yn), and
¬p(y1, . . . , yn), where x, y, y1, . . . , yn are variables, f is a function symbol, and
p is a predicate symbol.

If t is a term, we denote with varsσ(t) the set of variables of sort σ occurring
in t. Similarly, if ϕ is a formula, we denote with varsσ(ϕ) the set of free variables
of sort σ occurring in t. If ϕ is either a term or a formula, we denote with vars(ϕ)
the set

⋃
σ varsσ(ϕ). Finally, if Φ is a set of terms or a set of formulae, we let

varsσ(Φ) =
⋃

ϕ∈Φ varsσ(ϕ) and vars(Φ) =
⋃

ϕ∈Φ vars(ϕ).
In the rest of this paper, we identify conjunctions of formulae ϕ1 ∧ · · · ∧ ϕn

with the set {ϕ1, . . . , ϕn}.

Combining Data Structures with Nonstably Infinite Theories 51

2.2 Semantics

Definition 1. Let Σ be a signature, and let X be a set of variables whose sorts
are in ΣS. A Σ-interpretation A over X is a map which interprets each
sort σ ∈ ΣS as a non-empty domain Aσ, each variable x ∈ X of sort σ as an
element xA ∈ Aσ, each function symbol f ∈ ΣF of arity σ1 × · · · × σn → τ as a
function fA : Aσ1 × · · · ×Aσn → Aτ , and each predicate symbol p ∈ ΣP of arity
σ1 × · · · × σn as a subset pA of Aσ1 × · · · ×Aσn .

A Σ-structure is a Σ-interpretation over an empty set of variables. �

A Σ-formula ϕ over a set X of variables is satisfiable if it is true in some
Σ-interpretation over X . Two Σ-formulae ϕ and ψ over a set X of variables are
equivalent if ϕA = ψA, for all Σ-interpretations over X .

Let A be an Ω-interpretation over some set V of variables. For a signature
Σ ⊆ Ω and a set of variables U ⊆ V , we denote with AΣ,U the interpretation
obtained from A by restricting it to interpret only the symbols in Σ and the
variables in U . Furthermore, we let AΣ = AΣ,∅.

2.3 Theories

Following Ganzinger [9], we define theories as sets of structures rather than as
sets of sentences. More formally, we give the following definition.

Definition 2. A Σ-theory is a pair (Σ,A) where Σ is a signature and A is
a class of Σ-structures. Given a theory T = (Σ,A), a T -interpretation is a
Σ-interpretation A such that AΣ ∈ A. �

Given a Σ-theory T , a Σ-formula ϕ over a set X of variables is T -satisfiable
if it is true in some T -interpretation over X . We write A |=T ϕ when A is a
T -interpretation satisfying ϕ. Given a Σ-theory T , two Σ-formulae ϕ and ψ over
a set X of variables are T -equivalent if ϕA = ψA, for all T -interpretations over
X .

Given a Σ-theory T , the quantifier-free satisfiability problem of T is the
problem of deciding, for each quantifier-free Σ-formula ϕ, whether or not ϕ is
T -satisfiable.

Definition 3 (Combination). Let Ti = (Σi,Ai) be a theory, for i = 1, 2. The
combination of T1 and T2 is the theory T1 ⊕ T2 = (Σ,A) where Σ = Σ1 ∪Σ2
and A =

{
A | AΣ1 ∈ A1 and AΣ2 ∈ A2

}
. �

If Φ is a set of Σ-sentences, we let TheoryΣ(Φ) = (Σ,A) be the theory such
that A is the class of all Σ-structures satisfying Φ.

Proposition 4. Let Φi be a set of Σi-sentences, for i = 1, 2. Then

TheoryΣ1(Φ1)⊕ TheoryΣ2(Φ2) = TheoryΣ1∪Σ2(Φ1 ∪ Φ2) . �

52 S. Ranise, C. Ringeissen, and C.G. Zarba

We introduce below several classes of theories. We will see how they relate
in Remark 10.

Definition 5 (Finite model property). Let Σ be a signature, let S ⊆ ΣS be
a set of sorts, and let T be a Σ-theory. We say that T has the finite model
property with respect to S if for every T -satisfiable quantifier-free Σ-formula
ϕ there exists a T -interpretation A satisfying ϕ such that Aσ is finite, for each
sort σ ∈ S. �

Definition 6 (Stable infiniteness). Let Σ be a signature, let S ⊆ ΣS be a
set of sorts, and let T be a Σ-theory. We say that T is stably infinite with
respect to S if for every T -satisfiable quantifier-free Σ-formula ϕ there exists a
T -interpretation A satisfying ϕ such that Aσ is infinite, for each sort σ ∈ S. �

Definition 7 (Smoothness). Let Σ be a signature, let S = {σ1, . . . ,σn} ⊆ ΣS

be a set of sorts, and let T be a Σ-theory. We say that T is smooth with respect
to S if:

– for every T -satisfiable quantifier-free Σ-formula ϕ,
– for every T -interpretation A satisfying ϕ,
– for every cardinal number κ1, . . . ,κn such that κi ≥ |Aσi |, for i = 1, . . . , n,

there exists a T -interpretation B satisfying ϕ such that

|Bσi | = κi , for i = 1, . . . , n . �

Definition 8 (Finite witnessability). Let Σ be a signature, let S ⊆ ΣS be a
set of sorts, and let T be a Σ-theory. We say that T is finitely witnessable
with respect to S if there exists a computable function witness that for every
quantifier-free Σ-formula ϕ returns a quantifier-free Σ-formula ψ = witness(ϕ)
such that:

(i) ϕ and (∃v̄)ψ are T -equivalent, where v̄ = vars(ψ) \ vars(ϕ);
(ii) if ψ is T -satisfiable then there exists a T -interpretation A satisfying ψ such

that Aσ = [varsσ(ψ)]A, for each σ ∈ S. �

Definition 9 (Politeness). Let Σ be a signature, let S ⊆ ΣS be a set of sorts,
and let T be a Σ-theory. We say that T is polite with respect to S if it is both
smooth and finitely witnessable with respect to S. �

Remark 10. Let Σ be a signature, let S ⊆ ΣS, and let T be a Σ-theory. Then
the following holds (cf. Figure 1):

– If T is smooth with respect to S then T is stably infinite with respect to S.
– If T is finitely witnessable with respect to S then T has the finite model

property with respect to S. �

Combining Data Structures with Nonstably Infinite Theories 53

Finite model propertyPoliteSmoothStably infinite Finite witnessable

Fig. 1. Relationships between classes of theories

3 The Combination Method

Let Ti be a Σi-theory, for i = 1, 2, and let S = ΣS
1 ∩ΣS

2 . Assume that:

– the quantifier-free satisfiability problem of Ti is decidable, for i = 1, 2;
– ΣF

1 ∩ΣF
2 = ∅ and ΣP

1 ∩ΣP
2 = ∅;

– T2 is polite with respect to S.

In this section we describe a method for combining the decision procedures for
the quantifier-free satisfiability problems of T1 and of T2 in order to decide the
quantifier-free satisfiability problem of T1 ⊕ T2. Without loss of generality, we
restrict ourselves to conjunctions of literals.

The combination method consists of four phases: variable abstraction, witness
introduction, decomposition, and check.

First phase: variable abstraction. Let Γ be a conjunction of (Σ1 ∪ Σ2)-literals.
The output of the variable abstraction phase is a conjunction Γ1 ∪ Γ2 satisfying
the following properties:

(a) each literal in Γi is a Σi-literal, for i = 1, 2;
(b) Γ1 ∪ Γ2 is (T1 ⊕ T2)-satisfiable if and only if Γ is (T1 ⊕ T2)-satisfiable.

Note that properties (a) and (b) can be effectively enforced with the help of
fresh variables. We call Γ1 ∪ Γ2 a conjunction of literals in separate form.

Second phase: witness introduction. Let Γ1 ∪ Γ2 be a conjunction of literals in
separate form returned in the variable abstraction phase. In the witness introduc-
tion phase we compute ψ2 = witnessT2(Γ2), and we output Γ1∪{ψ2}. Intuitively,
this phase introduces the fresh variables in vars(ψ2) \ vars(Γ), whose role is to
witness that certain facts hold for the polite theory T2.1

Third phase: decomposition. Let Γ1 ∪ {ψ2} be the conjunction obtained in the
witness introduction phase. Let Vσ = varsσ(ψ2) for each σ ∈ S, and let V =⋃

σ∈S Vσ. In the decomposition phase we nondeterministically guess a family E

1 For instance, in the theory of arrays a literal a �≈array b implies that there is an index
i such that read(a, i) �≈ read(b, i). Then, i can be thought of as a witness of a �≈array b.

54 S. Ranise, C. Ringeissen, and C.G. Zarba

of equivalence relations E = {Eσ ⊆ Vσ × Vσ | σ ∈ S}. Then, we construct the
arrangement of V induced by E, defined by

arr(V,E) = {x ≈ y | (x, y) ∈ Eσ and σ ∈ S} ∪
{x �≈ y | (x, y) ∈ (Vσ × Vσ) \ Eσ and σ ∈ S} ,

and we output the conjunction Γ1 ∪ {ψ2} ∪ arr(V,E).

Fourth phase: check. Let Γ1 ∪ {ψ2} ∪ arr(V,E) be a conjunction obtained in
the decomposition phase. The check phase consists in performing the following
steps:

Step 1. If Γ1 ∪ arr (V,E) is T1-satisfiable go to the next step; otherwise output
fail.

Step 2. If {ψ2}∪arr(V,E) is T2-satisfiable go to the next step; otherwise output
fail.

Step 3. output succeed.

3.1 An Example

Let Σ1 be the signature containing a sort elem, as well as two constant symbols
a and b of sort elem. Consider the Σ1-theory T1 = TheoryΣ1(Φ1), where

Φ1 = {(∀elem x)(x ≈ a ∨ x ≈ b)} .

Clearly, for every T1-interpretation A, we have |Aelem| ≤ 2. Therefore, T1 is not
stably infinite with respect to {elem}.

Next, consider the Σset-theory Tset of sets of elements. The signature Σset

contains, among other set-theoretical symbols, a sort elem for elements, and a
sort set for sets of elements. The theory Tset will be defined more formally in
Subsection 5.4. For this example, it suffices to know that Tset is polite with
respect to {elem}.

Next, consider the following conjunction Γ of (Σ1 ∪Σset)-literals:

Γ =

⎧⎪⎪⎨⎪⎪⎩
a ≈ b ,
x �≈ ∅ ,
y �≈ ∅ ,
x ∩ y ≈ ∅

⎫⎪⎪⎬⎪⎪⎭ ,

where x and y are set-variables.
Note that Γ is (T1 ⊕ Tset)-unsatisfiable. To see this, assume by contradiction

that A is a (T1⊕Tset)-interpretation such that Γ is true in A. By the first literal
in Γ , we have |Aelem| = 1. However, by the three last literals in Γ , we have
|Aelem| ≥ 2, a contradiction.

We want to formally detect that Γ is (T1 ⊕ Tset)-unsatisfiable by using our
combination method.

Combining Data Structures with Nonstably Infinite Theories 55

Since all literals in Γ are either Σ1-literals or Σset-literals, in the variable
abstraction phase we do not need to introduce fresh variables, and we simply
return the two conjunctions:

Γ1 =
{

a ≈ b
}

, Γset =

⎧⎨⎩
x �≈ ∅ ,
y �≈ ∅ ,
x ∩ y ≈ ∅

⎫⎬⎭ .

In the witness introduction phase we need to compute witness set(Γset). The
intuition behind the computation of witness set(Γset) is as follows.2

The literal x �≈ ∅ implies the existence of an element wx in x. Likewise,
the literal y �≈ ∅ implies the existence of an element wy in y. The output of
witness set(Γset) is a conjunction Δset that makes explicit the existence of the
elements wx and wy. We can do this by letting

Δset =

⎧⎨⎩
wx ∈ x ,
wy ∈ y ,
x ∩ y ≈ ∅

⎫⎬⎭ .

Note that Γset and (∃elem wx)(∃elem wy)Δset are Tset-equivalent.
In the decomposition phase we need to guess an equivalence relation Eelem

over the variables in varselem(Δset). Since varselem(Δset) = {wx, wy}, there are
two possible choices: either we guess (wx, wy) ∈ Eelem or we guess (wx, wy) /∈
Eelem.

If we guess (wx, wy) ∈ Eelem then we have that Δset ∪ {wx ≈ wy} is Tset-
unsatisfiable, and we will output fail in step 2 of the check phase. If instead
we guess (wx, wy) /∈ Eelem then we have that Γ1 ∪ {wx �≈ wy} is T1-unsatisfiable,
and we will output fail in step 1 of the check phase.

Since the check phase outputs fail for any equivalence relation Eelem of
varselem(Δset), our combination method correctly concludes that Γ is (T1⊕Tset)-
unsatisfiable.

3.2 Correctness and Complexity

The correctness of our combination method is based on the following Combi-
nation Theorem, which is a particular case of a combination result holding for
order-sorted logic [12].

Theorem 11 (Combination). Let Σ1 and Σ2 be signatures such that ΣF
1 ∩

ΣF
2 = ∅ and ΣP

1 ∩ ΣP
2 = ∅. Also, let Φi be a set of Σi-formulae, for i = 1, 2.

Then Φ1∪Φ2 is satisfiable if and only if there exists an interpretation A satisfying
Φ1 and an interpretation B satisfying Φ2 such that:

(i) |Aσ| = |Bσ|, for every σ ∈ ΣS
1 ∩ΣS

2 ;
(ii) xA = yA if and only if xB = yB, for every x, y ∈ vars(Φ1) ∩ vars(Φ2). �
2 A formal definition of a function witness set can be found in Subsection 5.4. For this

example, we prefer to stick to intuitive arguments.

56 S. Ranise, C. Ringeissen, and C.G. Zarba

Proposition 12. Let Ti be a Σi-theory such that ΣF
1 ∩ΣF

2 = ∅ and ΣP
1 ∩ΣP

2 = ∅,
for i = 1, 2. Assume that T2 is polite with respect to S = ΣS

1∩ΣS
2 . Also, let Γ1∪Γ2

be a conjunction of literals in separate form, and let ψ2 = witnessT2(Γ2). Finally,
let Vσ = varsσ(ψ2), for each σ ∈ S, and let V =

⋃
σ∈S Vσ. Then the following

are equivalent:

1. Γ1 ∪ Γ2 is (T1 ⊕ T2)-satisfiable;
2. There exists a family E of equivalence relations

E = {Eσ ⊆ Vσ × Vσ | σ ∈ S} ,

such that Γ1∪arr (V,E)is T1-satisfiable and {ψ2}∪arr (V,E) is T2-satisfiable.�

Proof. (1 ⇒ 2). Assume that Γ1∪Γ2 is (T1⊕T2)-satisfiable. Let v̄ = vars(ψ2)\
vars(Γ2). Since Γ2 and (∃v̄)ψ2 are T2-equivalent, it follows that Γ1∪{ψ2} is also
(T1 ⊕ T2)-satisfiable. Thus, we can fix a (T1 ⊕ T2)-interpretation A satisfying
Γ1 ∪ {ψ2}. Next, let E = {Eσ | σ ∈ S} where

Eσ = {(x, y) | x, y ∈ Vσ and xA = yA} , for σ ∈ S .

By construction, we have that Γ1 ∪ arr(V,E) is T1-satisfiable and {ψ2} ∪
arr(V,E) is T2-satisfiable.

(2 ⇒ 1). Let A be a T1-interpretation satisfying Γ1 ∪ arr (V,E), and let B be a
T2-interpretation satisfying {ψ2}∪arr(V,E). Since T2 is finitely witnessable, we
can assume without loss of generality that Bσ = V B

σ , for each σ ∈ S.
Thus, for each σ ∈ S, we have

|Bσ| = |V B
σ | since Bσ = V B

σ

= |V A
σ | since both A and B satisfy arr(V,E)

≤ |Aσ| since V A
σ ⊆ Aσ .

But then, by the smoothness of T2, there exists a T2-interpretation C satisfy-
ing {ψ2}∪arr (V,E) such that |Cσ| = |Aσ|, for each σ ∈ S. We can therefore ap-
ply Theorem 11 to A and C, obtaining the existence of a (T1⊕T2)-interpretation
F satisfying Γ1 ∪ {ψ2} ∪ arr (V,E). Since Γ2 and (∃v̄)ψ2 are T2-equivalent, it
follows that F also satisfies Γ1 ∪ Γ2. �

Using Proposition 12 and the fact that our combination method is terminat-
ing, we obtain the correctness of our combination method.

Theorem 13 (Correctness and complexity). Let Ti be a Σi-theory, for i =
1, 2. Assume that:

– the quantifier-free satisfiability problem of Ti is decidable, for i = 1, 2;
– ΣF

1 ∩ΣF
2 = ∅ and ΣP

1 ∩ΣP
2 = ∅;

– T2 is polite with respect to ΣS
1 ∩ΣS

2 .

Combining Data Structures with Nonstably Infinite Theories 57

Then the quantifier-free satisfiability problem of is decidable.
Moreover, if the quantifier-free satisfiability problems of T1 and of T2 are in

NP, and witnessT2 is computable in polynomial time, then the quantifier-free
satisfiability problem of T1 ⊕ T2 is NP-complete. �

Proof. Clearly, the decidability of the quantifier-free satisfiability problem of
T1 ⊕ T2 follows by Proposition 12 and the fact that our combination method is
terminating.

Concerning NP -hardness, note that if we can solve the quantifier-free satis-
fiability problem of T1 ⊕ T2, then we can also solve propositional satisfiability.

Concerning membership in NP , assume that the quantifier-free satisfiabil-
ity problems of T1 and of T2 are in NP , and that witnessT2 is computable
in polynomial time. Without loss of generality, it is enough to show that in
nondeterministic polynomial time we can check the (T1 ⊕ T2)-satisfiability of
conjunctions of (Σ1 ∪ Σ2)-literals. To see this, note that the execution of our
combination method requires to guess an arrangement over a set of variables
whose cardinality is polynomial with respect to the size of the input. This guess
can be done in nondeterministic polynomial time. �

Theorem 13 can be repeatedly applied to consider the union of n theories
T1⊕ · · ·⊕Tn, where T2, . . . , Tn are polite with respect to the set of shared sorts.
This leads to the following generalization of Theorem 13 for n theories.

Theorem 14. Let n ≥ 2, and let Ti be a Σi-theory, for 1 ≤ i ≤ n. Also, let
S =

⋃
i
=j(Σ

S
i ∩ΣS

j). Assume that:

– the quantifier-free satisfiability problem of Ti is decidable, for 1 ≤ i ≤ n;
–
⋃

i
=j(Σ
S
i ∩ΣS

j) =
⋂

i ΣS
i ;

– ΣF
i ∩ΣF

j = ∅ and ΣP
i ∩ΣP

j = ∅, for 1 ≤ i < j ≤ n;
– Ti is polite with respect to S, for 2 ≤ i ≤ n.

Then the quantifier-free satisfiability problem of T1 ⊕ · · · ⊕ Tn is decidable.
Moreover, if the quantifier-free satisfiability problem of Ti is in NP, for 1 ≤

i ≤ n, and witnessTi is computable in polynomial time, for 2 ≤ i ≤ n, then the
quantifier-free satisfiability problem of T1 ⊕ · · · ⊕ Tn is NP-complete. �

Proof. We proceed by induction on n. If n = 2 we can apply our combination
method to T1 and T2, and the claim follows by Theorem 13. If instead n > 2, it
suffices to apply our combination method first to T1 and T2, and subsequently
to T1 ⊕ T2, T3, . . . , Tn. �

4 Shiny Theories

Shiny theories were introduced by Tinelli and Zarba [13] in order to extend the
one-sorted version of the Nelson-Oppen method to the combination of nonstably
infinite theories. Shiny theories are interesting because every shiny theory S can
be combined with any other theory T , even if the latter is not stably infinite.

58 S. Ranise, C. Ringeissen, and C.G. Zarba

The notion of shininess was originally introduced in one-sorted logic, and
in this section we generalize it to many-sorted logic. We also prove that, under
rather weak assumptions, shininess is equivalent to politeness in one-sorted logic.
The equivalence is less clear in many-sorted logic.

Definition 15. Let T be a Σ-theory, let S ⊆ ΣS, and let ϕ be a T -satisfiable
quantifier-free Σ-formula. We denote with mincardT,S(ϕ) the minimum of the
following set of cardinal numbers:{(

max
σ∈S

|Aσ |
)

| A |=T ϕ

}
. �

Remark 16. Let T be a Σ-theory that has the finite model property with
respect to S. Then, for every T -satisfiable quantifier-free Σ-formula ϕ, we have
mincardT,S(ϕ) ∈ N

+. �

Definition 17 (Shininess). Let Σ be a signature, let S ⊆ ΣS be a set of sorts,
and let T be a Σ-theory. We say that T is shiny with respect to S if:

– T is smooth with respect to S;
– T has the finite model property with respect to S;
– mincardT,S is computable. �

The following proposition shows that shinineness always implies politeness.

Proposition 18. Let T be a shiny theory with respect to a set S of sorts. Then
T is polite with respect to S. �

The following proposition establishes sufficient conditions under which po-
liteness implies shininess.

Proposition 19. Let Σ be a signature, let S ⊆ ΣS be a set of sorts, and let T
be a Σ-theory. Assume that:

– ΣS = S;
– Σ is finite;
– For each Σ-interpretation A such that

⋃
σ∈S Aσ is finite, it is decidable to

check whether A is a T -interpretation or not;
– T is polite with respect to S.

Then T is shiny with respect to S. �

When
∣∣ΣS
∣∣ = 1, Proposition 19 tells us that in the one-sorted case politeness

and shininess are the same concept for all practical purposes. When
∣∣ΣS

∣∣ > 1, the
hypothesis ΣS = S may be too strong. Consequently, the equivalence between
politeness and shininess is less clear in the many-sorted case.

Combining Data Structures with Nonstably Infinite Theories 59

5 Polite Theories

In this section we prove that natural examples of polite theories are those mod-
eling data structures such as lists, arrays, sets, and multisets.

For convenience, when proving that a Σ-theory T is polite with respect to
a set S of sorts, we will define the function witnessT by restricting ourselves to
conjunctions Γ of flat Σ-literals such that varsσ(Γ) �= ∅, for each sort σ ∈ S.
The extended version of this paper [10] shows that this can be done without loss
of generality.

As a warm up, we start by showing that the theory of equality is polite.

5.1 Equality

Definition 20. The theory of equality with signature Σ is the theory T Σ
≈ =

〈Σ,A〉, where A is the class of all Σ-structures. �

Witness function. A witness function witness≈ for T Σ
≈ can be defined as follows.

Without loss of generality, let Γ be a conjunction of flat Σ-literals such that
varsσ(Γ) �= ∅, for each sort σ ∈ S. Then we simply let witness≈(Γ) = Γ .

Theorem 21 (Politeness). For each signature Σ, and for any nonempty set
of sorts S ⊆ ΣS, the theory T Σ

≈ is polite with respect to S. �

5.2 Lists

Let A be a nonempty set. A list x over A is a sequence 〈a1, . . . , an〉, where n ≥ 0
and {a1, . . . , an} ⊆ A. We denote with A∗ the set of lists over A.

The theory of lists Tlist has a signature Σlist containing a sort elem for elements
and a sort list for lists of elements, plus the following symbols:

– the constant symbol nil, of sort list;
– the function symbols

• car, of arity list → elem;
• cdr, of arity list → list;
• cons, of arity elem× list → list.

Definition 22. A standard list-interpretation A is a Σlist-interpretation
satisfying the following conditions:

– Alist = (Aelem)∗;
– nilA = 〈〉;
– carA(〈e1, . . . , en〉) = e1, for each n > 0 and e1, . . . , en ∈ Aelem;
– cdrA(〈e1, . . . , en〉) = 〈e2, . . . , en〉, for each n > 0 and e1, . . . , en ∈ Aelem;
– consA(e, 〈e1, . . . , en〉) = 〈e, e1, . . . , en〉, for each n ≥ 0 and e, e1, . . . , en ∈

Aelem.

The theory of lists is the pair Tlist = 〈Σlist,A〉, where A is the class of all
standard list-structures. �

60 S. Ranise, C. Ringeissen, and C.G. Zarba

Witness function. A witness function witness list for the theory Tlist can be defined
as follows. Without loss of generality, let Γ be a conjunction of flat Σlist-literals
such that varselem(Γ) �= ∅. We let witness list(Γ) be the result of applying to Γ
the following transformations:

– Replace each literal of the form e ≈ car(x) in Γ with the formula x �≈ nil →
x ≈ cons(e, y′), where y′ is a fresh list-variable.

– Replace each literal of the form x ≈ cdr(y) in Γ with the formula x �≈ nil →
y ≈ cons(e′, x), where e′ is a fresh elem-variable.

– For each literal of the form x �≈list y in Γ , generate two fresh elem-variables
w′

x,y and w′′
x,y, and add the literals w′

x,y ≈ w′
x,y and w′′

x,y ≈ w′′
x,y to Γ .

Remark 23. Let Γ be a conjunction of flat Σlist-literals, let Δ = witness list(Γ),
and let v̄ = vars(Δ) \ vars(Γ). Then Γ and (∃v̄)Δ are Tlist-equivalent. �

Theorem 24 (Politeness). The theory Tlist is polite with respect to {elem}. �

A conjecture. We conjecture that a more efficient witness function witness ′list for
Tlist can be defined as follows. Without loss of generality, let Γ be a conjunction
of flat Σlist-literals such that varselem(Γ) �= ∅. We let witness ′list be the result of
applying to Γ the following transformation:

– Replace each literal of the form x ≈ cdr(y) in Γ with the formula x �≈ nil →
y ≈ cons(e′, x), where e′ is a fresh elem-variable.

We do not have yet a formal proof of this claim.

5.3 Arrays

The theory of arrays Tarray has a signature Σarray containing a sort elem for
elements, a sort index for indices, and a sort array for arrays, plus the following
two function symbols:

– read, of sort array × index → elem;
– write, of sort array × index× elem → array.

Notation. Given a : I → E, i ∈ I and e ∈ E, we define ai�→e : I → E as follows:
ai�→e(i) = e and ai�→e(j) = a(j), for j �= i.

Definition 25. A Standard array-interpretation A is a Σarray-inter-
pretation satisfying the following conditions:

– Aarray = (Aelem)Aindex;
– readA(a, i) = a(i), for each a ∈ Aarray and i ∈ Aindex;
– writeA(a, i, e) = ai�→e, for each a ∈ Aarray, i ∈ Aindex, and e ∈ Aelem.

The theory of arrays is the pair Tarray = 〈Σarray,A〉, where A is the class of
all standard array-structures. �

Combining Data Structures with Nonstably Infinite Theories 61

Witness Function. A witness function witnessarray for the theory Tarray can be
defined as follows. Without loss of generality, let Γ be a conjunction of flat Σarray-
literals such that vars index(Γ) �= ∅ and varselem(Γ) �= ∅. We let witnessarray(Γ) be
the result of applying to Γ the following transformation:

– Replace each literal of the form a �≈array b in Γ with a literal of the form
read(a, i′) �≈ read(b, i′), where i′ is a fresh index-variable.

Remark 26. Let Γ be a conjunction of flat Σarray-literals, let Δ = witnessarray

(Γ), and let v̄ = vars(Δ) \ vars(Γ). Then Γ and (∃v̄)Δ are Tarray-equivalent. �

Theorem 27 (Politeness). For any nonempty set of sorts S ⊆ {elem, index},
the theory Tarray is polite with respect to S. �

5.4 Sets

The theory of sets Tset has a signature Σset containing a sort elem for elements
and a sort set for sets of elements, plus the following symbols:

– the constant symbol ∅, of sort set;
– the function symbols:

• {·}, of sort elem → set;
• ∪, ∩, and \, of sort set× set → set;

– the predicate symbol ∈, of sort elem× set.

Definition 28. A Standard set-interpretation A is a Σset-interpretation
satisfying the following conditions:

– Aset = P(Aelem);
– the symbols ∅, {·}, ∪, ∩, \, and ∈ are interpreted according to their standard

interpretation over sets.

The theory of sets is the pair Tset = 〈Σset,A〉, where A is the class of all
standard set-structures. �

Witness Function. A witness function witness set for the theory Tset can be de-
fined as follows. Without loss of generality, let Γ be a conjunction of flat Σset-
literals such that varselem(Γ) �= ∅. We let witness set(Γ) be the result of applying
to Γ the following transformation:

– Replace each literal of the form x �≈set y in Γ with a literal of the form
e′ ∈ (x \ y) ∪ (y \ x), where e′ is a fresh elem-variable.

Remark 29. Let Γ be a conjunction of flat Σset-literals, let Δ = witness set(Γ),
and let v̄ = vars(Δ) \ vars(Γ). Then Γ and (∃v̄)Δ are Tset-equivalent. �

Theorem 30 (Politeness). The theory Tset is polite with respect to {elem}. �

62 S. Ranise, C. Ringeissen, and C.G. Zarba

5.5 Multisets

Multisets—also known as bags—are collections that may contain duplicate ele-
ments. Formally, a multiset x is a function x : A → N, for some set A.

We use the symbol [[]] to denote the empty multiset. When n ≥ 0, we write
[[e]](n) to denote the multiset containing exactly n occurrences of e and nothing
else. When n < 0, we let [[e]]n = [[]].

Let x, y be two multisets. Then:

– their union x∪y is the multiset z such that, for each element e, the equality
z(e) = max(x(e), y(e)) holds;

– their sum x � y is the multiset z such that, for each element e, the equality
z(e) = x(e) + y(e) holds;

– their intersection x ∩ y is the multiset z such that, for each element e, the
equality z(e) = min(x(e), y(e)) holds.

The theory of multisets Tbag has a signature Σbag containing a sort int for
integers, a sort elem for elements, and a sort bag for multisets, plus the following
symbols:

– the constant symbols:
• 0 and 1, of sort int;
• [[]], of sort bag;

– the function symbols:
• +, −, max, and min, of sort int× int → int;
• [[·]](·), of sort elem× int → bag;
• ∪, �, and ∩, of sort bag× bag → bag;
• count, of sort elem× bag → int;

– the predicate symbol <, of sort int× int.

Definition 31. A standard bag-interpretation A is a Σbag-interpretation
satisfying the following conditions:

– Aint = Z;
– Abag = N

Aelem ;
– the symbols 0, 1, +, −, max, min, and < are interpreted according to their

standard interpretation over the integers;
– the symbol [[]], ∪, ∩, \, [[·]](·) are interpreted according to their standard

interpretation over multisets;
– countA(e, x) = x(e), for each e ∈ Aelem and x ∈ Abag.

The theory of multisets is the pair Tbag = 〈Σbag,A〉, where A is the class of
all standard bag-structures. �

Witness Function. A witness function witnessbag for the theory Tbag can be
defined as follows. Without loss of generality, let Γ be a conjunction of flat Σbag-
literals such that varselem(Γ) �= ∅. We let witnessbag(Γ) be the result of applying
to Γ the following transformation:

Combining Data Structures with Nonstably Infinite Theories 63

– Replace each literal of the form x �≈bag y in Γ with a literal of the form
count(e′, x) �≈ count(e′, y), where e′ is a fresh elem-variable.

Remark 32. Let Γ be a conjunction of flat Σbag-literals, let Δ = witnessbag(Γ),
and let v̄ = vars(Δ) \ vars(Γ). Then Γ and (∃v̄)Δ are Tbag-equivalent. �

Theorem 33 (Politeness). The theory Tbag is polite with respect to {elem}.�

6 Conclusion

We addressed the problem of combining a theory S modeling a data structure
containing elements of a given nature with a theory T of the elements. We were
particularly interested in the case in which T is not stably infinite.

To solve this problem, we defined the notion of polite theories, and we showed
that a polite theory S can be combined with any theory T , regardless of whether
T is stably infinite or not. We then proved that natural examples of polite
theories are given by the theory of equality, lists, arrays, sets, and multisets.

Our results were developed using many-sorted logic rather than one-sorted
logic. In our experience, combining nonstably infinite theories in one-sorted logic
is difficult. By moving to many-sorted logic, we were able to find many practically
relevant theories (e.g., lists, arrays, sets, and multisets) that can be combined
with nonstably infinite theories.

Concerning future research, we wish to study how polite theories relate to
observable theories [3] and local theory extensions [11]. We also wish to imple-
ment our combination method in haRVey [5], and apply it to the verification of
set-based specifications of smart-cards [4].

Acknowledgments

We are grateful to Pascal Fontaine, Deepak Kapur, and Cesare Tinelli for pleas-
ant discussions on the problem of combining nonstably infinite theories. We are
also grateful to the anonymous reviewers for their constructive feedback. Full
credit for the results of Section 4 goes to the reviewers.

References

1. Franz Baader and Silvio Ghilardi. Connecting many-sorted structures and theories
through adjoint functions. In Bernhard Gramlich, editor, Frontiers of Combining
Systems, Lecture Notes in Computer Science. Springer, 2005.

2. Franz Baader and Silvio Ghilardi. Connecting many-sorted theories. In Robert
Nieuwenhuis, editor, Automated Deduction – CADE-20, volume 3632 of Lecture
Notes in Computer Science. Springer, 2005.

3. Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of be-
havioural properties. Theoretical Computer Science, 165(1):3–55, 1996.

64 S. Ranise, C. Ringeissen, and C.G. Zarba

4. Jean-François Couchot, David Déharbe, Alain Giorgetti, and Silvio Ranise. Scal-
able automated proving and debugging of set-based specifications. Journal of the
Brazilian Computer Society, 9(2):17–36, 2004.

5. David Déharbe and Silvio Ranise. Light-weight theorem proving for debugging
and verifying units of code. In Software Engineering and Formal Methods, pages
220–228. IEEE Computer Society, 2003.

6. Pascal Fontaine and Pascal Gribomont. Combining non-stably infinite, non-first
order theories. In Silvio Ranise and Cesare Tinelli, editors, Pragmatics of Decision
Procedures in Automated Reasoning, 2004.

7. Pascal Fontaine, Silvio Ranise, and Calogero G. Zarba. Combining lists with non-
stably infinite theories. In Franz Baader and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, volume 3452 of Lecture Notes
in Computer Science, pages 51–66. Springer, 2005.

8. Vijay Ganesh, Sergey Berezin, and David L. Dill. A decision procedure for fixed-
width bit-vectors. Unpublished, 2005.

9. Harald Ganzinger. Shostak light. In Andrei Voronkov, editor, Automated Deduction
– CADE-18, volume 2392 of Lecture Notes in Computer Science, pages 332–346.
Springer, 2002.

10. Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Com-
bining data structures with nonstably infinite theories using many-sorted
logic. Technical report, INRIA, 2005. Also published as Techni-
cal Report at Department of Computer Science, University of New Mex-
ico. Electronically available at http://www.inria.fr/rrrt/index.en.html or
http://www.cs.unm.edu/research/.

11. Viorica Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In
Robert Nieuwenhuis, editor, Automated Deduction – CADE-20, volume 3632 of
Lecture Notes in Computer Science. Springer, 2005.

12. Cesare Tinelli and Calogero G. Zarba. Combining decision procedures for sorted
theories. In José Júlio Alferes and João Alexandre Leite, editors, Logics in Artificial
Intelligence, volume 3229 of Lecture Notes in Computer Science, pages 641–653.
Springer, 2004.

13. Cesare Tinelli and Calogero G. Zarba. Combining nonstably infinite theories.
Journal of Automated Reasoning, 2005. To appear.

14. Calogero G. Zarba. Combining multisets with integers. In Andrei Voronkov, editor,
Automated Deduction – CADE-18, volume 2392 of Lecture Notes in Computer
Science, pages 363–376. Springer, 2002.

15. Calogero G. Zarba. Combining sets with elements. In Nachum Dershowitz, edi-
tor, Verification: Theory and Practice, volume 2772 of Lecture Notes in Computer
Science, pages 762–782. Springer, 2004.

On a Rewriting Approach to Satisfiability

Procedures: Extension, Combination of Theories
and an Experimental Appraisal�

Alessandro Armando1, Maria Paola Bonacina2,
Silvio Ranise3, and Stephan Schulz2

1 DIST, Università degli Studi di Genova,
Viale Causa 13, I-16145 Genova, Italy

armando@dist.unige.it
2 Dipartimento di Informatica, Università degli Studi di Verona,

Strada Le Grazie 15, I-37134 Verona, Italy
mariapaola.bonacina@univr.it, schulz@eprover.org

3 LORIA & INRIA-Lorraine,
615 Rue du Jardin Botanique, F-54600 Villers-lès-Nancy, France

silvio.ranise@loria.fr

Abstract. The rewriting approach to T -satisfiability is based on es-
tablishing termination of a rewrite-based inference system for first-order
logic on the T -satisfiability problem. Extending previous such results,
including the quantifier-free theory of equality and the theory of arrays
with or without extensionality, we prove termination for the theories of
records with or without extensionality, integer offsets and integer offsets
modulo. A general theorem for termination on combinations of theories,
that covers any combination of the theories above, is given next. For em-
pirical evaluation, the rewrite-based theorem prover E is compared with
the validity checkers CVC and CVC Lite, on both synthetic and real-
world benchmarks, including both valid and invalid instances. Paramet-
ric synthetic benchmarks test scalability, while real-world benchmarks
test ability to handle huge sets of literals. Contrary to the folklore that
a general-purpose prover cannot compete with specialized reasoners, the
experiments are overall favorable to the theorem prover, showing that
the rewriting approach is both elegant and practical.

1 Introduction

Many state-of-the-art verification tools (e.g., [21,11,9,6]) incorporate satisfiabil-
ity procedures for theories of data types. However, most verification problems
involve more than one theory, so that one needs procedures for combination of
theories (e.g., [14,20]). Combination is complicated: for instance, understand-
ing, formalizing and proving correct the method in [20] required much work
(e.g., [16,7,12]). Combining theories by combining algorithms may lead to ad

� Research supported in part by MIUR grant no. 2003-097383.

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 65–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

66 A. Armando et al.

hoc procedures, that are hard to modify, extend, integrate into, or even interface
with other systems. Satisfiability procedures need to be proved correct and com-
plete, by showing that whenever they report “satisfiable,” the ouput represents
a model. Model-construction arguments for concrete procedures are specialized
for those, so that each new procedure requires a new proof (e.g., [16,22]), while
abstract frameworks often focus on combining the theory of equality with at
most one other theory (e.g., [12]). Data structures and algorithms for each new
procedure are usually implemented from scratch, with little software reuse and
high risk of errors.

If one could use first-order theorem-proving strategies, combination would
become much simpler, because in several cases it would be sufficient to give as
input the union of the presentations of the theories. No ad hoc correctness and
completeness proofs would be needed, because a sound and complete theorem-
proving strategy is a semi-decision procedure for unsatisfiability. Existing first-
order provers could represent a repository of code available for reuse.

The crux is termination: to have a decision procedure, one needs to prove
that a complete theorem-proving strategy is bound to terminate on satisfiability
problems in the theories of interest. It was shown in [5] that a standard, (refu-
tationally) complete rewrite-based inference system, named SP , is guaranteed
to terminate on satisfiability problems in the quantifier-free theories of equal-
ity, lists, arrays with and without extensionality, sets with extensionality and the
combination of lists and arrays. Thus, rewrite-based theorem provers can be used
off the shelf as validity checkers, as done in, e.g., [10,1].

This paper advances the rewriting approach to satisfiability in several ways.
First, we prove termination of SP for the theories of records with or without
extensionality, integer offsets and integer offsets modulo. Second, we give a mod-
ularity theorem for combination of theories stating sufficient conditions for SP
to terminate on the combination, if it terminates on each theory separately. Any
combination of the theories above, and with the quantifier-free theory of equal-
ity and arrays (with or without extensionality), is covered. Third, we report on
experiments comparing the rewrite-based E prover [17], CVC [21] and CVC Lite
[6] on six sets of parametric synthetic benchmarks: three on arrays with exten-
sionality, one combining arrays and integer offsets, one combining arrays, records
and integer offsets to model queues, and one combining arrays, records and in-
teger offsets modulo to model circular queues. CVC and CVC Lite seem to be
the only state-of-the-art tools implementing a correct and complete procedure
for arrays with extensionality.1 Contrary to expectation, the general first-order
prover with the theory presentations in input is, overall, comparable with the
validity checkers with the theories built-in, and in many cases even outperforms
them. To complete our appraisal, we tested E on sets of literals extracted from
real-world problems of the UCLID suite [8], and found it solves them very fast.

An extended abstract of this paper was presented in [3]. Very preliminary
experiments with a few of the synthetic benchmarks were reported in [2]. A full

1 Neither Simplify nor ICS 2.0 are complete in this regard: cf. [11], Sec. 5, and a
personal communication from H. Rueß to A. Armando in April 2004, respectively.

On a Rewriting Approach to Satisfiability Procedures 67

version of this paper with proofs and a description of the synthetic benchmarks
is available in [4].

2 A Rewrite-Based Methodology for T -Satisfiability

T -satisfiability is the problem of deciding satisfiability of sets T ∪ S, where T
is a presentation of a (decidable) theory and S a set of ground equational liter-
als on T ’s signature (or T -literals). The rewrite-based methodology [5] applies
first-order theorem-proving strategies based on the SP inference system (super-
position/paramodulation, reflection, equational factoring, subsumption, simplifi-
cation and tautology deletion, e.g., [15]). A theorem-proving strategy (inference
system + search plan) is complete if the inference system is refutationally com-
plete and the search plan is fair. A fundamental feature of SP is the usage of
a complete simplification ordering (CSO) on terms and literals, in such a way
that only maximal sides of maximal instances of literals are paramodulated into
and from. Let SP� be SP with CSO % and SP�-strategy be any strategy with
inference system SP�.

In the following, � is (unordered) equality, = is identity, �� is either � or
��, l, r, u, t are terms, v, w, x, y, z are variables, all other lower case letters are
constants or functions based on arity, and V ar(t) denotes the set of variables
occurring in t. For a term t, depth(t) = 0, if t is a constant or a variable, and
depth(f(t1, . . . , tn)) = 1+ max{depth(ti) : 1 ≤ i ≤ n}. A term is flat if its depth
is 0 or 1. For a literal, depth(l �� r) = depth(l) + depth(r). A positive literal is
flat if its depth is 0 or 1. A negative literal is flat if its depth is 0.

The rewrite-based methodology for T -satisfiability consists of:

1. T -reduction: specific inferences, depending on T , are applied to remove cer-
tain literals or symbols and obtain an equisatisfiable T -reduced problem.

2. Flattening: all ground literals are flattened by introducing new constants,
yielding an equisatisfiable T -reduced flat problem.

3. Ordering selection and termination: any fair SP�-strategy is shown to ter-
minate when applied to a T -reduced flat problem, provided % is “good” for
T , or T -good. An SP�-strategy will be T -good, if % is.

This methodology is fully automated, except for the proof of termination: the
T -reduction inferences are mechanical, flattening is a mechanical operation, and
a theorem prover can generate T -good orderings.

Let E denote the empty presentation, i.e., the presentation of the quantifier-
free theory of equality. If T is E , S is a set of ground equational literals built
from free symbols, and SP� reduces to ground completion, which is guaranteed
to terminate, so that any fair SP�-strategy is a satisfiability procedure for E .

2.1 The Theory of Arrays with and Without Extensionality

Given sorts index, elem and array, for indices, elements and arrays, respec-
tively, and function symbols select : array × index → elem, and store :

68 A. Armando et al.

array× index×elem → array, with the usual meaning, the standard presen-
tation A consists of axioms (1) and (2), while the presentation Ae of the theory
with extensionality also includes axiom (3) in the following list:

∀x, z, v. select(store(x, z, v), z) � v (1)
∀x, z, w, v. (z ��w ⊃ select(store(x, z, v), w) � select(x, w)) (2)

∀x, y. (∀z. select(x, z) � select(y, z) ⊃ x � y) (3)

with variables x, y of sort array, w, z of sort index and v of sort elem.

Definition 1. A set of ground A-literals is A-reduced if it contains no literal
l �� r, where l and r are terms of sort array.

Definition 2. A CSO % is A-good if (1) t % c for all ground compound terms
t and all constants c, and (2) a % e % j, for all constants a of sort array, e of
sort elem and j of sort index.

A-reduction replaces every literal l �� r ∈ S, with l and r of sort array, by
select(s, skl,r) �� select(t, skl,r), where skl,r is a Skolem constant of sort index.
Then (cf. [5], Th. 7.1), Ae ∪ S is satisfiable if and only if A∪RedA(S) is, where
RedA(S) is the A-reduced form of S, and any additional function symbol other
than select and store is array-safe (i.e., for f : s0, . . . , sm−1 −→ sm, with m ≥ 1,
sk is not array for all k, 0 ≤ k ≤ m).

Theorem 1. A fair A-good SP�-strategy is guaranteed to terminate on A ∪
S, where S is an A-reduced set of ground flat A-literals, and therefore is a
satisfiability procedure for A and Ae (cf. Theorem 7.2 in [5]).

2.2 The Theory of Records with and Without Extensionality

Records are data structures that aggregate attribute-value pairs: assuming Id =
{id1, . . . , idn} is a set of field identifiers and t1, . . . ,tn are n types, rec(id1 :
t1, . . . , idn : tn), abbreviated rec, is the sort of records that associate an element
of type ti to the field identifier idi, for 1 ≤ i ≤ n. The signature of the theory of
records features a pair of function symbols rselecti : rec → ti and rstorei : rec×
ti → rec for each i, 1 ≤ i ≤ n. Its presentations, R, without extensionality,
and Re, with extensionality, are given by the following axioms (only (4) and (5)
in R and all three in Re):

∀x, v. rselecti(rstorei(x, v)) � v for all i, 1 ≤ i ≤ n (4)
∀x, v. rselectj(rstorei(x, v)) � rselectj(x) for all i, j, 1 ≤ i �= j ≤ n (5)
∀x, y. (

∧n
i=1 rselecti(x) � rselecti(y) ⊃ x � y) (6)

where x, y have sort rec and v has sort ti.

Definition 3. A set of ground R-literals is R-reduced if it contains no literal
l �� r, where l and r are terms of sort rec.

On a Rewriting Approach to Satisfiability Procedures 69

Given a set of ground R-literals S, R-reduction consists of two phases. First,
every literal l �� r ∈ S, with l and r of sort rec, is replaced by the disjunction∨n

i=1 rselecti(l) �� rselecti(r). Second, every such disjunction is split into n literals
rselecti(l) �� rselecti(r) for 1 ≤ i ≤ n, replacing S by n sets Si = S \ {l �� r} ∪
{rselecti(l) �� rselecti(r)} for 1 ≤ i ≤ n. Each Si is R-reduced, and RedR(S)
denotes the class {Si : 1 ≤ i ≤ n}.

Lemma 1. Re∪S is satisfiable if and only if R∪Si is, for some Si ∈ RedR(S).

Definition 4. A CSO % is R-good if t % c for all ground compound terms t
and all constants c.

Termination depends on a case analysis showing that only certain clauses
can be generated, and the consideration that only finitely many such clauses can
be built from a finite signature:

Theorem 2. A fair R-good SP�-strategy is guaranteed to terminate on R ∪
S, where S is an R-reduced set of ground flat R-literals, and therefore is a
satisfiability procedure for R and Re.

2.3 The Theory of Integer Offsets

The theory of integer offsets is a fragment of the theory of the integers, often
applied in verification (e.g., [8]). Its signature has two unary function symbols s
and p (the successor and predecessor functions, respectively) and its presentation
I is given by the following infinite set of formulæ(e.g., [8,13]):

∀x. s(p(x)) � x (7)
∀x. p(s(x)) � x (8)
∀x. si(x) �� x for i > 0 (9)

where s1(x) = s(x), si+1(x) = s(si(x)) for i ≥ 1, and the formulæ in (9) are
called acyclicity axioms. For convenience, let Ac = {∀x. si(x) �� x : i > 0}.

Definition 5. A set of ground flat I-literals is I-reduced if it does not contain
occurrences of p.

Given a set S of ground flat I-literals, the symbol p may appear only in
literals of the form p(c) � d, because ground flat literals have the form c �� d and
do not contain p. I-reduction consists of replacing every equation p(c) � d in S
by c � s(d). The resulting I-reduced form of S is denoted RedI(S). I-reduction
reduces satisfiability with respect to I to satisfiability with respect to Ac, so
that axioms (7) and (8) can be removed:

Lemma 2. Let S be a set of ground flat I-literals. I ∪ S is satisfiable if and
only if Ac ∪RedI(S) is.

70 A. Armando et al.

The next step is to bound the number of axioms in Ac needed to solve the
problem. Let Ac(n) = {∀x. si(x) �� x : 0 < i ≤ n}. The intuition is that the bound
will be given by the number of occurrences of s in S: since S is flat, having n
occurrences of s means that there are n literals s(ci) � ci+1 for 0 ≤ i ≤ n,
which means a model must have n + 1 distinct elements. Thus, it is sufficient to
consider Ac(n + 1). From such a model it is possible to build a model for any
larger instance of acyclicity by adding elements to the domain:

Lemma 3. Let S be an I-reduced set of ground flat I-literals with n occurrences
of s. Then Ac ∪ S is satisfiable if and only if Ac(n + 1) ∪ S is.

Termination puts no requirement on the ordering; in other words, any CSO
is I-good:

Theorem 3. A fair SP�-strategy is guaranteed to terminate on Ac(n + 1)∪ S,
where S is an I-reduced set of ground flat I-literals, and n is the number of
occurrences of s in S, and therefore is a satisfiability procedure for I.

2.4 The Theory of Integer Offsets Modulo

The above treatment can be extended to the theory of integer offsets modulo,
useful to describe data structures whose indices range over the integers modulo
k, where k is a positive integer. The presentation Ik is obtained from I by
replacing Ac with the following k axioms

∀x. si(x) �� x for 1 ≤ i ≤ k − 1 (10)
∀x. sk(x) � x (11)

Let C(k) = {∀x. sk(x) � x}. Definition 5 and Lemma 2 apply also to Ik, whereas
Lemma 3 is no longer necessary, because Ik is finite to begin with. A case analysis
of applicable inferences proves the following two results:

Lemma 4. A fair SP�-strategy is guaranteed to terminate when applied to
Ac(k − 1) ∪ C(k) ∪ S, where S is an I-reduced set of ground flat I-literals.

Alternatively, since Ik is finite, it is possible to omit I-reduction and show
termination of SP� on the original problem format:

Lemma 5. A fair SP�-strategy is guaranteed to terminate when applied to Ik∪
S, where S is a set of ground flat I-literals.

Theorem 4. A fair SP�-strategy is a satisfiability procedure for Ik.

3 Combination of Theories

The rewrite-based approach is especially suited for combination of theories, be-
cause it combines presentations, rather than combining algorithms. Knowing

On a Rewriting Approach to Satisfiability Procedures 71

that an SP�-strategy is a satisfiability procedure for T1, . . . , Tn, the combina-
tion problem is to show that it also decides satisfiability problems in the union
T =

⋃n
i=1 Ti. Of the rewrite-based methodology, Ti-reduction applies separately

for each theory, and flattening is harmless. Thus, one only has to prove ter-
mination. The main theorem in this section establishes sufficient conditions for
SP to terminate on T -satisfiability problems if it terminates on Ti-satisfiability
problems for all i, 1 ≤ i ≤ n. A first condition is that the ordering be T -good:

Definition 6. Let T1, . . . , Tn be presentations of theories. A CSO % is T -good,
where T =

⋃n
i=1 Ti, if it is Ti-good for all i, 1 ≤ i ≤ n.

A second condition will serve the purpose of excluding paramodulations from
variables, when considering inferences across theories. This is key, since a variable
may paramodulate into any proper non-variable subterm. A maximal literal
t � x such that x ∈ V ar(t) cannot be used to paramodulate from x, since t % x,
because a CSO includes the subterm ordering. Thus, it is sufficient to ensure
that literals t � x such that x �∈ V ar(t) are inactive:

Definition 7. A clause C is variable-inactive for %, if for all its ground in-
stances Cσ no maximal literal in Cσ is instance of an equation t � x where
x �∈ V ar(t). A set of clauses is variable-inactive for %, if all its clauses are.

Definition 8. A presentation T is variable-inactive for SP�, if S∞ is variable-
inactive for % whenever S0 = T ∪ S is, where S∞ =

⋃
j≥0
⋂

i≥j Si is the limit
of any fair SP� derivation S0 'SP� S1 'SP� . . .Si 'SP� . . . from S0.

For satisfiability problems, S0 \ T is ground, so that S0 is variable-inactive if
the clauses in T are variable-inactive.

Last, the signatures of the Ti’s may share constants, including constants
introduced by flattening, but not function symbols. It follows that paramodula-
tions from compound terms are excluded, and the only inferences across theories
are paramodulations from constants into constants, that are finitely many, since
there are finitely many constants:

Theorem 5. Let T1, . . . , Tn be presentations of theories, with no shared function
symbol, and let T =

⋃n
i=1 Ti. Assume that for all i, 1 ≤ i ≤ n, Si is a Ti-reduced

set of ground flat Ti-literals. If for all i, 1 ≤ i ≤ n, a fair Ti-good SP�-strategy
is guaranteed to terminate on Ti ∪Si, and Ti is variable-inactive for SP�, then,
a fair T -good SP�-strategy is guaranteed to terminate on T ∪S1 ∪ . . .∪Sn, and
therefore is a satisfiability procedure for T .

All presentations considered in this paper satisfy the requirements of Theo-
rem 5: E is variable-inactive vacuously, while A, R, I and Ik are variable-inactive
by inspection of generated clauses in the proofs of their respective termination
theorems. Furthermore, an A-good ordering is also R-good.

Corollary 1. A fair SP�-strategy is a satisfiability procedure for any combi-
nation of the theories of arrays, with or without extensionality, records, with or

72 A. Armando et al.

without extensionality, integer offsets or integer offsets modulo, and the quan-
tifier-free theory of equality, provided (1) % is R-good whenever records are in-
cluded, (2) % is A-good whenever arrays are included, and (3) all free function
symbols are array-safe whenever arrays with extensionality and equality are in-
cluded.

In general, the requirement of being variable-inactive is rather natural for
purely equational theories, where T is a set of equations:

Theorem 6. If T is a presentation of a purely equational theory with no trivial
models, then T is variable-inactive for SP� for any CSO %.

For first-order theories, variable-inactivity excludes, for instance, the gener-
ation of clauses in the form a1 � x ∨ . . . ∨ an � x, where the ai’s are constants,
for 1 ≤ i ≤ n. Such a disjunction may be generated only within a clause that
contains at least one greater literal (e.g., involving function symbols). It is well-
known (e.g., [7,12]) that the Nelson-Oppen combination method [14] is complete
without branching for convex theories, i.e., such that T |= S ⊃

∨n
i=1 li � ri im-

plies T |= S ⊃ lj � rj for some j, 1 ≤ j ≤ n, and S a set of T -equations. It was
shown in [7] that for a first-order theory with no trivial models convex implies
stably infinite, i.e., such that any quantifier-free formula A has a T -model only
if it has an infinite T -model. By applying this result, we have:

Theorem 7. Let T be a presentation of a first-order theory with no trivial
models. If a1 � x ∨ . . . ∨ an � x ∈ S∞, where S∞ is the limit of any fair
SP�-derivation from S0 = T ∪ S, for any CSO %, then T is not convex.

Thus, if T is not variable-inactive, because it generates some a1 � x ∨ . . . ∨
an � x, so that Theorem 5 does not apply, then T is not convex, and the
Nelson-Oppen method does not apply either.

4 Experiments

We defined six sets of synthetic benchmarks: three inAe (STORECOMM(n), SWAP(n)
and STOREINV(n)), one combining A and I (IOS(n)), one combining A, R and
I (QUEUE(n)) and one combining A, R and Ik (CIRCULAR QUEUE(n, k)), with the
common property that the set of formulæ grows monotonically with n. They were
submitted to E 0.82, CVC 1.0a and CVC Lite 1.1.0. The prover E implements
(a variant of) SP with a choice of search plans [17]. CVC [21] and CVC Lite [6]
combine several T -satisfiability procedures in the style of [14], including that of
[22] for Ae, and integrate them with a SAT engine. While CVC was superseded
by CVC Lite, which is more modular and programmable, CVC is reportedly still
faster on many problems.

A generator of pseudo-random instances of the benchmarks was written, pro-
ducing either T -reduced, flattened input files or plain input files. In the following,
native input means T -reduced, flattened files for E, and plain files for CVC and
CVC Lite. Run times (on a 3.00GHz 512MB RAM Pentium 4 PC, with time and

On a Rewriting Approach to Satisfiability Procedures 73

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

R
un

 ti
m

e
(s

)

Instance size

CVC
CVC Lite

E (good-lpo), built-in index type
E (good-lpo), axiomatized indices

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

R
un

 ti
m

e
(s

)
Instance size

CVC
CVC Lite

E (good-lpo), built-in index type
E (good-lpo), axiomatized indices

Fig. 1. Performances on valid (left) and invalid (right) STORECOMM instances, native

input

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60

R
un

 ti
m

e
(s

)

Instance size

CVC (flattened)
CVC Lite (flattened)

E (good-lpo), built-in index type
E (good-lpo), axiomatized indices

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60

R
un

 ti
m

e
(s

)

Instance size

CVC (flattened)
CVC Lite (flattened)

E (good-lpo), built-in index type
E (good-lpo), axiomatized indices

Fig. 2. Performances on valid (left) and invalid (right) STORECOMM instances, flat input

for all

memory limited to 150 sec and 256 MB per run) do not include flattening time,
because flattening is a one-time linear time operation, and flattening time is in-
significant. For those problems (STORECOMM(n) and SWAP(n)) such that a value of
n determines a set of instances of the problem, rather than a single instance, the
reported run time is the median over all tested instances,2 because the median
is well-defined even when a system fails on some, but not all instances of size n,

2 The figures refer to runs with 9 instances for each value of n. Different numbers of
instances (e.g., 5, 20) were tried, but the impact on performance was negligible.

74 A. Armando et al.

 0

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8 9

R
un

 ti
m

e
(s

)

Instance size

CVC
CVC Lite

E (good-lpo)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6 7 8 9 10
R

un
 ti

m
e

(s
)

Instance size

CVC
CVC Lite

E (good-lpo)

Fig. 3. Performances on valid (left) and invalid (right) SWAP instances, native input

 0

 5

 10

 15

 20

 25

 30

 35

 2 3 4 5 6 7 8 9 10

R
un

 ti
m

e
(s

)

Instance size

CVC
CVC Lite

E (good-lpo)

Fig. 4. Performances on valid SWAP instances with added lemma for E

a situation that occurs for all systems. (A failure is considered to be larger than
all successful run times.)

The results for E refer to two strategies: E(good-lpo) features a lexicographic
path ordering (LPO), while E(std-kbo) has a Knuth-Bendix ordering (KBO).
E(good-lpo) is A-good, whereas E(std-kbo) is R-good but not A-good. E(good-
lpo) selects clauses by weight (symbol count where functions, constants and �
weigh 2 and variables weigh 1), except for ensuring that all input clauses are
selected before generated ones. E(std-kbo) gives ground clauses higher priority
than non-ground clauses and ranks clauses of same priority by weight as above.

We begin with the STORECOMM problems (Fig. 1 and 2). These sets include
disequalities stating that all indices are distinct. Since many problems involve

On a Rewriting Approach to Satisfiability Procedures 75

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

R
un

 ti
m

e
(s

)

Instance size

CVC
CVC Lite

E (good-lpo)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 2 3 4 5 6 7 8 9 10

R
un

 ti
m

e
(s

)
Instance size

CVC
CVC Lite

E (good-lpo)

Fig. 5. Performances on valid (left) and invalid (right) STOREINV instances, native input

distinct objects, that is, constants that name elements known to be distinct in all
models, E has a feature to build knowledge of distinct objects into the inference
rules [18]. In Fig. 1 and 2, built-in index type refers to runs using this feature,
while axiomatized indices refers to runs with the disequalities included in the
input. On valid instances, E(good-lpo) with axiomatized indices and CVC Lite
show nearly the same performance, with E apparently slightly ahead in the limit.
E(good-lpo) with built-in indices outperforms CVC Lite by a factor of about
2.5. CVC performs best improving by another factor of 2. Perhaps surprisingly,
since theorem provers are optimized for showing unsatisfiability, E performs even
better on invalid (i.e., satisfiable) instances (Fig. 1, right), where it is faster than
CVC Lite, and E(good-lpo) with built-in indices comes closer to CVC.

When all systems run on flattened input (Fig. 2), both CVC and CVC Lite
exhibit run times approximately two times higher than with native format, and
CVC Lite turns out to be the slowest system. CVC and E with built-in indices
are the fastest: on valid instances, their performances are so close, that the plots
are barely separable, but E is faster on invalid instances. Incidentally, it is not
universally true that flattening hurt CVC and CVC Lite: on the SWAP problems
CVC Lite performed better with flattened input. Although CVC is overall the
fastest system on STORECOMM, E is faster than CVC Lite, and can do better than
CVC on invalid instances when they are given the same input.

For SWAP (Fig. 3, left) the systems are very close up to instance size 5. Beyond
this point, E leads up to size 7, but then is overtaken by CVC and CVC Lite. E
can solve instances of size 8, but is much slower than CVC and CVC Lite, which
solve instances up to size 9. No system can solve instances of size 10. For invalid
instances, E solves easily instances up to size 10 in less than 0.5 sec, while CVC
and CVC Lite are slower, taking 2 sec and 4 sec, respectively, and showing worse
asymptotic behavior. Fig. 4 displays performances on valid instances, when the
input for E includes the lemma store(store(x, z, select(x, w)), w, select(x, z)) �
store(store(x, w, select(x, z)), z, select(x, w)) that expresses “commutativity” of

76 A. Armando et al.

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14

R
un

 ti
m

e
(s

)

Instance size

CVC
CVC Lite

E (good-lpo)
E (std-kbo)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2 4 6 8 10 12 14
R

un
 ti

m
e

(s
)

Instance size

CVC
CVC Lite

E (std-kbo)

Fig. 6. Performances on IOS instances: on the right a rescaled version, with only the

three fastest systems, of the same data on the left

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30 35 40 45 50

R
un

 ti
m

e
(s

)

Instance size

CVC
CVC Lite

E (good-lpo)
E (std-kbo)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5 10 15 20 25 30 35 40 45

R
un

 ti
m

e
(s

)

Instance size

CVC Lite
E (good-lpo)

E (std-kbo)

Fig. 7. Performances on QUEUE (left) and CIRCULAR QUEUE with k = 3 (right)

store. Although this addition means that the theorem prover is no longer a
decision procedure,3 E terminates also on instances of size 9 and 10, and seems
to show a better asymptotic behavior.

The comparison becomes even more favorable for the prover on STOREINV
(Fig. 5). CVC solves valid instances up to size 8, CVC Lite goes up to size 9, but
E solves instances of size 10, the largest generated. A comparison of run times at
size 8 (the largest solved by all systems), gives 3.4 sec for E, 11 sec for CVC Lite,
and 70 sec for CVC. Furthermore, E(std-kbo) (not shown in the figure) solves

3 Theorem 1 does not hold, if this lemma is added to the presentation.

On a Rewriting Approach to Satisfiability Procedures 77

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.5 1 1.5 2 2.5 3

N
um

be
r

of
 in

st
an

ce
s

Run time (s)

Distribution of run times

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.5 1 1.5 2 2.5 3

N
um

be
r

of
 in

st
an

ce
s

Run time (s)

Distribution of run times

Fig. 8. Distribution of run times for E in automatic mode (left) and with optimized

strategy (right) on the UCLID test set

valid instances in nearly constant time, taking less than 0.3 sec for the hardest
problem. For invalid instances, E does not do as well, but the run times here are
minimal, as the largest, for instances of size 10, is about 0.1 sec.

The IOS problems (all valid) are encoded for CVC and CVC Lite by us-
ing built-in linear arithmetic (on the reals for CVC and on the integers for
CVC Lite). We tried to use inductive types in CVC, but it performed badly and
reported incorrect results.4 In terms of performance (Fig. 6), CVC clearly wins,
as expected from a system with built-in arithmetic. E(good-lpo) is no match,
although it solves all tried instances (Fig. 6, left). E(std-kbo) does much better,
because of the ordering, and because, by not preferring initial clauses, it does
not consider the axioms early. E(std-kbo) also does better than CVC Lite: it
scales smoothly, while CVC Lite displays oscillating run times, showing worse
performance for even instance sizes than for odd ones (Fig. 6, right).

Fig. 7 (left) shows performances on plain queues: as expected, CVC is the
fastest system, but E(good-lpo) competes very well with the systems with built-
in linear arithmetic. Fig. 7 (right) does not include CVC, because CVC cannot
handle arithmetic modulo. Between CVC Lite and E, the latter demonstrates
a clear superiority: it shows nearly linear performance, and proves the largest
instance in less than 0.5 sec, nine times faster than CVC Lite.

For “real-world” problems, we extracted the satisfiability problems generated
by haRVey [10] from various UCLID inputs. This resulted in over 55,000 proof
tasks in the combination of the theories of integer offsets and equality. These
problems (all valid) were easy for E in automatic mode, where the prover chooses
ordering and search plan. E could solve all problems, taking less than 4 sec on

4 This is a known bug, that will not be fixed since CVC is no longer supported (personal
communication from A. Stump to A. Armando, Feb. 2005). CVC Lite 1.1.0 does not
support inductive types.

78 A. Armando et al.

the hardest one, with average 0.372 sec and median 0.25 sec (on three 2.4GHz
Pentium-4 PC’s, all other parameters unchanged). Fig 8 shows a histogram of
run times: the vast majority of problems is solved in less than 1 sec and very few
need between 1.5 and 3 sec. An optimized search plan was found by testing on a
random sample of 500 problems, or less than 1% of the full set. With this search
plan, similar to E(std-kbo), the performance improved by about 40% (Fig 8,
right): the average is 0.249 sec, the median 0.12 sec, the longest time 2.77 sec,
and the vast majority of problems is solved in less than 0.5 sec.

5 Discussion

The application of automated reasoning to verification has long shown the im-
portance of T -satisfiability procedures. The most common approach, popularized
as the “little proof engines” paradigm [19], works by building each theory into
a dedicated inference engine. By symmetry with “little proof engines,” one may
use “big proof engines” for theorem-proving strategies for first-order logic. Al-
though there has always been a continuum between big and little engines of
proof (viz., the research on reasoning modulo a theory), these two paradigms
have also grown apart from each other to some extent. The rewriting approach
to satisfiability aims at replacing the apparent dichotomy (“little engines versus
big engines”) by a cross-fertilization (“big engines as little engines”). The gen-
eral idea is to explore how big-engine technology (e.g., orderings, inference rules,
search plans, algorithms, data structures, implementation techniques) may be
applied selectively and efficiently “in the small.”

The crucial point to use a first-order strategy as a T -satisfiability procedure
is to prove termination. We showed that a typical, complete, rewrite-based infer-
ence system for first-order logic, named SP , is guaranteed to terminate on three
new theories: records, with and without extensionality, integer offsets, and inte-
ger offsets modulo. For combination of theories, we gave a modularity theorem,
stating sufficient conditions for SP to terminate on the combination, provided
it terminates on each theory, and applied it to all theories under consideration.

Our experimental comparison of E with CVC and CVC Lite is the first of
this kind. An analysis of E’s traces showed that these T -satisfiability problems
behave very differently compared to more classical theorem-proving problems.

Table 1. Performance characteristics of array and TPTP problems

Problem Initial Generated Processed Remaining Unnecessary
Name clauses clauses clauses clauses inferences

STORECOMM(60)/1 1896 2840 4323 7 26.4%
STOREINV(5) 27 22590 7480 31 95.5%
SWAP(8)/3 62 73069 21743 56 98.2%

SET015-4 15 39847 7504 16219 99.90%
FLD032-1 31 44192 3964 31642 99.96%
RNG004-1 20 50551 4098 26451 99.90%

On a Rewriting Approach to Satisfiability Procedures 79

The latter usually involve large presentations, with rich signatures and many
universal variables, rewrite rules, and mixed positive/negative literal clauses.
The search space is typically infinite and only a very small part of it can ever
be explored. In T -satisfiability, presentations are usually small, there is only one
goal clause, and a large number of ground rewrite rules generated by flatten-
ing. The search space is finite, but nearly all of it has to be explored. Table 1
compares the behavior of E in automatic mode on medium-difficulty unsatisfi-
able array problems and representative TPTP problems of similar difficulty for
the prover.5 Considering these differences, the theorem prover turned out to be
very competitive with the “little engines” systems, although it was optimized
for different search problems. Thus, further improvements might be obtained by
studying search plans and implementation techniques of first-order inferences
that target T -satisfiability.

The prover terminated also beyond known termination results (e.g., Fig. 4,
and the runs with E(std-kbo)), suggesting that theorem provers are not so brittle
with respect to termination, and offer the flexibility of adding useful lemmata.
Future directions for theoretical research include stronger termination theorems,
and upper bounds on the number of generated clauses, assuming either blind
saturation, or a fixed search plan, or a search plan of a given family. More
general open issues are the integration with approaches to handle theories such
as full linear arithmetics or bitvectors, and the application of “big engines” to
more general T -decision problems (arbitrary quantifier-free formulæ), whether
by integration with a SAT solver (as explored first in [10]), or by using the
prover’s ability to handle first-order clauses.

Acknowledgements. We thank Stefano Ferrari, former student of the second
author, for running preliminary experiments, and Paolo Fiorini, colleague of the
second author, for access to the computers of the robotics laboratory.

References

1. K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. Verifying a File System Imple-
mentation. In Proc. ICFEM 2004, volume 3308 of LNCS. Springer, 2004.

2. A. Armando, M. P. Bonacina, S. Ranise, M. Rusinowitch, and A. K. Sehgal. High-
Performance Deduction for Verification: a Case Study in the Theory of Arrays.
In Notes of the 2nd VERIFY Workshop, 3rd FLoC, number 07/2002 in Technical
Reports, pages 103–112. DIKU, U. Copenhagen, 2002.

3. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. Big Proof Engines as Little
Proof Engines: New Results on Rewrite-Based Satisfiability Procedures. In Notes
of the 3rd PDPAR Workshop, CAV-17, Technical Reports. U. Edinburgh, 2005.

4. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. On a Rewriting Approach
to Satisfiability Procedures: Theories of Data Structures, Combination Framework
and Experimental Appraisal. Technical Report 36/2005, Dip. di Informatica, U.
Verona, May 2005. http://www.sci.univr.it/∼bonacina/verify.html.

5 TPTP 3.0.0: TPTP or “Thousands of Problems for Theorem Provers” is a standard
library. See http://www.tptp.org/.

80 A. Armando et al.

5. A. Armando, S. Ranise, and M. Rusinowitch. A Rewriting Approach to Satisfia-
bility Procedures. Information and Computation, 183(2):140–164, 2003.

6. C. W. Barrett and S. Berezin. CVC Lite: A New Implementation of the Cooper-
ating Validity Checker. In Proc. CAV-16, volume 3114 of LNCS, pages 515–518.
Springer, 2004.

7. C. W. Barrett, D. L. Dill, and A. Stump. A Generalization of Shostak’s Method
for Combining Decision Procedures. In Proc. FroCoS-4, volume 2309 of LNCS.
Springer, 2002.

8. R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and Verifying Systems
Using a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted
Functions. In Proc. CAV-14, volume 2404 of LNCS. Springer, 2002.

9. L. de Moura, S. Owre, H. Rueß, J. Rushby, and N. Shankar. The ICS Decision
Procedures for Embedded Deduction. In Proc. IJCAR-2, volume 3097 of LNAI,
pages 218–222. Springer, 2004.

10. D. Déharbe and S. Ranise. Light-Weight Theorem Proving for Debugging and
Verifying Units of Code. In Proc. SEFM03. IEEE, 2003.

11. D. L. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a Theorem Prover for Program
Checking. Technical Report 148, HP Labs, 2003.

12. H. Ganzinger. Shostak Light. In Proc. CADE-18, volume 2392 of LNAI, pages
332–347. Springer, 2002.

13. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):
Fast Decision Procedures. In Proc. CAV-16, volume 3114 of LNCS, pages 175–188.
Springer, 2004.

14. G. Nelson and D. C. Oppen. Simplification by Cooperating Decision Procedures.
ACM TOPLAS, 1(2):245–257, 1979.

15. R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving. In Hand-
book of Automated Reasoning, volume 1. Elsevier Science, 2001.

16. H. Rueß and N. Shankar. Deconstructing Shostak. In Proc. LICS-16. IEEE, 2001.
17. S. Schulz. E – A Brainiac Theorem Prover. J. of AI Comm., 15(2–3):111–126,

2002.
18. S. Schulz and M. P. Bonacina. On Handling Distinct Objects in the Superposition

Calculus. In Notes of the 5th Int. Workshop on Implementation of Logics, LPAR-
11, pages 66–77, March 2005.

19. N. Shankar. Little Engines of Proof, 2002. Invited talk, 3rd FLoC, Copenhagen;
http://www.csl.sri.com/users/shankar/LEP.html .

20. R. E. Shostak. Deciding Combinations of Theories. J. ACM, 31(1):1–12, 1984.
21. A. Stump, C. W. Barrett, and D. L. Dill. CVC: a Cooperating Validity Checker.

In Proc. CAV-14, LNCS. Springer, 2002.
22. A. Stump, C. W. Barrett, D. L. Dill, and J. Levitt. A Decision Procedure for an

Extensional Theory of Arrays. In Proc. LICS-16. IEEE, 2001.

Sociable Interfaces�

Luca de Alfaro1, Leandro Dias da Silva1,2, Marco Faella1,3, Axel Legay1,4,
Pritam Roy1, and Maria Sorea5

1 School of Engineering, Universitity of California, Santa Cruz, USA
2 Electrical Engineering Department, Federal University of Campina Grande, Paraiba, Brazil

3 Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Italy
4 Department of Computer Science, University of Liège, Belgium

5 School of Computer Science, University of Manchester, United Kingdom

Abstract. Interface formalisms are able to model both the input requirements
and the output behavior of system components; they support both bottom-up
component-based design, and top-down design refinement. In this paper, we pro-
pose “sociable” interface formalisms, endowed with a rich compositional seman-
tics that facilitates their use in design and modeling. Specifically, we introduce
interface models that can communicate via both actions and shared variables, and
where communication and synchronization covers the full spectrum, from one-to-
one, to one-to-many, many-to-one, and many-to-many. Thanks to the expressive
power of interface formalisms, this rich compositional semantics can be realized
in an economical way, on the basis of a few basic principles. We show how the
algorithms for composing, checking the compatibility, and refining the resulting
sociable interfaces can be implemented symbolically, leading to efficient imple-
mentations.

1 Introduction

Interface theories are formal models of communicating systems. Compared to tradi-
tional models, the strength of interface theories lies in their ability to model both the
input requirements, and the output behavior, of a system. This gives rise to a compat-
ibility test when interface models are composed: two interfaces are compatible if there
is a way to use them (an environment) in which their input assumptions are simultane-
ously satisfied. This ability to model input assumptions and provide a compatibility test
makes interface models useful in system design. In particular, interface models support
both bottom-up, and top-down, design processes [6,7]. In a bottom-up direction, the
compatibility test can be used to check that portions of the design work correctly, even
before all the components are assembled in the final design. In a top-down direction,
interface models enable the hierarchical decomposition of a design specification, while
providing a guarantee that if the components satisfy their specifications, then they will
interact correctly in the overall implementation.

� This research was supported in part by the NSF CAREER award CCR-0132780, by the ONR
grant N00014-02-1-0671, by the ARP award TO.030.MM.D., by awards from the Brazilian
government agencies CNPq and CAPES, and by a F.R.I.A Grant

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 81–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

82 L. de Alfaro et al.

In this paper we present interfaces models that can communicate via both actions
and variables, and that provide one-to-one, many-to-one, one-to-many, and many-to-
many communication and synchronization. We show that this rich communication se-
mantics can be achieved by combining a small number of basic concepts, thanks to
the expressive power of interface models. This leads to an uniform, and conceptually
simple, communication model. We call this model sociable interfaces, underlining the
ease with which these interfaces can be composed into models of design. While socia-
ble interfaces do not break new ground in the conceptual theory of interface models,
we hope that they constitute a useful step towards a practical, interface-based design
methodology.

In sociable interfaces, synchronization and communication are based on two main
ideas. The first idea is that the same action can appear as a label of both input and output
transitions: when the action labels output transitions, it means that the interface can emit
the action; when the action labels an input transition, it means that the action can be
accepted if sent from other components. Depending on whether the action labels only
input transitions, only output transitions, or both kind of transitions, we have different
synchronization schemes. For instance, if an action a is associated only with output
transitions, it means that the interface can emit a, but cannot receive it, and thus it
cannot be composed with any other interface that emits a. Conversely, if a is associated
only with input transitions, it means that the interface accepts a from other interfaces,
but will not emit a. Finally, if a is associated both with input and output transitions, it
means that the interface can both emit a, and accept a when emitted by other interfaces.

The second idea is that global variables do not belong to specific interfaces: the
same global variable can be updated by multiple interfaces. In an interface, the output
transitions associated with an action specifies how global variables can be updated when
the interface emits the action; the input transition associated with an action specifies
constraints on how other interfaces can update the global variables when emitting the
action. By limiting the sets of variables whose value must be tracked by the interfaces,
and by introducing appropriate non-interference conditions among interfaces, we can
ensure that interfaces can participate in complex communication schemes with limited
knowledge about the other participants. In particular, interfaces do not need to know in
advance the number or identities of the other interfaces that take part in communication
schemes. This facilitates component reuse, as the same interface model can be used in
different contexts.

We show that the compatibility and refinement of sociable interfaces can be checked
via efficient symbolic algorithms. We have implemented these algorithms in a tool
called TIC (Tool for Interface Compatibility); the tool is written in Ocaml [10], and
the symbolic algorithms for interface compatibility and refinement are built on top of
the MDD/BDD Glue and Cudd packages [13,12].

The paper is organized as follows. First, we introduce sociable interface automata,
which include actions, but not variables, and which are a more “sociable” version of
the interface automata of [6,8]. After illustrating the various synchronization and com-
munication features for sociable interface automata, we endow them with variables in
Section 3, obtaining sociable interface modules. We describe the communication mech-
anisms of sociable interface modules via examples, and we show how the examples can

Sociable Interfaces 83

3

2

1

fire?

FD!

(a) C: Control Unit

3

fire?2

fire?

1 fire?

smoke1?

fire!

(b) D1: Fire Detector 1

3 fire?

fire!

fire?2

smoke2?

fire?1

(c) D2: Fire Detector 2

Fig. 1. Sociable interface automata for a fire detection and reporting system

be encoded in the input language of the tool TIC. The refinement of sociable interfaces
is discussed Section 4, and the symbolic implementation of the composition and re-
finement algorithms is in Section 5. We conclude with a comparison between sociable
interfaces and previous interface formalisms.

2 Sociable Interface Automata

Social interfaces communicate via both actions and variables. We first illustrate how
sociable interfaces communicate via actions; in the next section, we will augment them
with variables, obtaining the model implemented in the tool TIC. We begin with an
informal, intuitive preview, which will motivate the definitions.

2.1 Preview

To provide some intuition on sociable interfaces, we present an example: a very simple
model of a fire detection and reporting system. The sociable interfaces for this example
are depicted in Figure 1: D1 and D2 are the fire detectors (there could be more), and
C is the control unit. When the fire detectors D1 and D2 detect smoke (input events
smoke1?,smoke2?), they generate an output event fire!. The control unit, upon receiving
the input event fire?, issues a call for the fire department (output event FD!). Similar
to the original interface model [6,8], the input and output transitions departing from a
state of a sociable interface denote the inputs that can be received, and the outputs that
can be generated, from that state. For instance, the sociable interface C (Figure 1(a))
specifies that input event fire? can be accepted at state 1, but not at state 2.

Product and composition. To compose two sociable interfaces, we first form their au-
tomata product. In the product, shared output/input events (such as the pair fire!–fire? in
Figure 1) synchronize: this models communication, or synchronization, initiated by the
interface issuing the output transition. Similarly, two interfaces can also synchronize on
shared inputs: when the environment generates an input, both interfaces will receive it

84 L. de Alfaro et al.

smoke1?

smoke1?

smoke1? fire!

fire? fire? FD!

FD!FD!

1,1 1,2 2,3

3,32,22,1

3,1 3,2

(a) C⊗D1

smoke2?

fire?

fire!

smoke2? fire!
fire?

smoke2?

fire?

fire!

smoke1? smoke1?

fire!fire!fire!

smoke1?

1,31,21,1

2,1 2,2 2,3

3,33,23,1

fire?

fire?

fire? fire?

fire?

fire?

(b) D1⊗D2

Fig. 2. Product of the automata D1, D2, and C

FD!

fire?

smoke1? fire!

FD!

3,1

2,1

1,1 1,2 2,3

3,3

(a) C‖D1

FD!

fire!

smoke1?

fire? fire!

FD! FD!

1,2,1

2,3,1

3,3,1 3,1,1

2,1,1

1,1,1 1,1,2

2,1,3

3,1,3

smoke2?

(b) C‖D1‖D2

Fig. 3. Composition of the automata D1, D2, and C

and take the corresponding input transition. However, interfaces do not synchronize on
shared outputs: as an example, D1 and D2 do not synchronize on the output event fire!
in their product D1⊗D2 (Figure 2(b)). The idea is that, in an asynchronous model, inde-
pendent components issue their output asynchronously, so that synchronization cannot
happen. As usual, interfaces do not synchronize on non-shared actions.

In the product of two interfaces, we distinguish between good and bad states. A
state is good if all the outputs produced by one component can be accepted as inputs
by the other component; a state is bad otherwise. For instance, in the product C⊗D1

(Figure 2(a)), the states 〈2,2〉 and 〈3,2〉 are bad, since from state 2 the detector D1 can
issue fire!, and this cannot be matched by an input transition fire? neither from state 2
nor from state 3 of the control unit.

Sociable Interfaces 85

3

ack!

2

consume!

send?

1

(a) Se: Sender

3

ack!

2

consume!

send?

1

(b) Re: Receiver

Fig. 4. A simple communication protocol

A state of the product is compatible if there is an Input strategy that can avoid
all bad states: this means that starting from that state, there is an environment under
which the component interfaces interact correctly. The composition of two interfaces is
obtained by removing all incompatible states from the product. The composition C‖D1

of C and D1 is depicted in Figure 3(a), and the composition of C‖D1‖D2 is depicted
in Figure 3(b). Notice that in the composition C‖D1‖D2, once smoke1 (resp. smoke2) is
received, smoke2 (resp. smoke1) is not allowed. This behavior results from the design of
the control unit which cannot accept more than one “smoke-input” before issuing FD!.

Multi-way communication. In a sociable interface, the same action can label both input
and output transitions: this is illustrated, for instance, by action fire in Figures 1(b)
and 1(c). Indeed, sociable interfaces do not have separate input and output transition
alphabets: rather, they have a single action alphabet, and actions in this alphabet can
label edges both as inputs, giving rise to input transitions, and as outputs, giving rise to
output transitions. For example, the action fire at state 2 of D1 corresponds to both an
output, and to an input transition: this indicates that D1 can generate output fire, while at
the same time being composable with other interfaces that generate fire as output (such
as D2). Thus, if an action a is in the alphabet of an interface, there are four cases:

– If a is not associated with any transition, then the interface neither outputs a, nor
can it be composed with other interfaces that do.

– If a is associated with output transitions only, then the interface can generate a, but
it cannot be composed with interfaces that also output a.

