
The PASSI and Agile PASSI MAS Meta-models
Compared with a Unifying Proposal

Massimo Cossentino2, Salvatore Gaglio1,2,
Luca Sabatucci1, and Valeria Seidita1

1 Dipartimento di Ingegneria Informatica (DINFO),
University of Palermo,

Viale delle Scienze, 90128 -Palermo- Italy
2 Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR),

Consiglio Nazionale delle Ricerche(CNR),
Viale delle Scienze, 90128 -Palermo- Italy

cossentino@pa.icar.cnr.it, gaglio@unipa.it, sabatucci@csai.unipa.it,
seidita@csai.unipa.it

Abstract. A great number of processes for multi-agent systems design
have been presented in last years to support the different approaches
to agent-oriented design; each process is specific for a particular class
of problems and it instantiates a specific MAS meta-model. These dif-
ferences produce inconsistences and overlaps: a MAS meta-model may
define a term not referred by another, or the same term can be used with
a different meaning.

We think that the lack of a standardization may cause a significant
delay to the diffusion of the agent paradigm outside research context.
Working for this unification goal, it is also necessary to define in un-
ambiguous way the terms of the agent model and their relationships
thus obtaining a unified MAS meta-model. In this work we propose the
PASSI MAS meta-model, the results of its adaptation to the needs of an
agile process (Agile PASSI), and a comparison with an existing unifying
proposal of MAS meta-model composed by considering three different
processes (ADELFE, Gaia and PASSI).

1 Introduction

In order to approach the design and development of a multi-agent system (MAS)
in a rigorous way, many approaches have been explored; all of these deal the de-
velopment phases addressing high level terms such as agent, goal, role, task and
collaboration. Hence, the design of a system may be seen as the instantiation
of these elements in order to fulfill some specific problem requirements. The de-
scription of the elements involved in the design phases, and their relationships,
can represent one of the fundamental steps in building a new one and specifically
in the definition of its MAS meta-model (MMM hence afterward). The various
agent-oriented design processes, presented in these years, are significantly dif-
ferent: goal-oriented, situation-oriented, requirement-oriented are examples of

M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, LNAI 3690, pp. 183–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 M. Cossentino et al.

different philosophical possible approaches [1,2,3,4,5]. Each of these proposes a
different way to face modeling; this diversity is caused by observing the sys-
tem from different perspectives, considering different aspects of the problem and
specific theoretical background or a specific application context. Besides each
process forces the designer to assign an implicit meaning to each MMM compo-
nent and that is often not coherent with the choices of other authors.
Even if this variety of design processes may be viewed as a richness, the differ-
ences among their meta-model components could create some perplexities when
a designer moves from a design process to another, or when two designers try to
communicate about a shared solution (pattern for agents).
A first step toward interoperability among different agent oriented design pro-
cesses was the proposal of a unifying MAS meta-model [6] created starting from
three different approaches (Adelfe, Gaia, and PASSI).

The purpose of this work is to present a description of the MAS meta-model
of two design processes that use a quite different approach (PASSI[4,7] and
Agile PASSI[8,9]). In this analysis we put in evidence two aspects related to the
unifying MMM definition: i) we can highlight the differences among elements
definition from comparing specific MMMs with the unifying one; ii) we can also
show how to derive a specific MMM from the unifying one.
This paper is structured as follows: in section 2 we present the PASSI and Agile
PASSI design processes while their meta-models are described in section 3 where
we also underline the most relevant differences among them, finally in section
4 we present the unifying MMM resulting from the study in [6] and in 5 we
compare the three presented MAS meta-models.

2 The PASSI and Agile PASSI Design Process

PASSI (Process for Agent Societies Specification and Implementation)[4,7] is a
step-by-step requirement-to-code design process conceived for developing multi-
agent systems. It is characterized by some distinctive features: (i) it is require-
ment driven, (ii) it is iterative and incremental, (iii) it focus the attention to
ontological model of the domain in the design of agents.

