
M. Pěchouček, P. Petta, and L.Z. Varga (Eds.): CEEMAS 2005, pp. 112 – 121, 2005.
© Springer-Verlag Berlin Heidelberg 2005

What Is Context and How Can an Agent Learn to Find
and Use it When Making Decisions?

Oana Bucur, Philippe Beaune, and Olivier Boissier

Centre G2I/SMA, ENS des Mines de Saint-Etienne,
158 Cours Fauriel, Saint-Etienne Cedex 2, F-42023, France

{bucur, beaune, boissier}@emse.fr

Abstract. Developing context-aware applications needs facilities for
recognizing context, reasoning on it and adapting accordingly. In this paper, we
propose a context-based multi-agent architecture consisting of context aware
agents able to learn how to distinguish relevant from non relevant context and
to make appropriate decisions based on it. This multi-agent system interacts
with a context manager layer, based on an ontological representation of context,
which is able to answer context-related queries. The use of this architecture is
illustrated on a test MAS for agenda management, using the JADE-LEAP
platform on PCs and PDAs.

1 Introduction

The rise of pervasive computing has stressed the importance of context. As defined in
[5], this concept consists in “any information that can be used to characterize the
situation of an entity”. This definition does not indicate how to choose among all the
available context information the one that is relevant or how to deal with it to make
contextualized decisions. Existing works handle this problem in an explicit or implicit
manner. In this paper, our goal is to draw a common base for context-aware
reasoning. We propose a layered architecture made of a Context Manager (CM) layer,
on which a context-based multi-agent layer is defined. Since pervasive applications
are inherently open, they may be contain several “societies” of heterogeneous and
situated agents. Thus, agents must be able to sense and manage context but also to
communicate it. We propose an ontology-based representation for contextual
information. The defined agents can learn how to discern relevant from non-relevant
context and how to make appropriate decisions based on it.

In this paper, we demonstrate our proposal with a case study of an open and
interoperable context-aware agenda management, implemented using Multi-Agent
System (MAS). Our MAS is made of several meeting scheduler agents called
mySAM (my Smart Agenda Manager). A mySAM agent assists its user in fixing
meetings by negotiating them with other mySAM agents and by using context
knowledge to decide to accept or reject a meeting proposal made by another agent.
Knowledge about how to seslect relevant context and how to use it to deal with a
meeting proposal is acquired through individual and multi-agent learning (knowledge
sharing).

 What Is Context and How Can an Agent Learn to Find and Use it 113

Before describing the proposed architecture and the way agents are able to learn
context for decision-making (section 3), we will present the ontology-based context
representation (section 2). We then exemplify our work in the agenda management
application (section 4). Before concluding, we will situate our approach in related
work.

2 “Context” in MAS

In this section, we define “context” and describe how we represent it to design and
implement our context-based MAS.

2.1 What Is “Context” - Definition and Classification

From Dey’s definition, context may be further described as a set of attributes and a
finality. The finality, f, is the goal for which the context is used at a given moment
(e.g. to decide whether a proposal for an appointment should be accepted or not, to
see whether the current situation is similar to another one or not, to understand a
conversation, etc.). Let’s note F the set of finalities.

A context attribute (a) designates the information defining context, e.g.
“ActivityLocation”, “NamePerson”, “ActivityDuration”. We consider a context
attribute as a function, with one or more parameters, returning a value. For instance,
context attribute “NamePerson” is a function defined on the set of Persons, returning
a String value corresponding to the name of a person. We name Va the definition
domain of a, the set of possible values that a may take (example: Vtime =[0,24[). We
define valueOf as an application from A x Pa to P(Va), where A is the set of all
attributes, P(Va) is the power set of Va, and Pa is the set of parameters needed to
compute the value of a. Not all attributes are relevant for a finality. We define
isRelevant(a,f), a predicate stating that attribute a is relevant for the finality f. Let’s
call RAS(f) the Relevant Attribute Set for the finality f: RAS(f) = { a∈A |
isRelevant(a,f)=true }.

We call an instantiation of context attribute a∈A as a pair (a,v) where v is the set
of values v∈P(Va) of a at a given moment. For instance, (Day, {14}),
(roleOfPersonInGroup, {Team Manager}), (PersonIsMemberOf, {MAS Group,
Center_X, University_Y}) are instantiation of respective context attributes Day,
roleOfPersonInGroup, PersonIsMemberOf. Let’s note I the set of instantiated context
attributes as I = {(a,v) | a∈A ∧ valueOf(a)=v}. We call Instantiated Relevant
Attribute Set of a finality f - IRAS(f), the set of instantiated context attributes relevant
for a finality f: IRAS(f) = {(a,v) | a∈RAS(f) ∧ (a,v) ∈ I}.