– If a is associated with input transitions only, then the interface can receive a, but
not output it.

– If a is associated with both input and output transitions, then the interface can gen-
erate a, and it can be composed with other interfaces that do.

We notice how these four cases all arise in an uniform way from our interpretation
of input and output edges. All of these cases have a use in system modeling: the fire
detector example illustrated the non-exclusive generation of outputs, the next example
illustrates exclusive generation.

86 L. de Alfaro et al.

Figure 4 depicts a simple communication protocol. In this protocol, the sender Se,
after receiving information from the environment (label produce?), sends this informa-
tion to the receiver (label send!), and awaits for an acknowledge (label ack?). The lack
of input edges labeled with send in Se, and the lack of input edges labeled with ack in
Re indicate that the communication channel between Se and Re is not shared: only Se
can generate send actions, and only Re can generate ack actions.

2.2 Definitions

Given two sets A and B, we denote with A ⇒ B the set of nondeterministic functions
from A to B, that is: A → 2B.

Definition 1 (Sociable Interface Automaton). A sociable interface automaton (au-
tomaton for short) is a tuple M = (Act,S,τ I,τO,ϕ I ,ϕO), where:

– Act is a set of actions.
– S is a set of states.
– τ I : Act×S ⇒ S is the input transition function.
– τO : Act×S ⇒ S is the output transition function.
– ϕ I ⊆ S is the input invariant.
– ϕO ⊆ S is the output invariant.

We require τ I to be deterministic, that is: for all s ∈ S and a ∈ Act, |τ I(a,s)| ≤ 1.

For all s∈ S and a∈Act, we define τ̂ I(a,s) = τ I(a,s)∩ϕ I , and τ̂O(a,s) = τO(a,s)∩ϕO.
Together, S, τ I and τO define a graph whose edges are labeled with actions in Act. As
it was already informally done in the examples of Section 2.1, we therefore depict
interface automata as graphs. To distinguish input from output transitions, we add a tag
at the end of the name of the action: as in process algebra notation, we add “?” for input
transitions and “!” for output transitions. In all examples, it holds ϕ I = ϕO = S.

Example 1. Figure 1(b) is a graphical representation of a 3-state automaton whose ac-
tions are fire, and smoke1. For instance, from state 2, the automaton can take an input
transition fire?, as well as an output transition fire!.

The semantics of a sociable interface automaton can be described in terms of a
game between two players, Input and Output, played over the graph representation of
the automaton. At each round, from the current state in the graph, the Input player
chooses an outgoing input edge, and the Output player chooses an outgoing output
edge. In order to ensure that both players always have an enabled move, we introduce
a special move Δ0 which, when played, gives rise to a stuttering step, that is, a step
that does not change the current state of the automaton. Furthermore, we postulate that
player Output (resp. Input) can choose only edges that lead to states where the output
(resp. input) invariant holds. Thus, input and output invariants are used to restrict the
set of moves available to the players; their true usefulness will become clearer when
considering interfaces with variables, i.e. modules.

In the remaining of this section, we consider a fixed sociable interface automaton
M = (ActM,SM,τ I

M ,τO
M,ϕ I

M,ϕO
M). The sets of enabled moves can be defined as follows.

Sociable Interfaces 87

Definition 2 (Moves). For all s ∈ SM, the set of moves for player Input at s is given by:

Γ I(M,s) = {Δ0}∪{〈a,s′〉 ∈ ActM ×SM | s′ ∈ τ̂ I
M(a,s)}.

Similarly, the set of moves for player Output at s is given by:

Γ O(M,s) = {Δ0}∪{〈a,s′〉 ∈ ActM ×SM | s′ ∈ τ̂O
M(a,s)}.

Example 2. Consider the automaton D1 of Example 1, we have that Γ I(D1,1) =
{Δ0,〈fire,1〉, 〈smoke1,2〉}, and Γ O(D1,2) = {Δ0,〈fire,3〉}.

At each game round, both players choose a move from the corresponding set of enabled
moves. The outcome of their choice is defined as follows.

Definition 3 (Move Outcome). For all states s ∈ SM and moves mI ∈ Γ I(M,s) and
mO ∈ Γ O(M,s), the outcome δ (M,s,aI ,aO) ∈ SM of playing mI and mO at s can be
defined as follows, according to whether mI and mO are Δ0 or a move of the form
〈a,s′〉.

δ (M,s,Δ0,Δ0) = {s}, δ (M,s,Δ0,〈a,s′〉) = {s′},

δ (M,s,〈a,s′〉,Δ0) = {s′}, δ (M,s,〈a,s′〉,〈b, t ′〉) = {s′, t ′}.

A strategy represents the behavior of a player in the game. A strategy is a function that,
given the history of the game, i.e., the sequence of states visited in the course of the
game, yields one of the player’s enabled moves.

For s ∈ SM, we define the set of finite runs starting from s as the set Runs(M,s) ⊆
S∗M of all finite sequences s0s1s2 . . . sn, such that s0 = s, and for all 0 ≤ i < n, si+1 ∈
δ (M,si,mI,mO), for some mI ∈ Γ I(M,si), mO ∈ Γ O(M,si). We also set Runs(M) =⋃

s∈SM
Runs(M,s).

Definition 4 (Strategy). A strategy for player p ∈ {I,O} in an automaton M is a func-
tion π p : Runs(M) → ActM ∪{Δ0} that associates, with every run σ ∈ Runs(M) whose
final state is s, a move π p(σ) ∈ Γ p(M,s). We denote by Π I

M and Π O
M the set of input

and output strategies for M, respectively.

An input and an output strategy jointly determine a set of outcomes in Runs(M).

Definition 5 (Strategy Outcome). Given a state s ∈ SM, an input strategy π I ∈ Π I
M

and an output strategy πO ∈ Π O
M, the set outcomes δ̂ (M,s,π I ,πO) of π I and πO from

s consists of all finite runs σ = s0s1s2 . . . sn such that s = s0, and for all 0 ≤ i < n,
si+1 ∈ δ (M,si,π I(σ0:i),πO(σ0:i)), where σ0:i denotes the prefix s0s1s2 . . . si of σ .

Definition 6 (Winning States). Given a state s ∈ SM and a goal γ ⊆ Runs(M,s), we
say that s is winning for input with respect to γ , and we write s ∈ WinI(M,γ), iff there
is π I ∈ Π I

M such that for all πO ∈ Π O
M , δ̂ (M,s,π I ,πO) ⊆ γ . Similarly, we say that s is

winning for output with respect to γ , and we write s ∈WinO(M,γ), iff there is πO ∈Π O
M

such that for all π I ∈ Π I
M, δ̂ (M,s,π I ,πO)⊆ γ .

88 L. de Alfaro et al.

A state of an automaton is well-formed if both players have a strategy to always sat-
isfy their own invariant. Following temporal logic notation, for all X ⊆ SM , we de-
note by �X the set of all runs in Runs(M) all whose states belong to X . Formally,
�X = {s0s1s2 . . . sn ∈ Runs(M) | ∀0 ≤ i ≤ n . si ∈ X}.

Definition 7 (Well-formed State). We say that a state s ∈ SM is well-formed iff s ∈
WinI(M,�ϕ I

M)∩WinO(M,�ϕO
M).

Notice that if s is well-formed, then s ∈ ϕ I
M ∩ϕO

M .

Definition 8 (Normal Form). We say that M is in normal form iff ϕ I
M =

WinI(M,�ϕ I
M), and ϕO

M = WinO(M,�ϕO
M).

Given an automaton M1, we can define an automaton M2 such that the well-formed
portion of M1 coincides with the one of M2, and M2 is in normal form. Let
M1 = (Act1,S1,τ I

1,τO
1 ,ϕ I

1,ϕO
1), we set M2 = (Act1,S1,τ I

2,τO
2 ,ϕ I

2,ϕO
2), where, ϕ I

2 =
WinI(M1,�ϕ I

1) and ϕO
2 = WinI(M1,�ϕO

1). Thus, in the following, unless differently
specified, we only consider automata in normal form.

Definition 9 (Well-formed Automaton). We say that M is well-formed iff it is in nor-
mal form, and ϕ I

M ∩ϕO
M �= /0.

Lemma 1. If M is in normal form, then it holds:

∀s ∈ ϕ I
M .∀a ∈ Γ O(M,s) . τ̂O

M(a,s)⊆ ϕ I
M

∀s ∈ ϕO
M .∀a ∈ Γ I(M,s) . τ̂O

M(a,s)⊆ ϕO
M.

Proof. For the first statement, by contradiction, suppose there is s ∈ ϕ I
M and a ∈

Γ O(M,s) such that τ̂O
M(a,s) �⊆ ϕ I

M . Then s �∈WinI(M,�ϕ I
M), because there is no way for

the Input player to prevent output a to be carried out (see Definition 3). This contrasts
with the assumption that M is in normal form. The second statement can be proven
along similar lines.

2.3 Compatibility and Composition

In this subsection, we define the composition of two automata M1 =
(Act1,S1,τ I

1,τO
1 ,ϕ I

1,ϕO
1) and M2 = (Act2,S2,τ I

2,τO
2 ,ϕ I

2,ϕO
2). We first define the

product between M1⊗M2 as the classical automata-theoretic product, where M1 and
M2 synchronize on shared actions and evolve independently on non-shared ones. We
then identify a set of incompatible states where M1 can do an output transition that
is not accepted by M2 or vice-versa. Finally, we obtain the composition M1‖M2 from
M1⊗M2 by strengthening the input assumptions of M1⊗M2 in such a way that M1 and
M2 mutually satisfy their input assumptions.

Definition 10. We define the set of shared actions of M1 and M2 by:

Shared(M1,M2) = Act1∩Act2.

Sociable Interfaces 89

The product of two automata M1 and M2 is an automaton M1 ⊗M2, representing the
joint behavior of M1 and M2. Similarly to other interface models, for each shared ac-
tion, the output transitions of M1 synchronize with the input transitions of M2, and
symmetrically, the output transitions of M2 are synchronized with the input transitions
of M1. This models communication, and gives rise to output transitions in the product.
The input transitions of M1 and M2 corresponding to shared actions are also synchro-
nized, and lead to input transitions in the product. Output transitions, on the other hand,
are not synchronized. If both M1 and M2 can emit a shared action a, they do so asyn-
chronously, so that their output transitions interleave. As usual, the automata interleave
asynchronously on transitions labeled by non-shared actions.

Definition 11 (Product). The product M1 ⊗ M2 is the automaton M12 =
(Act12,S12,τ I

12,τO
12,ϕ

I
12,ϕO

12), consisting of the following components.

– Act12 = Act1∪Act2; S12 = S1×S2.

– ϕ I
12 = ϕ I

1×ϕ I
2; ϕO

12 = ϕO
1 ×ϕO

2 .

– For a ∈ Shared(M1,M2),

〈s′, t ′〉 ∈ τO
12(a,〈s, t〉) iff

{
s′ ∈ τO

1 (a,s) and t ′ ∈ τ I
2(a, t) or

t ′ ∈ τO
2 (a,t) and s′ ∈ τ I

1(a,s)

〈s′, t ′〉 ∈ τ I
12(a,〈s, t〉) iff s′ ∈ τ I

1(a,s) and t ′ ∈ τ I
2(a, t).

– For a ∈ Act1 \Act2,

〈s′,t〉 ∈ τO
12(a,〈s,t〉) iff s′ ∈ τO

1 (a,s)

〈s′,t〉 ∈ τ I
12(a,〈s,t〉) iff s′ ∈ τ I

1(a,s).

– For a ∈ Act2 \Act1,

〈s, t ′〉 ∈ τO
12(a,〈s,t〉) iff t ′ ∈ τO

2 (a, t)

〈s,t ′〉 ∈ τ I
12(a,〈s,t〉) iff t ′ ∈ τ I

2(a, t).

Example 3. The sociable interface automaton depicted in Figure 2(a) is the product
C⊗D1 of the automata depicted in Figures 1(a) and 1(b). For instance, the input transi-
tion fire? from state 〈1,1〉 to state 〈2,1〉 is obtained by combining the input transition
fire? from state 1 to state 2 in C with the input transition fire? from state 1 to state 1 in
D1. The output transition FD! from state 〈1,2〉 to state 〈2,3〉 is obtained by combining
the input transition fire? from state 1 to state 2 in C with the output transition fire! from
state 2 to state 3 in D1.

We have the following theorem.

Theorem 1. Theproduct isa commutativeand associativeoperation,up to isomorphism.

90 L. de Alfaro et al.

The product M12 = M1 ⊗M2 may contain states in which one of the components, say
M1, can do an output transition labeled by a shared action while the other component
cannot do the corresponding input transition. This constitutes a violation of the input
assumptions of M2. We formalize such notion by introducing a local compatibility con-
dition. To this end, for p ∈ {I,O}, we denote by Enp(M,a) the set of states of M where
the action a is enabled as input if p = I, and as output if p = O. Formally,

Enp(M,a) = {s ∈ SM | τ̂ p
M(a,s) �= /0}.

Definition 12 (Local Compatibility). Given 〈s, t〉 ∈ S12, 〈s, t〉 ∈ good(M1,M2) iff, for
all a ∈ Shared(M1,M2) the following conditions hold:

s ∈ EnO(M1,a) ⇒ t ∈ EnI(M2,a)

t ∈ EnO(M2,a) ⇒ s ∈ EnI(M1,a).

Example 4. Consider the product C⊗D1 of Example 4. The state 〈3,2〉 does not satisfy
the Local Compatibility condition because, from state 2, D1 can issue an output tran-
sition fire!, and this cannot be matched by an input transition fire? from state 3 of the
control unit.

The composition of M1 and M2 is obtained from the product M1⊗M2 by strengthening
the input assumptions of M1 ⊗M2 to avoid states that are not in good(M1,M2). This is
done by restricting the input invariant ϕ I

12 as shown in the next definition. The reason
for restricting only the input behavior is that, when composing automata, only their
input assumptions can be strengthened to ensure that no incompatibility arises, while
their output behavior cannot be modified.

Definition 13 (Composition). Assume M1 and M2 are compatible. The composition
M1‖M2 is a sociable interface automaton identical to M1 ⊗M2, except that ϕ I

M1‖M2
=

ϕ I
12∩WinI(M12,�(ϕ I

12∩good(M1,M2))).

Definition 14 (Compatibility). We say that M1 and M2 are compatible if ϕ I
M1‖M2

∩
ϕO

M1‖M2
�= /0.

The following theorem states that once the input transition relations have been strength-
ened, the automaton is in normal form: it is not necessary to also strengthen the output
transition relations. This result thus provides a sanity check, since strengthening the
output transitions means restricting the output behavior of the interfaces, which is not
reasonable.

Theorem 2. If M1 and M2 are compatible, and they are in normal form, then M1‖M2

is in normal form.

The following result implies that the automata can be composed in any order.

Theorem 3. The composition is a commutative and associative operation, up to
isomorphism.

Sociable Interfaces 91

3 Sociable Interfaces with Variables

3.1 Preview

In modeling systems and designs, it is often valuable to have a notion of global state,
which can be read and updated by the various components of the system. A common,
and flexible, paradigm consists in having the global state consist of a value assignment
to a set of global variables. Once the global state is represented by global variables, it
is natural to encode also the local state of each component via (local) variables.

Previous interface models, such as interface automata [6,8] and interface modules
[7,3] were based on either actions, or variables, but not both. In sociable interfaces,
however, we want to have both: actions to model synchronization, and variables to
encode the global and local state of components. In this, sociable interfaces are closely
related to the I/O Automata Language (IOA) of [11].

Interface models are games between Input and Output, and in the models, it is es-
sential that Input and Output are able to choose their moves independently from one
another. To this end, in previous interface formalisms with variables, the variables were
partitioned into input and output variables [7,3]. A move of Input consisted in choosing
the next value of the input variables, and a move of Output consisted in choosing the
next value of the output variables: this ensured the independence of the moves. Conse-
quently, interfaces sharing output variables could not be composed, and in a composite
system, every variable that was not input from the environment was essentially “owned”
by one of the component interfaces, which was the only one allowed to modify its value.

In sociable interface modules, we can leverage the presence of actions in order to
achieve a more general setting, in which variables can be modified by more than one
module. Informally, the model is as follows. With each action, we associate a set of
variables that can be modified by the action, as well as an output and an input transition
relation that describe the ways in which the variables can be modified when the com-
ponent, or its environment, output the action. When the Output player takes an action
a, the output transition relation associated with a specifies how the player can update
the variables associated with a. Symmetrically, when the Input player takes an action
a, the input transition relation associated with a specifies what changes to the variables
associated with a can be accepted by the module.

When modules are composed, actions synchronize in the same way as they do in
sociable interface automata. When an output event a! of module M synchronizes with an
input event a? of module N, we must check that all variable updates that can accompany
a! from M are acceptable to N, that is, that the output transition relation associated with
a in M respects the constraints specified by the input transition relation associated with
a in N. Empty transition relations are used to rule out the possibility of taking an action
as output or input.

3.2 An Example: Modeling a Print Server

We illustrate the main features of sociable interface modules through a very simple ex-
ample: a model of a shared print server. The model consists of modules representing
the print server, as well as user processes that communicate with the server to print

92 L. de Alfaro et al.

print?

s = 0

ack?

print?

s = 1

user′ = 1

∨ ack?

∧ size′ = nondet
∧ busy = F
∧ print!

(a) U1: User 1

ack!

print?

busy = Tbusy = F

(b) P: Printer.

Fig. 5. Informal depiction of the user process and printer interface modules

jobs. The modules composing this example are depicted in an intuitive fashion in Fig-
ure 5; the actual input to the tool TIC for this model is given in Figure 6, and it will be
described later.

The user module U1 (Figure 5(a)) communicates via two actions: an action print,
whose output represents a print request, and an action ack, whose input represents an
acknowledgment. When generating print as an output, U1 updates the global variables
user and size, which indicate the user who issued the request, and the size of the request.
The print server P (Figure 5(b)) synchronizes on ack and print, and also updates a global
state variable busy, indicating whether the printer is busy. To ensure compatibility, the
user module checks that busy = F before printing. In addition, to ensure compatibility
in presence of multiple user modules, the user module ignores inputs ack when idle
(s = 0), as these acknowledgments are directed to other users, and ignores all inputs
print, as these correspond to input requests from other users.

3.3 Definitions

We assume a fixed set V of variables. All variables in V are interpreted over a given
domain D . Given V ⊆ V , a state over V is a mapping s : V → D that associates with
each x ∈ V a value s(x) ∈ D . For a set of variables U ⊆ V , and a state s ∈ [[V]], the
restriction of s to U is a state t ∈ [[U]] denoted as s[U]. For two disjoint sets of variables
V1 and V2, and two states s1 ∈ [[V1]] and s2 ∈ [[V2]], the operation (s1 ◦ s2) composes the
two states resulting in a new state s = s1 ◦ s2 ∈ [[V1∪V2]], such that s(x) = s1(x) for all
x ∈V1 and s(x) = s2(x) for all x ∈V2.

Our formal model with variables is called a sociable interface module. It is con-
venient to define sociable interface modules with respect to a predicate representation.
Given a set V of variables, we denote by Preds(V) the set of first-order predicate for-
mulas with free variables in V ; we assume that these predicates are written in some
specified first-order language with interpreted function symbols and predicates; in our
tool, the language contains some arithmetic operators, relational symbols, and boolean
connectives. Given a set of variables V , we let V ′ = {x′ | x ∈V} be the set consisting of
primed versions of variables in V . A variable x′ ∈V ′ represents the next value of x ∈V .
Given a formula ψ ∈ Preds(V) and a state s ∈ [[V]], we write s |= ψ if the predicate for-
mula ψ is true when its free variables are interpreted as specified by s. Given a formula

Sociable Interfaces 93

ρ ∈ Preds(V ∪V ′) and two states s,s′ ∈ [[V]], we write 〈s,s′〉 |= ρ if the formula ρ holds
when its free variables x ∈ V are interpreted as s(x), and its free variables x′ ∈ V ′ are
interpreted as s′(x). Given a set U of variables, we define the formula:

Unchgd(U) =
∧

x∈U

(x′ = x),

which states that the variables in U do not change their value in a transition. Given a
predicate ψ ∈ Preds(V), we denote by ψ ′ the predicate obtained by substituting x with
x′ in ψ , for all x ∈V .

With these definitions, we can define sociable interface modules as follows.

Definition 15 (Sociable Interface Module). A sociable interface module (module, for
short) is a tuple M = (Act,V G,V L,V H ,W,ρ IL,ρ IG,ρO,ψ I ,ψO), where:

– Act is a set of actions.
– V G is a set of global variables, V L is a set of local variables, and V H ⊆ V G is

a set of history variables. We require V L ∩V G = /0. We set V all = V L ∪V G and
V = V L∪V H .

– W : Act ⇒ V all associates with each a ∈ Act the set of variables W (a) ⊆ V all that
can be modified by a.

– For each a ∈ Act, the predicate ρ IL(a) ∈ Preds(V all ∪ (V all)′) is the input local
transition predicate for a. We require this transition predicate to be deterministic
w.r.t. variables in V L, that is, for all a ∈ Act, all s ∈ [[V all]], and all t ∈ [[(V G)′]], there
is a unique u ∈ [[(V L)′]] such that s◦ t ◦ u |= ρ IL(a).

– For each a ∈ Act, the predicate ρ IG(a) ∈ Preds(V all ∪ (V G)′) is the input global
transition predicate for a.

– For each a∈ Act, the predicate ρO(a)∈ Preds(V all∪W (a)′) is the output transition
predicate for a.

– ψ I ∈ Preds(V all) is the input invariant predicate.
– ψO ∈ Preds(V all) is the output invariant predicate.

A state is a value assignment to V all; we denote the set of states of the module by
S = [[V all]]. The invariant predicates define invariants

ϕ I = {s ∈ S | s |= ψ I}, ϕO = {s ∈ S | s |= ψO}.

As a shorthand, for all a ∈ Act we let ρ I(a) = ρ IL(a)∧ρ IG(a), and we define

ρ̂ I(a) = ρ I(a)∧ (ψ I)′

ρ̂O(a) = ρO(a)∧ (ψO)′ ∧Unchgd(V all \W(a)).

Notice that ρ̂ I(a) and ρ̂O(a) are predicates over V all∪ (V all)′.
In our model, each module owns a set of local variables, that describe the internal

state of a component. We distinguish a set V H of history variables, and a set V G \V H of
history-free variables. A module must be aware of all actions that can modify its history
variables (see, in the following, the non-interference condition in Definition 19). On

94 L. de Alfaro et al.

the other hand, history-free variables can be modified by environment actions that are
not known to the module. The distinction between the history and history-free global
variables is thus used to limit the amount of actions a module should include; this point
will be clarified when we will discuss module composability.

The definitions of the input and output transition relations are similar to those of
Section 2. We require the input transition relation to be deterministic on local variables.
This assumption corresponds to the assumption, in the model without variables, that
input transitions are deterministic. In fact, we will see that when an output and an input
transitions synchronize, it is the output transition that selects the next value of the global
variables, and the input transition is used only to determine the next value of the local
variables.

In the remainder of this section we consider a fixed module M =
(ActM,V G

M ,V L
M,V H

M ,WM,ρ IL
M ,ρ IG

M ,ρO
M,ψ I

M,ψO
M), and we set VM = V L

M ∪V H
M , V all

M = V L
M ∪

V G
M , and correspondingly for the shorthands ρ̂ I

M and ρ̂O
M.

Definition 16 (Set of States). The set of states of the sociable interface module M is
given by SM = [[V all

M]].

The sets of moves for players Input and Output are defined as follows. Note that, when
Input plays the move Δ0, Input can also choose a new assignment to the history-free
variables. This models the fact that history-free variables can be modified by environ-
ment actions that are not known to the module.

Definition 17 (Moves). The sets Γ I(M,s) and Γ O(M,s) of Input and Output moves at
s ∈ SM are defined as follows:

Γ I(M,s) ={Δ0}×{s′ ∈ [[V all
M]] | s′[VM] = s[VM]}∪

{〈a,s′〉 ∈ ActM × [[V all
M]] | 〈s,s′〉 |= ρ̂ I

M(a)}

Γ O(M,s) ={Δ0}∪{〈a,s′〉 ∈ ActM × [[V all
M]] | 〈s,s′〉 |= ρ̂O

M(a)}.

The outcome of the moves are as follows.

Definition 18 (Move Outcome). For all states s ∈ SM and moves mI ∈ Γ I(M,s) and
mO ∈ Γ O(M,s), the outcome δ (M,s,mI ,mO) ⊆ SM of playing mI and mO at s can be
defined as follows.

δ (M,s,〈Δ0,s
′〉,Δ0) = {s′}, δ (M,s,〈Δ0,s

′〉,〈a,t ′〉) = {s′, t ′},

δ (M,s,〈a,s′〉,Δ0) = {s′}, δ (M,s,〈a,s′〉,〈b,t ′〉) = {s′, t ′}.

The definitions of run, strategy, strategy outcome, winning state and well-formedness
are similar to the ones given in Section 2.

3.4 The Printer Example, Continued

Figure 6 presents our print-server example, encoded in the actual input language of the
tool TIC. The system consists of the global variables busy, size, user, of a printer mod-
ule, and of two user modules. In each module, we give the set of history-free variables

Sociable Interfaces 95

var busy: bool; // global variable indicating a printer busy

var size: [0..10]; // size of the print job

var user: [0..5]; // user who requested the job

module Printer:

output ack { busy ==> not busy’; }

// ack? is not allowed

input print { global: not busy ==> busy’; }

endmodule

module User1:

var s: [0..1];

stateless size, user;

output print { s = 0 & not busy ==>

s’ = 1 & user’ = 1 & nondet size’; }

input print { } // print? is allowed and ignored

input ack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore ack? when s=0

endmodule

module User2:

var s: [0..1];

stateless size, user;

output print { s = 0 & not busy ==>

s’ = 1 & user’ = 2 & nondet size’; }

input print { } // print? is allowed and ignored

input ack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore ack? when s=0

endmodule

Fig. 6. TIC input modeling a simple print server

96 L. de Alfaro et al.

(called stateless in the language of the tool); the set of global variables of the module is
simply inferred as the set of global variables that appear anywhere in the module.

The module Printer communicates via two actions, ack and print. The transition
predicates of these actions are specified using a guarded-commands syntax, similar to
[4,1]. Each guarded command has the form guard ⇒ command, where guard and com-
mand are formulas written over the set of primed and unprimed variables. A guarded
command guard ⇒ command can be taken when its guard is true; when taken, com-
mand specify how the variables are updated. For instance, the output transition print in
module User1 can be taken when s = 0 and busy = F , and it leads to a state where
s = 1 and user = 1. The value of size in the destination state is nondeterministic.

When specifying sociable interface modules in the tool TIC, we use several short-
hands to make the notation more pleasant:

– When we do not specify the input or output transition relation for an action, the
omitted transition relations are assumed to be false. For example, the action ack
has no input transition relation in the printer: this specifies that no other module
should be able to emit it. Similarly, the action ack has no output transition relation
in the user modules, specifying that modules do not generate it.

– When we specify a transition relation via an empty guarded command, the guard is
assumed to be always true, and the command is as follows:
• Output transition relations, and local part of input transitions: no variables are

changed.
• Global part of input transitions: the transition relation is considered to be true,

so that all state changes are accepted.
– In a guarded command guard ⇒ command, when guard is missing, it is assumed

to be true. If command is missing, then:
• Output transitions, and local part of input transitions: no variables are

changed.
• Global part of input transitions: the transition relation is considered to be true,

so that all state changes are accepted.
– In output transitions, and in the local part of input transitions, variables that are

not mentioned primed in the command portion of a guarded command guard ⇒
command do not change their value.

As a more elaborate example, in Figure 7 we present the code of a print server that
can accept or reject jobs, depending on their length.

3.5 Compatibility and Composition

We now describe the composition of two modules. Due to the presence of variables,
this process is more involved than the one presented in Section 2.

The composition of two modules M1 and M2 is defined in four steps, in a similar
way as stated in [9]. First, we define when M1 and M2 are composable, and in the
affirmative case, we define their product M1⊗M2. On the resulting product module, we
identify a set of bad states: these are the states where M1 (resp. M2) can produce an
output that is not accepted by M2 (resp. M1). Finally, the composition M1‖M2 of M1 and

Sociable Interfaces 97

var busy: bool; // global variable indicating a printer busy

var size: [0..10]; // size of the print job

var user: [0..5]; // user who requested the job

module Printer:

output ack { busy & size < 5 ==> not busy’; } // accept if size < 5

// ack? is not allowed

output nack { busy & size > 4 ==> not busy’; } // reject if size > 4

// nack? is not allowed

input print { global: not busy ==> busy’; }

endmodule

module User1:

var s: [0..1];

stateless size, user;

output print { s = 0 & not busy ==>

s’ = 1 & user’ = 1 & nondet size’; }

input print { } // print? is allowed and ignored

input ack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore ack? when s=0

input nack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore nack? when s=0

endmodule

module User2:

var s: [0..1];

stateless size, user;

output print { s = 0 & not busy ==>

s’ = 1 & user’ = 2 & nondet size’; }

input print { } // print? is allowed and ignored

input ack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore ack? when s=0

input nack { local: s = 1 ==> s’ := 0;

else s = 0 ==> ; } // ignore nack? when s=0

endmodule

Fig. 7. TIC input modeling a print server that rejects large jobs

98 L. de Alfaro et al.

M2 is obtained from the product M1⊗M2 by strengthening the input transition relations
of M1⊗M2 in such a way that all bad states are avoided.

In the following, we consider two modules M1 and M2, where Mi =
(Acti,V G

i ,V L
i ,V H

i ,Wi,ρ IL
i ,ρ IG

i ,ρO
i ,ψ I

i ,ψO
i), for i = 1,2, and we let Vi = V L

i ∪V H
i and

V all
i = V L

i ∪V G
i .

We say that two modules M1 and M2 are composable if they have disjoint sets of
local variables, and if they satisfy a non-interference condition, stating that if an action
of a module can modify a state variable of the other, then the action is shared. This
condition ensures that the set of actions of a module includes all the actions that can
modify its state variables. This condition is essential for modular reasoning. It ensures
that composition does not add behaviors: all changes in the state of M1 caused by mod-
ules with which M1 is composable can be already explained by the input transitions
associated with actions of M1.

Definition 19 (Composability). Two sociable interface modules M1 and M2 are com-
posable iff V L

1 ∩V L
2 = /0 and if the following non-interference conditions hold:

∀a ∈ Act2 . W2(a)∩V1 �= /0 =⇒ a ∈ Act1
∀a ∈ Act1 . W1(a)∩V2 �= /0 =⇒ a ∈ Act2.

The non-interference condition is the main justification for distinguishing between
the sets of history and history-free variables. The non-interference condition states that
a module should know all actions of other modules that modify its history variables. If
we dropped the distinction, requiring that a module knows all actions of other modules
that can change any of its variables (history or history-free), we could greatly increase
the number of actions that must be known to the module.

As an example, consider a set of modules {Ni}i∈{1..100}. Each module has an action
ai whose output transition relation sets index to i, and x to some content, where index and
x are global variables shared among all N1, . . . , N100. If module Ni does not need to keep
track of the value of index and x, as these variables are used as outputs only, then we can
let index �∈VNi and x �∈VNi , even though of course index,x ∈V all

Ni
. The non-interference

condition for Ni, stated in terms of VNi , will not require Ni to know about a j for i �= j.
This keeps the model of Ni simple and concise and, even more importantly, enables us
to model Ni before we know exactly how many other modules there are that can modify
index and x. Dropping the distinction between VNi and V all

Ni
, on the other hand, would

force each Ni to have all the actions a1, . . . ,a100 in its set of actions, greatly complicating
the model, and forcing us to know in advance how many components there are, before
each of the components can be modeled. Similarly, if a module reads a variable x, but
does not need to know how and when the value of x is changed, then the variable x can
be declared to be history-free, so that the module does not have to know all the actions
that can modify x. Hence, the distinction between history and history-free variables is
at the heart of our “sociable” approach to compositional modeling.

We define the product of two sociable interface modules M1 and M2 as follows.

Definition 20 (Product). Assume that M1 and M2 are composable. The product M1⊗
M2 is the interface M12 = (Act12,V G

12,V
L
12,V

H
12,W12,ρ IL

12 ,ρ IG
12 ,ρO

12,ψ
I
12,ψO

12), defined as
follows.

Sociable Interfaces 99

– Act12 = Act1∪Act2.

– V G
12 = V G

1 ∪V G
2 ; V L

12 = V L
1 ∪V L

2 ; V H
12 = V H

1 ∪V H
2 ; V all

12 = V all
1 ∪V all

2 .

– W12(a) =
{

W1(a)∪W2(a)∪V L
1 ∪V L

2 for a ∈ Shared(M1,M2)
Wi(a) for a ∈ Acti \Act3−1, i ∈ {1,2}.

– ψ I
12 = ψ I

1∧ψ I
2; ψO

12 = ψO
1 ∧ψO

2 .

– For a ∈ Shared(M1,M2), we let:

ρO
12(a) =

=

⎛⎜⎝∃(V G
12)

′ \W12(a)′ .ρO
1 (a)∧ρ IL

2 (a)∧ρ IG
2 (a)∧Unchgd(V all

12 \ (W1(a)∪V L
2))

∨
∃(V G

12)
′ \W12(a)′ .ρO

2 (a)∧ρ IL
1 (a)∧ρ IG

1 (a)∧Unchgd(V all
12 \ (W2(a)∪V L

1))

⎞⎟⎠
ρ IL

12(a) = ρ IL
1 (a)∧ρ IL

2 (a)

ρ IG
12 (a) = ρ IG

1 (a)∧ρ IG
2 (a).

– For i ∈ {1,2} and a ∈ Acti \Act3−i we let:

ρO
12(a) = ρO

i (a)

ρ IL
12(a) = ρ IL

i (a)∧Unchgd(V L
3−i)

ρ IG
12 (a) = ρ IG

i (a)∧Unchgd(V H
3−i).

We have the following result.

Theorem 4. Product between modules is a commutative and associative operation.

Similarly to Definition 12, we identify a set of locally incompatible states of the product
M1⊗M2.

Definition 21 (Local Compatibility). Given s ∈ [[V all
12]], we say that s is good iff it

satisfies the predicate good(M1,M2), defined as follows:

good(M1,M2) =

=
∧

a∈Shared(M1,M2)

⎛⎜⎜⎜⎝
∀(V all

12)′ .
((

ρ̂O
1 (a)∧Unchgd(V G

2 \W1(a))
)

=⇒ ρ̂ IG
2 (a)

)
∧

∀(V all
12)′ .

((
ρ̂O

2 (a)∧Unchgd(V G
1 \W2(a))

)
=⇒ ρ̂ IG

1 (a)
)
⎞⎟⎟⎟⎠ .

Using this condition, the composition M1‖M2 is obtained from M1⊗M2 by restricting
the input invariant of M12 to the set of well-formed states from where input has a strat-
egy to always stay in the good states good(M1,M2), in analogy with Definition 13.

Theorem 5. Composition between modules is a commutative and associative operation.

100 L. de Alfaro et al.

4 Refinement

We wish to define a refinement relation between modules, such that when M1 re-
fines M2, M1 can be used as a replacement for M2 in any context. First, some
conditions should hold on the set of variables that the modules manipulate. In the
following, M1 and M2 are two modules in normal form. For i ∈ {1,2}, let Mi =
(Acti,V G

i ,V L
i ,V H

i ,Wi,ρ IL
i ,ρ IG

i ,ρO
i ,ψ I

i ,ψO
i), Vi = V H

i ∪V L
i and Si = [[Vi]]. The sets Acti,

V G
i , V H

i , and Wi jointly define the signature of a module Mi.

Definition 22 (Signature). The signature Sign(Mi) of a module Mi = (Acti,V G
i ,V L

i ,
V H

i ,Wi,ρ IL
i ,ρ IG

i ,ρO
i ,ψ I

i ,ψO
i), is the tuple (Acti,V G

i ,V H
i ,Wi).

The following result shows that signature equality preserves composability. It can be
proved by inspecting Definition 19.

Theorem 6. Let N1,N2, and N3 be three modules, such that the Sign(N1) = Sign(N2),
and N2 and N3 are composable. For i ∈ {1,2,3}, let V L

i be the set of local variables of
Ni. If V L

1 ∩V L
3 = /0, then N1 and N3 are composable.

To replace M2, M1 should also behave like it, from the point of view of the environment.
As usual in a game-theoretic setting such as ours, this constraint is captured by alter-
nating simulation [2]. Intuitively, M1 must be willing to accept at least all the inputs
that M2 accepts, and it should emit a subset of the outputs emitted by M2.

Definition 23 (Alternating Simulation). Assume that Sign(M1) = Sign(M2). A rela-
tion +⊆ S1×S2 is an alternating simulation iff s + t implies:

1. s[V G
1] = t[V G

1];

2. for all a ∈ Act1 and for all t ′ ∈ S2 such that 〈t,t ′〉 |= ρ̂ I
2(a) there exists s′ ∈ S1 such

that 〈s,s′〉 |= ρ̂ I
1(a) and s′ + t ′;

3. for all a ∈ Act1 and for all s′ ∈ S1 such that 〈s,s′〉 |= ρ̂O
1 (a) there exists t ′ ∈ S2 such

that 〈t, t ′〉 |= ρ̂O
2 (a) and s′ + t ′.

We say that s is similar to t, and we write s ! t, if there exists an alternating simulation
+ such that s + t. Similarity is itself a simulation (the coarsest one). For M1 to refine
M2, M1 and M2 should have the same signature, and each well-formed state of M2 must
be similar to some well-formed state of M1.

Definition 24 (Refinement). We say that M1 refines M2 iff (i) Sign(M1) = Sign(M2),
and (ii) for all t |= ψ I

2∧ψO
2 there is s |= ψ I

1∧ψO
1 such that s! t.

Theorem 7. Let N1,N2, and N3 be three modules, such that N1 refines N2, and N2 and
N3 are compatible. For i ∈ {1,2,3}, let V L

i be the set of local variables of Ni. If V L
1 ∩

V L
3 = /0, then N1 and N3 are compatible.

We now introduce the related concept of bisimilarity. Bisimilarity between two modules
captures the intuitive concept that the environment cannot distinguish the two modules.

Sociable Interfaces 101

Definition 25 (Alternating Bisimulation). Assume that Sign(M1) = Sign(M2). A re-
lation ≈⊆ S1×S2 is an alternating bisimulation iff it is a symmetrical alternating sim-
ulation.

We say that s and t are bisimilar, and we write s ∼= t, if there exists an alternating
bisimulation ≈ such that s ≈ t.

Definition 26 (Bisimilarity). We say that M1 and M2 are bisimilar iff (i) Sign(M1) =
Sign(M2), and (ii) for all t |= ψ I

2∧ψO
2 there is s |= ψ I

1∧ψO
1 such that s ∼= t, and for all

s |= ψ I
1∧ψO

1 there is t |= ψ I
2∧ψO

2 such that s∼= t.

Theorem 8. Let N1,N2, and N3 be three modules, such that N1 is bisimilar to N2. For
i ∈ {1,2,3}, let V L

i be the set of local variables of Ni. If V L
1 ∩V L

3 = /0 and V L
2 ∩V L

3 = /0,
then N1 and N3 are compatible iff N2 and N3 are compatible.

5 Symbolic Implementation

In this section, we examine the problem of efficiently implementing the following op-
erations: (i) module composition, (ii) verification of safety properties of modules (such
as well-formedness), and (iii) refinement and bisimilarity checking between modules.

Consider the module M = (ActM,V G
M ,V L

M,V H
M ,WM,ρ IL

M ,ρ IG
M ,ρO

M,ψ I
M,ψO

M), and set
V all

M = V L
M ∪V G

M .
A well-established technique for efficiently implementing finite transition systems

is based on MDDs [12,14]. MDDs are graph-like data structures that allow us to repre-
sent and manipulate functions of the type A → {T,F}, for a finite set A (i.e. predicates
over A). Therefore, we assume that the variable domain D is finite, and we represent the
predicates ρ IL

M , ρ IG
M , ρO

M , ψ I
M, and ψO

M as MDDs. We now show that all the operations
involved in computing the composition of modules, checking their well-formedness,
checking safety properties, and checking refinement are computable on MDDs.

5.1 Safety Games

A basic operation on modules is computing the set of winning states for a player p ∈
{I,O} w.r.t. a safety goal, that is Winp(M,�ϕ), for some set ϕ ⊆ [[V all

M]]. The operations
of checking well-formedness, putting a module in normal form, and computing the
composition of two modules, are all reducible to solving safety games.

By abuse of notation, we denote by Winp(M,�ϕ) both the set of states it denotes,
and its characteristic function, which is a predicate over V all

M .
It is well known that such set of winning states can be characterized as a fix-point

of an equation involving the so-called controllable predecessors operators. For a player
p ∈ {I,O} and a predicate X ∈ Preds(V all

M), the operator Cprep(X) returns the set of
states from which player p can force the game into X in one step, regardless of the
opponent’s moves. Formally, we have the following definition.

102 L. de Alfaro et al.

Definition 27 (Controllable Predecessor Operator). For a predicate X ∈Preds(V all
M),

we have:

CpreI(X) = ∃mI ∈ Γ I(M,s) .∀mO ∈ Γ O(M,s) .∀t ∈ δ (M,s,mI ,mO) . t |= X

CpreO(X) = ∃mO ∈ Γ O(M,s) .∀mI ∈ Γ I(M,s) .∀t ∈ δ (M,s,mI ,mO) . t |= X .

Intuitively, CpreI(X) (resp.CpreO(X)) holds true for the states from which the Input
(resp. Output) player has a move that leads to X for each possible counter-move of the
Output (resp. Input) player. For all ϕ ∈ Preds(V all

M), we have:

WinI(M,�ϕ) = νX . [ϕ ∧CpreI(X)]

WinO(M,�ϕ) = νX . [ϕ ∧CpreO(X)],

where νX . f (X) denotes the greatest fixpoint of the operator f . Since CpreI(·) is mono-
tonic, the above fixpoints exist and can be computed by Picard iteration:

X0 = ϕ , Xi+1 = ϕ ∧CpreI(Xi), . . . Xn = Xn+1 = WinI(M,�ϕ). (1)

We now show how to compute CpreI(X) starting from the MDD representation of M.
Considering Definition 18, in order for a state s to satisfy CpreI(X), two conditions
must hold. First, every output transition should lead to X . Second, either s |= X , in
which case Input can play 〈Δ0,s〉, or there must be an input transition that leads to X .
This observation allows us to express CpreI(X) as follows:

CpreI(X) = ∀PreO(X)∧∃PreI(X),

where

∀PreO(X) =
∧

a∈ActM

∀(V all
M)′ . (ρ̂O

M(a) ⇒ X ′)

∃PreI(X) = X ∨
(
∃(V all

M)′ .X ′ ∧Unchgd(V H
M ∪V L

M)
)
∨

∨
a∈ActM

∃(V all
M)′ . (ρ̂ I

M(a)∧X ′).

Since boolean operations and quantifications of variables are computable on MDDs, the
operators above are computable. In a dual fashion, CpreO(X) can be computed from the
non-game operators ∀PreI(·) and ∃PreO(·).

We can improve the efficiency of computing WinI(M,�ϕ), by observing that,
since (1) is a decreasing sequence, it holds that νX . [ϕ ∧CpreI(X)] = νX . [ϕ ∧X ∧
CpreI(X)]. Since X ∧CpreI(X) = X ∧∀PreO(X), we obtain

WinI(M,�ϕ) = νX . [ϕ ∧X ∧∀PreO(X)] = νX . [ϕ ∧∀PreO(X)].

In conclusion, we can then compute WinI(M,�ϕ) by iterating ∀PreO(·) instead of
the more complicated CpreI(·). A similar argument holds for the computation of
WinO(M,�ϕ).

Sociable Interfaces 103

5.2 Composition

By inspecting Definition 20, it is clear that computing the product of two modules
M1 and M2 only involves simple boolean operations on the predicates that define the
modules. Such operations are computable on MDDs.

To obtain the composition M1‖M2, according to Definition 13, the in-
put invariant ψ I

12 of the product must be conjoined with the predicate
WinI(M1⊗M2,�(ψ I

12∧good(M1,M2)). To compute the above winning set, we first
compute the predicate good(M1,M2) following Definition 21, and then solve the safety
game as explained in Section 5.1.

5.3 Refinement

Let M1 and M2 be two modules in normal form, such that Sign(M1) = Sign(M2).
For i ∈ {1,2}, let Mi = (Act,V G,V L

i ,V H ,W,ρ IL
i ,ρ IG

i ,ρO
i ,ψ I

i ,ψO
i), V all

i = V G ∪V L
i and

Si = [[V all
i]]. Assume for simplicity that V L

1 ∩V L
2 = /0. We wish to compute the coarsest

alternating simulation ! between S1 and S2. Consider the predicate ψ! over the set of
variables V all

1 ∪V all
2 , defined as the greatest fixpoint of the operator SimPre(·), defined

as follows. For all X ∈ Preds(V all
1 ∪V all

2), we have

SimPre(X) = X ∧
∧

a∈Act
∀(V all

2)′ .∃(V L
1)′ .

(
ρ̂ I

2(a) =⇒ ρ̂ I
1(a)∧X ′)

∧
∧

a∈Act
∀(V all

1)′ .∃(V L
2)′ .

(
ρ̂O

1 (a) =⇒ ρ̂O
2 (a)∧X ′).

The operator SimPre(·), and consequently its fixpoint ψ!, can be computed from the
MDD representation of M1 and M2. The following result states that ψ! can be used
to trivially obtain !. The result can be proven by induction, observing that SimPre(·)
represents conditions 2 and 3 of Definition 23.

Theorem 9. Given s ∈ S1 and t ∈ S2, s ! t iff s[V G] = t[V G] and s◦ t[VL
2] |= ψ!.

A similar algorithm can be used to compute the coarsest bisimulation ∼=.

6 Comparison with Previous Interface Models

The sociable interface model presented in this paper is closely related to the I/O Au-
tomata Model (IOA) of [11]: sociable interfaces synchronize on actions and use vari-
ables to encode the state of components. However, sociable interfaces diverge from I/O
Automata in several ways. Unlike I/O Automata, where every state must be receptive to
every possible input event, sociable interfaces allow states to forbid some input events.
By not accepting certain inputs, sociable interfaces express the assumption that the en-
vironment never generates these inputs: hence, sociable interfaces (like other interface
models) model both the output behavior, and the input assumptions, of a component.
This approach implies a notion of composition (based on synthesizing the weakest en-
vironment assumptions that guarantee compatibility) which is not present in the I/O
Automata Model.

104 L. de Alfaro et al.

Interface models are the subject of many recent works. Previous interface models,
such as interface automata [6,8] and interface modules [7,3] were based on either ac-
tions, or variables, but not both. Sociable interfaces do not break new ground in the
conceptual theory of interface models. However, by allowing both actions and vari-
ables, they take advantage of the existing models and try to avoid their deficiencies.
The rest of this section is devoted to a quick presentation of existing interface models.

Variable-based interface formalisms. In variable-based interface formalisms, such as
the formalisms of [7,3], communication is mediated by input and output variables, and
the system evolves in synchronous steps. It is well known that synchronous, variable-
based models can also encode communication via actions [1]: the generation of an
output a! is translated into the toggling of the value of an (output) boolean variable xa,
and the reception of an input a? is encoded by forcing a transition to occur whenever the
(input) variable xa is toggled. This encoding is made more attractive by syntactic sugar
[1]. However, this encoding prevents the modeling of many-to-one and many-to-many
communication.

In fact, due to the synchronous nature of the formalism, a variable can be modified at
most by one module: if two modules modified it, there would be no simple way to deter-
mine its updated value.1 Since the generation of an output a! is modeled by toggling the
value of a boolean variable xa, this limitation indicates that an output action can be emit-
ted at most by one module. As a consequence, we cannot write modules that can accept
inputs from multiple sources: every module must know precisely which other modules
can provide inputs to it, so that distinct communication actions can be used. The advance
knowledge of the modules involved in communication hampers module re-use.

Action-based interface formalisms. Action-based interfaces, such as the models of
[6,5,8], enable a natural encoding of asynchronous communication. In previous pro-
posal, however, two interfaces could be composed only if they did not share output
actions — again ruling out many-to-one communication.

Furthermore, previous action-based formalisms lacked a notion of global variables
which are visible to all the modules of a system. Such global variables are a very pow-
erful and versatile modeling paradigm, providing a notion of global, shared state. Mim-
icking global variables in purely action-based models is rather inconvenient: it requires
encapsulating every global variable by a module, whose state corresponds to the value
of the variable. Read and write accesses to the variable must then be translated to ap-
propriate sequences of input and output actions, leading to cumbersome models.

References

1. R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System Design, 15:7–48,
1999.

2. R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations.
In CONCUR 98: Concurrency Theory. 9th Int. Conf., volume 1466 of Lect. Notes in Comp.
Sci., pages 163–178. Springer-Verlag, 1998.

1 A possible way out would be to define that, in case of simultaneous updates, only one of the
updates occurs nondeterministically. This choice, however, would lead to a complex semantics,
and to complex analysis algorithms.

Sociable Interfaces 105

3. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Synchronous and bidirec-
tional component interfaces. In CAV 02: Proc. of 14th Conf. on Computer Aided Verification,
volume 2404 of Lect. Notes in Comp. Sci., pages 414–427. Springer-Verlag, 2002.

4. K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley Pub-
lishing Company, 1988.

5. L. de Alfaro. Game models for open systems. In Proceedings of the International Symposium
on Verification (Theory in Practice), volume 2772 of Lect. Notes in Comp. Sci. Springer-
Verlag, 2003.

6. L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the 8th European
Software Engineering Conference and the 9th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE), pages 109–120. ACM Press, 2001.

7. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design. In EMSOFT
01: 1st Intl. Workshop on Embedded Software, volume 2211 of Lect. Notes in Comp. Sci.,
pages 148–165. Springer-Verlag, 2001.

8. L. de Alfaro and T.A. Henzinger. Interface-based design. In Engineering Theories of Soft-
ware Intensive Systems, proceedings of the Marktoberdorf Summer School. Kluwer, 2004.

9. L. de Alfaro and M. Stoelinga. Interfaces: A game-theoretic framework to reason about open
systems. In FOCLASA 03: Proceedings of the 2nd International Workshop on Foundations
of Coordination Languages and Software Architectures, 2003.

10. Xavier Leroy. Objective caml. http://caml.inria.fr/ocaml/index.en.html.
11. N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.
12. R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Al-

gebraic Decision Diagrams and Their Applications. In IEEE /ACM International Conference
on CAD, pages 188–191, Santa Clara, California, 1993. IEEE Computer Society Press.

13. Fabio Somenzi. Cudd: Cu decision diagram package. http://vlsi.colorado.edu/
˜fabio/CUDD/cuddIntro.html.

14. A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manipu-
lation. In Proceedings International Conference CAD (ICCAD-91), 1990.

About the Combination of Trees and Rational
Numbers in a Complete First-Order Theory

Khalil Djelloul

Laboratoire d’Informatique Fondamentale de Marseille,
Parc scientifique et technologique de Luminy,

163 avenue de Luminy - Case 901,
13288 Marseille, cedex 9. France

Abstract. Two infinite structures (sets together with operations and
relations) hold our attention here: the trees together with operations
of construction and the rational numbers together with the operations
of addition and substraction and a linear dense order relation without
endpoints. The object of this paper is the study of the evaluated trees, a
structure mixing the two preceding ones.

First of all, we establish a general theorem which gives a sufficient
condition for the completeness of a first-order theory. This theorem uses
a special quantifier, primarily asserting the existence of an infinity of
individuals having a given first order property. The proof of the theorem
is nothing other than the broad outline of a general algorithm which
decides if a proposition or its negation is true in certain theories.

We introduce then the theory TE of the evaluated trees and show its
completeness using our theorem. From our proof it is possible to extract
a general algorithm for solving quantified constraints in TE .

1 Introduction

Recall that a tree built on a set E is essentially a hierarchized set of nodes labelled
by the elements of E. To each element e of E corresponds an operation f , called
construction operation, which, starting from a sequence a1, . . . , an of trees, builds
the tree whose top node is labelled e and whose sequence of immediate daughters
is a1, . . . , an.

The algebra of (possibly) infinite trees plays a fundamental act in computer
science: it is a model for composed data known as record in Pascal or structure
in C. The construction operation corresponds to the creation of a new record,
i.e. of a cell containing an elementary information possibly followed by n cells,
each one pointing to a record. Infinite trees correspond to a circuit of pointers.

As early as 1976, Gerard Huet proposed an algorithm for unifying infinite
terms, that is solving equations in that algebra [10]. Bruno Courcelle has studied
the properties of infinite trees in the scope of recursive program schemes [8,7].
Alain Colmerauer has described the execution of Prolog II, III and IV programs
in terms of solving equations and disequations in that algebra [5,4,2]. Michael
Maher has proposed and justified complete axiomatizations of different sets of

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 106–121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

About the Combination of Trees and Rational Numbers 107

trees equipped with construction operations [11]: for each of these sets, he has
presented a complete theory, i.e. a set of first-order properties which entails all
the other first-order properties of this set.

As for us, we give and justify here a complete axiomatization of the set of
(possibly) infinite trees built on a superset of the set of the rational numbers
and equipped not only with construction operations but with the operations of
addition and substraction and a linear order relation (dense, without endpoints).
It is this set with its operations and relations, i.e. this model, that we call
evaluated trees.

The paper is organized in five sections followed by a conclusion. This intro-
duction is the first section. The second one introduces the needed elements of
first-order logic and ends with a basic sufficient condition for the completeness
of a theory. It is a variant of the one given in section 1.5 of [3].

The third section is devoted to a much more elaborated sufficient condition
for the completeness of a theory. The idea behind this condition comes from a de-
composition algorithm introduced by Thi-Bich-Hanh Dao in her dissertation [9].
The idea consists in decomposing a sequence of existential quantifications pre-
ceding a conjunction of formulas, in three embedded sequences of quantifications
having very particular properties, which can be expressed with the help of three
special quantifiers denoted by ∃?, ∃!, ∃Ψ(u)

o ∞ and called at-most-one, exactly-one,
zero-infinite. These special quantifiers, together with their properties, are de-
scribed at the beginning of the section. While the quantifiers ∃?, ∃! are just
convenient notations, the quantifier ∃Ψ(u)

o ∞ , one of the essential contribution of
this paper, expresses a property which is not expressible at the first-order level.

The fourth section introduces the theory TE of the evaluated trees and its
standard model E. Particular formulas called blocks are also studied there. They
are used for building all needed formulas.

The fifth section shows the completeness of TE by using the completeness
theorem of the third section. The general theorem, the zero-infinite quantifier
and the proof of the completeness of TE are our contribution in this paper. Due
to lack of space, we give here only the main proofs, nevertheless, we can find a
complete version with full proofs at http://www.lif.univ-mrs.fr/∼djelloul.

2 Formal Preliminaries

2.1 Expressions

We are given once for all, an infinite countable set V of variables and the set L
of logical symbols:

=, true, false,¬,∧,∨,→,↔,∀,∃, (,).

We are also given once for all, a signature S, i.e. a set of symbols partitioned
into two subsets: the set of function symbols and the set of relation symbols. To
each element s of S is linked a non-negative integer called arity of s. An n-ary
symbol is a symbol with arity n. An 0-ary function symbol is called constant.

108 K. Djelloul

As usual, an expression is a word on L∪ S which is either a term, i.e. of the
one of the two forms:

x, ft1 . . . tn, (1)

or a formula, i.e. of the one of the eleven forms:

s = t, rt1 . . . tn, true, false,
¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), (ϕ ↔ ψ),

(∀x ϕ), (∃x ϕ).
(2)

In (1), x is taken from V, f is an n-ary function symbol taken from S and the
ti’s are shorter terms. In (2), s, t and the ti’s are terms, r is an n-ary relation
symbol taken from S and ϕ and ψ are shorter formulas.

The formulas of the first line are known as atomic, and flat if they are of one
of the forms:

true, false, x0 = x1, x0 = fx1...xn, rx1...xn,

where the xi’s are taken from V, f is an n-ary function symbol taken from S
and r is an n-ary relation symbol taken from S.

Recall that an occurrence of a variable x in a formula is bound if it occurs in
a sub-formula of the form (∀x ϕ) or (∃x ϕ). It is free in the contrary case. The
free variables of a formula are those which have at least a free occurrence in this
formula. A proposition or a sentence is a formula without free variables.

We do not distinguish two formulas which can be made equal using the
following transformations of the sub-formulas:

(ϕ ∧ ψ) ∧ φ =⇒ ϕ ∧ (ψ ∧ φ), ϕ ∧ ψ =⇒ ψ ∧ ϕ,
ϕ ∧ true =⇒ ϕ, ϕ ∨ false =⇒ ϕ.

If I is the set {i1, ..., in}, we write respectively
∧

i∈I ϕi and
∨

i∈I ϕi for ϕi1 ∧
ϕi2 ∧ ...∧ϕin

∧ true, and ϕi1 ∨ϕi2 ∨ ...∨ϕin
∨ false. In particular, for I = ∅, the

formulas
∧

i∈I ϕi and
∨

i∈I ϕi are reduced respectively to true and to false. We
denote by Card(I), the cardinality of the set I.

2.2 Model

A model is a couple M = (M,F), where:

– M, the universe or domain of M , is a nonempty set disjoint from S, its
elements are called individuals of M ;

– F is a family of operations and relations in the set M, subscripted by the
elements of S and such that:
• for every n-ary function symbol f taken from S, fM is an n-ary operation

in M, i.e. an application from Mn in M. In particular, when f is a
constant, fM belongs to M;

• for every n-ary relation symbol r taken from S, rM is an n-ary relation
in M, i.e. a subset of Mn.

About the Combination of Trees and Rational Numbers 109

Let M = (M,F) be a model. An M -expression ϕ is an expression built on the
signature S∪M instead of S, by considering the elements of M as 0-ary function
symbols. If for each free variable x of ϕ, we replace each free occurrence of x
by the same element of M, we get an M -expression called instantiation of ϕ by
individuals of M .

If ϕ is a M -formula, we say that ϕ is true in M and we write

M |= ϕ, (3)

iff for any instantiation ϕ′ of ϕ by individuals of M , the set M has the property
expressed by ϕ′, when we interpret the function and relation symbols of ϕ′ by
the corresponding functions and relations of M and when we give to the logical
symbols their usual meaning.

Let us finish this sub-section by a convenient notation . Let x̄ = x1...xn be
a word on V and let ī = i1...in be a word on M or V of the same length as
x̄. If ϕ(x̄) is a M -formula, then we denote by ϕ(̄i), the M -formula obtained by
replacing in ϕ(x̄) each free occurrence of xj by ij .

2.3 Theory

A theory is a (possibly infinite) set of propositions. A set T ∗ of propositions is
said to be a set of axioms for a theory T iff T ∗ and T have the same consequences.
We say that the model M is a model of T , iff for each element ϕ of T , M |= ϕ.
If ϕ is a formula, we write

T |= ϕ,

iff for each model M of T , M |= ϕ. We say that the formulas ϕ and ψ are
equivalent in T iff T |= ϕ ↔ ψ.

2.4 Complete Theory

In what follows we use the abbreviation wfva for “without free variables added”.
A formula ϕ is equivalent to a wfva formula ψ in T means that T |= ϕ ↔ ψ and
ψ does not contain other free variables than those of ϕ.

Definition 2.4.1 A theory T is complete iff for every proposition ϕ, one and
only one of the following properties holds: T |= ϕ, T |= ¬ϕ.

Property 2.4.2 A theory T is complete if there exists a set of formulas, called
basic formulas, such that:

1. every flat atomic formula is equivalent in T to a wfva Boolean combination
of basic formulas,

2. every basic formula without free variables is equivalent in T , either to true
or to false,

3. every formula of the form

∃x (
∧

i∈I ϕi) ∧ (
∧

i∈I′ ¬ϕi), (4)

where the ϕi’s are basic formulas, is equivalent in T to a wfva Boolean com-
bination of basic formulas.

110 K. Djelloul

3 A General Theorem for the Completeness of a First
Order Theory

3.1 Vectorial Quantifiers

Let M be a model and let T be a theory. Let x̄ = x1 . . .xn and ȳ = y1 . . . yn be
two words on V of the same length. Let ψ, φ, ϕ and ϕ(x̄) be M -formulas.

Notation 3.1.1 We write

∃x̄ ϕ for ∃x1...∃xn ϕ,
∀x̄ ϕ for ∀x1...∀xn ϕ,
∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) →

∧
i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

The word x̄, which can be the empty word ε, is called vector of variables. Note
that the formulas ∃?εϕ and ∃!εϕ are respectively equivalent to true and to ϕ in
any model M .

Property 3.1.2 If T |= ∃?x̄ ϕ then

T |= (∃x̄ ϕ ∧ ¬φ) ↔ (∃x̄ϕ) ∧ ¬(∃x̄ ϕ ∧ φ).

Property 3.1.3 If T |= ψ → (∃!x̄ ϕ) then

T |= (ψ ∧ (∃x̄ ϕ ∧ ¬φ)) ↔ (ψ ∧ ¬(∃x̄ ϕ ∧ φ)).

Property 3.1.4 If T |= ∃?ȳφ and if each variable of ȳ does not have free oc-
currences in ϕ then

T |= (∃x̄ ϕ ∧ ¬(∃ȳ φ ∧ ψ)) ↔
[
(∃x̄ ϕ ∧ ¬(∃ȳ φ))∨
(∃xy ϕ ∧ φ ∧ ¬ψ)

]
.

3.2 Quantifier Zero-Infinite

Let M be a model. Let T be a theory. Let ϕi and ϕ(x̄) be M -formulas and let
Ψ(u) be a set of formulas having at most u as a free variable.

Definition 3.2.1 We write

M |= ∃Ψ(u)
o ∞ x ϕ(x), (5)

iff for any instantiation ∃x ϕ′(x) of ∃x ϕ(x) by individuals of M one of the
following properties holds:

– the set of the individuals i of M such that M |= ϕ′(i), is empty,
– for all finite sub-set {ψ1(u), .., ψn(u)} of elements of Ψ(u), the set of the

individuals i of M such that
M |= ϕ′(i) ∧

∧
j∈{1,...,n} ¬ψj(i) is infinite.

About the Combination of Trees and Rational Numbers 111

We write T |= ∃Ψ(u)
o ∞ x ϕ(x), iff for each model M of T we have (5).

Property 3.2.2 If T |= ∃Ψ(u)
o ∞ x ϕ(x) and if for each ϕi, at least one of the

following properties holds:

– T |= ∃?x ϕi,
– there exists ψi(u) ∈ Ψ(u) such that T |= ∀x ϕi → ψi(x),

then
T |= (∃x ϕ(x) ∧

∧
i∈I ¬ϕi) ↔ (∃x ϕ(x))

3.3 The General Theorem for the Completeness of a Theory

Theorem 3.3.1 A theory T is complete if there exists a set Ψ(u) of formulas,
having at most u as free variable, a set A of formulas, closed under conjunction
and renaming, a set A′ of formulas of the form ∃x̄α with α ∈ A, and a sub-set
A′′ of A such that:

1. every flat atomic formula is equivalent in T to a wfva Boolean combination
of basic formulas of the form ∃x̄α with α ∈ A,

2. every formula without free variables of the form ∃x̄′α′ ∧ α′′ with ∃x̄′α′ ∈ A′

and α′′ ∈ A′′ is equivalent either to false or to true in T ,
3. every formula of the form ∃x̄ α ∧ ψ, with α ∈ A and ψ any formula, is

equivalent in T to a wfva formula of the form:

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)),

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A and T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′,
4. if ∃x̄′α′ ∈ A′ then T |= ∃?x̄′ α′ and for each free variable y in ∃x̄′α′, at least

one of the following properties holds:
– T |= ∃?yx̄′ α′,
– there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y),

5. if α′′ ∈ A′′ then
– the formula ¬α′′ is equivalent in T to a wfva formula of the form

∨
i∈I αi

with αi ∈ A,
– for each x′′, the formula ∃x′′α′′ is equivalent in T to a wfva formula

which belongs to A′′,
– for each x′′, T |= ∃Ψ(u)

o ∞ x′′ α′′.

Let us first make some remarks on the five conditions of Theorem 3.3.1. If T
is a theory which satisfies the five conditions of this theorem then the following
three properties hold:

Property 3.3.2 Every formula of the form

∃x̄ α,

with α ∈ A, is equivalent in T to a wfva formula of the form

∃x̄′ α′ ∧ α′′,

with ∃x̄′α′ ∈ A′ and α′′ ∈ A′′.

112 K. Djelloul

Property 3.3.3 Every formula of the form

∃x̄ α ∧
∧

i∈I ¬(∃ȳiβi),

with α ∈ A and βi ∈ A, is equivalent in T to a wfva formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

j∈J ¬(∃ȳ′
j β′

j ∧ β′′
j)),

with ∃x̄′α′ ∈ A′, α′′ ∈ A′′, ∃ȳ′
jβ

′
j ∈ A′, β′′

j ∈ A′′ and Card(I) = Card(J).

Corollary 3.3.4 Every formula of the form

∃x̄ α ∧
∧

i∈I ¬(∃ȳiβi),

with α ∈ A and βi ∈ A, is equivalent in T to a disjunction of wfva formulas of
the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

j∈J ¬(∃ȳ′
j β′

j)),

with ∃x̄′α′ ∈ A′, α′′ ∈ A′′ and ∃ȳ′
j β′

j ∈ A′.

To prove the Properties 3.3.2 and 3.3.3 we use Property 3.1.3 and the conditions 3
and 5 of Theorem 3.3.1. To prove Corollary 3.3.4 we use several times Properties
3.3.3 and 3.1.4 and the conditions 4 and 5 of Theorem 3.3.1.

Proof of Theorem 3.3.1 Let T be a theory which satisfies the five conditions of
Theorem 3.3.1. Let us show that T is complete by using Property 2.4.2 and by
taking the formulas of the form ∃x̄α with α ∈ A, as basic formulas.

Let us show that the first condition of Property 2.4.2 is satisfied. If ϕ is a
flat atomic formula, then according to the first condition of Theorem 3.3.1, ϕ is
equivalent in T to a wfva Boolean combination of basic formulas. Thus, the first
condition of Property 2.4.2 holds.

Let us show that the second condition of Property 2.4.2 is satisfied. If ϕ is a
basic formula without free variables, then according to Property 3.3.2 and the
second condition of Theorem 3.3.1, ϕ is equivalent in T , either to true, or to
false. Thus, the second condition of Property 2.4.2 holds.

Let us show now that the third condition of Property 2.4.2 is satisfied. Let
be a formula of the form

∃x (
∧

i∈I(∃x̄i αi)) ∧ (
∧

j∈J ¬(∃ȳj βj)),

with αi ∈ A and βj ∈ A. We must prove that this formula is equivalent in T to a
wfva Boolean combination of basic formulas, i.e. to a wfva Boolean combination
of formulas of the form ∃x̄α with α ∈ A. By lifting the quantifications ∃x̄i

after having possibly renamed some variables of the x̄i’s, we get a wfva formula
equivalent in T of the form

∃x̄ α ∧
∧

j∈J ¬(∃ȳjβj),

with α ∈ A and βj ∈ A because A is closed under conjunction and renaming.
According to Corollary 3.3.4, the preceding formula is equivalent in T either to

About the Combination of Trees and Rational Numbers 113

false, which is clearly a Boolean combination of basic formulas, or to a wfva
disjunction of formulas of the form

∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧

i∈I ¬(∃ȳ′
iβ

′
i)). (6)

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′ and ∃ȳ′
iβ

′
i ∈ A′. Let us show now that each formula

of this disjunction is equivalent in T to a wfva Boolean combination of basic
formulas. Let ϕ be a formula of the form (6). We denote by I1, the set of the
i ∈ I such that x′′

n does not have free occurrences in the formula ∃ȳ′
iβ

′
i, thus, ϕ

is equivalent in T to the following wfva formula

∃x̄′α′ ∧ (∃x′′
1 ...∃x′′

n−1

[
(
∧

i∈I1
¬(∃ȳ′

iβ
′
i))∧

(∃x′′
n α′′ ∧

∧
i∈I−I1

¬(∃ȳ′
iβ

′
i))

]
). (7)

Since α′′ ∈ A′′ and ∃ȳ′
iβ

′
i ∈ A′ and according to Property 3.2.2 and the conditions

4 and 5 (more exactly the third point of the condition 5) of Theorem 3.3.1, the
formula (7) is equivalent in T to the following wfva formula

∃x̄′α′ ∧ (∃x′′
1 ...∃x′′

n−1 (
∧

i∈I1
¬(∃ȳ′

iβ
′
i)) ∧ (∃x′′

nα′′)). (8)

Since α′′ ∈ A′′ and according to the condition 5 (more precisely the second point
of the condition 5) of Theorem 3.3.1, the formula (8) is equivalent in T to a wfva
formula of the form

∃x̄′α′ ∧ (∃x′′
1 ...∃x′′

n−1 (
∧

i∈I1
¬(∃ȳ′

iβ
′
i)) ∧ α′′

n),

with ∃x̄′α′ ∈ A′, α′′
n ∈ A′′ and ∃ȳ′

iβ
′
i ∈ A′. Which is equivalent in T to the wfva

formula
∃x̄′α′ ∧ (∃x′′

1 ...∃x′′
n−1 α′′

n ∧
∧

i∈I1
¬(∃ȳ′

iβ
′
i)).

By repeating the three preceding steps (n− 1) times and by denoting by Ik the
set of the i ∈ Ik−1 such that x′′

(n−k+1) does not have free occurrences in ∃ȳ′
iβ

′
i,

the preceding formula is equivalent in T to the following wfva formula

∃x̄′α′ ∧ α′′
1 ∧
∧

i∈In
¬(∃ȳ′

iβ
′
i),

with ∃x̄′ α′ ∈ A′, α′′
1 ∈ A′′ and ∃ȳ′

iβ
′
i ∈ A′. Since ∃x̄′α′ ∈ A′ and according to

the condition 4 of Theorem 3.3.1, we get T |= ∃?x̄′α′, thus, T |= ∃?x̄′α′ ∧ α′′
1 .

According to Property 3.1.2, the preceding formula is equivalent in T to the
following wfva formula

(∃x̄′α′ ∧ α′′
1) ∧

∧
i∈In

¬(∃x̄′ α′ ∧ α′′
1 ∧ ∃ȳ′

iβ
′
i).

By lifting the quantifications ∃ȳ′
i after having possibly renamed some variables

of the ȳ′
i’s, the preceding formula is equivalent in T to a wfva formula of the

form
(∃x̄′α′ ∧ α′′

1) ∧
∧

i∈In
¬(∃x̄′ȳ′

i α′ ∧ α′′
1 ∧ β′

i), (9)

with α′ ∈ A, α′′
1 ∈ A and β′

i ∈ A (because A is closed under renaming, A′′ is
a sub-set of A and ∃x̄′α′ ∈ A′). Since the formulas α′, α′′

1 , β′
i belong to A and

114 K. Djelloul

since A is closed under conjunction, the formula (9) is equivalent in T to a wfva
formula of the form

(∃x̄ α) ∧
∧

i∈I ¬(∃ȳi βi),

with α ∈ A and βi ∈ A. This formula is clearly a Boolean combination of basic
formulas. The third condition of Property 2.4.2 holds. Thus T , is a complete
theory. "#

4 The Theory TE of the Evaluated Trees

Notation 4.0.5 Let a be a positive integer and let t1, ..., tn be terms. We denote
by

– N, the set of the integer numbers.
– Q, the set of the rational numbers together with its usual operations of addi-

tion “+” and substraction “−” and its usual linear order relation “<” (dense
and without endpoints).

– t1 < t2, the term < t1t2.
– t1 + t2, the term +t1t2.
– t1 + t2 + t3, the term +t1(+t2t3).
– −at1, the term (−t1) + · · ·+ (−t1)︸ ︷︷ ︸

a

.

– 0t1, the term 0.
– at1, the term t1 + · · ·+ t1︸ ︷︷ ︸

a

,

–
∑n

i=1 ti, the term t1 + t2 + ...+ tn + 0, where t1 + t2 + ...+ tn is the term
t1 + t2 + ...+ tn in which we have removed all the ti’s which are equal to 0.

4.1 The Axiomatization of TE

The signature S of the theory TE of the evaluated trees is composed of:

– an infinite set F of function symbols disjoint from Q−{0, 1} and containing at
least the following function symbols: −,+, 0, 1 of respective arities 1, 2, 0, 0,

– the 1-ary relation symbol num,
– the 2-ary relation symbol “ < ”.

About the Combination of Trees and Rational Numbers 115

The axioms of TE are the propositions of one of the twenty one following forms:

1 ∀x̄∀ȳ ((¬num fx̄) ∧ fx̄ = fȳ) →
∧

i xi = yi,
2 ∀x̄∀ȳ f x̄ = gȳ → num fx̄,
3 ∀x̄∀ȳ (

∧
i∈I num xi) ∧ (

∧
j∈J ¬num yj) →

(∃!z̄
∧

k∈K(¬num zk ∧ zk = tk(x̄, ȳ, z̄))),

4 ∀x∀y (num x ∧ num y) → x + y = y + x,
5 ∀x∀y∀z (num x ∧ num y ∧ num z) → x + (y + z) = (x + y) + z,
6 ∀xnum x → x + 0 = x,
7 ∀xnum x → x + (−x) = 0,
8n ∀xnum x → (x + · · ·+ x︸ ︷︷ ︸

n

= 0 → x = 0),

9n ∀xnum x → ∃!y y + · · ·+ y︸ ︷︷ ︸
n

= x,

10 ∀xnum x → ¬x < x,
11 ∀x∀y∀z num x ∧ num y ∧ num z → ((x < y ∧ y < z) → x < z),
12 ∀x∀y (num x ∧ num y) → (x < y ∨ x = y ∨ y < x),
13 ∀x∀y (num x ∧ num y) → (x < y → (∃z num z ∧ x < z ∧ z < y)),
14 ∀xnum x → (∃y num y ∧ x < y),
15 ∀xnum x → (∃y num y ∧ y < x),
16 ∀x∀y ∀z (num x ∧ num y ∧ numz) → (x < y → (x + z < y + z)),

17 ∀x∀y num x + y ↔ num x ∧ num y,
18 ∀xnum − x ↔ num x,
19 ∀x∀y x < y → (num x ∧ num y),
20 ∀x̄¬num hx̄,
21 0 < 1,

where f and g are two distinct function symbols taken from F, h ∈ F −
{+,−, 0, 1}, x, y, z are variables, x̄ is a vector of distinct variables xi, ȳ is a vector
of distinct variables yi and where tk(x̄, ȳ, z̄) is a term which begins by a function
symbol fk element of F−{0, 1} followed by variables taken from x̄ or ȳ or z̄, more-
over, if fk ∈ {+,−} then tk(x̄, ȳ, z̄) contains at least a variable taken from ȳ or z̄.

4.2 The Standard Model E of TE

Definition 4.2.1 If each n-ary element of F− {0, 1} is considered as an n-ary
label and each element of Q is considered as an 0-ary label, then we call:

– tree, a tree 1(possibly infinite) labelled by F ∪Q,
– numerical tree, a tree labelled by Q ∪ {+,−},

1 More precisely we define formally a tree a built on a set E of elements of different
arities as follow: We define first a node to be a word constructed on the set of strictly
positive integers. A tree a, is then a mapping of type N → E where N is a non-empty
set of nodes, each one of the i1 . . . ik (with k ≥ 0) satisfying the two conditions: (1)
if k > 0 then i1 . . . ik−1 ∈ N , (2) if the arity of a(i1 . . . ik) is n, then the set of nodes
of N of the form i1 . . . ikik+1 is obtained by giving to ik+1 the values 1, . . . , n.

116 K. Djelloul

– evaluated numerical tree, a tree labelled by Q (thus, it is a tree reduced to a
leaf labelled by Q)

– evaluated tree, a tree whose all numerical sub-trees are evaluated.

The theory TE has as standard model the model E of the evaluated trees,
defined as follows:

The signature of E: Both TE and E have the same signature.

The domain of E: The domain E of E is the set of the evaluated trees.

The relations of E: To the relation symbol num we associate the set numE of
the evaluated numerical trees. To the binary relation symbol < we associate the
set of the couples (x, y) such that x ∈ numE , y ∈ numE and the value of x is
lower (according to the order “ < ”) than the value of y.

The operations of E: To each n-ary symbol f ∈ F we associate the operation
fE : En → E , defined as follow:

fa1 . . . an =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if f is the function symbol ”0” and n = 0.
1, if f is the function symbol ”1” and n = 0.
(−a1), if f is the function symbol ”−” and

a1 ∈ numE and n = 1.
(a1 + a2), if f is the function symbol ”+” and

a1 ∈ numE and a2 ∈ numE and n = 2.
The tree whose top node is labelled f and whose sequence of

immediate daughters is a1, . . . , an, otherwise.

The main difficulty to prove that E is a model of TE , is to show that the axiom
3 of the unique solution is satisfied in E. For this, we can use a proof given by
Dao in [9].

4.3 The Blocks of TE

Definition 4.3.1 Let f ∈ F, a0 ∈ N and ai ∈ N. We call block every conjunc-
tion α of formulas of the form:

– true,
– false,
– numx0,
– ¬num x0,
– x0 = x1,
– x0 = fx1...xn

–
∑n

i=1 aixi = a01,
–
∑n

i=1 aixi < a01,

such that each variable x in α has at least an occurrence in a sub-formula of
α of the form num x or ¬num x. A block α without occurrences of the relation
symbol “ = ” is called relational block. A block α without occurrences of the
relation symbol “ < ” and where each variable has an occurrence in at least one
of the equations of α is called equational.

About the Combination of Trees and Rational Numbers 117

Definition 4.3.2 If the block α has a sub-formula of the form

x0 = t0(x1) ∧ x1 = t1(x2) ∧ ... ∧ xn−1 = tn−1(xn) ∧
n−1∧
i=0

¬num xi

where xi+1 occurs in the term ti(xi+1), then the variable xn and the equation
xn−1 = tn−1(xn) are called reachable in α from x0.

According to the axioms 1 and 2 of TE we have the following property

Property 4.3.3 Let α be a block. If all the variables of x̄ are reachable in α
from the free variables of ∃x̄α, then

TE |= ∃?x̄α.

4.4 The Solved Blocks

Suppose that the variables of V are ordered by a linear strict order relation,
denoted by “ % ”.

Definition 4.4.1 A block α is called well-typed iff α does not contain sub-
formulas of one of the following forms:

– num x ∧ ¬num x,
– x = hȳ ∧ num x,
– x = 0 ∧ ¬num x,
– x = 1 ∧ ¬num x,
– x = y ∧ num x ∧ ¬num y,
– x = y ∧ ¬num x ∧ num y,
– x = −y ∧ ¬num x ∧ num y
– x = −y ∧ num x ∧ ¬num y
– x = y + z ∧ num x ∧ ¬num y,
– x = y + z ∧ num x ∧ ¬num z,
– x = y + z ∧ ¬num x ∧ num y ∧ num z,
–
∑n

i=1 aixi = a01 ∧ ¬num xk, with ak �= 0,
–
∑n

i=1 aixi < a01 ∧ ¬num xk, with ak �= 0,

with h ∈ F− {0, 1,+,−}, k ∈ {1, ..., n}, a0 ∈ N and ai ∈ N.

Definition 1. Let f ∈ F− {0, 1}. We call leader of the equation x0 = fx1...xn

or x0 = x1 according to the order %, the variable x0. We call leader of the
formula

∑n
i=1 aixi = a01 or

∑n
i=1 aixi < a01 according to the order %, the

greater variable xk such that ak �= 0.

Definition 4.4.2 A block α is called (%)-solved in TE, iff:

1. α is well-typed,
2. α does not contain sub-formulas of the form β ∧ false, where β is a formula

different from the formula true,

118 K. Djelloul

3. if x = y is a sub-formula of α, then x % y,
4. all the leaders of the equations of α are distinct and do not occur in any

inequation of α,
5. α does not contain sub-formulas of one of the following forms

– 0 = a01 (with a0 ∈ N),
– x = y ∧ num x ∧ num y,
– x = y + z ∧ num x ∧ num y ∧ num z,
– x = −y ∧ num x ∧ num y.

Property 4.4.3 Every block is equivalent in TE to a (%)- block.

Property 4.4.4 Let α be a (%)-solved equational block different from the for-
mula false and let x̄ be the set of the leaders of the equations of α. We have:

TE |= ∃!x̄α.

5 Proof of the Completeness of TE

Theorem 5.0.5 The theory TE is a complete theory.

Let us show this theorem by using Theorem 3.3.1. Let us start by choosing the
sets Ψ(u), A, A′ and A′′.

5.1 Choice of the Sets Ψ(u), A, A′ and A′′

– Ψ(u) is the set of the formulas of the form ∃ȳ u = fȳ ∧ ¬num u, with f ∈
F− {0, 1},

– A is the set of the blocks.
– A′ is the set of the formulas of the form ∃x̄′α′, where:

• all the variables of x̄′ are reachable in α′ from the free variables of ∃x̄′α′,
• α′ is a (%)-solved equational block, different from the formula false, and

where the order % is such that all the variables of x̄′ are greater than
the free variables of ∃x̄′α′,

• all the equations of α′ of the form x0 = x1 or x0 = fx1...xn with f ∈
F− {0, 1} are reachable in α′ from the free variables of ∃x̄′α′,

• if
∑n

i=1 aixi = a01 is a sub-formula of α′ then, each variable xi such that
ai �= 0 is either reachable in α′ from the free variables of ∃x̄′α′, or free
in ∃x̄′α′.

– A′′ is the set of the (%)-solved relational blocks.

Note 5.1.1 Note that, A is closed under conjunction and renaming and A′′ is
a sub-set of A.

We show - without too many difficulties - by induction on the structure of
the (%)-solved blocks that TE satisfies the first four conditions of Theorem 3.3.1.
On the other hand, the fifth condition - and more exactly the third point of the
fifth condition - is much less obvious. This proof deserves to be detailed.

About the Combination of Trees and Rational Numbers 119

5.2 TE Satisfies the Third Point of the Condition 5 of Theorem
3.3.1

First, we present two properties which hold in any model M of TE . These proper-
ties result from the axiomatization of TE and introduce the notion of zero-infinite
in TE .

Property 5.2.1 Let M be a model of TE and let f ∈ F−{0, 1}. The set of the
individuals i of M , such that M |= ¬num i and the set of the individuals i of M ,
such that M |= ∃x i = fx, are infinite.

Property 5.2.2 Let M be a model of TE, let {m1, ...,mn} be a finite set of
individuals of M and let ϕ′(x) be the following M -formula:

num x ∧
n∧

j=1

(bjx +
n∑

k=1

ajkmjk < aj01). (10)

The set of the individuals i of M such that M |= ϕ′(i) is empty or infinite.

Let ϕ(x) be a formula which belongs to A′′, let us show that, for every
variables x we have TE |= ∃Ψ(u)

o ∞ x ϕ(x). Let M be a model of TE and let ∃x ϕ′(x)
be an any instantiation of ∃x̄ ϕ(x) by individuals of M such that M |= ∃x ϕ′(x).
Having an any condition of the form

M |= ϕ′(i) ∧ ¬ψ1(i) ∧ · · · ∧ ¬ψn(i),

with ψj(u) ∈ Ψ(u), it is enough to show that there exists an infinity of individ-
uals i of M which satisfy this condition. This condition can be replaced by the
following stronger condition

M |=
(

num i ∨
ψn+1(i)

)
∧ ϕ′(i) ∧ ¬ψ1(i) ∧ · · ∧¬ψn(i),

where ψn+1(u) is an element of Ψ(u) which has been chosen different from
ψ1(u), . . . , ψn(u), (always possible because the set F is infinite). Since for ev-
ery k between 1 and n, we have:

– TE |= num x → ¬ψk(x)
– TE |= ψn+1(x) → ¬ψk(x) (axiom 2).