PASSI is composed of five models addressing different design levels of ab-
straction. The System Requirements Model represents an anthropomorphic
model of the system requirements in terms of agency and purpose. It consists of a
functional description of the system: the designer identifies system requirements
using use case diagrams, and organizes them in responsibility groups (that will
assigned to agents). The next model, the Agent Society Model, fully exploits
the agent paradigm: now an agent is seen as an autonomous entity capable of
pursuing an objective through its autonomous decisions, actions and social re-
lationships. The activities involved in this model aim to depict agent internal
plans, knowledge and social abilities in order to model interactions and depen-
dencies among entities of the society. The Agent Implementation Model
defines the implementing details of the solution in terms of classes, attributes
and methods. In this phase the designer uses conventional class diagrams, to

The PASSI and Agile PASSI MAS Meta-models 185

describe the static structure of the involved agents, and activity or state chart
diagrams, to describe the behavior of individual agents. The Code Model is a
representation of the solution at the code level while the Deployment Model
describes the distribution (and their eventual migrations) of sub-systems across
available hardware processing units.

Agile PASSI [9,8] derives from PASSI through the reuse of some of its
fragments and it has been assembled complying a method engineering approach
[10,11,12]. It is a light process created, according to the agile manifesto [13], with
the aim to develop, in a short time, small-medium size systems. An agile process
is easy to understand and to use because it is principally code oriented; for these
reasons Agile PASSI comes to be well suited for those applications where coding
is more important than documentation. In order to be compliant with agile
modeling principles [13,14], Agile PASSI is an iterative process; it is composed
of five steps (a low number) and it strongly oriented to communication among
customers and developers during all the development phases (and in particular
during the planning one). The fragments (portions of the design process) we have
extracted from PASSI are: (i) Domain Requirements description (the description
of system functionalities through use case diagrams), (ii) Agent Identification
(the identification of logically related sets of functionalities that are put under
an agent’s responsibility), (iii) Domain Ontology description (the description
of the agent knowledge in term of concepts, predicates and actions), (iv) Code
Reuse (a technique for reuse portion of projects and code using design patterns)
and (v) Testing (single agent and society test). This selection was done taking in
consideration the PASSI philosophy: we have maintained use case diagrams as
the base for agents identification and we have not changed the fundamental role
of the ontology in the process. From the other side we respected the requirements
for an agile process: low importance for the completeness of documentation and
rapid code production.

The result of the composition of these fragments is a new process including
five steps: Requirements, a model of the system requirements that is composed
of two activities: Planning and Sub-Domain Requirements Description; Agent
Society, a view of the agents involved in the solution, their interactions and their
knowledge about the world. It is composed of two activities: Domain Ontology
Description and Agent Identification; Test Plan, the phase of test planning;
Code, a solution domain model at code level; Testing, the performing of the
previous planned tests.

3 The PASSI and Agile PASSI MAS Meta-Models

The description of the PASSI MAS meta-model (Figure 1) addresses three logical
areas: (i) the problem domain, (ii) the solution domain and (iii) the agency
domain; they are introduced in an order that reflects our choice of an agent
approach for solution refinement and modeling.

In the problem domain we include components describing the requirements
the system is going to accomplish: these are directly related to the requirements

186 M. Cossentino et al.

Fig. 1. The PASSI MAS meta-model

analysis phase of the PASSI process. Then we introduce the agency domain
components; they are used to define an agent solution for the problem. Finally,
in the PASSI MMM solution domain, agency-level components are mapped to
the adopted FIPA-compliant implementation platform elements (we suppose the
platform supports at least the concepts of agent and task); this represents the
code-level part of the solution and the last refinement step.