Let’s notice that in related work ([13], [18], [19]), the notion of “context” is often
understood as being what we defined as the IRAS. To explain the difference between
RAS and IRAS let’s consider the following example. Given finality f = ”deciding
whether to accept or not a meeting”, RAS(f)={“RoleOfPersonInGroup”,
“ActivityScheduledInSlot”} is considered, i.e. role played by the person who made
the proposal and if the receiver has something already planned for the proposed time
slot. The resulting IRAS for a student may be IRASstudent(f)={(RoleOfPersonInGroup,
{teacher}), (ActivityScheduledInSlot, {Activity001})} and for a teacher

114 O. Bucur, P. Beaune, and O. Boissier

IRASteacher(f) = { (RoleOfPersonInGroup, {student}), (ActivityScheduledInSlot,
{Activity255)}. As we can see, the difference between IRAS of student and teacher
may lead to different rational decisions. Usually RAS used is almost the same for
different users when needed to make decisions for the same finality, but the decision
itself is IRAS-dependent. Taking into account the definitions that we proposed so far
we now describe the representation that we defined.

2.2 Representing Context Attributes

Our aim is to represent context in a general and suitable manner for all applications
that need to represent and reason about it. Several representations of context exist:
contextual graphs ([1]), XML (used to define ConteXtML [17]), or object oriented
models ([7]). All these representations have strengths and weaknesses. As stated in
[8], lack of generality is the most frequent weakness: usually, each representation is
suited for a specific type of application and expresses a particular vision on context.
There is also a lack of formal bases necessary to capture context in a consistent
manner and to support reasoning on its different properties. A tentative answer in [8]
was the entity-association-attribute model, is an extension of the “attribute-value”
representation, contextual information being structured around an entity. An entity
represents a physical or conceptual object. We based our proposal on this idea.

To take into account the need for generality, and also considering the fact that we
aim at having several MAS, each dealing with different contexts (that we will need to
correlate in some way), an ontology-based representation seems reasonable. This is
not a novel idea, Chen et al. ([3]) defined context ontologies using OWL. In their
model, each context attribute is represented as an OWL property (DataTypeProperty
or ObjectProperty, depending on the range of values). We extended this
representation due to the limitations it imposes when we need to represent more
complex context attributes (like role, activities already planned, etc.).

Table 1. The description of the class #ContextAttribute

Property Name Property Type Domain Range Multiple values

name Datatype #ContextAttribute String No
noEntities Datatype #ContextAttribute Integer No
entitiesList Object #ContextAttribute #Entity Yes
valueType Object #ContextAttribute #Entity No
multipleValue DataType #ContextAttribute Boolean No

What we did was to add to the ontology the class “#ContextAttribute” (see table 1.)
corresponding to our definition of a context attribute as defined in section 2.1. This
class is composed of the following properties: name, number and list of entities
(parameters) it connects to, type of its value. Instances of that class will be the context
attributes that are known and used in that system by the CM . In our domain ontology,
the class “#Entity” is the super class of all concepts, e.g. in MySAM, #Person,
#Group, #Room, #Activity, etc. are subclasses of #Entity. In Table 2. we give some
examples of context attributes that we defined for the MySAM application. For

 What Is Context and How Can an Agent Learn to Find and Use it 115

instance, the context attribute RoleOfPersonInGroup is described with the
following instance of class #ContextAttribute:

- Name = roleOfPersonInGroup
- NoEntities = 2 (we need to connect this attribute to a person and a group)
- valueType = #Role (value for this attribute is an instance of the class #Role)
- multipleValues = “false” (a person can only play one role in a group)
- entitiesList = { #Person; #Group} (connected entities are instances of class

#Person and of class #Group)

Table 2. Some examples of context attributes defined in MySAM ontology

Person – related
InterestsPerson :(Person)-> String
StatusPerson :(Person) -> String
Supervises : (Person) -> Person*
RoleOfPersonInGroup :(Person,Group)-> Role

Time-related
TimeZone : (Time) -> Integer
DayOfWeek : (Date) -> String
TimeOfDay : (Time) -> String