The preceding condition is simplified to

M |= (num i ∧ ϕ′(i)) ∨ (ψn+1(i) ∧ ϕ′(i))

and thus, knowing that M |= ∃x ϕ′(x), it is enough to show that there exists an
infinity of individuals i of M such that

M |= num i ∧ ϕ′(i) or M |= ψn+1(i) ∧ ϕ′(i). (11)

120 K. Djelloul

Two cases arise:
Either the formula num x occurs in ϕ′(x). Since ϕ′(x) is an instantiation of

a (%)-solved relational block and M |= ∃x ϕ′(x), the formula num x ∧ ϕ′(x) is
equivalent in M to a M -formula of the form (10). According to Property 5.2.2
and since M |= ∃xnum x ∧ ϕ′(x), there exists an infinity of individuals i of M
such that M |= num i ∧ ϕ′(i) and thus, such that (11).

Or, the formula num x does not occur in ϕ′(x). Since ϕ′(x) is an instantiation
of a (%)-solved relational block and M |= ∃x ϕ′(x), the M -formula ψn+1(x) ∧
ϕ′(x) is equivalent in M to ψn+1(x). According to Property 5.2.1 there exists
an infinity of individuals i of M such that M |= ψn+1(i), thus, such that M |=
ψn+1(i)∧ϕ′(i) and thus such that (11). "#

6 Conclusion

We have established a general theorem which gives a sufficient condition for the
completeness of a first-order theory and we have used it to show the completeness
of the theory TE of the evaluated trees. We have built this hybrid theory starting
from two theories: the theory of the trees and the theory of the rational numbers
together with the operations of addition and substraction and a linear dense
order relation without endpoints.

To simplify our proof, and more exactly the last condition of our theorem,
we need to establish a sufficient condition which makes it possible to show the
completeness of a theory which is a combination of two complete theories. Never-
theless, our theorem enabled us to show the completeness of many other theories
such as: the theory of intervals, the theory of concatenation, the theory of lists
and many others hybrid theories.

Currently, we are working on a complete axiomatization of the combination
of trees together with construction operations and real numbers together with
the operations of addition “ + ”, substraction “ − ”, multiplication “ ∗ ” and a
dense linear order relation without endpoints. We have also recently developed -
starting from our proof - an algorithm for solving general first-order constraints
in TE . We are in the process of studying its complexity and the expressiveness
of the first-order constraints in TE [6].

Acknowledgements. I thank Alain Colmerauer for our many discussions and
its help in the organization and the drafting of this paper. I thank him too, for
the definitions and proof of his course of DEA. I dedicate to him this paper with
my best wishes for a speedy recovery.

References

1. Baader F, Nipkow T. Term rewriting and all that. Cambridge university press 1998.
ISBN 0-521-45520-0.

2. Benhamou F, Bouvier P, Colmerauer A, Garetta H, Giletta B, Massat J, Narboni
G, N’dong S, Pasero R, Pique J, Touraivane, Van caneghem M, Vetillard E. Le
manuel de Prolog IV , PrologIA, Marseille, France, 1996.

About the Combination of Trees and Rational Numbers 121

3. Chang C, Keisler H. Model theory. Section 1.4 Theories and examples of theories.
Elsevier, fifth impression, 1988.

4. Colmerauer A. An introduction to Prolog III. Communication of the ACM,
33(7):68–90,1990.

5. Colmerauer A. Equations and inequations on finite and infinite trees. Proceeding
of the International conference on the fifth generation of computer systems Tokyo,
1984. P. 85–99.

6. Colmerauer A, Dao T. Expressiveness of full first order constraints in the algebra of
finite and infinite trees. In 6th International Conference of Principles and Practice
of Constraint Programming, CP’2000, LNCS 1894, pages 172–186. Springer, 2000.

7. Courcelle B. Equivalences and Transformations of Regular Systems applications to
Program Schemes and Grammars, Theretical Computer Science, vol. 42, 1986, p.
1–122.

8. Courcelle B. Fundamental Properties of Infinite Trees, Theoretical Computer Sci-
ence, vol. 25, n o 2, 1983, p. 95–169.

9. Dao T. Resolution de contraintes du premier ordre dans la theorie des arbres finis
ou infinis. These d’informatique, Universite de la mediterranee, decembre 2000.

10. Huet G. Resolution d’equations dans les langages d’ordre 1, 2,. . . ω. These d’Etat,
Universite Paris 7. France,1976.

11. Maher M. Complete axiomatization of the algebra of finite, rational and infinite
trees. Technical report, IBM - T.J.Watson Research Center, 1988.

A Complete Temporal and Spatial Logic for
Distributed Systems�

Dirk Pattinson1 and Bernhard Reus2

1 LMU München, Institut für Informatik, 80538 München
2 University of Sussex, Informatics, Brighton BN1 9QH

Abstract. In this paper, we introduce a spatial and temporal logic for reason-
ing about distributed computation. The logic is a combination of an extension of
hybrid logic, that allows us to reason about the spatial structure of a computa-
tion, and linear temporal logic, which accounts for the temporal aspects. On the
pragmatic side, we show the wide applicability of this logic by means of many
examples. Our main technical contribution is completeness of the logic both with
respect to spatial/temporal structures and a class of spatial transition systems.

1 Introduction

With the advent of the Internet, mobility and spatial distribution of information systems
have established themselves as a new computational paradigm.

Distributed and mobile systems, however, require new specification and verification
methodologies. Program logics have to account for space and time in a single, unified
framework, stating where and when certain computations happen. A further challenge
consists of the fact that these systems run on heterogeneous platforms using various
different programming languages.

The formal modelling of distributed and mobile systems has traditionally been the
domain of process calculi. Several approaches can be found in the literature, for ex-
ample the π-calculus [22], the ambient calculus [9], and Klaim [12]. In all of these
approaches, distributed processes are represented as terms in the language of the un-
derlying calculus. For each of these calculi, corresponding formal logics have been
proposed to reason about the behaviour of distributed computation. For example, see
[23,7,4,5] for the π-calculus, [9] for the Ambient-calculus, and [24] for Klaim, to name
but a few. From a practical perspective, it seems unrealistic to assume that all entities
participating in a distributed (or mobile) system can be specified in a single syntac-
tic framework: by its very nature, distributed computation integrates various different
platforms, operating systems, and programming languages.

A single semantic framework is, however, desirable as it supports the analysis and
comparison of different logics and calculi. This paper bridges the gap between theory
and practice and introduces syntax-independent models of distributed and mobile sys-
tems together with an associated logic, that allows to reason about the behaviour of

� This work was partially sponsored by the DAAD and the British Council in the ARC project
1205 “Temporal and Spatial Logic for Mobile Systems”.

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 122–137, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Complete Temporal and Spatial Logic for Distributed Systems 123

such systems. On a semantical level, we consider spatial transition systems, which en-
capsulate the behaviour of individual components without the need of expressing the
behaviour of the component in a particular syntactic formalism. The properties of the
systems under consideration are expressed using linear spatial temporal logic (LSTL),
a new logic that we introduce and study in this paper. It arises as a combination of two
logics that reflect the two aspects of distributed computation. The first is an extension of
both hybrid logic [1,3] and combinatory dynamic logic [25]. This logic, which we call
HL∗, is used to reason about the spatial (e.g. network) structure present at one partic-
ular point in time. The second is linear temporal logic [20,19] to capture the temporal
aspect. This linear spatial temporal logic is independent of any concrete programming
or process language. By means of examples, we show that our models and our logic
capture many situations that naturally arise in distributed computation.

Our main technical contribution is the completeness of our logic, both with respect
to spatio-temporal structures (which are introduced later in the paper) and a class of
spatial transition systems. In more detail, we first introduce the spatial componentHL∗

of our logic, which can be viewed either as extension of hybrid logic [3,2] with iteration
(Section 2) or of combinatory dynamic logic [25] with satisfaction operators. We show
that the resulting logic is weakly complete with respect to named models, that is, Kripke
models where every location can be referenced by a (not necessarily unique) name. We
then use local formulas, a subset of hybrid formulas that only describe properties of
one specific node of the distributed structure, in place of propositional atoms in a lin-
ear temporal logic. As names provide the only handle to distinguish different nodes of
the system, we have to insist that names do not change over time, that is, we consider
names as physical entities rather than logical ones. Consequently, we have to extend
the technique of [14] to account for this interference between the temporal and spatial
dimension of the logic. This is achieved by considering sequences with consistent nam-
ing as models for the combined logic, which is reflected by an additional axiom. The
second main result is the completeness of linear spatial temporal logic (Section 3) w.r.t.
spatio-temporal structures. This completeness result is then extended to spatial transi-
tion systems (Section 4), which can be thought of as machine models for distributed
computation. In a nutshell, we obtain a new and complete logical formalism, that is
capable of reasoning about distributed computation and applicable to many situations
that naturally arise in distributed computation.

Related Work. We have already mentioned the work on spatial logics interpreted over
process calculi, notably the π-calculus and the ambient calculus [7,4,5], where the com-
pleteness of the logic is in general neglected; however [18] proves a Hennessy-Milner
property. In [23,24], modal logics with primitive modal operators for process commu-
nication are proposed, but these are also tailored towards their specific process calculi.
Finally, spatial logics that are structurally similar to ours have been proposed in the
context of semi-structured data, e.g. Ghelli et al.’s work on query languages for XML
documents [7]. Completeness is not addressed there. An intuitionistic hybrid logic is
investigated in [10] including a completeness result, but w.r.t. Kripke structures that de-
fine intuitionistic models and places having no structure at all. A temporal and spatial
logic is also used in [21,26] on the basis of a less flexible model of tree sequences.
There is no completeness result so far.

124 D. Pattinson and B. Reus

2 Spatial Reasoning with Hybrid Logic

This section introduces the purely spatial part of our logic in isolation. To capture the
whereabouts of a computation, two ingredients are essential: names for locations where
computation takes place and the topological structure that connects these locations.
We use a combination of hybrid logic [1] and combinatory dynamic logic [25] that
reflects precisely these criteria. Our logic is an extension of modal logic, with a name
attached to each world; this feature is present both in hybrid logic and in combinatory
dynamic logic. This basic setup is extended with satisfaction operators (borrowed from
hybrid logic), that allow us to assert that a formula holds at a specific point of the
model. Combinatory dynamic logic contributes a modality for transitive closure, which
provides the linguistic means to reason about reachable nodes in a model.

While modalities for transitive closure (i.e. the ∗ of dynamic logic) is needed to
have enough expressive power in the language, satisfaction operators are crucial when
it comes to combining spatial and temporal aspects. A satisfaction operator @i shifts the
evaluation context the node of the model that has name i. As a consequence, satisfaction
operators give rise to formulas @iφ that that are either true or false at every node of the
model.

A model of our logic is a Kripke Model, where additionally every name is assigned
to a unique node. In view of our intended application, we view the worlds of the model
as the locations where computation happens and call them places. Following the hybrid
tradition, place names are referred to as nominals. If two places p1 and p2 of the model
are related, then we interpret this as “from p1 one can see p2”, or “p1 has a network
connection to p2”, depending on the particular context. In particular, as we require that
every node has a name, and names are drawn from a countably infinite set of nominals,
all of our models will have an at most countable carrier.

We now introduce the syntax and semantics of our extension HL∗ of hybrid logic.

Definition 1 (Syntax ofHL∗). Suppose that A is a set of atomic propositions and Nom
is a set of nominals. The language of the logic HL∗(A, Nom) is defined to be the least
set of formulas according to the grammar

φ, ψ ∈ HL∗ ::= a | i | �φ | �
∗φ | φ ∧ ψ | ¬φ | @iφ

where a ∈ A ranges over the atomic propositions and and i ∈ Nom is a nominal. We
use standard abbreviations for the propositional connectives∨, → and put � = ¬ �¬,
�∗ = ¬ �∗ ¬. We call a formula φ ∈ HL∗ local, if φ = @iψ for some i ∈ Nom and
ψ ∈ HL∗; the set of local formulas is denoted by L(HL∗).

As it is common in Hybrid Logics, proposition @iφ represents a local property, i.e.
the fact that φ holds at at the unique place with name i. Moreover, �φ means that φ
holds at some place directly reachable from here, whereas �

∗φ means that φ holds
somewhere reachable from here.

Our notion of model is standard; for notational convenience, we distinguish between
the valuation of propositional variables and that of nominals. The semantics of HL∗ is
as follows:

A Complete Temporal and Spatial Logic for Distributed Systems 125

Definition 2 (Semantics of HL∗). A named hybrid model is a tuple (P,→, V, N)
where P is a set of places, →⊆ P × P is an adjacency relation, V : A → P(P)
and N : Nom → P are a valuation of propositional variables and nominals, respec-
tively, with N a surjection.

Given a named model S = (P,→, V, N), satisfaction at a point p ∈ P is given
inductively by

(S, p) |= a iff p ∈ V (a)
(S, p) |= i iff p = N(i)
(S, p) |= �φ iff ∃p′. p → p′ ∧ (S, p′) |= φ

(S, p) |= �
∗φ iff ∃n ∈ N. (S, p) |= �

nφ

(S, p) |= @iφ iff (S, N(i)) |= φ

where the semantics of propositional connectives is as usual. We write S |= φ iff
(S, p) |= φ for all p ∈ P and HL∗ |= φ if S |= φ for all named models S. If there
is danger of confusion, we make the logic explicit in the satisfaction relation and write
(S, p) |=HL∗ φ to say that S is a named hybrid model and φ ∈ HL∗ and similarly for
S |=HL∗ φ.

With the intuition that the places p ∈ P of the Kripke frame (P,→) represent network
nodes and the transition relation p → p′ represents the possibility of transferring data
from p to p′, we can formulate assertions on the network topology:

Example 1. 1. The fact that node j is reachable from everywhere is described by the
formula �

∗j.
2. The fact that network node i is transitively connected to node j is captured in the

formula @i(�
∗j). Note the use of the satisfaction operator @i to shift the evalua-

tion of the formula �
∗j to the node with name i.

3. If every node of a connected component of a Kripke model is connected to every
other node of this component, the model will satisfy the formula �

∗i → �i.
4. Finally, we can force connections to be bidirectional by means of the formula

@i(�
∗j) → @j(�

∗i).
Note that only the formula in 2 is local.

Our key concern in this section is to analyse the relationship between syntax and seman-
tics of HL∗, and our main result is completeness of the axiom system that we introduce
now.

2.1 The Axioms of HL∗

Note that we cannot expect HL∗ to be strongly complete w.r.t. named models. For
example, consider the set of formulas {¬i | i ∈ Nom}. This set is consistent, as all its
finite subsets are, but not satisfiable in a named model with name set Nom. We therefore
have to content ourselves with weak completeness of HL∗, stating that validity of φ ∈
HL∗ in all models implies derivability of φ. The deducibility predicate '⊆ HL∗, is
given by the following axioms and rules.

126 D. Pattinson and B. Reus

(taut) all propositional tautologies (K�) � (φ → ψ) → (�φ→ �ψ)

(K@) @i(φ → ψ) → (@iφ → @iψ) (self-dual) @iφ ↔ ¬@i¬φ
(intro) i ∧ φ → @iφ (ref) @ii

(sym) @ij ↔ @ji (nom) @ij ∧@jφ→ @iφ

(agree) @j@iφ ↔ @iφ (back) �@ip → @ip

(iter) �∗ φ→ φ ∧� �∗ φ (ind) (φ → �φ) ∧ φ→ �∗φ

The proof rules of HL∗ are summarised as follows.

(mp)
φ → ψ φ

ψ
(gen)

φ

�φ (gen@)
φ

@iφ
(subst)

φ

φ[θ/x]
(x ∈ Nom ∪ A)

(name)
j → φ

φ
(j /∈ nom(φ)) (paste)

(@i �j) ∧ (@jφ) → ψ

@i �φ→ ψ
(j /∈ nom(φ, ψ))

where nom(φ) (resp. nom(φ, ψ)) denotes the set of nominals occurring in the formula
φ (resp. in φ or ψ) and in the substitution rule it is silently understood to be type correct,
i.e. formulas will be substituted for atomic propositions and nominals for nominals only.

Definition 3. If Φ ⊆ HL∗ is a set of formulas of HL∗, then φ ∈ HL∗ is derivable from
Φ, if φ is contained in the least set of formulas that contains Φ and the above axioms
and is closed under the proof rules of HL∗. This is denoted by Φ 'HL∗ φ. We write
HL∗ ' φ, if φ is a theorem of HL∗, i.e. ∅ 'HL∗ φ.

It is straightforward to check the following proposition.

Proposition 1. HL∗ is sound, that is, if HL∗ ' φ, then HL∗ |= φ for all φ ∈ HL∗.

2.2 Completeness of HL∗

We now establish completeness ofHL∗. The proof follows a standard argument using a
canonical model, existence lemma, and truth lemma. We just elaborate on those issues
that are specific to our logic. We begin with the construction of our model.

Definition 4 (see also [1]). Suppose Φ ⊆ HL∗ is maximally consistent. Φ is named, if
i ∈ Φ for some nominal i ∈ Nom, and Φ is pasted, if @i �φ ∈ Φ implies that for some
j ∈ Nom, @i �j ∧@jφ ∈ Φ.

If Φ is a named and pasted maximally HL∗-consistent set, or a named and pasted
HL∗-MCS for short, then the model induced by Φ is given by MΦ = (P,→c, V, N),
where

– P = {Δi | i ∈ Nom} with Δi = {φ | @iφ ∈ Φ};
– →c is the canonical relation defined by u →c u′ iff { �φ | φ ∈ u′} ⊆ u;
– V (a) = {p ∈ P | a ∈ p} is the canonical valuation of propositional variables,
– N(i) = the unique p ∈ P with i ∈ P .

A Complete Temporal and Spatial Logic for Distributed Systems 127

The following lemma justifies the above definition.

Lemma 1. SupposeMΦ = (P,→c, V, N) is the model induced by a named and pasted
HL∗-MCS Φ. Then p is named for every p ∈ P , and moreover i ∈ p ∩ q implies p = q
for all p, q ∈ P and all i ∈ Nom.

Our desire for a named model dictates that we only use named MCS-s, and the condition
that the MCS-s be pasted ensures the validity of an existence lemma; see [1, Section
7.3] for more on this issue. The following is an adaptation of the classical Lindenbaum
lemma guaranteeing the existence of named and pasted MCS’s.

Lemma 2. Suppose φ ∈ HL∗ is consistent. Then there exists a named and pasted
HL∗-MCS containing φ and @i¬j for all i �= j ∈ M , for some countable subset
M ⊆ Nom with M ∩ nom(φ) = ∅.

Consequently, a model induced by a MCS of the sort described in Lemma 2 is named
and countable. Note that we extend a single formula to a maximally consistent set. This
allows us to avoid having to enrich the language with new nominals (cf. [1, Section
7.3]). The proof for the existence lemma now works as for the basic hybrid case, and
we move straight to the truth lemma.

Lemma 3 (Truth Lemma). Suppose MΦ = (P,→c, V, N) is the model induced by
a named and pasted HL∗-MCS Φ. Then, for all φ ∈ HL∗ and all p ∈ P , we have
(MΦ, p) |= φ iff φ ∈ p.

Our completeness result follows from Lemma 3 as usual:

Theorem 1. HL∗ is weakly complete w.r.t. countable, named models.

There are two points to note here. First, unlike the classical case, we do not have strong
completeness w.r.t. named models, as the Lindenbaum Lemma 2 would fail. Second, the
preceding theorem asserts that HL∗ is complete for models with countable carrier. This
will be important for the completeness of the combined logic with respect to spatial
transition systems. We conclude the section with a trivial corollary to the completeness
theorem, which will be of fundamental importance later.

Corollary 1. Suppose φ ∈ L(HL∗) is local. Then φ is consistent iff M |= φ for some
countable, named model M .

This claim follows from the very nature of local formulas: a formula @iφ is valid in a
place iff it is valid in the place named i, hence local formulas are either globally true or
globally false.

3 Temporalising Hybrid Logics

After having studied HL∗ in isolation, we now add a temporal dimension to HL∗.
The logic HL∗ allows us to reason about where a distributed computation happens; the
temporal extension will furthermore furnish us with the expressive power to say when
this will be the case.

128 D. Pattinson and B. Reus

The idea is quite simple: We consider linear temporal logic, but with atomic propo-
sitions replaced by local HL∗-formulas. This is as in [15, Section 14], but with one
important exception: In loc.cit., the logic being temporalised is completely independent
from the added temporal layer. In our case, spatial information needs to be propagated
over time, leading to an entanglement of both dimensions. Semantically, this is reflected
by or notion of model, which enforces consistency of names, and accounted for by an
additional axiom in the proof calculus.

We call the resulting logic LSTL. This logic naturally incorporates a temporal and
a spatial aspect: the formulas of HL∗ specify spatial properties at a given point in time,
and temporal logic allows one to reason about the evolution of the spatial structure over
time.

3.1 Linear Temporal Logic (A reminder)

Before we introduce LSTL, let us briefly re-capitulate the syntax and semantics of
propositional linear temporal logic. For a clear distinction between the propositional
variables of the spatial and temporal logics, we denote the latter by T.

Definition 5. Suppose T = {a0, a1, . . . } is a set (of atomic propositions). Then the
language LT L(T) of linear temporal logic over T is the least set according to the
grammar

φ, ψ ∈ LT L(T) ::= ff | φ → ψ | �φ | φ U ψ | a
where a ∈ T ranges over the set of propositional variables. As usual, the other connec-
tives, tt, ∨, ∧, ¬ can be defined from ff and →, and we abbreviate �φ = tt U φ and
�φ = ¬�¬φ.

We call a sequence of valuations V = (Vn)n∈N of T a temporal structure. Given
such a V = (Vn)n∈N, i.e. each Vn is of type T → {tt, ff}, the satisfaction relation is
inductively given by

(V, n) |= a iff Vn(a) = tt
(V, n) |= �φ iff (V, n + 1) |= φ
(V, n) |= φ U ψ iff ∃j ≥ i.(V, j) |= ψ and ∀i ≤ k < j. (V, k) |= φ

where the semantics of propositional connectives is defined as usual. Finally, we put
V |= φ if (V, n) |= φ for all n ∈ N and LT L |= φ if V |= φ for all temporal
structures V . To distinguish satisfaction w.r.t. linear temporal logic, we sometimes write
(V, n) |=LT L φ, and similarly V |=LT L φ.

The formula �φ is usually read as “φ is true in the next point in time”, and φ U ψ reads
“φ is true until ψ becomes true”. Similarly, �φ means that “φ will eventually become
true”, and finally �φ expresses that φ will be true in all future states. It is well known
that the axioms

(taut) all propositional tautologies (ltl1) �φ ∧�(φ→ ψ) → �ψ

(ltl2) φ U ψ ↔ ψ ∨ (φ ∧�(φ U ψ)) (ltl3) �(¬φ) → ¬�φ
together with the inference rules

A Complete Temporal and Spatial Logic for Distributed Systems 129

(mp)
φ,φ → ψ

ψ
(nex)

φ

�φ (ind)
φ′ → ¬ψ ∧�φ′
φ′ → ¬(φ U ψ)

provide a complete axiomatisation of propositional linear temporal logic. We write
LT L ' φ if φ can be derived using the above axioms and rules. It is easy to check
soundness of the above axioms and rules, and we have the following well-known com-
pleteness theorem [17,13,19]:

Theorem 2. A formula φ ∈ LTL is valid in all temporal structures iff φ is derivable,
i.e. LT L |= φ ⇐⇒ LT L ' φ for all LT L-formulas φ.

3.2 The Logic LSTL

We now embark on the programme of temporalising HL∗, which essentially amounts
to replacing (temporal) propositions in LT L-formulas by local HL∗-formulas and the
addition of an axiom that represents that names do not change over time. The resulting
logic is called LSTL, and the formal definition is as follows:

Definition 6. The language of the logic LSTL is the language of linear temporal logic
over the set L(HL∗) = {φ ∈ HL∗ | φ local } of atoms, i.e. LT L(L(HL∗)). Note that
propositional combinations of local formulas are not local anymore, but this does not
matter as the propositional connectives are in LT L as well.

A spatio-temporal structure is a sequence (Sn)n∈N of named HL∗-models. The
structure (Sn)n∈N has consistent naming, if S0 |= @ij iff Sn |= @ij for all i, j ∈ Nom
and all n ∈ N.

Every spatio-temporal structure (Sn)n∈N gives rise to a sequence of valuations

S�
n : L(HL∗) → {tt, ff}, φ �→

{
tt Sn |= φ

ff otherwise.

Validity of a LSTL formula φ in a spatio-temporal structure is can now be defined by
(Sn)n∈N |=LSTL φ iff (S�

n)n∈N |=LT L φ, where the latter is the standard validity in
linear temporal logic (Definition 5).

Finally, LSTL |= φ iff S |=LSTL φ for all spatio-temporal structures S with
consistent naming.

The reason for introducing structures with consistent naming is that in our view “names
are physical”, which in particular means that they do not change over time (like an IP
address for example compared to a domain name that may change). Moreover, those
names will provide the only glue between the models in a spatio-temporal structure.
Consistent naming ensures that we can address the same physical location at different
times via the same (physical) name. We conclude the section on syntax and semantics
of LSTL with some examples.

Example 2 (Network routing). If we let places denote the nodes of a network and the
spatial structure reflect the network topology, we are able to formulate assertions on
the network and its routing of packets. We are only interested in a finite number of
such nodes K . The packet with destination r is encoded as atomic proposition of HL∗,

130 D. Pattinson and B. Reus

denoted r. We want to send it from s and thus assume that there is a spatial connection
between nodes s and r (Reach). It is also assumed that the network does not change
its spatial topology (Static) – and thus in particular does never lose any connections.
Packet r, wherever it may be, will always be broadcast to neighbour nodes (Broadcast).
Finally, we have to ensure that – as messages are only broadcasted to neighbours in K
– that r can reach its destination via a path that only visits nodes in K , which is implied
by (Connect). In LSTL this reads as follows:

Reach = @s �
∗r

Static =
∧

p,q∈K @p �q → �@p �q

Broadcast =
∧

p,q∈K(@pr ∧@p �q) →©@qr

Connect =
∧

i∈K @i �
∨

j∈K j

In such a situation one can derive that message r will eventually arrive, ie. @sr →
� @rr.

Example 3. Agents can be specified by describing the computation at various places in
terms of state transitions. If agent A runs at place i and agentB runs at place j, and their
state change is described by functions δA : SA → SA and δB : SB → SB , respectively,
then the system obtained by running A and B concurrently can be specified by∧

s∈SA

@iϕ(s) →©@iϕ(δA(s)) ∧
∧

s∈SB

@iϕ(s) →©@jϕ(δB(s))

where ϕ(·) is a logical formula that characterises the respective state. If agentB “moves
into” agent A after performing a state change from smv to se then this can be specified
by

@jϕ(smv) ∧ ¬@i �j ∧ ¬@j �i →©@i �j ∧@jϕ(se)

This movement is accounted for by the change of the spatial structure. This can be
extended to describe behaviours of ambient like agents [8].

Example 4 (Leader election protocol). The following example is an adaptation of the
IEEE 1394 Leader election protocol (see e.g. [26]). Let places again denote a finite
number of network nodes. The network topology is described by a fixed acyclic (and
finite) neighbourhood relation R. The network nodes are supposed to elect a leader.

Let the spatial structure represent the election results, i.e. how “local leaders” were
chosen between each pair of connected nodes. Hence, we have p → q if p has chosen q
to be its leader (and p and q are neighbours).

The protocol can be specified as follows: Initially, there are no connections between
places (Init). Nextp,q describes the situation where two nodes, p and q have not de-
termined a leader between each other yet, and p is the only neighbour of q with that
property. In such a case, q can become a subordinate of p, which is specified on the sec-
ond line of Next. The first line specifies a “frame”-condition, namely that connections
between places are always maintained, and for places who are not neighbours, do not
even change. Goal states that for any two places in the neighbourhood relation one is
the leader of the other. This implies that there is a leader for all nodes. Finally, Live
axiomatises that if Goal is not (yet) true, there are places p and q that decide leadership
amongst them in the next step.

A Complete Temporal and Spatial Logic for Distributed Systems 131

The specification of the overall system then is: Init ∧ Next ∧ Live → Goal.

Init =
∧

p @p¬ �tt

Nextp,q = @p¬ �tt ∧@q¬ �tt ∧
∧

r
=p,R(q,r) @r �tt

Next =
∧

p,q @q �p → �@q �p ∧
∧

p,q,¬R(p,q) @q �p ⇐⇒ �@q �p ∧∧
R(p,q)(©@q �p) ∧@q¬ �p → Nextp,q

Goal =
∧

p
=q,R(p,q) @p �q ∨@q �p

Live = Goal ∨
∨

p,q @q¬ �p ∧�@q �p

We deem this formulation in LSTL more natural than the one given in [26].

Example 5 (XML documents). Let us specify an XML document with an active compo-
nent. The spatial structure mirrors the XML document tree-structure, such that places
correspond to occurrences of pairs of matching tags, i.e. i → j means that the XML-
component at j is defined inside the one at i. The tags used and the text contained inside
these tag are expressed as spatial propositions. As documents are finite, we are only in-
terested in a finite set of places F . The document specified below has a root component
(1), and a weather component somewhere under the root node (2). Moreover, if the
weather component contains a temperature component, it will eventually fill in a valid
integer representing the temperature in degrees (3).

1.
∧

p∈F @root �
∗p ∧ ¬@p �

∗root
2. @root �

∗〈weather〉
3.
∧

p∈F @p(〈weather〉∧ �
∗〈temp〉) → � @p(〈weather〉∧ �

∗(〈temp〉∧valid_int))

Note that the basic set of inference rules accounts for loops and self-reference in the
structure of XML documents. While this is possible in some dialects of XML, e.g.
Xlink [11] and other tree based query languages [6], it is easy to axiomatise special
properties of trees in LSTL. For example, the formula ¬@i �

∗i ensures that there are
no cycles in the structure of the document.

3.3 Proof Rules of LSTL

This section describes a complete axiomatisation of LSTL. Extending [14], we enrich
a standard and complete axiomatisation of LT L with the following rule and axiom
scheme:

(emb)
LT L ' φ
LSTL ' φ (cn) @ij ↔ �@ij

to import spatial deduction into LSTL and to account for the fact that we are axioma-
tising structures with consistent naming, which is the main difference to [14], which
presumes complete independence of the temporal component and the logic being tem-
poralised.

Definition 7. Suppose φ ∈ LSTL. Then LSTL ' φ if φ is in the least set of formulas
closed under (emb), (cn) and the axioms and rules of any complete axiomatisation of
LT L.

It is straightforward to verify soundness of LSTL.

132 D. Pattinson and B. Reus

Proposition 2 (Soundness of LSTL). Suppose φ ∈ LSTL. Then LSTL |= φ if
LSTL ' φ.

3.4 Completeness of LSTL

We now tackle completeness of LSTL. Our construction is an extension of the con-
struction presented in [14] that accounts for the fact that the rule (cn) axiomatises con-
sistent naming, which is a property of spatio-temporal structures that cuts across time.

The proof of completeness fixes a fixed enumeration of a set T = {p0, p1, p2, . . . }
of propositional variables, that is used to encode sentences of LSTL in LT L. We need
the following technical terminology.

Definition 8. For a fixed enumerations L(HL∗) = {φ0,φ1,φ2 . . . } we define the cor-
respondence mapping σ : LT L(L(HL∗)) → LT L(T) as the mapping φi �→ ai.

Because we replace propositional reasoning when substituting L(HL∗)-formulas for
atoms in linear temporal logic, we need to encode the relations between the atoms on
a purely propositional level in order to make use of completeness of LT L. This is the
purpose of the next definition.

Definition 9. We inductively define the set Lit(φ) ⊆ HL∗ of literals of φ ∈ LSTL as
follows:

Lit(ff) = ∅ Lit(φ → ψ) = Lit(φ) ∪ Lit(ψ) Lit(�φ) = Lit(φ)
Lit(a) = {a,¬a} Lit(φ U ψ) = Lit(φ) ∪ Lit(ψ)

where p ∈ HL∗ in the last line above. If φ ∈ LSTL, the set of inconsistencies of φ is
given as

Inc(φ) = {
∧

Φ | Φ ⊆ Lit(φ) and Φ 'HL∗ ff}.

Theorem 3. The logic LSTL is weakly complete.

Proof. Suppose φ ∈ LSTL is consistent; we show that φ has a model, which is equiv-
alent to the claim by contraposition. Let nom(φ) =

⋃
{nom(ψ) | ψ ∈ Lit(φ)} denote

the set of nominals occurring in φ making use of nom for HL∗- formulas (see Sec-
tion 2). We now let

φ̂ = φ ∧
∧

ψ∈Inc(φ)

�¬ψ ∧
∧

i,j∈nom(φ)

@ij ↔ �@ij

Note that consistency of φ implies consistency of φ̂, which in turn implies consistency
of σ(φ̂). Hence there exists a sequence V = (Vn) of valuations of the propositional
variables T s.t. V |=LT L σ(φ̂). The intuition behind the definition of φ̂ is that φ̂ encodes
not only φ, but also all relations between its literals on a purely propositional level. This
encoding ensures that propositionally valid literals are actually consistent in the logic
HL∗, a fact that is crucial for completeness, which we now address.

A Complete Temporal and Spatial Logic for Distributed Systems 133

By construction, this valuation satisfies

V0 |= σ(@ij) ⇐⇒ Vn |= σ(@ij)

for all n ∈ N and all i, j ∈ nom(φ). Take

Gn(φ) = {ψ ∈ Lit(φ) | Vn |= σ(ψ)}.

Then all Gn are HL∗-consistent (Lemma 14.2.17 of [15]). Moreover, we have @ij ∈
G0(φ) ⇐⇒ @ij ∈ Gn(φ) for all i, j ∈ nom(φ) and all n ∈ N by construction. As
Gn(φ) consists of local formulas only, we can invoke Corollary 1 to obtain a countable
named model Sn with Sn |= Gn(φ) for all n ∈ N.

We can assume without loss of generality that the sequence (Sn) has constant nam-
ing, as Sn |= @ij ⇐⇒ S0 |= @ij for i, j ∈ Nom(φ) and n ∈ N and we can always
change the valuation of nominals not occurring in φ (and hence Gn) without changing
the validity of formulas.

Now V |= σ(φ̂) implies that V |= σ(φ) which implies M |= φ where the latter can
be shown by induction on the structure of φ.

4 Spatial Transition Systems

The spatio-temporal structures of Def. 6 have one significant drawback, they are just ar-
bitrary sequences of spatial models and there are no rules on how one spatial model
evolves from its predecessors. As a remedy, and to bridge the gap between spatio-
temporal structures and programming languages, spatial transition systems are intro-
duced below. They are an abstraction of distributed programs. Completeness of LSTL
with respect to these transitions systems will follow from the fact that every spatio-
temporal structure arises as a run of a spatial transition system.

Definition 10. A spatial transition system (STS) Θ consists of an enumerable set of
physical places P , a surjective map η : Nom → P mapping nominals – ie. (non-
unique) place names – to physical places, and a P -indexed set of transition systems
(Xp,→p, λp,μp, s

0
p)p∈P such that

– Xp is the set of states of computations happening at place p,
– →p ⊆ Xp ×Xp is the (possibly non-deterministic) state transition relation of the

computation at place p. Transitions in (Xp ×Xp) are autonomous transitions that
can happen at place p.

– λp : Xp → P(P) describes the spatial structure in terms of all connected neigh-
bours of p at any state during the computation,

– μp : Xp → P(A) characterises the states of the computation at p by stating which
(spatial) propositions hold in each state,

– s0
p is the initial state for the computation in p.

A system state s of Θ is then a place indexed vector of states, i.e. s ∈ Πp∈P .Xp.
We write s(p) for the component of s belonging to place p. A spatial transition system

134 D. Pattinson and B. Reus

Θ = (P, η, (Xp,→p, λp,μp, s
0
p)p∈P) induces a transition relation→Θ on system states

s, s′ ∈ Πp∈P .Xp as follows:

s →Θ s′ ⇐⇒ ∃Q ⊆ P (∀p ∈ Q. s(p) →p s′(p) and ∀p /∈ Q.s(p) = s′(p))

with sΘ = (s0
p)p∈P as initial state.

Runs of an STS are always infinite, as all the computations may be idle (choosing Q to
be ∅). This provides us with a unified setting for finite and infinite computations. More-
over, the computations at different places may proceed in different speeds, reflected by
the fact that at every tick of the synchronous clock describing the progress of a system
state s ∈ Πp∈P .Xp, some of the computations, precisely those in P \Q, are idle. This
is supposed to reflect the fact that the computations are actually running independently.
Any computation in p ∈ P can be non-deterministic if →p is not the graph of a function.

Definition 11. Every system state s for a STS Θ as described above gives rise to a
named spatial model Sp(s) = (P,→s, Vs, Ns) setting

p →s q ⇐⇒ q ∈ λp(s(p)), Vs(a) = {p ∈ P | a ∈ μp(s(p))}, Ns = η.

The set of spatio-temporal structures generated by the STS Θ, called Run(Θ), contains
all sequences of models generated by possible runs of Θ, i.e.

Run(Θ) = {(Sp(sn))n∈N | s0 = sΘ ∧ sn →Θ sn+1 for all n ∈ N}.

As η in the definition of STS does not depend on the states of the STS, all spatio-temporal
structures in Run(Θ) have consistent naming. Validity for an STS is defined via a detour
through the spatio-temporal structures:

Θ |= φ ⇐⇒ ∀(Sn) ∈ Run(Θ). (Sn) |= φ.

Due to the independent definition of the computations at places P , there cannot be any
communication between them. Therefore, we will refine the notion of an STS shortly,
but the present definition is sufficient to prove a completeness result.

Before we embark on completeness, we need one little technical lemma on consis-
tent naming, which uses the following terminology: For a function f : X → Y , the
kernel of f is the set Ke(f) = {(x, x′) ∈ X ×X | f(x) = f(x′)}. Note that Ke(f) is
an equivalence relation.

Lemma 4. Suppose (Sn)n∈N is a spatio-temporal structure with consistent naming
and Sn = (Pn,→n, Vn, Nn). Then Ke(Nk) = Ke(Nl) for all k, l ∈ N and P ∼=
Nom/Ke(Nk) for all k ∈ N.

Lemma 5. For an LSTL formula φ, if Θ |= φ for all STS Θ, then S |= φ for all
spatio-temporal structures S with consistent naming (according to Def. 6).

Proof. Assume Θ |= φ for all STS Θ and let a spatio-temporal structure S with con-
sistent naming be given. Assume S = (Sn,→n, Vn, Pn). By the last lemma, we can
assume without loss of generality that S0 = Nom/Ke(N0) = Sk for all k ∈ N. We
now show that S can be generated by a spatial transition system. We let P = S0 and
put η(i) = N0(i) for i ∈ Nom. The components at each place p ∈ P are given by:

A Complete Temporal and Spatial Logic for Distributed Systems 135

– Xp = N

– n →p m iff m = n + 1
– λp(n) = {q ∈ Sn | p →n q}

– μp(n) = {a ∈ A | p ∈ Vn(a)}
– s0

p = 0.

Clearly S ∈ Run(Θ), hence S |= φ by assumption.

Corollary 2. The logic LSTL is weakly complete w.r.t. spatial transition systems.

The transition systems defined above still do not provide means for programming syn-
chronisation between computations (which can be used to program communication).
Therefore we define synchronised spatial transition system as a superset of the spatial
ones, ensuring that the completeness result above is not jeopardised. The main idea of
a synchronised spatial transition system is the following. We equip the transition sys-
tems (Xp,→p, λp,μp, s

0
p) that model the system behaviour at place p with a labelled

transition relation →p⊆ Xp × σ ×Xp, where σ is a set of labels that contains the dis-
tinguished label τ . We now stipulate that the system state s can evolve into a system
state s′ if either some of the processes make an internal transition (labelled with τ) or
all processes capable of performing � transitions participate in a synchronous transition,
labelled with � �= τ . The formal definition reads as follows.

Definition 12. A synchronised spatial transition system (SSTS) Σ is defined like a STS
with an additional enumerable set of synchronisation labels σ with distinguished ele-
ment τ ∈ σ and slightly changed transition systems →p⊆ (Xp × σ × Xp). We write

x
�→p y to indicate the (x, �, y) ∈ →p. For all p ∈ P define labels : P → P(σ) by

labels(p) = {� ∈ σ |� �= τ ∧ ∃s, t ∈ Xp. s
�→p t} to denote all labels for which

there are synchronised transitions for the computation at p. The system transitions for
such a SSTS are now defined below, making sure that �-synchronised transitions (for
� �= τ) can only be performed if all processes with �-labelled transitions actually fire
�-transitions synchronously. We stipulate s →Σ s′ if one of the following two conditions
are satisfied:

1. ∃Q ⊆ P (∀p ∈ Q. s(p) τ→p s′(p) and ∀p /∈ Q.s(p) = s′(p)), or

2. ∃� �= τ ∈ σ(∀p ∈ P�.s(p) �→p s′(p) and ∀p /∈ P�.s(p) = s′(p)).

where P� = labels−1({�}) denotes the set {p ∈ P | � ∈ labels(p)} of places that can
fire an �-transition.

Example 6 (Leader Election Protocol IEEE 1394). We present an SSTS that fulfils the
specification given in Example 4. The SSTS is defined as follows: Set P = Nom and
η = id. For p ∈ Nom let Xp = (N,P(Nom)) such that λp(_, x) = x. The first
component keeps track of the number of neighbours with which p has yet to decide
about the leadership. Let σ contain a label �{i,j} for each pair of names, such that
R(i, j). Remember that R is the fixed neighbourhood relation describing the topology
of an acyclic network. The initial state for each p is now (card{j ∈ Nom | R(j, p)}, ∅).

For every i, j ∈ Nom such that R(i, j) we have transitions

(1, x)
�{i,j}−→ i (0, x ∪ {j}) (n + 1, x)

�{i,j}−→ j (n, x)

136 D. Pattinson and B. Reus

According to this definition, any node i can only chose j to be its leader if j is a neigh-
bour, and j is the only neighbour that has not yet become a subordinate to another node.

Corollary 3. The logic LSTL is weakly complete w.r.t. synchronised spatial transition
system.

This follows from Corollary 2 and the fact that every STS is also an SSTS.

5 Conclusions

By blending well-known ingredients, hybrid logic and linear temporal logic, extending a
recipe from [14], we obtained a logic for reasoning about time and space for distributed
computations that we proved to be complete. Our model is capable of representing
many situations that naturally arise in distributed computing, including the behaviour
of distributed agents (Example 3). Further research is necessary to investigate whether
the spatial formulas can be extended, e.g. by hybrid quantifiers that could replace the
finite conjunctions in our examples; this work will be guided by [16]. On the spatio-
temporal side the question remains how to reflect synchronisation on the logical level.

References

1. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Number 53 in Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

2. Patrick Blackburn and Miroslava Tzakova. Hybrid completeness. Logic Journal of the IGPL,
6(4):625–650, 1998.

3. Patrick Blackburn and Miroslava Tzakova. Hybrid languages and temporal logic. Logic
Journal of the IGPL, 7(1):27–54, 1999.

4. Luís Caires and Luca Cardelli. A spatial logic for concurrency (part I). Inf. Comput.,
186(2):194–235, 2003.

5. Luís Caires and Luca Cardelli. A spatial logic for concurrency - II. Theor. Comput. Sci.,
322(3):517–565, 2004.

6. Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context logic and tree update. In
POPL ’05: Proceedings of the 32nd symposium on Principles of programming languages,
pages 271–282, New York, NY, USA, 2005. ACM Press.

7. Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A spatial logic for querying graphs.
In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy,
Stephan Eidenbenz, and Ricardo Conejo, editors, Automata, Languages and Programming,
29th International Colloquium, ICALP 2002, Proceedings, volume 2380 of Lecture Notes in
Computer Science, pages 597–610. Springer, 2002.

8. Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: Modal logics for mobile ambi-
ents. In POPL, pages 365–377, 2000.

9. Luca Cardelli and Andrew D. Gordon. Mobile ambients, pages 198–229. Cambridge Uni-
versity Press, New York, NY, USA, 2001.

10. Rohit Chadha, Damiano Macedonio, and Vladimiro Sassone. A distributed Kripke seman-
tics. Technical Report 2004:04, University of Sussex, 2004.

11. W3C consortium. Xlink language version 1.0.
12. Rocco de Nicola, Gian Luigi Ferrari, and Rosario Pugliese. Klaim: A kernel language for

agents interaction and mobility. IEEE Trans. Softw. Eng., 24(5):315–330, 1998.

A Complete Temporal and Spatial Logic for Distributed Systems 137

13. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. MIT Press, 1995.

14. Marcelo Finger and Dov Gabbay. Adding a Temporal Dimension to a Logic System, chap-
ter 14, pages 524–552. Volume 1 of Oxford Logic Guides [15], 1994.

15. Dov Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal Logic: Mathematical Founda-
tions and Computational Aspects: Volume I. Number 28 in Oxford Logic Guides. Oxford
University Press, 1994.

16. Dov Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Many-dimensional
Modal logics: Theory and Applications. Elsevier, 2003.

17. Dov Gabbay, Amir Pnueli, Saharon Shela, and Johnatan Stavi. On the temporal analysis of
fairness. In Proc. of the 7th ACM Symp. on Principles of Programming Languages, pages
163–173. ACM press, 1980.

18. Daniel Hirschkoff. An extensional spatial logic for mobile processes. In Philippa Gard-
ner and Nobuko Yoshida, editors, Proc. of 15th Int. Conf. CONCUR 2004, volume 3170 of
Lecture Notes in Computer Science, pages 325–339. Springer, 2004.

19. Fred Kröger. Temporal Logic of Programs, volume 8 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1987.

20. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer, 1992.

21. Stephan Merz, Martin Wirsing, and Júlia Zappe. A spatio-temporal logic for the specification
and refinement of mobile systems. In Mauro Pezzè, editor, Proc. of 6th Int. Conf. Funda-
mental Approaches to Software Engineering (FASE) 2003, volume 2621 of Lecture Notes in
Computer Science, pages 87–101. Springer, 2003.

22. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes. Inf.
Comput., 100(1):1–40, 1992.

23. Robin Milner, Joachim Parrow, and David Walker. Modal logic for mobile processes. Theo-
retical Computer Science, 1(114):149–171, 1993.

24. Rocco De Nicola and Michele Loreti. A modal logic for mobile agents. ACM Trans. Comput.
Logic, 5(1):79–128, 2004.

25. Solomon Passy and Tinko Tinchev. An essay in combinatory dynamic logic. Information
and Computation, 93, 1991.

26. Júlia Zappe. Towards a mobile TLA. In M. Nissim, editor, ESSLI Student Workshop on
Logic, 2002.

Hybrid CSP Solving

Eric Monfroy1,3, Frédéric Saubion2, and Tony Lambert2,3

1 Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile
Firstname.Name@inf.utfsm.cl

2 LERIA, Université d’Angers, France
Firstname.Name@univ-angers.fr

3 LINA, Université de Nantes, France
Firstname.Name@univ-nantes.fr

Abstract. In this paper, we are concerned with the design of a hybrid
resolution framework. We develop a theoretical model based on chaotic
iterations in which hybrid resolution can be achieved as the computation
of a fixpoint of elementary functions. These functions correspond to basic
resolution techniques and their applications can easily be parameterized
by different search strategies. This framework is used for the hybridiza-
tion of local search and constraint propagation, and for the integration
of genetic algorithms and constraint propagation. Our prototype imple-
mentation gave experimental results showing the interest of the model
to design such hybridizations.

1 Introduction

The resolution of constraint satisfaction problems (CSP) appears nowadays as a
very active and growing research area. Indeed, constraint modeling allows both
scientists and practitioners to handle various industrial or academic applications
(e.g., scheduling, timetabling, boolean satisfiability, ...). In this context, CSP are
basically represented by a set of decision variables and a set of constraints among
these variables. The purpose of a resolution process is therefore to assign a value
to each variable such that the constraints are satisfied. We focus here on discrete
CSP in which variables take their values over finite sets of integers. Discrete CSP
are widely used to model combinatorial problems, and, by extension, combinato-
rial optimization problems, where the purpose is to find a solution of the problem
which optimizes (minimizes or maximizes) a given criterion, usually encoded by
an objective function.

The resolution of CSP involves many different techniques issued from dif-
ferent scientific communities: computer science, operation research or applied
mathematics. Therefore, the principles and purposes of the proposed resolution
approaches are very diverse. But, one may classified these methods in two fam-
ilies, which differ on a fundamental aspect of the resolution: complete methods
whose purpose is to provide the whole set of solutions and incomplete methods
which aim at finding one solution. On the one hand, complete methods, thanks
to an exhaustive exploration of the search space, are able to demonstrate that a

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 138–167, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hybrid CSP Solving 139

given problem is not satisfiable while incomplete methods will be ineffective in
that case. On the other hand, incomplete methods, which explore only some parts
of the search space with respect to specific heuristics, are often more efficient
to obtain a solution and, moreover, for large instances with huge search space
they appear as the only usable methods since resolution becomes intractable for
complete methods.

A common idea to get more efficient and robust algorithms consists in com-
bining several resolution paradigms in order to take advantage of their respective
assets. Such combinations are now more and more studied in the constraint pro-
gramming community [21,30,31,32].

Complete solvers usually build a search tree by applying domain reduction,
splitting and enumeration. Local consistency mechanisms [24,27] allow the algo-
rithms to prune the search space by deleting inconsistent values from variables
domains. Such solvers have been embedded in constraint programming languages
(Chip [2], Ilog Solver [19], CHOCO [22], ...) which provide a general framework
for constraint modeling and resolution. Unfortunately, this approach requires an
important computational effort and therefore encounters some difficulties with
large scale problems. These performances can be improved by adding more spe-
cific techniques such as efficient constraint propagation algorithms, global con-
straints, ... We refer the reader to [5,12,25,9] for an introduction to constraint
programming.

Incomplete methods mainly rely on the use of heuristics providing a more
efficient exploration of interesting areas of the search space in order to find some
solutions. Unfortunately, these approaches do not ensure to collect all the solu-
tions nor to detect inconsistency. This class of methods, known as metaheuristics,
covers a very large panel of resolution paradigms from evolutionary algorithms
to local search techniques. We refer the reader to [1,29,18] for an overview of
these different algorithms and their applications to combinatorial optimization
problems. [11] presents an overview of possible uses of local search in constraint
programming.

Due to their different algorithmic process, these approaches often differ in
their representation of the search space and in the benefit they get from the
structure of the problem. Therefore, hybridizations of these techniques have of-
ten been tackled through heterogeneous combinations of coexisting resolution
processes, with a master-slave like management, and are often related to specific
problems or class of problems. Such designs lead to intricate solvers whose be-
havior is sometimes hard to analyze and which offer few flexibility in order to
handle other problems.

Our purpose is to present in this paper a general hybridization framework in
order to combine usual complete constraint programming resolution techniques,
namely constraint propagation and splitting, together with metaheuristics opti-
mization techniques, namely local search and genetic algorithms. This framework
is based on the original mathematical framework proposed by K.R. Apt in [4].
In this framework, basic resolution processes are abstracted by functions over

140 E. Monfroy, F. Saubion, and T. Lambert

an ordered structure. This allows us to consider the different resolution agents
at a same level and to study more precisely various hybridization strategies.

In this paper, we first focus on hybridization of constraint propagation tech-
niques (CP) and local search (LS) for constraint satisfaction problems, based on
preliminary results [28,23], and then we present a new hybridization of CP and
genetic algorithms (GA) for constraint optimization problems. As mentioned
above, the main difference between these two classes of problems will consist
of different evaluation or fitness function which have to take into account the
satisfaction problem (minimization of the number of violated constraint) and
eventually an optimization criterion.

This paper is organized as follows. In Section 2 we recall the basic notions
related to CSPs, to complete methods (more especially constraint propagation
based methods) and incomplete methods (local search and genetic algorithms)
for solving CSPs. In Section 3, we present the uniform computational framework
that we extend later for hybridization of CP and LS (Section 4) and hybridiza-
tion of CP and GA (Section 5). Section 6 shows some experimental results of
hybridization, obtained with our generic constraint system. Finally, we conclude
and propose some perspectives in Section 7.

2 Constraint Satisfaction Problems

In this section, we first recall the basic notions related to Constraint Satisfaction
Problems (CSP) [34]. We describe then, three important resolution approaches
that we will use in our hybridization framework: complete resolution techniques
based on constraint propagation, local search methods, and genetic algorithms.

A CSP is a tuple (X, D, C) where X = {x1, · · · , xn} is a set of variables that
takes their values in their respective domains D1, · · · , Dn. A constraint c ∈ C is
a relation c ⊆ D1 × · · · ×Dn. D denotes the Cartesian product of D1 × · · · ×Dn

and C the union of its constraints.
A tuple d ∈ D is a solution of a CSP (X, D, C) if and only if ∀c ∈ C, d ∈ c.
Note that, without any loss of generality, we consider that each constraint

is over all the variables x1, . . . , xn. However, one can consider constraints over
some of the xi. Then, the notion of scheme [4,3] or projections can be used to
denote sequences of variables.

2.1 Solving CSP with Complete Resolution Techniques

Complete resolution techniques generally perform a systematic exploration of
the search space which obviously corresponds to the set of possible tuples D.
To avoid and reduce the combinatorial grow up of this extensive exploration,
these methods use particular techniques to prune the search space. Constraint
propagation, one of the most popular of these pruning techniques, is based on
local consistency properties. A local consistency (e.g., [24,27]) is a property of
the constraints and variables which is used by the search mechanisms to delete
values from variables domains which violate constraints and thus, cannot lead

Hybrid CSP Solving 141

to solutions. There are several levels of local consistencies that consider one or
several constraints at a time: we may mention node consistency and arc consis-
tency [24] as famous examples of local consistencies.

But constraint propagation is not sufficient for fully defining a complete solver
and split techniques are added to obtain a complete search algorithm. Constraint
propagation consists in examining a subset C′ of C (generally C′ is restricted to
one constraint) to delete some inconsistent values (from a local consistency point
of view) of the domains of variables appearing in C′. These domain reductions
are then used to reduce variables appearing in C \ C′. Hence, reductions are
propagated to the entire CSP. When no more propagation is possible and the
solutions are not reached, the CSP is split into sub-CSPs on which propagation
is applied again, and so on until the solutions are reached. Generally, the domain
of a variable is split into two sub-domains leading to two sub-CSPs. One of the
most popular strategy of splitting is enumeration that consists in restricting one
of the sub-domain to one value, the other sub-domain being the initial domain
without this value.

solve(CSP):
while not solved do

constraint propagation
if not solved

then split
search

endif
endwhile

Fig. 1. A simple constraint solving algorithm

Figure 1 shows a simple but generic solve algorithm based on constraint
propagation. The “search” function consists in calls to the solve function: search
manages the sub-CSPs created by split. Usual search is depth or breadth first
search. “solved” is a Boolean that is set to true when the CSP is found incon-
sistent, or when the wish of the user is reached: one solution, all solutions, or an
optimum solution have been computed.

2.2 Solving CSP with Local Search

Local search techniques usually aim at solving optimization problems and have
been widely used for combinatorial problems [1,29,18]. In the particular context
of constraint satisfaction, these methods are applied in order to minimize the
number of violated constraints and thus to find a solution of the CSP. A local
search algorithm, starting from a given configuration, explores the search space
by a sequence of moves. At each iteration, the next move corresponds to the
choice of one of the so-called neighbors of the current state. This neighborhood
often corresponds to small changes of the current configuration. Moves are guided

142 E. Monfroy, F. Saubion, and T. Lambert

by a fitness function which evaluates their benefit from the optimization point
of view, in order to reach a local optimum. In the next sections, we attempt to
generalize the definition of local search.

For the resolution of a CSP (X, D, C), the search space can be usually defined
as the set of possible tuples of D = D1 × · · · × Dn and the neighborhood is a
mapping N : D → 2D. This neighborhood function defines indeed possible moves
and therefore fully defines the exploration landscape. The fitness (or evaluation)
function eval is related to the notion of solution and can be defined as the
number of constraints c such that d �∈ c (d being a tuple from D).

As mentioned above, in the context of constraint satisfaction problems, the
evaluation function corresponds to the minimization of the number of violated
constraint. Therefore, given a configuration d ∈ D, representing an assignment,
a basic local search move can either lead to an increase of the number of satisfied
constraints (i.e., choose d′ ∈ N (d) such that eval(d′) < eval(d)) or to any other
configuration which does not improve the evaluation function. These two possible
steps can be interpreted as intensification or diversification of the search and local
search algorithms are often based on the management of these basic heuristics
by introducing specific control features. Therefore, a local search algorithm can
be considered as a sequence of moves on a structure ordered according to the
evaluation function.

2.3 Genetic Algorithms

Evolutionary algorithms are mainly based on the notion of adaptation of a pop-
ulation of individuals to a criterion using evolution operators like crossover [15].

Based on the principle of natural selection, Genetic Algorithms [17,20] have
been quite successfully applied to combinatorial problems such as scheduling or
transportation problems. The key principle of this approach states that, species
evolve through adaptations to a changing environment and that the gained
knowledge is embedded in the structure of the population and its members,
encoded in their chromosomes. If individuals are considered as potential solu-
tions to a given problem, applying a genetic algorithm consists in generating
better and better individuals with respect to the problem by selecting, crossing,
and mutating them. This approach reveals very useful for problems with huge
search spaces. We had to adapt some basic techniques and slightly modify some
definitions to fit our context but we refer the reader to [26] for a survey.

A genetic algorithm consists of the following components:

– a representation of the potential solutions: in most cases, individuals will be
strings of bits representing its genes,

– a way to create an initial population,
– an evaluation function eval: the evaluation function rates each potential

solution with respect to the given problem,
– genetic operators that define the composition of the children: two differ-

ent operators will be considered: Crossover allows to generate new indi-
viduals(the offsprings) by crossing individuals of the current population

Hybrid CSP Solving 143

(the parents), Mutation arbitrarily alters one or more genes of a selected
individual,

– parameters: population size psize and probabilities of crossover pc and mu-
tation pm.

In the context of GA, for the resolution of a given CSP (X, D, C), the search
space can be usually defined with the set of tuples D = D1 × · · · × Dn. We
consider a populations g, which is a subset of D, such that its cardinality is i.
An element s ∈ g is an individual and represents a potential solution to the
problem.

Here, we will use the hybridization CP+GA in the context of constraint
optimization problems. Therefore, evaluation functions (related to previous eval
function but extended to optimization problems) provide information about the
quality of an individual and so, of a population. Thus, these functions have to
handle both the constraints of the problem and the optimization criterion.

A tuple in D is evaluated on an ordered set E whose lower bound corre-
sponds indeed to the evaluation of an optimal solution. Therefore a fitness func-
tion evalind: D → E is such that evalind(s) takes into account the number of
unsatisfied constraints and the optimization criterion (abstraction of the ob-
jective function) for an individual s. We consider that E is ordered such that
if s is a feasible solution (i.e. all constraints are satisfied) then evalind(s) is
restricted to its optimization evaluation. We denote s <eval s′ the fact that
evalind(s) <E evalind(s′). When solving optimization problems we have to iso-
late the best solution yet found. Thus, s is the current solution for a population
g if ∀s′ ∈ g, s ≤eval s′.

We extend this notion of fitness to population by evalgen: 2D → F such that
evalgen(g) represents the evaluation of the individuals of the population g. The
set F is ordered such that: g is a population solution if it contains an individual
solution (i.e at least one of the components of g has an evaluation restricted to
its optimization evaluation).

This evalgen(g) function, can represent for example, the sum of all the fitness
of each individual, the sum of squares, or can be restricted to the best individual
in the population. Furthermore, we denote g <eval g′ the fact that evalgen(g) <F

evalgen(g′).

3 A Uniform Computational Framework

As described in the previous section, different techniques may be used to solve
CSP (and many others which are not recalled here since they are out of the scope
of this paper). Our purpose is to integrate the various involved computation
processes in a uniform description framework. Since we want to combine all
our resolution technique at a same level, the chaotic iterations model of K.R.
Apt particularly fits our requirements. Therefore, the purpose of this section is
to formalize the general computation scheme presented in Section 2.1, and to
prepare it for hybridization of techniques.

144 E. Monfroy, F. Saubion, and T. Lambert

In [4,3] K.R. Apt proposed a general theoretical framework for modeling
constraint propagation. In this context, domain reduction corresponds to the
computation of a fixpoint of a set of functions over a partially ordered set.

These domain reduction functions are monotonic and inflationary functions;
they abstract the notion of constraint.

Example 1 (Domain reduction functions). Consider three Boolean variables X,
Y , and Z and the Boolean constraint and(X, Y,Z) such that and(X, Y,Z) rep-
resents the Boolean relation X ∧ Y = Z. An example of reduction function for
the constraint and(X, Y,Z) can be defined by: if the domain of Z is {1}, then
the domains of X and Y must be reduced to {1}.

Here is another example of reduction functions for linear equalities over in-
teger numbers:

if x < y, x ∈ [lx..rx], y ∈ [ly..ry]
we can reduce the domain of x and y as follows:
x ∈ [lx..min(rx, ry − 1)], y ∈ [max(ly, lx + 1)..ry]

The computation of the least common fixpoint of a set of functions F can
be achieved by the Generic Iteration algorithm (GI) described in Figure 2. In
the GI algorithm, G represents the current set of functions still to be applied
(G ⊆ F), d is a partially ordered set (the domains in case of CSP).

GI: Generic Iteration Algorithm

d :=⊥;
G := F ;
While G �= ∅ do

choose g ∈ G;
G := G − {g};
G := G ∪ update(G,g, d);
d := g(d);

endwhile
where for all G, g, d, the set of functions update(G,g, d) from F is such that:

– {f ∈ F − G | f(d) = d ∧ f(g(d)) �= g(d)} ⊆ update(G,g, d).
– g(d) = d implies that update(G,g, d) = ∅.
– g(g(d)) �= g(d) implies that g ∈ update(G,g, d)

Fig. 2. The Generic Iteration Algorithm

Suppose that all functions in F are inflationary (x ! f(x) for all x) and
monotonic (x ! y implies f(x) ! f(y) for all x, y) and that (D,!) is finite.
Then, every execution of the GI algorithm terminates and computes in d the
least common fixpoint of the functions from F (see [4]).

Note that in the following we consider only partial orderings.
Constraint propagation is now achieved by instantiating and “feeding” the

GI algorithm:

Hybrid CSP Solving 145

– the ! partial ordering is instantiated by ⊇, the usual set inclusion,
– d :=⊥ corresponds to d := D1 × . . . × Dn, the Cartesian product of the

domains of the variables from the initial CSP to be solved,
– F is a set of domain reduction functions which abstract the constraints in

order to reduce domains of variables.

This algorithm allows us to compute the smallest box (i.e., Cartesian product
of domains) with respect to the given domain reduction functions that contains
the solutions of the initial CSP.

At this point, as shown in Figure 1, the exploration of the reduced domains
is continued by interleaving splitting and again propagation phases.

In order to obtain a more uniform and generic framework, our purpose is to
integrate the splitting process as a reduction function inside the GI algorithm.
This is motivated by the fact that we want to manage constraint propagation,
split and local search (respectively genetic algorithms) at the same level. To this
end, we will extend the notion of CSP to sampled CSP (respectively CSP with
genetic factor) on which an other type of reduction functions will be applied to
mimic basic operations of local search algorithms (respectively basic operations
of genetic algorithms).

Therefore, we have to introduce new functions in the generic iteration al-
gorithm including splitting operators and local search strategies (respectively a
genetic algorithm process). Then, these search methods can be viewed as the
computation of a fixpoint of a set of functions on an ordered set. But, these
new operators require also a new computation structure and the first step of our
work consists in defining this main structure.

4 CP+LS

Extending the framework described above (Section 3), we propose here a com-
putational structure taking into account both constraint programming and local
search basic resolution processes. CSPs and search paths are embedded in this
new computation structure. Some reduction functions that achieve constraint
propagation, split, and local search are then introduced to compute over this
structure.

4.1 Sampling the Search Space

Domain reductions and splits apply on domains of values: they transform Carte-
sian product of the domains. Local search acts on a different structure which
usually corresponds to points of the search space. Here, we propose a more gen-
eral and abstract definition based on the notion of sample.

Definition 1 (Sample). Consider a CSP (X, D, C). A sample function ε is a
function ε : D → 2D. By extension, ε(D) denotes the set

⋃
d∈D ε(d).

Generally, ε(d) is restricted to d and the set of samples is thus the search space
D (ε(D) = D). However, ε(d) can also be defined as a scatter of tuples around d,

146 E. Monfroy, F. Saubion, and T. Lambert

an approximation covering d, or a box covering d (e.g., for continuous domains).
Moreover, it is reasonable to impose that ε(D) contains all the solutions. Indeed,
the search space D is abstracted by ε(D) to be used by LS.

In this context, a local search can be fully defined by:

– a neighborhood function on ε(D) which computes the neighbors (i.e., a set
of samples) for each sample of ε(D);

– and the set of local search paths. Each path is composed of a sequence of
visited samples and represents moves from neighbors to neighbors.

Given a neighborhood function N : ε(D) → 2ε(D), we define the set of possible
local search paths as LSD =⋃

i>0

{p = (s1, · · · , si) ∈ ε(D)i | ∀j, 1 ≤ j < i− 1, sj+1 ∈ N (sj) and s1 ∈ ε(D)}

The fundamental property of local search relies on its exploration based on the
neighborhood relation.

From a practical point of view, a local search is limited to finite paths with
respect to a stopping criterion: this can be a fixed maximum number of iterations
(i.e., the length of the path) or, in our context of CSP resolution, the fact that
a solution has been reached.

For this concern, according to Section 2.2, we consider an evaluation function
eval: ε(D) → IN such that eval(s) represents the number of constraints unsat-
isfied by the sample s. Moreover, we impose that eval(s) is equal to 0 iff s is a
solution. We denote s <eval s′ the fact that eval(s) < eval(s′).

Therefore, from a LS point of view, a result is either a search path leading
to a solution or a search path of a maximum given size. According to this fact,
we define an order on local search paths as follows:

Definition 2 (local search ordering). We consider an order !ls on LSD

defined by:
(s1, . . . , sn) !ls (s1, . . . , sn)
(s′1, . . . , s′m) !ls (s1, . . . , sn) if n > m and ∀j, 1 ≤ j ≤ m, eval(s′j) �= 0
and ∀i, 1 ≤ i ≤ n, eval(si) �= 0

(s′1, . . . , s
′
m) !ls (s1, . . . , sn) if eval(sn) = 0, ∀i, 1 ≤ i ≤ n− 1, eval(si) �= 0

and ∀j, 1 ≤ j ≤ m, eval(s′j) �= 0

The following example illustrates the notion of results from a LS process.

Example 2 (LS paths). Consider p1 = (a, b), p2 = (a, c) and p3 = (b) three
elements of LSD such that eval(b) = 0 (i.e., b is a solution). Then, these three
paths correspond to possible results of a local search of size 2, they are not
comparable with respect to Definition 2.

4.2 Computation Structure

We can now define the structure required for the hybridization of local search
and constraint solving. To this end, we instantiate the abstract framework of
K.R. Apt described in Section 2.1.

Hybrid CSP Solving 147

Definition 3 (Sampled CSP). A sampled CSP (sCSP) is defined by a triple
(D, C, p), a sample function ε, and a local search ordering !ls where

– D = D1 × ...×Dn

– ∀c ∈ C, c ⊆ D1 × . . .×Dn

– p ∈ LSD

Note that, in our definition, the local search path p should be included in the
box defined by ε(D). We denote SCSP the set of sCSP . We can now define an
ordering relation on the sampled structure (SCSP,!).

Definition 4 (Order over sampled CSPs). Given two sCSPs ψ = (D, C, p)
and ψ′ = (D′, C, p′),

ψ ! ψ′ iff D′ ⊆ D or (D′ = D and p !ls p′).

This relation is extended on 2SCSP as follows:

{φ1, . . . ,φk} ! {ψ1, . . . , ψl} iff ∀φi, (∃ψj , φi ! ψj and � ∃ψj , ψj � φi)

where i ∈ [1..k], j ∈ [1..l].

Note that this partial ordering on sCSPs could also be extended by consid-
ering an order on constraints; this would enable constraint simplifications. But
this is out of the scope of our hybridization.

We denote ΣCSP the set 2SCSP which constitutes the key set of our com-
putation structure. We denote σCSP an element of ΣCSP . A σCSP is thus
a set of sCSPs. As in [4], we define the least element ⊥ as {(D, C, p)}, i.e., the
initial σCSP to be solved.

4.3 Solutions

Since our framework is dedicated to CSP solving, we must define precisely the
notion of solution accordingly to the previous computation structure. These
notions are well defined for complete methods and incomplete methods.

From the complete resolution point of view, a solution of a CSP is a tuple
from the search space which satisfies all the constraints. For local search, the
notion of solution is related to the evaluation function eval which defines a
solution as an element s of ε(D) such that eval(s) = 0.

Definition 5 (Solutions). Given a sCSP ψ = (D, C, p), the set of solutions of
ψ is defined by:

– for constraint propagation (CP) based solvers:

SolD(ψ) = {d ∈ D|∀c ∈ C, d ∈ c}

– for local search (LS):

SolLSD
(ψ) = {(s1, · · · , sn) ∈ LSD | eval(sn) = 0}

148 E. Monfroy, F. Saubion, and T. Lambert

– for a LS/CP hybrid solver:

Sol(ψ) = {(d, C, p)|d ∈ SolD(ψ) or p ∈ SolLSD
(ψ)}

This notion is extended to any σCSP Ψ by:

Sol(Ψ) =
⋃

ψ∈Ψ

Sol(ψ)

4.4 Reduction Functions Definitions and Properties

The computation structure ΣCSP has been defined for integrating CP and
LS and we have now to define our hybrid functions which will be used in the
GI algorithm. Given a σCSP Ψ = {ψ1, · · · , ψn} of ΣCSP , we need to define
functions on Ψ which correspond to domain reduction, split, and local search.
These functions may apply on several sCSPs ψi of Ψ , and for each ψi on some of
its components. Since we consider here finite initial CSPs, note that our structure
is a finite partial ordering.

Definition 6 (Domain reduction function). A domain reduction function
red is a function:

red: ΣCSP → ΣCSP
{ψ1, · · · , ψn} �→ {ψ′

1, · · · , ψ′
n}

such that ∀i ∈ [1 · · ·n]:

– either ψi = ψ′
i

– or ψi = (D, C, p), ψ′
i = (D′, C, p′) and D ⊇ D′ and SolD(ψi) = SolD(ψ′

i).

Note that this definition insures that {ψ1, · · · , ψn} ! red({ψ1, · · · , ψn}) and
that the function is inflationary and monotonic on (ΣCSP,!). Note also that by
definition p′ ∈ LSD′ . This definition allows one to specify a function that reduces
several domains of several sCSPs of a σCSP at the same time. From a constraint
programming point of view, a reduction function preserves the solution set of
the initial CSP: no solution of the initial CSP is lost by a domain reduction
function. This is also the case for domain splitting as defined below.

Definition 7 (Domain splitting). A domain splitting function sp on ΣCSP
is a function such that for all Ψ = {ψ1, . . . , ψn} ∈ ΣCSP :

a. sp(Ψ) = {ψ′
1, . . . , ψ

′
m} with n ≤ m,

b. ∀i ∈ [1..n],
• either ∃j ∈ [1..m] such that ψi = ψ′

j

• or there exist ψ′
j1

, . . . , ψ′
jh

, j1, . . . , jh ∈ [1..m] such that

SolD(ψi) =
⋃

k=1..h

SolD(ψ′
jk

)

Hybrid CSP Solving 149

c. and, ∀j ∈ [1..m],
• either ∃i ∈ [1..n] such that ψi = ψ′

j

• or ψ′
j = (D′, C, p′) and there exists ψi = (D, C, p), i ∈ [1..n] such that

D ⊃ D′.

Conditions a. and b. ensure that some sCSPs have been split into sub-sCSPs
by splitting some of their domains (one or several variable domains) into smaller
domains without discarding solutions (defined by the union of solutions of the
ψi). Condition c. ensures that the search space does not grow: every domain
of the sCSPs composing Ψ ′ is included in one of the domain of some sCSP
composing Ψ . Note that the domain of several variables of several sCSPs can be
split at the same time.

Definition 8 (Local Search). A local search function λN is a function

λN : ΣCSP → ΣCSP
{ψ1, · · · , ψn} �→ {ψ′

1, · · · , ψ′
n}

where

– N is the maximum number of consecutive moves
– ∀i ∈ [1..n]

• either ψi=ψ′
i

• or ψi = (D, C, p) and ψ′
i = (D, C, p′) with p = (s1, · · · , sk) and p′ =

(s1, · · · , sk, sk+1) such that sk+1 ∈ N (sk) ∩D and k + 1 ≤ N .

The parameter N represents the maximum length of a local search path,
i.e., the number of moves allowed in a usual local search process. A local search
function may try to improve the sample of one or several sCSPs at once. Even
when λN tries to reduce ψi, note that ψi=ψ′

i may happen when:

1. p ∈ SolLSD
(ψ): the last sample sn of the current local search path cannot

be improved using λN ,
2. the length n of the search path is such that n = N : the maximum allowed

number of moves has been reached,
3. λN is the identity function on ψi, i.e., λN does not try to improve the local

search path of the sCSP ψi. This might happen when no possible move can
be performed (e.g., a descent algorithm has reached a local optimum or all
neighbors are tabu in a tabu search algorithm [14]).

4.5 σCSP s Resolution

For the complete solving of a σCSP {(D1 × . . . × Dn, C, p)} the GI algorithm
must now be instantiated as follows:

– the ! ordering is instantiated by the ordering given in Definition 4,
– d :=⊥ corresponds to d := {(D1 × . . .×Dn, C, p)},

150 E. Monfroy, F. Saubion, and T. Lambert

– F is a set of given monotonic and inflationary functions as defined in Sec-
tion 4.4: domain reduction functions (extensions of common domain reduc-
tion functions for CSPs), domain splitting functions (usual split mechanisms
integrated as reduction functions), and local search functions (e.g., functions
for descent, tabu search, ...).

We now propose an instantiation of the function schemes presented in the
previous section. From an operational point of view, reduction functions have to
be applied on some selected sCSP s of a given σCSP . More practically, we build
the functions on sCSPs and then extend them on σCSP s. Thus, a function on
ΣCSP will be driven by an operator selecting the sCSPs of a σCSP .

We now define these selection operators. Given a selection function select:
A → 2B let us consider a function fselect: A → C such that fselect(x) = g(y), y ∈
select(x) where g:B → C. Therefore, fselect can be viewed as a non deterministic
function. Formally, we may associate to any function fselect a family of determin-
istic functions (f i)i>0 such that ∀x ∈ A, ∀y ∈ select(x), ∃k > 0, fk(x) = g(y). If
we consider finite sets A and B then this family is also finite.

Indeed, each σCSP that can result from the application of some functions on
the initial σCSP requires all reduction functions (defined for the initial σCSP)
to model the different possible executions of the resolution process. In other
terms, consider an sCSP ψi of a σCSP Ψ ; a set F ′ of functions can apply on
ψi through Ψ (through the sCSP selection process). If a new sCSP ψj can be
created (e.g., by split), then the functions of F ′ are also required to be applied
on ψj through Ψ (again, through the sCSP selection process). However, ψj will
may be not be created. Note that in theory, it is necessary to consider all possible
σCSP (and thus, all possible sets of all possible sCSP); however, in practice,
only required functions are fed in the GI algorithm, induced by the σCSP under
consideration in the resolution process.

We first define functions on SCSP with respect to selection functions to
select the domains on which the functions apply. In order to extend operations
on SCSP to ΣCSP , we introduce a selection process which allows us to extract
particular sCSP s of a given σCSP (see Figure 3).

Ψ = {ψ1, . . . , ψk, . . . , ψn}
Ψ ∈ ΣCSP

ψ1 ψk ψn

Dl DmD1 . . .D1 . . .

Dl

SelD(ψk) = Dl

Selψ(Ψ) = {ψk}

ψk = ((D1, . . . , Dl, . . . , Dm), C, p)
ψk ∈ SCSP

Fig. 3. Selection functions

Hybrid CSP Solving 151

Let us consider a domain selection function SelD: SCSP → 2D and a sCSP
selection function Selψ: ΣSCSP → ΣSCSP .

Domain Reduction. We may first define a domain reduction operator on a
single sCSP as:

redSelD : SCSP → SCSP
ψ = (D, C, p) �→ (D′, C, p′)

such that

1. D = D1 × · · · ×Dn, D′ = D′
1 × · · · ×D′

n and ∀i, 1 ≤ i ≤ n

– Di �∈ SelD(ψ) ⇒ D′
i = Di

– Di ∈ SelD(ψ) ⇒ D′
i ⊆ Di

2. p′ = p if p ∈ LSD′ otherwise p′ is set to any sample chosen in ε(D′)

Note that Condition 2. insures that the local search path associated to the
sCSP stays in ε(D′). Note that we could keep p′ = (si) where si is the latest
element of p which belongs to D′ or we could keep a suitable sub-path of p. We
have chosen to model here a restart from a randomly chosen sample after each
reduction or split. The function redSelD is extended to ΣCSP as:

redSelψ ,SelD : ΣCSP → ΣCSP
Ψ �→ (Ψ \ Selψ(Ψ))

⋃
ψ∈Selψ(Ψ) redSelD (ψ)

Split. We first define a split operator on a single sCSP as follows:

spSelD
k : SCSP → ΣCSP

ψ �→ Ψ ′

with ψ = (D1 × . . .×Dh × . . .×Dn, C, p) where {Dh} = SelD(ψ) and
Ψ ′ = {(D1× . . .×Dh1 × . . .×Dn, C, p1), · · · , (D1 × . . .×Dhk

× . . .×Dn, C, pk)}
such that

1. Dh =
k⋃

i=1

Dhi

2. for all i ∈ [1..k], pi = p if p ∈ LS(D1×···×Dhi
×···×Dn) otherwise, pi is set to

any sample chosen in ε(D1 × . . .×Dhi × . . .×Dn).

For the sake of readability we present a function that splits only one domain
of the sCSP. But this can obviously be extended to split several domains at once.
The last condition is needed to comply with the sCSP definition: it corresponds
to the fact that, informally, the samples associated to any sCSP belong to the
box induced by their domains. The function is extended to ΣCSP as follows:

sp
Selψ,SelD
k : ΣCSP → ΣCSP

Ψ �→ (Ψ \ Selψ(Ψ))
⋃

ψ∈Selψ(Ψ) spSelD
k (ψ)

152 E. Monfroy, F. Saubion, and T. Lambert

Local Search. As mentioned above, local search is viewed as the definition of
a partial ordering !ls; this order is then used to define the ordering ! on our
hybrid structure ΣCSP . The components that remain to be defined are: 1) the
strategy to compute a local search path p′ of length n + 1 from a local search
path p of length n, and 2) the stop criterion which is commonly based on a fixed
limited number of moves and, in our particular context of CSP resolution, the
notion of computed solution.

First, we define a local search operator on SCSP as a function strat:
SCSP → 2ε(D). This function specifies the choice strategy of a given local
search heuristics for moving from a sample to one of its neighbors.

λstrat
N : SCSP → SCSP

ψ �→ ψ′

where

– N is the maximum allowed number of moves
– ψ = (C, D, p) and ψ′ = (C, D, p′) with p = (s1, · · · , sn)

1. p′ = p if p ∈ SolLSD

2. p′ = p if n = N
3. p′ = (s1, · · · , sn, sn+1) such that sn+1 = strat(ψ) otherwise

Using this schema, we present here some examples of well known “move”
heuristics. Consider a sCSP ψ = (D, C, (s1, · · · , sn)). Each function consists in
selecting one feasible neighbor (i.e., a sample of the neighborhood which is also
in the current reduced search space D to comply with Definition 8) of a sample:

– Random Walk: the function stratrw randomly selects one sample of the
neighborhood of the current sample

stratrw(ψ) = s s.t. s ∈ D ∩ N (sn)

– Descent: the function stratd selects a neighbor improving the current sam-
ple with respect to the fitness function

stratd(ψ) = s s.t. s ∈ D ∩N (sn) and s <eval sn

– Strict Descent: stratsd is similar to stratd but selects the best improving
neighbor; stratsd(ψ) = s s.t.

s ∈ D ∩ N (sn), s <eval sn, and ∀s′ ∈ D ∩ N (sn), s ≤eval s′

– Tabu of length l: selects the best neighbor not visited during the past l
moves; strattabul

(ψ) = s s.t.

s ∈ ε(D)∩N (sn) and ∀j ∈ [n− l..n], s �= sj and ∀s′ ∈ D ∩N (sn), s ≤eval s′

Note that, again, these functions satisfy the properties (inflationary and
monotonic) required to be fed in the GI algorithm. Then, this function is ex-
tended to ΣCSP as:

λ
Selψ ,strat
N : ΣCSP → ΣCSP

Ψ �→ (Ψ \ Selψ(Ψ))
⋃

ψ∈Selψ(Ψ) λstrat
N (ψ)

Hybrid CSP Solving 153

Combination. The “choose function” of the GI algorithm now totally manages
the hybridization/combination strategy; different scheduling of functions lead to
the same result (in term of least common fixpoint), but not with the same
efficiency.

Note that in practice, we are not always interested in reaching the fixpoint
of the GI algorithm. We can also be interested in solutions such as sCSPs which
contain a solution for local search or a solution for constraint propagation. In
this case, various runs of the GI algorithm with different strategies (“choose
function”) can lead to different solutions (e.g., in case of problems with several
solutions, or several local minima).

Result of the GI Algorithm. We now compare the result of the GI algorithm
with respect to Definition 5 for solution of a σCSP .

Since we are in chaotic iteration framework (concerning orderings and func-
tions), given a σCSP Ψ and a set F of reduction functions (as defined above)
the GI algorithm computes a common least fixpoint of the functions in F . Note
that, this result is insured by the fact that our LS functions, which limit the size
of search paths, induce a finite partial ordering in our computation structure.
Clearly, this fixpoint lfp(Ψ) abstracts all the solutions of Sol(Ψ):

–
⋃

(d,C,p)∈Sol(Ψ) d ⊇
⋃

(d,C,p)∈glfp(Ψ) d

– for all (D, C, p) ∈ Sol(Ψ) s.t. p = (s1, . . . , sn) ∈ SolLSD
(Ψ) there exists a

(d, C, p′) ∈ glfp(Ψ) s.t. sn ∈ ε(d).

The first item states that all domain reduction and split functions used in
GI preserve solutions. The second item ensures that all solutions computed by
LS functions are in the fixpoint of the GI algorithm.

In practice, one can stop the GI algorithm before the fixpoint is reached.
For example, one can compute the fixpoint of the LS functions; in this case, the
search space may be reduced (and thus, the possible moves) by applying only
some of the CP functions. This corresponds to the hybrid nature of the resolution
process and the tradeoff between a complete and incomplete exploration of the
space.

5 CP+GA

In this section, we describe the hybridization of a propagation based solver and
genetic algorithms. We use the same approach as the one for local search. Thus,
we try to keep the same progress, notations, and structure for this section.