Going into the details of the model, we can see that (Figure 1), the Prob-
lem Domain deals with the user’s problem in terms of scenarios, requirements,
ontology and resources. Scenarios describe a sequence of interactions among ac-
tors and the system to be built; Requirements are represented with conventional
UML use case diagrams. The ontological description of the domain is composed
of concepts (categories of the domain), actions (performed in the domain and
effecting the status of concepts) and predicates (asserting something about a
portion of the domain, i.e. the status of concepts). Resources are the last el-
ement of the problem domain. They can be accessed/shared/manipulated by
agents. A resource could be a repository of data (like a relational database), an
image/video file or also a good to be sold/bought. The Agency Domain contains
the components of the agent-based solution. In PASSI an agent is responsible
for realizing some functionalities descending from one or more functional re-
quirements. It also has to respect some non functional requirement constraints
(like for instance performance prescriptions). It lives in an environment from
which it receives perceptions (the related knowledge is structured according to
the designed domain ontology). Sometimes an agent has also access to available
resources and it is capable of actions in order to pursue its own objectives or

The PASSI and Agile PASSI MAS Meta-models 187

Fig. 2. The Agile PASSI MAS Meta-Model

to offer services to the community. Each agent during its life plays some roles.
A role is a peculiarity of the social behavior of an agent. When playing a role,
an agent may provide a service to other agents. In PASSI, a task specifies the
computation that generates the effects of a specific agent behavioral feature.
It is used with the significance of atomic part for defining the overall agent’s
behavior. This means that an agent’s behavior can be composed by assembling
its tasks and the list of actions that are executed within each task cannot be
influenced by the behavior planning. Tasks are structural internal components
of an agent and they contribute to define the agent’s abilities; these cannot be
directly accessed by other agents (autonomy) unless the agent offers them as a
set of services. A communication is an interaction among two agents and it is
composed of one or more messages. The information exchanged during a commu-
nication is composed of concepts, predicates or actions defined in the ontology.
The flow of messages and the semantic of each message are ruled by an agent
interaction protocol (AIP). The last Agency Domain element (Service) describes
a set of coherent functionalities exported by the agent for the community.

The Implementation Domain describes the structure of the code solution in
the chosen FIPA-compliant implementation platform and it is essentially com-
posed of three elements: (i) the FIPA-Platform Agent that is the base class
catching the implementation of the Agent entity represented in the Agency do-
main; (ii) the FIPA-Platform Task that is the implementation of the agent’s
Task, (iii) the ServiceDescription component that is the implementation-level
description (for instance an OWL-S file) of each service specified in the Agent
Domain.

Like the previous one, the Agile PASSI MMM (Figure 2) is partitioned in
three logical areas: (i) problem domain, (ii) agency domain and (iii) solution do-
main. Agile PASSI was assembled starting from fragments extracted from PASSI,
so the collection of MAS components descends from these fragments following

188 M. Cossentino et al.

a particular design process [8] also considering the particular applications the
agile process was conceived to solve. An agile process principally addresses code
production, so in this case MAS meta-model components are mainly centered
on the agent element and its related implementation parts. Using Agile PASSI
a multi-agent system is conceived following five phases: planning, requirements
design, agent society design, coding and testing; during the first two phases the
elements present in problem domain area of MMM are instantiated; these ele-
ments are: i) functional and non functional requirements (used to describe the
user point of view on the problem solution), and ii) domain ontology (composed
of concepts, predicates and actions). As regards the Agency Domain, its cen-
tral component is obviously the agent that is conceived in the same way as it
is in conventional PASSI; it is composed of tasks representing significant (but
not divisible) parts of its behavior and its capability of pursuing an objective
realizing some functionalities, besides it uses communications to interact (com-
municating or requesting collaborations) with other agents, each communication
being composed of messages ruled by an agent interaction protocol (like it is in
PASSI). The solution domain is nearly the same of conventional PASSI since it
is composed of the Agent and Task implementation elements.

4 A Unifying MAS Meta Model

An initial proposal of unifying MAS meta-model has been presented by C.
Bernon et al. in [6] with the aim of contributing to the interoperability among
agent oriented design processes; in their work the authors started with a com-
parison of some existing process with a specific attention for the differences
among their MAS meta-models (MMM) components. The three studied design
processes (ADELFE, Gaia and PASSI) are quite generic, in fact none of them
refers to a specific agent architecture (like BDI or purely reactive agents).