Location - related
PersonIsInRoom : (Person, Room) -> Boolean
PersonIsAtFloor : (Person, Floor) -> Boolean
PersonIsInBuilding:(Person,Building)->
Boolean

Activity – related
ActivityStartsAt:(Activity)->Time
ActivityEndsAt :(Activity)-> Time
AcivityGoal : (Activity) ->String
ActivityParticipants: (Activity) -> Person*

Agenda - related
BusyMorning : (Agenda) -> Boolean
BusyAfternoon : (Agenda) -> Boolean
BusyEvening : (Agenda) -> Boolean

Environment – related
DevicesAvailableInBuilding : (Building) ->
Device*
DevicesAvailableInRoom:(Room)->Device*
DevicesAvailableAtFloor : (Floor) -> Device*

3 Architecture for a Context-Based Learning MAS

The proposed layered architecture is composed of mySAM agents (Fig. 2), that assist
a user. Agents interact with each other and with a context management layer
composed of context managers (CM – Fig. 1). Being connected to the current state of
the environment, a CM provides agents with context. The CM and not the agents have
the responsibility to compute the values of context attributes in the environment.
Agents learn how to recognize relevant context and how to act accordingly. We start
by describing the CM and continue by the details of the dedicated learning part of the
agent’s architecture.

3.1 Context Manager (CM)

The main functionalities of CM are to let the agents know which is the context
attributes set (defined in the ontology) that it manages and to compute IRAS
corresponding to RAS given by the agents at some point of processing. When
entering a society, an agent asks the corresponding CM to provide it with the context
attributes that it manages. Acting as intermediary between agents and the
environment, CM is able to answer requests regarding its managed context attributes.
This way, if, for instance, CM answers “Date” and “ActivityLocation” to an agent
querying it about context attributes for managing rendez vous, even if the agent

116 O. Bucur, P. Beaune, and O. Boissier

knows that other context attributes exist – e.g., “roleOfPersonInGroup”– it knows that
it cannot ask CM for the value of this attribute since this latter is not able to
compute it.

Fig. 1. Context manager architecture

The Context Knowledge Base contains the ontology of the domain, defined as a
hierarchy with #Entity as root, and all instances of class #ContextAttribute that will
be managed by the CM. The instantiation module computes the IRAS(f) for a given
RAS(f). The dependencies module computes the values for derived attributes by
considering possible relations between context attributes concerning their relevance:
if one attribute is relevant for a situation and it has a certain value, then another
attribute could also be relevant for that situation.

3.2 Context-Based Learning Agent

Although a mySAM agent has some negotiation modules (in order to establish
meetings), we focus here on its management and reasoning on context modules. The
context-based agent architecture that is the core of a MySAM agent is general and it is
not restrained to the kind of application considered to illustrate our approach. It has
two main modules (see Fig. 2): selection of relevant attributes for a certain finality f
(RAS(f)) and decision based on instantiated attributes (IRAS(f)) provided by CM.

For example, for a finality relative to deciding whether accepting or not a “2
participants” meeting, the RAS built by the selection module could be
{“ActivityScheduledInSlot”, “roleOfPersonInGroup”}; or, for a finality relative to a
“several participants” type of meeting, the RAS could be {“ActivityParticipants”,
“ActivityDescription”, “PersonInterests”, etc}. The decision module knows how to
accept a meeting if we have nothing planned for that period of time and if the person
that demands this meeting is our chief, for instance.

Several approaches have been proposed [20], [26] recently concerning multi-agent
learning. Since the specific mono-agent learning method that is used for learning
modules attached to the decision-making based on IRAS is application dependent, we
will not detail it here. We just highlight the necessity to add a multi-agent learning
perspective and to point out what are the consequences.

 What Is Context and How Can an Agent Learn to Find and Use it 117

Fig. 2. Context-based agent architecture

Learning how to select RAS(f). Learning how to choose the relevant context
attributes is important in our targeted applications since the amount of available
context information is too large and the effort needed to compute the values for all
those attributes rise efficiency problems. From an individual learning perspective,
agents use the user’s feedback to learn how to choose among context attributes those
that are relevant for a given situation. In our application, mySAM memorizes the
attributes chosen by the user as being relevant for that situation before making a
decision. Next time the agent will have to deal with the same type of situation, it will
be able to propose to the user all known relevant attributes, so that the user adds or
deletes attributes or uses them such as they are.