5.1 Populations

Genetic algorithms aim at generating new populations using genetic operators,
selection [6], (e.g. proportional selection [17], roulette-wheel selection [15], tour-
nament selection, linear ranking [7], ...), recombination (e.g., elitist recombina-
tion [33], multiparent recombination like [10]), and mutation.

154 E. Monfroy, F. Saubion, and T. Lambert

A new population is called an offspring and formally it is a mapping O :
2D → 2D. We define the set of possible genetic descendants, i.e., the set of
sequences of populations as follows:

GA =
⋃
k>0

{p = (g1, · · · , gk) | ∀j ∈ [1..k], gj ∈ 2D and ∀j ∈ [2..k], gj ∈ O(gj−1)}

where g1 represents the initial population and k the length of the process. Note
that, in practice, the size of th epopulation is fixed.

From a practical point of view, genetic algorithms are stopped by a criterion
which is usually a fixed maximum number of iterations. Therefore, from a GA
point of view, a result is either a population g which contains solutions or a ge-
netic process of a maximum given size. Based on a fitness function (as presented
in Section 2.3), we introduce the following order on sequences of populations of
GA:

Definition 9 (Order on sequences of populations). Consider a fitness
function eval together with its associate order. The order !ga on GA is defined
by:

(g1, . . . , gn) !ga (g′1, . . . , g
′
m) iff g′m ≤eval gn

We have now to define the computation structure on which reduction func-
tions will be applied and which includes the new component corresponding to
the introduction of GA.

5.2 Computation Structure

In order to handle the different data structures associated to each technique
of the hybrid resolution, we complete CSPs with genetic factors. Such a factor
corresponds indeed to a GA process, and optimization will be done using them.

The resolution will be achieved according to the generic algorithm recalled
in Section 2.3. We have here to define the computation structure devoted to this
hybridization CP+GA.

Definition 10 (CSP with genetic factor). A CSP with genetic factor (gcsp)
for optimization is defined by a sequence (D, C, p, f) where

– D = D1 × ...×Dn

– ∀c ∈ C, c ⊆ D1 × . . .×Dn

– p ∈ GA
– f : objective function.

GCSP denotes the set of gcsp, and ΣGCSP denotes the set 2GCSP

Note that, in the definition, the genetic algorithm process p should be in-
cluded in the search space defined by D. Recall that the objective function f is
taken into account in the eval function (see Section 2.3), and thus is also taken
into account in the ≤eval and !ga orderings (see above), and consequently in
the ordered structure (GCSP,!) that we define below.

Hybrid CSP Solving 155

Definition 11 (Order on GCSP). Given two gcsps ψ = (D, C, p, f) and ψ′ =
(D′, C, p′, f), ψ ! ψ′ iff

– D′ ⊆ D

– or (D′ = D and p !ga p′).

This relation is extended on 2GCSP : {φ1; ...;φk} ! {ψ1; ...; ψl}, iff

∀φi, (∃ψj , φi ! ψj and � ∃ψj , ψj � φi)

where i ∈ [1..k], j ∈ [1..l].

ΣGCSP (i.e., the set 2GCSP) constitutes the key set of our computation
structure. We use here σCSP to denote an element of ΣGCSP . The least ele-
ment ⊥ is {(D, C, p, f)}, i.e., the initial σCSP to be solved.

5.3 Solution

From the CP point of view, a solution of an gcsp ψ = (D, C, p, f) is a tuple which
satisfies all the constraints. From the GA point of view, the notion of solution
is related to the evaluation function: a solution is defined as an element s of a
population g of the sequence p such that s is the minimum (or maximum) of
the objective function with respect to all such s′ appearing in p. Given an gcsp
ψ = (D, C, p, f), these two points of view induce two sets of solutions:

– Feasible solutions: SolCP (ψ) = {d ∈ D | ∀c ∈ C, d ∈ c}
– Optimum solutions (minimization): SolGA(ψ) = {s | p = (g1, . . . , gm) and ∀i
∈ [1..m], ∀s′ ∈ gi, s ≤eval s′}.

– Optimum solutions (maximization): SolGA(ψ) = {s | p = (g1, . . . , gm) and ∀i
∈ [1..m], ∀s′ ∈ gi, s′ ≤eval s}.

Based on this, we define the set of solutions in the hybrid model for a given
gcsp ψ as:

Sol(ψ) = SolCP (ψ) ∩ SolGA(ψ)

Hence a solution of a given gcsp is a tuple d such that d satisfies the constraints
and minimizes (respectively maximizes) the objective function. This notion of
solution is generalized to the computation structure ΣGCSP .

Definition 12. Given a σCSP Ψ = {ψ1, . . . , ψk} according to

– a minimization problem: Sol(Ψ) = M in({si} | si ∈ sol(ψi)}
– a maximization problem: Sol(Ψ) = Max({si} | si ∈ sol(ψi)}

156 E. Monfroy, F. Saubion, and T. Lambert

5.4 A Function-Based Solving Process

At this step, we have to define the reduction functions on ΣGCSP . They describe
the different components of the resolution process: constraint propagation by
domain reduction and splitting, combined with genetic algorithms.

Given an element Ψ = {ψ1, · · · , ψn} of ΣGCSP , we have to apply functions
on Ψ which correspond to domain reduction, domain splitting, and genetic al-
gorithm. These functions may operate on elements ψi of Ψ , and for each ψi on
some of its components. We should note that since we consider here finite sets
as initial gcsps, the structure is a finite partial ordering.

The following definitions introduce the fundamental properties of the differ-
ent operators and their general purpose.

The definitions of a reduction function and of a split for the hybridization
CP+GA are similar to the ones of CP+LS (Definitions 6 and 7) but this time
they apply on ΣGCSP . The same remark is also valid concerning Definition 15
and Definition 8.

Definition 13 (Domain reduction function). A domain reduction function
red is a function:

red: ΣGCSP → ΣGCSP
{ψ1, · · · , ψn} �→ {ψ′

1, · · · , ψ′
n}

such that ∀i ∈ [1 · · ·n]:

– either ψi = ψ′
i,

– or ψi = (D, C, p, f), ψ′
i = (D′, C, p′, f) and D ⊇ D′ and Sol(ψi) = Sol(ψ′

i).

This definition ensures that {ψ1, · · · , ψn} ! red({ψ1, · · · , ψn}) and that the
function is inflationary and monotonic on (ΣGCSP,!) . From a constraint pro-
gramming point of view, no solution of the initial σGCSP is lost by a domain
reduction function. This is also the case for domain splitting as defined below.

Definition 14 (Domain splitting). A domain splitting function sp on
ΣGCSP is a function such that for all Ψ = {ψ1, . . . , ψn} ∈ ΣGCSP :

a. sp(Ψ) = {ψ′
1, . . . , ψ

′
m} with n ≤ m,

b. ∀i ∈ [1..n],
• either ∃j ∈ [1..m] such that ψi = ψ′

j

• or there exist ψ′
j1 , . . . , ψ

′
jh

, j1, . . . , jh ∈ [1..m] such that

SolD(ψi) =
⋃

k=1..h

SolD(ψ′
jk

)

c. and, ∀j ∈ [1..m],
• either ∃i ∈ [1..n] such that ψi = ψ′

j

• or ψ′
j = (D′, C, p′, f) and there exists ψi = (D, C, p, f), i ∈ [1..n] such

that D ⊇ D′.

Hybrid CSP Solving 157

Conditions a. and b. ensure that some gcsps have been split without discard-
ing solutions. Condition c. ensures that the search space does not grow (each
new search space is included in one of the initial search space).

Finally we define genetic algorithm as a reduction function on ΣGCSP .

Definition 15 (Genetic algorithms). A genetic algorithm function ΓN is a
function:

ΓN : ΣGCSP → ΣGCSP ,
{ψ1, · · · , ψn} �→ {ψ′

1, · · · , ψ′
n}

where N is the maximum number of consecutive offsprings, and ∀i ∈ [1..n]

– either ψi=ψ′
i

– or ψi = (D, C, p, f) and ψ′
i = (D, C, p′, f) with p = (g1, · · · , gk) and p′ =

(g1, · · · , gk, gk+1) such that
gk+1 ∈ O(gk) ∩Dm and k + 1 ≤ N , where m is the size of the population .

N is the maximum length of a genetic algorithm, i.e., the number of offsprings
allowed in a usual genetic search process. Note that ψi=ψ′

i can happen when:

1. n = N : the maximum allowed number of operations has been reached,
2. ΓN is the identity function on ψi, i.e., ΓN does not try to improve the

generation of the GCSP ψi. This might happen when no possible move can
be performed (e.g., all individuals are equal and no mutation are allowed).

We now give some properties on some possible genetic algorithm functions.

Definition 16 (elitism). A genetics algorithm is called elitist if at every step
the current best individual survives, the best solution is never lost during the
search. Formally consider a search path p = (g1, . . . , gk):

∀j ∈ [1..k − 1], if there exists s ∈ gj s.t. ∀s′ ∈ gj, s ≤eval s′, then s ∈ gj+1

Property 1 (Convergence). Suppose that the genetic algorithm is elitist. Suppose
that for every population g there is a nonzero probability P that in the next
generation the population is better:

∀s ∈ gk, ∃s′ ∈ gk+1 s.t. s′ ≤eval s

Then the fitness of the population at time t converges to the optimal value, for
t →∞.

Thus, with the previous properties, GA optimizes the objective function, tak-
ing its values in a search space which is becoming locally consistent using CP.
With successive constraint propagations and splits, the search space is progres-
sively restricted to feasible solution, therefore GA finds the optimum.

158 E. Monfroy, F. Saubion, and T. Lambert

5.5 σGCSP s Resolution

As in the previous section, the GI algorithm is fed with the ordering on ΣGCSP ;
the least element ⊥ is {(D, C, p, f)}, i.e., the initial σGCSP to be solved; and
monotonic and inflationary functions: domain reduction, split, and genetic algo-
rithms.

Similarly to Section 4, reduction functions can first be built over GCSP
before being extended over ΣGCSP . In this case, a selection process is also
needed in order to take into account each σGCSP that could be created during
resolution. We do not detail here this process, since it is the same as for local
search hybridization.

Result of the GI Algorithm. The result of the GI algorithm can be defined
similarly as before. Given a σGCSP Ψ and a set F of reduction functions the GI
algorithm computes a common least fixpoint of the functions in F . This fixpoint
glfp(Ψ) abstracts all the solutions of Sol(Ψ):

–
⋃

(d,C,p)∈Sol(Ψ) d ⊇
⋃

(d,C,p)∈glfp(Ψ) d

– for all (D, C, p, f) ∈ Sol(Ψ) s.t. p = (g1, . . . , gn) ∈ SolGAD
(Ψ) there exists a

(d, C, p′, f) ∈ glfp(Ψ) s.t. ∃i ∈ [1..n], d ∈ gi.

The first item states that all domain reduction and split functions used in GI
preserve solutions. The second item ensures that in all sequences of populations
that are solution of the GA functions, there is a population containing a tuple
which is in the fixpoint of the GI algorithm.

6 Experimentations

In this section, hybridizations CP+LS and CP+GA are tested using our con-
straint system (developed in C++). The purpose of this section is to highlight
the benefit of our framework for hybridization and the benefit of hybrid resolu-
tion; note that our purpose is not to test a high performance implementation on
large scale benchmarks. All tests are performed on a cluster with 22 processors
running sequentially at 2.2 GHz with 1 Go of RAM each.

6.1 CP+LS for Constraint Satisfaction Problems

Problem Instances. We consider various classic CSP problems: S+M=M
(Send + More = Money), Magic Square, Langford numbers, the Zebra puzzle,
Golomb ruler, and the Uzbekian problem, issued from the CSPlib [13].

Experimental Process. Our basic functions are stored into three sets: a set
of domain reduction functions dr, a set of split functions sp, and a set of local
search functions ls. The choose function of the GI algorithm is defined as follows:
we consider a tuple (α, β, γ) such that α, β, and γ represent respectively the
percentage of reduction functions, split functions, and local search functions,
that are applied; functions are fairly selected with respect to these ratios.

Hybrid CSP Solving 159

The reduction functions are defined as follows. A domain reduction corre-
sponds either to a bound consistency operator or a global constraint filtering
operator (e.g., alldifferent). A split function cuts the selected domain into two
subdomains. A local search function is a basic LS move; LS functions are then
instantiated by a tabu search strategy which selects the best neighbor not cur-
rently in a tabu list of length 10 (see Section 4.5).

In the following, we consider three types of strategies corresponding to se-
lection function of sCSP (to select one sCSP in a σCSP , i.e., Selψ function as
defined in Section 4.5), and selection function of domain (to select one domain
in a CSP , i.e., SelD function as defined in Section 4.5) for domain reduction and
split functions. Here, we do not formalize these functions, but we just describe
their strategies:

– random: Selψ selects any sCSP , and SelD selects any domain of the se-
lected sCSP .

– depth-first: Selψ selects the sCSP containing the smallest domain, and
SelD selects the smallest domain of the selected sCSP .

– LS-forward checking: forward checking consists in instantiating variables
(split by enumeration) in a given order and to prevent future conflicts by
reducing variables directly linked to the one freshly enumerated. Our LS-
forward checking strategy is similar; ls functions will apply on the sCSP
that has just been split.

– width-first: Selψ selects the sCSP containing the largest domain, and SelD
selects the largest domain of the selected sCSP .

Combining our reduction functions and the three above mentioned strategies,
we obtain three packs (one for each strategy) of sets of functions (dr, sp, and ls).

Experimental Results. The evaluation and comparison criterion corresponds
to the number of basic functions applied to reach a first solution. Such an appli-
cation of function is either a step of local search, a split, or a domain reduction
(reduction of one domain using one constraint). We focus here on small prob-
lems: thus, computation times represents less than one minute of CPU time (e.g.,
a solution for the Langford Number is found in one sec.).

Interaction between CP and LS. We study here the benefit of the hybridization
CP+LS. Using various strategies we highlight the effect of different cooperations
on solving efficiency.

We first focus on the problems Langford Number and S+M=M; the tests are
performed by increasing the percentage α of propagation from 0 to 100%. To
insure to reach a solution, we set the split ratio to β = α ∗ 0.1. For example,
if α = 0.4, we set β to 4% of split, and thus 56% of LS. These tests use the
depth-first strategy above-mentioned.

Figure 4 shows that the best results for the Langford Number problem corre-
spond to a range of propagation rate between 35% and 45%. As a matter of fact,
when local search represents less than 10% of the search effort, reaching a solu-
tion means computing the fixpoint for constraint propagation (i.e., applying all

160 E. Monfroy, F. Saubion, and T. Lambert

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 o

pe
ra

tio
ns

Propagation percentage

Average

standard deviation

Fig. 4. Cost of a solution Langford Number (Depth-First)

200

400

600

800

1000

1200

1400

1600

1800

2000

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 o

pe
ra

tio
ns

Propagation percentage

Average

standard deviation

Fig. 5. Cost of a solution Send+More=Money (Depth-First)

propagation functions). Note that, for this problem, tabu search alone (Figure 4,
left) provides better results than propagation with split (Figure 4, right).

Figure 5 shows the above-mentioned depth-first strategy to solve the S+M=
M problem. The standard deviation is important: indeed, although sCSPs and
domains are selected by the strategy, the choice of functions to apply is not
fixed (random). However, the average performances are more regular, and the
best range corresponds to 70%– 80% of propagation. Here, LS alone (Figure 5,
right) appears less efficient than CP (Figure 5, left).

Thus, choosing the best settings for hybridization depends on the problem
and on the strategies that are applied. Table 1 presents the best ranges using
the LS-Forward-checking strategy for different problems.

Hybrid CSP Solving 161

Table 1. Best range of propagation rate (α) to compute a solution

Problem S+M LN42 Zebra M. square Golomb

Rate FC 70-80 15 - 25 60-70 30-45 30 - 40

These results point out that the incremental introduction of CP in LS (the
same remark is valid for LS in CP) improves the general efficiency of resolution.
These ratios of hybridization can thus be tuned to optimize performances.

Benefit of Hybridization with respect to LS and CP alone. In Table 2 we present
a comparative study of the hybridization CP+LS, CP alone, and LS alone:

– the three strategies above-mentioned (random, depth-first, LS forward check-
ing)

– CP+LS: the ratios (α, β, γ) are the best ratios selected in Table 1,
– CP (alone): the ratios are (90%, 10%, 0),
– LS (alone): the ratios are (0, 0, 100%).

Table 2. Average number of operations to compute a first solution

Strategy Method S+M LN42 M. square Golomb

Random LS 1638 383 3328 3442
CP+LS 1408 113 892 909

CP 3006 1680 1031 2170

D-First LS 1535 401 3145 3265
CP+LS 396 95 814 815

CP 1515 746 936 1920

FC LS 1635 393 3240 3585
CP+LS 22 192 570 622

CP 530 425 736 1126

Again, these results show that hybridization benefits from the interaction
between the solving methods. Improvements occur on problems for which LS
performs better than CP but also on problems for which CP is better than
LS. Moreover, the improvement is strongly related to the problem structure
(such as the density of solutions) and to the chosen strategy. Experiments with
the Width-First strategy above-mentioned are not presented here but provided
similar results.

6.2 CP+GA for Constraint Optimization Problems

Problem Instances. The BACP (Balanced Academic Curriculum Problem) is
a problem class issued from the CSPlib [13]: it consists in organizing courses in
order to balance the work load of students for each period of their curriculum. We

162 E. Monfroy, F. Saubion, and T. Lambert

Evaluation

Population

Generation k+1
601 ...

...

ga

Generation k

Population

Probability Pc = 0.9Probability Pm =0.1

Selection

Mutation

p’

p

c2c1

Crossover

p2p1

1001

Selection

601 ...

Fig. 6. ga functions

consider here various instantiations of the BACP: the bacp8, bacp10, and bacp12
problems issued from the CSPlib [13]; and finally data of this three curriculum
are used to form a new problem (bacpall) for which some courses are shared by
several curriculums.

Experimental Process. Similarly to CP+LS, our basic functions are organized
into three sets: the set of domain reduction functions dr, the set of split functions
sp, and the set of GA functions ga. In the following, the strategy is the depth-first
strategy presented in the previous section.

Here, reduction functions correspond to arc consistency operators and re-
duction of global constraints (e.g., period, load) used to model the problems
and to prune the search tree by detecting inconsistencies. The global constraint
period(i, δ, ε) computes the number of domains within the value i. If less than
j occurrences of i are present in the m different domains, then the current
CSP is locally inconsistent: δ ≤ (

∑m
k=1 1 | xk = i) ≤ ε . The global con-

straints load(i, β, γ) counts the charge for a given period i of the current CSP:
β ≤ (

∑m
k=1 ck | xk = j) ≤ γ .

sp are split operators which cut the selected domain into two subdomains.
ga are basic GA operators (see figure 6) which are instantiated by our genetic
algorithm: from a population k, our genetic algorithm generates a new population
k+1 of 60 individuals selected among 100 issued from k. When ga is called by
the main algorithm, the following different cases may occur:

– the population k + 1 has less than 100 individuals: an individual is selected
randomly; then, either it is coupled with another parent to create 2 children

Hybrid CSP Solving 163

in the population k + 1, either it is submitted to mutation, or it remains
unchanged in the population k + 1.

– the population k + 1 has 100 individuals: the 60 best ones are selected ac-
cording to the evaluation function which takes into account the objective
function.

Experimental Results. For these experimentations, we integrated the GA
module (i.e., ga functions) in our constraint based solving system for hybridiza-
tion. We also added the notion of optimization to the single notion of solution.

In order to compare our results, we present the results of [8] using the linear
programming solver lp solve for the bacp8 and bacp10 problems (Table 3 shows
the progress of the cost –evaluation– of the objective function w.r.t. the compu-
tation time). The results with our hybrid solver CP+GA are shown in Table 4.
If lp solve is able to find the optimal solution for the first problem, it is not the
case for the second one.

Table 3. Results in seconds using lp solve

Sol quality bacp 8 Sol quality bacp 10

24 137.08 33 9.11

23 218.23 32 25.38

21 218.43 30 25.65

20 712.84 29 1433.18

19 1441.98 27 1433.48

18 1453.73 26 1626.49

17 (optimum) 1459.73 24 1626.84

As mentioned above, we control the rates of each family of functions dr,
sp and ga by defining the strategy (completing the depth-first strategy) as a
tuple (%dr, %sp, %ga) of application rates. These values correspond indeed to a
probability of application of a function from each family. In practice, we measure
in Figure 7 the rate of effective applications, i.e., we only count the functions
which are chosen according to the strategy and having a real impact on the
resolution.

The most interesting in such an hybridization is the completeness of the
association GA-CP, and the roles played by GA and CP in the search process (see
Figures 7): GA optimizes the solutions in a search space progressively becoming
locally consistent (and thus smaller and smaller) using constraints propagation
and split. To evaluate the benefits of each of the methods we have measured:

– for CP: the number of effective reductions that are performed and the number
of split,

– and for GA: the fact that the next generation is globally better than the
previous one.

First of all, splits are limited to 1% of the total number of basic operations
(reduction functions) because of the space complexity they generate.

164 E. Monfroy, F. Saubion, and T. Lambert

Table 4. Results using GA+CP

Sol quality bacp 8 bacp 10 bacp 12

24 0.47 4.71 2.34

23 0.54 4.67 2.40

22 0.61 3.68 2.48

21 0.61 4.36 2.76

20 0.69 4.63 3.20

19 0.83 4.95 4.25

18 1.20 5.13 35.20

17 15.05 (optimum) 5.60

16 6.39

15 8.53

14 34.84 (optimum)

Concerning the single problems (bacp8, bacp10, bacp12). At the beginning, CP
represents 70% of the effort: constraint propagation narrows the search space.
On the contrary, GA represents about 30%. During this period, not enough local
consistency is enforced by constraint propagation, and GA only finds solutions
(satisfying all constraints) with costs greater than 21. Then, at the beginning of
the second half of the search process, CP and GA converge in terms of efficiency:
most of the sub-GCSP have reach the local consistency and tests over constraints
do not improve domain reduction. At the end, GA performs 70% of the search
effort to find the optimal solution.

0

20

40

60

80

100

16171819202122232425

ra
ng

e

evaluation

propagation
genetic algorithm

split

bacp8

0

20

40

60

80

100

12141618202224

ra
ng

e

evaluation

propagation
genetic algorithm

split

bacp10

0

20

40

60

80

100

171819202122232425

ra
ng
e

evaluation

propagation
genetic algorithm

split

bacp12

0

1000

2000

3000

4000

5000

6000

202224262830

Nu
mb

er
 o

f
op

er
at

io
ns

Optimization criterion

genetic algorithm
propagation

split

bacpall

Fig. 7. Evolution of CP vs GA during the optimization process

Hybrid CSP Solving 165

Concerning strategies using GA and CP alone. In this implementation, CP is
unable to find a feasible solution in 10 minutes cpu time. GA can find alone
the optimal value but is 10 times slower than the hybrid resolution GA + CP .
Therefore, we did not include these results in the tables.

In the figure for the all-period problem, CP and GA start searching with
the same efficiency; but while CP seems to be stable, most of the operations
are performed by the genetic process to improve the solution. This could be
explained by the fact that, in this problem, constraints are too weak with respect
to the number of variables and the size of the generated search space. But, in
our hybrid resolution system, GA appears as a powerful method even if most of
the constraint operators have not reached their fixpoints.

7 Perspectives and Conclusion

Most of hybrid approaches are ad-hoc algorithms based on a master-slave com-
bination: they favor the development of systems whose efficiency is strongly re-
lated to a given class of CSPs. In this paper, we have used a more suitable general
framework to model hybrid solving algorithms. We have shown that this work can
serve as a basis for the integration of LS and CP methods, and the integration of
GA and CP methods in order to highlight the connections between complete and
incomplete techniques and their main properties.

We have shown how to integrate two techniques in the framework of chaotic
iterations: CP+LS and CP+GA. However, this requires defining a new computa-
tion structure and orders on these structures. Moreover, the reduction functions
have to be adapted to the new structures. Thus, integrating a new technique
requires modifying the current structures and functions. We plan to modify our
framework in order to be able to add a new technique without modifying the
structure, simply by extending the existing structure. We also plan to modify
function definition so that they can be defined independently. Some new types
of functions operating the cooperation between the techniques. The first use of
this new framework will be an hybrid solver CP+LS+GA.

A future extension will consists in providing “tools” to help designing and
testing finer strategies in the GI algorithm in our particularly suitable uniform
framework. To this end, we plan to extend works of [16] where strategies are built
using some composition operators in the GI algorithm. Moreover, this will also
open possibilities of concurrent and parallel applications of reduction functions
inside the model.

At last, we plan to extend our prototype implementation (Section 6) into a
complete generic implementation of our framework.

Acknowledgements. We would like to thank the program committee who gave
us the opportunity of writing this paper and more especcially Christophe Ringeis-
sen for his interesting remarks and useful comments.

166 E. Monfroy, F. Saubion, and T. Lambert

References

1. E. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial Optimization.
John Wiley and Sons, 1997.

2. A. Aggoun and N. Beldiceanu. Overview of the chip compiler system. In K. Fu-
rukawa, editor, Logic Programming, Proceedings of the Eigth International Confer-
ence, pages 775–789. MIT Press, 1991.

3. K. Apt. The rough guide to constraint propagation. In Proceedings of the 5th
International Conference on Principles and Practice of Constraint Programming
(CP’99), volume 1713 of Lecture Notes in Computer Science, pages 1–23, Springer,
1999. (Invited lecture).

4. K. Apt. From chaotic iteration to constraint propagation. In Proceedings of ICALP
’97, volume 1256 of Lecture Notes in Computer Science, pages 36–55. Springer,
1997.

5. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
6. T. Bäck, J. M. de Graaf, J. N. Kok, and W. A. Kosters. Theory of genetic algo-

rithms. In Current Trends in Theoretical Computer Science, pages 546–578. 2001.
7. J. E. Baker. Adaptive Selection Methods for Genetic Algorithms. ICGA, pages

101-111, 1985.
8. C. Castro and S. Manzano. Variable and value ordering when solving balanced

academic curriculum problems. In Proceedings of 6th Workshop of the ERCIM
WG on Constraints. CoRR cs.PL/0110007, 2001.

9. R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
10. A. E. Eiben, P-E. Raué and Z. Ruttkay. Genetic algorithms with multi-parent

recombination. In PPSN III: Proceedings of the International Conference on Evo-
lutionary Computation, volume 866 of Lecture Notes in Computer Science, pages
78-87, Springer, 1994.

11. F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming.
In Handbook of Metaheuristics, volume 57 of International Series in Operations
Research and Management Science, Kluwer, 2002.

12. T. Fruewirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

13. I. Gent, T. Walsh, and B. Selman. http://www.csplib.org, funded by the UK
Network of Constraints.

14. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
15. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley Longman Publishing Co., Inc., 1989.
16. L. Granvilliers and E. Monfroy. Implementing Constraint Propagation by Composi-

tion of Reductions. Proceedings of International Conference on Logic Programming,
volume 2916 of Lecture Notes in Computer Science, pages 300-314. Springer, 2003.

17. J. H. Holland. Adaptation in Natural and Artificial Systems. 1975.
18. H. Hoos and T. Stülze. Stochastic local search : foundations and applications.

Morgan Kaufmann, Elsevier, 2004.
19. ILOG. ILOG Solver 5.0 User’s Manual and Reference Manual, 2000.
20. K. A. D. Jong. An analysis of the behavior of a class of genetic adaptive systems.

Phd thesis, University of Michigan, 1975.
21. N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-

based heuristics. Artificial Intelligence, 139(1):21-45, 2002.
22. F. Laburthe. CHOCO: implementing a cp kernel. In CP’00 Post Conference Work-

shop on Techniques for Implementing Constraint Programming Systems - TRICS,
2000.

Hybrid CSP Solving 167

23. T. Lambert and E. Monfroy and F. Saubion. Solving Strategies using a Hybridiza-
tion Model for Local Search and Constraint Propagation. In Proceedings of ACM
SAC’2005, pages 398-403, ACM Press 2005.

24. A. Mackworth. Encyclopedia on Artificial Intelligence, chapter Constraint Satis-
faction. John Wiley, 1987.

25. K. Mariott and P. Stuckey. Programming with Constraints, An introduction. MIT
Press, 1998.

26. Z. Michalewicz. Genetic algorithms + data structures = evolution programs (3rd,
extended ed.). Springer, New York, 1996.

27. R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intel-
ligence, 28:225–233, 1986.

28. E. Monfroy, F. Saubion and T. Lambert. On Hybridization of Local Search and
Constraint Propagation. In Proceedings of ICLP’2004, pages 299-313, volume 3132
of Lecture Notes in Computer Science, Springer, 2004.

29. P. Pardalos and M. Resende. Handbook of Applied Optimization. Oxford University
Press, 2002.

30. G. Pesant and M. Gendreau. A view of local search in constraint programming.
In Proceedings of the Second International Conference on Principles and Practice
of Constraint Programming, volume 1118 in Lecture Notes in Computer Science,
pages 353–366. Springer, 1996.

31. S. Prestwich. A hybrid search architecture applied to hard random 3-sat and low-
autocorrelation binary sequences. In Principle and Practice of Constraint Pro-
gramming - CP 2000, volume 1894 in Lecture Notes in Computer Science, pages
337–352. Springer, 2000.

32. P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Principles and Practice of Constraint Programming - CP98,
volume 1520 of Lecture Notes in Computer Science, pages 417–431. Springer, 1998.

33. D. Thierens and D. E. Goldberg. Convergence Models of Genetic Algorithm Se-
lection Schemes. In PPSN III: Proceedings of the International Conference on
Evolutionary Computation, volume 866 of Lecture Notes in Computer Science,
pages 119-129,Springer, 1994.

34. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1993.

An Efficient Decision Procedure for UTVPI

Constraints

Shuvendu K. Lahiri and Madanlal Musuvathi

Microsoft Research
{shuvendu, madanm}@microsoft.com

Abstract. A unit two variable per inequality (UTVPI) constraint is of
the form a.x+b.y ≤ d where x and y are integer variables, the coefficients
a, b ∈ {−1, 0, 1} and the bound d is an integer constant. This paper
presents an efficient decision procedure for UTVPI constraints. Given m
such constraints over n variables, the procedure checks the satisfiability of
the constraints in O(n.m) time and O(n+m) space. This improves upon
the previously known O(n2.m) time and O(n2) space algorithm based
on transitive closure. Our decision procedure is also equality generating,
proof generating, and model generating.

1 Introduction

A unit two variable per inequality (UTVPI) constraint is of the form a.x+b.y ≤ d
where x and y are integer variables, the coefficients a, b ∈ {−1, 0, 1} and the
bound d is an integer constant. This is a useful fragment of integer linear arith-
metic as many hardware and software verification queries are naturally expressed
in this fragment.

For example, Ball et al. [1] note that most queries that arise during the
predicate abstraction refinement process in SLAM [2] fit into this fragment.
Others, including Pratt [18] and Seshia et al. [19] have observed that significant
portion of linear arithmetic queries are restricted to difference logic (a fragment
of UTVPI constraints of the form x ≤ y + c.).

The fragment UTVPI is also important because it is the most expressive
fragment of linear arithmetic that enjoys a polynomial decision procedure [11].
Namely, extending this fragment to contain three variables (with just unit coeffi-
cients) per inequality or adding non-unit coefficients for two variable inequalities
make the decision problem NP-complete [12]. Having an integer solver is often
useful when dealing with variables for which rational solutions are unaccept-
able. Such examples often arise when modeling indices of an array or queues in
hardware or software [7,13].

In this paper, we present an efficient decision procedure for UTVPI con-
straints. Given m such constraints over n variables, the procedure checks the
satisfiability of the constraints in O(n.m) time and O(n + m) space. This im-
proves upon the previously known O(n2.m) time and O(n2) space algorithm
provided by Jaffar et al. [11] based on transitive closure. The space improve-
ment of our algorithm is particularly evident when m is O(n), which occurs

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 168–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Decision Procedure for UTVPI Constraints 169

very frequently in practice, as the number of constraints that arise in typical
verification queries have a sparse structure. In fact, the actual complexity of our
algorithm is O(NCD), which is the complexity of an algorithm that can deter-
mine if there is a negative weight cycle in a directed graph. 1 Accordingly, the
time bound of our algorithm can be further improved by using a more efficient
negative cycle detection algorithm [4].

In addition to checking satisfiability of a set of UTVPI constraints, the deci-
sion procedure is also equality generating, proof producing and generates models
for satisfiable formulas. The decision procedure generates equalities between vari-
ables implied by a set of UTVPI constraints in O(n.m) time. The algorithm can
generate a proof of unsatisfiability and equalities implied in O(n.m) time. Both
these algorithms use a linear O(n + m) space. The model generation algorithm
run in O(n.m + n2.logn) time and O(n2) space.

Finally, we conclude the paper by showing that the problem of finding diverse
models for UTVPI constraints is NP-complete. A diverse model ρ for a set of
UTVPI constraints φ is an assignment from the set of variables of φ to integers,
such that ρ(x) = ρ(y) if and only if x = y is implied by φ. We also relate the
problem of generating disjunctions of equalities from the theory to the problem
of diverse model generation.

2 Background

2.1 Requirements from a Decision Procedure

For a given theory T , a decision procedure for T checks if a formula φ in the
theory is satisfiable, i.e. it is possible to assign values to the symbols in φ that
are consistent with T , such that φ evaluates to true.

Decision procedures, nowadays, do not operate in isolation, but form a part
of a more complex system that can decide formulas involving symbols shared
across multiple theories. In such a setting, a decision procedure has to support
the following operations efficiently:

1. Satisfiability Checking: Checking if a formula φ is satisfiable in the theory.
2. Model Generation: If a formula in the theory is satisfiable, find values for the

symbols that appear in the theory that makes it satisfiable. This is crucial
for applications that use theorem provers for test-case generation.

3. Equality Generation: The Nelson-Oppen framework for combining decision
procedures [17] requires that each theory (at least) produces the set of equal-
ities over variables that are implied by the constraints.

4. Proof Generation: Proof generation can be used to certify the output of
a theorem prover [16]. Proofs are also used to construct conflict clauses
efficiently in a lazy SAT-based theorem proving architecture [6].

1 The traditional Bellman-Ford algorithm for negative cycle detection runs in O(n.m)
time.

170 S.K. Lahiri and M. Musuvathi

2.2 Negative Cycle Detection

Let G(V,E) be a directed graph with vertices V and edges E. For each edge
e ∈ E, we denote s(e), d(e) and w(e) to be the source, destination and the
weight of the edge. A path P in G is a sequence of edges [e1, . . . , en] such that
d(ei) = s(ei+1), for all 1 ≤ i ≤ n− 1. For a path P

.= [e1, . . . , en], s(P) denotes
s(e1), d(P) denotes d(en) and w(P) denotes the sum of the weights on the edges
in the path, i.e.

∑
1≤i≤n w(ei). A cycle C is a sequence of edges [e1, . . . , en] where

s(e1) = d(en). We use u � v in E to denote that there is a path from u to v
through edges in E.

Given a graph G(V,E), the problem of determining if G has a cycle C, such
that w(C) < 0 is called the negative cycle detection problem. Various algorithms
can be used to determine the existence of negative cycles in a graph [4]. Negative
cycle detection (NCD) algorithms have two properties:

1. The algorithm determines if there is a negative cycle in the graph. In this
case, the algorithm produces a particular negative cycle as a witness.

2. If there are no negative cycles, then the algorithm generates a feasible solu-
tion δ : V → Z, such that for every (u, v) ∈ E, δ(v) ≤ δ(u) + w(u, v).

For example, the Bellman-Ford [3,8] algorithm for single-source shortest path
in a graph can be used to detect negative cycles in a graph. If the graph contains
n vertices and m edges, the Bellman-Ford algorithm can determine in O(n.m)
time and O(n+m) space, if there is a negative cycle in G, and a feasible solution
otherwise.

In this paper, we assume that we use one such NCD algorithm. We will
define the complexity O(NCD) as the complexity of the NCD algorithm under
consideration. This allows us to leverage all the advances in NCD algorithms in
recent years [4], that have complexity better than the Bellman-Ford algorithm.

3 UTVPI Constraints

The unit two variables per inequality (UTVPI) constraints are a fragment of
linear arithmetic constraints of the form a.x+ b.y ≤ d where x and y are integer
variables, the coefficients a, b ∈ {−1, 0, 1} and the bound d is an integer constant.
The fragment also includes single variable per inequality (SVPI) constraints
a.x ≤ d.

Figure 1 describes the set of inference rules that is sound and complete for
this fragment. Jaffar et al. [11] showed that a set of UTVPI constraints C is
unsatisfiable if and only if the closure of C with respect to the transitive and
the tightening rule in Figure 1, contains a constraint 0 ≤ d, where d < 0.

3.1 Existing Decision Procedures for UTVPI

The only algorithms known for solving a set of UTVPI constraints are based on
transitive (and tightening) closure.

An Efficient Decision Procedure for UTVPI Constraints 171

a.x + b.y ≤ c − a.x + b′.z ≤ d

b.y + b′.z ≤ c + d
(Transitive)

a.x + b.y ≤ c a.x − b.y ≤ d a ∈ {−1, 1}
a.x ≤ �(c + d)/2�

(Tightening)

a.x + b.y ≤ c − a.x − b.y ≤ d c + d < 0

⊥
(Contradiction)

Fig. 1. Inference rules for UTVPI. The constants a, b, b′ range over {−1, 0, 1}, and c, d
range over Z.

Jaffar et al. [11] provided the first decision procedure for UTVPI. The algo-
rithm was based on incrementally processing a set of constraints C and main-
taining a transitive and tight closure C∗ of the set of constraints seen so far.
After the addition of a new constraint a.x + b.y ≤ d, the algorithm computes
the set of new UTVPI constraints as follows:

1. For every −a.x + b′.z ≤ d′ ∈ C∗, and for every −b.y + b′′.w ≤ d′′ ∈ C∗,
compute the closure of {−a.x + b′.z ≤ d′, a.x + b.y ≤ d,−b.y + b′′.w ≤ d′′}
using the transitive rule in Figure 1.

2. For any constraint 2a′.w ≤ d′ produced in step 1, we add the tightening
constraint a′.w ≤ .d′/2/ to the closure.

3. For each new tightening constraint a′.w ≤ d′ produced in step 2, and for
every constraint b′.z−a′.w ≤ d′′, we add the transitive constraint b′.z ≤ d+d′′

to the closure, and compute the transitive closure.

The runtime of the algorithm is O(m.n2) and the space requirement is O(n2).
Harvey et al. [9] improved on this algorithm by showing that the transitive

and tightening steps can be combined together in a single step (i.e. step 1)
without the need for the subsequent steps. The asymptotic complexity of the
algorithm (both time and space), however, remains unchanged.

In this paper, we provide an O(NCD) time algorithm based on negative cy-
cle detection that strictly improves upon the previous decision procedures for
UTVPI constraints. Also, our algorithm has an O(n+m) space complexity that
performs better when m is O(n). On the downside, our algorithm is not incre-
mental and requires all the constraints to be provided at once. Currently, we
are using this decision procedure in a lazy SAT-based theorem proving frame-
work [6], where nonincremental decision procedures suffice. However, we hope to
make this algorithm incremental in our future work.

3.2 Constraint Graph

Given a set of UTVPI constraints, our algorithm reduces the problem of checking
the satisfiability of the constraints to finding negative cycles in an appropriate
graph. This transformation is a simple extension of a similar transformation for

172 S.K. Lahiri and M. Musuvathi

Table 1. Edges in cons(x+, x−, y+, y−)traint graphs

UTVPI Assoc. Difference Constraints Graph Edges

x − y ≤ k x+ − y+ ≤ k , y− − x− ≤ k y+ k→ x+ , x− k→ y−

x + y ≤ k x+ − y− ≤ k , y+ − x− ≤ k y− k→ x+ , x− k→ y+

−x − y ≤ k x− − y+ ≤ k , y− − x+ ≤ k y+ k→ x− , x+ k→ y−

x ≤ k x+ − x− ≤ 2.k x− 2.k→ x+

−x ≤ k x− − x+ ≤ 2.k x+ 2.k→ x−

difference constraints [5] and has been previously used by Miné [15], for solving
UTVPI constraints over rationals.

Let φ be a set of UTVPI constraints. One can construct the constraint graph
Gφ(V,E) as follows. For each variable x in φ, the vertex set V contains two
vertices x+ and x− that respectively represent the terms x and −x. We use
T (v) to denote the representing term for a vertex v. Also, for any vertex v ∈ V ,
we define −v to be the vertex such that T (v) = −T (−v). That is, −x+ is x−,
and −x− is x+. To avoid confusion, we will use x, y, z, . . . to represent variables
in φ and u, v, w, . . . to represent vertices in V .

Each UTVPI constraint in φ can be transformed to a set of difference con-
straints over vertices as shown in Table 1. For each such difference constraint
u− v ≤ k, the graph Gφ(V,E) contains a directed edge (v, u) with weight k. It
is obvious that if φ contains m UTVPI constraints in n variables then Gφ(V,E)
will contain at most 2.n vertices and 2.m edges. The following propositions are
obvious.

Proposition 1. For every edge (u, v) ∈ E, the constraint graph Gφ(V,E) con-
tains an edge (−v,−u) with equal weight.

Proposition 2. If there is a path P from u to v in the constraint graph, then
there is a path P ′ from −v to −u such that w(P) = w(P ′).

For vertices u, v ∈ V , let SP (u, v) denote any of the shortest paths from u to v
in Gφ. Let wSP (u, v) represent w(SP (u, v)).

Proposition 3. Let u and v be two vertices in Gφ such that u � v. Then φ
implies T (y)− T (x) ≤ wSP (u, v).

The proof follows by transitivity of constraints in φ.

Lemma 1. A set of UTVPI constraints φ is unsatisfiable in Q if and only if
the constraint graph Gφ(V,E) contains a negative weight cycle [15].

The proof of the lemma simply follows from a similar proof for the satisfiability
of difference constraints [5].

Lemma 1 essentially solves the satisfiability problem for rationals. However,
this lemma is not sufficient for integers. For instance, Figure 3.2 shows a set of
constraints which is unsatisfiable in integers but the corresponding constraint

An Efficient Decision Procedure for UTVPI Constraints 173

x+

y+x-

y-

w+ w- z- z+

-5

4

3

2

1

-5

4

3

2

1
6 2

y + x ≤ −5 (1)

w − x ≤ 4 (2)

−w − x ≤ 3 (3)

z − y ≤ 2 (4)

−z − y ≤ 1 (5)

Fig. 2. A set of UTVPI constraints that are unsatisfiable in Z and the corresponding
constraint graph. The dotted edges are the tightening edges. Note that the vertices of
the negative-weight cycle (x+, x−, y+, y−) in Gφ∪T are contained in a zero-weight cycle
(x+, w+, x−, y+, z+, y−) in Gφ.

graph has no negative cycles. In this example, Equations (2) and (3) imply
−2.x ≤ 7 which for integers can be tightened to −x ≤ 3. Similarly, Equations
(4) and (5) imply −y ≤ 1. These bounds on −x and −y contradict Equation (1).

4 Efficient Decision Procedure for UTVPI Constraints

As described in the previous section, the constraint graph Gφ of a set of con-
straints φ contains a negative cycle only if the φ are unsatisfiable in Q. To extend
this result for Z, this section describes a method to extend the constraint graph
by adding tightening edges. The resulting graph contains a negative cycle exactly
when the constraints are unsatisfiable in Z.

4.1 Tightening Edges

Given a constraint graph Gφ(V,E), our goal is to capture the tightening rule
in Figure 1. For a constraint graph Gφ, define the set of tightening edges T as
follows:

T = {(u,−u) | wSP (u,−u) is odd}
For each edge in T , the weight of the edge is defined as follows

wT (u,−u) = wSP (u,−u)− 1, for all edges (u,−u) ∈ T

Now, whenever φ implies the tightest bound 2.x ≤ k where k is odd, then by
Proposition 3, wSP (x−, x+) = k in Gφ. By the Tightening Rule in Figure 1, φ
implies 2.x ≤ k − 1. This “tightened” constraint is captured by the tightening
edge (x−, x+) in T . Note, that the weight of such an edge in T is even.

Given a constraint graph Gφ, define the graph Gφ∪T as the one obtained by
adding all edges in T to Gφ. The following lemma describes a way to check if
the input constraints φ is satisfiable in Z.

Lemma 2. A set of UTVPI constraints φ is unsatisfiable in Z if and only if
the graph Gφ∪T has a negative weight cycle.

Lemma 2 leads to the following naive algorithm

174 S.K. Lahiri and M. Musuvathi

Proposition 4. Naive Algorithm: The set of UTVPI constraints can be decided
in O(nm + n2logn) time and O(n + m) space.

This algorithm uses a minor modification of Johnson’s All Pair Shortest Paths
algorithm to identify the edges in T in O(nm + n2logn) time and O(n + m)
space. Then, negative cycles in Gφ∪T can be found in O(NCD). Note that this
is an improvement over the Harvey and Stuckey’s algorithm.

4.2 Efficient Decision Procedure

Our goal is to improve upon the naive algorithm to decide a set of UTVPI
constraints in O(NCD) time. The crucial insight is to notice that the naive
algorithm is computing all edges in T while only some of them might potentially
lead to negative cycles. Our algorithm precisely identifies those edges in T by
looking for zero-weighted cycles in Gφ.

We present the algorithm below:

Algorithm 1 NCD-UTVPI Algorithm:

1. Given a set of UTVPI constraints φ, construct the constraint graphGφ(V,E).
2. Run a negative cycle detection algorithm.

(a) If Gφ contains a negative cycle, return UNSAT.
(b) Otherwise, the negative cycle detection algorithm returns a feasible so-

lution δ 2 , such that δ(v) − δ(u) ≤ w(u, v) for all edges (u, v) ∈ E.
3. Let E′ be set of edges in G such that an edge (u, v) ∈ E′ if and only if

δ(v)− δ(u) = w(u, v)
4. Create the induced subgraph G′

φ(V,E′) from Gφ(V,E).
5. Group the vertices in G′

φ into strongly connected components (SCCs). Ver-
tices u and v are in the same SCC if and only if u � v and v � u in E′.
This can be done in linear time [20].

6. For each vertex u ∈ V ,
(a) if −u is in the same SCC as u and if δ(u) − δ(−u) is odd, then return

UNSAT.
7. return SAT

In the algorithm above, all steps except step 2 can be done in linear time. Thus
the algorithm has O(NCD) time complexity and O(n+m) space complexity. To
prove the soundness and completeness of this algorithm, we need the following
definitions and lemmas.

Given a feasible solution δ for the constraint graph Gφ, define the slack of an
edge as: slδ(u, v) = δ(u)−δ(v)+w(u, v). When the feasible solution δ is obvious
from the context, sl(u, v) refers to slδ(u, v). From the definition of feasibility of
δ, we have the fact that sl(u, v) ≥ 0 for all edges (u, v) in Gφ. Note that the
step 3 of the algorithm above identifies E′ to be the set of edges with slack zero.
Also, the slack of a path P is defined as sl(P) = Σe∈Psl(e).

2 Note, δ is a mapping from V to Z.

An Efficient Decision Procedure for UTVPI Constraints 175

Proposition 5. Let P be a path from u to v in Gφ. Then, w(P) = sl(P) +
δ(v)− δ(u).

The proof follows from a simple induction on the length of the path P .

Proposition 6. For any cycle C in Gφ, w(C) = sl(C).

The proof follows from Proposition 5 when P forms a cycle.

Proposition 7. If P is a path from u to v and all edges in P have a slack zero,
then wSP (u, v) = δ(v)− δ(u).

Proof. We have sl(P) = 0 . Thus w(P) = δ(v)− δ(u) from Proposition 5. How-
ever, as slacks of all edges are nonnegative, sl(SP(u, v)) ≥ 0 . From Proposition 5,
we have wSP (u, v) = sl(SP(u, v)) + δ(v)− δ(u) ≥ w(P), which can be possible
only when the inequality is tight. Thus, the proposition is true.

Theorem 1. The NCD-UTVPI algorithm is sound.

Proof. The algorithm returns UNSAT at two places. In step 2a, the graph Gφ

contains a negative cycle and thus by Lemma 1, φ is unsatisfiable in Q and
thus in Z. If the algorithm returns UNSAT in step 6a, then we show that φ is
unsatisfiable in Z (but satisfiable in Q). We have two vertices u and −u that are
in the same SCC in G′

φ such that δ(−u)−δ(u) is odd. Since the vertices are in the
same SCC, we have a path in from u to −u in G′

φ. By Proposition 7, wSP (u,−u)
is odd, and thus T contains an edge (u,−u) of weight δ(−u)−δ(u)−1. Similarly,
T contains an edge (−u, u) of weight δ(u)− δ(−u)− 1. These two edges form a
negative cycle (of weight −2) in Gφ∪T . Thus, φ is unsatisfiable by Lemma 2.

To prove the completeness, we have to show that given a set of UTVPI con-
straints φ that is unsatisfiable, the NCD-UTVPI algorithm returns UNSAT. The
proof of this theorem is more involved, and requires the following two lemmas.

Lemma 3. If C is a cycle in Gφ∪T , then there is a cycle C′ in Gφ∪T with at
most two edges from T such that either w(C′) < 0 or w(C′) ≤ w(C).

Proof. The lemma is trivially true if Gφ∪T only contains cycles with at most
two edges from T . Otherwise, let C be a cycle in Gφ∪T such that C contains n
tightening edges with n > 2. For 0 ≤ i < n, let ti = (vi,−vi) be the tightening
edges in the order they appear in C. Also, the fragment Pi of C denotes a
path from −vi to vi+1 in Gφ, where the addition is performed modulo n. From
Proposition 2, there is a path P ′

i from −vi+1 to vi in Gφ, such that w(P ′
i) =

w(Pi). Define Ci as the cycle consisting of ti, Pi, ti+1, P
′
i . Obviously, Ci contains

only two tightening edges, for 0 ≤ i < n.
We can show that at least one of the Ci satisfies the conditions of the lemma.

Suppose this is not the case, then w(Ci) ≥ 0 and w(Ci) > w(C), for all 0 ≤ i < n.
We have,∑n−1

i=0 w(Ci) = Σn−1
i=0 w(ti) + w(Pi) + w(ti+1) + w(P ′

i)
= Σn−1

i=0 w(ti) + 2.w(Pi) + w(ti+1) as w(P) = w(P ′)
= Σn−1

i=0 2.w(ti) + 2.w(Pi) by reordering the sum
= 2.w(C)

176 S.K. Lahiri and M. Musuvathi

By assumption, the left hand side Σn−1
i=0 w(Ci) ≥ 0, which implies that w(C) ≥ 0.

Also by assumption, 2.w(C) = Σn−1
i=0 w(Ci) > n.w(C). However, this contradicts

with the fact that n > 2. Thus, at least there is a Ci that satisfies the require-
ments of the lemma.

The above lemma essentially restricts negative cycle detection to those cycles
with at most two tightening edges.

Corollary 1. Gφ∪T contains a negative cycle if and only if when it contains a
negative cycle with at most most two edges from T .

This corollary simply follows from Lemma 3 when the cycle C has a negative
weight.

Lemma 4. Suppose Gφ contains no negative cycles but Gφ∪T contains a nega-
tive cycle. Then there is a zero weight cycle in Gφ containing vertices u and −u
such that wSP (u,−u) is odd.

Proof. Let C be a negative cycle in Gφ∪T . By Corollary 1, C has at most two
tightening edges without loss of generality. Since Gφ contains no negative cycles,
C contains at least one tightening edge. Thus, there are the following two cases:
Case 1: C contains exactly one tightening edge (u,−u). Define P as the fragment
of C from −u to u. Consider the cycle C′ formed by P along with SP (u,−u)
(in Gφ). By definition of the tightening edge, w(C) = wSP (u,−u)−1+w(P) =
w(C′)−1 < 0. Also, as C′ is a cycle in Gφ, we have w(C′) ≥ 0. These constraints
imply that w(C′) = 0 and is the cycle required by the lemma.
Case 2: C contains two tightening edges. Let (u,−u) and (v,−v) be the tight-
ening edges in order they appear in C. Define Pu as the fragment of C from −u
to v and define Pv as the fragment of C from −v to u. Without loss of gener-
ality, w(Pu) ≤ w(Pv). Also, by Proposition 2, there is a path P ′

u from −v to u,
such that w(Pu) = w(P ′

u). Consider the cycle C′ consisting of SP (u,−u), Pu,
SP (v,−v), P ′

u. By definition of tightening edges both wSP (u,−u) and
wSP (v,−v) are odd. Thus, w(C′) is even. Also,

w(C) = wSP (u,−u)− 1 + w(Pu) + wSP (v,−v)− 1 + w(Pv)
≥ wSP (u,−u)− 1 + w(Pu) + wSP (v,−v)− 1 + w(Pu) by assumption
= w(C′)− 2 as w(Pu)=w(P ′

u)

Thus, w(C′) ≤ w(C) + 2. Since C is a negative cycle, we have w(C′) ≤ 1.
However, we can tighten this constraint as w(C′) is even. Thus, we have w(C′) ≤
0. Since, C′ is a cycle in Gφ w(C′) ≥ 0. Thus, C′ is the cycle required by the
lemma.

The proof of completeness of the NCD-UTVPI algorithm follows from the
above lemma.

An Efficient Decision Procedure for UTVPI Constraints 177

Theorem 2. The NCD-UTVPI algorithm is complete.

Proof. Let φ be a set of UTVPI constraints. If φ is unsatisfiable in Q, then the
constraint graph Gφ has a negative cycle by Lemma 1. The NCD-UTVPI algo-
rithm returns UNSAT in step 2a. Suppose φ is satisfiable in Q but unsatisfiable
in Z. Then, by Lemma 2, Gφ∪T contains a negative cycle, while Gφ does not.
Thus, by Lemma 4, Gφ contains a zero weight cycle with a vertex u such that
SP (u,−u) is odd. By Proposition 6, all edges in C have a slack equal to zero.
Thus u and −u are in the same SCC in the graph G′ defined in step 5 of the
NCD-UTVPI algorithm. Finally, SP (u,−u) = δ(−u, u) by Proposition 7. Thus,
the NCD-UTVPI algorithm will detect the vertex u in step 6a.

5 Equality Generation

This section describes how to generate variable equalities implied by a set of
UTVPI constraints. This is essential when the UTVPI decision procedure is
combined with other theories in a Nelson-Oppen framework. Given a set of m
UTVPI constraints φ over n variables, we show how to infer implied variable
equalities from Gφ in O(n.m) time and O(n + m) space.

5.1 Naive Algorithm

Akin to the decision procedure described in Section 4, we first provide a naive
algorithm for generating equalities in O(nm+n2logn) time to capture the main
intuition, and then improve to a O(nm) algorithm. Though m can be n2 in the
worst case, this improvement is motivated by the fact that in practice m is often
O(n).

The naive algorithm proceeds as in Proposition 4 by explicitly constructing
Gφ∪T by identifying all tightening edges in O(nm + n2logn) time. Given Gφ∪T

with no negative cycles (§2), the following lemma provides a way to generate
variable equalities in O(NCD) time

Lemma 5. Let δφ∪T be a feasible solution produced by a negative cycle detection
algorithm for Gφ∪T . The set of constraints φ implies x = y if and only if the
following is true:

1. δφ∪T (x+) = δφ∪T (y+), and
2. there is a zero weight cycle in Gφ∪T that contains both x+ and y+.

This lemma directly follows from the equality generation algorithm for difference
constraints [14].

The conditions in this lemma can be checked by performing a SCC compu-
tation on the subgraph of Gφ∪T induced by edges with slack zero, similar to
the NCD-UTVPI algorithm. Now, φ implies x = y whenever x and y are in the
same SCC with the same δφ∪T values. This can be done in average linear time
using a hashtable, or in O(n. log n) time by sorting all vertices in the same SCC
according to their δφ∪T values.

We state the naive algorithm below.

178 S.K. Lahiri and M. Musuvathi

Algorithm 2 EqGen-Naive Algorithm:

1. Starting with Gφ∪T , run a negative cycle detection algorithm to produce a
feasible solution δφ∪T .

2. Let E0 be the set of edges such that e ∈ E0 if and only if sl(e) = 0 .
3. Create the subgraph G0 induced by E0.
4. Group the vertices of G0 into strongly connected components.
5. If vertices x+ and y+ are in the same SCC and δφ∪T (x+) = δφ∪T (y+), then

report the variable equality x = y.

5.2 Efficient Equality Generation

In this section, we improve the naive algorithm by precisely inferring those tight-
ening edges that can result in a zero-weighted cycle in Gφ∪T . We do this by using
the following lemma, similar to Lemma 4.

Lemma 6. Assuming Gφ∪T has no negative cycles and if C is a zero weight
cycle in Gφ∪T containing a tightening edge (u,−u), then there is a cycle C′ in
Gφ containing u and −u, and such that w(C′) ≤ 2.

Proof. By Lemma 3, we can assume that C has at most two tightening edges.
Let P be the fragment of C from −u to u. Consider the cycle C1 formed by
SP (u,−u), P . By definition of the tightening edge, this cycle has weight w(C1) =
wSP (u,−u) + w(P) = w(C) + 1 = 1. If C contains no other tightening edge,
then C1 is a cycle in Gφ proving the lemma. Otherwise, C contains at most one
other tightening edge, which can be removed like before to obtain C2 such that
w(C2) = 2. Now, C2 is the required cycle in Gφ.

By Lemma 6, we only need to add tightening edges whose endpoints are in
cycles of weight less than or equal to two. Moreover, under any feasible solution
δ, any edge e in such a cycle will have sl(e) ≤ 2 . By identifying such edges,
the following algorithm generates all variable equalities implied by φ in O(n.m)
time.

Algorithm 3 EqGen Algorithm:

1. Given a set of UTVPI constraints φ, construct the constraint graphGφ(V,E).
2. Assume NCD-UTVPI algorithm returns SAT. Also, assume that a feasible

solution δ exists for Gφ.
3. Let E2 = {(u, v)|sl(u, v) ≤ 2}, and let G2(V,E2) be the subgraph of Gφ

induced by E2.
4. Let T2 be the set of tightening edges, initially set to the empty set.
5. For each vertex v

(a) Find Pv the path in G2 from v to −v with the smallest slack, if any. This
can be done in O(m) by using a modified breadth-first-search.

(b) If Pv exists,
i. Let wSP (v,−v) = δ(−v)− δ(v) + sl(Pv).

An Efficient Decision Procedure for UTVPI Constraints 179

ii. If wSP (v,−v) is odd, then add the edge (v,−v) to T2 and assign a
weight wT2(v,−v) = wSP (v,−v)− 1.

6. Consider the graph Gφ∪T2 obtained by adding all the edges in T .
7. Now proceed as in the EqGen-Naive algorithm with Gφ∪T2 instead of Gφ∪T .

Proposition 8. When the EqGen algorithm computes wSP (v,−v) in step
5(b)i, the value computed is equal to the weight of the shortest path between
v and −v.

Lemma 7. Gφ∪T contains a zero weight cycle exactly when Gφ∪T2 contains a
zero weight cycle.

Proof. Since Gφ∪T2 is a subgraph of Gφ∪T , one way of the proof is trivial. Sup-
pose Gφ∪T contains a zero weight cycle C. If C has no tightening edges, then C is
a cycle in Gφ∪T2 . Otherwise, let (u,−u) be a tightening edge in C. By Lemma 6,
there is a cycle C′ in Gφ such that w(C′) ≤ 2 and C′ contains u and −u. Since
sl(C ′) ≤ 2 , all edges in C′ have a slack less than or equal to 2, and thus are in
E2. Thus, the EqGen algorithm will add the tightening edge in T2.

6 Proof Generation

Using the UTVPI decision procedure in a lazy-proof-explication framework re-
quires the procedure to produce proofs whenever it reports the input constraints
as unsatisfiable, or whenever it propagates an implied variable equality. This sec-
tion describes how to generate the proofs for the decision procedure described
in this paper.

Both the NCD-UTVPI algorithm and the EqGen algorithm rely on two
vertices u and v (say) being in the same SCC in an appropriate graph. As a
witness for this fact, we need a path from u to v and a path from v to u.
We assume that the standard SCC algorithm can be modified to provide this
witness [14].

The NCD-UTVPI algorithm returns UNSAT in two cases. In the first case,
the constraint graph Gφ has a negative cycle. By assumption, the negative cycle
detection algorithm produces a witness which is the proof of unsatisfiability of
the input constraints. In the second case, the algorithm produces a vertex u and
−u in the same SCC of G′

φ. Applying the transitivity rule along the path from
u to −u, we have −2.a.x ≤ k where a.x is the variable corresponding to u and
k = δ(−v) − δ(v) is an odd number. By applying the tightening rule, we get
−2.a.x ≤ k − 1. Using the path from −u to u we have 2.a.x ≤ −k which by
tightening we get 2.a.x ≤ −k − 1. This is the proof of the contradiction.

The EqGen algorithm detects zero-weight cycles in the graph Gφ∪T2 . First,
every tightening edge in Gφ∪T2 has a proof involving transitivity along a partic-
ular path of odd length, followed by a tightening rule. Also, whenever the EqGen
algorithm reports an equality x = y, x+ and y+ are in the same SCC. The proof
of this equality can be inferred along the proof of Lemma 5.

180 S.K. Lahiri and M. Musuvathi

7 Model Generation

In this section, we describe how to generate models for a set of constraints C,
when C is satisfiable.

Let ρ be a function that maps each variable to an integer. Let + be a linear
order of the variables that appear in C. The assignment ρ is constructed using
the following algorithm that assigns values to the variables in the order +:

1. Construct the set of UTVPI constraints C∗ that is the closure of C under
transitivity and tightening.

2. Vρ ← {}.
3. For each variable x ∈ V in the order +:

(a) Let Bx be the set of constraints of the form x ≤ c or x ≥ c obtained
after evaluating C∗ under the current partial assignment ρ.

(b) Assign ρ(x) to be a value that satisfies all the bounds in Bx.
(c) Vρ ← Vρ ∪ {x}.

4. Return ρ.

At any point in the above algorithm, ρ has assigned a subset of the variables
(Vρ) in C∗ values over integers. For all the variables for which ρ is undefined,
ρ(x) = x. If ρ be such a partial assignment, let us define Cρ to be the set of
constraints C ∪ {y = ρ(y) | y ∈ Vρ}. It is easy to see that at any point in the
above algorithm, Cρ implies x �= c for any x ∈ V if and only if Cρ implies either
x < c or x > c.

Lemma 8. A set of UTVPI constraints C implies x �= d for some d ∈ Z if and
only if C implies x < d or C implies x > d.

Proof. We only prove the “if” direction of this lemma. The proof relies on the
following two claims:

1. The set of constraints C′ .= C ∪ {x = d} is unsatisfiable (or equivalently
C ⇒ x �= d) if and only if there is negative cycle in the constraint graph
(described in Section 4.1) after adding all the difference constraints for each
constraint in C′ and all the resulting tightening edges to the graph.

2. Adding x = d to the set C does not imply any new tightening constraints.

The property 1 follows from Lemma 2. Since any tightening constraint for a
variable y1 can only result from two constraints y1 − y2 ≤ c1 and y1 + y2 ≤ c2
and the constraint x = d can’t give rise to a constraint with two variables (under
transitive and tightening steps), the property 2 holds.

Therefore, adding the edges x+ − x− ≤ 2.d and x− − x+ ≤ −2.d for the
constraint x = d can result in a negative cycle in the difference graph, if and
only there is a path from x− to x+ of length less than −2.d (that implies x > d)
or there is a path from x+ to x− of length less than 2.d (that implies x < d).

Lemma 9. During the step 3a of the above algorithm, the set of constraints Cρ

implies x �= c if and only if Bx contains either x ≤ d with d < c or x ≥ d with
d > c.

An Efficient Decision Procedure for UTVPI Constraints 181

The proof of this lemma follows from Lemma 8.

Theorem 3. The assignment ρ generated by the algorithm above satisfies all
the constraints in C.

The proof follows from a simple induction on the size of Vρ. At each point in
the algorithm, the assignment ρ and the set of constraints C are consistent.

An easy implementation of the above algorithm can be obtained in O(n3) time
and O(n2) space by using the algorithm for computing the transitive and tight clo-
sure [15,11]. The time complexity can further be improved to O(n.m + n2.lg(n))
by using Johnson’s [5] algorithm for performing the all-pair shortest path.

7.1 Model Generation in Nelson-Oppen Framework

For a conjunction of UTVPI constraints C, the assignment ρ computed above
satisfies all the constraints in C. However, this is not sufficient to produce a model
in the Nelson-Oppen combination framework. We assume that the user is familiar
with the high-level description of the Nelson-Oppen combination method [17].
Consider the following example where a formula involves the logic of equality
with uninterpreted functions (EUF) and UTVPI constraints.

Let ψ = (f(x) �= f(y)∧ x ≤ y) be a formula in the combined theory. Nelson-
Oppen framework will add ψ1

.= f(x) �= f(y) to the EUF theory (T1) and
ψ2

.= x ≤ y to the UTVPI theory (T2). Since there are no equalities implied
by either theory, and each theory Ti is consistent with ψi, the formula ψ is
satisfiable. Now, the UTVPI theory generates the model ρ .= 〈x �→ 0, y �→ 0〉 for
ψ2. However, this is not a model for ψ.

To generate an assignment for the variables that are shared across two theo-
ries, each theory Ti needs to ensure that the variable assignment ρ for Ti assigns
two shared variables x and y equal values if and only if the equality x = y is
implied by the constraints in theory Ti.

Definition 1. For a set of UTVPI constraints C, an assignment ρ for the
variables in C is called diverse, if for any two variables x and y in vars(C),
ρ(x) = ρ(y) if and only if x = y is implied by C.

We will show that the problem of checking if a set of UTVPI constraints has a
diverse model is NP-complete. Clearly, the problem is in NP. We will reduce the
following (NP-complete) pipeline scheduling problem to this problem to show
NP-hardness.

Theorem 4 (Minimum precedence constrained sequencing with de-
lays [10]). Given a set T of tasks, a directed acyclic graph G(T,E) defining
precedence constraints for the tasks, a positive integer D, and for each task t an
integer delay 0 ≤ d(t) ≤ D. The problem of determining a one-processor schedule
for T that obeys the precedence constraints and delays, within a deadline k, is
NP-complete. That is, checking if there exists an injective function for the start
times S : T → Z such that for every (ti, tj) ∈ E, S(tj) − S(ti) > d(ti), and
S(ti) ≤ k for all ti ∈ T is NP-complete.

182 S.K. Lahiri and M. Musuvathi

It is easy to construct a set of UTVPI constraints C such that C has a diverse
model if and only if a one-processor schedule for tasks in T exists. Observe
that the problem can be mapped to the fragment of UTVPI that contains only
x− y < c constraints with positive c.

Corollary 2. For a given set of constraints C
.= {xi − yi < ci | ci ≥ 0}, finding

a diverse model for C is NP-complete.

We now show an interesting consequence of Corollary 2 for combining the
UTVPI theory with other theories in Nelson-Oppen setting.

7.2 Generating Disjunction of Equalities

To combine the decision procedures of a non-convex theory T1 (such as UTVPI)
with a convex theory T2 (e.g. EUF) in Nelson-Oppen framework, T1 needs to
infer the strongest disjunction of equalities between variables that is implied by
the set of T1 constraints. That is, if C1 is a set of UTVPI constraints, then we
need to generate a disjunction of equalities {e1, . . . , ek} over variables such that
C1 ⇒ e1 ∨ . . . ∨ ek, and the disjunction of no proper subset of {e1, . . . , ek} is
implied by C1.

Theorem 5. For a set of UTVPI constraints C that does not imply any equality
between variables in vars(C), C has a diverse model ρ if and only if C does not
imply any disjunction of equalities {e1, . . . , ek} (for k > 1) over pairs of variables
in vars(C).

Proof. First, let us assume that C implies a disjunction over a minimal set of
equalities {u1 = v1, . . . , uk = vk}, for k > 1. This means that any model ρ for
C is also a model for C ∧ (u1 = v1 ∨ . . .uk = vk), and therefore must satisfy at
least one of the equalities. Hence ρ can’t be diverse.

For the other direction, assume that C does not have any diverse models.
This implies that for any model ρ of C, there is at least a pair of variables u
and v such that ρ(u) = ρ(v). Thus the formula C ∧

∧
{u �= v | u ∈ vars(C), v ∈

vars(C), u �≡ v} does not have any models or is unsatisfiable. Therefore C implies∨
{u = v | u ∈ vars(C), v ∈ vars(C), u �≡ v}. Since none of the equalities in this

set (in isolation) is implied by C, there has to be a minimal subset of equalities
whose disjunction is implied by C.

The above theorem illustrates that the problem of checking if a set of UTVPI
constraints imply a disjunction of equalities over the variables is NP-complete.

References

1. T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic Theorem Proving
for Software Predicate Abstraction Refinement. In Computer Aided Verification
(CAV ’04), LNCS 3114. Springer-Verlag, 2004.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Programming Language Design and Implementation
(PLDI ’01), Snowbird, Utah, June, 2001. SIGPLAN Notices, 36(5), May 2001.

An Efficient Decision Procedure for UTVPI Constraints 183

3. R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90,
1958.

4. B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. In
European Symposium on Algorithms, pages 349–363, 1996.

5. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

6. C. Flanagan, R. Joshi, X. Ou, and J. Saxe. Theorem Proving usign Lazy Proof
Explication. In Computer-Aided Verification (CAV 2003), LNCS 2725, pages 355–
367. Springer-Verlag, 2003.

7. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’02), pages 234–245, 2002.

8. L. R. Ford, Jr., and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

9. W. Harvey and P. J. Stuckey. A unit two variable per inequality integer constraint
solver for constraint logic programming. In Proceedings of the 20th Australasian
Computer Science Conference (ACSC ’97), pages 102–111, 1997.

10. J. L. Hennessy and T. R. Gross. Postpass code optimization of pipeline constraints.
ACM Trans. Program. Lang. Syst., 5(3):422–448, 1983.

11. J. Jaffar, M. J. Maher, P. J. Stuckey, and H. C. Yap. Beyond Finite Domains. In
Proceedings of the Second International Workshop on Principles and Practice of
Constraint Programming, PPCP’94.

12. J. C. Lagarias. The computational complexity of simultaneous diophantine ap-
proximation problems. SIAM Journal of Computing, 14(1):196–209, 1985.

13. S. K. Lahiri and R. E. Bryant. Deductive verification of advanced out-of-order
microprocessors. In Computer-Aided Verification (CAV 2003), LNCS 2725, pages
341–354. Springer-Verlag, 2003.

14. S. K. Lahiri and M. Musuvathi. An efficient nelson-oppen decision procedure for
difference constraints over rationals. Technical Report MSR-TR-2005-61, Microsoft
Research, 2005.

15. A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE, pages
310–319. IEEE CS Press, October 2001.

16. G. C. Necula and P. Lee. Proof generation in the touchstone theorem prover. In
Conference on Automated Deduction, LNCS 1831, pages 25–44, 2000.

17. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):245–
257, 1979.

18. V. Pratt. Two easy theories whose combination is hard. Technical report, Mas-
sachusetts Institute of Technology, Cambridge, Mass., September 1977.

19. S. A. Seshia and R. E. Bryant. Deciding quantifier-free presburger formulas using
parameterized solution bounds. In 19th IEEE Symposium of Logic in Computer
Science(LICS ’04). IEEE Computer Society, July 2004.

20. R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of
Computing, 1(2):146–160, 1972.

Declarative Constraint Programming with

Definitional Trees

Rafael del Vado Vı́rseda�

Dpto. de Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, Spain

rdelvado@sip.ucm.es

Abstract. The new generic scheme CFLP (D) has been recently propo-
sed in [14] as a logical and semantic framework for lazy Constraint
Functional Logic Programming over a parametrically given constraint
domain D. Further, [15] presented a Constrained Lazy Narrowing Cal-
culus CLNC(D) as a convenient computation mechanism for solving
goals for CFLP (D)-programs, which was proved sound and strongly
complete with respect to CFLP (D)’s semantics. Now, in order to pro-
vide a formal foundation for an efficient implementation of goal solving
methods in existing systems such as Curry [8] and T OY [13,6], this pa-
per enriches the CFLP (D) framework by presenting an optimization of
the CLNC(D) calculus by means of definitional trees to efficiently con-
trol the computation. We prove that this new Constrained Demanded
Narrowing Calculus CDNC(D) preserves the soundness and complete-
ness properties of CLNC(D) and maintains the good properties shown
for needed and demand-driven narrowing strategies [4,11,17].

1 Introduction

The effort to combine the main lines of research in multiparadigm declarative
programming, namely Constraint Logic Programming (CLP) [10] and Func-
tional Logic Programming (FLP) [7], in a unified and suitable framework called
Constrained Functional Logic Programming (CFLP), arose around 1990 and has
grown in the last years. Recently, a new generic scheme called CFLP (D) has
been proposed in [14] as a logical and semantic framework for lazy Constraint
Functional Logic Programming over a parametrically given constraint domain D,
which provides a clean and rigorous declarative semantics for CFLP languages
as in the CLP (D) scheme, but overcoming some limitations of older CFLP
schemes [12,16]. In this setting, CFLP (D)-programs are presented as sets of
constrained rewrite rules that define the behavior of possible higher-order and/or
non-deterministic lazy functions over D. The main novelties in [14] were a new
formalization of constraint domains for CFLP and a new Constraint ReWriting
Logic CRWL(D) parameterized by a constraint domainD, which provides a logi-
cal characterization of program semantics. Further, [15] has extended [14] with a
� The work of this author has been partially supported by the Spanish National Project

MELODIAS (TIC2002-01167).

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 184–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Declarative Constraint Programming with Definitional Trees 185

suitable operational semantics, which relies on a new formal notion of constraint
solver and a new Constrained Lazy Narrowing Calculus CLNC(D) for solving
goals for CFLP (D)-programs, which can be proved sound and strongly complete
w.r.t. CRWL(D)’s semantics. These properties qualify CLNC(D) as a conve-
nient computation mechanism for declarative constraint programming languages.

However, efficiency is a major concern for the implementation of CFLP (D)
systems, since non-deterministic computations often generate huge search spa-
ces with their associated overheads both in terms of time and space. In the field
of functional logic programming languages using lazy narrowing as operational
model, needed narrowing strategies [4,2,9] and demand-driven narrowing strate-
gies [11,17] are known to provide a sound and complete goal solving mechanism
while avoiding unneeded computation steps. These strategies are based on defini-
tional trees, first introduced in [1], and they have led to efficient implementations
of lazy narrowing in existing systems such as Curry [8] and T OY [13,6].

Although Curry and T OY support constraint programming over a few specific
domains, general results on the combination of demand/needed lazy narrowing
with goal solving are still missing. The aim of the present paper is to provide
such results. More precisely, this paper uses definitional trees to design a com-
bination of the Constrained Lazy Narrowing Calculus CLNC(D) from [15] and
the Demand-driven Narrowing Calculus DNC from [17], yielding a new Cons-
trained Demanded Narrowing Calculus CDNC(D) over a parametrically given
constraint domain D which can be proved sound and strongly complete w.r.t.
CRWL(D)’s semantics, contracts needed positions, and maintains the efficiency
properties shown for existing demand/needed narrowing strategies.

The organization of this paper is as follow: Section 2 is devoted to summarize
the presentation of the CFLP (D) scheme [14,15] and the technical preliminaries
need to formalize the notion of definitional tree. Section 3 introduces a refined
representation of definitional trees that deals properly with constraints and de-
fines the subclass of CFLP (D)-programs used in this work. In Section 4 we give
a formal presentation of the calculus CDNC(D), proving soundness and com-
pleteness results and sketching optimality. Finally, some conclusions and plans
for future work are drawn in Section 5.

2 The Generic Scheme CFLP(D)

In this section we introduce some technical preliminaries regarding the basis of
the CFLP (D) scheme [14,15] for lazy Constraint Functional Logic Programming
over a parametrically given constraint domain D. We will use this scheme as the
logical and semantic framework to define our declarative constraint programs
and our new Constrained Demanded Narrowing Calculus with definitional trees.

2.1 Expressions and Patterns

We briefly introduce the syntax of applicative expressions and patterns, which
is needed for understanding the construction of constraint domains and solvers.

186 R. del Vado Vı́rseda

We assume a universal signature Σ = 〈DC, FS〉, where DC =
⋃

n∈N
DCn

and FS =
⋃

n∈N
FSn are families of countably infinite and mutually disjoint sets

of data constructors resp. evaluable function symbols, each one with an associa-
ted arity. Evaluable functions can be further classified into domain dependent
primitive functions PFn ⊆ FSn and user defined functions DFn = FSn \ PFn

for each n ∈ N. We write Σ⊥ for the result of extending DC0 with the special
symbol ⊥, intended to denote an undefined data value. As notational conven-
tions, we use c, d ∈ DC, f, g ∈ FS and h ∈ DC ∪ FS, and we define the arity
of h ∈ DCn ∪ FSn as ar(h) = n. We also assume that DC0 includes the three
constants true, false and success, which are useful for representing the results
returned by various primitive functions. Next we assume a countably infinite
set V of variables X, Y, . . . and a set U of primitive elements u, v, . . . (as e.g.
the set R of the real numbers) mutually disjoint and disjoint from Σ⊥. Partial
expressions e ∈ Exp⊥(U) have the following syntax:

e ::= ⊥ | u | X | h | (e e1)

where u ∈ U , X ∈ V , h ∈ DC ∪ FS. Following a usual convention, we as-
sume that application associates to the left, and we use the notation (e en) to
abbreviate (e e1 . . . en). The set of variables occurring in e is written var(e). An
expression e is called linear iff there is no X ∈ var(e) having more than one occu-
rrence in e. The following classification of expressions is also useful: (X em), with
X ∈ V and m ≥ 0, is called a flexible expression, while u ∈ U and (h em) with
h ∈ DC ∪FS are called rigid expressions. Moreover, a rigid expression (h em) is
called active iff h ∈ FS and m ≥ ar(h), and passive otherwise. The occurrence
of a symbol is passive iff is a primite element u ∈ U or is the root symbol h of
a passive expression (a symbol, as used in this sense, is called a passive symbol).
Some interesting subsets of Exp⊥(U) are: GExp⊥(U), the set of the ground ex-
pressions e such that var(e) = ∅ and Exp(U), the set of the total expressions e
with no occurrences of ⊥. Another important subclass of expressions is the set
of partial patterns s, t ∈ Pat⊥(U), whose syntax is defined as follows:

t ::= ⊥ | u | X | c tm | f tm

where u ∈ U , X ∈ V , c ∈ DCn, m ≤ n, f ∈ FSn, m < n. The subsets Pat(U),
GPat⊥(U) ⊆ Pat⊥(U) consisting of the total and ground patterns, respectively,
are defined in the natural way. We define the information ordering ! as the least
partial ordering over Pat⊥(U) satisfying the following properties: ⊥ ! t for all
t ∈ Pat⊥(U), and (htm) ! (ht′m) whenever these two expressions are patterns
and ti ! t′i for all 1 ≤ i ≤ m.

2.2 Substitutions

As usual, we define substitutions σ ∈ Sub⊥(U) as mappings σ : V → Pat⊥(U)
extended to σ : Exp⊥(U) → Exp⊥(U) in the natural way. By convention, we
write ε for the identity substitution, eσ instead of σ(e), and σθ for the com-
position of σ and θ, such that e(σθ) = (eσ)θ for any e ∈ Exp⊥(U). We define
the domain and the variable range of a substitution in the usual way, namely:
dom(σ) = {X ∈ V | σ(X) �= X} and ran(σ) =

⋃
X∈ dom(σ) var(σ(X)). As

Declarative Constraint Programming with Definitional Trees 187

usual, a substitution σ such that dom(σ) ∩ ran(σ) = ∅ is called idempotent. For
any set of variables X ⊆ V we define the restriction σ �X as the substitution σ′

such that dom(σ′) = X and σ′(X) = σ(X) for all X ∈ X . We use the notation
σ =X θ to indicate that σ �X = θ �X , and we abbreviate σ =V\X θ as σ =\X θ.
An expression e′ is an instance of e if there is a substitution σ with e′ = eσ. In
this case we write e + e′. An expression e′ is a variant of e if e + e′ and e′ + e.

2.3 Positions

To manipulate expressions and patterns we give the following definitions. An
occurrence or position is a sequence p of positive integers identifying a subexpres-
sion in an expression. For every expression e, the set Pos(e) of positions in e is
inductively defined as follow: the empty sequence denoted by ε, identifies e itself.
For every expression of the form hem, the sequence i · q, where i is a positive
integer not greater than n and q is a position, identifies the subexpression of ei at
q. The subexpression of e at p is denoted by e|p and the result of replacing e|p with
e′ in e is denoted by e[e′]p. The expression p·q denotes the position resulting from
the concatenation of the positions p and q. If e is a linear expression, pos(X, e)
will be used for the position of the variable X occurring in e.

2.4 Constraints over a Given Constraint Domain

Now we are ready to give a short summary of the generic CFLP (D) scheme
by introducing the essential notions of constraint domain D, constraints and
constraint solver over D which are needed for this work. Additional explanations
and examples can be found in [14].

Definition 1 (constraint domain). A constraint domain is any structure
D = 〈DU , {pD | p ∈ PF}, SolveD〉 such that the carrier set DU = GPat⊥(U)
coincides with the set of ground patterns for some set of primitive elements U ,
the interpretation pD ⊆ Dn

U × DU of each p ∈ PFn (we use the notation pDtn
→ t to indicate that (tn, t) ∈ pD) satisfies monotonicity, antimonotonicity and
radicality requirements (see [14] for details) and SolveD is a constraint solver,
whose expected behavior will be explained in Definition 4 below.

Assuming an arbitrarily fixed constraint domain D built over a certain set of
primitive elements U (as e.g. the set R of the real numbers), we will now define
the syntax and semantics of constraints over D used in this work.

Definition 2 (constraints over a constraint domain).

1. Primitive Constraints have the syntactic form ptn →! t, with p ∈ PFn,
tn ∈ Pat⊥(U) and t ∈ Pat(U) (for example, addition constraints X + Y →!
R or comparison constraints X > 0 →! true over R). The special constants
� and � are also primitive constraints.

2. Constraints have the syntactic form p en →! t , with p ∈ PFn, en ∈ Exp⊥(U)
and t ∈ Pat(U) (i.e. possibly including occurrences of user defined function
symbols). The special constants � and � are also constraints.

188 R. del Vado Vı́rseda

In the sequel we use the notation PCon⊥(D) for the set of all the primitive
constraints π over D and we reserve the capital letters Π and S for sets of primi-
tive constraints, often interpreted as conjunctions. The semantics of primitive
constraints depends on the notion of solution, presented in the next definition.

Definition 3 (primitive semantic notions).

1. The set of valuations over D is defined as the set of ground substitutions
V al⊥(D) = GSub⊥(U). The set of solutions of π ∈ PCon⊥(D) is a subset
SolD(π) ⊆ V al⊥(D) defined as follows: SolD(�) = V al⊥(D), SolD(�) = ∅
and SolD(p tn →! t) = {η ∈ V al⊥(D) | tη is total and pD tnη → tη}. The
set of solutions of Π ⊆ PCon⊥(D) is defined as SolD(Π) =

⋂
π∈Π SolD(π).

2. Π is called satisfiable in D (in symbols, SatD(Π)) iff SolD(Π) �= ∅. Other-
wise Π is called unsatisfiable (in symbols, UnsatD(Π)).