The study was conducted using the classification of the terms (represent-
ing a MAS) accordingly to the following four categories: (1) Agent Structure:
agent, role, responsibility, task, goal, plan and service; (2) Agent Interactions:
(direct and undirect) communication, protocol, message; (3) Agent Society and
organizational structure: social structure and organization rule; (4) Agent Im-
plementation: FIPA-Platform agent and FIPA-Platform Task. The analysis con-
firmed that in the processes under exam, multiple definitions exist for the same
component/concept; some are quite similar (there are small differences in the
meaning), while some others are completely different. In order to maintain some
level of generality they defined an unifying MMM (in Figure 3) with the aim
to be used as a reference point for further comparisons and discussions about
different design processes and related components.

5 A Comparison of the Presented Meta-models

It is a common belief that a general process, suitable to solve any kind of prob-
lems, does not exist, so it is clear that a MAS meta-model as huge as the one

The PASSI and Agile PASSI MAS Meta-models 189

Fig. 3. The Unifying MAS meta-model (from [6])

described in section 4 cannot be used without some level of customization of its
structure. Specializing different elements from MMM meets the different design
philosophies on which each design process is based; now we will compare the
PASSI and Agile PASSI MMMs with the unifying one with the aim of pointing
out the differences among various concepts without forgetting that the unify-
ing meta-model elements derives from the unification of three existing design
processes already including PASSI.

Our comparison will deal with the four specific aspects of the MMM already
discussed in the previous section. In the following we will refer to Figure 4 to
show what elements and what relationships from the unifying meta-model we
can find in the PASSI one (black drawn elements), what elements and rela-
tionships are newly introduced (dark-filled elements) and how the concepts and
their definitions are specialized to create the MAS meta-model representing the
PASSI design process. Elements from the unifying MMM that are not used in
PASSI/Agile PASSI are gray-designed and as it can be seen they are a signifi-
cant part of the model itself. Besides we will underline that because of slightly
different interpretations of meta-model concepts (and philosophical choices that
are beyond of each approach) it is possible that meta-models sharing the same
elements can lead to significantly different design processes.

Agent Structure: in PASSI an agent is defined as a composition of roles; tasks,
specifying a specific computation generating some kind of behavior, are associ-

190 M. Cossentino et al.

Fig. 4. The PASSI elements in the Unifying MAS meta-model

ated to each role. From all of this descends that a design process based on PASSI
is performed through a sequence of steps leading from an early identification of
agents to the definition of their roles and the description of their communica-
tions, while for instance in Gaia[15], being different the definitions of agent and
role, we can see that the process is initially based on roles definition and only in
a second time on the agents identification.

Instead in Agile PASSI, an agent is composed only by tasks, the concept of
role is not necessary and so it is not present in Agile PASSI meta-model.

Agent Interaction: as regards the agent interaction capability in PASSI (and
Agile PASSI) we see it is based on communications; they refer to an agent
interaction protocol and the knowledge exchanged during the communication is
seen as an instance of the domain ontology; this points out how important it
is in PASSI to create a relationship between communications and the ontology
through an ontology element while it is not necessary to introduce the concept
of environment of Adelfe[16], where an agent can interact with another agent
directly through communications or indirectly through the environment.

Agent Society: social relationships in PASSI are modeled through the defini-
tion of services that can be provided or accessed by agents. The service providing
imply that agents would play social roles so to participate in scenarios interacting
with other through communications; an agent can handle some resources that
are relevant for the remaining part of society and accessing them can trigger

The PASSI and Agile PASSI MAS Meta-models 191

some kind of interactions. During the design flow in PASSI a static structural
representation of the agent society is made through a class diagram where classes
(agents) can be grouped in packages representing the social structures (groups,
communities,...); differently in Gaia, the agent society is considered more than
a collection of interacting agent but it is an entity with a well defined structure.
From this structure a designer can identify agent activities, assigning a role for
each social one; once all the roles that compose one agent are defined, their ac-
tivities and responsibilities are converted into a set of services. Agent society is
not modeled in Agile PASSI.