Using the context ontology defined in section 2.2, agents are able to share a
common understanding of the manner of using context attributes and knowledge. To
improve the method used in individual learning of how to choose relevant context
attributes, we made agents able to share knowledge, focusing on attributes that other
agents in the system have already learnt as relevant in that situation. When an agent
does not know which attributes are relevant for the considered situation f, it can ask
other agents what are the attributes which they already know as being relevant in that
situation (their RAS(f)). In the same way, if an agent needs more feedback on
attributes in a specific situation, it can again try to improve its set of relevant
attributes, by asking for others’ opinion. The resulting RAS(f) is the union of the
ancient RAS with the new relevant attributes proposed by other agents. Next time the
agent will be in the situation f, it will propose the new obtained RAS to the user, so he
can choose to keep the new attributes, to add some more or to delete some of them
that seem not relevant for him. For example, when deciding about a meeting with a
friend, the agent’s RAS is {ActivityStartsAt, ActivityDuration}. The agent asks others
what their RAS is and, at the end of the sharing session, its RAS will become
{ActivityStartsAt, ActivityDuration, dayOfWeek, BusyEvening}. The user can then
choose to keep the attribute “dayOfWeek” as relevant and to remove “BusyEvening”
from the list of relevant attributes for this finality.

118 O. Bucur, P. Beaune, and O. Boissier

Learning how to make decisions based on IRAS. Learning how to use relevant
context may be realized by any machine learning method developed in AI, suited to
the type of application that we develop. In our case, a mySAM agent uses a
classification based on association (CBA) tool developed at School of Computing,
University of Singapore, in the Data Mining II suite ([4]). We will show in the
following section some results we obtained using this approach.

For multi-agent learning on how to use context knowledge, we modified the
knowledge sharing method so that the agents can choose between (i) sharing only the
solution to the problem, keeping for themselves the knowledge used to find that
solution, or (ii) sharing the problem-solving method itself, so that others can use it for
themselves. The choice depends on the application and more particularly on privacy
matters. The second solution is more efficient in that it gives an agent the method to
solve the problem, not just the answer to its problem. This way, next time the agent
needs to solve the same type of situation, it will directly apply the method, without
asking again for help from other agents. But if, as considered in mySAM, the agents
should not share all their criteria for accepting or rejecting a meeting, then sharing just
the solution (an “accept/reject” decision) should be preferable. We implemented the
latter solution in our agenda management case study. For more details on learning
methods, see [2].

4 Implementation and Results

In order to validate our proposal, we developed the system proposed as a case study in
section 1, a multi-agent system containing several mySAM agents and one CM .
Agents were deployed with the JADE/LEAP platform ([9]) to run on handheld
devices. Each mySAM agent is a JADE agent with a graphical interface that allows a
user to manage her agenda. This graphical interface has been simplified to deploy
mySAM agents on a HP iPAQ 5550 Pocket PC.

For learning how to use relevant context (for acceptance or refusal of meeting
proposals), mySAM agents use CBA (Classification Based on Association) algorithm.
CBA gives better results than C4.5 [4] and it generates rules comprehensive for both
agents and humans. The rules have been used with Jess ([11]) inference engine.

In order to provide examples for learning algorithm, the system has been used (for
meeting negotiations) by several members in our department for several weeks. Here
is an example of the rules we obtained using CBA on the examples generated by
using mySAM: IF ActivityDuration = 120 AND BusyMorning = true AND
BusyEvening = true THEN class = no (“class” specifies whether the agent should
accept or refuse the proposed meeting). When no rule matches the specific context,
mySAM is constrained to use a multi-agent knowledge-sharing session on how to use
this specific context (IRAS) to find the solution. It asks all known agents in the
system for their opinion on the situation, and counts each opinion as a vote for
“accept”, “reject” or “unknown”. The agent then proposes to its user the decision that
has the most votes. Agents consider an “unknown” result as a “reject” (by default, an
agent will reject all meeting proposals that neither it, nor other agents know how to
handle). We choose to use this “voting” procedure because not all agents will want to
share their decision-making techniques, but an “accept/reject/unknown” answer is
reasonable.

 What Is Context and How Can an Agent Learn to Find and Use it 119

The CM is also implemented as a JADE agent. It is a special agent in the system
that has access to the domain ontology that defines the context attributes that it will
manage. It answers to context-related queries from all agents that are in the system.
The ontology was created using Protégé 2000 ([16]) and CM accesses the ontology
using Jena ([10]), a Java library designed for ontology management.

