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Abstract. Developing context-aware applications needs facilities for 
recognizing context, reasoning on it and adapting accordingly. In this paper, we 
propose a context-based multi-agent architecture consisting of context aware 
agents able to learn how to distinguish relevant from non relevant context and 
to make appropriate decisions based on it. This multi-agent system interacts 
with a context manager layer, based on an ontological representation of context, 
which is able to answer context-related queries. The use of this architecture is 
illustrated on a test MAS for agenda management, using the JADE-LEAP 
platform on PCs and PDAs. 

1   Introduction 

The rise of pervasive computing has stressed the importance of context. As defined in 
[5], this concept consists in “any information that can be used to characterize the 
situation of an entity”. This definition does not indicate how to choose among all the 
available context information the one that is relevant or how to deal with it to make 
contextualized decisions. Existing works handle this problem in an explicit or implicit 
manner. In this paper, our goal is to draw a common base for context-aware 
reasoning. We propose a layered architecture made of a Context Manager (CM) layer, 
on which a context-based multi-agent layer is defined. Since pervasive applications 
are inherently open, they may be contain several “societies” of heterogeneous and 
situated agents. Thus, agents must be able to sense and manage context but also to 
communicate it. We propose an ontology-based representation for contextual 
information. The defined agents can learn how to discern relevant from non-relevant 
context and how to make appropriate decisions based on it.  

In this paper, we demonstrate our proposal with a case study of an open and 
interoperable context-aware agenda management, implemented using Multi-Agent 
System (MAS). Our MAS is made of several meeting scheduler agents called 
mySAM (my Smart Agenda Manager). A mySAM agent assists its user in fixing 
meetings by negotiating them with other mySAM agents and by using context 
knowledge to decide to accept or reject a meeting proposal made by another agent. 
Knowledge about how to seslect relevant context and how to use it to deal with a 
meeting proposal is acquired through individual and multi-agent learning (knowledge 
sharing). 
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Before describing the proposed architecture and the way agents are able to learn 
context for decision-making (section 3), we will present the ontology-based context 
representation (section 2). We then exemplify our work in the agenda management 
application (section 4). Before concluding, we will situate our approach in related 
work. 

2   “Context” in MAS 

In this section, we define “context” and describe how we represent it to design and 
implement our context-based MAS. 

2.1   What Is “Context” - Definition and Classification 

From Dey’s definition, context may be further described as a set of attributes and a 
finality. The finality, f, is the goal for which the context is used at a given moment 
(e.g. to decide whether a proposal for an appointment should be accepted or not, to 
see whether the current situation is similar to another one or not, to understand a 
conversation, etc.). Let’s note F the set of finalities.  

A context attribute (a) designates the information defining context, e.g. 
“ActivityLocation”, “NamePerson”, “ActivityDuration”. We consider a context 
attribute as a function, with one or more parameters, returning a value. For instance, 
context attribute “NamePerson” is a function defined on the set of Persons, returning 
a String value corresponding to the name of a person. We name Va the definition 
domain of a, the set of possible values that a may take (example: Vtime =[0,24[ ). We 
define valueOf as an application from A x Pa to P(Va), where A is the set of all 
attributes, P(Va) is the power set of Va, and Pa is the set of parameters needed to 
compute the value of a. Not all attributes are relevant for a finality. We define 
isRelevant(a,f), a predicate stating that attribute a is relevant for the finality f. Let’s 
call RAS(f) the Relevant Attribute Set for the finality f: RAS(f) = { a∈A | 
isRelevant(a,f)=true }. 

We call an instantiation of context attribute a∈A as a pair (a,v) where v is the set 
of values v∈P(Va ) of a at a given moment. For instance, (Day, {14}), 
(roleOfPersonInGroup, {Team Manager}), (PersonIsMemberOf, {MAS Group, 
Center_X, University_Y}) are instantiation of respective context attributes Day, 
roleOfPersonInGroup, PersonIsMemberOf. Let’s note I the set of instantiated context 
attributes as I = {(a,v) | a∈A ∧ valueOf(a)=v}. We call Instantiated Relevant 
Attribute Set of a finality f - IRAS(f), the set of instantiated context attributes relevant 
for a finality f: IRAS(f) = {(a,v) | a∈RAS(f) ∧ (a,v) ∈ I}.  