Agent Implementation: in PASSI and Agile PASSI a direct mapping exists
between the elements of the MAS meta-model and their implementation; each
agent is coded using the base agent class of the selected implementation platform
and it contains the tasks that are used by roles (that have not a direct code level
implementation). No similar mapping is provided by Gaia or Adelfe.

6 Conclusions

A large number of MAS design processes have been developed in the last years
and probably others will be created in future; each of these is characterized by
specific features characterizing the single approach. In all of these cases, differ-
ences among the various design processes (sometimes referred to as methodolo-
gies) reflect in correspondent differences among the MAS meta-models. In this
work we presented the MAS meta-models of the PASSI and Agile PASSI de-
sign processes and compared them with a unifying proposal of MAS meta-model
resulting from the study of three existing design process MMMs. Our aim was
both to evaluate whether from the proposed unifying MMM we could derive a
new design process (Agile PASSI) and to speculate about the fact that different
processes, although similar in some parts of the MAS meta-models, can have
very different approaches to the design of their systems (some examples dealt
with the order in which the different elements are instantiated during the de-
sign time). We can conclude that the unifying proposal despite of the level of
generality that it introduces still sufficiently supports the PASSI/Agile PASSI
MAS meta-models and besides, in section 5, we observed that the unique schema
representing a MMM is not sufficient to underline some specific design process;
conversely, several different solutions can be drawn to instantiate the same meta-
model; it still remains to explore the importance that the different definitions of
the MMM elements can have in constraining the overall process.

References

1. Capera, D., Georg, J.P., Gleizes, M.P., Glize, P.: The amas theory for complex
problem solving based on self-organizing cooperative agents. In: Proc. of the 1st
International Workshop on Theory And Practice of Open Computational Systems
(TAPOCS03@WETICE 2003), Linz (Austria) (2003)

2. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the tropos project. Inf. Syst. 27 (2002) 365–389

192 M. Cossentino et al.

3. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3 (2000) 285–315

4. Cossentino, M., Potts, C.: A case tool supported methodology for the design of
multi-agent systems, Las Vegas (NV), USA, The 2002 International Conference on
Software Engineering Research and Practice, SERP’02 (2002)

5. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering.
International Journal on Software Engineering and Knowledge Engineering (11)
231–258

6. Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A study of some
multi-agent meta-models. Lecture Notes in Computer Science 3382 (Jan 2005) 62
– 77

7. Cossentino, M.: From requirements to code with the passi methodology. In
Henderson-Sellers, B., Giorgini, P., eds.: Agent-Oriented Methodologies, Idea
Group Inc. (2005 (in printing))

8. Cossentino, M., Seidita, V.: Composition of a new process to meet agile needs
using method engineering. In Ed., E., ed.: LNCS Series. (2004) 36–51

9. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: From passi to agile passi :
tailoring a design process to meet new needs. In: 2004 IEEE/WIC/ACM Interna-
tional Joint Conference on Intelligent Agent Technology (IAT-04), Beijing, China
(2004)

10. Brinkkemper, S.: Method engineering: engineering the information systems devel-
opment methods and tools. Information and Software Technology 37 (1995)

11. Kumar, K., Welke, R.: Methodology engineering: a proposal for situation-specific
methodology construction. Challenges and Strategies for Research in Systems
Development (1992) 257–269

12. Saeki, M.: Software specification & design methods and method engineering. In-
ternational Journal of Software Engineering and Knowledge Engineering (1994)

13. Beck, K., al.M. Beedle, van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Mar-
ick, B., Martin, R., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: (Agile
manifesto) http://www.agilemanifesto.org.

14. Alliance, A.: (http://www.agilealliance.org)
15. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the

gaia methodology. ACM Transactions on Software Engineering and Methodology
12 (2003) 417–470

16. Bergenti, F., Gleizes, M.P., Zambonelli, F.: Methodologies and Software Engineer-
ing for Agent Systems. Kluwer (2004)

	Introduction
	The PASSI and Agile PASSI Design Process
	The PASSI and Agile PASSI MAS Meta-Models
	A Unifying MAS Meta Model
	A Comparison of the Presented Meta-models
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