Agents interactions in the system are as follows: mySAM agents can query the CM
using a REQUEST/INFORM protocol, negotiations between mySAMs being done
using a PROPOSE/ACCEPT/REJECT protocol.

When testing mySAM we were able to draw several conclusions. Using a selection
step to choose the RAS for a situation helps in having smaller and more significant
rules. Using all attributes to describe a situation is not only difficult to deal with, but
also unnecessary. We tested our hypothesis on a set of 100 examples. For 15 context
attributes used, we obtained an overall classification error of 29.11% and more than
40 rules. When we split the example set on several finalities (“meeting_with_family”,
“meeting_with_friends”, “work_meeting”), and for each situation we take into
account a limited number of context attributes (7 for a meeting with family, 11 for
others), the error becomes 7.59% and the number of obtained rules drops to an
average of 15.

Sharing with other agents just the decision (accept/reject) is preferable, because the
agent that received the answer will then add this situation to its examples list, from
where it will then learn the appropriate rule. Even if it will be slower than just sharing
the specific rule, the privacy problem is this way addressed, because the agent shares
just the answer to a specific situation, and not the reasoning that produced the answer.

5 Related Work

In this section we’ll present a brief state of the art in context definition, context-aware
MAS and context-aware architectures, in order to position our work relative to what
has been done in this domain. We don’t position our work relative to the learning
domain, because our goal was not to propose a learning algorithm, but to use some
already proposed methods for the specific goal of dealing with context [26].

Our definition of context is quite similar to definitions proposed by Persson [15],
Brezillon [1], Edmonds [6], or Thevenin and Coutaz ([22]) in the sense that it is based
on: (i) elements that structure context and (ii) its use, i.e. the finality when using it.
The definition we proposed takes into account those two dimensions of context; it
also explains how to manage them when designing context-based MAS.

In MAS, the notion of context is used to describe the factors that influence a
certain decision. In applications similar to our agenda management application, there
are several works that adapt to context: Calendar Apprentice [14], Personal Calendar
Agent [13], Distributed Meeting Scheduler [19], Electric elves [18], etc. Most of these
works don’t mention the idea of “context” but they all use the “circumstances” or
“environmental factors” that affect the decision to be made. In making Calendar
Agent ([12]), Lashkari et al. use the notion of context, but they assume that the
relevant context is known in advance, so that every context element that they have
access to is considered relevant for the decision to be made. These approaches are not
application-independent when handling context, because they do not provide neither a

120 O. Bucur, P. Beaune, and O. Boissier

general representation of context knowledge nor methods to choose relevant context
elements for a specific decision. This is the main difference and contribution of our
work in the sense that we propose a MAS architecture based on an ontological
representation of context and that can permit an individual and multi-agent learning of
how to choose and use context. MySAM is just a case study to validate our approach.

Mostly, context is used in an ad-hoc manner, without trying to propose an
approach suitable for other kind of applications. However, there is some research in
proposing a general architecture on context-aware applications, like CoBrA, proposed
by Chen et al.[3] or Socam, by Gu et al [21]. We based our architecture on CoBrA
and Socam, but we added the learning modules for choosing relevant context and
using it. The context broker and interpreter are similar to our CM, with the difference
that our concern was not how to retrieve information from sources, but mostly how to
represent it and how to reason on context knowledge based on this representation.

6 Conclusions

In this article, we have presented a definition of context, notion that is used in almost
all applications, without consistently and explicitly taking it into account. We have
proposed an ontology-based representation for context and a context-based
architecture for a learning MAS that uses this representation. We then validated our
approach by implementing a meeting scheduling MAS that uses this architecture and
manages and learns context based on the definitions and representation we proposed.

As future work, we will extend this framework for context-based MAS to be used
for any kind of application that considers context to adapt. The CM will be able to
deal with all context-related tasks (including the calculation of context attributes
values) and to share all this context-related knowledge. In order to make this possible,
our future work will focus on representing and managing how to calculate the values
for context attributes, and the importance of different attributes in different situation
(making a more refined difference between relevant and non relevant attributes).

In what concerns learning agents, the framework will provide agents with several
individual learning algorithm and all that is needed to communicate and share
contextual knowledge (how to choose, compute and use context to make decisions).

References

1. Brezillon, P. – “Context Dynamic and Explanation in Contextual Graphs”, In: Modeling
and Using Context (CONTEXT-03), LNAI 2680, Springer Verlag p. 94-106, 2003.