Let’s notice that in related work ([13], [18], [19]), the notion of “context” is often 
understood as being what we defined as the IRAS. To explain the difference between 
RAS and IRAS let’s consider the following example. Given finality f = ”deciding 
whether to accept or not a meeting”, RAS(f)={“RoleOfPersonInGroup”, 
“ActivityScheduledInSlot”} is considered, i.e. role played by the person who made 
the proposal and if the receiver has something already planned for the proposed time 
slot. The resulting IRAS for a student may be IRASstudent(f)={(RoleOfPersonInGroup, 
{teacher}), (ActivityScheduledInSlot, {Activity001})} and for a teacher  
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IRASteacher(f) = { (RoleOfPersonInGroup, {student}), (ActivityScheduledInSlot, 
{Activity255)}. As we can see, the difference between IRAS of student and teacher 
may lead to different rational decisions. Usually RAS used is almost the same for 
different users when needed to make decisions for the same finality, but the decision 
itself is IRAS-dependent. Taking into account the definitions that we proposed so far 
we now describe the representation that we defined. 

2.2   Representing Context Attributes 

Our aim is to represent context in a general and suitable manner for all applications 
that need to represent and reason about it. Several representations of context exist: 
contextual graphs ([1]), XML (used to define ConteXtML [17]), or object oriented 
models ([7]). All these representations have strengths and weaknesses. As stated in 
[8], lack of generality is the most frequent weakness: usually, each representation is 
suited for a specific type of application and expresses a particular vision on context. 
There is also a lack of formal bases necessary to capture context in a consistent 
manner and to support reasoning on its different properties. A tentative answer in [8] 
was the entity-association-attribute model, is an extension of the “attribute-value” 
representation, contextual information being structured around an entity. An entity 
represents a physical or conceptual object. We based our proposal on this idea.  

To take into account the need for generality,  and also considering the fact that we 
aim at having several MAS, each dealing with different contexts (that we will need to 
correlate in some way), an ontology-based representation seems reasonable. This is 
not a novel idea, Chen et al. ([3]) defined context ontologies using OWL. In their 
model, each context attribute is represented as an OWL property (DataTypeProperty 
or ObjectProperty, depending on the range of values). We extended this 
representation due to the limitations it imposes when we need to represent more 
complex context attributes (like role, activities already planned, etc.).  

Table 1. The description of the class #ContextAttribute 

Property Name Property Type Domain Range Multiple values 

name Datatype #ContextAttribute String No 
noEntities Datatype #ContextAttribute Integer No 
entitiesList Object #ContextAttribute #Entity Yes 
valueType Object #ContextAttribute #Entity No 
multipleValue DataType #ContextAttribute Boolean No 

What we did was to add to the ontology the class “#ContextAttribute” (see table 1.) 
corresponding to our definition of a context attribute as defined in section 2.1. This 
class is composed of the following properties: name, number and list of entities 
(parameters) it connects to, type of its value. Instances of that class will be the context 
attributes that are known and used in that system by the CM . In our domain ontology, 
the class “#Entity” is the super class of all concepts, e.g. in MySAM, #Person, 
#Group, #Room, #Activity, etc. are subclasses of #Entity. In Table 2. we give some 
examples of context attributes that we defined for the MySAM application. For 
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instance, the context attribute RoleOfPersonInGroup is described with the 
following instance of class #ContextAttribute: 

- Name =  roleOfPersonInGroup 
- NoEntities = 2 (we need to connect this attribute to a person and a group) 
- valueType = #Role (value for this attribute is an instance of the class #Role) 
- multipleValues = “false” (a person can only play one role in a group) 
- entitiesList = { #Person; #Group} (connected entities are instances of class 

#Person and of class #Group) 

Table 2. Some examples of context attributes defined in MySAM ontology  

Person – related 
InterestsPerson :(Person)-> String 
StatusPerson :(Person) -> String 
Supervises : (Person) -> Person* 
RoleOfPersonInGroup :(Person,Group)-> Role 

Time-related 
TimeZone : (Time) -> Integer 
DayOfWeek : (Date) -> String 
TimeOfDay : (Time) -> String 
 

Location - related 
PersonIsInRoom : (Person, Room) -> Boolean 
PersonIsAtFloor : (Person, Floor) -> Boolean 
PersonIsInBuilding:(Person,Building)-> 
Boolean 