3. π is a consequence of Π in D (in symbols, Π |=D π) iff SolD(Π) ⊆ SolD(π).
In particular, p tn →! t is a consequence of Π in D (in symbols, Π |=D
p tn →! t) iff pD tnη → tη with tη total holds for all η ∈ SolD(Π).

Finally, we describe the behavior of the constraint solver SolveD introduced in
Definition 1 as the basis of our new goal solving mechanism. This notion of solver
was first introduced in [15] w.r.t the semantics given in the previous definition.

Definition 4 (constraint solver over D).

1. We say that a variable X ∈ V is demanded by a set of total primitive cons-
traints Π ⊆ PCon(D) iff μ(X) �= ⊥ holds for every μ ∈ SolD(Π). We
write dvarD(Π) for the set of the variables demanded by Π. For practical
constraint domains, dvarD(Π) is expected to be computable (see [15]).

2. A constraint solver over a constraint domain D is formalized by a function
SolveD expecting as parameters a finite set S ⊆ PCon(D) of total primitive
constraints (called the constraint store) and a finite set of variables χ ⊆ V
(called the set of protected variables). The solver is expected to return a finite
disjunction of alternatives SolveD(S,χ) =

∨k
i=1(Si �σi), where � must be

interpreted as conjunction, and satisfying the following requirements:

(a) Each Si ⊆ PCon(D) is in χ-solved form (i.e. SolveD(Si,χ) = Si � ε).
Furthermore, either all the protected variables disappear or some pro-
tected variable becomes demanded (i.e. var(Si) ∩ χ = ∅ or else dvarD(Si)
∩ χ �= ∅).

(b) Each σi ∈ Sub(U) is an idempotent total substitution that cannot bind
protected variables (i.e. dom(σi) ∩ var(Si) = ∅ and χ ∩ (dom(σi) ∪
ran(σi)) = ∅).

(c) No solution is lost by the constraint solver and the solution space asso-
ciated to each alternative is included in the one of the input constraint
store (i.e. SolD(S) =

⋃k
i=1 SolD(Si �σi)).

In the case k = 0,
∨k

i=1(Si �σi) is understood as �. In this case, SolD(S) ⊆
SolD(�) = ∅ means failure detection. More details on the working of cons-
traint solvers will be given in Section 4.

Declarative Constraint Programming with Definitional Trees 189

Example 1 (The constraint domain Hseq). We consider the simple constraint
domain Hseq, analogous to the extension of the Herbrand Domain with equality
and disequality constraints, built over an empty set of primitive elements and
having the strict equality seq as its only primitive, interpreted to behave as fo-
llows: seqHseq t t → true for all total t ∈ GPat(∅); seqHseq t s → false for all
t, s ∈ GPat⊥(∅) such that t, s have no common upper bound w.r.t. the infor-
mation ordering !; seqHseq t s → ⊥ otherwise. In the sequel, t == s abbreviates
the equality constraint seq t s →! true and t /= s abbreviates the disequali-
ty constraint seq t s →! false. A constraint solver SolveHseq for this domain
can be found in [15]. Further examples of other interesting constraint domains
known for their practical value in constraint programming (real numbers, finite
domains, etc) can be found in [14]. All the results of this paper are valid for any
arbitrary constraint domain D satisfying Definition 1.

3 CFLP(D)-Programs with Definitional Trees

The class of so-called COISS(D)-programs with constraints and definitional
trees used in this work is a proper subclass of the generic CFLP (D)-programs
presented in [14,15]. In this section we discuss COISS(D)-programs and their
intended semantics.

3.1 Overlapping Definitional Trees with Constraints

In the sequel we assume an arbitrarily fixed constraint domain D built over a
set of primitive elements U . In this setting, CFLP (D)-programs are presented
as sets of constrained rewrite rules that define the behavior of possibly higher-
order and/or non-deterministic lazy functions overD, called program rules. More
precisely, a program rule R for f ∈ DFn has the form R : f tn → r ⇐ P � C
(abbreviated as f tn → r if P and C are both empty) and is required to satisfy
the three conditions listed below:

1. The left-hand side f tn is a linear expression, and for all 1 ≤ i ≤ n, ti ∈
Pat(U) are total patterns. The right-hand side r ∈ Exp(U) is also total.

2. P is a finite sequence of so-called productions of the form ei → Ri (1 ≤ i ≤ k),
intended to be interpreted as conjunction of local definitions, and fulfilling
the following two admissibility conditions:
(a) For all 1 ≤ i ≤ k, ei ∈ Exp(U) is a total expression, Ri is a different

variable, and Ri /∈ var(f tn).
(b) It is possible to reorder the productions of P in the form P ≡ e1 →

R1, . . . , ek → Rk where Rj /∈ var(ei) for all 1 ≤ i ≤ j ≤ k (no cycles).
3. C is a finite set of total constraints, also intended to be interpreted as con-

junction, and possibly including occurrences of defined function symbols.

Example 2. The following CFLP (D)-program can be used over the constraint
domain Hseq presented in Example 1. We use the constructors 0 ∈ DC0, s ∈
DC1, and a Prolog-like syntax for list constructors (i.e. [] denotes the empty list

190 R. del Vado Vı́rseda

from X

[X | from (s X)] count []

0 count [X] count [X, Y | Zs]

s 0 aux R N ⇐ count [Y | Zs] → N

�

count [X | Y s]

count Xs

�

� �

aux B N

aux true N aux false N

s N s 0
� �

seq X Y →! R

Tfrom

Tcount

Taux

�

Fig. 1. Constrained definitional trees for from, count and aux

and [X |Xs] denotes a non-empty list consisting of a first element X and a re-
maining list Xs). More examples of CFLP (D)-programs can be found in [14,15].

from X → [X | from (s X)] % increasing infinite list from starting value X

count [] → 0 % counting consecutive and repetitive values from
count [X] → s 0 % the head of a list until finding a different value

count [X, Y |Zs] → aux R N ⇐ count [Y |Zs] → N � seq X Y →! R

aux true N → s N

aux false N → s 0

The class of COISS(D)-programs is defined as the subclass of CFLP (D)-
programs whose defining rules can be organized in a hierarchical structure called
definitional tree [1]. More precisely, we choose to reformulate the notions pre-
sented in [2,3,17] about overlapping definitional trees and conditional overlapping
inductively sequential systems, including now constrained rules over a generic
constraint domain D.

Definition 5 (definitional trees with constraints).
Let P be a CFLP (D)-program over a given constraint domain D. A call pattern
is any linear pattern of the form ftn, where f ∈ DFn and tn ∈ Pat⊥(U). T is
a constrained Definitional Tree over D (cDT (D) for short) with call pattern τ
iff its depth is finite and one of the following cases holds:

– T ≡ rule(τ → r1 ⇐ P1 � C1| . . . |rm ⇐ Pm � Cm), where τ → ri ⇐ Pi � Ci

for all 1 ≤ i ≤ m is a variant of a program rule in P.

– T ≡ case(τ, X, [T1, . . . , Tk]), where X is a variable in τ , h1, . . . ,hk (k > 0)
are pairwise different passive symbols of P, and for all 1 ≤ i ≤ k, Ti is a
cDT (D) with call pattern τσi, where σi = {X �→ hiY mi} with Y mi new
distinct variables such that hiY mi ∈ Pat(U).

We represent a cDT (D) T with call pattern τ using the notation Tτ . A cDT (D)
of a function symbol f ∈ DFn defined by P is a cDT (D) T with call pattern
fXn, where Xn are new variables. We represent it using the notation Tf .

Declarative Constraint Programming with Definitional Trees 191

Definition 6 (COISS(D)-programs).

1. A function symbol f ∈ DFn is called constrained overlapping inductively
sequential w.r.t. a CFLP (D)-program P iff there exists a cDT (D) Tf of
f such that the collection of all the program rules τ → ri ⇐ Pi � Ci (1 ≤
i ≤ m) obtained from the different nodes rule(τ → r1 ⇐ P1 � C1| . . . |rm ⇐
Pm � Cm) occurring in Tf equals, up to variants, the collection of all the
program rules in P whose left hand side has the root symbol f .

2. A CFLP (D)-program P is called a Constrained Overlapping Inductively
Sequential System over D (shortly, COISS(D)) iff each function defined by
P is constrained overlapping inductively sequential.

As a concrete example, we consider the CFLP (Hseq)-program given in Exam-
ple 2. From the definitional trees illustrated by the pictures given in Figure 1, it
is easy to check that this program is a COISS(Hseq). For example, the defined
function symbol count has the following definitional tree Tcount:

case (count Xs, Xs, [

rule (count [] → 0),

case (count [X|Y s], Y s, [

rule (count [X] → s 0),

rule (count [X, Y |Zs] → aux R N ⇐ count [Y |Zs] → N � seq X Y →! R)])])

3.2 The Constraint ReWriting Logic CRWL(D)

The Constraint ReWriting Logic CRWL(D), parameterized by a constraint do-
main D over a set of primitive elements U and formalized by means of a cons-
trained rewriting calculus, was introduced in [14] in order to provide a declarative
semantic for CFLP (D)-programs. Now, in order to use CRWL(D) as a logical
framework for the semantics of COISS(D)-programs, we must first introduce
the two possible kinds of constrained statements (c-statements) that we intend
to derive from a given COISS(D)-program:

– c-productions of the form e → t ⇐ Π , where e ∈ Exp⊥(U), t ∈ Pat⊥(U)
and Π ⊆ PCon⊥(D).

– c-constraints of the form p en →! t ⇐ Π , with p ∈ PFn, en ∈ Exp⊥(U),
t ∈ Pat(U) and Π ⊆ PCon⊥(D).

The purpose of the calculus CRWL(D) is to infer the semantic validity of ar-
bitrary c-statements ϕ from the program rules in P . We write P 'D ϕ to
indicate that the c-statement ϕ can be derived from P in the constrained rewri-
ting calculus CRWL(D) using the set of inference rules given in [14,15]. Useful
properties and correctness results relating CRWL(D)-derivability to a suitable
model-theoretic semantics are also given in [14].

192 R. del Vado Vı́rseda

4 Constrained Lazy Narrowing with Definitional Trees

In this section we present a Constrained Demanded Narrowing Calculus (shortly,
CDNC(D)) over COISS(D)-programs. For our discussion of this new calculus
with definitional trees we are going to combine the ideas and techniques under-
lying the CLNC(D) calculus in [15] (with generic constraints but no definitional
trees) and the DNC calculus in [17] (with definitional trees but no generic cons-
traints). The general idea is to ensure the computation of answers from goals
which are correct with respect to CRWL(D)’s semantics, while using definitional
trees in a similar way to [4] to ensure that all the constrained lazy narrowing
steps performed during the computation are needed ones. We give first a precise
definition for the class of admissible goals and answers that we are going to use.

4.1 Admissible Goals and Answers

A goal for a COISS(D)-program must have the form G ≡ ∃U.P � C � S �σ,
where the symbol � must be interpreted as conjunction, and:

– U =def evar(G) is the set of so-called existential variables of the goal G.
These are intermediate variables, whose bindings may be partial patterns.

– P ≡ e1 → R1, . . . , en → Rn is a finite conjunction of productions where
each Ri is a distinct variable and ei is an expression or a pair of the form
< τ, T >, where τ is an instance of the pattern in the root of a cDT (D) T .
Those productions e → R whose left hand side e is simply an expression are
called suspensions, while those whose left hand side is of the form < τ, T >
are called demanded productions. The set of produced variables of G is defined
as pvar(P) =def {R1, . . . , Rn} and we define the production relation X 1P

Y iff there is some 1 ≤ i ≤ n such that X ∈ var(ei) and Y ≡ Ri.
– C ≡ δ1, . . . , δk is a finite conjunction of total constraints (possibly including

occurrences of defined function symbols).
– S ≡ π1, . . . , πl is a finite conjunction of total primitive constraints, called

constraint store.
– σ is an idempotent substitution called answer substitution such that dom(σ)
∩ var(P � C � S) = ∅.

Additionally, any admissible goal must satisfy the same admissibility conditions
given in [15] about produced variables plus a new admissibility condition for
definitional trees:

DT For each demanded production < τ, T > → R in P , the variable R is
demanded (i.e. R ∈ dvarD(G) in the sense of Definition 7), and the variables in
T not occur in other place of the goal.

Similarly to [17,15], CDNC(D) uses a notion of demanded variable to deal
with lazy evaluation, but now in this work w.r.t. a constraint store, higher-order
and definitional trees.

Definition 7. Let G ≡ ∃U. P � C � S �σ be an admissible goal for a given
COISS(D)-program and X ∈ var(G). We say that X is a demanded variable
in G iff one of the following cases holds:

Declarative Constraint Programming with Definitional Trees 193

– X ∈ dvarD(S) (see item 1 in Definition 4).
– there exists some suspension (Xak → R) ∈ P such that k > 0 and R is a

demanded variable in G.
– there exists some demanded production (< e, case (τ, Y, [T1, . . . , Tk]) > →

R) ∈ P such that X = e|pos(Y,τ) and R is a demanded variable in G.

We write dvarD(G) (or more precisely dvarD(P � S)) for the set of demanded
variables in the goal G.

An admissible goal G ≡ ∃U. P � C � S �σ is called a solved goal iff P and C
are empty and S is in ∅-solved form in the sense of item 2.(a) in Definition 4.
An initial goal can be any admissible goal.

Definition 8. An answer for an admissible goal G ≡ ∃U. P � C � S �σ and a
given COISS(D)-program P, must have the form Π � θ, where Π ⊆ PCon(D) is
a finite conjunction of total primitive constraints, θ ∈ Sub⊥(U) is an idempotent
substitution such that dom(θ) ∩ var(Π) = ∅, and there is some substitution
θ′ =\evar(G) θ fulfilling the following three conditions:

– P 'D (P � C)θ′ ⇐ Π in CRWL(D) (for demanded productions (< τ, T >
→ R) ∈ P , we consider just P 'D τθ′ → θ′(R) ⇐ Π, because definitional
trees are only used to control the computation),

– Π |=D Sθ′ (i.e., SolD(Π) ⊆ SolD(Sθ′) according to item 3 in Definition 3),
– Xθ′ ≡ tθ′ for each binding X �→ t ∈ σ, abbreviated as θ′ ∈ Sol(σ).

We write AnsP(G) for the set of all answers for G. An answer Π � θ ∈ AnsP(G)
is called trivial iff UnsatD(Π) and non-trivial otherwise. Moreover, we can relate
goals and answers by extending the notion of solution introduced in Definition 3.

Definition 9. Let G ≡ ∃U. P � C � S �σ be an admissible goal for a given
COISS(D)-program P. We say that a valuation μ ∈ V al⊥(D) is a solution of G
iff (∅�μ) ∈ AnsP(G). We write SolP(G) for the set of all solutions for G. Ana-
logously, we define the set of solutions for an answer Π � θ as SolD(Π � θ) =def

{μ ∈ V al⊥(D) | μ ∈ SolD(Π) ∩ Sol(θ)}.

The next new result is useful to prove the main properties about CDNC(D)
and shows that CRWL(D)’s semantics does not accept an undefined value for
demanded variables, identifying demanded and needed computation steps in
derivations.

Lemma 1 (Demand Lemma).
If Π � θ is a non-trivial answer of an admissible goal G for a COISS(D)-program
and X ∈ dvarD(G) then θ′(X) �= ⊥ for all θ′ =\evar(G) θ given by Definition 8.

Proof. Let Π � θ ∈ AnsP(G) non-trivial (i.e., SolD(Π) �= ∅). By Definition 8,
there exits Π � θ′ ∈ AnsP(G) such that θ =\evar(G) θ′. We prove that θ′(X) �= ⊥
reasoning by induction on the order 1+

P (the transitive closure of the production
relation (see [15] for details) is well-founded due to the property of non-cycles
between produced variables in admissible goals). We consider three cases for
X ∈ dvarD(G) according to Definition 7:

194 R. del Vado Vı́rseda

– X ∈ dvarD(S):
We suppose that θ′(X) = ⊥ and let μ ∈ SolD(Π). By Definition 8, Π |=D
Sθ′, and then θ′μ ∈ SolD(S) and μ(θ′(X)) = μ(⊥) = ⊥. However, since X ∈
dvarD(S) and according to item 1 in Definition 4, it follows that μ(θ′(X)) �=
⊥. Therefore, θ′(X) �= ⊥.

– (Xak → R) ∈ P with k > 0 and R ∈ dvarD(G):
Since X 1+

P R and R ∈ dvarD(G), by induction hypothesis θ′(R) �= ⊥. By
Definition 8, P 'D θ′(X)akθ′ → θ′(R) ⇐ Π . However, since k > 0, it is only
possible in CRWL(D) if θ′(X) �= ⊥.

– X = e|pos(Y,τ), (< e, case(τ, Y, [T1, . . . , Tk]) > → R) ∈ P and R ∈ dvarD(G):
In this case, e = fen with f ∈ DFn. Since X = e|pos(Y,τ), it follows that
X 1+

P R. Moreover, since R ∈ dvarD(G), by induction hypothesis θ′(R) �=
⊥. By Definition 8 and the rule DFP of the CRWL(D) calculus [14], P 'D
f enθ′ → θ′(R) ⇐ Π using (ft′n → r ⇐ P � C) ∈ [P]⊥ and deductions
P 'D eiθ

′ → t′i ⇐ Π for all 1 ≤ i ≤ n. On the other hand, pos(Y, τ) = i · p
with 1 ≤ i ≤ n and p ∈ Pos(ei) because τ + e. Due to the form of the
definitional tree case (see Definition 5), t′i has a passive symbol hj (1 ≤ j ≤
k) in the position p. Moreover, there must be only passive symbols above hj

in t′i. Hence, t′i �= ⊥. Moreover, since τ + e with X = ei|p, there must be the
same passive symbols and in the same order above θ′(X) in the position p
of eiθ

′. It follows that P 'D eiθ
′ → t′i ⇐ Π applies the CRWL(D)-rule of

decomposition DC in the CRWL(D) calculus [14] to yield P 'D θ′(X) →
hj . . . ⇐ Π . We conclude that θ′(X) �= ⊥. �

4.2 The CDNC(D) Calculus

The calculus CDNC(D) consists of a set of transformation rules for admissible
goals. Each transformation takes the form G '' G′, specifying one of the possi-
ble ways of performing one step of goal solving. We write G ''R G′ to indicate
that G '' G′ by means of the CDNC(D) transformation rule R. Derivations
are sequences of ''-steps. As in the case of constrained SLD derivations for
CLP (D) programs [10], successful derivations will eventually end with a solved
goal. Failing derivations (ending with an obviously inconsistent goal) and infi-
nite derivations are also possible. Similarly to [15,17], all the goal transformation
rules are applied by viewing P and C as sets, rather than sequences.

– The goal transformation rules concerning suspensions e → R (see Figure
2) are designed with the aim of modelling the behavior of constrained lazy
narrowing with sharing as in the CLNC(D) calculus [15], involving primitive
functions, possibly higher-order defined functions and functional variables.

– The goal transformation rules for demanded productions < e, T > → R (see
Figure 3) encode the needed narrowing strategy guided by the tree T , in
a vein similar to [9,17]: if T is a rule tree, then the transformation RRA
chooses one of the available rules for rewriting e, introducing appropriate
suspensions and constraints in the new goal so that lazy evaluation is en-
sured. If T is a case tree, one of the transformations CSS, DI or DN can be

Declarative Constraint Programming with Definitional Trees 195

SS Simple Suspension ∃X, U. t → X, P � C � S � σ ��SS

∃U. (P � C � S)σ0 � σ if t ∈ Pat(U) and σ0 = {X �→ t}.
IM Imitation ∃X, U. hem → X, P � C � S � σ ��IM

∃Xm, U. (em → Xm, P � C � S)σ0 � σ

if hem /∈ Pat(U) is passive, X ∈ dvarD(P � S) and σ0 = {X �→ hXm} with

Xm new variables such that hXm ∈ Pat(U).

EL Elimination ∃X,U. e → X, P � C � S � σ ��EL

∃U. P � C � S � σ if X /∈ var(P � C � S � σ).

PF Primitive Function ∃X, U. pen → X, P � C � S � σ ��PF

∃Xq , X, U. eq → Xq , P � C � ptn →! X, S � σ

if p ∈ PF n, X ∈ dvarD(P � S), and Xq are new variables (0 ≤ q ≤ n is the
number of ei /∈ Pat(U)) such that ti ≡ Xj (0 ≤ j ≤ q) if ei /∈ Pat⊥(U) and
ti ≡ ei otherwise for each 1 ≤ i ≤ n.

DT Definitional Tree ∃X, U. fen → X, P � C � S � σ ��DT1

∃X, U. < fen, TfXn
>→ X, P � C � S � σ

∃X, U. fenak → X, P � C � S � σ ��DT2

∃X, X ′, U. < fen, TfXn
>→ X ′, X ′ak → X, P � C � S � σ

if f ∈ DF n(k > 0), X ∈ dvarD(P � S), and both X ′ and all variables in TfXn

are new variables.

FV Functional Variable ∃X,U. F eq → X, P � C � S � σ ��FV

∃Xp, X, U. (hXpeq → X, P � C � S)σ0 � σσ0

if F /∈ pvar(P), q > 0, X ∈ dvarD(P � S), σ0 = {F �→ hXp} and Xp are new

variables such that hXp ∈ Pat(U).

Fig. 2. CDNC(D)-rules for suspensions

applied, according to the kind of symbol occurring in e at the case-distinction
position. Otherwise, we fail using CC or the computation must be delayed.

– The goal transformation rules concerning constraints (see Figure 4) are de-
signed to combine (primitive or user defined) constraints with the action of
a constraint solver that fulfill the requirements given in Definition 4. Failure
rule SF is used for failure detection in constraint solving.

The following simple example of goal solving is intended to illustrate the
main properties of the CDNC(D) calculus. At each goal transformation step,
we underline which subgoal is selected.

Example 3. We compute all the answers from the user defined constraint N /=
s (count (from M)) using the COISS(Hseq)-program given in Example 2 and
the definitional trees given in Figure 1. This example illustrates the use of pro-
ductions to achieve the effect of a demand-driven evaluation with infinite lists and
the use of definitional trees for ensuring the efficient choice of demanded redexes.

� N /= s (count (from M)) � � ε ��AC (non-primitive constraint)

∃L. s (count (from M)) → L � � N /= L � ��IM{L �→ s K} (L is necessary and demanded)
∃K. count (from M) → K � � N /= s K � ��CS{K} (K is necessary but not demanded)

196 R. del Vado Vı́rseda

CSS Case Selection
∃R,U. < e, case(τ, X, [T1, . . . , Tk]) >→ R, P � C � S � σ ��CSS

∃R,U. < e,Ti >→ R, P � C � S � σ
if e|pos(X,τ) = hi . . ., with 1 ≤ i ≤ k given by e, where hi is the passive
symbol associated to Ti.

DI Demand Instantiation
∃R,U. < e, case(τ, X, [T1, . . . , Tk]) >→ R, P � C � S � σ ��DI

∃Y mi , R,U. (< e, Ti >→ R, P � C � S)σ0 � σσ0

if e|pos(X,τ) = Y , Y /∈ pvar(P), σ0 = {Y �→ hiY mi} with hi (1 ≤ i ≤ k)

the passive symbol associated to Ti and Y mi are new variables.

DN Demand Narrowing
∃R, U. < e, case(τ, X, [T1, . . . , Tk]) >→ R, P � C � S � σ ��DN

∃R′, R, U. e|pos(X,τ) → R′,
< e[R′]pos(X,τ), case(τ, X, [T1, . . . , Tk]) >→ R, P � C � S � σ

if e|pos(X,τ) = g . . . with g ∈ FS active (primitive or defined function symbol)
and R′ new variable.

RRA Rewrite Rule Application
∃R, U. < e, rule(τ → r1 ⇐ P1 � C1| . . . |rk ⇐ Pk � Ck) >→ R, P � C �

S � σ ��RRA

∃X, R, U. σf (R1) → R1, . . . , σf (Rm) → Rm, riσc → R,Piσc, P � Ciσc,
C � S � σ

• σ0 = σc � σf with dom(σ0) = var(τ) and τσ0 = e.
• σc =def σ �domc(σ0), where domc(σ0) = {X ∈ dom(σ0) | σ0(X) ∈ Pat(U)}.
• σf =def σ �domf (σ0), where domf (σ0) = {X ∈ dom(σ0) | σ0(X) /∈ Pat(U)}

= {R1, . . . , Rm}.
• X ≡ var(τ → ri ⇐ Pi � Ci)\domc(σ0).

CC Case non-Cover
∃R, U. < e, case(τ, X, [T1, . . . , Tk]) >→ R, P � C � S � σ ��CC 	
if e|pos(X,τ) = h . . . is a passive symbol and h /∈ {h1, . . . , hk}, where hi is the
passive symbol associated to Ti (1 ≤ i ≤ k).

Fig. 3. CDNC(D)-rules for demanded productions and failure detection

At this point, a constraint solver over Hseq (see for example [15]) gives two possi-
ble alternatives: SolveHseq ({N /= s K}, {K})=(� {N �→ 0})∨ ({N ′ /= K}� {N �→ s N ′}),
and there are two possible continuations of the computation, where the use of
definitional trees Tfrom, Tcount and Taux in demanded productions guides and
avoids don’t know choices of program rules and failure computations w.r.t. the
previous calculus CLNC(D) [15]:

∃K. count (from M) → K � � � {N �→ 0} ��EL (K is now unnecessary!)

� � � {N �→ 0} computed answer: S1 �σ1 ≡ � {N �→ 0}

Declarative Constraint Programming with Definitional Trees 197

CS Constraint Solving ∃U. P � C � S � σ ��CS{χ}
∃Y i, U. (P � C)σi � Si � σσi

if χ = pvar(P), S is not χ-solved, SolveD(S, χ) =
∨k

i=1(Si � σi), and Y i are
the new variables introduced by the solver in Si � σi, for each 1 ≤ i ≤ k.

AC Atomic Constraint ∃U. P � pen →! t,C � S � σ ��AC

∃Xq, U. eq → Xq , P � C � ptn →! t, S � σ

if p ∈ PF n, pen →! t is a constraint, Xq are new variables (0 ≤ q ≤ n is the
number of ei /∈ Pat⊥(U)) such that ti ≡ Xj (0 ≤ j ≤ q) if ei /∈ Pat⊥(U) and
ti ≡ ei otherwise for each 1 ≤ i ≤ n.

SF Solving Failure ∃U. P � C � S � σ ��SF{χ} 	
if χ = pvar(P), S is not χ-solved, and SolveD(S, χ) = �.

Fig. 4. CLNC(D)-rules for constraint solving and failure detection

∃K, N ′. count (from M) → K � � N ′ /= K � {N �→ s N ′} ��DT (K is now demanded!)

∃K, N ′. < count (from M), Tcount >→ K � � N ′ /= K � {N �→ s N ′} ��DN

∃K′, K, N ′. from M → K′, < count K′, Tcount >→ K � � N ′ /= K � {N �→ s N ′} ��DT

∃K′, K, N ′. < from M, Tfrom >→ K′, < count K′,Tcount >→ K � � (K′ is demanded)

N ′ /= K � {N �→ s N ′} ��RRA (’from’ rule application)

∃K′, K, N ′. [M|from (s M)] → K′, < count K′, Tcount >→ K � �

N ′ /= K � {N �→ s N ′} ��3
IM{K′ �→ [A|As]}, SS{A �→ M}, CSS

∃As, K, N ′. from (s M) → As, < count [M|As], Tcount [·|·] >→ K � �

N ′/= K � {N �→ s N ′} ��DT (As is demanded by the definitional tree)

∃As, K, N ′. < from (s M), Tfrom >→ As, < count [M|As], Tcount [·|·] >→ K � �

N ′/= K � {N �→ s N ′} ��RRA (’from’ rule application)

∃As, K, N ′. [s M|from (s (s M))] → As, < count [M|As], Tcount [·|·] >→ K � �

N ′ /= K � {N �→ s N ′} ��3
IM{As �→ [B|Bs]}, SS{B �→ s M}, CSS

∃Bs, K, N ′. from (s (s M)) → Bs, < count [M, s M|Bs], Tcount [·,·|·] >→ K � �

N ′/= K � {N �→ s N ′} ��RRA (’count’ rule application)

∃R, N ′′, Bs, K, N ′. from (s (s M)) → Bs, aux R N ′′ → K, count [s M|Bs] → N ′′ �

seq M (s M) →! R� N ′/= K � {N �→ s N ′} ��DT (Bs, N ′′ are not demanded)

∃R, N ′′, Bs, K, N ′.from (s (s M)) → Bs, < aux R N ′′,Taux >→ K, count [s M|Bs] → N ′′ �

seq M (s M) →! R � N ′ /= K � {N �→ s N ′} ��DI{R �→ false}
∃N ′′, Bs, K, N ′. from (s (s M)) → Bs, < aux false N ′′, Taux,false >→ K,

count [s M|Bs] → N ′′ � M/= s M � N ′/= K � {N �→ s N ′} ��2
RRA,SS{K �→ s 0}

∃N ′′, Bs, N ′. from (s (s M)) → Bs, count [s M|Bs] → N ′′ � M /= s M �

N ′ /= s 0 � {N �→ s N ′} ��2
EL (N ′′ is unnecessary and then Bs is unnecessary!)

∃N ′. �M/= s M � N ′/= s 0� {N �→ s N ′} ��2
AC,CS{} (we have again two possibilities)

∃N ′. � � N ′ /= s 0 � {M �→ 0, N �→ s N ′}
computed answer: S2 � σ2 ≡ N ′ /= s 0 � {M �→ 0, N �→ s N ′}
∃M ′, N ′. � � M ′ /= M, N ′ /= s 0 � {M �→ s M ′, N �→ s N ′}
computed answer: S3 � σ3 ≡ M ′ /= M, N ′ /= s 0 � {M �→ s M ′, N �→ s N ′}

198 R. del Vado Vı́rseda

4.3 Properties of the CDNC(D) Calculus

In this last subsection, the relationship between the logic CRWL(D) and our
goal solving mechanism CDNC(D) is established in the main results of the
paper, namely soundness and completeness of the CDNC(D) calculus w.r.t.
CFLP (D)’s semantics. To prove both properties we use techniques similar to
those used for the CLNC(D) calculus presented in [15]. The following soundness
result ensures that computed answers for a goal G are indeed correct answers.
Theorem 1 (Soundness of CDNC(D)).
If G0 is an initial goal and G0 ''∗

CDNC(D) Gn,where Gn ≡ ∃U. � � S �σ is a
solved goal, then S �σ ∈ AnsP(G0).

Completeness of CDNC(D) is based on the following idea: whenever Π � θ ∈
AnsP(G) and G is not yet solved, there are finitely many local choices for a first
computation step G '' Gj (1 ≤ j ≤ l) so that the new goals Gj are ”closer to
be solved” and ”cover all the solutions of Π � θ”. The following completeness
result reveals that CDNC(D) is strongly complete, i.e. the local choice of the
goal transformation rule applied at each step can be a don’t care choice.

Theorem 2 (Completeness of CDNC(D)).
Let G0 an initial admissible goal and Π0 � θ0 ∈ AnsP(G0) non-trivial. Then
there exist a finite number of derivations ending in solved goals G0 ''∗

CDNC(D) Gi

(1 ≤ i ≤ k) such that SolD(Π0 � θ0) ⊆
⋃k

i=1 SolP(Gi).

Finally, from the viewpoint of efficiency, and according to our Demand Lemma,
definitional trees in demanded productions are used for ensuring only needed na-
rrowing steps in the line of [4,2,17]. Then, computations in CDNC(D) are in
essence needed narrowing derivations modulo non-deterministic choices between
overlapping and constrained program rules. Therefore, our efficient mechanism
maintains the optimality properties shown in [4,2,17] guiding (and avoiding)
don’t know choices of constrained program rules by means of definitional trees.

5 Conclusions

We have presented an effective computational model for the integration of cons-
traint logic and functional logic programming by means of a new Constrained
Demanded Narrowing Calculus CDNC(D) parameterized by a constraint do-
main D and using definitional trees to guide the choice of demanded redexes.
We have proved soundness and completeness of the new narrowing calculus, and
we have argued that the use of definitional trees leads to efficiency improvements
w.r.t. our previous calculus CLNC(D) [15]. These properties renders CDNC(D)
adequate as a concrete specification for the implementation of the computational
behavior in existing CFLP (D) systems such as Curry [8] and T OY [13,6].

In the near future, we plan to investigate both improvements and applications
of the CFLP (D) scheme. Since CFLP (D) assumes only free data constructors,
planned improvements include enriching the scheme with algebraic data cons-
tructors. Planned applications will focus on practical instances of the CFLP (D)

Declarative Constraint Programming with Definitional Trees 199

scheme, supporting arithmetic constraints over the real numbers and finite do-
main (FD) constraints. In particular, we plan to investigate practical constraint
solving methods and applications of our resulting language in T OY(FD) [6].

Last but not least, we are working on declarative debugging techniques for
CFLP (D)-programs, following previous work for functional logic programs [5].

References

1. S. Antoy. Definitional trees. In Proc. Int. Conf. on Algebraic and Logic Program-
ming (ALP’92), volume 632 of Springer LNCS, pp. 143–157, 1992.

2. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. of
ALP’97, pages 16-30. Springer LNCS 1298, 1997.

3. S. Antoy. Constructor-based conditional narrowing. In Proc. PPDP’01, ACM Press,
pp. 199-206, 2001.

4. S. Antoy, R. Echahed, M. Hanus. A needed narrowing strategy. Journal of the
ACM, 47(4): 776-822, 2000.

5. R. Caballero, M. Rodŕıguez-Artalejo. DDT : A Declarative Debugging Tool for
Functional Logic Languages. In Proc. of the 7th International Symposium on
FLOPS’04, volume 2998 of Springer LNCS, pp. 70–84, 2004.

6. A. J. Fernández, M. T. Hortalá-González and F. Sáenz Pérez. T OY(FD). User’s
Manual, October 27, 2003. System available at http://www.lcc.uma.es/∼afdez/cflpfd/.

7. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming 19&20, pp. 583–628, 1994.

8. M. Hanus (ed.), Curry: an Integrated Functional Logic Language, Version 0.8, April
15, 2003. http://www-i2.informatik.uni-kiel.de/∼curry/.

9. M. Hanus, C. Prehofer. Higher-Order Narrowing with Definitional Trees. Journal
of Functional Programming, 9(1):33-75, 1999.

10. J. Jaffar, M.J. Maher, K. Marriott and P.J. Stuckey. The Semantics of Constraint
Logic Programs. Journal of Logic Programming, 37 (1-3) pp. 1–46, 1998.

11. R. Loogen, F.J. López-Fraguas, M. Rodŕıguez-Artalejo. A demand driven compu-
tation strategy for lazy narrowing. In Proc. Int. Symp. on PLILP’93, volume 714
of Springer LNCS pp. 184–200, 1993.

12. F.J. López-Fraguas. A General Scheme for Constraint Functional Logic Program-
ming. In Proc. Int. Conf. on ALP’92, Springer LNCS 632, pp. 213–227, 1992.

13. F.J. López-Fraguas, J. Sánchez-Hernández. T OY : A Multiparadigm Declarative
System. Proc. RTA’99, Springer LNCS 1631, pp 244–247, 1999. System available
at http://toy.sourceforge.net.

14. F.J. López-Fraguas, M. Rodŕıguez-Artalejo and R. del Vado-Vı́rseda. Constraint
Functional Logic Programming Revisited. In International Workshop on Rewriting
Logic and its Applications WRLA’04, Elsevier ENTCS series, vol. 117, pp. 5–50,
2005.

15. F.J. López-Fraguas, M. Rodŕıguez-Artalejo and R. del Vado-Vı́rseda. A lazy na-
rrowing calculus for declarative constraint programming. In Prof of the 6th Inter-
national Conference on PPDP’04, ACM Press, pp. 43–54, 2004.

16. M. Marin, T. Ida and T. Suzuki. Cooperative Constraint Functional Logic Pro-
gramming. In Int. Symposium on IPSE’2000, pp. 223–230, November 1–2, 2000.

17. R. del Vado Vı́rseda. A Demand-driven Narrowing Calculus with Overlapping De-
finitional Trees. 5th Int. Conference on PPDP’03, ACM Press, pp. 213–227, 2003.

Logical Analysis of Hash Functions

Dejan Jovanović1 and Predrag Janičić2

1 Mathematical Institute,
Kneza Mihaila 35, 11000 Belgrade, Serbia and Montenegro

dejan@mi.sanu.ac.yu
2 Faculty of Mathematics,

Studentski trg 16, 11000 Belgrade, Serbia and Montenegro
janicic@matf.bg.ac.yu

Abstract. In this paper we report on a novel approach for uniform en-
coding of hash functions (but also other cryptographic functions) into
propositional logic formulae, and reducing cryptanalysis problems to the
satisfiability problem. The approach is general, elegant, and does not
require any human expertise on the construction of a specific crypto-
graphic function. By using this approach, we developed a technique for
generating hard and satisfiable propositional formulae and hard and un-
satisfiable propositional formulae. In addition, one can finely tune the
hardness of generated formulae. This can be very important for different
applications, including testing (complete or incomplete) sat solvers. The
uniform logical analysis of cryptographic functions can be used for com-
parison between different functions and can expose weaknesses of some
of them (as shown for md4 in comparison with md5).

1 Introduction

Hash functions have wide and important role in cryptography. They produce
hash values, which concisely represent longer messages or documents from which
they were computed. Examples of hash functions are md4, md5, and sha. The
main role of cryptographic hash functions is in the provision of message integrity
checks and digital signatures.

The subject of research presented in this paper is analysis of hash functions
in terms of propositional reasoning.1 We will try to shed a new light on hash
functions and to address several important issues concerning hash functions and
sat problem. First question considered is whether the problem of inverting a
hash function can be reduced to a sat problem; if yes, how it can be done
effectively. Section 4.1 gives one methodology for this.

Another question of interest is: can hash functions be used for generating
hard instances of sat problem? The need for hard instances of sat problem is
well-explained in [1]:

1 The work presented in this paper is, in a sense, parallel to [12], as it investigates hash
functions in a similar manner the work reported in [12] investigates des algorithm.

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 200–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Logical Analysis of Hash Functions 201

“A major difficulty in evaluating incomplete local search style algo-
rithms for constraint satisfaction problems is the need for a source of
hard problem instances that are guaranteed to be satisfiable. A stan-
dard approach to evaluate incomplete search methods has been to use
a general problem generator and a complete search method to filter out
the unsatisfiable instances. Unfortunately, this approach cannot be used
to create problem instances that are beyond the reach of complete search
methods. So far, it has proven to be surprisingly difficult to develop a
direct generator for satisfiable instances only.“

In [1], it is claimed that cryptographic algorithms cannot be used for gen-
erating interesting hard sat instances, as the problems are too hard (require
exhaustive search) and cannot be fine-grained. In this paper, we question these
claims and show how hash functions can be used for generating satisfiable sat
instances of finely tuned hardness. We will also consider generating unsatisfiable
sat instances. Namely, while satisfiable instances are required for testing com-
pleteness, unsatisfiable instances are required for testing soundness2 of complete
sat solvers.

Why it is difficult to randomly generate hard satisfiable instances of sat
problem is also discussed in [8]. A survey [4] points that generating hard solved
instances of sat problem is equivalent to computing an one-way function, which
in turn is equivalent to generating pseudo-random numbers and private-key cryp-
tography. The work [4] also discusses how a fixed-length one-way function can
be used to generate hard solved instances of 3sat. We are not aware that this
proposal has been used in practice and it seems that it would be very difficult to
apply it to real-world hash functions. We believe that the approach we present
in this paper is more elegant and applicable to state-of-the-art hash functions,
provided their implementations. In addition, our approach can be used for pro-
ducing both satisfiable sat instances of finely tuned hardness and unsatisfiable
sat instances of finely tuned hardness.

It is interesting whether logical analysis could expose weaknesses of some
hash functions. Finding such a weakness often relies on a human expertise and
is most often specific for a certain sort of problems. Therefore, it would be good
if a (uniform) logical analysis could provide a deeper understanding of nature
of hash functions and expose their potential weaknesses. Experimental results,
given in §6, based on uniform logical analysis, show that md4 function is much
weaker than md5 (as expected).

Another very interesting question is whether such sat formulae are the hard-
est sat formulae (within the class of formulae with the same number of vari-
ables). We will briefly comment on this question and possible ways for investi-
gating it within our plans for future work.

2 Since SAT solvers are becoming a standard tool in many critical industrial applica-
tions, testing the solver for soundness is of uttermost importance.

202 D. Jovanović and P. Janičić

2 Background

Hash Functions. A hash function hash is a transformation that takes an
input sequence of bits m (the message) and returns a fixed-size string, which is
called the hash value (also the message digest, the digital fingerprint). The basic
requirement for a cryptographic hash function is that the hash value does not
reveal any information about the message itself, and moreover that it is hard
to find other messages that produce the same hash value. If only a single bit of
the message is changed, it is expected that the new hash value is dramatically
different from the original one. A hash function is required to have the following
features:

Preimage resistant. A hash function hash is said to be preimage resistant if it
is hard to invert, where “hard to invert” means that given a hash value h,
it is computationally infeasible to find some input x such that hash(x) = h.

Second preimage resistant. If, given a message x, it is computationally infeasible
to find a message y different from x such that hash(x) = hash(y), then hash
is said to be second preimage resistant.

Collision-resistant. A hash function hash is said to be collision-resistant if it is
computationally infeasible to find two distinct messages x and y such that
hash(x) = hash(y).

A hash function must be able to produce a fixed-length output for an
arbitrary-length message. This is usually achieved by breaking the input into
series of equal-sized blocks, and then operating on these blocks in a sequence of
steps, using compression functions. Often, the last block processed also contains
the message length, which improves the properties of the hash. This construc-
tion is known as the Merkle-Demag̊ard structure [5,13], and the majority of hash
functions in use are of this form, including md4, md5 and the sha family.

md4 and md5 are message-digest algorithms developed by Ron Rivest [16,17].
These two algorithms take a message of arbitrary length and produce a 128-bit
message digest. Attacks on versions of md4 with either the first or the last rounds
missing were developed very quickly. Also, it was shown how collisions for the full
version of md4 can be found in under a minute on a typical PC. md5 algorithm
is basically an improved version of md4. The algorithm consists of four distinct
rounds, which have a slightly different design from that of md4. Collisions for the
full md5 were announced in 2004 [19], and the attack was reported to take only
one hour on an ibm P690 cluster. This year it was demonstrated that using the
methodology of previous attacks it is possible to construct two X.509 certificates
with different public keys and the same md5 hash value [11]. However, this
still does not mean that the properties preimage resistant and second preimage
resistant for md5 are completely compromised.

sat Problem. Boolean satisfiability problem (sat) is the problem of deciding
if there is a truth assignment under which a given propositional formula (in con-
junctive normal form) evaluates to true. It was shown by Cook [3] that sat is
np-complete. This was the first problem shown to be np-complete, and it still

Logical Analysis of Hash Functions 203

holds a central position in the study of computational complexity as the canon-
ical np-complete problem. The importance of the sat problem is also grounded
in practical applications, since many real-world problems (or their components)
in areas such as AI planning, circuit satisfiability and software verification can
be efficiently reformulated as instances of sat. Therefore, good sat solvers are
of great importance and significant research effort has been devoted to finding
efficient sat algorithms.

Due to a general belief that a polynomial time algorithm for sat is not likely
to be found3 (i.e., it is generally believed that p �= np), the only way to evaluate
a solver is by its performance on the average, in the worst case, or on a class of
sat instances one is interested in. Also, sat instances on which the algorithms
perform poorly, characterize the weaknesses of these algorithms and can direct
further research on improving them.

Experiments suggest that there is a phase transition in sat problems between
satisfiability and unsatisfiability as the ratio of the number of clauses and the
number of variables is increased [14]. It is conjectured that, for different types of
problem sets, there is a value c0 of L/N , which is called a phase transition point
such that:

lim
N→∞

s(N, [cN]) =
{

1, for c < c0
0, for c > c0

,

where s(N, L) is a satisfiability function that maps sets of propositional formu-
lae (of L clauses over N variables) into the segment [0, 1] and corresponds to
a percentage of satisfiable formulae. Experimental results also suggest that in
all sat problems there is a typical easy-hard-easy pattern as the ratio L/N is
increased, while the most difficult sat formulae for all decision procedures are
those in the crossover region.

zChaff sat Solver. Majority of the state-of-the-art complete sat solvers are
based on the branch and backtracking algorithm called Davis-Logemann-Love-
land algorithm (dll) [6]. Some of the algorithms also use heuristic local search
techniques, but this makes them incomplete (they don’t guarantee to find a sat-
isfying assignment if one exists). In addition to dll, these complete algorithms
use a pruning technique called learning. Learning extracts and memorises infor-
mation from the previously searched space to prune the search in the future.
Also, in order to improve the efficiency of the system, techniques as preprocess-
ing, sophisticated branching heuristics, data structures, and random restarts are
used (for a survey, see e.g. [20]). There are many sat packages available, both
proprietary and public domain. It is considered that one of the best complete sat
solvers nowadays is the zChaff solver [15]. Besides its smart pruning techniques,
zChaff is highly optimised, and achieves remarkably good results in practice. For
that reason we chose it as the main sat solver for our experiments.

3 Clay Institute for Mathematical Sciences is offering a one million dollar prize for
a complete polynomial-time sat solver or a proof that such an algorithm does not
exist (the p vs np problem).

204 D. Jovanović and P. Janičić

3 Transforming Cryptanalysis of Hash Functions into sat
Problem

Let hash be a hash function generating a hash value of a fixed length N . We
assume that hash is a hash function with a good distribution of output values.
This means that for every (or almost every) N -bit sequence h, there is an N -bit
message m having h as the hash value, i.e. hash(m) = h). In other words, we
assume that the hash function is a good approximation of a permutation on N -
bit strings. This holds for hash functions md4 and md5, and is important for our
investigation. Since the problem of inverting a hash value is highly intractable,
in order to scale down the problem hardness we also consider input sequences
of length less than N . Let p1p2 . . . pM denote the bits of an input message (of
length M , M ≤ N). The hash function takes this input sequence and transforms
it into a sequence of of bits h1h2 . . . hN . For hash functions we are interested in,
this transformation is computable and, moreover, expressible in propositional
logic, i.e., the resulting hash bits hi can theoretically be expressed as formulae
with p1, p2, . . . , pM as variables. These formulae are very complex as they reflect
the inherent complexity of the hash function, but obtaining them effectively is
still possible (one method for doing it is described in §4). Let us denote the
formula that corresponds to the computation of the bit hi of the hash value as
Hi(p1, p2, . . . , pM).

Preimage Resistance. When analysing preimage resistance of a hash function,
the goal is, given a sequence h1h2 . . . hN (the hash value) and the length of the in-
put message M to determine values p1, p2, . . . , pM that generate this hash value.
In other words, we are searching for a valuation v such that Iv(Hi(p1, p2, . . . ,
pM)) = hi (i = 1, 2, . . . , N), where Iv is the interpretation induced by v. Thus,
the valuation v must fulfill

Iv(Hi(p1, p2, . . . , pM)) =
{

1 if hi = 1
0 if hi = 0 .

Further, let Hi be defined as

Hi(p1, p2, . . . , pM) =
{
Hi(p1, p2, . . . , pM) if hi = 1
¬(Hi(p1, p2, . . . , pM)) if hi = 0 .

Obviously, formula Hi is true under valuation v if and only if the hash func-
tion hash transforms the message corresponding to v into a hash with the i-th
bit equal to hi. The formula H is defined as follows:

H(p1, p2, . . . , pM) =
∧

j=1,2,...,N

Hj(p1, p2, . . . , pM) .

In order to invert the sequence h1, . . . ,hN , we have to determine a valuation
that satisfies the formula H(p1, p2, . . . , pM). Practically, finding such a valuation
is of the same difficulty as to determining whetherH(p1, p2, . . . , pM) is satisfiable.

Logical Analysis of Hash Functions 205

Hence, we have reduced finding the preimage of a hash function to sat problem.
This reduces the problem of finding the preimage of a hash function to SAT.

Assuming that the hash function is preimage resistant, it is very likely that
the formula H(p1, p2, . . . , pM) (for large M) is hard to test for satisfiability (oth-
erwise, we would have an effective mechanism for computing the preimage, con-
tradicting the generally accepted assumption of preimage resistance for functions
such as md5). This gives us a method for generating hard and satisfiable sat
instances:

1. select a random sequence m of length M ;
2. compute the hash value h1h2 . . . hN of m;
3. using the above construction, generate the propositional formula H.

Having that valuation induced by m satisfies H by the construction, it is
guaranteed that H is satisfiable. In addition, it is sound to assume that H is
hard to test for satisfiability. So, this way we can generate hard and satisfiable
sat instances for different values of M . Obviously, the bigger M , the harder
instance generated.

Second Preimage Resistance. For this property, we assume we are given a
sequence h1h2 . . . hN (the hash value), the length M of the input message, and
also the input bits p1, p2, . . . , pM that generated this hash value. Our goal is
to determine another values q1, q2, . . . , qM that generate the same hash value.
Similarly as above, this reduces to satisfiability of the following formula4:

H′(q1, q2, . . . , qM) = H(q1, q2, . . . , qM) ∧ (qp1
1 ∨ qp2

2 ∨ . . . ∨ qpM

M)

where

qpi

i =
{
¬qi if pi = 1
qi if pi = 0 .

The additional clause forces the messages p1p2 . . . pM and q1q2 . . . qM to differ in
at least one bit.

Assuming that the hash function is second preimage resistant, it is very likely
that the formula H′(q1, q2, . . . , qM) is hard to test for satisfiability for large M .
Also, for a good hash function, it is highly unlikely that there is a collision with
the length of colliding input messages being less then N . So, it is extremely likely
that the formula H′(q1, q2, . . . , qM) is unsatisfiable for M < N .

This gives us a method for generating hard and unsatisfiable sat instances:

1. select a random sequence m of length M (M < N);
2. compute the hash value h1h2 . . . hN of m;
3. using the above construction, generate the propositional formula H′.

This way we can generate hard and unsatisfiable sat instances for different
values of M . Obviously, the hardness of generated sat instances grows with M .
4 Note that this condition is stronger than the condition given in §2 — namely, the

above condition requires that two messages (with the same hash value) have the
same length. However, our intention is to use H′ to generate hard unsatisfiable sat
instances and this additional restriction can actually only bring us some good.

206 D. Jovanović and P. Janičić

Collision Resistance. To check the collision resistance property, one is looking
for two different sequences p1p2 . . . pM and p′1p

′
2 . . . p

′
M , with the same hash value.

Collision resistance of the hash function can be reduced to satisfiability of the
formula∧

i=1,...,N

(Hi(p1, p2, . . . , pM) ⇔ Hi(p′1, p
′
2, . . . , p

′
M)) ∧ ¬

∧
i=1,...,M

(pi ⇔ p′i) .

In this case, the only parameter of the formula is M , the length of the colliding
messages we are searching for. The number of variables in the given formula, and
hence the complexity of search, doubles with M . This makes these feature too
hard and we restricted our investigation only to formulae H and H′ (described
as above).

4 Encoding of Hash Functions into Instances of sat
Problem

It is clear from the previous section how the properties of hash functions can be
encoded into sat instances. In this section we introduce a general framework for
such encoding based on existing implementations of hash algorithms. Further,
we discuss how to transform the acquired propositional formula into cnf.

4.1 Uniform Encoding on the Basis of Hash Function
Implementation

Since a good hash algorithm doesn’t depend on the secrecy of the algorithm,
all of the popular hash algorithms are available both in a descriptive form and
in form of implementations in all popular programming languages. Most of the
hash algorithms include thousands of logical operation on input bits. This makes
any handcrafting of the propositional formulae we are interested in practically
an impossible task. Here we present a framework that allows easy generation
of propositional formula of a hash transformation, based entirely on an existing
implementation of the algorithm in C/C++5. This methodology for encoding
cryptographic functions into logical formulae is general and can be applied not
only to hash functions, but also other algorithms (e.g., des). Our approach
is considerably simpler, faster and more reliable than one used in [12] where a
special hand-crafted program was designed to simulate des for the same purpose.
Also, this approach is independent of a concrete hash algorithm, which makes it
readily reusable for further investigations on other cryptographic functions.

The implementation relies on a feature of the C++ language called operator
overloading. Operator overloading is a specific case of polymorphism, in which
5 Due to a requirement that hash algorithms must be extremely fast, C/C++ is the

most common programming language for implementing hash functions. All avail-
able hash functions used in practice are coded in C/C++, so this does not restrict
applicability of the method.

Logical Analysis of Hash Functions 207

operators commonly used in programming such as +, * or =, are treated as
polymorphic function, and as such, they can have different behaviours depending
on the types of its operators. This feature is usually only a syntactic sugar, and
can be emulated by function calls. For example, x + y * z can be rewritten as
add(x, multiply(y, z)). Operator overloading is a common place of criticism
when comparing programming languages, since it allows programmers to give to
the same operators completely different semantics. This can lead to code that is
extremely hard to read, and more important, can lead to errors that are hard
to trace. It is considered a good practice to use operator overloading only when
necessary and with much care.

We take advantage of offered ambiguous semantics in the following way. In-
stead of using the algorithm to actually compute the numerical hash value, we
change the behaviour of all the arithmetic and logical operators that the algo-
rithm uses, in such a way that each operator produces a propositional formula
corresponding to the operation performed. This way one can run the algorithm
on general logic variables and produce a formula representing the computation
of the algorithm. Afterwards, if needed, one can evaluate the formula obtained
by this process, with a specific input message as an argument and get the explicit
hash value of the message.

Redefining operators does not (and must not) affect the flow of the algorithm.
Since the aim is to record the complete computation of the hash algorithm in
one run, this construction can work only if no data-flow dependent conditional
structures exist in the code. This restricts the class of the hash functions the
approach can handle to the class of linear algorithms (with most, or all, hash
functions falling into that category). Some branching and conditional algorith-
mic structures could also be handled automatically, but it would require more
sophisticated interventions in the code together with compiler-like tools that
would be able to augment the code appropriately.

Implementation and Overloading of Operators. In the standard imple-
mentations of hash functions, 32-bit integers are usually used to represent se-
quences of 32 bits. To represent a longer bit-array, the array is divided into
32-bit integers, and the computation is entirely performed on these integers. For
instance, to represent a sequence of 128 bits of output for md4 and md5, four
such integers are used. The first step is to create a Word data type that would
simulate the functionality of 32-bit unsigned integers. The integers in the origi-
nal implementation will then be replaced by objects of the new Word data type.
With this data type, each bit of an integer is represented by a propositional
formula. These formulae represent a complete logical equivalent of the original
computation that produced the value of the integer, one formula per bit. Having
this representation, the next step is to define the operators that are used in the
hash algorithm for the new data type, so that they consistently represent the
propositional counterpart of the expected computation.

Implementation of bitwise logical operators + (and), | (or), ^ (xor) and ~
(not) is straightforward. For example, the overloaded & operator takes two Word
objects and creates a new Word object with every bit being an and-formula of

208 D. Jovanović and P. Janičić

the formulae on the corresponding bits of the input objects. These subformulae
represent the logic behind the original & operator — each output formula is an
and-formula of the two corresponding input formulae. For both space and time
efficiency, subformulae are not copied into the new formulae, but just linked. See
Fig. 1 for our implementation of the ~ operator.

Word Word::operator ~ () const {
Word notWord; // The not of the word

/* Compute the not */
for(int i = 0; i < bitArray.size(); i ++) {

Formula *f = new FormulaNot(bitArray[i]);
notWord.setFormulaAt(i, f);

}

return notWord; // Return the calculated not
}

Fig. 1. Implementation of the ~ operator

For the arithmetic operators the same logic as for logical operators is applied,
but the things are a bit more complicated. This complexity arises from the fact
that the value of a bit in the result depends on all the previous bits of the
operands. See Fig. 2 for our implementation of the += operator.

Word& Word::operator += (const Word &w) {
Formula* c = new FormulaNT; // The carry bit

/* Compute the sum, starting from the least significant bit */
for(int i = bitArray.size() - 1; i >= 0; i --) {

Formula *andF = new FormulaAnd(bitArray[i], w.bitArray[i]);
Formula *orF = new FormulaOr(bitArray[i], w.bitArray[i]);
Formula *xorF = new FormulaXor(bitArray[i], w.bitArray[i]);

Formula* sumF = new FormulaXor(xorF, c); // Sum of the bits and the carry bit
c = new FormulaOr(andF, new FormulaAnd(c, orF)); // New carry bit of the sum

setFormulaAt(i, sumF); // Set the sum formula at i-th bit
}

delete c; // Delete the last carry
return *this; // Return the calculated sum

}

Fig. 2. Implementation of the += operator

Combining the Implementation with Existing Hash Algorithms. We
now have a C++ library that defines the new Word data type and implements
all the operators that the hash procedure uses. Combining this library with an
existing C/C++ implementation of a hash procedure is an easy task. All that is

Logical Analysis of Hash Functions 209

needed is to take the source files and replace the definitions of all integer objects
that are used in computation by the newly defined Word type. This should suffice
to get a running implementation that generates a formula corresponding to the
computation of the hash function. One should be careful to avoid replacing the
auxiliary objects in the source file, since we are not interested in them, and this
would only complicate the computation. Example of such objects are constants,
indexes and counters in simple counting loops. Although replacing them will
not do any harm to the process, the transformation will be much faster if they
retain their original type. See Fig. 3 for example how we modified a part of md5
implementation to fit our needs. The original md5 source had unsigned int
type in places of Word type. We tested our implementation and a range of tests
(including the original test cases from [16,17]) confirmed its correctness.

inline Word MD5Coder::F(const Word &x, const Word &y, const Word &z) {
return (((x) & (y)) | ((~x) & (z)));

}

inline void MD5Coder::FF(Word& a, const Word& b, const Word& c, const Word& d,
const Word& x, unsigned int s, unsigned int ac)

{
a += F(b, c, d); a += x; a += ac; a <<= s; a += b;

}

void MD5Coder::encodeBlock(int block) {
...
FF (a, b, c, d, message[blockStart + 4], S11, 0xf57c0faf);
...

}

Fig. 3. Application of the implemented Word class on a part of the md5 algorithm

4.2 Generating Conjunctive Normal Form

In the previous section, we showed how to generate a formula H corresponding
to computation of the hash algorithm. In order to test this formula for satisfi-
ability, one first needs to transform H into conjunctive normal form (cnf). A
propositional formula is said to be in cnf if it is a conjunction of one or more
disjunctions of literals. Computing an cnf equivalent of a simple formula is a
straightforward but exponential task6. There is no unique cnf of a formula,
and one can apply several different algorithms to make the cnf transformation
(trivial recursive transformation, term-rewriting based, sequent calculus based,
etc.). The main problem with these algorithms is that large real world formulae
tend to be extremely huge. This, together with exponential complexity of the
transformation, makes efficient transformation almost an impossible task.

We tried several standard approaches for computing the cnf equivalent of
the formula H, but all of them failed even for relatively small message lengths.
6 An example of a formula that requires exponential space, and thus also time, is

(p1 ∧ q1) ∨ (p2 ∧ q2) ∨ . . . ∨ (pn ∧ qn).

210 D. Jovanović and P. Janičić

Either they did not terminate in a reasonable amount of time, or they failed due
to high memory requirements. Therefore, we chose a more reasonable approach,
which in turn has some other downsides.

Tseitin Definitional Normal Form. If one drops the requirement of equiva-
lence with the original formula, and only keeps sat-equivalence7, any formula F
can be transformed efficiently into a sat-equivalent cnf. This translation (due
to Tseitin [18]) is linear in both the size of the resulting cnf and the complexity
of the translation procedure. Since our formulae contain only negation, standard
binary logical connectives and, additionally, xor, the resulting cnf is in ≤3cnf
form. That is, every clause has at most 3 literals. Generally, any logical formula
that contains at most n-ary logical operators can be transformed to ≤(n+1)cnf
form. This is achieved by introducing a new variable for every logical operation,
and then imposing constraints that preserve the semantics of the operation.

We describe the transformation briefly. Let Φ be an arbitrary formula, and let
Sub(Φ) denote the set of all sub-formulae of Φ. For each non-atomic sub-formula
ψ ∈ Sub(φ), we add a new propositional variable pψ. In case ψ is itself atomic,
we take pψ = ψ. Now, consider the formula

pΦ ∧
∧

φ∈Sub(Φ)
φ=φ1⊗φ2

(pφ ⇔ (pφ1 ⊗ pφ2)) ∧
∧

φ∈Sub(Φ)
φ=¬φ1

(pφ ⇔ ¬pφ1) . (1)

It is not hard to see that formula (1) is sat-equivalent to Φ. The variable pΦ

imposes that Φ is true by propagating the actual evaluation of the formula further
up the formula tree using the introduced equivalences.

Transforming formula (1) into cnf is straightforward (see Table 4.2 for trans-
formation rules). Every conjunct in (1) is transformed into cnf with at most 4
clauses, each with at most 3 literals. Thus, the transformation is linear in the
size of the formula.

Table 1. Tseitin definitional form transformation rules

Type of formula Corresponding clauses

φ = ¬φ1 (pφ ∨ pφ1) ∧ (¬pφ ∨ ¬pφ1)

φ = φ1 ∧ φ2 (pφ ∨ ¬pφ1 ∨ ¬pφ2) ∧ (¬pφ ∨ pφ1) ∧ (¬pφ ∨ pφ2)

φ = φ1 ∨ φ2 (¬pφ ∨ pφ1 ∨ pφ2) ∧ (pφ ∨ ¬pφ1) ∧ (pφ ∨ ¬pφ2)

φ = φ1
 φ2
(¬pφ ∨ pφ1 ∨ pφ2) ∧ (¬pφ ∨ ¬pφ1 ∨ ¬pφ2)
∧(pφ ∨ ¬pφ1 ∨ pφ2) ∧ (pφ ∨ pφ1 ∨ ¬pφ2)

The main weakness of the definitional cnf transformation is that the number
of clauses and variables that are used is quite big. The size of a this cnf form
can be reduced significantly by using implications instead of equivalences for

7 Two formulae F and G are said to be sat-equivalent when it holds that F is satis-
fiable iff G is satisfiable (for example p and p ∧ q).

Logical Analysis of Hash Functions 211

subformulae that occur in one polarity only [7]. Applying such optimization
here does not yield a considerable decrease, since the vast majority of operations
is based on xor operations, and this makes the subformulae bipolar.

In our case, when analyzing a hash function of fixed length N , since H is
a conjunction of the formulae Hj , we transform each Hj into a cnf, and com-
bine them together into a cnf for H. This yields a cnf with M unit clauses
corresponding to each Hj . These can be eliminated by unit propagation, but we
decided to leave this to the sat solver.

4.3 The HashSAT Formula Generator

We implemented a program that uses the modified implementations of md4 and
md5 hash algorithms and transforms the formulae H and H′ to definitional cnf.
This program takes various parameters, including a hash function to be used, the
length of a message to encode, the number of rounds of the selected hash function
to encode (we use this parameter to allow more flexibility on the hardness of
sat instances we generate), etc. The program produces output in the standard
DIMACS CNF format8. It is a simple textual representation, with one line for
each clause. The literals in the clauses are represented as numbers, positive or
negative depending on the polarity of the literal. This is a common format for
sat solvers, so the files the program generates can be used as benchmarks for
sat solvers other than zChaff. It is worth noting that this process for generating
the formulae is very efficient. For instance, a full md5 sat problem for a 128-bit
message is generated in under 1.2s with using about 16MB of memory on a Linux
2.60GHz Pentium 4 workstation.

5 Experimental Results

In this section we present our experimental results with sat formulae generated
on the basis of the hash functions md4 and md5. We used the methods described
in §3 and §4 to generate benchmarks according to the first two properties of
hash functions (preimage resistance and second preimage resistance). For each
message length M we generated 50 formulae in the way described in §3; bits of
starting messages m were generated randomly, each bit taking value 0 or 1 with
equal probability.

For the maximal message length the generated problems proved to be too
hard to test for satisfiability, so we had to scale down the hardness of the prob-
lems. One way is to decrease the message lengths (value M) and hence — de-
crease the search space. The other approach relies on the inner structure of
hash functions: most of hash functions work on equal size block, applying basic
transformations grouped in rounds. Both md4 and md5 transformations have 4
rounds. By reducing the number of rounds the hash functions become simpler,
so the corresponding sat instances become easier.

8 For description see <http://www.satlib.org/Benchmarks/SAT/satformat.ps>.

212 D. Jovanović and P. Janičić

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16

1 round
2 rounds
3 rounds
4 rounds

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12

1 round
2 rounds
3 rounds
4 rounds

Fig. 4. Preimage resistance (left) and second preimage resistance (right) for md5. Time
scale is logarithmic, CPU time is given is seconds. Separate lines are given for weakened
versions with number of rounds from 1 to 3.

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 2 4 6 8 10 12 14 16

md4
md5

 14000
 16000
 18000
 20000
 22000
 24000
 26000
 28000
 30000
 32000
 34000
 36000

 2 4 6 8 10 12 14 16

md4
md5

Fig. 5. Growth of clauses (left) and variables (right) in the cnf with size of the input
messages for md4 and md5

Our results show that, in the worst case, the hash properties, as expected,
behave exponentially (against M) when analysed using the described translation
to sat (see Fig. 4). The problems for M > 16 needed more time than we set as
the time limit (10000s), but we believe that the exponential growth for the CPU
time spent, continues for M > 16. Note that the restriction to one round gives
only trivial problems.

In contrast to the exponential growth for satisfiability testing (in M), the
number of clauses grows rather by some small linear factor (see Fig. 5). This
means that the we are able to scale the hardness of the formulae arbitrary (for
M from 1 to 128), without a significant increase in size of the formula itself.

Figure 6 (left) shows that the function md4 is more vulnerable to inverting
based on the uniform logical analysis. This is expected, as md5 is generally
believed to be of better quality compared to md4.

Logical Analysis of Hash Functions 213

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16

md4
md5

 3.251

 3.252

 3.253

 3.254

 3.255

 3.256

 3.257

 3.258

 3.259

 3.26

 0 20 40 60 80 100 120

Fig. 6. Comparison of md5 and md4 preimage resistance with logarithmic scale for
time (left) and L/N ratio with the message length for md5 (right)

6 Future Work

In the previous sections, we analysed propositional formulae obtained from the
input sequences of length M , where M ≤ N . The value M was used to con-
trol the hardness of the problems generated. Alternatively, we could control the
problem hardness by the size of the used part of the output: for the preimage
resistance feature, we can analyse the following formulae (for the fixed size of the
input sequences — the same as the size of the output — N): Hi(p1, p2, . . . , pN) =∧

j=1,2,...,i Hj(p1, p2, . . . , pN). Note that the functions Hi take into account only
first i bits of the output. Assuming that the hash function analysed is permu-
tation, for any hash value h1h2 . . . hN there is an input of size N that produces
it. So, this gives us another method for generating hard and satisfiable sat in-
stances: (1) select a random bit sequence of length N and use it as a hash value;
(2) using the above, construct the propositional formula Φi = Hi(p1, p2, . . . , pN).
Formulae Φi are hard and satisfiable. The bigger i (i ≤ N), the harder formu-
lae. In a similar manner we could generate unsatisfiable sat instances. Analysis
based on such formulae is the subject of our future research. We will also look at
the combinations of these two approaches — controlling problem hardness via
both the size of input and the size of output.

One of our motivating ideas for the research presented here was to investigate
whether sat instances generated on the basis of (good) hash functions are among
the hardest instances (in terms of the phase transitionphenomenon in the satprob-
lem [14]).Unfortunately,we are still unable to answer this question as the generated
formulae do not fit the pattern of some class of randomly generated sat instances,
i.e., variables in the clauses are not distributed uniformly. For the generated for-
mulae, the values L/N (number of clauses ratio number of variables) for md5 are
shown in Fig. 6 (right) — these values for M = 1, . . . , 128 are rather stable and
range between 3.25 and 3.26 (both with the unit propagation performed or not).
Recall that, for some sat model, the value L/N for the hardest instances is equal
to the phase transition point for that sat model. So, if the variables in our gener-
ated formulae were distributed uniformly, and if they indeed the hardest instances

214 D. Jovanović and P. Janičić

(among the formulae with the same distribution on clause length), then the phase
transition point for this sat model would be around 3.25. However, when the unit
propagation is performed, in our generated formulae there are around 40% clauses
of length 2 and around 60% clauses of length 3 (forM = 1, . . . , 128). For such dis-
tribution of clause length (and for uniform distribution of variables), [9] approxi-
mates the phase transition point at 1.8, and [2] approximates the phase transition
point between 2.1 and 2.4, both lower than 3.25. These issues will be subject of
our future research — we will try to further investigate the class of generated sat
instances (with non-uniform variable distribution) and whether the instances that
correspond to md5 are indeed the hardest among them. We will try to answer these
questions following the ideas from [10].

We are planning to further investigate alternative ways for transforming ob-
tained formulae to cnf (apart from Tseitin’s approach) and investigate a possible
impact of this on the hardness of generated formulae.

We are also planning to apply the approach presented here to other crypto-
graphic functions (not only the hash functions). For instance, the cryptographic
algorithm des also falls into a category of transformations that can be encoded
into propositional formulae by the methodology we propose in this paper.

7 Conclusions

In this paper we presented a novel approach for uniform encoding of hash func-
tions (but also other cryptographic functions) into propositional logic formulae.
The approach is general, elegant, and does not require any human expertise
on the construction of a specific cryptographic function. The approach is based
on the operator overloading feature of the C++ programming language and it
uses existing C implementations of cryptographic functions (and needs to al-
ter them only very slightly). By using this approach, we developed a technique
for generating hard and satisfiable propositional formulae and hard and unsat-
isfiable propositional formulae. Using this technique, one can finely tune the
hardness of generated formulae. This can be very important for different ap-
plications, including testing (complete or incomplete) sat solvers. The uniform
logical analysis of cryptographic functions can be used for comparison between
different functions and can expose weaknesses of some of them (as shown for
md4 in comparison with md5). We are planning to further develop and apply
the technique presented in this paper.

Acknowledgments. We are grateful to anonymous reviewers for useful comments
on the first version of this paper.

References

1. D. Achlioptas, C.P. Gomes, H.A. Kautz, and B. Selman. Generating satisfiable
problem instances. In Proceedings of the 17th National Conference on AI and 12th
Conference on Innovative Applications of AI. AAAI Press / The MIT Press, 2000.

Logical Analysis of Hash Functions 215

2. D. Achlioptas, L. M. Kirousis, E. Kranakis, and D. Krizanc. Rigorous results for
random 2 + p-SAT. Theoretical Computer Science, 265:109–129, 2001.

3. Stephen A. Cook. The complexity of theorem-proving procedures. In STOC ’71.
ACM Press, 1971.

4. Stephen A. Cook and David G. Mitchell. Finding hard instances of the satisfiability
problem: A survey. In Satisfiability Problem: Theory and Applications, volume 35
of DIMACS. American Mathematical Society, 1997.

5. Ivan Bjerre Damg̊ard. A design principle for hash functions. In CRYPTO ’89.
Springer-Verlag New York, Inc., 1989.

6. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

7. Uwe Egly. On different structure-preserving translations to normal form. Journal
of Symbolic Computation, 22(2):121–142, 1996.

8. Ian Gent. On the stupid algorithm for satisfiability. Technical Report APES-03-
1998, Department of Computer Science, University of Strathclyde, 1998.

9. Ian P. Gent and Toby Walsh. The SAT phase transition. In Proceedings of ECAI-
94, pages 105–109, 1994.

10. I.P. Gent, E. Macintyre., P. Prosser, and T. Walsh. The constraidness of search.
In Proceedings of AAAI-96, pages 246–252, Menlo Park, AAAI Press/MIT Press.,
1996.

11. A. Lenstra, X. Wang, and B. de Weger. Colliding X.509 certificates. Cryptology
ePrint Archive, Report 2005/067, 2005. url: http://eprint.iacr.org/.

12. Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT problem.
Journal of Automated Reasoning, 24(1-2):165–203, 2000.

13. Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor,
CRYPTO ’89. Springer-Verlag New York, Inc., 1989.

14. G. David Mitchell, Bart Selman, and J. Hector Levesque. Hard and easy distribu-
tions of sat problems. In AAAI-92. AAAI Press/The MIT Press, 1992.

15. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: engineering an efficient SAT solver. In DAC ’01. ACM Press, 2001.

16. Ronald L. Rivest. The MD4 message digest algorithm. RFC 1320, The Internet
Engineering Task Force, April 1992.

17. Ronald L. Rivest. The MD5 message digest algorithm. RFC 1321, The Internet
Engineering Task Force, April 1992.

18. G. S. Tseitin. On the complexity of derivations in propositional calculus. In The
Automation of Reasoning. Springer-Verlag, 1983.

19. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for hash
functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive,
Report 2004/199, 2004. url: http://eprint.iacr.org/.

20. Lintao Zhang and Sharad Malik. The quest for efficient Boolean satisfiability
solvers. In CAV ’02. Springer-Verlag, 2002.

Proving and Disproving Termination of

Higher-Order Functions�

Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{giesl, thiemann, psk}@informatik.rwth-aachen.de

Abstract. The dependency pair technique is a powerful modular method
for automated termination proofs of term rewrite systems (TRSs). We
present two important extensions of this technique: First, we show how
to prove termination of higher-order functions using dependency pairs.
To this end, the dependency pair technique is extended to handle (un-
typed) applicative TRSs. Second, we introduce a method to prove non-
termination with dependency pairs, while up to now dependency pairs
were only used to verify termination. Our results lead to a framework
for combining termination and non-termination techniques for first- and
higher-order functions in a very flexible way. We implemented and eval-
uated our results in the automated termination prover AProVE.

1 Introduction

One of the most powerful techniques to prove termination or innermost termi-
nation of TRSs automatically is the dependency pair approach [4,12,13]. In [16],
we recently showed that dependency pairs can be used as a general framework
to combine arbitrary techniques for termination analysis in a modular way. The
general idea of this framework is to solve termination problems by repeatedly
decomposing them into sub-problems. We call this new concept the “dependency
pair framework” (“DP framework”) to distinguish it from the old “dependency
pair approach”. In particular, this framework also facilitates the development of
new methods for termination analysis. After recapitulating the basics of the DP
framework in Sect. 2, we present two new significant improvements: in Sect. 3 we
extend the framework in order to handle higher-order functions and in Sect. 4
we show how to use the DP framework to prove non-termination. Sect. 5 sum-
marizes our results and describes their empirical evaluation with the system
AProVE. All proofs can be found in [17].

2 The Dependency Pair Framework

We refer to [5] for the basics of rewriting and to [4,13,16] for motivations and
details on dependency pairs. We only regard finite signatures and TRSs. T (F ,V)
is the set of terms over the signature F and the infinite set of variables V =
{x, y, z, . . . , α, β, . . .}. R is a TRS over F if l, r ∈ T (F ,V) for all rules l → r ∈ R.
� Supported by the Deutsche Forschungsgemeinschaft DFG under grant GI 274/5-1.

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 216–231, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Proving and Disproving Termination of Higher-Order Functions 217

We will present a method for termination analysis of untyped higher-order
functions which do not use λ-abstraction. Due to the absence of λ, such functions
can be represented in curried form as applicative first-order TRSs (cf. e.g., [22]).
A signature F is applicative if it only contains nullary function symbols and a
binary symbol ′ for function application. Moreover, any TRS R over F is called
applicative. So instead of a term map(α, x) we write ′ (′ (map, α), x). To ease
readability, we use ′ as an infix-symbol and we let ′ associate to the left. Then
this term can be written as map ′ α ′ x. This is very similar to the usual notation
of higher-order functions where application is just denoted by juxtaposition (i.e.,
here one would write map α x instead of map ′ α ′ x).

Example 1. The function map is used to apply a function to all elements in a
list. Instead of the higher-order rules map(α, nil) → nil and map(α, cons(x, xs)) →
cons(α(x), map(α, xs)), we encode it by the following first-order TRS.

map ′ α ′ nil → nil (1)
map ′ α ′ (cons ′ x ′ xs) → cons ′ (α ′ x) ′ (map ′ α ′ xs) (2)

A TRS is terminating if all reductions are finite, i.e., if all applications of
functions encoded in the TRS terminate. So intuitively, the TRS {(1), (2)} is
terminating iff map terminates whenever its arguments are terminating terms.

For a TRS R over F , the defined symbols are D = {root(l) | l → r ∈ R} and
the constructors are C = F \ D. For every f ∈ F let f� be a fresh tuple symbol
with the same arity as f, where we often write F for f�. The set of tuple symbols
is denoted by F �. If t=g(t1, . . . , tm) with g∈D, we let t� denote g�(t1, . . . , tm).

Definition 2 (Dependency Pair). The set of dependency pairs for a TRS
R is DP (R) = {l� → t� | l → r ∈ R, t is a subterm of r, root(t) ∈ D}.
Example 3. In the TRS of Ex. 1, the only defined symbol is ′ and map, cons,
and nil are constructors. Let AP denote the tuple symbol for ′ . Then we have
the following dependency pairs where s is the term AP(map ′ α, cons ′ x ′ xs).

s → AP(cons ′ (α ′ x), map ′ α ′ xs) (3)

s → AP(cons, α ′ x) (4)

s → AP(α, x) (5)

s → AP(map ′ α, xs) (6)

s → AP(map, α) (7)

For termination, we try to prove that there are no infinite chains of depen-
dency pairs. Intuitively, a dependency pair corresponds to a function call and a
chain represents a possible sequence of calls that can occur during a reduction.
We always assume that different occurrences of dependency pairs are variable
disjoint and consider substitutions whose domains may be infinite. In the fol-
lowing definition, P is usually a set of dependency pairs.

Definition 4 (Chain). Let P,R be TRSs. A (possibly infinite) sequence of pairs
s1 → t1, s2 → t2, . . . from P is a (P ,R)-chain iff there is a substitution σ with
tiσ →∗

R si+1σ for all i. It is an innermost (P ,R)-chain iff tiσ
i→∗
R si+1σ and siσ

is in normal form w.r.t. R for all i. Here, “ i→R” denotes innermost reductions.

Example 5. “(6), (6)” is a chain: an instance of (6)’s right-hand side AP(map ′ α1,
xs1) can reduce to an instance of its left-hand side AP(map ′ α2, cons ′ x2

′ xs2).

218 J. Giesl, R. Thiemann, and P. Schneider-Kamp

Theorem 6 (Termination Criterion [4]). A TRS R is (innermost) termi-
nating iff there is no infinite (innermost) (DP (R),R)-chain.

The idea of the DP framework [16] is to treat a set of dependency pairs P
together with the TRSR and to prove absence of infinite (P ,R)-chains instead of
examining →R. Formally, a dependency pair problem (“DP problem”)1 consists
of two TRSs P and R (where initially, P = DP (R)) and a flag e ∈ {t, i} standing
for “termination” or “innermost termination”. Instead of “(P ,R)-chains” we
also speak of “(P ,R, t)-chains” and instead of “innermost (P ,R)-chains” we
speak of “(P ,R, i)-chains”. Our goal is to show that there is no infinite (P ,R, e)-
chain. In this case, we call the problem finite.

A DP problem (P ,R, e) that is not finite is called infinite. But in addition,
(P ,R, t) is already infinite whenever R is not terminating and (P ,R, i) is al-
ready infinite whenever R is not innermost terminating. Thus, there can be
DP problems which are both finite and infinite. For example, the DP problem
(P ,R, t) with P = {F(f(x)) → F(x)} and R = {f(f(x)) → f(x), a → a} is finite
since there is no infinite (P ,R, t)-chain, but also infinite since R is not termi-
nating. Such DP problems do not cause any difficulties, cf. [16]. If one detects an
infinite problem during a termination proof attempt, one can abort the proof,
since termination has been disproved (if all proof steps were “complete”, i.e., if
they preserved the termination behavior).

A DP problem (P ,R, e) is applicative iff R is a TRS over an applicative
signature F , and for all s → t ∈ P , we have t /∈ V , {root(s), root(t)} ⊆ F �, and
all function symbols below the root of s or t are from F . We also say that such
a problem is an applicative DP problem over F . Thus, in an applicative DP
problem (P ,R, e), the pairs s → t of P must have a shape which is similar to
the original dependency pairs (i.e., the roots of s and t are tuple symbols which
do not occur below the root). This requirement is needed in Sect. 3.3 in order
to transform applicative terms back to ordinary functional form.

Termination techniques should now operate on DP problems instead of TRSs.
We refer to such techniques as dependency pair processors (“DP processors”).
Formally, a DP processor is a function Proc which takes a DP problem as input
and returns a new set of DP problems which then have to be solved instead.
Alternatively, it can also return “no”. A DP processor Proc is sound if for all
DP problems d, d is finite whenever Proc(d) is not “no” and all DP problems
in Proc(d) are finite. Proc is complete if for all DP problems d, d is infinite
whenever Proc(d) is “no” or when Proc(d) contains an infinite DP problem.

Soundness of a DP processor Proc is required to prove termination (in partic-
ular, to conclude that d is finite if Proc(d) = ∅). Completeness is needed to prove
non-termination (in particular, to conclude that d is infinite if Proc(d) = no).

So termination proofs in the DP framework start with the initial DP problem
(DP (R),R, e), where e depends on whether one wants to prove termination or
innermost termination. Then this problem is transformed repeatedly by sound
DP processors. If the final processors return empty sets of DP problems, then
1 To ease readability we use a simpler definition of DP problems than [16], since this

simple definition suffices for the new results of this paper.

Proving and Disproving Termination of Higher-Order Functions 219

termination is proved. If one of the processors returns “no” and all processors
used before were complete, then one has disproved termination of the TRS R.

Example 7. If d0 is the initial DP problem (DP (R),R, e) and there are sound
processors Proc0, Proc1, Proc2 with Proc0(d0) = {d1, d2}, Proc1(d1) = ∅, and
Proc2(d2) = ∅, then one can conclude termination. But if Proc1(d1) = no, and
both Proc0 and Proc1 are complete, then one can conclude non-termination.

3 DP Processors for Higher-Order Functions

Since we represent higher-order functions by first-order applicative TRSs, all
existing techniques and DP processors for first-order TRSs can also be used for
higher-order functions. However, most termination techniques rely on the outer-
most function symbol when comparing terms. This is also true for dependency
pairs and standard reduction orders. Therefore, they usually fail for applicative
TRSs since here, all terms except variables and constants have the same root
symbol ′ . For example, a direct termination proof of Ex. 1 is impossible with
standard reduction orders and difficult2 with dependency pairs.

Therefore, in Sect. 3.1 and Sect. 3.2 we improve the most important proces-
sors of the DP framework in order to be successful on applicative TRSs. More-
over, we introduce a new processor in Sect. 3.3 which removes the symbol ′ and
transforms applicative TRSs and DP problems into ordinary (functional) form
again. Sect. 5 shows that these contributions indeed yield a powerful termination
technique for higher-order functions. Sect. 3.4 is a comparison with related work.

3.1 A DP Processor Based on the Dependency Graph

The dependency graph determines which pairs can follow each other in chains.

Definition 8 (Dependency Graph). Let (P ,R, e) be a DP problem. The
nodes of the (P ,R, e)-dependency graph are the pairs of P and there is an
arc from s → t to u → v iff s → t, u → v is an (P ,R, e)-chain.