2. Bucur O, Boissier O, Beaune P – “Knowledge Sharing on How to Recognize and Use
Context to Make Decisions”, to appear in Proc. of Workshop “Context Modeling for
Decision Support”, Vth International and Interdisciplinary Conference “Context 05”.

3. Chen H., Finin T., Anupam J. – “An Ontology for Context-Aware Pervasive Computing
Environments”, The Knowledge Engineering Review, p. 197–207, 2003.

4. Data Mining II – CBA - http://www.comp.nus.edu.sg/ ~dm2/
5. Dey A., Abowd, G.– “Towards a better understanding of Context and Context-

Awareness”, GVU Technical Report GIT-GVU-00-18, GIT, 1999.

 What Is Context and How Can an Agent Learn to Find and Use it 121

6. Edmonds B. – “Learning and exploiting context in agents”, in proc. of AAMAS 2002,
Bologna, Italy, p. 1231-1238.

7. Gonzalez A., Ahlers R. – “Context based representation of intelligent behavior in training
simulations”, Transactions of the Society for Computer Simulation International, Vol. 15,
No. 4, p. 153-166, 1999.

8. Henricksen K., Indulska J., Rakotonirainy A – “Modeling Context Information in
Pervasive Computing Systems”, Proc. First International Conference on Pervasive
Computing 2002, p. 167-180.

9. JADE (Java Agent Development framework) : http://jade.cselt.it/
10. Jena Semantic Web Framework - http://jena. sourceforge.net/
11. Jess: http://herzberg.ca.sandia.gov/jess/index.shtml
12. Lashkari Y., Metral M., Maes P – “Collaborative Interface Agents”, Proc. of CIKM'94,

ACM Press.
13. Lin S., J.Y.Hsu – “Learning User’s Scheduling Criteria in a Personal Calendar Agent”,

Proc. of TAAI2000, Taipei.
14. Mitchell T., Caruana R., Freitag D., McDermott J., Zabowski D.– “Experience with a

learning personal assistant”, Communications of the ACM, 1994.
15. Persson P.– “Social Ubiquitous computing”, Position paper to the workshop on ‘Building

the Ubiquitous Computing User Experience’ at ACM/SIGCHI’01, Seattle.
16. Protégé 2000 - http://protege.stanford.edu/.
17. Ryan N.– “ConteXtML: Exchanging contextual information between a Mobile Client and

the FieldNote Server”, http://www.cs.kent.ac.uk/projects/mobicomp/fnc/ConteXtML.html.
18. Scerri, P., Pynadath D., Tambe M.– “Why the elf acted autonomously: Towards a theory

of adjustable autonomy “ , AAMAS 02, p. 857-964, 2002.
19. Sen S., E.H. Durfee – “On the design of an adaptive meeting scheduler”, in Proc. of the

Tenth IEEE Conference on AI Applications, p. 40-46, 1994.
20. Sian S. S. – “Adaptation Based on Cooperative Learning in Multi-Agent Systems”,

Descentralized AI, Yves Demazeau & J.P. Muller, p. 257-272, 1991.
21. Tao Gu, Xiao Hang W., Hung K.P., Da Quing Z – “An Ontology-based Context Model in

Intelligent Environments”, Proc. of Communication Networks and Distributed Systems
Modeling and Simulation Conference, 2004.

22. Thevenin D., J. Coutaz. – “Plasticity of User Interfaces: Framework and Research
Agenda”. In Proceedings of INTERACT'99, 1999, pp. 110-117.

23. Turney,P. – “The identification of Context-Sensitive Features: A Formal Definition of
context for Concept Learning”, 13th International Conference on Machine Learning
(ICML96), Workshop on Learning in Context-Sensitive Domains, p. 53-59.

24. Turner, R. – “Context-Mediated Behaviour for Intelligent Agents”, International Journal of
Human-Computer Studies, vol. 48 no.3, March 1998, p. 307-330.

25. Widmer G.– “Tracking context changes through meta-learning”, Machine Learning,
27(3):259-286, Kluwer Academic Publisher.

26. Weiss G., Dillenbourg P.– “What is “multi” in multi-agent learning?”, P. Dillenbourg (Ed)
Collaborative-learning: Cognitive, and computational approaches, p. 64-80, 1999.

	Introduction
	“Context” in MAS
	What Is “Context” - Definition and Classification
	Representing Context Attributes

	Architecture for a Context-Based Learning MAS
	Context Manager (CM)
	Context-Based Learning Agent

	Implementation and Results
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