Activity – related 
ActivityStartsAt:(Activity)->Time 
ActivityEndsAt :(Activity)-> Time 
AcivityGoal : (Activity) ->String 
ActivityParticipants: (Activity) -> Person* 

Agenda - related  
BusyMorning : (Agenda) -> Boolean 
BusyAfternoon : (Agenda) -> Boolean 
BusyEvening : (Agenda) -> Boolean 

Environment – related 
DevicesAvailableInBuilding : (Building) -> 
Device* 
DevicesAvailableInRoom:(Room)->Device* 
DevicesAvailableAtFloor : (Floor) -> Device* 

3   Architecture for a Context-Based Learning MAS  

The proposed layered architecture is composed of mySAM agents (Fig. 2), that assist 
a user. Agents interact with each other and with a context management layer 
composed of context managers (CM – Fig. 1). Being connected to the current state of 
the environment, a CM provides agents with context. The CM and not the agents have 
the responsibility to compute the values of context attributes in the environment. 
Agents learn how to recognize relevant context and how to act accordingly. We start 
by describing the CM and continue by the details of the dedicated learning part of the 
agent’s architecture. 

3.1   Context Manager (CM) 

The main functionalities of CM are to let the agents know which is the context 
attributes set (defined in the ontology) that it manages and to compute IRAS 
corresponding to RAS given by the agents at some point of processing. When 
entering a society, an agent asks the corresponding CM  to provide it with the context 
attributes that it manages. Acting as intermediary between agents and the 
environment, CM is able to answer requests regarding its managed context attributes. 
This way, if, for instance, CM answers “Date” and “ActivityLocation” to an agent 
querying it about context attributes for managing rendez vous, even if the agent 
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knows that other context attributes exist – e.g., “roleOfPersonInGroup”– it knows that 
it cannot ask CM for the value of  this attribute since this latter is not able to  
compute it.  

 

Fig. 1. Context manager architecture 

The Context Knowledge Base contains the ontology of the domain, defined as a 
hierarchy with #Entity as root, and all instances of class #ContextAttribute that will 
be managed by the CM. The instantiation module computes the IRAS(f) for a given 
RAS(f). The dependencies module computes the values for derived attributes by 
considering possible relations between context attributes concerning their relevance: 
if one attribute is relevant for a situation and it has a certain value, then another 
attribute could also be relevant for that situation. 

3.2   Context-Based Learning Agent 

Although a mySAM agent has some negotiation modules (in order to establish 
meetings), we focus here on its management and reasoning on context modules. The 
context-based agent architecture that is the core of a MySAM agent is general and it is 
not restrained to the kind of application considered to illustrate our approach. It has 
two main modules (see Fig. 2): selection of relevant attributes for a certain finality f 
(RAS(f)) and decision based on instantiated attributes (IRAS(f)) provided by CM.  

For example, for a finality relative to deciding whether accepting or not a “2 
participants” meeting, the RAS built by the selection module could be 
{“ActivityScheduledInSlot”, “roleOfPersonInGroup”}; or, for a finality relative to a 
“several participants” type of meeting, the RAS could be {“ActivityParticipants”, 
“ActivityDescription”, “PersonInterests”, etc}. The decision module knows how to 
accept a meeting if we have nothing planned for that period of time and if the person 
that demands this meeting is our chief, for instance.  

Several approaches have been proposed [20], [26] recently concerning multi-agent 
learning. Since the specific mono-agent learning method that is used for learning 
modules attached to the decision-making based on IRAS is application dependent, we 
will not detail it here. We just highlight the necessity to add a multi-agent learning 
perspective and to point out what are the consequences. 
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Fig. 2. Context-based agent architecture 

Learning how to select RAS(f). Learning how to choose the relevant context 
attributes is important in our targeted applications since the amount of available 
context information is too large and the effort needed to compute the values for all 
those attributes rise efficiency problems. From an individual learning perspective, 
agents use the user’s feedback to learn how to choose among context attributes those 
that are relevant for a given situation. In our application, mySAM memorizes the 
attributes chosen by the user as being relevant for that situation before making a 
decision. Next time the agent will have to deal with the same type of situation, it will 
be able to propose to the user all known relevant attributes, so that the user adds or 
deletes attributes or uses them such as they are. 