Example 9. For Ex. 1, we obtain the following (P ,R, e)-dependency graph for
both e = t and e = i. The reason is that the right-hand sides of (3), (4), and
(7) have cons ′ (α ′ x), cons, or map as their first arguments. No instance of these
terms reduces to an instance of map ′ α (which is the first argument of s).

s→AP(cons ′ (α ′ x),map ′ α ′ xs) (3) s→AP(cons, α ′ x) (4)

s→AP(α, x) (5) s→AP(map ′ α, xs) (6)s→AP(map, α) (7)

A set P ′ �= ∅ of dependency pairs is a cycle iff for all s → t and u → v in P ′,
there is a path from s → t to u → v traversing only pairs of P ′. A cycle P ′ is a
strongly connected component (SCC) if P ′ is not a proper subset of another cycle.
2 It needs complex DP processors or base orders (e.g., non-linear polynomial orders).

220 J. Giesl, R. Thiemann, and P. Schneider-Kamp

As absence of infinite chains can be proved separately for each SCC, termination
proofs can be modularized by decomposing a DP problem into sub-problems.

Theorem 10 (Dependency Graph Processor [16]). For a DP problem
(P ,R, e), let Proc return {(P1,R, e), . . . , (Pn,R, e)}, where P1, . . . ,Pn are the
SCCs of the (P ,R, e)-dependency graph. Then Proc is sound and complete.

For Ex. 1, we start with the initial DP problem (P ,R, e), where P = {(3), . . . ,
(7)}. The only SCC of the dependency graph is {(5), (6)}. So the above processor
transforms (P ,R, e) into ({(5), (6)},R, e), i.e., (3), (4), and (7) are deleted.

Unfortunately, the dependency graph is not computable. Therefore, for au-
tomation one constructs an estimated graph containing at least all arcs of the
real graph. The existing estimations that are used for automation [4,18] assume
that all subterms with defined root could possibly be evaluated. Therefore, they
use a function cap, where cap(t) results from replacing all subterms of t with
defined root symbol by different fresh variables. To estimate whether s → t and
u → v form a chain, one checks whether cap(t) unifies with u (after renaming
their variables). Moreover, if one regards termination instead of innermost ter-
mination, one first has to linearize cap(t), i.e., multiple occurrences of the same
variable in cap(t) are renamed apart. Further refinements of this estimation can
be found in [18]; however, they rely on the same function cap.

These estimations are not suitable for applicative TRSs. The problem is that
there, all subterms except variables and constants have the defined root symbol ′

and are thus replaced by variables when estimating the arcs of the dependency
graph. So for Ex. 1, the estimations assume that (3) could be followed by any
dependency pair in chains. The reason is that the right-hand side of (3) is
AP(cons ′ (α ′ x), map ′ α ′ xs) and cap replaces both arguments of AP by fresh
variables, since their root symbol ′ is defined. The resulting term AP(y, z) uni-
fies with the left-hand side of every dependency pair. Therefore, the estimated
dependency graph contains additional arcs from (3) to every dependency pair.

The problem is that these estimations do not check whether subterms with
defined root can really be reduced further when being instantiated. For example,
the first argument cons ′ (α ′ x) of (3)’s right-hand side can never become a redex
for any instantiation. The reason is that all left-hand sides of the TRS have the
form map ′ t1

′ t2. Thus, one should not replace cons ′ (α ′ x) by a fresh variable.
Therefore, we now refine cap’s definition. If a subterm can clearly never be-

come a redex, then it is not replaced by a variable anymore. Here, icap is used for
innermost termination proofs and tcap differs from icap by renaming multiple
occurrences of variables, which is required when proving full termination.

Definition 11 (icap, tcap). Let R be a TRS over F , let f ∈ F ∪ F �.

(i) icap(x) = x for all x ∈ V
(ii) icap(f(t1, . . . , tn)) = f(icap(t1), . . . , icap(tn)) iff f(icap(t1), ..., icap(tn))

does not unify with any left-hand side of a rule from R
(iii) icap(f(t1, . . . , tn)) is a fresh variable, otherwise

We define tcap like icap but in (i), tcap(x) is a different fresh variable for
every occurrence of x. Moreover in (ii), we use tcap(ti) instead of icap(ti).

Proving and Disproving Termination of Higher-Order Functions 221

Now one can detect that (3) should not be connected to any pair in the de-
pendency graph, since icap(AP(cons ′ (α ′ x), map ′ α ′ xs)) = AP(cons ′ y, z) does
not unify with left-hand sides of dependency pairs. Similar remarks hold for
tcap. This leads to the following improved estimation.3

Definition 12 (Improved Estimated Dependency Graph). In the esti-
mated (P ,R, t)-dependency graph there is an arc from s → t to u → v iff
tcap(t) and u are unifiable. In the estimated (P ,R, i)-dependency graph there
is an arc from s → t to u → v iff icap(t) and u are unifiable by an mgu μ (after
renaming their variables) such that sμ and uμ are in normal form w.r.t. R.

Now the estimated graph is identical to the real dependency graph in Ex. 9.

Theorem 13 (Soundness of the Improved Estimation). The dependency
graph is a subgraph of the estimated dependency graph.

Of course, the new estimation of dependency graphs from Def. 12 is also useful
for non-applicative TRSs and DP problems. The benefits of our improvements
(also for ordinary TRSs) is demonstrated by our experiments in Sect. 5.

3.2 DP Processors Based on Orders and on Usable Rules

Classical techniques for automated termination proofs try to find a reduction
order % such that l % r holds for all rules l → r. In practice, most orders are
simplification orders [10]. However, termination of many important TRSs cannot
be proved with such orders directly. Therefore, the following processor allows us
to use such orders in the DP framework instead. It generates constraints which
should be satisfied by a reduction pair [23] (�,%) where � is reflexive, transitive,
monotonic, and stable and % is a stable well-founded order compatible with �
(i.e., � ◦ % ⊆ % and % ◦ � ⊆ %). Now one can use existing techniques to search
for suitable relations � and %, and in this way, classical simplification orders
can prove termination of TRSs where they would have failed otherwise.

For a problem (P ,R, e), the constraints require that at least one rule in P is
strictly decreasing (w.r.t. %) and all remaining rules in P and R are weakly de-
creasing (w.r.t. �). Requiring l � r for l → r ∈ R ensures that in chains s1 →
t1, s2→t2, . . . with tiσ→∗

R si+1σ, we have tiσ � si+1σ. Hence, if a reduction pair
satisfies these constraints, then the strictly decreasing pairs of P cannot occur
infinitely often in chains. Thus, the following processor deletes these pairs from
P . For any TRS P and any relation %, let P� = {s → t ∈ P | s % t}.

Theorem 14 (Reduction Pair Processor [16]). Let (�,%) be a reduction
pair. Then the following DP processor Proc is sound and complete. For a DP
problem (P ,R, e), Proc returns

• {(P \ P�,R, e)}, if P� ∪ P� = P and R� = R
• {(P ,R, e)}, otherwise

3 Moreover, tcap and icap can also be combined with further refinements to approx-
imate dependency graphs [4,18].

222 J. Giesl, R. Thiemann, and P. Schneider-Kamp

DP problems (P ,R, i) for innermost termination can be simplified by re-
placing the second component R by those rules from R that are usable for
P (i.e., by the usable rules of P). Then by Thm. 14, a weak decrease l � r
is not required for all rules but only for the usable rules. As defined in [4],
the usable rules of a term t contain all f-rules for all function symbols f oc-
curring in t. Moreover, if f’s rules are usable and there is a rule f(. . .) →
r in R whose right-hand side r contains a symbol g, then g is usable, too.
The usable rules of a TRS P are defined as the usable rules of its right-hand sides.

For instance, after applying the dependency graph processor to Ex. 1, we have
the remaining dependency pairs (5) and (6) with the right-hand sides AP(α, x)
and AP(map ′ α, xs). While AP(α, x) has no usable rules, AP(map ′ α, xs) con-
tains the defined function symbol ′ and therefore, all ′ -rules are usable.

This indicates that the definition of usable rules has to be improved to handle
applicative TRSs successfully. Otherwise, whenever ′ occurs in the right-hand
side of a dependency pair, then all rules (except rules of the form f → . . .) would
be usable. The problem is that the current definition of “usable rules” assumes
that all ′ -rules can be applied to any subterm with the root symbol ′ .

Thus, we refine the definition of usable rules. Now a subterm starting with ′

only influences the computation of the usable rules if some suitable instantiation
of this subterm would start new reductions. To detect this, we again use the
function icap from Def. 11. For example, map ′ α can never be reduced if α is
instantiated by a normal form, since map ′ α does not unify with the left-hand
side of any rule. Therefore, the right-hand side AP(map ′ α, xs) of (6) should not
have any usable rules.4

Definition 15 (Improved Usable Rules).For a DP problem (P ,R, i), we de-
fine the usable rules U(P)=

⋃
s→t∈P U(t). Here U(t)⊆R is the smallest set with:

• If t = f(t1, . . . , tn), f ∈ F ∪ F �, and f(icap(t1), . . . , icap(tn)) unifies with
a left-hand side l of a rule l → r ∈ R, then l → r ∈ U(t).

• If l → r ∈ U(t), then U(r) ⊆ U(t).
• If t′ is a subterm of t, then U(t′) ⊆ U(t).

Theorem 16 (Usable Rule Processor). For a DP problem (P ,R, e), let Proc
return { (P ,U(P), i) } if e = i and { (P ,R, e) } otherwise. Then Proc is sound.5

Example 17. In Ex. 1, now the dependency pairs in the remaining DP problem
({(5), (6)},R, i) have no usable rules. Thus, Thm. 16 transforms this DP prob-
lem into ({(5), (6)}, ∅, i). Then with the processor of Thm. 14 we try to find a
reduction pair such that (5) and (6) are decreasing. Any simplification order %
(even the embedding order) makes both pairs strictly decreasing: s % AP(α, x)
and s % AP(map ′ α, xs) for s = AP(map ′ α, cons ′ x ′ xs). Thus, both depen-
dency pairs are removed and the resulting DP problem (∅,R, i) is transformed
4 Our new definition of usable rules can also be combined with other techniques to

reduce the set of usable rules [14] and it can also be applied for dependency graph
estimations or other DP processors that rely on usable rules [16,18].

5 Incompleteness is due to our simplified definition of “DP problems”. With the full
definition of “DP problems” from [16], the processor is complete [16, Lemma 12].

Proving and Disproving Termination of Higher-Order Functions 223

into the empty set by the dependency graph processor of Thm. 10. So innermost
termination of the map-TRS from Ex. 1 can now easily be proved automatically.
Note that this TRS is non-overlapping and thus, it belongs to a well-known class
where innermost termination implies termination.

Similar to the improved estimation of dependency graphs in the previous
section, the new improved definition of usable rules from Def. 15 is also beneficial
for ordinary non-applicative TRSs, cf. Sect. 5.

In [32], we showed that under certain conditions, the usable rules of [4] can
also be used to prove full instead of just innermost termination (for arbitrary
TRSs). Then, even for termination, it is enough to require l � r just for the
usable rules in Thm. 14. This result also holds for the new improved usable rules
of Def. 15, provided that one uses tcap instead of icap in their definition.

3.3 A DP Processor to Transform Applicative to Functional Form

Some applicative DP problems can be transformed (back) to ordinary functional
form. In particular, this holds for problems resulting from first-order functions
(encoded by currying). This transformation is advantageous: e.g., the processor
in Thm. 14 is significantly more powerful for DP problems in functional form,
since standard reduction orders focus on the root symbol when comparing terms.

Example 18. We extend the map-TRS by the following rules for minus and div.
Note that a direct termination proof with simplification orders is impossible.

minus ′x ′0 → x (8)

minus ′(s ′x) ′(s ′y) → minus ′x ′y (9)

div ′0 ′(s ′y) → 0 (10)

div ′(s ′x) ′(s ′y) → s ′(div ′(minus ′x ′y) ′(s ′y)) (11)

While map is really a higher-order function, minus and div correspond to first-
order functions. It again suffices to verify innermost termination, since this TRS
R is non-overlapping. The improved estimated dependency graph has three SCCs
corresponding to map, minus, and div. Thus, by the dependency graph and the
usable rule processors (Thm. 10 and 16), the initial DP problem (DP (R),R, i)
is transformed into three new problems. The first problem ({(5), (6)}, ∅, i) for
map can be solved as before. The DP problems for minus and div are:

({AP(minus ′ (s ′ x), s ′ y) → AP(minus ′ x, y)}, ∅, i) (12)
({AP(div ′ (s ′ x), s ′ y) → AP(div ′ (minus ′ x ′ y), s ′ y)}, {(8), (9)}, i) (13)

Since (12) and (13) do not contain map anymore, one would like to change
them back to conventional functional form. Then they could be replaced by the
following DP problems. Here, every (new) function symbol is labelled by its arity.

({MINUS2(s1(x), s1(y)) → MINUS2(x, y)}, ∅, i) (14)
({DIV2(s1(x), s1(y)) → DIV2(minus2(x, y), s1(y))},
{minus2(x, 00) → x, minus2(s1(x), s1(y)) → minus2(x, y)}, i) (15)

These DP problems are easy to solve: for example, the constraints of the re-
duction pair processor (Thm. 14) are satisfied by the polynomial order which

224 J. Giesl, R. Thiemann, and P. Schneider-Kamp

maps s1(x) to x + 1, minus2(x, y) to x, and every other symbol to the sum of its
arguments. Thus, termination could immediately be proved automatically.

Now we characterize those applicative TRSs which correspond to first-order
functions and can be translated into functional form. In these TRSs, for any
function symbol f there is a number n (called its arity) such that f only occurs
in terms of the form f ′ t1

′ . . . ′ tn. So there are no applications with too few or
too many arguments. Moreover, there are no terms x ′ t where the first argument
of ′ is a variable. Def. 19 extends this idea from TRSs to DP problems.

Definition 19 (Arity and Proper Terms). Let (P ,R, e) be an applicative
DP problem over F . For each f ∈ F \{ ′ } let arity(f) = max{n | f ′ t1

′ . . . ′ tn or
(f ′ t1

′ . . . ′ tn)� occurs in P∪R}. A term t is proper iff t ∈ V or t = f ′ t1
′ . . . ′ tn

or t = (f ′ t1
′ . . . ′ tn)� where in the last two cases, arity(f) = n and all ti are

proper. Moreover, (P ,R, e) is proper iff all terms in P ∪R are proper.

The DP problems (12) and (13) for minus and div are proper. Here, minus and
div have arity 2, s has arity 1, and 0 has arity 0. But the problem ({(5), (6)}, ∅, i)
for map is not proper as (5) contains the subterm AP(α, x) with α ∈ V .

The following transformation translates proper terms from applicative to
functional form. To this end, f ′ t1

′ . . . ′ tn is replaced by fn(. . .), where n is f’s
arity (as defined in Def. 19) and fn is a new n-ary function symbol. In this way,
(12) and (13) were transformed into (14) and (15) in Ex. 18.

Definition 20 (Transformation A). A maps every proper term from T (F ∪
F �,V) to a term from T ({fn, Fn | f ∈ F \ { ′ }, arity(f) = n}, V):

• A(x) = x for all x ∈ V
• A(f ′ t1

′ . . . ′ tn) = fn(A(t1), . . . ,A(tn)) for all f ∈ F \ { ′ }
• A((f ′ t1

′ . . . ′ tn)�) = Fn(A(t1), . . . ,A(tn)) for all f ∈ F \ { ′ }

For any TRS R with only proper terms, let A(R) = {A(l) → A(r) | l → r ∈ R}.
We now define a DP processor which replaces proper DP problems (P ,R, e)

by (A(P),A(R), e). Its soundness is due to the fact that every (P ,R, e)-chain re-
sults in an (A(P),A(R), e)-chain, i.e., that tiσ →∗

R si+1σ implies A(ti)σ′ →∗
A(R)

A(si+1)σ′ for some substitution σ′. The reason is that ti and si+1 are proper and
while σ may introduce non-proper terms, every chain can also be constructed
with a substitution σ where all σ(x) are proper. Thus, while soundness and
completeness of the following processor might seem intuitive, the formal proof
including this construction is quite involved and can be found in [17].

Theorem 21 (DP Processor for Transformation in Functional Form).
For any DP problem (P ,R, e), let Proc return {(A(P),A(R), e)} if (P ,R, e) is
proper and {(P ,R, e)} otherwise. Then Proc is sound and complete.

With the processor of Thm. 21 and our new improved estimation of depen-
dency graphs (Def. 12), it does not matter anymore for the termination proof
whether first-order functions are represented in ordinary functional or in applica-
tive form: in the latter case, dependency pairs with non-proper right-hand sides

Proving and Disproving Termination of Higher-Order Functions 225

are not in SCCs of the improved estimated dependency graph. Hence, after ap-
plying the dependency graph processor of Thm. 10, all remaining DP problems
are proper and can be transformed into functional form by Thm. 21.

As an alternative to the processor of Thm. 21, one can also couple the trans-
formationA with the reduction pair processor from Thm. 14. Then a DP problem
(P ,R, e) is transformed into {(P \ {s → t | A(s) % A(t)},R, e)} if (P ,R, e) is
proper, if A(P)� ∪ A(P)� = A(P), and if A(R)� = A(R) holds for some re-
duction pair (�,%). An advantage of this alternative processor is that it can
be combined with our results from [32] on applying usable rules for termination
instead of innermost termination proofs, cf. Sect. 3.2.

3.4 Comparison with Related Work

Most approaches for higher-order functions in term rewriting use higher-order
TRSs. While there exist powerful termination criteria for higher-order TRSs
(e.g., [7,29]), the main automated termination techniques for such TRSs are
simplification orders (e.g., [20]) which fail on functions like div in Ex. 18.

Exceptions are the monotonic higher-order semantic path order [8] and the
existing variants of dependency pairs for higher-order TRSs. However, these vari-
ants require considerable restrictions (e.g., on the TRSs [31] or on the orders that
may be used [3,24,30].) So in contrast to our results, they are less powerful than
the original dependency pair technique when applied to first-order functions.

Termination techniques for higher-order TRSs often handle a richer language
than our results. But these approaches are usually difficult to automate (there
are hardly any implementations of these techniques available). In contrast, it is
very easy to integrate our results into existing termination provers for ordinary
first-order TRSs using dependency pairs (and first-order reduction orders).

Other approaches represent higher-order functions by first-order TRSs
[1,2,19,25,33], similar to us. However, they mostly use monomorphic types (this
restriction is also imposed in some approaches for higher-order TRSs [8]). In
other words, there the types are only built from basic types and type construc-
tors like → or ×, but there are no type variables, i.e., no polymorphic types.
Then terms like “map ′ minus ′ xs” and “map ′ (minus ′ x) ′ xs” cannot both be well
typed, but one needs different map-symbols for arguments of different types. In
contrast, our approach uses untyped term rewriting. Hence, it can be applied for
termination analysis of polymorphic or untyped functional languages. Moreover,
[25] and [33] only consider extensions of the lexicographic path order, whereas
we can also handle non-simply terminating TRSs like Ex. 18.

4 A DP Processor for Proving Non-termination

Almost all techniques for automated termination analysis try to prove termina-
tion and there are hardly any methods to prove non-termination. But detecting
non-termination automatically would be very helpful when debugging programs.

We show that the DP framework is particularly suitable for combining both
termination and non-termination analysis. We introduce a DP processor which

226 J. Giesl, R. Thiemann, and P. Schneider-Kamp

tries to detect infinite DP problems in order to answer “no”. Then, if all previ-
ous processors were complete, we can conclude non-termination of the original
TRS. As shown by our experiments in Sect. 5, our new processor also success-
fully handles non-terminating higher-order functions if they are represented by
first-order TRSs. An important advantage of the DP framework is that it can
couple the search for a proof and a disproof of termination: Processors which
try to prove termination are also helpful for the non-termination proof because
they transform the initial DP problem into sub-problems, where most of them
can easily be proved finite. So they detect those sub-problems which could cause
non-termination. Therefore, the non-termination processors should only operate
on these sub-problems and thus, they only have to regard a subset of the rules
when searching for non-termination. On the other hand, processors that try to
disprove termination are also helpful for the termination proof, even if some of
the previous processors were incomplete. The reason is that there are many in-
determinisms in a termination proof attempt, since usually many DP processors
can be applied to a DP problem. Thus, if one can find out that a DP problem
is infinite, one knows that one has reached a “dead end” and should backtrack.

To prove non-termination within the DP framework, in Sect. 4.1 we introduce
looping DP problems and in Sect. 4.2 we show how to detect such DP problems
automatically. Finally, Sect. 4.3 is a comparison with related work.

4.1 A DP Processor Based on Looping DP Problems

An obvious approach to find infinite reductions is to search for a term s which
evaluates to a term C[sμ] containing an instance of s. A TRS with such reduc-
tions is called looping. Clearly, a naive search for looping terms is very costly.

In contrast to “looping TRSs”, when adapting the concept of loopingness to
DP problems, we only have to consider terms s occurring in dependency pairs
and we do not have to regard any contexts C. The reason is that such contexts
are already removed by the construction of dependency pairs. Thm. 23 shows
that in this way one can indeed detect all looping TRSs.
Definition 22 (Looping DP Problems). A DP problem (P ,R, t) is looping
iff there is a (P ,R)-chain s1 → t1, s2 → t2, . . . with tiσ →∗

R si+1σ for all i such
that s1σ matches skσ for some k > 1 (i.e., s1σμ = skσ for a substitution μ).

Theorem 23. A TRS R is looping iff the DP problem (DP (R),R, t) is looping.

Example 24. Consider Toyama’s example R = {f(0, 1, x) → f(x, x, x), g(y, z) →
y, g(y, z) → z} and P = DP (R) = {F(0, 1, x) → F(x, x, x)}. We have the (P ,R)-
chain F(0, 1, x1) → F(x1, x1, x1), F(0, 1, x2) → F(x2, x2, x2), since F(x1, x1, x1)σ
→∗

R F(0, 1, x2)σ for σ(x1) = σ(x2) = g(0, 1). As the term F(0, 1, x1)σ matches
F(0, 1, x2)σ (they are even identical), the DP problem (P ,R, t) is looping.

Our goal is to detect looping DP problems. In the termination case, every
looping DP problem is infinite and hence, if all preceding DP processors were
complete, then termination is disproved. However, the definition of “looping”

Proving and Disproving Termination of Higher-Order Functions 227

is looping, but (DP (R),R, i) is finite and R is innermost terminating.6

Nevertheless, for non-overlapping DP problems, (P ,R, i) is infinite whenever
(P ,R, t) is infinite. So here loopingness of (P ,R, t) indeed implies that (P ,R, i)
is infinite. We call (P ,R, e) non-overlapping if R is non-overlapping and no
left-hand side of R unifies with a non-variable subterm of a left-hand side of P .

Lemma 25 (Looping and Infinite DP Problems).

(a) If (P ,R, t) is looping, then (P ,R, t) is infinite.
(b) If (P ,R, t) is infinite and non-overlapping, then (P ,R, i) is infinite.

Now we can define the DP processor for proving non-termination.

Theorem 26 (Non-termination Processor). The following DP processor
Proc is sound and complete. For a DP problem (P ,R, e), Proc returns
• “no”, if (P ,R, t) is looping and (e = t or (P ,R, e) is non-overlapping)
• {(P ,R, e)}, otherwise

4.2 Detecting Looping DP Problems

Our criteria to detect looping DP problems automatically use narrowing.

Definition 27 (Narrowing). Let R be a TRS which may also have rules l → r
with V(r) �⊆ V(l) or l ∈ V. A term t narrows to s, denoted t �R,δ,p s, iff there is a
substitution δ, a (variable-renamed) rule l → r ∈ R and a non-variable position p
of t where δ = mgu(t|p, l) and s = t[r]pδ. Let �R,δ be the relation which permits
narrowing steps on all positions p. Let �(P,R),δ denote �P,δ,ε ∪ �R,δ, where
ε is the root position. Moreover, �∗

(P,R),δ is the smallest relation containing
�(P,R),δ1 ◦ . . . ◦ �(P,R),δn

for all n ≥ 0 and all substitutions where δ = δ1 . . . δn.

Example 28. Let R = {f(x, y, z) → g(x, y, z), g(s(x), y, z) → f(z, s(y), z)} and
P = DP (R) = {F(x, y, z) → G(x, y, z), G(s(x), y, z) → F(z, s(y), z)}. The term
G(x, y, z) can only be narrowed by the rule G(s(x′), y′, z′) → F(z′, s(y′), z′) on the
root position and hence, we obtain G(x, y, z) �P,[x/s(x′), y′/y, z′/z],ε F(z, s(y), z).

To find loops, we narrow the right-hand side t of a dependency pair s → t until
one reaches a term s′ such that sδ semi-unifies with s′ (i.e., sδμ1μ2 = s′μ1 for
some substitutions μ1 and μ2). Here, δ is the substitution used for narrowing.
Then we indeed have a loop as in Def. 22 by defining σ = δμ1 and μ = μ2.
Semi-unification encompasses both matching and unification and algorithms for
semi-unification can for example be found in [21,27].
Theorem 29 (Loop Detection by Forward Narrowing). Let (P ,R, e) be a
DP problem. If there is an s → t ∈ P such that t �∗

(P,R),δ s′ and sδ semi-unifies
with s′, then (P ,R, t) is looping.

6 One can adapt “loopingness” to the innermost case: (P , R, i) is looping iff there
is an innermost (P , R)-chain s1 → t1, s2 → t2, . . . such that tiσμn i→∗

R si+1σμn,
s1σμ = skσ, and siσμn is in normal form for all i and all n ≥ 0. Then looping-
ness implies that the DP problem is infinite, but now one has to examine infinitely
many instantiations siσμn and tiσμn. Nevertheless, one can also formulate sufficient
conditions for loopingness in the innermost case which are amenable to automation.

from Def. 22 cannot be used for innermost termination: in Ex. 24, (DP (R),R, t)

228 J. Giesl, R. Thiemann, and P. Schneider-Kamp

Example 30. We continue with Ex. 28. We had G(x, y, z) �(P,R),δ F(z, s(y), z)
where δ = [x/s(x′), y′/y, z′/z]. Applying δ to the left-hand side s = F(x, y, z)
of the first dependency pair yields F(s(x′), y, z). Now F(s(x′), y, z) semi-unifies
with F(z, s(y), z), since F(s(x′), y, z)μ1μ2 = F(z, s(y), z)μ1 for the substitutions
μ1 = [z/s(x′)] and μ2 = [y/s(y)]. (However, the first term does not match or
unify with the second.) Thus, (P ,R, t) is looping and R does not terminate.

However, while the DP problem of Toyama’s example (Ex. 24) is looping, this
is not detected by Thm. 29. The reason is that the right-hand side F(x, x, x) of the
only dependency pair cannot be narrowed. Therefore, we now introduce a “back-
ward” variant7 of the above criterion which narrows with the reversed TRSs P−1

and R−1. Of course, in general P−1 and R−1 may also have rules l → r with
V(r) �⊆ V(l) or l ∈ V . However, the usual definition of narrowing can immediately
be extended to such TRSs, cf. Def. 27.

Theorem 31 (Loop Detection by Backward Narrowing). Let (P ,R, e)
be a DP problem. If there is an s → t ∈ P such that s �∗

(P−1,R−1),δ t′ and t′

semi-unifies with tδ, then (P ,R, t) is looping.

Example 32. To detect that Toyama’s example (Ex. 24) is looping, we start with
the left-hand side s = F(0, 1, x) and narrow 0 to g(0, z) using y → g(y, z) ∈ R−1.
Then we narrow 1 to g(y′, 1) by z′ → g(y′, z′). Therefore we obtain F(0, 1, x)
�∗

(P−1,R−1),[y/0, z′/1] F(g(0, z), g(y, 1), x). Now t′ = F(g(0, z), g(y, 1), x) (semi-)
unifies with the corresponding right-hand side t = F(x, x, x) using μ1 =[x/g(0, 1),
y/0, z/1]. Thus, (DP (R),R, t) is looping and the TRS is not terminating.

However, there are also TRSs where backward narrowing fails and forward
narrowing succeeds.8 Note that Ex. 24 where forward narrowing fails is not
right-linear and that the example in Footnote 8 where backward narrowing fails
is not left-linear. In fact, our experiments show that most looping DP problems
(P ,R, t) can be detected by forward narrowing if P ∪ R is right-linear and by
backward narrowing if P∪R is left-linear. Therefore, we use the non-termination
processor of Thm. 26 with the following heuristic in our system AProVE [15]:

• If P ∪R is right- and not left-linear, then use forward narrowing (Thm. 29).
• Otherwise, we use backward narrowing (Thm. 31). If P∪R is not left-linear,

then moreover we also permit narrowing steps in variables (i.e., t|p ∈ V is
permitted in Def. 27). The reason is that then there are looping DP problems
which otherwise cannot be detected by forward or backward narrowing.9

• Moreover, to obtain a finite search space, we use an upper bound on the
number of times that a rule from P ∪R can be used for narrowing.

7 Thus, non-termination can be investigated both by forward and by backward analy-
sis. In that sense, non-termination is similar to several other properties of programs
for which both forward and backward analysis techniques are used. A well-known
such property is strictness in lazy functional languages. Here, classical forward and
backward analysis techniques are [26] and [35], respectively.

8 An example is R={f(x, x)→ f(0, 1), 0→a, 1→a}, P =DP (R)={F(x,x)→F(0, 1)}.
9 An example is the well-known TRS of Drosten [11]. Nevertheless, then there are also

looping DP problems which cannot even be found when narrowing into variables.

Proving and Disproving Termination of Higher-Order Functions 229

4.3 Comparison with Related Work

We use narrowing to identify looping DP problems. This is related to the concept
of forward closures of a TRS R [10]. However, our approach differs from forward
closures by starting from the rules of another TRS P and by also allowing narrow-
ings with P ’s rules on root level. (The reason is that we prove non-termination
within the DP framework.) Moreover, we also regard backward narrowing.

There are only few papers on automatically proving non-termination of
TRSs. An early work is [28] which detects TRSs that are not simply terminating
(but they may still terminate). Recently, [36,37] presented methods for proving
non-termination of string rewrite systems (i.e., TRSs where all function symbols
have arity 1). Similar to our approach, [36] uses (forward) narrowing and [37]
uses ancestor graphs which correspond to (backward) narrowing. However, our
approach differs substantially from [36,37]: our technique works within the DP
framework, whereas [36,37] operate on the whole set of rules. Therefore, we can
benefit from all previous DP processors which decompose the initial DP prob-
lem into smaller sub-problems and identify those parts which could cause non-
termination. Moreover, we regard full term rewriting instead of string rewriting.
Therefore, we use semi-unification to detect loops, whereas for string rewriting,
matching is sufficient. Finally, we also presented a condition to disprove inner-
most termination, whereas [36,37] only try to disprove full termination.

5 Experiments and Conclusion

The DP framework is a general concept for combining termination techniques
in a modular way. We presented two important improvements: First, we ex-
tended the framework in order to handle higher-order functions, represented as
applicative first-order TRSs. To this end, we developed three new contributions:
a refined approximation of dependency graphs, an improved definition of usable
rules, and a new processor to transform applicative DP problems into functional
form. The advantages of our approach, also compared to related work, are the
following: it is simple and very easy to integrate into any termination prover
based on dependency pairs (e.g., AProVE [15], CiME [9], TTT [19]). Moreover,
it encompasses the original DP framework, e.g., it is at least as successful on
ordinary first-order functions as the original dependency pair technique. Finally,
our approach treats untyped higher-order functions, i.e., it can be used for ter-
mination analysis of polymorphic and untyped functional languages.

As a second extension within the DP framework, we introduced a new pro-
cessor for disproving termination automatically (an important problem which
was hardly tackled up to now). A major advantage of our approach is that it
combines techniques for proving and for disproving termination in the DP frame-
work, which is beneficial for both termination and non-termination analysis.

We implemented all these contributions in the newest version of our termi-
nation prover AProVE [15]. Due to the results of this paper, AProVE 1.2 was the
most powerful tool for both termination and non-termination proofs of TRSs at
the Annual International Competition of Termination Tools 2005 [34]. In the fol-
lowing table, we compare AProVE 1.2 with its predecessor AProVE 1.1d-γ, which

230 J. Giesl, R. Thiemann, and P. Schneider-Kamp

was the winning tool for TRSs at the competition in 2004. While AProVE 1.1d-γ
already contained our results on non-termination analysis, the contributions on
handling applicative TRSs from Sect. 3 were missing. For the experiments, we
used the same setting as in the competition with a timeout of 60 seconds for
each example (where however most proofs take less than two seconds).

higher-order (61 TRSs) non-term (90 TRSs) TPDB (838 TRSs)
t n t n t n

AProVE 1.2 43 8 25 61 639 95

AProVE 1.1d-γ 13 7 24 60 486 92

Here, “higher-order” is a collection of untyped versions of typical higher-
order functions from [2,3,6,24,25,33] and “non-term” contains particularly many
non-terminating examples. “TPDB” is the Termination Problem Data Base
used in the annual termination competition [34]. It consists of 838 (innermost)
termination problems for TRSs from different sources. In the tables, t and n are
the numbers of TRSs where termination resp. non-termination could be proved.

AProVE 1.2 solves the vast majority of the examples in the “higher-order”-
and the “non-term”-collection. This shows that our results for higher-order func-
tions and non-termination are indeed successful in practice. In contrast, the first
column demonstrates that previous techniques for automated termination proofs
often fail on applicative TRSs representing higher-order functions. Finally, the
last two columns show that our contributions also increase power substantially
on ordinary non-applicative TRSs (which constitute most of the TPDB). For fur-
ther details on our experiments and to download AProVE, the reader is referred
to http://www-i2.informatik.rwth-aachen.de/AProVE/.

References

1. T. Aoto and T. Yamada. Termination of simply typed term rewriting systems by
translation and labelling. In Proc. RTA ’03, LNCS 2706, pages 380–394, 2003.

2. T. Aoto and T. Yamada. Termination of simply typed applicative term rewriting
systems. In Proc. HOR ’04, Report AIB-2004-03, RWTH, pages 61–65, 2004.

3. T. Aoto and T. Yamada. Dependency pairs for simply typed term rewriting. In
Proc. RTA ’05, LNCS 3467, pages 120–134, 2005.

4. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

5. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
6. R. Bird. Introduction to Functional Prog. using Haskell. Prentice Hall, 1998.
7. F. Blanqui. A type-based termination criterion for dependently-typed higher-order

rewrite systems. In Proc. RTA ’04, LNCS 3091, pages 24–39, 2004.
8. C. Borralleras and A. Rubio. A monotonic higher-order semantic path ordering.

In Proc. LPAR ’01, LNAI 2250, pages 531–547, 2001.
9. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME. http://cime.lri.fr.

10. N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3:69–116, 1987.
11. K. Drosten. Termersetzungssysteme: Grundlagen der Prototyp-Generierung alge-

braischer Spezifikationen. Springer, 1989.
12. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appl.

Algebra in Engineering, Communication and Computing, 12(1,2):39–72, 2001.

Proving and Disproving Termination of Higher-Order Functions 231

13. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting
using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

14. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Improving dependency
pairs. In Proc. LPAR ’03, LNAI 2850, pages 165–179, 2003.

15. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In Proc. RTA ’04, LNCS 3091, pages 210–220, 2004.

16. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The DP framework: Combining
techniques for autom. termination proofs. In Proc. LPAR ’04, LNAI 3452, 2005.

17. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termi-
nation of higher-order functions. Technical Report AIB-2005-03, RWTH Aachen,
2005. Available from http://aib.informatik.rwth-aachen.de.

18. N. Hirokawa and A. Middeldorp. Automating the DP method. In Proc. CADE ’03,
LNAI 2741, pages 32–46, 2003. Full version in Information and Computation.

19. N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool. In Proc. RTA ’05,
LNCS 3467, pages 175–184, 2005.

20. J.-P. Jouannaud and A. Rubio. Higher-order recursive path orderings. In Proc.
LICS ’99, pages 402–411, 1999.

21. D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-unification. Theoretical
Computer Science, 81(2):169–187, 1991.

22. R. Kennaway, J. W. Klop, R. Sleep, and F.-J. de Vries. Comparing curried and
uncurried rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.

23. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation.
In Proc. PPDP ’99, LNCS 1702, pages 48–62, 1999.

24. K. Kusakari. On proving termination of term rewriting systems with higher-order
variables. IPSJ Transactions on Programming, 42(SIG 7 (PRO 11)):35–45, 2001.

25. M. Lifantsev and L. Bachmair. An LPO-based termination ordering for higher-
order terms without λ-abstraction. In Proc. TPHOLs ’98, LNCS 1479, 1998.

26. A. Mycroft. The theory and practice of transforming call-by-need into call-by-value.
In Proc. 4th Int. Symp. on Programming, LNCS 83, pages 269–281, 1980.

27. A. Oliart and W. Snyder. A fast algorithm for uniform semi-unification. In Proc.
CADE ’98, LNCS 1421, pages 239–253, 1998.

28. D. A. Plaisted. A simple non-termination test for the Knuth-Bendix method. In
Proc. CADE ’86, LNCS 230, pages 79–88, 1986.

29. J. van de Pol. Termination of higher-order rewrite systems. PhD, Utrecht, 1996.
30. M. Sakai, Y. Watanabe, and T. Sakabe. An extension of dependency pair method

for proving termination of higher-order rewrite systems. IEICE Transactions on
Information and Systems, E84-D(8):1025–1032, 2001.

31. M. Sakai and K. Kusakari. On dependency pair method for proving termination
of higher-order rewrite systems. IEICE Trans. on Inf. & Sys., 2005. To appear.

32. R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular termination
proofs using dependency pairs. In Proc. IJCAR ’04, LNAI 3097, pages 75–90, 2004.

33. Y. Toyama. Termination of S-expression rewriting systems: Lexicographic path
ordering for higher-order terms. In Proc. RTA ’04, LNCS 3091, pages 40–54, 2004.

34. TPDB web page. http://www.lri.fr/~marche/termination-competition/.
35. P. Wadler and J. Hughes. Projections for strictness analysis. In Proc. 3rd Int.

Conf. Functional Prog. Lang. & Comp. Arch., LNCS 274, pages 385–407, 1987.
36. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc. 15th

RTA, LNCS 3091, pages 85–94, 2004.
37. H. Zantema. TORPA: Termination of string rewriting proved automatically. Jour-

nal of Automated Reasoning, 2005. To appear.

Proving Liveness with Fairness Using Rewriting

Adam Koprowski and Hans Zantema

Technical University of Eindhoven,
Department of Computer Science,

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
{A.Koprowski, H.Zantema}@tue.nl

Abstract. In this paper we combine rewriting techniques with verifica-
tion issues. More precisely, we show how techniques for proving relative
termination of term rewrite systems (TRSs) can be applied to prove
liveness properties in fair computations. We do this using a new trans-
formation which is stronger than the sound transformation from [5] but
still is suitable for automation. On the one hand we show completeness
of this approach under some mild conditions. On the other hand we show
how this approach applies to some examples completely automatically,
using the TPA tool designed for proving relative termination of TRSs. In
particular we succeed in proving liveness in the classical readers-writers
synchronization problem.

1 Introduction

Usually, liveness is roughly defined as: “something will eventually happen” and
it is often remarked that “termination is a particular case of liveness”. In [5]
the relationship between liveness and termination was investigated in more de-
tail, and it was observed that conversely liveness can be seen as termination
of a modified relation. Since various techniques have been developed to prove
termination automatically, an obvious goal is to apply these techniques in order
to prove liveness properties. In [5] a method for transforming a class of liveness
problems to problems of termination of term rewrite systems (TRSs) has been
proposed. For a slightly different setting in [6] another approach was proposed.

Two transformations were given in [5]. The first one, sound and complete,
even for extremely simple liveness problems results in complicated TRSs for
which proving termination, especially in an automated way, is very difficult.
That was the motivation for another, much simpler, transformation, which is
sound but not complete.

In this paper this approach is extended in two ways. First we extend the
basic framework to fair computations. That means that we do not restrict to the
basic notion of liveness stating that any infinite computation eventually reaches
a good state, but we do this for infinite fair computations, being infinite com-
putations containing some essential computation steps infinitely often. Fairness
has been studied extensively in [4]. In applications one is often interested in the
behavior of infinite fair computations rather than of arbitrary infinite compu-
tations. For instance, in a waiting line protocol one may want to prove that

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 232–247, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Proving Liveness with Fairness Using Rewriting 233

eventually all old clients will be served. If it is allowed that infinitely many new
clients come in, one may think of an infinite computation in which this does not
hold: infinitely many new clients come in but no client is ever served. However,
if serving of clients is defined to be the essential computation step, in a corre-
sponding fair computation it can be proved that eventually all old clients will be
served. It turns out that just like liveness corresponds to termination, liveness
in fair computations corresponds to relative termination. So combining liveness
and fairness is a main issue of this paper.

The second extension is the following. It turns out that the simple trans-
formation presented in [5] often results in non-terminating TRSs, and therefore
is not applicable, also in liveness problems not involving fairness. Therefore we
propose a new transformation. Our new transformation is slightly more compli-
cated than the simple transformation from [5], but much simpler than the sound
and complete transformation from [5]. However, assuming some mild conditions,
in this paper we show that our new transformation is sound and complete too.
Moreover, we show in two examples that our new transformation results in TRSs
for which (relative) termination can be proved fully automatically. In particular
we consider the classical readers-writers synchronization problem, in which the
priority of access is controlled in an obvious way. The desired liveness property
states that every process in the system eventually gets access to the resource.
Using our technique we succeed in automatically proving this liveness property.
Both examples involve infinite state spaces and hence the standard model check-
ing techniques are not applicable to them.

To this end a tool — TPA (Termination Proved Automatically, http://www.
win.tue.nl/tpa) — was developed for proving relative termination of TRSs au-
tomatically, based on polynomial interpretations [9], semantic labelling with
booleans and with natural numbers [13], recursive path ordering [3] and a sim-
ple version of dependency pairs [1]. Most of those well-known termination tech-
niques, except dependency pairs, were extended in a straightforward way to deal
also with relative termination. TPA took part in the annual termination competi-
tion in 2005 (http://www.lri.fr/∼marche/termination-competition/2005)
where it got 3rd place out of 6 participating tools.

This paper is organized as follows. In Section 2 the general framework from
[5] is extended in order to deal with liveness with fairness. Next in Section 3 the
new transformation is introduced and the corresponding theorems on soundness
and completeness are given. Finally in Section 4 two examples are presented in
which this new approach has been applied.

2 Liveness with Fairness Conditions

2.1 Liveness in Abstract Reduction

First we present the framework as described in [5] with no more than necessary
details to understand its extension given later. For a more elaborate description
we refer to the original article.

234 A. Koprowski and H. Zantema

We give the model of the system that should be verified in the framework
of abstract reduction. We assume a set of states S and a binary relation on
states expressing computation steps, → ⊆ S × S. As usual we write →∗ for its
reflexive transitive closure and →+ for its transitive closure. We define a set of
states in normal form as NF ≡ {s ∈ S | ¬∃s′ ∈ S : s → s′} and a set of
terms in normal form reachable from a given set of states I as NF(I) ≡ {s ∈
NF | ∃t ∈ I : t →∗ s}. We call a reduction sequence maximal if it is either infinite
or its last element is in NF. By SN(I,→) we denote termination of reduction
sequences starting in I and by SN(→) termination of arbitrary sequences. That
is: SN(I,→) ≡ ¬∃t1, t2, . . . : t1 ∈ I ∧ ∀i : ti → ti+1 and SN(→) ≡ SN(S,→).

With respect to a set of initial states I ⊆ S and a set of good statesG ⊆ S, we
say that the liveness property Live(I,→,G) holds if all maximal →-reductions
starting in I contain an element from G. More precisely:

Definition 1 (Liveness). Let S be a set of states, →⊆ S × S; G, I ⊆ S. Then
Live(I,→,G) holds iff

– ∀t1, t2, . . . :
{

t1 ∈ I
∀i : ti → ti+1

}
=⇒ ∃i : ti ∈ G, and

– ∀t1, . . . , tn :

⎧⎨⎩
t1 ∈ I

tn ∈ NF
∀i ∈ {1, . . . , n− 1} : ti → ti+1

⎫⎬⎭ =⇒ ∃i ∈ {1, . . . , n} : ti ∈ G.

We define the restricted computation relation →G≡ {(s, t) | s → t ∧ s /∈ G}.
The following theorem from [5] relates liveness to termination of →G.

Theorem 2. If NF(I) ⊆ G then Live(I,→,G) iff SN(I,→G).

2.2 Liveness with Fairness in Abstract Reduction

In liveness we are mainly interested in the behavior of infinite reduction se-
quences, or shortly, infinite reductions. However, in many applications one is
not interested in arbitrary infinite reductions but in infinite fair reductions, de-
fined as follows. Instead of a single rewrite relation → we have two relations
→,

=→⊆ S × S 1. An infinite reduction in → ∪ =→ is called fair (with respect
to →) if it contains infinitely many →-steps. Finally we say that liveness for
fair reductions starting in I with respect to →, =→ and G holds, denoted as
Live(I,→,

=→,G), if any fair → ∪ =→ reduction starting in I contains an element
of G. Note that all fair reductions are infinite, hence in investigating liveness
with fairness we are only interested in systems with infinite behavior.

Definition 3 (Liveness with fairness). Let S be a set of states, →,
=→⊆ S ×

S; G, I ⊆ S. Then liveness for fair reductions with respect to I,→,
=→ and G,

Live(I,→,
=→,G), holds iff

1 The notation for → and
=→ is chosen to be consistent with the notation for rel-

ative termination problems as used in TPDB (Termination Problem Database,
http://www.lri.fr/∼marche/tpdb/). The database serves as a base of problems
for Termination Competitions.

Proving Liveness with Fairness Using Rewriting 235

– ∀t1, t2, . . . :

⎧⎨⎩
t1 ∈ I

∀i : ti → ti+1 ∨ ti
=→ ti+1

∀i∃j > i : tj → tj+1

⎫⎬⎭ =⇒ ∃i : ti ∈ G

Our definition is based on the notion of relative termination. We define that
→ terminates relatively to =→ if every (possibly infinite) → ∪ =→ computation
contains only finitely many → steps. We introduce the relation → /

=→ ≡ =→∗

· → · =→∗
and observe that relative termination of → to =→ is equivalent to

SN(→ /
=→). Also observe that SN(→/ ∅) ≡ SN(→) so termination is a special

case of relative termination.
The result of the next theorem gives us a method of verifying liveness with

fairness requirements.

Theorem 4. Live(I,→,
=→,G) holds iff SN(I,→G /

=→G).

Proof. (⇒) Assume that Live(I,→,
=→,G) holds and SN(I,→G /

=→G) does not
hold. From the latter we get that there is an infinite, fair reduction sequence
t1, t2, . . . with t1 ∈ I and ∀i : ti →G ti+1 ∨ ti

=→G ti+1. From the definition
of →G all ti /∈ G. But then this reduction sequence is a counter-example for
Live(I,→,

=→,G).
(⇐) Since SN(I,→G /

=→G) then in every infinite, fair → ∪ =→ reduction
starting in I there is an element from G (which blocks further →G ∪ =→G reduc-
tions) and that is exactly what the definition of Live(I,→,

=→,G) calls for. "#

2.3 Liveness with Fairness in Term Rewriting

In previous sections we described the transition relation by means of abstract
reductions, and related liveness of → to termination of →G. Our goal is to
employ techniques for proving termination of rewriting in order to prove liveness
properties. To that end a transformation is required since usually →G is not a
rewrite relation even if → is a rewrite relation.

For a signature Σ and a set V of variables, we denote the set of terms over
Σ and V by T (Σ,V). Now we represent the computation states by terms, so S
becomes T (Σ,V) and I,G ⊆ T (Σ,V). Abstract reduction relations → and =→
now correspond to two TRSs over the same signature Σ: R and R=, respectively.
As a shorthand for →R we write → and for →R= we simply write =→. Just like
it is usual to write SN(R) rather than SN(→R), we will write Live(I, R, R=,G)
rather than Live(I,→R,→R= ,G).

For an introduction to term rewriting the reader is referred, for instance, to
[12].

Now, again after [5], we will introduce the notion of top TRSs, which we are
going to use to model liveness problems.

Definition 5 (Top TRSs). Let Σ be a signature and top be a fresh unary
symbol in this signature, that is top �∈ Σ. A term t ∈ T (Σ ∪ {top},V) is called a
top term if it contains exactly one instance of the top symbol, at the root of the
term. We denote the set of top terms by Ttop(Σ,V).

236 A. Koprowski and H. Zantema

A TRS over Σ ∪ {top} is called a top term rewrite system (top TRS) if for
all its rules � → r one of the following holds:

– Both � and r are top terms. Then we call this rule a top rule.
– Both � and r do not contain an instance of the top symbol. Then the rule is

called a non-top rule.

Clearly for top TRSs every reduction starting in a top term only contains
top terms. In the remainder we restrict ourselves to liveness with respect to

– reduction relations described by top TRSs,
– the set of initial states consisting of all top terms, and
– the set of good states of the form:

G(P) = {t ∈ Ttop(Σ,V) | ¬∃p ∈ P, σ, C : t = C[pσ]},

for some set P ⊆ T (Σ,V), that is G(P) represents top terms not containing
an instance of any of the terms from P .

So we are going to investigate liveness properties of the form:

Live(Ttop(Σ,V), R, R=,G(P))

for some top TRSs R and R=. This is equivalent to proving that every infinite
fair reduction of top terms contains a term which does not contain an instance
of any of the terms from P .

As we will show later this type of question can be transformed to a rela-
tive termination question of an ordinary TRS. This allows us to employ the
techniques for proving relative termination for TRSs to verify liveness proper-
ties. Also, while quite restricted, this setting seems to be general enough to be
able to cope with some interesting and practical examples, two of which will be
presented at the end of this paper.

3 A New Transformation

3.1 Motivation

We are seeking a transformation with the property that relative termination of
the transformed pair of systems implies that the liveness property in question
holds (even better if we can have equivalence). In [5] two such transformations
were proposed: the first one sound and complete (equivalence between termi-
nation and liveness holds) and the second one only sound (termination implies
liveness but not the other way around) but significantly simpler. Experiments
with them show that the former is so complex that, although it is a nice theoreti-
cal result, in practice it leads to TRSs far too complicated for present termination
techniques to deal with, especially in an automated way. The sound transforma-
tion does not have this disadvantage but in several examples it is not powerful

Proving Liveness with Fairness Using Rewriting 237

enough, leading to non-terminating TRSs, while the desired liveness property
does hold.

In this section we propose a new transformation avoiding the aforementioned
problems. But before we do that we will shortly introduce the sound transfor-
mation LS from [5] where P = {p}. As in our presentation also LS can be easily
generalized to allow P to contain more than one element, as remarked in [5].

Definition 6 (LS). Let R be a top TRS over Σ ∪ {top} and p ∈ T (Σ,V). We
define LS(R, p) to consist of the following rules:

� → r for all non-top rules � → r in R

top(�) → top(check(r)) for all top rules top(�) → top(r) in R

check(f(x1, . . . , xn)) → f(x1, . . . , check(xi), . . . , xn)
for all f ∈ Σ of arity n ≥ 1, 1 ≤ i ≤ n

check(p) → p

While LS is sound, it is not complete. This is illustrated by the following
TRS R = {top(f(x, b)) → top(f(b, b)), a → b}. Normal forms do not contain
symbol a and in every infinite reduction after finitely many steps only term
top(f(b, b)) occurs, so liveness for p = a holds. However, LS(R, p) admits an
infinite reduction, namely: top(check(f(b, b))) top(f(check(b), b)).

3.2 Definition of the Transformation

We give a new transformation inspired by the sound and complete transformation
presented in [5] but significantly simpler so that obtained systems can still be
treated with tools for automatic termination proving. It can deal with a much
broader class of liveness problems than the sound transformation from [5]. We
present it for only one unary top symbol but generalization to more top symbols
and/or different arities is straightforward.

Definition 7 (LT). Let R and R= be top TRSs over Σ ∪ {top} and P ⊆
T (Σ,V). The transformed systems LT(R) and LT=(R=, P) over Σ ∪ {top, ok,
check} are defined as follows:

LT(R)

�→ r for all non-top rules � → r in R

top(ok(�)) → top(check(r)) for all top rules top(�) → top(r) in R

LT=(R=, P)

�→ r for all non-top rules � → r in R=

top(ok(�)) → top(check(r)) for all top rules top(�) → top(r) in R=

check(p) → ok(p) for all p ∈ P

check(f(x1, . . . , xn)) → f(x1, . . . , check(xi), . . . , xn)
for all f ∈ Σ of arity n ≥ 1, 1 ≤ i ≤ n

f(x1, . . . , ok(xi), . . . , xn) → ok(f(x1, . . . , xn))
for all f ∈ Σ of arity n ≥ 1, 1 ≤ i ≤ n

238 A. Koprowski and H. Zantema

The idea behind this transformation is that the presence of an ok symbol at
the root of the term is intended to indicate existence of an instance of p ∈ P .
Every time a top rule is applied this ok symbol is transformed to a check symbol.
This check symbol can traverse toward the leaves and upon reaching an instance
of some term p ∈ P is transformed back into an ok symbol. This ok symbol can
move up again and allow further top reductions upon reaching the root of the
term.

Few remarks concerning the transformation:

– For readability concerns we will write →LT instead of →LT(R) and =→LT
instead of →LT=(R=,P).

– In order to apply automatic techniques the set P should be finite, otherwise
the TRS LT=(R=, P) is infinite.

– If the liveness problem does not involve fairness, so it is modelled by single
TRS R, then we define the result of the transformation to be also a single
TRS, namely LT=(R, P).

3.3 Soundness

Now we show soundness, that is relative termination of the transformed system
implies liveness of the original one.

Theorem 8 (Soundness). Let R, R= be top TRSs over Σ ∪ {top}, let P ⊆
T (Σ,V). Then:

SN(LT(R)/ LT=(R=, P)) =⇒ Live(Ttop(Σ,V), R, R=,G(P))

Proof. Assume that SN(LT(R)/ LT=(R=, P)) holds and Live(Ttop(Σ,V), R, R=,
G(P)) does not hold. By Theorem 4, SN(Ttop(Σ,V), →G /

=→G) does not hold
as it is equivalent to Live(Ttop(Σ,V), R, R=,G(P)). That means that there is
an infinite →G /

=→G reduction of top terms. We will show that this infinite
reduction can be mapped to an infinite →LT /

=→LT reduction, thus contradicting
SN(LT(R)/ LT=(R=, P)). For that purpose it is sufficient to show that:

top(t) →G /
=→G top(u) =⇒ top(ok(t)) →LT /

=→LT top(ok(u))

that is that any step in →G /
=→G can be mimicked by a step in →LT /

=→LT. It
easily follows if we can show that:

(i) whenever top(t) →G top(u) then top(ok(t)) →LT /
=→LT top(ok(u)), and

(ii) whenever top(t) =→G top(u) then top(ok(t)) =→∗
LT top(ok(u)).

(i) First observe that if top(t) →G top(u) by the application of a non-top rule
� → r then the same rule is present in LT(R) so we trivially have top(ok(t)) →LT
/

=→LT top(ok(u)).
If on the other hand top(t) →G top(u) by application of a top rule then from

the definition of top TRSs we have that t = �δ and u = rδ for some substitution
δ and some rule top(�) → top(r) from R. Note that top(u) is part of an infinite

Proving Liveness with Fairness Using Rewriting 239

→G /
=→G-reduction so top(u) →G top(w) or top(u) =→G top(w) for some term

w. Then from the definition of →G we get that top(u) does contain an instance
of some p ∈ P which means that we have u = C[pγ] for some context C and
some substitution γ. Then we have:

top(ok(t)) = top(ok(�δ))
→LT top(check(rδ))
= top(check(C[pγ]))

=→∗
LT top(C[check(p)γ])

=→LT top(C[ok(p)γ])
=→∗

LT top(ok(C[pγ])) = top(ok(u))

The reasoning for (ii) is similar, just the first step is from =→LT(R) instead of
→LT(R). "#

3.4 Completeness Results

In the previous subsection we proved that our approach is correct, that is that
the proposed transformation is sound. Now we will try to address the question
of its power. First we show (Theorem 9) that any liveness problem that could be
dealt with using LS can also be dealt with using LT. Then we show that under
some restrictions our new approach is even complete.

Theorem 9. Let R be a top TRS over Σ ∪ {top} and let p ∈ T (Σ,V). Then
SN(LS(R, p)) implies SN(LT=(R, {p})).

Proof. Follows from the observation that any LT=(R, {p}) reduction can be
mapped to LS(R, p) reduction by dropping all ok symbols and the rule for prop-
agating ok symbol is terminating in itself.

Note however that there is no ‘if and only if’ in Theorem 9, which means that
LT may succeed in case LS fails. A very simple example showing that is the TRS
R = {top(f(x, b)) → top(f(b, b)), a → b} used at the end of Section 3.1 to show
incompleteness of LT. We concluded there that LS(R, p) is not terminating,
however it is not difficult to see that LT=(R, {p}) is terminating. Two more
complex and practical examples will be presented in Section 4.

There is a good reason why the sound and complete transformation presented
in [5] is so complicated, so clearly enough we cannot hope that a transformation
as simple as LT would be complete. The best we can hope for is completeness
under some additional restrictions on the shape of TRSs modelling the liveness
problem. Indeed that is the case. First we present three such requirements along
with examples showing that if they do not hold completeness is lost. However,
for the setting of liveness problems, these requirements are quite mild. Then we
will prove completeness for the restricted set of systems for which they do hold.

Example 1. Let us begin with a very simple example, namely:

R = {top(a) → top(b), b → a} R= = ∅.

240 A. Koprowski and H. Zantema

Consider liveness with P = {a}, meaning that in every reduction eventually
a term without a is reached. It is an easy observation that in every infinite
reduction of this TRS its two rules have to be applied interchangeably, so after
at most one step the term without a is reached and liveness holds. But the
transformation yields:

LT(R) = {top(ok(a)) → top(check(b)), b → a}
LT=(R=, P) = {check(a) =→ ok(a)}.

The above system allows an infinite →LT /
=→LT reduction, namely:

top(ok(a)) →LT top(check(b)) →LT top(check(a)) =→LT top(ok(a)) →LT . . .

The reason why things go wrong here is that some term from P (being a in this
case) can be created, that is there are reductions from terms not containing an
instance of p (for any p ∈ P) to terms containing an instance of p (for some
p ∈ P). We can mend that by forbidding this kind of behavior. Let us note
that this means restricting to liveness problems for which if the desired property
holds at some point it will hold from that point onwards.

From now on, for readability concerns, we will assume that rules from R are
given as l → r and rules from R= as l

=→ r and we will just present a set of
rules leaving the separation to R and R= implicit. Now we move on to another
example showing another property that can destroy liveness.

Example 2. Consider the TRS over {f, g, top, a, b} consisting of the following
rules:

top(g(x, y, a)) → top(f(x)), f(x) → g(x, x, x).

In any infinite top reduction the second rule is applied infinitely often, and
a straightforward analysis shows that after applying the second rule in a top
reduction, no infinite reduction from a term containing the symbol b is possible.
So liveness with P = {b} holds. The transformed system reads:

(1) top(ok(g(x, y, a))) → top(check(f(x))) (7) check(g(x, y, z)) =→ g(x, y, check(z))
(2) f(x) → g(x, x, x) (8) f(ok(x)) =→ ok(f(x))
(3) check(b) =→ ok(b) (9) g(ok(x), y, z) =→ ok(g(x, y, z))
(4) check(f(x)) =→ f(check(x)) (10) g(x, ok(y), z) =→ ok(g(x, y, z))
(5) check(g(x, y, z)) =→ g(check(x), y, z) (11) g(x, y, ok(z)) =→ ok(g(x, y, z))
(6) check(g(x, y, z)) =→ g(x, check(y), z)

and allows an infinite reduction, namely:

top(check(f(ok(a))))
(2)→top(check(g(ok(a), ok(a), ok(a))))

(6)
=→

top(g(ok(a), check(ok(a)), ok(a)))
(11)
=→ top(ok(g(ok(a), check(ok(a)), a)))

(1)→
top(check(f(ok(a)))) → . . .

This time completeness was harmed by duplicating rules in the original system.

Proving Liveness with Fairness Using Rewriting 241

Example 3. Finally consider the following simple TRS consisting of two rules:
top(f(a)) → top(b) and b → b. Clearly liveness with P = {a} holds but after
transformation we obtain a non-terminating TRS since b can be rewritten to
itself. This gives rise to the third, and last, requirement, namely that the signa-
ture of the TRS for which we consider liveness problem must contain at least
one symbol of arity ≥ 2. This is a really weak requirement: it is not required
that this symbol occurs in the rewrite rules.

Now we will prove that if all three restrictions are satisfied, that is there
are no duplicating rules, terms from P cannot be created and Σ contains some
symbol of arity ≥ 2, then the completeness holds.

Before we state the completeness theorem we need some auxiliary results.
First let us denote by t the term t after removing all occurrences of ok and check
symbols. Formally:

check(t) = t

ok(t) = t

f(t1, . . . , tn) = f(t1, . . . , tn) for f �∈ {check, ok}

We need two lemmas for which the proofs are easy and can be found in
[8]. First we will state the lemma which shows that the reduction steps in a
transformed system can be mimicked in the original system after removing extra
ok and check symbols.

Lemma 10. Given two TRSs R and R= over the same signature Σ and arbi-
trary terms t, u, we have the following implications:

(i) t →LT u =⇒ t → u

(ii) t
=→LT u =⇒ t

=→∗
u

Later on we will need the following lemma stating that extending TRS with
administrative rules for check and ok preserves termination.

Lemma 11. Given two TRSs R and R= over Σ (top, ok, check �∈ Σ). Let S
consist of the following rules:

check(p) → ok(p) for all p ∈ P

check(f(x1, . . . , xn)) → f(x1, . . . , check(xi), . . . , xn)
for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

f(x1, . . . , ok(xi), . . . , xn)) → ok(f(x1, . . . , xn))
for all f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

Now if SN(R/R=) then SN(R/(R= ∪ S)).

Proof. Easy using Lemma 10.

242 A. Koprowski and H. Zantema

Now we will present the theorem stating that for non-duplicating TRSs rela-
tive termination on top terms is equivalent to relative termination on arbitrary
terms. We start by an example showing that non-duplication is essential for that.

Example 4. Let us consider the following TRS:

top(f(x)) → top(a) f(x) =→ g(f(x), f(x))

Here relative termination on top terms follows from the observation that any
→-step on any top term always yields the normal form top(a). However, this
system admits the following fair reduction:

f(top(f(x)) =→ g(f(top(f(x)), f(top(f(x))) → g(f(top(a), f(top(f(x))︸ ︷︷ ︸
initial term

) =→ · · · .

Theorem 12. Let R, R= be non-duplicating top TRSs over Σ. Then we have:

SN(T (Σ,V), R/R=) ⇐⇒ SN(Ttop(Σ,V), R/R=)

Proof. The (⇒)-part is trivial. For the (⇐)-part assume we have an arbitrary
infinite fair reduction; we have to prove that there is also an infinite fair top re-
duction. By putting a top symbol around all terms we force that all terms in the
infinite fair reduction have top as the root symbol. Next among all infinite fair
reductions having top as the root symbol we choose one in which the number N
of top symbols occurring in the initial term is minimal. Due to non-duplication
in every term in this reduction at most N top symbols occur; due to minimal-
ity of N we conclude that each of these terms contains exactly N top symbols.
We write top(C[top(t1), . . . , top(tn)]) for the initial term in the reduction for a
context C not containing the symbol top. Since the number of top-symbols re-
mains unchanged every term in the reduction is of the same shape, having the
same number n of holes in the context. Due to minimality every infinite → ∪ =→
reduction of top(ti) contains only finitely many →-steps, for i = 1, . . . , n. Due
to definition of top TRSs all steps are either in the context C or in descendants
of top(ti). Since the descendants of top(ti) allow only finitely many →-steps
and there are infinitely many →-steps in total, we conclude that there are in-
finitely many →-steps in the contexts. More precisely, we arrive at an infinite top
reduction of top(C[x, . . . , x]) containing infinitely many →-steps, contradicting
SN(Ttop(Σ,V), R/R=). "#

Now we formulate the theorem which states that, under the three extra re-
quirements introduced before, the transformation defined in Sect. 3.2 is complete.

Theorem 13 (Completeness). Let R, R= be top TRSs over Σ ∪{top}. If the
following conditions are satisfied:

(i) if u contains an instance of some p ∈ P and t → u or t
=→ u then t also

contains an instance of p,
(ii) both R and R= are non-duplicating,
(iii) there is at least one function symbol of arity ≥ 2 in Σ.

Proving Liveness with Fairness Using Rewriting 243

then:

Live(Ttop(Σ,V), R, R=,G(P)) =⇒ SN(LT(R)/ LT=(R=, P))

Proof. Assume Live(Ttop(Σ,V), R, R=,G(P)) and conditions (i)-(iii) hold and
SN(LT(R)/ LT=(R=, P)) does not hold. Then there is an infinite →LT /

=→LT
reduction. Due to non-duplication of R and R=, LT(R) and LT=(R=, P) are
also non-duplicating and by application of Theorem 12 we get that there is an
infinite top →LT /

=→LT reduction, call it ω.
Assume infinitely many terms in ω contain instances of terms from P . By

the observation that an instance of p occurs in C[pδ], Lemma 10 applied to ω
gives rise to an infinite top reduction in R/R= having infinitely many terms
containing instances of p ∈ P . Due to (i) all terms in this infinite reduction
contain instances of p ∈ P contradicting Live(Ttop(Σ,V), R, R=,G(P)). Hence
only finitely many terms in ω contain instances of terms from P . So removing
this finite prefix of ω yields an infinite top →LT /

=→LT reduction ω′ in which no
instance of p ∈ P occurs at all.

Note that non-top rules of R are relatively terminating to non-top rules of
R=. Assume they are not. Then there is an infinite → /

=→ reduction sequence
obtained using non-top rules of R and R=. Let f ∈ Σ be a function symbol of
arity ≥ 2 (its existence is ensured by (iii)). Put the infinite → /

=→ reduction
in context top(f(p, �, . . .)). This yields an infinite, fair top reduction containing
p and thus contradicting Live(Ttop(Σ,V), R, R=,G(P)). Now, by application of
Lemma 11, we conclude that non-top rules of LT(R) are relatively terminating
to non-top rules of LT=(R=, P).

In ω′ top rules are applied infinitely often as non-top rules of LT(R) are
relatively terminating to non-top rules of LT=(R=, P). Note that because of (ii)
the only way to create an ok symbol is by application of the rule check(p) =→
ok(p). Every top reduction removes one occurrence of the ok symbol, so the
aforementioned rule should be applied infinitely often. But since p does not
occur in ω′ this rule is not applicable which leads to a contradiction and ends
the proof. "#

Examples 1, 2 and 3 show that conditions (i)-(iii) of this theorem are essential.

4 Examples

In this section we present two examples illustrating the applicability of the pro-
posed transformation. None of them could be treated with the use of the LS
transformation described in [5]. Both relative termination proofs of the trans-
formed systems were found completely automatically by TPA .

Example 5 (Cars over a bridge). There is a road with cars going in two direc-
tions. But on their way there is a bridge which is only wide enough to permit
a single lane of traffic. So there are lights indicating which side of the bridge is
allowed to cross it. We want to verify the liveness property, namely that every

244 A. Koprowski and H. Zantema

car will eventually be able to cross the bridge. For that clearly we need some
assumptions about the lighting system. We want to be as general as possible so
instead of assuming some particular algorithm of switching lights we just require
them to change in a fair way, that is in the infinite observation of the system
there must be infinitely many light switches (or equivalently: no matter when
we start watching the road after some, arbitrary, time we will see the change of
lights). Also we assume that before a light switches at least one car will pass
(otherwise liveness is lost as lights can change all the time without any cars
passing).

We model the system with a unary top symbol whose arguments start with
a binary symbol left or right indicating which side has a green light. The argu-
ments of left and right start with unary symbols new and old representing cars
waiting to cross the bridge. The constant bot stands for the end of the queue.
New cars are allowed to arrive at the end of the queue at any time. What we
want to prove is that finally no old car remains.

(1) top(left(old(x), y)) → top(right(x, y))

(2) top(left(new(x), y)) → top(right(x, y))
(3) top(right(x, old(y))) → top(left(x, y))
(4) top(right(x, new(y))) → top(left(x, y))
(5) top(left(bot, y)) → top(right(bot, y))
(6) top(right(x, bot)) → top(left(x, bot))
(7) top(left(old(x), y)) =→ top(left(x, y))
(8) top(left(new(x), y)) =→ top(left(x, y))
(9) top(right(x, old(y))) =→ top(right(x, y))
(10) top(right(x, new(y))) =→ top(right(x, y))
(11) bot

=→ new(bot)

We have the following semantics of the rules:

(1)− (4) Car passes and the light changes.
(5)− (6) No car waiting, light can change.
(7)− (10) Car passes, light remains the same.

(11) New car arriving.

We want to prove liveness with P = {old(x)}. For that purpose we need
to show relative termination of the transformed system. It is an easy observa-
tion that the following procedure is termination-preserving: if for every rule the
number of occurrences of some symbol is bigger or equal in the left hand side
than in the right hand side, then remove the rules for which it is strictly bigger.
This approach, already presented in [5], corresponds to proving termination with
polynomial orderings with successor as interpretation for symbol begin counted
and identity for all the other symbols.

The proof of relative termination can be given as follows. First count occur-
rences of old to remove four rules. Then apply semantic labelling over {0, 1}taking

Proving Liveness with Fairness Using Rewriting 245

constant 1 for old, identity for remaining unary symbols, disjunction for all bi-
nary symbols and constant 0 for bot. In the resulting system repeatedly apply
counting argument to remove all the → rules thus proving relative termination.
The details including the proof generated automatically by TPA can be found
in [8].

The next example we investigate is commonly known as “the readers-writers
problem” and goes back to Courtois et al. [2]. It is considered as a classical
synchronization problem.

Example 6 (The readers and writers problem). Some resource is to be shared
among a number of processes. There are two types of processes: “readers”, which
perform only reading operation and “writers” which can perform both reading
and writing. The safety requirement is that writers must have exclusive access
to the resource (that is when a writer has access to the resource no other process
can have it) whereas readers can share the access (as long as there is no writer
active at the same time).

It is usual in literature ([11], [10]) to concentrate only on safety requirements
and propose a solution with priority for readers (writers) which can clearly lead
to starvation of writers (readers). In [7] a fair solution to this problem has been
proposed. We will present another variant of this starvation-free solution, where
the access to the resource is controlled in a first-come first-served manner and
we will verify that indeed starvation is not possible, corresponding to liveness.

To achieve that we introduce a flag indicating which group of processes (either
readers or writers) has priority. If only one group claims the resource it is simply
allowed to use it. But in case of a conflict, that is two groups interested in
use of the resource, the group having priority is allowed to access it and then
the priority is changed. Without adding this priority flag obviously the desried
liveness property does not hold.

As in example 5 we distinguish between old and new processes and verify
that finally there are no old processes in the system. We model reader processes
by unary function symbols: RAO, RAN, RIO, RIN where the second character
indicates whether the reader is currently Active (performs reading) or Inactive
(waits for access to the resource) and the third character indicates whether the
reader is Old or New. The argument is used to organize processes into lists.
Similarly for writers we have WAO, WAN, WIO, WIN. However WAO and WAN
are constants as there can be at most one active writing process at a time and
there is no need to keep a list of such processes.

The whole system is then modelled by means of binary function symbols
sys-r or sys-w indicating priority for readers or writers respectively. The first
argument describes all readers in the system and the second one models writ-
ers. Readers are modelled by a binary operator read whose first argument con-
tains the list of active processes terminated by constant RT and the second
argument contains the list of processes waiting for the resource terminated by
constant RB. Similarly, the binary operator write describes writers processes.
Its first argument can be either WT (no active writer),WAO (active old writer)

246 A. Koprowski and H. Zantema

or WAN (active new writer). The second argument describes a list of inactive
writers.

Due to using lists to represent active processes, we make one additional
restriction that simplifies the modelling substantially, namely we assume that
reading processes free the resource in the same order as they got access to
it. It corresponds to the situation when the reading operation always takes
some fixed interval of time. Now we are ready to present the model of the
system.

(1) RB
=→ RIN(RB) (4) RAN(RT) → RT

(2) WB
=→ WIN(WB) (5) WAO → WT

(3) RAO(RT) → RT (6) WAN → WT

(7) top(sys-r(read(r1, RIO(r2)), write(WT, WB))) =→ top(sys-r(read(RAO(r1), r2), write(WT, WB)))
(8) top(sys-w(read(r1, RIO(r2)), write(WT, WB))) =→ top(sys-w(read(RAO(r1)r2), write(WT, WB)))
(9) top(sys-r(read(r1, RIN(r2)), write(WT, WB))) =→ top(sys-r(read(RAN(r1), r2), write(WT, WB)))
(10) top(sys-w(read(r1, RIN(r2)), write(WT, WB))) =→ top(sys-w(read(RAN(r1), r2), write(WT, WB)))
(11) top(sys-r(read(RT, RB), write(WT, WIN(w)))) =→ top(sys-r(read(RT, RB), write(WAN, w)))
(12) top(sys-w(read(RT, RB), write(WT, WIN(w)))) =→ top(sys-w(read(RT, RB), write(WAN, w)))
(13) top(sys-r(read(RT, RB), write(WT, WIO(w)))) =→ top(sys-r(read(RT, RB), write(WAO, w)))
(14) top(sys-w(read(RT, RB), write(WT, WIO(w)))) =→ top(sys-w(read(RT, RB), write(WAO, w)))
(15) top(sys-r(read(r1, RIO(r2)), write(WT, w))) =→ top(sys-w(read(RAO(r1), r2), write(WT, w)))
(16) top(sys-r(read(r1, RIN(r2)), write(WT, w))) =→ top(sys-w(read(RAN(r1), r2), write(WT, w)))
(17) top(sys-w(read(RT, r2), write(WT, WIO(w)))) =→ top(sys-r(read(RT, r2), write(WAO, w)))
(18) top(sys-w(read(RT, r2), write(WT, WIN(w)))) =→ top(sys-r(read(RT, r2), write(WAN, w)))

The meaning of the rules is as follows:

(1− 2) New inactive process appears in the system and is queued to wait
for the resource.

(3− 6) Active process finishes reading/writing.
(7− 10) Nobody is writing nor waiting for write access — inactive reading

process is allowed to start reading; priority does not change
(11− 14) Nobody is reading nor waiting for read access and nobody is writ-

ing — writer is allowed to start writing; priority does not change.
(15− 16) Nobody is writing and priority is for readers — reader is allowed

to start reading; priority is switched.
(17− 18) Nobody is reading nor writing and priority is for writers — writer

is allowed to start writing; priority is switched.

What we want to prove is that finally no old process remains in the system.
This corresponds to verifying liveness with the set P = {RAO(x), RIO(x), WAO,
WIO(x)}.

To prove this liveness property we need to show relative termination of the
transformed system. This was done completely automatically by TPA . The proof
produced by TPA consists of more than 1000 lines. It proceeds by repeating a
number of times the following procedure: apply semantic labelling, remove some
rules using polynomial interpretations, unlabel the system to obtain a TRS with
few rules less than before labelling. The proof applies semantic labelling with
different interpretations 7 times. For a more detailed description we again refer
to [8].

Proving Liveness with Fairness Using Rewriting 247

5 Conclusions

This paper describes a technique to transform a liveness problem with fairness
to the problem of proving relative termination of a transformed TRS. In two
presented examples the latter could be done fully automatically. The only human
activity in this approach is modelling the original problem in the language of
term rewriting. The advantage of this approach compared to standard model
checking is that it can easily deal with liveness problems involving infinite state
spaces.

In modelling liveness problem as TRS there is usually a lot of choice. This
choice can influence the difficulty of the corresponding termination problem.
This holds for instance for readers-writers example presented in Section 4 for
which we considered a number of variations not all of which could be proved
by TPA. Therefore improving TPA to be able to handle the broader class of
relative termination problems is an obvious goal. Therefore we consider work
on adopting existing termination techniques (like dependency pairs) for prov-
ing relative termination as well as developing techniques specifically for proving
relative termination to be an interesting subject of further research.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor.
Comput. Sci., 236(1-2):133–178, 2000.

2. P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers”
and “writers”. Commun. ACM, 14(10):667–668, 1971.

3. N. Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279–
301, 1982.

4. N. Francez. Fairness. Springer-Verlag, 1986.
5. J. Giesl and H. Zantema. Liveness in rewriting. In Proc. 14th RTA, LNCS 2706,

pages 321–336, 2003.
6. J. Giesl and H. Zantema. Simulating liveness by reduction strategies. Electr. Notes

TCS, 86(4), 2003.
7. C. A. R. Hoare. Monitors: an operating system structuring concept. Commun.

ACM, 17(10):549–557, 1974.
8. A. Koprowski and H. Zantema. Proving liveness with fairness using rewrit-

ing. Technical Report CS-Report 05-06, Tech. Univ. of Eindhoven, March
2005. Available from http://w3.tue.nl/en/services/library/digilib/tue
publications/reports/.

9. D. S. Lankford. On proving term rewriting systems are noetherian. Technical
Report MTP-3, Math. Dept., Louisiana Tech. Univ., Ruston, May 1979.

10. M. Raynal and D. Beeson. Algorithms for mutual exclusion. MIT Press, Cambridge,
MA, USA, 1986.

11. A. Silberschatz, P. B. Galvin, and G. Gagne. Operating system concepts. John
Wiley & Sons, Inc., 2004.

12. TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in TCS. Cam-
bridge University Press, 2003.

13. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta
Informaticae, 24(1/2):89–105, 1995.

A Concurrent Lambda Calculus with Futures

Joachim Niehren1, Jan Schwinghammer2, and Gert Smolka2

1 INRIA Futurs, LIFL, Lille, France
2 Programming Systems Lab, Saarland University, Saarbrücken, Germany

Abstract. We introduce a new concurrent lambda calculus with futures,
λ(fut), to model the operational semantics of Alice, a concurrent exten-
sion of ML. λ(fut) is a minimalist extension of the call-by-value λ-calculus
that yields the full expressiveness to define, combine, and implement a
variety of standard concurrency constructs such as channels, semaphores,
and ports. We present a linear type system for λ(fut) by which the safety
of such definitions and their combinations can be proved: Well-typed im-
plementations cannot be corrupted in any well-typed context.

1 Introduction

The goal of this paper is to model the operational semantics of Alice [23,2],
a concurrent extension of Standard ML (SML) [17] for typed open distributed
programming. Alice is the first concurrent extension of SML where all synchroni-
sation is based on futures rather than channels [22,20,10]. Many ideas in Alice are
inspired by and inherited from the concurrent constraint programming language
Mozart-Oz [26,13,19].

Futures [5,12] are a restricted form of logic variables, which carefully separate
read and write permissions. In contrast to logic variables, futures grant for static
data flow that can be predicted at compile time. Otherwise, they behave like
the logic variables of concurrent logic and concurrent constraint programming
[25,24]: A future is a transparent placeholder for a value; it disappears once its
value becomes available. Operations that need the value of a future block until
the value becomes available. Other operations may simply continue with the
placeholder, as long as they do not need its value. This form of automatic data
driven synchronisation is invoked as late as possible, so that the potential for
concurrent and distributed computation is maximised.

Static data flow is an indispensable prerequisite for static typing as in SML,
CAML, or Haskell. This fact is well-known, as it led to serious problems in several
previous approaches to concurrent programming: It prohibited static typing in
programming languages with unrestricted logic variables such as Oz [18,26] and
in π-calculus based extensions of SML such as Pict [21]. The problem for π-
calculus based channel approaches was solved with the join-calculus [10,11] and
the corresponding programming language JoCaml [8] which extends on CAML
[7]. The join-calculus, however, does not model futures on which we focus in this
paper.

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 248–263, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Concurrent Lambda Calculus with Futures 249

We introduce a new concurrent lambda calculus with futures λ(fut) that
models the operational semantics of Alice at high level. λ(fut) is a minimalist
extension of the call-by-value λ-calculus that yields the full expressiveness to
define, implement, and combine a variety of standard concurrency constructs,
including channels, semaphores, and ports.

Previous λ-calculi with futures by Felleisen and Flanagan [9] were proposed
to model the parallel execution of otherwise purely functional programs. They too
describe a set of parallel threads that communicate through futures. However,
our very different perspective on futures as a uniform mechanism for introducing
concurrency to Alice necessitates a number of nontrivial extensions:

Indeterminism. Standard concurrency constructs are indeterministic, which
is incompatible with confluence properties enjoyed by previous λ-calculi with fu-
tures. We propose to add indeterminism via reference cells, as these are already
available in SML. Furthermore, we propose handled futures for single assign-
ment, similarly to the I-structures of Id [4] and promises of [14]. A handled
future comes with a handle that can eventually assign a value to a future. Any
attempt to use the same handle twice raises a programming error.

Explicit recursion. Similarly to cells, handles permit the construction of
cyclic structures. This raises a number of nontrivial technical problems, some
of which are known from call-by-need λ-calculi with explicit recursion. Indeed,
we can easily extend λ(fut) by lazy threads, so that we obtain an elegant model
for call-by-need [3,15] mixed with call-by-value computation.

Static typing. We have to add a type system, as previous λ-calculi with fu-
tures were untyped.

We show that λ(fut) can safely express concurrency constructs, so that these
cannot be corrupted in any well-typed context, in that their usage never raises
handle errors. We prove this kind of safety result on basis of a linear type system
we introduce, inspired by [27].

We present λ(fut) in Sects. 2 and 3. The linear type system for λ(fut) that
excludes handle errors is given in Sect. 4. We then express diverse concurrency
constructs in λ(fut) (Sect. 5) and prove their safety (Sect. 6). Finally, we briefly
discuss some implementation issues in Sect. 7.

2 Lambda Calculus with Futures

We present the lambda calculus with futures λ(fut). We start with an untyped
version, discuss its syntax and operational semantics.

2.1 Syntax

Fig. 1 introduces the syntax of λ(fut). This calculus extends the call-by-value λ-
calculus with cells (as featured by SML and CAML) and by concurrent threads,

250 J. Niehren, J. Schwinghammer, and G. Smolka

x, y, z ∈ Var

c ∈ Const ::= unit | cell | exch | thread | handle

e ∈ Exp ::= x | c | λx.e | e1 e2

v ∈ Val ::= x | c | λx.e | exch v

C ∈ Config ::= C1 |C2 | (νx)C | x c v | x⇐e | y h x | y h •

Fig. 1. Syntax of λ(fut)

(C1 |C2) |C3 ≡ C1 | (C2 |C3) C1 |C2 ≡ C2 |C1

((νx)C0) |C1 ≡ (νx)(C0 |C1) if x /∈ fv(C1) (νx)(νy)C ≡ (νy)(νx)C

Fig. 2. Structural congruence

futures, and handles. Expressions and values of λ(fut) model sequential higher-
order programming; configurations add the concurrency level.

The expressions e of λ(fut) are standard λ-terms with variables x, y, . . . and
constants ranged over by c. We introduce 5 constants, 3 of which are standard:
unit is a dummy value, cell serves for introducing reference cells, and exch for
atomic exchange of cell values. The new constants thread and handle serve
for introducing threads, futures, and handles. Values v are defined as usual in a
call-by-value λ-calculus.

Configurations C are reminiscent of expressions of the π-calculus. They are
built from base components by parallel composition C1 |C2 and new name op-
erators (νx)C. We distinguish four types of base components: a thread x⇐e is
a concurrent component whose evaluation will eventually bind the future x to
the value of expression e unless it diverges or suspends. We call such variables x
concurrent futures. Note that a concurrent future x may occur in the expression
e whose evaluation computes its future value, i.e., a thread is like a recursive
equation x = e, but directed from right to left. A cell x c v associates a name
x to a cell with value v. A handle component y h x associates a handle y to a
future x, so that y can be used to assign a value to x. We call x a future handled
by y, or more shortly a handled futures. Finally, a used handle component y h •
means that y is a handle that has already been used to bind its future.

We define free and bound variables as usual; the only scope bearing constructs
are λ-binder and new operators (νx). We identify expressions and configurations
up to consistent renaming of bound variables. We write fv(C) and fv(e) for the
free variables of a configuration and expression, resp., and e[e′/x] for capture-free
substitution of e′ for x in e.

We do not want the order of components in configurations to matter. Fol-
lowing the presentation of π-calculus in [16] we use a structural congruence ≡
to simplify the statement of the operational semantics. This is the least congru-
ence relation on configurations containing the identities in Fig. 2. The first two

A Concurrent Lambda Calculus with Futures 251

axioms render parallel composition associative and commutative. The third rule
is known as scope extrusion in π-calculus and allows to extend the scope of a
local variable. The final identity expresses that the order of restricting names
does not matter.

2.2 Operational Semantics

The operational semantics of λ(fut) is given in Figs. 3, 4 and 5 by a binary
relation C1 −→ C2 on configurations called reduction.

The reduction strategy of λ(fut) is specified using the evaluation contexts
defined in Fig. 3. We base it on standard evaluation contexts F for call-by-value
reduction and lift them to threads and configurations. Formally, a context is a
term with a single occurrence of the hole marker [] which is a special constant.
Evaluation contexts F are expressions where some subexpression in call-by-value
reduction position is replaced by the hole marker. A context E is a thread where
a subexpression is left out, and D is a configuration where a subconfiguration is
missing. We write D[C], E[e], and F [e] resp. for the object obtained by filling
the hole in the context with an expression.

A nontrivial question is when to allow to replace futures by their values. The
naive approach to always do so once the value becomes available fails, in that it
introduces non-terminating unfolding in the presence of recursion. For instance,
consider a thread x⇐λy.xy. The thread’s expression contains an occurrence of
the future x whose value the thread has computed. Replacing this occurrence of
x by its value yields x⇐λy.((λy′.xy′) y) which again contains an occurrence of
x because of recursion, so the substitution process can be repeated indefinitely.

Alternatively, one might want to permit future substitution in all evaluation
contexts. This approach, however, yields confluence problems. Suppose that x is
bound to value 5 by some thread x⇐5 and that another thread is evaluating the
expression (λy.λz.z) x which contains an occurrence of x in evaluation position.
We could thus first replace x by 5 and then β-reduce, resulting in λz.5. Or else,
we could β-reduce first, yielding λz.x. Now the problem is that the occurrence
of x has escaped the evaluation context, so that replacing the future by its value
is impossible and we are left with two distinct, irreducible terms.

We propose to replace a future only if its value is needed to proceed with the
computation of the thread. In order specify this need, we define future evaluation
contexts Ef and Ff in Fig. 3 that we will use in the rule (future.deref) of the
operational semantics in Fig. 5. In the version of λ(fut) presented here, the
value of futures x is needed in two situations, in function applications xv and
for cell exchange exch x v in evaluation contexts. Furthermore, note that future
evaluation contexts can equally be used to extend λ(fut) by lazy threads. The
same mechanism has also proved useful to model more implementation oriented
issues in [9]. Future evaluation contexts are called placeholder strict there.

Every reduction step of λ(fut) is defined by an evaluation rule in Fig. 5 which
involves either one or two threads of a configuration. These threads can be freely
selected according to the two inference rules in Fig. 4: given a configuration C
we choose a representation D[C′] congruent to C and apply a reduction rule

252 J. Niehren, J. Schwinghammer, and G. Smolka

D ::= [] | C |D | (νx)D

E ::= x⇐F Ef ::= x⇐Ff

F ::= [] | F e | v F Ff ::= F [[] v] | F [exch [] v]

Fig. 3. Evaluation contexts D, E, F and future evaluation contexts Ef , Ff

C1 ≡ C′
1 C′

1 −→ C′
2 C′

2 ≡ C2

C1 −→ C2

C1 −→ C2

D[C1] −→ D[C2]

Fig. 4. Selection of threads during reduction

to C′. Reduction inside threads x⇐e means to reduce a subexpression e′ in an
evaluation context F so that e = F [e′]. Evaluation inside expressions is call-by-
value, i.e., all arguments of a function are evaluated before function application.
This by the standard call-by-value beta reduction rule (beta) in Fig. 5.

Besides β-reduction, there are six other reduction rules in Fig. 5. Concurrent
futures are created by rule (thread.new). Evaluating applications thread λy.e
has the following effects:

– a new concurrent future y is created,
– a new thread y⇐e is spawned which evaluates the expression e concurrently

and eventually assigns its value to y,
– the concurrent future y is returned instantaneously in the original thread.

Note that the expression e may also refer to y, i.e., our notion of thread creation
incorporates explicit recursion.

As an example consider an application f e of some function f , where the
evaluation of the argument e takes considerable time, e.g., a communication
with a remote process or an expensive internal computation. In this case it may
be advantageous to use instead

f (thread λy.e)

which applies f to a fresh future y and delegates the evaluation of e to a con-
current thread y⇐e. The point here is that f will only block on y if it really
needs the value of its argument, so that the latest possible synchronisation is
obtained automatically. The only way we can simulate this effect with channels
is by rewriting the function f (even the argument type of f changes). So what
futures buy us is maximal concurrency without the need to rewrite existing code.

Rule (future.deref) states when to replaces futures y by their value v. It
applies to futures in future evaluation contexts, once the value of the future has
been computed by some concurrent thread y⇐v in the configuration.

Rule (handle.new) introduces a handled future jointly with a handle. The
idea of handled futures appeared before in the form of I-structures [4] and
promises [14]. Evaluating applications handleλx.λy.e has the following effects:

A Concurrent Lambda Calculus with Futures 253

(beta) E[(λy.e) v] −→ E[e[v/y]]

(thread.new) E[thread v] −→ (νy)(E[y]| y⇐v y) (y /∈ fv(E[v]))

(future.deref) Ef [y] | y⇐v −→ Ef [v] | y⇐v

(handle.new) E[handle v] −→ (νy)(νz)(E[v y z] | z h y) (y, z /∈ fv(E[v]))

(handle.bind) E[z v] | z h y −→ E[unit] | y⇐v | z h •

(cell.new) E[cell v] −→ (νy)(E[y]| y c v) (y /∈ fv(E[v]))

(cell.exch) E[exch y v1] | y c v2 −→ E[v2] | y c v1

Fig. 5. Reduction rules of operational semantics

– a new handled future x is created,
– a new handle y is created,
– a new handle component y h x associates handle y to future x,
– the current thread continues with expression e.

Handles can be used only once. According to rule (handle.bind) an application
of handle y to value v reduces by binding the future associated to y to v. This
action consumes the handle component y h x; what remains is a used handle
component y h •. Trying to apply a handle a second time leads to handle errors:

D[E[y v] | y h •] (handle error)

We call a configuration C error-free if it cannot be reduced to any erroneous
configuration, i.e., none of its reducts C′ with C →∗ C′ is a handle error.

Evaluating cell v with rule (cell.new) creates a new cell y with content
v represented through a cell component y c v. The exchange operation exch y v
writes v to the cell and returns the previous contents. This exchange is atomic,
i.e., no other thread can interfere. The cell exchange operation exch is strict in
its first argument; the definition of strict evaluation contexts Ef expresses this
uniformly. Observe that cells introduce indeterminism since two threads might
compete for access to a cell.

Programs without handle errors and cell exchange are uniformly conflu-
ent [19] and thus confluent. So cell exchange by concurrent threads remains the
sole source of indeterminism in λ(fut). Nevertheless, handles are needed together
with cells in order to safely express nondeterministic concurrency constructs (see
Sect. 5). While handles can be expressed in terms of the other constructs, such
an encoding unnecessarily complicates the formal treatment. In order to rule out
handle errors by means of the linear type system of Sect. 4 we chose to introduce
handled futures as primitive.

254 J. Niehren, J. Schwinghammer, and G. Smolka

2.3 Examples

The first example illustrates concurrent threads and data synchronization. Let
I be the lambda expression λz.z. We consider the expression below, and re-
duce it by a thread.new step followed by a trivial beta step. In the previous
explanation of thread creation we left such beta steps implicit.

x⇐(thread (λy.I I)) (I unit) → (νy)(x⇐y (I unit) | y⇐(λy.I I)y)

→ (νy)(x⇐y (I unit) | y⇐I I)

At this point, we can reduce both threads concurrently, i.e., we have a choice of
beta reducing the left or right thread first. We do the former:

(νy)(x⇐y (I unit) | y⇐I I) → (νy)(x⇐y unit | y⇐I I)
→ (νy)(x⇐y unit | y⇐I)

In fact, any other reduction sequence would have given the same result in this
case. At this point, both threads need to synchronize to exchange the value of y
by applying future.deref; this enables a final beta step:

(νy)(x⇐y unit | y⇐I) → (νy)(x⇐I unit | y⇐I)

(νy)(x⇐unit | y⇐I)

The second example illustrates the power of thread creation in λ(fut); in
contrast to all previous future operators, it can express explicit recursion. Indeed,
thread can replace a fixed point operator fix. Consider for instance:

x⇐(thread λf.λx.(f x)) z

Thread creation thread.new yields a thread assigning a recursive value to f ,
so that the original thread can future.deref and beta reduce forever.

(νf) (x⇐f z | f⇐λx.(f x)) → (νf) (x⇐(λx.(f x)) z | f⇐λx.(f x))

→ (νf) (x⇐f z | f⇐λx.(f x))

Indeed, rule future.deref simulates the usual unfold rule for fixed point
operators.

(unfold) fix λf.λx.e → λx.e[fix λf.λx.e/f]

As a final example, consider how handles can introduce cyclic bindings:

x⇐handleλz.λy.y z →3 (νy)(νz)(x⇐y z | y h z)

→ (νy)(νz)(x⇐unit | z⇐z | y h •)

by handle.new and two beta steps. The final step by handle.bind binds the
future z to itself. This is closely related to what is sometimes referred to as
recursion through the store, or implicit recursion.

A Concurrent Lambda Calculus with Futures 255

α, β ∈ Type ::= unit | α → β | α ref

unit : unit

thread : (α → α) → α

handle : (α → (α → unit) → β) → β

cell : α → (α ref)

exch : α ref → α → α

Γ � c : TypeOf(c)

Γ, x:α � x : α

Γ, x:α � e : β

Γ � λx.e : α → β

Γ � e1 : α → β Γ � e2 : α

Γ � e1 e2 : β

Fig. 6. Typing of λ(fut) expressions

3 Typing

Since our intention is to model extensions of the (statically typed) language
ML we restrict our calculus to be typed. Types are function types α → β, the
type α ref of reference cells containing elements of type α, and the single base
type unit. Typing of expressions is standard and integrates well with ML-style
polymorphism and type inference. On the level of configurations, types are used
to ensure a number of well-formedness conditions, and allow us to state a type
preservation property during evaluation.

3.1 Typing of Constants and Expressions

According to the operational semantics described in Sect. 2, the constants obtain
their natural types. For instance, thread has type (α → α) → α for any type α
since its argument must be a function that maps a future of type α to a value
of type α. The operation thread then returns the future of type α. The types
of the other constants are listed in Fig. 6 and can be justified accordingly.

Let Γ and Δ range over type environments x1:α1 . . .xn:αn, i.e. finite func-
tional relations between Var and Type. In writing Γ1, Γ2 we assume that the
respective domains are disjoint. Writing TypeOf(c) for the type of constant c we
have the usual type inference rules for simply typed lambda calculus (Fig. 6).

3.2 Typing of Configurations

Every future in a configuration is either concurrent or handled, i.e., its status
is unique. Moreover, the binding of a concurrent future must be unique, and
a handle must give reference to a unique future. Since parallel compositions of
components are reminiscent of (mutually recursive) declarations the following
two configurations are ill-typed:

x⇐e1 |x⇐e2 or y h x1 | y hx2 (1)

Therefore, in the type system it will be required that the variables introduced
by C1 and C2 are disjoint in concurrent compositions C1 |C2.

256 J. Niehren, J. Schwinghammer, and G. Smolka

Γ, Γ1 � C1 : Γ2 Γ, Γ2 � C2 : Γ1

Γ � C1 |C2 : Γ1, Γ2

Γ, x:α ref � v : α

Γ � x c v : (x:α ref)

Γ � C : Γ ′

Γ � (νx)C : Γ ′ − x

Γ, x:α � e : α

Γ � x⇐e : (x:α)

x, y /∈ dom(Γ)

Γ � y hx : (x:α, y:α → unit)

y /∈ dom(Γ)

Γ � y h • : (y:α → unit)

Fig. 7. Typing rules for components

Types are lifted to configurations according to the inference rules in Fig. 7.
The judgment Γ ' C : Γ ′ informally means that given type assumptions Γ
the configuration C is well-typed. The type environment Γ ′ keeps track of the
variables declared by C. In fact, the rules guarantee that dom(Γ ′) is exactly the
set of variables declared by C, and that dom(Γ) ∩ dom(Γ ′) = ∅.

To type a thread x⇐e we can use the environment Γ as well as the binding
x:α that is introduced by the component. Note that writing Γ, x:α in the premise
implies that x is not already declared in Γ . Similarly, when typing a reference cell
x c v both Γ and the assumption x:α ref can be used to derive that the contents
v of the cell has type α. The typing rule for handle components y h x and y h •
take care that the types of the handled future x and its handle y are compatible,
and that they are not already declared in Γ .

A restriction (νx)C is well-typed under assumptions Γ if the configuration
C is. The name x is kept local by removing any occurrence x:α from Γ ′, which
we write Γ ′ − x.

The typing rule for a parallel composition C1 |C2 is reminiscent of the circu-
lar assume-guarantee reasoning used in compositional verification of concurrent
systems [1]. Recall that the combined environment Γ1, Γ2 in the conclusion is
only defined if the variables appearing in Γ1 and Γ2 are disjoint. So the rule
ensures that the sets of variables declared by C2 and C1 resp., are disjoint. Note
how this prevents the ill-formed configurations in (1) to be typed. Moreover, by
typing C1 in the extended environment Γ ,Γ1 the rule allows variables declared
by C2 to be used in C1, and vice versa. For example, we can derive

' (x⇐y unit | y h z) : (x:unit, z:unit, y:unit → unit) (2)

The thread on the left-hand side declares x and can use the assumption y:unit →
unit about the handle declared in the component on the right. No further as-
sumptions are necessary.

Theorem 1 (Subject Reduction). If Γ ' C1 : Γ ′ and C1 −→ C2 then Γ '
C2 : Γ ′.

Program errors are notorious even for a statically typed programming lan-
guage. Indeed it turns out that the class of handle errors is not excluded by the
type system just presented.

A Concurrent Lambda Calculus with Futures 257

Multiplicities κ ::= 1 | ω

Linear types α, β ∈ LinType ::= unit | α
κ−→ β | α ref

Multiplicities of linear types

|unit| def
= ω, |α κ−→ β| def

= κ, |α ref | def
= ω

Typing of constants where κ, κ′, κ′′ arbitrary

unit : unit

thread : (α
κ−→ α)

κ′
−→ α where |α| = ω

handle : (α
κ−→ (α

1−→ unit)
κ′
−→ β)

κ′′
−−→ β where |α| = ω

cell : α
κ−→ (α ref)

exch : α ref
κ−→ α

κ′
−→ α

Operations on type environments

once(Γ)
def
= {x | x:α in Γ, |α| = 1}

Γ1 ·Γ2
def
= Γ1 ∪ Γ2 provided Γ1 ∩ Γ2 = {x:α | x:α ∈ Γ1 ∪ Γ2, |α| = ω}

Fig. 8. Linear types

4 Linear Types for Handles

We refine the type system to prevent handle errors. We see this system as a
proof tool to facilitate reasoning about the absence of handle errors; we do not
want to argue that the linear types should be used in practice. We do also not
discuss how to deal with handle errors in a concrete programming language.

Most previous uses of linear type systems in functional languages, such as
the uniqueness typing of Clean [6], aimed at preserving referential transparency
in the presence of side-effects, and taking advantage of destructive updates for
efficiency reasons. In contrast, our system rules out a class of programming
errors, by enforcing the single-assignment property for handled futures.

The linear type system will be sufficiently expressive to type a variety of
concurrency abstractions (Sects. 5 and 6). Moreover, the linear types of the
handles implementing these abstractions will be encapsulated. Thus, users of
these abstractions need not know about linear types at all.

We annotate types with usage information in the sense of [27]. In our case it is
sufficient to distinguish between linear (i.e., exactly one) and nonlinear (i.e., any
number of times) uses. Multiplicities 1 and ω are ranged over by κ. Moreover,
for our purposes of ruling out handle errors we annotate only function types,
values of other types can always be used non-linearly (recall that handles have
functional types α −→ unit). In particular, α

κ−→ β denotes functions from α to β

that can be used κ times, and so α
ω−→ β corresponds to the usual function type.

We write |α| for the multiplicity attached to a type α (see Fig. 8).
For a context Γ we write once(Γ) for the set of variables occuring in Γ with

linear multiplicity. If Γ can be split into Γ1 and Γ2 that both contain all the
variables of Γ with multiplicity ω and a partition of once(Γ) we write Γ = Γ1·Γ2.

258 J. Niehren, J. Schwinghammer, and G. Smolka

once(Γ) = ∅
Γ � c : TypeOf(c)

once(Γ) = ∅
Γ, x:α � x : α

Γ, x:α � e : β once(Γ) = ∅
Γ � λx.e : α

ω−→ β

Γ, x:α � e : β

Γ � λx.e : α
1−→ β

Γ1 � e1 : α
κ−→ β Γ2 � e2 : α

Γ1 ·Γ2 � e1 e2 : β

Γ, x:α � e : α |α| = ω

Γ � x⇐e : (x:α; x:α)

Γ, x:α ref � v : α

Γ � x c v : (x:α ref; x:α ref)

x, y /∈ dom(Γ) |α| = ω

Γ � y h x : (x:α, y:α
1−→ unit; x:α, y:α

1−→ unit)

y /∈ dom(Γ)

Γ � y h • : (y:α
1−→ unit; ∅)

Γ � C : Γ1; Γ2

Γ � (νx)C : Γ1 − x; Γ2 − x

Γ, Δ2 � C1 : Γ1; Γ2 ·Γ3 Δ, Γ2 � C2 : Δ1; Δ2 ·Δ3

Γ ·Δ � C1 |C2 : Γ1, Δ1; Γ3 ·Δ3

(
dom(Γ) ∩ dom(Δ1) = ∅
dom(Δ) ∩ dom(Γ1) = ∅

)

Fig. 9. Linear typing rules for λ(fut) expressions and configurations

The types of the term constants are now refined to reflect that handles must
be used linearly. However, we do not want to restrict access to futures through
the rule (future.deref). Hence it must be guaranteed that futures will never
be replaced by values of types with linear multiplicity. This is done by restrict-
ing the types of thread and handle by the condition |α| = ω. On the other
hand, note that no such restriction is necessary for cells which may contain
values of any (i.e., multiplicity 1 or ω) type. Intuitively this is sound because
cells can be accessed only by the exchange operation. In particular, the con-
tents of a cell (potentially having multiplicity 1) cannot be copied through cell
access.

The type rules for expressions are given in Fig. 9. The rules guarantee that
every variable of type α in Γ with |α| = 1 appears exactly once in the term: In the
rules for constants and variables, the side-condition once(Γ) = ∅ ensures that Γ
contains only variables with use ω. There are two rules for abstraction, reflecting
the fact that we have function types with multiplicities 1 and ω. The condition
once(Γ) = ∅ in the first abstraction rule allows us to derive a type α

ω−→ β only
if e does not contain any free variables with multiplicity 1. However, with the
second rule it is always possible to derive a type α

1−→ β. Finally, the rule for
application splits the linearly used variables of the environment. The annotation
κ is irrelevant here, but the type of function and argument must match exactly.

The rules for configurations (Fig. 9) have changed: Judgments are now of
the form Γ ' C : Δ1; Δ2, and the type system maintains the invariants (i)
Γ ∩Δ1 = ∅ and (ii) Δ2 ⊆ Δ1. The intended meaning is the following.

– As before, Γ contains the type assumptions and Δ1 is used to keep track
of the variables which C provides bindings for. In particular, the use of Δ1
allows to ensure the well-formedness conditions in configurations (cf. the
configurations (1) on page 255) by means of invariant (i).

A Concurrent Lambda Calculus with Futures 259

– Variables with multiplicity 1 declared by C may not be used both by a
surrounding configuration and within C. The environment Δ2 ⊆ Δ1 lists
those variables “available for use” to the outside.

The example configuration (2) on page 256 shows the need for the additional
environment Δ2: Although a binding for the handle y is provided in y h z, y is
already used internally to bind its future, in the thread x⇐y unit.

The rules for typing thread and handle components now contain the side con-
dition |α| = ω corresponding to the type restriction of the respective constants.
Moreover, the type of y in y h x must have multiplicity 1. Note that in each case
we have Δ1 = Δ2, i.e., all the declared variables are available.

In y h • the variable y is declared, but not available anymore, i.e. it cannot be
used in a surrounding configuration at all. Thus Δ2 = ∅. The rule for restriction
keeps declarations local by removing all occurrences of x from Δ1 and Δ2.

The rule for parallel composition is the most complex one. Compared to the
corresponding inference scheme of the previous section, it splits the linearly used
assumptions (in Γ ·Δ) as well as the linearly used variables available from each
of the two constituent configurations (Γ2 ·Γ3 and Δ2 ·Δ3, resp.). A variable with
multiplicity 1 declared by C1 can then either be used in C2 (via Γ2), or is made
available to a surrounding configuration (via Γ3) but not both. The environment
of declared variables of C1 |C2 is Γ1, Δ1 and therefore contains all the variables
declared in C1 (i.e., those in Γ1) and C2 (in Δ1) as before. By our convention,
this ensures in particular that C1 and C2 do not contain multiple bindings for
the same variable. Finally, the side-condition of the rule is necessary to establish
the invariant (i).

Theorem 2 (Subject Reduction). If Γ ' C1 : Δ1; Δ2 and C1 → C2 then
Γ ' C2 : Δ1; Δ2.

Error-freeness of well-typed configurations follows by combining the absence
of handle errors in the immediate configuration and Subject Reduction as usual.

Corollary 1 (Absence of Handle Errors). If Γ ' C : Δ1; Δ2 then C is
error-free.

5 Concurrency Constructs

We now show how to express various concurrency abstractions in λ(fut) which
demonstrates the power of handled futures. We use some syntactic sugar, writing
let x1=e1 in e for (λx1.e) e1, λ .e for λx.e where x is not free in e, and e1; e2 for
(λ .e2) e1. We also extend λ(fut) with products and lists.

Mutual Exclusion. When concurrent threads access shared data it is necessary
that they do not interfere in order to prevent any data inconsistencies. We can
implement an operation mutex of type (unit → α) → α that applies its argument
under mutual exclusion. We use a strict context to synchronize several threads
wishing to access a critical region.

260 J. Niehren, J. Schwinghammer, and G. Smolka

let r = cell (λy.y)
in λa.handle(λxλbindx. (exch r x) (unit);

(let v=a (unit) in bindx (λy.y); v))

Before running the function a that is given as argument (the critical region),
a handled future (of type unit → unit) is stored in the reference cell r. This
future is bound (to the identity function) only after the argument is evaluated.
Moreover, before this happens, the previous contents of the cell r cannot be an
unbound future anymore since the function application (exch r x) (unit) is strict
in its arguments. Consequently, threads cannot interfere when evaluating a.

Ports. We assume that there are pairs and a list data type, and write v :: l for
the list with first element v, followed by the list l. A stream is a “open-ended”
list v1:: · · · ::vn::x where x is a (handled) future. The stream can be extended
arbitrarily often by using the handle of the future, provided each new element is
again of the form v::x′, with x′ a handled future. We call the elements v1, . . . , vn

on a stream messages.
A function newPort that creates a new port can be implemented as follows.

λ .handle(λsλbinds.
let putr = cell binds

put = λx.handle(λsλbinds.(exch putr binds) (x :: s))
in (s, put))

The port consists of a stream s and an operation put to put new messages
onto the stream. The stream is ended by a handled future, which in the beginning
is s itself. Its handle binds is stored in the cell putr and used in put to send the
next message to the port. put introduces a new handled future before writing
the new value to the end of the stream. The new handle is stored in the cell.

Channels. By extending ports with a receive operation of type unit → α we ob-
tain channels, which provide for indeterministic many to many communication.
A function newChannel that generates channels is

λ .handle(λinitλbindinit.
let putr = cell bindinit

getr = cell init
put = λx.handle(λnλbindn.(exch putr bindn) (x :: n))
get = λ .handle(λnλbindn.case(exch getr n))

of x :: c ⇒ bindn(c); x)
in (put, get))

Given a stream, applying get yields the next message on the stream. If the
stream contains no further messages, get blocks: We assume that the matching
against the pattern x :: c is strict. Note how get uses a handled future in the same
way as the mutual exclusion above to make the implementation thread-safe.

A Concurrent Lambda Calculus with Futures 261

α, β ∈ LinType ::= . . . | α ×κ β | α listκ such that |α| = 1 or |β| = 1 =⇒ κ = 1

Γ1 � e1 : α Γ2 � e2 : β

Γ1 ·Γ2 � (e1, e2) : α ×κ β

Γ1 � e1 : α ×κ β Γ2, x:α, y:β � e2 : γ

Γ1 ·Γ2 � case e1 of (x, y) ⇒ e2 : γ

Γ1 � e1 : α Γ2 � e2 : α listκ

Γ1 ·Γ2 � e1::e2 : α listκ

Γ1 � e1 : α listκ Γ2, x:α, y:α listκ � e2 : β

Γ1 ·Γ2 � case e1 of x::y ⇒ e2 : β

Fig. 10. Typing rules for products and lists

6 Proving Safety

The three abstractions defined in the previous section are safe, in the sense that
no handle errors are raised by using them. For instance, we can always send
to the port without running into an error. Intuitively, this holds since nobody
can access the (local) handle to the future at the end of the stream s, and the
implementation itself uses each handle only once.

The linear type system can be used to make this intuition formal: By the
results of Sect. 4 typability guarantees the absence of handle errors. Moreover,
all three abstractions obtain “non-linear” types with multiplicity ω. The use of
handled futures is thus properly encapsulated and not observable from the types.
This suggests to provide concurrency abstractions through safe libraries to users.

Mutual Exclusion. The mutual exclusion mutex can be typed as

' mutex : (unit
κ−→ α) ω−→ α

in the linear type system. In fact, in a derivation there is no constraint on the
multiplicity κ which can be chosen as either 1 or ω. More importantly, the type
of mutex itself has multiplicity ω, which allows mutex to be applied any number
of times.

Ports and Channels. We only sketch how to extend the linear type system to deal
with pairs and lists. The details of such an extension are quite standard (see [27],
for instance). Just as with function types these new types are annotated with
multiplicities. We can devise the inference rules in Fig. 10 for the new types. If
the constructs are given the usual operational semantics, the subject reduction
theorem can be extended, as can Corollary 1. For the port abstraction, we derive

' newPort : unit
ω−→ (α listω ×κ α

ω−→ unit) (|α| = ω)

for any κ. In particular, both newPort itself and the put operation (the second
component of the result pair) can be used unrestrictedly. Similarly, for |α| = ω,

' newChannel : unit
ω−→ ((α ω−→ unit)×ω (unit

ω−→ α))

can be derived for the implementation of channels.

262 J. Niehren, J. Schwinghammer, and G. Smolka

7 Implementation View

An implementation of futures has to deal with placeholder objects and deref-
erencing to obtain the value associated with a future. Further, in the case of
lazy futures it must perform the triggering of computations. All these aspects
are visible on the level of the compiler only; futures are transparent from the
programmer’s point of view. Therefore, these touch operations are introduced
by the compiler rather than the programmer.

With an explicit touch operator “?” the expression ?x waits for the value
of the future x, forces its evaluation if necessary, and returns the value once
available. To improve efficiency, a compiler should be able to remove as many
redundant touches as possible. That this can be done by strictness analysis
was an important achievement of previous work on futures by Felleisen and
Flanagan [9]. In this paper, we did not deal with touches and their optimization.
We expect that the analysis of [9] can be extended to our calculus, but leave this
for future work.

8 Conclusion

We have presented the lambda calculus with futures λ(fut) which serves as a
semantics for concurrent extensions of ML where all synchronization is based on
futures. We assumed call-by-value evaluation, static typing, and state. We have
demonstrated how the handled futures of λ(fut) provide an elegant, unifying
mechanism to express various concurrency abstractions.

We have proved the safety of these implementations on basis of a linear type
system. Hence, handle errors cannot arise when using handles only through safe
libraries. As a consequence, handled futures can be safely incorporated into a
strongly typed ML-style programming language without imposing changes in
the type system. An ML extension called Alice [2] along these lines is available.

In future work, we intend to develop a strictness analysis for improving the
efficiency of implementations of λ(fut). We plan to investigate operational equiv-
alences as a further tool in reasoning about λ(fut) programs.

Acknowledgements. We would like to thank the anonymous referees for their
detailed comments and feedback.

References

1. M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):507–534, 1995.

2. The Alice Project. Web site at the Programming Systems Lab, Universität des
Saarlandes, http://www.ps.uni-sb.de/alice, 2005.

3. Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. Journal of
Functional Programming, 7(3):265–301, 1997.

4. Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for par-
allel computing. ACM Transactions on Programming Languages and Systems,
11(4):598–632, 1989.

A Concurrent Lambda Calculus with Futures 263

5. H. Baker and C. Hewitt. The incremental garbage collection of processes. ACM
Sigplan Notices, 12:55–59, Aug. 1977.

6. E. Barendsen and S. Smetsers. Uniqueness type inference. In Proc. PLILP’95,
volume 982 of LNCS, pages 189–206. Springer, 1995.

7. E. Chailloux, P. Manoury, and B. Pagano. Developing Applications With Objective
Caml. O’Reilly, 2000. Available online at http://caml.inria.fr/oreilly-book .

8. S. Conchon and F. L. Fessant. Jocaml: Mobile agents for Objective-Caml. In First
International Symposium on Agent Systems and Applications (ASA’99)/Third In-
ternational Symposium on Mobile Agents (MA’99), 1999.

9. C. Flanagan and M. Felleisen. The semantics of future and an application. Journal
of Functional Programming, 9(1):1–31, 1999.

10. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proc. POPL’96, pages 372–385. ACM Press, 1996.

11. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit typing à la ML for
the join-calculus. In Proc. CONCUR’97, volume 1243 of LNCS, pages 196–212.
Springer, 1997.

12. R. H. Halstead, Jr. Multilisp: A Language for Concurrent Symbolic Computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–538, 1985.

13. S. Haridi, P. V. Roy, P. Brand, M. Mehl, R. Scheidhauer, and G. Smolka. Efficient
logic variables for distributed computing. ACM Transactions on Programming
Languages and Systems, 21(3):569–626, 1999.

14. B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. SIGPLAN Notices, 23(7):260–268, 1988.

15. J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus. Journal
of Functional Programming, 8(3):275–317, 1998.

16. R. Milner. The polyadic π-calculus: A tutorial. In F. L. Bauer, W. Brauer, and
H. Schwichtenberg, editors, Logic and Algebra of Specification, Proc. Marktoberdorf
Summer School, pages 203–246. Springer, 1993.

17. R. Milner, M. Tofte, R. Harper, and D. B. MacQueen. The Standard ML Program-
ming Language (Revised). MIT Press, 1997.

18. M. Müller. Set-based Failure Diagnosis for Concurrent Constraint Programming.
PhD thesis, Universität des Saarlandes, Saarbrücken, 1998.

19. J. Niehren. Uniform confluence in concurrent computation. Journal of Functional
Programming, 10(5):453–499, 2000.

20. F. Nielson, editor. ML with Concurrency: Design, Analysis, Implementation, and
Application. Monographs in Computer Science. Springer, 1997.

21. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-
calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

22. J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
23. A. Rossberg, D. L. Botlan, G. Tack, T. Brunklaus, and G. Smolka. Alice Through

the Looking Glass, volume 5 of Trends in Functional Programming. Intellect, Mu-
nich, Germany, 2004.

24. V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concur-
rent constraint programming. In Proc. POPL’91, pages 333–352. ACM Press.

25. E. Shapiro. The family of concurrent logic programming languages. ACM Comput.
Surv., 21(3):413–510, 1989.

26. G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today, volume 1000 of LNCS, pages 324–343. Springer, 1995.

27. D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proc. 7th ICFPCA,
pages 1–11. ACM Press, 1995.

The ASM Method for System Design and

Analysis. A Tutorial Introduction

Egon Börger

Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

Abstract. We introduce into and survey the ASM method for high-
level system design and analysis. We explain the three notions—Abstract
State Machine [37], ASM ground model (system blueprint) [7] and ASM
refinement [8]—that characterize the method, which integrates also cur-
rent validation and verification techniques. We illustrate how the method
allows the system engineer to rigorously capture requirements by ASM
ground models and to stepwise refine these to code in a validatable and
verifiable way.

1 Scope and Achievements of the ASM Method

An outstanding feature of the ASM method is that within a single precise yet
simple conceptual framework, it naturally supports and uniformly integrates the
following activities and techniques, as illustrated by Fig. 1 (taken from [24]):

– the major software life cycle activities, linking in a controllable way the
two ends of the development of complex software systems:
• requirements capture by constructing rigorous ground models, i.e.

accurate concise high-level system blueprints (system contracts), formu-
lated in domain-specific terms, using an application-oriented language
which can be understood by all stakeholders [7],

• architectural and component design bridging the gap between spec-
ification and code by piecemeal, systematically documented detailing of
abstract models via stepwise refined models to code [8],

• validation of models by their tool-supported simulation,
• verification of model properties by tool-supported proof techniques,
• documentation for inspection, reuse and maintenance by providing,

through the intermediate models and their analysis, explicit descriptions
of the software structure and of the major design decisions,

– the principal modeling and analysis techniques, on the basis of a system-
atic separation of different concerns (e.g. design from analysis, orthogonal
design decisions, multiple levels of definitional or proof detail, etc.):
• integrating dynamic (operational) and static (declarative) descriptions,
• combining validation (simulation) and verification (proof) methods at

any desired level of detail.

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 264–283, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The ASM Method for System Design and Analysis 265

TEST
CASES

domains
transition system

stepwise
refinement
reflecting
design

dynamic functions
external functions

decisions

manual

mechanized

PROVER

adding assumptionsadding definitions

SIMULATOR

using data from
application domain

Verification

Application Domain Knowledge

Ground Model

Informal Requirements

Code

Validation

+

Fig. 1. Models and methods in the ASM-based development process

The integration potential of the ASM method is reflected by the great variety
of its successful applications (for references see [24,9]), for example:

– definition of industrial standards for Prolog (ISO), VHDL93 (IEEE), Java
and JVM (Sun), SDL-2000 (ITU-T), C# (ECMA), BPEL for Web Services,

– design and reengineering of industrial control systems: software projects re-
lated to railway and mobile telephony network components (at Siemens),
debugger and UPnP specification (at Microsoft), business systems interact-
ing with intelligent devices (at SAP),

– modeling e-commerce and web services (at SAP),
– simulation and testing: a fire detection system in coal mines, the simulation

of railway scenarios (at Siemens), the implementation of behavioral interface
specifications on the .NET platform and conformence test of COM compo-
nents (at Microsoft), compiler testing, test case generation,

– design and analysis of protocols for authentication, cryptography, cache-
coherence, routing-layers for distributed mobile ad hoc networks, group-
membership etc.,

– architectural design: verification (e.g. of pipelining schemes or of VHDL-
based hardware design at Siemens), architecture/compiler co-exploration,
combined validation and verification project,

– language design: definition, implementation and analysis of the semantics for
real-life programmming languages, e.g. SystemC, Java/JVM—the book [51]
contains the up to now most comprehensive non-proprietary real-life ASM
case study, covering in every detail ground modeling, refinement, structuring,
implementation, verification and validation of ASMs—, C#, domain-specific
languages (Union Bank of Switzerland), etc.

– verification of compilation schemes and compiler back-ends.

266 E. Börger

The ASM method comes with a rigorous scientific foundation (see [24]). The
ASM ground model technique adds the precision of mathematical blueprints to
the loose character of human-centric UML descriptions. The ASM refinement
method fills a widely-felt gap in UML-based techniques, namely by accurately
linking the models at the successive stages of the system development cycle
in an organic and effectively maintainable chain of coherent system views at
different levels of abstraction. The resulting documentation maps the structure
of the blueprint to compilable code, providing a road map for system use and
maintenance. The practitioner needs no special training to use the ASM method
since Abstract State Machines are a simple extension of Finite State Machines,
obtained by replacing unstructured “internal” control states by states comprising
arbitrarily complex data, and can be understood correctly as pseudo-code or
Virtual Machines working over abstract data structures.

2 Turning FSMs into Abstract State Machines

In this section we explain ASMs as mathematical form of Virtual Machines that
extend Finite State Machines and Codesign-FSMs by an enriched notion of state,
which in support of modular design is accompanied by a classification of ASM
locations defined below.1

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

Fig. 2. Viewing FSM instructions as control state ASM rules

An FSM is defined by a program of instructions of the form pictorially
depicted in Fig. 2, where i, j1, . . . , jn are internal (control) states, condν (for
1 ≤ ν ≤ n) represents the input condition in = aν (reading input aν) and ruleν

the output action out := bν (yielding output bν), which goes together with the
ctl state update to jν . Control state ASMs have the same form of programs, but
the underlying notion of state is extended from three locations, namely:

– a single internal ctl state assuming values in a not furthermore structured
finite set

– two input and output locations in, out assuming values in a finite alphabet

1 The original definition in [37] was motivated by an epistemological concern related
to the Church-Turing thesis. For historical details see [6]. The practice-oriented ap-
proach we follow here is taken from [10].

The ASM Method for System Design and Analysis 267

to a set of values of whatever types residing in updatable memory units, so-called
locations. Any desired level of abstraction can be achieved by permitting possibly
parameterized locations to hold values of arbitrary complexity, whether atomic
or structured: objects, sets, lists, tables, trees, graphs, whatever comes natural
at the considered level of abstraction. As a consequence, the FSM updates of
ctl state and of its output location are extended to ASM state changes result-
ing from updates of the value content of arbitrary many locations, namely via
multiple assignments of the form loc(x1, . . . , xn) := val.

This simple change of view of what a state is yields machines whose states
can be arbitrary multisorted structures, i.e. domains of whatever objects com-
ing with predicates (attributes) and functions defined on them, structures pro-
grammers nowadays are used to from object-oriented programming. In fact
such a memory structure is easily obtained from the flat location view of ab-
stract machine memory by grouping subsets of data into tables (arrays), via
an association of a value to each table entry (f, (a1, . . . , an)). Here f plays
the role of the name of the table, the sequence (a1, . . . , an) the role of a ta-
ble entry, f(a1, . . . , an) denotes the value currently contained in the location
(f, (a1, . . . , an)). Such a table represents an array variable f of dimension n,
which can be viewed as the current interpretation of an n-ary “dynamic” func-
tion or predicate (boolean-valued function). This allows one to structure an
ASM state as a set of tables and thus as a multisorted structure in the sense of
mathematics.

In accordance with the extension of unstructured FSM control states to ar-
bitrary ASM structures, the FSM-input conditions are extended to arbitrary
ASM-state expressions, which are called guards since they determine whether
an instruction can be executed.2 In addition, the usual non-deterministic inter-
pretation, in case more than one FSM-instruction can be executed, is replaced
by the parallel interpretation that in each ASM state, the machine executes si-
multaneously all the updates which are guarded by a condition that is true in
this state. This synchronous parallelism, which yields a clear concept of locally
described global state change, helps to abstract for high-level modeling from ir-
relevant sequentiality (read: an ordering of actions that are independent of each
other in the intended design) and supports refinements to parallel or distributed
implementations.

As a result of this extension of FSMs we obtain the definition of an ASM
as a set of instructions of the following form, called ASM rules to stress the
distinction between the parallel execution model for ASMs and the sequential
single-instruction-execution model for traditional programs:

if cond then Updates

where Updates stands for a set of function updates f(t1, . . . , fn) := t built from
expressions ti, t and an n-ary function symbol f . The notion of run is the same
as for FSMs and for transition systems in general, taking into account the syn-

2 For the special role of in/output locations see below the classification of locations.

268 E. Börger

chronous parallel interpretation.3 Similarly to this extension of FSMs by basic
ASMs, asynchronous ASMs extend globally asynchronous, locally synchronous
Codesign-FSMs [42]. Only the notion of mono-agent sequential runs has to be
extended to asynchronous (also called partially ordered) multi-agent runs. For a
detailed definition in terms of ASMs we refer to [24, Ch.6.1].

Thus ASMs provide a rigorous mathematical semantics, which accurately
supports the way application-domain experts use high-level process-oriented de-
scriptions and software practitioners use “pseudo-code over abstract data”. For
the sake of completeness we list below notations for some other frequently used
forms of rules, which enhance the expressivity of ASMs.

2.1 Classification of ASM Functions and Locations

In this section we describe how the ASM method supports the separation of
concerns, information hiding, data abstraction, modularization and stepwise re-
finement by a systematic distinction between basic locations and derived ones
(that are definable from basic ones), together with a read-write-permit classifi-
cation of basic locations into static and dynamic ones and of the dynamic ones
into monitored (only read), controlled (read and write), shared and output (only
write) locations, as illustrated by Fig. 3.4

These distinctions reflect the different roles played in a given machine M
by the auxiliary locations that are used in function updates to compute the
arguments ti and the new value t. The value of a static location never changes
during any run of M because it does not depend on the states of M . The value
of a dynamic location depends on the states of M since it may change as a
consequence of updates either by M or by the environment. Static locations can
be thought of as given by an initial system state, so that their definition can be
treated separately from the description of the system dynamics. It depends on
the degree of information-hiding the specifier wants to realize how the meaning
of such locations is determined—by a mere signature (“interface”) description or
by axiomatic constraints or by an abstract specification, an explicit or recursive
definition, a program module, etc.

Controlled locations for M are the ones which are directly updatable by and
only by the rules of M , where they appear in at least one rule as the leftmost
location in an update f(s) := t for some s, t. These locations are the ones which
constitute the internally controlled part of the dynamics of M , for example the
location ctl state in an FSM. Locations called monitored by M are those read
but not updated by M and updatable by other machines or the environment.
3 More precisely: to execute one step of an ASM in a given state S determine all the

fireable rules in S (s.t. cond is true in S), compute all expressions ti, t in S occuring
in the updates f(t1, . . . , tn) := t of those rules and then perform simultaneously all
these location updates if they are consistent. In the case of inconsistency, the run is
considered as interrupted if no other stipulation is made, like calling an exception
handling procedure or choosing a compatible update set.

4 A set of locations or a function is called of a kind if all their locations are of that
kind.

The ASM Method for System Design and Analysis 269

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

Fig. 3. Classification of ASM locations

They appear in updates of M , but not as a leftmost update location. An exam-
ple is the input location in of an FSM. These monitored locations constitute the
externally controlled part of the dynamic state of M . The concept of monitored
locations allows one to separate in a specification the computation concerns
from the communication concerns. In fact, the definition does not commit to
any particular mechanism (e.g. message passing via channels) to describe the
exchange of information between interacting agents. As with static locations
the specification of monitored locations is open to any appropriate method, a
feature that helps the system designer to control the amount of information
which he wants to give to the programmer. The only (but crucial) assumption
made is that in a given state the values of all monitored locations are deter-
mined.

Combinations of internal and external control are captured by interaction
or shared locations that can be read and are directly updatable by more than
one machine (so that typically a protocol is needed to guarantee consistency of
updates). Output locations are updated but not read by M and are typically
monitored by other machines or by the environment. An example is the location
out of an FSM. Locations are called external for M if for M they are either
static or monitored.

Distinguishing basic locations from derived locations whose values are defined
by a fixed scheme in terms of other (static or dynamic) locations, pragmatically
supports defining the latter by a specification or computation mechanism which
is given separately from the main machine. Thus derived locations can be thought
of as defining a global method with read-only variables.

An important type of monitored functions are dynamic selection functions f ,
which out of a collection X of objects satisfying a property ϕ select one ele-
ment f(X) in a way that may depend on the current state. They are frequently

270 E. Börger

t is current active thread execJava
t

in ExecRunnableThread

resume
suspend thread

Choose t

yesno

Fig. 4. Multiple thread Java machine

used to abstract from details of scheduling procedures. The following notation
denotes rule(f(X)) when no specific name of the selection function f is needed:

choose x with ϕ
rule(x)

Also notational variations are frequently used, like choose x ∈ X in rule(x).
Fig. 4 shows an example from the ASM model for thread handling in Java and
C# [51,49].

Similarly the following notation is used to make the synchronous parallelism
of ASMs expressable in terms of arbitrary properties:

forall x with ϕ
rule(x)

standing for the simultaneous execution of rule(x) for every element x satisfy-
ing ϕ.

2.2 Some Examples

Many industrial control systems, protocols, business processes and the like come
with a concept of status or mode or phase that directs complex state trans-
formations. Such a high-level system structure can be appropriately modeled by
control state ASMs, introduced in [5] and closest to FSMs, i.e. ASMs all of whose
rules are of the form in Fig. 5, written Fsm(i, if cond then rule, j).

jrulecondi

 if ctl = i then

if cond then rule

ctl:=j

Fig. 5. FSM

A typical example is the top-level Debugger model in Fig. 6, which was de-
fined in [3] as part of a reverse-engineering case study to model a command-line
debugger of a stack-based run-time environment. During the reverse engineering

The ASM Method for System Design and Analysis 271

OnStoppingEvent

OnNonEmptyEventQueue

OnNonEmptyEventQueueOnAnyEvent

RunQ

OnStart

TryToBreak

Run

OnNonStoppingEvent

OnRunningCommand

OnEmptyEventQueue

OnExit

Init

Break

OnBreakingCommand

Fig. 6. Debugger control state ASM

process, this simple model led to the discovery of a flaw in the code, namely
that the submachine executed during the dotted mode transition could lead to a
deadlock and had to be replaced by a transition into a fifth mode RunQ (which
was inserted into the implementation by an additional flag).

A business process example with only start/stop and busy mode is illustrated
in Fig. 7, which is used in [1] to define the kernel of a web service mediator. The
machine delivers for a current request a service answer that is to be compiled
from the set of results of an iterative subrequest processing submachine, which
in turn sends out further subrequests to – and collects the respective services
from – other possibly independent subproviders.

Fig. 8 defines the top-level control structure of a double-phase sender ASM,
which appears in the Kermit protocol as AlternatingBitSender instance and

������� ����������	���	
����
 �
�����������

��������

������

������

���������

	
�����������

���������������

�����

������	����
���������

�������

�����

Fig. 7. Virtual Provider Processing the current request

272 E. Börger

Retransmitsend

match

timeout

CloseCurrFileTransfer

RefreshMsgId
TransmitNxtFile

check

Fig. 8. Kermit protocol sender ASM

as its refinement to a SlidingWindowSender [40]. For a generalization as a
service interaction pattern see [4].

Fig. 9 from [23] defines the black-box view of neural nets characterized by
two top-level phases: in the input phase the Neural Kernel is activated by the
arrival of new input from the environment (transmitted by special input units
to dedicated internal units), to perform on that input an internal computation
which ends with emitting an output to the environment and switching back to
the input mode.

ClearState

no

yes

NK Step

computed
more units to be

compute
activate

Neural Kernelconsumed
new input to be

input

Fig. 9. Neural abstract machine model

2.3 ASM Submachines

The diagrams for control state ASMs enhance similar graphical UML notations
by their rigorous semantics, which is formally defined in Fig. 2, 5, based upon
the precise ASM semantics of the occurring abstract submachines that typically
describe rather complex state transformations. In the examples above these sub-
machines describe a Java interpreter execJava in Fig. 4; the Debugger actions
OnStart, etc. in Fig. 6; the subrequest processing iterator in Fig. 7; the different
refinements of the Kermit macros in Fig. 8; the Neural Kernel Step submachine

The ASM Method for System Design and Analysis 273

in Fig. 9 whose basic computing units (nodes of a directed data-flow graph) per-
form a finite sequence of atomic actions propagating their results through the
graph until the output units are reached.

Where convenient one can also abstract away the FSM-typical control-state
details of an intended sequentiality and encapsulate the execution of a ma-
chine M immediately followed by the execution of N into a black-box view
M seq N , which is supported also by the well-known traditional graphical rep-
resentations of FSMs that omit labels for intermediate internal states. Iterating
such a seq operator leads to so-called turbo ASMs that support the standard
iteration constructs of programming. In the same way one can define a general
ASM submachine concept that fits the synchronous parallel view of ASMs and
supports the two abstraction levels defined by the black-box and the white-box
view of submachines (see [21]). It also supports the traditional understanding of
recursive machine calls (see [12]).

We illustrate ASM submachines by two examples. The first one is the sub-
machine Initialize(class) used in the ASM model for a Java interpreter [51],
providing a succinct formulation for the intricate interaction of the initialization
of classes with other language concepts. In Java the initialization of a class c is
done implicitly at the first use of c, respecting the class hierarchy (the superclass
of c has to be initialized before c). Thus Initialize(class) stores its call parame-
ter class, say into a local variable currInitClass, and then iterates the creation
of class initialization frames until a class is reached which is Initialized.5

Initialize(class) =
currInitClass := class seq

while not Initialized(currInitClass)
CreateInitFrame(currInitClass)
if not Initialized(superClass(currInitClass)) then

currInitClass := superClass(currInitClass))

The Initialize submachine offers the possibility that the designer works with
a black-box view—of an atomic operation that pushes all initialization methods
in the right order onto the frame stack, followed by calling the Java interpreter
to execute them (in the inverse order)—whereas the programmer and the verifier
work with the refined white-box view, which provides the necessary details to
implement the machine and to analyze its global properties of interest (see [22]).
A refinement of Initialize for a C# interpreter has been defined in [17] and has
been used in [32] to investigate problems related to class initialization in C#.

We illustrate the support of recursive submachines by an ASM describing the
well-known procedure to quicksort lists L: FIRST partition the tail of the list
into the two sublists tail(L)<head(L), tail(L)≥head(L) of elements < head(L) re-
spectively ≥ head(L) and quicksort these two sublists separately (independently
of each other), THEN concatenate the results placing head(L) between them.6

5 The termination happens at the latest at the top of the finite class hierarchy.
The submachine CreateInitFrame(c) sets classState(c) to InProgress whereby
Initialized(currInitClass) becomes true.

6 See [12] for a formal definition of the let x = R(a), y = S(b) in M construct.

274 E. Börger

Quicksort(L) =
if| L |≤ 1 then result := L else

let
x = Quicksort(tail(L)<head(L))
y = Quicksort(tail(L)≥head(L))

in result := concatenate(x,head(L), y)

Computing tail(L)<head(L), tail(L)≥head(L) appears in this machine as an
external subcomputation. We illustrate in Sect. 5 how to internalize such a sub-
computation by a refinement step.

3 ASM Ground Models (System Blueprints)

The role of a system blueprint (ground model) is to capture changing system
requirements (“what to build”) in a consistent and unambiguous, simple and con-
cise, abstract and complete way, so that the resulting documentation “grounds
the design in reality” by its being understandable and checkable (for correctness
and completeness) by both domain experts and system designers. Using ASMs
one can cope with ever-changing requirements by building ground models for
change which share the above eight attributes, as we will shortly describe here,
refering for further explanations to [7].

Understandability implies that domain expert and system designer share the
language in which the ground model is formulated, as part of the contract that
binds the two parties. In this respect it is crucial that ASMs allow one to calibrate
the degree of precision of a ground model to the conceptual frame of the given
problem domain, supporting the concentration on domain issues instead of issues
of notation.

Checkability means that both reasoning and experimentation can be applied
to a blueprint to establish that it is complete and consistent, that it reflects
the original intentions and that these are correctly conveyed— together with all
the necessary underlying application-domain knowledge—to the designer. Since
ASM ground models are formulated in application-domain terms, they are in-
spectable for correctness and completeness by the application-domain expert; on
the other side, due to their mathematical nature, they also support the designer
in mathematically checking the internal model consistency and the consistency
of different system views. In addition, exploiting the concept of ASM run, one
can perform experiments with ASM ground models simulating them for running
relevant scenarios (use cases), supporting systematic attempts to “falsify” the
model against the to-be-encoded piece of reality. As technical side-effect one can
define – prior to coding – a precise system-acceptance test plan, thus turning
the ground model into a test model that is to be matched by the tester against
executions of the final code.

Understandability and checkability of ASM ground models already help to
avoid that a software project fails simply because it does not build the right
system, due to a misunderstanding of the requirements. We now shortly char-

The ASM Method for System Design and Analysis 275

acterize the remaining above mentioned six intrinsic properties an ASM ground
model has to satisfy, namely to be:

– precise (unambiguous and consistent) at the appropriate level of detailing
yet flexible, to satisfy the required accuracy avoiding unnecessary precision;

– simple and concise to be understandable by both domain experts (for in-
spection) and system designers (for analysis). ASMs allow one to explicitly
formulate those abstractions that “directly” reflect the structure of the real-
world problem, avoiding any extraneous encoding;

– abstract (minimal) yet complete. Completeness means that all and only se-
mantically relevant features are to be made present: parameters concerning
the interaction with the environment, the basic architectural system struc-
ture, the domain knowledge representation, etc., alltogether making the ASM
“closed” modulo some “holes”. However, the holes are explicitly delineated,
including statements of the assumptions made for them at the abstract level
(to be realized through the detailed specification via later refinements). Min-
imality means that the model abstracts from details that are relevant either
only for the further design or only for a portion of the application domain,
which does not influence the system to be built.

It is this combination of blueprint properties that made ASM ground mod-
els so successful as means to formulate high-level models for industrial control
systems, patent documents, standards. See the formulation of the forthcoming
standard for the Business Process Execution Language for Web Services [52], for
the ITU-T standard for SDL-2000 [35], the ECMA standard for C# [17], the
de facto standard for Java and its implementation on the JVM [51], the IEEE-
VHDL93 standard [18], the ISO-Prolog standard [14]. Or see the development
of railway [13,19] and mobile telephony network components [25] at Siemens.
These examples show also that ASM ground models are fit for reuse. When the
requirements change, these changes can often be directly reflected by blueprint
adaptations, typically additions to or refinements of the ground model abstrac-
tions.

4 ASM Refinements (Reflecting Design Decisions)

We describe in this section the practice-oriented ASM refinement notion [8],
which provides a framework to systematically separate, structure and document
orthogonal design decisions and thus to effectively relate different system views
and aspects. The method supports cost-effective system maintenance and man-
agement of system changes as well as piecemeal system validation and verification
techniques. Putting together the single refinement steps, typically into a chain
or tree of successively more detailed models, allows the designer to rigorously
link the system architect’s view (at the abstraction level of a blueprint) to the
programmer’s view (at the level of detail of compilable code), crossing levels of
abstraction in a way that supports design-for-change.

276 E. Börger

σ1 · · · σn︸ ︷︷ ︸
n steps of M∗

�State S∗ S∗′

�

�

≡
�

�

≡

�State S S′

m steps of M︷ ︸︸ ︷
τ1 · · · τm

With an equivalence notion ≡ between data in
locations of interest in corresponding states.

Fig. 10. The ASM refinement scheme

Refinement is a general methodological principle which is present wherever
a complex system or problem is described piecemeal, decomposing it into con-
stituent parts which are detailed in steps to become manageable. Refinement
goes together with the inverse process of abstraction. The principle of the ASM
refinement method is illustrated by Fig. 10: to refine an ASM M to an ASM
M∗, the designer has the freedom to define the following items:

– a notion of refined state,
– a notion of states of interest and of correspondence between M -states S and
M∗-states S∗ of interest, i.e. the pairs of states in the runs one wants to relate
through the refinement, including usually the correspondence of initial and
(if there are any) of final states,

– a notion of abstract computation segments τ1, . . . , τm, where each τi repre-
sents a single M -step, and of corresponding refined computation segments
σ1, . . . ,σn, of single M∗-steps σj , which in given runs lead from correspond-
ing states of interest to (usually the next) corresponding states of inter-
est (the resulting diagrams are called (m, n)-diagrams and the refinements
(m, n)-refinements),

– a notion of locations of interest and of corresponding locations, i.e. pairs of
(possibly sets of) locations one wants to relate in corresponding states,

– a notion of equivalence ≡ of the data in the locations of interest; these local
data equivalences usually accumulate to a notion of equivalence of corre-
sponding states of interest.

Once the notions of corresponding states and of their equivalence have been
determined, one can define that M∗ is a correct refinement of M if and only if

The ASM Method for System Design and Analysis 277

every (infinite) refined run simulates an (infinite) abstract run with equivalent
corresponding states. More precisely: fix any notions ≡ of equivalence of states
and of initial and final states. An ASM M∗ is called a correct refinement of an
ASM M if and only if for each M∗-run S∗

0 , S∗
1 , . . . there is an M -run S0, S1, . . .

and sequences i0 < i1 < . . . , j0 < j1 < . . . such that i0 = j0 = 0 and Sik
≡ S∗

jk

for each k and either

– both runs terminate and their final states are the last pair of equivalent
states, or

– both runs and both sequences i0 < i1 < . . ., j0 < j1 < . . . are infinite.

Often the M∗-run S∗
0 , S∗

1 , . . . is said to simulate the M -run S0, S1, The states
Sik

, S∗
jk

are the corresponding states of interest. They represent the end points
of the corresponding computation segments (those of interest) in Fig. 10, for
which the equivalence is defined in terms of a relation between their correspond-
ing locations (those of interest). The scheme shows that an ASM refinement
allows one to combine in a natural way a change of the signature (through the
definition of states and of their correspondence, of corresponding locations and
of the equivalence of data) with a change of the control (defining the “flow of
operations” appearing in the corresponding computation segments).

It is important for the practicability of ASM refinements that the size of
m and n in (m, n)-refinements is allowed to dynamically depend on the state.
Practical experience also shows that (m, n)-refinements with n > 1 and includ-
ing (m, 0), (0, n)-steps support the feasibility of decomposing complex (global)
actions into simpler (locally describable) ones whose behavior can be verified
in practice. Procedural (1, n)-refinements with n > 1 have their typical use in
compiler verification when replacing a source code instruction by a chunk of
target code; for numerous examples see [16,15,53,39,36,51]. A convenient way to
hide multiple steps of a procedural refinement is to use ASM submachines as
discussed above, which allow one to “view” n submachine steps as one step of
an overall (here the more abstract) computation.

The ASM literature surveyed in [6] is full of examples of the above defini-
tion, which generalizes numerous more specialized and less practical refinements
notions in the literature [43,44]. The ASM refinement method integrates declar-
ative and operational techniques and widely used modularization concepts into
the design and analysis of ASM models. In particular it supports modulariz-
ing ASM refinement correctness proofs aimed at mechanizable proof support,
see [43].

5 ASM Analysis Techniques (Validation and Verification)

Based upon the notion of ASM run, various tools have been built to mechani-
cally execute ASM models for their experimental validation by simulation and
testing, notably: ASM Workbench [26], AsmGofer [46], ASM2C++ compiler [47],
XASM [2], AsmL [31] and CoreASM [30]. Based upon the mathematical char-
acter of ASMs, also any standard mathematical verification techniques can be

278 E. Börger

applied to prove or disprove ASM model properties, implying precision at the
desired level of rigour: from proof sketches over traditional [20,51] or formalized
mathematical proofs [50] to tool supported proof checking or interactive or auto-
matic theorem proving, e.g. by KIV [45], PVS [28,33], model checkers [27,34]. In
a comprehensive development and analysis environment for real-life ASMs, var-
ious combinations of such verification and validation methods can be supported
and can be used for the analysis of compilers [29,41] and hardware [48,38] and
in the context of the program verifier challenge [11].

6 Combined Refinement and Verification Example

In this section we illustrate for the mathematically inclined reader how to com-
bine the stepwise refinement technique with piecemeal proving of properties of
interest. We use as simple but characteristic examples a refinement of the above
Quicksort machine and an ASM for the well-known leader election protocol
together with its extension by a shortest path computation.

The goal of the leader election protocol is to achieve the election of a leader
among finitely many homogeneous agents in a connected network, using only
communication between neighbor nodes. The leader is defined as max(Agent)
with respect to a linear order < among agents. The algorithmic idea, underlying
the ASM defined in Fig. 11 together with the macros below, is as follows: every
agent proposes to his neighbors his current leader cand idate, checks the leader
proposals received from his neighbors and upon detecting a proposal which im-
proves his leader candidate, he improves his candidate for his next proposal.
The protocol correctness to be proved reads as follows: if initially every agent
is without proposals from his neighbors and will proposeT oNeighbors himself
as candidate, then eventually every agent will checkProposals with empty set
proposals and cand = max(Agent).

Improve proposals
Proposals

EmptyProposals

Proposals

EmptyProposals
ImproveByProposals

Neighbours
propose To check

there are

propose

yes

no

Fig. 11. Basic ASM of LeaderElection agents

The ASM Method for System Design and Analysis 279

LeaderElectionMacros =
propose = forall n ∈ neighb insert cand to proposals(n)
proposals improve = max(proposals) > cand
improve by proposals = cand := max(proposals)
EmptyProposals = (proposals := empty)
there are proposals = (proposals �= empty)

Assuming that every enabled agent will eventually make a move, the protocol
correctness can be proved by an induction on runs and on

∑
{leader− cand(n) |

n ∈ Agent}, which measures the distances of candidates from the leader.
Assume we now want to compute for each agent also a shortest path to

the leader. One has to provide for every agent (except for the leader), in ad-
dition to the leader candidate, also a neighbor which is currently known to
be closest to the leader, together with the minimal distance to the leader via
that neighbor. This is an example of a pure data refinement and consists in en-
riching cand and proposals by a neighbor with minimal distance to the leader,
recorded in new dynamic functions nearNeighb : Agent and distance : Distance
(e.g. Distance = N ∪ {∞}), so that proposals ⊆ Agent × Agent × Distance
(triples of leader cand, nearNeighbor and distance to the leader). Initially we
assume nearNeighbor = self and distance = ∞ except for the leader where
distance = 0.

Thus each agent of the refined async MinPathToLeader ASM executes the
properly initialized basic ASM defined in Fig. 11 with the refined macros below.
Priority is given to determine the largest among the proposed neighbors (where
Max over triples takes the max over the proposed neighbor agents), among the
proposalsFor the current cand the one with minimal distance is chosen.

MinPathToLeaderMacros =
propose = forall n ∈ neighb

insert (cand, nearNeighb, distance) to proposals(n)
proposals improve = let m = Max(proposals) in

m > cand or
(m = cand and minDistance(proposalsFor m) + 1 < distance)

improve by proposals =
cand := Max(proposals)
update PathInfo to Max(proposals)

update PathInfo to m =choose (n, d) with
(m, n, d) ∈ proposals and d = minDistance(proposalsFor m)

nearNeighb := n
distance := d + 1

The leader election correctness property can now be sharpened by the short-
est path correctness property, namely that eventually for every agent, distance
is the minimal distance of a path from agent to leader, and nearNeighbor
is a neighbor on a minimal path to the leader (except for the leader where
nearNeighbor = leader). The proof extends the above induction by a side in-
duction on the minimal distances in proposalsFor Max(proposals.

280 E. Börger

As second example we illustrate how by a refinement step for Quicksort
one can internalize the computation of tail(L)<head(L), tail(L)≥head(L) into a
partitioning submachine Partition(l,h, p). This machine works on the repre-
sentation of lists as functions L : [r, s] → V AL from intervals of natural numbers
to a set of values. When r < s, Partition is started with the search bound-
aries l = r,h = s and the list head pivot = L(r). It terminates when reach-
ing l = h with L(l) = pivot, all L-elements smaller than the pivot to the
left of l, and all the others at l or to the right of l. Until reaching l = h,
the partitioning procedure alternates between searching from above for list ele-
ments L(h) ≤ pivot and searching from below for list elements L(l) ≥ pivot.
When such an element is encountered and it is different from the element
at the other current search boundary—one of them is the pivot—, then the
boundary elements L(l), L(h) are swapped and the search switches to the other
boundary. When L(h) ≤ pivot ≤ L(l) ≤ L(h) before l = h is encountered
(namely when pivot has multiple occurrences in the list), h can be decreased
by one.

Partition(l,h, pivot) =
if L(h) > pivot then h := h− 1
elseif L(l) < pivot then l := l + 1
elseif L(l) > L(h) then

L(l) := L(h)
L(h) := L(l)

elseif l < h then h := h− 1

7 Conclusion

The ASM method offers no fool-proof button-pushing, completely mechanical de-
sign and verification procedure, but it directly supports professional knowledge
and skill in “building models for change”, stepwise detailing them to compilable
code and maintaining models and code in a cost-effective and reliable way. This
is the best one can hope for, given the intrinsically creative character of defining
the essence of a complex computer-based system.

References

1. M. Altenhofen, E. Börger, and J. Lemcke. A high-level specification for mediators.
In 1st International Workshop on Web Service Choreography and Orchestration for
Business Process Management, 2005.

2. M. Anlauff and P. Kutter. Xasm Open Source. Web pages athttp://www.xasm.
org/, 2001.

3. M. Barnett, E. Börger, Y. Gurevich, W. Schulte, and M. Veanes. Using Abstract
State Machines at Microsoft: A case study. In Y. Gurevich, P. Kutter, M. Odersky,
and L. Thiele, editors, Abstract State Machines: Theory and Applications, volume
1912 of Lecture Notes in Computer Science, pages 367–380. Springer-Verlag, 2000.

The ASM Method for System Design and Analysis 281

4. A. Barros and E. Börger. A compositional framework for service interaction pat-
terns and communication flows. In Proc. 7th International Conference on Formal
Engineering Methods (ICFEM 2005), Springer LNCS, 2005.

5. E. Börger. High-level system design and analysis using Abstract State Machines.
In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Current Trends in
Applied Formal Methods (FM-Trends 98), volume 1641 of Lecture Notes in Com-
puter Science, pages 1–43. Springer-Verlag, 1999.

6. E. Börger. The origins and the development of the ASM method for high-level
system design and analysis. J. Universal Computer Science, 8(1):2–74, 2002.

7. E. Börger. The ASM ground model method as a foundation of requirements engi-
neering. In N.Dershowitz, editor, Verification: Theory and Practice, volume 2772
of LNCS, pages 145–160. Springer-Verlag, 2003.

8. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–
257, 2003.

9. E. Börger. Modeling with Abstract State Machines: A support for accurate system
design and analysis. In B. Rumpe and W. Hesse, editors, Modellierung 2004,
volume P-45 of GI-Edition Lecture Notes in Informatics, pages 235–239. Springer-
Verlag, 2004.

10. E. Börger. From finite state machines to virtual machines (Illustrating de-
sign patterns and event-B models). In E. Cohors-Fresenborg and I. Schwank,
editors, Präzisionswerkzeug Logik–Gedenkschrift zu Ehren von Dieter Rödding.
Forschungsinstitut für Mathematikdidaktik Osnabrück, 2005. ISBN 3-925386-56-4.

11. E. Börger. Linking content definition and analysis to what the compiler can verify.
In Proc.IFIP WG Conference on Verified Software: Tools, Techniques, and Exper-
iments, Lecture Notes in Computer Science, Zurich (Switzerland), October 2005.
Springer.

12. E. Börger and T. Bolognesi. Remarks on turbo ASMs for computing functional
equations and recursion schemes. In E. Börger, A. Gargantini, and E. Riccobene,
editors, Abstract State Machines 2003 – Advances in Theory and Applications, vol-
ume 2589 of Lecture Notes in Computer Science, pages 218–228. Springer-Verlag,
2003.

13. E. Börger, H. Busch, J. Cuellar, P. Päppinghaus, E. Tiden, and I. Wildgruber.
Konzept einer hierarchischen Erweiterung von EURIS. Siemens ZFE T SE 1 In-
ternal Report BBCPTW91-1 (pp. 1–43), Summer 1996.

14. E. Börger and K. Dässler. Prolog: DIN papers for discussion. ISO/IEC JTCI
SC22 WG17 Prolog Standardization Document 58, National Physical Laboratory,
Middlesex, England, 1990.

15. E. Börger and G. Del Castillo. A formal method for provably correct composition
of a real-life processor out of basic components (The APE100 Reverse Engineering
Study). In B. Werner, editor, Proc. 1st IEEE Int. Conf. on Engineering of Complex
Computer Systems (ICECCS’95), pages 145–148, November 1995.

16. E. Börger and I. Durdanović. Correctness of compiling Occam to Transputer code.
Computer Journal, 39(1):52–92, 1996.

17. E. Börger, G. Fruja, V. Gervasi, and R. Stärk. A high-level modular definition of
the semantics of C#. Theoretical Computer Science, 336(2/3), 2005.

18. E. Börger, U. Glässer, and W. Müller. The semantics of behavioral VHDL’93
descriptions. In EURO-DAC’94. European Design Automation Conference with
EURO-VHDL’94, pages 500–505, Los Alamitos, California, 1994. IEEE Computer
Society Press.

282 E. Börger

19. E. Börger, P. Päppinghaus, and J. Schmid. Report on a practical application of
ASMs in software design. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines: Theory and Applications, volume 1912 of Lecture
Notes in Computer Science, pages 361–366. Springer-Verlag, 2000.

20. E. Börger and D. Rosenzweig. The WAM – definition and compiler correctness.
In C. Beierle and L. Plümer, editors, Logic Programming: Formal Methods and
Practical Applications, volume 11 of Studies in Computer Science and Artificial
Intelligence, chapter 2, pages 20–90. North-Holland, 1995.

21. E. Börger and J. Schmid. Composition and submachine concepts for sequential
ASMs. In P. Clote and H. Schwichtenberg, editors, Computer Science Logic (Pro-
ceedings of CSL 2000), volume 1862 of Lecture Notes in Computer Science, pages
41–60. Springer-Verlag, 2000.

22. E. Börger and W. Schulte. Initialization problems for Java. Software – Concepts
and Tools, 19(4):175–178, 2000.

23. E. Börger and D. Sona. A neural abstract machine. J. Universal Computer Science,
7(11):1007–1024, 2001.

24. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

25. G. D. Castillo and P. Päppinghaus. Designing software for internet telephony:
experiences in an industrial development process. In A. Blass, E. Börger, and
Y. Gurevich, editors, Theory and Applications of Abstract State Machines, Schloss
Dagstuhl, Int. Conf. and Research Center for Computer Science, 2002.

26. G. Del Castillo. The ASM Workbench. A Tool Environment for Computer-Aided
Analysis and Validation of Abstract State Machine Models. PhD thesis, Universität
Paderborn, Germany, 2001.

27. G. Del Castillo and K. Winter. Model checking support for the ASM high-level
language. In S. Graf and M. Schwartzbach, editors, Proc. 6th Int. Conf. TACAS
2000, volume 1785 of Lecture Notes in Computer Science, pages 331–346. Springer-
Verlag, 2000.

28. A. Dold. A formal representation of Abstract State Machines using PVS. Verifix
Technical Report Ulm/6.2, Universität Ulm, Germany, July 1998.

29. A. Dold, T. Gaul, V. Vialard, and W. Zimmermann. ASM-based mechanized
verification of compiler back-ends. In U. Glässer and P. Schmitt, editors, Proc. 5th
Int. Workshop on Abstract State Machines, pages 50–67. Magdeburg University,
1998.

30. R. Farahbod, V. Gervasi, and U. Glässer. CoreASM: An extensible ASM execu-
tion engine. In D. Beauquier, E. Börger, and A. Slissenko, editors, Proc.ASM05.
Université de Paris 12, 2005.

31. Foundations of Software Engineering Group, Microsoft Research. AsmL. Web
pages at http://research.microsoft.com/foundations/AsmL/, 2001.

32. N. G. Fruja. Specification and implementation problems for C#. In B. Thal-
heim and W. Zimmermann, editors, Abstract State Machines 2004, volume 3052
of Lecture Notes in Computer Science, pages 127–143. Springer, 2004.

33. A. Gargantini and E. Riccobene. Encoding Abstract State Machines in PVS.
In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract State
Machines: Theory and Applications, volume 1912 of Lecture Notes in Computer
Science, pages 303–322. Springer-Verlag, 2000.

34. A. Gawanmeh, S. Tahar, and K. Winter. Interfacing ASMs with the MDG tool. In
E. Börger, A. Gargantini, and E. Riccobene, editors, Abstract State Machines 2003–
Advances in Theory and Applications, volume 2589 of Lecture Notes in Computer
Science, pages 278–292. Springer-Verlag, 2003.

The ASM Method for System Design and Analysis 283

35. U. Glässer, R. Gotzhein, and A. Prinz. Formal semantics of SDL-2000: Status and
perspectives. Computer Networks, 42(3):343–358, June 2003.

36. G. Goos and W. Zimmermann. Verifying compilers and ASMs. In Y. Gurevich,
P. Kutter, M. Odersky, and L. Thiele, editors, Abstract State Machines: Theory and
Applications, volume 1912 of Lecture Notes in Computer Science, pages 177–202.
Springer-Verlag, 2000.

37. Y. Gurevich. Evolving algebras 1993: Lipari Guide. In E. Börger, editor, Specifi-
cation and Validation Methods, pages 9–36. Oxford University Press, 1995.

38. A. Habibi. Framework for System Level Verification: The SystemC Case. PhD
thesis, Concordia University, Montreal, July 2005.

39. A. Heberle. Korrekte Transformationsphase – der Kern korrekter Übersetzer. PhD
thesis, Universität Karlsruhe, Germany, 2000.

40. J. Huggins. Kermit: Specification and verification. In E. Börger, editor, Specifica-
tion and Validation Methods, pages 247–293. Oxford University Press, 1995.

41. A. Kalinov, A. Kossatchev, A. Petrenko, M. Posypkin, and V. Shishkov. Using ASM
specifications for compiler testing. In E. Börger, A. Gargantini, and E. Riccobene,
editors, Abstract State Machines 2003–Advances in Theory and Applications, vol-
ume 2589 of Lecture Notes in Computer Science, page 415. Springer-Verlag, 2003.

42. L. Lavagno, A. Sangiovanni-Vincentelli, and E. M. Sentovitch. Models of compu-
tation for system design. In E. Börger, editor, Architecture Design and Validation
Methods, pages 243–295. Springer-Verlag, 2000.

43. G. Schellhorn. Verification of ASM refinements using generalized forward simula-
tion. J. Universal Computer Science, 7(11):952–979, 2001.

44. G. Schellhorn. ASM refinement and generalizations of forward simulation in data
refinement: A comparison. Theoretical Computer Science, 2004.

45. G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The
WAM case study. J. Universal Computer Science, 3(4):377–413, 1997.

46. J. Schmid. Executing ASM specifications with AsmGofer. Web pages at
http://www.tydo.de/AsmGofer .

47. J. Schmid. Compiling Abstract State Machines to C++. J. Universal Computer
Science, 7(11):1069–1088, 2001.

48. J. Schmid. Refinement and Implementation Techniques for Abstract State Ma-
chines. PhD thesis, University of Ulm, Germany, 2002.

49. R. F. Stärk and E. Börger. An ASM specification of C# threads and the .NET
memory model. In W. Zimmermann and B. Thalheim, editors, Abstract State
Machines 2004, volume 3052 of Lecture Notes in Computer Science, pages 38–60.
Springer-Verlag, 2004.

50. R. F. Stärk and S. Nanchen. A logic for Abstract State Machines. J. Universal
Computer Science, 7(11):981–1006, 2001.

51. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Defi-
nition, Verification, Validation. Springer-Verlag, 2001.

52. M. Vajihollahi. High level specification and validation of the Business Process
Execution Language for web services. Master’s thesis, School of Computing Science
at Simon Fraser University, April 2004.

53. W. Zimmerman and T. Gaul. On the construction of correct compiler back-ends:
An ASM approach. J. Universal Computer Science, 3(5):504–567, 1997.

Matching Classifications via a Bidirectional

Integration of SAT and Linguistic Resources

Fausto Giunchiglia

Dept. of Information and Communication Technology,
University of Trento, 38050 Povo, Trento, Italy

fausto@dit.unitn.it

Abstract. Classifications, often mistakenly called directories, are per-
vasive: we use them to classify our messages, our favourite Web Pages,
our files, ... And many more can be found in the Web; think for instance
of the Google and Yahoo’s directories. The problem is that all these
classifications are very different or more precisely, semantically hetero-
geneous. The most striking consequence is that they classify documents
very differently, making therefore very hard and sometimes impossible
to find them.

Matching classifications is the process which allows us to map those
nodes of two classifications which, intuitively, correspond semantically
to each other. In the first part of the talk I will show how it is possible
to encode this problem into a propositional validity problem, thus allow-
ing for the use of SAT reasoners. This is done mainly using linguistic
resources (e.g., WordNet) and some amount of Natural Language Pro-
cessing. However, as shown in the second part of the talk, this turns out
to be almost useless. In most cases, in fact, linguistic resources do not
contain enough of the axioms needed to prove unsatisfiability. The solu-
tion to this problem turns to be that of using SAT as a way to generate
the missing axioms.

We have started using linguistic resources to provide SAT with the
axioms needed to match classifications, and we have ended up using SAT
to generate missing axioms in the linguistic resources. We will argue that
this is an example of a more general phenomenon which arises when using
commonsense knowledge. This in turns becomes an opportunity for the
use of decision procedures for a focused automated generation of the
missing knowledge.

References

1. F. Giunchiglia and P. Shvaiko. Semantic matching. The Knowledge Engineering
Review, 18(3):265–280, Sept. 2003.

2. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: an algorithm and an im-
plementation of semantic matching. In Proceedings of ESWS’04, Heraklion, Crete,
Greece, LNCS 3053, pages 61–75. Springer, May 2004.

3. F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efficient semantic matching.
In Proceedings of ESWS’05, Heraklion, Crete, Greece, LNCS 3532, pages 272–289.
Springer, 2005.

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, p. 284, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Connecting a Logical Framework to a
First-Order Logic Prover�

Andreas Abel, Thierry Coquand, and Ulf Norell

Department of Computing Science, Chalmers University of Technology
{abel,coquand,ulfn}@cs.chalmers.se

Abstract. We present one way of combining a logical framework and first-order
logic. The logical framework is used as an interface to a first-order theorem
prover. Its main purpose is to keep track of the structure of the proof and to deal
with the high level steps, for instance, induction. The steps that involve purely
propositional or simple first-order reasoning are left to a first-order resolution
prover (the system Gandalf in our prototype). The correctness of this interaction
is based on a general meta-theoretic result. One feature is the simplicity of our
translation between the logical framework and first-order logic, which uses im-
plicit typing. Implementation and case studies are described.

1 Introduction

We work towards human-readable and machine-verifiable proof documents for mathe-
matics and computer science. As argued by de Bruijn [11], dependent type theory offers
an ideal formal system for representing reasoning steps, such as introducing parameters
or hypotheses, naming constants or lemmas, using a lemma or a hypothesis. Type the-
ory provides explicit notations for these proof steps, with good logical properties. Using
tools like Coq [5], Epigram [3], or Agda [9] these steps can be performed interactively.
But low level reasoning steps, such as simple propositional reasoning, or equality rea-
soning, substituting equals for equals, are tedious if performed in a purely interactive
way. Furthermore, propositional provers, and even first-order logic (FOL) provers are
now very efficient. It is thus natural to create interfaces between logical frameworks
and automatic propositional or first-order provers [7,24,18]. But, in order to arrive at
proof documents which are still readable, only trivial proof steps should be handled by
the automatic prover. Since different readers might have different notions of trivial, the
automatic prover should not be a black box. With some effort by the human, the output
of the prover should be understandable.

In this paper, we are exploring connections between a logical framework MLFProp

based on type theory and resolution-based theorem provers. One problem in such an
interaction is that resolution proofs are hard to read and understand in general. Indeed,
resolution proof systems work with formulæ in clause normal form, where clauses are
(the universal closures of) disjunctions of literals, a literal being an atom or a negated

� Research supported by the coordination action TYPES (510996) and thematic network Applied
Semantics II (IST-2001-38957) of the European Union and the project Cover of the Swedish
Foundation of Strategic Research (SSF).

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 285–301, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

286 A. Abel, T. Coquand, and U. Norell

atom. The system translates the negation of the statement to be proved to clause form,
using skolemisation and disjunctive normal form. It then generates new clauses using
resolution and paramodulation, trying to derive a contradiction. If successful, the system
does pruning on the (typically high number of) generated clauses and outputs only the
relevant ones.1

We lose the structure of the initial problem when doing skolemisation and clausifi-
cation. Typically, a problem such as

∀x.∃y.∀z.R(x, y) ⇒ R(x, z) (1)

is negated and translated into the two contradictory unit clauses

∀y. R(a, y), ∀y.¬R(a, f(y)), (2)

but the connection between the statement (1) and the refutation of (2) is not so intuitive.
We do not solve this problem here, but we point out that, if we restrict ourselves to

implicitely universally quantified propositional formulæ, in the following called open
formulæ, this problem does not arise. Furthermore, when we restrict to this fragment,
we can use the idea of implicit typing [4,26]. In this way, the translation from frame-
work types to FOL formulæ is particularly simple. Technically, this is reflected by a
general meta-theorem which ensures that we can lift a first-order resolution proof to a
framework derivation. If we restrict the class of formulæ further to so-called geometri-
cal open formulæ [10,6], then the translation to clausal form is transparent. Indeed, any
resolution proof for this fragment is intuitionistically valid and can be interpreted as it
is in type theory. This meta-theorem is also the theoretical justification for our interface
between MLFProp and a resolution-based proof system.

We have implemented a prototype version of a type system in Haskell, with a con-
nection to the resolution prover Gandalf [25]. By restricting ourselves to open formulæ
we sacrifice proof strength, but preliminary experiments show that the restriction is less
severe than it may seem at first since the steps involving quantification are well handled
at the framework level. Also, the proof traces produced by Gandalf are often readable
(and surprisingly clever in some cases).

We think that we can represent Leslie Lamport proof style [17] rather faithfully in
this system. The high level steps such as introduction of hypotheses, case analysis, in-
duction steps are handled at the framework level, and only the trivial steps are sent to
the FOL automatic prover.

One can think also of other plug-in extensions, e.g., rewriting systems and computer
algebra systems. We have experimented with a QuickCheck [8] plug-in, that allows
random testing of some propositions. In general, each plug-in extension of our logical
framework should be justified in the same way as the one we present in this paper: we
prove a conservativity result which ensures that the use of this plug-in can be, if desired,
replaced by a direct proof in the framework.This way of combining various systems

1 If the search is not successful, it is quite hard to get any relevant information from the clauses
that are generated. We have not yet analyzed the problem of getting useful feedback in this
case.

Connecting a Logical Framework to a First-Order Logic Prover 287

works in practice, as suggested by preliminary experiments, and it is theoretically well-
founded.

This paper is organized as follows. We first describe the logical framework MLFProp.
We then present the translation from some LF types to FOL formulæ. The main techni-
cal result is then a theorem that shows that any resolution and paramodulation step, with
one restriction, can be lifted to the framework level. Finally, we present some examples
and extensions, and a discussion of related work.

2 The Logical Framework MLFProp

This section presents an extension of Martin-Löf’s logical framework [20] by proposi-
tions and local definitions.