Using the context ontology defined in section 2.2, agents are able to share a 
common understanding of the manner of using context attributes and knowledge. To 
improve the method used in individual learning of how to choose relevant context 
attributes, we made agents able to share knowledge, focusing on attributes that other 
agents in the system have already learnt as relevant in that situation. When an agent 
does not know which attributes are relevant for the considered situation f, it can ask 
other agents what are the attributes which they already know as being relevant in that 
situation (their RAS(f)). In the same way, if an agent needs more feedback on 
attributes in a specific situation, it can again try to improve its set of relevant 
attributes, by asking for others’ opinion. The resulting RAS(f) is the union of the 
ancient RAS with the new relevant attributes proposed by other agents. Next time the 
agent will be in the situation f, it will propose the new obtained RAS to the user, so he 
can choose to keep the new attributes, to add some more or to delete some of them 
that seem not relevant for him. For example, when deciding about a meeting with a 
friend, the agent’s RAS is {ActivityStartsAt, ActivityDuration}. The agent asks others 
what their RAS is and, at the end of the sharing session, its RAS will become 
{ActivityStartsAt, ActivityDuration, dayOfWeek, BusyEvening}. The user can then 
choose to keep the attribute “dayOfWeek” as relevant and to remove “BusyEvening” 
from the list of relevant attributes for this finality. 
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Learning how to make decisions based on IRAS. Learning how to use relevant 
context may be realized by any machine learning method developed in AI, suited to 
the type of application that we develop. In our case, a mySAM agent uses a 
classification based on association (CBA) tool developed at School of Computing, 
University of Singapore, in the Data Mining II suite ([4]). We will show in the 
following section some results we obtained using this approach. 

For multi-agent learning on how to use context knowledge, we modified the 
knowledge sharing method so that the agents can choose between (i) sharing only the 
solution to the problem, keeping for themselves the knowledge used to find that 
solution, or (ii) sharing the problem-solving method itself, so that others can use it for 
themselves. The choice depends on the application and more particularly on privacy 
matters. The second solution is more efficient in that it gives an agent the method to 
solve the problem, not just the answer to its problem. This way, next time the agent 
needs to solve the same type of situation, it will directly apply the method, without 
asking again for help from other agents. But if, as considered in mySAM, the agents 
should not share all their criteria for accepting or rejecting a meeting, then sharing just 
the solution (an “accept/reject” decision) should be preferable. We implemented the 
latter solution in our agenda management case study. For more details on learning 
methods, see [2]. 

4   Implementation and Results 

In order to validate our proposal, we developed the system proposed as a case study in 
section 1, a multi-agent system containing several mySAM agents and one CM . 
Agents were deployed with the JADE/LEAP platform ([9]) to run on handheld 
devices. Each mySAM agent is a JADE agent with a graphical interface that allows a 
user to manage her agenda. This graphical interface has been simplified to deploy 
mySAM agents on a HP iPAQ 5550 Pocket PC.  

For learning how to use relevant context (for acceptance or refusal of meeting 
proposals), mySAM agents use CBA (Classification Based on Association) algorithm. 
CBA gives better results than C4.5 [4] and it generates rules comprehensive for both 
agents and humans. The rules have been used with Jess ([11]) inference engine.  

In order to provide examples for learning algorithm, the system has been used (for 
meeting negotiations) by several members in our department for several weeks. Here 
is an example of the rules we obtained using CBA on the examples generated by 
using mySAM: IF ActivityDuration = 120 AND BusyMorning = true AND 
BusyEvening = true  THEN class = no (“class” specifies whether the agent should 
accept or refuse the proposed meeting). When no rule matches the specific context, 
mySAM is constrained to use a multi-agent knowledge-sharing session on how to use 
this specific context (IRAS) to find the solution. It asks all known agents in the 
system for their opinion on the situation, and counts each opinion as a vote for 
“accept”, “reject” or “unknown”. The agent then proposes to its user the decision that 
has the most votes. Agents consider an “unknown” result as a “reject” (by default, an 
agent will reject all meeting proposals that neither it, nor other agents know how to 
handle). We choose to use this “voting” procedure because not all agents will want to 
share their decision-making techniques, but an “accept/reject/unknown” answer is 
reasonable.  
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The CM  is also implemented as a JADE agent. It is a special agent in the system 
that has access to the domain ontology that defines the context attributes that it will 
manage. It answers to context-related queries from all agents that are in the system. 
The ontology was created using Protégé 2000 ([16]) and CM accesses the ontology 
using Jena ([10]), a Java library designed for ontology management.  