Expressions (terms and types). We assume countable sets of variables Var and con-
stants Const. Furthermore, we have a finite number of built-in constants to construct
the primitives of our type language. A priori, we do not distinguish between terms and
types. The syntactic entities of MLFProp are given by the following grammar.

Var 2 x, y, z variables
Const 2 c, f, p constants
BuiltIn 2 ĉ ::= Fun | El | Set | () | Prf | Prop built-in constants
Exp 2 r, s, P, Q ::= ĉ | c | x | λxr | r s | let x :T =r in s expressions
Ty 2 T,U ::= Set | El s | Prop | Prf P | FunT (λxU) types
Cxt 2 Γ ::= 3 | Γ, x :T typing contexts
Sig 2 Σ ::= 3 | Σ, c :T | Σ, c :T =r signatures

We identify terms and types up to α-conversion and adopt the convention that in con-
texts Γ , all variables must be distinct; hence, the context extension Γ, x :T presupposes
(x :U) �∈ Γ for any U . Similarly, a constant c may not be declared in a signature twice.
We abbreviate a sequence of context entries x1 : T, . . . , xn : T of the same type by
x1, . . . , xm :T . Multiple application r s1 . . . sn is expressed as r s. (Capture-avoiding)
substitution of r for x in s is written as s[r/x], or s[r] if x is clear from the context of
discourse.

For dependent function types Fun T (λxU) we introduce the notation (x :T) → U .
Curried functions spaces (x1 : T1) → . . . (xk : Tk) → U are shortened to (x1 :
T1, . . . , xk : Tk) → U , which explains the notation (Γ) → U . Non-dependent func-
tions (: T) → U are written T → U . The inhabitants of Set are type codes; El maps
type codes to types. E. g., (a : Set) → El a → El a is the type of the polymorphic
identity λaλxx. Similarly Prop contains formal propositions P and Prf P proofs of P .

Types of the shape (Γ) → Prf P are called proof types. A context Γ := x1 :
T1, . . . , xn : Tn is a set context if and only if all Ti are of the form (Δ) → El S. In
particular, if P : Prop, then the proof type (Γ) → Prf P corresponds to a universal
first-order formula ∀x1 . . .∀xnP with quantifier-free kernel P .

Judgements. The type theory MLFProp is presented via five judgements, which are all
relative to a (user-defined) signature Σ.

288 A. Abel, T. Coquand, and U. Norell

Γ 'Σ Γ is a well-formed context
Γ 'Σ T T is a well-formed type
Γ 'Σ r : T r has type T
Γ 'Σ T = T ′ T and T ′ are equal types
Γ 'Σ r = r′ : T r and r′ are equal terms of type T

All five judgements are defined simultaneously. Since the signature remains fixed in
all judgements we will omit it. The typing rules are available in the extended version
of this paper [2]. Judgmental type and term equality are generated from expansion of
signature definitions as well as from β-, η-, and let-equality, the latter of which is given
by (let x :T = r in s) = s[r/x]. The rules for equality are similar to the ones of MLFΣ

[1], and type-checking of normal terms with local definitions is decidable.

Natural deduction. We assume a signature Σnd (see the extended version of this pa-
per [2]) which assumes the infix logical connectives op ::= ∧,∨,⇒, plus the defined
ones, ¬ and ⇔. Furthermore, it contains a set PredSym of basic predicate symbols p
of type (Γ) → Prop where Γ is a (possibly empty) set context. Currently we only as-
sume truth	, absurdity⊥, and typed equality Id, but user defined signatures can extend
PredSym by their own symbols. For each logical constructs, there are appropriate proof
rules, e. g., a constant impI : (P, Q :Prop) → (Prf P → Prf Q) → Prf (P ⇒ Q).

First-order logic assumes that every set is non-empty, and our use of a first-order
prover is only sound under this assumption. Hence, we add a special constant ε : (D :
Set) → El D to Σnd which enforces this fact. Notice that this implies that all set
contexts are inhabited2.

Classical reasoning can be performed in the signature Σclass, which we define as the
extension of Σnd by EM : (P :Prop) → Prf (P ∨ ¬P), the law of the excluded middle.

The FOL rule. This article investigates conditions under which the addition of the fol-
lowing rule is conservative over MLFProp + Σnd and MLFProp + Σclass, respectively.

FOL
Γ ' T

Γ ' () : T
Γ 'FOL T

The side condition Γ 'FOL T expresses that T is a proof type and that the first-order
prover can deduce the truth of the corresponding first-order formula from the assump-
tions in Γ . It ensures that only tautologies have proofs in MLFProp, but it is not consid-
ered part of the type checking. Meta-theoretical properties of MLFProp like decidability
of equality and type-checking hold independently of this side condition.

Conservativity fails if we have to compare proof objects during type-checking.
This is because the rule FOL produces a single proof object for all (true) proposi-
tions, whereas upon removal of FOL the hole has to be filled with specific proof ob-
ject. Hence two equal objects which each depend on a proof generated by FOL could
become inequal after replacing FOL. To avoid this, it is sufficient to restrict function
spaces (x :T) → U : if T is a proof type, then also U .

In the remainder of the paper, we use LF as a synonym for MLFProp.

2 Semantically, it may be fruitful to think of terms of type Set as inhabited Partial Equivalence
Relations, while terms of type Prop are PERs with at most one inhabitant.

Connecting a Logical Framework to a First-Order Logic Prover 289

3 Translation from MLFProp to FOL

We shall define a partial translation from some LF types to FOL propositions. We
translate only types of the form

(x1 :T1, . . . , xk :Tk) → Prf (P (x1, . . . , xk)),

and these are translated to open formulæ [P (x1, . . . , xk)] of first-order logic. All the
variables x1, . . . , xk are considered universally quantified. For instance,

(x :El N) → Prf (Id N x x ∧ Id N x (add 0 x))

will be translated to x = x ∧ x = add 0 x. If we have a theory of lattices, that is, we
have added

D : Set
sup : El D → El D → El D
≤ : El D → El D → Prop

to the current signature, then (x, y : El D) → Prf (sup x y ≤ x ⇔ y ≤ x) would be
translated to sup x y ≤ y ⇔ y ≤ x.

The translation is done at a syntactical level, without using types. We will demon-
strate that we can lift a resolution proof of a translated formula to a LF derivation in the
signature Σclass (or in Σnd, in some cases).

3.1 Formal Description of the Translation

We translate normal expressions, which means that all definitions have been unfolded
and all redexes reduced. Three classes of normal MLFProp-expressions are introduced:
(formal) first-order terms and (formal) first-order formulæ, which are quantifier free
formulæ over atoms possibly containing free term variables, and translatable formulæ,
which are first-order formulæ prefixed by quantification over set elements.

t, u ::= x | f t first-order terms
A,B ::= p t | Id S t1 t2 atoms
W ::= A | W op W ′ first-order formulæ
φ ::= (Δ) → Prf W translatable formulæ (Δ set context)

Proper terms are those which are not just variables. For the conservativity result the
following fact about proper terms will be important: In a well-typed proper term, the
types of its variables are uniquely determined. For this reason, a formal first-order term
t may neither contain a binder (λ or let) nor a variable which is applied to something,
for instance, xu.

An example of a first-order formula is Wex := Id D x (f y) ⇒ (Lessx (f y) ⇒ ⊥),
which is well-typed in the extension D : Set, f : El D → El D, Less : El D →
El D → Prop of signature Σnd.

On the FOL side, we consider a language with equality (=), one binary function
symbol app and one constant for each constant introduced in the logical framework.
Having an explicit “app” allows partial application of function symbols.

290 A. Abel, T. Coquand, and U. Norell

Let Δ = x1 :T1, . . . , xn :Tn be a set context. A type of the form

φ := (Δ) → Prf W

is translated into a universal formula [φ] = ∀x1 . . .∀xn[W]. The translation [W] of
first-order formulæ and the translation 〈t〉 of first-order terms depends on Δ and is
defined recursively as follows:

[W1 op W2] := [W1] op [W2] logical connectives
[Id S t1 t2] := 〈t1〉 = 〈t2〉 equality
[p t1 . . . tn] := p(〈t1〉, . . . , 〈tn〉) predicates, including 	,⊥
〈xi〉 := xi variables in Δ
〈x〉 := cx variables not in Δ
〈c〉 := c 0-ary functions
〈f t1 . . . tn〉 := f(〈t1〉, . . . , 〈tn〉) n-ary functions

where we write f(t1, . . . , tn) for app(. . . app(app(f, t1), t2), . . . , tn). Note that the
translation is purely syntactical, and does not use type information. It is even homo-
morphic with two exceptions: (a) the typed equality of MLFProp is translated into the
untyped equality of FOL, and (b) variables bound outside φ have to be translated as
constants.

For instance, the formula (y : El D) → Wex is translated as ∀y. cx = f(y) ⇒
(Less(cx, f(y)) ⇒ ⊥). Examples of types that cannot be translated are

(x :Prop) → Prf x, Prf (F (λxx)), (y : El D → El D) → Prf (P (y x)).

We shall also use the class of geometrical formulæ, given by the following grammar:

G ::= H | H → G | G ∧G geometrical formula
H ::= A | H ∧H | H ∨H positive formula

The above example Wex is geometrical. As we will show, (classical) first-order proofs
of geometrical formulæ can be mapped to intuitionistic proofs in the logical framework
with Σnd.

3.2 Resolution Calculus

It will be convenient to use the following non-standard presentation of the resolution
calculus [22]. A clause C is an open first-order formula of the form

A1 ∧ · · · ∧An ⇒ B1 ∨ · · · ∨Bm

where we can have n = 0 or m = 0 and Ai and Bj are atomic formulæ. Following
Gentzen [12], we write such a clause on the form

A1, . . . , An ⇒ B1, . . . ,Bm,

that is, X ⇒ Y , where X and Y are finite sets of atomic formulæ. An empty X is
interpreted as truth, an empty Y as absurdity.

Connecting a Logical Framework to a First-Order Logic Prover 291

AX
A ⇒ A

SUB
X ′ ⊇ X X ⇒ Y Y ⊆ Y ′

X ′ ⇒ Y ′

RES
X1 ⇒ Z1, Y1 X2, Z2 ⇒ Y2

(X1, X2 ⇒ Y1, Y2)σ
σ = mgu(Z1, Z2)

REFL · ⇒ x = x
PARA

X1 ⇒ t = u, Y1 X2[t
′] ⇒ Y2[t

′]
(X1, X2[u] ⇒ Y1, Y2[u])σ

σ = mgu(t, t′)

Fig. 1. Resolution calculus

Resolution is forward reasoning. Figure 1 lists the rules for extending the current
set of derived clauses: if all clauses mentioned in the premise of a rule are present, this
rule can fire and the clause of the conclusion is added to the clause set.

In our formulation, all rules are intuitionistically valid3, and can be justified in
MLFProp +Σnd. It can be shown, classically, that these rules are complete in the follow-
ing sense: if a clause is a semantical consequence of other clauses then it is possible to
derive it using the resolution calculus. Hence, any proof in FOL can be performed with
resolution4.

It can be pointed out that the SUB rule is only necessary at the very end—any reso-
lution proof can be normalized to a proof that only uses SUB in the final step.

Let the restricted paramodulation rule denote the version of PARA where both t and
t′ are proper terms (not variables).

3.3 Proof of Correctness

In this section, we show that every FOL proof of a translated formula [φ] can be lifted
to a proof in MLFProp + Σclass, provided the resolution proof confines to restricted
paramodulation. This is not trivial because FOL is untyped and MLFProp is typed, and
our translation forgets the types. The crucial insight is that every resolution step pre-
serves well-typedness.

Fix a signature Σ. A first-order term t is well-typed iff there exists a context Δ,
giving types to the variables x1, . . . , xn of t, such that in the given signature, Δ ' t : T
for some type T . For example, in the signature

D : Set f : El D → El D
F : El D → Prop g : (x :El D) → Prf (F x)

the proper first-order terms f x, F y, and g z are well-typed, but F x y is not. Notice
that if a proper FOL term is well-typed, then there is only one way to assign types to its
variables.

3 In the standard formulation, the AX rule would read ¬A ∨ A—the excluded middle.
4 To deal with existential quantification we also need skolemisation.

292 A. Abel, T. Coquand, and U. Norell

Lemma 1. If two proper first-order terms t1, t2 over disjoint variables are well-typed
and unifiable, then the most general unifier mgu(t1, t2) is well-typed.

For instance, add x 0 and add (S y) z are unifiable and well-typed and the most
general unifier {x�→S y, z �→0} is well-typed. The lemma is proven in the extended
version of this paper [2].

Using this lemma, we can lift any FOL resolution step to an LF resolution step.
The same holds for any restricted paramodulation step, which justifies the translation
of Id S t u as 〈t〉 = 〈u〉 in FOL, Indeed, in the paramodulation step between X1 ⇒
t = u, Y1 and X2[t′] ⇒ Y2[t′] we unify t and t′ and for Lemma 1 to be applicable both
t and t′ have to be proper terms. Similar arguments have been put forth by Beeson [4]
and Wick and McCune [26].

A clausal type is a formula which translates to a clause.

Lemma 2. If two FOL clausal types (Γ1) → Prf (W1) and (Γ2) → Prf (W2) are
derivable, and C is a resolution of [W1] and [W2] then there exists a context Γ and a
derivable (Γ) → Prf W such that C = [W]. The same holds if C is derived from [W1]
and [W2] by restricted paramodulation. Furthermore in both cases, Γ is a set context if
both Γ1 and Γ2 are set contexts.

In the next theorems, φ,φ1, . . . ,φk are translatable formulæ of the form (Γ) →
Prf W where Γ is a set context.

The following theorem is a consequence of Lemma 2, since an open formula is
(classically) equivalent to a conjunction of clauses.

Theorem 3. If we can derive [φ] from [φ1], . . . , [φk] by resolution and restricted para-
modulation then φ is derivable from φ1, . . . ,φk in any extension of the signature Σclass.

A resolution proof, as we have presented it, is intuitionistically valid. The only step
which may not be intuitionistically valid is when we express the equivalence between
an open formula and a conjunction of clauses. For instance the open formula ¬P ∨ Q
is not intuitionistically equivalent to the clause P ⇒ Q in general. This problem does
not occur if we start with geometrical formulæ [6].

Theorem 4. If we can derive [φ] from [φ1], . . . , [φk] by resolution and restricted para-
modulation and φ,φ1, . . . ,φk are geometric formulæ, then φ is derivable from φ1 . . . φk

in any extension of the signature Σnd.

It is important for the theorem that all set contexts are inhabited: if D : Set and
P : Prop (with x not free in P), then both

φ1 = (x :El D) → Prf P and φ2 = Prf P

are translated to the same FOL proposition [φ1] = [φ2] = P but we can derive φ2 from
φ1 in Σnd, D : Set, P : Prop only because El D is inhabited.

As noticed above, if we allow paramodulation from a variable, we could derive
clauses that are not well-typed. For instance, in the signature

N1 : Set, 0 : El N1,h : (x : El N1) → Prf (Id N1 x 0), A : Set, a : El A

Connecting a Logical Framework to a First-Order Logic Prover 293

the type of h becomes x = 0 in FOL and from this we could derive, by paramodulation
from the variable x, a = 0 which is not well-typed. This problem is also discussed in
[4,26] and the solution is simply to forbid the FOL prover to use paramodulation from
a variable5.

We can now state the conservativity theorem.

Theorem 5. If a type is inhabited in the system MLFProp + FOL + Σclass then it is
inhabited in MLFProp + Σclass.

Proof. By induction on the typing derivation, using Thm. 3 for FOL derivations.

3.4 Simple Examples

Figure 2 shows an extension of Σnd by natural numbers, induction and an addition func-
tion defined by recursion on the second argument. Now consider the goal (x :ElN) →
Id N (add 0 x) x. Using the induction schema and the propositional proof rules, we can
give the proof term

indN (λx. Id N (add 0 x)x) () (λa. impI (λih ()))

in the logical framework, which contains these two FOL goals:

'FOL Id N (add 0 0) 0
a :El N, ih : Id N (add 0 a) a 'FOL Id N (add 0 (S a)) (S a)

Both goals can be handled by the FOL prover. The first goal becomes add 0 0 = 0
and is proved from add x 0 = x, the translation of axiom add0. The second goal
becomes add 0 (S a) = S a. This is a first-order consequence of the translated induction
hypothesis add 0 a = a and add x (S y) = S (add x y), the translation of axiom addS.

This example, though very simple, is a good illustration of the interaction between
LF and FOL: the framework is used to handle the induction step and in the second goal,
the introduction of the parameter a and the induction hypothesis.

Here is another simple example which illustrates that we can call the FOL prover
even in a context involving non first-order operations. This example comes from a cor-
rectness proof of Warshall’s algorithm. Let D : Set.

F : ElD → (ElD → El D → Prop) → ElD → El D → Prop
F a R xy = Rxy ∨ (R xa ∧R a y)

swap : (a, b, x, y : El D) → Prf (F a (F bR)x y ⇔ F b (F a R)x y)

The operation F is a higher-order operation. However, in the context R : El D →
ElD → Prop, the goal swap can be handled by the FOL prover. The normal form
of F a (F bR)x y ⇔ F b (F a R)x y, where all defined constants (here only F) have
been unfolded, is a translatable formula.

5 This is possible in Otter. In Gandalf, this could be checked from the trace. Paramodulation
from a variable is highly non-deterministic. For efficiency reasons, it was not present in some
version of Gandalf, but it was added later for completeness. In the examples we have tried, this
restriction is not a problem.

294 A. Abel, T. Coquand, and U. Norell

N : Set natural numbers

0 : ElN zero
S : ElN → ElN successor

indN : (P :ElN → Prop) → P 0
→ ((x :ElN) → P x ⇒ P (S x))
→ (n :ElN) → P n induction

add : ElN → ElN → ElN addition

add0 : (x :El N) → Id N (add x 0) x axiom 1 of add
addS : (x, y :El N) → Id N (add x (S y)) (S (add x y)) axiom 2 of add

Fig. 2. A Signature of Natural Numbers and Addition

4 Implementation

To try out the ideas described in this paper we have implemented a prototype type
checker in Haskell. In addition to the logical framework, the type checker supports
implicit arguments and the extensions described in Section 7: sigma types, datatypes
and definitions by pattern matching.

4.1 Implicit Arguments

A problem with LF as presented here is its rather heavy notation. For instance, to state
that function composition is associative one would give the signature in Figure 3.This is
very close to being completely illegible due to the fact that we have to be explicit about
the type arguments to the composition function. To solve the problem, we have imple-
mented a mechanism for implicit arguments which allows the omission of arguments
that can be inferred automatically. Using this mechanism the associativity example can
be written as follows:

comp : (A, B, C : Set) → (El B → El C) → (El A → El B) → (El A → El C)
comp A B C f g = λx. f (g x)

assoc : (A,B, C, D : Set) →
(f : El C → El D, g : El B → El C, h : El A → El B) →
Prf (Id (El A → El D) (comp A C D f (comp A B C g h))

(comp A B D (comp B C D f g) h))

Fig. 3. Associativity without Implicit Arguments

Connecting a Logical Framework to a First-Order Logic Prover 295

(◦)(A,B, C : Set) : (El B → El C) → (El A → El B) → (El A → El C)
f ◦ g = λx. f (g x)

assoc (A,B, C, D : Set) :
(f : El C → El D, g : El B → El C, h : El A → El B) →
Prf (f ◦ (g ◦ h) == (f ◦ g) ◦ h)

In general, we write x (Δ) : T to say that x has type (Δ) → T with (Δ) implicit.
The scope of the variables in Δ extends to the definition of x (if there is one). For
every use of x we require that the instantiation of (Δ) can be inferred using pattern
unification [19]. Note that when we have implicit arguments we can replace Id with an
infix operator (==) (D : Set) : El D → El D → Prop

We conjecture that the conservativity result can be extended to allow the omission of
implicit arguments when translating to first-order logic if they can be inferred from the
resulting first-order term. In this case we preserve the property that for a well-typed FOL
term there exists a unique typing, which is an important lemma in the conservativity
theorem. The kind of implicit arguments we work with can most often be inferred in this
way. It is doubtful, however, that it would work for other kinds of implicit arguments
such as implicit dictionaries used for overloading.

Omitting the implicit arguments, the formula f ◦ (g ◦h) = (f ◦ g) ◦h in the context
A,B, C, D : Set, f : El C → El D, g : El B → El C,h : El A → El B is translated to

f ◦ (g ◦ h) = (f ◦ g) ◦ h

With this translation, the first-order proofs are human readable and, in many cases,
correspond closely to a pen and paper proof.

4.2 The Plug-in Mechanism

The type checker is equipped with a general plug-in interface that makes it easy to ex-
periment with connections to external tools. A plug-in should implement two functions:
a type checking function which can be called on particular goals in the program, and a
finalization function which is called after type checking.

To control where the type checking function of a plug-in is invoked we introduce a
new form of expressions:

Exp ::= . . . | name−plugin(s1, . . . , sn) invoking a plug-in

where name is the name of a plug-in. It is possible to pass arguments (s1, . . . , sn) to
the plug-in. These arguments can be arbitrary expressions which are ignored by the
type checker. Hence it is possible to pass ill-typed terms as arguments to a plug-in; it
is the responsibility of the plug-in to interpret the arguments. Most plug-ins, of course,
expect well-typed arguments and in this case, the plug-in has to invoke the type checker
explicitly on its arguments.

296 A. Abel, T. Coquand, and U. Norell

4.3 The FOL Plug-in

The connection between LF and FOL has been implemented as a plug-in using the
mechanism described above. With this implementation we replace the built-in constant
() by a call to the plug-in. The idea is that the plug-in should be responsible for checking
the side condition Γ 'FOL P in the FOL rule.

An important observation is that decidability of type checking and equality do not
depend on the validity of the propositions being checked by the FOL plug-in—nothing
will break if the type checker is led to believe that there is an s : Prf⊥. This allows us
to delay all first-order reasoning until after type checking. The rationale for doing this
is that type checking is cheap and first-order proving is expensive.

Another observation is that it is not feasible to pass the entire context to the prover.
Typically, the context contains lots of things that are not needed for the proof, but would
rather overwhelm the prover. To solve this problem, we require that any axioms or
lemmas needed to prove a particular goal are passed as arguments to the plug-in. This
might seem a severe requirement, but bear in mind that the plug-in is intended for simple
goals where you already have an idea of the proof.

More formally, the typing rule for calls to the FOL plug-in is

Γ ' φ Γ ' s1 : φ1 . . . Γ ' sn : φn

Γ ' fol−plugin(s1, . . . , sn) : φ
φ1, . . . ,φn 'FOL φ.

When faced with a call to a plug-in the type checker calls the type checking function
of the plug-in. In this case, the type checking function of the FOL plug-in will verify
that the goal is a translatable formula and that the arguments are well-typed proofs of
translatable formulæ. If this is the case it will report success to the type checker and
store away the side condition in its internal state. After type checking the finalization
function of the FOL plug-in is called. For each constraint φ1, . . . ,φn 'FOL φ, this
function verifies that [φ] is derivable from [φ1], . . . , [φn] in the resolution calculus by
translating the formulæ to clause normal form and feeding them to an external first-
order prover (Gandalf, at the moment). If the prover does not manage to find a proof
within the given time limit, the plug-in reports an error.

5 Examples

The code in this section has been type checked successfully by our prototype type
checker. In fact, the typeset version is automatically generated from the actual code.
The type checker can infer which types are Sets and which are Props, so we omit El
and Prf in the types.

Natural numbers can be added to the framework by three new constants Nat , zero,
and succ plus an axiom for mathematical induction.

Nat ∈ Set
zero ∈ Nat
succ ∈ Nat → Nat
indNat (P ∈ Nat → Prop) ∈ P zero → ((n ∈ Nat) → P n → P (succ n)) →

(m ∈ Nat) → P m

Connecting a Logical Framework to a First-Order Logic Prover 297

Now we fix a set A and consider relations over A. We want to prove that the
transitive closure of a symmetric relation is symmetric as well. We define the no-
tion of symmetry and introduce a symbol for relation composition. We could define
R ◦ R′ = λxλz∃z.x R y ∧ y R′ z, but here we only assume that a symmetric relation
composed with itself is also symmetric.

A ∈ Set
sym ∈ (A → A → Prop) → Prop
sym R ≡ (x , y ∈ A) → R x y =⇒ R y x

(◦) ∈ (A → A → Prop) → (A → A → Prop) → (A → A → Prop)
axSymO ∈ (R ∈ A → A → Prop) → sym R → sym (R ◦ R)

We define a monotone chain of approximations R(n) (in the source: R ˆn) of the
transitive closure, such that two elements will be related in the transitive closure if they
are related in some approximation. The main lemma states that all approximations are
symmetric, if R is symmetric.

(ˆ) ∈ (A → A → Prop) → Nat → (A → A → Prop)
axTc ∈ (R ∈ A → A → Prop) → (x , y ∈ A) → (n ∈ Nat) →

((R ˆ succ n) x y ⇔ (R ˆ n) x y ∨ ((R ˆ n) ◦ (R ˆ n)) x y)
∧ ((R ˆ zero) x y ⇔ R x y)

main ∈ (R ∈ A → A → Prop) → sym R → (n ∈ Nat) → sym (R ˆ n)
main R h ≡ indNat

fol−plugin (h, axTc R)
(λn ih → fol−plugin (h, axSymO (R ˆ n) ih , axTc R, ih))

Induction is performed at the framework level, base and step case are filled by Gan-
dalf. Pretty printed, Gandalf produces the following proof of the step case:

(1) ∀xy. (R(n) ◦R(n))x y =⇒ (R(n) ◦R(n)) y x

(2) ∀mxy. R(succ m) x y =⇒ (R(m) ◦R(m))x y ∨R(m) x y
(3) ∀mxy. (R(m) ◦R(m))x y =⇒ R(succ m) x y

(4) ∀mxy. R(m) x y =⇒ R(succ m) x y
(5) ∀xy. R(n) x y =⇒ R(n) y x

(6) R(succ n) a b

(7) R(succ n) b a =⇒ ⊥
(8) (R(n) ◦R(n)) a b ∨R(n) a b (2), (6)
(9) (R(n) ◦R(n)) b a ∨R(n) a b (1), (8)

(10) R(n) a b (3), (7), (9)
(11) R(n) b a (5), (10)
(12) ⊥ (4), (7), (11)

298 A. Abel, T. Coquand, and U. Norell

The transitive closure is now defined as TC R xy = ∃n.R(n)xy. To formalize this,
we add existential quantification and its proof rules. The final theorem demostrates how
existential quantification can be handled in the framework.

Exists (A ∈ Set) ∈ (A → Prop) → Prop
existsI (A ∈ Set)(P ∈ A → Prop) ∈ (x ∈ A) → P x → Exists P
existsE (A ∈ Set)(P ∈ A → Prop)(C ∈ Prop) ∈

Exists P → ((x ∈ A) → P x → C) → C

TC ∈ (A → A → Prop) → A → A → Prop
TC R x y ≡ Exists (λn → (R ˆ n) x y)

thm ∈ (R ∈ A → A → Prop) → sym R → sym (TC R)
thm R h x y ≡ impI (λ p →

existsE p (λn q → existsI n fol−plugin(q, main R h n)))

See the extended version [2] for an example involving algebra and induction.

6 Related Work

Smith and Tammet [24] also combine Martin-Löf type theory and first-order logic,
which was the original motivation for creating the system Gandalf. The main differ-
ence to their work is that we use implicit typing and restrict to quantifier-free formulæ.
An advantage is that we have a simple translation, and hence get a quite direct con-
nection to resolution theorem provers. Hence, we can hope, and this has been tested
positively in several examples, that the proof traces we get from the prover are readable
as such and therefore can been used as a proof certificate or as feedback for the user. For
instance, the user can formulate new lemmas suggested by this proof trace. We think
that this aspect of readability is more important than creating an explicit proof term in
type theory (which would actually be less readable). It should be stressed that our con-
servativity result contains, since it is constructive, an algorithm that can transform the
resolution proof to a proof in type theory, if this is needed.

Huang et. al. [13] present the design of Ω-MKRP6, a tool for the working mathe-
matician based on higher-order classical logic, with a facility of proof planning, access
to a mathematical database of theorems and proof tactics (called methods), and a con-
nection to first-order automated provers. Their article is a well-written motivation for
the integration of human and machine reasoning, where they envision a similar divi-
sion of labor as we have implemented. We have, however, not addressed the problem of
mathematical knowledge management and proof tactics.

Wick and McCune [26] list three options for connecting type systems and FOL:
include type literals, put type functions around terms, or use implicit typing. We redis-
covered the technique of implicit typing and found out later that it is present already
in the work of Beeson [4]. Our work shows that this can also be used with dependent

6 Markgraf Karl Refutation Procedure.

Connecting a Logical Framework to a First-Order Logic Prover 299

types, which is not obvious a priori. Our formulation of the correctness properties, as a
conservativity statement, requires some care (with the role of the sort Prop), and is an
original contribution.

Bezem, Hendriks, and de Nivelle [7] describe how to transform a resolution proof
to a proof term for any first-order formula. However, the resulting proof terms are hard
to read for a human because of the use of skolemisation and reduction to clausal forms.
Furthermore, they restrict to a fixed first-order domain.

Hurd’s work on a Gandalf-tactic for HOL [14] is along the same lines. He translates
untyped first-order HOL goals to clause form, sends them to Gandalf and constructs an
LCF proof from the Gandalf output. In later work [15,16] he handles types by having
two translations: the untyped translation, and a translation with explicit types. The typed
translation is only used when the untyped translation results in an ill-typed proof.

JProver [23] is a connection-based intuitionistic theorem prover which produces
proof objects. It has been integrated into NuPrl and Coq. The translation from type the-
ory to first-order logic involves some heuristics when to include or discard type informa-
tion. Unfortunately, the description [23] does not contain formal systems or correctness
arguments, but focuses on the connection technology.

Jia Meng and Paulson [18] have carried out substantial experiments on how to in-
tegrate the resolution theorem prover Vampire into the interactive proof tool Isabelle.
Their translation from higher-order logic (HOL) to first-order logic keeps type infor-
mation, since HOL supports overloading via axiomatic type classes and discarding type
information for overloaded symbols would lead to unsound reasoning. They claim to
cut down the search space via type information, but this is also connected to overload-
ing. The aim of their work is different to ours: while they use first-order provers to do
as much automatic proofs and proof search as possible, we employ automation only to
liberate the user from seemingly trivial proof steps.

In Coq, NuPrl, and Isabelle, the user constructs a proof via tactics. We provide
type theory as a proof language in which the user writes down a proof skeleton, con-
sisting of lemmas, scoped hypotheses, invokation of induction, and major proof steps.
The first-order prover is invoked to solve (easy) subgoals. This way, we hope to obtain
human-readable proof documents (see our examples).

7 Conclusion and Future Work

We have described the implementation of a logical framework with proof-irrelevant
propositions and its connection to the first-order prover Gandalf. Soundness and con-
servativity of the connection have been established by general theorems.

It is natural to extend LF by sigma types, in order to represent, for instance, mathe-
matical structures. The extension of the translation to FOL is straightforward, we simply
add a new binary function symbols for representing pairs. A more substantial extension
is the addition of data type and functions defined by case [21]. In this extension, it is
possible to represent each connective as a parameterized data type. Each introduction
rule is represented by a constructor, and the elimination rules are represented by func-
tions defined by cases. This gives a computational justification of each of the axioms of
the signature Σnat. The extension of the translation to FOL is also straightforward: each

300 A. Abel, T. Coquand, and U. Norell

defined equations for functions becomes a FOL equality. One needs also to express that
each constructor is one-to-one and that terms with distinct constructors are distinct.

We plan to the extend the conservativity theorem to implicit arguments as presented
in Section 4.1. We also think that we can extend our class of translatable formulæ, for
instance, to include some cases of existential quantification.

One could think of adding more plug-ins, with the same principle that they are
justified by a general meta-theorem. For instance, one could add a plug-in to a model
checker, or a plug-in to a system with a decision procedure for Presburger arithmetic.

Acknowledgments. We thank all the members of the Cover project, especially Koen
Claessen for discussions on implicit typing and the clausification tool Santa for a uni-
form connection to FOL provers, and Grégoire Hamon for programming the clausifier
of the FOL plug-in in a previous version.

References

1. Andreas Abel and Thierry Coquand. Untyped algorithmic equality for Martin-Löf’s logical
framework with surjective pairs. In Paweł Urzyczyn, editor, TLCA’05, volume 3461 of LNCS,
pages 23–38. Springer, April 2005.

2. Andreas Abel, Thierry Coquand, and Ulf Norell. Connecting a logical framework to a
first-order logic prover (extended version). Technical report, Department of Computing
Science, Chalmers University of Technology, Gothenburg, Sweden, 2005. Available under
http://www.cs.chalmers.se/˜ulfn/papers/fol.html.

3. Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent types matter.
Manuscript, available online, April 2005.

4. Michael Beeson. Otter-λ home page, 2005. URL: http://mh215a.cs.sjsu.edu/.
5. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

6. Marc Bezem and Thierry Coquand. Newman’s lemma – a case study in proof automation
and geometric logic. Bulletin of the EATCS, 79:86–100, 2003. Logic in Computer Science
Column.

7. Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof construction in type
theory using resolution. JAR, 29(3–4):253–275, 2002. Special Issue Mechanizing and Au-
tomating Mathematics: In honour of N.G. de Bruijn.

8. Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

9. Catarina Coquand and Thierry Coquand. Structured type theory. In Workshop on Logical
Frameworks and Meta-languages (LFM’99), Paris, France, September 1999.

10. Michel Coste, Henri Lombardi, and Marie-Françoise Roy. Dynamical methods in algebra:
Effective Nullstellensätze. APAL, 111(3):203–256, 2001.

11. Niklas G. de Bruijn. A survey of the project Automath. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays in combinatory logic, lambda calculus and formalism, pages
579–606, London-New York, 1980. Academic Press.

12. Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,
39:176–210, 405–431, 1935.

13. Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Nesmith, Jörn
Richts, and Jörg H. Siekmann. Omega-MKRP: A proof development environment. In Alan
Bundy, editor, CADE’94, volume 814 of LNCS, pages 788–792. Springer, 1994.

Connecting a Logical Framework to a First-Order Logic Prover 301

14. Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles Dowek, André Hirschowitz,
Christine Paulin, and Laurent Théry, editors, TPHOLS’99, volume 1690 of LNCS, pages
311–321. Springer, September 1999.

15. Joe Hurd. An LCF-style interface between HOL and first-order logic. In Andrei Voronkov,
editor, CADE’02, volume 2392 of LNAI, pages 134–138. Springer, 2002.

16. Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In Myla Archer,
Ben Di Vito, and César Muñoz, editors, STRATA’03, number CP-2003-212448 in NASA
Technical Reports, pages 56–68, September 2003.

17. Leslie Lamport. How to write a proof. In Global Analysis in Modern Mathematics, pages
311–321. Publish or Perish, Houston, Texas, U.S.A., February 1993. Also appeared as SRC
Research Report 94.

18. Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive proof using
resolution. In David A. Basin and Michaël Rusinowitch, editors, IJCAR’04, volume 3097 of
LNCS, pages 372–384. Springer, 2004.

19. Dale Miller. Unification under a mixed prefix. J. Symb. Comput., 14(4):321–358, 1992.
20. Bengt Nordström, Kent Petersson, and Jan Smith. Martin-Löf’s type theory. In Handbook of

Logic in Computer Science, volume 5. OUP, October 2000.
21. Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin Löf’s Type

Theory: An Introduction. Clarendon Press, Oxford, 1990.
22. John Alan Robinson. A machine-oriented logic based on the resolution principle. JACM,

12(1):23–41, January 1965.
23. Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Aleksey Nogin. JProver: Integrating

connection-based theorem proving into interactive proof assistants. In R. Gore, A. Leitsch,
and T. Nipkow, editors, IJCAR’01, volume 2083 of LNAI, pages 421–426. Springer, 2001.

24. Jan M. Smith and Tanel Tammet. Optimized encodings of fragments of type theory in first-
order logic. In Stefano Berardi and Mario Coppo, editors, TYPES’95, volume 1158 of LNCS,
pages 265–287. Springer, 1995.

25. Tanel Tammet. Gandalf. JAR, 18(2):199–204, 1997.
26. Cynthia A. Wick and William McCune. Automated reasoning about elementary point-set

topology. JAR, 5(2):239–255, 1989.

Combination of Isabelle/HOL with Automatic Tools

Sergey Tverdyshev �

Saarland University, Germany
deru@wjpserver.cs.uni-sb.de

Abstract. We describe results and status of a sub project of the Verisoft [1]
project. While the Verisoft project aims at verification of a complete computer
system starting with hardware and up to user applications, the goal of our sub
project is an efficient hardware verification.

We use the Isabelle theorem prover [2] as the major tool for hardware design
and verification. Since many hardware verification problems can be efficiently
solved by automatic tools, we combine Isabelle with model checkers and SAT
solvers. This combination of tools speeds up verification of hardware and sim-
plifies sharing of the results with verification of the whole computer system. To
increase the range of problems which can be solved by external tools we imple-
mented in Isabelle several algorithms for handling uninterpreted functions and
data abstraction.

The resulting combination was applied to verify many different hardware cir-
cuits, automata, and processors.

In our project we use open source tools that are free for academical and com-
mercial purposes.

1 Introduction

In large verification projects such as verification of a complete computer system the
linking of verification results from different parts plays a major role. Specifying and
proving all theorems within one environment, e.g. a higher order logic (HOL) theorem
prover, makes linking a lot easier. Such a combination is also much safer because veri-
fication gaps, due to a manual transfer of the results from one system into another, are
excluded. This was one of the motivations for this work.

In a long-term project Verisoft we are currently working on verification of a com-
puter system starting with hardware, going through compiler, operating system kernel,
operating system and up to end user applications. The main verification tool for all
parts of the project is the Isabelle theorem prover for higher order logic. Because many
hardware verification problems can be efficiently solved by external automatic tools,
we combined Isabelle with the NuSMV model checker [3] and SAT solvers. In this
paper we describe the result of the combination and demonstrate applications of this
combination for hardware verification.

� Supported by The Verisoft Project under grant 01 IS C38 of the German Ministry for Education
and Research (BMBF)

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 302–309, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Combination of Isabelle/HOL with Automatic Tools 303

2 Related Work

The most recent combination external tools into Isabelle was done through input-output
automata [4]. In this work the user gives a model and manually defines its abstraction.
Then an LTL model checker is used to prove temporal properties of the abstracted model
and a μ-calculus model checker is used to check forward simulations between these two
models. A drawback is that defining a suitable abstraction for a big model can be a very
hard task. On the contrary, our approach does not have this disadvantage because an
abstracted model is derived fully automatically.

An interesting ongoing work of L. Paulson’s group [5] is the integration of the
first oder theorem prover SPASS [6] into Isabelle. A highlight of the integration is that
SPASS proofs can be converted into Isabelle proofs and then rechecked by Isabelle.
In this approach the user does not have to trust an external tool, and soundness of the
translation can be guaranteed. However, at the moment the integration is experimental
and has only a very basic functionality.

The UCLID system [7] is another interesting tool that can handle big problems with
great automation. It also has a lot of built-in features, e.g. handling of uninterpreted
functions, efficient algorithms for term reduction. The UCLID system is mostly used for
verification of invariants of a system (safety properties) but liveness properties (directly)
are missing [7]. Even though the UCLID system is more powerful than our tool, our
approach allows verification of liveness properties directly. Furthermore we believe that
complete automatic abstraction, as we implemented, is more suitable for an automatic
proof tool. Integration with Isabelle increases the domain of application of our tool but
we have to pay for that with user’s involvement in proof process. Last but not the least:
UCLID is distributed as a close source system with a strict license.

The rest of the paper is organized as follows. In the Section 3 we present the used
tools. Section 4 provides subset of the HOL we use to specify hardware. In Section 5
the main functionalities of the translation tool are presented. Section 6 reports results
of applications of the resulting system to hardware verification.

3 Tools

The Theorem Prover. Isabelle [2] is a generic theorem prover that supports several ob-
ject logics. We use Isabelle with its instantiation of HOL. We refer to it as Isabelle/HOL.

The Modelchecker. NuSMV [3] is a symbolic model checker for CTL and LTL prop-
erties. It can perform bounded model checking using an external SAT solver. We used
NuSMV to verify temporal properties of our models and as an external BDD decision
procedure.

SAT Solvers. We implemented an algorithm to convert given problems into proposi-
tional logic extended by uninterpreted functions and linear arithmetic. Using this algo-
rithm we can easily bind almost any SAT solver.

We bind these tools to Isabelle/HOL through the Oracle interface. Translation of a prob-
lem from Isabelle/HOL into language of an external tool is done by the translation tool

304 S. Tverdyshev

Oracle
Interface

Isabelle/HOL

SAT Solver N

NuSMV

SAT Solver 1

Isa2ExtW
...

Fig. 1. Isabelle/HOL and External Tools

Isa2ExtW. We implemented Isa2ExtW as a decision procedure in Isabelle/HOL. An
overview of the connection is shown in Figure 1. Isa2ExtW performs not only syntax
translation but also several semantic transformations, e.g. data abstraction.

4 Subset of HOL for Hardware Design and Verification

Most of our verification problems can be split up into a number of smaller problems
which can be solved automatically by one or the other external tool. However as none
of these tools can solve our problem entirely, we still need Isabelle/HOL and Isa2ExtW
as central instance. To allow translation of our theorems into the language of external
tools we need to specify a suitable subset of Isabelle’s HOL. Note that this subset has
to be translatable into VHDL [8] in order to get synthesizable hardware.

4.1 Types

A fragment of the Isabelle/HOL language to be translated into external tools consists of
expressions involving types which are finite. Examples of such types are scalar types,
lists of constant length, records constructed from finite types and each other.

4.2 Subtyping

As we have already mentioned we are mostly interested in finite types. However, some
infinite data types, namely their subtypes are interesting for us as well1. Since there
are no subtypes in Isabelle/HOL, we have to define a mechanism for encoding subtype
information into our models. For this purpose we created in Isabelle/HOL a library of
predicate sets2. For the given predicate a predicate set defines the set of all elements
satisfying this predicate. By means of predicate sets we reduce types in our models to
desired finite subtypes. This information is added to the set of assumptions of a theorem
we want to prove by external tools. A drawback is that the model will be correct with
respect to the specified subtypes. However, the property will be proved automatically.
This idea can be easily described by the following example:

Bit vectors in Isabelle/HOL are represented as lists of bits, possibly of infinite
length. However, in general we are interested in the lists of a constant length only to
allow synthesis of real hardware. Thus, additional information about the length of bit
vectors has to be provided. We illustrate our approach on a model of a shifter: suppose

1 Using data abstraction we can handle infinite types (see Section 5.2).
2 Full description of the library can be found at http://busserver.cs.uni-sb.de

Combination of Isabelle/HOL with Automatic Tools 305

we want to perform an equality test of two functions sh impl and sh specwhich are
implementation and specification of the shifter respectively. The desired lemma could
be formulated in Isabelle/HOL as follows:

∀ op. ∀ d. ∀ r. ∀ a.
sh impl(op, d, r, a) = sh spec(op, d, r, a)

This theorem would state that for all bit vectors to be shifted (op), for all shift
distances (d), and for all boolean flags r, a the implementation and the specification re-
turn the same result. In this theorem the bit vectors op and d can have arbitrary length.
However, for our purpose it is enough to show the correctness for op of length 32 and
for d of length 5. To describe these subtypes we use parametrized predicate set bv n
from our library. For the given natural number n it defines the set of all bit vectors of
the length n. We add an assumption that inputs are from the desired subsets and the
theorem in Isabelle/HOL is formulated as follows:

∀ op ∈ bv n(32). ∀ d ∈ bv n(5). ∀ r. ∀a.
sh impl(op, d, r, a) = sh spec(op, d, r, a)

This goal is easily discharged by an external tool through a call of Isa2ExtW as a
proof method. An advantage of this approach is that the original model is not influenced
by any subtyping information, and can be easily reused for other goals. In a similar
fashion we handle arrays, records etc., i.e. for each of them we defined a predicate set.

4.3 Operators

There are several operators which are substituted by analogous operators in a target
external tool (e.g. boolean connectives) or interpreted by Isa2ExtW (e.g. basic opera-
tions on lists as head, tail). The list of such operators can be roughly described as fol-
lows: boolean connectives, bit operations, linear arithmetic operators, basic operations
on lists, and update of variables of function types.

4.4 Functions

A drawback of the absence of subtypes in Isabelle/HOL is that we can not restrict func-
tion inputs to desired subtypes. There are two solutions (i) handle cases of undesirable
inputs in the definition of a function; (ii) formally guarantee absence of that inputs.

The first solution allows using functions with any input and functions will return
expected results. However, a drawback is that extra handling can be inconvertible into
external tools or into VHDL, e.g. in physical sense the behaviour of a circuit for an
empty bit vector is unclear. With the second solution the user does not handle unde-
sired input. In this case for some inputs a circuit will have undesired but well-defined
behaviour. The absence of undesirable inputs is guaranteed by the use of a function,
namely we prove properties about a model for a clearly defined set of inputs (see Sec-
tion 4.2).

Non-recursive functions will be translated into external tools as they are, i.e. using
their definitions. The returned type of a function is computed on the fly by Isa2ExtW
and must be one of the supported types, otherwise an error will be raised.

306 S. Tverdyshev

Recursive Functions. For translation of recursive definitions into external tools we
support recursions on natural numbers and on the length of a list. Based on earlier ex-
perience in hardware design and verification [9,10] these two types of recursion are
enough to describe all constructions we need to build and verify a processor. Our trans-
lation algorithm unrolls a recursive definition in a set of non-recursive definitions. Ini-
tial value for recursion is taken from the current input of a function. Unrolling rules are
taken from the original recursive definition.

Uninterpreted Functions. Sometimes it is very useful to abstract a functional unit as
an uninterpreted function, e.g. while verifying datapaths of a processor. We defined a
simple mechanism to specify uninterpreted functions in our models. To force Isa2ExtW
to translate a function as an uninterpreted function, the user has to specify input/output
interfaces of the function. It includes the name of the function and predicate sets for in-
puts and outputs of the function, e.g. “∀ a ∈ bv n(32). foo(a) ∈ bv n(5)”.
For the given example Isa2ExtW will not look up the definition of function foo. The
tool will replace it by an uninterpreted function foo which takes a bit vector of length
32 and returns a bit vector of length 5. The restriction is that such a function can not be
updated. The usage of such a function is controlled by Isa2ExtW.

5 Isa2ExtW

In this section we describe some functionalities of Isa2ExtW.

5.1 Uninterpreted Functions

When verifying processors big storages such as general purpose registers or memories
have to be modelled. It is convenient to represent memories as uninterpreted functions.
In our library we have a parametrized predicate set which for the two given predicate
sets A and B returns the set of functions A → B. The only restriction is that the in-
put predicate sets themselves can not be sets of functions. Direct translation of such
types into the mentioned external decision procedures is unpractical because of the
size. To avoid this limitation we implemented a simple but efficient algorithm for elim-
ination of variables of function types. The idea was taken from [11]. This algorithm
consists of three parts: (i) representation of the variables of a function type (memories)
as uninterpreted functions, (ii) elimination of memories updates by if-then-else
expressions and (iii) elimination of applications of uninterpreted functions by nested
if-then-else expressions. For more details we refer the reader to [11].

5.2 Data Abstraction

To counter act the state explosion problem we implemented a data abstraction algorithm
based on symmetry reduction [12]. Implementations of Dill’s idea usually include a
type constructor scalar type, e.g. [7,13]. This constructor defines an abstract type
on which the symmetry reduction can be done. In contrast, our implementation works
completely automatically. For the given model it finds, on the fly, all variables which
can be abstracted, exploiting data symmetry of the model. The new reduced model is
constructed automatically as well.

Combination of Isabelle/HOL with Automatic Tools 307

Often implementations of symmetry reduction can not handle constants, e.g. when
we compare a variable with a constant we can not apply symmetry reduction to that
variable (a drawback of SMV [13]). We solved the problem by introducing a new unique
symbolic value for every constant and adding it to the definition of abstracted type. We
exploit advantages of this feature in processor verification. In our models of processors
we have bit vectors of length 32 and we use a few constants of this type, e.g. 32 zeroes.
Application of our symmetry reduction algorithm reduces the state space of such a
variable from 232 just to number of variables + number of constants.

Another advantage of our implementation is that uninterpreted functions do not
break symmetry of the model. Since the result of the application of an uninterpreted
function does not depend on input, then, from the symmetry point of view, such ap-
plication splits the model into two independent parts. These are: arguments of func-
tion and the result of application. We apply the abstraction algorithm independently
on both parts. The effect is that even if the result cannot be abstracted then argu-
ments may be abstracted and vice versa. The idea behind this is a combination of
algorithms for elimination of uninterpreted functions and symmetry reduction. Con-
sider the following example. In equality (1) f is supposed to be an uninterpreted func-
tion. Bryant et. al. [11] proved that (2) holds. After application of symmetry reduction3

we come to (3). Where variables da′, db′ and a′, b′ have abstracted types. By ap-
plying the Bryant theorem in reverse direction we can conclude that there exists an
uninterpreted function f′ with the same domain/range type as the type of a′/da′ (4).

f(a) = f(b) (1)
f(a) = f(b) ↔ da = (if a = b then da else db) (2)

da’ = (if a’ = b’ then da’ else db’) (3)
f’(a’) = f’(b’) (4)

Our implementation abstracts applications of uninterpreted functions in only one
step. This feature increases significantly the range of models where the abstraction al-
gorithm can succeed. It allows hiding symmetry-breaking functions by declaring them
as uninterpreted functions. It leads not only to a reduced state space of the model but
also to a reduced number of terms the model consists of. These all will result in faster
verification.

5.3 SAT Solving

All problems which are specified according to the rules presented above can be con-
verted to propositional logic and solved by an external SAT solver. If the model con-
tains linear arithmetic, the external tool should have a decision procedure for it. Ourself
we do not require from SAT solvers to support uninterpreted functions, since we can
handle them. However, native support of them may speed up the verification process4.

5.4 Model Checking

Models to be model-checked have to be represented as finite state machines (FSM). To
define such a machine the user has to provide a next-state function, a set of states and

3 Without support of uninterpreted functions.
4 E.g. by usage of ModuSAT [14] after solving some performance problems.

308 S. Tverdyshev

a set of initial states. To express temporal properties of FSM’s we specified CTL and
LTL in Isabelle/HOL. FSM and CTL/LTL are combined in simple interface functions
|=LTL and |=CTL:

for LTL : (States, Init, NSF) |=LTL LTL formula
for CTL : (States, Init, NSF) |=CTL CTL formula,

where States is a predicate set as described earlier, Init is a predicate on the state
type and NSF is a next state function. LTL formula and CTL formula are prop-
erties in LTL and CTL respectively. The user has to take care that the Init predicate
holds at least for one state from States. Otherwise the results of verification can be
nonsense.

Optionally the user can turn off the algorithm for elimination of applications of un-
interpreted functions. In this case such a function will be represented in NuSMV as
an additional state variable. The type of that variable is an array of the domain type
of the function. The size of the array is computed based on the type of the range of
the function. We do not put any transition constraints on the behaviour of that variable
and it can change non-deterministically along the time. It captures behaviour of an un-
interpreted function. If the abstraction algorithm does not succeed then application of
NuSMV may be inefficient because of the size of the state space. However, usually5

the abstraction algorithm succeeds and we can use model checking technique even for
models containing uninterpreted functions and memories.

6 Results and Future Work

We used the Isa2ExtW tool for verification of many combinational circuits. For ex-
ample we automatically verified all hardware components of our processors such as
shifters, decoders, encoders, parallel prefix or-operation etc. by an external SAT solver
and NuSMV. We automatically verified a simple sequential DLX [15] processor using
uninterpreted functions.

Verification of a pipelined DLX processor featuring 3-stage forwarding and stalling
was a more challenging task. We took proofs of the processor from [16,10] as a base.
We built models of specification and implementation in Isabelle/HOL. Then the proof
was started in Isabelle/HOL. We interactively distinguished major cases of the proof
and got subgoals which were discharged by a SAT solver. Uninterpreted functions were
heavily used to simplify verification of datapaths of the processor. Through instantia-
tion of uninterpreted functions by concrete verified functions in verified datapaths, the
correctness proof could be completed. The liveness of the processor was verified com-
pletely automatically. Applying our method as front-end to NuSMV, we were even able
to model-check models with big storages (e.g. data memory, general purpose regis-
ters) and uninterpreted functions (e.g. arithmetic-logical unit). In this manner we got a
completely verified processor on the gate level. Our method significantly improves ver-
ification of a similar processor in [10] because the user is no longer required to prove
“simple” subgoals manually.

5 For the models we verified, see section 6.

Combination of Isabelle/HOL with Automatic Tools 309

We incorporated the NuSMV model checker to verify automata for the memory
management unit [17] and automata for a replacing policy in a cache system [9].

In order to get synthesizable hardware we aim towards a tool which will translate
our hardware specifications from Isabelle/HOL into VHDL. The next benchmark for
our method is verification of an out-of-order DLX processor featuring Tomasulo algo-
rithm, precise interrupts and memory management unit [16,10,9].

References

1. The Verisoft Consortium: The Verisoft Project. http://www.verisoft.de/ (2003)
2. Paulson, L.C.: Isabelle - A generic theorem prover. LNCS 828 (1994)
3. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Marco Pistore, M.R., Sebastiani,

R., Tacchella, A.: NuSMV 2: An open source tool for symbolic model checking. In: CAV
’02, Springer-Verlag (2002) 359–364

4. Müller, O.: A Verification Environment for I/O Automata Based on Formalized Meta-Theory.
PhD thesis, Techn. Univ. Munich (1998)

5. Larry Paulson: Larry Paulson’s home page. (http://www.cl.cam.ac.uk/users/
lcp/)

6. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobalt, C., Topic’, D.: SPASS
version 2.0. In Voronkov, A., ed.: Automated deduction, CADE-18. Volume 2392 of Lecture
Notes in Artificial Intelligence., Kopenhagen, Denmark, Springer (2002) 275–279

7. Lahiri, S.K., Seshia, S.A., Bryant, R.E.: Modeling and verification of out-of-order micropro-
cessors in uclid. In: FMCAD ’02, London, UK, Springer-Verlag (2002) 142–159

8. Ashenden, P.J.: The Designer’s Guide to VHDL. Morgan Kaufmann Publishers Inc. (1999)
9. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.: Putting it all together formal

verification of the VAMP, to appear in STTT, Springer-Verlag (2005)
10. Kröning, D.: Formal Verification of Pipelined Microprocessors. PhD thesis, Saarland Uni-

versity, Computer Science Department (2001)
11. Bryant, R.E., German, S.M., Velev, M.N.: Microprocessor verification using efficient deci-

sion procedures for a logic of equality with uninterpreted functions. In: TABLEAUX ’99,
Springer-Verlag (1999) 1–13

12. Ip, C.N., Dill, D.L.: Better verification through symmetry. Form. Methods Syst. Des. 9
(1996) 41–75

13. McMillan, K.L.: The SMV language. Technical report, Berkeley Labs (1999)
14. Prevosto, V.: ModuProve Developer and User Manual. Max-Planck Institut für Informatik –

Verisoft Project. (2005)
15. Patterson, D.A., Hennessy, J.L.: Computer architecture: a quantitative approach. Morgan

Kaufmann Publishers Inc. (1995)
16. Müller, S.M., Paul, W.J.: Computer Architecture: Complexity and Correctness. Springer-

Verlag New York, Inc. (2000)
17. Dalinger, I., Hillebrand, M., Paul, W.J.: On the verification of memory management mecha-

nisms. Technical report, Saarland University (2005)

ATS: A Language That Combines Programming

with Theorem Proving

Sa Cui, Kevin Donnelly, and Hongwei Xi

Computer Science Department,
Boston University

{cuisa, kevind, hwxi}@cs.bu.edu

Abstract. ATS is a language with a highly expressive type system that
supports a restricted form of dependent types in which programs are not
allowed to appear in type expressions. The language is separated into
two components: a proof language in which (inductive) proofs can be
encoded as (total recursive) functions that are erased before execution,
and a programming language for constructing programs to be evaluated.
This separation enables a paradigm that combines programming with
theorem proving. In this paper, we illustrate by example how this pro-
gramming paradigm is supported in ATS.

1 Introduction

The framework Pure Type System (PTS) [1] offers a simple and general approach
to designing and formalizing type systems. However, PTS makes it difficult,
especially, in the presence of dependent types to accommodate many common
realistic programming features, such as general recursion [7], recursive types
[11], effects [10] (e.g., exceptions [9], references, input/output), etc. To address
such limitations of PTS, the framework Applied Type System (ATS) [14] has
been proposed to allow for designing and formalizing (advanced) type systems
in support of practical programming. The key salient feature of ATS lies in a
complete separation of the statics, in which types are formed and reasoned about,
from the dynamics, in which programs are constructed and evaluated. With this
separation, it is no longer possible for programs to occur in type expressions as
is otherwise allowed in PTS.

Currently, ATS, a language with a highly expressive type system rooted in the
framework ATS, is under active development. In ATS, a variety of programming
paradigms are supported in a typeful manner, including functional programming,
object-oriented programming [3], imperative programming with pointers [16] and
modular programming. There is also a theorem proving component in ATS [4]
that allows the programmer to encode (inductive) proofs as (total recursive)
functions, supporting a paradigm that combines programming with theorem
proving [5]. This is fundamentally different from the paradigm of extracting
programs from proofs as is done in systems such as Coq [2] and NuPrl [6].
In ATS, proofs are completely erased before execution, while proofs in Coq, for
example, are not. In addition, ATS allows the construction of programs involving

B. Gramlich (Ed.): FroCoS 2005, LNAI 3717, pp. 310–320, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

ATS: A Language That Combines Programming with Theorem Proving 311

sorts σ ::= b | σ1 → σ2
static terms s ::= a | λa : σ. s | s1(s2) | sc(s1, ..., sn)

sta. var. ctx. Σ ::= ∅ | Σ,a : σ

dynamic terms d ::= x | dc(d1, ..., dn) | lam x.d | fix x.d | app(d1, d2) | λa : σ.d | d(s) | . . .
values v ::= x | dcc(v1, ..., vn) | lam x.d | . . .

dyn. var. ctx. Δ ::= ∅ | Δ, x : T

Fig. 1. Abstract syntax for statics and dynamics of ATS

effects (e.g., non-termination, exceptions, references), which on the other hand
are difficult to properly address in Coq.

The current implementation of ATS [15] is written in Objective Caml, which
mainly consists of a type-checker and an interpreter, and a compiler from ATS
to C is under active development. The entire implementation (including source
code) is made available to the public, and a tutorial is also provided for explain-
ing a variety of language features in ATS. In this paper, we focus on a unique
feature in ATS that combines programming with theorem proving, and illustrate
by example how this kind of programming paradigm is supported in ATS.

2 Overview of ATS

Some formal syntax of ATS is shown in Figure 1. The language ATS has two
components: the static component (statics) which includes types, props and type
indices and the dynamic component (dynamics) which includes programs and
proof terms. The statics itself is a simply typed language and a type in it is
referred to as a sort. For instance, we have the following base sorts in ATS:
addr , bool , int , prop, type, view , viewtype , etc. Static terms L, B, I of sorts
addr , bool and int are referred to as static address, boolean and integer terms,
respectively. Static terms T of sort type are types of program terms, and static
terms P of sort prop, referred to as props, are types of proof terms. Proof terms
exist only to show that their types are inhabited (in order to prove constraints
on type indices). Since the type system guarantees that proof functions are total,
we may simply erase proof terms after type-checking. We also allow linear proof
terms, which are assigned a view V, of sort view . Since it is legal to use non-
linear proofs as linear ones, we have that prop is a subsort of view and type is a
subsort of viewtype .

Types, props and views may depend on one or more type indices of static
sorts. A special case of such indexed types are singleton types, which are each a
type for only one specific value. For instance, int(I) is a singleton type for the
integer equal to I, and ptr(L) is a singleton type for the pointer that points to
the address (or location) L.

We combine proofs with programs using proving types of the form (V | T)
where V and T stand for static terms of sort view and type, respectively. A
proving type formed with a view is assigned the sort viewtype ; if V can be
assigned a prop then we can assign the proving type the sort type. We may

312 S. Cui, K. Donnelly, and H. Xi

Assigned To Purity/Linearity

sort type/prop/view indices pure

prop proof terms pure

type program terms effectful

view linear proof terms pure, linear

viewtype program terms with effectful, linear
embedded linear proofs

Fig. 2. Sorts, props, types, views and viewtypes in ATS

think of the proving type (V | T) as a refinement of the type T because V often
constrains some of the indices appearing in T . For example, the following type:

(ADD(m, n, p) | int(m) ∗ int(n) ∗ int(p))

is a proving type of sort type for a tuple of integers (m, n, p) along with a proof
of the prop ADD(m, n, p) which encodes m + n = p (as is explained later).
In the case of props which are linear constraints on integers, or more precisely,
constraints on integers that can be transformed into linear integer programming
problems, ATS can handle them implicitly, without proofs. Given a linear con-
straint C and a type T , we have two special forms of types: asserting types of the
form C ∧T and guarded types of the form C ⊃ T . Note that C ∧T is essentially
the proving type (C | T), and C ⊃ T is essentially the type (C | 1) → T , except
that assertions and guards are proved and discharged automatically by a built-
in decision procedure. Following is an example involving singleton, guarded and
asserting types:

∀a : int .a ≥ 0 ⊃ (int(a) → ∃a′ : int .(a′ < 0) ∧ int(a′))
The meaning of this type should be clear: Each value that can be assigned this
type represents a function from nonnegative integers to negative integers.

3 Data-Classes in ATS

In ATS it is possible to introduce user defined data-classes which can be sorts,
types, props, or views. The intended uses and properties of these classes are
described in Figure 2. The syntax for data-class introduction is inspired by that
of SML. A new base sort for binary trees of integers can be defined by:
datasort itr = leaf | node of (int, itr, itr)

Sorts may also be higher order. For example, the sort of higher-order abstract
syntax (HOAS) for pure lambda calculus is defined by:
datasort tm = ap of (tm,tm) | lm of (tm -> tm)

Because there is no recursion in the statics we can allow negative occurrences of
the sort being declared without sacrificing strong normalization of static terms.

One may also define datatypes similarly to datatypes in SML. The main
difference is that in ATS datatypes may be indexed by static terms and the
datatype constructors may universally quantify over static term variables. For
example, the following is a datatype for lists which has two indices: one for the
type of elements of the list and the other for the length of the list.

ATS: A Language That Combines Programming with Theorem Proving 313

datatype list (type, int) =
{a:type} nil (a, 0) | {a:type, n:nat} cons (a, n+1) of (a, list (a, n))

Sorts are used as type indices and are often universally quantified over in
function and data(prop/type/view/viewtype) definitions. The syntax {n:nat}
stands for universal quantification of n over the sort nat . Universal quantification
can also be guarded by one or more constraints, as in {n:int | n >= 0}. The
sort nat is a subset sort, which is really just a sort with an attached constraint,
so {n:nat} is equivalent to {n:int | n >= 0}. Notice that in the definition of
the datatype list(type, int), the second index is of sort int , yet the construc-
tors can only create terms whose type has a nat in that position. The reason
for this is that we do not want well-sortedness of statics to depend on solving
constraints. So, there is nothing ill-formed about the type list(a,−1), though it
is uninhabited.

Dataprops may be introduced with syntax similar to that for datatypes. For
example, the following is a dataprop for proofs that a given integer is in a tree.

dataprop ITR(int,itr) = // the first bar (|) is optional
| {n:int, l:itr, r:itr} ITRbase(n,node(n,l,r))
| {n:int, n’:int, l:itr, r:itr} ITRleft(n,node(n’,l,r)) of ITR(n,l)
| {n:int, n’:int, l:itr, r:itr} ITRright(n,node(n’,l,r)) of ITR(n,r)

This declaration creates three constructors for forming ITR proofs:

ITRbase : ∀n : int.∀l : itr.∀r : itr. ITR(n, node(n, l, r))
ITRleft : ∀n : int.∀n′ : int.∀l : itr.∀r : itr. ITR(n, l) → ITR(n, node(n′, l, r))
ITRright : ∀n : int.∀n′ : int.∀l : itr.∀r : itr. ITR(n, r) → ITR(n, node(n′, l, r))

In general we construct dataprops in order to prove constraints on the indices of
the prop. The proofs are then erased after type-checking, leaving only program
terms to be executed. We need to ensure all proof terms are total in order to
allow for this erasure semantics. Because of this requirement we restrict the def-
inition of dataprops and dataviews to not have negative occurrences of the prop
or view being defined. Without this restriction one could implement a fixed-point
operator on props using a dataprop with a negative occurrence. Dataviews are
simply linear dataprops and have essentially the same syntax.

4 Programming with Theorem Proving in ATS

In this section, we illustrate by example how the paradigm that combines pro-
gramming with theorem proving is supported in ATS.

4.1 Programming with Constraints

The design of the concrete syntax of ATS is largely influenced by that of Stan-
dard ML (SML) [12]. Previously, we used following concrete syntax to define a
datatype constructor list for forming a type for a list:

314 S. Cui, K. Donnelly, and H. Xi

datatype list (type, int) =
{a:type} nil (a, 0) | {a:type, n:nat} cons (a, n+1) of (a, list (a, n))

Given two static terms: a type T and an integer I, we can form a datatype
list(T, I) for lists of length I in which each element is of type T . The above
concrete syntax indicates that two associated list constructors nil and cons are
assigned the following types:

nil : ∀a : type. list(a, 0)
cons : ∀a : type.∀n : nat. (a, list(a, n)) → list(a, n + 1)

The type of cons means that given a value of type T and a list of length I
in which each element is of type T , we can construct a list of length I + 1 in
which each element is of type T . The function that appends two given lists is
implemented as follows:

fun append {a:type, m:nat, n:nat}
(xs: list (a, m), ys: list (a, n)): list (a, m+n) =

case xs of nil () => ys | cons (x, xs’) => cons (x, append (xs’, ys))

where the syntax indicates that append is assigned the following type:
∀a : type.∀m : nat .∀n : nat . (list(a, m), list(a, n)) → list(a, m + n)

That is, append returns a list of length m + n when applied two lists of length
m and n, respectively.

When this function is type-checked, two linear constraints on integers are
generated. First, when the first given list xs is nil , i.e., the length m is 0, the
constraint n = 0 + n is generated in order to assign ys the type list(a, m + n).
Second, in order to assign cons(x, append(xs′, ys)) the type list(a, m + n), the
constraint (m − 1) + n + 1 = m + n is generated, since xs′ is of length m − 1,
append(xs′, ys) is of type list(a, (m−1)+n) and cons(x, append (xs′, ys)) is thus
of type list(a, (m− 1) + n + 1).

In ATS, we also provide a means for the programmer to solve constraints1

by constructing explicit proofs, supporting a paradigm that combines program-
ming with theorem proving. In Figure 3, we define a datasort mynat with two
value constructors: Z for the natural number 0 and S for a successor function
on natural numbers. Then given three natural numbers m, n, and p, a dataprop
ADD(m, n, p) represents a proposition m + n = p, which is defined inductively.
The datatype constructor mylist now takes a natural number of sort mynat
instead of an integer of sort int. The syntax [p : mynat] in the append function,
which stands for an existentially quantified static variable, means that there ex-
ists a natural number p of sort mynat . Now the append function takes two lists
of length m and n respectively, and its return type is a proving type of the form
(ADD(m, n, p) | mylist(a, p)), meaning that the return value is a list with a

1 In the current version of ATS, linear constraints on integers can be solved implicitly
by a built-in decision procedure based on the approach of Fourier-Motzkin variable
elimination [8]. However, the programmer is required to construct explicit proofs to
handle nonlinear constraints.

ATS: A Language That Combines Programming with Theorem Proving 315

datasort mynat = Z | S of mynat

dataprop ADD (mynat, mynat, mynat) =
| {n:mynat} ADDbas (Z, n, n) // base case
| {m:mynat, n:mynat, p:mynat} // inductive case

ADDind (S m, n, S p) of ADD (m, n, p)

datatype mylist (type, mynat) =
| {a:type} mynil (a, Z)
| {a:type, n:mynat} mycons (a, S n) of (a, mylist (a, n))

// ’(...) : this syntax is used to form tuples
fun append {a:type, m:mynat, n:mynat}

(xs: mylist (a, m), ys: mylist (a, n))
: [p: mynat] ’(ADD (m, n, p) | mylist (a, p)) =
case xs of

| mynil () => ’(ADDbas | ys)
| mycons (x, xs’) => let

val ’(pf | zs) = append (xs’, ys)
in ’(ADDind pf | mycons (x, zs)) end

Fig. 3. An example of programming with theorem proving

proof that proves the length of the return list is the sum of the lengths of two
input lists.

4.2 Programming with Dataprops

In this section we briefly outline a verified call-by-value evaluator for pure λ-
calculus. We begin by declaring a static sort to represent λ-terms via higher-order
abstract syntax (h.o.a.s.) [13].

datasort tm = lm of (tm -> tm) | ap of (tm, tm)

This syntax declares a datasort tm with two term constructors: lm which takes
as its argument a function of sort tm → tm, and ap which takes as its arguments
two static terms of sort tm. For instance, the λ-term λx.λy.y(x) is represented
as lm (lam x => (lm (lam y => ap (y, x)))) in the concrete syntax of ATS,
where lam is a keyword in ATS for introducing λ-abstraction.

We declare another sort tms to represent environments such that a term of
the sort tms consists of a sequence of terms of the sort tm:

datasort tms = none | more of (tms, tm)

With these two sorts as indices, we can specify the big-step call-by-value evalu-
ation relation as the dataprop EVAL:

dataprop EVAL(tm, tm, int) =
| {f:tm -> tm} EVALlam (lm f, lm f, 0) // λx.e → λx.e

316 S. Cui, K. Donnelly, and H. Xi

| {t1:tm, t2:tm, f:tm -> tm, v1:tm, v2:tm, n1:nat, n2:nat,n3:nat}
EVALapp (ap (t1, t2), v2, n1+n2+n3+1) of

(EVAL (t1, lm f, n1), EVAL (t2, v1, n2), EVAL (f v1, v2, n3))
// if e1 → λx.e1′, e2 → v1 and [v1/x]e1′ → v2, then e1(e2) → v2

propdef EVAL0 (t1:tm,t2:tm) = [n:nat] EVAL (t1,t2,n) // prop def.

The third index of EVAL, an integer, is the length of the reduction sequence and
it is needed in forming termination metrics to assure proof totality. Additionally
we define EVAL0 to be an EVAL of any length. Now we define another prop
constructor ISVAL expressing that the static term of sort tm it is indexed by
is a value. Note that λ-abstractions are the only form of values in this simple
language.

dataprop ISVAL (tm) = {f: tm -> tm} ISVALlam (lm f)

Now we can construct two proof functions: lemma1 which proves that any value
evaluates to itself and lemma2 which proves that any term which is the result
of evaluation is a value.

prfun lemma1 {t:tm} .< >. (pf :ISVAL (t)): EVAL0 (t, t) =
case* pf of ISVALlam () => EVALlam

prfun lemma2 {t1:tm,t2:tm,n:nat} .<n>. (pf: EVAL (t1,t2,n)): ISVAL t2 =
case* pf of EVALlam () => ISVALlam | EVALapp (_, _, pf’) => lemma2 pf’

These proof functions make use of two techniques to guarantee totality: the
case� which mandates that the pattern matching following it is exhaustive (an
error message is issued otherwise) and the termination metric (written in the
form of .<metric>.) which specifies a well-ordering (based on the lexicographical
ordering on tuples of natural numbers) to guarantee termination of the recursion.
Now we create datatypes for terms, values and environments:

datatype EXP (tms, tm) = ...

datatype VAL (tm) =
{ts:tms,f:tm->tm} VALclo(lm f) of (ENV ts, {t:tm} EXP(more(ts,t), f t))

and ENV (tms) =
| ENVnil (none)
| {ts:tms, t:tm} ENVcons (more (ts, t)) of (ISVAL t | ENV ts, VAL t)

With these sorts, types and propositions, we can now define an evaluation func-
tion whose type proves its correctness:

fun eval {ts: tms, t: tm} (env: ENV ts, e: EXP (ts, t))
: [v:tm] ’(EVAL0 (t, v) | VAL v) = ...

fun evaluate {t: tm} (e: EXP (none, t))
: [v:tm] ’(EVAL0 (t, v) | VAL v) = eval (ENVnil, e)

ATS: A Language That Combines Programming with Theorem Proving 317

The concrete syntax indicates that the evaluate function is assigned the following
type:

∀t : tm.EXP(none, t) → ∃v : tm.(EVAL0(t, v) | VAL(v))

which means that evaluate takes a closed term t and returns a value v along
with a proof that t evaluates to v. Such proofs can be erased before execution
leaving a verified interpreter. Please find the omitted code on-line:

http://www.cs.bu.edu/~hwxi/ATS/EXAMPLE/LF/callByValue.ats

4.3 Programming with Dataviews

A novel notion of stateful views is introduced in ATS to describe memory layouts
and reason about memory properties. A stateful view is a form of linear prop,
which can also be assigned to proof terms. There is a built-in sort addr for static
terms L representing memory addresses (or locations). Given a type T and an
address L, T@L is a primitive stateful view meaning that a value of the type
T is stored at the location L. Given two stateful views V1 and V2, V1 ⊗ V2 is
a stateful view that joins V1 and V2 together, and V1 � V2 is a stateful view
which yields V2 when applied to V1. We also provide a means to form recursive
stateful views through dataviews. For instance, a view for an array is recursively
defined below:

dataview arrayView (type, int, addr) =
| {a:type, l:addr} ArrayNone (a, 0, l)
| {a:type, l:addr, n:nat}

ArraySome (a, n+1, l) of (a@l, arrayView (a, n, l+1))

The stateful view arrayView(T, I, L) means that there is an array of length I in
which all the elements are of type T stored at addresses L, L+1, . . . , L+(I−1).
The two associated constructors are of the following props:

ArrayNone : ∀a : type.∀l : addr . arrayView(a, 0, l)
ArraySome : ∀a : type.∀l : addr .∀n : nat .

(a@l⊗ arrayView(a, n, l + 1)) � arrayView(a, n + 1, l)

The types of some built-in functions in ATS can be specified through the use
of stateful views. For instance, the types of functions for safe reading from and
writing to a pointer are given as follows.

dynval getPtr : // read from a pointer
{a:type, l:addr} (a@l | ptr l) -> (a@l | a)

dynval setPtr : // write to a pointer
{a1:type, a2:type, l:addr} (a1@l | ptr l, a2) -> (a2@l | unit)

According to the type of getPtr , the function can be applied a pointer to L
only if a proof term of the view T@L is given, which assures that the address
L is accessible. In other words, without specifying a proper proof, getPtr is not

318 S. Cui, K. Donnelly, and H. Xi

allowed to be applied. Thus, we can readily prevent dangling pointers from ever
being accessed as no proofs for dangling pointers can be provided.

A proof function manipulating views is referred to as a view change func-
tion. For instance, a view arrayView(T, I0, L) can be changed into two views:
a view T@(L + I) where 0 ≤ I < I0 and a functional view T@(L + I) �
arrayView(T, I0, L) which basically means that given a proof of T@(L + I), it
returns a proof of arrayView(T, I0, L). This is like taking the Ith element out
of an array of size I0 (described by T@(L + I)) and leaving the rest (described
by T@(L + I) � arrayView(T, I0, L)). The following view change function
takeOutLemma implements this idea:

prfun takeOutLemma
{a:type,n:int,i:nat,l:addr | i < n} .<i>. (pf: arrayView (a, n, l))
: ’(a@(l+i), a@(l+i) -o arrayView (a, n, l)) = ...

We now introduce an interesting example – an array subscripting function –
which makes use of the takeOutLemma given above.

fun sub {a:type, n:int, i:nat, l:addr | i < n}
(pf: arrayView (a, n, l) | p: ptr l, i: int i)

: ’(arrayView (a, n, l) | a) = let
prval ’(pf1, pf2) = takeOutLemma {a, n, i, l} (pf)
val ’(pf1 | x) = getPtr (pf1 | p + i)

in ’(pf2 pf1 | x) end

In the sub function, we use getPtr to access the Ith element of an array of
size I0 such that 0 ≤ I < I0 holds. In order to provide a proof of T@(L +
I), we apply the view change function takeOutLemma to a proof term pf of
the arrayView(T, I0, L). At last it recovers the view for the array using linear
function application on two proofs pf 2 and pf 1, and then returns the value of
the type T as we wish. Note that sub can be readily compiled into a function
with a body of one load instruction after the proofs in sub are erased.

4.4 More Examples

Many more interesting and larger examples can be found on-line [15]. In partic-
ular, the current library of ATS alone consists of over 20K lines of code written
in ATS, where the paradigm of programming with theorem proving is widely
employed.

5 Conclusion and Future Work

The language ATS supports a paradigm that combines programming with the-
orem proving, and we have illustrated by example that how this paradigm is
carried out in ATS. In addition to standard non-linear props, a form of lin-
ear props, stateful views, is supported in ATS for reasoning about memory. At
present, we know no other programming languages that support the paradigm of
programming with theorem proving as is described in this paper. In particular,

ATS: A Language That Combines Programming with Theorem Proving 319

we emphasize that this paradigm is fundamentally different from the one that
extracts programs out of proofs as is advocated in theorem proving systems such
as NuPrl [6] and Coq [2].

We believe that programming with theorem proving is a promising research
topic. Developing automated theorem proving (rather than constructing proofs
explicitly) and combing it in programming is one of our future works. In order
to support more programming paradigms, we plan to combine assembly pro-
gramming with theorem proving, and employ the idea of view change functions
to model the computation of assembly instructions and capture program states
(including registers, stacks and heaps) at assembly level. We also plan to reason
about other interesting properties by building proper logics on top of ATS. For
instance, we would like to develop concurrent programming in ATS, supporting
formal reasoning on properties such as deadlocks and race conditions.

References

1. H. P. Barendregt. Lambda Calculi with Types. In S. Abramsky, D. M. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume II, pages
117–441. Clarendon Press, Oxford, 1992.

2. Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer Verlag, 2004.

3. C. Chen, R. Shi, and H. Xi. A Typeful Approach to Object-Oriented Programming
with Multiple Inheritance. In Proceedings of the 6th International Symposium on
Practical Aspects of Declarative Languages, Dallas, TX, June 2004. Springer-Verlag
LNCS vol. 3057.

4. C. Chen and H. Xi. ATS/LF: a type system for constructing proofs as total
functional programs, November 2004. http://www.cs.bu.edu/~hwxi/ATS/PAPER/
ATSLF.ps

5. C. Chen and H. Xi. Combining Programming with Theorem Proving, November
2004. (http://www.cs.bu.edu/~hwxi/ATS/PAPER/CPwTP.ps)

6. R. L. Constable et al. Implementing Mathematics with the NuPrl Proof Develop-
ment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

7. R. L. Constable and S. F. Smith. Partial objects in constructive type theory. In
Proceedings of Symposium on Logic in Computer Science, pages 183–193, Ithaca,
New York, June 1987.

8. G. Dantzig and B. Eaves. Fourier-Motzkin elimination and its dual. Journal of
Combinatorial Theory (A), 14:288–297, 1973.

9. S. Hayashi and H. Nakano. PX: A Computational Logic. The MIT Press, 1988.
10. F. Honsell, I. A. Mason, S. Smith, and C. Talcott. A variable typed logic of effects.

Information and Computation, 119(1):55–90, 15 May 1995.
11. N. Mendler. Recursive types and type constraints in second-order lambda calculus.

In Proceedings of Symposium on Logic in Computer Science, pages 30–36, Ithaca,
New York, June 1987. The Computer Society of the IEEE.

12. R. Milner, M. Tofte, R. W. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, Cambridge, Massachusetts, 1997.

13. F. Pfenning and C. Elliott. Higher-order abstract syntax. In ACM SIGPLAN ’88
Conference on Programming Language Design and Implementation, volume 23 (7),
pages 199–208, Atlanta, Georgia, July 1988. ACM Press.

320 S. Cui, K. Donnelly, and H. Xi

14. H. Xi. Applied Type System (extended abstract). In post-workshop Proceedings of
TYPES 2003, pages 394–408. Springer-Verlag LNCS 3085, 2004.

15. H. Xi. Applied Type System, 2005. http://www.cs.bu.edu/ ~hwxi/ATS
16. D. Zhu and H. Xi. Safe Programming with Pointers through Stateful Views. In

Proceedings of the 7th International Symposium on Practical Aspects of Declarative
Languages, Long Beach, CA, January 2005. Springer-Verlag LNCS, 3350.

Author Index

Abel, Andreas 285
Armando, Alessandro 65

Baader, Franz 31
Bonacina, Maria Paola 65
Börger, Egon 264

Coquand, Thierry 285
Cui, Sa 310

da Silva, Leandro Dias 81
de Alfaro, Luca 81
del Vado Vı́rseda, Rafael 184
Djelloul, Khalil 106
Donnelly, Kevin 310

Faella, Marco 81

Ghilardi, Silvio 1, 31
Giesl, Jürgen 216
Giunchiglia, Fausto 284

Janičić, Predrag 200
Jovanović, Dejan 200

Koprowski, Adam 232

Lahiri, Shuvendu K. 168
Lambert, Tony 138
Legay, Axel 81

Monfroy, Eric 138
Musuvathi, Madanlal 168

Nicolini, Enrica 1
Niehren, Joachim 248
Norell, Ulf 285

Pattinson, Dirk 122

Ranise, Silvio 48, 65
Reus, Bernhard 122
Ringeissen, Christophe 48
Roy, Pritam 81

Saubion, Frédéric 138
Schneider-Kamp, Peter 216
Schulz, Stephan 65
Schwinghammer, Jan 248
Smolka, Gert 248
Sorea, Maria 81

Thiemann, René 216
Tverdyshev, Sergey 302

Xi, Hongwei 310

Zantema, Hans 232
Zarba, Calogero G. 48
Zucchelli, Daniele 1

	Frontmatter
	Logics, Theories, and Decision Procedures I
	A Comprehensive Framework for Combined Decision Procedures
	Connecting Many-Sorted Structures and Theories Through Adjoint Functions
	Combining Data Structures with Nonstably Infinite Theories Using Many-Sorted Logic
	On a Rewriting Approach to Satisfiability Procedures: Extension, Combination of Theories and an Experimental Appraisal

	Interface Formalisms
	Sociable Interfaces

	Logics, Theories, and Decision Procedures II
	About the Combination of Trees and Rational Numbers in a Complete First-Order Theory
	A Complete Temporal and Spatial Logic for Distributed Systems

	Constraint Solving and Programming
	Hybrid CSP Solving
	An Efficient Decision Procedure for UTVPI Constraints
	Declarative Constraint Programming with Definitional Trees

	Logical Problem Analysis and Encoding I
	Logical Analysis of Hash Functions

	Combination Issues in Rewriting and Programming
	Proving and Disproving Termination of Higher-Order Functions
	Proving Liveness with Fairness Using Rewriting
	A Concurrent Lambda Calculus with Futures

	Compositional System Design and Refinement
	The ASM Method for System Design and Analysis. A Tutorial Introduction

	Logical Problem Analysis and Encoding II
	Matching Classifications via a Bidirectional Integration of SAT and Linguistic Resources

	Theorem Proving Frameworks and Systems
	Connecting a Logical Framework to a First-Order Logic Prover
	Combination of Isabelle/HOL with Automatic Tools
	ATS: A Language That Combines Programming with Theorem Proving

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