Agents interactions in the system are as follows: mySAM agents can query the CM  
using a REQUEST/INFORM protocol, negotiations between mySAMs being done 
using a PROPOSE/ACCEPT/REJECT protocol. 

When testing mySAM we were able to draw several conclusions. Using a selection 
step to choose the RAS for a situation helps in having smaller and more significant 
rules. Using all attributes to describe a situation is not only difficult to deal with, but 
also unnecessary. We tested our hypothesis on a set of 100 examples. For 15 context 
attributes used, we obtained an overall classification error of 29.11% and more than 
40 rules. When we split the example set on several finalities (“meeting_with_family”, 
“meeting_with_friends”, “work_meeting”), and for each situation we take into 
account a limited number of context attributes (7 for a meeting with family, 11 for 
others), the error becomes 7.59% and the number of obtained rules drops to an 
average of 15.  

Sharing with other agents just the decision (accept/reject) is preferable, because the 
agent that received the answer will then add this situation to its examples list, from 
where it will then learn the appropriate rule. Even if it will be slower than just sharing 
the specific rule, the privacy problem is this way addressed, because the agent shares 
just the answer to a specific situation, and not the reasoning that produced the answer. 

5   Related Work 

In this section we’ll present a brief state of the art in context definition, context-aware 
MAS and context-aware architectures, in order to position our work relative to what 
has been done in this domain. We don’t position our work relative to the learning 
domain, because our goal was not to propose a learning algorithm, but to use some 
already proposed methods for the specific goal of dealing with context [26]. 

Our definition of context is quite similar to definitions proposed by Persson [15], 
Brezillon [1], Edmonds [6], or Thevenin and Coutaz ([22]) in the sense that it is based 
on: (i) elements that structure context and (ii) its use, i.e. the finality when using it. 
The definition we proposed takes into account those two dimensions of context; it 
also explains how to manage them when designing context-based MAS.   

In MAS, the notion of context is used to describe the factors that influence a 
certain decision. In applications similar to our agenda management application, there 
are several works that adapt to context: Calendar Apprentice [14], Personal Calendar 
Agent [13], Distributed Meeting Scheduler [19], Electric elves [18], etc. Most of these 
works don’t mention the idea of “context” but they all use the “circumstances” or 
“environmental factors” that affect the decision to be made. In making Calendar 
Agent ([12]), Lashkari et al. use the notion of context, but they assume that the 
relevant context is known in advance, so that every context element that they have 
access to is considered relevant for the decision to be made. These approaches are not 
application-independent when handling context, because they do not provide neither a 
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general representation of context knowledge nor methods to choose relevant context 
elements for a specific decision. This is the main difference and contribution of our 
work in the sense that we propose a MAS architecture based on an ontological 
representation of context and that can permit an individual and multi-agent learning of 
how to choose and use context. MySAM is just a case study to validate our approach. 

Mostly, context is used in an ad-hoc manner, without trying to propose an 
approach suitable for other kind of applications. However, there is some research in 
proposing a general architecture on context-aware applications, like CoBrA, proposed 
by Chen et al.[3] or Socam, by Gu et al [21]. We based our architecture on CoBrA 
and Socam, but we added the learning modules for choosing relevant context and 
using it. The context broker and interpreter are similar to our CM, with the difference 
that our concern was not how to retrieve information from sources, but mostly how to 
represent it and how to reason on context knowledge based on this representation. 

6   Conclusions  

In this article, we have presented a definition of context, notion that is used in almost 
all applications, without consistently and explicitly taking it into account. We have 
proposed an ontology-based representation for context and a context-based 
architecture for a learning MAS that uses this representation.  We then validated our 
approach by implementing a meeting scheduling MAS that uses this architecture and 
manages and learns context based on the definitions and representation we proposed. 

As future work, we will extend this framework for context-based MAS to be used 
for any kind of application that considers context to adapt. The CM will be able to 
deal with all context-related tasks (including the calculation of context attributes 
values) and to share all this context-related knowledge. In order to make this possible, 
our future work will focus on representing and managing how to calculate the values 
for context attributes, and the importance of different attributes in different situation 
(making a more refined difference between relevant and non relevant attributes). 

In what concerns learning agents, the framework will provide agents with several 
individual learning algorithm and all that is needed to communicate and share 
contextual knowledge (how to choose, compute and use context to make decisions). 
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